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ABSTRACT 

Stephen Joseph Capuzzi: Predictive Cheminformatics Analysis of Diverse Chemogenomics 

Data Sources: Applications to drug discovery, assay interference, and text mining. 

(Under the direction of Alexander Tropsha) 

 In this dissertation, we describe the cheminformatics analysis of diverse 

chemogenomics data sources as well as the application of these data to several drug discovery 

efforts. In Chapter 1, we describe the discovery and characterization of novel Ebola virus 

inhibitors through QSAR-based virtual screening. In Chapter 2, we report the discovery and 

analysis of a series of potent and selective doublecortin-like kinase 1 (DCLK1) inhibitors using 

QSAR modeling, virtual screening, Matched Molecular Pair Analysis (MMPA), and molecular 

docking. In Chapter 3, we performed a large-scale analysis of publicly available data in 

PubChem to probe the reliability and applicability of Pan-Assay INterference compoundS 

(PAINS) alerts, a popular computational drug screening tool. In Chapter 4, we explore the 

PubMed database as a novel source of biomedical data and describe the development of 

Chemotext, a publicly available web server capable of text-mining the published literature.  
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CHAPTER 1: COMPUTER-AIDED DISCOVERY AND CHARACTERIZATION OF 

NOVEL EBOLA VIRUS INHIBITORS1 
 

1.2 INTRODUCTION 

The 2014 Ebola outbreak was the largest and most persistent since the discovery of the 

Ebola virus (EBOV) in 1976. Alarmingly, a new EBOV outbreak was confirmed in the Democratic 

Republic of Congo in May 2017.1 Though advances in the research and development of Ebola 

therapeutics have been made,2–4 Ebola drug discovery endeavors are hindered due to the high 

virulence of the EBOV and its biosafety level 4 (BSL-4) classification.5 Recently, a biosafety level 

2 (BSL-2) Ebola virus-like particle (VLP) entry assay was developed and utilized for a drug 

repurposing screen of Food and Drug Administration (FDA)-approved drugs.6–8 The Ebola VLP 

contains glycoprotein (GP) and the matrix protein VP40 fused to a beta-lactamase reporter for 

monitoring of VLP entry into cells. Although this BSL-2 Ebola VLP assay enables rapid 

compound screening, it requires a centrifugation step for assay plates at 1,500 g for 45 minutes at 

4 °C that limits its screening throughput. Computational approaches that leverage generated data 

can be used to design or select small sets of compounds for lead identification in order to reduce 

the time and costs of high throughput screening. Using the existing data from the Ebola VLP entry 

assay as well as cytotoxicity data, QSAR models9 can be built and then employed for virtual 

screening of large chemical libraries to predict activeompounds against EBOV infection with low 

                                                           
1 This chapter previously appeared as an article in the Journal of Medicinal Chemistry. The original citation is as 
follows: Capuzzi, SJ, et. al. “Computer-aided discovery and characterization of novel Ebola virus inhibitors”. Journal 
of Medicinal Chemistry. Just Accepted (April, 2018). 
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expected toxicity. Indeed, QSAR modeling approaches have been previously employed for 

identification of compounds with efficacy against EBOV.10,11 Herein, we describe a study that 

relied on synergistic combination of statistical data modeling and experimental testing for both 

antiviral inhibitor potency and host cell cytotoxicity (Figure 1.1).  Our study utilized both BSL-2 

and BSL-4 assays to experimentally validate hits identified computationally.   

 

Figure 1.1. Overall study design. The present study synergistically incorporates computational 

modeling and experimentation. 

 

To identify compounds with anti-EBOV activity and limited host cell cytotoxicity, we 

designed an integrated QSAR modeling system for virtual compound screening that is combined 

with experimental testing on a focused set of predicted compounds. In this study, existing antiviral 

activity and compound cytotoxicity data were collected and carefully curated; respective QSAR 

models were built and rigorously validated; these models were employed for virtual screening of  

a large chemical library (~17 million compounds), resulting in 102 hits prioritized for experimental 

testing; the anti-EBOV activity in the Ebola VLP assay and cytotoxicity in host cells of these hits 

were determined experimentally in BSL-2 and BSL-4 assays; and the mechanisms of anti-EBOV 
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activity for confirmed hits were identified. Ultimately, 14 potent hits with activity ranging between 

0.272 μM and 9.65 μM as well as more than 10-fold selectivity over compound cytotoxicity in 

host cells were confirmed. Next, five selected hits were shown to inhibit BSL-4 live-EBOV 

infection in a dose-dependent manner. Two of these hits possessed novel scaffolds, making them 

candidates for further medicinal chemistry optimization as potential anti-EBOV agents. This study 

presents the first example of computationally-driven prioritization and experimental discovery of 

novel potent anti-Ebola compounds with high therapeutic windows in the published literature. 

1.3 RESULTS 

1.3.1 Model Performance   

Prior to the modeling, MODIs of 0.69 and 0.68 were calculated for the P1 and P2 datasets, 

respectively. For each protocol, three separate software packages (Chembench, HiT QSAR, and 

GUSAR) employing different descriptors and different machine learning techniques (MLTs) were 

utilized for model building. In total, six individual models were built and rigorously validated. 

Results of 5-fold external cross-validation are presented in Table 1.1. In order to demonstrate that 

the predictive power of the models was not due to random correlation between bioactivity and 

chemical descriptors, 1000 rounds of Y-randomization was performed. No Y-randomized models 

had a CCR above 0.60.   

For P1, models built with HiT QSAR and GUSAR had the highest predictive accuracy, 

irrespective of the use of different chemical descriptors and MLTs. For P2, HiT QSAR again 

showed the best performance. Additionally, the CCR of the Chembench model improved by ~7% 

for P2 over P1. All models were deemed robust and statistically valid (Table 1.1).  
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For HeLa and HEK cell lines, MODI of 0.65 and 0.70 were obtained, respectively. For 

HeLa cytotoxicity, GUSAR yielded the best overall model. Chembench and GUSAR had inverse 

sensitivity and specificity profiles, indicating that Chembench could better identify toxic 

compounds, while GUSAR could better identity non-toxic compound. This observation highlights 

Model Name Descriptors  MLT CCR SE SP PPV NPV 

Chembench – P1 Dragon 6.0 RF 0.67 0.69 0.68 0.66 0.68 

HiT QSAR – P1 SiRMS RF 0.72 0.73 0.71 0.72 0.73 

GUSAR – P1 MNA and QNA SCR-RBF 0.72 0.73 0.71 0.72 0.73 

        

Chembench – P2 Dragon 6.0 RF 0.72 0.72 0.72 0.72 0.72 

HiT QSAR – P2 SiRMS RF 0.75 0.75 0.75 0.75 0.75 

GUSAR – P2 MNA and QNA SCR-RBF 0.72 0.69 0.75 0.73 0.71 

        

Chembench – HeLa Dragon 6.0 RF 0.73 0.77 0.68 0.73 0.72 

HiT QSAR – HeLa SiRMS RF 0.64 0.68 0.60 0.66 0.62 

GUSAR – HeLa MNA and QNA SCR-RBF 0.75 0.67 0.84 0.82 0.69 

        

Chembench – HEK Dragon 6.0 RF 0.62 0.67 0.57 0.64 0.60 

HiT QSAR – HEK SiRMS RF 0.53 0.55 0.50 0.56 0.49 

GUSAR – HEK MNA and QNA SCR-RBF 0.72 0.78 0.71 0.73 0.76 

Table 1.1. Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study. The results with highest statistical metrics are highlighted in bold. 

HEK models built with Chembench and HiT QSAR were not used due to poor predictive 

power. Values below acceptance threshold are underlined. 
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the reciprocal benefit of consensus modeling, i.e., utilizing all the models for VS. No Y-

randomized models had a CCR in access of 0.60.  All models were deemed robust and statistically 

valid. For HEK cytotoxicity, GUSAR again proved to be the best overall model. On the other hand, 

Chembench and HiT QSAR were not statistically validated, as several metrics fell below the 0.60 

threshold. Thus, only GUSAR was used for prediction of HEK cytotoxicity. Y-randomized models 

for GUSAR did not exceeded a CCR of 0.60.  A summary of all model performance can be found 

in Table 1.1.  

1.3.2 QSAR-Based Virtual Screening 

QSAR-based virtual screening (VS) was carried out according to the workflow presented 

in Figure 1.2. Initially, ~17 million compounds (see Methods) were downloaded, prepared, and 

screened. As previously stated, “hits” were those compounds that were within the AD of the 

respective model and predicted by all models to have high antiviral activity and limited host 

cytotoxicity. In total, 102 VS hits were selected for experimental validation in the Ebola-VLP entry 

assay.  

  

Figure 1.2. Screening workflow. A virtual chemical library of ~17 million compounds was 

screened against a battery of antiviral (P1 and P2) and cytotoxicity (HEK and HeLa) models. Hits 

selected for experimental validation were predicted to be EBOV inhibitors with limited host 

cytotoxicity. Then computational hits were experimentally validated, then their activity was 

evaluated using percent inhibition, IC50 values, and selectivity index (SI). 
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1.3.3 Experimental Evaluation 

1.3.3.a Experimental confirmation of Anti-EBOV activity of 14 compounds 

Based on the virtual screening results, 102 compounds were purchased and experimentally 

screened in the Ebola-VLP entry assay in parallel with an ATP content assay to determine 

compound cytotoxicity in host cells. All compounds were screened at 11 concentration dilutions 

ranging from 0.001 to 57 µM.12 Out of 102 compounds tested, 51 showed greater than 50% 

inhibition, indicating that half of compounds had confirmed anti-EBOV activity. Next, 20 of these 

51 compounds exhibited the IC50 values under 10 μM. Because the compound cytotoxicity at 

higher compound concentrations might reduce the Ebola VLP entry in cells, these potential false 

positive compounds should be deprioritized. After comparing to the compound cytotoxicity data, 

14 of these confirmed compounds showed a greater than 10-fold selectivity index (SI) of anti-

Ebola VLP entry over compound cytotoxicity. Vindesine and BIX-01294 inhibited the virus in the 

nanomolar range (Figure 1.3).  

 

Figure 1.3. Dose response curves for vindesine and BIX-01294. Both antiviral (VLP 

entry) and host cell cytotoxicity (HeLa) activities are plotted. 
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Moreover, these 14 confirmed compounds, except for ZINC91973695 and ZINC67869167, have 

known mechanisms of action (MOAs) and therapeutic indications (Table 1.2), including eight 

anti-cancer, two antihistamines, and two anti-psychotic and anti-inflammatory agents (Table 1.2).  

Table 1.2. Experimental results for the top 14 hits. Most experimentally confirmed hits have 

known MOAs and therapeutic use indications. 

Name Potency, μM 

Selectivity 

Index 

Indication MOA 

Vindesine 0.272 1837 Anticancer Microtubule Inhibitor 

BIX-01294 0.966 45 Anticancer HMTase Inhibitor 

Afimoxifene 1.96 123 Anticancer 

Estrogen Receptor 

Modulator 

Tetrandrine 2.16 22 

Anti-

inflammation 

Calcium Channel Blocker 

NVP-ADW742 3.05 13 Anticancer Tyrosine Kinase Inhibitor 

Endoxifen 3.05 164 Anticancer 

Estrogen Receptor 

Modulator 

ZINC91973695 6.09 82 N/A N/A 

Deptropine 6.58 76 Antihistamine Anticholinergic 

GANT61 6.83 73 Anticancer Hedgehog Antagonist 
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The remaining two compounds obtained from the ZINC database (ZINC91973695 and 

ZINC67869167) have no previously reported bioactivities, anti-Ebola or otherwise. Five hits were 

further validated in a live EBOV infection assay at bio-safety level-4 (BSL-4). All five hits showed 

dose-response inhibition against EBOV infection (Figure 1.4). Vindesine was the most potent 

compounds with an IC50 of 0.34 µM. The IC50 values of NVP-ADW742, BIX-01294, 

ZINC67869167, and ZINC91973695 were between 1 µM to 10 µM in the live EBOV infection 

assays.  

ZINC67869167 6.83 73 N/A N/A 

Hh-Ag1.5 7.67 65 Anticancer Hedgehog Agonist 

Cediranib 7.67 65 Anticancer Tyrosine Kinase Inhibitor 

Ebastine 9.56 51 Antihistamine Histamine H1 Antagonist 

Osanetant 9.65 52 Antipsychotic 

Neurokinin 3 Receptor 

Antagonist 
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Figure 1.4. Dose-response behavior against BSL-4 live-EBOV infection. Five hits were 

selected for screening in live-EBOV infection in a BSL-4 assay. Vindesine (red) was the most 

potent compounds with an IC50 of 0.34 µM. The IC50 values of NVP-ADW742 (black), BIX-

01294 (green), ZINC67869167 (orange), and ZINC91973695 (blue) were between 1 µM to 10 

µM.   

 

1.3.3.b Mechanisms of action against EBOV entry 

We probed the chemical biology of these hit compounds in both viral and host systems in 

order to uncover the mechanisms of anti-EBOV action. We examined the potential sites for drug 

interaction including Niemann Pick C1 (NPC1) protein, lysosomal function, cathepsin B, and 

cathepsin L,13–15 as well as the direct binding of these compounds to the Ebola VLP proteins using 

thermal shift binding assays.16 The results of chemical biology studies revealed that these 

compounds may act via one or more these targets/mechanisms. 

The process of EBOV entry into cells involves binding of viral envelop protein(s) to the 

cell membrane receptor protein/molecule, endocytosis, movement of endocytic vesicles to 

early/late endosomes and lysosomes, and ejection of viral RNA into the cytosol.17 Therefore, 
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inhibition of viral protein binding to cell membrane proteins/binding partners can effectively 

reduce viral entry and subsequent viral replication in cells. Because the cell surface binding 

protein/molecule for Ebola viral proteins is still unclear, we determined direct binding of these 

compounds to recombinant Ebola protein. To examine whether these compounds directly interact 

with the EBOV, their ability of stabilizing Ebola protein was tested in a thermal shift assay using 

recombinant Ebola VLP. None of the compounds at 50 μM were able to protect Ebola VLP from 

thermal denaturation. (Figure 1.5). 

 

 

Figure 1.5. Thermal profiling results of Ebola VLP with Ebola entry inhibitors. A, 

Thermal stability of Ebola VLP at temperatures from 25 °C to 77 °C detected by western 

blot. B, Effects of Ebola entry inhibitors (GANT61, ZINC67869167, ZINC91973695, 

tetrandrine, deptropine, osanetant, BIX-01294, cediranib, ebastine, afimoxifene, NVP-

ADW742, vindesine, endoxifen, Hh-Ag1.5) on thermal stability of Ebola VLP at 62 °C. All 

experiments were performed in duplicate and data are representative of two independent 

experiments. 
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Cathepsin B and L are lysosomal endopeptidases that had been reported to prime EBOV 

proteins in lysosomes before the viral RNAs are injected into the cytosol for virus replication. 

Inhibition of cathepsin B or L significantly reduces EBOV infection.13 GANT61 (an inhibitor of 

GLI1 and GLI2-induced transcription), deptropine (an antihistamine), and ebastine (an 

antihistamine) inhibited the enzymatic activity of cathepsin L (Figure 1.6a and 1.6b). Only 

GANT61 inhibited enzymatic activity of cathepsin B (Figure 1.6c and 1.6d). 

  

Figure 1.6. Inhibition of protease activities of recombinant cathepsin L and cathepsin B by 

Ebola entry inhibitors. a and b. recombinant cathepsin B or cathepsin L were treated with 10 µM 

of GANT61, ZINC67869167, ZINC91973695, tetrandrine, deptropine, osanetant, BIX-01294, 

cediranib, and ebastine. c. Dose-response studies of GANT61, deptropine and ebastine in cathepsin 
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L assay. d. Dose-response studies of GANT61 in cathepsin B assay. All experiments were 

performed in triplicate and data are representative of at least two independent experiments. Data 

are represented as mean ± SEM. 

 

The NPC1 protein has been reported as an intracellular receptor for EBOV.14,15,18 

Significant reduction of EBOV entry and infection were observed in the NPC1-deficient cells and 

mouse models.14,19 Ebastine increased cholesterol accumulation in cells determined by the filipin 

staining assay, which indicated a functional impairment of NPC1 protein; whereas, the other eight 

evaluated hits did not impair NPC1 protein function (Figure 1.7a).  

Lysosomes in cells are enlarged after treatment with certain compounds that damage 

lysosome functions, resulting in accumulation of lipids and other macromolecules.20 The enlarged 

lysosomes are often observed in the patient cells with lysosomal storage diseases caused by 

mutations in lysosomal proteins and lipid accumulation.21 EBOV entry is significantly reduced 

after the lysosomal functions are impaired by compounds. All of the nine evaluated hits increased 

LysoTracker dye staining in cells, indicating an enlargement in lysosome size (Figure 1.7b).  
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Figure 1.7. Cholesterol accumulation (NPC1 inhibition) and enlargement of lysosome 

induced by Ebola entry inhibitors. a. U18666A and ebastine increased filipin staining in 

fibroblasts (green: filipin; blue: nuclei). b. U1866A, GANT61, ZINC67869167, ZINC91973695, 

tetrandrine, deptropine, osanetant, BIX-01294, cediranib, and ebastine increased LysoTracker 

staining in fibroblasts (orange: LysoTracker red; blue: nuclei). All experiments were performed in 

triplicate and data are representative of at least two independent experiments. Data are represented 

as mean ± SEM. 

 

1.3.4 Cheminformatics Analysis 

1.3.4.a Assay Liabilities 

First, using substructural pattern matchers implemented in ZINC15,22 the 14 

experimentally confirmed hits were found to be free of chemical aggregation liabilities23 and 

PAINS alerts24. Since the assay employed herein relied on a beta-lactamase reporter system, all 14 

hits were also checked for potential beta-lactamase inhibition trends using PubChem 
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* 

Promiscuity.25 No heightened beta-lactamase assay activity trends were observed, indicating that 

these hits are not assay artifacts (Supplementary File 14).  

1.3.4.b Chemical Similarity to Training Set Compounds 

Hierarchical clustering analysis revealed that majority of the hits are structurally dissimilar 

from each other, aside from afimoxifene and endoxifen (Figure 1.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Hierarchical clustering 

of experimental hits. High 

Tanimoto similarity of afimoxifene 

and endoxifen is highlighted by an 

asterisk.  

Low High 
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Clustering thus indicates the hits discovered in this study access a wide range of chemical 

space across several unique chemotypes. The structural similarity based on the Tanimoto 

coefficient (Tc) of the 14 hits were then compared with compounds in the antiviral training sets 

(Table 1.3) in order to assess the uniqueness of hits. In addition to being highly structurally similar 

to each other, afimoxifene and endoxifen both have Tc above 0.90 to tamoxifen, which was a 

previously reported anti-Ebola inhibitor.26 Likewise, tetrandrine is highly structurally similar 

(Tc=0.97) to cepharanthine, a training set active compound.  The most potent hit in this study, 

vindesine, had a Tc of 0.96 to vinblastine, which was the most potent hit in the original screen.26 

These hits, while not entirely unique from a chemical perspective, illustrate that the developed 

QSAR models are robust and that the experimental assays are reproducible. The remaining 10 hits 

were considerably dissimilar from any training set compounds (Tc = 0.63-0.89), thereby 

constituting novel anti-Ebola chemotypes as compared to the training set compounds.   

 1.3.4.c Comparison to Previously Reported EBOV Inhibitors 

The potencies  and structures of the 14 hits identified in this study were compared to a 

compiled set of 60 previously published compounds with either in vitro or in vivo anti-Ebola 

activity.2,7,27,28 The full list of previously known published compounds and their potencies can be 

found in the Supplementary File 15. 

The most potent hit identified from virtual screen was vindesine (0.272 μM), a vinca 

alkaloid microtubule inhibitor. Previously, other vinca alkaloids were reported as sub-micromolar 

inhibitors of the EBOV in vitro.  These vinca alkaloids, vinblastine (0.048 μM), vinorelbine (0.066 

μM), and vincristine (0.141 μM),7 are highly structurally similar to vindesine (Table 1.4). 

Colchicine and nocodazole, microtubule inhibitors that are structurally distinct from the vinca 

alkaloids, were also previously reported as sub-micromolar inhibitors. The identification of 
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vindesine as one of the most potent hits identified to date highlights the robustness of the developed 

QSAR models, as well as the efficacy of this class of compounds and compounds with the same 

associated MOA as viable anti-Ebola compounds.  

The second most potent hit identified from the virtual screen was BIX-01294 (0.97 μM).  

This compound is among most potent reported anti-Ebola compounds.  Moreover, BIX-01294 is 

structurally dissimilar from other previously reported compounds (Table 1.4) and has a unique 

primary MOA (G9a histone methyltransferase inhibition).29 In contrast to vindesine, the 

identification of BIX-01294 demonstrates the ability to QSAR-based virtual screening to retrieve 

structurally novel chemotypes. 

The next most potent series of hits includes afimoxifene (1.36 μM), tetrandrine (2.16 μM), 

NVP-ADW742 (3.05 μM), and endoxifen (3.05 μM). Afimoxifene and endoxifen are metabolites 

of tamoxifen (Table 1.4), which was previously reported as a sub-micromolar Ebola inhibitor 7. 

Likewise, tetrandrine is structurally similar to cepharanthine (Table 1.4),7 as both are isolated from 

the same plant genus.  NVP-ADW742, on the other hand, is structurally dissimilar from any 

previously reported compound (Table 1.4). However, additional tyrosine kinase inhibitors have 

shown efficacy against the EBOV with a range of potencies in vitro, such as sunitinib (1.91 μM) 

and nilotinib (24.3 μM).7 

The remaining hits, i.e., ZINC91973695, deptropine, GANT 61, ZINC67869167, Hh-

Ag1.5, cediranib, ebastine, osanetant, have potencies ranging from 6.09 μM – 9.65 μM (Table 

1.4). Each of these hits is structurally unique with respect to previously published compounds 

(Table 1.4). In addition to being structurally novel among EBOV inhibitors, ZINC91973695 and 

ZINC67869167 have no previously reported bioactivities.   
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Table 1.3. Structural similarity of top hits to previously published compounds. The Tanimoto 

coefficient (TC) between experimentally confirmed hits and compounds in the literature was 

calculated. 

 



30 
 
 

 

 

 



31 
 
 

 

 

 



32 
 
 

 

 

 



33 
 
 

 

 

 

 

 

 

 

 



34 
 
 

1.4 DISCUSSION 

The power of virtual screening is its ability to quickly process millions of compounds and 

prioritize a small set of highly confident predictions for experimental confirmation. This approach 

not only saves time and cost as compared to the experimental high throughput screening, but also 

may lead to the evaluation of additional approved drugs that could be missed in the physical 

compound screening library. A combination of virtual screening with experimental confirmation 

is especially useful for challenging assays due to high biosafety requirements, limited patient 

samples, expensive reagents, or difficult formats (small animal or 3D cell culture). In this study, 

we prioritized 102 compounds from an in silico library of ~17 million compounds for testing in 

the EBOV entry assay using QSAR modeling and virtual screening. Fourteen of these hits were 

experimentally confirmed, including 5 selected hits against live-EBOV infections, and their anti-

Ebola mechanisms of action were determined using. 

The EBOV entry process has been extensively studied. Viral envelope glycoproteins attach 

to the surface of host cell, and the virus enters through micropinocytosis and endocytosis. Although 

a cell surface receptor and a few other components are still not clear, several key host factors 

including cathepsin B/L in the endosome13 and Niemann Pick C1 protein (NPC1) in the lysosome 

have been reported as regulators of EBOV entry.14,15 The chemical biology and anti-Ebola MOAs 

of the 14 experimentally validated hits were evaluated for interactions with both host and viral 

targets.  

In addition to discovering compounds with unique scaffolds, we also uncovered the anti-

Ebola MOAs of these compounds. We have found that the antihistamines ebastine and deptropine 

inhibited Ebola entry through negatively regulated lysosome function and blocking cathepsin L 
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activity. We also found that osanetant, an anti-psychotic, induces the enlargement of lysosomes 

and impairs lysosomal function. Additionally, BIX-01294 showed sub-micromolar activity to 

inhibit EBOV entry. Our LysoTracker dye staining data indicated that BIX-01294 may block 

EBOV entry through a blockade of lysosome function in host cells. BIX-01294 is a G9a histone 

methyltransferase (HMTase) inhibitor.29 HMTases have not been implicated in EBOV entry or 

replication. Additional chemical biology experiments to test the importance of HMTases in EBOV 

entry should be performed. Two hedgehog-signaling pathway modulators, Hh-Ag1.5 and 

GANT61,30 showed moderate anti-Ebola activity. Our results revealed multiple mechanisms of 

action involved in the inhibition of EBOV entry by GANT61. GANT61 caused enlargement of 

lysosomes and inhibited both cathepsin L and cathepsin B, which are known to impair EBOV 

entry. Two hits from the QSAR-based screen, ZINC91973695 and ZINC67869167, have no 

previously reported bioactivities. Results of our chemical biology evaluations showed that both 

compounds induced enlargement of lysosomes, which may implicate the blockage of lysosomal 

function as a mechanism of action for these two compounds with novel anti-Ebola scaffolds. 

A few analogs of previously reported Ebola entry inhibitors or compounds with the same 

of mechanisms of action were also identified. The most potent hit from our screen (and one of the 

most potent reported EBOV inhibitors) was vindesine, a vinca alkaloid microtubule inhibitor. 

Indeed, the vinca alkaloid microtubule inhibitors vinblastine, vincristine, and vinorelbine were also 

potent hits in the original screen.26 Likewise, though afimoxifene and endoxifen are novel hits, 

Selective Estrogen Receptor Modulators (SERMs) have been shown in several studies to have 

anti-Ebola activity.26,31,32 The same is true for the receptor tyrosine kinase (RTK) inhibitors 

cediranib and NVP-ADW742, as sunitinib has been previously reported to have anti-Ebola 

activity.26 Last, tetrandrine, a calcium-ion channel blocker, was reported33 as potent anti-Ebola 
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inhibitor during the course of our study. Thus, these results demonstrate the ability of our QSAR 

models to reliably retrieve compounds with anti-Ebola activities and confirm the reproducibility 

of the VLP-assay.  

1.5 CONCLUSIONS 

Our study is the first case of QSAR-driven experimental discovery of novel anti-Ebola 

agents with limited host cell toxicity. Robust and predictive QSAR models for both anti-Ebola 

activity and host cytotoxicity were developed and used for virtual screening of ~17 million 

compounds in order to identify Ebola inhibitors with high therapeutic windows (selectivity 

indices). Ultimately, 102 VS hits were tested in both Ebola VLP and ATP content cytotoxicity 

assays; 14 of these hits had IC50 < 10 μM and SI > 10, which is comparable to the measured 

potencies of several previously reported compounds. The two most potent hits in the screen were 

vindesine, a vinca alkaloid microtubule inhibitor, and BIX-01294, an HMTase inhibitor (Table 

1.2). In a live-EBOV assay, vindesine had an IC50 of 0.34 µM. Several of the hits were SERMs 

and RTKs, which have MOAs known to be related to anti-Ebola activity. We investigated the 

previously uncharacterized MOAs for anti-Ebola activity of several hits, including both host 

factors and direct Ebola VLP interactions. Two compounds, ZINC91973695 and ZINC67869167, 

represent novel chemotypes and can be considered as leads for future anti-Ebola chemical 

optimization.  

In addition to the identification of these compounds, this study demonstrates that FDA-

approved drugs, such as vindesine, and compounds that have not yet passed clinical trials for their 

primary indications, like cediranib, can be repurposed as antivirals. Such compounds are of 

particular interest, as they may have the potential, pending additional pre-clinical evaluation, to be 
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granted orphan drug status in the United States for EBOV disease. The integrated computational 

and experimental strategy employed in this study represents an advancement for the rapid 

discovery of Ebola therapeutics.  

1.6 EXPERIMENTAL SECTION 

1.6.1 Data Collection, Curation, and Classification  

1.6.1.a Antiviral Data 

Prior to this work, the Ebola VLP was prepared at the Icahn School of Medicine at Mount 

Sinai, and VLP-based qHTS screening campaigns were performed at the National Center for 

Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH).26 The 

results of 4 qHTS screening campaigns (2 primary and 2 confirmatory) were extracted from 

PubChem (AIDs 1117318, 1117313, 1117312, and 1117308).34,35 These data are available in 

Supplementary Files 1-4.   

Each of the four screens has three readouts, including a blue, green, and ratio (blue/green) 

channel. The blue channel analyzes the efficacy of the compound at inhibiting VLP entry activity 

in the host cell. The green channel indicates the healthy and viable cells that loaded with CCF2-

AM. The ratio channel screen measures the ratio of blue/green spectra. The beta-lactamase in the 

VLP hydrolyzes the CCF2-AM dye used in the assay to give a blue fluorescence spectrum. An 

effective inhibitor will prohibit the beta-lactamase in the VLP from hydrolyzing CCF2-AM, 

resulting in reduction of the intensity of the blue fluorescence spectrum. A low blue emission 

spectrum indicates that the compound is inhibitory, while a high green emission spectrum reflects 

the absence of host cytotoxicity. A simplified schema of the assay is depicted in Figure 1.9. 

In total, 3121 compounds were tested. These data were then curated according to our well-

established protocols.36–38 Briefly, mixtures, inorganics, and organometallics were removed. 
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Additionally, replicate compounds were identified and sets were removed if screening results 

conflicted; if the results were concordant, then one representative compound was selected. After 

curation, 3104 unique compounds remained.   

  

Figure 1.9. Simplified schema of Ebola VLP assay. Ebola VLPs contain Ebola GP and the VP40 

protein fused to a beta-lactamase (Bla) reporter. HeLa cells are loaded with the beta-lactamase 

substrate CCF2-AM. If the VLP enters into the cell, Bla hydrolyzes the substrate CCF2-AM, 

disrupting the fluorescence resonance energy transfer (FRET) in the substrate, thus causing blue 

fluorescence. Inhibition of the VLP by a chemical will preserve the substrate FRET, maintaining 

a green fluorescence. The ratio of blue/green fluorescence intensities represents the VLP activity 

of inside cells. 

 

1.6.1.b Cytotoxicity Data 

Host cell cytotoxicity data for a subset of compounds tested for anti-EBOV activity were 

obtained from the researchers at the NCATS. Compounds were tested for host cytotoxicity 

potential in HeLa and HEK cell lines. In total, 171 unique compounds were tested in HeLa cell 
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line, and 156 unique compounds were tested in HEK cell line. All 156 compounds tested in the 

HEK cell line were also tested in the HeLa cell line. Data curation was performed as above, and 

one organometallic was removed, leaving 170 and 155 compounds for consideration from the 

HeLa and HEK cell lines, respectively.  These data are available in Supplementary Files 5-6. 

1.6.1.c Determination of Antiviral Activity 

  Only compounds with dose-response curve classes39 of 1.1, 1.2, 2.1, 2.2, and 4 were 

considered for potential inclusion into the QSAR model training set. In order to comprehensively 

characterize the results of the screens, two separate protocols were used to classify “active” and 

“inactive” compounds for subsequent QSAR modeling. In the first protocol (P1), a compound was 

classified as “active” if and only if the compound had an AC50 < 10 μM and Maximum Inhibition 

≥ 70% in both a primary and confirmatory screen.  Similarly, an “inactive” compound had an AC50 

≥ 10 μM and Maximum Inhibition < 70% in both a primary and confirmatory screen.  

In the second protocol (P2), an “activity” score was calculated for each compound, j, according to 

the following equation  

 

where activity score(j) is the relative activity of a specific compound; max(AC50) and min(AC50) 

are the maximum and minimum AC50 in the screen, respectively, and AC50(j) is the AC50 of a 

specific compound; max(efficacy) and min(efficacy) are the maximum and minimum efficacies in 

the screen, respectively, and efficacy(j) is the efficacy of a specific compound. If a compound had 

an activity score ≥ 70 in either primary or confirmatory screen, the compound was classified as 
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“active”. Similarly, if a compound had an activity score < 70 in either a primary or confirmatory 

screen, the compound was classified as “inactive”.  

1.6.1.d Determination of Cytotoxicity  

For both the HeLa and HEK cell lines, a compound was considered “toxic” if the associated 

pAC50 > 4.0 (AC50 < 100 μM); whereas, a compound was considered “non-toxic” if the pAC50 ≤ 

4.0 (AC50 ≥ 100 μM) or the curve class was 4, indicating no response. Only compounds with dose-

response curve classes39 of 1.1, 1.2, 2.1, 2.2, and 4 were considered.   

1.6.1.e Antiviral Training Set Balancing  

In both protocols (P1 and P2), the data were imbalanced towards the inactive class. Thus, 

in order to balance the active and inactive classes in a 1:1 ratio, the inactive class was down-

sampled.40 Fifty percent of the corresponding inactives with the highest Tanimoto similarity41, i.e., 

the most similar inactives to the compounds from active class based on MACCS keys fingerprint,42 

were chosen, and the remaining 50% of the corresponding inactives were randomly selected. 

Important to note that all rationally chosen inactives had different nearest neighbors among 

actives.43  For P1 and P2, a total of 166 compounds (83 active and 83 inactive) and 1224 

compounds (612 active and 612 inactive) formed the respective training sets.  These compounds 

are available in Supplementary Files 7-8. 

1.6.1.f Cytotoxicity Training Set Balancing  

The “toxic” and “non-toxic” classes were relatively balanced; thus, no down-sampling of 

the larger class was required.  For HeLa and HEK cell lines, a total of 170 compounds (90 toxic 

and 80 non-toxic) and 155 compounds (83 toxic and 72 non-toxic) formed the respective training 

sets. These compounds are available in Supplementary Files 9-10. 



41 
 
 

1.6.1.g Modelability Index (MODI)   

The MODelability Index (MODI) estimates the likelihood of obtaining predictive QSAR 

models for a binary data set of compounds.44 MODI is defined as a weighted ratio of the number 

of nearest-neighbor pairs of compounds in descriptor space with the same activity class versus the 

total number of pairs. MODI threshold of 0.65 was previously found to separate the modelable 

from non-modelable data sets.44 MODI was calculated for all antiviral and cytotoxicity datasets 

prior to QSAR modeling in the present study as described earlier.44   

1.6.2 Computational Methods 

1.6.2.a QSAR Model Generation and Validation  

Three separate packages, Chembench,45,46 HiT QSAR,47 and GUSAR,48 were employed 

for consensus classification modeling of both antiviral activity (P1 and P2) and host cytotoxicity 

(HeLa and HEK). QSAR models built on Chembench used Dragon 6.0 descriptors49 and the 

random forest50 machine-learning algorithm. For models built with HiT QSAR, Simplex 

Representation of Molecular Structure (SiRMS) descriptors51 and random forest (RF) were used.  

GUSAR models utilized a combination of Multilevel Neighborhoods of Atoms (MNA) and 

Quantitative Neighborhoods of Atoms (QNA) descriptors52 and a radial-basis function with self-

consistent regression (RBF-SCR) as the machine-learning algorithm.48 We have followed best 

practices of QSAR modeling developed earlier by our group. All models were rigorously validated 

using five-fold external cross validation.9 Y-randomization was performed for all models.9 Models 

were statistically evaluated according to, sensitivity (SE), specificity (SP), correct classification 

rate (CCR), positive predictive value (PPV), and negative predictive value (NPV).  These 

statistical metrics are calculated by the equations 1-5, respectively.   
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SE =  
TP

TP+FN
   (1) 

SP =  
TN

TN+FP
  (2) 

CCR =  
SE+SP

2
  (3) 

PPV =  
TP

TP+FP
  (4) 

NPV =  
TN

TN+FN
  (5) 

Here, TP and TN represent the number of true positives (correct classifications of actives), and 

true negatives (correct classifications of inactives), respectively; whereas, FP and FN represent the 

number of false positives (incorrect classifications of actives) and false negatives (incorrect 

classifications of inactives), respectively. 

1.6.2.b Virtual Screening  

Two in silico libraries, the ZINC drug-like library22 and previously untested drugs and 

experimental compounds from the NCATS Chemical Genomics Center Pharmaceutical Collection 

(NPC), totaling ~17 million compounds after curation (see above), were virtually screened using 

the developed QSAR models of antiviral activity and host cytotoxicity. A model was deemed 

acceptable for virtual screening if and only if the CCR, SE, SP, PPV, and NPV were all above 

0.60, and no associated Y-randomized model had a CCR above 0.60. An applicability domain 

(AD) was used for all models. Consensus prediction was utilized, meaning that for a compound to 

be considered a virtual screening “hit”, it must be within the AD of each model and be predicted 

as “active” and “non-toxic” in all developed QSAR models of antiviral activity and host 

cytotoxicity, respectively (Figure 1.2). Once virtual screening “hits” were experimentally 
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validated, the Sequential Agglomerative Hierarchical Nonoverlapping (SAHN) method 

implemented in the ISIDA/Cluster program53 was used to probe the uniqueness of hit chemotypes 

and to identify the most structurally similar compounds in the training set and in the published 

literature.   

1.6.3 Experimental Methods 

Ebola VLPs containing a beta-lactamase-fused VP40 and GP were prepared in Dr. García-

Sastre's lab, as previously described.6 LiveBLAzer FRET–B/G Loading Kit and CCF2-AM, 

Dulbecco's modified Eagle's medium (DMEM), and Opti-MEM reduced serum medium were 

purchased from Life Technologies (Carlsbad, CA, USA). An ATP content cell viability assay kit 

was purchased from Promega (Madison, WI, USA). 1536-well polystyrene plates were purchased 

from Greiner Bio-One (Monroe, NC, USA). Compounds were purchased from Sigma-Aldrich (St. 

Louis, MO, USA), Santa Cruz (Dallas, TX, USA), ChemBridge Corporation (San Diego, CA, 

USA), Enamine Ltd (Kiev, Ukraine), Maybridge Chemical Company (Altrincham, United 

Kingdom), Vitas-M Laboratory (Champaign, IL, USA), Ambinter (Orléans, France) and AKos 

Consulting & Solutions Deutschland GmbH (Steinen-Schlächtenhaus, Germany) at the highest 

available purity. All of the compounds were dissolved as a 10 mM stock solution in dimethyl 

sulfoxide (DMSO) and diluted in DMSO at a 1∶3 dilution to generate eleven concentrations in 384-

well plates, followed by reformatting into one 1536-well compound plate for high throughput 

screening. 

1.6.3.a Materials  

All commercially available reagents, compounds, and solvents were purchased and used 

without further purification. Column chromatography on silica gel was performed on RediSep 

column using the Teledyne Isco CombiFlash Rf system. Preparative purification was performed 
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on a Waters semi-preparative HPLC. The column used was a Phenomenex Luna C18 (5 micron, 

30 × 75 mm) at a flow rate of 45 mL/min. The mobile phase consisted of acetonitrile and water 

(each containing 0.1% trifluoroacetic acid). A gradient of 10% to 50% acetonitrile over 8 

minutes was used during the purification. Fraction collection was triggered by UV detection (220 

nm).  

1H spectra were recorded using an INOVA 400 MHz spectrometer (Varian).  Samples were 

analyzed on an Agilent 1200 series LC/MS using a Zorbax Eclipse XDB-C18 reverse phase (5 

micron, 4.6 x 150 mm) column and a flow rate of 1.1 mL/min. The mobile phase was a mixture of 

acetonitrile and H2O each containing 0.05% trifluoroacetic acid. LC Method A: a gradient of 4% 

to 100% acetonitrile over 7 minutes was used during analytical analysis. LC Method B: a gradient 

of 4% to 100% acetonitrile over 3 minutes was used during analytical analysis. High resolution 

mass spectrometry was recorded on Agilent 6210 Time-of-Flight LC/MS system.  

2,2'-((2-(pyridin-4-yl)dihydropyrimidine-1,3(2H,4H)-diyl)bis(methylene))bis(N,N-

dimethylaniline) (GANT61) 

 

 
1H NMR (400 MHz, DMSO-d6) δ 8.59 – 8.52 (m, 2H), 7.70 – 7.64 (m, 2H), 7.47 (dd, J = 7.6, 

1.7 Hz, 2H), 7.20 – 7.11 (m, 2H), 7.08 – 6.97 (m, 4H), 4.01 (s, 1H), 3.51 (d, J = 14.1 Hz, 2H), 

3.39 (d, J = 14.2 Hz, 2H), 2.81 (dt, J = 11.2, 4.1 Hz, 2H), 2.50 (s, 12H), 2.22 – 2.14 (m, 2H), 

1.62 – 1.55 (m, 2H). LC/MS (Method B): (electrospray +ve), m/z 430.3 (MH)+, tR = 3.826, UV254 

> 98%. 
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(1R,3R,5S)-3-((10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl)oxy)-8-methyl-8-

azabicyclo[3.2.1]octane 2-hydroxypropane-1,2,3-tricarboxylate (Deptropine citrate) 

 

 
HRMS calculated for : C23H28NO [M + H]+ 334.2165, found 334.2150. LC/MS (Method A): 

(electrospray +ve), m/z 334.1 (MH)+, tR = 5.000, UV254 > 98%. 

 

(11S,31S)-16,36,37,54-tetramethoxy-12,32-dimethyl-11,12,13,14,31,32,33,34-octahydro-2,6-

dioxa-1(7,1),3(8,1)-diisoquinolina-5(1,3),7(1,4)-dibenzenacyclooctaphane (Tetrandrine) 

 

 
1H NMR (400 MHz, DMSO-d6) δ 7.45 (dd, J = 8.2, 2.1 Hz, 1H), 7.08 (dd, J = 8.2, 2.5 Hz, 1H), 

6.91 (d, J = 8.2 Hz, 1H), 6.77 (dd, J = 8.2, 1.9 Hz, 1H), 6.71 – 6.59 (m, 2H), 6.42 – 6.34 (m, 2H), 

6.31 (dd, J = 8.3, 2.1 Hz, 1H), 5.92 (s, 1H), 3.89 (dd, J = 10.4, 5.9 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 

3H), 3.50 (d, J = 9.8 Hz, 1H), 3.41 (d, J = 4.7 Hz, 1H), 3.32 (s, 3H), 3.29 (s, 4H), 3.17 (dd, J = 

12.5, 5.9 Hz, 1H), 3.03 (s, 3H), 2.89 – 2.68 (m, 6H), 2.63 (dd, J = 13.6, 10.1 Hz, 1H), 2.36 (d, J 
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= 16.0 Hz, 1H), 2.28 (d, J = 13.5 Hz, 1H), 2.18 (s, 3H). HRMS calculated for C38H44N2O6 [M + 

2H]2+ 312.1594, found 312.1602. LC/MS (Method A): (electrospray +ve), m/z 623.2 (MH)+, tR = 

3.866, UV254 > 98%. 

 

 

 

(Z)-4-(1-(4-(2-(dimethylamino)ethoxy)phenyl)-2-phenylbut-1-en-1-yl)phenol (Afimoxifene) 

 
 
1H NMR (400 MHz, DMSO-d6) δ 9.40 (s, 1H), 7.22 – 7.13 (m, 2H), 7.09 (ddd, J = 6.8, 4.0, 1.3 

Hz, 4H), 7.01 – 6.94 (m, 2H), 6.78 – 6.72 (m, 2H), 6.72 – 6.66 (m, 2H), 6.61 – 6.54 (m, 2H), 

3.88 (t, J = 5.9 Hz, 2H), 2.52 (m, 2H), 2.40 (d, J = 7.3 Hz, 2H), 2.15 (s, 5H), 0.84 (t, J = 7.4 Hz, 

3H). HRMS calculated for C26H30NO2 [M + H]+ 388.2271, found 388.2288. LC/MS (Method A): 

(electrospray +ve), m/z 388.1 (MH)+, tR = 5.056, UV254 > 98%. 

 

4-(4-(benzhydryloxy)piperidin-1-yl)-1-(4-(tert-butyl)phenyl)butan-1-one (Ebastine) 

 

 
HRMS calculated for C32H40NO2 [M + H]+ 470.3054, found 470.3069. LC/MS (Method A): 

(electrospray +ve), m/z 470.2 (MH)+, tR = 6.088, UV254 > 98%. 
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methyl (3S,5S,7S,9S)-9-((3aR,3a1R,4R,5S,5aR,10bR)-5-carbamoyl-3a-ethyl-4,5-dihydroxy-

8-methoxy-6-methyl-3a,3a1,4,5,5a,6,11,12-octahydro-1H-indolizino[8,1-cd]carbazol-9-yl)-5-

ethyl-5-hydroxy-1,4,5,6,7,8,9,10-octahydro-2H-3,7-methano[1]azacycloundecino[5,4-

b]indole-9-carboxylate sulfate (Vindesine) 

 

 
1H NMR (400 MHz, DMSO-d6) δ 9.67 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 

7.26 (s, 1H), 7.17 (d, J = 3.1 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.43 (s, 

1H), 6.25 (s, 1H), 5.72 (dd, J = 10.7, 4.8 Hz, 1H), 5.61 (d, J = 10.6 Hz, 1H), 5.07 (s, 1H), 4.34 (s, 

1H), 3.75 (s, 5H), 3.58 (s, 3H), 3.45 (s, 6H), 3.16 (s, 1H), 3.05 (s, 2H), 2.81 (s, 3H), 2.72 (s, 3H), 

2.19 (d, J = 15.3 Hz, 1H), 1.97 (s, 1H), 1.65 – 1.53 (m, 3H), 1.49 – 1.23 (m, 4H), 0.86 (t, J = 7.4 

Hz, 3H), 0.73 (t, J = 7.3 Hz, 3H). HRMS calculated for C43H57N5O7 [M + 2H]2+ 377.7124, found 

377.7140. LC/MS (Method A): (electrospray +ve), m/z 754.3 (MH)+, tR = 3.802, UV254 > 98%. 
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N-(1-benzylpiperidin-4-yl)-6,7-dimethoxy-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-

amine (BIX-01294) 

 

 
HRMS calculated for C28H39N6O2 [M + H]+ 491.3129, found 491.3119. LC/MS (Method A): 

(electrospray +ve), m/z 491.3 (MH)+, tR = 3.199, UV254 > 98%. 

 

(R)-N-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)propyl)-4-phenylpiperidin-4-

yl)-N-methylacetamide (Hh-Ag1.5) 

 

 
HRMS calculated for C28H27ClF2N3OS [M + H]+ 526.1526, found 526.1532. LC/MS (Method 

A): (electrospray +ve), m/z 526.1 (MH)+, tR = 4.048, UV254 > 98%. 
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4-((4-fluoro-2-methyl-1H-indol-5-yl)oxy)-6-methoxy-7-(3-(pyrrolidin-1-

yl)propoxy)quinazoline (Cediranib) 

 

 
1H NMR (400 MHz, DMSO-d6) δ 11.34 (d, J = 2.4 Hz, 1H), 8.49 (s, 1H), 7.60 (s, 1H), 7.38 (s, 

1H), 7.16 (d, J = 8.6 Hz, 1H), 6.98 (dd, J = 8.6, 7.4 Hz, 1H), 6.24 (d, J = 2.0 Hz, 1H), 4.25 (t, J = 

6.4 Hz, 2H), 3.99 (s, 3H), 2.58 (t, J = 7.1 Hz, 2H), 2.46 (m, 5H), 2.41 (s, 3H), 1.99 (dd, J = 7.9, 

5.7 Hz, 2H), 1.70 (s, 3H). HRMS calculated for C25H28FN4O3 [M + H]+ 451.2140, found 

451.2130. LC/MS (Method A): (electrospray +ve), m/z 451.1 (MH)+, tR = 4.353, UV254 > 98%. 

 

(R)-N-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)propyl)-4-phenylpiperidin-4-

yl)-N-methylacetamide (Osanetant) 

 

 
HRMS calculated for C35H42Cl2N3O2 [M + H]+ 606.2649, found 606.264. LC/MS (Method A): 

(electrospray +ve), m/z 606.2 (MH)+, tR = 5.399, UV254 > 98%. 
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5-(3-(benzyloxy)phenyl)-7-(3-(pyrrolidin-1-ylmethyl)cyclobutyl)-7H-pyrrolo[2,3-

d]pyrimidin-4-amine (NVP-ADW742) 

 

 
1H NMR (400 MHz, DMSO-d6) δ 8.12 (s, 1H), 7.65 (s, 1H), 7.51 – 7.44 (m, 2H), 7.45 – 7.29 (m, 

4H), 7.15 (t, J = 2.0 Hz, 1H), 7.11 – 7.04 (m, 1H), 7.04 – 6.96 (m, 1H), 6.10 (s, 2H), 5.31 (p, J = 

8.3 Hz, 1H), 5.17 (s, 2H), 2.72 – 2.58 (m, 4H), 2.47-2.44 (m, 5H), 2.25 (ddd, J = 12.1, 8.5, 2.9 

Hz, 2H), 1.74 – 1.62 (m, 4H). HRMS calculated for C28H32N5O [M + H]+ 454.2601, found 

454.2615. LC/MS (Method A): (electrospray +ve), m/z 454.2 (MH)+, tR = 4.106, UV254 > 98%. 

 

(E)-4-(1-(4-(2-(methylamino)ethoxy)phenyl)-2-phenylbut-1-en-1-yl)phenol (Endoxifen) 

 

 
1H NMR (400 MHz, DMSO-d6, major isomer) δ 9.17 (s, 1H), 7.17 (t, J = 7.6 Hz, 2H), 7.08 (d, J 

= 8.9 Hz, 5H), 6.92 (d, J = 8.2 Hz, 2H), 6.59 (d, J = 8.2 Hz, 2H), 6.39 (d, J = 8.1 Hz, 2H), 4.01 

(t, J = 5.6 Hz, 2H), 2.82 (t, J = 5.6 Hz, 2H), 2.39 (q, J = 7.3 Hz, 2H), 2.34 (s, 3H), 0.84 (t, J = 7.3 

Hz, 3H). HRMS calculated for C25H28NO2 [M + H]+ 374.2115, found 374.2105. LC/MS (Method 

A): (electrospray +ve), m/z 374.1 (MH)+, tR = 5.001, UV254 = 60.6% (major isomer). 
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11-(3,4-dimethylbenzyl)-3,7-dimethyl-3,7,11-triazaspiro[5.6]dodecane (ZINC67869167) 

 

 
HRMS calculated for C20H34N3 [M + H]+ 316.2747, found 316.2757.  

 

((3R,4R)-1-((2,3-dimethyl-1H-indol-7-yl)methyl)-4-(pyrrolidin-1-ylmethyl)pyrrolidin-3-

yl)methanol (ZINC91973695) 

 

 
HRMS calculated for C21H32N3O [M + H]+ 342.254, found 342.2532.  

 

1.6.3.b Cell culture methods  

HeLa and HEK293 cells were purchased from the American Type Culture Collection 

(ATCC, Manassas, VA, USA). The cells were cultured in DMEM supplemented with 10% fetal 

bovine serum (FBS, GE healthcare, Piscataway, NJ, USA) and 100 U/mL of penicillin and 100 

µg/mL of streptomycin (Life Technologies, Carlsbad, CA, USA) at 37 °C in a humidified 

atmosphere with 5% CO2. Cells were passaged at 90% confluency. 

1.6.3.c Ebola VLP beta-lactamase assay for HTS in 1536-well plates  

A chemical biology screening campaign was performed. Ebola VLP assay was conducted 

as previously described.7 Briefly, HeLa cells were seeded at 750 cells/well in 3 µL of assay 

medium (DMEM+10% FBS) in 1536-well assay plates. Compounds were prepared in a 1536-well 
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compound plate, and 23 nL of each compound was transferred into 1536-well assay plate using an 

NX-TR pintool station (WAKO Scientific Solutions, San Diego, CA, USA). After 1 h incubation 

at 37 °C with 5% CO2, 1 µL/well of VLP solution was added to the assay plates using a BioRapTR 

FRD dispenser. The plates were then spinoculated, followed by incubation at 37 °C with 5% CO2 

for 4.5 h. 1 µL CCF2-AM beta-lactamase substrate was added in to each well, and the plates were 

incubated for 2 h at room temperature. The assay was detected at dual fluorescence intensities 

(Ex1= 405±20, Em1= 460±20, and Ex2= 405±20, Em2= 530±20 nm) using EnVision plate reader 

(PerkinElmer, Boston, MA, USA). 

1.6.3.d Cell viability assay with the ATP content assay kit  

The cell viability assay was performed as previously described.7 Briefly, HeLa and 

HEK293 cells were plated at 750 cells/well in 3 µL in 1536-well assay plates, followed by the 

addition of tested compounds at 23 nL/well. After a 4.5 h incubation at 37 °C and 5% CO2, cell 

viability was measured by adding 3 µL of ATP content assay mixture to each well. Luminescence 

values were obtained using a ViewLux plate reader (PerkinElmer, Boston, MA, USA). 

1.6.3.e Ebola live virus assays 

Vero E6 cells were plated in the 96-well plate (black with optical bottom). Briefly, serial 

dilutions of 5 drugs (diluted in DMEM 2% FBS starting at 10 µM) and DMSO as control, were 

added to the wells, and incubated for 1 h at 37 °C with 5% CO2. The cells were infected with 

EBOV/Mayinga-eGFP at a MOI of 0.1 TCID50/cell. The assay was run in triplicate at a biosafety 

level-4 (BSL-4) facility. The fluorescence was read 72 h after infection using a BioTek Synergy 

HT. 

1.6.3.f Filipin staining and LysoTracker-red staining  

The assays were performed as previously described.54 Fibroblast cells were plated at 1,000 

cells/well in 4 µL of assay medium (DMEM + 10% FBS) in 1536-well assay plates and incubated 
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overnight at 37 °C and 5% CO2. Compounds were added to the assay plate at 23 nL/well. After 24 

h incubation at 37 °C and 5% CO2, 2 µl/well of 50 ng/ml filipin or 0.5 µM LysoTracker Red DND-

99 was added to the plate. After 1 hr. incubation at 37 °C and 5% CO2, the plates were washed 

twice. The fluorescence intensities were then read with a fluorescence plate reader (GE Healthcare, 

Chicago, Illinois, USA). U18666A [3-β-(2-[diethylamino]ethoxy)-androst-5-en-17-one, 

monohydrochloride] was used as the positive control.55 

1.6.3.g Cathepsin B/L assay  

Cathepsin B/L assays were performed as previously described.8 Briefly, recombinant 5 ng 

of cathepsin B, or cathepsin L were added into each well in 384-well plate. Indicated drugs were 

added into the recombinant enzymes, followed by initiation of the reaction by addition of 

fluorescent substrate. The activity measurements were done using Tecan plate reader (Tecan US, 

Inc., Morrisville, NC, USA). Cathepsin L inhibitor and ED64 were used as positive controls.8 

1.6.3.h Thermal shift binding assay with Ebola VLP  

The thermal shift binding assay was performed as previously described.16 Ebola VLPs were 

pre-incubated with indicated drugs for 10 min at room temperature. The mixture was then 

subsequently heated at 49 °C for 3 min, followed by centrifugation at 13, 000 x g at 4 °C for 20 

min. The supernatant was collected and denatured by heating at 75 °C for 10 min in the presence 

of SDS loading buffer (Life Technologies, Carlsbad, California, United States). The samples were 

separated by SDS-PAGE gel electrophoresis and detected by anti-beta-lactamase antibodies (Life 

Technologies, Carlsbad, California, United States).  

1.6.3.i Data analysis and statistics  

Half maximal inhibitory concentration (IC50) values of compound activity data were 

calculated using Prism software (GraphPad Software, Inc. San Diego, CA). All values were 

expressed as the mean ± SEM (n ≥3). 
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1.7 ASSOCIATED CONTENT 

Supporting Information. Supplementary Files 1-15 are available at 

https://scapuzzi.web.unc.edu/free-downloads/ 

Additionally, all the datasets and Chembench models are provided in and on the 

Chembench Web-Portal (https://chembench.mml.unc.edu/), which provides public access and use 

of data and models used in this study. The P1, P2, HEK, and HeLa training sets are publicly 

indexed as “Ebola_SM1” and “Ebola_PCM4”, “151105_Ebola_Toxicity_HEK”, and 

“151105_Ebola_Toxicity_HELA”, respectively. The Chembench P1, P2, and HeLa models are 

publicly indexed as “153004_ebola_Strict_Model1_166_DragonH”, 

“151305_ebola_1224_PCM4”, and “151105_ebola_tox_HeLa”, respectively.   

 

 

 

 

 

 

 

 

https://scapuzzi.web.unc.edu/free-downloads/
https://chembench.mml.unc.edu/
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CHAPTER 2: COMPUTATIONAL DISCOVERY AND EXPERIMENTAL 

VALIDATION OF POTENT INHIBITORS OF THE UNDERSTUDIED KINASE DCLK1 

2.2 INTRODUCTION  

Doublecortin-like kinase 1 (DCLK1) has been implicated in the development and 

progression of several cancers.56,57 Recent studies have shown that DCLK1, which is also referred 

to as DCAMKL-1, drives tumorigenesis in colon and pancreatic cancer58,59, is overexpressed in 

cancers of the liver and esophagus60,61, and such overexpression is an adverse prognosis factor in 

bladder and non-small cell lung cancer62,63. Notably, in 2013, Nakanishi et al. showed that DCLK1 

expression uniquely distinguished tumor stem cells (TSCs) in colorectal cancer from healthy stem 

cells and demonstrated that specific ablation of DCLK1-positive TSCs reduced tumor size without 

damaging healthy tissue.64 Given these observations, DCLK1 represents an emergent therapeutic 

target in oncology, especially, for colorectal cancer. 

Despite its growing notoriety in oncology, DCLK1 is still considered as an understudied 

kinase65 lacking any potent and moderately selective tool compounds. As per the guidelines for 

inclusion into the Structural Genomic Consortium’s comprehensive kinase chemogenomics set 

(KGCS), DCLK1 remains a dark, or chemically untargeted, protein kinase.66  A chemical probe 

for DCLK1 would be of great scientific and therapeutic value, as it could help unravel the specific 

biological role of this kinase in various cancers and serve as a potential lead for drug discovery 

efforts.67,68 
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The development of a chemical probe is dependent upon the identification of high quality 

chemical starting points for potency and selectivity optimization.66 This process is particularly 

challenging for dark kinases like DCLK1, where chemogenomics data and SAR studies are limited 

and often the unintended consequence of screening campaigns for other kinases. Indeed, the 

handful of compounds in the literature that target DCLK1 have come mainly from a kinome-wide 

screen of inhibitors bearing pyrimido-diazepine scaffolds69 or have been reported as an off-target 

effect during probe development for other kinases such as, ACK1, ERK5, and LRRK2.69–71 The 

development of novel DCLK1 inhibitors is critical to progress probe development for this 

biomedically-relevant, but, so far, dark kinase.  

Methods of computer-aided drug design (CADD) are routinely used to leverage prior 

screening data towards the discovery of novel bio-active compounds while also reducing time and 

cost. CADD approaches are most effective when large and diverse chemogenomics sets are 

available. Unfortunately, for DCLK1, experimental screening datasets are small (less than 100 

compounds have been tested so far), most compounds are inactive, and active molecules are very 

limited in chemical diversity.69 According to best practices previously established by us and 

others,9,72 it is not advisable to employ CADD approaches, especially QSAR modeling, for such 

datasets, as the potential for faulty predictions is high. At the same time, we were confronted by 

the therapeutic importance of this dark kinase, a lack of tool compounds, and the expressed need 

to prioritize laborious synthetic efforts presented by the diversity of synthetically feasible 

compounds. We were thus motivated to apply our expertise in modeling challenging datasets40,47,73 

in an attempt to discover potent DCLK1 inhibitors in close collaboration with our experimental 

partners. 
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In order to accomplish this goal, we executed the following steps: (i) the development of 

QSAR models of DCLK1 inhibition from prior screening data; (ii) virtual screening of focused 

chemical libraries to identify putative DCLK1 inhibitors; (iii) experimental validation of selected 

compounds; and (iv) off-target selectivity analyses for experimentally confirmed hits.   

Once several high-quality DCLK1 inhibitors were identified, we then (v) derived structural 

rules and key molecular interactions to guide future design and optimization efforts of these 

compounds using the cheminformatics techniques of matched molecular pair analysis, QSAR 

model interpretation, and molecular docking. This joint modeling and experimental effort (Figure 

2.1) resulted in the discovery of some of the most potent DCLK1 inhibitors to-date. These 

compounds constitute leads for the development of a chemical probe for this dark kinase. 

 

 

2.3 RESULTS 

2.3.1 QSAR Model Development   

Modelability Index (MODI),44 which affords rapid estimation of the feasibility of obtaining 

predictive QSAR models, was calculated for both training sets. MODI values of 0.79 and 0.89 

were obtained for the KINOMEscan and KiNativ training set, respectively. These MODI values 

were well-above the recommended threshold of 0.65, indicating that despite a high degree of 

Figure 2. 1. Overall study design. The workflow combines computational and experimental 

medicinal chemistry approaches for the discovery for novel potent DCLK1 compounds. 

 

Table 2.1.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.Figure 2. 2. Overall study design. The workflow combines 

computational and experimental medicinal chemistry approaches for the discovery for novel 

potent DCLK1 compounds. 

 

Table 2.2.Statistical characteristics obtained on 5-fold external CV of all models developed 

in this study.  

 

Figure 2. 3. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) possessed 

by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is a 1,3-

diazepine.Table 2.3.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.Figure 2. 4. Overall study design. The workflow combines 

computational and experimental medicinal chemistry approaches for the discovery for novel 

potent DCLK1 compounds. 

 

Table 2.4.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.Figure 2. 5. Overall study design. The workflow combines 

computational and experimental medicinal chemistry approaches for the discovery for novel 

potent DCLK1 compounds. 

 

Table 2.5.Statistical characteristics obtained on 5-fold external CV of all models developed 

in this study.  
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imbalance towards inactive compounds and limited chemical diversity there was meaningful SAR 

that separates actives from inactives.   

Next, we moved to model development and succeeded in developing robust and externally 

predictive QSAR models. Results of 5-fold external cross-validation are presented in Table 2.1. 

All metrics used to evaluate model performance were above the recommended threshold of 0.60. 

As such, these metrics demonstrated that active and inactive DCLK1 compounds can be correctly 

classified through statistically meaningful SAR.   

 

 

 

 

Since externally-validated and predictive QSAR models were developed using all available 

data, the applicability domain (AD) of the models was maximized, as the imbalanced datasets did 

not need to be down-sampled.40 Both the KINOMEscan and KiNativ models were predictive and 

useful for virtually screening new compounds in so far as these compounds fell within the AD that 

has been maximized by using all available data. In order to demonstrate that the models were not 

Model Name Actives Inactives Total CCR SE SP PPV NPV 

KINOMEscan 8 45 53 0.84 0.75 0.92 0.62 0.95 

KiNativ 5 42 47 0.73 0.70 0.75 0.61 0.96 

Table 2.33.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.  

 

Figure 2. 41. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.Table 2.34.Statistical characteristics obtained on 5-fold external CV of all 

models developed in this study.  

 

Figure 2. 42. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.   

 

Figure 2. 43. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.Table 2.35.Statistical characteristics obtained on 5-fold external CV of all 

models developed in this study.  

 

Figure 2. 44. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.Table 2.36.Statistical characteristics obtained on 5-fold external CV of all 

models developed in this study.  

 

Figure 2. 45. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.   
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obtained because of random SAR correlation between bioactivity and chemical descriptors, 1000 

rounds of Y-randomization was performed. All Y-randomized models showed a CCR below 0.60.   

2.3.2 QSAR-Based Virtual screening 

A set of 169 designed compounds possessing the same scaffolds as in Figure 2.2 was 

virtually screened with both QSAR models (See Methods). Although all 169 compounds were 

within the AD of both models, only seven compounds were predicted as active by both models. 

All seven compounds possessed the 5,11-dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-

one scaffold (Figure 2.2B). The remaining compounds were either predicted active only by the 

KINOMEscan model (29 compounds) or the KiNativ model (two compounds); 131 compounds 

were predicted inactive by both models. These results are consistent with the distribution between 

actives and inactives in the training sets, supporting the notion that DCLK1 has highly specific 

requirements to compound structure to make it active. From the compounds that did not meet the 

“hit” criteria, four were selected as negative controls for the model validation. Ultimately, 11 

compounds, seven putatively active and four predicted inactive, were selected for experimental 

studies. Virtual screening results for all compounds are provided in the Supporting Information 

(Supplementary Table 1).   

 

Figure 2.2. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) possessed 

by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is a 1,3-

diazepine.   
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2.3.3 Experimental Validation  

A threshold of activity for the 11 compounds from the virtual screening was set at 10 μM, 

as both models were developed from compounds screened at this concentration. The IC50 values 

and the structures of these 11 compounds are shown in Table 2.2. These results show that QSAR 

models were ~73% accurate, as they correctly predicted the activity calls for 8 out of 11 

compounds. Of the seven putative DCLK1 hits, six had IC50 < 10 μM, including four sub-

micromolar inhibitors. The top hit, XMD13-44, had an IC50 of 52 nM. Two of the four putatively 

inactive compounds were incorrectly classified, but, ironically, in this case of negative controls, 

the inaccuracy is a desired outcome. Statistically, however, this observation is expected for the 

imbalanced dataset modeling.74 Overall, eight compounds from the virtual screen had IC50 < 10 
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μM for DCLK1. Full dose-response curves are available in Figure 2.3. 

 

 

Figure 2. 73. Dose-response curves for the eleven virtual screening hits.  

 

Figure 2. 74. Dose-response curves for the eleven virtual screening hits.  

 

Figure 2. 75. Dose-response curves for the eleven virtual screening hits.  
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The selectivity profiles of the eight compounds with IC50 < 10 μM for DCLK1 were 

determined using a KiNativ screen (Table 2.3). The compounds were evaluated both by the 

selectivity index (SI) at 65% and 90% inhibition at 10 μM, i.e., SI(65) and SI(90), respectively. 

The Structural Genomics Consortium (SGC) has previously defined SI(65) < 4.0% and SI(90) < 

2.0% as acceptable selectivity profiles for a tool compound to be considered for inclusion into their 

comprehensive kinase chemogenomics set (KCGS).66 Only XMD13-37 inhibited more than 4% of 

kinases screened according to SI(65). On the other hand, all eight compounds had acceptable 

SI(90) profiles. KiNativ screen data are provided for the eight compounds in the Supporting 

Information (Supplementary Table 2).  

2.3.4 SAR Analysis and Implications for Future Design  

All of the experimentally validated hits possessed the 5,11-dihydro-6H-

benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold, and the four most potent hits shared 

common structural moieties (Table 2). In order to gain insights about structural aspects and key 

molecular interactions associated with DCLK1 inhibition among these compounds, as well as to 

guide future design and optimization efforts, SAR analysis was performed using several 

cheminformatics techniques.  

2.3.4.a Matched Molecular Pair Analysis and Model Interpretation  

The modeling datasets were investigated for matched molecular pairs (MMPs) bearing the 

5,11-dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold. From the KINOMEscan 

dataset, a series of MMPs was identified with several activity cliffs, i.e., structurally similar 

compounds from different activity classes.75,76 The shared scaffold of the MMPs and 

accompanying structural changes are shown in Figure 2.4. Within this series of compounds, only 

XMD8-85 and XMD8-87 were active; therefore, the remaining associated MMPs constitute 
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activity cliffs. This analysis revealed that the presence of a methoxy substituent at R1 and a co-

occurring methyl substituent at R2 correlated with increased DCLK1 inhibition.  

On the other hand, the influence of the R3 substituent was unclear, as active compounds 

XMD8-85 and XMD8-87 are MMPs differing only at this position. Fragment descriptor 

interpretation (Figure 2.5) from the KINOMEscan QSAR model, however, showed that the methyl 

addition at R3 increased the overall active (inhibitory) character of XMD8-85 relative to XMD8-

87. The SAR elucidated by the MMP analysis was also reflected by the model interpretation, as 

methoxy substituents at R1 and methyl substituents at R2 increased the activity profile in 

descriptor space.  

2.3.4.b Molecular Docking 

Training set compounds were docked into the crystal structure of DCLK1 (PDB: 5JZN)57 

in order to evaluate and validate the molecular docking approach. All training set actives, with the 

exception of just one compound, ranked within the top 15% of the best scored docking poses 

(Supplementary Table 3). This enrichment of training set actives among the best scored docking 

poses provided validation for the use docking as a method to generate hypotheses related to the 

protein-ligand interactions for the 11 compounds from the virtual screen. For these 11 compounds, 

the molecular docking scores correlated well with the experimentally-determined potencies. 

Indeed, the two most potent compounds, XMD13-44 and XMD8-90, had the best two docking 

scores (-7.75 and -7.69), respectively. XMD10-100, inactive upon experimental testing, likewise, 

had the second worst docking score (-4.72). TL-1-060, the compound with the worst docking score 

(-4.53), was only weakly potent (9.60 μM). All scores and poses for these 11 compounds are 

provided in the Supporting Information (Supplementary Table 3).   
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2.4 DISCUSSION  

Despite small dataset sizes with limited chemical diversity and a small number of active 

compounds, robust and predictive QSAR models of DCLK1 inhibition were developed from the 

results of KINOMEscan and KiNativ assays (Table 2.1). On further inspection, these training set 

characteristics were, in fact, crucial for successful QSAR model development. The limited 

chemical diversity in terms of scaffolds (Figure 2.2) among the training sets meant that large 

changes in DCLK1 bioactivity were caused by slight modifications in a small number of 

substituents. This observation was supported by the high MODIs of the training sets, which 

indicated that there was statistically meaningful SAR separating active compounds from inactive 

compounds. Both the MMP and model interpretation analyses also reflected this observation 

(Figures 2.3 and 2.4), as both showed that the activity profile was modulated by a few substituents 

at key sites. The successful development of QSAR models for DCLK1 inhibition from small and 

highly congeneric compounds harkens back to the early days of QSAR modeling and underscores 

the continuing need to carefully inspect modeling datasets, through methods like MODI, prior to 

modeling.  

After models were built and validated, they were used to virtually screen compounds 

bearing the same scaffolds as in Figure 2.2, resulting in the most potent series of DCLK1 inhibitors 

to date. Ultimately, six out of seven compounds prioritized by QSAR modeling as DCLK1 

inhibitors had IC50 values < 10 μM, and four of these were sub-micromolar inhibitors (Table 2.2). 

On the other hand, two compounds predicted to be inactive by the models, JWE-067 and JWE-

041, were shown experimentally to inhibit DCLK1 (Table 2.2). Since the goal of any drug 

discovery campaign is to identify compounds with the desired biological profile, in this case 

DCLK1 inhibition, ironically, this misclassification is not a failure.  
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Overall, eight compounds from the virtual screen, all of which possessed the 5,11-dihydro-

6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold, had IC50 < 10 μM, including five sub-

micromolar inhibitors (see Table 2.2). XMD13-44, a 52 nM inhibitor, was the most potent 

compound identified through virtual screening, which highlights that these models are capable of 

not only classifying inhibitors (actives) from non-inhibitors (inactives), but also of identifying 

highly potent compounds within the same chemical series. By any measure, the hit-rate from 

QSAR-based virtual screening of compounds (~73%) is enriched in comparison to the ~13% 

active-calls from the preliminary kinome screens of these same scaffolds (Table 2.1).  

Chemical probe development also requires selectivity against off-targets.67,77 The 

selectivity profiles of the eight compounds with IC50 < 10 μM for DCLK1 were assessed and 

quantified according to SI(65) and SI(90) (Table 2.3). These selectivity indices are a measure of 

a compound’s kinome promiscuity at certain thresholds of inhibition. For a compound to be 

considered for possible inclusion into the KCGS developed by the SGC, in addition to sufficient 

on-target potency, the compound ought to have SI(65) < 4.0% and SI(90) < 2.0%.66  All eight 

potent DCLK1 inhibitors were screened against at least 239 additional kinases. Only XMD13-37 

did not meet the SI(65) criterion, as it inhibited more than 4% of kinases screened. The most potent 

DCLK1 inhibitor, XMD13-44, had an acceptable selectivity profile, inhibiting the enzymatic 

activity of only three off-target kinases by more than 65% (Supplementary Table 2). The five 

sub-micromolar DCLK1 inhibitors, therefore, could be considered useful tool compounds in the 

KCGS and high-quality starting points for further probe optimization efforts. It should be noted, 

however, that compounds with this scaffold have been previously reported to competitively inhibit 

LRRK2,71 ERK5,70,78 Aurora A/B,79 and PI3K-δ/γ kinases80 and to bind to BRD4 bromodomains80. 

Indeed, the most potent DCLK1 inhibitor, XMD13-44, inhibited ERK5 by more than 90% 
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(Supplementary Table 2). Optimizing DCLK1-selective compounds from this scaffold is, 

therefore, an on-going effort.70,80,81   

To this end, SAR analyses were performed to inform optimization efforts through the 

identification of chemical structures and key protein-ligand interactions that drive DCLK1 

inhibition. Cheminformatics approaches, i.e., MMP analysis, QSAR model interpretation, and 

molecular docking, provided hypotheses about the underlying chemical features and molecular 

interactions that drive DCLK1 inhibition for lead compounds bearing the 5,11-dihydro-6H-

benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold. These cheminformatics approaches can 

also be applied to design and optimize follow-up compounds for both potency and off-target 

selectivity considerations.   

In the present study, MMP analysis and model interpretation of fragment descriptors of 

compounds both in the training set and in the experimentally validated set revealed useful 

structural insights. For certain compounds possessing the 5,11-dihydro-6H-benzo[e]pyrimido[5,4-

b][1,4]diazepin-6-one scaffold (Figure 2.2), a methoxy substituent to the phenyl ring (R1) and two 

co-occurring methyl substituents at R2 and R3 on the diazepine ring were shown to correlate with 

DCLK1 inhibition. The two most potent hits identified from the virtual screening, XMD13-44 and 

XMD8-90, align with this observation, as both compounds possess these features at R1, R2, and 

R3. Similarly, two inactive compounds lack some of these features: XMD11-100 lack methyl 

substituents at R2 and R3, while XMD11-40-2 lacks the methyl group at R2, though both 

compounds have a methoxy group at R1. Fragment descriptor analysis indicated that a substituent 

at the R3 position promoted DCLK1 inhibition (Figure 2.3) and may be considered a possible site 

for future optimization.   
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While the SAR trends around these three positions correlate with DCLK1 inhibition, not 

all of them are necessarily required for the desired activity and potency. For instance, the highly 

potent compound TL-1-038 (109 nM) does have two co-occurring methyl substituents at R2 and 

R3 on the diazepine ring, but lacks the methoxy group at R1. These derivations from the SAR 

trends highlight the importance of multivariate features in molecular design, as TL-1-038 

possesses a piperidinol group attached to the aniline moiety that is unique among all hits. In fact, 

potent inhibitors XMD13-44, XMD8-90, and TL-1-038 all differ at this tail region off of the aniline 

moiety (Table 2.2), making it a possible site for further medicinal chemistry efforts.   

Molecular docking provided additional insights to SAR trends among MMPs.82 XMD10-

39, a 154 nM inhibitor, differs from training set active compound XMD8-85 and from training set 

inactive XMD10-78 by a single ethyl substitution at R2. This observation indicates that, for the 

most part, both methyl and ethyl substitutions at the R2 position are tolerated for DCLK1 

inhibition, whereas an isopropyl is not. This slight change in structure that results in a large change 

in activity is reflected by the molecular docking results (Figure 2.6), which shows that the binding 

pose of inactive XMD10-78 (red) is flipped in the ATP-binding site relative to active compounds 

XMD8-85 (teal) and XMD10-39 (green). It is worth noting that JWE-067 (0.265 μM) possesses 

an isopropyl substitution at the R2 position; however, its structure and binding pose are 

considerably different from the MMPs mentioned above (SI).  
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Docking provided additional hypotheses about the key protein-ligand interactions for other 

DCLK1 inhibitors. Using the two most potent compounds as examples, which also have the two 

best docking scores, key hydrogen-bonds are likely formed with the backbone of the hinge-region 

valine in the ATP-binding by the 3-position pyrimidine nitrogen and the aniline NH site (Figure 

2.7).  

The recommended modifications to the four most potent lead compounds, i.e., XMD13-

44, XMD8-90, XMD10-39, and TL-1-038 (Table 2.2), are summarized in Figure 2.8.  Based on 

the SAR analysis, a methoxy substitution at R1 paired with either a methyl or ethyl substitution at 

R2 promotes DCLK1 inhibition (Figure 2.2).  A methyl substituent at the R3 position is present 

in all four lead compounds (Table 2.2) and was shown to promote DCLK1 inhibition among 

training set MMPs (Figure 2.3).  At minimum, a methyl substituent at this position is required. 

Docking studies also suggest that additional hydrogen bonds may be formed by larger chemical 
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substituents at R3 and residues in the pocket (Figure 2.7). This site should be considered for further 

optimization and SAR studies. Finally, the R4 region off of the aniline moiety is varied among the 

leads and the training set MMPs, making it another possible site for optimization and combinatorial 

design.   

 

 

 

 

2.5 CONCLUSIONS 

The integration of QSAR-based virtual screening and experimental medicinal chemistry 

(Figure 1.1) used in this study resulted in the discovery of the most potent and selective series of 

DCLK1 inhibitors to date. We succeeded to develop robust and predictive QSAR models of 

DCLK1 inhibition, despite challenges in the available data, which included limited dataset sizes 

and a very small amount of active compounds. These models were used hen to screen a set of 169 

compounds. Ultimately, five sub-micromolar inhibitors with a 5,11-dihydro-6H-

benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold were identified using this approach. The top 

hit, XMD13-44, had an IC50 of 52 nM. Subsequent cheminformatics-based SAR analyses 

Figure 2.7104. SAR analysis and implications for 

design. Recommended modifications to the four most 

potent lead compounds at positions R1-R4 are shown. 

Sites known to modulate DCLK1 activity are shown in 

green. Sites proposed for DCLK1 optimization are 

shown in orange.   

 

Figure 2.105. SAR analysis and implications for 

design. Recommended modifications to the four most 

potent lead compounds at positions R1-R4 are shown. 

Sites known to modulate DCLK1 activity are shown in 

green. Sites proposed for DCLK1 optimization are 

shown in orange.   

 

Figure 2.106. SAR analysis and implications for 

design. Recommended modifications to the four most 

potent lead compounds at positions R1-R4 are shown. 

Sites known to modulate DCLK1 activity are shown in 

green. Sites proposed for DCLK1 optimization are 

shown in orange.   

 

Figure 2.107. SAR analysis and implications for 

design. Recommended modifications to the four most 

potent lead compounds at positions R1-R4 are shown. 

Sites known to modulate DCLK1 activity are shown in 

green. Sites proposed for DCLK1 optimization are 

shown in orange.   
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demonstrated that the activity of these compounds depends on certain of structural features. The 

selectivity profiles of these potent inhibitors against off-target kinases demonstrated their potential 

utility as DCLK1 tool compounds, though further optimization efforts are currently on-going.  

Joint modeling and experimental efforts such as those presented here may help accelerate the rate 

of discovery among dark and understudied kinases. Our study demonstrates that even despite the 

obvious lack of data for understudied targets, integration of computational and experimental 

approaches accompanied by close interaction and collaboration between modeling and medicinal 

chemistry groups can lead to the discovery of potent inhibitors. The significant advantage of this 

methodology is its easy translation to other kinases and targets, dark or otherwise, for future 

discovery efforts.  

2.6 METHODS 

2.6.1 Data Production, Collection, Curation, and Classification  

Compounds were synthesized and screened in KINOMEscan83 and KiNativ84 assays. 

Compounds tested in these screens feature four scaffolds based on a common pyrimido-diazepine 

core (Figure 2.2 A-D).69   

A total of 53 compounds were tested in a kinome-wide screen (>200 kinases) at 10 μM by 

the KINOMEscan assay. Briefly, KINOMEscan is a competition-based assay in which the kinase 

of interest is either baited to an immobilized bead by interacting with an active-site directed small 

molecule or displaced from the bead by binding to the test compound. Compounds with 

experimental values less than or equal to 1%, i.e., 1% of the kinase not displaced, were considered 

“active”, while all compounds with values greater than 1% were considered “inactive”. This 

compound classification resulted in 8 actives and 45 inactives for DCLK1.   
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A total of 47 compounds were tested in the KiNativ assay in a kinome-wide screen (>200 

kinases) at 10 μM. KiNativ is a binding assay in which pretreatment of a kinase with the test 

compound prevents a covalent interaction between the kinase and a standard probe to take place. 

Compounds with greater or equal to 50% inhibition were considered “active”, while all compounds 

with less than 50% inhibition were considered “inactive”. This compound classification resulted 

in 5 actives and 42 inactives for DCLK1.  

 

Eleven compounds were tested in both the kinome-wide profiling KINOMEscan and 

KiNativ assays, with an approximately 82% concordance in classification for activity against 

DCLK1 (Supplementary Table 4). However, due to an insufficient amount of overlap between 

the two assays, data were not integrated. Instead, two separate models were developed. Prior to 

modeling, all compounds were curated according to our well-established protocols.36–38 Training 

set compounds are available as sdf files in the Supporting Information (Supplementary Files 1 and 

2)  

2.6.2 Computational Methods 

Following the best practices of QSAR modeling advanced earlier by our group,9 two 

independent models, i.e., for KINOMEscan and KiNativ data, were developed using the GUSAR 

modeling package85,86. GUSAR is a proprietary software; however, models are available in the 

Supporting Information (Supplementary Files 3 and 4) and could be used by anyone possessing 

the software package.   

2.6.2.a Molecular descriptors 

GUSAR uses a combination of whole-molecule descriptors and 2D fragment 

descriptors.85,86 The whole-molecule descriptors generated by GUSAR are topological length and 

volume; lipophilicity; molecular weight; and numbers of aromatic and halogen atoms, positive and 
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negative charges, and hydrogen bond donors and acceptors. The 2D fragment descriptors are of 

two types: multilevel neighborhoods of atoms (MNA)27 descriptors and quantitative 

neighborhoods of atoms (QNA) 28. 

2.6.2.b RBF-SCR algorithm  

In this machine-learning algorithm, descriptors are weighted during the calculation of the 

radial basis function (RBF) by the coefficients obtained from self-consistent regression (SCR).87 

These coefficients reflect the contribution of each particular descriptor to the final equation for the 

given activity. The absolute value of the coefficient corresponds to its contribution. In the RBF-

SCR method, the weights for each descriptor vector used for the calculation of RBF are based on 

that descriptor's importance for the given activity as determined by SCR.  

2.6.2.c Modelability Index (MODI) 

The Modelability Index (MODI) estimates the likelihood of obtaining predictive QSAR 

models for a binary data set of compounds.44 MODI is defined as a weighted ratio of the number 

of nearest-neighbor pairs of compounds in descriptor space with the same activity class versus the 

total number of pairs. MODI threshold of 0.65 was previously found to separate the modelable 

from non-modelable data sets. MODI was calculated for both training sets to evaluate the 

feasibility of developing models with high predictive power for the training sets. 

2.6.2.d QSAR modeling 

Binary classification (active vs. inactive) QSAR models were developed and rigorously 

validated according to the best practices of QSAR modeling.9 Models utilized a combination of 

MNA and QNA descriptors85,86 and RBF-SCR87 as the machine-learning algorithm. All models 

were validated using five-fold external cross validation;9,73 Y-randomization88 and applicability 

domain (AD)43 were utilized for each QSAR model. Models were statistically evaluated according 
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to sensitivity (SE), specificity (SP), correct classification rate (CCR), positive predictive value 

(PPV), and negative predictive value (NPV), see the equations 1-5, respectively.  

SE =  
TP

TP+FN
   (1) 

SP =  
TN

TN+FP
  (2) 

CCR =  
SE+SP

2
  (3) 

PPV =  
TP

TP+FP
  (4) 

NPV =  
TN

TN+FN
  (5) 

Here, TP and TN represent the number of true positives (correct classifications of actives), 

and true negatives (correct classifications of inactives), respectively; whereas, FP and FN represent 

the number of false positives (incorrect classifications of actives) and false negatives (incorrect 

classifications of inactives), respectively. Models were deemed acceptable for virtual screening if 

and only if the CCR, SE, SP, PPV, and NPV were above 0.60, and no associated Y-randomized 

model had a CCR above 0.60.  

2.6.2.e Virtual screening 

A set of 169 compounds with pyrimido-diazepine scaffolds (Figure 2.2) considered 

synthetically feasible and possibly viable as DCLK1 inhibitors were used for prediction and 

prioritization. As above, the 2D structures were processed following the same curation protocols.37 

Consensus prediction was utilized, meaning that for a compound to be considered a “hit”, it must 

be within the applicability domain of each model and be predicted as “active” by both.  

2.6.2.f Matched Molecular Pair Analysis 

The KNIME implementation of the Hussain and Rea algorithm for identifying Match 

Molecular Pairs (MMPs) was utilized.89 The number of cuts to acyclic single bonds was set to 1, 
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and the maximum number of heavy atom changes was set to 6 to allow for the addition of six-

membered rings.  

2.6.2.g Molecular Docking 

The lowest energy configurations at pH 7 for the eleven experimentally validated 

compounds, as well as compounds in the training sets, were generated with the Ligand Preparation 

application (Schrödinger Release 2016-4: LigPrep, Schrödinger, LLC, New York, NY, 2016). 

Next, the crystal structure of DCLK1 (PBD: 5JZN)57 was downloaded from the Protein Databank 

(http://www.rcsb.org/pdb/home/home.do)90 and prepared for docking as follows. Briefly, bond 

orders were assigned, hydrogen atoms were added, selenomethionine residues were converted to 

methionines, and missing side chains were filled with the Prime application (Schrödinger Release 

2016-4: Prime, Schrödinger, LLC, New York, NY, 2016). The protein grid for docking was set by 

selecting the center of the cocrystal ligand in the PDB structure57. The Glide application was used 

for docking of all compounds into DCLK1 (Schrödinger Release 2016-4: Glide, Schrödinger, 

LLC, New York, NY, 2016). Flexible ligand sampling was allowed with the XP (extra precision) 

scoring function.91  

2.6.3 Experimental Methods 

2.6.3a DCLK1 Plasmid Construction 

The DNA construct consisting of N-terminally 6-His tagged human DCLK1 residues 

G351-H689 was obtained from Ana Clara Redondo of the Structural Genomics Consortium at the 

University of Oxford. The plasmid was co-transformed with lambda phosphatase under 

chloramphenicol selection into BL21 DE3 E.coli cells. 
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2.6.3b DCLK1 Protein Purification 

 

Protein expression was induced with 0.6 mM IPTG and expression was allowed to continue 

for ~10 hours at 18 °C. Bacteria were harvested by centrifugation and resuspended in Lysis buffer 

with protease inhibitors (1 mM Benzamidine and 1 mM PMSF). Lysis was performed by passing 

3 times through a homogenizer. Lysate was centrifuged at 20K for 1 hour, and the supernatant was 

filtered through a 0.2 micron membrane. Protein was captured using Nickle-NTA resin and eluted 

with imidazole. Eluate was concentrated to 2 mL and passed over a Superdex S200 column. The 

Lysis buffer was composed of 50mM Hepes (pH 7.8), 350 mM NaCl, 20 mM imidazole, and 5% 

glycerol. The first wash was the same as the Lysis buffer; the second was the same as Lysis buffer 

but with 25 mM Imidazole; the elution was the same as Lysis buffer but with 300 mM Imidazole. 

The S200 gel filtration buffer was composed of 10mM Hepes (pH 7.8), 700 mM NaCl, 1 mM 

MgCl2, and 5% glycerol.  

2.6.3c DCLK1 Mobility Shift Assay  

 

DCLK1 kinase activity was measured in vitro using an electrophoretic mobility shift assay. 

The reaction was assembled in a 384-well plate in a total volume of 20 μl. The reaction comprised 

30 nM recombinant DCLK1, one DCLK1 inhibitor or DMSO, 100 μM ATP  and 1 μM FAM-

labeled peptide substrate (peptide 12: 5-FAM-KKLRRTLSVA-COOH)  in a buffer (100 mM 

HEPES pH 7.5, 0.003% Brij-35, 0.004% Tween-20, 10 mM MgCl2, and 2 mM DTT). DCLK1 

inhibitors were dispensed using a Labcyte Echo liquid handler. The reaction was incubated at room 

temperature for two hours and quenched by addition of 40 μL of termination buffer (100 mM 

HEPES pH 7.3, 0.015% Brij-35, 0.1% CR-3, 1 x CR-8, and 40 mM EDTA). Substrate and product 

peptides present in each sample were electrophoretically separated and detected using 12-channel 
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LabChip3000 microfluidic capillary electrophoresis instrument (Caliper Life Sciences). The 

change in the relative fluorescence intensities of substrate and product peaks (reflecting enzyme 

activity) was measured. Capillary electrophoregrams were analyzed using HTS Well Analyzer 

software (Caliper Life Sciences). The kinase activity in each sample was determined as the 

product-to-sum ratio (PSR): P / (S + P), where P is the peak height of the product peptide and S is 

the peak height of the substrate peptide. Negative control samples (DMSO in the absence of 

inhibitor) and positive control samples (100% inhibition, a tested DCLK1 inhibitor) were 

assembled in replicates and were used to calculate percent inhibition values for each compound at 

each concentration. Percent inhibition (%Inhibition) was determined using equation 6: 

 (6) 

where PSRinh is the product-sum ratio in the presence of inhibitor, PSR0% is the average product-

sum ration in the absence of inhibitor and PSR100% is the average product-sum ratio in 100%-

inhibition control samples. The DCLK1 candidate inhibitors were tested in 8-point dose-response 

format on each assay plate. The IC50 values were determined by fitting the inhibition curves by 

an eight dose-response model using GraphPad Prism 7 software. 

 

2.6.4 Kinase Selectivity  

 

Kinome-wide profiling in the KiNativ assay was used to assess kinase promiscuity of 

potent DCLK1 inhibitors. 84 Compounds were screened against at least 239 kinases at 10 μM, and 

a single percent inhibition value was recorded. PC3 and HeLa cells were used, as well as multiple 

labeling sites. 
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For each compound, the selectivity index (SI) was assessed at thresholds of 65% and 90% 

kinase inhibition, i.e., SI(65) and SI(90). The SI was then computed according to equation 7: 

        𝑆𝐼(90) = 100 ∗  
𝑁ℎ𝑖𝑡𝑠

𝑁𝑡𝑜𝑡𝑎𝑙
                  (7) 

In this equation, SI(90) is the selectivity index at 90% inhibition, Nhits is the number of 

kinases inhibited by the compound at ≥ 90%, and Ntotal is the total of kinases against which the 

compound was screened. Likewise, SI(65) is the selectivity index at 65% inhibition.   

2.7 ASSOCIATED CONTENT 

Supporting Information. Supplementary Files and Tables for Chapter 2 are available at 

https://scapuzzi.web.unc.edu/free-downloads/ 
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CHAPTER 3: PHANTOM PAINS: A PUBCHEM-WIDE ANALYSIS OF PAN-ASSAY 

INTERFERENCE COMPOUNDS2 

3.2 INTRODUCTION 

The scientific community is in the grips of the data reproducibility crisis, highlighted by 

Nature’s “Challenges in Irreproducible Research” initiative.92,93 Oftentimes in drug discovery, 

compounds active in primary biological screens show no activity in follow-up studies.94–96 The 

measured effect of false positives may be due to various compound and assay liabilities including 

those that interfere with the assay detection technology such as auto-fluorescence, hydrogen 

peroxide production, metal chelation, chemical aggregation, etc.24,93–96  

We categorize compound and assay liabilities, as Type 1 and Type 2 behavior, respectively. 

Type 1 behavior is characterized by compounds that affect target activity by an undesirable 

mechanism of action (MoA).97 An example of Type 1 behavior is target engagement by colloidal 

aggregation.  The formation of compound aggregates is considered an undesirable MOA since 

these aggregates, not an individual compound, modulate the target and thus constitutes artefactual 

activity. Type 2 behavior is characterized by an assay result that gives a spurious measurement of 

compound activity against the target. Examples of Type 2 behavior include singlet oxygen 

quenching in the AlphaScreen assay platform or inhibition of reporter enzymes by screened 

compounds. Since the assay itself gives rise to artefacts, Type 2 behavior can be summarized as 

“assay interference.”  

                                                           
2 This chapter previously appeared as an article in the Journal of Medicinal Chemistry. The original citation is as 
follows: Capuzzi, S. J., Muratov, E. N., and Tropsha, A. “Phantom PAINS: Problems with the Utility of Alerts for P an- 
A ssay IN terference Compound S”. J. Chem. Inf. Model. (February, 2017) 57, 417–427. 
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Although assay interference can typically be determined by running orthogonal assays that 

probe activity with auxiliary readout technologies, in silico methods are sought to quickly (and 

without cost) identify compounds whose “activities” are attributable to interference. The most 

popular and promulgated computational tool to flag, and often triage, compounds that interfere 

with the bioactivity detection technology are so-called Pan-Assay INterference CompoundS 

(PAINS) filters.24  

PAINS filters are composed of 480 “alerts”, i.e., substructural features frequently found in 

PAINS.24  These alerts are computationally mapped and matched onto full compound structures 

to flag for potential liabilities.24 In essence, PAINS alerts are simple binary (yes or no) models that 

attempt to forecast assay interference propensity by classifying compounds as PAINS (have alerts) 

or non-PAINS (lack alerts).  Like other types of models, PAINS alerts were derived from a training 

set. This training set consisted of 7900 compounds tested in six AlphaScreen assays.24 Similarly, 

like other types of models, PAINS alerts, to be considered reliable, must be validated with external 

data and be constrained by a defined applicability domain.98   

During their original development, however, PAINS alerts were not validated using 

external data, i.e., the predictive power of the alerts to identify compounds that interference with 

the assay detection technology was not quantified.24 Moreover, the applicability domain of PAINS 

alerts has not been appropriately addressed in the published literature. This lack of a defined 

applicability domain has led to use of alerts beyond the original chemical space of the training set 

(Type 1 behavior) and beyond the AlphaScreen assay platform (Type 2 behavior). 

Despite these concerns, the concept of PAINS alerts (filters) has gained much attention, 

many supporters, and prompted many follow-up publications.99–101 Several web-based 
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applications relying on the original work by Baell and Holloway24 have been developed to flag 

and filter compounds with PAINS alerts;102,103 chemical databases, such as ZINC 

(http://zinc15.docking.org/) and ChEMBL (https://www.ebi.ac.uk/chembl/), also flag compounds 

containing PAINS alerts. On the scientific blogosphere, publications reporting compounds flagged 

with PAINS alerts as viable hits have been publicly ridiculed in a practice known as “PAINS-

Shaming.”104 

The wide acceptance of the PAINS concept by the scientific community and the availability 

of PAINS filters have made it common for researchers to triage virtual screening hits flagged with 

these alerts prior to experimental validation.105 Similarly, lead compounds resulting from 

experimental screening campaigns have typically been de-prioritized for follow-up studies if they 

contained PAINS alerts.106 Furthermore, scientific journals have begun to recommend that all hit 

compounds, virtual or otherwise, should be passed through one of the publicly available PAINS 

filters before the manuscript is considered for publication. For instance, the ACS Journal of 

Medicinal Chemistry requires that “active compounds from any source must be examined for 

known classes of assay interference compounds”.107 The authors are asked to “provide firm 

experimental evidence in at least two different assays that reported compounds with potential 

PAINS liability are specifically active and their apparent activity is not an artifact”.107 Thus, 

compounds with potential PAINS liability as those flagged with PAINS alerts.  

Amidst the generally wide acceptance of PAINS, there have been a few voices cautioning 

about the overarching utility of the alerts. Several authors have noted that the application of these 

alerts could discard viable drug candidates because such alerts have actually been found in 

approved drugs.108,109 More substantial criticism of PAINS alerts has emerged as well on internet 

forums (but not in peer-reviewed publications).  Aware of these concerns, in the course of our own 
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recent virtual screening investigations, we re-examined the original study6 from which the 480 

PAINS alerts were derived. We noticed that the study6 employed a relatively small (93K 

compounds) and proprietary library (complete chemical structures were not released) tested for 

one type of activity (protein-protein interaction inhibition) in just six HTS campaigns (three out of 

six targets were kept confidential) using a single detection technology (AlphaScreenTM).  

Though considerable effort was made to divulge as much information as possible, due to 

the proprietary nature of the original study and unavailability of the chemical library explored 

therein, the detection of PAINS and the derivation alerts could not be fully and independently 

reproduced. That being said, upon further inspection of the 92 pages of Supplemental 

Information24, we observed that more than half of the PAINS alerts were derived from one or two 

compounds only (Figure 3.1), with 68% (328 out of the 480 alerts) found in four or fewer 

compounds only, and more than 30% (190 PAINS alerts) found in one compound only showing 

“pan-assay” activity (Figure 3.1; Table S1). This preliminary analysis lead us to hypothesize that 

the majority of these alerts may have limited extrapolative power due to the constrained 

applicability domain.    
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Figure 3.1. Probing the extrapolative power of PAINS alerts. A histogram showing the 

distribution of the number of PAINS alerts (amounting to 480 total) as the function of the number 

of compounds used to derive each alert. Note that 190 PAINS alerts were derived from one 

representative compound only whereas only 18 PAINS alerts were derived from samples including 

more than 100 compounds per alert. 

Given the aforementioned limited applicability domain of PAINS alerts, we decided to 

probe into the “pan-assay” activity of PAINS and the reliability of PAINS alerts by analyzing 

publicly available data on extensively assayed compounds. To this end, we have (i) assessed the 

robustness of PAINS alerts at flagging frequent hitters among compounds assayed using the 

AlphaScreenTM technology as reported in PubChem; (ii) scanned PubChem to investigate the level 

of “pan-assay” activity of compounds with and without PAINS alerts; (iii) examined the frequency 

of PAINS alerts in extensively assayed, yet consistently inactive compounds known as “Dark 

Chemical Matter”110; and (iv) profiled the PubChem-wide activity of FDA-approved drugs with 

and without PAINS alerts. Overall, using publicly available data, this study sought to evaluate the 
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PAINS concept in general, with an additional focus on specific PAINS alerts established in the 

original investigation24, in order to provide both researchers and journal editors with insight into 

the utility of PAINS alerts as they currently stand.   

3.3 RESULTS AND DISCUSSION 

3.3.1 Detection of PAINS in chemical libraries tested with the AlphaScreenTM Technology 

We have identified six PubChem assays that measure protein-protein interaction (PPI) 

inhibition using AlphaScreenTM, i.e., the same type of activity and the same technology employed 

in the original study.6 The study design is shown in Figure 3.2. The six originally studied assays 

were run at the relatively high compound concentration of 25-50 μM in primary screens, which 

may account for the high rate of interference, and two of the assays used hexa-his/Ni anchors.24 

We have chosen these six PubChem assays, similar to a study by Schorpp et. al111, in order to 

assess the robustness of PAINS alerts to flag frequent hitters across a similar, but not identical, 

series of assays.  It should be noted that the anchorage and screening concentrations reported in 

PubChem were different from original study.  However, current PAINS filters look solely for the 

presence of specific functional groups in assayed chemicals regardless of the assay conditions; 

thus, the difference in these conditions does not invalidate the use of PAINS alerts in this 

investigation.  
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Figure 3. 2. Study design for examining compounds in PubChem tested with AlphaScreenTM 

assay technology. Six assays targeting PPIs and using AlphaScreenTM were identified in 

PubChem. Only those compounds that were tested in all six assays were considered. Compounds 

were binned into two categories according to the number of active calls. Compounds in each 

category were then queried for PAINS alerts. The PubChem-wide bioassay activity of all 

compounds was then investigated.  

 

As many as 153,339 unique compounds were found in PubChem to have been tested across 

all six assays (Table S2). Activity calls for each compound (Active, Inactive, and Inconclusive) 

were recorded as defined by the assay depositor. Compounds were then binned into two categories: 

“Frequent Hitters” (active calls in at least 2 out of 6 assays) and “Infrequent Hitters” (active calls 

in 1 or 0 assays), which is the same threshold as established in the original study24. Both categories 

were first queried for the presence of PAINS substructural alerts using the SMARTS 
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implementation from PubChem Promiscuity25, then confirmed using SYBYL Line Notation (SLN) 

implementation from FAF-Drugs3102. Four categories arose: “Frequent Hitters - PAINS” (FH-

PAINS), “Frequent Hitters – No PAINS” (FH-NoPAINS), “Infrequent Hitters - PAINS” (IH-

PAINS), and “Infrequent Hitters- No PAINS” (IH-NoPAINS). There was a concordance of 

~99.9% between the SMARTS and SLN implementations for flagging compounds with PAINS 

alerts (Table S3). The enrichment value (EV), which was previously defined24 as the percentage 

of compounds active in at least two of the six assays relative to the number of compounds that 

displayed no activity across all six assays, was calculated to compare FH-PAINS vs. IH-PAINS 

(Table S4 and S5).  

The results of our analysis are shown in Table 3.1. There were 902 compounds in the 

“Frequent Hitters” category, and 208 of these only (23%) contained PAINS substructural alerts 

(FH-PAINS). The remaining 694 “Frequent Hitters” lacked any PAINS alerts (FH-NoPAINS). For 

the “Infrequent Hitters”, 146,224 (96%) compounds lacked PAINS alerts (IH-NoPAINS), but 

6,413 compounds (4%) still contained the alerts (IH-PAINS). Comparing the numbers of IH-

PAINS and FH-PAINS leads to the apparent conclusion that, for this series of assays, the majority 

of compounds containing PAINS alerts (97%) were actually infrequent hitters.   

 

 

 

 

Table 3.1. Lack of pan-assay activity for compounds with PAINS alerts in PubChem. The 

average fraction of activity calls for PAINS and non-PAINS (defined as containing or lacking 
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PAINS alerts, respectively) across both detection technology-specific assays and all assays in 

PubChem. The average number of assays in which the compounds were tested are shown in 

parentheses.  

Compound Categories Ncompounds  Luciferase β-lactamase Fluorescence All Assays 

FH-PAINS* 208 12% (93) 4% (9) 7% (312) 10% (546) 

FH-NoPAINS* 694 6% (95) 2% (9) 3% (320) 5% (550) 

IH-PAINS* 6,413 3% (93) 1% (10) 2% (323) 2% (550) 

IH-NoPAINS* 21,500 1.5% (95) 0.5% (9) 1% (326) 1% (555) 

Random-PAINS** 14,611 3% (95) 1% (12) 2% (329) 3% (562) 

Random-NoPAINS** 58,722 2% (93) 0.6% (13) 0.8% (321) 1% (550) 

Drugs-PAINS** 

 

87 

 

9% (71) 

 

7% (40) 

 

6% (223) 

 

24% (602) 

 

Drug-NoPAINS** 1,373 5% (59) 5% (33) 3% (183) 15% (458) 

*Defined by the compound profile in PPI assays utilizing AlphaScreenTM ; 

**Defined by presence or absence of PAINS alerts. 

 

The enrichment value calculated for PAINS-containing compounds (FH-PAINS and IH-

PAINS) was only 3.5% (Table  S4 and S5). Furthermore, if IH-PAINS that were active in one 

assay only were taken into consideration, the overall EV fell to 3.2% (Tables S4 and S5). The 

analysis of this series of assays indicates that PAINS alerts are found much more frequently in 

non-promiscuous compounds. 
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To probe whether or not this observation is only limited to assays related to PPIs using 

AlphaScreenTM, we investigated the PubChem-wide bioassay activity of the same compounds. 

Given that IH-NoPAINS constituted the overwhelming majority of all compounds discussed above 

(146,224 compounds), the PubChem-wide activity of all IH-NoPAINS was not evaluated due to 

computational constraints. Instead, a random subset of 21,500 IH-NoPAINS (Table S7) were 

evaluated; this number was selected to preserve approximately the same ratio of frequent to 

infrequent NoPAINS (1:3.5) as was observed for the PAINS (cf. Table 3.1). PubChem 

Promiscuity25,112 was used to retrieve the activity calls for all four aforementioned categories of 

compounds (FH-PAINS, IH-PAINS, FH-NoPAINS, and IH-NoPAINS) tested in luciferase-, beta-

lactamase-, and fluorescence-based assays (See Tables S4-S7). Lastly, we assessed activity calls 

across all bioassays in PubChem irrespective of the detection technology (Table 3.1).  

We found that across all assays, including those that have been reported as particularly 

susceptible to interference,96 FH-PAINS were active in more assays than FH-NoPAINS; however, 

IH-PAINS were active in fewer assays than FH-PAINS (Table 3.1). The reduced activity of IH-

PAINS in the AlphaScreenTM assays, therefore, is not limited to this detection technology, as it can 

be observed over all reported assays in PubChem. Also, both categories of frequent hitters in 

AlphaScreenTM (FH-PAINS and FH-NoPAINS) showed greater PubChem-wide activity than 

infrequent hitters containing PAINS alerts (IH-PAINS). Therefore, the broader activity spectrum of 

these frequent hitters is independent of the presence or absence of any PAINS alerts, highlighting 

the importance of considering molecular entities as a whole rather than chemical fragments when 

trying to derive any structural rules governing assay promiscuity.   
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3.3.2 Analysis of PAINS alerts in chemical libraries tested with the AlphaScreenTM 

Technology 

The specific alerts found in the above FH-PAINS and IH-PAINS categories were then 

investigated on an individual basis. In total, 163 individual PAINS alert types were observed in 

compounds among the two categories (Table S8). It should be noted that multiple PAINS alerts 

could be present within a single compound (Figure 3.3). 

 

Figure 3. 3. Compounds with multiple PAINS alerts. Two representative compounds from the 

IH-PAINS and FH-PAINS categories that contain multiple PAINS alerts.   

For the 208 FH-PAINS compounds, 41 individual PAINS alerts were detected (Table S8). 

Of these 41 alerts, only 7 alerts, i.e., quinone_A(370), mannich_A(296), ene_six_het_A(483), 

anil_di_alk_B(251), anil_di_alk_A(478), ene_one_hal(17), and imine_one_A(321), were found in 

more than 10 FH-PAINS compounds. The remaining 34 PAINS alerts were present in 10 or less 

FH-PAINS compounds.   

For the 6,314 IH-PAINS compounds, 162 individual PAINS alerts were detected (Table 

S8). Of these 162 alerts, 57 alerts were found in more than 10 IH-PAINS compounds. Moreover, 
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15 of these alerts were found in more than 100 IH-PAINS compounds. The anil_di_alk_A(478) 

alert, for example, appeared in 1,083 IH-PAINS compounds.  

Next, the PAINS alerts that were present in both the FH-PAINS and IH-PAINS were 

analyzed. Within these two categories, 40 individual PAINS alerts were shared, roughly ~25% of 

all observed alerts. Only one alert, i.e., anil_no_alk_A(1), was unique to FH-PAINS (Table S8); 

however, only 1 compound possessed this alert, which is consistent with the limited sample size 

(1 compound) used to derive this alert (cf. Figure 3.1). Similarly, 122 alerts were unique to IH-

PAINS (Table S8). For this series of assays, ~75% PAINS alerts present in the PubChem library 

analyzed herein (122 out of 163) were found only in the Infrequent Hitters.    

The enrichment value (EV), defined as percentage of compounds active in at least two of 

the six assays relative to the number of compounds active in 1 or 0 assays, was calculated for each 

of 40 shared PAINS alerts (Table 3.2).  Only 6 alerts showed EVs greater or equal to 25%. 

However, 4 of these 6 alerts had less than 10 representative compounds. Therefore, 2 alerts, i.e., 

quinone_A(370) and quinone_D(2), were found in 10 or more compounds and had an EV greater 

or equal to 25%. The remaining 34 shared alerts had EVs less than 25%, and 32 of these 34 alerts 

had more than 10 representative compounds.  Indeed, 6 shared alerts had EVs less than 1.0% 

despite being present in more than 100 compounds. For this series of assays, the vast majority of 

PAINS alerts were found among the Infrequent Hitters (IH-PAINS) at much higher frequencies. 

The full analysis of all 40 shared alerts, including representative compound sizes and EVs, can be 

found in Table 3.2.   
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Table 3.2. PAINS enrichment in six PubChem assays employing AlphaScreenTM. Forty alerts 

were present in both FH-PAINS and IH-PAINS. Two alerts showed EVs greater or equal to 25% 

and were found in 10 or more total compounds. Six alerts had EVs below 1.0%.   

PAINS Alert Substructure24 NFH-PAINS NIH-PAINS NPAINS EV, % 

quinone_B(5) 

 

3 1 4 300.0 

imine_ene_A(5) 
 3 2 5 150.0 

het_65_Db(5) 

 

4 3 7 133.3 

ene_rhod_J(3) 

 

1 3 4 33.3 

quinone_A(370) 

 

47 160 207 29.4 

quinone_D(2) 

 
9 36 45 25.0 

dyes5A(27) 
 

1 
5 6 20.0 

anthranil_one_A(38) 

 

3 
16 19 18.8 

imine_one_sixes(27) 

 

3 
16 19 18.8 

het_pyridiniums_A(39) 

 

5 
29 34 17.2 
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anil_alk_ene(51) 

 

2 
12 14 16.7 

thio_urea_D(8) 

 

1 
6 7 16.7 

ene_one_hal(17) 

 

14 
89 103 15.7 

anil_di_alk_B(251) 
 

16 
116 132 13.8 

ene_five_het_A(201) 

 

7 
51 58 13.7 

het_thio_5_imine_A(1) 

 

1 
9 10 11.1 

rhod_sat_A(33) 

 

4 
39 43 10.3 

dyes3A(19) 
 

1 
11 12 9.1 



92 
 
 

sulfonamide_B(41) 

 

2 
25 27 8.0 

azo_A(324)  9 
114 123 7.9 

mannich_A(296) 

 

36 
472 508 7.6 

anil_di_alk_F(14) 

 

1 
14 15 7.1 

imine_one_A(321) 

 

12 
215 227 5.6 

ene_one_ene_A(57) 

 

2 
40 42 5.0 

anil_no_alk(40) 

 
2 

48 50 4.2 

cyano_imine_A(37) 

 

1 
26 27 3.9 
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ene_six_het_A(483) 

 

18 556 574 3.2 

anil_di_alk_D(198) 

 

5 155 160 3.2 

imine_one_fives(89) 

 

1 38 39 2.6 

hzone_pipzn(79) 

 

2 87 89 2.3 

anil_di_alk_E(186) 

 

3 148 151 2.0 

thiophene_amino_Ab(40) 

 

1 71 72 1.4 

catechol_A(92) 

 

1 75 76 1.3 

anil_di_alk_A(478) 

 

14 1083 1097 1.3 

imine_one_isatin(189) 

 

1 111 112 0.90 

pyrrole_A(118) 

 

2 269 271 0.74 

ene_rhod_A(235) 

 

4 593 597 0.67 
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anil_di_alk_C(246) 

 

4 641 645 0.62 

ene_five_het_B(90) 

 

1 161 162 0.62 

indol_3yl_alk(461) 

 

1 354 355 0.28 

 

3.3.3 Random PAINS in PubChem 

We also evaluated the PubChem-wide activity of compounds tested in at least 25 separate 

bioassays based only on the presence or absence of 480 originally established PAINS alerts, i.e., 

irrespective of any perceived promiscuity across a selected series of specific assays. Randomly 

selected compounds that were evaluated in the previous section were excluded. The resultant 

dataset contained 73,333 individual compounds. The structures of these compounds were 

searched for PAINS alerts (described above) and binned into two categories: Random-PAINS 

(14,611 compounds) and Random-NoPAINS (58,722 compounds). We compared these two 

categories following the same protocol as described in the previous section (Table 3.1). The 

average pan-assay activity of Random-PAINS was just 3%, compared to an average of 1% for 

Random-NoPAINS (Table 3.1), i.e., Random-PAINS were marginally more active than 

Random-NoPAINS. Additionally, of the 14,611 Random-PAINS only 752 compounds (5% of 

the total) showed activity in at least 10% of all assays. Of the remaining 13,859 Random-PAINS 

(95%) that were active in less than 10% of all assays, 1,146 had no activity at all, despite being 

tested in an average of 443 assays (Table S9 and S10). These results indicate that the mere 

presence of a PAINS substructure does not give rise to any observed pan-assay activity, nor any 
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marked interference trends in luciferase-, beta-lactamase-, or fluorescence-based assays. In fact, 

only two PAINS alert containing compounds, tanespimycin and dihydrexidine, were active in 

more than 50% of the assays (Figure 3.4). In total 202 PAINS alerts were found among the 

Random-PAINS category, A PubChem-wide analysis of alerts in random PAINS is described in 

the Global Analysis of PAINS Alerts Section. 

  

Figure 3. 4. Random-PAINS displaying pan-assay activity. Tanespimycin  

and dihydrexidine are active in 85% and 50% of all assays in PubChem, respectively.   

 

 

3.3.4 Analysis of PAINS Alerts in Dark Chemical Matter 

Following the observation that Random-PAINS can be consistently inactive across a large 

number of assays, we probed the so-called Dark Chemical Matter (DCM)110 for the presence of 

PAINS alerts. DCM was defined by Wasserman et al.110 as compounds that hav 
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e not yet shown any activity when tested in a minimum of 100 assays. The complete dataset of 

139,352 DCM compounds, i.e. 128,997 PubChem and 10,355 Novartis DCM compounds, was 

downloaded from the Supplementary Information of the respective study.110  

The dataset was examined with FAF3-Drugs102, and 3,570 DCM compounds containing 

PAINS substructures were found, encompassing 109 of the 480 original PAINS alerts24 (Table 

S11). Of these 109 PAINS alerts, 30 alerts were found in more than 10 compounds and 10 alerts 

were present in 100 or more compounds (Table 3.3).  This analysis shows that even extensively 

assayed compounds containing PAINS alerts may be consistently inactive.  
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Table 3.3. PAINS alerts enriched in Dark Chemical Matter.  

Ten alerts are present in 100 or more in Dark Chemical Matter 

compounds (NDCM).  

PAINS Alert Substructure6 NDCM 

anil_di_alk_A(478) 

 

902 

anil_di_alk_C(246) 

 

492 

indol_3yl_alk(461) 

 

343 

ene_six_het_A(483) 

 

256 

mannich_A(296) 

 

212 
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imine_one_A(321) 

 

193 

anil_di_alk_D(198) 

 

184 

anil_di_alk_E(186) 

 

164 

ene_rhod_A(235) 

 

116 

pyrrole_A(118) 

 

100 
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3.3.5 Global Analysis of PAINS Alerts 

In this study, a total of 24,802 PAINS compounds were analyzed (208 FH-PAINS, 6413 

IH-PAINS, 14611 Random-PAINS, and 3570 DCM-PAINS) covering 220 specific PAINS alert 

types, which is ~ 46% of the original PAINS alerts.24  In order to determine if specific PAINS 

alerts correspond to compounds with elevated assay promiscuity, we performed a global analysis 

of the PubChem-wide activity of all PAINS compounds investigated herein (Tables 3.6-3.9). 

Since there is no agreed upon threshold of “pan-assay” activity, we selected assay activity of at 

least 10% as an arbitrary classifier.  

Of these 220 PAINS alert types, 32 alerts had greater than 10% assay activity in either all 

assays, luciferase-, beta-lactamase-, or fluorescence-based assays (Table 3.4). However, only 12 

of these alerts were present in more than 10 compounds (Table 3.5). It should be noted, however, 

that 6 of these alerts can also be found in DCM.   

On the other hand, 176 (~80%) of the total PAINS alerts analyzed (220) were active in less 

than 10% of all investigated assays and technologies, and 88 alerts were present in DCM (Tables 

3.6 and 3.7). Eighty-four (84) of 176 alerts were present in more than 10 compounds (Table 3.6). 

Interestingly, 6 of these alerts were found in more than 1,000 compounds (Table 3.6). Finally, 12 

alerts were found exclusively in DCM-PAINS (Table 3.8).  Eleven of these alerts were found in 

less than 10 compounds, while one alert, i.e., hzone_phenol_B(215), was present in exactly 10 

compounds. 

There are 16 PAINS alerts that were derived from more than 150 compounds (cf. Fig. 

3.1). Of all 480 alerts, these 16 alerts were created from the most underlying data in the original 

study6. Given the prevalence and heightened promiscuity of compounds possessing these alerts 
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in the original study, we specifically investigated whether any compounds in our collection 

flagged by these 16 alerts display suspect assay trends (Table 3.9). Aside from hzone_phenol_A 

(479) and hzone_phenol_B(215), which were found exclusively in DCM, 14 of these 16 alerts 

were frequently assayed and abundantly present in the public collection. All 14 alerts displayed 

less than 10% activity in all PubChem assays despite being tested on average in more than 500 

assays each. Among these specific alerts, the quinone_A(370) alert demonstrated the highest 

activity in all assays (8.4%).   

Our findings using data in the public domain can be corroborated in part by other inquiries 

into the nature of promiscuous compounds. For instance, while attempting to use PAINS alerts to 

fill gaps in Eli Lilly’s promiscuity filters, Bruns and Watson observed that “PAINS queries 

matched 286 promiscuous compounds that passed the Lilly rules, compared to 3986 in the non-

promiscuous set, for an enrichment factor of 4.0”113. Furthermore, they noted that “although 67 

PAINS queries matched at least one promiscuous compound, only nine queries matched at least 

five promiscuous compounds and had an enrichment of at least 5.”113 These findings are consistent 

with our observations that PAINS alerts in public data frequently flag non-promiscuous 

compounds or are manifested in only a small number of promiscuous compounds. 

On the other hand, another study on frequent hitter behavior by researchers at AstraZeneca 

showed elevated “Frequent-hitter Incidence %” for 10 out of 15 PAINS alerts.114  Although the 

authors state that their “corporate data largely confirm previous observations of the PAINS 

classes”, this study only investigated part of the first tier of the 480 PAINS alerts, i.e., the 15 out 

of 16 alerts derived from more than 150 compounds (cf. Figure 3.1), or ~3% of all alerts.114   As 

can be seen, in that study, one-third of the profiled alerts did not show elevated frequent-hitter 

behavior, which is, in part, aligned with our general observations (Tables 3.9).  
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3.3.6 PAINS Alerts in Drugs  

Other groups have noted that many drugs contain PAINS alerts,24,108,109 and several careful 

and keen analyses have centered around this phenomenon.115  It has also been observed that many 

of these PAINS alerts in drugs (but not all) map to poor ADMETox properties, such as quinone-

containing drugs.24 While this is an interesting observation, we view interference propensity and 

poor ADMETox properties as separate phenomena. Our group116 as well as others19 have also 

shown that a great majority of toxicity structural alerts, much akin to PAINS alerts, are overly 

sensitive and not predictive of actual in vitro or in vivo toxicity. Given that drug repurposing is 

currently widely used as a boon to traditional drug discovery117,118, we profiled the PubChem-wide 

bioassay activity of drugs with and without PAINS alerts (Table S12).   

A list of 1,460 approved small-molecule drugs was compiled from Drugs@FDA 

(https://www.accessdata.fda.gov/scripts/cder/drugsatfda/). Structures for these drugs were 

searched for PAINS alerts.102,25,112 We identified 87 small-molecule approved drugs possessing 25 

individual PAINS alerts (Table S12). As observed in the preceding sections, Drugs-PAINS are 

more active than Drugs-NoPAINS, having activity in 24% and 15% of all bioassays in PubChem, 

respectively (Table S12). According to current filters25,102, 16 of these drugs possess quinone 

PAINS alerts. The promiscuity of quinone-containing drugs have been extensively discussed in 

the PAINS literature24,115 and is supported by our analysis (cf. Tables 3.2 and 3.4). For instance, 

the chemotherapeutic doxorubicin, which contains the quinone_A(370) alert, has been tested in 

more than 4,000 assays with active calls ~85% of the time.  

At the same time, however, the relationship between polypharmacology and PAINS has 

not yet been adequately explored. Many drugs show polypharmacological behavior and possibly 

derive their efficacy from interacting with multiple targets119. Indeed, a similar study on 
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promiscuity in extensively assayed compounds found that drugs are more promiscuous than 

bioactive compounds119, which is evidenced in our analysis as well (Table 3.1). Polypharmacology 

may well account for the increased activity of both Drugs-PAINS and Drugs-NoPAINS relative to 

the other categories (cf. Table 3.1). While the phenomena of assay interference and 

polypharmacology have rightfully been contrasted119, there is very real possibility that a compound 

may both possess PAINS alerts and display polypharmacological behavior. Given that PAINS-

containing drugs are now frequently used in drug repurposing screens, a larger discussion about 

the utility of PAINS alerts and polypharmacology should take place.  

3.3.7 Beyond PAINS Substructures  

PAINS concept has been widely accepted by many experienced medicinal chemists both 

in academia and the pharmaceutical industry.  Indeed, the original study from which the PAINS 

alerts were derived and the impetus behind it are an important step towards reproducibility and the 

appropriate use of resources in drug discovery. However, our findings based on the analysis of 

public data suggest that many compounds containing PAINS alerts do not actually show high assay 

promiscuity, leading to the conclusion that these alerts should not be blindly used, in the absence 

of orthogonal experimental assays, to deprioritize a compound.   

At the same time, it is undeniable that pan-assay interference compounds exist and care 

must be taken to avoid these compounds. Moreover, we recognize that true “PAINS” may be 

present in the data analyzed herein but have not been classified as such because the current alerts 

do not cover these compounds120. The issue of what constitutes a pan-assay interference 

compound thus remains unclear.  For example, in How to Triage PAINS-Full Research, Dahlin 

and Walters define PAINS as “compounds that are recognized by the substructure filters reported 

by the Baell and Holloway article.”120 By this definition, all alerts (filters) are treated equally, 
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regardless of the underlying data used to derive the alert or the actual promiscuity of flagged 

compounds.  Yet our analysis indicates that the identification of such compounds should not be 

restricted to substructures alone. Substructural alerts, PAINS or otherwise, do not take into 

consideration the whole molecular environment116, as illustrated by PAINS alerts manifesting in 

both promiscuous and frequently inactive compounds (DCM). Attempts should then be made to 

move beyond substructural or fragment-based alerts. For instance, Yang and coworkers in their 

“BadApple” algorithm have extended the identification of promiscuous compound to larger 

scaffolds.121  

In recent publications by Alves et al.122–124, quantitative structure-activity relationship 

(QSAR) models were used in conjunction with structural alerts for toxicity to dramatically improve 

the accuracy of prediction of multiple toxicity endpoints over alerts alone. The authors of the 

present study advocate the development of a similar approach for PAINS alerts.  Such publicly 

accessible models, if successful, could be employed even for proprietary compounds insofar as 

chemical descriptors of PAINS-containing compounds could be shared without divulging actual 

molecular structures (given the proprietary nature of most compounds used to derive and evaluate 

PAINS so far24,113,114). The challenge is to build externally predictive QSAR models capable of 

classifying PAINS versus non-PAINS compounds. Using such models, predictions of suspect 

compounds could be made, giving higher confidence in the utility of the alert and the nefarious 

nature of the compound. 

Meanwhile, the concept of PAINS alerts, at the very least, needs a re-defined set of “best 

practices”120 that covers the appropriate use of alerts, which may include cross-referencing the 

promiscuity profiles of structurally similar compounds or alert types in the public domain, 

annotation of particularly susceptible assays, targets, and conditions, pointers to the appropriate 
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controls, and a generally agreed upon definition of “pan-assay” activity. It would be of great value 

if a community-wide effort to screen and analyze a large set of commercially available compounds 

representing the all current PAINS alerts against multiple targets in various assays was performed 

by several independent groups.  

3.4. CONCLUSIONS 

It is imperative to establish target selectivity for any compound considered a viable 

chemical probe or drug candidate through rigorously acquired experimental data and meaningful 

SAR. Future studies may well establish some generalized approach for detecting frequent hitters 

engendered by assay interference. However, until such approaches are developed and rigorously 

validated across a large number of molecules, researchers should be cautioned about using the 

current PAINS alerts as reliable indicators of non-specific pan assay interference. Though it has 

been stated elsewhere that compounds flagged with PAINS alerts are not active in all assays or 

against all targets,24,120 our analysis provides systematic and data-driven support of this claim 

across a large series of compounds, alerts, and assays.  Our findings do demonstrate, with publicly 

available data at hand, that majority of the original PAINS alerts are not indicative of pan-assay 

compound promiscuity, that many compounds without PAINS alerts are as, if not more, 

promiscuous as those with the alerts, and that many compounds flagged by PAINS alerts show no 

activity.  It is of great importance that reviewers and journal editors request experimental proofs 

of selectivity, such as orthogonal experimental assays, for hit and lead compounds reported in 

scientific manuscripts. However, the results of this study strongly suggest that such requests should 

not be based solely on the results of PAINS filters.120    
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3.5 ASSOCIATED CONTENT 

Supporting Information. Supplementary Files and Tables in Chapter 3 are available at 

https://scapuzzi.web.unc.edu/free-downloads/ 
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CHAPTER 4: CHEMOTEXT: A PUBLICLY-AVAILABLE WEB SERVER FOR 

MINING DRUG-TARGET-DISEASE RELATIONSHIPS IN PUBMED3 

4.2 INTRODUCTION  

The fundamental goal of small molecule drug discovery is the identification of bioactive 

compounds for the treatment of disease125. Many modern drug discovery projects start with the 

discovery of novel targets and then progress in the direction of finding ligands of these targets that 

are expected to affect the disease. Bioactivity data from drug repurposing/discovery campaigns are 

increasingly available in public databases such as PubChem35,126 and ChEMBL127. At the same 

time, much information about the biological underpinnings of disease, i.e., effector proteins and 

pathways, as well as drug targets are stored primarily in the biomedical literature. Thus, 

biomedically relevant relationships between drugs, biological targets, and diseases, which we call 

the DTD triangle, can be identified through mining the published biomedical literature.128,129  

PubMed, the largest repository of published biomedical research, is a freely-accessible 

search engine maintained by the United States National Library of Medicine (NLM) at the National 

Institutes of Health (NIH)130.  PubMed can be used to retrieve scientific articles containing specific 

search terms that are stored in the Medline bibliographic database. PubMed can also return a list 

of Medical Subject Headings (MeSH), or so-called MeSH terms131. The purpose of these MeSH 

terms is to index and categorize published studies by the subject matters discussed therein. As 

                                                           
3 This chapter previously appeared as an article in the Journal of Medicinal Chemistry. The original citation is as 
follows: Capuzzi, S. J., et. al. “Chemotext: A Publicly Available Web Server for Mining Drug–Target–Disease 
Relationships in PubMed.” J. Chem. Inf. Model. (February, 2018) 58, 212–218. 
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most drugs, biological targets, and diseases discussed in biomedical literature are captured by 

associated MeSH terms, relationships between terms in the DTD triangle (represented by edges of 

the triangle with vertices representing MESH terms) can be established based on their frequent co-

occurrences within articles.   

Indeed, such considerations led to the development of the Chemotext approach,132 which 

focused on the extraction of MeSH terms describing “chemicals”, “targets”, and “diseases”, i.e., 

the components of the DTD triangle, that were found to frequently co-occur in abstracts of papers 

annotated in PubMed. These co-occurrences were regarded as an indication of plausible assertions 

linking drugs, targets and diseases. Furthermore, Chemotext was conceived as an extension of 

Swanson’s ABC paradigm132–134 wherein “A” terms are chemical (drug) - related MeSH terms, 

“B” terms are so-called “target” MeSH terms, i.e., proteins and pathways, and “C” terms are MeSH 

terms for diseases (Figure 4.1). The underlying hypothesis generation starts with the observation 

that the name of drug “A” co-occurs in the same articles as the name of target “B” while the name 

of disease “C” co-occurs in the same or additional articles with the same target “B”. Thus, if drug 

“A” and disease “C” have not been mentioned together in the same article, an “A-C” connection 

mediated though target “B” can be inferred. This analysis leads to the identification of a new 

possible therapeutic use of drug “A”. This reasoning protocol illustrates one of possible uses of 

Chemotext for drug repurposing, which has emerged in the past decade as a boon to traditional 

drug discovery.118,135  

Although efforts have been made to develop tools for text-mining of PubMed, such as 

“MeSHSim”,136 “pubmed.mineR”,137 and IBM-Watson,138 these current implementations are 

either available only as R-packages,136,137 which are not user-friendly, and/or proprietary.138 To 

this end, we have developed the publicly-available Chemotext Web server that mines published 
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literature in PubMed in the form of MeSH terms. The goal of Chemotext is to establish text-based 

drug-target-disease relationships, which, as we show herein, can be used to generate novel drug 

repurposing hypotheses or elucidate clinical outcomes pathways that mechanistically connect 

drugs and diseases via intermediary, target-mediated biological effects of drug action.  Similar to 

our Chembench Webportal,46 the Chemotext Web server is hosted by the Molecular Modeling 

Laboratory (MML) at the University of North Carolina – Chapel Hill and is freely-available at 

http://chemotext.mml.unc.edu/.  

 

Figure 4. 1. Swanson’s ABC paradigm used in Chemotext.  Chemical A is proposed to have an 

effect on Disease C since both terms are associated with Target B. Solid lines (edges) indicate an 

actual text-based relationship, while dashed lines (edges) indicate proposed connections. 

4.3 METHODS  

The Chemotext user interface is written in JavaScript with data retrieval through 

JQuery’s Asynchronous JavaScript and XML (AJAX) functionality.139  The data are stored in 

Neo4j, a graph database that uses nodes for articles and drug terminology. The server operates on 

Red Hat Linux and is hosted by the Longleaf computer cluster at UNC-Chapel Hill. MeSH term 

data were downloaded directly from the PubMed and Medline repository. Data were input into 
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Neo4j using Cypher to parse the MeSH XML and to create the article and term nodes and 

relationships. Cypher queries allow for Neo4j to return sets of MeSH terms and article counts 

from the input term’s article relationships.  

Data for calendar year 2016 were retrieved from the MEDLINE/PubMed Baseline 

Repository (MBR) in June 2017. Data are available at https://mbr.nlm.nih.gov/Downloads.shtml.  

Currently, the Chemotext database contains 19,282,732 articles and 78,758,882 connections 

between terms. Chemotext is currently fully functional only with the Google Chrome web 

browser on both PC and MAC operating systems.  

4.4 CHEMOTEXT ENVIRONMENT  

Chemotext generates text-based relationships via four modules described below: Find 

Connected Terms, Find Shared Terms, Path Search, and Find Articles. Within each module, 

there is a query bar that possesses the full dictionary of MeSH terms with an auto-complete 

function to facilitate searching. Each module can be executed separately or as part of a larger 

study design. On its homepage, Chemotext possesses direct link to the Medical Subject Headings 

search engine in order to facilitate the identification of correct MeSH terms for querying. 

4.4.1 Find Connected Terms 

In this module, every MeSH term that occurs in the same article as a query term is 

returned, and the total number of co-occurring terms and the associated article counts are 

reported. A schema of this module is presented in Figure 4.2A. To illustrate how this module is 

used, if “Kinase” is queried, 7 821 unique co-occurring MeSH terms are returned (Figure 4.2B), 

such as “Enzyme Inhibitors,” an A term with 333 article co-occurrences, and “Neoplasms”, a C 

term with 151 article co-occurrences (Table S1).    

https://mbr.nlm.nih.gov/Downloads.shtml
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The resultant terms are rank-ordered by the number of unique articles in which the term 

co-occurs with the query. Thus, the article count serves as a proxy for the strength of the 

association between terms in the A-B-C paradigm. For each co-occurring term, the user can click 

on the article count and view all of the associated article PubMed Identification (PMID) 

numbers. These PMIDs are linked to PubMed, allowing the user to access and review the 

article(s) in which the two terms are mentioned together.  

The full list of co-occurring terms can be filtered by MeSH term type, i.e, by “Chemical” 

terms, “Proteins-Pathways-Intermediaries-Other”, or by “Disease and Indication”, which 

correspond to A, B, and C terms, respectively (cf. Figure 4.1). Moreover, each MeSH term type 

(A, B, or C) has additional subtypes that facilitate further refinement of the co-occurring terms. 

For instance, Chemical (A) terms can be filtered by “Drug” terms, which allows the user to 

identify which FDA-approved drugs co-occur in the same articles as the query term. The full list 

of term subtypes for filtering is provided in the Supporting Information (Table S2). Aside from 

type, the co-occurring terms can be filtered by date of publication; thus, all terms appearing in 

articles published before or after a certain date can be retrieved.  

Users are able to download two CSV files. First is a file of the co-occurring terms and the 

associated article counts, while the second is a file of co-occurring terms, the article counts, and 

the explicit PMIDs.   
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A 

B 

Figure 4. 2. (A) Schema of the Find Connected Terms Module. A query term (Q) is input and 

all co-occurring A, B, C terms connections are established and putative connections are proposed. 

Solid lines indicate actual text-based co-occurrences, while dashed lines indicate proposed 

connections. It should be noted that Q can be either an A, B, or C term.  (B) Find Connected 
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Terms Module Output. All A, B, and C terms (7 821 total) that co-occur in the same articles as 

the query term “Kinase” are returned with the associated article counts. Resultant terms can be 

filtered by sub-terms and date, and the results and PMIDs can be downloaded.  

4.4.2 Find Shared Terms 

In this module, two query terms are input, and co-occurring terms and the article counts 

that are shared between the queries are returned. A schema of this module is presented in Figure 

4.3A. 

Thus, this type of search outputs the associated counts of co-occurrence for three 

instances: (i) when all three terms (query 1, query 2, and co-occurring term) are present in the 

same article, (ii) when the term co-occurs only in articles with query 1, and (iii) when the term 

co-occurs only in articles with query 2.  For example, when “Kinase” and “Neoplasm” are 

queried together in this module (Figure 4.3B), the term “Antineoplastic Agents” co-occurs in 36 

articles with both “Kinase” and “Neoplasm”, 106 articles with only “Kinase”, and 34 961 articles 

with only “Neoplasm” (Table S3).  It should be noted, however, that if a term co-occurs with 

only one of the queries, then this co-occurring term is not returned in this module, as it does not 

occur with the other query.  The term, therefore, is not shared between the two query terms.   

The resultant terms are rank-ordered by the number of unique articles in which all three 

terms co-occur. Since all three terms occur in the same article(s), these associations are 

considered the strongest.  

For each shared co-occurring term, the user can click on the article count and view all of 

the associated article PMID numbers when all three terms are present in the same article. As 

stated previously, these PMIDs are linked to PubMed. If for the case where the term co-occurs 

with query 1 and query 2, but are not necessarily present in the same articles, then the user can 
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obtain these PMIDs and links to articles in the “Find Connected Terms” module. The same 

previously described filters and downloadable files are available in this module.  

A 

B 
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Figure 4. 3. (A) Schema of the Find Shared Terms Module. Two query terms, Q1 and Q2, 

representing any pair of A, B, and C terms, are input, and all co-occurring A, B, and C terms shared 

between the query terms are established. (B) Find Connected Terms Module Output. Two query 

terms, “Kinase” and “Neoplasm”, are input, and all co-occurring A, B, and C terms shared between 

the query terms are established (5 672 shared terms). Resultant terms can be filtered by sub-terms 

and date, and the results and PMIDs can be downloaded. 

4.4.3 Path Search 

In this module, complete text-based A-B-C connections can be made through co-

occurring MeSH terms.  The name of this module – “Path Search” – indicates that these A-B-C 

connections can be established through several “paths”, i.e., through multiple intermediary terms 

or through a single intermediary term. A schema of this module is presented in Figure 4.4A. 

In the most complex and comprehensive path search, every possible A-B-C connection 

for a given query term can be established. For instance, if “Kinase” is queried and “Diseases and 

Indications” are chosen as the intermediary term, 1 242 unique MeSH terms are returned, 

representing 1 242 unique B-C connections. Examples of these unique B-C connections are as 

diverse as “Kinase-Neoplasms,” “Kinase-Gout,” and “Kinase-Leprosy.” Next, all 1 242 B-C 

connections can be queried for associated A-terms, thereby completing every possible A-B-C 

connection, i.e. DTD triangles. In this case, every chemical that can be associated with the B-

term “Kinase” as mediated through the 1 242 C-terms is identified.  

This path search can be simplified to identify more focused A-B-C connections through a 

single intermediary term. Using an above example, the single B-C connection of “Kinase-

Neoplasms” can be queried for all co-occurring “Chemical” A-terms, resulting in 9802 unique 

A-B-C connections mediated through the “Kinase-Neoplasms” nodes (Figure 4.4B). Of these 9 

802 unique A-B-C connection in this path search (Table S4), Chemotext retrieves 270 articles 

that establish the specific A-B-C connection of “Imatinib-Kinase-Neoplasms.”  This connection 

represents a known drug-target-disease relationship, as the tyrosine kinase inhibitor imatinib is 
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used to treat several cancers, including gastrointestinal stromal tumors (GIST) through the 

blockage of the receptor tyrosine kinase c-kit.140 In the Case Study, we will demonstrate that 

imatinib can also be repurposed as a treatment for asthma.   

In the Path Search module, the intermediary term type can either be the MeSH term type, 

i.e., “Disease and Indication”, “Proteins-Pathways-Intermediaries-Other”, “Chemical” terms, or 

the MeSH term subtypes, such as “Viruses”, “Enzymes and Co-Enzymes”, and “Heterocyclic 

Compounds”.  Regardless of the intermediary term type, resultant terms are ranked according to 

the highest co-occurring article count with the query term. One or more intermediary terms can 

be selected to complete the path search, and the final connection can either set as the MeSH term 

type or subtype. The resultant terms are again ranked by highest co-occurring article count with 

the intermediary terms. Once the path search has been completed, the user can access the articles 

associated with the final term via the PMID and can download the two previously described CSV 

files.    
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A 

B 

Figure 4.4. (A) Schema of the Path Search Module. The first query term, QT
1, is the input.  Next, 

a second layer of query terms (QT
2) that co-occur with QT

1 are selected. The number of terms in 

the second query layer can range from one (QT
2

1) to all associated terms (QT
2

n). Next, any category 

of MeSH term that co-occurs with QT
2 are returned. Solid lines indicate actual text-based co-

occurrences, while dashed lines indicate proposed connections. It should be noted that Q terms can 

be a combination A, B, or C terms. (B) Path Search Module Output. The first query term, 

“Kinase”, is the input. Co-occurring intermediary C terms, “Disease and Indications”, are returned. 
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Within this group, “Neoplasms” is selected as the second query layer, and the 9 802 chemical 

terms that co-occur with that term are returned.   

4.4.4 Find Articles 

In this module, articles indexed in PubMed can be searched for using specific MeSH 

terms. Additionally, this module will allow the user to inspect the total number of articles 

associated with this term. For example, if the term “Neoplasms” is queried, 36 1190 unique hits 

are returned with direct links to the respective articles.   

4.5.1 CASE STUDIES 

4.5.1.a Construction of a Clinical Outcome Pathway (COP) for a Drug-Disease Pair 

In order to demonstrate the utility of Chemotext, we describe its application for finding 

the accurate solution of the recent National Center for Advancing Translational Science 

(NCATS) Biomedical Data Translator Challenge 

(https://ncats.nih.gov/files/translator_FOA_2017.pdf).  The task of this challenge was to construct a 

clinical outcome pathway (COP) for the drug-disease pair imatinib-asthma.  It was stated that a 

clinical outcome pathway (COP) begins with (i) a molecule physically interacting with (ii) a 

biological target that affects (iii) a biological pathway relevant to (iv) a particular cell or tissue 

type that manifest as (v) a clinical phenotype and/or symptom which reflect (vi) a disease or 

condition. The challenge was to construct a COP for (i) imatinib that successfully reveals its (ii) 

biological target, (iii) the pathway affected by that target, (iv) the cell or tissue type, and (v) the 

manifested symptom germane to (vi) asthma in the form of relevant MeSH terms and associated 

article PMIDs for stages ii-v (Figure 4.5).   

 

 

https://ncats.nih.gov/translator/funding/not-tr-17-023
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Figure 4.5. NCATS Biomedical Data Translator  

Challenge #5. The task was to successfully construct  

a COP connecting imatinib and asthma.  

Correct MeSH terms and associated article PMIDs 

had to be identified to solve the challenge. 

 

In the first step of the solution-seeking algorithm, query terms “Imatinib” (i) and 

“Asthma” (vi) were searched in the Find Shared Terms module. The list of full associations was 

filtered by “Proteins-Pathways-Intermediaries-Other”.  The MeSH term “Proto-Oncogene 

Proteins c-kit” was the fourth highest ranked shared term (two shared articles) selected as the 

potential biological target (ii) in the COP. The three more highly ranked terms, i.e., “Allergens”, 

“Stem Cell Factor”, and “Ovalbumin”, were deemed too broad or generic to be viable solutions. 

The two articles and their associated PMIDs related to “Proto-Oncogene Proteins c-kit” were 

then directly accessed through the Chemotext Web server. Both articles, upon visual inspection, 

confirmed the relevance of this DTD triangle. One article (PMID: 19722748)141, i.e., “Presence 

of c-KIT-positive mast cells in obliterative bronchiolitis from diverse causes”, was successfully 

chosen as the solution to stage (ii) of the COP, as later confirmed by the NCATS Challenge 

system.   
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To identify the biological pathway affected (iii) in this COP, query terms “Imatinib” (i) 

and “Proto-Oncogene Proteins c-kit” (ii) were searched in the Find Shared Terms module in the 

second step of the solution algorithm. The list of full associations was filtered by “Proteins-

Pathways-Intermediaries-Other”. The MeSH terms and associated article counts were 

downloaded from Chemotext. Next, query terms “Proto-Oncogene Proteins c-kit” (ii) and 

“Asthma” (vi) were searched in the Find Shared Terms module and the same succeeding steps as 

above were performed. The intersection of the two lists, i.e., (i-ii) and (ii-vi) was obtained, and 

MeSH terms were sorted according to article count ranks (Table S5). The MeSH term 

“Phosphatidylinositol 3-Kinases” was one of the most highly ranked shared terms (22nd out of 

928 terms). More highly ranked terms, such as “Biomarkers” and “Neoplasm Proteins”, were not 

selected because they were not relevant to the “Pathway” portion of this COP. Articles and their 

associated PMIDs related to “Phosphatidylinositol 3-Kinases” were then directly accessed 

through the Chemotext Web server. One article (PMID: 17546049)142, i.e., “KIT oncogenic 

signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a 

crucial survival pathway”, was chosen as the successful solution to stage (iii) of the COP.   

In order to identify the cell or tissue type (iv) involved in this COP, “Imatinib” (i) and 

“Asthma” (vi) were again searched in the Find Shared Terms module.  Co-occurring terms were 

then filtered by “Cells”. This resulted in the correct identification of “Mast Cells” (PMID: 

16483568)143. Likewise, for the manifested symptom (v), the drug and the disease were queried 

in the Find Shared Terms module, and resultant connections were filtered by “Diseases and 

Indications”. The top co-occurring term was “Bronchial Hyperreactivity” (PMID: 24112389)144.  

Both the terms were later confirmed by the NCATS Challenge system as steps in the COP.    
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The full Imatinib-Asthma COP, as revealed by Chemotext and confirmed by the Challenge 

system, was:  Imatinib (i) → Proto-Oncogene Proteins c-kit (ii) → Phosphatidylinositol 3-

Kinases (iii) → Mast Cells (iv) → Bronchial Hyperreactivity (v) → Asthma (iv).   

It should be emphasized that expert-based knowledge curation, in conjunction with the 

results of Chemotext, was key for the successful identification of terms and articles.  For 

instance, in the first step of the solution algorithm, “Proto-Oncogene Proteins c-kit” was the 

correct target, but there were three more highly ranked terms, i.e., “Allergens”, “Stem Cell 

Factor”, and “Ovalbumin”. These terms were deemed too broad or generic to be viable solutions 

to this stage (ii) of the COP.  Likewise, in the second step, “Phosphatidylinositol 3-Kinases” 

ranked 22nd out of 928 terms. More highly ranked terms, such as “Biomarkers” and “Neoplasm 

Proteins”, however, were not biologically relevant (not related to “Pathway”) for this COP and 

thus not investigated.  This observation obligates that additional scoring functions - besides of 

article counts - should be considered to elucidate meaningful relationships. 

Last, it should be noted that this COP may have many alternative plausible solutions that have 

not been investigated herein; we have described a single validated test case merely to illustrate 

Chemotext’s capabilities.    

4.5.2.b Drug Repurposing for Human Cytomegalovirus 

In April 2017, Arend et. al. published a study that identified kinases upregulated during 

human cytomegalovirus (HCMV) infection and sought to repurpose kinase inhibitors as novel 

HCMV antivirals145.  Chiefly, Arend et al. found that the experimental kinase inhibitors 

OTSSP167 and dinaciclib were nanomolar inhibitors of HCMV.  Since this study was just 

recently published in 2017, this article has not yet been indexed with MeSH terms and is not yet 

part of the Chemotext database. This study, thus, can be used to test the ability Chemotext to 
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identify these compounds as HCMV inhibitors solely through text-based relationships, as it 

represents an A-B-C paradigm.  

Using the Path Search module, the relevant MeSH A-term “Cytomegalovirus” was 

queried, and “Proteins-Pathways-Intermediaries-Other” was selected as the intermediary term 

type. As a result, 3148 unique A-B connections were returned; however, since the study of 

interest focused only on kinase targets, the 101 B-terms associated with kinases were selected for 

further querying. These 101 kinase-associated B-terms range from broad terms, such as “Protein 

Kinases”, to more specialized terms, such as “ZAP-70 Protein-Tyrosine Kinase”. These B-terms 

were then queried for “Chemical” terms to complete the A-B-C paradigm. 

Ultimately, 16232 unique chemicals, which includes experimental drugs, were associated with 

the “Cytomegalovirus-Kinase” connection. Among these, the MELK inhibitor OTSSP167 

(which is indexed as by its IUPAC name “1-(6-(3,5-dichloro-4-hydroxyphenyl)-4-((4-

((dimethylamino)methyl)cyclohexyl)amino)-1,5-naphthyridin-3-yl)ethanone”) and the CDK 

inhibitor dinaciclib were found to be associated with “Cytomegalovirus” as mediated through 

kinase B-terms, with 4 and 19 associated articles, respectively. Chemotext was, therefore, 

successful at identifying drug repurposing candidates for the treatment of HCMV infection.   

It is important to note that these experimental drugs had not yet co-occurred in the same 

articles as “Cytomegalovirus;” thus, this the A-C relationship can only be established via the A-

B-C paradigm implemented in Chemotext.  

4.6 CONCLUSIONS 

We have developed the Chemotext Web server to facilitate the identification of existing 

drug-target-disease (DTD) relationships and to generate hypotheses about novel relationships by 
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mining of PubMed in the form of MeSH terms via four modules: Connected Terms, Find Shared 

Terms, Path Search, and Find Articles. In the Connected Terms module (Figure 4.2A), the user 

can query any type of MeSH terms, i.e., an A, B, or C term, and retrieve all MeSH terms that co-

occur in the same articles as the query term. This module provides an overview of all text-based 

associations and makes connections between terms.  In the Find Share Terms module (Figure 

4.3A), two query terms are input, and co-occurring terms that are shared between the queries are 

returned. For instance, in this module the shared targets between two diseases or between a drug 

and disease can be identified. In the Path Search module (Figure 4.4A), full A-B-C connections 

can be established through intermediary MeSH terms. We provided an example of using 

Chemotext to generate drug repurposing candidates. Last, a focused search of PubMed via 

MeSH term keywords can be performed using the Find Articles module.  

The Chemotext Web server was originally conceived of and developed as a text-mining 

tool for inferring new drug-disease associations132,146, i.e., drug repurposing; however, 

Chemotext can be used to establish DTD triangles or to mine any type of text-based relationships 

between biomedical terms or concepts. For example, Chemotext could be used to establish 

protein-protein interaction networks through co-occurring B-terms or to uncover correlations in 

disease progression through co-occurring C-terms. The potential number and types of 

relationships that can be generated with Chemotext are myriad and not limited to the A-B-C 

paradigm described herein.  Indeed, in 2016, Alves et. al.147 used Chemotext outside of this 

paradigm to confirm the toxic effects of chemicals predicted as human skin sensitizers in a 

virtual screening campaign.  

In spite of its obvious advantages, Chemotext in its current form has several limitations 

that must be addressed. First, the deposition of articles into PubMed is ever-growing. As per data 
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availability in MBR, the database of terms that underlies Chemotext, must be updated regularly 

to capture these articles, and new literature-based connections between terms have to be 

generated. Additionally, from a functional aspect, relationships derived by Chemotext are limited 

to MeSH terms indexed in the abstracts of articles. Future implementations will seek to mine full 

articles, although this form of text-mining is orders of magnitude more difficult. In the same 

vein, Chemotext currently does not support natural language processing and provides no 

inference about the nature of the relationship between the terms (agonism vs. antagonism, cause 

vs. effect, mode of action vs. side effect, etc.). This may lead to a number of false positive hits 

that are not directly related to the desired effect. From a technical perspective, chemicals can be 

queried by multiple synonyms, i.e., aspirin vs. acetylsalicylic acid vs. dispril. The “Click to 

Include Subterms” feature of Chemotext ensures that all terms associated with a chemical will be 

investigated.  On the other hand, chemicals will be returned only by the main MeSH term, i.e., 

aspirin. The user must be aware that the resultant chemical may be indexed by an unfamiliar 

construction, such as its IUPAC or generic name. Presently, the onus is placed on the user to then 

identify and investigate the chemical(s) of interest by the corresponding MeSH term. To address 

these issues and to improve the scope and functionality of Chemotext, regular updates and 

improvements are underway, such as improving its functionality on additional web browsers like 

Safari and Firefox and resolving chemical names.  

The Chemotext Web server is freely-available at http://Chemotext.mml.unc.edu/index.html 

(currently fully operational via Google Chrome only).  A user-friendly tutorial is also available at 

the site: http://chemotext.mml.unc.edu/ChemotextAppNote_Tutorial_v3.docx 

 

http://chemotext.mml.unc.edu/index.html
http://chemotext.mml.unc.edu/ChemotextAppNote_Tutorial_v3.docx
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4.7 ASSOCIATED CONTENT 

Supporting Information. Results of Chemotext queries described in the manuscript and 

other Chemotext related information (Tables S1-S6) for Chapter 4 are provided as Supporting 

Information at https://scapuzzi.web.unc.edu/free-downloads/. 
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