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ABSTRACT

Stephen Joseph Capuzzi: Predictive Cheminformatics Analysis of Diverse Chemogenomics
Data Sources: Applications to drug discovery, ags@yference, and text mining.
(Under the direction of Alexander Tropsha)

In this dissertation, we describe the cheminformatics analysis of diverse
chemogenomics data sources as well as the application of these data to several drug discovery
efforts. In Qhapter 1, we describe the discovery and characterization of novel Ebola virus
inhibitors through QSARased virtual screening. In Chapter 2, we report the discovery and
analysis of a series of potent and selediveblecortinlike kinase 1 (DCLK1)nhibitors using
QSAR modeling, virtual screening, Matched Molecular Pair Analysis (MMPA), and molecular
docking. In Chapter 3, we performed a lasgale analysis of publicly available data in
PubChem to probe the reliability and applicabilityRe#nAssayINterference compour&l
(PAINS) alerts, a popular computational drug screening taoChapter 4, we explore the
PubMed database as a novel source of biomedical data and describe the development of

Chemotext, a publicly available web server capable ofrtexing the published literature.
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CHAPTER 1: COMPUTER -AIDED DISCOVERY AND CHARACTERIZATION OF
NOVEL EBOLA VIRUS INHIBITORS !

1.2INTRODUCTION

The 2014 Ebola outbreak was the largest and most persistent since the discovery of the
Ebola virugEBOV) in 1976. Alarmingly, a neleBOV outbreak was confirmed in the Democratic
Republic of Congo in May 201%7Though advances in the research and development of Ebola
therapeutics have been mgtleEbola drug discovery endeavors are hindereel tduthe high
virulence of theEBOV and its biosafety level 4 (BS4) classificatiot? Recently, a biosafety level
2 (BSL-2) Ebola viruslike particle (VLP) entry assay was\wkloped and utilized for a drug
repurposing screen of Food and Drug Administration (FBgproved drug®® The Ebola VLP
contains glyoprotein (GP) and the matrix protein VP40 fused to a-laetamase reporter for
monitoring of VLP entry into cells. Although this BSL Ebola VLP assay enables rapid
compound screening, it requires a centrifugation step for assay plates at 1,500 mifuutéS at
4 °C that limits its screening throughput. Computational approaches that leverage generated data
can be used to design or select small sets of compounds for lead identification in order to reduce
the time and costs of high throughput screeniiging the existing data from the Ebola VLP entry
assay as well as cytotoxicity data, QSAR maoten be built and then employed for virtual

screening of large chenal libraries to predict actisenpounds again&BOV infection with low

1 This chapter previously appeared as an article in the Journal of Medicinal Chemistry. The original citation is as
follows: CapuaZ { WX S (i d-aidlel discotreryandichtniadeNaation of novel Ebola virus iniiifitdbunal
of Medicinal Chemistrylust Accepted (April, 2018).

13



expected toxicity.Indeed, QSAR modeling approaches have been previously employed for
identification of compounds with efficacy against EBEN Herein, we describe a study that
relied on synagistic combination of statistical data modeling and experimental testing for both
antiviral inhibitor potency and host cell cytotoxicifyigure 1.1). Our study utilized both BSP

and BSL:4 assays to experimentally validate hits identified computationall

Predictive %
QSAR
Workflow » ’

Lab collections

QSAR Models Virtual
Data Collection, Screening
Curation &
Integration
v > S50% inhibition :
*’ L — g :
’ 1IC, <10 uM I - I
S1>10 « T e 4 =
70 e B ¥y =
MOA studies BSL-4 EBOV Assay 14 confirmed hits Experimental
Validation

Figure 1.1. Overall study design.The present study synergistically incorporates computational
modeling and experimentation.

To identify compounds with anEBOV activity and limited host cell cytotoxicity, we
designed an integrated QSAR modeling system for virtual compound screening that is combined
with experimental testing on a focused set of predicted compounds. In this study, existing antiviral
activity and ompound cytotoxicity data were collected and carefully curated; respective QSAR
models were built and rigorously validated; these models were employed for virtual screening of
a large chemical library (~17 million compounds), resulting in 102 hits priedifor experimental
testing; the altEBOV activity in the Ebola VLP assay and cytotoxicity in host cells of these hits
were determined experimentaltly BSL-2 and BSE4 assaysand the mechanisms of amiBOV

14



activity for confirmed hits were identifietllitimately, 14 potent hits with activity ranging between
0.272 €M and 9. 65 ¢ Molaselecuvigylover canspoundocytaoxidithim n 1 0
host cells were confirmed\ext, five selected hits were shown to inhibit B&live-EBOV

infectionin a dbsedependent mannefwo of these hits possessed novel scaffolds, making them
candidates for further medicinal chemistry optimization as potentiaE®&@V agents. This study

presents the first example of computationaltiven prioritization and experimental discovery of

novel potent antEbola compoundwith high therapeutic windowis the published literature.

1.3RESULTS

1.3.1Model Performance
Prior to the modeling, MODIs of 0.69 and 0.68 were calculated for tlea&® P2 datasets,

respectively. For each protocol, three separate software packages (Chembench, HiT QSAR, and
GUSAR) employing different descriptors and different machine learning techniques (MLTS) were
utilized for model building. In total, six individuahodels were built and rigorously validated.
Results of 5old external crossalidation are presented Trable 11. In order to demonstrate that

the predictive power of the models was not due to random correlation between bioactivity and
chemical descripts, 1000 rounds of Yandomization was performed. Ner#&ndomized models

had a CCR above 0.60.

For P1, models built with HIT QSAR and GUSAR had the highest predictive accuracy,
irrespective of the use of different chemical descriptors and MLTs. For iIF2QBAR again
showed the best performance. Additionally, the CCR of the Chembench model improved by ~7%

for P2 over P1. All models were deemed robust and statistically Vallde 1.1).

15



Table 11. Statistical characteristics obtained on Hold external CV of all models
developed in this study.The results with highest statistical metrics are highlighted in b
HEK models built with Chembench and HIT QSAR were not used due to poor prec
power. Values below acceptance threshold are underlined.

Model Name Descriptors MLT CCR SE SP PPV NPV
Chembenchi P1 Dragon 6.0 RF 0.67 0.69 0.68 0.66 0.68
HIT QSART P1 SIRMS RF 0.72 0.73 0.71 0.72 0.73
GUSART P1 MNA and QNA SCRRBF 0.72 0.73 0.71 0.72 0.73
Chembenchi P2 Dragon 6.0 RF 0.72 0.72 0.72 0.72 0.72
HIT QSART P2 SIRMS RF 0.75 0.75 0.75 0.75 0.75
GUSART P2 MNA and QNA SCRRBF 0.72 0.69 0.75 0.73 0.71
Chembenchi HelLa | Dragon 6.0 RF 0.73 0.77 0.68 0.73 0.72
HIT QSART HelLa | SIRMS RF 0.64 0.68 0.60 0.66 0.62
GUSARIT Hela MNA and QNA SCRRBF 0.75 0.67 0.84 0.82 0.69
Chembenchi HEK | Dragon 6.0 RF 0.62 0.67 057 0.64 0.60
HIT QSART HEK | SIRMS RF 0.53 0.55 050 0.56 0.49
GUSART HEK MNA and QNA SCRRBF 0.72 0.78 0.71 0.73 0.76

For HeLa and HEK cell linesyiODI of 0.65 and 0.70 were obtained, respectivEiyr
HeLa cytotoxicity, GUSAR yielded the best overall model. Chembench and GUSAR had inverse
sensitivity and specificity profiles, indicating that Chembench could better identify toxic

compounds, while GUSAR could better identity fioric compound. Thislmservation highlights
16



the reciprocal benefit of consensus modeling,, utilizing all the models for VSNo Y-
randomized models had a CCR in access of 0.60. All models were deemed robust and statistically
valid. For HEK cytotoxicity, GUSAR again proved be the best overall model. On the other hand,
Chembench and HIiT QSAR were not statistically validated, as several metrics fell below the 0.60
threshold. Thus, only GUSAR was used for prediction of HEK cytotoxi¢irandomized models

for GUSAR did noexceeded a CCR of 0.6@& summary of all model performance can be found

in Table 1.1.

1.3.2QSARBased Virtual Screening
QSAR-basedvirtual screening (VSyvas carried out according to the workflow presented

in Figure 1.2. Initially, ~17 million compoundg¢see Methods) were downloaded, prepared, and
screened. As previously stated, Ahitso were
respective model and predicted by all models to have high antiviral activity and limited host

cytotoxicity. In total, D2 VS hits were selected for experimental validation in the E¥bRentry

assay.

Chembench
P

GUSAR
HEK S 1
S160 K
Le0K Chembench
P2

Chembench
Hela

Al i
\ |V | HiT QSAR
ICqy < 10 uM -
14 50 K . HIT QSAR S,
S Confirmed & &2 its &k HiT aSAR B
\ S1 > 10 P2

Figure 1.2. Screeningworkflow. A virtual chemical library of ~17 million compounds was
screened against a battery of antiviral (P1 and P2) and cytotoxicity (HEK and HelLa) models. Hits
selected for experimental validation were predicted to be EBOV inhibitors with limited host
cytotoxidty. Then computational hits were experimentally validated, then their activity was
evaluated using percent inhibitionsfvalues, and selectivity index (Sl).
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1.33 Experimental Evaluation

1.33.aExperimental confirmation of AnttEBOV activity of 14 corpounds
Based on the virtual screening results, 102 compounds were purchased and experimentally

screened in the EboMLP entry assay in parallel with an ATP content assay to determine
compound cytotoxicity in host cells. All compounds were screened atricktration dilutions

ranging from 0.001 to 57 pNf Out of 102 compounds teste&1 showed greater than 50%

inhibition, indicating that half of compounds had confirmed-&BOV activity. Next, 20 of these

51 compounds exhibited thedv al ues wunder 10 & M. Because t hi
higher compound concentrations might reduce the Ebola VLP entry in cells, these potential false
positive compounds should be deprioritized. After comparing to the compound cytotoxicity data,

14 of hese confirmed compounds showed a greater thdold Gelectivity index (SI) of anti

Ebola VLP entry over compound cytotoxicity. Vindesine and-BD294 inhibited the virus in the

nanomolar range~{gure 1.3).

Vindesine BIX-01294
12094 —o-VLP entry 1209 —»-vLP entry
B _—
1004 -®HeLa proliferation _ A A 1004 -®HeLa proliferation 2
o — o
£ 80- | £ 80- ’
5 " 5
= 604 | = 604
3 ICs0 = 0.272 pM S / ICso=0.966 uM
£ 404 ~ £ 404 g
£ ; g £ - - 2 o
20{ I 8 5 204 § 4§ | &
F—% E z = "
0"_.—!‘ T T T T 0-—.—"‘.—-‘—"'—. T i i T i T
-9 -8 -7 -6 -5 -4 -9 -8 -7 -6 -5 -4
Log [Vindesine], M Log [BIX], M

Figure 1.3. Dose response curves for vindesine and Bi{81294.Both antiviral (VLP
entry) and host cell cytotoxicity (HelLa) activities are plotted.
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Moreover, these 14 confirmed compounds, except for ZINC91973695 and ZINC67869167, have
known mechanisms of action (MOAs) and therapeutic indicatidablé 1.2), including eight

anticancer, two antihistamines, and two gydychotic and aninflammatoryagents Table 1.2).

Table 12. Experimental results for the top 14 hits.Most experimentally confirmed hits have
known MOAs and therapeutic use indications.

Selectivity
Name Potency, ¢ M Indication MOA
Index
Vindesine 0.272 1837 Anticancer Microtubule Inhibitor
BIX-01294 0.966 45 Anticancer HMTase Inhibitor
Estrogen Receptor
Afimoxifene 1.96 123 Anticancer
Modulator
Anti-
Tetrandrine 2.16 22 Calcium Channel Blocker
inflammation
NVP-ADW742 3.05 13 Anticancer Tyrosine Kinasénhibitor
Estrogen Receptor
Endoxifen 3.05 164 Anticancer
Modulator
ZINC91973695 6.09 82 N/A N/A
Deptropine 6.58 76 Antihistamine Anticholinergic
GANT61 6.83 73 Anticancer Hedgehog Antagonist

19



ZINC67869167| 6.83 73 N/A N/A

Hh-Agl.5 7.67 65 Anticancer Hedgehog Agonist
Cediranib 7.67 65 Anticancer Tyrosine Kinase Inhibitor
Ebastine 9.56 51 Antihistamine  Histamine H1 Antagonist

Neurokinin 3 Receptor
Osanetant 9.65 52 Antipsychotic
Antagonist

The remaining two compounds obtained from the ZINC database (ZINC91973695 and
ZINC67869167) have no previously reported bioactivities;Bhtla or otherwise-ive hits were
further validated in &ve EBOV infection assagtbio-safety leveld (BSL-4). All five hits showed
doseresponse inhibition against EBOV infecti@Rigure 1.4). Vindesinewas the most potent
compounds with an 1§ of 0.34 pM. The IGy values of NVP-ADW742, BIX-01294
ZINC67869167, an@INC91973695were between 1 pM to 10 pM in the live EBOV infection

assays.

20
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Figure 14. Doseresponse behavior against BSl4 live-EBOV infection. Five hits were
selected for screening in InEBOV infection in a BSE4 assay. Vindesinged) was the most
potent compounds with an IC50 of 0.34 uM. TheolGalues of NVPADW742 (black), BIXx

01294 (green), ZINC67869167 (orange), and ZINC91973695 (blue) were between 1 uM to 10
UM,

1.33.b Mechanisms of action against EBOV entry
We probedhe chemical biology of these hit compoumi$®oth viral and host systems in

order to uncovethe mechanisms of aAEBOV action. Weexamined the potential sites for drug
interaction including Niemann Pick QNPC1) protein lysosomal functioncathepsin B, and
cathepsin [*¥1° as well as the direct binding of these compounds to the Ebola VLP proteins using
thermal shift binding assay$ The resultsof chemical biology studiesevealed that these

compounds may act via one or more these targets/mechanisms.

The process oEBOV entry into cells involves binding ofiral envelop protein(s) to the
cell membrane receptor protein/molecule, endocytosis, movement of endocytic vesicles to

early/late endosomes and lysosomes, and ejection of viral RNA into the cytd$aefore,

21



inhibition of viral protein binding to cell membrane proteins/binding partners can effectively
reduce viral entry and subsequent viral replication in cells. Because the cell surface binding
protein/molecule for Ebola viral proteins is still uncleag determined direct binding of these
compounds to recombinant Ebola protein. To examine whether these compounds directly interact
with theEBOV, their ability of stabilizing Ebola protein was tested in a thermal shift assay using
recombinant Ebola VLP. dhe of the compounds at M were able to protect Ebola VLP from

thermal denaturationF{gure 1.5).

A Ebola VLP
2537 4247 5257 62 .67 12 77

Ebola VLP Ebola VLP
B '(’;&" i\ \(& 6‘
& a‘bocf “d’ “0 & ye&@ sﬁ@‘\&‘b& & d“bo

Figure 15. Thermal profiling results of Ebola VLP with Ebola entry inhibitors. A,
Thermal stability of Ebola VLP at temperatures from 25 °C to 77 °C detected by wi
blot. B, Effects of Ebola entry inhibitors (GANT61, ZINC67869167, ZINC919736
tetrandrine, deptropine, osanetant, B1X294, cediranib, ebastine, afimoxifene, NV
ADW?742, vindesinegndoxifen Hh-Ag1.5) on thermal stability of Ebola VLP at 62 °C. A
experiments were performed in duplicate and data are representative of two indey
experiments.
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Cathepsin B and L are lysosomal endopeptidases that haddpeeted to prime EBOV
proteins in lysosomes before the viral RNAs are injected into the cytosol for virus replication.
Inhibition of cathepsin B or L significantly reduces EBOV infectidGANT61 (an inhibitor of
GLI1 and GLI2induced transcription), deptropine (an antihistamine), and ebastine (an
antihistamine) inhibited the enzymaitactivity of cathepsin L Kigure 1.6a and 1.6b). Only

GANT®61 inhibited enzymatic activity of cathepsin Bdure 1.6¢c and 1.6d).
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Figure 16. Inhibition of proteaseactivities of recombinant cathepsin L and cathepsin B by
Ebola entry inhibitors. a andb. recombinant cathepsin B or cathepsin L were treated with 10 uM
of GANT61, ZINC67869167, ZINC91973695, tetrandrine, deptropine, osanetariQEI34,
cediranib, and efstine c. Doseresponse studies of GANT61, deptropine and ebastine in cathepsin
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L assay.d. Doseresponse studies of GANT61 in cathepsin B assay. All experiments were
performed in triplicate and data are representative of at least two independent exgeilag
are represented as mean + SEM.

The NPC1 protein has been reported as an intracellular receptdEBOw 141518
Significant reduction oEBOV entry and infection were observed in the NRficient cells and
mouse modsl!*!° Ebastine increased cholesterol accumulation irs ciltermined by the filipin
staining assay, which indicated a functional impairment of NPC1 protein; whereas, the other eight

evaluated hits did not impair NPC1 protein functibig(re 1.7a).

Lysosomes in cells are enlarged after treatment with certampaunds that damage
lysosome functions, resulting in accumulation of lipids and other macromolétiiles enlarged
lysosomes are oftenbeerved in the patient cells with lysosomal storage diseases caused by
mutations in lysosomal proteins and lipid accumulatfoBBOV entry is significantly reduced
after the lysosomal functions are impaired by compounds. All of the nine evaluated hits increased

LysoTracker dye staining in cells, indicating an enlargemrelysosome size~{gure 1.7b).
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U18666A GANT 61 ZINC67869167 ZINC91973695 Tetrandrine

CeIranI EIastne

Osanetant BIX-01294

Deptropine

Tetradrine

DMSO U18666A GANT 61

Deptropine Osanetant BIX-01294 Cediranib Ebastine

Figure 1.7. Cholesterol accumulation (NPC1 inhibition) and enlargement of lysosome
induced by Ebola entry inhibitors. a. U18666A and ebastine increased filipin staining in
fibroblasts (greerfilipin; blue: nuclei).b. U1866A, GANT61, ZINC67869167, ZINC91973695,
tetrandrine, deptropine, osanetant, B1X294, cediranib, and ebastine increased LysoTracker
staining in fibroblasts (orange: LysoTracker red; blue: nuclei). All experimentgpedoEmed in

triplicate and data are representative of at least two independent experiments. Data are represented
as mean + SEM.

1.34 Cheminformatics Analysis

1.34.aAssay Liabilities
First, using substructural pattern matchers implemented in ZINC1&e 14

experimentally confirmed hits were found to be free of chemical aggregation liabildied
PAINS alert$*. Sincethe assay employed herein relied on a{mttamaseeporter systengll 14

hits were also checked for potential betactamase inhibition trends using PubChem
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Promiscuity?® No heightened betlactamase assay activity trends were olesgrindicating that

these hits are not assay artifa@sigplementary File 19.

1.34.b Chemical Similarity to Training Set Compounds
Hierarchical clustering analysis revealed thajority of the hits are structurally dissimilar

from each othemside fromafimoxifene and endoxiferi-{gure 1.8).

Figure 1.8. Hierarchical clustering

of experimental hits. High

Tanimoto similarity ofafimoxifene
and endoxifen is highlighted by a
asterisk.
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Clustering thus indicates the hits discovered in this study access a wide range of chemical
space across several unique chemotypes. The structural similarity based on the Tanimoto
coefficient(Tc) of the 14 hits were then compared with compounds in the antiviral training sets
(Table 1.3) in order to assess the uniqueness of hits. In addition to being highly structurally similar
to each other, afimoxifene and endoxifen both have Tc above Of@dntxifen, which was a
previously reported anfbola inhibitor®® Likewise, tetrandrine is highly structurally similar
(Tc=0.97) to cepharanthina training set active compound. The most potent hit in this study,
vindesine, had a Tc of 0.96 to vinblastine, which was the most poténtthé original screeff
These hits, while not entirely unique from a chemiaaispective, illustrate that the developed
QSAR models are robust and that the experimental assays are reproducible. The remaining 10 hits
were considerably dissimilar from any training set compounds (Tc =00883, thereby

constituting novel antiEbola tiemotypes as compared to the training set compounds.

1.34.c Comparison to Previously ReportdeBOV Inhibitors
The potenciesand structures of the 14 hits identified in this study were compared to a

compiled set of 60 previously published compounds with eithettro or in vivo ant-Ebola
activity.>"272Thefull list of previously known published compounds and their potencies can be

found in theSupplementaryFile 15.

The most potent hit identified from virtual screen was vindesine (Ce2KR a vinca
alkaloid microtubule inhibitarPreviously, other vincakaloids were reported as saticromolar
inhibitors of theEBOV in vitro. Thesevincaalkaloids, vinblastine (0.048 N, vinorelbine (0.066
e M, and vincristine (0.14% N,” are highly structurally similar taindesine Table 1.4).
Colchicine and nocodazole, microtubule inhibitors that are structurally distinct from the vinca
alkaloids were also previously reported asb-micromolar inhibitors.The identification of
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vindesine as one of the most potent hits identified to date highlights the robustness of the developed
QSAR models, as well as the efficacy of this class of compoundsoamgbands with the same

associated MOA as viable aiiibola compounds.

The second most potent hit identified from the virtual screen wasOBR294 (0.9% M.
This compound is among most potent reportedBbtila compounds. Moreover, BiXL294 is
structually dissimilar from other previously reported compountiable 1.4) and has a unique
primary MOA (G9a histone methyltransferase inhibitidh)In contrast to vindesine, the
identification of BIX-01294 demonstrates the ability to QSARsed virtual screening to retrieve

structurally novel chemotypes.

The next most potent series of hits includes afimoxifene €l.8B tetrandrine (2.16 M,
NVP-ADW742 (3.0% M, and endoxifen (3.06 M. Afimoxifene andendoxifen are metabolites
of tamoxifen Table 1.4), which was previously reported asamicromolar Ebola inhibitof.
Likewise, tetrandrine is structurally similar to cepharanthiiable 1.4),” as both are isolated from
the same plant genusNVP-ADW742, on the other hand, is structurally dissimilar from any
previously reported compounddble 1.4). However, additional tyrosine kinase inhibitors have
shown efficacy against tHEBOV with a range of potencias vitro, such as sunitinib (1.9 M

and nilotinib (24.3 M.’

The remaining hitsj.e,, ZINC91973695, deptropine, GANT 61, ZINC67869167,- Hh
Agl.5, cediranib, ebastine, osanetant, have potencies ranging frora 6/09.65¢ M(Table
1.4). Each of these hits is structurally unique with respect to previously published compounds
(Table 1.4). In addition to being structurally novel amoBBOV inhibitors, ZINC91973695 and

ZINC67869167 have no previously reported bioactivities.
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Table 1.3. Structural similarity of top hits to previously published compounds The Tanimoto
coefficient {Tc) between experimentally confirmed hits and compoumdshe literature was
calculated.

Hit (IC3q) Te¢ Published Compound (IC3zg)

Afimoxifene (1.96 M) Tamoxifen (0.73 p)

H '“"\.,,‘-"""‘"\ Ay
QL 7L s
I

Tetrandrine (2.16 M) Cepharanthine (1.53 M)

@?@
097 =71

0.96

29



T Published Compound (ICzg)

Tamoxifen (0.73 M)

0.93

Benztropine (2.64 uh)

@

Cediranib (7.67 xM)

Gefitinib (9.68 uM)

o

ol
" 00
0O Q.
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Hit (IC:0) Tc Published Compound (ICs)
Ebastine (9.56 uM) Clemastine (1.10 uM)
RE, Ty,
0.0
[n]
HyE
'.-“O {]?3
OO
BIX-01294 (0.966 pM) Bosutinib (3.85 uM)
H)C\N—’\ “FM‘O
A [N
ngm_fﬂm O H
NVP-ADW742 (3.05 uM) Bazedoxifene (3.43 uM)
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Hit (ICs) Tc Published Compound (ICs)
ZINC91973695 (6.09 uM) Dronedarone (2.20 uM )
HyC
H
O 0.69
Hh-Agl.5 (7.67 uM) Bazedoxifene (3.43 uM)
H,C
. @ 0.66 S
Osanetant (9.65 M) Mibefradil (4.32 M)
-~ CHy
2 o
0 ﬁ)
N
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H,C CH HHN
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Hit (IC:0) Tc

Published Compound (ICzq)

ZINC67869167 (6.83 uM)

Aprindine (7.69 M)

CHy
CHy rl‘:H,I @
! A S
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e
GANTS1 (6.83 M) Thioproperazine (432 uM)
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1.4DISCUSSION

The power of virtual screening is its ability to quickly process millions of compounds and
prioritize a small set of highly confident predictions for experimental confirmation. This approach
not only saves time and cost as compared to the experimentahtoghhput screening, but also
may lead to the evaluation of additional approved drugs that could be missed in the physical
compound screening library. A combination of virtual screening with experimental confirmation
is especially useful for challengiregsays due to high biosafety requirements, limited patient
samples, expensive reagents, or difficult formats (small animal or 3D cell culture). In this study,
we prioritized 102 compounds from ansilico library of ~17 million compounds for testing in
the EBOV entry assay using QSAR modeling and virtual screeriagrteen of these hits were
experimentally confirmedncluding 5 selected hits against Hi#OV infections and their anti

Ebola mechanisms of action were determingitig

The EBOV entryprocess has been extensively studied. Viral envelope glycoproteins attach
to the surface of host cell, and the virus enters through micropinocytosis and endocytosis. Although
a cell surface receptor and a few other components are still not clear, seyehaisk factors
including cathepsin B/L in the endosorhand Niemann Pick C1 prote(NPC1) in the lysosome
have been reported as regulators of EBOV énttyThe chemical biology and arfibola MOAs
of the 14 experimentally valided hits were evaluated for interactions with both host and viral

targets.

In addition to discoveringompounds with unique scaffoldse also uncovered trenti
Ebola MOAsof these compound®Ve have found that the antihistamines ebastine and deptropine

inhibited Ebola entry through negatively regulated lysosome function and blocking cathepsin L
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activity. We also found that osanetant, an-gsgichotic, inducethe enlargement of lysosomes
and impairs lysosomal function Additionally, BIX-01294 showed suimicromolar activity to
inhibit EBOV entry. Our LysoTracker dye staining data indicated that-&1%94 may block
EBQOV entry through a blockade of lysosome function in host cells-@lX94 is &9a histone
methyltransferase (HMTase) inhibitrHMTases have not been implicatedBBOV entry or
replication. Additionathemical biologyexperiments to test the importance of HMTasdsBOV
entry $would be performedTwo hedgehogignaling pathway modulators, Hkgl.5 and
GANT61,*° showal moderate anfEbola activity.Our results revealed multiple mechanisms of
action involved in the inhibition cEBOV entry by GANT61. GANT61 caused enlargement of
lysosomes and inhibited both cathepsin L and cathepsin B, which are known to BBRAN
entry. Two hits from the QSAMRased screen, ZINC91973695 and ZINC67869167, have no
previously reported bioactivitieResultsof our chemical biology evaluatiorshowed that both
compounds induced enlargement of lysosgmésch may implicate the blockage of lysosomal

function as a mechanism of action for these two compounds with now&taoié scaffolds

A few analogs opreviously reported Ebola entry inhibitors or compounds with the same
of mechanisms of action weagsoidentified. The most potent hit from our screen (and one of the
most potent reporteBBOV inhibitors) was vindesine, a vinca alkaloid microtubule iitbib
Indeed, the vinca alkaloid microtubule inhibitors vinblastine, vincristine, and vinorelbine were also
potent hits in the original screéhLikewise, thoughafimoxifene and endoxifeare novel hits,
Selective Estrogen Receptor Modulators (SERMs) have been shown in several studies to have
antrEbola activity?®3132 The same is true for the receptor tyrosine kinase (RTK) inhibitors
cediranib and NVFADW742, assunitinib has been previously reported to have-Bhtla

activity.?® Last, tetrandrinea calciumion channel blocker, was reporféés potent ardEbola
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inhibitor during the course of our study. Thus, these results demonstrate the ability of our QSAR
models to reliably retrieve compounds with fliola activities and confirm the reproducibility

of the VLPRassay.

1.5CONCLUSIONS

Our study is the first casof QSARdriven experimental discovery of novel akthola
agents with limited host cell toxicity. Robust and predictive QSAR models for boti lamit
activity and host cytotoxicity were developed and used for virtual screening of ~17 million
compoundsin order to identify Ebola inhibitors with high therapeutic windows (selectivity
indices). Ultimately, 102 VS hits were tested in both Ebola VLP and ATP content cytotoxicity
assays; 14 of these hits hadsd@ 10 e M and S comparadeltq thevehsuredh i s
potencies of several previously reported compounke.two most potent hits in the screen were
vindesine, a vinca alkaloid microtubule inhibitor, and BIX294, an HMTase inhibitofT&ble
1.2). In a liveeEBOV assay, mdesinehad anlCso of 0.34 pM. Several of the hits were SERMs
and RTKs, which have MOAs known to be related to-Bbtla activity. We investigated the
previously uncharacterized MOAs for afibola activity of several hits, including both host
factors and direct Ebola VLRteractions. Two compound8INC91973695 and ZINC67869167,
represent novel chemotypes and can be considered as leads for futtEboéatchemical

optimization.

In addition to thedentification of these compoundsjs study demonstrates that FDA
approsed drugs, such as vindesine, and compounds that have not yet passed clinical trials for their
primary indications, likecediranih can be repurposed as antiviraBuch compounds are of

particular interest, as they may have the potential, pending additiondirpecal evaluation, to be
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granted orphan drug status in the United StateEB®V disease. The integrated computational
and experimental strategy employed this study represents an advancement for the rapid

discovery of Ebola therapeutics.

1.6 EXPERIMENTAL SECTION

1.6.1Data Collection, Curation, and Classification

1.6.1.aAntiviral Data
Prior to this work, the Ebola VLP was prepared at the Icahn Sodéédicine at Mount

Sinai, and VLPbased gqHTS screening campaigns were performed at the National Center for
Advancing Translational Sciences (NCATS) at the National Institutes of Health tNTHie
results of 4 qHTS screamy campaigns (2 primary and 2 confirmatory) were extracted from
PubChem (AIDs 1117318, 1117313, 1117312, and 1117388)hese data are available in

Supplementary Files 14.

Each of the four screens has three readouts, including a blue, green, and ratio (blue/green)
channel. The blue channel analyzes the efficacy of the compound at inhibiting VLP entry activity
in the host cell. The green channel indicates the healthy anié ells that loaded with CCF2
AM. The ratio channel screen measures the ratio of blue/green spectra. Flaetaatase in the
VLP hydrolyzes the CCFAM dye used in the assay to give a blue fluorescence spectrum. An
effective inhibitor will prohibit thebetalactamase in the VLP from hydrolyzing CCR2/,
resulting in reduction of the intensity of the blue fluorescence spectrum. A low blue emission
spectrum indicates that the compound is inhibitory, while a high green emission spectrum reflects

the absencef host cytotoxicity. A simplified schema of the assay is depicté&aguare 1.9.

In total, 3121 compounds were tested. These data were then curated according te our well

established protocof$.3® Briefly, mixtures, inorganics, andrganometallics were removed.

37



Additionally, replicate compounds were identified and sets were removed if screening results
conflicted; if the results were concordant, then one representative compound was selected. After

curation, 3104 unique compounds aned.

Ny > 2 Rey,
k.. A
VLP Inhibition ’
=8 .
CCF2-AM <alZp- % IOEREL
£ . . .
Hydrolysis by VLP

CCF2-AM dye  Chemical = Ebola VLP

, A
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Figure 1.9. Simplified schema of Ebola VLP assayEbola VLPs contain Ebola GP and the VP40
protein fused to a belactamase (Bla) reporter. HelLa cells are loaded with thelbet@mase
substrate CCFAM. If the VLP enters into the cell, Bla hydrolyzes the substrate CAH2
disrupting the fluorescence resonance energy transfer (FRET) in the substrate, thus causing blue
fluorescence. Inhibition of the VLP by a chemical will preserve the substrate FRET, maintaining
agreen fluorescence. The ratio of blue/green fluorescence intensities represents the VLP activity
of inside cells.

1.6.1.bCytotoxicity Data
Host cell cytotoxicity data for a subset of compounds tested foE&W@IV activity were

obtained from the researchers at the NCATS. Compounds were tested for host cytotoxicity

potential in HeLa and HEK cell lines. In total, 171 unique compounds were iaskteLa cell
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line, and 156 unique compounds were tested in HEK cell line. All 156 compounds tested in the
HEK cell line were also tested in the HeLa cell line. Data curation was performed as above, and
one organometallic was removed, leaving 170 and ctsbpounds for consideration from the

HelLa and HEK cell lines, respectively. These data are availaBlegplementary Files 56.

1.6.1.cDetermination of Antiviral Activity
Only compounds with dosesponse curve clas$géof 1.1, 1.2, 2.1, 2.2, and 4 were

considered for potential inclusion into the QSAR model training set. In order to comprehensively

ched acterize the results of the screens, two sS:¢
Ai nactived compounds for subsequent QSAR model
classified as fiacti veo AGs5<d0nde M nalnyd iMa xtihneu nc olm
O 70B6tha npri mary and confirmatory sScreens Si mi

O 10 &M and Maxi mu botha pritmarybandtconbrmatory scre@n% i n

I n the second protocol (P2), an ng,adcardingtoy o s c

the following equation

(max(efficacy) — efficacy(j))
T max(efficacy) — min(efficacy))

(max(ACgp) — ACg0 (7))

(max{ACcy) — min{ACcg)) 50

Activity score(j) = 50 x 1

whereactivity score(j)is the relative activity of apecificcompound; maX{Csg) and min(AGo)

are the maximum and minimum A&n the screen, respectively, and #() is the AGo of a
specific compound; max(efficacy) and min(efficacy) are the maximum and minimum efficacies in
the screen, respectively, and efficacy()) is the efficacy of a specific compound. If a compound had

anact vi ty score O aofc@nfiimatonescreeh,¢he compointhaas glassified as
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Afactiveo. Similarly, i f a c¢compounodcordiirmdtoryan ac't

screen, the compound was <classified as finact

1.6.1.dDetermiration of Cytotoxicity
For both the HelLa and HEK cell |l ines, a con

PACs0>4.0(AGo< 100 e&M); whereas, a @etoonxpi ocur@ioOv atsh ec o
40(AGoO 100 & M) or t hirgicating novespors@raysampourads with dose

response curve classgef 1.1, 1.2, 2.1, 2.2, and 4ene considered.

1.6.1.eAntiviral Training Set Balancing
In both protocols (P1 and P2), the data were imbalanced towards the inactive class. Thus,

in order to balance the active and inactive classes in a 1:1 ratio, the inactive class was down
sampled'® Fifty percent of the corresponding inactives with the highest Tanimoto sinfitaiigy,

the most similar inactives to the compounds from active classien MACCS keys fingerprifi,

were chosen, andé remaining 50% of the corresponding inactives were randomly selected.
Important to note that all rationally chosen inactives had different nearest neighbors among
actives®® For P1 and P2, a total of 166 compds (83 active and 83 inactive) and 1224
compounds (612 active and 612 inactive) formed the respective trainingrsetse compounds

are available irsupplementary Files 78.

1.6.1.fCytotoxicity Training Set Balancing
The At oxi-t ox b oad wdidrdatively balanced; thus, no desampling of

the larger class was required. For HeLa and HEK cell lines, a total of 170 compounds (90 toxic
and 80 nortoxic) and 155 compounds (83 toxic and 724taxic) formed the respective training

sets.Thee compounds are availableSupplementary Files 910.
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1.6.1.gModelability Index (MODI)
The MODelability Index (MODI) estimates the likelihood of obtaining predictive QSAR

models for a binary data set of compouffdslODI is defined as a weighted ratio of the number

of nearesneighbor pairs of compounds in descriptor space with the same activity class versus the
total number of pairs. MODI threshold of 0.65 was previously found to separate the modelable
from nonmodelable data seté MODI was calculated for all antiviral and cytotoxicity datasets
prior to QSAR modeling in the present study as described e#rlier.

1.6.2Computational Methods

1.6.2.aQSAR Model Generation and Validation
Three separate packages, ChembénthHiT QSAR” and GUSAR!® were employed

for consensus classification modeling of both antiviral activity (P1 and P2) and host cytotoxicity
(HeLa and HEK). QSAR models built on Chembench used Dragon 6.0 deséfipiadsthe
random foresf machinelearning algorithm. For models built withliT QSAR, Simplex
Representation of Molecular Structure (SiRMS) descriptarsd random forest (RRvere used.
GUSAR models utilized a combination &fultilevel Neighborhoods of Atoms (MNA) and
Quantitative Neighborhoods of Atoms (QNA) descriptbesid a radiabasis function with self
consistent regression (RBFCR) as the machidearning algorithnf® We have followed best
practices of QSAR maing developed earlier by our group. All models were rigorously validated
using fivefold external cross validatiohY -randomization was performed for all modeModels

were statistically evaluated according to, sensitivity (SE), specificity (SP), correcfictdssi

rate (CCR), positive predictive value (PPV), and negative predictive value (NPV). These

statistical metrics are calculated by the equatieBsréspectively.
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Here, TP and TN represent the number of true positives (correct classifications of actives), and
true negatives (correct classifications of inactives), respectively; whereas, FP and FN represent the
number of false positives (incorrect classificatiafsactives) and false negatives (incorrect

classifications of inactives), respectively.

1.6.2.bVirtual Screening
Two in silico libraries, the ZINC drugike library?? and previously untested drugs and

experimental compounds from the NCATS Chemical Genomics Center Pharmaceutical Collection
(NPC), totaling ~17 million compounds after curation (see above), were virtually screened using

the developed QSAR models of antaliactivity and host cytotoxicity. A model was deemed
acceptable for virtual screening if and only if the CCR, SE, SP, PPV, and NPV were all above
0.60, and no associatedra¥ndomized model had a CCR above 0&0.applicability domain

(AD) wasused for dimodels. Consensus prediction was utilized, meaning that for a compound to

be considered a virtual sADrofeeach imode and beiptedicted i t m
as Afacti ve @ x ia @lddevelmpedn QSAR models of antiviral activity ahdst

cytotoxicity, respectively Kigure 1.2) . Once virtual screening A h
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validated, the Sequential Agglomerative Hierarchical Nonoverlapping (SAHN) method
implemented in the ISIDA/Cluster progra&twas used to probe the uniqueness of hit chemotypes
and to identify the most structurally similar compounds in the training set and in the published

literature.

1.6.3Experimental Methods
Ebola VLPs containing a betactamasdused VP40 and GP wepeeparedin Dr. Garcia

Sastre's lab, as previously describddveBLAzer FRET B/G Loading Kit and CCF2AM,
Dulbecco's modified Eagle's medium (DMEM}d Opt#MEM reduced serum medium were
purchased from Life Technologies (Carlsbad, CA, US¥)ATP content cell viability assay kit
was purchased from Promega (Madison, WI, USA). %8B polystyrene platewere purchased
from Greiner BieOne (Monroe, NC, USAICompounds were purchased from SigAidrich (St.
Louis, MO, USA), Santa Cruz (Dallas, TXJSA), ChemBridge Corporation (San Diego, CA,
USA), Enamine Ltd (Kiev, Ukraine), Maybridge Chemical Company (Altrincham, United
Kingdom), VitasM Laboratory (Champaign, IL, USA), Ambinter (Orléans, France) and AKos
Consulting & Solutions Deutschland GmifBteinenSchlachtenhaus, Germang) thehighest
available purity All of the compounds were dissolved as a 10 mM stock solution in dimethyl
sulfoxide (DMSO) and diluted in DMSO at 8dilution to generatelevenconcentrations in 384
well plates, folloved by reformatting int@mne 1536well compoundplate for high throughput

screening

1.6.3.aMaterials
All commercially available reagents, compounds, and solvents were purchased and used

without further purification. Column chromatography on silica ged maformed on RediSep

column using the Teledyne Isco CombiFlash Rf system. Preparative purification was performed
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on a Waters senpreparative HPLC. The column used was a Phenomenex Luna C18 (5 micron,
30 x 75 mm) at a flow rate of 45 mL/min. The mobitepe consisted of acetonitrile and water
(each containing 0.1% trifluoroacetic acid). A gradient of 10% to 50% acetonitrile over 8
minutes was used during the purification. Fraction collection was triggered by UV detection (220

nm).

'H spectra were recorded using INOVA 400 MHz spectrometer (Varian). Samples were
analyzed on an Agilent 1200 series LC/MS using a Zorbax Eclipse-@DBreverse phase (5
micron, 4.6 x 150 mm) column and a flow rate of 1.1 mL/min. The mobile phasemiagige of
acetonitrile and ED each containing 0.05% trifluoroacetic adi€. Method A: a gradient of 4%
to 100% acetonitrile over 7 minutes was used during analytical analysis. LC Method B: a gradient
of 4% to 100% acetonitrile over 3 minutes was useathduwanalytical analysidHigh resolution
mass spectrometry was recorded on Agilent 6210 -Gfrfdight LC/MS system.
2,2'-((2-(pyridin -4-yh)dihydropyrimidine -1,3(2H,4H)diyl)bis(methylene))bis(N,N

dimethylaniline) (GANT61)

|
N\
S
N =
N
Ejl
N\
IH NMR (400 MHz, DMSQds) 889i 8.52 (m, 2H), 7.70 7.64 (m, 2H), 7.47 (dd} = 7.6,
1.7 Hz, 2H), 7.20 7.11 (m, 2H), 7.08 6.97 (m, 4H), 4.01 (s, 1H), 3.51 @z 14.1 Hz, 2H),
3.39 (d,J = 14.2 Hz, 2H), 2.81 (dl = 11.2, 4.1 Hz, 2H), 2.5G,(12H), 2.22i 2.14 (m,2H),

1.6271 1.55 (m, 2H)LC/MS (Method B): (electrospray +va}/z430.3 (MHY, tr= 3.826, U\fs4

> 98%.
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(1R,3R,5S)3-((10,1tdihydro-5H-dibenzo[a,d][7]annulen5-yl)oxy)-8-methyl-8-

azabicyclo[3.2.1]octane hydroxypropane-1,2,3tricarboxylate (Deptropine citrate)

-

HRMS calculatedor : Ca3H2eNO [M + H]* 334.2165, found 334.2150. LC/MS (Method A):

(electrospray +ven/z334.1 (MHY, ts= 5.000, U\ss4 > 98%.

(11S,315)16,36,37,54etramethoxy-12,32dimethyl-11,12,13,14,31,32,33,33ctahydro-2,6-

dioxa-1(7,1),3(8,1}diisoquinolina-5(1,3),7(1,4)dibenzenacyclooctaphan€Tetrandrine)

1HI NMR (400 MHz, DMSGds) U 7 J#&2, A1Hd, 1H), 7.08 (dd= 8.2, 2.5 Hz, 1H),
6.91 (d,J = 8.2 Hz, 1H), 6.77 (ddl = 8.2, 1.9 Hz, 1H), 6.71.6.59 (M, 2H), 6.42 6.34 (m, 2H),
6.31 (dd,J = 8.3, 2.1 Hz, 1H), 5.92 (s, 1H), 3.89 (dc 10.4, 5.9 Hz, 1H), 3.80 (s, 3H), 3.68 (s,
3H), 3.50 (d,) = 9.8 Hz, 1H), 3.41 (d] = 4.7 Hz, 1H), 3.32 (SH), 3.29 (s, 4H), 3.17dd,J =

12.5, 5.9 Hz, 1H), 3.03 (s, 3H), 2.8B2.68 (m, 6H), 2.63 (ddl = 13.6, 10.1 Hz, 1H), 2.36 (d,
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=16.0 Hz, 1H), 2.28 (d] = 13.5 Hz, 1H), 2.18 (s, 3HHRMS calculatedor CzgHa4N206 [M +
2H]?** 312.1594, found 312.1602. LC/MS (Method A): (etespray +ve)m/z623.2 (MHY, tr=

3.866, UVoss > 98%.

(2)-4-(1-(4-(2-(dimethylamino)ethoxy)phenyl)2-phenylbut-1-en-1-yl)phenol (Afimoxifene)

'H NMR (400 MHz,DMSGds) U 9. 4 0 1(743 (m,2H))7,09 (ddd,2 @8, 4.0, 1.3
Hz, 4H), 7.01i 6.94 (m, 2H), 6.78 6.72 (m, 2H), 6.72 6.66 (M, 2H), 6.61 6.54 (m, 2H),

3.88 (t,J = 5.9 Hz, 2H), 2.52 (m, 2H), 2.40 @3 7.3 Hz, 2H), 2.15 (s, 5H), 0.84 {t= 7.4 Hz,
3H). HRMScalculatedor CoeH3zoNO2 [M + H]* 388.2271, found 388.2288. LC/MS (Method A):

(electrospray +veyn/z388.1 (MHY), tr= 5.056, U\sss > 98%.

4-(4-(benzhydryloxy)piperidin -1-yl)-1-(4-(tert-butyl)phenyl)butan-1-one (Ebasting)

: o O
Vonaade
HRMS calculatedor Cz2H4oNO2 [M + H]* 470.3054, found 470.3069. LC/MS (Method A):

(electrospray +ven/z470.2 (MHY, tr=6.088, U\4s4 > 98%.
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methyl (3S,5S,7S,989-((3aR,3alR,4R,5S,5aR,10bRj-carbamoyl-3a-ethyl-4,5-dihydroxy -
8-methoxy-6-methyl-3a,3al,4,5,5a,6,11,1@ctahydro-1H-indolizino[8,1-cd]carbazol9-yl)-5-
ethyl-5-hydroxy-1,4,5,6,7,8,9, 1 @ctahydro-2H-3,7-methano[1]azacycloundecino[5,4

blindole-9-carboxylate sulfate(Vindesing)

IH NMR (400 MHz, DMSGds) U 9. 67 ( 357.9HH )H), 7.34.(B=28.1Hx, 1H),

7.26 (s, 1H), 7.17 (d1 = 3.1 Hz, 1H), 7.08 () = 7.5 Hz, 1H), 7.00 (t) = 7.5 Hz 1H), 6.43 (s,

1H), 6.25 (s, 1H), 5.72 (dd,= 10.7, 4.8 Hz, 1H), 5.61 (d,= 10.6 Hz, 1H), 5.07 (s, 1H), 4.34 (s,
1H), 3.75 (s, 5H), 3.58 (s, 3H), 3.45 (s, 6H), 3.16 (s, 1H), 3.05 (s, 2H), 2.81 (s, 3H), 2.72 (s, 3H),
2.19 (d,J = 15.3 Hz, 1H), 1.97 (s, 1H), 1.651.53 (m, 3H), 1.49 1.23 (m, 4H), 0.86 ()= 7.4

Hz, 3H), 0.73 (t]) = 7.3 Hz, 3H)HRMS calculatedor CasHs7:NsO7 [M + 2H]?** 377.7124, found

377.7140LC/MS (Method A): (electrospray +ven/z754.3 (MHY, tr= 3.802, UV254> 98%
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N-(1-benzylpiperidin-4-yl)-6,7-dimethoxy-2-(4-methyl-1,4-diazepan1-yl)quinazolin-4-

amine (B1X-01299

0

HRMS calculatedor CogHzoNeO2 [M + H] " 491.3129, found 491.3119. LC/MS (Method A):

(electrospray +veyn/z491.3 (MHY, tr=3.199, U\kss > 98%.

(R)-N-(1-(3-(1-benzoy}3-(3,4-dichlorophenyl)piperidin -3-yl)propyl) -4-phenylpiperidin -4-

yl)-N-methylacetamide(Hh-Ag1.5)

HRMS calculatedor CogH27CIFoN30S [M + HJ 526.1526, found 526.153RC/MS (Method

A): (electrospray +ve)n/z526.1 (MHY, tr= 4.048, U\sss > 98%.
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4-((4-fluoro -2-methyl-1H-indol-5-yl)oxy)-6-methoxy-7-(3-(pyrrolidin -1-

yl)propoxy)quinazoline (Cediranib)

H
N
m
(@)

(0] F

~ \N
IN/)

IH NMR (400 MHz, DMSQde)  § 1 I = B4z, (LH),,8.49 (s, 1H), 7.60 (s, 1H), 7.38 (s,
1H), 7.16 (d,J = 8.6 Hz, 1H), 6.98 (dd] = 8.6, 7.4 Hz, 1H), 6.24 (d,= 2.0 Hz, 1H), 4.25 (§ =
6.4 Hz, 2H), 3.99 (s, 3H), 2.58 = 7.1 Hz, 2H), 2.46m, 5H), 2.41 (s, 3H), 1.99 (dd,= 7.9,
5.7 Hz, 2H), 1.9 (s, 3H). HRMS calculatedor CsH2sFN4O3z [M + H]* 451.2140, found

451.2130LC/MS (Method A): (electrospray +van/z451.1 (MHY, tr= 4.353, U\4s4 > 98%.

(R)-N-(1-(3-(1-benzoy}t3-(3,4-dichlorophenyl)piperidin -3-yl)propyl) -4-phenylpiperidin -4-

yl)-N-methylacetamide(Osanetan)

HRMS calculatedor CzsH42CloNsO2 [M + H] ™ 606.2649, found 606.264C/MS (Method A):

(electrospray +vem/z606.2 (MHY, tr= 5.399, U\tss > 98%.
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5-(3-(benzyloxy)phenyl}7-(3-(pyrrolidin -1-ylmethyl)cyclobutyl)-7H-pyrrolo[2,3-

d]pyrimidin -4-amine (NVP-ADW742)

NH,
as

IH NMR (400 MHz, DMSGdg) U 8. 12 (s, 1iH)44 (m72HBB45 7.29,(m, 1 H) |

4H), 7.15 (tJ = 2.0 Hz, 1H), 7.11 7.04 (m, H), 7.04i 6.96 (m, 1H), 6.10 (s, 2H), 5.31 (b=
8.3 Hz, 1H), 5.17 (2H), 2.72i 2.58 (m, 4H), 2.42.44(m, 5H), 2.25 (ddd,) = 12.1, 8.5, 2.9
Hz, 2H), 1.74i 1.62 (m, 4H)HRMS calculatedor C28H32N50 [M + H] 454.2601, found

454.2615. LOMS (Methal A): (electrospray +vem/z454.2 (MHY, tr= 4.106, U\ss4 > 98%.

(E)-4-(1-(4-(2-(methylamino)ethoxy)phenyl}2-phenylbut-1-en-1-yl)phenol (Endoxifen)

H NMR (400 MHz, DMSGds, majorisomey U 9. 17 (J3=,7.6 HzA2H), 7.08 (d]L 7
= 8.9 Hz, 5H), 6.92 (d] = 8.2 Hz, 2H), 6.59 (d] = 8.2 Hz, 2H), 6.39 (d] = 8.1 Hz, 2H), 4.01

(t, J=5.6 Hz, 2H), 2.82 (t} = 5.6 Hz, 2H), 2.39 (q] = 7.3 Hz, 2H), 2.34 (s, 3H), 0.84 §t= 7.3
Hz, 3H).HRMS calculatedor CzsH2eNO2 [M + H] " 374.2115, found 374.2105. LC/M®lethod

A): (electrospray +vem/z374.1 (MHY, tr=5.001, U\ssa= 60.6% (major isomer).
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11-(3,4-dimethylbenzyl)-3,7-dimethyl-3,7,1triazaspiro[5.6]dodecane(ZINC67869167)

AX
O

HRMS calculatedor CooH3zsN3 [M + H]* 316.2747, found 316.2757.

((BR,4R)1-((2,3-dimethyl-1H-indol-7-yl)methyl)-4-(pyrrolidin -1-ylmethyl)pyrrolidin -3-

yl)methanol (ZINC91973695

—OH

H
|

HRMS calculatedor Co1H32N30 [M + H]* 342.254, found 342.2532.

1.6.3.bCell culture methods
HelLa and HEK293cells were purchased from the American Type Culture Collection

(ATCC, Manassas, VA, USA). The cells were culture®MEM supplemented with 10% fetal
bovine serum (FBS, GE healthcare, Piscataway, NJ, USA) and 100 U/mL of penicillin and 100
pg/mL of streppmycin (Life Technologies, Carlsbad, CA, USA) at 37 °C in a humidified

atmosphere with 5% COZells were passaged at 90% confluency.

1.6.3.cEbola VLP betalactamase assay for HTS in 1536ell plates
A chemical biology screening campaign was performed. EbolaagsBy wasonducted

as previously describedBriefly, HelLa cells wereseededat 750 cells/well in 3 pL of assay

medium (DMEM+10% FBS) in 153&ell assay plate€Compoundsvere prepareth a1536well
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compound plate, and 23 nL of each compound was transferretbid@avell assayplateusingan

NX-TR pintool station (WAKO Scientific Solutions, San Diego, CA, USKjer 1 h incubation

at 37 °C with 5% C@ 1 uL/well of VLP solution was added to the assay plates using a BioRapTR
FRD dispenseiThe plates were then spinoculated, followed bylation at 37 °C with 5% CO

for 4.5 h.1 pL CCF2AM betalactamase substrate wadded in to each well, and the plates were
incubated for2 h at room temperatur@he assay was detecteddaial fluorescence intensities
(Ex1=405+20, Em1= 46020, and Ex2=405+20, Em2=530+20 nm) using EnVision plate reader

(PerkinElmer, Boston, MA, USA).

1.6.3.dCell viability assay with the ATP content assay kit
The cell viability assay was performed asepiously described.Briefly, HeLa and

HEK293 cells were plated at 750 cells/well in 3 uL in 15®8l assay plates, followed by the
addition of tested compounds at 23 nL/well. After a 4.5 h incubation at 37 °C and 2%€llO
viability was measured by adding 3 pL of ATP content assay mixture to each well. Luminescence

values were obtained using a Vieux plate reader (PerkinElmer, Boston, MA, USA).

1.6.3.eEbola live virus assays
Vero E6 cells were plated in the-9&ll plate (black with opticabottom). Briefly, serial

dilutions of5 drugs (diluted in DMEM 2% FBStarting at 10 M) and DMSO agontrol, were
added to the wells, and incubated foh at 37°C with 5% CQ. Thecells were infected with
EBOV/MayingaeGFP at a MOI of 0.ICID50/cell. The assay was run nipticate at a biosafety
level4 (BSL-4) facility. The fluorescence wasad 72h after infection using a BioTek Synergy

HT.

1.6.3.fFilipin staining and LysoTrackerred staining
Theassays werperformedas previouslylescribed’ Fibroblastcells were plated &t,000

cells/well in4 pL of assay medium (DMEM 10% FBS)in 1536well assay plateand incubated
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overnightat 37 °Cand5% CQ. Compoundsvere added to the assay plat&3 nL/well. After 24

h incubation at 37 °@nd5% CQ, 2 pl/well of 50 ng/ml filipin or 0.5 pM LysoTracker Red DND
99 was added tdhe plate After 1 hr.incubation a7 °C and 5% C¢) the plates were washed
twice. Thefluorescence intensities weteen read with a fluorescenpkate reader (GE Healthcare,
Chicago, lllinois USA). U18666A [3b-(2-[diethylamino]ethoxyjandrost5-en-17-one,

monohydrochloride] was used as the positive coftrol.

1.6.3.gCathepsin B/L assay
Cathepsin B/L assays were performed as previously desérreefly, recombinant 5 ng

of cathepsin B, or cathepsin L were added into each well im@&B4plate. Indicated drugs were
added into the recombinant enzymes, followed by initiation of the reaction by addition of
fluorescent substrate. The activity measnents were done using Tecan plate reader (Tecan US,

Inc., Morrisville, NC, USA). Cathepsin L inhibitor and ED64 were used as positive cofitrols.

1.6.3.hThermal shift binding assay with Eda VLP
The thermal shift binding assay was performed as previously desttibidla VLPs were

pre-iincubated with indicated drugs for 10 min at room temperature. The mixture was then
subsequently heated at 49 °C for 3 min, followed by centrifugation at 13, 000 x g at 4 °C for 20
min. The supernatantag collected and denatured by heating at 75 °C for 10 min in the presence
of SDS loading buffer (Life Technologg,Carlsbad, California, United States). The samples were
separated by SDBAGE gel electrophoresis and detected by-lbetiilactamase antibaogks (Life

TechnologiesCarlsbad, California, United States).

1.6.3.iData analysis and statistics
Half maximal inhibitory concentration () values of compoundctivity data were

calculated using Prism software (GraphFaftware, Inc. San Diego, CA). All values were

expressed as the meaSEM( n  O3) .
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1.7ASSOCIATED CONTENT
Supporting  Information.  Supplementary Files -15 are available at

https://scapuzzi.webne.edu/freedownloads/

Additionally, all the datasets and Chembench models are provided in and on the

Chembench WePortal fittps://chembench.mml.unc.efiuthich provides public access and use

of data and models used in this study. The P1, P2, HEK, and HelLa training sets are publicly
i ndexed as AEbol a_ SM10 and AEbol a_ PCM40,
A151105 Ebola_Toxicity eéehbénéhdPl, P2, and pleLa mmddelsealey . T
publicly i ndexed as R153004 ebol a_

151305 ebola_1224 PCM4060, and 151105 ebol a_t
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CHAPTER 2: COMPUTATIONAL DISCOVERY AND EXPERIMENTAL
VALIDATION OF POTENT INHIBITORS OF THE UNDERSTUDIED KINASE DCLK1

2.2INTRODUCTION

Doubecortinlike kinase 1 (DCLK1) has been implicated in the development and
progression of several cancé?$’ Recent studies have shown that DCLK1, which is also referred
to asDCAMKL -1, drives tumorigenesis in colon and pancreatic cdhteis overexpressed in
cances of the liver and esophagf§, and such overexpression is an adverse prognosis factor in
bladder andhonrsmall cell lung cancét%3 Notably, in 2013Nakanishiet al.showed that DCLK1
expression uniquely distinguishedmor stem cell§TSCs) in colorectal cancer from healthgrat
cells and demonstrated that specific ablation of DClpiéitive TSCsreduced tumor siz@ithout
damagng healthy tissué* Given these observations, DCLK1 represents an emergent therapeutic

target in oncology, especially, for colorectal cancer.

Despite its growing notoriety in oncology, DCLK1 is still considered as an understudied
kinasé® lacking any potent and moderately selective tool compounds. As per the guidelines for
inclusion into the Structural Geo mi ¢ Consortiumés comprehensi ve
(KGCS), DCLK1 remains a dark, or chemically untargeted, protein kffasechemical probe
for DCLK1 would be of great scientific and therapeutic value, as it could help uthiasgecific
biological role ofthis kinase in variougancers and serve as a potential lead for drug discovery

efforts67:68
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The development of a chemical probe is dependent upon the identification of high quality
chemical starting points for potency and selectivity optimizatioFhis process is particularly
challenging for dark kinasdike DCLK1, where chemogenomics data and SAR studies are limited
and often the unintended consequence of screening campaigns for other. Kimdesed, the
handfulof compounds in the literature that target DCLK1 have come mainly from a kinahee
screen of inhibitors bearing pyrimigazepinescaffold$® or have been reported as an-aifget
effect during probe development for other kinases such as, ACK1, ERK5, and [RRKhe
development of novel DCLK1 inhibitors is critical to progress probe development for this

biomedicallyrelevant, but, so far, dark kise.

Methods of computeaided drug design (CADD) are routinely used to leverage prior
screening data towards the discovermayelbio-active compounds while also reducing time and
cost. CADD approaches are most effective when large and diverse chemargesets are

available. Unfortunately, for DCLK1, experimental screening datasets are small (less than 100

compounds have been tested so far), most compounds are inactive, and active molecules are very

limited in chemical diversit§® According to best practices previously established by us and

others?"2it is not advisable to employ CADD approaches, especially QSAR modeling, for such
datasets, as the potential for faulty predictions is high. At the same time, we were confronted by
the therapeutic importaaof this dark kinase, a lack of tool compounds, and the expressed need
to prioritize laborious synthetic efforts presented by the diversity of synthetically feasible

compounds. We were thus motivated to apply our expertise in modeling challenging YdtaSets

in an attempt to discover potent DCLK1 inhibitors in close collaboration witlexjerimental

partners.
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In order to accomplish this goal, we executed the following steps: (i) the development of
QSAR models of DCLK1 inhibition from mr screening data; {iivirtual screening of focused
chemical libraries to identify putative DCLK1 inhibitorgj \ experimental validation of selected

compounds; and\) off-target selectivity analyses for experimentally confirmed hits.

Once severdligh-quality DCLK1 inhibitors were identified, we then (v) derived structural
rules and key molecular interactions to guide future design and optimization efforts of these
compounds using the cheminformatics techniqguematiched molecular pair analysi@SAR
model interpretatiorand molecular dockingrhis joint modeling and experimental effdfiqure

2.1) resulted in the discovery of some of the most potent DCLK1 inhibitedat® These

Figure 2. 1. Overall study design.The workflow combinesomputational and experimental
medicinal chemistry approaches for the discovery for novel potent DCLK1 compounds.

compounds constitute leads for the development of a chemicaé goobthis dark kinase.
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Assay Results

2.3RESULTS

2.3.1QSAR Model Development
Modelability Index (MODI)**which affords rapid estimation of tifeasibility of obtaining

predictive QSAR modejswvas calculated for both training sets. MODI values of 0.79 and 0.89
were obtained for thEKINOMEscan and KiNativ training set, respectively. These MODI values

were weltabove the recommended threshold of 0.65, indicating that despite a high degree of

57



imbalance towards inactive compounds and limited chemical diversity there was meaningful SAR

that separates actives from inactives.

Next, we moved to model development and succeeded in developing robust and externally
predictive QSAR models. Results ofdd external crossalidation are presented rable 2.1.
All metrics used to evaluate moderformance were above the recommended threshold of 0.60.
As such, these metrics demonstrated that active and inactive DCLK1 compounds can be correctly

classified through statistically meaningful SAR.

Table 233.Statistical characteristics obtained on 5fold external CV of all models
developed in this study.

Model Name Actives Inactives Total CCR SE SP PPV NPV
KINOMEscan 8 45 53 0.84 0.75 092 0.62 0.95
KiNativ 5 42 47 0.73 0.70 0.75 0.61 0.96

Since externallvalidated and predictive QSAR models were developed using all available
data, the applicability domaiA\D) of the models was maximized, as the imbalanced datasets did
not need to be dowsampled Both the KINOMEscan and KiNativ models were predictind a
useful for virtually screening new compounds in so far as these compounds fell within the AD that

has been maximized by using all available datarder to demonstrate that the modetsenot
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obtained because cdndomSAR correlation betweehioactivity and chemical descriptors, 1000

rounds of ¥randomization was performedll Y-randomized modelshoweda CCRbelow0.60.

2.3.2QSARBasedVirtual screening
A set of 169 designedcompoundspossessing the same scaffolds a&igure 2.2 was

virtually screenedvith both QSAR model¢See Methods)Although all169 compounds were
within the AD of both models, onlgevencompounds were predicted as actbyeboth models.

All seven compounds possessed the 5¢lllydro-6H-benzo[e]pyrimid{b,4-b][1,4]diazepin6-

one scaffold Figure 2.2B). The remaining compounds were either predicted active only by the
KINOMEscan model (29 compounds) or the KiNativ model (two compounds); 131 compounds
were predicted inactive by both models. These resutsarsistent with the distribution between
actives and inactives in the training sets, supporting the notion that DCLK1 has highly specific
requirements to compound structure to make it ackiv@n the compounds that did not meet the
Ahi t 0 fourweteeselected, as negative controls for the medbtation Ultimately, 11
compoundsseven putatively active and four predicted inactwete selected for experimental
studies Virtual screening results for all compounds are provided in the Supponfioigmiation

(Supplementary Table J.

; o ; N HN)J\NH
\ N N N /
AKN/ N B\\"/ N C\ N/ D\\._.-—-N

Figure 2.2 Four scaffolds @A-D) based on the pyrimidediazepine core (purple) possesse
by compounds in the modeling datasetdNote A-C are 1,4diazepines, while D is a 1,2
diazepine.
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2.3.3ExperimentalValidation
A threshold of activity for the 11 compounds from the virtual screening was set it, 10

as both models were developed froompounds screened at this concentration. Thev&lues

and the structures of these 11 compounds are showaibie 2.2. These results show that QSAR

models were ~73% accurate, as they correctly predicted the activity calls for 8 out of 11
compounds. Of the seven putative DCLK1 hits, six hash kC 1 0 € M, i ncl uding
micromolar inhibitors. The top hit, XMD2134, had an 1Go of 52 nM. Two of the four putatively

inactive compounds were incorrectly classified, but, ironically, in this case of negative controls,

the inaccuracy is a desired outcome. Statistically, however, this observation is expected for the

imbalanceddataset modelinéf: Overall, eight compounds from the virtual screen hag 4C10
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for DCLK1.-repdhse! Icurvesd cae e available inFigure 2.3.
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Figure 2.73. Doseresponse curves for the eleven virtual screening hits.
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The selectivity profiles of the eight compounds withsd& 10 e M f or DCLK1

determined using a KiNi& screen (able 2.3). The compounds were evaluated both by the
selectivity index (SI) at 65% and 90% inhibition ateld, i.e., SI(65) and SI(90), respectively.

The Structural Genomics Consortium (SGC) has previously defined SI(65) < 4.0% and SI(90) <
2.0% as acceptable selectivity profiles for a tool compound to be considered for inclusion into their
comprehensive kinase chemogenasiet (KCGS)® Only XMD13-37inhibited more than 4% of
kinases screened accordirg $1(65). On the other hand, all eight compounds had acceptable
SI(90) profiles. KiNativ screen data are provided for the eight compounds in the Supporting

Information Supplementary Table 2.

2.3.4SAR Analysis and Implications for Future Design
All  of the experimentally validated hits possessed thell-dihydro-6H-

benzo[e]pyrimido[5,4b][1,4]diazepir6-one scaffolgd and the four most potent hits shared
common structural moietieJ gble 2). In order to gain insights about structural aspects and key
molecular interactions associated with DCLK1 inhibition among these compounds, as well as to
guide future design and optimization efforts, SAR analysis was performed using several

cheminformatis techniques.

2.3.4.aMatched Molecular Pair Analysis and Model Interpretation
The modeling datasets were investigated for matched molecular pairs (MMPS) bearing the

5,11-dihydro-6H-benzo[e]pyrimido[5,40][1,4]diazepin6-one scaffold. From the KINOMEscan
dataset, a series of MMPs was identified with several activity cliffs, structurally similar

compounds from different activity class€g® The shared scaffold of the MMPs and
accompanying structural changes stnewn inFigure 2.4. Within this series of compounds, only

XMD8-85 and XMD@887 were active; therefore, the remaining associated Mbtistitute
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activity cliffs. This analysis revealed that the presence of a methoxy substituent at R1 and a co

occurring mehyl substituent at R2 correlated with increased DCLK1 inhibition.

On the other hand, the influence of the R3 substituent was unclear, as active compounds
XMD8-85 and XMD887 are MMPs differing only at this position. Fragment descriptor
interpretatior(Figure 2.5) from the KINOMEscan QSAR model, however, showed that the methyl
addition at R3 increased the overall active (inhibitory) character of X@®gelative to XMD8
87. The SAR elucidated by the MMP analysis was also reflected by the model intenpreis
methoxy substituents at R1 and methyl substituents at R2 increased the activity profile in

descriptor space.

2.3.4.bMolecular Docking
Training set compounds were docked into the crystal structure of DCLK1 @GRIZB)°>’

in order to evaluate and validate the molecular docking approach. All training set actives, with the
exception of just one compound, ranked within the top 15%@foest scored docking poses
(Supplementary Table 3. This enrichment of training set actives among the best scored docking
poses provided validation for the use docking as a method to generate hypotheses related to the
proteirtligand interactions for the 11 compounds from the virtual screen. For thesenpbunds,

the molecular docking scores correlated well with the experimemtetgrmined potencies.
Indeed, the two most potent compoundd)D13-44 and XMD890, had the best two docking
scores{7.75 and-7.69), respectively. XMD1Q00, inactive upon exggsimental testing, likewise,

had the second worst docking scere{2).TL-1-060, the compound with the worst docking score

4. 53), was only weakly potent (9.60 &eM). Al

provided in the Supporting Informatio8pplementary Table 3.
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2.4DISCUSSION

Despite small dataset sizes with limited chemical diversity and a small number of active
compoundsrobust and predictiv® SAR models of DCLK1 inhibition were developed from the
results of KINOMEscan aniNativ assays Table 2.1). On further inspection, these training set
characteristics were, in fact, crucial for successful QSAR model development. The limited
chemical diversity in terms of scaffoldBigure 2.2) among the training sets meant that large
changes INDCLK1 bioactivity were caused by slight modifications in a small number of
substituents. This observation was supported by the high MODike training setswhich
indicated that there was statistically meaningful SAR separating active compoundsédctinein
compounds. Both the MMP and model interpretation analyses also reflected this observation
(Figures2.3 and2.4), as both showed that the activity profile was modulated by adbestituents
at key sites. The successful development of QSAR model3GaK1 inhibition from small and
highly congeneric compounds harkens back to the early days of QSAR modeling and underscores
the continuing need to carefully inspect modeling datasets, through methods like MODI, prior to

modeling.

After models were builend validated, they were used to virtually screen compounds
bearing thesame scaffolds as Figure 2.2, resulting in the most potent series of DCLK1 inhibitors
to date.Ultimately, six out of seven compounds prioritized @BAR modeling as DCLK1
inhibitorshad IGov al ues < 10 € M, a nndicromolarinhibtofsTable22s e wer e
On the other hand, two compounds predicted to be inactive by the model)eIdad JWE
041, were shown experimentally to inhibit DCLKTaple 2.2). Since the goal of any drug
discovery campaign is to identify compounds with the desired biological profile, in this case

DCLK1 inhibition, ironically, this misclassification is not a failure.
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Overall, eight compounds from the virtual screen, all otWipossessed the 5;#@lihydro
6H-benzo[e]pyrimido[5,40][1,4]diazepin6-onescaffold,had IGo< 10 e M, i ncl uding
micromolar inhibitors (sedable 2.2). XMD13-44, a 52 nM inhibitor, was the most potent
compound identified through virtual screenimghich highlights that these models are capable of
not only classifying inhibitors (actives) from namhibitors (inactives), but also of identifying
highly potent compounds within the same chemical series. By any measure-rdite fiom
QSAR-based vitual screening of compounds (~73%) is enriched in comparison to the ~13%

activecalls from the preliminary kinome screens of these same scaficdbte(2.1).

Chemical probe development also requires selectivity againstargits”’’ The
selectivity profiles of theeightcompounds withlegg< 10 e M for DCLK1 were
guantified according to SI(65) and SI(90rple 2.3). These selectivity indices are a measure of
a compoundds ki nome pr o rofiirgibition. For a eompouneé totbea i n  t
considered for possible inclusion into the KCGS developed by the SGC, in addition to sufficient
on-target potency, the compound ought to have SI(65) < 4.0%5H080) < 2.06.5 All eight
potent DCLK1 inhibitors were screened against at least 239 additional kinaseXNMID3-37
did not meet the SI(65) criterion, as it inhibited more than 4% of kinases screened. The most potent
DCLK1 inhibitor, XMD13-44, had an acceptableeletivity profile, inhibiting the enzymatic
activity of only three offtarget kinases by more than 65%upplementary Table 3. The five
submicromolar DCLK1 inhibitors, therefore, could be considered useful tool compounds in the
KCGS and higkguality startirg points for further probe optimization efforts. It should be noted,
however, thatompounds with this scaffold have been previously reported to competitively inhibit
LRRK2,"LERKS5,%"8Aurora A/B,°andPI3K-U /kimase& and to bind tRD4 bromodomairf.

Indeed, the most potent DCLK1 inhibitoXMD13-44, inhibited ERK5 by more than 90%
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(Supplementary Table 3. Optimizing DCLKZIselective compounds from this scaffold is,

therefore, an owoing effort’0-8081

To this end, SAR analyses were perforntednform optimization efforts through the
identification of chemical structures and key protdéigand interactions that drive DCLK1
inhibition. Cheminformatics approachesg., MMP analysis, QSAR model interpretation, and
molecular docking, provided hypotheses about the underlying chemical features and molecular
interactions that drive DCLK1 inhibition for lead compounds bearing 3fid-dihydro-6H-
benzo[e]pyrimido[5,4b][1,4]diazepinr6-one scaffold These cheminformatics approachesn
also be applied to design and optimize foHopr compounds for both potencydaoff-target

selectivity considerations.

In the present study, MMP analysis and model interpretation of fragment descriptors of
compounds both in the training set and in the experimentally validated set revealed useful
structural insights. For certainropounds possessing thd 1-dihydro-6H-benzo[e]pyrimido[5,4
b][1,4]diazepinr6-onescaffold(Figure 2.2), amethoxy substituent to the phenyl ring (R1) and two
co-occurring methyl substituents at R2 and R3 ordibeepine ringvere shown to correlate with
DCLK1 inhibition. The two most potent hits identified from the virtual screem{ip13-44 and
XMD8-90, align with this observation, as both compounds possess these features at R1, R2, and
R3. Similarly, two inactive compoundack some of these featuresMD11-100 lack methyl
substituents at R2 and R3, whi¥MD11-40-2 lacks the methyl group at R2, though both
compounds have a methoxy group at R1. Fragment descriptor analysis indicated that a substituent
at the R3 position proated DCLK1 inhibition Figure 2.3) and may be considered a possible site

for future optimization.
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While the SAR trends around these three positions correlate with DCLK1 inhibition, not
all of them are necessarily required for the desired activity arhppt For instance, the highly
potent compound TH1-038 (109 nM) does havweo cooccurring methyl substituents at R2 and
R3 on thediazepine ringbut lacks the methoxy group at R1. These derivations from the SAR
trends highlightthe importance of multivariate features in molecular design, ad-033
possesses @peridinolgroup attached to the aniline moiety that is unique among all hits. In fact,
potent inhibitorsXMD13-44, XMD8-90, and Tl-1-038 all differ at this tail regionfbof the aniline

moiety (Table 2.2), making it a possible site for further medicinal chemistry efforts.

Molecular docking provided additional insights to SAR trends among MIRSID10-
39, a 154 nM inhibitor, differs from training set active compound XMI5&nd from training set
inactive XMD1G78 by a single ethyl substitution at R2. This observation indicates that, for the
most pat, both methyl and ethyl substitutions at the R2 position are tolerated for DCLK1
inhibition, whereas an isopropyl is not. This slight change in structure that results in a large change
in activity is reflected by the molecular dockiregults Figure 2.6), which shows that the binding
pose of inactive XMD1&r8 (red) is flipped in the ATBinding site relative to active compounds
XMD8-85 (teal) and XMD1B9 (green). It is worth noting that JAWIB7 (0.26% M) possesse
an isopropyl substitution at the R2 gition; however, its structur@and binding pose are

considerably different from the MMPs mentioned above (SI).
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