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ABSTRACT

ZHANKUN SUN: PRIORITY SCHEDULING OF JOBS WITH HIDDEN TYPES.
(Under the direction of Nilay Tanık Argon and Serhan Ziya.)

In service systems, prioritization with respect to the relative “importance” of jobs helps allocate

the limited resources efficiently. However, the information that is crucial to determine the importance

level of a job may not be available immediately, but can be revealed through some preliminary in-

vestigation. While investigation provides useful information, it also delays the provision of services.

Therefore, it is not clear if and when such an investigation should be carried out. To provide insights

into this question, we consider a service system with a single server and the two possible types of jobs,

where each type is characterized by its waiting cost and expected service time. Jobs’ type identities

are initially unknown, but the service provider has the option to spend time on investigation to deter-

mine the type of a job albeit with a possibility of making an incorrect determination. Our objective

is to identify policies that balance the time spent on information extraction with the time spent on

service. In this dissertation we consider two settings: one with finitely many jobs present at time zero

and no external arrivals; the other with exogenous arrivals.

Under the assumption of linear waiting cost, our study on the first model reveals that investigation

is less likely to be beneficial when one of the types is significantly dominated by the other in terms

of numbers, or the two types of jobs are not significantly different from each other with respect to

their importance. More interestingly, we find that if the server decides to do investigation for all

jobs, it is possible that more accurate information might result in higher costs. We prove that the

optimal dynamic policy can be characterized by a switching curve. One insight that comes out of this

characterization is that the server should start with performing investigation when there are sufficiently

many jobs at the beginning and never perform investigation when there are few jobs. Numerical

study shows that the optimal policy could improve significantly upon some simple baseline policies.

Heuristic policies developed based on the optimal policy perform well even with nonlinear holding

cost.
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When there are external arrivals to the system, we show that the optimal dynamic policy is of

threshold type. The structure of the optimal policy implies that when there are few less-important jobs

waiting for service, the server should perform investigation; otherwise, the server should stop inves-

tigation and serve jobs directly. Given that it is almost impossible to obtain an analytical expression

of the threshold, we develop a heuristic policy based on the results for the clearing system. We carry

out a simulation study and find that the heuristic policy performs significantly better than No-Triage

Policy in most cases; for the rest, it performs at least as well as No-Triage Policy.

Finally, we study three extensions. The first extends the clearing system by considering multiple

parallel servers. The second studies a queueing system in which investigation is instantaneous but

incurs a fixed cost, and the last one extends the queueing system by assuming that investigation has to

be done before service.
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CHAPTER 1: INTRODUCTION

In service systems, first-come-first-serve is a frequently used service discipline, however, in reality

there are many situations of practical interest where customers are served not in the order of their

arrival but according to the priorities that are assigned based on their relative “importance.” In this

dissertation, we refer this type of service as priority scheduling. Priority scheduling is prevalent in

service systems. Especially when service capacity is limited, prioritization helps allocate this limited

resource in a way that aligns with the overall objectives of the service provider. Priority scheduling

has been practically applied in call centers, banks, machine maintenance, Emergency Departments

(ED) of hospitals, military communications, etc. For example, in the EDs, the patients who need

immediate medical attention will be seen first if the existing patients can be delayed.

Priority scheduling requires information about the jobs (we use jobs to denote customers, ma-

chines, parts, patients, etc.) to assign them priorities. This information is sometimes immediately

available and can be used to determine priority levels. For example, a service provider who is inter-

ested in providing priority service to its “good” customers, might be able to use past data to determine

its customers’ priority classes instantly as they arrive. In some cases, however, the information that is

crucial to determine the priority level of a job is not available immediately but can be obtained with

some investigation. This investigation produces useful information but at the expense of delaying the

service process. It is not clear if and when engaging in such investigation justifies the extra delay

imposed. The goal of this research is to shed some light on this question.

Specific examples will help illustrate the practical relevance of the information/delay trade-off

described above. When healthcare resources are severely restricted in comparison with the urgent

demand as in the case of mass-casualty incidents (MCI)1 or clinics in rural areas and underdeveloped

countries, patients go through a process called “triage” before they are given treatment. The objective

of triage is to determine the seriousness of the patients’ conditions and prioritize them accordingly.
1An MCI is any incident in which emergency medical services resources, such as personnel and equipment, are overwhelmed
by the number and severity of casualties. See Hafen et al. (1999)



When on-site medical personnel is not very limited in numbers, triage and treatment can proceed

simultaneously and therefore unless triage takes unusually long it does not typically lead to delays in

treatment or transportation. However, in austere mass-casualty conditions, battlefields, and clinics in

economically deprived areas where in some cases healthcare services are delivered through mobile

clinics, a single person or a team can be in charge, which necessitate a careful balancing of time

spent on triage and time spent on treatment or a more thorough examination of the patients. The

information/delay trade-off also appears in other contexts, such as prioritization of requests submitted

daily to internal maintenance and repair departments (Taghipour et al., 2011); prioritization of sales

leads in marketing particularly in business-to-business settings (Lichtenthal et al., 1989; Wilson, 2003;

D’Haen and den Poel, 2013), where time is invested to assess the likelihood of existing leads to be

successfully converted to actual sales; and intelligence (particularly human intelligence) collection

management (Kaplan, 2010, 2012; Ni et al., 2013), where agents make some initial investigation

of existing ambiguous cues, which might possibly be pointing to potential terrorist activities, and

prioritize them prior to more in-depth investigation.

Despite the fact that these examples arise in very different contexts they share some key features:

jobs are heterogeneous regarding their “importance” (or “urgency”) and possibly their service require-

ment. The decision maker knows that the jobs are heterogenous but there is no information readily

available, which can help in distinguishing one job from another. Investigating any given job reveals

some information for that job, which then can be used to determine whether or not the job should get

a priority in service but this information can be noisy and thus may lead to an incorrect classifica-

tion. Furthermore, the investigation is “costly” in the sense that it takes time and resources. Spending

time in investigation essentially eats away from the time that can be spent in actually serving the jobs.

Thus, in all these examples, the fundamental goal is to carefully balance the time spent on information

extraction with the time spent on serving the jobs.

In this thesis, we aim to contribute to the understanding of this trade-off and provide insights on

how the decision on investigation should be made in order to achieve such a balance. The goal is to

develop a generic formulation whose analysis leads to insights into how that can be done, rather than

to model any single one of the application contexts mentioned above with its unique features.

We approach this problem by considering a single server model with two types of jobs. The server
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can serve a job without knowing its type. Alternatively, the server can triage a job, place the job in

a particular class, which correlates with the type of the job, and then either proceed to serve that job

right away or put that job aside for awhile in order to serve later. (We borrow the medical terminology

“triage” to refer to the investigative process which results in the classification of jobs.) Triage is

imperfect meaning that jobs can be classified incorrectly. The type of a job determines the expected

service time for that job and the “cost” of keeping the job waiting. The objective is to minimize the

total expected cost or the long-run average cost, depending on the specific model settings.

The remainder of this thesis is organized as follows. Chapter 2 reviews the literature on job

scheduling problems and discuss how this work will contribute to the literature. Chapter 3 presents

the description and analysis of our clearing model2 . We first compare four simple policies and the

analysis leads to some seemingly counter-intuitive findings. Then we provide a complete characteriza-

tion of the optimal dynamic policy. In particular, we find that there is a switching curve that separates

the states in which triage should be performed from the others. One interesting insight that comes out

of this characterization is that spending time on triage helps if there are sufficiently many jobs but not

when there are relatively few. Our analytical results assume that waiting cost is a linear function of

time. A numerical study reveals that even though the structure of the optimal policy can be different

when the waiting cost function is not linear, the heuristic policies developed based on the results in

our model with linearity assumption perform well.

In Chapter 4, we study the information/delay trade-off in a setting where there are external arrivals

to the system. With the assumption of a Poisson arrival stream and independent and identical (i.i.d)

exponential service times, we show that the optimal policy on whether to triage or not in order to

minimize the long-run average cost is characterized by a switching curve. To prove the structure

of the optimal policy, we show various properties of the optimal value functions of a corresponding

model with discounting, then extend these results to the optimal bias functions in our original model.

With a simulation study, we observe that a heuristic policy of threshold type can improve significantly

over the policy of skipping triage all the time.

In Chapter 5, we study three extensions to the models in Chapters 3 and 4. In Section 5.1, we

study a clearing model with multiple identical servers instead of a single server. In Section 5.2, we
2A clearing model means there are finite number of jobs present at time zero and no outside arrivals to the system.
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consider a model where there are external arrivals and triage is instantaneous but incurs a fixed cost.

In Section 5.3, we analyze the case where triage is required for service, in which case the decision

is to determine the class to be prioritized after triage: an untriaged job, or a job that is classified as

class-1 or class-2. In each section, we describe the model assumptions and provide partial or complete

characterization of the optimal policy.

Finally, we conclude our study in Chapter 6 and point to some future research directions.
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CHAPTER 2: LITERATURE REVIEW

There are two streams of papers that are relevant to our work: (i) traditional job scheduling and

(ii) priority scheduling under imperfect information on job identities.

2.1 Priority scheduling with perfect information

Within the context of this dissertation, job scheduling is the process of determining the order ac-

cording to which jobs of different types will be processed. There are many different versions of the

job scheduling problem. For example, a clearing system versus a system with exogenous arrivals,

a single-server system versus a multi-server system, deterministic settings versus stochastic environ-

ments, preemption versus non-preemption, linear cost versus nonlinear cost, etc. There can be also

different objectives, depending on the settings of the specific job scheduling problem, such as mini-

mizing the total (or average) waiting time (or cost), minimizing the total tardiness or the number of

tardy jobs, etc. There exists substantive work on job scheduling problems. Pinedo (2008) provides an

extensive review of the scheduling problems that have been studied. We here review only the most

related work that establish the optimality of the cµ rule under various conditions.

There are several papers that prove the optimality of the cµ rule in settings where there is no exter-

nal arrival. Smith (1956) studies a single-stage production system with deterministic processing times

and identical release times for all jobs. The cµ rule is shown to be optimal to minimize the weighted

sum of job completion times. Since then, the cµ rule and its various generalizations are shown to be

optimal in models with different settings. Pinedo (1983) considers the stochastic counterpart of the

above model where the processing time of job j is exponentially distributed with rate λj and the re-

lease time is a random variable with arbitrary distribution. Preemption is allowed. The author showed

that it is optimal to process the job with the highest value of cjλj among those available.

Cox and Smith (1961) appears to be the first to show that the cµ rule is the optimal static policy

for a multiclass M/G/1 queue, where the objective is to minimize the long-run average waiting



cost and service is non-preemptive. Kakalik and Little (1971) shows that the optimality of the cµ

rule holds in the larger class of state-dependent dynamic policies as well, regardless of the option of

idling the server. Klimov (1974) extends the optimality of the cµ rule to a multiclass M/G/1 queue

with feedback. Harrison (1975) considers a multiclass M/G/1 system with discounted holding costs

and shows that a static priority rule is optimal. Tcha and Pliska (1977) studies a model that combines

discounting and feedback, and show that a static priority rule is optimal. Hirayama et al. (1989) studies

a discrete-time G/G/1 queue with two classes under non-preemptive service discipline. The cµ rule

is shown to be optimal to minimize the total holding cost in a finite-horizon scheduling period if the

service times have a decreasing failure rate (DFR). Nain (1989) extends the optimality of the cµ rule to

a multiclassG/M/1 queue with or without feedback. The paper also considers twoG/M/1 queues in

tandem and shows that the cµ rule is optimal for the second queue in that it minimizes the discounted

holding cost. In the single-machine scheduling with arbitrary arrivals and machine breakdowns under

a preemptive-resume discipline, Righter (1994) shows that processing jobs according to the non-

increasing order of ωµ value maximizes the number of correctly completed jobs by any time t when

processing times have a DFR and ωi is the probability that job i will be correctly completed. Recently

Budhiraja et al. (2012) studied a multiclass M(ν)/M(ν)/1 model where the arrival and service rates

fluctuate with a changing environment, described by the environment variable ν. The authors proved

that the cµ rule is asymptotically optimal for minimizing an infinite-horizon discounted cost function.

The papers we mentioned so far all assume linear waiting costs. Van Mieghem (1995) is the first

to prove the asymptotic optimality of the cµ rule in models with nonlinear costs. Specially, the model

studied is a G/G/1 queue with multiclass jobs and the cost incurred by a job is a convex function of

the job’s sojourn time in the system. A generalized version of the cµ rule, or the so called generalized-

cµ rule (Gcµ-rule), is shown to be asymptotically optimal in heavy traffic in that it minimizes the total

cumulative delay cost for a finite time horizon. The optimality of the Gcµ-rule is robust in that it

holds for a countable number of classes of jobs and several homogeneous servers. Mandelbaum and

Stolyar (2004) has extended the optimality of the Gcµ-rule to multiple flexible servers in parallel.

All the papers we mentioned so far assume that the information about the jobs, such as which type

the job belongs to, is perfectly known. In practice, however, the information is usually partially known

or unknown and can be collected (imperfectly) through diagnosis (triage). Our work is fundamentally
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different from the above in that we consider triage together with the service process.

2.2 Priority scheduling with imperfect information

Compared with the traditional job scheduling literature, there is limited work that deal with

scheduling under imperfect information on job identities. Van Der Zee and Theil (1961) appears

to be the first work that considered the misclassification problem in priority queues. The authors

study a single-server queue with two priority classes having expected service times E(s1) and E(s2),

respectively. Without loss of generality, assume E(s1) < E(s2). Class 1 jobs arrive to the system

according to a Poisson process with rate λ1 but are misclassified into class 2 with rate δ1, class 2 jobs

arrive to the system according to a Poisson process with rate λ2 but are mistakenly assigned into class

1 with rate δ2. Under the assumption of misclassification, they find that prioritizing class 1 is better

than FCFS in the sense of minimizing the expected waiting time if

δ1/λ1 + δ2/λ2 < 1. (2.1)

They also develop a fixed-priority policy where there are three priority classes and find a condition

under which this policy is no worse than FCFS by approximate analysis.

While van der Zee and Theil assume that the jobs are classified and priorities are assigned auto-

matically, Argon and Ziya (2009) study the problem of how to assign priorities to the jobs based on

partial information on the job identities to minimize the long-run average waiting cost. The authors

consider anM/G/1 queue with two types of customers. The identity of each arrival is partially known

in the sense that each customer brings a signal indicating the probability of being the important type.

The authors show that increasing the number of priority classes decreases costs and it is optimal to

give the highest priority to the customer with the highest signal. The authors also consider two-class

priority policies and find the optimal cut-off level for the signal to obtain the two priority classes. The

main difference of our model from theirs is that in their model the signal is free in that there is no

need for triage to obtain the signal, while in our model the type identities have to be obtained through

triage, perfectly or imperfectly.

The following two papers that are most related work to ours assume that the job identities are

7



unknown as well. Alizamir et al. (2012) consider a queueing model with Poisson arrivals where each

customer comes from one of two types but the server does not know which type the customer belongs

to. The server diagnoses each customer through a series of independent tests and classifies it based on

the server’s belief. If the classification is correct, there is a reward; otherwise, there is a penalty. Each

customer incurs a waiting cost during the customer’s stay in the system. The authors find the optimal

policy on how many tests to do to classify an arriving customer. Our model is different from theirs in

that the jobs go through a service process after classification. On the contrary, their model focuses on

the diagnostic process and the server does not perform any service after classification. Dobson and

Sainathan (2011) does consider the classification and service in one model. The authors compare two

models and both with Poisson arrivals. In one model jobs are first sorted by a pool of homogeneous

sorters and then served by another pool of homogeneous processors (so called the prioritized model)

while there are no sorting in the other model (so called the base model). The main goal is to find

the optimal average waiting cost for the prioritized model by appropriately setting the number of

sorters and processors under an exogenous budget constraint and compare the optimal waiting cost of

the prioritized model and that of the base model. They find that sorting does not always benefit the

system. Our model is different since we consider for a fixed number of servers that are capable of

performing both triage and service tasks. More specifically, we concentrate on control decisions that

are made dynamically based on the system state whereas Dobson and Sainathan (2011) focuses on a

design problem.

Finally we would like to note that several authors have studied models on medical service with

patient triage although with completely different research questions. Shumsky and Pinker (2003),

motivated by a healthcare problem, consider a model where a firm hires a gatekeeper to make an

initial diagnosis on each arriving customer then decides to solve the customer’s problem or refer the

customer to a specialist. Their focus is to design an incentive mechanism to lead the gatekeepers

and specialists to make referral decisions that are optimal for the firm. Wang et al. (2010) study

patient behaviors under a strategic queueing setting. Triage nurses provide advice on treatment after

diagnosis, patients have autonomy to accept or decline the service, based on their expectation on

the diagnostic accuracy and waiting time. They focus on the trade-off between diagnostic depth and

congestion levels and the subsequent treatment is not modeled. Saghafian et al. (2012) consider a

8



mechanism (streaming) to separate patients and medical resources into two streams based on the

prediction of triage nurses in an Emergency Department (ED) of a hospital. They find conditions

when streaming can improve the performance. They also examine the effects of misclassification by

simulation and conclude that better triage information about patients can level up the performance

of ED. In another paper, Saghafian et al. (2011) develop a new priority rule, namely “complexity-

based triage,” to classify patients in the Emergency Department. While misclassification in triage is

considered in their model, the delay caused by triage is not. Their objective is to reduce the risk of

adverse events for patients and improve operational efficiency (by shortening the average length of

stay). Dobson et al. (2013) study a model in which an investigator collects information from a new

customer to decide what work needs to be done in the second step by another server. Once the second

step is finished the customer joins another queue to receive service from the investigator again and

then leaves the system. The investigator needs to prioritize between the old and new customers. As we

describe in the following chapters, these models are significantly different from the ones we analyze

in this dissertation.
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CHAPTER 3: PRIORITY SCHEDULING OF JOBS WITH HIDDEN TYPES
IN A CLEARING SYSTEM

3.1 Introduction

In this chapter, we investigate a problem that is similar to traditional scheduling problems with

some important differences. We assume there are finitely many jobs at the beginning. The exact types,

characterized by the service times and hold cost rates, are unknown to the server initially, however, the

server has the option to spend some time to extract these information. Thus, our focus is on settings

where an unexpected event triggers the sudden appearance of a large number of jobs to take care of

(as in the case of mass-casualty events which necessitate patient triage and prioritization or search and

rescue operations), where jobs accumulate at the beginning of a service period, say in the morning (as

in the case of patients lining up to be seen in mobile clinics), or where a certain number of tasks are

assigned to a single person (for example, a salesperson or an intelligence agent) to take care of over a

certain period of time. The objective is to find the optimal policy that minimize the total expected cost

by assigning priorities to the jobs and making decisions on whether or not to spend time to extract the

type information.

The remainder of this chapter is organized as follows: Section 3.2 gives a detailed description of

the formulation. In Section 3.3, we compare four simple policies, which are all easy-to-implement

in practice and also serve as benchmark policies. Section 3.4 provides a complete characterization

of the optimal dynamic policy, which allows making decisions based on the up-to-date system state.

We carried out a numerical study in Section 3.5. We observe that the optimal policy improves the

benchmark policies significant, and when the waiting cost is in fact not a linear function (which we

assume it is), the heuristic policies developed based on our results perform well compared to the

optimal policy.



3.2 Model description

We consider a single-server clearing system in which at time t = 0 there are N ≥ 2 jobs waiting

to be served. There will be no new job arrivals. Each job belongs to one of two types: type-1 or

type-2. The probability of a randomly chosen job being of type 1 is p ∈ (0, 1) and that of type 2 is

q = 1−p independently of all the other jobs as well as the service process. (The cases that p = 0 or 1

are trivial and not of interest.) A job from type i incurs a holding cost of hi for each unit of time the

job stays in the system, and the expected service time for a type i job is τi <∞, i = 1, 2, with some

general distribution. We assume that the service times of all jobs are independent conditional on their

types. Once the service of a job is over, it leaves the system. The objective of the service provider

is to minimize the expected total waiting cost of all jobs. If the type of each job were to be known,

according to the well-known cµ-rule, the optimal policy would be to give priority to type-1 jobs if

h1/τ1 ≥ h2/τ2 and to type-2 jobs otherwise. However, in our problem, while p is known, the types

of jobs are unknown to the decision maker.

The server does not need to know the type of the job to serve it but s/he can choose to perform

an investigative task first in an effort to learn more about the type of the job, which can be used to

determine the service order. Following the medical terminology, we call this investigative task triage

and the act of performing triage to triage. Triage time for each job is independent of everything else

including the job’s type and its expected value is denoted by u <∞. As in the case of service times,

we make no further assumptions on the distribution of triage times. As a result of triage, the job is

classified as either class-1 or class-2. Note that the type of a job is an inherent characteristic unknown

to the decision maker while its class is an attribute assigned after triage and is observed by the decision

maker. Once a job is classified, the server can either proceed to serve the job immediately or simply

puts it away making note of its class information, and moves on to another job. The service time of

a job does not change depending on whether or not the job’s class information is available. It only

depends on the type of the job.

Under perfect triage, all type-1 jobs would be classified as class-1 and all type-2 jobs would

be classified as class-2. However, triage is prone to errors and therefore jobs of either type can be

classified as class-1 or class-2. If a type-1 job is classified as class-2 or a type-2 job is classified
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as class-1, we say that the job is misclassified. Let vi denote the probability of classifying a type-i

job as class-i where vi ∈ [0, 1] for i = 1, 2. Without loss of generality, we make the following two

assumptions throughout this chapter unless otherwise stated:

Assumption 3.2.1. (i) h1/τ1 > h2/τ2; (ii) v1 + v2 > 1.

Part (i) of Assumption 3.2.1 implies that if the type information for all jobs were readily available,

the optimal policy would simply give priority to type-1 jobs in accordance with the cµ-rule. Part (ii)

together with part (i) of Assumption 3.2.1 imply that if type information were not available but class

information were immediately available, the optimal policy would give priority to class-1 jobs, which

again follows from the cµ-rule. (If part (ii) of Assumption 3.2.1 does not hold, i.e. v1+v2 ≤ 1, but part

(i) does, then if the class-information of jobs were immediately available, the optimal policy would

be to give priority to class-2 jobs.) In the rest of this chapter, to distinguish between the two types and

the two classes, we will refer to type-1 and class-1 as the important type and class, respectively. Note

that due to the possibility of misclassification, some of the jobs that are classified as important may

in fact not belong to the important type but from the perspective of the server, all jobs classified as

important are treated as being important.

In the following section, we first investigate and compare the performances of four benchmark

policies, which naturally arise as simple heuristics and thus are practically appealing.

3.3 Benchmark policies

We first define the four policies we analyze in this section:

No-Triage Policy (NT ) Jobs are served in random order. No job goes through triage.

Triage-All-First Policy (TAF ) First, all jobs go through triage in random order. Then, class-1 jobs

are given priority in agreement with the cµ-rule, i.e. all class-1 jobs are served before all class-2 jobs.

Triage-Prioritize-Class-1 Policy (TP1) Each job, with the exception of the last one, goes through

triage in random order. If a job is classified as class-1, it is served right away; otherwise, the job is put

aside to be served later. When the triage of N − 1 jobs is completed, the remaining untriaged job is

served followed by all class-2 jobs.

Triage-Prioritize-Class-2 Policy (TP2) Each job, with the exception of the last one, goes through
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triage in random order. If a job is classified as class-2, it is served right away; otherwise, the job is put

aside to be served later. When the triage of N − 1 jobs is completed, the remaining untriaged job is

served followed by all class-1 jobs.

There are a few important points that are worth mentioning. First, in TP1 and TP2, the server

does not triage the last untriaged job since one can show that there is no benefit to triaging the last

remaining untriaged job. Second, both TP1 and TAF prioritize class-1 jobs. However, while TP1

serves class-1 jobs as soon as they are identified, TAF starts serving class-1 jobs only after all jobs

go through triage. Once the triage of all jobs is complete, we know from the cµ-rule that the optimal

action is to prioritize class-1 jobs. However, we do not know whether carrying out triage for all jobs

first or following some other policy works better. And third, it might seem that given that the cµ-rule

favors class-1 patients, considering TP2, which prioritizes class-2 patients, is not necessary. We will

see however that while this policy is never the best policy among the four considered here, it can

actually be preferable to TP1 under certain conditions.

Let Cπ denote the total expected cost under policy π. Because of the relatively simple structure

of the policies described above, we can come up with closed-form expressions for Cπ for each π ∈

{NT, TP1, TP2, TAF}. We refer the reader to Appendix A for the expressions and their derivations.

3.3.1 Comparison of benchmark policies

In the following proposition, we first identify two policies, which can never be the single best

policy among the four.

Proposition 3.3.1. (i) Triage-Prioritize-Class-1 policy always performs at least as well as Triage-All-

First policy, i.e., CTP1 ≤ CTAF . (ii) No-Triage policy always performs better than Triage-Prioritize-

Class-2 policy, i.e., CNT < CTP2 .

Proposition 3.3.1 is not unexpected. The total expected cost for class 2 jobs are the same under

both policies, however, class 1 jobs will wait less under Prioritize-Class-1 Policy than under Triage-

All-First Policy. By Proposition 3.3.1, in the remainder of our analysis, Triage-All-First Policy is

eliminated.

Proposition 3.3.1(i) simply says that delaying the start of service until every single job is classified
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does not work well. This is because, once a job which has a high priority is identified, there is no point

in delaying the service of that job. We know for sure that no other job will get a higher priority. Based

on this result, in the following discussion, we will ignore TAF because it is always outperformed

by TP1. Part (ii) of the proposition says that skipping triage altogether and serving jobs in a random

order always works better than triaging jobs while serving class-2 jobs as soon as they are identified.

Although just like TAF , TP2 can also be ignored when determining the best policy among the four

policies described above, in the following, we will keep this policy under consideration since its

analysis leads to some interesting insights.

Next, we compare TP1 and NT , and thereby provide a complete prescription for finding the best

policy among the four policies. First define α = h2/τ2
h1/τ1

to be a measure of the relative “importance” of

type-1 jobs over type-2 jobs. Note that α ∈ (0, 1) by Assumption 3.2.1. If α is close to 0, type-1 jobs

are far more important than type-2 jobs; if α is close to 1, there is no significant difference between

the importance levels of the two types of jobs.

Proposition 3.3.2. For any p ∈ (0, 1), CTP1 ≤ CNT if and only if 0 < α ≤ β(p), where

β(p) = max

{
0,

pτ1

[
N−2
N v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2

qτ2

[
2− N−2

N (1− v2)
]
u+ pq(v1 + v2 − 1)τ1τ2

}
. (3.1)

In other words, Triage-Prioritize-Class-1 policy performs better than No-Triage policy, and thus is the

best policy among the four simple policies if α is sufficiently small for a given value of p; otherwise,

No-Triage policy is the best policy.

Proposition 3.3.2 confirms the intuition that when the two types are sufficiently similar to each

other - with regards to their importance - serving jobs randomly with no triage is superior to triaging

them all (except for the last one). More specifically, the proposition gives a precise description of

what we mean by two types of jobs being sufficiently similar. The following corollary immediately

follows from Propositions 3.3.1 and 3.3.2.

Corollary 3.3.1. Among the four policies, NT , TP1, TP2, and TAF , the best policy, i.e., the policy

that minimizes the total expected cost, is TP1 if α ≤ β(p); otherwise, the best policy is NT .

We can also show that the function β(·) possesses certain properties, which provide further in-
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sights into how the fraction of type-1 jobs in the population affects whether the differences between

the two types of jobs would be significant enough to make TP1 more preferable than NT .

Proposition 3.3.3. β(·) is a quasi-concave function of p and is first non-decreasing then non-increasing

over (0, 1). Thus, for each fixed 0 < α < 1, there is an interval I(α) = [p(α), p̄(α)], which is possi-

bly an empty set and satisfies the following conditions:

(i) If p ∈ I(α), TP1 is better than NT ; otherwise, NT is better.

(ii) 0 < p(α) < p̄(α) < 1, where p(α) is a non-decreasing and p̄(α) is a non-increasing function

of α, i.e., I(α) gets smaller as α increases.

0 1
0

1

CN T < CT P1

CT P1
< CN T

β (p)

I (α)

p

α

Figure 3.1: Comparison of Triage-Prioritize-Class-1 (TP1) and No-Triage (NT ) policies. (u = 0.15, v1 =
0.95, v2 = 0.95, τ1 = 1, τ2 = 3, N = 100).

Referring to Figure 3.1 might help the reader to better understand our results so far, particularly

Propositions 3.3.2 and 3.3.3. As we can see from the figure, for TP1 to be the best policy, the two

job types should be sufficiently different. However, what is considered sufficiently different depends

on p the true proportion of type-1 jobs in the population. For medium range values of p, i.e., when

there is a good mixture of both types of jobs, neither type overwhelmingly dominating the other in

numbers, it is relatively easier to meet the bar for being sufficiently different. But when p is small

or large, either type-1 jobs are so rare that triage rarely ends up identifying a class-1 job or they are

so dominant that triage rarely helps eliminate a class-2 job for immediate service. In any case, triage
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ends up being a waste of time, that is of course unless the two types are significantly different from

each other as measured by α.

Propositions 3.3.3 shows that there is a unimodal curve that separates the Triage and No-Triage

regions. We can strengthen this result further by showing that the benefit from triage (when there is) is

smaller when one is close to the boundary described by β(·) and gets large as one moves away. More

precisely, define the percentage improvement by triage as

η ≡ CNT − CTP1

CNT
× 100%.

Proposition 3.3.4. For any η > 0, there exists a unimodal curve β(p, η) such that

(i)
CNT−CTP1

CNT
> η0 if and only if α < β(p, η0) for any given η0.

(ii) If η1 > η2, then β(p, η1) ≤ β(p, η2) for all p ∈ [0, 1], and

(iii) β(p, η) = max

{
0,

pτ1

[
N−2
N v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2 − ηpτ1[ 2

N−1τ1 + pτ1 + qτ2]

qτ2

[
2− N−2

N (1− v2)
]
u+ pq(v1 + v2 − 1)τ1τ2 + ηqτ2[ 2

N−1τ2 + pτ1 + qτ2]

}
.

0 1
0

1

0%

10%

20%

p

α

Figure 3.2: Comparison of Triage-Prioritize-Class-1 (TP1) and No-Triage (NT ) policies, different levels of η.

When η = 0, β(p, 0) = β(p). Hence, Proposition 3.3.4 is consistent with Proposition 3.3.2. If

we are interested in the cases that Policy T1 can improve Policy NT by η, not simply which policy is

better, then Proposition 3.3.4 says that there exists a unimodal curve β(p, η) that divide the p-α plane

into two parts and the area under β(p, η) is the region where the percentage improvement by triage

is at least η. Figure 3.2 illustrate the β(p, η) when η = 0%, 10% and 20%. The curve β(p, 20%)
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is below β(p, 10%), which implies that triage is more effective when there is significant difference

between the two types of jobs, i.e. α is small.

3.3.2 Insights from comparison of policies TP1 and TP2

Our results provided a clear description of the conditions under which NT and TP1 are the best

policies among the four simple policies analyzed in this section. Clearly, there are many situations

where skipping triage and serving jobs in random order is the best option. However, in many practical

settings, because of unknown parameters such as p, it might be difficult to check whether or not

the conditions are satisfied and as a result one might end up using a policy, which may or may not

be optimal. Suppose for example that the service provider believes that all jobs should be triaged.

(As many articles in the emergency response literature discuss, triage is performed in mass-casualty

events despite the lack of any scientific evidence that it is actually beneficial.) The question then is

whether priority should be given to class-1 jobs or class-2 jobs. More specifically, is it always true

that CTP1 ≤ CTP2? One might be tempted to believe that based on the classical cµ-rule result, the

answer is yes and class-1 jobs should get a higher priority. After all, we know for a fact that if all jobs

were already classified by time zero, the optimal action would have been to serve all class-1 jobs first.

As we see in the following proposition, however, which only compares the policies TP1 and TP2,

this intuitive argument is flawed.

Proposition 3.3.5. (i) If v2 < 1/2− Npτ1
(N−2)u(v1 + v2 − 1), then CTP1 < CTP2 for all α ∈ (0, 1);

(ii) if v1 < 1/2− Nqτ2
(N−2)u(v1 + v2 − 1), then CTP1 > CTP2 for all α ∈ (0, 1);

(iii) otherwise, CTP1 < CTP2 if and only if α < θ(p), where

θ(p) = min

{
1,

N−2
N pτ1(v1 − 1/2)u+ pq(v1 + v2 − 1)τ1τ2

N−2
N qτ2(v2 − 1/2)u+ pq(v1 + v2 − 1)τ1τ2

}
. (3.2)

Furthermore, θ(p) > β(p) for p ∈ (0, 1).

Parts (i) and (ii) of Proposition 3.3.5 make it clear that v1 and v2, respective probabilities of correct

classification for types 1 and 2, are important determinants of whether or not TP1 is more preferable

than TP2. In particular, part (ii) states that if the correct classification of a type-1 job is sufficiently
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small, then TP2 should be chosen over TP1. However, misclassification is not the only reason why

TP2 can in fact be better than TP1. Even if classification is perfect, i.e., v1 = v2 = 1, as we can see

from part (iii) of Proposition 3.3.5, TP2 is more preferable if α > θ(p).

Before we explain why prioritizing less important jobs can in fact be better, first note the last

statement of the proposition, which says that θ(p) > β(p) for p ∈ (0, 1). This fact together with the

rest of the proposition and Proposition 3.3.2 implies that TP2 can be better than TP1 only if NT is

better than both TP1 and TP2. In other words, doing triage and prioritizing class-2 can be better than

prioritizing class-1 only when triage is in fact a waste of time and it is better to serve jobs in random

order without triage anyway. But in any case, the result shows that if the service provider makes the

mistake of doing triage somehow believing that it must surely be beneficial, s/he can make things even

worse if s/he further prioritizes class-1 jobs based on a flawed intuitive argument.

Now, why exactly is TP2 better than TP1 when the two types are not significantly different (α is

large) and the proportion of type-1 jobs in the population, p, is small? Consider policy TP1 when p is

small. This policy will search for class-1 jobs to serve while leaving class-2 jobs till the end. The fact

that p is small means the server will spend a lot of time triaging, very few jobs will be served right after

triage, and many jobs will be left waiting to be served at the end once the triage process is completely

over. Considering that α is large, i.e., the two types are not significantly different from each other,

these long waiting times due to triage will not come with any tangible benefits. In contrast, consider

policy TP2. This policy will instead search for class-2 jobs to serve right away. Because fraction of

type-2 jobs is large, it will take less time for the server to identify a class-2 job and serve right away. In

many cases, triage will result in identification of a class-2 job, which will then be immediately served.

This means that the number of jobs who will have to wait until all jobs are triaged and consequently

the overall waiting time will be far less, which in the end makes the expected total cost less than it

would be under TP1. In short, TP2 is better than TP1 not because it is more beneficial to serve a

class-2 job rather than a class-1 job at any given time, but because the relative importance of class-1

jobs over class-2 jobs does not justify lengthening waiting times as much as they would be under TP1.

It is simply more preferable to sacrifice relatively few important jobs so that a large number of jobs

are served earlier.
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3.3.3 Better triage better outcome?

Suppose that the service provider has the capability of improving triage accuracy possibly by more

training, using an improved classification criteria, or using a more competent server. It is natural to

expect that such an action should improve the outcome and in most cases it will. However, as we see

in the following, this is not always true. The following proposition is an investigation into how the

total expected cost under TP1 changes with v1 and v2, the probabilities of correct classification for

types 1 and 2, respectively.

Proposition 3.3.6. (i) For all α ∈ (0, 1) and p ∈ (0, 1),
∂CTP1
∂v1

< 0, i.e., the expected cost

under the Triage-Prioritize-Class-1 Policy always decreases with the probability of correctly

classifying a type-1 job.

(ii) Let γ(p) = pτ1
pτ1+N−2

N
u

. For any fixed p ∈ (0, 1), if α > γ(p) then ∂CTP1/∂v2 > 0; i.e., if

α > γ(p), then the expected cost under the Triage-Prioritize-Class-1 Policy increases with the

probability of correctly classifying a type-2 job. Furthermore, γ(p) is an increasing function of

p and β(p) < γ(p) for any p ∈ (0, 1).

Part (i) of Proposition 3.3.6 is intuitive. It simply says that an improvement in triage, which results

in a higher probability of correct classification for type-1 jobs, also improves the performance of TP1.

On the other hand, part (ii), which says that, in some cases an improvement in the correct classification

probability of type-2 jobs worsens the performance of the policy, is not as intuitive. It is true that TP1

does not aim to prioritize type-2 jobs, but regardless, a higher probability of correct classification

means a better way of sorting out the two types. Given this fact, why should a higher value of v2 not

always help?

The answer again lies in the somewhat indirect operational implications of correct (and incorrect)

classification of jobs and is similar to the one that explains why TP2 can sometimes be better than

TP1. First note that an increase in v2 can only hurt when α > γ(p) > β(p), which is the case

where performing triage is not really helpful in the first place and NT policy is the best, see Figure

3.1. Therefore, any change that will alleviate the negative effects of triage will be of help. Now,

α > γ(p) means that the two types are not significantly different from each other and/or the proportion
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of type-1 jobs is small. Thus, under policy TP1, significant time will be spent on identifying (possibly

incorrectly) type-1 jobs, and a high percentage of jobs (all class-2 jobs) will have to wait the triage of

all jobs to be over. It would actually be better if some of these jobs, if not all, were served before, right

after they were triaged even if they belong to class-2. This is exactly what would happen if more of the

type-2 jobs were misclassified as class-1 and therefore a decrease in correct classification probability

for type-2 jobs helps.

3.4 State-dependent policies

In the previous section, we restricted ourselves to four policies, which are practically appealing

because of their simplicity. In this section, we make no such restriction and concentrate on identifying

the policy that is optimal within the whole class of state-dependent policies (which also includes

state-independent policies). We first develop a Markov decision process (MDP) formulation for the

problem described in Section 3.4.1 and then provide a complete description of the optimal policy.

3.4.1 Markov decision process formulation

The decision epochs are time zero, and triage and service completion times for the server (since

we assume the service is non-preemptive). The state of the system can then be denoted by the triplet

(i, k1, k2), where i represents the number of untriaged jobs, and k1 and k2 denote the number of jobs

that have been classified as class-1 and class-2 but not yet served, respectively. Since we have N jobs

in total, the state space can be described as S = {(i, k1, k2) : i, k1, k2 ≥ 0, i+ k1 + k2 ≤ N} .

Using a sample-path argument, it is straightforward to show that keeping the server idle is subop-

timal. This allows us to ignore idling as an admissible action. Then, in a given state s = (i, k1, k2),

the available actions for the server are SU: serve an untriaged job without triage (only available if

i ≥ 1); Tr: triage an untriaged job (only available if i ≥ 1); SC1: serve a class-1 job (only available

if k1 ≥ 1); and SC2: serve a class-2 job (only available if k2 ≥ 1).

Our objective is to minimize the total expected cost. In general it is possible that there are more

than one optimal action for any given state. If that is the case, we choose the action that is listed earlier

in the action set {SC1, SU, Tr, SC2}. For instance, SC1 has precedence over all the other actions.
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While this assumption is not crucial, it allows us to ensure that there is a unique optimal policy, which

in turn simplifies the presentation of the results.

We define a∗(s) for s ∈ S to be the optimal action in state s. We also let Vπ(i, k1, k2) denote the

total expected cost under policy π and V (i, k1, k2) = minπ {Vπ(i, k1, k2)} to be the total expected

cost under an optimal policy starting from state (i, k1, k2) with no service or triage in progress.

Table 3.1: Notation used in writing optimality equations in a compact form.

Untriaged job Class-1 job Class-2 job

Expected cost rate r = ph1 + qh2 r1 = pv1h1+q(1−v2)h2
PC1

r2 = p(1−v1)h1+qv2h2
PC2

Expected service time T = pτ1 + qτ2 T1 = pv1τ1+q(1−v2)τ2
PC1

T2 = p(1−v1)τ1+qv2τ2
PC2

Expected service cost c = ph1τ1 + qh2τ2 c1 = pv1h1τ1+q(1−v2)h2τ2
PC1

c2 = p(1−v1)h1τ1+qv2h2τ2
PC2

Let PCi denote the probability of classifying a random job as class-i for i = 1, 2 so that PC1 = pv1 +

q(1 − v2) and PC2 = p(1 − v1) + qv2. Then, using the notation in Table 3.1 we can write the optimality

equations as follows:

V (i, k1, k2) = min

{
PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1) + (ir + k1r1 + k2r2)u

V (i− 1, k1, k2) + c+ [(i− 1)r + k1r1 + k2r2]T,

V (i, k1 − 1, k2) + c1 + [ir + (k1 − 1)r1 + k2r2]T1,

V (i, k1, k2 − 1) + c2 + [ir + k1r1 + (k2 − 1)r2]T2

}
, ∀ (i, k1, k2) ∈ S \ (0, 0, 0),

V (0, 0, 0) = 0, and V (s) =∞, ∀s 6∈ S.
(3.3)

3.4.2 Complete characterization of the optimal policy

We start by describing when SC1 and SC2 are optimal actions.

Theorem 3.4.1. Consider state (i, k1, k2) ∈ S:

(i) If k1 ≥ 1, then a∗(i, k1, k2) = SC1, i.e., as soon as the server identifies a class-1 job, that job

should be served next.

(ii) If i+ k1 > 0, then a∗(i, k1, k2) 6= SC2, i.e., it is optimal to serve a class-2 job only when there

are no untriaged or class-1 jobs.
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Theorem 3.4.1 clearly delineates the regions where serving jobs classified as class-1 and class-2

are optimal. Specifically, SC1 has precedence over all other actions no matter what the current state

is. This means that as soon as a triage results in identification of a class-1 job, the next action is to

serve that job. On the other hand, SC2 is at the bottom of the priority list meaning that the service of

class-2 jobs starts at the end when there are no more class-1 or untriaged jobs waiting.

Given Theorem 3.4.1, to characterize the optimal policy completely, it now remains to study the

states where there are no class-1 jobs, i.e., k1 = 0, but there is at least one untriaged job, i.e., i ≥ 1.

Recall that in such a state, the server can choose to either triage or directly serve an untriaged job. We

know that serving a class-2 job, if there is one, is suboptimal. It turns out that whether or not doing

triage is optimal depends on the system state. More specifically, there is a line that separates the states

in which doing triage is optimal from the states in which serving without triage is optimal. With the

following theorem, we not only prove this structural property of the optimal policy but also provide a

complete expression for this line.

Theorem 3.4.2. There exists a linear function L(·) such that for any state (i, 0, k2) ∈ S where i ≥ 1

and k2 ≥ 0, if k2 ≥ L(i), then a∗(i, 0, k2) = SU, i.e., the optimal action is to serve without triage;

otherwise, a∗(i, 0, k2) = Tr, i.e., the optimal action is to perform triage. Furthermore,

L(i) =

(
r(ũ− u)

r2u

)
i− rũ

r2u
, (3.4)

where ũ = PC2(rT2 − r2T )/r.

Figure 3.3 is a visual demonstration of Theorem 3.4.2 for a specific example. To better understand

the intuition behind Theorem 3.4.2, first note that the condition k2 ≥ L(i) can equivalently be written

as (ir + k2r2)u ≥ (i − 1)PC2(rT2 − r2T ), where the left-hand side is the total expected additional

cost that would be incurred by performing triage in state (i, 0, k2) and one can show that the right-

hand side is the total expected cost reduction that would be achieved as a result of having performed

triage in state (i, 0, k2) and then skipping triage for all the remaining jobs. More specifically, we can

show that the optimal policy for deciding whether or not to do triage is a one-stage look-ahead policy,

i.e., it is optimal to stop doing triage in a given state if skipping triage for all the remaining jobs is at

least as good as performing triage one last time and stopping immediately after.
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Figure 3.3: Visual description of the optimal policy when k1 = 0 and h1 = 10, h2 = 1, τ1 = 1, τ2 = 2, v1 =
1, v2 = 0.95, u = 0.26, p = 0.8, N = 18.

Theorem 3.4.2 provides interesting insights into the decision of when to do triage and when to skip

it. IfN is large, meaning that there are too many jobs waiting to be served and we have no information

regarding which ones are more important, one might be tempted to skip triage since performing triage

will further lengthen the waiting times, which are already likely to be too long. With too many jobs to

serve, spending time on triage might seem like an unwise use of time. In contrast, when N is small,

triage might not seem all that harmful since waiting times are not going to be too long even with

triage. As we explain in the following, however, this reasoning is flawed.

Theorem 3.4.2 states that - as one can also easily verify referring to Figure 3.3 - when the number

of untriaged jobs is sufficiently large (initially more than or equal to 4 for the example whose solution

is depicted in the figure) it is optimal to start with triage and continue to do so as long as the number

of untriaged jobs and the number of class-2 jobs keep the state space under the line. (Note that if a

class-1 job is identified, that job is served right away.) Once the threshold line is passed, the optimal

policy starts serving jobs without triage until there are no more untriaged jobs waiting. Class-2 jobs,

which were identified earlier, are served at the end. If the number of untriaged jobs is small (initially

less than 4 in the example), then the optimal policy is simply to serve all the jobs without triage. Thus,

contrary to the argument above, precisely because there are too many jobs, one cannot afford to skip

triage. Even if triage is skipped, service will take quite a long time anyway. Therefore, it makes sense
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to spend some time at the beginning (specifically as long as the system state is to the right of the

threshold line) to perform triage in an effort to at least prevent the waiting times for important jobs

getting too long. On the other hand, when there are few jobs, service of all jobs including those of

type-1, will not take too much time. Therefore, the value of class information that will be obtained

through triage does not justify the additional waiting that all jobs will have to endure.

Finally, in this section, we investigate conditions under which the optimal policy turns out to

be one of the simple benchmark policies investigated in Section 3.3. It would be natural to expect

that under the optimal policy, when the expected triage time is sufficiently short (it might help to

think of the limiting case where it is zero) all jobs would go through triage and when the expected

triage time is sufficiently long no job would go through triage. Indeed, we can prove that is the case.

The following proposition clearly describes what would qualify as sufficiently short and what would

qualify as sufficiently long.

Proposition 3.4.1. Let u1 = N−1
N ũ and u2 = r

2r+(N−2)r2
ũ. Then,

(i) the optimal policy is NT , i.e., No-Triage policy, if and only if u ≥ u1;

(ii) the optimal policy is TP1, i.e., Triage-Prioritize-Class-1 policy, if and only if u ≤ u2.

When the expected triage time is as long as described in Proposition 3.4.1(i), the information that

one would get through triage is simply not worth it. Hence, the optimal policy is to serve all jobs

directly without triage. When the expected triage time is as short as described in Proposition 3.4.1(ii),

one can “afford” to triage all the jobs no matter what types of jobs are identified during the triage

process; however, in line with Theorem 3.4.1, if a class-1 job is identified as a result of triage, that job

should be served first before moving on to the triage of the remaining jobs.

3.5 Numerical study: performance comparison of the proposed policies under linear
and non-linear waiting costs

This section mainly consists of two parts. In the first part, we compare the performance of the

optimal policy with the performances of the benchmark policies, specifically NT and TP1, so as to

understand whether there is significant benefit to using the optimal policy as opposed to benchmark

policies, which are in most cases simpler and easy-to-use. In this first part of the study, we assume that
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waiting costs are linear functions of time as are assumed in our mathematical model. In the second

part, based on our analytical results given in Section 3.4, we first devise heuristic methods that can

be used when waiting costs are not linear. Then, we compare the performances of these heuristic

methods with those of the optimal policy as well as the simple benchmark policies.

3.5.1 Performance comparison when waiting costs are linear in time

For this study, we considered a system with N = 50 jobs, all untriaged at time zero. We chose

p from the set {0.1, 0.3, 0.5, 0.7, 0.9}, and for each value of p, we generated 2,000 scenarios by

randomly and uniformly choosing u between 0 and 1, τ1 and τ2 between 0 and 10, h1 between 0 and

4, h2 between 0 and 1, v1 and v2 between 0.5 and 1; discarding cases for which h1/τ1 < h2/τ2.

For each scenario, we obtained the total expected cost under the optimal policy, No-Triage policy

(NT ), and Triage-Prioritize-Class-1 policy (TP1), and computed the percentage improvement in the

total expected cost that one would get by using the optimal policy as opposed to each one of the

benchmark policies NT and TP1. Then, we constructed 95% confidence intervals for the mean

percentage improvement as well as the maximum percentage improvement. (The confidence interval

for the maximum percentage improvement was obtained by putting the 2,000 scenarios in groups of

size 10 and determining the maximum within each group, which results in a total of 200 observations.)

The results are provided in Table 3.2.

Table 3.2: 95% confidence intervals for the mean and maximum percentage improvement in the total expected
cost by using the optimal policy as opposed to benchmark policies.

p
No-Triage Policy Triage-Prioritize-Class-1 Policy

Mean Maximum Mean Maximum
0.1 6.42± 0.46 27.96± 1.96 8.26± 0.52 31.32± 2.30
0.3 9.25± 0.51 30.83± 1.60 5.90± 0.43 25.38± 2.10
0.5 8.90± 0.51 31.78± 1.63 5.81± 0.42 24.50± 1.97
0.7 4.73± 0.35 20.51± 1.57 6.88± 0.45 27.10± 2.17
0.9 1.05± 0.15 7.33± 1.09 11.49± 0.56 36.38± 2.18

Table 3.2 clearly shows that there can be significant benefits to using the optimal policy as opposed

to any one of the benchmark policies. Specifically, the mean percentage improvement can be more

than 10% while the mean maximum improvement can be more than 35% depending on the value of

p. As we have shown in Section 3.3, when p, the probability of a random job being type-1, is close to
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zero or 1, NT is the best benchmark policy for a large range of values of α (it performs particularly

well when p is close to 1) and thus it is no surprise that its performance is closer to that of the optimal

policy for such values of p. The performance gap is more significant for mid-range values of p. When

comparing the performances of the optimal policy and TP1, we observe the opposite. TP1 performs

relatively better for mid-range values of p. This is not surprising. NT and TP1 can be seen as at the

two ends of the policy spectrum with the former skipping triage altogether and the latter performing

triage for all the jobs. Thus when jobs are highly dominated by one type, NT tends to perform better

since triage does not bring much benefit; when there is a good mixture of both types, TP1 tends to

perform better. The optimal dynamic policy hits the “right” balance between these two policies by

choosing to triage or skip it depending on the system state.

3.5.2 Performance comparison when waiting costs are non-linear in time

One of the assumptions we made for our mathematical analysis was that the cost of keeping

the jobs waiting is linear in time. There are, however, situations where this assumption would not

be reasonable. Our goal in this section is to propose new heuristic methods based on our analysis

under the linear waiting cost assumption and test how these methods perform in comparison with

other benchmark heuristics when waiting costs are non-linear in time. In particular, we consider three

different forms for the waiting cost function: increasing convex, increasing concave, and increasing

convex-concave (S-shaped). In the following, we will use f1(·) and f2(·) to denote the waiting cost

functions for types 1 and 2, respectively, i.e., fi(t) is the total cost that would be incurred by a type-i

job that has waited for t time units in the system.

Proposed heuristic methods to be used when waiting costs are non-linear

We propose three heuristic methods:

(i) Fixed Threshold-cµ policy (FT -cµ): We fit a least-squares line to each cost function and use

the optimal dynamic policy as prescribed in Section 3.4 assuming that cost functions are these

fitted functions. When fitting the least-squares line, we assume that the non-linear waiting cost

function is defined over the interval [0, N(τ + u)], where the right end-point corresponds to the
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expected time the system would be cleared of all jobs if each job were to go through triage. We

name the heuristic Fixed Threshold-cµ policy because (i) whether or not triage is carried out

in a given state is determined by where the state lies with respect to the threshold line, which

is fixed at time zero, and (ii) class-1 (high priority) and class-2 (low priority) are determined

according to the expected version of the cµ-rule. Note that the c term here is calculated using

the slopes of the fitted lines for each type.

(ii) Dynamic Threshold-cµ policy (DT -cµ): We fit a least-squares line to each cost function and,

as in the FT -cµ policy, use the slopes of these lines to determine the high priority class and the

low priority class with respect to the cµ-rule. Unlike the FT -cµ policy, however, this policy

updates the threshold line to be used for determining whether or not triage should be done by

fitting new least-squares lines over the interval [tnow, tnow+i(τ+u)+k1τ1+k2τ2] where tnow

is the current time, i.e., the time decision is to be made, and tnow + i(τ + u) + k1τ1 + k2τ2

is the expected time the system would be cleared of all jobs if each remaining untriaged job

were to go through triage. The time-dependent threshold line Lt(·) is obtained by using (3.4)

but replacing h1 and h2 with the slopes of the two lines fitted to f1(·) and f2(·), respectively.

(iii) Dynamic Threshold-Gcµ policy (DT -Gcµ): This policy updates the threshold line exactly the

same way the DT -cµ policy does. However, when determining the priorities between the two

classes, it uses the Generalized-cµ rule developed by Van Mieghem (1995). Specifically, this is

how this heuristic works: Let h1(·) and h2(·) denote the derivative functions for f1(·) and f2(·),

respectively. Consider a decision epoch where the system is in state (i, k1, k2). First, the high

priority class is determined by comparing h1(t)/τ1 with h2(t)/τ2. If the former is larger, give

class-1 higher priority; otherwise, give class-2 higher priority. If class-j is given higher priority,

then the action to be taken is serving class-j whenever kj > 0. If kj = 0 and i > 0, then an

untriaged job is triaged if k3−j ≤ Lt(i), where Lt(i) is obtained by using (3.4) but replacing

h1 and h2 with hj(t) and h3−j(t), respectively. If k3−j > Lt(i), an untriaged job is directly

served without triage. Finally, when i = kj = 0, the action to be taken is serving class 3− j.
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Numerical experiments and results

In our numerical study, we mainly considered three different scenarios each differing in the general

structure for the waiting cost functions assumed. For each pair of cost function choices, we generated

scenarios as follows: we assumed that initally there were 20 jobs all untriaged. The expected triage

time was assumed to be 0.5 units. The expected service time τ was assumed to be the same for both

types and was chosen from the set {1, 5, 10}. The probability of a random job being of type 1, p, was

chosen from the set {0.1, 0.3, 0.5, 0.7, 0.9}. For each pair of τ and p values chosen, 200 scenarios

were randomly generated by choosing both v1 and v2 uniformly between 0.5 and 1. Triage times and

service times were assumed to be deterministic so as to make it possible to obtain the optimal policy

and compare its performance with those of the heuristic methods.

Convex increasing waiting cost functions: As discussed in detail in Van Mieghem (1995), for vari-

ous reasons including customer expectations and the psychology of waiting, in certain settings a con-

vex function that penalizes waits with an increasing rate might be a better fit. To investigate how the

proposed methods might work in such settings, we assumed that f1(t) =
(
t

210

)2 and f2(t) = 1
4

(
t

210

)2
(see the leftmost plot in Figure 3.4).
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Figure 3.4: The waiting cost functions assumed in the numerical study.

Table 3.3 reports the 95% confidence intervals for the percentage increase in the total expected

cost if one uses the heuristic methods as opposed to the optimal policy. Numbers close to zero indicate

performances close to optimal whereas large numbers indicate poor performance. As we can observe

from the table all of the three policies we propose, FT -cµ, DT -cµ, and DT -Gcµ, perform well in all

the settings with the percentage deviation from the optimal policy being very close to zero in almost

all cases. When τ = 1, i.e., the expected triage time is large relative to the expected service time, No-

Triage policy, is optimal, but so are the three policies we propose, which reduce to No-Triage policy
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in that parameter region. However, No-Triage policy performs poorly when the expected service time

is significantly larger than the expected triage time. We also observe that the benchmark policies TP1

and TP2 perform badly across almost all scenarios.

Table 3.3: Performance comparison for the convex cost case - 95% confidence interval for the mean percentage
increase in total expected cost when compared with that under the optimal policy.

τ p FT -cµ DT -cµ DT -Gcµ NT TP1 TP2

1 0.1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 163.58± 1.59 198.47± 1.80
1 0.3 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 133.82± 2.85 229.68± 2.94
1 0.5 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 128.28± 3.20 231.57± 2.92
1 0.7 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 133.95± 3.04 222.21± 2.41
1 0.9 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 146.26± 2.57 207.96± 1.76
5 0.1 0.12± 0.03 0.12± 0.03 0.12± 0.03 0.65± 0.16 15.01± 0.60 46.91± 1.17
5 0.3 0.26± 0.03 0.26± 0.03 0.26± 0.03 6.20± 0.89 8.06± 0.66 68.00± 3.03
5 0.5 0.14± 0.02 0.14± 0.02 0.14± 0.02 5.48± 0.88 7.38± 0.74 63.39± 2.72
5 0.7 0.03± 0.01 0.03± 0.01 0.03± 0.01 1.31± 0.34 9.80± 0.89 48.04± 1.29
5 0.9 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 18.76± 0.61 35.86± 0.35
10 0.1 0.29± 0.03 0.29± 0.03 0.29± 0.03 4.20± 0.48 4.37± 0.25 36.41± 1.58
10 0.3 0.19± 0.02 0.19± 0.02 0.19± 0.02 14.64± 1.40 2.15± 0.19 62.14± 3.57
10 0.5 0.11± 0.01 0.11± 0.01 0.11± 0.01 13.83± 1.42 1.86± 0.21 56.86± 3.27
10 0.7 0.07± 0.01 0.07± 0.01 0.07± 0.01 6.68± 0.84 2.34± 0.31 37.98± 1.84
10 0.9 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.06± 0.04 6.19± 0.44 19.64± 0.28

S-shaped (convex-concave) increasing waiting cost functions: In the case of emergency response or

search and rescue operations, jobs may correspond to injured individuals whose survivals are at stake.

With passage of time, the survival probabilities of these individuals decline. In many cases, the way

these survival probabilities decline with time has an inverse S-shape with the survival probabilities

declining with a rate that is slow at the beginning but gradually getting faster but eventually getting

slow again when the survival probabilities get closer to zero (Sacco et al., 2005). This corresponds

to a waiting cost function, which has an S-shape with a convex increasing portion at the beginning

followed by a concave increasing portion. To investigate how the proposed methods work when

waiting cost functions have such a structure, we assumed that f1(t) = 1
1+e−6t/75+4 − 1

1+e4
and f2(t) =

1
1+e−4t/75+5.5 − 1

1+e5.5
. These two functions are plotted in the middle graph in Figure 3.4. Both f1(·)

and f2(·) are bounded by 1 so in the context of emergency response operations they can be interpreted

as the decline in the survival probability of a particular patient with the passage of time. Type-1

jobs are in more serious condition than type-2 jobs since at any particular point in time, the survival

probability for type-1 jobs is smaller than the survival probability for type-2 jobs, i.e., waiting cost

function for type-1 jobs is above the waiting cost function for type-2 jobs at all times. However, note
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that the rate of increase in the waiting cost is not always higher for type-1 jobs. Their costs increase

with a rate that is higher than that for type-2 jobs initially but once their cost gets sufficiently close to

1, the rate for type-2 jobs gets higher.

Table 3.4: Performance comparison for the S-shaped cost case - 95% confidence interval for the mean percent-
age increase in total expected cost when compared with that under the optimal policy.

τ p FT -cµ DT -cµ DT -Gcµ NT TP1 TP2

1 0.1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 100.99± 2.21 183.80± 2.68
1 0.3 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 85.97± 3.38 213.33± 3.61
1 0.5 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 91.53± 3.40 207.98± 3.08
1 0.7 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 104.40± 2.98 194.10± 2.28
1 0.9 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 121.57± 2.30 177.74± 1.52
5 0.1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 24.13± 0.57 36.46± 0.53
5 0.3 1.23± 0.19 1.22± 0.20 1.09± 0.19 2.15± 0.43 11.11± 0.54 38.09± 1.21
5 0.5 1.71± 0.26 1.70± 0.27 1.22± 0.19 2.36± 0.43 9.31± 0.36 36.45± 1.41
5 0.7 0.65± 0.17 0.57± 0.14 0.36± 0.09 0.58± 0.15 9.51± 0.27 29.32± 0.90
5 0.9 0.01± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.00 10.93± 0.18 21.35± 0.38
10 0.1 0.11± 0.03 0.01± 0.00 0.04± 0.01 0.11± 0.03 9.19± 0.10 3.60± 0.18
10 0.3 2.99± 0.27 0.71± 0.08 1.30± 0.13 2.99± 0.27 13.48± 0.51 3.05± 0.16
10 0.5 4.72± 0.38 2.04± 0.25 2.02± 0.18 4.72± 0.38 15.62± 0.72 4.51± 0.30
10 0.7 4.05± 0.31 2.72± 0.35 1.53± 0.14 4.05± 0.31 12.66± 0.56 6.12± 0.45
10 0.9 1.33± 0.10 0.95± 0.12 0.26± 0.02 1.33± 0.10 5.79± 0.16 5.72± 0.32

The results are given in Table 3.4. When the expected service time is short meaning that triage

times are relatively long, No-Triage policy turns out to be optimal along with all three policies we

are proposing. As the expected service time gets longer, we start seeing some differences among the

four policies. First of all, No-Triage policy is no longer optimal even though its performance is still

very reasonable and very close to that of the FT -cµ policy. In fact, the FT -cµ policy simplifies to

the No-Triage policy in most cases. In some cases, FT -cµ outperforms the No-Triage policy but

nevertheless it is still difficult to make a strong argument that FT -cµ would be a better choice than

No-Triage considering the simplicity of the latter policy. However, the performances of both DT -cµ

and DT -Gcµ are superior to those of FT -cµ and the No-Triage policy in all the settings where the

expected service time is large relative to the expected triage time and very close to that of the optimal

policy in all the settings. In particular, the worst performance of DT -Gcµ is observed when p = 0.5

and τ = 10 and even then the mean percentage difference from the optimal policy is only about 2%.

On the other hand, the worst performance of DT -cµ is slightly worse than that. It is not possible

to designate either DT -cµ or DT -Gcµ as the “best” since there are many settings in which their

performances are not statistically different.
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Concave increasing waiting cost functions: In some cases, concave functions can more appro-

priately capture the reality. For example, consider an emergency response situation which leads to

S-shaped waiting cost functions as discussed above. Now, suppose that due to the delays in response,

which might have various reasons, the service process starts long after the incident occurred and as a

result we are faced with only the concave increasing portion of the waiting cost function. To inves-

tigate how our policies would perform in such settings, we assumed that f1(t) = 1 − e(−0.03)t and

f2(t) = (1 − e(−0.01)t)/4, which are both concave increasing functions (see the rightmost graph in

Figure 3.4 for plots of these two functions).

Table 3.5: Performance comparison for the concave cost case - 95% confidence interval for the mean percentage
increase in total expected cost when compared with that under the optimal policy.

τ p FT -cµ DT -cµ DT -Gcµ NT TP1 TP2

1 0.1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 44.99± 0.98 72.43± 0.92
1 0.3 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 34.01± 1.29 77.40± 1.27
1 0.5 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 34.79± 1.18 75.39± 1.24
1 0.7 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 38.34± 0.99 71.42± 1.11
1 0.9 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 42.85± 0.79 66.50± 0.92
5 0.1 0.16± 0.02 0.28± 0.04 0.28± 0.04 1.82± 0.31 2.50± 0.22 15.32± 0.57
5 0.3 0.08± 0.01 0.22± 0.02 0.22± 0.02 4.43± 0.52 0.93± 0.13 20.49± 1.02
5 0.5 0.05± 0.01 0.10± 0.01 0.10± 0.01 2.62± 0.33 0.84± 0.14 17.77± 0.84
5 0.7 0.03± 0.00 0.02± 0.00 0.02± 0.00 0.52± 0.11 1.35± 0.17 13.44± 0.53
5 0.9 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 3.38± 0.13 9.91± 0.30
10 0.1 0.30± 0.03 0.40± 0.05 0.42± 0.05 1.73± 0.23 0.90± 0.07 6.40± 0.29
10 0.3 0.24± 0.01 0.30± 0.03 0.29± 0.03 3.12± 0.30 0.42± 0.03 8.90± 0.45
10 0.5 0.25± 0.02 0.19± 0.01 0.16± 0.01 2.03± 0.18 0.40± 0.02 7.85± 0.39
10 0.7 0.21± 0.02 0.10± 0.01 0.06± 0.01 0.75± 0.08 0.42± 0.03 5.96± 0.31
10 0.9 0.01± 0.01 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.76± 0.04 3.81± 0.18

The results are provided in Table 3.5. When the expected service time is small meaning that the

expected triage time is relatively large, all three policies we propose reduce to No-Triage policy, which

turns out to be the optimal policy. For mid to large values of the expected service time, the No-Triage

policy is no longer optimal, it is outperformed by all three policies we propose, whose performances

are very close to that of the optimal policy. It is however difficult to pick the “best” among the three

since in some parameter settings none of the policies has a statistically superior performance while

in others there is not a single policy which stands out. Regardless, the performances of all three

policies are so close to each other that even if one picks a policy that turns out to be not optimal, the

performance difference would in all likelihood be very small.
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CHAPTER 4: PRIORITY SCHEDULING OF JOBS WITH HIDDEN TYPES
IN A QUEUEING SYSTEM

4.1 Introduction

In this chapter, we study the information/delay trade-off in a setting where there are external

arrivals to the system. Jobs, which arrive at the system, are of unknown type, and similar to the model

in Chapter 3, the server has the option to spend time to extract the type information for each job.

The queueing model in this chapter incorporates the feature that in an MCI, injuries may arrive or

be transported to the triage/treatment field. Our objective is to study the optimal dynamic policy on

whether to triage or skip triage in order to minimize the long-run average cost.

The remainder of this chapter is organized as follows: Section 4.2 gives a detailed description

of the formulation. Section 4.3 shows that there exists a threshold type policy that is optimal, and

describes how we prove this results. A simulation study is carried out in Section 4.4. We observe that

a heuristic policy we propose, which mimics the properties of the optimal policy, can bring significant

improvement over simple and easy-to-implement policies.

4.2 Model description

Consider a service system with a single server and two types of jobs, type 1 and type 2. Jobs

arrive at the system according to a Poisson process with rate λ, and they wait in a queue if they are not

served upon arrival. The waiting space is unlimited. For convenience, we use “class 0” or “untriaged

job” to refer to these new jobs that have not gone through triage. Each job belongs to type 1 with

probability p and to type 2 with probability q ≡ 1 − p. Both p and q are exogenous parameters, and

will not change over time. A type i job incurs a cost with rate hi per unit time the job stays in the

system where i = 1, 2. The service time of a job from type i is exponentially distributed with mean

τ > 0. Without loss of generality, we assume that type 1 jobs are important than type 2 jobs from the

service provider’s perspective in the sense of higher cost rate, i.e., h1 > h2.



We assume that the type information of each new job is hidden from the service system initially,

i.e., the server does not know the exact type of a new arrival. The server can serve a job without

knowing its type, but s/he also has the option to spend some time on investigation to obtain the type

information of a job, and classify the job as class 1 or class 2. The investigation time of a job is

exponentially distributed with mean u > 0, independent of the arrival process and the job’s type. We

denote class 1 as the important class, and class 2 as the less important class. The server tries her/his

best to classify the type 1 jobs into class 1, and type 2 jobs into class 2. While the investigation on a job

provides information on the job’s type, the classification is error-prone. Define v1 as the probability

of classifying a type 1 job into class 1 and v2 as the probability of classifying a type 2 job into class 2.

Without loss of generality, we assume that v1 + v2 > 1. Denote PCi as the probability of classifying

a random job into class i, where i = 1, 2. Then, PC1 = pv1 + q(1− v2), PC2 = p(1− v1) + qv2.

We further assume that a preemptive discipline is used and there is no cost or changeover time

for the server to switch actions. Let xj(t) denote the number of jobs in class j at time t where

j = 0, 1, 2, then X(t) = (x0(t), x1(t), x2(t)) is the current state of the system. Hence, the state space

is S = {(i, k1, k2) : i ≥ 0, k1 ≥ 0, k1 ≥ 0}. At any time, the provider of the service system can

take one of the following four actions: SU – serve an untriaged job without triage (only available if

i ≥ 1); Tr – triage an untriaged job (only available if i ≥ 1); SC1 – serve a class-1 job (only available

if k1 ≥ 1); and SC2 – serve a class-2 job (only available if k2 ≥ 1).

One can easily show that unforced idling is suboptimal due to the preemption assumption. Denote

the action set by A = {SC1, SU, Tr, SC2} and the action taken at time t by a(t). A control policy

π specifies the action taken at time t given the current system state X(t). Hence, we only consider

control policies with Markovian properties. Our objective is to minimize the expected average cost

per unit time over an infinite horizon which is formally defined as

g(π, s) = lim sup
n→∞

Vn(π, s)

n
, ∀s ∈ S,

where Vt(π, s) is total expected cost up to time t under policy π, starting from state s. In general it is

possible that there are more than one optimal action for any given state. If that is the case, we choose

the action that is listed earlier in the action set {SC1, SU, Tr, SC2}. For instance, SC1 has precedence
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over all the other actions. While this assumption is not crucial, it allows us to ensure that there is

a unique optimal policy, which in turn simplifies the presentation of the results. Denote the optimal

action at X(t) by a∗(X(t)) and optimal expected average cost by g∗(s) :

g∗(s) = inf
π∈Π

g(π, s), ∀s ∈ S, (4.1)

4.3 State-dependent policies

4.3.1 Markov decision process formulation

Let r be the expected cost rate for an untriaged job, and ri be the expected cost rate for a class-i

job, i = 1, 2, then

r = ph1 + qh2, r1 =
pv1h1 + q(1− v2)h2

PC1
, r2 =

p(1− v1)h1 + qv2h2

PC2
. (4.2)

Throughout the rest of this chapter, we assume that uniformization has been applied with the following

uniformization constant

φ = λ+
1

u
+

1

τ
.

Without loss of generality we assume φ = 1. Thus, instead of considering the above continuous-time

problem, we study the discrete-time equivalent. Letting for (i, k1, k2) /∈ S, v(i, k1, k2) = ∞, the

optimality equations can be written as follows. For (i, k1, k2) ∈ S and i+ k1 + k2 > 0,

v(i, k1, k2) + g = λv(i+ 1, k1, k2) + ir + k1r1 + k2r2 + min
{

1

u

[
PC1v(i− 1, k1 + 1, k2) + PC2v(i− 1, k1, k2 + 1)

]
+

1

τ
v(i, k1, k2),

1

τ
v(i− 1, k1, k2) +

1

u
v(i, k1, k2),

1

τ
v(i, k1 − 1, k2) +

1

u
v(i, k1, k2),

1

τ
v(i, k1, k2 − 1) +

1

u
v(i, k1, k2)

}
,

v(0, 0, 0) + g = λv(1, 0, 0) +
1

τ
v(0, 0, 0) +

1

u
v(0, 0, 0).

(4.3)

Proposition 4.3.1 (Existence of the optimal policy). Assume λτ < 1. There exist g, v that solve the
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above optimality equations. Moreover, there exists a stationary policy that is optimal for the above

problem.

4.3.2 Characterization of the optimal policy

The following theorem presents our main theoretical result, which describes the structure of the

optimal policy as of threshold type.

Theorem 4.3.1. There exists an optimal policy that can be described as follows:

(i) If k1 ≥ 1, then a∗(i, k1, k2) = SC1, i.e., once the server identifies a class-1 job, the server

should serve this job immediately.

(ii) The optimal action a∗(i, k1, k2) = SC2 only when i = 0 and k2 = 0, i.e., the server serves a

class-2 job only when there are no class-0 or class-1 jobs in the system.

(iii) If k1 = 0 and i > 0, then for each i ≥ 1, there exists a threshold k∗2(i) such that if k2 < k∗2(i),

the optimal action is triage; otherwise, serve without triage.

(iv) If u ≥ ũ := PC2(r − r2)τ/r, then a∗(i, 0, k2) = SU for all (i, 0, k2) ∈ S.

This theorem establishes that for any given time and specified number of jobs of a given class

(e.g., class-0, class-1, class-2), it is optimal to give class-1 jobs the highest priority and class-2 jobs

the lowest priority. If there are no class-1 jobs, the server should triage a class-0 job if the number

of the class-2 jobs is below a critical value, and serve a class-0 job directly without triage when the

number of class-2 jobs is sufficiently large. The results agree with the well-known cµ rule, which gives

priority to class-1 jobs over class-0 jobs and gives priority to class-0 jobs over class-2 jobs if triage is

not an option. When there are many class-2 jobs (less-importance jobs) waiting for service, the value

of job type information that will be obtained through triage could not compensate the additional delay

that the remaining jobs will have to suffer. Hence, the optimal action is to skip triage. When triage

takes a significant amount of time, the threshold, k∗2(i), becomes 0 implying that the optimal policy

simplifies to the policy of not doing triage at all. The reason is that the value of triage diminishes when

the jobs in the system have to endure long waiting. The expression of ũ gives a precise description of

what we mean by a significant amount of time.

35



0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

11

Number of untriaged, i

N
u
m
b
e
r
o
f
c
la
ss

2
,
k
2

Figure 4.1: Visual description of the optimal policy when k1 = 0 and λ = 0.6, h1 = 10, h2 = 1, τ1 = τ2 =
1, v1 = 0.9, v2 = 0.95, u = 0.25, p = 0.6.

An example of the threshold-type policy, determined by solving the Bellman’s equation in (4.3)

recursively, is presented in Figure 4.1. The x-axis represents the number of class-0/untriaged jobs and

the y-axis represents the number of class-2 jobs in the system. The threshold-type policy, described

in Theorem 4.3.1, reflects the real-time decision on whether to triage or not.

The proof follows after showing some properties of the optimal value functions v(i, k1, k2). We

first show that the desired properties for the value functions of the discounted version of the model

are preserved under the value-iteration operator with small discount factor, then we show that such

properties hold when the discount factor is approaching 0, which implies that the optimal value func-

tions in the case of long-run average cost preserve such properties as well. The technical details are

presented in Section 4.3.3.

Proposition 4.3.2. If

λ ≤ τ − u
τ2

(
1− τ

τ − u
r2

(ũ/u− 1) r + r2

)
,

then k∗2(i) increases with i.

Proposition 4.3.2 states that k∗2(i) is increasing with i when the arrival rate is bounded above

by certain value. The critical value increases as the number of untriaged jobs increases, since when

there are many untriaged jobs waiting in queue, the cost reduced by discovering and prioritizing an

important job is greater, which in turn means greater tolerance to the number of class-2 jobs waiting
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in queue.

4.3.3 Proof of Theorem 4.3.1 and Proposition 4.3.2

In this section, we sketch the idea for showing the theoretical results in Section 4.3.2. Consider a

model in which the objective is to minimize the total discounted cost over an infinite time horizon. The

model assumptions remain the same as those in Section 4.3.1. We refer to this model as the discounted

cost model and the model in Section 4.3.1 as the average cost model. Let α denote the continuos-

time discount factor, then we write down the MDP formulation of the total discounted model with

uniformization factor λ + 1
u + 1

τ + α. Without loss of generality, we assume λ + 1
u + 1

τ + α = 1.

However, all the results in this section hold without this assumption. The main idea is to first establish

the structural properties of the optimal value functions in the discounted cost model, then extend the

results to the average cost model by letting α go to zero. The optimality equations for the discounted

cost model can be written as v = Tv, in which the operator T is defined as below. Similar to what

we did in (4.3), we assume that for (i, k1, k2) /∈ S, v(i, k1, k2) = ∞. For (i, k1, k2) ∈ S and

i+ k1 + k2 > 0,

T v(i, k1, k2) = λv(i+ 1, k1, k2) + ir + k1r1 + k2r2 + min
{

1

u

[
PC1v(i− 1, k1 + 1, k2) + PC2v(i− 1, k1, k2 + 1)

]
+

1

τ
v(i, k1, k2),

1

τ
v(i− 1, k1, k2) +

1

u
v(i, k1, k2),

1

τ
v(i, k1 − 1, k2) +

1

u
v(i, k1, k2),

1

τ
v(i, k1, k2 − 1) +

1

u
v(i, k1, k2)

}
,

T v(0, 0, 0) = λv(1, 0, 0) +
1

τ
v(0, 0, 0) +

1

u
v(0, 0, 0).

(4.4)

Proposition 4.3.3. The optimal value function v∗ can be obtained by the value iteration algorithm

starting from any arbitrary function v0, i.e.,

lim
n→∞

T (n)v0 = v∗.

By Proposition 4.3.3, the optimal value function of the total discounted model exists and is well
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defined, we next show that it possesses the following sets of properties. We first define function

G(i, k2) as

G(i, k2) =
1

u
[PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)] +

1

τ
v(i, 0, k2)

− 1

u
v(i, 0, k2)− 1

τ
v(i− 1, 0, k2), i ≥ 1, k2 ≥ 0.

(4.5)

Let E be the set of functions defined on Z3 such that if v ∈ E , then:

(e.1) 1
τ v(i, k1 − 1, k2) + 1

uv(i, k1, k2) < 1
u

[
PC1v(i− 1, k1 + 1, k2) + PC2v(i− 1, k1, k2 + 1)

]
+

1
τ v(i, k1, k2), i ≥ 1, k1 ≥ 1, k2 ≥ 0.

(e.2) v(i, k1 − 1, k2) < v(i− 1, k1, k2), i ≥ 1, k1 ≥ 1, k2 ≥ 0.

(e.3) v(i, k1 − 1, k2) < v(i, k1, k2 − 1), i ≥ 0, k1 ≥ 1, k2 ≥ 1.

(e.4) v(i− 1, k1, k2) < v(i, k1, k2 − 1), i ≥ 1, k1 ≥ 0, k2 ≥ 1.

(e.5) v(i, k1, k2 + 1)− v(i, k1, k2) > 0, i ≥ 0, k1 ≥ 0, k2 ≥ 0.

Let F be the set of functions defined on Z3 such that if v ∈ F , then

(f.1) PC1
u

[
v(i, 1, k2)− v(i+ 1, 0, k2)

]
≤ r, i ≥ 0, k2 ≥ 0.

(f.2) G(i, k2) ≥ 0, i ≥ 1, k2 ≥ 0.

Lemma 4.3.1. Suppose u ≥ ũ(α) := PC2(r−r2)τ
r(1+ατ) . If v ∈ E ∩ F , then Tv ∈ E ∩ F .

Let G be the set of functions defined on Z3 such that if v ∈ G, then:

(g.1) G(i, k2) ≤ G(i, k2 + 1), i ≥ 1, k2 ≥ 0.

(g.2) v(i+ 1, 0, k2)− v(i, 1, k2) ≤ v(i+ 1, 0, k2 + 1)− v(i, 1, k2 + 1), i ≥ 0, k2 ≥ 0.

(g.3) v(i, k1, k2 + 1)− v(i, k1, k2) ≤ v(i, k1, k2 + 2)− v(i, k1, k1 + 1), i ≥ 0, k1 ≥ 0, k2 ≥ 0.

(g.4) v(i, k1, k2+1)−v(i, k1, k2) ≥ v(i−1, k1, k2+2)−v(i−1, k1, k2+1), i ≥ 1, k1 ≥ 0, k2 ≥ 0.

Lemma 4.3.2. Suppose u < ũ(α). If v ∈ E ∩ G, then Tv ∈ E ∩ G.
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LetH be the set of functions defined on Z3 such that if v ∈ G, then:

(h.1) G(i, k2) ≥ G(i+ 1, k2), i ≥ 1, k2 ≥ 0.

(h.2) v(i+ 1, 0, k2)− v(i, 1, k2) ≤ v(i+ 1, 0, k2 + 1)− v(i, 1, k2 + 1), i ≥ 0, k2 ≥ 0.

(h.3) For i ≥ 1, k2 ≥ 0, PC1
u

[
v(i− 1, 1, k2)− v(i, 0, k2)

]
≥ ũ(α)

u r.

(h.4) For i ≥ 1, k2 ≥ 1, G(i, k2)− 1
τ

[
v(i− 1, 0, k2)− v(i− 1, 0, k2 − 1)

]
≤ ũ(α)

u r.

(h.5) For i ≥ 0, k1 ≥ 0, k2 ≥ 0,

v(0, 0, 1)− v(0, 0, 0) ≤
(
PC2

u
− 1

τ

)
(r − r2)τ2,

[
v(i, k1, k2 + 2)− v(i, k1, k2 + 1)

]
−
[
v(i, k1, k2 + 1)− v(i, k1, k2)

]
≤
(
PC2

u
− 1

τ

)
(r − r2)τ2.

(h.6) G(i, 0) ≤ r, i ≥ 1.

(h.7) For i ≥ 0, k1 ≥ 0, k2 ≥ 0, v(i, k1, k2 + 1)− v(i, k1, k2) ≤ r2
α

[
1− βk1+k2+1

1 βi2

]
, where

β1 =

λτ
τ−u + 1/τ + α−

√
( λτ
τ−u + 1/τ + α)2 − 4 λτ

τ−u/τ

2λτ/(τ − u)
, (4.6)

β2 =
β1 − u/τ
1− u/τ

. (4.7)

Lemma 4.3.3. Suppose

λ ≤ τ − u
τ2

(
1− τ

τ − u
r2

(ũ(α)/u− 1) r + r2

)
. (4.8)

If v ∈ E ∩ H, then Tv ∈ E ∩ H.

The proofs of Lemma 4.3.1, 4.3.3 and 4.3.2 are given in Appendix B. Lemma 4.3.1, 4.3.3 and 4.3.2

show that the properties in set E ,F and G are preserved under operator T under certain conditions.

Next, we show using Theorem 11.5 of Porteus (2002) that with the same conditions, the optimal value

function of the discounted cost model satisfies the properties in sets E ,F and G.
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Lemma 4.3.4. There exists an optimal value function for the discounted cost model that possesses (i)

the properties in set E ∩F if u ≥ ũ(α); (ii) the properties in set E ∩G if u < ũ(α); (iii) the properties

in set E ∩ H if Equation (4.8) holds.

Next, by verifying the three SEN conditions from Sennott (1999), we extend the above results to

the average cost model by letting α go to 0, meaning that the properties of the optimal value functions

for the discounted cost model hold for the optimal bias functions of the average cost model as well.

Before we proceed, some technical details have to be explained. The discount factor in the SEN

conditions, denoted by α1 below, is the discrete-time discount rate, meaning that the present value

of $1 earned t days later is the same as $αt1. However, the discount factor in our model, α, is the

continuos-time discount rate, meaning that the present value of $1 earned t days later is $e−αt. By

uniformization, we transform a continuous-time MDP to a discrete-time MDP, and the continuous-

time discount factor will be converted into an equivalent discrete-time discount factor. Thus letting

α→ 0 is equivalent as letting α1 → 1. (See e.g., Alagoz and Ayvaci (2010) )

Let z be a distinguished state in S. The SEN conditions are

SEN1 The quantity (1 − α1)Vα1(z) is bounded, for α1 ∈ (0, 1). (This implies that Vα1(z) < ∞ and

hence we may define the function hα1(i) =: Vα1(i) − Vα1(z) without fear of introducing an

indeterminate form.)

SEN2 There exists a nonnegative (finite) function M such that hα1(i) ≤M(i) for i ∈ S, α1 ∈ (0, 1).

SEN3 There exists a nonnegative (finite) constant L such that −L ≤ hα1(i) for i ∈ S, α1 ∈ (0, 1).

Lemma 4.3.5. The three SEN conditions are satisfied for the discounted cost model.

The proof of Lemma 4.3.5 is given in Appendix B. By Theorem 7.2.3 in Sennott (1999), the

optimal bias functions of the average cost model inherit all the structural properties of the optimal

value functions of the discounted cost model. Now, we are ready to prove the theoretical results in

Section 4.3.2.

Proof of Theorem 4.3.1 and Proposition 4.3.2

Property (e.1)∼(e.4) imply that if k1 ≥ 1, it is optimal to give priority to class-1 jobs; class-2 jobs

should be served only when i = k1 = 0, i.e., there are no jobs of other classes. Property (f.2) implies
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that when u ≥ ũ, it is optimal to skip triage for any system state. When u < ũ, the monotonicity of

G(i, k2) in k2, i.e., Property (g.1), implies that if it is optimal to skip triage in (i, 0, k2), it is optimal

to do so in (i, 0, k2 + 1). On the other hand, if it is optimal to do triage in (i, 0, k2 + 1), it is optimal to

do so in (i, 0, k2). Hence, the optimal policy on whether to triage or not is determined by a threshold

for any given i. Note that this result is regardless of the value of u because when u ≥ ũ, the optimal

policy is a special form of the threshold-type policy with the threshold being 0. When Equation (4.8)

holds, the monotonicity of G(i, k2) in i, i.e., Property (h.1), implies that if it is optimal to skip triage

in (i + 1, 0, k2), it is optimal to do so in (i, 0, k2). On the other hand, if it is optimal to do triage in

(i, 0, k2), it is optimal to do so in (i + 1, 0, k2). Hence, the threshold k∗2(i) is an increasing function

of i, which completes the proof of Proposition 4.3.2.

4.4 Simulation study

Unlike the case for the clearing model of Chapter 3, we have no explicit expressions for the thresh-

old of the optimal policy. Therefore, it is particularly important to explore the performance of heuristic

policies. The problem we investigate in this chapter has infinite state space. To numerically compute

the optimal cost, we would need to solve the Bellman’s equation which necessitates truncation of the

state space. Hence, we would only able to get an approximation for the optimal cost. Since estimation

of the error due to truncation is not possible, we carried out a simulation study instead of numerical

experiments. First, we describe the three policies of interest.

No-Triage Policy (NT ) Jobs are served in random order. No job goes through triage.

Triage-Prioritize-Class-1 Policy (TP1) Each job goes through triage in random order. If a job is

classified as class-1, it is served right away; otherwise, the job is put aside to be served later, and

triage the next untriaged job. When there are no untriaged jobs in the system, class-2 jobs are served.

Service is preemptive.

Threshold-type Policy (Th) Serve a class-1 job once it is identified, and serve a class-2 job only

when there are no other types of jobs, i.e., i = k1 = 0. When k1 = 0 and i > 0, skip triage only if

k2 ≥ L(i), where

L(i) =

(
r(ũ− u)

r2u

)
i− rũ

r2u
, (4.9)

41



and r, r2 are defined in (4.2); ũ is defined in Theorem 4.3.1.

Policy NT is the first-come-first-serve policy, and Policy TP1 is the counterpart of the Triage-

Prioritize-Class-1 Policy in the clearing system. The only difference is that the service of less impor-

tant jobs, i.e., class-2 jobs, may be preempted by new arrivals. Policy Th is the same as the optimal

policy for the clearing system in Chapter 3 except the parameters are adapted to that of Chapter 4.

The parameters of the simulation is described below. The service times are generated from ex-

ponential distributions with mean service time τ = 1. The probability of a new arrival job being

type-1, p, is fixed at 0.3. The conditional probabilities of correct classification for type-1 and type 2

are v1 = 0.9, v2 = 1, respectively. We chose λ from the set {0.1, 0.3, 0.5, 0.7, 0.9}, and chose h1

from {1, 3, 5, 7, 9} while h2 is fixed at 1. The triage time is exponentially distributed and u is chosen

from {0.1, 0.2, 0.3}. For each combination of (λ, h1, u), the long-run average cost under Policy NT

is computed by

gNT =
ρ

1− ρ
· r, (4.10)

where ρ = λτ. We simulate the system evolution under Policy Th. We pick 2× 104 time units as the

warmup period by Welch’s method. Then, we run the simulation for Ts = 107 time units in addition

to the warmup period. We divide Ts into 1000 equal batches, each batch with 104 time units, and

record the total cost incurred during each batch. We use the average cost of each batch, which can be

easily obtained, to compute 95% confidence interval for the long-run average cost of the system under

Policy Th. The mean of the confidence interval is denoted by gTh.

Table 4.1 presents our simulation results. The confidence intervals of the long-run average cost

for each scenario are displayed in columns labeled gTh. To the right of each of the gTh column, we

present the percentage improvement, η, by Policy Th over PolicyNT. If gNT falls into the confidence

interval of gTh, the improvement is insignificant and we simply set η = 0.00; otherwise, it is defined

as

η =
gNT − gTh

gNT
× 100. (4.11)

From Table 4.1, we observe that the improvement is insignificant when (i) the cost rates of the

two types are close; and/or (ii) when the arrival rate is small, and/or (iii) when the expected triage

time is large. These observations are consistent with our intuition that when the two types of jobs are
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h1 λ gNT
Th, u = 0.1 Th, u = 0.2 Th, u = 0.3

gTh Imprv% gTh Imprv% gTh Imprv%

1 0.1 0.111 0.111± 0.000 0.00 0.111± 0.000 0.00 0.111± 0.000 0.00

1 0.3 0.429 0.428± 0.001 0.00 0.428± 0.001 0.00 0.428± 0.001 0.00

1 0.5 1.000 0.999± 0.003 0.00 0.999± 0.003 0.00 0.999± 0.003 0.00

1 0.7 2.333 2.334± 0.011 0.00 2.334± 0.011 0.00 2.334± 0.011 0.00

1 0.9 9.000 8.945± 0.125 0.00 8.945± 0.125 0.00 8.945± 0.125 0.00

3 0.1 0.178 0.177± 0.000 0.00 0.178± 0.001 0.00 0.178± 0.001 0.00

3 0.3 0.686 0.670± 0.002 2.36 0.685± 0.002 0.00 0.684± 0.002 0.00

3 0.5 1.600 1.517± 0.004 5.22 1.598± 0.004 0.00 1.602± 0.005 0.00

3 0.7 3.733 3.459± 0.018 7.36 3.723± 0.016 0.00 3.736± 0.018 0.00

3 0.9 14.400 13.607± 0.161 5.51 14.303± 0.173 0.00 14.407± 0.182 0.00

5 0.1 0.244 0.240± 0.001 1.77 0.244± 0.001 0.00 0.245± 0.001 0.00

5 0.3 0.943 0.886± 0.002 6.08 0.933± 0.002 1.02 0.942± 0.002 0.00

5 0.5 2.200 1.945± 0.006 11.60 2.121± 0.007 3.61 2.201± 0.006 0.00

5 0.7 5.133 4.285± 0.017 16.53 4.817± 0.020 6.16 5.122± 0.023 0.00

5 0.9 19.800 16.266± 0.218 17.85 18.247± 0.210 7.84 19.626± 0.249 0.00

7 0.1 0.311 0.305± 0.001 2.06 0.310± 0.001 0.00 0.311± 0.001 0.00

7 0.3 1.200 1.101± 0.003 8.23 1.163± 0.003 3.07 1.199± 0.003 0.00

7 0.5 2.800 2.365± 0.006 15.53 2.590± 0.008 7.49 2.766± 0.009 1.20

7 0.7 6.533 5.048± 0.020 22.74 5.763± 0.023 11.79 6.336± 0.031 3.02

7 0.9 25.200 19.220± 0.249 23.73 22.077± 0.264 12.39 24.189± 0.317 4.01

9 0.1 0.378 0.367± 0.001 2.80 0.374± 0.001 0.91 0.378± 0.001 0.00

9 0.3 1.457 1.316± 0.003 9.72 1.390± 0.003 4.60 1.449± 0.004 0.55

9 0.5 3.400 2.785± 0.007 18.09 3.065± 0.009 9.84 3.313± 0.009 2.57

9 0.7 7.933 5.789± 0.020 27.03 6.725± 0.030 15.23 7.483± 0.038 5.68

9 0.9 30.600 21.706± 0.251 29.06 25.769± 0.288 15.79 28.482± 0.343 6.92

Table 4.1: Comparison in the average cost by using the heuristic policy Th as opposed to No-Triage policy.

similar in the sense of the cost rates, then triage brings few benefits and No-Triage Policy performs

similar to the optimal policy. When the arrival rate is small, service resources are sufficient and the

congestion level in the system is low. Hence, triage is not needed. When triage takes too much time,

the additional delay imposed on the jobs can not be justified by the benefits brought by triage. On

the contrary, when the differences among the jobs are significant, and/or the traffic intensity is high,

and/or triage is fast, Policy Th improves over No-Triage Policy as much as 29%. Not surprisingly, the

most significant improvement happens when h1 = 9, λ = 0.9 and u = 0.1, i.e., when the two types

of jobs are most different, the system’s congestion level is high and triage can be done rapidly.
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CHAPTER 5: EXTENSIONS

In this chapter, we study three extensions. In Section 5.1, we study a clearing model as in Chapter

3 but this time we consider having multiple identical servers instead of a single server. In Section 5.2,

we consider a model with arrivals as in Chapter 4, but this time triage is instantaneous and incurs a

fixed cost. In Section 5.3, we discuss the case that triage is not optional and is required to be done for

each new arrival before services. In each section, we describe the model assumptions and are able to

characterize the optimal policy partially or completely.

5.1 Multiple identical servers

Consider a service system with M servers and N jobs. The servers are identical and work in a

non-cooperative manner. Each job belongs to one of the two types, type 1 and type 2. A job is of

type 1 with probability p, and is of type 2 with probability q ≡ 1 − p. Both p and q are exogenous

parameters, and will not change over time. The service time of a job from type i is exponentially

distributed with mean τ > 0, and a type i job incurs a cost with rate hi per unit time the job stays in

the system, i = 1, 2. Without loss of generality, we assume that type 1 jobs are more important than

type 2 jobs in the sense of higher cost rate, i.e., h1 > h2.

We assume that the type information of a job is hidden from the service system initially, i.e.,

servers do not know the exact type of a job, but servers could serve a job without knowing its type.

The servers also have the option to spend some time on investigation, i.e., triage, to obtain the type

information of a job, and classify the job as class 1 or class 2. The triage time of a job is exponentially

distributed with mean u > 0, independent the job’s type. We denote class 1 as the important class,

and class 2 as the less important class. Each server tries her/his best to classify the type 1 jobs into

class 1, and type 2 jobs into class 2. While triaging a job provides information on the job’s type, the

classification is error-prone. Define v1 as the probability of classifying a type 1 job into class 1 and

v2 as the probability of classifying a type 2 job into class 2. Without loss of generality, assume that



v1 + v2 > 1. Denote PCi as the probability of classifying a random job into class i, where i = 1, 2.

Then, PC1 = pv1 + q(1− v2), PC2 = p(1− v1) + qv2.

We further assume that a preemptive discipline is used and there is no cost for switching ac-

tions. The decision epochs are time zero, and triage and service completion times for the server.

The state of the system can then be denoted by the triplet (i, k1, k2), where i represents the num-

ber of untriaged jobs, and k1 and k2 denote the number of jobs that have been classified as class-

1 and class-2, respectively. Since we have N jobs in total, the state space can be described as

S = {(i, k1, k2) : i, k1, k2 ≥ 0, i+ k1 + k2 ≤ N} .

Using a sample-path argument, it is straightforward to show that keeping any of the servers idle

is suboptimal. This allows us to ignore idling as an admissible action. Then, in a given state s =

(i, k1, k2), the available actions for each server are SU: serve an untriaged job without triage (only

available if i ≥ 1); Tr: triage an untriaged job (only available if i ≥ 1); SC1: serve a class-1 job

(only available if k1 ≥ 1); and SC2: serve a class-2 job (only available if k2 ≥ 1). Our objective is to

minimize the total expected cost.

Let Vπ(i, k1, k2) denote the total expected cost under policy π and V (i, k1, k2) = minπ {Vπ(i, k1, k2)}

to be the total expected cost under an optimal policy starting from state (i, k1, k2) with no service or

triage in progress.

Theorem 5.1.1. In the optimal policy, servers will work on the same type of jobs if possible.

5.2 Instantaneous triage

Consider a service system with a single server and two types of jobs, type 1 and type 2. Jobs

arrive to the system according to a Poisson process with a total rate λ, and they wait in a queue if

they are not served upon arrival. The waiting space is unlimited. For convenience, we use “class 0” or

untriaged jobs to denote these new arrivals that have not gone through triage. Each job belongs to type

1 with probability p and to type 2 with probability q ≡ 1− p. Both p and q are exogenous parameters,

and will not change over time. The service time of a job from type i is exponentially distributed with

mean τ > 0, and a type i job incurs a cost with rate hi per unit time the job stays in the system where

i = 1, 2. Without loss of generality, we assume that type 1 jobs are more important than type 2 jobs
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from the service provider’s perspective in the sense of higher cost rate, i.e., h1 > h2.

We assume that the type information of an arriving job is hidden from the service system initially,

i.e., the server does not know the exact type of a new arrival, but s/he could serve a job without

knowing its type. The server also has the option to spend some time on investigation, i.e., triage, to

obtain the type information of a job, and classify the job as class 1 or class 2. Unlike in Chapter 4, we

assume that triage takes no time but a fixed cost C > 0. We denote class 1 as the important class, and

class 2 as the less important class. The server tries her/his best to classify the type 1 jobs into class 1,

and type 2 jobs into class 2. While the investigation on a job provides information on the job’s type, the

classification is error-prone. Define v1 as the probability of classifying a type 1 job into class 1 and v2

as the probability of classifying a type 2 job into class 2. Denote PCi as the probability of classifying

a random job into class i, where i = 1, 2. Then, PC1 = pv1 + q(1− v2), PC2 = p(1− v1) + qv2.

We further assume that a preemptive discipline is used and there is no cost or changeover time

for the server to switch actions. Let xj(t) denote the number of jobs in class j at time t where

j = 0, 1, 2, then X(t) = (x0(t), x1(t), x2(t)) is the current state of the system. Hence, the state space

S = {(i, k1, k2) : i ≥ 0, k1 ≥ 0, k1 ≥ 0}. At any time, the provider of the service system can take

one of the following four actions: SU – serve an untriaged job without triage (only available if i ≥ 1);

Tr – triage an untriaged job (only available if i ≥ 1); SC1 – serve a class-1 job (only available if

k1 ≥ 1); and SC2 – serve a class-2 job (only available if k2 ≥ 1).

One can easily show that unforced idling is suboptimal due to the preemption assumption. In

general it is possible that there are more than one optimal action for any given state. If that is the case,

we choose the action that is listed earlier in the action set {SC1, SU, Tr, SC2}. For instance, SC1

has precedence over all the other actions. While this assumption is not crucial, it allows us to ensure

that there is a unique optimal policy, which in turn simplifies the presentation of the results. A control

policy π specifies the action taken at time t given the current system state X(t). Denote the action

taken at time t by a(t) and the optimal action atX(t) as a∗(X(t)). The total expected discounted cost

under any policy π, denoted by vπ, is defined by

vπ(s) = Eπ

[∫ ∞
0

K(X(t), a(t))e−αtdt|X(0) = s

]
, ∀s ∈ S,
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where K(X(t), a(t)) is the cost rate at time t when the system state is X(t) and the action is a(t), α

is the discount factor. Our objective is to identify policies that minimize the total discounted cost.

Throughout the rest of this section, we assume that uniformization has been applied with the

following uniformization constant

φ = λ+
1

τ
+ α.

Without loss of generality we assume φ = 1. Thus, instead of considering the above continuous-

time problem, we study a discrete-time version. With the same notation in Chapter 4, the optimality

equations for the total discounted model can be written as v = Tv, where the operator T is defined

as below. Similar to what we did in (4.3), we assume that for (i, k1, k2) /∈ S, v(i, k1, k2) = ∞. For

(i, k1, k2) ∈ S and i+ k1 + k2 > 0,

T v(i, k1, k2) = min
{
PC1v(i− 1, k1 + 1, k2) + PC2v(i− 1, k1, k2 + 1) + C,

λv(i+ 1, k1, k2) +
1

τ
v(i− 1, k1, k2) + ir + k1r1 + k2r2,

λv(i+ 1, k1, k2) +
1

τ
v(i, k1 − 1, k2) + ir + k1r1 + k2r2,

λv(i+ 1, k1, k2) +
1

τ
v(i, k1, k2 − 1) + ir + k1r1 + k2r2

}
,

T v(0, 0, 0) = λv(1, 0, 0) +
1

τ
v(0, 0, 0).

(5.1)

The following theorem provides a partial characterization of the optimal policy.

Theorem 5.2.1. Consider state (i, k1, k2) ∈ S:

(i) If k1 ≥ 1, then a∗(i, k1, k2) = SC1, i.e., as soon as the server identifies a class-1 job, that job

should be served next.

(ii) If i+ k1 > 0, then a∗(i, k1, k2) 6= SC2, i.e., it is optimal to serve a class-2 job only when there

are no untriaged or class-1 jobs.

Theorem 5.2.1 depicts the service order of the untriaged jobs, class-1 jobs and class-2 jobs. It is

optimal to give class-1 jobs the highest priority and class-2 jobs the lowest priority. These results can

be easily extended to a model with the same settings but to minimize the long-run average cost. The

proof repeats the idea used in the proof of Theorem 4.3.2. The decision question remains on when
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to triage and when to serve the untriaged jobs directly without triage. From the intuition of Chapter

4, we conjecture that there exists a single threshold such that if the number of untriaged jobs exceeds

the threshold, skip triage; otherwise, do triage. The benefit of triaging a job is to be able to prioritize

an important job. The magnitude of the benefit becomes greater when there are many untriaged jobs

waiting for service, which is consistent with the result in Chapter 4 that the server prefers to do triage

when the number of untriaged jobs is large. In Chapter 4, the threshold depends on both the number

of untriaged jobs and the number of class-2 jobs because triage takes time and causes delay to all

the jobs in the system. However, in our current model, triage takes no time but a fixed cost, which

means there will be no delay imposed on the class-2 jobs in the system. Hence, we conjecture that the

optimal policy can be characterized by a single threshold that is independent of the number of class-2

jobs.
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Figure 5.1: An example of the threshold-type policy when triage is instantaneous and incurs a fixed cost.

Figure 5.1 provides an example to illustrate the conjectured optimal policy when there are no

class-1 jobs. The threshold is i∗ = 4. When the number of untriaged jobs is more than 4, it is optimal

for the server to do triage; otherwise, the server should skip triage. The threshold i∗ does not depend

on the number of class-2 jobs. We are not able to prove that the conjectured policy is optimal now. In

the following section, we study the set of such policies.
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5.2.1 Threshold-type policies

In this section, we study a set of threshold policies where if i > i∗, do triage; otherwise, skip

triage. Under this type of policy, we calculated the long-run expected cost. Let µ = 1/τ. Given an i∗,

we model the system dynamic as a CTMC (continuous-time Markov chain). We can write down the

balance equations as follows.

λπ0,0,0 = µπ0,0,1 + µπ1,0,0. (5.2)

(λ+ µ)π0,0,k2 = µπ0,0,k2+1 + µπ1,0,k2 , k2 ≥ 1. (5.3)

(λ+ µ)πi,0,k2 = λπi−1,0,k2 + µπi+1,0,k2 , 1 ≤ i ≤ i∗ − 1, k2 ≥ 0. (5.4)

(λ+ µ)πi∗,0,0 = λπi∗−1,0,0 + µπi∗,1,0. (5.5)

(λ+ µ)πi∗,0,k2 = λπi∗−1,0,k2 + λPC2πi∗,0,k2−1 + µπi∗,1,k2 , k2 ≥ 1. (5.6)

(λ+ µ)πi∗,k1,0 = λπi∗,k1−1,0 + µπi∗,k1+1,0, k1 ≥ 1. (5.7)

(λ+ µ)πi∗,k1,k2 = λPC1πi∗,k1−1,k2 + λPC2πi∗,k1,k2−1 + µπi∗,k1+1,k2 , k1, k2 ≥ 1. (5.8)

The transition diagram of the CTMC is

0,0, 0 1,0, 0 2,0, 0  i*, 0, 0

λ λ λ

µµ µ

0,0,1 1,0,1 2,0,1  i*, 0,1

λ λ λ

µµ µ

µ

λ

µ

λ

µ

i*,1, 0

λPC1

i*, 2, 0

λPC1 λPC1



µ µ µ

i*,1,1

λPC1

i*, 2,1

λPC1 λPC1



µ µ µ

λPC2 λPC2

0,0, 2 1,0, 2 2,0, 2  i*, 0, 2

λ λ λ
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i*,1, 2

λPC1

i*, 2, 2

λPC1 λPC1



µ µ µ

µ

λPC2

λPC2 λPC2 λPC2

  

Figure 5.2: Transition diagram of the CMTC under a given threshold-type policy.

Next, we solve the stationary distribution of this CTMC and compute the long-run average cost.
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Let ρ ≡ λτ.

STEP 1 Add up (5.2) and (5.3)

λ
∞∑
k2=0

π0,0,k2 = µ
∞∑
k2=0

π1,0,k2 ⇒
∞∑
k2=0

π1,0,k2 = ρ
∞∑
k2=0

π0,0,k2 .

STEP 2 For each 1 ≤ i ≤ i∗ − 1, add up (5.4)

λ
∞∑
k2=0

π1,0,k2 = µ
∞∑
k2=0

π2,0,k2 ⇒
∞∑
k2=0

π2,0,k2 = ρ
∞∑
k2=0

π1,0,k2 = ρ2
∞∑
k2=0

π0,0,k2 ,

...

λ
∞∑
k2=0

πi∗−1,0,k2 = µ
∞∑
k2=0

πi∗,0,k2 ⇒
∞∑
k2=0

πi∗,0,k2 = ρ
∞∑
k2=0

πi∗−1,0,k2 = ρi
∗
∞∑
k2=0

π0,0,k2 ,

STEP 3 For each k1 ≥ 0, add up (5.5), (5.6), (5.7) and (5.8)

λPC1

∞∑
k2=0

πi∗,0,k2 = µ

∞∑
k2=0

πi∗,1,k2 ⇒
∞∑
k2=0

πi∗,1,k2 = ρPC1

∞∑
k2=0

πi∗,0,k2 = (ρPC1)ρi
∗
∞∑
k2=0

π0,0,k2 ,

λPC1

∞∑
k2=0

πi∗,1,k2 = µ

∞∑
k2=0

πi∗,2,k2 ⇒
∞∑
k2=0

πi∗,2,k2 = ρPC1

∞∑
k2=0

πi∗,1,k2 = (ρPC1)2ρi
∗
∞∑
k2=0

π0,0,k2 ,

...

Hence,

∞∑
k2=0

πi,0,k2 = ρi
∞∑
k2=0

π0,0,k2 , 0 ≤ i ≤ i∗ − 1.

∞∑
k2=0

πi,k1,k2 = (ρPC1)k1ρi
∗
∞∑
k2=0

π0,0,k2 , k1 ≥ 0.

Since
i∗−1∑
i=0

∞∑
k2=0

πi,0,k2 +
∞∑
k1=0

∞∑
k2=0

πi∗,k1,k2 = 1,

we can get
∞∑
k2=0

π0,0,k2 =

(
1− ρi∗

1− ρ
+

ρi
∗

1− ρPC1

)−1

.
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Define Qi (0 ≤ i ≤ i∗ − 1) and QCk1 (k1 ≥ 0) as follows:

Qi ≡
∞∑
k2=0

πi,0,k2 , 0 ≤ i ≤ i∗ − 1,

QCk1 ≡
∞∑
k2=0

πi∗,k1,k2 , k1 ≥ 0.

Then, Qi (0 ≤ i ≤ i∗ − 1) and QCk1 (k1 ≥ 0) are

Q0 =

(
1− ρi∗

1− ρ
+

ρi
∗

1− ρPC1

)−1

=
(1− ρ)(1− ρPC1)

1− PC1ρ− PC2ρi
∗+1

, (5.9)

Qi = ρiQ0, 0 ≤ i ≤ i∗ − 1, (5.10)

QCk1 = (ρPC1)k1ρi
∗
Q0, k1 ≥ 0. (5.11)

Denote the expected number of untriaged jobs, class-1 jobs, class-2 jobs byL0(·), L1(·) andL2(·),

respectively. Then,

L0(i∗) =
i∗−1∑
i=0

i ·Qi +
∞∑
k1=0

i∗ ·QCk1 =
i∗−1∑
i=0

i · ρiQ0 +
∞∑
k1=0

i∗ · (ρPC1)k1ρi
∗
Q0

=

[
ρ− ρi∗

(1− ρ)2
− (i∗ − 1)ρi

∗

1− ρ
+

i∗ρi
∗

1− ρPC1

]
Q0, (5.12)

L1(i∗) =

∞∑
k1=0

k1 ·QCk1 =

∞∑
k1=0

k1 · (ρPC1)k1ρi
∗
Q0 =

PC1ρ
i∗+1Q0

(1− PC1ρ)2
, (5.13)

L2(i∗) =
ρ

1− ρ
− L0(i∗)− L1(i∗). (5.14)

Based on (5.9)∼(5.14), we get a closed-form expression for the long-run average cost of the system

given the threshold i∗.

φ(i∗) = rL0(i∗) + r1L1(i∗) + r2L2(i∗) +
∞∑
k1=0

C · λQCk1

= rL0(i∗) + r1L1(i∗) + r2L2(i∗) +
λρiQ0

1− PC1ρ
C. (5.15)

Based on (5.15), we can compute the optimal threshold in order to minimize the long-run average

cost within the set of threshold type policies. Consider an example. Let λ = 0.9, p = 0.6, v1 =
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1, v2 = 0.9, τ = 1, h1 = 10, h2 = 1, C = 50. For each given i∗, we compute the long-run average

cost φ(i∗) by (5.15). The threshold i∗ varies from 0 to 30. We plot the 31 points (i∗, φ(i∗)) and

connect them to their adjacent neighbors with line segments in Figure 5.3. In this example, it is quite

obvious that the long-run average cost is minimized when the threshold is 4. It means that in order

to achieve the minimum cost, the server should perform triage when there are no class-1 jobs and

more than 4 untriaged jobs; otherwise, skip triage. This is a simple example. With the closed-form

expression for φ(i∗), the optimal threshold can be computed for examples in which φ(i∗) is more

complicated.
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Figure 5.3: The long-run average cost as a function of the threshold i∗.

5.3 When triage is not optional

In practice, there are situations that triage has to be done, due to ethical issues or protocol stan-

dards, or obtaining the type information of a job is a necessary step for subsequent service. Hence,

every job will go through triage, and skipping triage is not an option to the server.

The basic model setup is that we consider a service system with a single server and two types of

jobs, type 1 and type 2. Jobs arrive to the system according to a Poisson process with a total rate

λ, and they wait in a queue if they are not served upon arrival. The waiting space is unlimited. For

convenience, we use class 0 to denote these new arrival jobs that have not receive any service. Each

job belongs to type 1 with probability p and to type 2 with probability q ≡ 1 − p. Both p and q are
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exogenous parameters, and will not change over time. A type i job incurs a cost with rate hi per

unit time the job stays in the system where i = 1, 2. The service time of a job from type i has a

general distribution with mean τi > 0. Without loss of generality, we assume that type 1 jobs are

important than type 2 jobs from the service provider’s perspective in the sense of higher cost rate, i.e.,

h1/τ1 > h2/τ2.

We assume that the type information of an arriving job is hidden from the service system initially.

The server will triage each new arrival, and classify the job as class 1 or 2. The mean triage time

of any job is u > 0, independent of the arrival process and the job’s type. Triaging a job provides

information on the job’s type, however, the classification is error-prone. Define v1 as the probability

of classifying a type 1 job into class 1 and v2 as the probability of classifying a type 2 job into class 2.

Without loss of generality, we assume that v1 + v2 > 1. Denote PCi as the probability of classifying

a random job into class i, where i = 1, 2. Then, PC1 = pv1 + q(1 − v2), PC2 = p(1 − v1) + qv2.

Both triage and service are non-preemptive. Our objective is to minimize the long-run average cost.

Under this setup, the available actions at any decision epoch will be Tr – triage an untriaged job

(if there is one); SC1 – serve a class-1 job (if there is one); and SC2 – serve a class-2 job (if there

is one). We find that this model is a special case of the model in Klimov (1974). Applying the main

result in Klimov (1974), we get the following theorem.

Theorem 5.3.1. The optimal policy can be described as follows:

(i) As soon as the server identifies a class-1 job, that job should be served next.

(ii) If the mean triage time u < (rT2 − r2T )/r2, triaging an untriaged job is more preferable than

serving a class-2 job; otherwise, serving a class-2 job has higher priority than triage.

The notations r, ri, T, Ti, i = 1, 2, are defined in Table 3.1. Theorem 5.3.1 implies that (i) If the

expected triage time is greater than (rT2 − r2T )/r2, the server should triage a job and serve this job

immediately regardless of the job’s type; (ii) If the expected triage time is smaller than (rT2−r2T )/r2,

Triage-Prioritize-Class-1 Policy defined in Section 3.3 is optimal. Note that this result is independent

of the arrival process and the distributions of the triage times and service times.

The inequality on the triage time, u < (rT2 − r2T )/r2, can be rewritten as r2/T2 < r/(u + T ).

The left-hand side is the expected cµ value for class-2 jobs. Similarly, the expected cµ value for class-
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1 jobs is r1/T1, and we can regard r/(u + T ) as the expected cµ for triaging an untriaged job. It is

straightforward to show that
r1

T1
>
r

T
>

r

u+ T
and

r1

T1
>
r2

T2
.

However, the order between r/(u+T ) and r2/T2 is indefinite. If r/(u+T ) > r2/T2, give priority to

triage over serve class-2; otherwise, prioritize class-2 jobs over untriaged jobs. This implies that the

optimal policy is essentially an index policy. By comparing the index for each class of jobs, the server

can make a decision on which action to choose among triage an untriaged job, serve a class-1 job and

serve a class-2 job. At last, we point out that Theorem 5.3.1 holds when there are no external arrivals

at the system, i.e., a clearing system. This can be shown by interchange argument and induction on

the number of untriaged jobs in the system.
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CHAPTER 6: CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this dissertation, we introduce a generic model to investigate the information/delay trade-off

when scheduling jobs of hidden types. We consider two different models, one assuming all jobs being

present at time zero and the other assuming new arrivals. In both models, the server has the option

to extract the type information at the cost of delaying service (triage). For both models, we provide

characterizations of the optimal policy.

In the first model, namely the clearing system, it is shown to be optimal to prioritize the class

of jobs with the larger expected cost over service time ratio. When it comes to make a decision on

whether to triage or not, the optimal policy is shown to be described by a switching curve, a line, to be

precise. One implication of this property is that when the number of untriaged jobs waiting for service

exceeds a threshold, performing triage brings benefits offsetting the delay imposed on other jobs. We

provide a complete expression for this line. Although our result is proven only under the assumption

of linear holding cost, with numerical study we find that several heuristic policies developed from

the optimal policy of the clearing system perform well when the holding cost is nonlinear. Thus, our

numerical results provide some justification for the robustness of the optimal policy. We also compare

four simple baseline policies and provide some insights. For example, we find that it is possible that

the policy that prioritizes less important jobs performs better, and improvements in the classification

process that results in lower misclassification probabilities do not necessarily lead to better outcomes.

In the second model, we study the same information/delay trade-off but consider new job arrivals.

Unlike in the clearing system where we do not assume any specific distributions for the service/triage

times, we assume service and triage times are exponentially distributed and assume that service times

for all jobs are i.i.d. for analytical tractability. Under these assumptions, we prove that the optimal

policy is again of threshold type, hence the insights from the clearing system continue to hold. By

means of a simulation study, we find that a threshold type policy, which may not necessarily be the

optimal threshold policy, could bring significant improvements over the first-come-first-serve policy.



We also study three extensions to these two models mentioned above. Even though the basic

settings are similar, some important assumptions are modified or relaxed; namely, we consider the

cases where (i) there are multiple servers in a clearing model, or (ii) triage is instantaneous and incurs

fixed cost in a queueing model, or (iii) triage can not be avoided in both clearing and queueing systems.

We use Markov decision process formulation to study each of them and partially characterize the

optimal control policy. This study is more of an exploratory work that could potentially lead to more

detailed analysis.

The formulation and results in this dissertation will contribute to the understanding of the infor-

mation/delay trade-off shared by many services in practice. Even in our daily lives, we constantly

prioritize our tasks while assessing the relative value of prioritizing one task over the other given

highly imperfect information. The insights from the mathematical analysis also provide guidelines to

decision makers, especially, to the emergency response community, in their efforts to devise practical

and efficient policies. Of course, more work remains to be done. There are several aspects of the

control problem that merit additional analysis. In the following, we discuss two of them.

Multiple servers with different skills

In many settings, especially in the aftermath of many mass-casualty incidents, there will be more

than one emergency responder at the scene, some performing triage while others treating patients.

These servers may have different skills. Some servers (e.g., triage nurses) are only trained to triage,

and we refer to them as dedicated servers. There are other servers (e.g., paramedic and physicians)

that have multiple skills and could both triage and treat the patients. We refer to them as flexible

servers. The question of interest is how to allocate the flexible servers. The goal is to find the optimal

dynamic policy that decides when to send the flexible servers to perform triage and when they should

focus on treating patients.

Two levels of triage

In this dissertation, the decision on triage is binary: the server either performs triage or skips

triage. In addition, the probability of correct classification is not a function of the triage time. In

reality, triage nurses could spend more time on triage, for instance, by performing more tests, to get a
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better idea about the patient’s condition and help classify the patient into the right class. Therefore, we

can consider multiple levels of triage as options to server. For example, there can be two levels: simple

triage and advanced triage. While advanced triage takes more time, it provides a better classification

of the jobs in the sense of higher accuracy. The goal is to find the optimal decision on triage: whether

the server should skip triage, perform simple triage, or perform advanced triage. Based on our analysis

in Chapter 3, we conjecture that there again exists a switching curve that separates the states in which

skipping triage is optimal from the states in which performing triage is optimal. However, how the

decision is made between using simple triage and using advanced triage is unclear and is of interest.
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APPENDIX A: PROOF OF RESULTS IN CHAPTER 3

Expressions and derivations for CNT , CTP1 , CTP2 , and CTAF

Expression for CNT

Consider the ith job to be served, 1 ≤ i ≤ N . The sojourn time in the system is the total service

time of the first i− 1 jobs plus its own service time. This leads to

CNT =
N∑
i=1

[ph1τ1 + qh2τ2 + (i− 1)(ph1 + qh2)(pτ1 + qτ2)]

= N(ph1τ1 + qh2τ2) +
N(N − 1)

2
(ph1 + qh2)(pτ1 + qτ2). (A.1)

Expressions for CTP1 and CTP2

We will derive an expression for CTP1 . An expression for CTP2
can be obtained similarly. Let N1

denote the number of class-1 jobs among theN−1 jobs that go through triage. We knowN1 ∼ B(N−

1, PC1) where B(n, p) indicates a binomial random variable with parameters n and p. Let N1 = k

and s = {s1, s2, · · · , sk} where sj indicates the order number of the jth class-1 job when the server

is picking among the untriaged jobs randomly, i.e. the jth job classified as Class-1 is the sj th job to

have been picked by the server among the untriaged jobs. Assume s1 = i1, s2 = i2, · · · , sk = ik, 1 ≤

ij < N, j = 1, 2, · · · , k. We can show that P
(
s1 = i1, s2 = i2, · · · , sk = ik

∣∣N1 = k
)

= 1

(N−1
k )

.

Using the notation defined in Table 3.1, conditional on N1 = k and s = {s1, s2, · · · , sk}, the ex-

pected cost incurred by k class-1 jobs due to the triage of allN−1 jobs is given by Γ1

∣∣∣
s,N1=k

(triage) =

r1 · (i1u + i2u + · · · + iku) = r1u
∑k

m=1 im. Conditional on N1 = k and s = {s1, s2, · · · , sk},

the expected cost incurred by k class-1 jobs due to the service of all k class-1 jobs is given by

Γ1

∣∣∣
s,N1=k

(service) = c1 + (c1 + r1T1) + · · ·+ (c1 + (k − 1)r1T1) = kc1 + k(k−1)
2 r1T1. Then, the

total expected cost incurred by the k class-1 jobs is Γ1

∣∣∣
s,N1=k

= kc1 + r1

(
u
∑k

m=1 im + k(k−1)
2 T1

)
.

Define Ak = {all possible combinations of (i1, · · · , ik), 1 ≤ i1 < i2 < · · · < ik < N}. The
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total expected cost for the k class-1 jobs is

Γ1

∣∣∣
N1=k

=
∑
Ak

Γ1

∣∣∣
s,N1=k

· P
(
s1 = i1, s2 = i2, · · · , sk = ik

∣∣N1 = k
)

=
∑
Ak

[
kc1 + r1

(
u

k∑
m=1

im +
k(k − 1)

2
T1

)]
· P
(
s1 = i1, s2 = i2, · · · , sk = ik

∣∣N1 = k
)

= kc1 +
k(k − 1)

2
r1T1 + r1u

∑
Ak

k∑
m=1

im · P
(
s1 = i1, s2 = i2, · · · , sk = ik

∣∣N1 = k
)

= kc1 +
k(k − 1)

2
r1T1 + r1u

∑
Ak

k∑
m=1

im ·
1(

N−1
k

) .
In the term

∑
Ak

∑k
m=1 im each number i ∈ {1, 2, · · · , N − 1} appears exactly k ·

(
N−1
k

)
/(N − 1)

times. Hence the total expected cost for class-1 jobs is

Γ1

∣∣∣
N1=k

=
∑
Ak

Γ1

∣∣∣
s,N1=k

· P
(
s1 = i1, s2 = i2, · · · , sk = ik

∣∣N1 = k
)

= kc1 +
k(k − 1)

2
r1T1 + r1u ·

k ·
(
N−1
k

)
N − 1

· N(N − 1)

2
· 1(

N−1
k

)
= kc1 +

k(k − 1)

2
r1T1 +

Nk

2
r1u. (A.2)

The expected cost for the last job, the only job that does not go through triage, conditional on N1 = k

is

ψ(k) = r [(N − 1)u+ kT1] + c. (A.3)

The total expected cost for class-2 jobs when there are k class-1 jobs is

Γ2

∣∣∣
N1=k

=
(
r2[(N − 1)u+ T + kT1] + c2

)
+
(
r2 [(N − 1)u+ T + kT1 + T2] + c2

)
+ · · ·

+
(
r2[(N − 1)u+ T + kT1 + (N − k − 2)T2] + c2

)
=

N∑
m=k+2

(
c2 + r2[(N − 1)u+ T + kT1] + r2(m− k − 2)T2

)
. (A.4)
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Then, the total expected cost under Policy TP1 is

CTP1 =

N−1∑
k=0

[(∑
Ak

Γ1

∣∣∣
N1=k

· P
(
s1 = i1, · · · , sk = ik

∣∣N1 = k
))

+ ψ(k) + Γ2

∣∣∣
N1=k

]
P (N1 = k).

(A.5)

Plugging in (A.2), (A.3) and (A.4) into (A.5) with some algebraic manipulation we get

CTP1 =

N−1∑
k=0

[(
kc1 +

k(k − 1)

2
r1T1 +

Nk

2
r1u
)

+
(
r [(N − 1)u+ kT1] + c

)
+

N∑
m=k+2

(
c2 + r2[(N − 1)u+ T + kT1] + r2(m− k − 2)T2

)]
P (N1 = k)

= N(N − 1)(ph1 + qh2)u− (N − 1)(N − 2)

2

[
pv1h1 + q(1− v2)h2

]
u+N(ph1τ1 + qh2τ2)

+
N(N − 1)

2
(ph1 + qh2)(pτ1 + qτ2)− N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2(

h1

τ1
− h2

τ2
).

Using (A.1), we get

CTP1 = N(N − 1)(ph1 + qh2)u− (N − 1)(N − 2)

2

[
pv1h1 + q(1− v2)h2

]
u

+ CNT −
N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2(

h1

τ1
− h2

τ2
).

(A.6)

We can similarly obtain

CTP2 = N(N − 1)(ph1 + qh2)u− (N − 1)(N − 2)

2

[
p(1− v1)h1 + qv2h2

]
u

+ CNT −
N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2

(
h2

τ2
− h1

τ1

)
.

(A.7)

Expression for CTAF

The derivation of CTAF is similar to that of CTP1 . The total expected triage cost for all jobs is

N ·(ph1 +qh2) ·Nu. DenoteN1 as the number of jobs classified as class-1,N1 ∼ B(N,PC1). Then,

given N1 = k, the total expected cost incurred by class-1 jobs during the service of all class-1 jobs is

Γ1

∣∣∣
N1=k

=
(
c1 +(k−1)r1T1

)
+
(
c1 +(k−2)r1T1

)
+ · · ·+

(
c1 +(k−k)r1T1

)
= kc1 + k(k−1)

2 r1T1.

Given N1 = k, the total expected cost incurred by class-2 jobs during the service of all jobs is

Γ2

∣∣∣
N1=k

=
(

(N − k)r2 · kT1

)
+
(
c2 + (N − k − 1)r2T2

)
+
(
c2 + (N − k − 2)r2T2

)
+ · · · +
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(
c2 + 0 · r2T2

)
= (N − k)r2 · kT1 + (N − k)c2 + (N−k)(N−k−1)

2 r2T2. Hence, the total expected

cost under Policy TAF is

CTAF = N2(ph1 + qh2)u+
N∑
k=0

[(
kc1 +

k(k − 1)

2
r1T1

)
+
(

(N − k)r2 · kT1

+ (N − k)c2 +
(N − k)(N − k − 1)

2
r2T2

)]
P (N1 = k)

= N2(ph1 + qh2)u+N(ph1τ1 + qh2τ2) +
N(N − 1)

2
(ph1 + qh2)(pτ1 + qτ2)

− N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2(

h1

τ1
− h2

τ2
).

Using (A.1), we get

CTAF = N2(ph1 + qh2)u+ CNT −
N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2(

h1

τ1
− h2

τ2
). (A.8)

Proof of Proposition 3.3.1.

Part (i): From (A.6) and (A.8), we have

CTP1 − CTAF = −(N − 1)(N − 2)

2

[
pv1h1 + q(1− v2)h2

]
u ≤ 0.

Part (ii): From (A.1) and (A.7), we have

CTP2 − CNT = N(N − 1)(ph1 + qh2)u− (N − 1)(N − 2)

2

[
p(1− v1)h1 + qv2h2

]
u

+
N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2(

h1

τ1
− h2

τ2
)

= (N − 1)

(
N − N − 2

2
(1− v1)

)
ph1u+ (N − 1)

(
N − N − 2

2
v2

)
qh2u

+
N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2(

h1

τ1
− h2

τ2
) > 0,

where the inequality follows from Assumption 3.2.1.
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Proof of Proposition 3.3.2.

From Equations (A.1) and (A.6), we have

CTP1 − CNT = N(N − 1)(ph1 + qh2)u− (N − 1)(N − 2)

2

[
pv1h1 + q(1− v2)h2

]
u

− N(N − 1)

2
pq(v1 + v2 − 1)τ1τ2(

h1

τ1
− h2

τ2
)

=
h1

τ1
(N − 1)

(
Npτ1u−

N − 2

2
pv1τ1u−

N

2
pq(v1 + v2 − 1)τ1τ2

)
+

h2

τ2
(N − 1)

(
Nqτ2u−

N − 2

2
q(1− v2)τ2u+

N

2
pq(v1 + v2 − 1)τ1τ2

)
.

Using Assumption 3.2.1, one can see that Nqτ2u− N−2
2 q(1− v2)τ2u+ N

2 pq(v1 + v2 − 1)τ1τ2 ≥ 0.

One can then immediately obtain CTP1 − CNT < 0 if and only if α < β(p).

Proof of Proposition 3.3.3.

Define a =
(
N−2
N v1 − 2

)
τ1u < 0, b =

(
2− N−2

N (1− v2)
)
τ2u > 0, and c = (v1+v2−1)τ1τ2 >

0. Then

β(p) = max

{
0,

pa+ p(1− p)c
(1− p)b+ p(1− p)c

}
.

One can then show that β(p) = 0 for p = 0 and p ≥ p̂, and β(p) > 0 and differentiable for p ∈ (0, p̂),

where p̂ = (a+ c)/c. Then, for p ∈ (0, p̂),

dβ(p)

dp
=

(a+ b)cp2 − 2bc · p+ b(a+ c)

[(1− p)b+ p(1− p)c]2
.

By Rolle’s mean value theorem, there exists 0 < p∗ < p̂ such that dβ(p∗)/dp = 0. We can also show

that

lim
p→0

dβ(p)

dp
=
a+ c

b
> 0, lim

p→p̂

dβ(p̂)

dp
=

c(a+ c)

a(a+ b+ c)
< 0. (A.9)

Both of the inequalities above follow from the fact that β(p) > 0 when p ∈ (0, p̂), which implies that

a+ c ≥ a+ qc > 0.

By (A.9) and the differentiability of β(p), the number of stationary points of β(p) in [0, p̂] can

only be odd. Since dβ(p)/dp = 0 can have at most two solutions, p∗ is the only stationary point,
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which means dβ(p)/dp > 0 for 0 < p < p∗, dβ(p)/dp < 0 for p∗ < p < p̂. Hence, β(p) is

quasi-concave and is first non-decreasing and non-increasing over (0, 1), which therefore implies the

existence of the interval I(α). The rest of the proposition immediately follows.

Proof of Proposition 3.3.4.

It is obvious that CNT−CT1
CNT

> η is equivalent to CT1 < (1 − η)CNT . Similar to the proofs of

Proposition 3.3.2, we can obtain (i) and (iii). To show (ii), we restrict ourselves to p where β(p) > 0.

The reason is explained as follows.

If β(p) = 0, then we must have

pτ1

[N − 2

N
v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2 ≤ 0,

since the denominator of β(p) is positive. Hence, for any η > 0,

pτ1

[N − 2

N
v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2 − ηpτ1[

2

N − 1
τ1 + pτ1 + qτ2] < 0,

i.e. β(p, η) = 0, which is not of interest. Define

A = pτ1

[N − 2

N
v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2,

B = pτ1[
2

N − 1
τ1 + pτ1 + qτ2],

C = qτ2

[
2− N − 2

N
(1− v2)

]
u+ pq(v1 + v2 − 1)τ1τ2,

D = qτ2[
2

N − 1
τ2 + pτ1 + qτ2],

then, A ≥ 0, B ≥ 0, C ≥ 0, D ≥ 0. We can rewrite β(p, η) as

β(p, η) =
A−Bη
C +Dη

.
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If η1 > η2, then

β(p, η1)− β(p, η2) =
A−Bη1

C +Dη1
− A−Bη2

C +Dη2
= − (AD +BC)(η1 − η2)

(C +Dη1)(C +Dη2)
< 0.

Proof of Proposition 3.3.5.

From (A.6) and (A.7), we have

CTP1 − CTP2 = −(N − 1)(N − 2)(ph1(v1 − 1/2)− qh2(v2 − 1/2))u

− N(N − 1)pq(v1 + v2 − 1)τ1τ2(
h1

τ1
− h2

τ2
)

= −h1

τ1
(N − 1)

[
(N − 2)pτ1(v1 − 1/2)u+Npq(v1 + v2 − 1)τ1τ2

]
+

h2

τ2
(N − 1)

[
(N − 2)qτ2(v2 − 1/2)u+Npq(v1 + v2 − 1)τ1τ2

]
. (A.10)

If v2 < 1/2− Npτ1
(N−2)u(v1 + v2− 1), using the second part of Assumption 3.2.1, one can show that

(N − 2)qτ2(v2− 1/2)u+Npq(v1 + v2− 1)τ1τ2 < 0 and (N − 2)pτ1(v1− 1/2)u+Npq(v1 + v2−

1)τ1τ2 > 0, which in turn imply that CTP1 < CTP2 for all α ∈ (0, 1). This completes the proof of

part (i).

Similarly, if v1 < 1/2 − Nqτ2
(N−2)u(v1 + v2 − 1), using the second part of Assumption 3.2.1, one

can show that (N − 2)qτ2(v2 − 1/2)u+Npq(v1 + v2 − 1)τ1τ2 > 0 and (N − 2)pτ1(v1 − 1/2)u+

Npq(v1 + v2 − 1)τ1τ2 < 0, which imply that CTP1 > CTP2 for all α ∈ (0, 1). This completes the

proof of part (ii).

To prove part (iii), v1 > 1/2− Nqτ2
(N−2)u(v1 + v2 − 1) and v2 > 1/2− Npτ1

(N−2)u(v1 + v2 − 1) imply

that (N − 2)qτ2(v2 − 1/2)u+Npq(v1 + v2 − 1)τ1τ2 > 0 and (N − 2)pτ1(v1 − 1/2)u+Npq(v1 +

v2 − 1)τ1τ2 > 0, respectively. Then, from (A.10), it follows that CTP1 − CTP2 < 0 if and only if

α < θ(p).

It now remains to show that β(p) < θ(p). If β(p) = 0 or θ(p) = 1, the result immediately follows

since θ(p) is guaranteed to be positive and β(p) is guaranteed to be less than 1. Now, when β(p) > 0
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and θ(p) < 1,

β(p)− θ(p)

=

[(
pτ1

[N − 2

N
v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2

)(N − 2

N
qτ2(v2 − 1/2)u+ pq(v1 + v2 − 1)τ1τ2

)
−
(N − 2

N
pτ1(v1 − 1/2)u+ pq(v1 + v2 − 1)τ1τ2

)(
qτ2

[
2− N − 2

N
(1− v2)

]
u+ pq(v1 + v2 − 1)τ1τ2

)]
/[(

qτ2

[
2− N − 2

N
(1− v2)

]
u+ pq(v1 + v2 − 1)τ1τ2

)(N − 2

N
qτ2(v2 − 1/2)u+ pq(v1 + v2 − 1)τ1τ2

)]

The denominator is positive, therefore, β(p)− θ(p) < 0 if and only if

(
pτ1

[
N−2
N v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2

) (
N−2
N qτ2(v2 − 1/2)u+ pq(v1 + v2 − 1)τ1τ2

)
−
(
N−2
N pτ1(v1 − 1/2)u+ pq(v1 + v2 − 1)τ1τ2

) (
qτ2

[
2− N−2

N (1− v2)
]
u+ pq(v1 + v2 − 1)τ1τ2

)
< 0.

By using basic algebra, one can show that the left-hand side of the above inequality is

−3N + 2

2N
pqτ1τ2u(v1 + v2 − 1)(

N − 2

N
u+ pτ1 + qτ2),

which is negative. Hence, θ(p) > β(p) for p ∈ (0, 1).

Proof of Proposition 3.3.6.

Part (i): The result immediately follows by observing

∂CTP1

∂v1
= −(N − 1)(N − 2)

2
ph1u−

N(N − 1)

2
pqτ1τ2

(h1

τ1
− h2

τ2

)
< 0.

Part (ii):

∂CTP1

∂v2
=

(N − 1)(N − 2)

2
qh2u−

N(N − 1)

2
pqτ1τ2(

h1

τ1
− h2

τ2
)

=
N − 1

2
q

[
(N − 2)τ2u

h2

τ2
−Npτ1τ2(

h1

τ1
− h2

τ2
)

]
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=
N(N − 1)

2
qτ2

[
h2

τ2
·
(
pτ1 + N−2

N u
)
− h1

τ1
· pτ1

]
.

Now, if α > γ(p), i.e. h2/τ2h1/τ1
> pτ1

pτ1+N−2
N

u
, we get ∂CTP1

∂v2
> N(N−1)

2 qτ2

(
h1
τ1
Npτ1 − h1

τ1
Npτ1

)
= 0.

Taking the derivative of γ(p) with respect to p, we find dγ(p)
dp =

N−2
N

τ1u

[pτ1+N−2
N

u]
2 > 0, i.e., γ(p) is an

increasing function of p. Finally, if β(p) = 0, then γ(p) > β(p) is immediate. Otherwise,

γ(p)− β(p) =
pτ1

pτ1 + N−2
N u

−
pτ1

[
N−2
N v1 − 2

]
u+ pq(v1 + v2 − 1)τ1τ2

qτ2

[
2− N−2

N (1− v2)
]
u+ pq(v1 + v2 − 1)τ1τ2

=
pτ1u

(
pτ1 + qτ2 + N−2

N u
) (

2− N−2
N v1

)(
pτ1 + N−2

N u
) (
qτ2

[
2− N−2

N (1− v2)
]
u+ pq(v1 + v2 − 1)τ1τ2

) > 0,

where we make use of Assumption 3.2.1 in establishing the inequality.

Proof of Theorem 3.4.1.

We first prove the following lemma:

Lemma A.0.1. For all (i, k1, k2) ∈ S, we have

(i) V (i, k1 + 1, k2) ≥ V (i, k1, k2) + c1.

(ii) V (i, k1, k2 + 1) ≥ V (i, k1, k2) + c2.

(iii) If u ≥ T , then a∗(i, k1, k2) 6= Tr.

Proof of Lemma A.0.1:

Part (i): The proof uses a coupling argument. Consider two systems. System 1 and System 2 are

identical except that System 1 starts in state (i, k1 + 1, k2) and uses the optimal policy and System 2

starts in state (i, k1, k2) and uses policy π, which takes whatever action System 1 takes until System

1 starts serving the extra class-1 job System 2 lacks. While System 1 serves the extra class-1 job,

System 2 idles and then follows the same actions as System 1 until all jobs are cleared.

Let the total expected cost under policy π be denoted by Vπ(i, k1, k2). The difference between

V (i, k1 + 1, k2) and Vπ(i, k1, k2) is at least as large as the expected cost incurred during the service
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of the additional class-1 job. Hence,

V (i, k1 + 1, k2)− V (i, k1, k2) = V (i, k1 + 1, k2)− Vπ(i, k1, k2) + Vπ(i, k1, k2)− V (i, k1, k2)

≥ V (i, k1 + 1, k2)− Vπ(i, k1, k2) ≥ c1.

Part (ii): The proof is similar to that for part (i) and is therefore omitted.

Part (iii): In any state (i, k1, k2), the total expected cost of first doing triage then following the

optimal policy is

JT (i, k1, k2) = PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1) + (ir + k1r1 + k2r2)u.

The total expected cost of first doing serve without triage then following the optimal policy is

JNT (i, k1, k2) = V (i− 1, k1, k2) + c+ [(i− 1)r + k1r1 + k2r2]T.

By parts (i) and (ii) of the lemma,

JT (i, k1, k2) = PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1) + (ir + k1r1 + k2r2)u

≥ PC1 [V (i− 1, k1, k2) + c1] + PC2 [V (i− 1, k1, k2) + c2] + (ir + k1r1 + k2r2)u

= V (i− 1, k1, k2) + PC1 · c1 + PC2 · c2 + (ir + k1r1 + k2r2)u

≥ V (i− 1, k1, k2) + c+ [(i− 1)r + k1r1 + k2r2]u

≥ V (i− 1, k1, k2) + c+ [(i− 1)r + k1r1 + k2r2]T = JNT (i, k1, k2),

where the last inequality follows from the assumption of part (iii) of the lemma. Hence, taking action

SU (serve without triage) is always at least as good as taking action Tr (triage) if u ≥ T .

Proof of Theorem 3.4.1:

Part (i): Let k = i+k1 +k2. If k = 1, the result trivially holds since k = k1 = 1, i.e., the only job in

the system is of class-1. Now assume the result is true for some k ≥ 1. Using interchange arguments

we will show that it holds for k + 1 as well. One by one, we will show that serve class 1 (SC1) is

better than every other possible action.
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(i)-1: Action SC1 is better than SC2

Define policy π1 as the policy that first serves a class-2 job (assuming there is one) and then

follows the optimal policy. Then, under policy π1, the second job served must be of class-1 by

the induction assumption. Now consider policy γ1 that switches the order of the first two jobs

under policy π1 and then follows the same set of actions. The expected cost of the two policies

are Cπ1 = c2 + c1 + r1T2 +C1 and Cγ1 = c1 + c2 + r2T1 +C1, where C1 denotes the expected

waiting cost and service cost for the remaining (k−1) jobs, which is the same under both policy

π1 and γ1. Then,

Cγ1 − Cπ1 = r2T1 − r1T2 = −pqτ1τ2 (v1 + v2 − 1) (h1/τ1 − h2/τ2)

PC1 · PC2
< 0.

Hence, by Assumption 3.2.1, serving a class-1 job is better than serving a class-2 job.

(i)-2: Action SC1 is better than SU

Define policy π2 as the policy that first serves an untriaged job (assuming there is one) without

triage and then follows the optimal policy. Then, under policy π2, the second job served must

be of class-1. Now consider policy γ2 that switches the order of the first two jobs under policy

π2 and then follows the same set of actions. The expected cost under the two policies are

respectively Cπ2 = c + c1 + r1T + C2 and Cγ2 = c1 + c + rT1 + C2, where C2 denotes the

expected waiting cost and service cost for the remaining k − 1 jobs, which is the same under

both policy π2 and γ2. Then,

Cγ2 − Cπ2 = rT1 − r1T = −pqτ1τ2 (v1 + v2 − 1) (h1/τ1 − h2/τ2)

PC1
< 0.

Hence, by Assumption 3.2.1, serving the class 1 first is better than serving without triage.

(i)-3: Action SC1 is better than Tr

Define policy π3(m) as the policy that first triages m untriaged jobs then serves one class 1

job and follows the optimal policy where 0 ≤ m ≤ i. As we established above, there must

exist 0 ≤ m∗ ≤ i and policy πm∗ is optimal. If m∗ = 0, the proof is done. Otherwise,

consider policy γ3(m), 1 ≤ m ≤ i, which triages m − 1 jobs first, then serves a class-1 job,
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performs one more triage and then follows the optimal policy. The expected cost of policy

π3(m) and γ3(m) are Cπ3(m) = ψ + (r + r1)u + c1 + PC1 · r1T1 + PC2 · r2T1 + C3 and

Cγ3(m) = ψ + c1 + r(T1 + u) + C3, where ψ denotes the expected cost incurred during the

triage of the first (m − 1) jobs, C3 denotes the expected waiting cost and service cost of the

remaining jobs excluding the two jobs of which we exchanged their order in π3(m) and γ3(m).

Note that these costs are the same in both policy π3(m) and γ3(m).

Cγ3(m) − Cπ3(m) = (r − PC1r1 − PC2r2)T1 − r1u = −r1u < 0, 1 ≤ m ≤ i.

Hence, policy π3(m) is outperformed by policy γ3(m) and can not be the optimal policy, 1 ≤

m ≤ i. The optimal policy must be π3(0), i.e., the server should first serve a class-1 job instead

of doing triage. This completes the proof of part (i).

Part (ii): If k1 > 0, then a∗(i, k1, k2) = SC1 by part (i), hence we only need to consider the case

where k1 = 0 and i > 0 and k2 > 0. We will show that SC2 is not the optimal decision, meaning that

either Tr or S is more preferable than SC2, by induction on the number of remaining jobs k, as in the

proof of part (i).

Suppose that k = 2, i.e. there is one class 2 and one untriaged job. Consider two policies: policy

π serves the class-2 job, then serves the untriaged job without triage (since there is only one job left,

doing triage is clearly inferior); policy γ first serves the untriaged job without triage then serves the

class-2 job. The expected costs for policies π and γ are respectively

Cπ = c2 + rT2 + c, Cγ = c+ r2T + c2,

and

Cπ − Cγ = rT2 − r2T =
pqτ1τ2 (v1 + v2 − 1) (h1/τ1 − h2/τ2)

PC2
> 0.

Now, assume a∗(i, 0, k2) 6= SC2 for some i+ k2 = k ≥ 2. We will show that a∗(i, 0, k2) 6= SC2

when i + k2 = k + 1. Suppose Policy π first serves a class-2 job in state (i, 0, k2), then follows

the optimal policy. By the induction hypothesis, in (i, 0, k2 − 1) the optimal policy will work on an

untriaged job, by either serving without triage (SU) or performing triage (Tr). Consider another policy
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γ, which, when in state (i, 0, k2), does whatever π does in (i, 0, k2 − 1), then serves the class-2 job

that π serves at (i, 0, k2) and goes on to follow policy π.

If π takes action SU in state (i, 0, k2 − 1), then the expected cost under policy π and γ are Cπ =

c2 + rT2 + c+ Γ1 and Cγ = c+ r2T + c2 + Γ1, where Γ1 denotes the expected waiting and service

cost incurred by the remaining i − 1 untriaged and k2 − 1 class-2 jobs, which is the same under the

two policies. Then,

Cπ − Cγ = rT2 − r2T =
pqτ1τ2 (v1 + v2 − 1) (h1/τ1 − h2/τ2)

PC2
> 0. (A.11)

If π takes action Tr in state (i, 0, k2 − 1), i.e., a∗(i, 0, k2 − 1) = Tr, first, by Lemma A.0.1 we

must have u < T . The expected cost under policy π and γ are Cπ = c2 + rT2 + ru + Γ2 and

Cγ = ru + r2u + c2 + Γ2, where Γ2 denotes the expected waiting and service cost incurred by the

remaining jobs (i− 1 untriaged jobs, one job which has just been triaged, and k2 − 1 already waiting

class-2 jobs), which is the same under the two policies. Then,

Cπ − Cγ = rT2 − r2u = rT2 − r2T + r2T − r2u > r2(T − u) > 0,

where the first inequality follows from Assumption (3.2.1). Thus, we can conclude that SC2 is not an

optimal action in state (i, 0, k2) when i > 0, i.e., a∗(i, 0, k2) 6= SC2 as long as i > 0.

Proof of Theorem 3.4.2.

The proof will proceed by establishing a sequence of lemmas, which will eventually lead to the

proof of the theorem.

Lemma A.0.2. We have a∗(1, 0, k2) = SU for all k2 ≥ 0.

Proof of Lemma A.0.2: In state (1, 0, k2), by Theorem 3.4.1, SC2 is suboptimal. Hence, the only

possible optimal actions are Tr and SU. Let JT denote the expected cost of taking action Tr next and

then following the optimal policy until all jobs are served, and JNT denote the expected cost of taking
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action SU next and then following the optimal policy until all jobs are served. Then,

JT (1, 0, k2) = PC1V (0, 1, k2) + PC2V (0, 0, k2 + 1) + (r + k2r2)u

= PC1(V (0, 0, k2) + c1 + k2r2T1) + PC2(V (0, 0, k2) + c2 + k2r2T2) + (r + k2r2)u

= V (0, 0, k2) + c+ k2r2T + (r + k2r2)u,

JNT (1, 0, k2) = V (0, 0, k2) + c+ k2r2T.

Hence, JT (1, 0, k2)− JNT (1, 0, k2) = (r + k2r2)u > 0.

Lemma A.0.3. For all (i, k1, k2) ∈ S, we have

V (i, k1, k2 + 1)− V (i, k1, k2) ≥ c2 + r2(iT + k1T1 + k2T2).

Proof of Lemma A.0.3: By Theorem 3.4.1, we know that under the optimal policy, first, all class-1

jobs are served. Therefore,

V (i, k1, k2 + 1)− V (i, k1, k2) = V (i, 0, k2 + 1)− V (i, 0, k2) + r2k1T1. (A.12)

Define Ṽ (i, 0, k2) for any i+k2 ≥ 1 as the total expected cost, starting from state (i, 0, k2), under the

policy that uses the action that is optimal for state (̃i, 0, k̃2 + 1) whenever the system state is (̃i, 0, k̃2).

Thus, Ṽ (i, 0, k2) ≥ V (i, 0, k2) and therefore

V (i, 0, k2 + 1)− V (i, 0, k2) = V (i, 0, k2 + 1)− Ṽ (i, 0, k2) + Ṽ (i, 0, k2)− V (i, 0, k2)

≥ V (i, 0, k2 + 1)− Ṽ (i, 0, k2). (A.13)

The only difference between V (i, 0, k2 + 1) and Ṽ (i, 0, k2) is the expected cost incurred by the extra

class-2 job in the former, which includes the expected service cost plus the expected waiting cost

during the service of the previous i+k2 jobs. Now, the expected time for serving a job without triage,

which is T , is less than that for first triaging then serving this job, which is u+PC1 ·T1 +PC2 ·T2 =

u+ T . Hence, the expected waiting time of the last class-2 job is greater than or equal to iT + k2T2.
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Therefore,

V (i, 0, k2 + 1)− Ṽ (i, 0, k2) ≥ c2 + r2(iT + k2T2). (A.14)

Combining (A.12), (A.13) and (A.14),

V (i, k1, k2 + 1)− V (i, k1, k2) ≥ c2 + r2(iT + k1T1 + k2T2).

Lemma A.0.4. If u ≥ ũ = PC2(rT2 − r2T )/r, then a∗(i, k1, k2) 6= Tr for any (i, k1, k2) ∈ S.

Proof of Lemma A.0.4: Suppose the current state is (i, k1, k2). It is sufficient to consider the case

k1 = 0 and i > 0, because a∗(i, k1, k2) = SC1 when k1 > 0 and Tr is not a feasible action when

i = 0.

Suppose k1 = 0, i > 0. Theorem 3.4.1 says that SC2 is suboptimal. Hence, the only possible

optimal actions are Tr and SU. Let JT denote the expected cost of choosing Tr first and then using the

optimal policy until all jobs are served, and JNT denote the expected cost of choosing SU first then

using the optimal policy until all jobs are served. Thus, we have

JT (i, 0, k2) = PC1V (i− 1, 1, k2) + PC2V (i− 1, 0, k2 + 1) + (ir + k2r2)u

= PC1[V (i− 1, 0, k2) + c1 + (i− 1)rT1 + k2r2T1] + PC2V (i− 1, 0, k2 + 1) + (ir + k2r2)u,

JNT (i, 0, k2) = V (i− 1, 0, k2) + c+ [(i− 1)r + k2r2]T.

Then,

JT (i, 0, k2)− JNT (i, 0, k2)

= PC2 [V (i− 1, 0, k2 + 1)− V (i− 1, 0, k2)]− (c− PC1c1)− (i− 1)r (T − PC1T1)

− k2r2(T − PC1T1) + (ir + k2r2)u

= PC2 [V (i− 1, 0, k2 + 1)− V (i− 1, 0, k2)]− PC2c2 − [(i− 1)r + k2r2]PC2T2 + (ir + k2r2)u

= PC2[V (i− 1, 0, k2 + 1)− V (i− 1, 0, k2)− c2 − (i− 1)rT2] + (ir + k2r2)u− k2r2PC2T2.
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Then, from Lemma A.0.3,

JT (i, 0, k2)− JNT (i, 0, k2)

≥ PC2[c2 + (i− 1)r2T + r2k2T2 − c2 − (i− 1)rT2] + (ir + k2r2)u− k2r2PC2T2

= PC2(i− 1)(r2T − rT2) + (ir + k2r2)u.

By the assumption that u ≥ ũ = PC2(rT2 − r2T )/r,

JT (i, 0, k2)− JNT (i, 0, k2) ≥ − PC2(i− 1)(rT2 − r2T ) + (ir + k2r2)PC2(rT2 − r2T )/r

= [(ir + k2r2)/r − (i− 1)]PC2(rT2 − r2T )

= (1 + k2r2/r)pq(v1 + v2 − 1)τ1τ2(h1/τ1 − h2/τ2)

> 0,

where the inequality follows from Assumption 3.2.1. Hence, a∗(i, k1, k2) 6= Tr, ∀ (i, k1, k2) ∈ S.

Lemma A.0.5. If a∗(i, 0, k2) = SU, then a∗(j, 0, k2) = SU for all 1 ≤ j ≤ i, i.e., the optimal policy

starting from (i, 0, k2) is “first serve all i untriaged jobs without triage, then serve all k2 class-2 jobs.”

Proof of Lemma A.0.5: If u ≥ ũ, by Theorem 3.4.1 and Lemma A.0.4, we know a∗(i, 0, k2) = SU

for all i ≥ 1, k2 ≥ 0. Thus, the lemma holds trivially.

Let us now assume that u < ũ. Let policy π be the policy that first serves the i untriaged jobs

without triage, then serves the k2 class-2 jobs, and Cπ denotes the expected total cost under policy π.

Assume that policy π is not optimal, then there must exist at least one policy that does better than π

and satisfies the following properties: The policy first serves 1 ≤ k ≤ i − 1 untriaged jobs without

triage, then performs triage for the next untriaged job. And in conformance with the properties of

the optimal policy as established in Theorem 3.4.1, if the job that goes through triage is classified as

class-1, γ1 serves that job right away. Otherwise, the job is served at the end together with all the

other class-2 jobs. Suppose that among the policies which satisfy these properties, γ1 is the policy for

which k is the smallest, and let kmin denote that smallest value for k, i.e., γ1 first serves kmin untriaged

jobs without triage, then performs triage for the next job. Note that by definition, we have Cγ1 < Cπ,
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where Cγ1 is the total expected cost under policy γ1.

Now, consider another policy γ2, which serves kmin − 1 untriaged jobs without triage, performs

triage on the next job, serves the next job without triage, and then takes the same actions as γ1. As

in γ1, if triage results in identification of a class-1 job, that job is served immediately; otherwise, the

job is served at the end with all the other class-2 jobs. Thus, the only difference between γ1 and γ2

is that while γ1 serves the kminth untriaged job without triage and triages the (kmin + 1)th untriaged

job, γ2 triages the kminth untriaged job and serves the (kmin +1)th untriaged job without triage. Since

by definition, policy γ1 is the one with the smallest k among those policies that perform better than

policy π, we have

Cγ2 ≥ Cπ > Cγ1 . (A.15)

If the only triaged job among the first kmin + 1 jobs is of class-1, denote Γ1 as the expected total

cost that will incur after the triage and service of the (kmin + 1)th job in policy γ1 (or service without

triage of the (kmin + 1)th job in policy γ2). If the only triaged job is of class-2, denote Γ2 as the

expected total cost that will incur after the triage of the (kmin + 1)th job in policy γ1 (or service

without triage of the (kmin + 1)th job in policy γ2). The total expected cost under policy γ1 and γ2

are respectively

Cγ1 = Φ + c+ [(i− kmin)r + k2r2]T + [(i− kmin)r + k2r2]u

+ PC1 [c1 + (i− kmin − 1)rT1 + k2r2T1 + Γ1] + PC2Γ2,

Cγ2 = Φ + [(i− kmin + 1)r + k2r2]u

+ PC1 [c1 + (i− kmin)rT1 + k2r2T1 + c+ (i− kmin − 1)rT + k2r2T + Γ1]

+ PC2 [c+ (i− kmin − 1)rT + (k2 + 1)r2T + Γ2] ,

where Φ is the total expected cost to be incurred during the service of the first kmin− 1 untriaged jobs

without triage. Then,

Cγ1 − Cγ2 = −ru+ rT − PC2r2T − PC1rT1 = −ru+ PC2(rT2 − r2T ) = r(ũ− u) > 0.
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Hence, Cγ2 < Cγ1 , which is a contradiction to (A.15).

Lemma A.0.6. (i) If a∗(i, 0, k2) = SU, then a∗(̃i, 0, k̃2) = SU for any 1 ≤ ĩ ≤ i and k2 ≤ k̃2 ≤

N − ĩ.

(ii) If a∗(i, 0, k2) = Tr, then a∗(̃i, 0, k̃2) = Tr for any 0 ≤ k̃2 ≤ k2 and i ≤ ĩ ≤ N − k̃2.

Proof of Lemma A.0.6: Part (i): If u ≥ ũ, by Theorem 3.4.1 and Lemma A.0.4 we know a∗(i, 0, k2) =

SU for all i ≥ 1, k2 ≥ 0. Then, the result is immediate. Now, assume that u < ũ. We will use an

induction argument to show that if a∗(i, 0, k2) = SU, then a∗(i − 1, 0, k2) = a∗(i, 0, k2 + 1) = SU.

When i = 1, the result holds since a∗(1, 0, k2) = SU for any k2 ≥ 0 by Lemma A.0.2.

Now, for induction we assume that if a∗(i−1, 0, k2) = SU, then a∗(i−2, 0, k2) = a∗(i−1, 0, k2+

1) = SU where i ≥ 2. From the lemma assumption, we have a∗(i, 0, k2) = SU. Then, by Lemma

A.0.5, we know that a∗(i−1, 0, k2) = SU, and by the induction assumption, a∗(i−1, 0, k2+1) = SU.

It remains to show that a∗(i, 0, k) = SU for any k ≥ k2. Let CTr(i, k2 + 1) denote the total expected

cost of performing triage in state (i, 0, k2 + 1) and then following the optimal policy. Then,

CTr(i, k2 + 1) = [ir + (k2 + 1)r2]u+ PC1V (i− 1, 1, k2 + 1) + PC2V (i− 1, 0, k2 + 2).

Similarly, let CSU(i, k2 + 1) denote the total expected cost choosing to serve an untriaged job in state

(i, 0, k2 + 1) and then following the optimal policy. Then,

CSU(i, k2 + 1) = c+ [(i− 1)r + (k2 + 1)r2]T + V (i− 1, 0, k2 + 1).

Using the induction assumption and Lemma A.0.5,

V (i− 1, 0, k2 + 1) = (i− 1)

[
c+

i− 2

2
rT + (k2 + 1)r2T

]
+ (k2 + 1)c2 +

k2(k2 + 1)

2
r2T2,

V (i− 1, 1, k2 + 1) = c1 + [(i− 1)r + (k2 + 1)r2]T1 + (i− 1)c

+
(i− 1)(i− 2)

2
rT + (k2 + 1)r2(i− 1)T + (k2 + 1)c2 +

k2(k2 + 1)

2
r2T2,

= c1 + [(i− 1)r + (k2 + 1)r2]T1 + V (i− 1, 0, k2 + 1),

V (i− 1, 0, k2 + 2) = (i− 1)

[
c+

i− 2

2
rT + (k2 + 2)r2T

]
+ (k2 + 2)c2 +

(k2 + 1)(k2 + 2)

2
r2T2,
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= c2 + r2[(i− 1)T + (k2 + 1)T2] + V (i− 1, 0, k2 + 1).

Plugging them into the expression for CTr(i, k2 + 1),

CTr(i, k2 + 1) = (ir + (k2 + 1)r2)u+ PC1 (c1 + [(i− 1)r + (k2 + 1)r2]T1 + V (i− 1, 0, k2 + 1))

+ PC2 (c2 + r2[(i− 1)T + (k2 + 1)T2] + V (i− 1, 0, k2 + 1))

= [ir + (k2 + 1)r2]u+ c+ V (i− 1, 0, k2 + 1)

+ PC1 [(i− 1)r + (k2 + 1)r2]T1 + PC2r2 [(i− 1)T + (k2 + 1)T2]

= [ir + (k2 + 1)r2]u+ c+ (k2 + 1)r2T + V (i− 1, 0, k2 + 1)

+ PC1(i− 1)rT1 + PC2r2(i− 1)T.

Hence,

CSU(i, k2 + 1)− CTr(i, k2 + 1) = (i− 1) (rT − PC1rT1 − PC2r2T )− [ir + (k2 + 1)r2]u.

We know that a∗(i, 0, k2) = SU, which implies

CSU(i, k2)− CTr(i, k2) = (i− 1) (rT − PC1rT1 − PC2r2T )− (ir + k2r2)u ≤ 0.

Therefore, CSU(i, k2 + 1)−CTr(i, k2 + 1) < CSU(i, k2)−CTr(i, k2) ≤ 0, i.e., a∗(i, 0, k2 + 1) = SU.

Part (ii):Given part (i), the proof of (ii) is trivial. Assume a∗(i, 0, k2) = Tr, and there exists ī > i

(or k̄2 < k2) such that a∗(̄i, 0, k2) = SU (or a∗(i, 0, k̄2) = SU), which is a direct contradiction to (i),

which implies that a∗(i, 0, k2) = SU.

Proof of Theorem 3.4.2: First, note that if ũ < u, then by Lemma A.0.4 and Theorem 3.4.1, the

optimal action in all states is SU. One can check to see that when ũ < u, L(·) has a negative slope

and thus the theorem trivially holds. Hence, in the following, it is sufficient to consider the case where

ũ ≥ u.

By Theorem 3.4.1, we can write the system states {(i, 0, k2) : i ≥ 1, k2 ≥ 0} as the union of the

following three disjoint sets:
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S1 = {(i, 0, k2) : a∗(i, 0, k2) = SU},

S2 = {(i, 0, k2) : a∗(i, 0, k2) = Tr, a∗(i− 1, 0, k2) = SU},

S3 = {(i, 0, k2) : a∗(i, 0, k2) = Tr, a∗(i− 1, 0, k2) = Tr}.

We show that all the states in S1 reside above L(i) and all the states in S2 and S3 reside below L(i).

First, suppose that (i, 0, k2) ∈ S1. Consider a policy γ that serves an untriaged job without

triage in (i, 0, k2), then follows the optimal policy. Consider another policy π that performs triage

in (i, 0, k2) then follows the optimal policy. The total expected costs, (respectively, Cγ(i, 0, k2) and

Cπ(i, 0, k2)) can be written as follows:

Cγ(i, 0, k2) = c+ [(i− 1)r + k2r2]T + V (i− 1, 0, k2),

Cπ(i, 0, k2) = PC1V (i− 1, 1, k2) + PC2V (i− 1, 0, k2 + 1) + (ir + k2r2)u

= PC1

(
c1 + [(i− 1)r + k2r2]T1 + V (i− 1, 0, k2)

)
+ PC2V (i− 1, 0, k2 + 1)

+ (ir + k2r2)u

= PC1

(
c1 + [(i− 1)r + k2r2]T1 + V (i− 1, 0, k2)

)
+ (ir + k2r2)u+

+ PC2

(
V (i− 1, 0, k2) + c2 + r2 [(i− 1)T + k2T2]

)
= V (i− 1, 0, k2) + c+ k2r2T + (i− 1)(PC1rT1 + PC2r2T ) + (ir + k2r2)u.

Since γ is the optimal policy, Cπ(i, 0, k2)−Cγ(i, 0, k2) = (ir+k2r2)u− (i− 1)PC2(rT2− r2T ) =

(ir + k2r2)u− (i− 1)rũ ≥ 0, i.e.,

k2 ≥
(
r(ũ− u)

r2u

)
i− rũ

r2u
.

Now, suppose that (i, 0, k2) ∈ S2. Then, with γ and π exactly as defined above, policy π is the

optimal policy, and thus Cπ(i, 0, k2)− Cγ(i, 0, k2) < 0, i.e.,

k2 <

(
r(ũ− u)

r2u

)
i− rũ

r2u
.

Finally, consider a state (i, 0, k2) ∈ S3. Then, from Lemma A.0.6, we know that there exists
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ī < i such that (̄i, 0, k2) ∈ S2. Then since ũ − u ≥ 0 and we know that, as established above,

k2 <
(
r(ũ−u)
r2u

)
ī− rũ

r2u
, we must have

k2 <

(
r(ũ− u)

r2u

)
i− rũ

r2u
,

which completes the proof.

Proof of Proposition 3.4.1.

Part (i): From Theorem 3.4.2, we know that NT policy is optimal if and only if either u ≥ ũ (so

that L(·), as defined in (3.4), has a negative slope) or L(·) has a positive slope but the x-intercept of

L(·), denoted by xint, is greater than N , which can be written as xint = ũ
ũ−u ≥ N , or equivalently

u ≥ u1 = N−1
N ũ. Then, the result follows from the fact that if u ≥ ũ then we must have u ≥ u1.

Part (ii): From Theorems 3.4.1 and 3.4.2, we know that TP1 policy is optimal if and only if u ≤ ũ,

1 ≤ xint ≤ 2, and the x-coordinate of the intersection of lineL(·) and the line expressed by i+k2 = N

(where i is the number of untriaged jobs and k2 is the number of class-2 jobs) is also between 1 and

2. The last two conditions can be expressed as 1 ≤ ũ
ũ−u ≤ 2 and 1 ≤ Nr2u+rũ

(r2−r)u+rũ ≤ 2, respectively.

First, if u ≤ ũ, then 1 ≤ ũ
ũ−u . It also follows that 1 ≤ Nr2u+rũ

(r2−r)u+rũ . When u ≤ ũ, the condition

ũ
ũ−u ≤ 2 can equivalently be written as u ≤ ũ/2 and the condition Nr2u+rũ

(r2−r)u+rũ ≤ 2 can be written as

u ≤ u2 = r
2r+(N−2)r2

ũ. The last condition implies u ≤ ũ/2 which completes the proof.
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APPENDIX B: PROOF OF RESULTS IN CHAPTER 4

Proof of Proposition 4.3.1.

Assume the system is empty at time 0. Consider a policy π that serves every job without triage.

The system acts as an M/M/1 queue and the expected average cost is gπ = λτ/(1−λτ) · r0 <∞. If

we apply the policy iteration algorithm with initial policy π, Theorem 5.1 in Meyn (1997) states that

the policy iteration algorithm will guarantee to find the optimal solution to the Bellman’s equations.

Theorem 5.2 in Meyn (1997) implies that there exists an optimal stationary policy.

Proof of Proposition 4.3.3.

This is an minimization problem and the cost at each state is bounded below, the positivity as-

sumption is satisfied. The action set at each state is finite, hence, by Proposition 3.1.6 in Bertsekas

(2007), the above result holds.

Proof of Lemma 4.3.1.

Proof of Property (e.1) and (e.2).

Consider two possible cases: k1 ≥ 2 and k1 = 1. If k1 ≥ 2,

T v(i− 1, k1 + 1, k2) = λv(i, k1 + 1, k2) +
1

τ
v(i− 1, k1, k2) +

1

u
v(i− 1, k1 + 1, k2) + (i− 1)r

+ (k1 + 1)r1 + k2r2.

T v(i− 1, k1, k2 + 1) = λv(i, k1, k2 + 1) +
1

τ
v(i− 1, k1 − 1, k2 + 1) +

1

u
v(i− 1, k1, k2 + 1)

+ (i− 1)r + k1r1 + (k2 + 1)r2.

T v(i, k1, k2) = λv(i+ 1, k1, k2) +
1

τ
v(i, k1 − 1, k2) +

1

u
v(i, k1, k2) + (ir + k1r1 + k2r2)

Tv(i, k1 − 1, k2) = λv(i+ 1, k1 − 1, k2) +
1

τ
v(i, k1 − 2, k2) +

1

u
v(i, k1 − 1, k2) + ir

+ (k1 − 1)r1 + k2r2.

T v(i− 1, k1, k2) = λv(i, k1, k2) +
1

τ
v(i− 1, k1 − 1, k2) +

1

u
v(i− 1, k1, k2) + (i− 1)r
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+ k1r1 + k2r2.

Therefore,

1

u

[
PC1Tv(i− 1, k1 + 1, k2) + PC2Tv(i− 1, k1, k2 + 1)

]
+

1

τ
Tv(i, k1, k2)

−1

u
Tv(i, k1, k2)− 1

τ
Tv(i, k1 − 1, k2)

=λ
{1

u

[
PC1v(i, k1 + 1, k2) + PC2v(i, k1, k2 + 1)

]
+

1

τ
v(i+ 1, k1, k2)− 1

u
v(i+ 1, k1, k2)

−1

u
v(i+ 1, k1, k2)

}
+

1

τ

{1

u

[
PC1v(i− 1, k1, k2) + PC2v(i− 1, k1 − 1, k2 + 1)

]
+

1

τ
v(i, k1 − 1, k2)− 1

u
v(i, k1 − 1, k2)− 1

τ
v(i, k1 − 2, k2)

}
+

1

u

{1

u

[
PC1v(i− 1, k1 + 1, k2)

+PC2v(i− 1, k1, k2 + 1)
]

+
1

τ
v(i, k1, k2)− 1

u
v(i, k1, k2)− 1

τ
v(i, k1 − 1, k2)

}
+
r1

τ
> 0.

T v(i− 1, k1, k2)− Tv(i, k1 − 1, k2)

=λ[v(i, k1, k2)− v(i+ 1, k1 − 1, k2)] +
1

τ
[v(i− 1, k1 − 1, k2)− v(i, k1 − 2, k2)]

+
1

u
[v(i− 1, k1, k2)− v(i, k1 − 1, k2)] + (r1 − r) > 0.

If k1 = 1, then,

Tv(i− 1, 2, k2) = λv(i, 2, k2) +
1

τ
v(i− 1, 1, k2) +

1

u
v(i− 1, 2, k2) + (i− 1)r + 2r1 + k2r2,

T v(i− 1, 1, k2 + 1) = λv(i, 1, k2 + 1) +
1

τ
v(i− 1, 0, k2 + 1) +

1

u
v(i− 1, 1, k2 + 1)

+ (i− 1)r + r1 + (k2 + 1)r2,

T v(i, 1, k2) = λv(i+ 1, 1, k2) +
1

τ
v(i, 0, k2) +

1

u
v(i, 1, k2) + (ir + r1 + k2r2),

T v(i, 0, k2) = λv(i+ 1, 0, k2) + min
{1

u
[PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)]

+
1

τ
v(i, 0, k2),

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

}
+ (ir + k2r2).

Hence,

1

u

[
PC1Tv(i− 1, 2, k2) + PC2Tv(i− 1, 1, k2 + 1)

]
+

1

τ
Tv(i, 1, k2)− 1

u
Tv(i, 1, k2)− 1

τ
Tv(i, 0, k2)
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=λ
[1

u

[
PC1v(i, 2, k2) + PC2v(i, 1, k2 + 1)

]
+

1

τ
v(i+ 1, 1, k2)− 1

u
v(i+ 1, 1, k2)− 1

u
v(i+ 1, 1, k2)

]
+

1

τ

[
1

u
[PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)] +

1

τ
v(i, 0, k2)−min

{1

u
[PC1v(i− 1, 1, k2)

+PC2v(i− 1, 0, k2 + 1)] +
1

τ
v(i, 0, k2),

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

}]
+
r1

τ

+
1

u

{1

u
[PC1v(i− 1, 2, k2) + PC2v(i− 1, 1, k2 + 1)] +

1

τ
v(i, 1, k2)− 1

u
v(i, 1, k2)

}
≥ r1

τ
> 0.

T v(i− 1, 1, k2)− Tv(i, 0, k2)

≥λ[v(i, 1, k2)− v(i+ 1, 0, k2)] +
1

τ
[v(i− 1, 0, k2)− v(i− 1, 0, k2)]

+
1

u
[v(i− 1, k1, k2)− v(i, 0, k2)] + (r1 − r) > 0.

Proof of Property (e.3).

Now we show that Property (e.3) is preserved by considering three cases:

Case (e.3)-1 k1 ≥ 2,

T v(i, k1, k2 − 1)− Tv(i, k1 − 1, k2)

=
[
λv(i+ 1, k1, k2 − 1) +

1

τ
v(i, k1 − 1, k2 − 1) +

1

u
v(i, k1, k2 − 1) + ir + k1r1 + (k2 − 1)r2

]
−
[
λv(i+ 1, k1 − 1, k2) +

1

τ
v(i, k1 − 2, k2) +

1

u
v(i, k1 − 1, k2) + ir + (k1 − 1)r1 + k2r2

]
=λ[v(i+ 1, k1, k2 − 1)− v(i+ 1, k1 − 1, k2)] +

1

τ
[v(i, k1 − 1, k2 − 1)− v(i, k1 − 2, k2)]

+
1

u
[v(i, k1, k2 − 1)− v(i, k1 − 1, k2)] + (r1 − r2) > 0.

Case (e.3)-2 k1 = 1, i ≥ 1,

T v(i, 1, k2 − 1)− Tv(i, 0, k2)

=
[
λv(i+ 1, 1, k2 − 1) +

1

τ
v(i, 0, k2 − 1) +

1

u
v(i, 1, k2 − 1) + ir + r1 + (k2 − 1)r2

]
−
[
λv(i+ 1, 0, k2) + min

{1

u
[PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)] +

1

τ
v(i, 0, k2),

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

}
+ (ir + k2r2)

]
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≥λ[v(i+ 1, k1, k2 − 1)− v(i+ 1, 0, k2)] +
1

τ
[v(i, 0, k2 − 1)− v(i− 1, 0, k2)]

+
1

u
[v(i, 1, k2 − 1)− v(i, 0, k2)] + (r1 − r2) > 0.

Case (e.3)-3 k1 = 1, i = 0,

T v(0, 1, k2 − 1)− Tv(0, 0, k2)

=
[
λv(1, 1, k2 − 1) +

1

τ
v(0, 0, k2 − 1) +

1

u
v(0, 1, k2 − 1) + r1 + (k2 − 1)r2

]
−
[
λv(1, 0, k2) +

1

τ
v(0, 0, k2 − 1) +

1

u
v(0, 0, k2) + k2r2

]
≥λ[v(1, 1, k2 − 1)− v(1, 0, k2)] +

1

u
[v(0, 1, k2 − 1)− v(0, 0, k2)] + (r1 − r2) > 0.

Proof of Property (e.4).

Now we show that Property (e.4) is preserved by considering three cases: Case (e.4)-1 k1 ≥ 1,

T v(i, k1, k2 − 1)− Tv(i− 1, k1, k2)

=
[
λv(i+ 1, k1, k2 − 1) +

1

τ
v(i, k1 − 1, k2 − 1) +

1

u
v(i, k1, k2 − 1) + ir + k1r1 + (k2 − 1)r2

]
−
[
λv(i, k1, k2) +

1

τ
v(i− 1, k1 − 1, k2) +

1

u
v(i− 1, k1, k2) + (i− 1)r + k1r1 + k2r2

]
=λ[v(i+ 1, k1, k2 − 1)− v(i, k1, k2)] +

1

τ
[v(i, k1 − 1, k2 − 1)− v(i− 1, k1 − 1, k2)]

+
1

u
[v(i, k1, k2 − 1)− v(i− 1, k1, k2)] + (r − r2) > 0.

Case (e.4)-2 k1 = 0, i ≥ 2,

T v(i, 0, k2 − 1)− Tv(i− 1, 0, k2)

=
[
λv(i+ 1, 0, k2 − 1) + min

{1

u

[
PC1v(i− 1, 1, k2 − 1) + PC2v(i− 1, 0, k2)

]
+

1

τ
v(i, 0, k2 − 1),

1

τ
v(i− 1, 0, k2 − 1) +

1

u
v(i, 0, k2 − 1)

}
+ ir + (k2 − 1)r2

]
−
[
λv(i, 0, k2) + min

{1

u

[
PC1v(i− 2, 1, k2) + PC2v(i− 2, 0, k2 + 1)

]
+

1

τ
v(i− 1, 0, k2),

1

τ
v(i− 2, 0, k2) +

1

u
v(i− 1, 0, k2)

}
+ (i− 1)r + k2r2

]
>λ[v(i+ 1, 0, k2 − 1)− v(i, 0, k2)] + (r − r2) > 0.
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The first inequality holds since by (e.2)∼(e.4),

v(i− 1, 0, k2)] > v(i− 2, 0, k2 + 1), v(i− 1, 1, k2 − 1) > v(i− 2, 1, k2),

v(i, 0, k2 − 1) > v(i− 1, 0, k2), v(i− 1, 0, k2 − 1) > v(i− 2, 0, k2).

Case (e.4)-3 k1 = 0, i = 1,

T v(1, 0, k2 − 1)− Tv(0, 0, k2)

=λv(2, 0, k2 − 1) + min
{1

u
[PC1v(0, 1, k2 − 1) + PC2v(0, 0, k2)] +

1

τ
v(1, 0, k2 − 1),

1

τ
v(0, 0, k2 − 1) +

1

u
v(1, 0, k2 − 1)

}
+ r + (k2 − 1)r2 −

[
λv(1, 0, k2) +

1

τ
v(0, 0, k2 − 1)

+
1

u
v(0, 0, k2) + k2r2

]
>λ[v(2, 0, k2 − 1)− v(0, 0, k2)] + (r − r2) > 0.

The first inequality holds since by (e.2)∼(e.5),

v(0, 1, k2 − 1) > v(0, 0, k2) > v(0, 0, k2 − 1),

v(1, 0, k2 − 1) > v(0, 0, k2) > v(0, 0, k2 − 1).

Proof of Property (e.5).

If k1 ≥ 1,

T v(i, k1, k2 + 1)− Tv(i, k1, k2)

=λv(i+ 1, k1, k2 + 1) + ir + k1r1 + (k2 + 1)r2 +
1

τ
v(i, k1 − 1, k2 + 1) +

1

u
v(i, k1, k2 + 1)

−
[
λv(i+ 1, k1, k2) + ir + k1r1 + k2r2 +

1

τ
v(i, k1 − 1, k2) +

1

u
v(i, k1, k2)

]
=λ
[
v(i+ 1, k1, k2 + 1)− v(i+ 1, k1, k2)

]
+ r2 +

1

τ

[
v(i, k1 − 1, k2 + 1)− v(i, k1 − 1, k2)

]
+

1

u

[
v(i, k1, k2 + 1)− v(i, k1, k2)

]
> r2 > 0.
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Next we consider the case that k1 = 0. If i = 0, k2 = 0, then

Tv(0, 0, 1)− Tv(0, 0, 0)

=λv(1, 0, 1) + r2 +
1

τ
v(0, 0, 0) +

1

u
v(0, 0, 1)−

[
λv(1, 0, 0) +

1

τ
v(0, 0, 0) +

1

u
v(0, 0, 0)

]
=λ
[
v(1, 0, 1)− v(1, 0, 0)

]
+

1

u

[
v(0, 0, 1)− v(0, 0, 0)

]
+ r2 > r2 > 0.

If i = 0, k2 ≥ 1, then

Tv(0, 0, k2 + 1)− Tv(0, 0, k2)

=
[
λv(1, 0, k2 + 1) + (k2 + 1)r2 +

1

τ
v(0, 0, k2) +

1

u
v(0, 0, k2 + 1)

]
−
[
λv(1, 0, k2)

+
1

τ
v(0, 0, k2 − 1) +

1

u
v(0, 0, k2) + k2r2

]
=λ
[
v(1, 0, k2 + 1)− v(1, 0, k2)

]
+

1

τ

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
+

1

u

[
v(0, 0, k2 + 1)− v(0, 0, k2)

]
+ r2 > r2 > 0.

Otherwise, i ≥ 1, k2 ≥ 0. We consider two separate cases:

(i) G(i, k2 + 1) ≥ 0.

T v(i, 0, k2 + 1)− Tv(i, 0, k2)

≥λv(i+ 1, 0, k2 + 1) + ir + (k2 + 1)r2 +
1

τ
v(i− 1, 0, k2 + 1) +

1

u
v(i, 0, k2 + 1)

−
[
λv(i+ 1, 0, k2) + ir + k2r2 +

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

]
=λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+ r2 +

1

τ

[
v(i− 1, 0, k2 + 1)− v(i− 1, 0, k2)

]
+

1

u

[
v(i, 0, k2 + 1)− v(i, 0, k2)

]
> r2 > 0.

(ii) G(i, k2 + 1) < 0.

T v(i, 0, k2 + 1)− Tv(i, 0, k2)

=
[
λv(i+ 1, 0, k2 + 1) +

1

u
[PC1v(i− 1, 1, k2 + 1) + PC2v(i− 1, 0, k2 + 2)]
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+
1

τ
v(i, 0, k2 + 1) + ir + (k2 + 1)r2)

]
−
[
λv(i+ 1, 0, k2) + min

{1

u
[PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)]

+
1

τ
v(i, 0, k2),

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

}
+ (ir + k2r2)

]
≥λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+
PC1

u

[
v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2)

]
+
PC2

u

[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

]
+

1

τ

[
v(i, 0, k2 + 1)− v(i, 0, k2)

]
+ r2

>r2 > 0.

Proof of Property (f.1).

Tv(i, 1, k2)− Tv(i+ 1, 0, k2)

=
[
λv(i+ 1, 1, k2) +

1

τ
v(i, 0, k2) +

1

u
v(i, 1, k2) + ir + r1 + k2r2

]
−
[
λv(i+ 2, 0, k2)

+ min
{1

u

[
PC1v(i, 1, k2) + PC2v(i, 0, k2 + 1)

]
+

1

τ
v(i+ 1, 0, k2),

1

τ
v(i, 0, k2)

+
1

u
v(i+ 1, 0, k2)

}
+ (i+ 1)r + k2r2

]
=λ[v(i+ 1, 1, k2)− v(i+ 2, 0, k2)]−min

{
G(i+ 1, k2), 0

}
+

1

u
[v(i, 1, k2)− v(i+ 1, 0, k2)]

+r1 − r

=λ[v(i+ 1, 1, k2)− v(i+ 2, 0, k2)] +
1

u
[v(i, 1, k2)− v(i+ 1, 0, k2)] + r1 − r.

Hence,

PC1

u

[
Tv(i, 1, k2)− Tv(i+ 1, 0, k2)

]
=λ

PC1

u
[v(i+ 1, 1, k2)− v(i+ 2, 0, k2)] +

1

u

PC1

u
[v(i, 1, k2)− v(i+ 1, 0, k2)] +

PC1

u
(r1 − r)

≤(λ+ 1/u)r +
PC1(r1 − r)

u
= r +

r(1 + ατ)

τu
(ũ(α)− u) ≤ r.

The last inequality holds because of our assumption u < ũ(α).
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Proof of Property (f.2).

We show that Property (f.2) is preserved by considering three cases:

Case (f.2)-1 i = 1, k2 = 0,

TG(1, 0)

=
1

u
[PC1Tv(0, 1, 0) + PC2Tv(0, 0, 1)] +

1

τ
Tv(1, 0, 0)− 1

u
Tv(1, 0, 0)− 1

τ
Tv(0, 0, 0)

=
PC1

u

[
λv(1, 1, 0) +

1

τ
v(0, 0, 0) +

1

u
v(0, 1, 0) + r1

]
+
PC2

u

[
λv(1, 0, 1) +

1

τ
v(0, 0, 0) +

1

u
v(0, 0, 1)

+r2

]
−
(

1

u
− 1

τ

){
λv(2, 0, 0) + r + min

{
1

u

[
PC1v(0, 1, 0) + PC2v(0, 0, 1)

]
+

1

τ
v(1, 0, 0),

1

τ
v(0, 0, 0) +

1

u
v(1, 0, 0)

}}
− 1

τ

[
λv(1, 0, 0) +

1

τ
v(0, 0, 0) +

1

u
v(0, 0, 0)

]
=λG(2, 0) +

1

u
max

{
G(1, 0), 0

}
+

1

τ
min

{
G(1, 0), 0

}
+
r

τ
≥ r

τ
> 0.

Case (f.2)-2 i = 1, k2 ≥ 1,

TG(1, k2)

=
1

u
[PC1Tv(0, 1, k2) + PC2Tv(0, 0, k2 + 1)] +

1

τ
Tv(1, 0, k2)− 1

u
Tv(1, 0, k2)− 1

τ
Tv(0, 0, k2)

=λG(2, k2) +
1

u
max

{
G(1, k2), 0

}
+

1

τ
min

{
G(1, k2), 0

}
+

1

τ2

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
+
r

τ

≥ 1

τ2

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
≥ 0.

Case (f.2)-3 i ≥ 2, k2 ≥ 0,

TG(i, k2)

=
1

u
[PC1Tv(i− 1, 1, k2) + PC2Tv(i− 1, 0, k2 + 1)] +

1

τ
Tv(i, 0, k2)− 1

u
Tv(i, 0, k2)

−1

τ
Tv(i− 1, 0, k2)

=λG(i+ 1, k2) +
1

u
max

{
G(i, k2), 0

}
+

1

τ
min

{
G(i, k2), 0

}
+
PC2

u
min

{
G(i− 1, k2 + 1), 0

}
+

1

τ
max

{
G(i− 1, k2), 0

}
+
PC1

τu

[
v(i− 1, 0, k2)− v(i− 2, 1, k2)

]
+
r

τ

≥PC1

τu

[
v(i− 1, 0, k2)− v(i− 2, 1, k2)

]
+
r

τ
=

1

τ

(
r − PC1

u

[
v(i− 2, 1, k2)− v(i− 1, 0, k2)

])
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≥0.

The last inequality holds because of (f.1).

Proof of Lemma 4.3.2.

The proof of the preservation on Property (e.1)∼(e.5) is exactly the same as in Lemma 4.3.1. We

only present the proof for Property (g.1)∼(g.4).

Proof of Property (g.1).

We first show Property (g.1) by considering three possible cases:

Case (g.1)-1 i ≥ 2, k2 ≥ 0,

T v(i− 1, 1, k2) = λv(i, 1, k2) +
1

τ
v(i− 1, 0, k2) +

1

u
v(i− 1, 1, k2) + (i− 1)r + r1 + k2r2,

T v(i, 0, k2) = λv(i+ 1, 0, k2) + min
{1

u

[
PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)

]
+

1

τ
v(i, 0, k2),

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

}
+ ir + k2r2

= λv(i+ 1, 0, k2) + min
{
G(i, k1), 0

}
+

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2) + ir + k2r2,

T v(i− 1, 0, k2 + 1) = λv(i, 0, k2 + 1) + min
{
G(i− 1, k2 + 1), 0

}
+

1

τ
v(i− 2, 0, k2 + 1)

+
1

u
v(i− 1, 0, k2 + 1) + (i− 1)r + (k2 + 1)r2,

T v(i− 1, 0, k2) = λv(i, 0, k2) + min
{
G(i− 1, k2), 0

}
+

1

τ
v(i− 2, 0, k2) +

1

u
v(i− 1, 0, k2)

+(i− 1)r + k2r2.

Hence,

TG(i, k2) =
1

u
[PC1Tv(i− 1, 1, k2) + PC2Tv(i− 1, 0, k2 + 1)] +

1

τ
Tv(i, 0, k2)− 1

u
Tv(i, 0, k2)

− 1

τ
Tv(i− 1, 0, k2)

= λG(i+ 1, k2) +
1

u
max

{
G(i, k2), 0

}
+

1

τ
min

{
G(i, k2), 0

}
+
PC2

u
min

{
G(i− 1, k2 + 1), 0

}
+

1

τ
max

{
G(i− 1, k2), 0

}
+
PC1

τu

[
v(i− 1, 0, k2)− v(i− 2, 1, k2)

]
+
r

τ
.
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TG(i, k2 + 1) = λG(i+ 1, k2 + 1) +
1

u
max

{
G(i, k2 + 1), 0

}
+

1

τ
min

{
G(i, k2 + 1), 0

}
+
PC2

u
min

{
G(i− 1, k2 + 2), 0

}
+

1

τ
max

{
G(i− 1, k2 + 1), 0

}
+
PC1

τu

[
v(i− 1, 0, k2 + 1)− v(i− 2, 1, k2 + 1)

]
+
r

τ
.

By (g.1) & (g.2), TG(i, k2) ≤ TG(i, k2 + 1).

Case (g.1)-2 i = 1, k2 ≥ 1,

T v(0, 1, k2) = λv(1, 1, k2) +
1

τ
v(1, 0, k2) +

1

u
v(0, 1, k2) + r1 + k2r2,

T v(0, 0, k2 + 1) = λv(1, 0, k2 + 1) +
1

τ
v(0, 0, k2) +

1

u
v(0, 0, k2 + 1) + (k2 + 1)r2,

T v(1, 0, k2) = λv(2, 0, k2) + min
{
G(1, k1), 0

}
+

1

τ
v(0, 0, k2) +

1

u
v(1, 0, k2) + r + k2r2,

T v(0, 0, k2) = λv(1, 0, k2) +
1

τ
v(0, 0, k2 − 1) +

1

u
v(0, 0, k2) + k2r2.

TG(1, k2)

=
1

u
[PC1Tv(0, 1, k2) + PC2Tv(0, 0, k2 + 1)] +

1

τ
Tv(1, 0, k2)− 1

u
Tv(1, 0, k2)− 1

τ
Tv(0, 0, k2)

=λG(2, k2) +
1

u
max

{
G(1, k2), 0

}
+

1

τ
min

{
G(1, k2), 0

}
+

1

τ2

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
+
r

τ
,

TG(1, k2 + 1) = λG(2, k2 + 1) +
1

u
max

{
G(1, k2 + 1), 0

}
+

1

τ
min

{
G(1, k2 + 1), 0

}
+

1

τ2

[
v(0, 0, k2 + 1)− v(0, 0, k2)

]
+
r

τ
.

By (g.1) & (g.3),

TG(1, k2)−TG(1, k2+1) ≤ 1

τ2

[
v(0, 0, k2)−v(0, 0, k2−1)

]
− 1

τ2

[
v(0, 0, k2+1)−v(0, 0, k2)

]
≤ 0.

Case (g.1)-3 i = 1, k2 = 0,

T v(0, 1, 0) = λv(1, 1, 0) +
1

τ
v(1, 0, 0) +

1

u
v(0, 1, 0) + r1,

T v(0, 0, 1) = λv(1, 0, 1) +
1

τ
v(0, 0, 0) +

1

u
v(0, 0, 1) + r2,

T v(1, 0, 0) = λv(2, 0, 0) + min
{
G(1, 0), 0

}
+

1

τ
v(0, 0, 0) +

1

u
v(1, 0, 0) + r,
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Tv(0, 0, 0) = λv(1, 0, 0) +
1

τ
v(0, 0, 0) +

1

u
v(0, 0, 0).

TG(1, 0) =
1

u
[PC1Tv(0, 1, 0) + PC2Tv(0, 0, 1)] +

1

τ
Tv(1, 0, 0)− 1

u
Tv(1, 0, 0)− 1

τ
Tv(0, 0, 0)

= λG(2, 0) +
1

u
max

{
G(1, 0), 0

}
+

1

τ
min

{
G(1, 0), 0

}
+
r

τ
.

TG(1, 1) = λG(2, 1) +
1

u
max

{
G(1, 1), 0

}
+

1

τ
min

{
G(1, 1), 0

}
+

1

τ2

[
v(0, 0, 1)− v(0, 0, 0)

]
+
r

τ
.

By (g.1) & (e.5), TG(1, 0)− TG(1, 1) ≤ − 1
τ2

[
v(0, 0, 1)− v(0, 0, 0)

]
≤ 0.

Proof of Property (g.2).

Tv(i+ 1, 0, k2)− Tv(i, 1, k2)

=λv(i+ 2, 0, k2) + (i+ 1)r + k2r2 + min
{1

u

[
PC1v(i, 1, k2) + PC2v(i, 0, k2 + 1)

]
+

1

τ
v(i+ 1, 0, k2),

1

τ
v(i, 0, k2) +

1

u
v(i+ 1, 0, k2)

}
−
[
λv(i+ 1, 1, k2) +

1

τ
v(i, 0, k2)

+
1

u
v(i, 1, k2) + ir + r1 + k2r2

]
=λ[v(i+ 2, 0, k2)− v(i+ 1, 1, k2)] + min

{
G(i+ 1, k2), 0

}
+

1

u
[v(i+ 1, 0, k2)− v(i, 1, k2)] + (r − r1),

T v(i+ 1, 0, k2 + 1)− Tv(i, 1, k2 + 1)

=λ[v(i+ 2, 0, k2 + 1)− v(i+ 1, 1, k2 + 1)] + min
{
G(i+ 1, k2 + 1), 0

}
+

1

u
[v(i+ 1, 0, k2 + 1)− v(i, 1, k2 + 1)] + (r − r1),

By (g.1) and (g.2), it is obvious that

Tv(i+ 1, 0, k2)− Tv(i, 1, k2) ≤ Tv(i+ 1, 0, k2 + 1)− Tv(i, 1, k2 + 1).
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Proof of Property (g.3).

First we consider i = 0, k2 = 0.

T v(0, 0, 1)− Tv(0, 0, 0)

=
[
λv(1, 0, 1) + r2 +

1

τ
v(0, 0, 0) +

1

u
v(0, 0, 1)

]
−
[
λv(1, 0, 0) +

1

τ
v(0, 0, 0) +

1

u
v(0, 0, 0)

]
=λ
[
v(1, 0, 1)− v(1, 0, 0)

]
+

1

u

[
v(0, 0, 1)− v(0, 0, 0)

]
+ r2,

T v(0, 0, 2)− Tv(0, 0, 1)

=
[
λv(1, 0, 2) + 2r2 +

1

τ
v(0, 0, 1) +

1

u
v(0, 0, 2)

]
−
[
λv(1, 0, 1) + r2 +

1

τ
v(0, 0, 0) +

1

u
v(0, 0, 1)

]
=λ
[
v(1, 0, 2)− v(1, 0, 1)

]
+

1

τ

[
v(0, 0, 1)− v(0, 0, 0)

]
+

1

u

[
v(0, 0, 2)− v(0, 0, 1)

]
+ r2.

Hence, by (e.5) & (g.3), Tv(0, 0, 1)− Tv(0, 0, 0) ≤ Tv(0, 0, 2)− Tv(0, 0, 1). When i = 0, k2 ≥ 1,

T v(0, 0, k2 + 1)− Tv(0, 0, k2)

=
[
λv(1, 0, k2 + 1) + (k2 + 1)r2 +

1

τ
v(0, 0, k2) +

1

u
v(0, 0, k2 + 1)

]
−
[
λv(1, 0, k2) + k2r2

+
1

τ
v(0, 0, k2 − 1) +

1

u
v(0, 0, k2)

]
=λ
[
v(1, 0, k2 + 1)− v(1, 0, k2)

]
+

1

τ

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
+

1

u

[
v(0, 0, k2 + 1)

−v(0, 0, k2)
]

+ r2,

T v(0, 0, k2 + 2)− Tv(0, 0, k2 + 1)

=λ
[
v(1, 0, k2 + 2)− v(1, 0, k2 + 1)

]
+

1

τ

[
v(0, 0, k2 + 1)− v(0, 0, k2)

]
+

1

u

[
v(0, 0, k2 + 2)− v(0, 0, k2 + 1)

]
+ r2.

Hence, by (g.3), Tv(0, 0, k2 + 1) − Tv(0, 0, k2) ≤ Tv(0, 0, k2 + 2) − Tv(0, 0, k2 + 1). When i ≥

1, k2 ≥ 0,

T v(i, 0, k2 + 1)− Tv(i, 0, k2)
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=
[
λv(i+ 1, 0, k2 + 1) + ir + (k2 + 1)r2 + min

{1

u

[
PC1v(i− 1, 1, k2 + 1)

+PC2v(i− 1, 0, k2 + 2)
]

+
1

τ
v(i, 0, k2 + 1),

1

τ
v(i− 1, 0, k2 + 1) +

1

u
v(i, 0, k2 + 1)

}]
−
[
λv(i+ 1, 0, k2) + ir + k2r2 + min

{1

u

[
PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)

]
+

1

τ
v(i, 0, k2),

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

}]
=λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+ r2 +

1

τ

[
v(i− 1, 0, k2 + 1)− v(i− 1, 0, k2)

]
+

1

u

[
v(i, 0, k2 + 1)− v(i, 0, k2)

]
+ min

{
G(i, k2 + 1), 0

}
−min

{
G(i, k2), 0

}
,

T v(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)

=λ
[
v(i+ 1, 0, k2 + 2)− v(i+ 1, 0, k2 + 1)

]
+ r2 +

1

τ

[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

]
+

1

u

[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

]
+ min

{
G(i, k2 + 2), 0

}
−min

{
G(i, k2 + 1), 0

}
,

We look at three separate cases:

(i) G(i, k2 + 2) ≥ 0, G(i, k2) ≥ 0, by (g.3) it is obvious that

[
Tv(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)

]
−
[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
≥ 0.

(ii) G(i, k2 + 2) ≥ 0, G(i, k2) < 0,

T v(i, 0, k2 + 1)− Tv(i, 0, k2)

≤λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+ r2 +

1

u

[
PC1v(i− 1, 1, k2 + 1)

+PC2v(i− 1, 0, k2 + 2)
]

+
1

τ
v(i, 0, k2 + 1)− 1

u

[
PC1v(i− 1, 1, k2)

+PC2v(i− 1, 0, k2 + 1)
]
− 1

τ
v(i, 0, k2)

=λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+ r2 +

PC1

u

[
v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2)

]
+
PC2

u

[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

]
+

1

τ

[
v(i, 0, k2 + 1)− v(i, 0, k2)

]
,

T v(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)
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≥λ
[
v(i+ 1, 0, k2 + 2)− v(i+ 1, 0, k2 + 1)

]
+ r2 +

1

τ

[
v(i− 1, 0, k2 + 2)

−v(i− 1, 0, k2 + 1)
]

+
1

u

[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

]
.

By (g.2), (g.3) & (g.4)

[
Tv(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)

]
−
[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
≥λ
[
v(i+ 1, 0, k2 + 2)− v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2 + 1) + v(i+ 1, 0, k2)

]
+

1

τ

[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

]
+

1

u

[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

]
− PC1

u

[
v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2)

]
− PC2

u

[
v(i− 1, 0, k2 + 2)

−v(i− 1, 0, k2 + 1)
]
− 1

τ

[
v(i, 0, k2 + 1)− v(i, 0, k2)

]
≥PC1

u

[(
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

)
−
(
v(i, 0, k2 + 1)− v(i, 0, k2)

)]
+
PC1

u

[(
v(i, 0, k2 + 1)− v(i, 0, k2)

)
−
(
v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2)

)]
+
PC2

u

[(
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

)
−
(
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

)]
− 1

τ

[(
v(i, 0, k2 + 1)− v(i, 0, k2)

)
−
(
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

)]
≥
(
PC2

u
− 1

τ

)[(
v(i, 0, k2 + 1)− v(i, 0, k2)

)
−
(
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

)]
≥0.

In the last inequality, PC2/u > 1/τ because of u < ũ(α).

(iii) G(i, k2) < 0, G(i, k2 + 2) < 0

Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

=λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+ r2

+
1

u

[
PC1v(i− 1, 1, k2 + 1) + PC2v(i− 1, 0, k2 + 2)

]
+

1

τ
v(i, 0, k2 + 1)

−1

u

[
PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)

]
− 1

τ
v(i, 0, k2).

T v(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)
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=λ
[
v(i+ 1, 0, k2 + 2)− v(i+ 1, 0, k2 + 1)

]
+ r2 +

1

τ
v(i, 0, k2 + 2)

+
1

u

[
PC1v(i− 1, 1, k2 + 2) + PC2v(i− 1, 0, k2 + 3)

]
−1

u

[
PC1v(i− 1, 1, k2 + 1) + PC2v(i− 1, 0, k2 + 2)

]
− 1

τ
v(i, 0, k2 + 1),

By (g.3), it is obvious that

[
Tv(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)

]
−
[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
=λ
[
v(i+ 1, 0, k2 + 2)− v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2 + 1) + v(i+ 1, 0, k2)

]
+
PC1

u

[
v(i− 1, 1, k2 + 2)− v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2 + 1) + v(i− 1, 1, k2)

]
+
PC2

u

[
v(i− 1, 0, k2 + 3)− v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 2) + v(i− 1, 0, k2 + 1)

]
+

1

τ

[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)− v(i, 0, k2 + 1) + v(i, 0, k2)

]
≥ 0.

Proof of Property (g.4).

For the cases that k1 ≥ 1,

[
Tv(i, k1, k2 + 1)− Tv(i, k1, k2)

]
−
[
Tv(i− 1, k1, k2 + 2)− Tv(i− 1, k1, k2 + 1)

]
=λ
([
v(i+ 1, k1, k2 + 1)− v(i+ 1, k1, k2)

]
−
[
v(i, k1, k2 + 2)− v(i, k1, k2 + 1)

])
+

1

u

([
v(i, k1, k2 + 1)− v(i, k1, k2)

]
−
[
v(i− 1, k1, k2 + 2)− v(i− 1, k1, k2 + 1)

])
+

1

τ

([
v(i, k1 − 1, k2 + 1)− v(i, k1 − 1, k2)

]
−
[
v(i− 1, k1 − 1, k2 + 2)

−v(i− 1, k1 − 1, k2 + 1)
])
≥ 0.

Next, we assume that k1 = 0. First we consider i = 1, k2 ≥ 0.

[
Tv(1, 0, k2 + 1)− Tv(1, 0, k2)

]
−
[
Tv(0, 0, k2 + 2)− Tv(0, 0, k2 + 1)

]
=λ
([
v(2, 0, k2 + 1)− v(2, 0, k2)

]
−
[
v(1, 0, k2 + 2)− v(1, 0, k2 + 1)

])
+

1

u

([
v(1, 0, k2 + 1)− v(1, 0, k2)

]
−
[
v(0, 0, k2 + 2)− v(0, 0, k2 + 1)

])
+ min{G(i, k2 + 1), 0} −min{G(i, k2), 0} ≥ 0.
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For i ≥ 2, k2 ≥ 0.

[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
−
[
Tv(i− 1, 0, k2 + 2)− Tv(i− 1, 0, k2 + 1)

]
=λ
([
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
−
[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

])
+

1

τ

([
v(i− 1, 0, k2 + 1)− v(i− 1, 0, k2)

]
−
[
v(i− 2, 0, k2 + 2)− v(i− 2, 0, k2 + 1)

])
+

1

u

([
v(i, 0, k2 + 1)− v(i, 0, k2)

]
−
[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

])
+ min{G(i, k2 + 1), 0}+ min{G(i− 1, k2 + 1), 0} −min{G(i, k2), 0} −min{G(i− 1, k2 + 2), 0}.

If G(i, k2 + 1) > 0, G(i− 1, k2 + 1) > 0,

[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
−
[
Tv(i− 1, 0, k2 + 2)− Tv(i− 1, 0, k2 + 1)

]
=λ
([
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
−
[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

])
+

1

τ

([
v(i− 1, 0, k2 + 1)− v(i− 1, 0, k2)

]
−
[
v(i− 2, 0, k2 + 2)− v(i− 2, 0, k2 + 1)

])
+

1

u

([
v(i, 0, k2 + 1)− v(i, 0, k2)

]
−
[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

])
≥ 0.

If G(i, k2 + 1) < 0, G(i− 1, k2 + 1) > 0, then G(i, k2) < 0, G(i− 1, k2 + 2) > 0, hence

[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
−
[
Tv(i− 1, 0, k2 + 2)− Tv(i− 1, 0, k2 + 1)

]
=λ
([
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
−
[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

])
+

1

τ

([
v(i− 1, 0, k2 + 1)− v(i− 1, 0, k2)

]
−
[
v(i− 2, 0, k2 + 2)− v(i− 2, 0, k2 + 1)

])
+

1

u

([
v(i, 0, k2 + 1)− v(i, 0, k2)

]
−
[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

])
+G(i, k2 + 1)−G(i, k2) > 0.

Otherwise,

[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
−
[
Tv(i− 1, 0, k2 + 2)− Tv(i− 1, 0, k2 + 1)

]
≥λ
([
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
−
[
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

])
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+
1

τ

([
v(i, 0, k2 + 1)− v(i, 0, k2)

]
−
[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

])
+
PC1

u

([
v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2)

]
−
[
v(i− 2, 1, k2 + 2)− v(i− 2, 1, k2 + 1)

])
+
PC2

u

([
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

]
−
[
v(i− 2, 0, k2 + 3)− v(i− 2, 0, k2 + 2)

])
≥0.

Lemma B.0.7. Assume

λ ≤ τ − u
τ2

1− τ

τ − u
r2(

ũ(0)
u − 1

)
r + r2

 , (B.1)

then β1, β2, as defined in (4.6) and (4.7), satisfy

r2

α
(1− β1) ≤

(
PC2

u
− 1

τ

)
(r − r2)τ2 (B.2)

0 < βi < 1, i = 1, 2. (B.3)

λβ1(1− β2)− 1

τ
(1− β1) + αβ1 ≤ 0 (B.4)

λβ2(1− β2)− 1

τ
(1− β2) + αβ2 ≤ 0 (B.5)

λβ2(1− β2)− 1

u
(β1 − β2) + αβ2 ≤ 0 (B.6)

Proof. We can rewrite (B.2)

β1(α) ≥ 1− ατ2

r2

(
PC2

u
− 1

τ

)
(r − r2). (B.7)

Here we emphasize the dependence on α by using β1(α) instead of β1. For convenience, we denote

the right-hand-side of (B.7) as f(α). By assumption, we know λτ/(τ − u) < 1/τ. Hence, it is easy

to show that β1(0) = f(0) = 1.

β′1(α) =
1

2λ

1−
λτ
τ−u + 1/τ + α√

( λτ
τ−u + 1/τ + α)2 − 4λ

τ−u

 ≤ 0, β′1(0) = −
τ

τ−u

1/τ − λτ
τ−u

,

f ′(α) = −τ
2

r2

(
PC2

u
− 1

τ

)
(r − r2) = f ′(0).
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By the assumption in (B.1), β′1(0) ≥ f ′(0).We conclude that β′1(α) ≥ f ′(α) for all α ∈ [0, 1] because

β′′1 (α) =
2/(τ − u)[

( λτ
τ−u + 1/τ + α)2 − 4λ

τ−u

]3/2
> f ′′(α) = 0.

Hence, β1(α) ≥ f(α) for all α ∈ [0, 1].

Since β1(0) = 1 and β′1(α) ≤ 0, it is obvious that β1(α) < 1 for any α > 0. The positivity of

β1(α) is also obvious. The expression of β2 implies that β2 < 1.

Plug (4.7) into (B.4), we get

− λτ

τ − u
β2

1 +

(
λτ

τ − u
+

1

τ
+ α

)
β1 −

1

τ
≤ 0.

It is easy to check that the expression of β1 in (4.6) is a solution to

− λτ

τ − u
β2

1 +

(
λτ

τ − u
+

1

τ
+ α

)
β1 −

1

τ
= 0.

Hence, (B.4) holds. Take the differences of the left-hand sides of (B.4) & (B.5), (B.4) & (B.6),

[
λβ1(1− β2)− 1

τ
(1− β1) + αβ1

]
−
[
λβ2(1− β2)− 1

τ
(1− β2) + αβ2

]
=λ(1− β2)(β1 − β2) +

1

τ
(β1 − β2) + α(β1 − β2) > 0.[

λβ1(1− β2)− 1

τ
(1− β1) + αβ1

]
−
[
λβ2(1− β2)− 1

u
(β1 − β2) + αβ2

]
=λ(1− β2)(β1 − β2) + α(β1 − β2) > 0.

Hence, (B.5) and (B.6) hold.

Proof of Lemma 4.3.3.

The proof of the preservation on Property (e.1)∼(e.5) is exactly the same as in Lemma 4.3.2. We

only present the proof for Property (h.1)∼(h.7).
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Proof of Property (h.1).

We consider three cases:

Case (h.1)-1 i ≥ 2, k2 ≥ 0,

TG(i, k2)

=λG(i+ 1, k2) +
1

u
max

{
G(i, k2), 0

}
+

1

τ
min

{
G(i, k2), 0

}
+
PC2

u
min

{
G(i− 1, k2 + 1), 0

}
+

1

τ
max

{
G(i− 1, k2), 0

}
+
PC1

τu

[
v(i− 1, 0, k2)− v(i− 2, 1, k2)

]
+
r

τ
.

TG(i+ 1, k2)

=λG(i+ 2, k2) +
1

u
max

{
G(i+ 1, k2), 0

}
+

1

τ
min

{
G(i+ 1, k2), 0

}
+
PC2

u
min

{
G(i, k2 + 1), 0

}
+

1

τ
max

{
G(i, k2), 0

}
+
PC1

τu

[
v(i, 0, k2)− v(i− 1, 1, k2)

]
+
r

τ
.

By (h.1) & (h.2), TG(i, k2) ≥ TG(i+ 1, k2).

Case (h.1)-2 i = 1, k2 ≥ 1,

TG(1, k2) = λG(2, k2) +
1

u
max

{
G(1, k2), 0

}
+

1

τ
min

{
G(1, k2), 0

}
+
r

τ

+
1

τ2

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
,

TG(2, k2) = λG(3, k2) +
1

u
max

{
G(2, k2), 0

}
+

1

τ
min

{
G(2, k2), 0

}
+
PC2

u
min

{
G(1, k2 + 1), 0

}
+

1

τ
max

{
G(1, k2), 0

}
− PC1

τu

[
v(0, 1, k2)− v(1, 0, k2)

]
+
r

τ
.

If G(1, k2) ≤ 0, by (e.2), (e.5) & (h.1),

TG(2, k2)−TG(1, k2) ≤ −PC1

τu

[
v(0, 1, k2)− v(1, 0, k2)

]
− 1

τ2

[
v(0, 0, k2)− v(0, 0, k2− 1)

]
< 0.

If G(1, k2) > 0, by (h.1), (h.3) & (h.4),

TG(2, k2)− TG(1, k2)
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≤1

τ
G(1, k2)− PC1

τu

[
v(0, 1, k2)− v(1, 0, k2)

]
− 1

τ2

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
≤ 0.

Case (h.1)-3 i = 1, k2 = 0,

TG(1, 0)

=
1

u
[PC1Tv(0, 1, 0) + PC2Tv(0, 0, 1)] +

1

τ
Tv(1, 0, 0)− 1

u
Tv(1, 0, 0)− 1

τ
Tv(0, 0, 0)

=
PC1

u

[
λv(1, 1, 0) +

1

τ
v(0, 0, 0) +

1

u
v(0, 1, 0) + r1

]
+
PC2

u

[
λv(1, 0, 1) +

1

τ
v(0, 0, 0) + r2

+
1

u
v(0, 0, 1)

]
−
(

1

u
− 1

τ

){
λv(2, 0, 0) + r + min

{1

u

[
PC1v(0, 1, 0) + PC2v(0, 0, 1)

]
+

1

τ
v(1, 0, 0),

1

τ
v(0, 0, 0) +

1

u
v(1, 0, 0)

}}
− 1

τ

[
λv(1, 0, 0) +

1

τ
v(0, 0, 0) +

1

u
v(0, 0, 0)

]
=λG(2, 0) +

1

u
max

{
G(1, 0), 0

}
+

1

τ
min

{
G(1, 0), 0

}
+
r

τ
.

TG(2, 0)

=λG(3, 0) +
1

u
max

{
G(2, 0), 0

}
+

1

τ
min

{
G(2, 0), 0

}
+
PC2

u
min

{
G(1, 1), 0

}
+

1

τ
max

{
G(1, 0), 0

}
+
PC1

τu

[
v(1, 0, 0)− v(0, 1, 0)

]
+
r

τ
.

(i) If G(1, 0) ≤ 0, by (h.1) & (e.2), TG(2, 0)− TG(1, 0) ≤ PC1
τu

[
v(1, 0, 0)− v(0, 1, 0)

]
< 0.

(ii) If G(1, 0) > 0, by (h.1), (h.3) & (h.6),

TG(2, 0)− TG(1, 0) ≤ 1

τ
G(1, 0) +

PC1

τu

[
v(1, 0, 0)− v(0, 1, 0)

]
≤ 1

τ
r − 1

τ

ũ(α)

u
r < 0.

Proof of Property (h.2).

Tv(i+ 1, 0, k2)− Tv(i, 1, k2) = λ[v(i+ 2, 0, k2)− v(i+ 1, 1, k2)] + min
{
G(i+ 1, k2), 0

}
+

1

u
[v(i+ 1, 0, k2)− v(i, 1, k2)] + (r − r1)

Tv(i+ 2, 0, k2)− Tv(i+ 1, 1, k2) = λ[v(i+ 3, 0, k2)− v(i+ 2, 1, k2)] + min
{
G(i+ 2, k2), 0

}
+

1

u
[v(i+ 2, 0, k2)− v(i+ 1, 1, k2)] + (r − r1)
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By (h.1) & (h.2), it is obvious that Tv(i+1, 0, k2)−Tv(i, 1, k2) ≥ Tv(i+2, 0, k2)−Tv(i+1, 1, k2).

Proof of Property (h.3).

Tv(i, 1, k2) = λv(i+ 1, 1, k2) +
1

τ
v(i, 0, k2) +

1

u
v(i, 1, k2) + ir + r1 + k2r2,

T v(i+ 1, 0, k2) = λv(i+ 2, 0, k2)−
[
(i+ 1)r + k2r2

]
+ min

{
1

u

[
PC1v(i, 1, k2)

+PC2v(i, 0, k2 + 1)
]

+
1

τ
v(i+ 1, 0, k2),

1

τ
v(i, 0, k2) +

1

u
v(i+ 1, 0, k2)

}
.

Hence,

PC1

u

[
Tv(i, 1, k2)− Tv(i+ 1, 0, k2)

]
=
PC1

u

[
λ[v(i+ 1, 1, k2)− v(i+ 2, 0, k2)]−min

{
G(i+ 1, k2), 0

}
+

1

u
[v(i, 1, k2)

−v(i+ 1, 0, k2)] + (r1 − r)
]

≥PC1

u

[
λ[v(i+ 1, 1, k2)− v(i+ 2, 0, k2)] +

1

u
[v(i, 1, k2)− v(i+ 1, 0, k2)] + (r1 − r)

]
≥(λ+ 1/u)

ũ(α)

u
r +

PC1(r1 − r)
u

=
ũ(α)

u
r +

PC1(r1 − r)
u

− (α+ 1/τ)
ũ(α)

u
r =

ũ(α)

u
r.

Hence, Property (h.3) is preserved under operator T.

Proof of Property (h.4).

We consider three cases. For i = 1, k2 = 1, by (h.4) & (h.5),

TG(1, 1)− 1

τ

[
Tv(0, 0, 1)− Tv(0, 0, 0)

]
=λG(2, 1) +

1

u
max

{
G(1, 1), 0

}
+

1

τ
min

{
G(1, 1), 0

}
+

1

τ2

[
v(0, 0, 1)− v(0, 0, 0)

]
+
r

τ

−1

τ

[
λ
[
v(1, 0, 1)− v(1, 0, 0)

]
+

1

u

[
v(0, 0, 1)− v(0, 0, 0)

]
+ r2

]
≤λ
[
G(2, 1)− 1

τ

[
v(1, 0, 1)− v(1, 0, 0)

]]
+

1

u

[
max

{
G(1, 1), 0

}
− 1

τ

[
v(0, 0, 1)− v(0, 0, 0)

]]
+
r − r2
τ

+
1

τ2

[
v(0, 0, 1)− v(0, 0, 0)

]
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≤(λ+ 1/u)
ũ(α)

u
r +

1

u

[
max

{
G(1, 1), 0

}
− 1

τ

[
v(0, 0, 1)− v(0, 0, 0)

]
− ũ(α)

u
r
]

+
PC2(r − r2)

u

=
ũ(α)

u
r +

1

u

[
max

{
G(1, 1), 0

}
− 1

τ

[
v(0, 0, 1)− v(0, 0, 0)

]
− ũ(α)

u
r
]
≤ ũ(α)

u
r.

For i = 1, k2 ≥ 2, by (h.4) & (h.5),

TG(1, k2)− 1

τ

[
Tv(0, 0, k2)− Tv(0, 0, k2 − 1)

]
=

[
λG(2, k2) +

1

u
max

{
G(1, k2), 0

}
+

1

τ
min

{
G(1, k2), 0

}
+

1

τ2

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
+
r

τ

]
− 1

τ

[
λ
[
v(1, 0, k2)− v(1, 0, k2 − 1)

]
+

1

τ

[
v(0, 0, k2 − 1)− v(0, 0, k2 − 2)

]
+

1

u

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
+ r2

]
≤λ
[
G(2, k2)− 1

τ

[
v(1, 0, k2)− v(1, 0, k2 − 1)

]]
+

1

u

[
max

{
G(1, k2), 0

}
− 1

τ

[
v(0, 0, k2)

−v(0, 0, k2 − 1)
]]

+
1

τ2

[[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
−
[
v(0, 0, k2 − 1)− v(0, 0, k2 − 2)

]]
+(r − r2)/τ

≤(λ+ 1/u)
ũ(α)

u
r +

1

u

[
max

{
G(1, k2), 0

}
− 1

τ

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
− ũ(α)

u
r
]

+PC2(r − r2)/u

=
ũ(α)

u
r +

1

u

[
max

{
G(1, k2), 0

}
− 1

τ

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
− ũ(α)

u
r
]
≤ ũ(α)

u
r.

For i ≥ 2, k2 ≥ 1,

TG(i, k2)− 1

τ

[
Tv(i− 1, 0, k2)− Tv(i− 1, 0, k2 − 1)

]
=

[
λG(i+ 1, k2) +

1

u
max

{
G(i, k2), 0

}
+
PC1

τu

[
v(i− 1, 0, k2)− v(i− 2, 1, k2)

]
+
r

τ

+
1

τ
max

{
G(i− 1, k2), 0

}
+

1

τ
min

{
G(i, k2), 0

}
+
PC2

u
min

{
G(i− 1, k2 + 1), 0

}]
−1

τ

[
λ
[
v(i, 0, k2)− v(i, 0, k2 − 1)

]
+

1

τ

[
v(i− 2, 0, k2)− v(i− 2, 0, k2 − 1)

]
+ r2

+
1

u

[
v(i− 1, 0, k2)− v(i− 1, 0, k2 − 1)

]
+ min

{
G(i− 1, k2), 0

}
−min

{
G(i− 1, k2 − 1), 0

}]
=λ
[
G(i+ 1, k2)− 1

τ

[
v(i, 0, k2)− v(i, 0, k2 − 1)

]]
+

1

u

[
max

{
G(i, k2), 0

}
− 1

τ

[
v(i− 1, 0, k2)

−v(i− 1, 0, k2 − 1)
]]

+
1

τ

[
max

{
G(i− 1, k2), 0

}
− 1

τ

[
v(i− 2, 0, k2)− v(i− 2, 0, k2 − 1)

]]
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−PC1

τu

[
v(i− 2, 1, k2)− v(i− 1, 0, k2)

]
+

1

τ

[
min

{
G(i, k2), 0

}
−min

{
G(i− 1, k2), 0

}]
+
PC2

u
min

{
G(i− 1, k2 + 1), 0

}
+

1

τ
min

{
G(i− 1, k2 − 1), 0

}
+
r − r2

τ

≤λ
[
G(i+ 1, k2)− 1

τ

[
v(i, 0, k2)− v(i, 0, k2 − 1)

]]
+

1

u

[
max

{
G(i, k2), 0

}
− 1

τ

[
v(i− 1, 0, k2)

−v(i− 1, 0, k2 − 1)
]]

+
1

τ

[
max

{
G(i− 1, k2), 0

}
− 1

τ

[
v(i− 2, 0, k2)− v(i− 2, 0, k2 − 1)

]]
− ũ(α)

τu
r +

r − r2

τ
.

The last inequality holds because of (h.1) & (h.3). By (h.4),

TG(i, k2)− 1

τ

[
Tv(i− 1, 0, k2)− Tv(i− 1, 0, k2 − 1)

]
≤(λ+ 1/u)

ũ(α)

u
r +

1

u

[
max

{
G(i, k2), 0

}
− 1

τ

[
v(i− 1, 0, k2)− v(i− 1, 0, k2 − 1)

]
− ũ(α)

u
r
]

+
1

τ

[
max

{
G(i− 1, k2), 0

}
− 1

τ

[
v(i− 2, 0, k2)− v(i− 2, 0, k2 − 1)

]
− ũ(α)

u
r
]

+
r − r2

τ

=
ũ(α)

u
r +

1

u

[
max

{
G(i, k2), 0

}
− 1

τ

[
v(i− 1, 0, k2)− v(i− 1, 0, k2 − 1)

]
− ũ(α)

u
r
]

+
1

τ

[
max

{
G(i− 1, k2), 0

}
− 1

τ

[
v(i− 2, 0, k2)− v(i− 2, 0, k2 − 1)

]
− ũ(α)

u
r
]

+
r − r2

τ
− (α+ 1/τ)

ũ(α)

u
r

≤ ũ(α)

u
r +

r − r2

τ
− (α+ 1/τ)

ũ(α)

u
r =

ũ(α)

u
r.

Proof of Property (h.5).

For the cases that k1 ≥ 1, i ≥ 0, k2 ≥ 0,

[
Tv(i, k1, k2 + 2)− Tv(i, k1, k2 + 1)

]
−
[
Tv(i, k1, k2 + 1)− Tv(i, k1, k2)

]
=λ
([
v(i+ 1, k1, k2 + 2)− v(i+ 1, k1, k2 + 1)

]
−
[
v(i+ 1, k1, k2 + 1)− v(i+ 1, k1, k2)

])
+

1

τ

([
v(i, k1 − 1, k2 + 2)− v(i, k1 − 1, k2 + 1)

]
−
[
v(i, k1 − 1, k2 + 1)− v(i, k1 − 1, k2)

])
+

1

u

([
v(i, k1, k2 + 2)− v(i, k1, k2 + 1)

]
−
[
v(i, k1, k2 + 1)− v(i, k1, k2)

])
≤(1− α)

(
PC2

u
− 1

τ

)
(r − r2)τ2 ≤

(
PC2

u
− 1

τ

)
(r − r2)τ2.
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Next, we assume that k1 = 0. First we consider i = 0, k2 = 0.

[
Tv(0, 0, 2)− Tv(0, 0, 1)

]
−
[
Tv(0, 0, 1)− Tv(0, 0, 0)

]
=λ
([
v(1, 0, 2)− v(1, 0, 1)

]
−
[
v(1, 0, 1)− v(1, 0, 0)

])
+

1

τ

[
v(0, 0, 1)− v(0, 0, 0)

]
+

1

u

([
v(0, 0, 2)− v(0, 0, 1)

]
−
[
v(0, 0, 1)− v(0, 0, 0)

])
≤(1− α)

(
PC2

u
− 1

τ

)
(r − r2)τ2 ≤

(
PC2

u
− 1

τ

)
(r − r2)τ2.

The first inequality holds because of (h.5) & (h.7). For i = 0, k2 ≥ 1,

[
Tv(0, 0, k2 + 2)− Tv(0, 0, k2 + 1)

]
−
[
Tv(0, 0, k2 + 1)− Tv(0, 0, k2)

]
=λ
([
v(1, 0, k2 + 2)− v(1, 0, k2 + 1)

]
−
[
v(1, 0, k2 + 1)− v(1, 0, k2)

])
+

1

τ

([
v(0, 0, k2 + 1)− v(0, 0, k2)

]
−
[
v(0, 0, k2)− v(0, 0, k2 − 1)

])
+

1

u

([
v(0, 0, k2 + 2)− v(0, 0, k2 + 1)

]
−
[
v(0, 0, k2 + 1)− v(0, 0, k2)

])
≤(1− α)

(
PC2

u
− 1

τ

)
(r − r2)τ2 ≤

(
PC2

u
− 1

τ

)
(r − r2)τ2.

At last, for i ≥ 1, k2 ≥ 0 we consider two separate cases: (i) G(i, k2 + 1) ≥ 0; (ii) G(i, k2 + 1) < 0.

(i) If G(i, k2 + 1) ≥ 0,

[
Tv(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)

]
−
[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
≤λ
([
v(i+ 1, 0, k2 + 2)− v(i+ 1, 0, k2 + 1)

]
−
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

])
+

1

τ

([
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

]
−
[
v(i− 1, 0, k2 + 1)− v(i− 1, 0, k2)

])
+

1

u

([
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

]
−
[
v(i, 0, k2 + 1)− v(i, 0, k2)

])
≤(1− α)

(
PC2

u
− 1

τ

)
(r − r2)τ2 ≤

(
PC2

u
− 1

τ

)
(r − r2)τ2.

(ii) If G(i, k2 + 1) < 0,

[
Tv(i, 0, k2 + 2)− Tv(i, 0, k2 + 1)

]
−
[
Tv(i, 0, k2 + 1)− Tv(i, 0, k2)

]
≤λ
([
v(i+ 1, 0, k2 + 2)− v(i+ 1, 0, k2 + 1)

]
−
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

])
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+
PC1

u

([
v(i− 1, 1, k2 + 2)− v(i− 1, 1, k2 + 1)

]
−
[
v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2)

])
+
PC2

u

([
v(i− 1, 0, k2 + 3)− v(i− 1, 0, k2 + 2)

]
−
[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

])
+

1

τ

([
v(i, 0, k2 + 2)− v(i, 0, k2 + 1)

]
−
[
v(i, 0, k2 + 1)− v(i, 0, k2)

])
≤(1− α)

(
PC2

u
− 1

τ

)
(r − r2)τ2 ≤

(
PC2

u
− 1

τ

)
(r − r2)τ2.

Proof of Property (h.6).

TG(i, 0)

=λG(i+ 1, 0) +
1

u
max

{
G(i, 0), 0

}
+

1

τ
min

{
G(i, 0), 0

}
+
PC2

u
min

{
G(i− 1, 1), 0

}
+

1

τ
max

{
G(i− 1, 0), 0

}
+
PC1

τu

[
v(i− 1, 0, 0)− v(i− 2, 1, 0)

]
+
r

τ

≤λG(i+ 1, 0) +
1

u
max

{
G(i, 0), 0

}
+

1

τ
max

{
G(i− 1, 0), 0

}
+
PC1

τu

[
v(i− 1, 0, 0)

−v(i− 2, 1, 0)
]

+
r

τ

≤(λ+
1

u
+

1

τ
)r +

1

τ

(
r − PC1

u

[
v(i− 2, 1, 0)− v(i− 1, 0, 0)

])
≤(1− α)r +

1

τ

(
r − ũ(α)

u
r
)
≤ (1− α)r ≤ r.

The above is true for i ≥ 2. When i = 1,

TG(1, 0) = λG(2, 0) +
1

u
max

{
G(1, 0), 0

}
+

1

τ
min

{
G(1, 0), 0

}
+
r

τ

≤ λG(2, 0) +
1

u
max

{
G(1, 0), 0

}
+
r

τ
≤ (λ+

1

u
+

1

τ
)r = (1− α)r ≤ r.

Proof of Property (h.7).

Inequality (h.7) establishes the upper bound for v(i, k1, k2 + 1)− v(i, k1, k2). For k1 ≥ 1,

T v(i, k1, k2 + 1)− Tv(i, k1, k2)

=λ
[
v(i+ 1, k1, k2 + 1)− v(i+ 1, k1, k2)

]
+ r2 +

1

τ

[
v(i, k1 − 1, k2 + 1)− v(i, k1 − 1, k2)

]
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+
1

u

[
v(i, k1, k2 + 1)− v(i, k1, k2)

]
≤λr2

α

[
1− βk1+k2+1

1 βi+1
2

]
+

1

τ

r2

α

[
1− βk1+k2

1 βi2

]
+

1

u

r2

α

[
1− βk1+k2+1

1 βi2

]
+ r2

=
r2

α

[
1− βk1+k2+1

1 βi2

]
+ λ

r2

α
βk1+k2+1

1 βi2(1− β2)− 1

τ

r2

α
βk1+k2

1 βi2(1− β1)

−αr2

α

[
1− βk1+k2+1

1 βi2

]
+ r2

=
r2

α

[
1− βk1+k2+1

1 βi2

]
+
r2

α
βk1+k2

1 βi2
[
λβ1(1− β2)− 1

τ
(1− β1) + αβ1

]
≤r2

α

[
1− βk1+k2+1

1 βi2

]
.

The last inequality holds because of Lemma B.0.7. Next we consider the case that k1 = 0. If i =

0, k2 = 0, then

Tv(0, 0, 1)− Tv(0, 0, 0)

=λ
[
v(1, 0, 1)− v(1, 0, 0)

]
+

1

u

[
v(0, 0, 1)− v(0, 0, 0)

]
+ r2

≤λr2

α

[
1− β1β2

]
+

1

u

r2

α

[
1− β1

]
+ r2 =

r2

α

[
1− β1

]
+
r2

α

[
λβ1(1− β2)− 1

τ
(1− β1) + αβ1

]
≤r2

α

[
1− β1

]
.

The last inequality holds because of Lemma B.0.7. If i = 0, k2 ≥ 1 then

Tv(0, 0, k2 + 1)− Tv(0, 0, k2)

=λ
[
v(1, 0, k2 + 1)− v(1, 0, k2)

]
+

1

τ

[
v(0, 0, k2)− v(0, 0, k2 − 1)

]
+

1

u

[
v(0, 0, k2 + 1)− v(0, 0, k2)

]
+ r2

≤λr2

α

[
1− βk2+1

1 β2

]
+

1

τ

r2

α

[
1− βk21

]
+

1

u

r2

α

[
1− βk2+1

1

]
+ r2

=
r2

α

[
1− βk2+1

1

]
+
r2

α
βk21

[
λβ1(1− β2)− 1

τ
(1− β1) + αβ1

]
≤r2

α

[
1− βk2+1

1

]
.

The last inequality holds because of Lemma B.0.7. If i ≥ 1, k2 ≥ 0,

T v(i, 0, k2 + 1)− Tv(i, 0, k2)
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=λv(i+ 1, 0, k2 + 1) + ir + (k2 + 1)r2 + min
{1

u

[
PC1v(i− 1, 1, k2 + 1)

+PC2v(i− 1, 0, k2 + 2)
]

+
1

τ
v(i, 0, k2 + 1),

1

τ
v(i− 1, 0, k2 + 1) +

1

u
v(i, 0, k2 + 1)

}
−
[
λv(i+ 1, 0, k2) + ir + k2r2 + min

{1

u

[
PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1)

]
+

1

τ
v(i, 0, k2),

1

τ
v(i− 1, 0, k2) +

1

u
v(i, 0, k2)

}]
.

We consider two separate cases: If G(i, k2) ≥ 0,

T v(i, 0, k2 + 1)− Tv(i, 0, k2)

≤λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+ r2 +

1

τ

[
v(i− 1, 0, k2 + 1)− v(i− 1, 0, k2)

]
+

1

u

[
v(i, 0, k2 + 1)− v(i, 0, k2)

]
≤λr2

α

[
1− βk2+1

1 βi+1
2

]
+

1

τ

r2

α

[
1− βk2+1

1 βi−1
2

]
+

1

u

r2

α

[
1− βk2+1

1 βi2
]

+ r2

=
r2

α

[
1− βk2+1

1 βi2
]

+
r2

α
βk2+1

1 βi−1
2

[
λβ2(1− β2)− 1

τ
(1− β2) + αβ2

]
≤r2

α

[
1− βk2+1

1 βi2
]
.

The last inequality holds because of Lemma B.0.7. If G(i, k2) < 0,

T v(i, 0, k2 + 1)− Tv(i, 0, k2)

≤λ
[
v(i+ 1, 0, k2 + 1)− v(i+ 1, 0, k2)

]
+
PC1

u

[
v(i− 1, 1, k2 + 1)− v(i− 1, 1, k2)

]
+
PC2

u

[
v(i− 1, 0, k2 + 2)− v(i− 1, 0, k2 + 1)

]
+

1

τ

[
v(i, 0, k2 + 1)− v(i, 0, k2)

]
+ r2

≤λr2

α

[
1− βk2+1

1 βi+1
2

]
+
PC1

u

r2

α

[
1− βk2+2

1 βi−1
2

]
+
PC2

u

r2

α

[
1− βk2+2

1 βi−1
2

]
+

1

τ

r2

α

[
1− βk2+1

1 βi2
]

+ r2

=
r2

α

[
1− βk2+1

1 βi2
]

+
r2

α
βk2+1

1 βi−1
2

[
λβ2(1− β2)− 1

u
(β1 − β2) + αβ2

]
≤r2

α

[
1− βk2+1

1 βi2
]
.

The last inequality holds because of Lemma B.0.7.
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Proof of Lemma 4.3.4.

We prove this lemma by verifying the three conditions in Theorem 11.5, Porteus (2002).

Proof of part (i). Let a structured policy be any policy that serves a class-1 job if k1 ≥ 1 and serves a

class-2 job only if i = k1 = 0; otherwise, serve without triage. Let U = E ∩ F be endowed with the

L∞ metric ρ. The metric space (ρ,U) is complete because for any given {fn}∞0 that fn ∈ U (n ≥ 0)

and limn→∞ fn = f , i.e., fn satisfies (e.1)∼(e.5) and (f.1)∼(f.2), it is obvious that f satisfies them as

well. Hence, Theorem 11.5 (a) holds.

Consider a structured policy π such that it chooses to serve class-1 if k1 ≥ 1 and serves class-2

only if i = k1 = 0; otherwise, serve without triage. From the optimality equations, it is obvious that

policy π is optimal for this one stage minimization problem. Hence, Theorem 11.5 (b) holds.

The preservation condition, i.e., Theorem 11.5 (c), holds because of Lemma 4.3.1. Hence, based

on Theorem 11.5, the optimal value functions are structured and there exists an optimal structured

stationary policy.

Proof of part (ii). Let a structured policy be any policy that serves a class-1 job if k1 ≥ 1 and serves

a class-2 job only if i = k1 = 0; if the server performs triage on an unknown job in (i, 0, k2), then

performs triage in (i, 0, k′2) as well for 0 ≤ k′2 ≤ k2. Let U = E ∩ G be endowed with the L∞

metric ρ. The metric space (ρ,U) is complete because for any given {fn}∞0 that fn ∈ U (n ≥ 0) and

limn→∞ fn = f , i.e., fn satisfies (e.1)∼(e.5) and (g.1)∼(g.4), it is obvious that f satisfies them as

well. Hence, Theorem 11.5 (a) holds.

Consider a structured policy π such that it chooses to serve a class-1 job if k1 ≥ 1 and serves a

class-2 job only if i = k1 = 0; if the server performs triage on an unknown job in (i, 0, k2), then

performs triage in (i, 0, k′2) as well for 0 ≤ k′2 ≤ k2; otherwise, follow the optimal policy. From the

optimality equations, it is obvious that policy π is optimal for this one stage minimization problem.

Hence, Theorem 11.5 (b) holds.

The preservation condition, i.e., Theorem 11.5 (c), holds because of Lemma 4.3.2. Hence, based

on Theorem 11.5, the optimal value functions are structured and there exists an optimal structured

stationary policy.

Proof of part (iii). Let a structured policy be any policy that serves a class-1 job if k1 ≥ 1 and serves
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a class-2 job only if i = k1 = 0; if the server performs triage on an unknown job in (i, 0, k2), then

performs triage in (i′, 0, k2) as well for i′ ≥ i. Let U = E ∩ H be endowed with the L∞ metric

ρ. The metric space (ρ,U) is complete because for any given {fn}∞0 that fn ∈ U (n ≥ 0) and

limn→∞ fn = f , i.e., fn satisfies (e.1)∼(e.5) and (h.1)∼(h.7), it is obvious that f satisfies them as

well. Hence, Theorem 11.5 (a) holds.

Consider a structured policy π such that it chooses to serve a class-1 job if k1 ≥ 1 and serves

a class-2 job only if i = k1 = 0; if the server performs triage on an unknown job in (i, 0, k2),

then performs triage in (i′, 0, k2) as well for i′ ≥ i; otherwise, follow the optimal policy. From the

optimality equations, it is obvious that policy π is optimal for this one stage minimization problem.

Hence, Theorem 11.5 (b) holds.

The preservation condition, i.e., Theorem 11.5 (c), holds because of Lemma 4.3.3. Hence, based

on Theorem 11.5, the optimal value functions are structured and there exists an optimal structured

stationary policy.

Proof of Lemma 4.3.5.

We verify one by one that the three SEN conditions hold for our discounted cost model. Let

z = (0, 0, 0) be the initial system state and policy π be Policy No-Triage, i.e., no jobs will be triaged;

the server serves each job in a first-come-first-serve manner. Hence, this is an M/M/1 queue starting

at the origin. Denote V π
α1

(z) as the total discounted cost under policy π.

V π
α1

(z) =
∞∑
n=0

α1
n
∞∑
k=0

kr · pk(n) = r
∞∑
n=0

α1
n
∞∑
k=0

k · pk(n) = r
∞∑
n=0

α1
nQ(n),

where pk(n) is the probability that the queue length is k at time n and Q(n) is the expected queue

length at time n given the queue is empty at n = 0. From Abate and Whitt (1987),

Q(n) ≤ Q(n+ 1) ≤ · · · ≤ Q(∞) =
ρ

1− ρ
, where ρ = λτ.

Hence,

V π
α1

(z) ≤ r
∞∑
n=0

α1
n ρ

1− ρ
=

rρ

1− ρ
· 1

1− α1
,
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and

(1− α1)Vα1(z) ≤ (1− α1)V π
α1

(z) ≤ rρ

1− ρ
<∞, for α1 ∈ (0, 1).

Therefore, SEN1 holds. Let (i, k1, k2) be any state in S. We need to find an upper bound on

hα1(i, k1, k2) =: Vα1(i, k1, k2)− Vα1(z).

Define policy π as follows: starting from (i, k1, k2), it first follows Policy No-Triage until the state

reaches z = (0, 0, 0). After that, it follows the optimal policy. Assume the time it takes to reach z is Tz

which is a random variable. Denote the discounted cost incurred from time 0 to Tz by Mα1(i, k1, k2).

Vα1(i, k1, k2)− Vα1(z) ≤ V π
α1

(i, k1, k2)− Vα1(z)

= Mα1(i, k1, k2) + α1
TzVα1(z)− Vα1(z) < Mα1(i, k1, k2).

By Kulkarni (2009), E(T ) = (i+ k1 + k2)/(µ− λ). Hence,

Mα1(i, k1, k2) <E

{
T∑
n=0

α1
n
∞∑
k=0

(ir + k1r1 + k2r2 + kr)pk(n)

}

≤E

{
T∑
n=0

∞∑
k=0

(ir + k1r1 + k2r2 + kr)pk(n)

}

=E

{
T∑
n=0

(ir + k1r1 + k2r2)

}
+ E

{
T∑
n=0

∞∑
k=0

krpk(n)

}

=(ir + k1r1 + k2r2)E(T + 1) + E

{
r

T∑
n=0

Q(n)

}

≤(ir + k1r1 + k2r2)E(T + 1) + E

{
r

T∑
n=0

ρ

1− ρ

}

=

(
ir + k1r1 + k2r2 +

rρ

1− ρ

)
E(T + 1)

=

(
ir + k1r1 + k2r2 +

rρ

1− ρ

)(
i+ k1 + k2

µ− λ
+ 1

)
,
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where pk(n) and Q(n) are defined before. Hence, for (i, k1, k2) ∈ S, α1 ∈ (0, 1),

h∗α1
(i, k1, k2) <

[
ir + k1r1 + k2r2 +

rρ

1− ρ

] [
i+ k1 + k2

µ− λ
+ 1

]
.

This completes the verification of SEN2. It is straightforward to see SEN3 holds since hα1(s) ≥ 0 for

any s ∈ S.
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APPENDIX C: PROOF OF RESULTS IN CHAPTER 5

Proof of Theorem 5.1.1.

We show the following lemma, which will help prove Theorem 5.1.1. The decision vector (s1, s2, s3, s4)

denotes that there are s1 servers assigned to do Tr, s2 servers to do SU, s3 servers to do SC1, s4 servers

to do SC2. Because servers work in a non-cooperative manner, the number of servers working on a

certain class should not exceed the number of jobs in that class and
∑4

i=1 si ≤ M. Starting from

state (i, k1, k2), the total expected cost under decision (s1, s2, s3, s4) then follow the optimal policy

is denoted by W (s1, s2, s3, s4).

Lemma C.0.8. Assume i ≥ s1 + s2 + 1, k1 ≥ s1 + 2, k2 ≥ s4 + 1.

(i) IfW (s1, s2, s3+1, s4) ≤W (s1+1, s2, s3, s4), thenW (s1−1, s2, s3+2, s4) ≤W (s1, s2, s3+

1, s4), s1 ≥ 1.

(ii) IfW (s1, s2, s3+1, s4) ≤W (s1, s2+1, s3, s4), thenW (s1, s2−1, s3+2, s4) ≤W (s1, s2, s3+

1, s4), s2 ≥ 1.

(iii) IfW (s1, s2, s3+1, s4) ≤W (s1, s2, s3, s4+1), thenW (s1, s2, s3+2, s4−1) ≤W (s1, s2, s3+

1, s4), s4 ≥ 1.

Proof. Define R(s1, s2, s3, s4) = s1/u+ (s2 + s3 + s4)/τ .

(i) After uniformization with the factor R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4), the cost function

W (·) can be written as

W (s1, s2, s3 + 1, s4)

=
R(s1, s2, s3 + 1, s4)

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)

{
s1/u

R(s1, s2, s3 + 1, s4)

[
PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1)

]
+

s2/τ

R(s1, s2, s3 + 1, s4)
V (i− 1, k1, k2) +

(s3 + 1)/τ

R(s1, s2, s3 + 1, s4)
V (i, k1 − 1, k2)

+
s4/τ

R(s1, s2, s3 + 1, s4)
V (i, k1, k2 − 1)

}
+

ir + k1r1 + k2r2

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)
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+
R(s1 + 1, s2, s3, s4)

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)
V (i, k1, k2),

W (s1 + 1, s2, s3, s4)

=
R(s1 + 1, s2, s3, s4)

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)

{
(s1 + 1)/u

R(s1 + 1, s2, s3, s4)

[
PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1)

]
+

s2/τ

R(s1 + 1, s2, s3, s4)
V (i− 1, k1, k2) +

s3/τ

R(s1 + 1, s2, s3, s4)
V (i, k1 − 1, k2)

+
s4/τ

R(s1 + 1, s2, s3, s4)
V (i, k1, k2 − 1)

}
+

ir + k1r1 + k2r2

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)

+
R(s1, s2, s3 + 1, s4)

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)
V (i, k1, k2),

Take the difference of W (s1, s2, s3 + 1, s4) and W (s1 + 1, s2, s3, s4),

W (s1, s2, s3 + 1, s4)−W (s1 + 1, s2, s3, s4)

=
−[PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1)]/u+ V (i, k1 − 1, k2)/τ

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)

−R(s1, s2, s3 + 1, s4)−R(s1 + 1, s2, s3, s4)

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)
V (i, k1, k2)

=
1

R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)

{[
V (i, k1, k2)− PC1V (i− 1, k1 + 1, k2)

−PC2V (i− 1, k1, k2 + 1)
]
/u−

[
V (i, k1, k2)− V (i, k1 − 1, k2)

]
/τ

}
≤ 0.

Similarly, take the difference of W (s1 − 1, s2, s3 + 2, s4) and W (s1, s2, s3 + 1, s4)

W (s1 − 1, s2, s3 + 2, s4)−W (s1, s2, s3 + 1, s4)

=
R(s1, s2, s3 + 1, s4) +R(s1 + 1, s2, s3, s4)

R(s1 − 1, s2, s3 + 2, s4) +R(s1, s2, s3 + 1, s4)

(
W (s1, s2, s3 + 1, s4)−W (s1 + 1, s2, s3, s4)

)
≤ 0.

(ii) After uniformization with the factor R(s1, s2, s3 + 1, s4), the cost function W (·) can be written as

W (s1, s2, s3 + 1, s4)
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=
s1/u

R(s1, s2, s3 + 1, s4)

[
PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1)

]
+

s2/τ

R(s1, s2, s3 + 1, s4)
V (i− 1, k1, k2) +

(s3 + 1)/τ

R(s1, s2, s3 + 1, s4)
V (i, k1 − 1, k2)

+
s4/τ

R(s1, s2, s3 + 1, s4)
V (i, k1, k2 − 1) +

ir + k1r1 + k2r2

R(s1, s2, s3 + 1, s4)
,

W (s1, s2 + 1, s3, s4)

=
s1/u

R(s1, s2 + 1, s3, s4)

[
PC1V (i− 1, k1 + 1, k2) + PC2V (i− 1, k1, k2 + 1)

]
+

(s2 + 1)/τ

R(s1, s2 + 1, s3, s4)
V (i− 1, k1, k2) +

s3/τ

R(s1, s2 + 1, s3, s4)
V (i, k1 − 1, k2)

+
s4/τ

R(s1, s2 + 1, s3, s4)
V (i, k1, k2 − 1)

ir + k1r1 + k2r2

R(s1, s2, s3 + 1, s4)
.

Because R(s1, s2, s3 + 1, s4) = R(s1, s2 + 1, s3, s4),

W (s1, s2, s3 + 1, s4)−W (s1, s2 + 1, s3, s4) = − [V (i− 1, k1, k2)− V (i, k1 − 1, k2)] /τ

R(s1, s2, s3 + 1, s4)
≤ 0,

and

W (s1, s2−1, s3 +2, s4)−W (s1, s2, s3 +1, s4) = W (s1, s2, s3 +1, s4)−W (s1, s2 +1, s3, s4) ≤ 0.

(iii) The proof is similar to that of (ii).

W (s1, s2, s3 + 1, s4)−W (s1, s2, s3, s4 + 1) = − [V (i, k1, k2 − 1)− V (i, k1 − 1, k2)] /τ

R(s1, s2, s3 + 1, s4)
≤ 0,

hence,W (s1, s2, s3+2, s4−1)−W (s1, s2, s3+1, s4) = W (s1, s2, s3+1, s4)−W (s1, s2, s3, s4+1) ≤

0.

Proof of Theorem 5.1.1: Lemma C.0.8 implies that if it is better, in the sense of lower cost, to assign

an available server to serve a class-1 job other than to serve/triage jobs from class-j, then it is better to

move another server of serving/triaging class-j to serve class-1. It is better to continue doing this until

either all class-1 jobs are being served or all servers are dedicated to serving class-1 jobs. This result
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can be extended to other actions (proofs are similar thus omitted) and implies that servers should work

on the same type of actions, if possible.

Lemma C.0.9. For any system state (i, k1, k2),

(i) V (i, k1 + 1, k2) ≥ V (i, k1, k2 + 1).

(ii) V (i, k1 + 1, k2) ≥ V (i+ 1, k1, k2).

(iii) V (i+ 1, k1, k2) ≥ V (i, k1, k2 + 1).

Proof. (i) Consider two systems. System 1 starts in state (i, k1 + 1, k2) and uses the optimal policy.

System 2 starts in state (i, k1, k2 + 1) and uses policy π, which takes whatever action System 1 takes

until System 1 starts serving the extra class-1 job. While System 1 serves the extra class-1 job, System

2 serves the extra class-2 job and then follows the same actions as System 1 from now on.

Let the total expected cost under policy π be denoted by Vπ(i, k1, k2). The difference between

V (i, k1+1, k2) and Vπ(i, k1, k2+1) is at least as large as the expected cost incurred during the service

of the additional class-1 job. Hence,

V (i, k1 + 1, k2)− V (i, k1, k2 + 1)

= V (i, k1 + 1, k2)− Vπ(i, k1, k2 + 1) + Vπ(i, k1, k2 + 1)− V (i, k1, k2 + 1)

≥ V (i, k1 + 1, k2)− Vπ(i, k1, k2 + 1)

≥ (r1 − r2)τ =
τ

PC1PC2
pq(v1 + v2 − 1)(h1 − h2) ≥ 0.

(ii) Follow the idea in the proof of (i), we get V (i, k1 + 1, k2) − V (i + 1, k1, k2) ≥ (r1 − r)τ =

τ
PC1

pq(v1 + v2 − 1)(h1 − h2) ≥ 0.

(iii) Follow the idea in the proof of (i), we get V (i + 1, k1, k2) − V (i, k1, k2 + 1) ≥ (r − r2)τ =

τ
PC2

pq(v1 + v2 − 1)(h1 − h2) ≥ 0.

Proof of Theorem 5.2.1.

We first show the following lemmas.

Lemma C.0.10. The optimal value function v∗ satisfies

113



(a.1) v∗(i, k1 − 1, k2) ≤ v∗(i− 1, k1, k2), i ≥ 1, k1 ≥ 1.

(a.2) v∗(i, k1 − 1, k2) ≤ v∗(i, k1, k2 − 1), k1 ≥ 1, k2 ≥ 1.

(a.3) v∗(i− 1, k1, k2) ≤ v∗(i, k1, k2 − 1), i ≥ 1, k2 ≥ 1.

Proof. The proof of (a.1) uses a coupling argument. Consider two systems. System 1 starts in state

(i − 1, k1, k2) and uses the optimal policy. System 2 starts in state (i, k1 − 1, k2) and uses policy π,

which takes whatever action System 1 takes until System 1 starts serving the extra class-1 job. While

System 1 serves the extra class-1 job, System 2 serves the extra untriaged job directly without triage

and then follows the same actions as System 1 from now on.

Let the total expected discounted cost under policy π be denoted by vπ(i, k1, k2). The difference

between v∗(i, k1 − 1, k2) and v∗(i− 1, k1, k2) is at least as large as the expected cost incurred during

the service of the additional class-1 job. Hence,

v∗(i, k1 − 1, k2)− v∗(i− 1, k1, k2)

=v∗(i, k1 − 1, k2)− vπ(i, k1 − 1, k2) + vπ(i, k1 − 1, k2)− v∗(i− 1, k1, k2)

≤vπ(i, k1 − 1, k2)− v∗(i− 1, k1, k2) < (r − r1)τ < 0.

The proofs of (a.2) and (a.3) are similar to that for (a.1) thus omitted.

Let E be the set of functions defined on Z3 such that if v ∈ E, then

λv(i+ 1, k1, k2) +
1

τ
v(i, k1 − 1, k2) + ir + k1r1 + k2r2 ≤

PC1v(i− 1, k1 + 1, k2) + PC2v(i− 1, k1, k2 + 1) + C, i ≥ 1, k1 ≥ 1.

(C.1)

Lemma C.0.11. If v ∈ E, then Tv ∈ E. Hence, the optimal value function v∗ ∈ E.

Proof. (i) If k1 ≥ 2,

T v(i+ 1, k1, k2) = λv(i+ 2, k1, k2) +
1

τ
v(i+ 1, k1 − 1, k2) + (i+ 1)r + k1r1 + k2r2,

T v(i, k1 − 1, k2) = λv(i+ 1, k1 − 1, k2) +
1

τ
v(i, k1 − 2, k2) + ir + (k1 − 1)r1 + k2r2,

T v(i− 1, k1 + 1, k2) = λv(i, k1 + 1, k2) +
1

τ
v(i− 1, k1, k2) + (i− 1)r + (k1 + 1)r1 + k2r2,
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Tv(i− 1, k1, k2 + 1) = λv(i, k1, k2 + 1) +
1

τ
v(i− 1, k1 − 1, k2 + 1)

+ (i− 1)r + k1r1 + (k2 + 1)r2.

Hence,

PC1Tv(i− 1, k1 + 1, k2) + PC2Tv(i− 1, k1, k2 + 1) + C − λTv(i+ 1, k1, k2)

− 1

τ
Tv(i, k1 − 1, k2)−

[
ir + k1r1 + k2r2

]
=λ
[
PC1v(i, k1 + 1, k2) + PC2v(i, k1, k2 + 1) + C − λv(i+ 2, k1, k2)− 1

τ
v(i+ 1, k1 − 1, k2)

−
[
(i+ 1)r + k1r1 + k2r2

]]
+

1

τ

[
PC1v(i− 1, k1, k2) + PC2v(i− 1, k1 − 1, k2 + 1) + C

− λv(i+ 1, k1 − 1, k2)− 1

τ
v(i, k1 − 2, k2)−

[
ir + (k1 − 1)r1 + k2r2

]]
+ αC > 0.

(ii) If k1 = 1,

T v(i+ 1, 1, k2) = λv(i+ 2, 1, k2) +
1

τ
v(i+ 1, 0, k2) + (i+ 1)r + r1 + k2r2,

T v(i, 0, k2) = min
{
PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1) + C,

λv(i+ 1, 0, k2) +
1

τ
v(i− 1, 0, k2) + ir + k2r2

}
,

T v(i− 1, 2, k2) = λv(i, 2, k2) +
1

τ
v(i− 1, 1, k2) + (i− 1)r + 2r1 + k2r2,

T v(i− 1, 1, k2 + 1) = λv(i, 1, k2 + 1) +
1

τ
v(i− 1, 0, k2 + 1) + (i− 1)r + r1 + (k2 + 1)r2.

Hence,

PC1Tv(i− 1, 2, k2) + PC2Tv(i− 1, 1, k2 + 1) + C − λTv(i+ 1, 1, k2)

− 1

τ
Tv(i, 0, k2)−

[
ir + r1 + k2r2

]
≥λ
[
PC1v(i, 2, k2) + PC2v(i, 1, k2 + 1) + C − λv(i+ 2, 1, k2)− 1

τ
v(i+ 1, 0, k2)

−
[
(i+ 1)r + r1 + k2r2

]]
+

1

τ

[
PC1v(i− 1, 1, k2) + PC2v(i− 1, 0, k2 + 1) + C

− λv(i+ 1, 0, k2)− 1

τ
v(i− 1, 0, k2)− (ir + k2r2)

]
− 1

τ
max

{
PC1v(i− 1, 1, k2)

+ PC2v(i− 1, 0, k2 + 1) + C − λv(i+ 1, 0, k2)− 1

τ
v(i− 1, 0, k2)− (ir + k2r2), 0

}
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+ αC > 0.

Proof of Theorem 5.2.1: By Lemma C.0.10 and Lemma C.0.11, the optimal value functions satisfy

(a.1)∼(a.3) and (C.1), it is obvious to see that class-1 jobs should be prioritized over all other types

of jobs; we should serve a class-2 job only when there are no other types of jobs.
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