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ABSTRACT  

Stephen Joseph Capuzzi: Predictive Cheminformatics Analysis of Diverse Chemogenomics 

Data Sources: Applications to drug discovery, assay interference, and text mining. 

(Under the direction of Alexander Tropsha) 

 In this dissertation, we describe the cheminformatics analysis of diverse 

chemogenomics data sources as well as the application of these data to several drug discovery 

efforts. In Chapter 1, we describe the discovery and characterization of novel Ebola virus 

inhibitors through QSAR-based virtual screening. In Chapter 2, we report the discovery and 

analysis of a series of potent and selective doublecortin-like kinase 1 (DCLK1) inhibitors using 

QSAR modeling, virtual screening, Matched Molecular Pair Analysis (MMPA), and molecular 

docking. In Chapter 3, we performed a large-scale analysis of publicly available data in 

PubChem to probe the reliability and applicability of Pan-Assay IN terference compoundS 

(PAINS) alerts, a popular computational drug screening tool. In Chapter 4, we explore the 

PubMed database as a novel source of biomedical data and describe the development of 

Chemotext, a publicly available web server capable of text-mining the published literature.  
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CHAPTER 1: COMPUTER -AIDED DISCOVERY AND CHARACTERIZATION OF 

NOVEL EBOLA VIRUS INHIBITORS 1 
 

1.2 INTRODUCTION  

The 2014 Ebola outbreak was the largest and most persistent since the discovery of the 

Ebola virus (EBOV) in 1976. Alarmingly, a new EBOV outbreak was confirmed in the Democratic 

Republic of Congo in May 2017.1 Though advances in the research and development of Ebola 

therapeutics have been made,2ï4 Ebola drug discovery endeavors are hindered due to the high 

virulence of the EBOV and its biosafety level 4 (BSL-4) classification.5 Recently, a biosafety level 

2 (BSL-2) Ebola virus-like particle (VLP) entry assay was developed and utilized for a drug 

repurposing screen of Food and Drug Administration (FDA)-approved drugs.6ï8 The Ebola VLP 

contains glycoprotein (GP) and the matrix protein VP40 fused to a beta-lactamase reporter for 

monitoring of VLP entry into cells. Although this BSL-2 Ebola VLP assay enables rapid 

compound screening, it requires a centrifugation step for assay plates at 1,500 g for 45 minutes at 

4 °C that limits its screening throughput. Computational approaches that leverage generated data 

can be used to design or select small sets of compounds for lead identification in order to reduce 

the time and costs of high throughput screening. Using the existing data from the Ebola VLP entry 

assay as well as cytotoxicity data, QSAR models9 can be built and then employed for virtual 

screening of large chemical libraries to predict activeompounds against EBOV infection with low 

                                                           
1 This chapter previously appeared as an article in the Journal of Medicinal Chemistry. The original citation is as 
follows: CapuzziΣ {WΣ ŜǘΦ ŀƭΦ ά/ƻƳǇǳǘŜǊ-aided discovery and characterization of novel Ebola virus inhibitoǊǎέΦ Journal 
of Medicinal Chemistry. Just Accepted (April, 2018). 
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expected toxicity. Indeed, QSAR modeling approaches have been previously employed for 

identification of compounds with efficacy against EBOV.10,11 Herein, we describe a study that 

relied on synergistic combination of statistical data modeling and experimental testing for both 

antiviral inhibitor potency and host cell cytotoxicity (Figure 1.1).  Our study utilized both BSL-2 

and BSL-4 assays to experimentally validate hits identified computationally.   

 

Figure 1.1. Overall study design. The present study synergistically incorporates computational 

modeling and experimentation. 

 

To identify compounds with anti-EBOV activity and limited host cell cytotoxicity, we 

designed an integrated QSAR modeling system for virtual compound screening that is combined 

with experimental testing on a focused set of predicted compounds. In this study, existing antiviral 

activity and compound cytotoxicity data were collected and carefully curated; respective QSAR 

models were built and rigorously validated; these models were employed for virtual screening of  

a large chemical library (~17 million compounds), resulting in 102 hits prioritized for experimental 

testing; the anti-EBOV activity in the Ebola VLP assay and cytotoxicity in host cells of these hits 

were determined experimentally in BSL-2 and BSL-4 assays; and the mechanisms of anti-EBOV 
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activity for confirmed hits were identified. Ultimately, 14 potent hits with activity ranging between 

0.272 ɛM and 9.65 ɛM as well as more than 10-fold selectivity over compound cytotoxicity in 

host cells were confirmed. Next, five selected hits were shown to inhibit BSL-4 live-EBOV 

infection in a dose-dependent manner. Two of these hits possessed novel scaffolds, making them 

candidates for further medicinal chemistry optimization as potential anti-EBOV agents. This study 

presents the first example of computationally-driven prioritization and experimental discovery of 

novel potent anti-Ebola compounds with high therapeutic windows in the published literature. 

1.3 RESULTS 

1.3.1 Model Performance   

Prior to the modeling, MODIs of 0.69 and 0.68 were calculated for the P1 and P2 datasets, 

respectively. For each protocol, three separate software packages (Chembench, HiT QSAR, and 

GUSAR) employing different descriptors and different machine learning techniques (MLTs) were 

utilized for model building. In total, six individual models were built and rigorously validated. 

Results of 5-fold external cross-validation are presented in Table 1.1. In order to demonstrate that 

the predictive power of the models was not due to random correlation between bioactivity and 

chemical descriptors, 1000 rounds of Y-randomization was performed. No Y-randomized models 

had a CCR above 0.60.   

For P1, models built with HiT QSAR and GUSAR had the highest predictive accuracy, 

irrespective of the use of different chemical descriptors and MLTs. For P2, HiT QSAR again 

showed the best performance. Additionally, the CCR of the Chembench model improved by ~7% 

for P2 over P1. All models were deemed robust and statistically valid (Table 1.1).  
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For HeLa and HEK cell lines, MODI of 0.65 and 0.70 were obtained, respectively. For 

HeLa cytotoxicity, GUSAR yielded the best overall model. Chembench and GUSAR had inverse 

sensitivity and specificity profiles, indicating that Chembench could better identify toxic 

compounds, while GUSAR could better identity non-toxic compound. This observation highlights 

Model Name Descriptors  MLT  CCR SE SP PPV NPV 

Chembench ï P1 Dragon 6.0 RF 0.67 0.69 0.68 0.66 0.68 

HiT QSAR ï P1 SiRMS RF 0.72 0.73 0.71 0.72 0.73 

GUSAR ï P1 MNA and QNA SCR-RBF 0.72 0.73 0.71 0.72 0.73 

        

Chembench ï P2 Dragon 6.0 RF 0.72 0.72 0.72 0.72 0.72 

HiT QSAR ï P2 SiRMS RF 0.75 0.75 0.75 0.75 0.75 

GUSAR ï P2 MNA and QNA SCR-RBF 0.72 0.69 0.75 0.73 0.71 

        

Chembench ï HeLa Dragon 6.0 RF 0.73 0.77 0.68 0.73 0.72 

HiT QSAR ï HeLa SiRMS RF 0.64 0.68 0.60 0.66 0.62 

GUSAR ï HeLa MNA and QNA SCR-RBF 0.75 0.67 0.84 0.82 0.69 

        

Chembench ï HEK Dragon 6.0 RF 0.62 0.67 0.57 0.64 0.60 

HiT QSAR ï HEK SiRMS RF 0.53 0.55 0.50 0.56 0.49 

GUSAR ï HEK MNA and QNA SCR-RBF 0.72 0.78 0.71 0.73 0.76 

Table 1.1. Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study. The results with highest statistical metrics are highlighted in bold. 

HEK models built with Chembench and HiT QSAR were not used due to poor predictive 

power. Values below acceptance threshold are underlined. 
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the reciprocal benefit of consensus modeling, i.e., utilizing all the models for VS. No Y-

randomized models had a CCR in access of 0.60.  All models were deemed robust and statistically 

valid. For HEK cytotoxicity, GUSAR again proved to be the best overall model. On the other hand, 

Chembench and HiT QSAR were not statistically validated, as several metrics fell below the 0.60 

threshold. Thus, only GUSAR was used for prediction of HEK cytotoxicity. Y-randomized models 

for GUSAR did not exceeded a CCR of 0.60.  A summary of all model performance can be found 

in Table 1.1.  

1.3.2 QSAR-Based Virtual Screening 

QSAR-based virtual screening (VS) was carried out according to the workflow presented 

in Figure 1.2. Initially, ~17 million compounds (see Methods) were downloaded, prepared, and 

screened. As previously stated, ñhitsò were those compounds that were within the AD of the 

respective model and predicted by all models to have high antiviral activity and limited host 

cytotoxicity. In total, 102 VS hits were selected for experimental validation in the Ebola-VLP entry 

assay.  

  

Figure 1.2. Screening workflow . A virtual chemical library of ~17 million compounds was 

screened against a battery of antiviral (P1 and P2) and cytotoxicity (HEK and HeLa) models. Hits 

selected for experimental validation were predicted to be EBOV inhibitors with limited host 

cytotoxicity. Then computational hits were experimentally validated, then their activity was 

evaluated using percent inhibition, IC50 values, and selectivity index (SI). 
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1.3.3 Experimental Evaluation 

1.3.3.a Experimental confirmation of Anti-EBOV activity of 14 compounds 

Based on the virtual screening results, 102 compounds were purchased and experimentally 

screened in the Ebola-VLP entry assay in parallel with an ATP content assay to determine 

compound cytotoxicity in host cells. All compounds were screened at 11 concentration dilutions 

ranging from 0.001 to 57 µM.12 Out of 102 compounds tested, 51 showed greater than 50% 

inhibition, indicating that half of compounds had confirmed anti-EBOV activity. Next, 20 of these 

51 compounds exhibited the IC50 values under 10 ɛM. Because the compound cytotoxicity at 

higher compound concentrations might reduce the Ebola VLP entry in cells, these potential false 

positive compounds should be deprioritized. After comparing to the compound cytotoxicity data, 

14 of these confirmed compounds showed a greater than 10-fold selectivity index (SI) of anti-

Ebola VLP entry over compound cytotoxicity. Vindesine and BIX-01294 inhibited the virus in the 

nanomolar range (Figure 1.3).  

 

Figure 1.3. Dose response curves for vindesine and BIX-01294. Both antiviral (VLP 

entry) and host cell cytotoxicity (HeLa) activities are plotted. 
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Moreover, these 14 confirmed compounds, except for ZINC91973695 and ZINC67869167, have 

known mechanisms of action (MOAs) and therapeutic indications (Table 1.2), including eight 

anti-cancer, two antihistamines, and two anti-psychotic and anti-inflammatory agents (Table 1.2).  

Table 1.2. Experimental results for the top 14 hits. Most experimentally confirmed hits have 

known MOAs and therapeutic use indications. 

Name Potency, ɛM 

Selectivity 

Index 

Indication MOA  

Vindesine 0.272 1837 Anticancer Microtubule Inhibitor 

BIX-01294 0.966 45 Anticancer HMTase Inhibitor 

Afimoxifene 1.96 123 Anticancer 

Estrogen Receptor 

Modulator 

Tetrandrine 2.16 22 

Anti-

inflammation 

Calcium Channel Blocker 

NVP-ADW742 3.05 13 Anticancer Tyrosine Kinase Inhibitor 

Endoxifen 3.05 164 Anticancer 

Estrogen Receptor 

Modulator 

ZINC91973695 6.09 82 N/A N/A 

Deptropine 6.58 76 Antihistamine Anticholinergic 

GANT61 6.83 73 Anticancer Hedgehog Antagonist 
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The remaining two compounds obtained from the ZINC database (ZINC91973695 and 

ZINC67869167) have no previously reported bioactivities, anti-Ebola or otherwise. Five hits were 

further validated in a live EBOV infection assay at bio-safety level-4 (BSL-4). All five hits showed 

dose-response inhibition against EBOV infection (Figure 1.4). Vindesine was the most potent 

compounds with an IC50 of 0.34 µM. The IC50 values of NVP-ADW742, BIX-01294, 

ZINC67869167, and ZINC91973695 were between 1 µM to 10 µM in the live EBOV infection 

assays.  

ZINC67869167 6.83 73 N/A N/A 

Hh-Ag1.5 7.67 65 Anticancer Hedgehog Agonist 

Cediranib 7.67 65 Anticancer Tyrosine Kinase Inhibitor 

Ebastine 9.56 51 Antihistamine Histamine H1 Antagonist 

Osanetant 9.65 52 Antipsychotic 

Neurokinin 3 Receptor 

Antagonist 
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Figure 1.4. Dose-response behavior against BSL-4 live-EBOV infection. Five hits were 

selected for screening in live-EBOV infection in a BSL-4 assay. Vindesine (red) was the most 

potent compounds with an IC50 of 0.34 µM. The IC50 values of NVP-ADW742 (black), BIX-

01294 (green), ZINC67869167 (orange), and ZINC91973695 (blue) were between 1 µM to 10 

µM.   

 

1.3.3.b Mechanisms of action against EBOV entry 

We probed the chemical biology of these hit compounds in both viral and host systems in 

order to uncover the mechanisms of anti-EBOV action. We examined the potential sites for drug 

interaction including Niemann Pick C1 (NPC1) protein, lysosomal function, cathepsin B, and 

cathepsin L,13ï15 as well as the direct binding of these compounds to the Ebola VLP proteins using 

thermal shift binding assays.16 The results of chemical biology studies revealed that these 

compounds may act via one or more these targets/mechanisms. 

The process of EBOV entry into cells involves binding of viral envelop protein(s) to the 

cell membrane receptor protein/molecule, endocytosis, movement of endocytic vesicles to 

early/late endosomes and lysosomes, and ejection of viral RNA into the cytosol.17 Therefore, 

- 8 - 7 - 6 - 5

- 2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

L o g  [ C o m p o u n d ] ,  M

%
 

 
E

B
O

V
 
i

n
f

e
c

t
i
o

n

N V P - A D W 7 4 2

Z I N C 6 7 8 6 9 1 6 7

Z I N C 9 1 9 7 3 6 9 5

V i n d e s i n e

B I X - 0 1 2 9 4



22 
 
 

inhibition of viral protein binding to cell membrane proteins/binding partners can effectively 

reduce viral entry and subsequent viral replication in cells. Because the cell surface binding 

protein/molecule for Ebola viral proteins is still unclear, we determined direct binding of these 

compounds to recombinant Ebola protein. To examine whether these compounds directly interact 

with the EBOV, their ability of stabilizing Ebola protein was tested in a thermal shift assay using 

recombinant Ebola VLP. None of the compounds at 50 ɛM were able to protect Ebola VLP from 

thermal denaturation. (Figure 1.5). 

 

 

Figure 1.5. Thermal profiling results  of Ebola VLP with Ebola entry inhibitors. A, 

Thermal stability of Ebola VLP at temperatures from 25 °C to 77 °C detected by western 

blot. B, Effects of Ebola entry inhibitors (GANT61, ZINC67869167, ZINC91973695, 

tetrandrine, deptropine, osanetant, BIX-01294, cediranib, ebastine, afimoxifene, NVP-

ADW742, vindesine, endoxifen, Hh-Ag1.5) on thermal stability of Ebola VLP at 62 °C. All 

experiments were performed in duplicate and data are representative of two independent 

experiments. 
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Cathepsin B and L are lysosomal endopeptidases that had been reported to prime EBOV 

proteins in lysosomes before the viral RNAs are injected into the cytosol for virus replication. 

Inhibition of cathepsin B or L significantly reduces EBOV infection.13 GANT61 (an inhibitor of 

GLI1 and GLI2-induced transcription), deptropine (an antihistamine), and ebastine (an 

antihistamine) inhibited the enzymatic activity of cathepsin L (Figure 1.6a and 1.6b). Only 

GANT61 inhibited enzymatic activity of cathepsin B (Figure 1.6c and 1.6d). 

  

Figure 1.6. Inhibition of protease activities of recombinant cathepsin L and cathepsin B by 

Ebola entry inhibitors. a and b. recombinant cathepsin B or cathepsin L were treated with 10 µM 

of GANT61, ZINC67869167, ZINC91973695, tetrandrine, deptropine, osanetant, BIX-01294, 

cediranib, and ebastine. c. Dose-response studies of GANT61, deptropine and ebastine in cathepsin 
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L assay. d. Dose-response studies of GANT61 in cathepsin B assay. All experiments were 

performed in triplicate and data are representative of at least two independent experiments. Data 

are represented as mean ± SEM. 

 

The NPC1 protein has been reported as an intracellular receptor for EBOV.14,15,18 

Significant reduction of EBOV entry and infection were observed in the NPC1-deficient cells and 

mouse models.14,19 Ebastine increased cholesterol accumulation in cells determined by the filipin 

staining assay, which indicated a functional impairment of NPC1 protein; whereas, the other eight 

evaluated hits did not impair NPC1 protein function (Figure 1.7a).  

Lysosomes in cells are enlarged after treatment with certain compounds that damage 

lysosome functions, resulting in accumulation of lipids and other macromolecules.20 The enlarged 

lysosomes are often observed in the patient cells with lysosomal storage diseases caused by 

mutations in lysosomal proteins and lipid accumulation.21 EBOV entry is significantly reduced 

after the lysosomal functions are impaired by compounds. All of the nine evaluated hits increased 

LysoTracker dye staining in cells, indicating an enlargement in lysosome size (Figure 1.7b).  
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Figure 1.7. Cholesterol accumulation (NPC1 inhibition) and enlargement of lysosome 

induced by Ebola entry inhibitors. a. U18666A and ebastine increased filipin staining in 

fibroblasts (green: filipin; blue: nuclei). b. U1866A, GANT61, ZINC67869167, ZINC91973695, 

tetrandrine, deptropine, osanetant, BIX-01294, cediranib, and ebastine increased LysoTracker 

staining in fibroblasts (orange: LysoTracker red; blue: nuclei). All experiments were performed in 

triplicate and data are representative of at least two independent experiments. Data are represented 

as mean ± SEM. 

 

1.3.4 Cheminformatics Analysis 

1.3.4.a Assay Liabilities 

First, using substructural pattern matchers implemented in ZINC15,22 the 14 

experimentally confirmed hits were found to be free of chemical aggregation liabilities23 and 

PAINS alerts24. Since the assay employed herein relied on a beta-lactamase reporter system, all 14 

hits were also checked for potential beta-lactamase inhibition trends using PubChem 
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*  

Promiscuity.25 No heightened beta-lactamase assay activity trends were observed, indicating that 

these hits are not assay artifacts (Supplementary File 14).  

1.3.4.b Chemical Similarity to Training Set Compounds 

Hierarchical clustering analysis revealed that majority of the hits are structurally dissimilar 

from each other, aside from afimoxifene and endoxifen (Figure 1.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Hierarchical clustering 

of experimental hits. High 

Tanimoto similarity of afimoxifene 

and endoxifen is highlighted by an 

asterisk.  
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Clustering thus indicates the hits discovered in this study access a wide range of chemical 

space across several unique chemotypes. The structural similarity based on the Tanimoto 

coefficient (Tc) of the 14 hits were then compared with compounds in the antiviral training sets 

(Table 1.3) in order to assess the uniqueness of hits. In addition to being highly structurally similar 

to each other, afimoxifene and endoxifen both have Tc above 0.90 to tamoxifen, which was a 

previously reported anti-Ebola inhibitor.26 Likewise, tetrandrine is highly structurally similar 

(Tc=0.97) to cepharanthine, a training set active compound.  The most potent hit in this study, 

vindesine, had a Tc of 0.96 to vinblastine, which was the most potent hit in the original screen.26 

These hits, while not entirely unique from a chemical perspective, illustrate that the developed 

QSAR models are robust and that the experimental assays are reproducible. The remaining 10 hits 

were considerably dissimilar from any training set compounds (Tc = 0.63-0.89), thereby 

constituting novel anti-Ebola chemotypes as compared to the training set compounds.   

 1.3.4.c Comparison to Previously Reported EBOV Inhibitors 

The potencies  and structures of the 14 hits identified in this study were compared to a 

compiled set of 60 previously published compounds with either in vitro or in vivo anti-Ebola 

activity.2,7,27,28 The full list of previously known published compounds and their potencies can be 

found in the Supplementary File 15. 

The most potent hit identified from virtual screen was vindesine (0.272 ɛM), a vinca 

alkaloid microtubule inhibitor. Previously, other vinca alkaloids were reported as sub-micromolar 

inhibitors of the EBOV in vitro.  These vinca alkaloids, vinblastine (0.048 ɛM), vinorelbine (0.066 

ɛM), and vincristine (0.141 ɛM),7 are highly structurally similar to vindesine (Table 1.4). 

Colchicine and nocodazole, microtubule inhibitors that are structurally distinct from the vinca 

alkaloids, were also previously reported as sub-micromolar inhibitors. The identification of 
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vindesine as one of the most potent hits identified to date highlights the robustness of the developed 

QSAR models, as well as the efficacy of this class of compounds and compounds with the same 

associated MOA as viable anti-Ebola compounds.  

The second most potent hit identified from the virtual screen was BIX-01294 (0.97 ɛM).  

This compound is among most potent reported anti-Ebola compounds.  Moreover, BIX-01294 is 

structurally dissimilar from other previously reported compounds (Table 1.4) and has a unique 

primary MOA (G9a histone methyltransferase inhibition).29 In contrast to vindesine, the 

identification of BIX-01294 demonstrates the ability to QSAR-based virtual screening to retrieve 

structurally novel chemotypes. 

The next most potent series of hits includes afimoxifene (1.36 ɛM), tetrandrine (2.16 ɛM), 

NVP-ADW742 (3.05 ɛM), and endoxifen (3.05 ɛM). Afimoxifene and endoxifen are metabolites 

of tamoxifen (Table 1.4), which was previously reported as a sub-micromolar Ebola inhibitor 7. 

Likewise, tetrandrine is structurally similar to cepharanthine (Table 1.4),7 as both are isolated from 

the same plant genus.  NVP-ADW742, on the other hand, is structurally dissimilar from any 

previously reported compound (Table 1.4). However, additional tyrosine kinase inhibitors have 

shown efficacy against the EBOV with a range of potencies in vitro, such as sunitinib (1.91 ɛM) 

and nilotinib (24.3 ɛM).7 

The remaining hits, i.e., ZINC91973695, deptropine, GANT 61, ZINC67869167, Hh-

Ag1.5, cediranib, ebastine, osanetant, have potencies ranging from 6.09 ɛM ï 9.65 ɛM (Table 

1.4). Each of these hits is structurally unique with respect to previously published compounds 

(Table 1.4). In addition to being structurally novel among EBOV inhibitors, ZINC91973695 and 

ZINC67869167 have no previously reported bioactivities.   
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Table 1.3. Structural similarity of top hits to previously published compounds. The Tanimoto 

coefficient (TC) between experimentally confirmed hits and compounds in the literature was 

calculated. 
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1.4 DISCUSSION 

The power of virtual screening is its ability to quickly process millions of compounds and 

prioritize a small set of highly confident predictions for experimental confirmation. This approach 

not only saves time and cost as compared to the experimental high throughput screening, but also 

may lead to the evaluation of additional approved drugs that could be missed in the physical 

compound screening library. A combination of virtual screening with experimental confirmation 

is especially useful for challenging assays due to high biosafety requirements, limited patient 

samples, expensive reagents, or difficult formats (small animal or 3D cell culture). In this study, 

we prioritized 102 compounds from an in silico library of ~17 million compounds for testing in 

the EBOV entry assay using QSAR modeling and virtual screening. Fourteen of these hits were 

experimentally confirmed, including 5 selected hits against live-EBOV infections, and their anti-

Ebola mechanisms of action were determined using. 

The EBOV entry process has been extensively studied. Viral envelope glycoproteins attach 

to the surface of host cell, and the virus enters through micropinocytosis and endocytosis. Although 

a cell surface receptor and a few other components are still not clear, several key host factors 

including cathepsin B/L in the endosome13 and Niemann Pick C1 protein (NPC1) in the lysosome 

have been reported as regulators of EBOV entry.14,15 The chemical biology and anti-Ebola MOAs 

of the 14 experimentally validated hits were evaluated for interactions with both host and viral 

targets.  

In addition to discovering compounds with unique scaffolds, we also uncovered the anti-

Ebola MOAs of these compounds. We have found that the antihistamines ebastine and deptropine 

inhibited Ebola entry through negatively regulated lysosome function and blocking cathepsin L 
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activity. We also found that osanetant, an anti-psychotic, induces the enlargement of lysosomes 

and impairs lysosomal function. Additionally, BIX-01294 showed sub-micromolar activity to 

inhibit EBOV entry. Our LysoTracker dye staining data indicated that BIX-01294 may block 

EBOV entry through a blockade of lysosome function in host cells. BIX-01294 is a G9a histone 

methyltransferase (HMTase) inhibitor.29 HMTases have not been implicated in EBOV entry or 

replication. Additional chemical biology experiments to test the importance of HMTases in EBOV 

entry should be performed. Two hedgehog-signaling pathway modulators, Hh-Ag1.5 and 

GANT61,30 showed moderate anti-Ebola activity. Our results revealed multiple mechanisms of 

action involved in the inhibition of EBOV entry by GANT61. GANT61 caused enlargement of 

lysosomes and inhibited both cathepsin L and cathepsin B, which are known to impair EBOV 

entry. Two hits from the QSAR-based screen, ZINC91973695 and ZINC67869167, have no 

previously reported bioactivities. Results of our chemical biology evaluations showed that both 

compounds induced enlargement of lysosomes, which may implicate the blockage of lysosomal 

function as a mechanism of action for these two compounds with novel anti-Ebola scaffolds. 

A few analogs of previously reported Ebola entry inhibitors or compounds with the same 

of mechanisms of action were also identified. The most potent hit from our screen (and one of the 

most potent reported EBOV inhibitors) was vindesine, a vinca alkaloid microtubule inhibitor. 

Indeed, the vinca alkaloid microtubule inhibitors vinblastine, vincristine, and vinorelbine were also 

potent hits in the original screen.26 Likewise, though afimoxifene and endoxifen are novel hits, 

Selective Estrogen Receptor Modulators (SERMs) have been shown in several studies to have 

anti-Ebola activity.26,31,32 The same is true for the receptor tyrosine kinase (RTK) inhibitors 

cediranib and NVP-ADW742, as sunitinib has been previously reported to have anti-Ebola 

activity.26 Last, tetrandrine, a calcium-ion channel blocker, was reported33 as potent anti-Ebola 
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inhibitor during the course of our study. Thus, these results demonstrate the ability of our QSAR 

models to reliably retrieve compounds with anti-Ebola activities and confirm the reproducibility 

of the VLP-assay.  

1.5 CONCLUSIONS 

Our study is the first case of QSAR-driven experimental discovery of novel anti-Ebola 

agents with limited host cell toxicity. Robust and predictive QSAR models for both anti-Ebola 

activity and host cytotoxicity were developed and used for virtual screening of ~17 million 

compounds in order to identify Ebola inhibitors with high therapeutic windows (selectivity 

indices). Ultimately, 102 VS hits were tested in both Ebola VLP and ATP content cytotoxicity 

assays; 14 of these hits had IC50 < 10 ɛM and SI > 10, which is comparable to the measured 

potencies of several previously reported compounds. The two most potent hits in the screen were 

vindesine, a vinca alkaloid microtubule inhibitor, and BIX-01294, an HMTase inhibitor (Table 

1.2). In a live-EBOV assay, vindesine had an IC50 of 0.34 µM. Several of the hits were SERMs 

and RTKs, which have MOAs known to be related to anti-Ebola activity. We investigated the 

previously uncharacterized MOAs for anti-Ebola activity of several hits, including both host 

factors and direct Ebola VLP interactions. Two compounds, ZINC91973695 and ZINC67869167, 

represent novel chemotypes and can be considered as leads for future anti-Ebola chemical 

optimization.  

In addition to the identification of these compounds, this study demonstrates that FDA-

approved drugs, such as vindesine, and compounds that have not yet passed clinical trials for their 

primary indications, like cediranib, can be repurposed as antivirals. Such compounds are of 

particular interest, as they may have the potential, pending additional pre-clinical evaluation, to be 
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granted orphan drug status in the United States for EBOV disease. The integrated computational 

and experimental strategy employed in this study represents an advancement for the rapid 

discovery of Ebola therapeutics.  

1.6 EXPERIMENTAL SECTION  

1.6.1 Data Collection, Curation, and Classification  

1.6.1.a Antiviral Data 

Prior to this work, the Ebola VLP was prepared at the Icahn School of Medicine at Mount 

Sinai, and VLP-based qHTS screening campaigns were performed at the National Center for 

Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH).26 The 

results of 4 qHTS screening campaigns (2 primary and 2 confirmatory) were extracted from 

PubChem (AIDs 1117318, 1117313, 1117312, and 1117308).34,35 These data are available in 

Supplementary Files 1-4.   

Each of the four screens has three readouts, including a blue, green, and ratio (blue/green) 

channel. The blue channel analyzes the efficacy of the compound at inhibiting VLP entry activity 

in the host cell. The green channel indicates the healthy and viable cells that loaded with CCF2-

AM. The ratio channel screen measures the ratio of blue/green spectra. The beta-lactamase in the 

VLP hydrolyzes the CCF2-AM dye used in the assay to give a blue fluorescence spectrum. An 

effective inhibitor will prohibit the beta-lactamase in the VLP from hydrolyzing CCF2-AM, 

resulting in reduction of the intensity of the blue fluorescence spectrum. A low blue emission 

spectrum indicates that the compound is inhibitory, while a high green emission spectrum reflects 

the absence of host cytotoxicity. A simplified schema of the assay is depicted in Figure 1.9. 

In total, 3121 compounds were tested. These data were then curated according to our well-

established protocols.36ï38 Briefly, mixtures, inorganics, and organometallics were removed. 
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Additionally, replicate compounds were identified and sets were removed if screening results 

conflicted; if the results were concordant, then one representative compound was selected. After 

curation, 3104 unique compounds remained.   

  

Figure 1.9. Simplified schema of Ebola VLP assay. Ebola VLPs contain Ebola GP and the VP40 

protein fused to a beta-lactamase (Bla) reporter. HeLa cells are loaded with the beta-lactamase 

substrate CCF2-AM. If the VLP enters into the cell, Bla hydrolyzes the substrate CCF2-AM, 

disrupting the fluorescence resonance energy transfer (FRET) in the substrate, thus causing blue 

fluorescence. Inhibition of the VLP by a chemical will preserve the substrate FRET, maintaining 

a green fluorescence. The ratio of blue/green fluorescence intensities represents the VLP activity 

of inside cells. 

 

1.6.1.b Cytotoxicity Data 

Host cell cytotoxicity data for a subset of compounds tested for anti-EBOV activity were 

obtained from the researchers at the NCATS. Compounds were tested for host cytotoxicity 

potential in HeLa and HEK cell lines. In total, 171 unique compounds were tested in HeLa cell 
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line, and 156 unique compounds were tested in HEK cell line. All 156 compounds tested in the 

HEK cell line were also tested in the HeLa cell line. Data curation was performed as above, and 

one organometallic was removed, leaving 170 and 155 compounds for consideration from the 

HeLa and HEK cell lines, respectively.  These data are available in Supplementary Files 5-6. 

1.6.1.c Determination of Antiviral Activity 

  Only compounds with dose-response curve classes39 of 1.1, 1.2, 2.1, 2.2, and 4 were 

considered for potential inclusion into the QSAR model training set. In order to comprehensively 

characterize the results of the screens, two separate protocols were used to classify ñactiveò and 

ñinactiveò compounds for subsequent QSAR modeling. In the first protocol (P1), a compound was 

classified as ñactiveò if and only if the compound had an AC50 < 10 ɛM and Maximum Inhibition 

Ó 70% in both a primary and confirmatory screen.  Similarly, an ñinactiveò compound had an AC50 

Ó 10 ɛM and Maximum Inhibition < 70% in both a primary and confirmatory screen.  

In the second protocol (P2), an ñactivityò score was calculated for each compound, j, according to 

the following equation  

 

where activity score(j) is the relative activity of a specific compound; max(AC50) and min(AC50) 

are the maximum and minimum AC50 in the screen, respectively, and AC50(j) is the AC50 of a 

specific compound; max(efficacy) and min(efficacy) are the maximum and minimum efficacies in 

the screen, respectively, and efficacy(j) is the efficacy of a specific compound. If a compound had 

an activity score Ó 70 in either primary or confirmatory screen, the compound was classified as 
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ñactiveò. Similarly, if a compound had an activity score < 70 in either a primary or confirmatory 

screen, the compound was classified as ñinactiveò.  

1.6.1.d Determination of Cytotoxicity  

For both the HeLa and HEK cell lines, a compound was considered ñtoxicò if the associated 

pAC50 > 4.0 (AC50 < 100 ɛM); whereas, a compound was considered ñnon-toxicò if the pAC50 Ò 

4.0 (AC50 Ó 100 ɛM) or the curve class was 4, indicating no response. Only compounds with dose-

response curve classes39 of 1.1, 1.2, 2.1, 2.2, and 4 were considered.   

1.6.1.e Antiviral Training Set Balancing  

In both protocols (P1 and P2), the data were imbalanced towards the inactive class. Thus, 

in order to balance the active and inactive classes in a 1:1 ratio, the inactive class was down-

sampled.40 Fifty percent of the corresponding inactives with the highest Tanimoto similarity41, i.e., 

the most similar inactives to the compounds from active class based on MACCS keys fingerprint,42 

were chosen, and the remaining 50% of the corresponding inactives were randomly selected. 

Important to note that all rationally chosen inactives had different nearest neighbors among 

actives.43  For P1 and P2, a total of 166 compounds (83 active and 83 inactive) and 1224 

compounds (612 active and 612 inactive) formed the respective training sets.  These compounds 

are available in Supplementary Files 7-8. 

1.6.1.f Cytotoxicity Training Set Balancing  

The ñtoxicò and ñnon-toxicò classes were relatively balanced; thus, no down-sampling of 

the larger class was required.  For HeLa and HEK cell lines, a total of 170 compounds (90 toxic 

and 80 non-toxic) and 155 compounds (83 toxic and 72 non-toxic) formed the respective training 

sets. These compounds are available in Supplementary Files 9-10. 
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1.6.1.g Modelability Index (MODI)   

The MODelability Index (MODI) estimates the likelihood of obtaining predictive QSAR 

models for a binary data set of compounds.44 MODI is defined as a weighted ratio of the number 

of nearest-neighbor pairs of compounds in descriptor space with the same activity class versus the 

total number of pairs. MODI threshold of 0.65 was previously found to separate the modelable 

from non-modelable data sets.44 MODI was calculated for all antiviral and cytotoxicity datasets 

prior to QSAR modeling in the present study as described earlier.44   

1.6.2 Computational Methods 

1.6.2.a QSAR Model Generation and Validation  

Three separate packages, Chembench,45,46 HiT QSAR,47 and GUSAR,48 were employed 

for consensus classification modeling of both antiviral activity (P1 and P2) and host cytotoxicity 

(HeLa and HEK). QSAR models built on Chembench used Dragon 6.0 descriptors49 and the 

random forest50 machine-learning algorithm. For models built with HiT QSAR, Simplex 

Representation of Molecular Structure (SiRMS) descriptors51 and random forest (RF) were used.  

GUSAR models utilized a combination of Multilevel Neighborhoods of Atoms (MNA) and 

Quantitative Neighborhoods of Atoms (QNA) descriptors52 and a radial-basis function with self-

consistent regression (RBF-SCR) as the machine-learning algorithm.48 We have followed best 

practices of QSAR modeling developed earlier by our group. All models were rigorously validated 

using five-fold external cross validation.9 Y-randomization was performed for all models.9 Models 

were statistically evaluated according to, sensitivity (SE), specificity (SP), correct classification 

rate (CCR), positive predictive value (PPV), and negative predictive value (NPV).  These 

statistical metrics are calculated by the equations 1-5, respectively.   
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3%    (1) 

30   (2) 

##2   (3) 

006   (4) 

.06   (5) 

Here, TP and TN represent the number of true positives (correct classifications of actives), and 

true negatives (correct classifications of inactives), respectively; whereas, FP and FN represent the 

number of false positives (incorrect classifications of actives) and false negatives (incorrect 

classifications of inactives), respectively. 

1.6.2.b Virtual Screening  

Two in silico libraries, the ZINC drug-like library22 and previously untested drugs and 

experimental compounds from the NCATS Chemical Genomics Center Pharmaceutical Collection 

(NPC), totaling ~17 million compounds after curation (see above), were virtually screened using 

the developed QSAR models of antiviral activity and host cytotoxicity. A model was deemed 

acceptable for virtual screening if and only if the CCR, SE, SP, PPV, and NPV were all above 

0.60, and no associated Y-randomized model had a CCR above 0.60. An applicability domain 

(AD) was used for all models. Consensus prediction was utilized, meaning that for a compound to 

be considered a virtual screening ñhitò, it must be within the AD of each model and be predicted 

as ñactiveò and ñnon-toxicò in all developed QSAR models of antiviral activity and host 

cytotoxicity, respectively (Figure 1.2). Once virtual screening ñhitsò were experimentally 
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validated, the Sequential Agglomerative Hierarchical Nonoverlapping (SAHN) method 

implemented in the ISIDA/Cluster program53 was used to probe the uniqueness of hit chemotypes 

and to identify the most structurally similar compounds in the training set and in the published 

literature.   

1.6.3 Experimental Methods 

Ebola VLPs containing a beta-lactamase-fused VP40 and GP were prepared in Dr. García-

Sastre's lab, as previously described.6 LiveBLAzer FRETïB/G Loading Kit and CCF2-AM, 

Dulbecco's modified Eagle's medium (DMEM), and Opti-MEM reduced serum medium were 

purchased from Life Technologies (Carlsbad, CA, USA). An ATP content cell viability assay kit 

was purchased from Promega (Madison, WI, USA). 1536-well polystyrene plates were purchased 

from Greiner Bio-One (Monroe, NC, USA). Compounds were purchased from Sigma-Aldrich (St. 

Louis, MO, USA), Santa Cruz (Dallas, TX, USA), ChemBridge Corporation (San Diego, CA, 

USA), Enamine Ltd (Kiev, Ukraine), Maybridge Chemical Company (Altrincham, United 

Kingdom), Vitas-M Laboratory (Champaign, IL, USA), Ambinter (Orléans, France) and AKos 

Consulting & Solutions Deutschland GmbH (Steinen-Schlächtenhaus, Germany) at the highest 

available purity. All of the compounds were dissolved as a 10 mM stock solution in dimethyl 

sulfoxide (DMSO) and diluted in DMSO at a 1Ḋ3 dilution to generate eleven concentrations in 384-

well plates, followed by reformatting into one 1536-well compound plate for high throughput 

screening. 

1.6.3.a Materials  

All commercially available reagents, compounds, and solvents were purchased and used 

without further purification. Column chromatography on silica gel was performed on RediSep 

column using the Teledyne Isco CombiFlash Rf system. Preparative purification was performed 



44 
 
 

on a Waters semi-preparative HPLC. The column used was a Phenomenex Luna C18 (5 micron, 

30 × 75 mm) at a flow rate of 45 mL/min. The mobile phase consisted of acetonitrile and water 

(each containing 0.1% trifluoroacetic acid). A gradient of 10% to 50% acetonitrile over 8 

minutes was used during the purification. Fraction collection was triggered by UV detection (220 

nm).  

1H spectra were recorded using an INOVA 400 MHz spectrometer (Varian).  Samples were 

analyzed on an Agilent 1200 series LC/MS using a Zorbax Eclipse XDB-C18 reverse phase (5 

micron, 4.6 x 150 mm) column and a flow rate of 1.1 mL/min. The mobile phase was a mixture of 

acetonitrile and H2O each containing 0.05% trifluoroacetic acid. LC Method A: a gradient of 4% 

to 100% acetonitrile over 7 minutes was used during analytical analysis. LC Method B: a gradient 

of 4% to 100% acetonitrile over 3 minutes was used during analytical analysis. High resolution 

mass spectrometry was recorded on Agilent 6210 Time-of-Flight LC/MS system.  

2,2'-((2-(pyridin -4-yl)dihydropyrimidine -1,3(2H,4H)-diyl)bis(methylene))bis(N,N-

dimethylaniline) (GANT61) 

 

 
1H NMR (400 MHz, DMSO-d6) ŭ 8.59 ï 8.52 (m, 2H), 7.70 ï 7.64 (m, 2H), 7.47 (dd, J = 7.6, 

1.7 Hz, 2H), 7.20 ï 7.11 (m, 2H), 7.08 ï 6.97 (m, 4H), 4.01 (s, 1H), 3.51 (d, J = 14.1 Hz, 2H), 

3.39 (d, J = 14.2 Hz, 2H), 2.81 (dt, J = 11.2, 4.1 Hz, 2H), 2.50 (s, 12H), 2.22 ï 2.14 (m, 2H), 

1.62 ï 1.55 (m, 2H). LC/MS (Method B): (electrospray +ve), m/z 430.3 (MH)+, tR = 3.826, UV254 

> 98%. 
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(1R,3R,5S)-3-((10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl)oxy)-8-methyl-8-

azabicyclo[3.2.1]octane 2-hydroxypropane-1,2,3-tricarboxylate (Deptropine citrate) 

 

 
HRMS calculated for : C23H28NO [M + H]+ 334.2165, found 334.2150. LC/MS (Method A): 

(electrospray +ve), m/z 334.1 (MH)+, tR = 5.000, UV254 > 98%. 

 

(11S,31S)-16,36,37,54-tetramethoxy-12,32-dimethyl-11,12,13,14,31,32,33,34-octahydro-2,6-

dioxa-1(7,1),3(8,1)-diisoquinolina-5(1,3),7(1,4)-dibenzenacyclooctaphane (Tetrandrine) 

 

 
1H NMR (400 MHz, DMSO-d6) ŭ 7.45 (dd, J = 8.2, 2.1 Hz, 1H), 7.08 (dd, J = 8.2, 2.5 Hz, 1H), 

6.91 (d, J = 8.2 Hz, 1H), 6.77 (dd, J = 8.2, 1.9 Hz, 1H), 6.71 ï 6.59 (m, 2H), 6.42 ï 6.34 (m, 2H), 

6.31 (dd, J = 8.3, 2.1 Hz, 1H), 5.92 (s, 1H), 3.89 (dd, J = 10.4, 5.9 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 

3H), 3.50 (d, J = 9.8 Hz, 1H), 3.41 (d, J = 4.7 Hz, 1H), 3.32 (s, 3H), 3.29 (s, 4H), 3.17 (dd, J = 

12.5, 5.9 Hz, 1H), 3.03 (s, 3H), 2.89 ï 2.68 (m, 6H), 2.63 (dd, J = 13.6, 10.1 Hz, 1H), 2.36 (d, J 
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= 16.0 Hz, 1H), 2.28 (d, J = 13.5 Hz, 1H), 2.18 (s, 3H). HRMS calculated for C38H44N2O6 [M + 

2H]2+ 312.1594, found 312.1602. LC/MS (Method A): (electrospray +ve), m/z 623.2 (MH)+, tR = 

3.866, UV254 > 98%. 

 

 

 

(Z)-4-(1-(4-(2-(dimethylamino)ethoxy)phenyl)-2-phenylbut-1-en-1-yl)phenol (Afimoxifene) 

 
 
1H NMR (400 MHz, DMSO-d6) ŭ 9.40 (s, 1H), 7.22 ï 7.13 (m, 2H), 7.09 (ddd, J = 6.8, 4.0, 1.3 

Hz, 4H), 7.01 ï 6.94 (m, 2H), 6.78 ï 6.72 (m, 2H), 6.72 ï 6.66 (m, 2H), 6.61 ï 6.54 (m, 2H), 

3.88 (t, J = 5.9 Hz, 2H), 2.52 (m, 2H), 2.40 (d, J = 7.3 Hz, 2H), 2.15 (s, 5H), 0.84 (t, J = 7.4 Hz, 

3H). HRMS calculated for C26H30NO2 [M + H]+ 388.2271, found 388.2288. LC/MS (Method A): 

(electrospray +ve), m/z 388.1 (MH)+, tR = 5.056, UV254 > 98%. 

 

4-(4-(benzhydryloxy)piperidin -1-yl)-1-(4-(tert -butyl)phenyl)butan-1-one (Ebastine) 

 

 
HRMS calculated for C32H40NO2 [M + H]+ 470.3054, found 470.3069. LC/MS (Method A): 

(electrospray +ve), m/z 470.2 (MH)+, tR = 6.088, UV254 > 98%. 
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methyl (3S,5S,7S,9S)-9-((3aR,3a1R,4R,5S,5aR,10bR)-5-carbamoyl-3a-ethyl-4,5-dihydroxy-

8-methoxy-6-methyl-3a,3a1,4,5,5a,6,11,12-octahydro-1H-indolizino[8,1-cd]carbazol-9-yl)-5-

ethyl-5-hydroxy-1,4,5,6,7,8,9,10-octahydro-2H-3,7-methano[1]azacycloundecino[5,4-

b]indole-9-carboxylate sulfate (Vindesine) 

 

 
1H NMR (400 MHz, DMSO-d6) ŭ 9.67 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 

7.26 (s, 1H), 7.17 (d, J = 3.1 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.43 (s, 

1H), 6.25 (s, 1H), 5.72 (dd, J = 10.7, 4.8 Hz, 1H), 5.61 (d, J = 10.6 Hz, 1H), 5.07 (s, 1H), 4.34 (s, 

1H), 3.75 (s, 5H), 3.58 (s, 3H), 3.45 (s, 6H), 3.16 (s, 1H), 3.05 (s, 2H), 2.81 (s, 3H), 2.72 (s, 3H), 

2.19 (d, J = 15.3 Hz, 1H), 1.97 (s, 1H), 1.65 ï 1.53 (m, 3H), 1.49 ï 1.23 (m, 4H), 0.86 (t, J = 7.4 

Hz, 3H), 0.73 (t, J = 7.3 Hz, 3H). HRMS calculated for C43H57N5O7 [M + 2H]2+ 377.7124, found 

377.7140. LC/MS (Method A): (electrospray +ve), m/z 754.3 (MH)+, tR = 3.802, UV254 > 98%. 
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N-(1-benzylpiperidin-4-yl)-6,7-dimethoxy-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-

amine (BIX -01294) 

 

 
HRMS calculated for C28H39N6O2 [M + H]+ 491.3129, found 491.3119. LC/MS (Method A): 

(electrospray +ve), m/z 491.3 (MH)+, tR = 3.199, UV254 > 98%. 

 

(R)-N-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin -3-yl)propyl) -4-phenylpiperidin -4-

yl)-N-methylacetamide (Hh-Ag1.5) 

 

 
HRMS calculated for C28H27ClF2N3OS [M + H]+ 526.1526, found 526.1532. LC/MS (Method 

A): (electrospray +ve), m/z 526.1 (MH)+, tR = 4.048, UV254 > 98%. 
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4-((4-fluoro-2-methyl-1H-indol-5-yl)oxy)-6-methoxy-7-(3-(pyrrolidin -1-

yl)propoxy)quinazoline (Cediranib) 

 

 
1H NMR (400 MHz, DMSO-d6) ŭ 11.34 (d, J = 2.4 Hz, 1H), 8.49 (s, 1H), 7.60 (s, 1H), 7.38 (s, 

1H), 7.16 (d, J = 8.6 Hz, 1H), 6.98 (dd, J = 8.6, 7.4 Hz, 1H), 6.24 (d, J = 2.0 Hz, 1H), 4.25 (t, J = 

6.4 Hz, 2H), 3.99 (s, 3H), 2.58 (t, J = 7.1 Hz, 2H), 2.46 (m, 5H), 2.41 (s, 3H), 1.99 (dd, J = 7.9, 

5.7 Hz, 2H), 1.70 (s, 3H). HRMS calculated for C25H28FN4O3 [M + H]+ 451.2140, found 

451.2130. LC/MS (Method A): (electrospray +ve), m/z 451.1 (MH)+, tR = 4.353, UV254 > 98%. 

 

(R)-N-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin -3-yl)propyl) -4-phenylpiperidin -4-

yl)-N-methylacetamide (Osanetant) 

 

 
HRMS calculated for C35H42Cl2N3O2 [M + H]+ 606.2649, found 606.264. LC/MS (Method A): 

(electrospray +ve), m/z 606.2 (MH)+, tR = 5.399, UV254 > 98%. 
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5-(3-(benzyloxy)phenyl)-7-(3-(pyrrolidin -1-ylmethyl)cyclobutyl)-7H-pyrrolo[2,3-

d]pyrimidin -4-amine (NVP-ADW742) 

 

 
1H NMR (400 MHz, DMSO-d6) ŭ 8.12 (s, 1H), 7.65 (s, 1H), 7.51 ï 7.44 (m, 2H), 7.45 ï 7.29 (m, 

4H), 7.15 (t, J = 2.0 Hz, 1H), 7.11 ï 7.04 (m, 1H), 7.04 ï 6.96 (m, 1H), 6.10 (s, 2H), 5.31 (p, J = 

8.3 Hz, 1H), 5.17 (s, 2H), 2.72 ï 2.58 (m, 4H), 2.47-2.44 (m, 5H), 2.25 (ddd, J = 12.1, 8.5, 2.9 

Hz, 2H), 1.74 ï 1.62 (m, 4H). HRMS calculated for C28H32N5O [M + H]+ 454.2601, found 

454.2615. LC/MS (Method A): (electrospray +ve), m/z 454.2 (MH)+, tR = 4.106, UV254 > 98%. 

 

(E)-4-(1-(4-(2-(methylamino)ethoxy)phenyl)-2-phenylbut-1-en-1-yl)phenol (Endoxifen) 

 

 
1H NMR (400 MHz, DMSO-d6, major isomer) ŭ 9.17 (s, 1H), 7.17 (t, J = 7.6 Hz, 2H), 7.08 (d, J 

= 8.9 Hz, 5H), 6.92 (d, J = 8.2 Hz, 2H), 6.59 (d, J = 8.2 Hz, 2H), 6.39 (d, J = 8.1 Hz, 2H), 4.01 

(t, J = 5.6 Hz, 2H), 2.82 (t, J = 5.6 Hz, 2H), 2.39 (q, J = 7.3 Hz, 2H), 2.34 (s, 3H), 0.84 (t, J = 7.3 

Hz, 3H). HRMS calculated for C25H28NO2 [M + H]+ 374.2115, found 374.2105. LC/MS (Method 

A): (electrospray +ve), m/z 374.1 (MH)+, tR = 5.001, UV254 = 60.6% (major isomer). 
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11-(3,4-dimethylbenzyl)-3,7-dimethyl-3,7,11-triazaspiro[5.6]dodecane (ZINC67869167) 

 

 
HRMS calculated for C20H34N3 [M + H]+ 316.2747, found 316.2757.  

 

((3R,4R)-1-((2,3-dimethyl-1H-indol-7-yl)methyl)-4-(pyrrolidin -1-ylmethyl)pyrrolidin -3-

yl)methanol (ZINC91973695) 

 

 
HRMS calculated for C21H32N3O [M + H]+ 342.254, found 342.2532.  

 

1.6.3.b Cell culture methods  

HeLa and HEK293 cells were purchased from the American Type Culture Collection 

(ATCC, Manassas, VA, USA). The cells were cultured in DMEM supplemented with 10% fetal 

bovine serum (FBS, GE healthcare, Piscataway, NJ, USA) and 100 U/mL of penicillin and 100 

µg/mL of streptomycin (Life Technologies, Carlsbad, CA, USA) at 37 °C in a humidified 

atmosphere with 5% CO2. Cells were passaged at 90% confluency. 

1.6.3.c Ebola VLP beta-lactamase assay for HTS in 1536-well plates  

A chemical biology screening campaign was performed. Ebola VLP assay was conducted 

as previously described.7 Briefly, HeLa cells were seeded at 750 cells/well in 3 µL of assay 

medium (DMEM+10% FBS) in 1536-well assay plates. Compounds were prepared in a 1536-well 
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compound plate, and 23 nL of each compound was transferred into 1536-well assay plate using an 

NX-TR pintool station (WAKO Scientific Solutions, San Diego, CA, USA). After 1 h incubation 

at 37 °C with 5% CO2, 1 µL/well of VLP solution was added to the assay plates using a BioRapTR 

FRD dispenser. The plates were then spinoculated, followed by incubation at 37 °C with 5% CO2 

for 4.5 h. 1 µL CCF2-AM beta-lactamase substrate was added in to each well, and the plates were 

incubated for 2 h at room temperature. The assay was detected at dual fluorescence intensities 

(Ex1= 405±20, Em1= 460±20, and Ex2= 405±20, Em2= 530±20 nm) using EnVision plate reader 

(PerkinElmer, Boston, MA, USA). 

1.6.3.d Cell viability assay with the ATP content assay kit  

The cell viability assay was performed as previously described.7 Briefly, HeLa and 

HEK293 cells were plated at 750 cells/well in 3 µL in 1536-well assay plates, followed by the 

addition of tested compounds at 23 nL/well. After a 4.5 h incubation at 37 °C and 5% CO2, cell 

viability was measured by adding 3 µL of ATP content assay mixture to each well. Luminescence 

values were obtained using a ViewLux plate reader (PerkinElmer, Boston, MA, USA). 

1.6.3.e Ebola live virus assays 

Vero E6 cells were plated in the 96-well plate (black with optical bottom). Briefly, serial 

dilutions of 5 drugs (diluted in DMEM 2% FBS starting at 10 µM) and DMSO as control, were 

added to the wells, and incubated for 1 h at 37 °C with 5% CO2. The cells were infected with 

EBOV/Mayinga-eGFP at a MOI of 0.1 TCID50/cell. The assay was run in triplicate at a biosafety 

level-4 (BSL-4) facility. The fluorescence was read 72 h after infection using a BioTek Synergy 

HT. 

1.6.3.f Filipin staining and LysoTracker-red staining  

The assays were performed as previously described.54 Fibroblast cells were plated at 1,000 

cells/well in 4 µL of assay medium (DMEM + 10% FBS) in 1536-well assay plates and incubated 
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overnight at 37 °C and 5% CO2. Compounds were added to the assay plate at 23 nL/well. After 24 

h incubation at 37 °C and 5% CO2, 2 µl/well of 50 ng/ml filipin or 0.5 µM LysoTracker Red DND-

99 was added to the plate. After 1 hr. incubation at 37 °C and 5% CO2, the plates were washed 

twice. The fluorescence intensities were then read with a fluorescence plate reader (GE Healthcare, 

Chicago, Illinois, USA). U18666A [3-ɓ-(2-[diethylamino]ethoxy)-androst-5-en-17-one, 

monohydrochloride] was used as the positive control.55 

1.6.3.g Cathepsin B/L assay  

Cathepsin B/L assays were performed as previously described.8 Briefly, recombinant 5 ng 

of cathepsin B, or cathepsin L were added into each well in 384-well plate. Indicated drugs were 

added into the recombinant enzymes, followed by initiation of the reaction by addition of 

fluorescent substrate. The activity measurements were done using Tecan plate reader (Tecan US, 

Inc., Morrisville, NC, USA). Cathepsin L inhibitor and ED64 were used as positive controls.8 

1.6.3.h Thermal shift binding assay with Ebola VLP  

The thermal shift binding assay was performed as previously described.16 Ebola VLPs were 

pre-incubated with indicated drugs for 10 min at room temperature. The mixture was then 

subsequently heated at 49 °C for 3 min, followed by centrifugation at 13, 000 x g at 4 °C for 20 

min. The supernatant was collected and denatured by heating at 75 °C for 10 min in the presence 

of SDS loading buffer (Life Technologies, Carlsbad, California, United States). The samples were 

separated by SDS-PAGE gel electrophoresis and detected by anti-beta-lactamase antibodies (Life 

Technologies, Carlsbad, California, United States).  

1.6.3.i Data analysis and statistics  

Half maximal inhibitory concentration (IC50) values of compound activity data were 

calculated using Prism software (GraphPad Software, Inc. San Diego, CA). All values were 

expressed as the mean ± SEM (n Ó3). 
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1.7 ASSOCIATED CONTENT  

Supporting Information. Supplementary Files 1-15 are available at 

https://scapuzzi.web.unc.edu/free-downloads/ 

Additionally, all the datasets and Chembench models are provided in and on the 

Chembench Web-Portal (https://chembench.mml.unc.edu/), which provides public access and use 

of data and models used in this study. The P1, P2, HEK, and HeLa training sets are publicly 

indexed as ñEbola_SM1ò and ñEbola_PCM4ò, ñ151105_Ebola_Toxicity_HEKò, and 

ñ151105_Ebola_Toxicity_HELAò, respectively. The Chembench P1, P2, and HeLa models are 

publicly indexed as ñ153004_ebola_Strict_Model1_166_DragonHò, 

ñ151305_ebola_1224_PCM4ò, and ñ151105_ebola_tox_HeLaò, respectively.   

 

 

 

 

 

 

 

 

https://scapuzzi.web.unc.edu/free-downloads/
https://chembench.mml.unc.edu/
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CHAPTER 2: COMPUTATIONAL DISCOVERY AND EXPERIMENTAL 

VALIDATION OF POTENT INHIBITORS OF THE UNDERSTUDIED KINASE DCLK1  

2.2 INTRODUCTION   

Doublecortin-like kinase 1 (DCLK1) has been implicated in the development and 

progression of several cancers.56,57 Recent studies have shown that DCLK1, which is also referred 

to as DCAMKL -1, drives tumorigenesis in colon and pancreatic cancer58,59, is overexpressed in 

cancers of the liver and esophagus60,61, and such overexpression is an adverse prognosis factor in 

bladder and non-small cell lung cancer62,63. Notably, in 2013, Nakanishi et al. showed that DCLK1 

expression uniquely distinguished tumor stem cells (TSCs) in colorectal cancer from healthy stem 

cells and demonstrated that specific ablation of DCLK1-positive TSCs reduced tumor size without 

damaging healthy tissue.64 Given these observations, DCLK1 represents an emergent therapeutic 

target in oncology, especially, for colorectal cancer. 

Despite its growing notoriety in oncology, DCLK1 is still considered as an understudied 

kinase65 lacking any potent and moderately selective tool compounds. As per the guidelines for 

inclusion into the Structural Genomic Consortiumôs comprehensive kinase chemogenomics set 

(KGCS), DCLK1 remains a dark, or chemically untargeted, protein kinase.66  A chemical probe 

for DCLK1 would be of great scientific and therapeutic value, as it could help unravel the specific 

biological role of this kinase in various cancers and serve as a potential lead for drug discovery 

efforts.67,68 
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The development of a chemical probe is dependent upon the identification of high quality 

chemical starting points for potency and selectivity optimization.66 This process is particularly 

challenging for dark kinases like DCLK1, where chemogenomics data and SAR studies are limited 

and often the unintended consequence of screening campaigns for other kinases. Indeed, the 

handful of compounds in the literature that target DCLK1 have come mainly from a kinome-wide 

screen of inhibitors bearing pyrimido-diazepine scaffolds69 or have been reported as an off-target 

effect during probe development for other kinases such as, ACK1, ERK5, and LRRK2.69ï71 The 

development of novel DCLK1 inhibitors is critical to progress probe development for this 

biomedically-relevant, but, so far, dark kinase.  

Methods of computer-aided drug design (CADD) are routinely used to leverage prior 

screening data towards the discovery of novel bio-active compounds while also reducing time and 

cost. CADD approaches are most effective when large and diverse chemogenomics sets are 

available. Unfortunately, for DCLK1, experimental screening datasets are small (less than 100 

compounds have been tested so far), most compounds are inactive, and active molecules are very 

limited in chemical diversity.69 According to best practices previously established by us and 

others,9,72 it is not advisable to employ CADD approaches, especially QSAR modeling, for such 

datasets, as the potential for faulty predictions is high. At the same time, we were confronted by 

the therapeutic importance of this dark kinase, a lack of tool compounds, and the expressed need 

to prioritize laborious synthetic efforts presented by the diversity of synthetically feasible 

compounds. We were thus motivated to apply our expertise in modeling challenging datasets40,47,73 

in an attempt to discover potent DCLK1 inhibitors in close collaboration with our experimental 

partners. 
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In order to accomplish this goal, we executed the following steps: (i) the development of 

QSAR models of DCLK1 inhibition from prior screening data; (ii) virtual screening of focused 

chemical libraries to identify putative DCLK1 inhibitors; (iii ) experimental validation of selected 

compounds; and (iv) off-target selectivity analyses for experimentally confirmed hits.   

Once several high-quality DCLK1 inhibitors were identified, we then (v) derived structural 

rules and key molecular interactions to guide future design and optimization efforts of these 

compounds using the cheminformatics techniques of matched molecular pair analysis, QSAR 

model interpretation, and molecular docking. This joint modeling and experimental effort (Figure 

2.1) resulted in the discovery of some of the most potent DCLK1 inhibitors to-date. These 

compounds constitute leads for the development of a chemical probe for this dark kinase. 

 

 

2.3 RESULTS 

2.3.1 QSAR Model Development   

Modelability Index (MODI),44 which affords rapid estimation of the feasibility of obtaining 

predictive QSAR models, was calculated for both training sets. MODI values of 0.79 and 0.89 

were obtained for the KINOMEscan and KiNativ training set, respectively. These MODI values 

were well-above the recommended threshold of 0.65, indicating that despite a high degree of 

Figure 2. 1. Overall study design. The workflow combines computational and experimental 

medicinal chemistry approaches for the discovery for novel potent DCLK1 compounds. 

 

Table 2.1.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.Figure 2. 2. Overall study design. The workflow combines 

computational and experimental medicinal chemistry approaches for the discovery for novel 

potent DCLK1 compounds. 

 

Table 2.2.Statistical characteristics obtained on 5-fold external CV of all models developed 

in this study.  

 

Figure 2. 3. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) possessed 

by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is a 1,3-

diazepine.Table 2.3.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.Figure 2. 4. Overall study design. The workflow combines 

computational and experimental medicinal chemistry approaches for the discovery for novel 

potent DCLK1 compounds. 

 

Table 2.4.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.Figure 2. 5. Overall study design. The workflow combines 

computational and experimental medicinal chemistry approaches for the discovery for novel 

potent DCLK1 compounds. 

 

Table 2.5.Statistical characteristics obtained on 5-fold external CV of all models developed 

in this study.  
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imbalance towards inactive compounds and limited chemical diversity there was meaningful SAR 

that separates actives from inactives.   

Next, we moved to model development and succeeded in developing robust and externally 

predictive QSAR models. Results of 5-fold external cross-validation are presented in Table 2.1. 

All metrics used to evaluate model performance were above the recommended threshold of 0.60. 

As such, these metrics demonstrated that active and inactive DCLK1 compounds can be correctly 

classified through statistically meaningful SAR.   

 

 

 

 

Since externally-validated and predictive QSAR models were developed using all available 

data, the applicability domain (AD) of the models was maximized, as the imbalanced datasets did 

not need to be down-sampled.40 Both the KINOMEscan and KiNativ models were predictive and 

useful for virtually screening new compounds in so far as these compounds fell within the AD that 

has been maximized by using all available data. In order to demonstrate that the models were not 

Model Name Actives Inactives Total CCR SE SP PPV NPV 

KINOMEscan 8 45 53 0.84 0.75 0.92 0.62 0.95 

KiNativ  5 42 47 0.73 0.70 0.75 0.61 0.96 

Table 2.33.Statistical characteristics obtained on 5-fold external CV of all models 

developed in this study.  

 

Figure 2. 41. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.Table 2.34.Statistical characteristics obtained on 5-fold external CV of all 

models developed in this study.  

 

Figure 2. 42. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.   

 

Figure 2. 43. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.Table 2.35.Statistical characteristics obtained on 5-fold external CV of all 

models developed in this study.  

 

Figure 2. 44. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.Table 2.36.Statistical characteristics obtained on 5-fold external CV of all 

models developed in this study.  

 

Figure 2. 45. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) 

possessed by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is 

a 1,3-diazepine.   
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obtained because of random SAR correlation between bioactivity and chemical descriptors, 1000 

rounds of Y-randomization was performed. All  Y-randomized models showed a CCR below 0.60.   

2.3.2 QSAR-Based Virtual screening 

A set of 169 designed compounds possessing the same scaffolds as in Figure 2.2 was 

virtually screened with both QSAR models (See Methods). Although all 169 compounds were 

within the AD of both models, only seven compounds were predicted as active by both models. 

All seven compounds possessed the 5,11-dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-

one scaffold (Figure 2.2B). The remaining compounds were either predicted active only by the 

KINOMEscan model (29 compounds) or the KiNativ model (two compounds); 131 compounds 

were predicted inactive by both models. These results are consistent with the distribution between 

actives and inactives in the training sets, supporting the notion that DCLK1 has highly specific 

requirements to compound structure to make it active. From the compounds that did not meet the 

ñhitò criteria, four were selected as negative controls for the model validation. Ultimately, 11 

compounds, seven putatively active and four predicted inactive, were selected for experimental 

studies. Virtual screening results for all compounds are provided in the Supporting Information 

(Supplementary Table 1).   

 

Figure 2.2. Four scaffolds (A-D) based on the pyrimido-diazepine core (purple) possessed 

by compounds in the modeling datasets. Note A-C are 1,4-diazepines, while D is a 1,3-

diazepine.   
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2.3.3 Experimental Validation  

A threshold of activity for the 11 compounds from the virtual screening was set at 10 ɛM, 

as both models were developed from compounds screened at this concentration. The IC50 values 

and the structures of these 11 compounds are shown in Table 2.2. These results show that QSAR 

models were ~73% accurate, as they correctly predicted the activity calls for 8 out of 11 

compounds. Of the seven putative DCLK1 hits, six had IC50 < 10 ɛM, including four sub-

micromolar inhibitors. The top hit, XMD13-44, had an IC50 of 52 nM. Two of the four putatively 

inactive compounds were incorrectly classified, but, ironically, in this case of negative controls, 

the inaccuracy is a desired outcome. Statistically, however, this observation is expected for the 

imbalanced dataset modeling.74 Overall, eight compounds from the virtual screen had IC50 < 10 
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ɛM for DCLK1. Full dose-response curves are available in Figure 2.3. 

 

 

Figure 2. 73. Dose-response curves for the eleven virtual screening hits.  

 

Figure 2. 74. Dose-response curves for the eleven virtual screening hits.  

 

Figure 2. 75. Dose-response curves for the eleven virtual screening hits.  

 



62 
 
 

The selectivity profiles of the eight compounds with IC50 < 10 ɛM for DCLK1 were 

determined using a KiNativ screen (Table 2.3). The compounds were evaluated both by the 

selectivity index (SI) at 65% and 90% inhibition at 10 ɛM, i.e., SI(65) and SI(90), respectively. 

The Structural Genomics Consortium (SGC) has previously defined SI(65) < 4.0% and SI(90) < 

2.0% as acceptable selectivity profiles for a tool compound to be considered for inclusion into their 

comprehensive kinase chemogenomics set (KCGS).66 Only XMD13-37 inhibited more than 4% of 

kinases screened according to SI(65). On the other hand, all eight compounds had acceptable 

SI(90) profiles. KiNativ screen data are provided for the eight compounds in the Supporting 

Information (Supplementary Table 2).  

2.3.4 SAR Analysis and Implications for Future Design  

All of the experimentally validated hits possessed the 5,11-dihydro-6H-

benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold, and the four most potent hits shared 

common structural moieties (Table 2). In order to gain insights about structural aspects and key 

molecular interactions associated with DCLK1 inhibition among these compounds, as well as to 

guide future design and optimization efforts, SAR analysis was performed using several 

cheminformatics techniques.  

2.3.4.a Matched Molecular Pair Analysis and Model Interpretation  

The modeling datasets were investigated for matched molecular pairs (MMPs) bearing the 

5,11-dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold. From the KINOMEscan 

dataset, a series of MMPs was identified with several activity cliffs, i.e., structurally similar 

compounds from different activity classes.75,76 The shared scaffold of the MMPs and 

accompanying structural changes are shown in Figure 2.4. Within this series of compounds, only 

XMD8-85 and XMD8-87 were active; therefore, the remaining associated MMPs constitute 
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activity cliffs. This analysis revealed that the presence of a methoxy substituent at R1 and a co-

occurring methyl substituent at R2 correlated with increased DCLK1 inhibition.  

On the other hand, the influence of the R3 substituent was unclear, as active compounds 

XMD8-85 and XMD8-87 are MMPs differing only at this position. Fragment descriptor 

interpretation (Figure 2.5) from the KINOMEscan QSAR model, however, showed that the methyl 

addition at R3 increased the overall active (inhibitory) character of XMD8-85 relative to XMD8-

87. The SAR elucidated by the MMP analysis was also reflected by the model interpretation, as 

methoxy substituents at R1 and methyl substituents at R2 increased the activity profile in 

descriptor space.  

2.3.4.b Molecular Docking 

Training set compounds were docked into the crystal structure of DCLK1 (PDB: 5JZN)57 

in order to evaluate and validate the molecular docking approach. All training set actives, with the 

exception of just one compound, ranked within the top 15% of the best scored docking poses 

(Supplementary Table 3). This enrichment of training set actives among the best scored docking 

poses provided validation for the use docking as a method to generate hypotheses related to the 

protein-ligand interactions for the 11 compounds from the virtual screen. For these 11 compounds, 

the molecular docking scores correlated well with the experimentally-determined potencies. 

Indeed, the two most potent compounds, XMD13-44 and XMD8-90, had the best two docking 

scores (-7.75 and -7.69), respectively. XMD10-100, inactive upon experimental testing, likewise, 

had the second worst docking score (-4.72). TL-1-060, the compound with the worst docking score 

(-4.53), was only weakly potent (9.60 ɛM). All scores and poses for these 11 compounds are 

provided in the Supporting Information (Supplementary Table 3).   
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2.4 DISCUSSION  

Despite small dataset sizes with limited chemical diversity and a small number of active 

compounds, robust and predictive QSAR models of DCLK1 inhibition were developed from the 

results of KINOMEscan and KiNativ assays (Table 2.1). On further inspection, these training set 

characteristics were, in fact, crucial for successful QSAR model development. The limited 

chemical diversity in terms of scaffolds (Figure 2.2) among the training sets meant that large 

changes in DCLK1 bioactivity were caused by slight modifications in a small number of 

substituents. This observation was supported by the high MODIs of the training sets, which 

indicated that there was statistically meaningful SAR separating active compounds from inactive 

compounds. Both the MMP and model interpretation analyses also reflected this observation 

(Figures 2.3 and 2.4), as both showed that the activity profile was modulated by a few substituents 

at key sites. The successful development of QSAR models for DCLK1 inhibition from small and 

highly congeneric compounds harkens back to the early days of QSAR modeling and underscores 

the continuing need to carefully inspect modeling datasets, through methods like MODI, prior to 

modeling.  

After models were built and validated, they were used to virtually screen compounds 

bearing the same scaffolds as in Figure 2.2, resulting in the most potent series of DCLK1 inhibitors 

to date. Ultimately, six out of seven compounds prioritized by QSAR modeling as DCLK1 

inhibitors had IC50 values < 10 ɛM, and four of these were sub-micromolar inhibitors (Table 2.2). 

On the other hand, two compounds predicted to be inactive by the models, JWE-067 and JWE-

041, were shown experimentally to inhibit DCLK1 (Table 2.2). Since the goal of any drug 

discovery campaign is to identify compounds with the desired biological profile, in this case 

DCLK1 inhibition, ironically, this misclassification is not a failure.  



65 
 
 

Overall, eight compounds from the virtual screen, all of which possessed the 5,11-dihydro-

6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold, had IC50 < 10 ɛM, including five sub-

micromolar inhibitors (see Table 2.2). XMD13-44, a 52 nM inhibitor, was the most potent 

compound identified through virtual screening, which highlights that these models are capable of 

not only classifying inhibitors (actives) from non-inhibitors (inactives), but also of identifying 

highly potent compounds within the same chemical series. By any measure, the hit-rate from 

QSAR-based virtual screening of compounds (~73%) is enriched in comparison to the ~13% 

active-calls from the preliminary kinome screens of these same scaffolds (Table 2.1).  

Chemical probe development also requires selectivity against off-targets.67,77 The 

selectivity profiles of the eight compounds with IC50 < 10 ɛM for DCLK1 were assessed and 

quantified according to SI(65) and SI(90) (Table 2.3). These selectivity indices are a measure of 

a compoundôs kinome promiscuity at certain thresholds of inhibition. For a compound to be 

considered for possible inclusion into the KCGS developed by the SGC, in addition to sufficient 

on-target potency, the compound ought to have SI(65) < 4.0% and SI(90) < 2.0%.66  All eight 

potent DCLK1 inhibitors were screened against at least 239 additional kinases. Only XMD13-37 

did not meet the SI(65) criterion, as it inhibited more than 4% of kinases screened. The most potent 

DCLK1 inhibitor, XMD13-44, had an acceptable selectivity profile, inhibiting the enzymatic 

activity of only three off-target kinases by more than 65% (Supplementary Table 2). The five 

sub-micromolar DCLK1 inhibitors, therefore, could be considered useful tool compounds in the 

KCGS and high-quality starting points for further probe optimization efforts. It should be noted, 

however, that compounds with this scaffold have been previously reported to competitively inhibit 

LRRK2,71 ERK5,70,78 Aurora A/B,79 and PI3K-ŭ/ɔ kinases80 and to bind to BRD4 bromodomains80. 

Indeed, the most potent DCLK1 inhibitor, XMD13-44, inhibited ERK5 by more than 90% 
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(Supplementary Table 2). Optimizing DCLK1-selective compounds from this scaffold is, 

therefore, an on-going effort.70,80,81   

To this end, SAR analyses were performed to inform optimization efforts through the 

identification of chemical structures and key protein-ligand interactions that drive DCLK1 

inhibition. Cheminformatics approaches, i.e., MMP analysis, QSAR model interpretation, and 

molecular docking, provided hypotheses about the underlying chemical features and molecular 

interactions that drive DCLK1 inhibition for lead compounds bearing the 5,11-dihydro-6H-

benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold. These cheminformatics approaches can 

also be applied to design and optimize follow-up compounds for both potency and off-target 

selectivity considerations.   

In the present study, MMP analysis and model interpretation of fragment descriptors of 

compounds both in the training set and in the experimentally validated set revealed useful 

structural insights. For certain compounds possessing the 5,11-dihydro-6H-benzo[e]pyrimido[5,4-

b][1,4]diazepin-6-one scaffold (Figure 2.2), a methoxy substituent to the phenyl ring (R1) and two 

co-occurring methyl substituents at R2 and R3 on the diazepine ring were shown to correlate with 

DCLK1 inhibition. The two most potent hits identified from the virtual screening, XMD13-44 and 

XMD8-90, align with this observation, as both compounds possess these features at R1, R2, and 

R3. Similarly, two inactive compounds lack some of these features: XMD11-100 lack methyl 

substituents at R2 and R3, while XMD11-40-2 lacks the methyl group at R2, though both 

compounds have a methoxy group at R1. Fragment descriptor analysis indicated that a substituent 

at the R3 position promoted DCLK1 inhibition (Figure 2.3) and may be considered a possible site 

for future optimization.   
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While the SAR trends around these three positions correlate with DCLK1 inhibition, not 

all of them are necessarily required for the desired activity and potency. For instance, the highly 

potent compound TL-1-038 (109 nM) does have two co-occurring methyl substituents at R2 and 

R3 on the diazepine ring, but lacks the methoxy group at R1. These derivations from the SAR 

trends highlight the importance of multivariate features in molecular design, as TL-1-038 

possesses a piperidinol group attached to the aniline moiety that is unique among all hits. In fact, 

potent inhibitors XMD13-44, XMD8-90, and TL-1-038 all differ at this tail region off of the aniline 

moiety (Table 2.2), making it a possible site for further medicinal chemistry efforts.   

Molecular docking provided additional insights to SAR trends among MMPs.82 XMD10-

39, a 154 nM inhibitor, differs from training set active compound XMD8-85 and from training set 

inactive XMD10-78 by a single ethyl substitution at R2. This observation indicates that, for the 

most part, both methyl and ethyl substitutions at the R2 position are tolerated for DCLK1 

inhibition, whereas an isopropyl is not. This slight change in structure that results in a large change 

in activity is reflected by the molecular docking results (Figure 2.6), which shows that the binding 

pose of inactive XMD10-78 (red) is flipped in the ATP-binding site relative to active compounds 

XMD8-85 (teal) and XMD10-39 (green). It is worth noting that JWE-067 (0.265 ɛM) possesses 

an isopropyl substitution at the R2 position; however, its structure and binding pose are 

considerably different from the MMPs mentioned above (SI).  






















































































































