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ABSTRACT

YAOZONG GAO: ACCURATE SEGMENTATION OF CT PELVIC ORGANS
VIA INCREMENTAL CASCADE LEARNING AND REGRESSION-BASED

DEFORMABLE MODELS.
(Under the direction of Dinggang Shen.)

Accurate segmentation of male pelvic organs from computed tomography (CT) images is

important in image guided radiotherapy (IGRT) of prostate cancer. The efficacy of radiation

treatment highly depends on the segmentation accuracy of planning and treatment CT

images. Clinically manual delineation is still generally performed in most hospitals. However,

it is time consuming and suffers large inter-operator variability due to the low tissue contrast

of CT images. To reduce the manual efforts and improve the consistency of segmentation, it

is desirable to develop an automatic method for rapid and accurate segmentation of pelvic

organs from planning and treatment CT images.

This dissertation marries machine learning and medical image analysis for addressing

two fundamental yet challenging segmentation problems in image guided radiotherapy of

prostate cancer.

• Planning-CT Segmentation. Deformable models are popular methods for planning-

CT segmentation. However, they are well known to be sensitive to initialization and

ineffective in segmenting organs with complex shapes. To address these limitations, this

dissertation investigates a novel deformable model named regression-based deformable

model (RDM). Instead of locally deforming the shape model, in RDM the deformation
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at each model point is explicitly estimated from local image appearance and used to

guide deformable segmentation. As the estimated deformation can be long-distance

and is spatially adaptive to each model point, RDM is insensitive to initialization and

more flexible than conventional deformable models. These properties render it very

suitable for CT pelvic organ segmentation, where initialization is difficult to get and

organs may have complex shapes.

• Treatment-CT Segmentation. Most existing methods have two limitations when

they are applied to treatment-CT segmentation. First, they have a limited accuracy

because they overlook the availability of patient-specific data in the IGRT workflow.

Second, they are time consuming and may take minutes or even longer for segmenta-

tion. To improve both accuracy and efficiency, this dissertation combines incremental

learning with anatomical landmark detection for fast localization of the prostate in

treatment CT images. Specifically, cascade classifiers are learned from a population to

automatically detect several anatomical landmarks in the image. Based on these land-

marks, the prostate is quickly localized by aligning and then fusing previous segmented

prostate shapes of the same patient. To improve the performance of landmark detec-

tion, a novel learning scheme named “incremental learning with selective memory” is

proposed to personalize the population-based cascade classifiers to the patient under

treatment. Extensive experiments on a large dataset show that the proposed method

achieves comparable accuracy to the state of the art methods while substantially re-

ducing runtime from minutes to just 4 seconds.
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CHAPTER 1 : INTRODUCTION

1.1 Image Guided Radiotherapy

Prostate cancer is a common type of cancer in American men. It is also the second

leading cause of cancer death in American men [American Cancer Society, 2015]. When

a patient is diagnosed with prostate cancer in the early stage, image guided radiotherapy

(IGRT) is usually recommended as one of the effective treatments for prostate cancer. IGRT

consists of a planning stage followed by a treatment stage, as illustrated in fig. 1.1. In the

planning stage, a computed tomography (CT) scan called a planning CT is acquired from

the patient. Radiation oncologists then delineate the target (the prostate and sometimes the

seminal vesicles) and nearby organs at risk on the CT scan; frequently this is done manually.

Based on the organ delineations, a treatment plan is designed with the goal of delivering

the prescribed dose to the target volume while sparing nearby healthy organs such as the

bladder, rectum and femoral heads. The treatment stage typically lasts about several weeks

with typically one treatment per day. To account for daily prostate motions, a CT scan called

a treatment CT can be acquired inside the radiotherapy vault at each treatment day right

before the radiation therapy. Since the treatment CT captures a present snapshot of the

patient’s anatomy, the patient can be set up so that radiation can be aimed at the targeted

area as planned. In addition, if the change of anatomy is significant, radiation oncology staff

can adapt the treatment plan to optimize the distribution of radiation dose to effectively

treat current anatomy of the prostate and avoid neighboring normal organs. Consequently,



Figure 1.1: Illustration of image guided radiotherapy

IGRT increases the probability of tumor control and reduces the possibility of side effects.

[Xing et al., 2006, Dawson and Jaffray, 2007].

There are two segmentation problems in the IGRT, planning-CT segmentation and

treatment-CT segmentation. The efficacy of IGRT depends on the accuracy of both seg-

mentations.

• Planning-CT segmentation aims to accurately segment the target (prostate) and nearby

pelvic organs from CT images. In this dissertation, besides the prostate, the pelvic

organs of interest include the bladder, rectum and two femoral heads. As the seg-

mentations of these pelvic organs are used for treatment planning, their segmentation

accuracy is critical for IGRT.
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• Treatment-CT segmentation aims to accurately and quickly localize the prostate in

daily treatment CT images. The segmentation can be used for three purposes. 1) The

segmentation can be used to guide radiation treatment. Based on the prostate segmen-

tation, the treatment plan can be aligned from the planning image space to the current

treatment image space for precisely targeting the current anatomy of the prostate. 2)

The segmentation can be used to calculate the dose accumulation. By deformably reg-

istering daily treatment images to the planning image space based on the segmented

structures, the accumulation of radiation dose over the past treatment period can be

calculated in the pelvic region. This dose accumulation provides feedbacks in the

adaptive radiotherapy that can be used to modify the treatment plan for improving

radiation treatment at follow-up fractions. 3) The segmentation can be used to tell

whether a significant change of anatomy happens and whether a re-optimization of

treatment plan is necessary. In this dissertation, the first purpose is the main focus

of treatment-CT segmentation. As the segmentation is used to guide the daily treat-

ment, besides accuracy, efficiency is also important for treatment-CT segmentation.

If an algorithm is computationally expensive, the anatomical structures in the area of

interest may have changed during the computation, which could invalidate the purpose

of segmentation.

In most clinical practices, manual delineation is usually adopted in both planning and

treatment-CT segmentation. However, it is often a time-consuming and labor-intensive pro-

cess, which typically takes 25-35 minutes for an experienced radiation oncologist to delineate

the target (prostate) and four major pelvic organs at risk. Moreover, manual delineation of-

ten suffers large inter-operator variability [Foskey et al., 2005, Lay et al., 2013]. Therefore, it
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is clinically desirable to develop a robust, accurate and automatic algorithm for planning-CT

and treatment-CT segmentation.

The following sections are organized as follows. Section 1.2 presents the challenges in de-

veloping automatic methods for segmenting male pelvic organs in CT images. Section 1.3 and

section 1.4 summarize the existing methods for planning-CT segmentation and treatment-

CT segmentation, respectively. Their limitations are also discussed. Section 1.5 presents the

contributions of this dissertation in both planning and treatment-CT segmentation. Section

1.6 gives a brief overview of the remaining chapters. The summary of this chapter is given

in section 1.7.

1.2 Challenges of Automatic Segmentation

It is generally difficult to automatically segment male pelvic organs from CT images due

to three challenges as illustrated in fig. 1.2. 1) Certain parts of pelvic organ boundaries

exhibit low contrast in CT images, such as the prostate boundaries, the rectum boundaries

and the touching boundaries between the bladder and the prostate. 2) The shapes of the

bladder and rectum are highly variable. They can change significantly across patients and

between CTs of one patient himself due to different amounts of urine in the bladder and

bowel gas in the rectum. 3) Not only is the shape of the rectum variable due to the bowel

gas, but also is the appearance of the rectum.

Besides the above challenges, pelvic CT images often have large diversity. For example,

1) pelvic CT images are often acquired with different fields of view, which causes substantial

variation of volume dimensions and organ positions; 2) contrast agents may be injected into

some patients before image acquisition, which may partially or fully brighten the bladder in

CT images; 3) fiducial markers or the catheter may be implanted into patients, thus changing

4



Figure 1.2: Typical CT scan slices and their pelvic organ segmentations. The three columns
indicate images from three patients. The first, second, and third rows show, respectively, a
sagittal CT slice, the same slice overlaid with segmentations, and a 3D view of segmentations
of each patient. Red: Prostate; Green: Bladder; Blue: Rectum; Yellow: Left femoral head;
Cyan: Right femoral head.

the textures of major pelvic organs. The diversity of pelvic CT images, in addition to the

anatomical variations, further complicates the segmentation of male pelvic organs from CT

images.

1.3 Planning-CT Segmentation

The segmentation of male pelvic organs from planning CT images has been investigated

for a long time. Most developed methods fall into the category of deformable model based

5



segmentation. Few methods were based on deformable image registration. The reasons

are attributed to the diversity of pelvic CT images and large anatomical variation. As

shown in fig. 1.2, large anatomical variations cause significant differences in shapes and

appearances of pelvic organs across subjects. These make registration between CT images of

different subjects very difficult. In addition, CT images of different subjects may be acquired

with different fields of view, with/without contrast agent, and with/without metal implants.

These differences make the correspondence detection challenging even in image registration.

In contrast, deformable models suffer less from these problems, once they are well initialized.

They can potentially overcome problems caused by image noise and artifacts by imposing

the global shape constraint during segmentation. Besides, deformable models are usually

more efficient than deformable image registration, since most of them only operate on the

organ boundary instead of the entire image domain. These reasons make deformable models

popular in planning-CT segmentation.

1.3.1 Previous Work

In most deformable models, a shape model is iteratively deformed toward the organ

boundary by maximizing an objective function, which typically consists of an image match-

ing term and a shape matching term. The image matching term measures how well the

image appearance around the shape model matches the expectation learned from segmented

training images, and the shape matching term measures how plausible the shape model is

in terms of local smoothness and global shape. Various image and shape matching terms

have been proposed in the literature to improve the accuracy and robustness of deformable

models in CT pelvic organ segmentation. For example, [Freedman et al., 2005] proposed to

match the intensity distribution inside the organ for prostate segmentation. To consider the
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spatial relationship between nearby organs, many methods imposed additional constraints

in the shape matching term to improve the robustness of segmentation. For example, [Rous-

son et al., 2005] proposed a Bayesian formulation that considers the non-overlapping con-

straint to segment the prostate and rectum. [Pizer et al., 2005] proposed a medial shape

model named M-reps for joint segmentation of the prostate, bladder and rectum. [Costa

et al., 2007] proposed coupled 3D deformable models to segment the prostate and bladder

by considering an asymmetric non-overlapping constraint. [Chen et al., 2011] incorporated

anatomical constraints from pelvic bones into a Bayesian framework for jointly segmenting

the prostate and rectum. Instead of using intensity/gradient to define the image matching

term, recently machine learning techniques have been proposed to characterize the matching

of organ boundary. For example, [Lu et al., 2012] detected the boundaries of pelvic organs

by using probabilistic boosting trees together with a Jensen-Shannon divergence-based mea-

surement. To improve the robustness of deformable model initialization, [Lay et al., 2013]

proposed to learn global image context for fast localization of pelvic organs. The initial-

ized shape model is then refined iteratively by a discriminantive learned boundary detector,

similar to the way done in [Lu et al., 2012].

Beside the above published work, deformable models have also been implemented in com-

mercial software for planning-CT segmentation. For example, Morphormics Inc. developed a

tool called mxStructure that automatically contours the pelvic organs for treatment planning.

According to [Pizer, 2016], the segmentation tool is based on a skeleton shape model and

an undescribed appearance model; the tool can accurately segment the pelvic organs within

one minute. Due to its accuracy and speediness, mxStructure has already been deployed in

many hospitals to assist treatment planning. The Phillips company developed a treatment
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planning system called Pinnacle [Koninklijke Philips N.V., 2016] that provides a module for

automatic segmentation of pelvic organs in CT images. The method implemented in the

module is based on deformable models that use image gradients to drive shape models onto

organ boundaries. If interested, readers may refer to [Chaney and Pizer, 2016] for detailed

descriptions of the use of deformable models in commercial products.

1.3.2 Limitations of Previous Work

In deformable models, the image matching term is often defined using intensity profile,

gradient profile, regional histogram of intensity and regional histogram of gradient. Besides,

the quantitle function was also used in the literature [Broadhurst et al., 2006]. Compared to

the regional histogram, the quantitle function shows better properties for statistical analysis,

such as for principal component analysis. All these definitions of the image matching term

work well for segmenting organs with distinctive intensity patterns and clear boundaries.

However, their performance is limited in the segmentation of CT pelvic organs, because 1)

the intensity distributions of different pelvic organs can be similar, and 2) the boundaries of

pelvic organs are unclear. While these limitations can be overcome by using a classifier to

learn discriminative boundary patterns of pelvic organs [Lu et al., 2012, Lay et al., 2013], the

existing deformable models still suffer several intrinsic problems, which make them ineffective

in the planning-CT segmentation.

• Initialization. Deformable models are sensitive to initialization. In deformable mod-

els, the shape model is deformed locally around the initialization, and large defor-

mations are often penalized in the objective function. As a result, the performance

of existing deformable models highly depend on the position, size and shape of the

initialized model. A good initialization often leads to a good segmentation accuracy.
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However, in the case of pelvic organ segmentation, where inter-subject anatomical

variations are large, it is often difficult to obtain a good initialization. Therefore, the

performance of existing deformable models is limited.

• Tubular Organs. Deformable models have difficulty in segmenting tubular organs,

such as the rectum. The contributing reasons are 1) initialization and 2) local search

range. First, it is hard to initialize a shape model for tubular organs due to their large

shape variation. Second, it is tricky to find an appropriate value for local search range

during shape deformation. A small local search range prevents sufficient deformations

for an initialized shape model to attach the organ boundary, while a large local search

range can easily cause mesh folding or shrinkage because the left boundary of shape

model may find high boundary responses on the right tube wall.

To overcome the aforementioned limitations, it is necessary to propose a new deformation

mechanism for deformable models that is robust to arbitrary initialization and flexible to

segment tubular organs.

1.4 Treatment-CT Segmentation

The above methods for planning-CT segmentation can be directly applied for treatment-

CT segmentation. However, their performance is limited compared to methods specially

designed for treatment-CT segmentation. The major difference between planning- and

treatment-CT segmentation lies in the availability of patient-specific data. Specifically, when

segmenting a new treatment CT image, there exist an already segmented planning CT image

and previous treatment CT images of the same patient (fig. 1.1). Since intra-patient shape

and appearance variations are less pronounced than inter-patient variations, an algorithm
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can exploit these additional data to learn patient-specific characteristics and improve the

segmentation accuracy.

It is noteworthy that instead of acquiring a treatment CT image the prostate location

at each treatment day can also be accurately approximated using implanted markers. Such

marker tracking techniques, using either radiofrequency or 2D planar images, can reduce

the radiation dose to the patient from CT imaging. However, the lack of volumetric image

data prevents calculation of delivered dose on structures as desired in adaptive radiotherapy.

To overcome this problem, [Lee et al., 2010] proposed to estimate the treatment image by

mapping planning image data to the treatment space via the deformation field estimated

using the implanted markers. They showed that the calculated dose histograms using the

estimated images are close to those using real treatment images. However, this technique

is still under research and has not been widely adopted in the clinic. Besides, markers

need to be implanted inside the prostate, which may cause complications such as urinary

tract infection [Shinohara and Roach, 2007]. Therefore, this dissertation still considers the

conventional scenario where a treatment image is acquired for localizing the prostate at each

treatment day.

1.4.1 Previous Work

Most methods developed for treatment-CT segmentation fall into the category of either

deformable registration or voxel-wise labeling. In the literature, few research [Feng et al.,

2009] adopted deformable models for treatment-CT segmentation. The major reason comes

from the ease of registration between CT images of the same subject. By registering the

previous images of the same subject to a new treatment image, the segmentions on the

previous images can also be aligned onto the new treatment image space and then used for
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prostate localization. Besides, the registration also benefits voxel-wise labeling, which can be

performed only in a small region around the roughly localized prostate. It not only increases

computational efficiency but also allows classifiers to be specifically trained for labeling voxels

near the prostate, thus improving labeling accuracy. In the following paragraphs, existing

methods based on deformable registration and voxel-wise labeling are respectively discussed.

• Deformable registration has been investigated in the medical image analysis com-

munity for many years as a way to align the corresponding structures between two

images. It is popular in treatment-CT segmentation. For example, [Foskey et al., 2005]

proposed to localize the prostate by deformably registering the segmented planning CT

of the same patient to the current treatment image. To address the challenge caused by

the bowel gas, they designed a deflation method to explicitly eliminate the bowel gas

before registration. [Lu et al., 2011] proposed to integrate deformable segmentation

and registration into a single framework for segmenting pelvic organs in treatment CT

images. In their framework, the segmentation module considers not only the average

organ intensity and shape prior but also the segmentation likelihood derived by reg-

istering the segmentation from the planning image to the treatment image. Similarly,

their registration module matches not only the image intensity but also the tentative

organ segmentation result. The segmentation and registration steps are alternately

conducted until convergence. Besides using intensity-based registration, several meth-

ods learned informative features to guide registration. For example, [Liao and Shen,

2012] proposed to select informative voxels and features from patient-specific image

data and use them to guide deformable registration. During the feature selection step,

salient regions but irrelevant to the prostate localization, such as the region filled with

11



the bowel gas, are automatically filtered out, which makes registration more robust.

To account for registration errors, [Liao et al., 2013] further proposed a patch-based

label fusion framework, which uses sparse representation to identify similar voxels from

warped CT images of the same patient and propagates only their labels for prostate

localization.

• Voxel-wise labeling labels each voxel in the image based on local image appearance.

It learns a strong classifier to distinguish voxels inside the target organ (positives) from

those outside (negatives), according to the segmented training images. Once learned,

the classifier is applied voxel-wisely to produce an organ likelihood map for a testing

image, where the target organ is enhanced and can be easily segmented by either

thresholding or simple segmentation methods. For example, [Li et al., 2012] proposed

to utilize context information to iteratively refine the voxel-wise labeling result. Then,

a level set was used to segment the prostate from the labeling map. [Gao et al., 2012a]

proposed a sparse representation based classifier and employed multi-atlas labeling for

prostate segmentation. To utilize valuable information from manual interactions, [Shi

et al., 2013] proposed a semi-supervised learning framework that learns a classifier by

integrating information from both manual interactions and previous segmented image

data.

1.4.2 Limitations of Previous Work

Different from planning-CT segmentation that is conducted offline, if the segmentation

is to be used to affect the current radiation treatment, treatment-CT segmentation has to

be performed online when a patient is on the treatment bed awaiting his current treat-
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ment. Therefore, treatment-CT segmentation demands higher segmentation efficiency than

planning-CT segmentation. However, the existing methods are too slow to meet this need.

For example, in deformable registration based methods it typically takes minutes or even

longer to register an atlas to a treatment CT image. In the case when multiple atlases are

used, the time for registration would be even longer. In voxel-wise labeling, efficiency is often

limited by using a complex classifier [Gao et al., 2012a] or performing iterative classification

refinement [Li et al., 2012]. The long localization procedure makes the existing methods

inapplicable to image guided radiotherapy, although they are still useful in the adaptive

radiotherapy where the segmentation can be conducted offline.

Besides expensive computations, voxel-wise labeling methods [Li et al., 2012, Gao et al.,

2012a, Shi et al., 2013] suffer another limitation. They require at least three patient-specific

images manually segmented for learning a classifier. This requirement imposes additional

burdens on radiation oncologists, as manual segmentation is time consuming (10 minutes for

the prostate). Moreover, there may be no sufficient patient-specific data available, especially

in the beginning treatment day when only one planning image is available.

To overcome the above limitations, it is necessary to develop a fast segmentation method

that meets the following requirements. The method should rely on little manual delineation

and be robust when the amount of patient-specific data is limited, such as in the beginning

of treatment days.

1.5 Thesis

Thesis: Deformable models benefit in accuracy from explicitly learning deformations from

image appearance. Landmarks can be utilized for fast and accurate segmentation of treatment

CTs by effectively combining limited patient-specific data with massive population data in the
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cascade learning framework.

This dissertation investigates solutions to address the limitations of existing methods in

planning-CT and treatment-CT segmentations, and it proposes new algorithms for accurate

and efficient segmentation of male pelvic organs from CT images. The dissertation focuses

on improving not only the accuracy of segmentation algorithms but also the processing

efficiency. In particular, two specific aims are proposed.

• Specific Aim 1 (Planning-CT segmentation). The accuracy of deformable mod-

els can be improved by explicitly learning deformations from image appearance. Many

conventional deformable models rely on local search to drive shape models onto organ

boundaries. This deformation mechanism makes them sensitive to initialization and

also limits their flexibility to segment tubular organs, such as the rectum. Since image

appearance is informative to the anatomical location in the image, the direction and

distance from any voxel to the boundary of target organ can be potentially predicted

based on the appearance of local image patch. This information can be used as de-

formation to guide the move of shape model toward the organ boundary, which could

effectively address the limitations of conventional deformable models.

• Specific Aim 2 (Treatment-CT segmentation). Landmarks can be utilized for fast

and accurate segmentation of treatment CTs by effectively combining limited patient-

specific data with massive population data in the cascade learning framework. Most

conventional methods overlook the availability of patient-specific data in the treatment-

CT segmentation, which limits their performance. By exploiting the patient-specific

data, the existing methods obtain high segmentation accuracy at the expense of high

computational complexity and much manual effort for annotation. To improve effi-
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ciency and reduce effort of manual annotation, anatomical landmarks can be used for

segmentation, since they are efficient to detect and easy to annotate. In landmark-

based segmentation, anatomical landmarks are first detected on a new image and then

used to guide the registration between existing segmented images and the new image.

After registration, the existing segmentations are aligned onto the new image space,

where the final segmentation is obtained by a label fusion method, such as the majority

voting. The efficiency and accuracy of landmark-based segmentation depend on the

landmark detection. While it is efficient to detect landmarks using the cascade learning

framework, the accuracy could be limited if the landmark detectors are learned from

massive population data because of large inter-patient anatomical variation. On the

other hand, it is also infeasible to learn from limited patient-specific data; doing so

tends to suffer from the overfitting problem. To this end, an effective strategy should

be explored to combine limited patient-specific data with massive population data in

the cascade learning framework.

In order to support the thesis and the above two specific aims, the detailed contributions

of this dissertation include

• A novel deformable model, namely a regression-based deformable model, is proposed

to hierarchically deform a shape model onto the target organ boundary based on an

explicitly learned deformation field; (Aim 1)

• An auto-context model is adopted to iteratively refine the predicted deformation field

by gradually incorporating the neighborhood prediction information; (Aim 1)

• A multitask random forest is proposed to learn the deformation from local image ap-
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pearance by coupling deformation regression and organ classification in a common

random forest; (Aim 1)

• A multi-resolution strategy is adopted to segment multiple pelvic organs from CT

images, where the coarse-level deformation fields are jointly estimated for all organs

to consider their spatial relationship and where the fine-level deformation fields are

separately estimated for each organ to make the respective prediction models specific;

(Aim 1)

• Extensive experiments on a large prostate CT dataset (> 300 patients) show that the

proposed method can accurately segment the prostate, bladder, rectum and two femoral

heads from planning CT images and that it outperforms many existing methods in this

task; (Aim 1)

• The cascade learning framework is adapted to address the problem of unbalanced train-

ing samples in the classification-based landmark detection. It can efficiently localize

a landmark in a 3D medical image volume within one second using a multi-resolution

implementation; (Aim 2)

• An incremental learning scheme, namely incremental learning with selective memory,

is proposed to update the existing landmark detector learned from massive population

data with limited patient-specific data. It can be used to personalize the population-

based landmark detectors to a specific patient; (Aim 2)

• A schematic illustration is provided to explain the mechanism behind incremental

learning with selective memory; (Aim 2)
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• Random sample consensus (RANSAC) is used to align the previous segmentations of

the same patient onto the target treatment image by considering the possibility of

mis-detected landmarks; (Aim 2)

• Extensive experiments on a large prostate CT dataset (> 400 treatment CT images)

show that the proposed method is able to accurately localize the prostate in treatment

CTs within 4 seconds; the method satisfies the accuracy and efficiency requirement of

IGRT. (Aim 2)

1.6 Overview of Chapters

The remaining chapters of this dissertation are organized as follows.

• Chapter 2 presents the background of related techniques and evaluation metrics used in

the dissertation. The techniques include random forests and deformable models. Under

random forests, the basics and mathematical notations are presented, followed by the

application of random forests to multi-class classification and multi-variate regression

problems. Under deformable models, the active shape model is elaborated, as it is

closely related to the proposed regression-based deformable model. Finally, several

evaluation metrics are given. They are used to evaluate the proposed segmentation

methods and compare them with other existing methods.

• Chapter 3 presents regression-based deformable models (RDM) for planning-CT seg-

mentation. Different from conventional deformable models, RDM explicitly learns a

deformation field to guide deformable segmentation. The learned deformation field is

able to overcome the sensitivity of deformable models to initialization, and also it is able

to improve their flexibility to segment tubular organs. To learn a reliable deformation
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field, two techniques are presented. First, an auto-context model is proposed to itera-

tively refine the estimated deformation field by exploiting local structured information.

Second, a multitask random forest is proposed to couple deformation regression with

organ classification. Compared to a random forest trained only for deformation regres-

sion, the multitask random forest is able to improve the robustness of deformation field

estimation by exploiting information from organ classification. Extensive experimental

results are given to evaluate each design of the segmentation method and to show the

superior performance of the proposed method over several existing methods.

• Chapter 4 presents a fast landmark-based approach for treatment-CT segmentation.

To efficiently detect a landmark, the detection problem is formulated as a binary clas-

sification problem, where positives and negatives are voxels near and far away from

the annotated landmark, respectively. To handle the highly imbalanced training sam-

ples (i.e., limited positives and unlimited negatives), a cascade learning framework is

presented to gradually separate negatives from positives. Due to large inter-patient

anatomical variations, the classic population-based cascade learning doesn’t perform

well. To improve its performance, a novel learning scheme, namely incremental learn-

ing with selective memory (ILSM), is proposed to update cascade classifiers learned

from a population with limited patient-specific data. Extensive experiments show the

effectiveness of ILSM over other learning schemes. Comparing with existing meth-

ods, ILSM reduces runtime to seconds while maintaining competitive segmentation

accuracy.

• Chapter 5 concludes the dissertation and discusses the limitations of the proposed

methods as well as future work. In the conclusion, the methods proposed in this
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dissertation for planning-CT and treatment-CT segmentation are briefly summarized.

Their limitations are also discussed. In the future work, interesting future directions are

discussed, which include several potential strategies to improve the proposed methods.

1.7 Summary

Planning-CT and treatment-CT segmentation plays important roles in IGRT. While

much effort has been devoted to solving them, the existing methods suffer either limited seg-

mentation accuracy or high runtime complexity. This chapter reviewed the existing methods

for planning-CT and treatment-CT segmentation and discussed their limitations. In particu-

lar, popular deformable model based methods were reviewed for planning-CT segmentation.

Their sensitivity to initialization and inflexibility to segment tubular organs were discussed.

In treatment-CT segmentation, this chapter summarized popular methods from deformable

registration to voxel-wise labeling. Most methods are computationally expensive, which

hinders their practical use in IGRT. Besides, voxel-wise labeling methods require sufficient

patient-specific data for training, which may not be feasible in the beginning treatment days.

To overcome these limitations, this chapter sketched the solutions proposed in the disser-

tation. Specifically, in planning-CT segmentation, a novel deformable model (RDM) was

proposed to address the limitations of conventional deformable models by explicitly learn-

ing deformation from image data. In the treatment-CT segmentation, a landmark-based

approach was proposed for fast prostate localization. To improve the accuracy of landmark

detection, a novel learning scheme (ILSM) was proposed to gradually update population

landmark detectors with patient-specific data collected during radiotherapy. Finally, this

chapter, as the first chapter, provided a high-level overview of the remaining chapters.
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CHAPTER 2 : BACKGROUND

2.1 Random Forests

Random forests are general machine learning methods for supervised learning, e.g., clas-

sification and regression. Random forests are popular in computer vision and medical image

analysis [Criminisi and Shotton, 2013] due to their high efficiency and good scalability. A

random forest consists of multiple binary decision trees. Each decision tree consists of two

types of nodes: split node and leaf node. Fig. 2.1 gives the visualization of the two types of

nodes in a binary decision tree. The split nodes are interior nodes in a decision tree. Each

of them is associated with a binary split function, which routes a given sample either to its

left or right child node based on a tuple of descriptors. These descriptors are called features

in the machine learning field. The leaf nodes are terminal nodes in a decision tree. Each of

them stores the information of training samples routed to it. This information is used for

prediction of a new testing sample.

The following subsections are organized as follows. Sections 2.1.1 and 2.1.2 introduce the

training and application of random forests, respectively. Section 2.1.3 presents the use of

random forests for multiclass classification and multivariate regression. Finally, section 2.1.4

briefly discusses the advantages of random forests over other machine learning methods in

the field of image analysis.



Figure 2.1: A decision tree in a random forest.

2.1.1 Training of Random Forests

As an ensemble model, each decision tree in a random forest is trained independently. To

increase the diversity of decision trees, a different training subset is randomly sampled with

replacement from the entire training set to train each tree. Studies [Breiman, 2001, Liu et al.,

2005] show that high diversity prevents overfitting and usually leads to lower generalization

error.

Decision Tree Prediction. Given a sampled training set, a decision tree is trained re-

cursively starting with the root node. Each node learns the optimal split function that

separates the arrival training set into two subsets by maximizing the purity of each split

subset. Mathematically, the optimal split function is found by maximizing the following

objective function:

arg max
φ∈Φ

1

|SL|
P(SL) +

1

|SR|
P(SR), (2.1)

SL = {s ∈ S|f(s|φ) = 0}, SR = {s ∈ S|f(s|φ) = 1}, (2.2)
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where S is the training set arriving at this node, SL and SR are the subsets split to the

left and right child nodes, respectively, P(.) calculates the purity of a training set, f(s|φ)

is a binary split function with parameters φ, and Φ is a candidate parameter set. In the

classic random forests, a decision stump is used as the split function due to its efficiency.

Mathematically, a decision stump is formulated as f(s|φ) = s(i) > t, where i is a feature

index, t is a threshold, and s(i) extracts the i-th feature of sample s.

To solve eq. 2.1, a random set of split functions is first generated, e.g., by randomizing

feature index i and threshold t, and then exhaustive search is used to find the optimal

split function in the random set that maximizes eq. 2.1. Afterwards, the training set S is

divided into two subsets SL and SR according to the learned split function, and then the

same procedure is performed to further split each subset into smaller ones with more purity.

This recursive process stops when 1) the decision tree reaches a predefined maximum tree

depth, or 2) the training set S is too small to be split, or 3) the purity within a node is

above a threshold. When a split stops, the corresponding node is made as a leaf node, and

the training set that arrives the node is stored there. Practically, it is memory inefficient

to store training samples in the leaf nodes. Therefore, only the task-specific statistics of a

training set are stored.

2.1.2 Application of Random Forests

Given a target sample, the prediction of each decision tree in a random forest is inde-

pendent. The final prediction of a random forest is the average prediction over all decision

trees.

Decision Tree Application. A target sample s is first pushed to the root node of a decision

tree, and then it is guided to a leaf node by the split function associated with each split node.
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Specifically, the testing sample is routed to the left child node if f(s|φ) = 0 and to the right

child node if f(s|φ) = 1. When a leaf node is reached, the task-specific statistics stored in it

are retrieved for prediction.

2.1.3 Random Forest Classification and Regression

Random forests are general to many supervised learning tasks [Criminisi et al., 2011].

To adapt a random forest to a specific task, the purity function P(.) and the task-specific

statistics need to be defined. In this subsection, multiclass classification and multivariate

regression are taken as two examples to show how random forests can be used to solve general

supervised learning problems.

Multiclass Classification. Classification is the prediction of a discrete variable, called the

label, from a tuple of features. In classification the purity function P(.) is defined based on

the labels of training samples. It encourages each decision tree to partition a training set into

subsets with the same label. Therefore, the purity function in the classification measures

the label consistency of a training set. It can be quantified by the negative entropy E .

E(S) =
∑
c

pc log pc, (2.3)

where pc denotes the percentage of training samples with the label c in a training set S. The

larger E(S), the purer the training set S is in terms of the class label.

In the classification task each leaf node stores a label distribution of training samples that

arrive at this node. This information can be used to infer the class likelihood of a testing

sample when it arrives at one leaf node. In the testing stage, the label distribution output

by each tree is first averaged and then normalized to unit sum. After normalization, each
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entry in the label distribution indicates the likelihood of the testing sample belonging to one

class. Finally, the label of the testing sample is determined as the class with the maximum

likelihood.

Multivariate Regression. Regression is the prediction of a continuous variable, called

the regression target, from a tuple of features. The regression target can be a scalar or a

vector. In regression the purity function P(.) is defined based on the regression targets of

the training samples. It encourages each decision tree to partition a training set into subsets

with similar regression targets. Therefore, the purity function in regression measures the

consistency of regression targets in a training set. It can be quantified by the summation of

negative variances at different dimensions of regression target.

V(S) = −
∑
k

vk, (2.4)

where vk measures the variance of regression targets at the k-th dimension in a training set

S. The larger V(S) is, the purer the training set S is in terms of the regression targets.

In the regression task each leaf node stores the average regression target of training

samples that arrive at this node. In the testing stage, when a testing sample arrives at a

leaf node of one decision tree, the average regression target is retrieved from the leaf node

to serve as the prediction output for the decision tree. Given a group of decision trees in a

random forest, the prediction of a forest is the averaged output across all decision trees.

2.1.4 Advantages

Random forests have many advantages over other machine learning methods for super-

vised learning. A few of them are listed below.
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Efficiency

Most machine learning models (e.g., the support vector machine) decouples feature ex-

traction from model prediction. Regardless of the importance, all features have to be com-

puted before the learned model can be applied for prediction. This makes the testing time

linear with the feature dimension. As the feature dimension is often large in real applications

(e.g., thousands), efficiency becomes a concern for most machine learning methods. In the

field of image analysis, this concern is aggravated if the prediction is performed on the voxel

level.

Random forests are efficient for handling data with high dimensional features because the

testing time depends only on the tree depth, which is often much smaller than the feature

dimension. More importantly, features can be computed on a need basis. Because a testing

sample traverses only one path from the root node to a leaf node, only features along the

path need to be computed. So although the entire decision tree may take thousands of

features, the maximum number of features needed in a prediction is equal to the tree depth,

which is often a small number. By computing only these necessary features, random forests

significantly save time for feature extraction. Besides, each decision tree can be evaluated

independently; hence, random forests fit the parallel processing infrastructure. Moreover, the

prediction of random forests involves only floating-point comparisons to decide which path

to take; doing so makes it even faster than a simple linear model that relies on floating-point

multiplications.
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Scalability

Scalability is an important factor when choosing a machine learning algorithm for image

analysis because each voxel is a training sample and potentially millions of training samples

can be collected for training. To fit the massive training samples well, the learned model

should have a reasonably large model complexity. However, a large model complexity often

means a high computational complexity for most learning models.

Random forests scale well with massive training samples. As each leaf node outputs a

unique prediction, the model complexity of a random forest can be approximated by the

number of leaves in a decision tree. Since the number of leaves grows exponentially with the

tree depth, a random forest with a limited tree depth (e.g., 20-40) is often sufficient to fit

millions of training samples with a negligible impact on the runtime efficiency.

Nonlinearity

Prediction with image data often involves learning a highly nonlinear mapping from

image features to either a discrete variable in the classification or a continuous variable in

the regression. Due to this nature of nonlinearity, linear models often do not work well with

image data. While the kernel tricks [Shawe-Taylor and Cristianini, 2004] can often be used to

adapt linear models for nonlinear predictions, they don’t scale well when a training dataset

is large.

Compared to other nonlinear models, random forests are more adaptive to individual

testing samples. They utilize different sets of features for predictions of different testing

samples; doing so makes random forests more flexible to fit training data than many other

nonlinear models that use the same set of features for all testing samples. This increases
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the flexibility of random forests in the training and also increases their performance in the

testing.

Convenience

Random forests are convenient to use in practice. Different from many learning algo-

rithms, random forests don’t require the input features to be normalized. This property

makes it easy for random forests to integrate features from multiple sources. The reason for

not requiring feature normalization is because each split node uses only one feature and each

feature is used independent from others.

In addition, random forests have a limited number of parameters to tune, and the per-

formance is quite robust to the choice of parameters due to the combination of multiple

independent models. By averaging the prediction results from independent decision trees,

the variance of random forests is reduced and so is the risk of overfitting.

2.2 Deformable Models

Deformable models can be classified as either parametric deformable models [Kass et al.,

1988, Cohen, 1991, Cootes et al., 1995] or non-parametric deformable models (geometric

deformable models) [Caselles et al., 1993, Chan and Vese, 2001]. In the former case, a

shape is often represented by a set of boundary points (landmarks). Parametric deformable

models allow a direct interaction with boundary points and thus are often faster than non-

parametric ones [Xu et al., 2000, Assley and Chellakkon, 2014]. However, it is difficult for

them to handle topology changes during deformations. In the non-parametric case, a shape

can be implicitly represented by the zero level set of a higher-dimensional scalar function.

Such deformable models can naturally handle the topology changes, but they are often
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slower than parametric ones. Among various deformable models, this chapter focuses on

a particular parametric deformable model called the “active shape model” (ASM) [Cootes

et al., 1995] as it is closely related to the regression-based deformable model proposed in

chapter 3. Discussions of other deformable models are beyond the scope of this dissertation.

ASM is popular in the field of medical image segmentation. In ASM a shape is repre-

sented by a collection of points. The segmentation is conducted by iteratively deforming a

shape toward the boundary of target object. Different from other deformable models [Kass

et al., 1988], which impose only a local smoothness constraint on the deformed shape, the

deformation of ASM is constrained in a global shape space. The global shape constraint in-

creases the robustness of segmentation and makes ASM a useful tool for organ segmentation

in noisy and low-contrast medical images.

The ASM algorithm has two stages: a training stage and an application stage. The

training stage is detailed in section 2.2.1, where a statistical shape space is learned from

segmented training images. The application stage is described in section 2.2.2, which shows

how the mean shape is iteratively deformed to fit the boundary of target object under the

constraint from the learned shape space. Finally, section 2.2.3 discusses the limitations of

ASM.

Since this dissertation focuses on 3D image segmentation, the concepts and algorithm of

ASM are described in the 3D space. Readers interested in 2D segmentation may refer to

[Cootes et al., 1995]. Besides, readers should be aware that there are many variants of ASM

published in the literature. This dissertation by no means provides an exhaustive literature

review of all ASM variants. The ASM algorithm described in the following sections is only a

particular implementation of ASM in order to give readers a flavor of how ASM is used for
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segmentation.

2.2.1 Training of the Active Shape Model

The training part of the ASM algorithm aims to learn a statistical shape space that

captures the mean and variation of the shapes of target object from segmented training

images. Two steps are performed to learn a shape space: 1) building shape correspondence

across subjects and 2) principal component analysis of correspondent shapes. Both steps are

elaborated below.

Shape Correspondence

A shape in the 3D ASM is often represented by a triangle mesh. Two shapes are in

correspondence if 1) they have the same number of vertices and 2) vertices with the same

index correspond to roughly the same anatomical location. In the 2D ASM the shape

correspondence is often built by manually annotating landmarks along the boundary of target

object. However, manual annotation is burdensome for building shape correspondence in the

3D ASM, as a triangle mesh often consists of thousands of vertices. To reduce the manual

efforts, an automatic procedure is necessary for building the shape correspondence in the

3D space. While there are sophisticated methods out there, e.g., those based on entropy or

description length [Davies et al., 2001, Davies et al., 2010, Cates et al., 2007], the following

paragraphs describe a simple method for building the shape correspondence.

The method starts with constructing a reference shape and then registers it to individual

shapes for building the shape correspondence across subjects.

• Reference Shape. Given a set of binary segmentation images, the mean segmentation

image is first constructed in three steps: 1) a template image space is defined. This can
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be done by simply selecting an arbitrary binary segmentation image. However, doing

so may introduce biases. To overcome potential biases, the Fréchet mean image [Joshi

et al., 2004, Fletcher et al., 2009] can be computed and used as the template image

space; 2) all binary segmentation images are linearly aligned onto the template image

space using a similarity transform; 3) all aligned binary segmentation images are voxel-

wisely averaged to form a mean segmentation image. To construct the reference shape,

the marching cubes algorithm [Lorensen and Cline, 1987] is first adopted to extract

a dense mesh from the mean segmentation image. Afterwards, mesh decimation and

remeshing are alternately performed to reduce the number of vertices to a manageable

size (e.g., 1000-2000) while keeping all vertices evenly distributed on the surface. The

final triangle mesh after mesh decimation is used as the reference shape.

• Surface Registration. To build the shape correspondence across subjects, the dense

triangle mesh of each subject is first extracted from its segmentation image using the

marching cubes algorithm. Then, the reference shape is non-rigidly registered to each

dense mesh by a robust surface registration algorithm [Myronenko and Song, 2010].

Since all registered reference shapes come from a single source and fit individual shapes

well, these shapes are in correspondence and can be used for learning a statistical shape

space.

Principal Component Analysis

Given shapes that are in correspondence, they are first co-aligned into a common space

by generalized Procrustes analysis [Gower, 1975]. Then, the mean shape is computed as

the vertex-wise average of aligned shapes; it is subtracted from each aligned shape; and
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principal component analysis (PCA) is adopted to compute the variation modes by an eigen-

decomposition of the covariance matrix.

C =
1

N − 1

N∑
i=1

(ui − ū)(ui − ū)T , (2.5)

{ck, ek} = eign(C), (2.6)

where N is the number of shapes, ui is the i-th aligned shape, ū is the sample mean shape,

C is the covariance matrix, and ck and ek are the k-th eigen-value and eigen-vector of

the covariance matrix C. The output of principal component analysis gives a statistical

shape space described by a multivariate Gaussian distribution with the mean ū and the

variation modes {ck, ek}. In practice, only the K eigen-modes with the largest eigen-values

are preserved to make the shape space compact. Although eigen-values can be affected by

noise, a common practice to select K is still based on the eigen-values. Specifically, K is

often selected as the minimum number of eigen-modes that account for the majority of shape

variations, i.e., minK, s.t. (
∑K

k=1 ck/
∑

k ck) > ε, where ε is often chosen as a value close to

100%, such as 90%.

2.2.2 Application of the Active Shape Model

Given a target image to be segmented, the mean shape is first initialized in the image

space. The initialization provides the position, rotation and scaling of the target object

in the target image. Although automatic initialization methods exist, typically based on

landmarks or registration, most of them are not universal to different applications. As

a result, manual initialization is still heavily used in practice. After the mean shape is

initialized, it is iteratively deformed toward the boundary of target object until convergence.
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Each iteration involves two steps: 1) vertex-wise local deformation and 2) global refinement

by the statistical shape space.

Vertex-wise Local Deformation

As shown in fig. 2.2, each vertex of the shape locally searches along its normal direction

and finds a position most likely to be the object boundary. Then, the vertex is deformed to

the boundary position.

There are many ways to characterize the object boundary. A simple way is to use

the image gradient magnitude based on the assumption that voxels with large gradient

magnitudes are more likely to be on the object boundary than those with small gradient

magnitudes. While this strategy works well for objects with clear boundaries, it fails notably

if the object boundary is indistinct, such as the boundaries of pelvic organs in CT images.

Recently there is a trend that detects the object boundary by learning a classifier based on

local image features. Since the patterns of object boundary are learned from multiple local

image features, it is often more effective than using simple gradient magnitudes.

Global Refinement by the Shape Space

As each vertex deforms independently in the previous step, the deformed shape is likely

to be unsmooth and implausible in terms of the global shape. To overcome this problem,

ASM relies on the learned shape space to refine the shape after independent vertex-wise

deformation. Given a deformed shape, it is first linearly aligned to the mean shape by a

similarity transform. Then, the aligned shape is refined by finding the closest shape in the

shape space. Finally, the closest shape is transformed back to the image space as the refined

shape. With this global refinement the deformation is always constrained in the learned
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Figure 2.2: Illustration of vertex deformation in the active shape model. The purple area
is the target object; the yellow dashed line indicates the current location of shape model;
the red points are the boundary points (vertices) on the shape model; the blue line shows
the normal direction of one vertex; the orange point shows the position along the normal
direction with the maximal boundary response.

shape space, and the final segmentation is plausible and looks like those observed in the

training set. The following mathematical equations explain how to find the closest shape ût

in the shape space for a given shape ut.

αk = (ut − ū)Tek, γ = max(1,
1

T

∑
k

α2
k

ck
), (2.7)

ût = ū +
1

γ

∑
k

αkek, (2.8)

where αk is the k-th coefficient of shape ut mapped into the shape space, ū is the mean shape,

ck and ek are the k-th eigen-value and eigen-vector of the shape space, T is a predefined

parameter that determines the size of the shape space in terms of Mahalanobis distance, and

γ is a scaling factor that rescales ut into the shape space if it is outside.
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2.2.3 Limitations

With a shape space the deformed shape is always constrained in a plausible shape set

learned from training data. This advantage makes ASM well suited for medical image seg-

mentation, where image appearance may be unreliable due to noise and artifacts. However,

ASM has several limitations that should be addressed before it can be a powerful tool for

CT pelvic organ segmentation.

Sensitivity to initialization

Because each vertex is deformed locally, the performance of ASM relies on a good initial-

ization. If the shape model is not initialized close to the object boundary, local search won’t

be able to find the boundary. However, it can be tricky to automatically and robustly ini-

tialize the shape model. In the CT pelvic organ segmentation, the difficulties come from two

aspects: 1) it is challenging to accurately detect the position, orientation and size of pelvic

organs in CT images due to low contrast and large inter-subject anatomical variation; 2) the

mean shape can be dramatically different from individual shapes to segment. This difference

renders the mean shape initialization ineffective for organs with large shape variations, such

as the rectum.

Inflexibility to Segment Tubular Organs

There are two issues when ASM is applied to segment tubular organs, such as the rectum.

• Search Range. To specify how far a vertex can search along the normal direction

for the object boundary, a local search range needs to be specified in ASM. While it

is often easy to specify it for ellipsoid-like organs, it is challenging for tubular and
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thin organs, such as the rectum. A small local search range is insufficient to find the

boundary while a large local search range can cause mesh folding or shrinkage as the

vertices on the left tube wall may find the boundary location on the right tube wall.

Ideally the local search range should be spatially adaptive. If a vertex is close to the

object boundary, its search range should be small. If a vertex is far away from the

object boundary, its search range should be large.

• Shape Space. There are three challenges when using a shape space for tubular organ

segmentation: 1) the variation of tubular shapes are mostly nonlinear, e.g., twisting

and bending, while the PCA shape space captures only linear variations [Cootes et al.,

1995]; 2) due to large variations of tubular organs, the number of training data is often

limited to sufficiently describe these variations; 3) the shape distribution of tubular

organs doesn’t necessarily follow the Gaussian assumption of the PCA shape space.

To overcome these limitations, it is necessary to 1) change the deformation mechanism

from local to non-local, thus making deformable models insensitive to initialization; 2) adapt

the deformation of each vertex based on its distance to the object boundary, thus addressing

the issue of search range; 3) increase the robustness of shape deformation and reduce its

dependency on the shape space, as the PCA shape space may not be suitable to describe

the shape statistics of tubular organs.

2.3 Segmentation Evaluation

The manual segmentation is often used as a gold standard to assess the quality of au-

tomatic segmentation. This section introduces four quantitative metrics used in the disser-

tation for evaluating the proposed segmentation methods and comparing them with other
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existing methods.

• Dice Similarity Coefficient (DSC). DSC measures the overlap ratio between an

automatic segmentation and a manual segmentation. It ranges from 0% to 100%. 0%

indicates the worst segmentation and 100% indicates the best segmentation. Mathe-

matically DSC is defined as the equation below.

DSC =
‖Volgt ∩ Volauto‖

(‖Volgt‖+ ‖Volauto‖)/2
, (2.9)

where Volgt and Volauto are the voxel sets of manually labeled and automatically seg-

mented objects, respectively. The values of DSC vary strongly with both object size

and shape. It is more difficult for automatic segmentation methods to achieve high

values of DSC on objects with small sizes and elongated shapes than those with large

sizes and sphere-like shapes.

• Average Surface Distance (ASD). ASD measures the average distance between the

surfaces of an automatic segmentation and a manual segmentation. Mathematically it

is defined as the equation below.

ASD =
1

2

(
mean
a∈Volgt

min
b∈Volauto

d(a, b) + mean
a∈Volauto

min
b∈Volgt

d(a, b)

)
, (2.10)

where d(a, b) is the Euclidean distance between voxels a and b measured in millimeters.

Compared to the values of DSC, the values of ASD are more sensitive to strong local

variations. For example, an undesired thin spike doesn’t necessarily take up much vol-

ume and thus may not affect the values of DSC much. However, it causes a significant

change on the boundary distance and thus would greatly increase the values of ASD.
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Among various surface distance metrics, ASD is only one of them. Besides ASD, an-

other commonly used surface distance metric is Hausdorff distance. Hausdorff distance

has a similar definition with ASD except that Hausdorff distance computes the 90 per-

centile of surface distances instead of taking the mean as done in eq. 2.10. Therefore,

Hausdorff distance is more sensitive to local variations than ASD. However, as ASD is

more frequently used in the literature of CT pelvic organ segmentation than Hausdorff

distance, this dissertation reports only the values of ASD for the purpose of comparison.

• Sensitivity (SEN) and Positive Predictive Value (PPV). SEN measures the percentage

of a manual segmentation that overlaps with an automatic segmentation, and PPV

measures the percentage of an automatic segmentation that overlaps with a manual

segmentation. These two metrics are informative to over-segmentation and under-

segmentation. In the case of over-segmentation, SEN is high and PPV is low. In the

case of under-segmentation, SEN is low and PPV is high. Mathematically they are

defined as the equations below.

SEN =
‖Volgt ∩ Volauto‖
‖Volgt‖

, (2.11)

PPV =
‖Volgt ∩ Volauto‖
‖Volauto‖

. (2.12)

2.4 Summary

This chapter presented the necessary background for understanding the rest chapters.

Section 2.1 introduced random forests as a general method for supervised learning. It was

shown that random forests can be naturally used for multiclass classification and multivariate
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regression. As an efficient, scalable and non-linear learning model, random forests fit well

in the field of image analysis. Section 2.2 introduced a popular deformable model called the

active shape model (ASM). In ASM a statistical shape space is learned from a training set

and used to constrain the shape deformation. The shape space improves the robustness of

deformable segmentation in the presence of image noise and artifacts. Besides, the limitations

of ASM were also discussed in the application of CT pelvic organ segmentation. Finally,

section 2.3 presented several quantitative metrics for evaluating an automatic segmentation

algorithm.
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CHAPTER 3 : LEARNING DEFORMATIONS FOR PLANNING-CT

SEGMENTATION

As mentioned in section 1.3.2, conventional deformable models are sensitive to initializa-

tion and ineffective for segmenting tubular organs. These limitations make them not well

suited for CT pelvic organ segmentation, where robust initialization of deformable models

is difficult and organs may have tubular shapes, e.g., the rectum. To overcome these limita-

tions, this chapter investigates a novel deformable model named “regression-based deformable

model” (RDM) 1 to segment male pelvic organs from CT images; these organs include the

prostate, bladder, rectum and two femoral heads. In RDM, a deformation field toward an

organ boundary is predicted from an intensity image by a regression model. It is used to

explicitly guide a deformable model for segmentation. Compared to conventional deformable

models, the estimated deformation field in RDM provides non-local deformations. Guided

by these deformations, RDMs are insensitive to initialization. Moreover, as deformations

become spatially adaptive, RDMs are more flexible than conventional deformable models

to segment tubular organs. These properties render RDMs appealing for CT pelvic organ

segmentation.

To accurately and robustly estimate the deformation field for a RDM, this chapter in-

vestigates two novel machine learning techniques as briefly summarized below and detailed

in sections 3.1 and 3.2, respectively.

1This work was published in IEEE Transactions on medical imaging [Gao et al., 2016]. This chapter uses
parts of text descriptions and figures from the published paper.



• Auto-context Model. In conventional voxel-wise prediction, the deformation at

one voxel is independently predicted without considering those of its neighborhood.

As deformations in the spatial neighborhood are highly correlated, the independent

estimation often results in a noisy and spatially inconsistent deformation field. To

improve the prediction accuracy, an auto-context model is adopted to iteratively refine

the deformation field by considering not only local image appearance but also predicted

deformations at neighboring voxels. A synthetic experiment shows that the auto-

context model captures the structured information in the spatial neighborhood. This

information is useful to suppress prediction noise and improve the spatial consistency

of deformation field.

• Multitask Random Forest. The auto-context model improves the deformation field

by exploiting the information of estimated deformations from the spatial neighborhood.

However, if a majority of deformations are mis-predicted in the spatial neighborhood,

the auto-context refinement would lead to wrong predictions. To relieve this problem,

a multitask random forest is proposed to jointly learn deformation regression and organ

classification in a single random forest. It has two advantages compared to the stan-

dard random forest. 1) Through joint learning the multitask random forest is forced to

exploit the commonality between related tasks; doing so is helpful to reduce the risk

of overfitting. 2) By integrating the multitask random forest with the auto-context

model, the information output from these two tasks can be exchanged during the iter-

ative refinement procedure. As the information from the two tasks is complementary,

the mis-predictions in the estimated deformation field can be potentially corrected by

exploiting the information from organ classification and vice versa. Therefore, the
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multitask random forest improves the robustness of deformation field estimation.

With the above techniques, a deformation field can be predicted for a target image and

used to guide deformable segmentation. However, it is risky to deform the shape model

directly using the estimated deformation field because of potential mis-predictions. To fur-

ther improve the robustness of deformation, two strategies are proposed in sections 3.3 and

3.4, respectively. Section 3.3 proposes a hierarchical deformation strategy where the shape

deformation is highly constrained in the beginning and gradually relaxed as the shape model

approaches the object boundary. Section 3.4 investigates a multi-resolution segmentation

framework where multiple organs are jointly segmented in the coarse resolutions, and their

segmentations are separately refined in the fine resolutions.

Fig. 3.1 shows the flowchart of the proposed method for planning-CT segmentation,

which consists of three major components: for deformation field estimation, 1) the auto-

context model; 2) the multitask random forest; and 3) for organ segmentation, regression-

based hierarchical deformation. Each step will be detailed in the following sections.

3.1 Deformation Regression and Auto-context

This section covers the details of the auto-context model for deformation field estimation.

Specifically, it first defines the task of deformation regression and describes a conventional

method for deformation field estimation. Then, the limitation of the conventional method

is discussed, and the auto-context model is introduced as an iterative solution to overcome

this limitation. Finally, a synthetic experiment is presented to explain the reason behind the

strong performance of the auto-context model.
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Figure 3.1: The flowchart of regression-based deformable model. The yellow contours in the
first and second rows indicate the initialized deformable model and the final segmentation,
respectively. In the images of deformation direction and deformation magnitude, color in-
dicates the magnitude of estimated deformation. The colder the color is, the smaller the
magnitude is.
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3.1.1 Deformation and Deformation Regression

In RDM, as illustrated in fig. 3.2, the deformation at one voxel is defined as the 3D

displacement vector from this voxel to the nearest voxel on the organ boundary. Given a

testing image with an unknown organ boundary, the deformation at any image location needs

to be predicted based on local image appearance. Deformation regression aims to learn a

mapping from local appearance features to the deformation based on a set of training images,

where manual contours of the target organ are available. At runtime, the learned mapping

is applied to predicting the deformations in the testing image, where no manual contour is

available.

Figure 3.2: Illustration of deformations at several voxel positions. The blue arrows denote the
deformations at several voxel positions (yellow crosses) toward the organ boundary (red).
The green dashed boxes indicate the local image patches centered at these voxels, where
appearance features are extracted.

To learn such a mapping, random forests are used in this work due to their many ad-

vantages, such as efficiency and non-linearity as discussed in section 2.1.4. In the training

stage, given training images with contoured organ boundaries, a set of voxels are randomly

sampled from training images near the organ boundary. Each voxel is represented by local
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appearance features (i.e., Haar-like features) and associated with the ground truth defor-

mation calculated from the manual contour. These voxels serve as training samples to a

random forest, and the random forest is able to learn a regression model that predicts the

deformation at any voxel based on local appearance features. The learned random forest is

named as “regression forest”, since it is specifically trained for deformation regression.

Given a learned regression forest, the deformation field of a testing image can be esti-

mated by independently predicting the deformation at each voxel location. However, such an

approach ignores the fact that deformations at neighboring voxels are highly correlated. As

a result, the estimated deformation field is often noisy and spatially inconsistent, as shown

in the first row of fig. 3.3.

Figure 3.3: Flowchart of the auto-context model with the regression forest for deformation
regression. The red point indicates a voxel. The red rectangle is a local patch of this voxel in
the CT image where appearance features are extracted. Purple rectangles are local patches
of this voxel in the deformation fields where context features are extracted.
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3.1.2 Auto-context Model

To overcome this drawback, deformations predicted at neighboring voxels need to be

considered during the voxel-wise estimation of a deformation field. In this work, the auto-

context model [Tu and Bai, 2010] is used for this purpose.

The auto-context model was originally proposed in [Tu and Bai, 2010] as an iterative

approach for refining the likelihood map from voxel-wise classification. The idea is to consider

not only local image appearance but also neighboring classification results during voxel-wise

classification. By combining these two pieces of information, the auto-context model is

shown to be effective in improving classification results. It is not difficult to see that the

same idea can also be borrowed to refine the deformation field from voxel-wise regression.

To be specific, the following paragraphs describe the training and testing of the auto-context

model when it is applied to refining the deformation field.

• Auto-context Training. The training of the auto-context model typically takes

several iterations, e.g., 2-3 iterations. A regressor (e.g., regression forest) is trained at

each iteration. In the first iteration, appearance features (i.e., Haar-like features) are

extracted from CT image to train the first regressor. Once the first regressor is trained,

it is applied back to each training image to generate a tentative deformation field.

In the second iteration, the features of each training voxel consist of not only appearance

features from the the CT image but also Haar-like features extracted from the tenta-

tively estimated deformation field. The latter features are called “context features”

because they capture the context information, i.e., predicted deformation information

in the spatial neighborhood. With the introduction of new features, a second regressor

is trained. As the second regressor considers not only the CT appearance but also
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Figure 3.4: Schematic diagram of auto-context with n iterations.

estimated deformations at neighboring voxels, it often leads to a better deformation

field, as shown in the second row of fig. 3.3.

Given a refined deformation field by the second regressor, the context features are

updated and can be used together with the appearance features to train the third

classifier. The same procedure is repeated until the final iteration is reached. Because

each iteration involves voxel-wise classification of all training images, more iterations

take longer training time. In practice, 2-3 iterations are often used.

• Auto-context Application. Given a testing CT image, the learned regressors are

sequentially applied, as illustrated in fig. 3.3. In the first iteration, the first learned

regressor is applied voxel-wise on the testing image to generate a deformation field by

using only appearance features. In the second iteration, the second learned regressor

is used to predict a new deformation field by combining appearance features from the

CT image with context features from the deformation field estimated in the previous

iteration. This procedure is repeated until all learned regressors have been applied.

The deformation field output by the last regressor is the output of the auto-context

model. Fig. 3.4 provides the schematic diagram.

By considering predicted deformation information in the spatial neighborhood, the auto-

context model suppresses prediction noise and improves the spatial consistency of the defor-
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mation field compared to conventional methods that consider only local image appearance

(comparing the first and third rows of fig. 3.3).

3.1.3 Understanding the Auto-context Model

The auto-context model differs from conventional voxel-wise prediction methods only in

the existence of context features. In this section, it is shown that context features capture

neighborhood structured information from training images. This structured information can

be enforced by the auto-context model in the prediction map of a testing image.

To justify this statement, a synthetic experiment was designed under voxel-wise classifi-

cation. In this experiment, given a binary training image that represents a shape, a sequence

of random forest classifiers was trained in the same manner as the auto-context model. Then,

the learned classifiers were sequentially applied to a testing image with a different shape.

The hypothesis is that if the classifiers learn the neighborhood structured information of the

training shape the testing shape would generally evolve to be the training shape under the

iterative classification. Fig. 3.5 gives the results for three cases, where the training shapes

are the sphere, prostate and bladder, respectively. It can be seen that the testing shapes

refined by the auto-context model eventually become almost identical to the respective train-

ing shapes. This observation indicates that the structured information learned from training

images can be enforced in the testing image by the auto-context model. A large number of

iterations was used in this experiment to facilitate large shape refinements for the purpose

of demonstration. In practice, the refinement won’t be this great since only 2-3 iterations

are often used.

This experiment shows that by extracting context features from classification maps, the

auto-context model learns structured label information in the spatial neighborhood. Sim-
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Figure 3.5: Shape refinements by the auto-context model (AC). Upper: sphere. Middle:
prostate. Lower: bladder.

ilarly, if the context features were extracted from estimated deformation fields, the auto-

context model would learn structured deformation information. The learned structured in-

formation is the key ingredient that makes the auto-context model outperform conventional

voxel-wise prediction models.

3.2 Multitask Random Forest

The auto-context model improves the deformation field estimation by integrating es-

timated deformation information from the spatial neighborhood. It works well if mis-

predictions in the spatial neighborhood are minor. However, if a majority of the deformations
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are mis-predicted in the spatial neighborhood, the auto-context model would lead to wrong

refinements. To relieve this problem, a multitask random forest2 is proposed to replace the

standard regression forest used in the auto-context model. In the multitask random forest,

deformation regression is jointly learned with another task, i.e., organ classification, in a

single random forest. Organ classification refers to the classification task that uses local

appearance features to distinguish voxels inside the organ from those outside.

Compared to the standard regression forest, the multitask random forest has two ad-

vantages: 1) through joint learning the multitask random forest is forced to exploit the

commonality between deformation regression and organ classification. The exploited com-

monality is helpful to reduce the risk of overfitting; 2) by integrating the multitask random

forest with the auto-context model, organ classification provides additional context features,

i.e., estimated class information in the spatial neighborhood. They are useful to improve

the estimated deformation field near the organ boundary when deformations are not well

predicted from local appearance features.

3.2.1 Mathematical Definition

To adapt a random forest for multitask learning, the purity of a training set S is modified

as follows in order to consider multiple tasks in the learning process.

P(S) =
∑
i

wi
P i(S)

Z i
, (3.1)

2The name of multitask random forest comes from multitask learning, where multiple tasks are jointly learned
using a shared representation/model. [Caruana, 1997]
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where wi is the weight for the i-th task, P i(S) is the purity definition for the i-th task, and

{Z i} are coefficients that normalize the purity across different tasks. For each task, Z i is

defined as the task-specific purity of the entire training set, i.e., the purity at the root node.

In this work since only two tasks, i.e., deformation regression and organ classification, are

considered, the purity definition can be further specialized as follows:

P(S) = w
VDR(S)

ZDR
+ (1− w)

EOC(S)

ZOC
, (3.2)

where w ∈ [0, 1] is the weight coefficient, VDR is the purity definition for deformation regres-

sion that measures the variation of deformations in a training set S, and EDR is the purity

definition for organ classification that measures the consistency of class labels in a training

set S. Their mathematical definitions are given below:

VDR(S) = − 1

|S|
tr

(∑
x∈S

(dx − d̄)(dx − d̄)T
)
, (3.3)

EOC(S) = p+logp+ + p−logp−, (3.4)

where tr is the trace operator, dx is the deformation at a training voxel x, d̄ is the mean

deformation in the training set S, and p+ and p− are the percentages of positive and negative

training voxels in the training set S, respectively. Positive voxels are voxels inside the organ

while negative voxels are those outside the organ. In the multitask random forest, each leaf

stores not only the average deformation of training samples (voxels) that arrive at it but also

the label distribution of those training samples. Therefore, the multitask random forest is

able to simultaneously predict the deformation and class label of a testing voxel. Through

voxel-wise prediction, the multitask random forest is able to produce both deformation field
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and organ likelihood map.

3.2.2 A Better Model for Deformation Regression

As deformation regression and organ classification are jointly learned in a single random

forest, the multitask random forest is optimized to select common features and thresholds

that are informative to both tasks. As pointed in [Caruana, 1997], sharing the same model

among related tasks could improve the generalization. Moreover, it is found in my work that

joint learning of deformation regression and organ classification clarifies the ambiguity that

exists in the training of the regression forest.

Fig. 3.6 illustrates the ambiguity where two voxels (yellow crosses), i.e., one inside and

one outside the organ, have the same deformation toward the organ boundary but have

different image appearances. In the regression forest, which is trained only for deformation

regression, the training of random forest tries to find image features that group these two

voxels in the same leaf node, since they have the same deformation. However, due to dramatic

appearance difference, generally it is infeasible to find such features. In the end, the random

forest may find meaningless features that happen to well fit the training set but cannot

generalize well in the testing. Thus, a risk of overfitting is imposed.

On the other hand, the multitask random forest considers not only the deformation

but also the class label during splitting (eq. 3.2). It can well separate these two voxels

into different leaf nodes, since the two voxels have different class labels, i.e., one is outside

the organ while the other is inside. Therefore, the ambiguity that exists in the regression

forest can be well resolved in the multitask random forest by exploiting the class label

information from organ classification. The risk of overfitting is reduced and the generalization

is improved.

51



Figure 3.6: Ambiguity in the training of random forest when deformation is used as the only
supervised guidance for splitting. The green contour indicates the bladder boundary. Yellow
crosses indicate two voxels with the same deformation toward the organ boundary but with
different image appearances.

3.2.3 Integration with the Auto-context Model

Different from the regression forest, which outputs only the deformation field, the multi-

task random forest produces both a deformation field and an organ likelihood map in a single

pass. Therefore, context features can be extracted from both prediction maps and used in

the auto-context model to refine the deformation field. Fig. 3.7 shows the flowchart of the

auto-context model with the multitask random forest. Compared to the auto-context model

with the regression forest (fig. 3.3), additional context features are extracted from the organ

likelihood map (blue rectangle). These features capture the estimated class information in

the spatial neighborhood. They provide little information to the refinement of the deforma-

tion field far away from the organ boundary, since the organ likelihood map is homogeneous

in those faraway regions (fig. 3.7), e.g., it is either pure black if outside the organ or pure

white if inside the organ. However, near the organ boundary the estimated class information

provides cues about the boundary location. It can be used to estimate deformations and thus
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is useful to deformation field refinement, especially when deformations are not well predicted

from local appearance features at the first iteration of the auto-context model.

Figure 3.7: Flowchart of the auto-context model with the multitask random forest. The red
point indicates a voxel. The red, blue and purple rectangles are the local patches of this
voxel on the CT image, estimated organ likelihood maps and deformation fields, respectively.

Fig. 3.8 gives a typical example to illustrate the importance of estimated class information

in deformation field refinement. As shown in fig. 3.8(a), if many deformations are mis-

predicted in a small region at the first iteration of the auto-context model (red rectangle), the

auto-context model is not able to correct them by using context features only from estimated

deformation field, since deformations predicted in the neighborhood are also inaccurate. As

a result, the deformation field is often generated with missing parts of organ boundaries (fig.

3.8(a)). This problem is called “the missing boundary problem”, which is common if the

auto-context model is used with the regression forest.

In contrast, the multitask random forest produces an additional organ likelihood map

that provides complementary information to deformation regression. As shown in fig. 3.8(b),
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Figure 3.8: The missing boundary problem. Red rectangles indicate the image region where
deformations are not well predicted. The blue rectangle shows the same region as the red
one on the organ likelihood map.

when deformations are not well predicted near the organ boundary (red rectangle), the es-

timated class information from the organ likelihood map provides additional cues about the

location of the organ boundary (blue rectangle). This information is helpful to estimate

deformations. By adding it into the auto-context model, the robustness of deformation field

estimation is improved, since now the auto-context refinement considers not only estimated

deformations in the neighborhood but also the boundary location provided by organ clas-

sification. Under the collaboration of the two types of context features, i.e., one from the

deformation field and one from the organ likelihood map, the multitask random forest is able

to address the missing boundary problem suffered by the regression forest, as illustrated in

the rightmost image of fig. 3.8(b).
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3.3 Regression-based Deformable Models

A deformation field estimated by the auto-context model with the multitask random

forest can be used to guide a deformable model for organ segmentation. However, due to

potential mis-predictions, it is risky to freely deform the shape model using the estimated

deformation field. To improve the robustness of segmentation, a hierarchical deformation

strategy is proposed, as depicted in alg. 3.1. To start a segmentation, the mean shape model

that is calculated as the average of all training shapes is first initialized on the center of a

testing image (fig. 3.1). During deformable segmentation, initially the shape model is only

allowed to translate under the guidance from the estimated deformation field. Once it is well

positioned, it is allowed to rigidly rotate so as to estimate the orientation of the shape model.

Afterwards, the deformation is further relaxed to the affine transformation so as to estimate

the scaling and shearing parameters of the shape model. Finally, the shape model is freely

deformed under the guidance from the deformation field. The jointly estimated likelihood

map from the final iteration of the auto-context model is not used in the segmentation stage.

In this work organ classification is used only to improve the generalization of deformation

regression.

Compared to conventional deformable models, regression-based deformable models

(RDMs) have two major advantages.

• Robustness to Initialization. Different from conventional deformable models, the

shape model in the RDM is no longer deformed locally around the initialization. The

estimated deformation field provides a non-local deformation to each vertex of the

shape model. As a result, even if shape models are initialized far away from the target

organ, they can still be rapidly deformed to the correct position under the guidance
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Algorithm 3.1 Regression-based Hierarchical Deformation

Input: I - testing CT scan, D - learned multitask random forest,
Minit - initialized shape model

Output: M - the final segmentation
Notation: World2Voxel(I,p) outputs voxel coordinate of vertex p on the image I, D(I,x)

returns the 3D deformation at voxel x on the image I, and Θ(K) denotes valid transform
matrix set of transform type K.
function Deform(I, D, M, K) . Subroutine

for Iteration← 1 to MaxIteration do
Mdeform =M
for all vertex p ∈Mdeform do

x = World2Voxel(I,p)
p← p +D(I,x)

end for
if K ∈ {Translation,Rigid,Affine} then

Estimate transform matrix T ∈ R4×4:
arg minT ‖T (M)−Mdeform‖2, s.t., T ∈ Θ(K)

M = T (M)
else
M = SmoothSurface(Mdeform)
M = RemeshSurface(M)

end if
end for
returnM

end function
function HierarchicalDeform(I,D,Minit) . Main routine
M = Deform(I, D, Minit, “Translation”)
M = Deform(I, D, M, “Rigid”)
M = Deform(I, D, M, “Affine”)
M = Deform(I, D, M, “FreeForm”)
returnM

end function
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from the estimated deformation field. In the case of CT pelvic organ segmentation, it is

sufficient for RDMs to work if the mean shape model is initialized in the image center.

However, it is almost impossible for conventional deformable models to work under the

same initialization. RDMs are much more robust to initialization than conventional

deformable models.

• Adaptive Deformation Parameters. Explicitly predicting the deformation of each

vertex eliminates the necessity of specifying and tuning many deformation parameters.

For example, search range is an important parameter in the active shape model (ASM).

It specifies how far a vertex of the shape model locally searches the organ boundary.

In the segmentation of tubular organs, it can be tricky to set up this parameter. A

small search range may not be large enough to deform the shape model onto the organ

boundary while a large search range may cause mesh folding or shrinkage. By explicitly

predicting the deformation of each vertex, RDMs eliminate the necessity to specify this

parameter.

Besides, the deformation direction and step size of each vertex are now adaptively

determined in the RDM for optimally driving the shape model onto the target organ.

This adaptivity distinguishes RDMs from conventional deformable models (e.g., ASM)

that use a fixed deformation direction (e.g., normal direction) and step size, and it also

increases the flexibility of deformable models to segment organs with complex shapes.

In addition, the flexibility of deformable models is also increased by the spatially varying

deformations estimated in the deformation field. The spatially varying deformations

allow each vertex of the shape model to have dramatically different deformations. For

vertices close to the organ boundary, the estimated deformations tend to be small,
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thus encouraging detailed boundary refinement. For vertices far away from the organ

boundary, the estimated deformations tend to be large for rapidly driving these vertices

close to the boundary.

In summary, RDMs provide non-local deformations that make them insensitive to ini-

tialization. Besides, many important yet ad-hoc designs, such as search range, deformation

direction and step size, are either eliminated or automatically determined for each vertex

according to the learned multitask random forest. These properties make RDMs appealing

for CT pelvic organ segmentation where 1) reliable initializations are difficult to get and 2)

organs may have complex shapes (e.g., the rectum).

3.4 Multi-resolution Segmentation

To further improve the efficiency and robustness of the proposed method, the segmenta-

tion is conducted in multi-resolution. I found that experimentally four resolutions are the

best choice.

Training. In each of the two coarsest resolutions, one multitask random forest is trained

jointly for all five organs. Specifically, instead of predicting a deformation to a single organ,

the joint multitask random forest predicts a concatenated deformation that consists of de-

formations to all the five organs; instead of predicting the likelihood being inside a single

organ, the joint multitask random forest predicts the likelihoods being inside different or-

gans. Joint estimation of deformations to multiple organs is beneficial to take into account

that the spatial relationship among them and is thus helpful to improve the robustness of

deformation field estimation in the two coarsest resolutions.

In the two finest resolutions, one multitask random forest is trained separately for each
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organ. Compared to the joint random forests in the coarsest resolutions, learning an in-

dividual random forest captures specific appearance characteristics of each organ. These

organ-specific random forests are more effective for detailed boundary refinement once the

shape models are close to their respective organ boundaries after being driven by the coarse-

level joint random forests.

Testing. The testing image is first downsampled to the coarsest resolution (voxel size

8 × 8 × 8 mm3) where rough segmentations of the five organs are rapidly obtained. These

segmentations serve as good initializations for the next finer resolution. The segmentation is

then sequentially performed across different resolutions until it reaches the finest resolution

(voxel size 1× 1× 1 mm3) where the final segmentation is obtained.

The benefits of the multi-resolution strategy are straightforward. Instead of predicting

the deformation field for the whole image in the fine resolution, now only a sub-region of

the deformation field around the initialization (given by the previous coarser resolution) has

to be estimated, thus significantly improving the efficiency. Apart from the efficiency, the

robustness also benefits from the joint estimation of multiple deformation fields in the two

coarsest resolutions, as the spatial relationship among different organs is implicitly considered

during the joint deformation regression.

3.5 Experimental Results

The experimental data consists of 313 CT scans from 313 prostate cancer patients, where

35 of the 313 CT scans are enhanced by the injection of a contrast agent. These scans

were collected from the North Carolina Cancer Hospital. The image size of a CT scan is

512 × 512 × (61 ∼ 508). The in-plane resolution ranges from 0.938 mm to 1.365 mm, and

the slice thickness ranges from 1 mm to 3 mm. Five pelvic organs including the prostate,
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bladder, rectum and two femoral heads were manually contoured by two experienced radia-

tion oncologists. Then interpretations were averaged as the consensus. These contours serve

as ground truth in the experiments.

The following subsections are organized as follows.

• Section 3.5.1 describes the details of 3D Haar-like features that are used as both ap-

pearance features and context features in the multitask random forest.

• Section 3.5.2 provides the parameter setting, sensitivity analysis of parameters, and

computational time of the proposed method.

• Section 3.5.3 evaluates the auto-context model in deformation field estimation by com-

paring it to independent voxel-wise prediction.

• Section 3.5.4 compares the multitask random forest with the regression forest for de-

formation field estimation.

• Section 3.5.5 compares the multitask random forest with the classification forest for

deformation field estimation.

• Section 3.5.6 compares RDMs with conventional classification-based deformable mod-

els to show the importance of the estimated deformation field in guiding deformable

segmentation.

• Section 3.5.7 compares RDMs with other existing methods for CT pelvic organ seg-

mentation.
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3.5.1 3D Haar-like Features

In this work, 3D Haar-like features were used as both appearance features and context

features. The appearance features were 3D Haar-like features extracted from local patches

in the CT image, and the context features were 3D Haar-like features extracted from local

patches in the estimated deformation field or organ likelihood map. The main reason for

adopting 3D Haar-like features is their high computational efficiency. 3D Haar-like features

can be efficiently computed using the integral image [Viola and Jones, 2004].

As illustrated in fig. 3.9, two types of Haar-like features were considered: 1) one-block

Haar-like features that compute the average intensity at one location within the local patch,

and 2) two-block Haar-like features that compute the average intensity difference between

two locations within the local patch. Their mathematical definitions can be formulated as

follows:

f(Ix|c1, s1, c2, s2) =
1

(2s1 + 1)3

∑
‖y−c1‖≤s1

Ix(y)− λ

(2s2 + 1)3

∑
‖y−c2‖≤s2

Ix(y), (3.5)

where Ix denotes a local patch centered at voxel x, f(Ix|c1, s1, c2, s2) denotes one Haar-like

feature with parameters {c1, s1, c2, s2}, where c1 ∈ R3 and s1 are the center and size of the

positive block, respectively, and c2 ∈ R3 and s2 are the center and size of the negative block,

respectively. λ ∈ {0, 1} is a switch between the two types of Haar-like features. When λ = 0,

eq. 3.5 uses one-block Haar-like features. When λ = 1, eq. 3.5 uses two-block Haar-like

features.

In the training stage, each binary tree of a random forest was trained independently.

For each tree, a bunch of Haar-like features was generated by uniformly and randomly
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Figure 3.9: Two types of Haar-like features used in the multitask random forest. Left:
one-block Haar-like feature. Right: two-block Haar-like feature. The red, green and blue
rectangles denote the local patch, the positive block and the negative block, respectively.

sampling parameters of the Haar-like features, i.e., {c1, s1, c2, s2, λ}, under the constraint

that positive and negative blocks should stay inside the local patch. These random Haar-like

features were used as the feature representation for each training sample (voxel). The reason

for using different feature representations for different trees is to increase the diversity of

random forests. As an ensemble model, the performance of random forests benefits from the

diversity of binary decision trees. The reason for using random features is closely related to

the built-in feature selection mechanism of random forests. Unlike other prediction models,

e.g., the support vector machine [Vapnik, 1995, Chang and Lin, 2011], random forests select

the optimal feature set during the learning process. Uninformative Haar-like features that

are not related to deformation regression and organ classification will not be selected in the

split nodes. So random forests are robust to the inclusion of uninformative features.

3.5.2 Parameter Setting & Computational Time

Random Forest Parameters. The number of binary decision trees was 10. The training

sets of different trees were different but might overlap since they were randomly drawn

from the training images. The maximum tree depth was 100. The numbers of random
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features and candidate thresholds in each node as set in the training stage were 1000 and

100, respectively. The minimum number of training samples in each leaf node was 8. In this

application trees typically stopped at the depth of 50. These random forest parameters have

been widely evaluated in many applications [Wang et al., 2015] [Gao and Shen, 2015] [Zhang

et al., 2015] [Huynh et al., 2015]. In general, the performance of random forests increases

with increase of tree number, tree depth and number of random features. The performance

is not sensitive to the number of thresholds and the minimum number of training samples

in each leaf node. However, the increase of tree number, tree depth and number of random

features could significantly increase both training and testing time. As a compromise, the

above parameter setting was used in the experiments.

Multi-resolution Parameters. The multi-resolution parameters are quite standard. The

number of resolutions was 4. The spacings of four resolutions were 1 mm, 2 mm, 4 mm and

8 mm, respectively.

Other Parameters. Two iterations were used in the auto-context model. Section 3.5.3

evaluates the segmentation accuracy with respect to the number of auto-context iterations.

It was found that two iterations are often sufficient for convergence. Block sizes s1 and s2

in eq. 3.5 were randomly picked from the set {3, 5} to improve the robustness of Haar-like

features to the random CT noise. The maximum number of deformation iterations was 20,

and the weight w between organ classification and deformation regression in eq. 3.2 was 0.5.

Sensitivity. Fig. 3.10 (a) gives the sensitivity analysis of the weight w in eq. 3.2. It can

be seen that the segmentation accuracy doesn’t vary much between w = 0.25 and w = 0.75.

However, when w = 1 the performance drops notably because the multitask random forest

degrades to the regression forest. In this figure the performance with respect to w = 0
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was not plotted because pure organ classification generally doesn’t produce deformation

fields for RDMs. In addition, fig. 3.10 (b) gives the sensitivity analysis of the number of

deformation iterations. It can be seen that the performance converges after 20 iterations.

So the maximum number of deformation iterations was chosen to be 20.

Figure 3.10: Sensitivity of the segmentation accuracy to the weight w between deforma-
tion regression and organ classification in eq. 3.2 (left) and to the number of deformation
iterations (right). Higher DSC is better.

Runtime. It takes about 1.8 mins for the proposed method to segment five pelvic organs

on a laptop with an Intel i7-4710HQ CPU and 16 GB memory. OpenMP was used with 4

threads for parallel computation. The training time of the proposed method is about 3-4

hours for each tree with 1884000 training samples extracted from 157 training images (i.e.,

12000 training samples per training image).

3.5.3 Auto-context Model

This subsection evaluates the contribution of the auto-context model for refining the

deformation fields. Table 3.1 shows the segmentation accuracies obtained without the auto-

context model, with 1 iteration and 2 iterations of auto-context, respectively. It can be seen
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that the use of the auto-context model greatly boosts the segmentation accuracy, especially in

the first iteration. With an additional iteration, the segmentation accuracy further improves.

However, the improvement is not as great as the first one. Considering the computational

efficiency, 2 iterations were used in this work.

Table 3.1: Segmentation accuracies (DSC) of five pelvic organs at different auto-context
(AC) iterations. Bold numbers indicate the best performance.

DSC (%) No AC 1-iteration AC 2-iteration AC
Prostate 82.8± 12.9 86.0± 4.3 86.6 ± 4.1
Bladder 87.9± 14.2 91.8± 5.8 92.1 ± 4.7
Rectum 84.4± 7.3 87.0± 4.8 88.4 ± 4.8
FemurL 89.5± 19.5 95.4± 1.3 97.0 ± 1.5
FemurR 87.7± 24.0 95.4± 2.3 97.0 ± 1.5

3.5.4 Multitask Random Forest versus Regression Forest

To show the advantages of multitask random forest in deformation field estimation, it

was compared to the regression forest in this subsection. For a fair comparison, the same

types of features, parameter settings and the auto-context model were used in both methods.

Fig. 3.11 shows a qualitative comparison between deformation fields estimated by the

regression forest and the multitask random forest. As mentioned in section 3.2.3, the regres-

sion forest suffers the missing boundary problem, i.e., deformation fields may be generated

with missing parts of organ boundaries due to mis-predictions of the majority voxels in a

small region. With such deformation fields, deformable models will be misled, resulting in

poor segmentation results. In contrast, with the help of organ classification the multitask

random forest generates more accurate deformation fields. As shown in fig. 3.11, the problem

of missing boundaries is well addressed by the multitask random forest.

Table. 3.2 presents a quantitative comparison between the regression forest and the
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Figure 3.11: Qualitative comparison of deformation fields predicted by the regression forest
and the multitask random forest. The red contours are the ground-truth segmentation
manually contoured by radiation oncologists. The segmentation accuracy (DSC) obtained
by using each estimated deformation field is shown as a white number in the right-bottom
of each color-coded image.
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multitask random forest for guiding deformable segmentation. The p values calculated from

paired t-tests show that the multitask random forest obtained significantly better results

than the regression forest in segmenting the prostate, bladder and rectum. For the left

and right femoral heads, which have high contrast in CT images, both methods performed

equally well. Their slight difference was caused by one failure case of the regression forest.

Table 3.2: Quantitative comparison of segmentation accuracies (DSC) obtained by the re-
gression forest (Regression) and the multitask random forest (Multitask). p-values were
computed by paired t-tests. Bold numbers indicate the better performance.

DSC (%) Regression Multitask p value
Prostate 84.0± 12.6 86.6 ± 4.1 < 10−5

Bladder 90.6± 8.6 92.1 ± 4.7 < 10−4

Rectum 85.2± 6.6 88.4 ± 4.8 < 10−5

FemurL 96.5± 5.6 97.0 ± 1.5 0.13
FemurR 96.5± 5.8 97.0 ± 1.5 0.12

3.5.5 Multitask Random Forest versus Classification Forest

In this subsection, the multitask random forest was compared with the classification

forest for deformation field estimation. Different from the multitask random forest that

directly estimates the deformation field from the intensity image, the classification forest

first predicts an organ likelihood map from the intensity image. Then, the deformation field

is generated from the organ likelihood map by thresholding and distance transformation.

For a fair comparison, the same types of features, parameter settings and the auto-context

model were used for both methods. Fig. 3.12 shows qualitative comparisons of classification

map and deformation field between the classification forest and the multitask random forest.

Compared to the classification forest, it has several advantages to use the multitask random

forest for deformation field estimation.
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Figure 3.12: Qualitative comparisons of deformation fields estimated by the classification
forest and the multitask random forest. (a) and (b) are two typical cases. The red contours
are manual segmentations delineated by radiation oncologists.

• In the multitask random forest, as shown in section 3.5.4, the deformation field is

improved by exploiting the estimated class information from organ classification. Sim-

ilarly, the organ likelihood map is also improved by exploiting the estimated defor-

mation information from deformation regression. By joint learning of these two tasks

in the multitask random forest and exchanging their predicted information during the

auto-context iterations, the complementary information from one task improves the

performance of the other task. As seen from both fig. 3.12 (a) and (b), the multitask

random forest produces better organ classification maps than the classification forest.

• The classification errors can be easily propagated if the deformation field is derived

from the classification map, especially when there are multiple positive responses in the

classification map. Fig. 3.12 (a) provides a typical example where mis-classifications

in a small region ruin half of the deformation field. In contrast, if the deformation
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field is voxel-wisely predicted by the multitask random forest, the mis-predictions are

restricted only in local regions and will not be propagated.

• As illustrated in fig. 3.13, near the organ boundary deformation fields predicted by

the multitask random forest are often smoother than those generated from classifica-

tion maps because the binarization of classification maps by simple thresholding often

produces zigzag organ boundaries.

Figure 3.13: Left: deformation field derived from the classification map. Right: deformation
field estimated by the multitask random forest.

Table 3.3 presents a quantitative comparison between the classification forest and the

multitask random forest for deformation field estimation. The p values calculated from

paired t-tests show that the multitask random forest is significantly better than the clas-

sification forest for deformation field estimation and guiding regression-based deformable

segmentation.

3.5.6 Comparison with Conventional Deformable Models

To show the effectiveness of RDMs, they were compared with conventional classification-

based deformable models (CDMs) via modified active shape models. Unlike RDMs, CDMs

require good initializations to work well. Once the shape model (3D mesh) is well initialized,
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Table 3.3: Quantitative comparison of segmentation accuracies (DSC) obtained by the clas-
sification forest (Classification) and the multitask random forest (Multitask). p-values were
computed by paired t-tests. Bold numbers indicate the better performance.

DSC (%) Classification Multitask p value
Prostate 85.6± 4.2 86.6 ± 4.1 < 10−3

Bladder 90.9± 5.2 92.1 ± 4.7 < 10−5

Rectum 86.5± 5.2 88.4 ± 4.8 < 10−5

FemurL 96.1± 1.4 97.0 ± 1.5 < 10−5

FemurR 96.1± 1.4 97.0 ± 1.5 < 10−5

every vertex on the shape model independently deforms along its normal direction to a

position with the maximal boundary response. After an one-step deformation of all vertices,

the entire shape model is often smoothed or regularized by a shape space (e.g., through

PCA) before the next round of deformation. These two steps alternate until convergence or

reaching the maximum number of iterations.

In this experiment, a random forest classifier was used to classify every voxel in a testing

image into either “organ” or “background”. The gradient on the obtained organ likelihood

map was used as the boundary response to guide CDMs. After one-step deformation, mesh

smoothing and remeshing were used to regularize the shape model. This step is the same as

RDMs. For a fair comparison, the random forest classifier used the same types of Haar-like

features and the auto-context model as those in RDMs.

Two initialization methods have been tested for CDMs.

• Box-based initialization. The regression-based anatomy detection method [Crim-

inisi et al., 2013] was utilized to automatically detect the bounding box of the target

organ. Based on the detected box, the mean shape was initialized on the box center

and further scaled to fit the box size. After initialization, the shape model deformed

in the same way as described above.
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• Multi-resolution strategy. The mean shape model was initialized to the classifica-

tion mass center in the coarsest resolution. Once initialized the shape model deformed

on the organ likelihood map until convergence. Afterwards, the deformed shape model

was used as an initialization to the next finer resolution. The deformation was hierar-

chically performed until it meets the finest resolution. The multi-resolution parameters

were the same with those described in section 3.5.2.

Table 3.4 shows the segmentation accuracies obtained by RDMs and CDMs with the

two initialization strategies, respectively. Because CDMs rely on local search to deform, the

parameter of search range is critical to segmentation. To optimize the performance of CDMs,

the search range of each organ was manually searched from 10 to 35 mm with a step size of

5 mm. From the results listed in table 3.4, it can be seen that CDMs perform reasonably

well for organs with rigid shapes and stable positions, such as the prostate and femoral

heads, although their performance is still inferior to RDMs’. However, they fail notably

when segmenting organs with highly variable shapes, such as the bladder and rectum.

Table 3.4: Quantitative comparison (DSC) between classification-based and regression-based
deformable models. Bold numbers indicate the best performance.

DSC (%)
Classification

Regression
Box Multi-resolution

Prostate 83.7± 12.3 83.3± 12.0 86.6 ± 4.1
Bladder 73.1± 32.4 87.1± 20.0 92.1 ± 4.7
Rectum 53.9± 26.9 57.3± 33.6 88.4 ± 4.8
FemurL 95.6± 4.6 95.9± 7.8 97.0 ± 1.5
FemurR 95.6± 4.1 96.4± 5.6 97.0 ± 1.5

The main reason for those failures is that initialization is demanded by conventional

deformable models. However, a good initialization is often difficult to obtain for flexible

organs such as the bladder and rectum. Fig. 3.14 presents several typical bounding-box-
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based initializations for illustration. It can be seen that it is challenging to accurately detect

the bounding box of the bladder due to dramatic changes of bladder sizes and positions

across subjects. For the rectum initialization, it is even more challenging. As shown in the

right panel of fig. 3.14, although the detected bounding boxes (green) are reasonably good,

the initialized shapes (green) are still far from the true organ boundaries (red) because of

the dissimilarity between the mean rectum shape and individual rectum shapes. The highly

variable shapes make the bounding-box based initialization less effective in initializing the

rectum compared to other organs, such as the prostate and femoral heads that have relatively

stable shapes. The same challenges also apply to the multi-resolution initialization strategy.

Figure 3.14: Typical cases of bounding-box-based initialization (Left: bladder; Right: rec-
tum). The second row shows the initialized shapes according to the detected bounding
boxes in the first row. The red and green contours indicate the ground-truth and the results
obtained by anatomy detection, respectively.

Besides the initialization, conventional deformable models (e.g., ASM) still faces another

challenge when they are applied to segmenting the rectum. That is the difficulty in deter-

mining the search range. Due to the tubular structure of the rectum, large search ranges
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would easily cause mesh folding as vertices of left rectum wall may find high boundary re-

sponses from the right rectum wall and vice versa. On the other hand, small search ranges

are insufficient to drive the deformable model onto organ boundaries if the shape model is

not well initialized. These two contradictory factors make it infeasible to find a compromise

search range. This also explains why the segmentation accuracy of the rectum by CDMs is

much lower compared to that of other organs.

In contrast to conventional deformable models, RDMs are guided by deformation fields

that provide non-local external forces to overcome the sensitivity of deformable models to

initialization. Because of this fact RDMs do not require a model initialization step that is

often critical in most deformable segmentation methods. This characteristic renders RDMs

suitable for segmenting organs that are difficult to initialize, such as the bladder and rectum.

Additionally, the deformation direction and step size of each vertex are optimally predicted

during the deformation according to the underlying image appearance. This feature makes

RDMs appealing to segment organs with complex shapes, such as the rectum, where the

conventional deformation strategies (e.g., normal deformation direction and fixed step size)

do not work. All these factors contribute to the success of RDMs in CT pelvic organ

segmentation.

3.5.7 Comparison with Other Segmentation Methods

Finally, this subsection compares the proposed method with several existing methods for

CT pelvic organ segmentation. Because different methods segment different subsets of the

five pelvic organs and use different metrics to measure their performance, the comparisons

with other works are separated into multiple tables (tables 3.5 - 3.8). The results show that

the proposed method is evaluated on the largest CT dataset and also achieves the best seg-
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Table 3.5: Comparison with other existing works based on average surface distance (ASD).
Bold numbers indicate the best performance.

ASD (mm) Lay et al. Lu et al. Proposed
Testing dataset 45 188 313

Prostate 3.57± 2.01 2.37± 0.89 1.77 ± 0.66
Bladder 3.08± 2.25 2.81± 1.86 1.37 ± 0.82
Rectum 3.97± 1.43 4.23± 1.46 1.38 ± 0.75
FemurL 1.90± 1.18 N/A 0.49 ± 0.25
FemurR 1.88± 0.78 N/A 0.49 ± 0.22

Table 3.6: Comparison with other existing works based on Dice similarity coefficient (DSC).
Bold numbers indicate the best performance.

DSC Martinez Proposed
Testing dataset 86 313

Prostate 0.87± 0.07 0.87 ± 0.04
Bladder 0.89± 0.08 0.92 ± 0.05
Rectum 0.82± 0.06 0.88 ± 0.05

mentation accuracy except that the positive predictive value (PPV) of the proposed method

in the prostate segmentation is slightly lower than Chen [Chen et al., 2011]. However, the

sensitivity (SEN) of the proposed method is much higher than theirs. Besides, a careful

scrutiny on these tables reveals that the improvement of the proposed method over other

existing methods is larger on the bladder and rectum than other organs. This is mainly be-

cause it is difficult for conventional deformable models to segment organs that are difficult to

initialize and with highly variable shapes. However, with the introduction of non-local defor-

mations, adaptive deformation direction and step size, and spatially varying deformations,

these limitations can be effectively addressed by RDMs.

It is worth noting that most existing works use either sophisticated methods for model

initialization [Lay et al., 2013][Lu et al., 2012][Mart́ınez et al., 2014] or rely on shape priors

[Lay et al., 2013][Freedman et al., 2005][Costa et al., 2007][Chen et al., 2011][Lu et al.,
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Table 3.7: Comparison with other existing works based on MEDIAN sensitivity (SEN) and
positive predictive value (PPV). Bold numbers indicate the best performance.

Median Freedman et al. Chen et al. Proposed
Testing dataset 48 185 313

Prostate
SEN 0.83 0.84 0.90
PPV 0.85 0.87 0.86

Rectum
SEN 0.74 0.71 0.91
PPV 0.85 0.76 0.89

Table 3.8: Comparison with other existing works based on MEAN sensitivity (SEN) and
positive predictive value (PPV). Bold numbers indicate the best performance.

Mean Rousson et al. Costa et al. Proposed
Testing dataset 16 16 313

Prostate
SEN 0.84 0.81 0.88
PPV 0.79 0.85 0.85

Bladder
SEN N/A 0.75 0.94
PPV N/A 0.80 0.92

2012][Mart́ınez et al., 2014][Rousson et al., 2005] to regularize the segmentation. In contrast,

the proposed method uses a fairly simple initialization method (i.e., initialize the mean shape

model in the image center), and it does not rely on shape priors (e.g., PCA shape analysis).

It is interesting to observe that even with this setup the proposed method still results in more

accurate outcomes when compared to previous methods. This demonstrates the robustness

of the proposed method to initialization and the effectiveness of the proposed method in CT

pelvic organ segmentation.

3.6 Summary

Planning-CT segmentation plays an important role in the image guided radiotherapy of

prostate cancer. The goal of planning-CT segmentation is to automatically and accurately

segment the prostate, bladder, rectum and two femoral heads from planning CT images.

The segmentations can be used for dose planning that designs the direction and dose of
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each radiation beam to accurately deliver the prescribed dose on the prostate while sparing

nearby healthy tissues. Therefore, the treatment efficacy heavily relies on the segmentation

accuracy.

Conventional deformable models are sensitive to initialization and are not flexible to seg-

ment organs with tubular shapes. These problems limit their performance in CT pelvic organ

segmentation. To overcome them, this chapter proposed explicitly learning a deformation

field to guide deformable segmentation. To reliably estimate the deformation field from local

image appearance, two novel techniques were proposed. First, an auto-context model was

adopted to iteratively refine the estimated deformation field. By considering predicted de-

formations in the spatial neighborhood, the auto-context model suppresses prediction noise

and improves the spatial consistency of deformation field compared to independent voxel-

wise prediction. Second, a multitask random forest was proposed. It couples deformation

regression with organ classification in a single random forest. By joint learning of these two

tasks in the auto-context model, the predicted information from each task can be used as

context features to help the other task. Compared to the random forest trained only for

deformation regression, the multitask random forest improves the robustness of deformation

field estimation. Finally, a regression-based deformable model was proposed to hierarchically

deform the shape model based on the estimated deformation field. It effectively addresses the

limitations of conventional deformable models by using non-local deformations and adaptive

deformation parameters.

Extensive experiments on a large pelvic CT dataset showed that the proposed method

is effective in CT pelvic organ segmentation. Compared to the regression forest, the multi-

task random forest can overcome the problem of missing boundary and yields more accurate
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deformation fields. Compared to conventional classification-based deformable models, ex-

plicitly learning a deformation field helps deformable models overcome the sensitivity to

initialization and increase their flexibility to segment tubular organs. Compared to other ex-

isting methods, the proposed method exhibited very competitive segmentation performance,

especially for the bladder and rectum that are difficult to robustly initialize.
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CHAPTER 4 : INCREMENTAL LEARNING FOR TREATMENT-CT

SEGMENTATION

As shown in fig. 1.1, image guided radiotherapy (IGRT) consists of a planning stage

followed by a treatment stage. In the planning stage, a planning CT is acquired from the

patient, and major pelvic organs are segmented for treatment planning. In the treatment

stage, a treatment CT can be acquired right before the radiation therapy at each treatment

day (e.g., in adaptive radiation therapy). Since the treatment CT captures a present snapshot

of the patient’s anatomy, radiation oncologists are able to adapt the treatment plan to

precisely target radiation dose to the current position of tumors and avoid neighboring

healthy tissues. Consequently, IGRT increases the probability of tumor control and typically

shortens radiation therapy schedules [Xing et al., 2006, Dawson and Jaffray, 2007]. In order

to adapt the treatment plan in an online fashion, it is important to localize the prostate in

the daily treatment images fast and accurately. Thus, an automatic prostate localization

algorithm would be a valuable asset in IGRT.

However, prostate localization in treatment CTs (treatment-CT segmentation) is chal-

lenging for three reasons. First, unlike the planning CT, the treatment CTs are typically

acquired with low dose protocols in order to reduce unnecessary radiation exposure to pa-

tients during treatment. As a result, the image contrast to noise ratio of treatment CT is

relatively lower compared to the planning CT. Second, due to the existence of bowel gas

and filling, the image appearance of treatment CTs can change dramatically. Third, un-

predictable daily prostate motion [Liu et al., 2010] further complicates the treatment-CT



segmentation.

Although many methods have been proposed for prostate localization/segmentation, their

accuracy is limited as they overlook a remarkable opportunity for treatment-CT segmentation

that is inherent in the IGRT workflow. In fact, at each treatment day several CT scans of the

patient may have already been acquired and segmented in the planning day and previous

treatment days. If the prostate appearance characteristics of this specific patient can be

learned from these patient-specific images, an algorithm could exploit this information to

localize the prostate much more effectively.

To this end, a novel learning scheme, namely incremental learning with selective memory

(ILSM) 1, is proposed in this chapter for fast and accurate localization of the prostate in

treatment CTs. Compared with previous prostate localization methods, the contributions of

this work are two-fold: 1) by leveraging the large amount of population data (CT images of

other patients) and the very limited amount of patient-specific data, ILSM is able to learn

patient-specific characteristics from only one image of the patient and apply the learned

model to the localization of beginning treatment CTs; 2) the proposed method can obtain

comparable (if not better) localization accuracy to the state-of-the-art methods while sub-

stantially reducing the runtime to 4 seconds. Extensive validations show that the proposed

method satisfies both accuracy and efficiency requirements in the IGRT workflow. Also,

compared to previous methods [Li et al., 2012, Liao et al., 2013, Gao et al., 2012b] that re-

quire manual annotation of the entire prostate on the patient-specific training images, ILSM

needs only the annotations of seven prostate anatomical landmarks, thereby significantly

1This work was published in IEEE Transactions on medical imaging [Gao et al., 2014]. This chapter uses
parts of text descriptions and figures from the published paper.
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Figure 4.1: Seven prostate anatomical landmarks: apex center (AP), prostate center (PC),
right lateral point (RT), left lateral point (LF), posterior point (PT), anterior point (AT)
and base center (BS).

reducing the labor required for manual annotations.

To leverage both population and patient-specific data, the learning framework (ILSM)

starts with learning a population-based discriminative appearance model. This model is

then “personalized” according to the appearance information from CT images of the specific

patient under treatment. Instead of either preserving or discarding all knowledge learned

from the population, the proposed method selectively inherits the part of population-based

knowledge that is in accordance with the current patient and at the same time incrementally

learns the patient-specific characteristics. This is where the name “incremental learning

with selective memory” comes from. Once the population-based discriminative appearance

model is personalized, it can be used to detect distinctive anatomical landmarks in new treat-

ment images of the same patient for fast prostate localization. Compared with traditional

learning schemes, such as pure patient-specific learning, population-based learning, and mix-

ture learning with patient-specific and population data, ILSM exhibits better capability to

capture the patient-specific characteristics embedded in the data.

The proposed method aims to localize the prostate in daily treatment images via learning

a set of local discriminant appearance models. Specifically, these models are used as anatomy
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detectors to detect distinctive prostate anatomical landmarks as shown in fig. 4.1. Based

on the detected landmarks, multiple patient-specific shape atlases (i.e., prostate shapes seg-

mented in planning and previous treatment images) can be aligned onto the treatment image

space by random sample consensus (RANSAC) [Fischler and Bolles, 1981]. Finally, majority

voting is adopted to fuse the labels from different shape atlases.

As shown in fig. 4.2, the proposed method consists of three components: 1) cascade

learning for constructing population-based anatomy detectors, 2) incremental learning with

selective memory for personalizing anatomy detectors to individual patients, and 3) multi-

atlas RANSAC for localizing the prostate in the treatment CT. Each step will be detailed

in the following sections.

Figure 4.2: The flowchart of the proposed method to localize the prostate in treatment CT
images
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4.1 Cascade Learning for Anatomy Detection

The proposed prostate localization method relies on several anatomical landmarks of the

prostate. Inspired by Viola’s face detection work [Viola and Jones, 2004], this work uses

a learning-based detection method that formulates landmark detection as a classification

problem. Specifically, for each image, the voxel of the specific landmark is positive and all

others are negatives. In the training stage, a cascade learning framework is employed to learn

a sequence of classifiers to gradually separate negatives from positives (fig. 4.3). Compared

to learning only a single classifier, cascade learning has shown better classification accuracy

and runtime efficiency [Viola and Jones, 2004][Zhan et al., 2011b]. Mathematically, cascade

learning can be formulated as

Input: Positive voxel set XP , negative voxel set XN , and label set L = {+1,−1}

Classifier: C(x) : F(x)→ L, F(x) denotes the appearance features of a voxel x

Initial Set: X0 = XP ∪XN

Objective: Optimize Ck, k = 1, 2, · · · , K, such that

X0 ⊇ X1 ⊇ · · · ⊇ Xk ⊇ · · · ⊇ XK , XK ⊇ XP , and ‖XK∩XN‖ ≤ τ‖XP‖

where Xk = {x|x ∈ Xk−1 and Ck(x) = +1}, and τ controls the tolerance ratio of false

positives.

Figure 4.3: Illustration of cascade learning.

The cascade classifiers Ck, k = 1, 2, · · · , K, are optimized sequentially. As shown in eq.

4.1 below, Ck is optimized to minimize the false positives left over by the previous k − 1
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classifiers.

Ck = arg min
C
‖{x|x ∈ Xk−1 ∩XN and C(x) = +1}‖ s.t. ∀x ∈ XP , C(x) = +1 (4.1)

where ‖.‖ denotes the cardinality of a set. It is worth noting that the constraint in eq. 4.1

can be simply satisfied by adjusting the threshold of classifier Ck [Viola and Jones, 2004] to

make sure that all positive training samples are correctly classified. This cascade learning

framework is general to any image feature and classifier. Extended Haar wavelets [Zhan

et al., 2011a, Zhan et al., 2008] and the Adaboost [Viola and Jones, 2004] classifier are

employed in this study.

Once the cascade classifiers {Ck(x)} are learned, they have captured the appearance

characteristics of the specific anatomical landmark. Given a testing image, the learned

cascade is applied to each voxel. The voxel with the highest classification score after going

through the entire cascade is selected as the detected landmark. To increase the efficiency and

robustness of the detection procedure, a multi-scale scheme is further adopted. Specifically,

the detected landmark in the coarse resolution serves as the initialization for landmark

detection in a following finer resolution in which the landmark is only searched in a local

neighborhood centered by the initialization. In this way, the search space is largely reduced

and the detection procedure is more robust to local minima.

4.2 Incremental Learning with Selective Memory

4.2.1 Motivation

Using cascade learning, one can learn anatomy detectors from training images of dif-

ferent patients (population-based learning). However, since intra-patient anatomy variations
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are much less pronounced than inter-patient variations (fig. 4.4), patient-specific appearance

information available in the IGRT workflow should be exploited in order to improve the de-

tection accuracy for an individual patient. Unfortunately, the number of patient-specific

images is often very limited, especially at the beginning of IGRT. To overcome this problem,

one may apply random spatial/intensity transformations to produce more “synthetic” train-

ing samples with larger variability. However, these artificially created transformations may

not capture the real intra-patient variations, e.g., the uncertainty of bowel gas and filling (fig.

4.4). As a result, cascade learning using only patient-specific data (pure patient-specific learn-

ing) often suffers from overfitting. One can also mix population and patient-specific images

for training (mixture learning). However, since patient-specific images are the “minority”

in the training samples, detectors trained by mixed samples might not capture patient-

specific characteristics very well. To address this problem, a new learning scheme named

ILSM is proposed to combine the general information in the population images with the

personal information in the patient-specific images. Specifically, population-based anatomy

detectors serve as an initial appearance model and are subsequently “personalized” by the

limited patient-specific data. In particular, ILSM uses backward pruning to discard obsolete

population appearance information and forward learning to incorporate the online-learned

patient-specific appearance characteristics.

4.2.2 Notations

Denote Dpop = {Cpop
k , k = 1, 2, · · · , Kpop} as a population-based anatomy detector

(learned as outlined in section 4.1) that contains a cascade of classifiers. Xpat
P and Xpat

N

are positives and negatives from the patient-specific training images, respectively. D(x)

denotes the class label (landmark vs non-landmark) of voxel x predicted by detector D.
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Figure 4.4: Inter- and intra-patient prostate shape and appearance variations. The red
points denote the prostate center. Each row represents prostate shapes and images from the
same patient.

4.2.3 Backward Pruning

The general appearance model learned from a population is not necessarily applicable

to the specific patient. More specifically, the anatomical landmarks in the patient-specific

images (positives) may be classified as negatives by the population-based anatomy detectors,

i.e., ∃k ∈ {1, 2, · · · , Kpop},∃x ∈ Xpat
P , Cpop

k (x) = −1. In order to discard these parts of the

population appearance model that do not fit the patient-specific characteristics, backward

pruning is proposed to tailor the population-based detector. As shown in alg. 4.1, in

backward pruning, the cascade is pruned from the last level until all patient-specific positives

successfully pass through the cascade. This is equivalent to searching for the maximum

number of cascade levels that could be preserved from the population-based anatomy detector

(eq. 4.2).

Kbk = max{k|Cpop
i (x) = +1,∀i ≤ k,∀x∈Xpat

P } (4.2)
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Algorithm 4.1 Backward pruning algorithm.

Input: Dpop = {Cpop
k , k = 1, 2, · · · , Kpop} - the population-based detector

Xpat
P - patient-specific positive samples

Output: Dbk - the tailored population-based detector
Init: k = Kpop, Dbk = Dpop.
while ∃x ∈ Xpat

P : Dbk(x) = −1 do
Dbk = Dbk\Cpop

k

k = k − 1
end while
Kbk = k
return Dbk = {Cpop

k , k = 1, 2, · · · , Kbk}

4.2.4 Forward Learning

Once the population cascade has been tailored, the remaining cascade of classifiers en-

codes the population appearance information that is consistent with the patient-specific

characteristics. Yet until now no real patient-specific information has been incorporated into

the cascade. More specifically, false positives might exist in the patient-specific samples, i.e.,

∃x ∈ Xpat
N ,∀k≤Kbk, Cpop

k (x) = +1. In the forward learning stage, the remaining cascade

from the backward pruning algorithm is used as an initialization, and the cascade learning

is re-applied to eliminate the patient-specific false positives left over by the previously inher-

ited population classifiers. As shown in alg. 4.2, a greedy strategy is adopted to sequentially

optimize a set of additional patient-specific classifiers {Cpat
k , k = 1, 2, · · · , Kpat}.

After backward pruning and forward learning, the personalized anatomy detector includes

two groups of classifiers (fig. 4.5). While {Cpat
k , k = 1, 2, · · · , Kpat} encode patient-specific

characteristics, {Cpop
k , k = 1, 2, · · · , Kbk} contain population information that is applicable

to this specific patient. This information effectively remedies the limited variability from the

small number of patient-specific training images.
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Algorithm 4.2 Forward learning algorithm.

Input: Dbk = {Cpop
k , k = 1, 2, · · · , Kbk} - the tailored population-based detector

Xpat
P - patient-specific positive samples

Xpat
N - patient-specific negative samples

Output: Dpat - the patient-specific detector
Init: k = 1, Dpat = Dbk, X0 = {x|x∈Xpat

N ∪X
pat
P , Dbk(x) = +1}

while ‖Xk−1∩Xpat
N ‖ > τ‖Xpat

P ‖ do
Train the classifier by minimizing eq. 4.3 below

Cpat
k = arg min

C
‖{x|x ∈ Xk−1∩Xpat

N , C(x) = +1}‖

s.t. ∀x ∈ Xpat
P , C(x) = +1 (4.3)

Xk = {x|x ∈ Xk−1,C
pat
k (x) = +1}

Dpat = Dpat ∪ Cpat
k

k = k + 1
end while
Kpat = k − 1
return Dpat = {Cpop

k , k = 1, 2, · · · , Kbk} ∪ {Cpat
k , k = 1, 2, · · · , Kpat}

‖.‖ denotes the cardinality of a set. τ is the parameter controlling the tolerance ratio of
false positives.

Figure 4.5: Incrementally learned anatomy detector.

4.2.5 Insight of ILSM

In fact, pure patient-specific learning (PPAT) and traditional incremental learning (IL)

can also be employed to incorporate the patient-specific information. It is interesting to com-

pare ILSM with PPAT and IL. PPAT only uses patient-specific data for training. In other

words, it completely discards all knowledge learned from the population, which is known

as “catastrophic forgetting” [Polikar et al., 2001]. The method is prone to overfitting if the

patient-specific data is very limited. On the other hand, IL aims to gradually adapt the clas-
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Figure 4.6: A schematic illustration of differences among PPAT, IL and ILSM.

sifiers with new data. It assumes that the previously learned knowledge is always applicable

for the new incoming data and tries to “remember” all of them. Consequently, the incremen-

tally learned patient-specific knowledge can be impaired by incompatible population-based

knowledge. In fact, in the context of cascade learning, IL can be regarded as the proposed

method without backward pruning. In contrast to PPAT and IL, ILSM aims to “selectively”

remember the subset of pre-learned knowledge consistent with the characteristics in the new

data. ILSM’s “selective memory” helps to overcome the limitations of the other two methods.

Fig. 4.6 schematically explains the differences among PPAT, IL, and ILSM from the

perspective of decision boundary refinement. Fig. 4.6(a) shows the sample distribution in

a 2D feature space. Stars and circles represent positive and negative samples, respectively.
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Blue stars/circles are population training samples, and green ones denote patient-specific

samples. The orange star is a testing sample.

As shown in fig. 4.6(b), since PPAT only uses patient-specific samples (stars/circles

in green), the generated decision boundaries (green lines) closely encompass the positive

patient-specific training samples (green stars). These decision boundaries might overfit the

very limited number of patient-specific samples. As a result, a testing sample (the orange

star in fig. 4.6(b)), which has slight differences from these training samples, is mis-classified.

IL derives the decision boundaries in two steps. First, as shown in fig. 4.6(c), it learns

the decision boundaries using population samples (blue stars/circles). Second, these bound-

aries are adapted to accommodate patient-specific samples. For example, in fig. 4.6(d), an

additional purple line is generated to separate patient-specific positives (green stars) and

negatives (green circles). Since IL aims to preserve all pre-learned population-based bound-

aries (blue and red lines), some patient-specific data (circled in red in fig. 4.6(d)) are still

mis-classified due to the “unforgettable” decision boundary (the red line in fig. 4.6(d)).

Similar to IL, ILSM also starts from a population-based learning (fig. 4.6(c)). However,

in adapting the decision boundaries to patient-specific samples, it is able to “forget” some

pre-learned knowledge that is not applicable to the patient-specific data. Specifically, the

obsolete decision boundary (red line in fig. 4.6(d)) can be discarded in the “backward

prunning” step of ILSM. Hence, ILSM can correctly classify all patient-specific data (fig.

4.6(e)). In addition, by re-using some applicable population-based decision boundaries (blue

lines), the overfitting risks are also highly reduced. In this way, ILSM can address the

limitations of both PPAT and IL.

In fact, ILSM can be considered as a more general learning framework of which IL
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and PPAT are just two special cases. In alg. 4.1, if all positive samples from patient-

specific images can be correctly classified by Dpop, the backward pruning will stop at the

first place, i.e., Kbk = Kpop (alg. 4.1). The learned patient-specific detector will then

preserve all population characteristics, which is the same as IL. At the other extreme, if

the population-based detector is completely incompatible with patient-specific samples, the

backward pruning will not stop until Dbk = ∅ (alg. 4.2), which means all population-based

classifiers will be discarded. In such cases, the forward learning will start from scratch with

patient-specific samples and ILSM becomes equivalent to PPAT. In practice, this situation

rarely happens. A manual check of trained detectors shows that all of these cases happened

when sufficient patient-specific images (≥ 5) had already been collected. In such situation,

PPAT is capable to obtain similar performance with ILSM.

4.3 Robust Prostate Localization by RANSAC

Once the population-based anatomy detectors are “personalized” by ILSM, they are used

to detect the corresponding prostate anatomical landmarks (fig. 4.1) in new treatment im-

ages. Based on the detected landmarks, any patient-specific prostate shape model (e.g., the

prostate shape delineated in the planning stage) can be aligned onto the treatment image

space for fast localization. For robust performance against wrongly detected landmarks, the

RANSAC algorithm [Fischler and Bolles, 1981] is used to estimate the optimal transfor-

mation that fits the shape model onto the detected landmarks (alg. 4.3). Considering the

limited number of anatomical landmarks (seven) as well as in the interest of computational

efficiency, rigid transformation is used in this work.

One can simply align the planning prostate shape onto the treatment image for localiza-

tion, which is referred as single-atlas RANSAC. However, due to the daily shape variations
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Algorithm 4.3 Robust Surface Transformation by RANSAC

Definition: N = 7 - number of anatomical landmarks
Input: pk, k = 1, 2, · · · ,N - landmarks in one patient-specific training image Ipat

mk, k = 1, 2, · · · ,N - detected landmarks in the treatment image Itreat

M - minimum number of landmarks required for transformation estimation
η - threshold to determine whether a landmark agrees on the transformation

Output: Topt - optimal transformation between prostate shapes in Ipat and Itreat

Init: Topt = nil, Eopt = infinity
for each landmark subset S of {1, 2, · · · ,N} with ‖S‖ ≥ M do

Tmaybe
S = arg minT

∑
k∈S ‖mk − Tpk‖2

for any k not in S do
if ‖mk − Tmaybe

S pk‖2 < η then
add k into S

end if
end for
Topt
S = arg minT

∑
k∈S ‖mk − Tpk‖2, Eopt

S =
∑

k∈S ‖mk − Topt
S pk‖2

if Eopt
S < Eopt then
Eopt = Eopt

S , Topt = Topt
S

end if
end for
return Topt

under radiotherapy, the performance of using a single shape model is usually limited. To

overcome this limitation, a multi-atlas RANSAC is proposed for robust prostate localiza-

tion. Instead of using a single shape model, this work uses all patient-specific shape models

available in both planning and previous treatment stages for multi-atlas labeling of a new

treatment image. In other words, each patient-specific shape model is treated as a shape

atlas. Once anatomical landmarks are detected in the new treatment image, all available

shape atlases can be independently aligned onto the new treamtent image space by RANSAC

(alg. 4.3). Then, majority voting is adopted to fuse the labels from different shape atlases.

Thus, by integrating all patient-specific shape information into a multi-atlas scheme, the

localization procedure is more robust to daily shape variations than single-atlas RANSAC.

Fig. 4.7 illustrates the multi-atlas model fitting process.
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Figure 4.7: Illustration of multi-atlas RANSAC. The first row shows aligned patient-specific
shape models (denoted by different colors) in a new treatment CT. The second row shows
the prostate likelihood map by averaging all aligned prostate masks. The third row shows
the final segmentation (red contours) overlaid by the ground truth (blue contours). Three
columns are the middle slices in transverse, sagittal and coronal views, respectively.

4.4 Experimental Results

Extensive experiments have been conducted and summarized in this section for evaluating

the performance of the proposed method and comparing it with other alternative methods.

Specifically, this section is organized as detailed below.

• Section 4.4.1 presents the description of two image datasets used in the experiments.

• Section 4.4.2 describes the accuracy and efficiency requirements of IGRT.
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• Section 4.4.3 discusses the parameter selection and experimental setting.

• Section 4.4.4 analyzes the number of cascade classifiers pruned and appended in the

backward pruning and forward learning stages, respectively.

• Section 4.4.5 evaluates the proposed method by comparing it with numerous alternative

methods.

• Section 4.4.6 reports the performance of the proposed method in terms of localization

accuracy, robustness to unsupervised annotation, generalization, sensitivity to land-

mark selection, temporal accuracy, and speed.

4.4.1 Data Description

The experimental data consists of two datasets acquired at the University of North Car-

olina Cancer Hospital. The first dataset consists of 25 patients with 349 images in total. The

planning images in this dataset were scanned by a Siemens Somatom CT scanner with the

field of view (FOV) 50 cm. The treatment images in this dataset were scanned by a Siemens

Somatom CT-on-rails scanner with FOV 40 cm. The second dataset consists of 7 patients

with 129 images in total. The planning images in the second dataset were acquired from

a Philips Big bore scanner with FOV 60 cm. The treatment images in the seond dataset

were acquired using the same machine and FOV as in the first dataset. For convenience the

first and second datasets are respectively named as dataset A and dataset B in the rest of

chapter. In both datasets every patient has one planning CT scan and 8 ∼ 20 treatment

CT scans. The prostates in all CT images have been manually contoured by an experienced

expert to serve as the gold standards. Table 4.1 lists other information of the two datasets,

e.g., spacing and image size.
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Table 4.1: Description of two CT Prostate datasets.

Dataset A Dataset B
Planning resolution (mm) 0.98× 0.98× 3 1.24× 1.24× 3

Treatment resolution (mm) 0.98× 0.98× 3
Image size 512× 512× 30 ∼ 120

Number of patients 25 7
Number of images 349 129

4.4.2 Accuracy and Efficiency Requirement for IGRT

As indicated by an experienced clinician, a localization algorithm with average surface

distance less than 3 mm, DSC greater than 0.80 and runtime less than 2 minutes would

be acceptable for standard conventional radiation therapy. For stereotactic body radiation

therapy (SBRT), which delivers much higher dose per fraction (800 cGy) than conventional

radiation therapy, it is desirable to track the intra-fraction prostate motion during the radi-

ation treatment to reduce the chances of missing the target. Thus, a localization algorithm

with a higher efficiency is often required. According to a clinician whom I talked to in

the North Carolina Cancer Hospital, in order to track the intra-fraction prostate motion in

SBRT, the time for the entire prostate localization procedure should be kept within 1 min

including the time for review and manual adjustment. Since the time for manual adjustment

heavily depends on the segmentation quality, it is difficult to give a quantitative acceptable

threshold for the algorithm speed. In principle, a faster algorithm would save more time for

better quality control and in the meanwhile minimize the discomfort of the patients when

they are fixed in the treatment bed.

94



4.4.3 Parameter and Experimental Setting

Three scales (coarse, middle, and fine) were used in the population-based learning. Ta-

ble 4.2 lists the training parameters of landmark detection at different scales that will be

elaborated in the following paragraphs.

Table 4.2: Training parameters for multi-scale landmark detection.

Scale Spacing (mm) W (mm) dn (mm)
Coarse 4 80 400
Middle 2 40 200
Fine 1 20 100

In the training of each cascade, positive training samples XP were the voxels annotated as

landmarks. The negative training sample set XN consisted of all voxels whose distances are

within dn from the annotated landmarks. At every cascade level k, if ‖XP‖ / ‖Xk−1∩XN‖ <

τ , a portion of the negatives was randomly sampled from Xk−1∩XN such that the posi-

tive/negative ratio is equal to τ (in this work, τ = 1/5). Otherwise, if ‖XP‖ / ‖Xk−1∩XN‖ ≥

τ , all samples in Xk−1∩XN were used as negative samples. τ was also used as a relative

threshold for stopping cascade learning and forward learning when the false positive / posi-

tive ratio is less than τ . In this way, the positive/negative ratio was restricted between τ and

1/τ at every cascade level, thus avoiding the problems caused by the imbalanced training

dataset.

Each training voxel was represented by a set of extended Haar wavelet features [Zhan

et al., 2011a] that were computed by convolving the Haar-like kernels with the intensity

image. The Haar-like kernels were generated by scaling the predefined Haar-like templates.

Each Haar-like template consists of one or more 3D rectangle functions with different polar-
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ities:

H(x) =
Z∑
i=1

biR(x− ai) (4.4)

R(x) =


1 , ‖x‖∞ ≤ 1

0 , ‖x‖∞ > 1

(4.5)

where Z ∈ {1, 2} is the number of 3D rectangle functions, and bi ∈ {−1, 1} and ai are the

polarity and translation of the i-th 3D rectangle function, respectively. Fig. 4.8 shows the 14

Haar-like templates used in this work. These templates were chosen in order to capture the

intensities and intensity differences at different locations and directions within a local patch.

The coefficients for scaling the Haar-like templates were 3 and 5. For each training voxel, the

extended Haar wavelet features were computed in its W×W×W local neighborhood. Then,

all these computed features were concatenated to form a patch-based feature representation

for the voxel. The training parameters are listed in table 4.2. In the cascade learning step,

the Adaboost classifier was employed as cascade classifier. The training of Adaboost classifier

stopped when 20 weak classifiers were obtained.

In the multi-atlas RANSAC, the minimum number of landmarks M required for trans-

formation estimation was set to 3 since only a 3D rigid transformation needs to be estimated.

The threshold η for determining the landmark agreement was set to 5 mm. In the remainder

of this section, all results from ILSM were generated with the same parameter setting.

Five-fold cross validation was used to evaluate the proposed method on dataset A. Specif-

ically, the population-based detectors of one fold were trained using CT scans from the other

four folds. For each fold, about 250 CTs were used in the training of population-based detec-

tors. For the experiments on dataset B, the population-based detectors were trained using

all CT scans in dataset A. In this way, the generalization of the proposed method can be
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Figure 4.8: 14 Haar templates. Blue and red cubes are 3D rectangle functions with positive
and negative polarities, respectively. Cubes with dashed borders are the empty areas which
are shown only for the purpose of visualization.

validated by applying the detectors learned from dataset A to dataset B, which was acquired

with a different scanner and protocol.

To emulate the real clinical setting, for prostate localization in treatment day N + 1, the

previous N treatment images and the planning image were used as patient-specific training

data (fig. 1.1). It was found from the experiments that, when N reached 4, there was

negligible accuracy gained from performing additional ILSMs. Therefore, after treatment

day 4, ILSM was not performed to further refine the patient-specific landmark detectors.

Instead, the existing detectors were directly adopted for prostate localization. If not explicitly

mentioned, all the reported performances of ILSM were computed using up to 5 patient-

specific training images (4 treatment images + 1 planning image).

4.4.4 Number of Cascade Classifiers

To gain an insight on the number of cascade classifiers remaining after backward pruning

or appended by forward learning, the statistics of Kpop, Kbk and Kpat are summarized in
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table 4.3. To recap, Kpop is the number of classifiers in the population-based cascade, Kbk

is the number of classifiers after backward pruning, and Kpat is the number of classifiers

appended by forward learning. As is seen, the majority of population cascade classifiers in

the coarse and middle scale were retained after backward pruning (i.e., Kbk is close to Kpop).

However, when it comes to the fine scale, many population cascade classifiers were discarded.

The reason for this may be related to the fact that individual differences are embodied in the

fine scale but not evident in the coarse and middle scales. Finally, for the number of patient-

specific cascade classifiers appended in the forward learning stage, experimental results show

that usually 2-3 classifiers are sufficient.

Table 4.3: Statistics of numbers of cascade classifiers.

Scale Kpop Kbk Kpat

Coarse 13.1± 1.2 12.6± 3.4 2.1± 1.3
Middle 13.5± 0.6 12.7± 2.8 2.5± 1.6
Fine 15.5± 2.1 6.3± 2.8 2.9± 0.1

4.4.5 Comparison Studies

This subsection compares the proposed method with several alternative methods for

prostate localization in treatment CT images. These methods include 1) four traditional

learning-based schemes for anatomy detection, 2) single-atlas RANSAC using only the

prostate shape from the planning image, 3) a traditional registration method based on pelvic

bones, 4) several published methods developed on the same dataset, and 5) other published

methods developed on different datasets.
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Comparison with Traditional Learning-based Approaches

To illustrate the effectiveness of the proposed learning framework, ILSM was compared

with four other learning-based approaches on dataset A. All of these methods localize the

prostate through learning-based anatomy detection with the same features, classifiers and

cascade framework (as described in section 4.1). Their differences lie in the training images

and learning strategies that are shown in table 4.4. To increase the variability of limited

patient-specific data, each patient-specific training image was rotated from −30 to 30 degrees

with a step size 5 degrees.

Table 4.4: Differences between ILSM and four learning-based methods. (POP: population-
based learning; PPAT: pure patient-specific learning; MIX: population and patient-specific
mixture learning; IL: incremental learning without backward pruning; ILSM: proposed in-
cremental learning with selective memory.)

POP PPAT MIX IL ILSM

Training Images
Population ! ! ! !

Patient-specific ! ! ! !

Learning Strategies
Cascade Learning ! ! ! ! !

Backward Pruning !

Forward Learning ! !

Table 4.5 compares the four learning-based approaches with ILSM on landmark detection

errors. To exclude the influence from other components, the reported landmark detection

error was directly measured without using RANSAC for outlier detection and correction. It

can be seen that ILSM outperformed the other four learning-based approaches on all seven

anatomical landmarks. In order to better interpret the landmark detection accuracies of the

proposed method, an experiment was further conducted to assess the inter-operator annota-

tion variability on CT prostate landmarks. Specifically, four different operators were asked

to independently annotate the seven antomical landmarks on 19 CT scans of one patient.
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Then, the differences of annotated landmarks were calculated between any pair of operators.

Finally, all pair-wise differences were averaged to obtain the inter-operator annotation vari-

ability (listed in table 4.6). From table 4.6, it can be seen that on average ILSM achieved

comparable (if not better) accuracy to the inter-operator annotation variability, exhibiting

better mean error but slightly worse standard deviation.

Table 4.5: Quantitative comparisons on landmark detection error (mm) between ILSM and
four learning-based methods on dataset A. Landmark errors reported here are calculated
without using RANSAC for outlier detection and correction. The last row shows the p-
values of paired t-tests when comparing landmark errors of four learning-based methods
with that of ILSM.

POP PPAT MIX IL ILSM
PC 6.69± 3.65 4.89± 5.64 6.03± 3.03 5.87± 4.01 4.73± 2.69
RT 7.85± 8.44 6.09± 9.00 5.72± 4.04 6.33± 4.82 3.76± 2.80
LF 6.89± 4.63 5.39± 7.61 5.61± 3.63 5.90± 4.54 3.69± 2.69
PT 7.04± 5.04 8.66± 13.75 6.18± 4.76 6.74± 5.05 4.78± 4.90
AT 6.60± 4.97 4.54± 5.06 5.38± 4.55 5.68± 4.97 3.54± 2.19
BS 6.12± 2.97 5.63± 7.44 6.63± 3.98 5.61± 2.94 4.68± 2.71
AP 10.42± 6.03 8.94± 16.07 8.77± 5.00 9.50± 7.17 6.28± 4.60

Average 7.37± 5.52 6.31± 10.13 6.33± 4.32 6.52± 5.09 4.49± 3.49
p-value < 10−5 < 10−5 < 10−5 < 10−5 n/a

Table 4.6: Quantitative comparison between landmark detection error (mm) of ILSM and
inter-rater annotation variability on 19 treatment scans of one patient. Landmark errors
reported here are calculated without using RANSAC for outlier detection and correction.
The p-value reported here is computed by a paired t-test.

PC RT LF PT AT
ILSM 4.72± 1.42 3.03± 1.75 3.17± 1.61 2.45± 1.00 3.24± 1.28

Inter-rater 4.50± 1.22 5.25± 1.27 5.77± 1.49 5.71± 2.85 4.44± 3.09
BS AP Average p-value

ILSM 5.57± 1.98 7.18± 4.17 4.20± 2.65 n/a
Inter-rater 4.63± 1.32 4.44± 1.05 4.96± 2.00 0.01

Table 4.7 compares the four learning-based approaches with ILSM on overlap ratios

(DSC). To exclude the influence of multi-atlas RANSAC, only a single shape atlas (i.e., the

100



planning prostate shape) was used for localization. Here, “Acceptance” denotes acceptance

rate. It is the percentage of images where an algorithm performs with a higher accuracy than

inter-operator variability (DSC = 0.81) [Foskey et al., 2005]. According to an experienced

clinician, these results can be accepted without manual editing. It can be seen that ILSM

achieved the best localization accuracy among all methods. Not surprisingly, by utilizing

patient-specific information, all three methods (i.e., PPAT, MIX and IL) outperformed POP.

However, their performances were still inferior to ILSM, which shows the effectiveness of

ILSM in combining both population and patient-specific characteristics.

Table 4.7: Quantitative comparisons on overlap ratios (DSC) between ILSM and four
learning-based methods in dataset A. (S) and (M) indicate single-atlas and multi-atlas
RANSAC, respectively. The p-values in the last row are calculated between four learning-
based methods and ILSM by paired t-tests.

POP (S) PPAT (S) MIX (S) IL (S) ILSM (S) ILSM (M)
Mean DSC 0.81±0.10 0.84±0.15 0.83±0.09 0.83±0.09 0.87±0.06 0.88±0.06

Acceptance 66% 85% 74% 77% 90% 91%
p-value < 10−5 < 10−5 < 10−5 < 10−5 < 10−5 n/a

Fig. 4.9 shows the differences in localization accuracy between ILSM and PPAT with

respect to the number of patient-specific training images. It can be seen that when the

number of patient-specific training images was limited (< 3), the performance of PPAT was

very poor even with artificial transformations (e.g., rotation) to increase the variability in

training samples. This was especially the case when only one patient-specific training image

was used. Due to the limited patient-specific patterns observed, PPAT suffered from severe

overfitting and resulted in high failure rates for some patients. In such cases, ILSM signif-

icantly outperformed PPAT by 40% − 70% DSC as shown in fig. 4.9(a). The main reason

why simple artificial transformations (e.g., rotation) failed to improve the performance of

PPAT is that generally they cannot well capture intra-patient anatomical appearance vari-
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(a) (b)

Figure 4.9: The function boxplot [Sun and Genton, 2011] of DSC difference curves between
ILSM and PPAT for convergence analysis on dataset A. Each DSC difference curve is a
function of DSC difference between ILSM and PPAT with respect to the number of patient-
specific training images. (a) shows 25 DSC difference curves each of which corresponds to
one patient. (b) shows the function boxplot of 25 curves in (a). The black curve in (b)
corresponds to the median curve, the magenta area covers the central 50% of the curves,
and two outmost blue curves are the extreme maximum and minimum curve, respectively.

ations such as bowel gas and filling. This also explains why previous pure patient-specific

learning algorithms [Li et al., 2012, Liao et al., 2013, Gao et al., 2012a] often start with

three patient-specific training images. By leveraging both population and patient-specific

data, ILSM can achieve DSC 0.85 ± 0.06 on the first two treatment images using only a

single planning CT as patient-specific training data while in the same setting PPAT only

obtained DSC 0.79± 0.15. As the number of patient-specific training images increased, the

performance difference between ILSM and PPAT gradually decreased. Ideally when suffi-

cient patient-specific data is collected, the performance of ILSM and PPAT should converge.

However, by using up to 13 patient-specific training images, ILSM was still slightly better

than PPAT (1.5% DSC difference), which implies the effectiveness of the general appearance

characteristics learned from the population.
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Figure 4.10: Comparison between single-atlas and multi-atlas RANSAC on dataset A using
overlap ratio (DSC).

Comparison with Single-atlas RANSAC

Fig. 4.10 shows the average DSCs of all 25 patients in dataset A with single-atlas

RANSAC and multi-atlas RANSAC. For single-atlas RANSAC, the planning prostate shape

was used as the shape atlas. For multi-atlas RANSAC, shape atlases consisted of not only

the planning prostate shape but also previously segmented prostate shapes of the patient.

It can be seen that in almost all patients multi-atlas RANSAC achieved better localization

accuracy than single-atlas RANSAC. Table 4.7 also compares single-atlas and multi-atlas

RANSAC on average DSC and acceptance rate. It shows that the localization accuracy

of ILSM can be further boosted by using multi-atlas RANSAC (1% improvement on both

average DSC and acceptance rate).
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Comparison with Traditional Bone Alignment

Bone alignment is usually adopted as a standard preprocessing step in many prostate

localization methods [Foskey et al., 2005, Li et al., 2012, Liao et al., 2013, Gao et al., 2012a].

The basic idea is to register the current treatment CT scan with the previous one of the same

patient by aligning the pelvic bones. The prostate mask in the previous CT can thereby

be transformed to the current treatment CT. In the bone alignment, the pelvic bones in

two CT scans are first segmented by thresholding. Based on the segmented binary bone

images, the optimal rigid transformation is estimated and used to align two scans. Since the

prostate is very close to the pelvic bone, bone alignment often achieves satisfactory overlap

ratios of the prostate. For a fair comparison, the same multi-atlas scheme was adopted as

described in section 4.3 to evaluate the performance gain of the proposed method over bone

alignment. The FLIRT toolkit [Fischer and Modersitzki, 2003] was used for bone alignment

as in the previous methods [Foskey et al., 2005, Li et al., 2012, Liao et al., 2013, Gao et al.,

2012a]. Fig. 4.11 visually shows the overlapping degree of the prostate after bone alignment

for 12 typical patients. The DSC obtained by bone alignment on this dataset is 0.78± 0.12,

which is significantly lower than the DSC achieved by the proposed method (0.89 ± 0.06).

In addition, bone alignment takes more computational time than the proposed method. To

align two CT scans of image size 512× 512× 60, bone alignment typically takes 5 minutes

while the proposed method takes only 4 seconds on the same image size.

To consider local intensity information around the prostate in the alignment procedure,

an experiment was further conducted to compare a local intensity-based rigid registration

method with the proposed method. In the former method, bone alignment was first per-

formed to align a previous CT scan with the current treatment CT based on the pelvic bone.
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Figure 4.11: Prostate contours of treatment CTs from 12 typical patients after bone align-
ment. The contours in the figure are from the middle transversal slices of the prostates after
bone alignment.

Then, a tight bounding box was determined using the prostate mask of the previous CT scan.

Based on the determined bounding box, the two CT scans were further registered using an

intensity-based rigid registration method as implemented in FLIRT by using correlation ra-

tio as the cost function. Finally, given the estimated rigid transformation, the prostate mask

in the previous CT scan was transformed onto the current treatment CT for localization.

Following the same multi-atlas scheme (section 4.3), it was found that compared to bone

alignment local intensity-based rigid registration improved the localization accuracy from

mean DSC 0.78 to 0.80. However, the standard deviation of DSC also increased from 0.12 to

0.14 due to some failure cases caused by the bad initialization of bone alignment. In contrast,

the proposed method achieved much higher accuracy (0.89 ± 0.06) with faster localization

speed (4 seconds).
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Comparison with CT prostate localization methods on the same dataset

The proposed method can achieve localization accuracy at DSC 0.89± 0.06 and average

surface distance 1.72± 1.00 mm on 446 treatment CT scans of 32 patients. Table 4.8 quan-

tatively compares the performance of the method with five other state-of-the-art methods

on the same dataset. These methods respectively employ a deformable model [Feng et al.,

2009], registration [Liao and Shen, 2012], multi-atlas based segmentation [Liao et al., 2013]

and classification [Li et al., 2012, Gao et al., 2012a] to localize the prostate on treatment

CTs. Because the quantitative measurements of compared methods were not available for

each testing image, the statistical significances of differences between compared methods and

the proposed method are not listed in table 4.8.

It can be seen from table 4.8 that the proposed method achieves comparable accuracy

to the state-of-the-art methods while substantially reducing the localization time to just 4

seconds. This fast localization speed helps overcome the limitation of previous localization

methods: if the prostate unexpectedly moves during the long localization procedure, their

method has to be performed again. It is also worth noting that previous methods [Li et al.,

2012, Liao et al., 2013, Gao et al., 2012a] require at least three patient-specific training

images for initialization due to the nature of pure patient-specific learning, which indicates

that such methods cannot be adopted to segment the first two treatment CTs. By effectively

combining both population and patient-specific information, even with only one planning CT,

the proposed method can still achieve reasonably accurate localization results on the first

two treatment CTs (DSC 0.85± 0.06).
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Table 4.8: Quantitative comparison with other CT prostate localization methods on the same
dataset (DSC: Dice similarity coefficient, ASD: Average surface distance, Sen.: Sensitivity,
PPV.: Positive predictive value).

Method
Deformable Registration Multi-atlas Classification

ILSM
Feng et al. Liao et al. Liao et al. Li et al. Gao et al.

Automaticity Fully Fully Fully Fully Semi Fully
Mean DSC 0.89 0.90 0.91 0.91 0.91 0.89
Mean ASD 2.08 1.08 0.97 1.40 1.24 1.72

Median Sen. n/a 0.89 0.90 0.90 0.92 0.89
Median PPV. n/a 0.89 0.92 0.90 0.92 0.92
Speed (sec.) 96 228 156 180 600 4

Comparison with CT prostate localization methods on the different datasets

Table 4.9 lists the performance of other CT prostate localization methods for reference.

Due to the fact that neither their data nor the source codes of these methods are publicly

available, only the numbers reported in their publications are cited. Based on the reported

numbers, it can be seen that the proposed method has been evaluated on the largest dataset

and achieved the best localization accuracy.

Table 4.9: Comparison with other CT prostate localization methods on different datasets
for reference (DSC: Dice Similarity Coefficient, Sen.: Sensitivity, PPV.: Positive Predictive
Value).

Method
Deformable Models Registration

ILSM
Costa et al. Chen et al. Foskey et al.

image # 16 185 65 446
patient # n/a 13 5 32
Mean DSC n/a n/a 0.84 0.89

Median Sen. 0.79 0.84 n/a 0.89
Median PPV. 0.86 0.87 n/a 0.92
Speed (sec.) n/a 60 750 4
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4.4.6 Algorithm Performance

This subsection reports the performance of the proposed algorithm in terms of localization

accuracy, robustness to unsupervised annotation, generalization, sensitivity to landmark

selection, temporal accuracy, and speed.

Localization Accuracy

Table 4.10 shows the localization accuracy of the proposed method on dataset A and

dataset B. It can be seen that the proposed method is able to achieve more consistent

and accurate localizations (DSC 0.89 ± 0.06) than inter-operator variability (DSC 0.81 ±

0.06) [Foskey et al., 2005]. This indicates that the proposed method in fact well satisfies

the accuracy requirement of IGRT and can be adopted in the clinical setting. To assess

the worst and optimal accuracy of the proposed method, two further experiments were

conducted. The first experiment detected only one anatomical landmark (prostate center)

and used only one shape atlas (planning prostate shape) for localization. The performance

in this setting is regarded as the worst performance that the proposed method can get.

The second experiment localized the prostate using manually annotated landmarks and

multiple shape atlases (prostate shapes in planning and previous treatment images). This

accuracy indicates the optimal performance of the proposed method. Table 4.11 lists the

worst and optimal accuracy on different quantitative measures. It should be noted that the

only difference between the optimal accuracy (shown in table 4.11) and the reported accuracy

of the proposed method (shown in table 4.10) is in the landmark localization. The optimal

accuracy was calculated using the manually annotated landmarks, and the performance of

the proposed method was obtained using automatically detected landmarks. By comparing
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the two, it can be seen that the performance of the proposed method is quite close to the

optimality, which indicates that accurate landmark detection results can be achieved by

using ILSM. On the other hand, by using only one anatomical landmark and a single shape

atlas, the localization accuracy is still comparable to the inter-operator variability (DSC

0.81± 0.06), which shows the effectiveness of ILSM in CT prostate localization.

Table 4.10: Localization accuracy of ILSM on two datasets (DSC: Dice Similarity Coefficient,
ASD: Average Surface Distance, Sen: Sensitivity, PPV: Positive Predictive Value).

DSC ASD (mm) Sen. PPV.
Dataset A 0.88± 0.06 1.89± 0.98 0.87± 0.06 0.89± 0.06
Dataset B 0.91± 0.05 1.27± 0.90 0.88± 0.05 0.93± 0.06

All 0.89± 0.06 1.72± 1.00 0.88± 0.06 0.90± 0.06

Table 4.11: Worst and optimal accuracy of ILSM in CT prostate localization. The reported
values are calculated on both dataset A and dataset B.

DSC ASD (mm) Sen. PPV.
Worst 0.92± 0.03 1.00± 0.60 0.91± 0.05 0.94± 0.03

Optimal 0.81± 0.09 3.01± 2.01 0.80± 0.10 0.83± 0.10

Robustness to unsupervised annotation

As shown in fig. 4.2, in order to incorporate patient-specific characteristics, ILSM requires

annotations in planning and previous treatment images. Annotations in planning images are

always provided by physicians. Afterwards, there are two ways to obtain annotations in

treatment images. 1) Supervised annotation. In this scenario, detectors trained by planning

and previous treatment images are applied to localize the landmarks in current treatment

images. The detection results need to be reviewed and corrected by physicians before being

used to train detectors for the next treatment days. 2) Unsupervised annotation. The auto-

detected results are considered as ground truth and used to train detectors for the next
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treatment days without manual review/corrections. Although the first scenario guarantees

all training data are correctly annotated, the second scenario has the advantage of less manual

operations (i.e., no manual operation, except the annotation in the planning CT) as long as

the uncorrected annotation errors do not significantly degrade the localization accuracy.

ILSM was validated in both scenarios on dataset A. To simulate the supervised anno-

tation, the manually annotated landmarks were directly used as the corrected landmarks

for training. Compared with the average DSC of 0.88 ± 0.06% achieved using supervised

annotation, the proposed method can achieve average DSC 0.85± 0.06% using unsupervised

annotation. This is still more accurate than the inter-operator variability (0.81 ± 0.06%).

Therefore, if some specific IGRT workflows require very few manual operations, the proposed

method can be employed in the unsupervised annotation mode yet still with acceptable ac-

curacy.

It is worth noting that compared with previous methods [Li et al., 2012, Liao et al.,

2013, Gao et al., 2012a] that require precise manual segmentation of the entire prostate

in the training treatment images, the proposed method requires only the annotations of at

most seven anatomical landmarks, which dramatically reduces physicians’ efforts on manual

annotation. To be precise, the annotation time of an experienced radiation oncologist was

recorded on the 19 treatment scans of one patient. It takes 11.7± 2.5 minutes to manually

segment the entire prostate while it takes only 1.2±0.3 minutes to annotate seven anatomical

landmarks. If the proposed method is used to automatically detect the seven landmarks and

radiation oncologists are only asked to verify and edit the detected landmarks, the landmark

annotation time can be further reduced to 8.3± 1.3 seconds.
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Generalization

A learning-based algorithm has to have good generalization in order to be applied on data

from various institutions and scanners. To evaluate the generalization of ILSM, the localiza-

tion algorithm was tested on dataset B, which was acquired under a different scanner from

that of dataset A. All CT scans of dataset A (349 scans) were used to train the population-

based landmark detectors for dataset B. The localization accuracy is shown in table 4.10,

which indicates the good generalization of the proposed method. This is mainly due to

the “selective memory” nature of ILSM. Even when the population landmark detectors are

trained using a dataset with slightly different scanning protocols, after “personalization” by

ILSM, the portion of the population-based appearance knowledge that is not in accordance

with the current patient-specific characteristics will be discarded. By preserving only the

applicable knowledge learned from population data, the generalization of the learned detec-

tors is improved. Table 4.10 summarizes the overall performance of the proposed method on

total 32 patients.

Sensitivity to Landmark Selection

To assess the sensitivity of the proposed method to landmark selection, the performance

of the proposed algorithm was tested by alternately excluding one of the seven landmarks.

Table 4.12 lists the DSCs of the proposed method on dataset A by excluding any of the

seven landmarks. Overall, the performance is quite consistent no matter which subset of six

landmarks is picked. Further, it is surprising to see that by excluding any of the landmarks

in {PC,BS,AP}, the localization accuracy can actually be increased compared to the per-

formance of DSC 0.88 ± 0.06 obtained by using all landmarks. The reason for this can be
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Table 4.12: Sensitivity to landmark selection as measured by DSC. The table below shows
the localization accuracies of six landmarks by excluding any of the seven landmarks used
in the paper. The reported values are computed on dataset A.

Excluded PC RT LF PT
DSC 0.89± 0.05 0.88± 0.06 0.88± 0.06 0.88± 0.06

Excluded AT BS AP
DSC 0.88± 0.05 0.89± 0.05 0.89± 0.05

inferred from table 4.5. That is compared with other landmarks the landmark detections of

PC, BS and AP are less accurate due to the indistinct image appearance in those regions.

Therefore, removing any of them helps improve the overall localization accuracy.

Temporal Analysis of Localization Accuracy

Fig. 4.12 shows the localization accuracy curve with respect to the number of patient-

specific training images used. Not surprisingly, the localization accuracy of the proposed

method increases as more patient-specific training data (i.e., image and shape) is available.

The most significant improvement happens when the number of patient-specific training

images increases from 1 to 3. As the number of patient-specific training images increases to

5, the localization accuracy levels off, which indicates that after the 4-th treatment day the

patient-specific landmark detectors are sufficiently accurate, and thus there is no need to

do additional incremental learning. That is, the existing landmark detectors can be directly

applied to localize the prostate in the future treatment images. Considering that the period

of standard radiation treatment typically takes 35 days, the ILSM procedure is only needed

in the first 4 treatment days (about 4/35 ≈ 11% fraction of the entire treatment course).
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Figure 4.12: Temporal analysis of localization accuracy on dataset A.

Speed

The typical runtime for the proposed method to localize the prostate is around 4 seconds

(on an Intel Q6600 2.4GHz desktop with 4 GB memory), which is almost real-time compared

to previous methods. Thanks to incremental learning, the training time is reduced from 3-4

hours (traditional population-based training) to 30 minutes per landmark detector. Each

landmark detector is independent and thus can be trained in parallel. It is also worth noting

that the incremental learning process can be completed overnight before the treatment day.

Therefore, the learning step does not take any additional time when the patients are receiving

treatment.

4.4.7 Experiment Summary

In summary, the experiments show the following:

• Compared to traditional learning schemes, ILSM shows better landmark detection and

prostate localization accuracy.

• Compared to other state-of-the-art methods, 1) the proposed method can achieve com-

parable accuracy with much faster speed; 2) the proposed method can be applied onto
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any treatment day of radiotherapy since it is still reasonably accurate (DSC ∼ 0.85)

even with only one patient-specific training image (i.e., the planning CT); 3) the pro-

posed method requires only annotations of seven anatomical landmarks, thus signifi-

cantly reducing physicians’ manual efforts (from 11 mins to 1 min).

• Validated on 446 treatment CTs, average DSC 0.89± 0.06 was achieved in 4 seconds,

which indicates that the proposed method is well-suited for the accuracy and speed

requirements of IGRT.

4.5 Summary

Different from planning-CT segmentation, the IGRT workflow provides extra patient-

specific data that could be utilized in treatment-CT segmentation. However, as the patient-

specific data is very limited, conventional learning-based approaches are prone to overfitting.

To address this issue, a novel learning scheme, namely incremental learning with selective

memory (ILSM), was proposed in this chapter. By leveraging the large amount of population

data and the limited amount of patient-specific data, ILSM takes both generalization and

specificity into account when learning discriminant anatomy detectors. The learned detectors

can accurately and efficiently localize the anatomical landmarks in new treatment CT images.

After the landmarks are localized, a multi-atlas RANSAC algorithm was proposed to align

the prostate shapes from the previous scans of the patient to the current treatment image

for robust prostate localization. Validated on a large dataset (446 CT scans), ILSM shows

comparable accuracy (DSC 0.89 ± 0.06) to the state-of-the-art methods while significantly

reducing the runtime to 4 seconds. Moreover, in comparisons with traditional learning-based

schemes (e.g., population learning, pure patient-specific learning, and mixture learning with
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population and patient-specific data), ILSM shows better capability to capture patient-

specific appearance characteristics from limited patient-specific data.
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CHAPTER 5 : SUMMARY, DISCUSSION AND FUTURE WORK

5.1 Summary

Automatic segmentation of pelvic CT images plays an important role in image guided

radiotherapy of prostate cancer. It saves radiation oncologists’ time for manual contouring

and also improves the contouring consistency compared to human experts. In the planning

stage, the automatic segmentation can be used for treatment planning. In particular, it

provides the target region (prostate) where the prescribed dose should be delivered, and it

also provides the regions of nearby healthy tissues where the radiation should be avoided. In

the treatment stage, the daily segmentation of the prostate captures the current position of

the prostate. It can be used to transform the treatment plan from the planning image space

to the treatment image space for daily radiotherapy. Therefore, the accuracy of automatic

segmentation is critical for the efficacy of radiation treatment.

The difficulty of planning-CT segmentation comes from low contrast and dramatic ap-

pearance and shape variations of pelvic organs across subjects. Deformable models (e.g.,

the active shape model) are often used to segment pelvic organs from CT images, because

they effectively combine low-level appearance cues with high-level shape information in the

segmentation. However, deformable models are sensitive to initialization and not flexible to

segment organs with tubular shapes (e.g., the rectum). These drawbacks limit their perfor-

mance in the planning-CT segmentation. To overcome these limitations, chapter 3 proposed

explicitly learning a deformation field for guiding deformable segmentation. Two techniques



were proposed to robustly and accurately estimate the deformation fields.

• An auto-context model was proposed to iteratively refine the deformation field by

taking into account the predicted deformations in a spatial neighborhood. It was shown

that the auto-context model captures the structured information, which is helpful to

suppress prediction noise and improve spatial consistency of estimated deformation

fields.

• A multitask random forest was proposed to estimate the deformation field jointly with

the organ classification map. Through joint learning of deformation regression and

organ classification in a single random forest, the multitask random forest improves

the robustness of deformation field estimation by exploiting information from organ

classification.

The proposed method was validated on a large dataset of pelvic CT images. The extensive

experiments showed that 1) the auto-context model improves the accuracy of deformation

field estimation; 2) the multitask random forest is better than the standard regression forest

for deformation field estimation; 3) the regression-based deformable models are insensitive to

initialization and flexible to segment tubular organs, and thus better suited for planning-CT

segmentation than conventional deformable models.

While the proposed method for planning-CT segmentation can be directly used to lo-

calize the prostate in daily treatment images, its accuracy would be limited due to the

neglect of patient-specific data available in the planning and previous treatment days. To

fully exploit the limited patient-specific data, chapter 4 proposed an incremental learn-

ing algorithm, namely incremental learning with selective memory (ILSM), to update the
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population-learned anatomy detectors. The anatomy detectors are learned by the conven-

tional cascade learning framework and used to detect distinctive prostate landmarks in the

treatment images. Afterwards, the detected landmarks can be used to localize the prostate

by aligning the segmented prostates from the planning and previous treatment images onto

the current treatment image. In ILSM two steps were used to update the anatomy detec-

tors. The backward pruning step discards the obsolete information from population-learned

cascade classifiers that are incompatible with the patient-specific data. The forward learning

step learns additional patient-specific cascade classifiers that fit the personalized character-

istics. After updating the cascade classifiers, the anatomy detectors consist of both general

information from a population and specific information from the patient data.

Extensive experiments showed that 1) ILSM is better suited than other learning schemes

for anatomical landmark detection in the treatment images; 2) the localization accuracy

is improved by using multiple segmented prostate shapes from previous days; 3) ILSM is

able to achieve competitive localization accuracy to the state-of-the-art methods, but with

significant speedup.

The contributions of this dissertation are as follows:

1) A novel deformable model, namely a regression-based deformable model, is proposed to

hierarchically deform a shape model onto the target organ boundary based on an explicitly

learned deformation field.

The regression-based deformable model (RDM) was presented in section 3.3. In RDM a

deformation field is predicted from image data and used to guide deformable segmentation.

The deformation field in RDM is different from the one used in pair-wise image registration.

In RDM each voxel in the deformation field is associated with a displacement vector that
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points from this voxel to the nearest voxel on the organ boundary. The displacement vector

tells the distance and direction from a voxel to the organ boundary, and it can be used to

guide the deformation of each vertex on the shape model toward the organ boundary. To

increase the robustness of regression-based deformation, a hierarchical deformation strategy

was proposed to gradually relax the freedom of deformation as the shape model approaches

the organ boundary. The experiments in sections 3.5.6 and 3.5.7 showed that 1) RDM is

less sensitive to initialization than conventional deformable models; It can achieve accurate

segmentation results of CT pelvic organs by initializing the mean shape in the image center;

2) RDM is more flexible in segmenting tubular organs (e.g., the rectum) than several other

methods under comparison.

2) An auto-context model is adopted to iteratively refine the predicted deformation field by

gradually incorporating the neighborhood prediction information.

The conventional voxel-wise prediction doesn’t take into account the correlations of de-

formations in the spatial neighborhood. As a result, the predicted deformation field is often

noisy and spatially inconsistent. To overcome this problem, section 3.1 proposed using an

auto-context model to iteratively predict the deformation field. The auto-context model is

built upon the conventional voxel-wise prediction. It adds additional iterations to refine the

deformation field. In the first iteration, the auto-context model predicts the deformation of

each voxel independently based on image appearance, which is the same with the conven-

tional voxel-wise prediction. In the later iterations, the auto-context model learns additional

deformation regressors by extracting not only appearance features from the target image

but also context features from the intermediate deformation field predicted in the previous

iteration. Since context features capture the deformation information in the neighborhood,
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the auto-context model is able to utilize this information to reduce prediction noise and im-

prove the spatial consistency of the predicted deformation field. Experiments in section 3.5.3

showed that the auto-context model leads to a big improvement in segmentation accuracy

compared to conventional voxel-wise prediction.

3) A multitask random forest is proposed to learn the deformation from local image ap-

pearance by coupling deformation regression and organ classification in a common random

forest.

The multi-task random forest was presented in section 3.2. It shares a similar idea with

many multitask learning algorithms. Learning multiple related tasks using the same rep-

resentation/model tends to improve the generalization of both tasks. In this dissertation

the multi-task random forest combines the learning of a deformation regressor and an or-

gan classifier in a single random forest. Embedding such a multi-task random forest in the

auto-context model allows the prediction information from deformation regression and organ

classification to be exchanged during the iterative refinement. Experimental results in sec-

tions 3.5.4 and 3.5.5 showed that the multi-task random forest improves both classification

and regression performance compared with standard classification and regression forests.

4) A multi-resolution strategy is adopted to segment multiple pelvic organs from CT images,

where the coarse-level deformation fields are jointly estimated for all organs to consider their

spatial relationship and where the fine-level deformation fields are separately estimated for

each organ to make the respective prediction models specific.

The multi-resolution strategy for deformation field estimation was presented in section

3.4. The prediction models at different resolutions are trained with different tradeoffs be-

tween accuracy and robustness. In the coarse resolutions the robustness is of the first priority
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and the accuracy is secondary. The robustness of the prediction model is improved from two

aspects: 1) the training samples are drawn from the entire image domain and 2) deformation

regressors of different organs are jointly trained to exploit the inter-organ spatial relationship.

In the fine resolutions, the accuracy of the prediction model is critical. Since deformable

models are assumed to be close to target organ boundaries in the fine resolutions, the accu-

racy can be improved by 1) taking training samples only around the target organ boundaries

and 2) training one prediction model for each organ. Although the multi-resolution strategy

was not quantitatively evaluated in the experiments, empirically I observed that the multi-

resolution strategy improves the robustness and accuracy of regression-based deformable

segmentation. Besides, the efficiency of RDM is also improved by jointly estimating the

deformation fields of different organs in the coarse resolutions.

5) Extensive experiments on a large prostate CT dataset (> 300 patients) show that the

proposed method can accurately segment the prostate, bladder, rectum and two femoral heads

from planning CT images and that it outperforms many existing methods in this task.

To the best of my knowledge, this is the largest dataset ever reported in the literature

for evaluating automatic segmentation methods for CT pelvic organs. In the experiments I

compared the multi-task random forest with the standard random forest (e.g., classification

and regression forests) for deformation field estimation. I showed that joint regression and

classification can improve the organ classification and deformation regression and that it

can also overcome the missing boundary problem suffered by the standard regression forest.

Besides, I also compared regression-based deformable models with a variant of the active

shape model with different initialization strategies. The results showed that learning a

deformation field to guide deformable segmentation can largely reduce the sensitivity of
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deformable models to initialization and improve the accuracy for segmenting organs with

complex shapes, such as the rectum. The segmentation accuracy evaluated over CT scans

from 300 patients showed that the proposed method can achieve quite accurate results for

CT pelvic organ segmentation.

6) The cascade learning framework is adapted to address the problem of unbalanced training

samples in the classification-based landmark detection. It can efficiently localize a landmark

in a 3D medical image volume within one second using a multi-resolution implementation.

The cascade learning was presented in section 4.1. The idea of cascade learning was

originally proposed in face detection in natural images. In this dissertation I borrowed the

idea to address the unbalanced training problem existing in the classification-based landmark

detection. Specifically, in the classification-based approach positive training samples are

voxels near the annotated landmarks in the training images, and negative training samples

are voxels elsewhere. To separate the limited positive samples with unlimited negative

samples, a cascade of classifiers are sequentially learned in a boosting manner to gradually

filter out the negative samples from positive samples. With an extension to 3D Haar-like

features and a multi-resolution implementation, I showed that the cascade learning can be

used to accurately and efficiently detect anatomical landmarks in 3D medical images.

7) An incremental learning scheme, namely incremental learning with selective memory, is

proposed to update the existing landmark detector learned from massive population data with

limited patient-specific data. It can be used to personalize the population-based landmark

detectors to a specific patient.

Incremental learning with selective memory (ILSM) was presented in section 4.2. It can

personalize a population-based landmark detector into a patient-specific one by selectively
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discarding population-based classifiers that are inapplicable to the patient and meanwhile

incrementally learning patient-specific classifiers that fit the appearance characteristics of

CT scans of the patient. The difference between conventional incremental learning algo-

rithms and ILSM is that ILSM introduces a backward pruning step to discard classifiers

that are inapplicable to the patient. As validated in section 4.4.5, this backward pruning

step greatly improves the performance of landmark detection and segmentation compared

with conventional incremental learning without backward pruning. ILSM provides a new

way to combine limited patient-specific data with massive population data. Compared to a

direct combination of both data, ILSM offers two advantages: 1) ILSM avoids re-training

from scratch, thereby reducing the training time; 2) ILSM avoids the limited patient-specific

data being overwhelmed in the massive population data; hence it can better capture the

patient-specific appearance characteristics.

8) A schematic illustration is provided to explain the mechanism behind incremental learning

with selective memory.

In section 4.2.5 a schematic illustration was given for understanding the incremental

learning with selective memory (ILSM). The illustration showed how ILSM changes the de-

cision boundaries of population-based cascade classifiers in order to accomodate the limited

patient-specific data. The illustration also compared ILSM with two other learning schemes,

pure patient-specific learning and conventional incremental learning, in the way that deci-

sion boundaries are formed during the learning process. Different from pure patient-specific

learning (PPAT), which generates decision boundaries tightly around the limited patient-

specific data, ILSM derives parts of decision boundaries from the population data. These

population-based decision boundaries increase the generalization of classifiers when the num-
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ber of patient-specific training data is limited. On the other hand, different from conven-

tional incremental learning (IL), which assumes that the decision boundaries learned from

the population data are all correct, ILSM discards some inapplicable population-based de-

cision boundaries in order to better fit the patient-specific data. By selectively deriving

decision boundaries from population-based classifiers, ILSM improves the performance of

landmark detection over PPAT and IL.

9) Random sample consensus (RANSAC) is used to align the previous segmentations of the

same patient onto the target treatment image by considering the possibility of mis-detected

landmarks

There are always situations when landmarks are detected in wrong positions. To make

prostate localization robust to wrongly detected landmarks, section 4.3 presented a robust

model fitting algorithm - RANSAC, which is well known in computer vision but less explored

in the field of medical image analysis. I used RANSAC to fit a previous prostate shape

onto the detected landmarks. Because the number of detected landmarks are more than

the minimum number of landmarks required for estimating the rigid transformation, the

RANSAC fitting process is tolerant of a few landmarks being wrongly detected. To further

improve the localization accuracy, I borrowed the idea from multi-atlas based segmentation

and aligned not only the prostate shape in the planning image but also the prostate shapes

in the previous treatment images onto the target image for localization.

10) Extensive experiments on a large prostate CT dataset (> 400 treatment CT images)

show that the proposed method is able to accurately localize the prostate in treatment CTs

within 4 seconds; the method satisfies the accuracy and efficiency requirement of IGRT.

Extensive experiments were conducted to evaluate the proposed method on a large CT
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dataset for treatment-CT segmentation. All the experiments were presented in section 4.4.

In the experiments I evaluated ILSM by comparing it with other learning schemes, such as

population-based learning, pure patient-specific learning, mixture learning and conventional

incremental learning, on both landmark detection accuracy and localization accuracy. I also

compared the proposed method with other popular methods on treatment-CT segmentation,

such as registration-based methods and classification-based methods. All the comparisons

showed that ILSM is a good fit for prostate localization in treatment CT images in terms of

both accuracy and speed. Besides these comparison experiments, other experiments were also

conducted to evaluate the performance of ILSM using only one landmark, the robustness to

unsupervised annotations, the sensitivity to landmark selection and the temporal localization

accuracy. These experiments offer a thorough understanding of the performance of ILSM

under different real-world settings.

Thesis. Deformable models benefit in accuracy from explicitly learning deformations from

image appearance. Landmarks can be utilized for fast and accurate segmentation of treatment

CTs by effectively combining limited patient-specific data with massive population data in the

cascade learning framework.

This dissertation showed that learning a deformation field to guide deformable segmenta-

tion overcomes two limitations of conventional deformable models, i.e., sensitivity to initial-

ization and inflexibility to segment organs with complex shapes and shape variations. The

deformation field is useful in situations when it is difficult to initialize deformable models or

the target organ has large shape variations. The problem of CT pelvic organ segmentation

falls exactly into these situations. Specifically, the bladder and rectum have variable shapes

and are thus difficult for initialization. And the rectum has complex tubular shapes, which
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bring challenges to conventional deformable models. A global deformation field eliminates

the pain of initialization as deformations toward the target organ boundaries are available at

every image location. Even if the shape model is initialized far away, it can still be deformed

onto the boundaries following the guidance from the deformation field. In addition to initial-

ization, the flexbility of deformable models is also increased thanks to the deformation field.

Based on the location, the deformation at each vertex can be dramatically different. Defor-

mations are large if a vertex is far from the boundary and small if it is close. The spatially

adaptive deformations make it easy to deform the mean shape onto the rectum boundary

even if the mean shape is quite different from the target rectum shape to be segmented.

To improve the efficiency of prostate localization in treatment CTs, this dissertation

proposed a landmark-based segmentation method. To address the limitation of insufficient

patient-specific data in the beginning of radiotherapy, an incremental learning algorithm was

proposed to update population-based landmark detector with limited patient-specific data.

This algorithm can effectively combine massive population data with limited patient-specific

data. It also addresses the overfitting problem if the landmark detector is trained with

only limited patient-specific data. The experimental results showed that patient-specific

data is critical for high segmentation accuracy of the prostate in treatment CT images.

By combining massive population data with limited patient-specific data, the accuracy and

robustness of prostate segmentation is improved especially in the beginning treatment days

when the patient-specific data is limited. The idea of incremental learning provides a new

way to combine population and patient-specific data. It is applicable not only in daily

treatment-CT segmentation but also in other applications where longitudinal images from

the same patient are acquired in an ordered time manner.
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5.2 Discussion

Cone beam CT. In this dissertation the daily treatment images were acquired on a CT-

on-rail scanner. Nowadays instead of acquiring a CT image, more and more hospitals are

acquiring a cone beam CT image (CBCT) at each treatment day in order to reduce the

imaging radiation to the patient. As the proposed method is purely data-driven, it would be

relatively easy to extend the method to localize the prostate in CBCT images without any

change of implementation. However, the CBCT images are often noisier than CT images, and

motion artifacts are more severe in CBCT images than CT images. Thus it is still a question

that whether the proposed method can work well in CBCT prostate localization. If the

appearance patterns of a landmark are consistent across different treatment days in CBCT,

I think it is very likely that the proposed method would perform well in CBCT images.

However, if the noise and artifacts make the appearance patterns of the same landmark

different across treatment days, it will downgrade the performance when the method is

applied to CBCT images. Thus, there is still work that needs to be done for evaluating the

proposed method in CBCT images.

Metal Artifacts. The proposed methods work well in the presence of mild metal artifacts,

such as those caused by fiducial markers. However, they fail in the presence of severe

metal artifacts, such as those caused by an implanted hip prosthesis. While metal deletion

techniques [Boas and Fleischmann, 2012] can be used to reduce such image artifacts in

the reconstruction stage, they are not universally available. Therefore, it is still desirable to

address severe metal artifacts in the post-processing stage after image reconstruction. Recent

research studies on sparse representation and matrix recovery have shown that corrupted

images can be well recovered under mild assumptions, such as assuming the low rank property
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of image matrix. These techniques can be potentially useful to recover CT images from severe

metal artifacts. By adopting them as a pre-processing step, it may be feasible to directly

apply the proposed methods for organ segmentation in CT images that are contaminated by

severe metal artifacts.

Applicability to Other Problems. Although the methods discussed in this dissertation

are proposed for segmenting pelvic organs in CT images, they are applicable to other general

problems as well. For example, the regression-based deformable model (RDM) can be applied

to most segmentation problems in medical images. It is particularly suitable for segmenting

organs with complex shapes and organs that are difficult for initialization. For example,

we can use RDM for segmenting the cervix in female CT images and for localizing regions

of interest in magnetic resonance (MR) brain images. The landmark detection method

is general and can be applied to detect any anatomical landmark in medical images. In

this dissertation landmarks are used for segmentation. But they can be also used for other

purposes, such as registration and disease diagnosis. The incremental learning algorithm can

be used in other applications where images of the same patient are acquired longitudinally.

In such a context, patient-specific images acquired in the past can be used in the incremental

learning algorithm to improve the segmentation of future images from the patient.

Limitations. The regression-based deformable model (RDM) utilizes context information

for segmentation. It works well if the context information is reliable across subjects. In

situations where the context information is variable, RDM will fail. A good example is

tumor segmentation. In brain MR images, tumors can appear almost everywhere in the

brain. The uncertainty of tumor positions makes context information useless. In such a

case, it is impossible to learn a regressor that is able to predict the deformation from an
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antomical structure to the tumor since the relative position of any anatomical structure to

the tumor can change. So RDM is not good for tumor segmentation. Similarly, RDM is

not good for general segmentation problems in natural images where context information is

variable and not useful.

Landmark-based segmentation is very suitable for prostate localization in treatment CT

images because in most cases the prostate shape changes little across different treatment days.

However, due to the bowel gas, the prostate shape may change notably. In such a situation,

the landmark-based approach may not work well since none of the existing prostate shapes

is similar to the target prostate shape. Similarly, the landmark-based approach doesn’t work

well for segmentation of the bladder and the rectum in treatment CT images because of

their large shape variations. In summary, if the shape variation of the target organ is large,

landmark-based approaches may not get accurate segmentation because a few landmarks are

insufficient to describe the entire shape. More sophosticated methods need to be adopted

afterwards to further refine the landmark-based segmentation.

5.3 Future Work

The following lists a few directions that may be interesting to explore.

Feature Learning. In this dissertation only 3D Haar-like features were used. Although

they are very efficient to compute, these simple features have limitations.

• Haar-like features are not rotation invariant. They do not work well when the testing

image is rotated by certain angles that are unseen in the training set. This situation

could happen when the patient setup is not well performed or the patient cannot lie

flat on his back due to a severe disease, e.g., spinal stenosis.
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• Haar-like features are too simple to capture complex texture features. The texture

features may be important if the proposed methods are applied to MR images that

contain richer texture than CT images.

To address the limitations of Haar-like features, recent advances in feature learning can

be potentially borrowed to learn informative features adaptive to the image data at hand.

For example, convolutional neural networks may be adopted to learn image features and a

regression model together for deformation estimation. It is expected that the performance

of the proposed methods can be improved by using data-specific and task-specific features.

Multi-modality. Due to the low tissue contrast of CT images, MR images are increasingly

used in the clinic for image guided radiotherapy. Since MR images provide better tissue con-

trast than CT images, MR segmentation can be used to guide CT segmentation. Specifically,

automatic segmentation methods can be first applied to extract contours of pelvic organs

from MR images. Then, these MR contours can be used to construct patient-specific shape

models for CT segmentation. With a better shape constraint, the robustness and accuracy

of CT segmentation can be improved.

Landmark Selection. The selection of landmarks is important in landmark-based segmen-

tation. Nevertheless, landmarks are often selected manually by finding distinctive boundary

locations on the target organ. For organs with stable shapes, such as the prostate, it is easy

to select useful landmarks for localization and segmentation. However, it may not be intu-

itive to find those landmarks for organs with large shape variation, such as the bladder and

rectum. Therefore, it is desirable to develop an unsupervised learning method for automatic

landmark discovery. A good landmark for organ localization should have 1) distinctive image
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appearance compared to surrounding image locations and 2) consistent image appearances

across different subjects.
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