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ABSTRACT

Pratyaydipta Rudra: Statistical Tools for General Association Testing and Control of
False Discoveries in Group Testing

(Under the direction of Fred A. Wright and Andrew Nobel)

In modern applications of high-throughput technologies, it is important to identify

pairwise associations between variables, and desirable to use methods that are powerful

and sensitive to a variety of association relationships. In the first part of the disser-

tation, we describe RankCover, a new non-parametric association test for association

between two variables that measures the concentration of paired ranked points. Here

‘concentration’ is quantified using a disk-covering statistic that is similar to those em-

ployed in spatial data analysis. Analysis of simulated datasets demonstrates that the

method is robust and often powerful in comparison to competing general association

tests. We also illustrate RankCover in the analysis of several real datasets. Using

RankCover, we also propose a method of testing the association of two variables while

controlling the effect of a third variable.

In the second part of the dissertation, we describe statistical methodologies for test-

ing hypotheses that can be collected into groups, with each group showing potentially

different characteristics. Methods to control family-wise error rate or false discovery

rate for group testing have been proposed earlier, but may not easily apply to expres-

sion quantitative trait loci (eQTL) data, for which certain structured alternatives may

be defensible and enable the researcher to avoid overly conservative approaches. In an

empirical Bayesian setting, we propose a new method to control the false discovery rate

(FDR) for grouped hypothesis data. Here, each gene forms a group, with SNPs anno-
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tated to the gene corresponding to individual hypotheses. Heterogeneity of effect sizes

in different groups is considered by the introduction of a random effects component.

Our method, entitled Random Effects model and testing procedure for Group-level FDR

control (REG-FDR) assumes a model for alternative hypotheses for the eQTL data and

controls the FDR by adaptive thresholding.

Finally, we propose Z-REG-FDR, an approximate version of REG-FDR that uses

only Z-statistics of association between genotype and expression at each SNP. Simula-

tions demonstrate that Z-REG-FDR performed similarly to REG-FDR, but with much

improved computational speed. We further propose an extension of Z-REG-FDR to a

multi-tissue setting, providing a basis for gene-based multi-tissue analysis.
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CHAPTER 1: INTRODUCTION

1.1 Testing of General Association

The need for statistical methods to identify general pairwise association measured

between variables is increasingly recognized, as evidenced by recent attention to meth-

ods such as distance correlation (dCor) (Székely et al. 2007, Székely and Rizzo 2009),

Maximal Information Coefficient (MIC) (Reshef et al. 2011), and the Heller-Heller-

Gorfine (HHG) method (Heller et al. 2013). The term general association refers to

any departure from independence among random variables, and methods differ in the

types of departures to which they are sensitive. The need for general association tests

is perhaps greatest for analysis of large datasets, for which discovery-based approaches

are needed, without prior hypotheses regarding the form or structure of dependence.

In addition to the need to test dependence among pairs of variables as a primary

analysis, dependencies can invalidate inference for downstream methods that require

independence among input variables (Albert et al. 2001).

The methodologies for detecting general association are numerous and consist of

several ways to approach the problem. We consider only non-parametric procedures

since the methods with parametric assumptions are not ‘general’ in the true sense.

Here, we discuss the most relevant and applicable ones from each approach with special

attention to some methods that are relatively new, easy to interpret, computationally

less expensive and at the same time most useful in terms of their robustness and power

to detect different forms of general associations.

1



1.1.1 Classical non-parametric tests

Classical tests attempting to detect general association date back to the early part

of the last century with Spearman’s rank correlation (Spearman 1904) and Kendall’s

tau (Kendall 1938). Standard tests based on these rank correlations assume values are

not tied, and are primarily designed for monotone relationships, but are not principally

different in spirit from Pearson’s product moment correlation.

Many trend tests (Mann 1945, Kendall 1975, Cuzick 1985, Hamed and Ramachan-

dra Rao 1998) were devised over the years for testing linear and non-linear trends, pri-

marily in time series data. However, they also suffer from insensivity to non-monotone

relationships.

1.1.2 Methods in spatial statistics

The spatial statistics literature is abundant with tests of complete spatial random-

ness (CSR), which is closely related to the general association of two variables. Com-

plete spatial randomness as defined by Diggle (1983) occurs when

1. the number of events in any planar region A with area |A| follows a Poisson

distribution with mean λ|A|.

2. given n events xi in a region A, the xi’s form an independent random sample

from the uniform distribution on A.

The self-consistency of the above two conditions is a non-trivial fact that can be

proved. If two variables are associated, their scatter plot is expected to deviate from

such CSR since the points will be more clustered as compared to the independent case.

However, for testing general association to be exactly equivalent to testing CSR, the

marginal distributions of the two random variables must be uniform. Also, CSR can

be violated if the occurrence of a point is either encouraged or inhibited the occurrence
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of other points in the neighborhood of it, but the alternative of inhibition is not very

relevant for testing general association. These differences can be somewhat reduced

by using the ranks of the two variables while testing general association, since each

component of rank(X) and rank(Y ) has a discrete uniform distribution for any two

jointly distributed random variables X and Y . However, note that these components

are not independent since a rank vector needs to be a permutation of (1, 2, ..., n), where

n is the sample size. One sided tests will be appropriate in this case to test for the

association (and not for inhibition).

A number of testing procedures sensitive to local clustering have been devised in

the field of spatial statistics (Holgate 1965b;a, Diggle et al. 1976, Donnelly 1978, Ripley

and Silverman 1978, Hines and Hines 1979, Ripley 1979, Grabarnik and Chiu 2002,

Smith 2004, Torabi and Vahidi-Asl 2009). Among the most popular ones, the G and

F functions by Diggle (Diggle 1983) use nearest neighbor distances to devise a test

against the hypothesis of complete spatial randomness. The two functions are closely

related and are proved to be asymptotically equivalent (Diggle 1983). Diggle suggested

the use of Monte Carlo simulations to obtain the distributions of empirical versions of

the whole curves G(x) and F (x), but it is computationally expensive. Clark and Evans

(1954) suggested a test based on mean nearest neighbor distances and an asymptotic

distribution was proposed by Donnelly (1978). However, it assumes joint uniformity of

the two variables and hence cannot be used in the context of general association.

Coverage processes are somewhat related to such spatial statistics ideas and find

potential applications in ballistics, queueing theory, statistical mechanics, molecular

biology and so on. In the theory of coverage process, each of the spatial points is

assumed to be generated by a stochastic point process, which is not necessarily a

Poisson process (discussed in more details in Section 2.6). However, the theory does

not directly apply to the general association testing.
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1.1.3 Other methods of detecting general association

Some other important methods for detecting general association are maximal cor-

relation (Hirschfeld 1935, Gebelein 1941, Rényi 1959), Hoeffding’s D (Hoeffding 1948),

and mutual information. The maximal correlation, also known as Renyi correlation,

between two random variables X and Y , is defined as max
f(x),g(y)

E(f(X)g(Y )) subject to

E(f(X)) = E(g(Y )) = 0 and E(f(X)2) = E(g(Y )2) = 1. The maximal correlation

enjoys various desirable theoretical properties including that it is zero if and only if X

and Y are independent. However, there is no explicit formula to calculate it. Breiman

and Friedman (1985)’s Alternating Conditional Expectations (ACE) algorithm is the

most common algorithm to approximate it. Bickel and Xu (2009) provided another

way to approximate the maximal correlation and a test based on it.

Hoeffding’s D measures the difference between the joint ranks and the product of

their marginal ranks. It can identify even non-monotone associations, but fails to iden-

tify non-functional relationships like circle or cross (Fujita et al. 2009, de Siqueira Santos

et al. 2013).

The mutual information of two random variables X and Y is defined as

MI(X, Y ) =

ˆ ˆ
fX,Y (x, y)log2(

fX,Y (x, y)

fX(x)fY (y)
)dxdy

The mutual information is 0 if and only ifXand Y are independent. Several methods

to estimate the mutual information have been proposed (Paninski 2003, Daub et al.

2004, Kraskov et al. 2004, Moon et al. 1995). The test of general association using

these estimators of mutual information are observed to be powerful when the sample

size is large, but not satisfactory for small samples (de Siqueira Santos et al. 2013).
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1.1.4 Recent advancements

Recently, a number of methods using Reproducing Kernel Hilbert Spaces (RKHS)

have been proposed (Fukumizu et al. 2007, Gretton et al. 2008, Gretton and Györfi

2008). These methods have some desirable properties (Gretton et al. 2009), but are

complex in nature and not always easy to compute. On the other hand, three methods

developed very recently have been extremely popular due to their simplicity, desirable

theoretical properties, relative ease of computation and power to detect several forms

of association. We discuss these methods in greater detail.

Distance correlation (dCor), introduced by Székely et al. (2007) is motivated by

consideration of distances between the empirical characteristic function under the null

vs. under the alternative. For observed data, the dCor statistic is the Pearson cor-

relation of distances (after some adjustments) between all pairs of samples. For an

observed random sample (x, y) = {(xk, yk) : k = 1, 2, ..., n}, the distances between

pairs of samples are defined as akl = |xk − xl| and bkl = |yk − yl|; k, l = 1, 2, ..., n. The

approach is intuitively sensible when the relationship is monotone, as sample pairs that

are close on the x-axis should also be close on the y-axis. However, for non-monotone

relationships, pairs of points that are close on the x-axis can be quite distant on the

y-axis (Figure 1.1).

dCor satisfies several ideal theoretical properties (Székely et al. 2007). It is zero if

and only if the two variables are independent and is the only method with an explicit

formula to enjoy such property. Also, dCor can be used in higher dimensions and has

an interpretation related to Brownian distances (Székely and Rizzo 2009).

The maximal Information Coefficient (MIC), proposed by Reshef et al. (2011) mea-

sures the largest possible mutual information achievable by any x-y grid applied to the

data. Reshef et al. (2011) provided a quick algorithm to calculate the MIC and showed

that it has two desirable properties: (i) It is general in the sense that with sufficient
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Figure 1.1: Illustration of paired adjusted distances underlying dCor. (top row) Illus-
tration of dCor for a quadratic relationship between x and y.(bottom row) A circular
relationship between x and y. The adjusted paired distances show little correlation.

sample size it is able to detect a wide range of associations without being limited to

any specific form. (ii) It is equitable in the sense that the value of the coefficient is

similar for various forms of association that are equally ‘noisy’ in their departure from

a functional relationship.

Simon and Tibshirani (2014) argued that such equitability may not be a desirable

property while testing for general association, as it might lead to lower power of the test.

However, recently there have been debates over the appropriate definition of equitability

and whether MIC truly enjoys that property (Kinney and Atwal 2014a;b).

Heller et al. (2013) proposed HHG, a new test of general association based on a

simple geometric idea that if X and Y are associated then there will a point (x0, y0)

and radii around Rx and Ry such that the joint distribution of X and Y will differ from
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the product of marginal distributions in the Cartesian product of balls around (x0, y0).

The test uses as the test statistic a sum of n Pearson chi-square statistics where n is

the number of paired observations. It can also be extended to higher dimensions. The

method has been shown to be consistent as n grows larger and simulation studies were

presented to demonstrate that it has high power against several alternatives.

1.1.5 Summary

To summarize, several tests of association have been found to perform well in terms

of power in different situations. MIC, dCor and HHG are probably the most appealing

in terms of their power against different alternatives, desirable theoretical properties

and computational efficiency. However, their performance for small samples against

various forms of associations has been relatively unexplored. In Chapter 2 we will

present a comparison of these methods with our newly proposed method RankCover.

Our method RankCover is robust and powerful against different forms of associa-

tion. The method has been applied on both simulated and real datasets and has been

observed to perform better than competing methods in many situations. It is truly

‘general’ in the sense that it does not depend on the distributions of the two variables

under consideration, and has the potential to detect any departure from independence.

1.2 Control of False Discovery Rate for Grouped Hypotheses

Modern scientific technology has given rise to large scale simultaneous inference

problems where thousands of tests are carried out at the same time. Special care is

needed to ensure that the incorrect rejection of null hypotheses are kept under control.

Such control of false positives can be achieved in different ways. The false discovery rate

(FDR) approach (Benjamini and Hochberg 1995) is contemporary and has been proved

to have advantages over other approaches like controlling the family-wise error rate

(FWER). The Benjamini and Hochberg method has been refined to better understand
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behavior under dependency, and to accommodate certain dependency structures. Often

such hypotheses form into groups that exhibit different properties. The control of FDR

without considering the group classification has the potential problem of over or under

sensitivity as significant instances of one group might be hidden among the nulls of

another group, and insignificant instances might look like significant (Cai and Sun

2009, Efron 2008).

FDR based approaches have also been studied in the domain of interval estimation

(Benjamini and Yekutieli 2005, Jung et al. 2011, Zhao and Gene Hwang 2012). How-

ever, we will focus on the methods controlling FDR in the grouped hypothesis setting,

especially considering the applications for expression quantitative trait loci (eQTL)

data.

1.2.1 Classical methods and family-wise error rate

Methods to control type I error, after considering the effects of multiple testing,

are more than fifty years old and include the Bonferroni method (Dunn 1961) and

Sidak method of multiple comparison (Šidák 1967), being proposed after the works

of Tukey and Scheffe in the 1950’s. The Sidak method assumes the hypotheses to

be independent and can be highly conservative if the correlations are positive. The

Bonferroni method does not assume independence and can be even more conservative.

Holm (1979) introduced the concept of a stepped procedure that can be used to improve

the Bonferroni or Sidak method to obtain less conservative control. Using a similar

approach, Hochberg (1988) proposed a step up procedure to obtain higher power. The

concept of ‘Family-Wise Error Rate (FWER)’ was formalized by Westfall and Young

(1993). They also introduced a permutation based procedure, applicable to many

datasets, which can control the FWER exactly at the target level under a permutation

null.

The idea of FWER can be understood from Table 1.1. Suppose we have a total of
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m hypotheses and m0 of them are true null. Based on a particular rejection criterion,

let R of them be rejected. The cross-classification of the truth and the decision is as

shown in Table 1.1. Then, FWER is defined as the probability of making at least one

false discovery, i.e. P (V ≥ 1).

True Null True Alternative Total
Rejected V S R
Accepted U T m−R

Total m0 m−m0 m

Table 1.1: Showing the cross-classification of true and false null hypothesis against the
decision to accept or reject

1.2.2 The false discovery rate approach

Benjamini and Hochberg (1995) argued that the FWER may not be the error cri-

terion that should be used for multiple hypothesis testing. They introduced the idea

of the False Discovery rate (FDR) and claimed that it is a quantity that is desirable to

control. The FDR is the expected proportion of false positives among all rejected cases.

In the light of Table 1.1, FDR can be defined as E( V
max{1,R}). Benjamini and Hochberg

(1995) proposed a linear step up (LSU) procedure for controlling FDR and showed

that the control of FDR at the same target level as an FWER-controlling method will

result in a less conservative procedure and higher power to detect significant cases.

Also, controlling FDR assures the weak control of FWER when all the null hypotheses

are true. Even though the original work assumed that the hypotheses are independent

(Benjamini and Hochberg 1995), later Benjamini and Yekutieli (2001) showed that the

same procedure gurantees control of FDR even when the hypotheses are positively de-

pendent in a certain way (positive regression dependence from a subset, PRDS). They

also showed that under completely unspecified dependence structure, the LSU proce-

dure still controls the FDR if the target level is adjusted by (1 + 1
2

+ 1
3

+ ... + 1
m

). To

be more specific, the Benjamini-Hochberg procedure with target level q works in the
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following way.

FDR ≤ m0

m
q when hypotheses are independent,

FDR ≤ m0

m
q when hypotheses are positively dependent

(PRDS),

FDR ≤ m0

m
q(1 + 1

2
+ 1

3
+ ...+ 1

m
) for general dependence.

It is clear that the FDR control using the Benjamini-Hochberg LSU procedure can

thus be extremely conservative if the proportion of true null hypotheses (m0/m) is not

close to 1. Even though controlling FDR at the exact level may not always lead to the

most powerful procedure (Cao et al. 2013), in most cases the power is reduced when a

procedure controls the FDR at a lower level than the target. This observation inspired

the idea of ‘adaptive’ procedures, where m0 is first estimated from the data and then

the LSU procedure is used for a target level qm/m̂0 (Benjamini and Hochberg 2000,

Storey 2002, Black 2004). Such plug-in type procedures, even though valid as ‘oracle’

procedures, might not always control the FDR when m0 is estimated from the same

data. Especially under dependency, the variability of the estimate of 1/m0 can be

very high (Farcomeni 2007b, Blanchard and Roquain 2009). Benjamini et al. (2006),

Blanchard and Roquain (2009), Benjamini et al. (2009), Gavrilov et al. (2009) proposed

several adaptive methods which can be proved to control the FDR at the target level.

1.2.3 Extension and different approaches to FDR

There has been considerable research in the field of multiple hypothesis testing using

FDR over the last two decades including many studies regarding the properties of the

FDR approach under different scenarios (Green and Diggle 2007, Ferreira et al. 2006,

Sarkar 2008; 2002, Farcomeni 2007a). The effect of dependence among the hypotheses

has been the topmost concern for the researchers. Even when the Benjamini-Hochberg

procedure controls the FDR, it might be overly conservative under dependence (Qiu
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and Yakovlev 2006, Schwartzman and Lin 2011). Owen (2005) has noted that the

variance of the number of false discoveries might be greatly inflated under dependence.

Yekutieli and Benjamini (1999) proposed a permutation based approach to take care

of the dependence, but it is computationally burdensome for large number of hypothe-

ses. Other procedures to take care of the dependence have been proposed including

a hidden Markov model based approach by Sun and Cai (2009). They propose an

‘oracle’ procedure as well as an asymptotically optimal data-driven procedure, but the

entire procedure requires a natural ordering of the hypotheses such that dependencies of

null/alternative hypotheses may be exploited. Genovese and Wasserman (2004; 2002)

extended the FDR approach and also introduced the idea of ‘False Negative Rate’

(FNR) which is the expected proportion of false negatives among all non-rejections

(Genovese and Wasserman 2002). They proposed an optimal method which minimizes

the FNR subject to a bound on FDR. Sun and Cai (2007) also provided an ‘oracle’

method based on a decision theoretic framework that minimizes FNR while controlling

the FDR. They showed that when the method is data driven, it asymptotically attains

the performance of the ‘oracle’ procedure.

Storey (2003) introduced a Bayesian approach to FDR by considering the hypotheses

to be Bernoulli random variables with probability π0, where π0 = P (H0) for each

hypothesis. For a rejection region R and observed data z, FDR is defined from the

Bayesian veiwpoint as P (H0|z ∈ R). Storey and Tibshirani (2003) introduced the

concept of ‘q-values’, the FDR-equivalent of p-values, which can be used in multiple

testing without the prior fixing of a target FDR level. Multiple other error rates have

been proposed including ‘positive False Discovery Rate’ (pFDR) defined as E(V/R|R >

0) (Storey 2002), ‘Fdr’ defined as E(V )/E(R) (Benjamini and Hochberg 1995), ‘k-

FWER’ defined as P (V ≥ k) (Lehmann et al. 2005), and tail probaility P (V/R ≥ q)

of the false discovery proportion (van der Laan et al. 2004). Benjamini (2010) argued

that such multiplicity of error rates is welcome as they find applications in different
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situations. However, the FDR is widely seen as the most useful one, having the desirable

properties under the most general conditions (eg Fdr or pFDR cannot be controlled

when all the null hypotheses are true).

1.2.4 The empirical Bayes approach and local false discovery rate

The empirical Bayes approach uses a Bayesian set up assuming the null hypothe-

ses to be Bernoulli random variables, but estimates the prior probability π0 instead of

assuming prior belief. Empirical Bayes methods use the advantages of both classical

and Bayesian approaches and can be superior to both in many cases (Casella 1985).

Efron et al. (2001b) introduced the empirical Bayes approach for controlling FDR in

microarray datasets and mentioned that such approach has an easy appeal and inter-

pretation. The model, known as two-groups model, can be used in other applications

as well. With such a model, for a given data z related to a hypothesis, the density can

be written as a mixture density:

f(z) = π0f0(z) + (1− π0)f1(z) (1.1)

where f0 and f1 are the densities under null and alternative, respectively. The adaptiv-

ity is in inherent to such procedures since the estimatiion π0 is equivalent to estimating

m0 in the classical FDR setting.

The local false discovery rate (lfdr) (Efron et al. 2001a) is defined as the posterior

probability P (H0|z) of the true null given the data. Efron et al. (2001a) showed that lfdr

has a natural connection with the Benjamini-Hochberg FDR controlling method that

allows one to control the FDR by an adaptive step up method (see Theorem 1). The

empirical Bayes approach using lfdr has, in principle, the advantage of inherently taking

care of the dependencies (Efron et al. 2001a). Thus, one doesn’t have to worry about

the dependency structure of the p-values like the Benjamini-Hochberg LSU procedure.
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The difficulty of using the empirical Bayes approach is to estimate the lfdr’s. The

requirement of the estimation of the null density f0 has been discussed by many re-

searchers (Efron 2004, Jin and Cai 2007, Schwartzman 2008) although in some cases it

might be assumed to be a known distribution (Efron et al. 2001a).

1.2.5 Grouped Hypotheses

Grouped hypothesis testing is a special case of multiple testing where the hypotheses

have a natural stratification and adjustments for multiple comparison is required not

only within each group, but also for the existence of multiple groups. For instance, gene

expression data can be grouped according to the ontologies (Ashburner et al. 2000). For

cis-eQTL analysis, there is a natural grouping in terms of the different genes. Within

each gene, there are several SNPs local to the gene with which the associations are

tested. For eQTL studies such as GTEx (Lonsdale et al. 2013), it is often useful to find

out whether there is any eQTL within a particular gene since genes are believed to be

directly associated with the diseases. An example for expression data is presented by

Heller et al. (2009) where gene-sets are thought of as units of interest and a method to

find out gene-sets that are differentially expressed has been developed. Benjamini and

Heller (2007) reports an example where the clusters are of more interest than individual

locations in a neuro-imaging study. They propose an adaptive procedure to control the

FDR for clusters, i.e. to control the proportion of clusters erroneously rejected out of

all rejected clusters.

Another important factor for grouped testing is the heterogeneity of the groups.

Different groups might have different properties, and ignoring that fact might lead to

overly conservative or overly anti-conservative results (Cai and Sun 2009, Efron 2008).

Efron (2008) demonstrated that pooling all the groups together is not recommended for

such heterogeneous groups. He also showed that separate analysis controlling FDR at

α for each group and then combining the results ensures that the overall control of FDR
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at same target level α. However, such choice of αi = α for each group is not optimal

(Cai and Sun 2009). Yang and Jeong (2013) has applied such a separate analysis

approach to RNAseq data. The conditional lfdr based ‘oracle’ procedure (when the

distributional information of each group is known) introduced by Cai and Sun (2009),

when applicable, has been shown to be optimal in the sense that it controls the overall

FDR and minimizes the overall FNR. When the parameters are unknown, they propose

a data-driven procedure that is asymptotically equivalent to the ‘oracle’ procedure.

Most of the other methods use weighted p-value based approaches to combine p-

values from different groups (Benjamini and Hochberg 1997, Genovese et al. 2006, Hu

et al. 2010). Roeder and Wasserman (2009) showed that such weighted p-value based

methods are robust to weight misspecification. Hu et al. (2010) proposed a ‘Group

Benjamini Hochberg’ method, but it is limited by the assumption that the non-null

distribution of different groups are same. Zhao and Zhang (2014) proposed another

weighted p-value method where the weights are obtained by maximizing a power-related

objective function. Wang et al. (2010) introduced a Hidden Markov Model based

method for group testing and succesfully applied it to GWAS data. Another method

targeted at GWAS data was proposed by Sun et al. (2006).

A different way to approach grouped testing is to adopt a hierarchical structure and

sequentially test at different levels. One such example might be to split a genome-wise

data into chromosomes, which can be further split into arms, then into genes and so

on. Only the chromosomes found to be significant in the first stage will be tested at

the next level. There exist several methods controlling FWER in such tree-like set

up (Goeman and Finos 2012, Meinshausen 2008), Yekutieli (2008) proposed a method

that controls for the overall FDR. However, Benjamini and Bogomolov (2014) have

cautioned that such selective procedures may not control FDR at the group levels unless

some adjustments are made. The authors specifically mentioned different adjustment

methods for controlling different error rates.
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1.2.6 Application in eQTL studies

There have been a lot of studies regarding eQTL data over the past decade. eQTL

mapping methods have rapidly moved from classical genetic methods for linkage or

association mapping to modern computationally efficient algorithms. Wright et al.

(2012) provides a review of the different eQTL mapping methods. While some of the

researchers emphasize on the statistical modeling aspect (Kendziorski et al. 2006, Chen

and Kendziorski 2007, Gelfond et al. 2007), other methods focus on developing fast

and efficient algortithms for the huge eQTL datasets (Gatti et al. 2009, Shabalin 2012,

Purcell et al. 2007).

The FDR controlling procedure due to Benjamini and Hochberg (1995) and the

q-value approach by Storey and Tibshirani (2003) are the most common approaches

to control FDR in eQTL studies. Among other approaches, some clustering methods

are used by Jia and Xu (2007) and Chun and Keleş (2009). However, the natural

grouping defined by the genes in the eQTL data is relatively unexplored. Due to the

large number of groups and large number of hypotheses within the groups, many group-

testing methods become computationally burdensome for eQTL datasets. However, the

methods might be simplified by making further assumptions considering the special

structure of the eQTL data.

1.2.7 Summary

The past two decades have seen extensive studies on multiple hypothesis testing

using the FDR controlling approach. Different situations like grouped hypotheses and

mutually dependent hypotheses have been considered by researchers and methodologies

to tackle them have been proposed. However, appropriate approaches to avoid conser-

vativeness under dependence are still somewhat unclear. While there has been lot of

research on both FDR control in grouped hypothesis testing and analysis of eQTL data
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separately, the application of grouped hypothesis testing for eQTL data has not been

well explored. The natural grouping of the eQTL data using the genes as groups has

been largely ignored when applying multiple comparison techniques, except using com-

putationally intensive method such as permutation (Ardlie et al. 2015). There might be

assumptions that do not hold in general for grouped hypotheses, but hold in eQTL data

due to its special structure. In Chapter 3, we will discuss how such special structure of

the data can be used to develop new group testing methodologies for eQTL datasets.

Our method Random Effects model and testing procedure for Group-level FDR con-

trol (REG-FDR) models the alternative for the eQTL data and controls the FDR by

adaptive thresholding. Z-REG-FDR, an approximate version of REG-FDR, is also

proposed which exhibits similar results with much improved computational speed. As

Z-REG-FDR is very similar to REG-FDR, which is based on maximum likelihood es-

timation, Z-REG-FDR is conjectured to have near-optimality properties in estimation

due to its use of an approximate MLE. This method is not only very fast compared to

other grouped hypothesis testing methods, but it also does not require the full data to

fit the model. In fact, using only the p-values for each gene-SNP pair is sufficient to

conduct the gene-level hypothesis testing and control of the FDR.

1.3 Overview of the thesis

In Chapter 2 we develop RankCover, a new method to detect general association.

The results of application of the method on both simulated and real datasets are pre-

sented. Our proposed methodologies to control FDR in a grouped hypothesis set up

are described in Chapter 3. The advantages and limitations of our approaches are dis-

cussed in this chapter. In Chapter 4 we discuss a multi-tissue extension of our grouped

hypothesis testing method.
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CHAPTER 2: A PROCEDURE TO DETECT GENERAL
ASSOCIATION

2.1 Motivation

Adapting ideas from spatial analysis, we propose RankCover, a method that quanti-

fies the concentration of (x, y) values by measuring the area covered by laying disks of a

fixed radius over each point in the scatter plot of the ranks of the two variables. In the

presence of association, this area is expected to smaller than that under independence.

Therefore, a left tailed test is appropriate in this case.

RankCover starts by computing ranks of the original x and y values, and we assume

there are no tied values. The use of ranks considerably simplifies the problem, by

placing the intervals between successive ranked values on a common scale. In addition,

for ranked values, the null distribution depends only on the sample size n. Thus the

only computation lies in computing the observed statistic, while the null distribution

can be pre-computed and is applicable to any dataset of size n.

Diggle’s F (δ) function as introduced in Diggle (1983) is the distribution function of

the distance between a randomly chosen point in a region to the nearest observed point

(xk, yk). To obtain an empirical estimate of the F (δ), the investigator conceptually lays

disks of radius δ on each point (xk, yk) and calculates the proportion of the surrounding

region covered by the union of the disks (Figure 2.1). If x and y are highly associated,

the areas covered by the disks should be small, and therefore RankCover rejects only

in the left tail of the statistic described below.

Different distance metrics can be used for this purpose and the shape of the disks
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depend on the choice of the distance metric. For instance, Euclidean distance leads to

circular equidistance contours, resulting in circular disks, while the disks are diamond-

shaped for Manhattan distance (Figure 2.1).
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Figure 2.1: Illustration of RankCover for sample size n = 50: A. Scatter plot of the two
variables. B. Scatter plot on the rank scale C. Disks laid on the scatter plot on rank
scale using Euclidean distance D. Disks laid on the scatter plot on rank scale using
Manhattan distance.

2.2 The test statistic

The empirical estimate of F (δ) can be obtained using the proportion of area covered

by the discs. For a given sample ((x1, y1), ..., (xn, yn)), xk ∈ X , yk ∈ Y , k = 1, 2, ..., n,

let the total area covered by the union of the disks of radius δ be A(δ). The empirical

estimate of F is given by
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F̂ (δ) =
A(δ)

|X × Y|
(2.1)

Let (rk, sk) denote the ranks of the kth sample pair, k = 1, 2, ..., n. The correspond-

ing version of F̂ for ranks is given by

F̂R(δ) =
AR(δ)

n2
(2.2)

where AR(δ) is the area covered by union of disks placed at each of (rk, sk).

However, it is difficult to calculate the exact area covered by the union of disks due to

the complex nature of possible intersections. Acknowledging the discrete nature of the

ranks, we consider only the n×n grid of possible rank pairs, {1, 2, ..., n}× {1, 2, ..., n},

and whether each of these values on the grid is covered by at least one disk.

Rank(x)

R
an
k(
y)

Figure 2.2: Showing the Grid based approach of RankCover

Definition 1. Define d(i, j, xk, yk) = distance between the point (i, j) on the grid and

(xk, yk); dij = mink d(i, j, xk, yk)
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Using this definition, a reasonable statistic for fixed δ is

F̂RG(δ) =
1

n2

n∑
i=1

n∑
j=1

I(dij ≤ δ), (2.3)

where I(.) is the indicator function. The grid-based empirical distribution function

(EDF) for ranks F̂RG(δ) can be considered as an approximation to F̂R(δ).

The choice of disk size δ is an important consideration which has not been fully

addressed in the spatial statistics literature. Diggle (1983) suggested computing the

entire empirical distribution function (EDF) F̂ (δ) to develop a new summary statis-

tic to compare against the null curve. However, this approach makes the procedure

prohibitively computationally expensive, and we propose using a fixed δ =
√
n for Eu-

clidean distance (Section 2.3), with slight modification under Manhattan distance. It

is observed that there is very little difference in power to detect association between

the method using the entire EDF and the statistic using a fixed δ =
√
n (Figure 2.3).

In addition, we modify the statistic to account for edge effects of the grid, using an

(n + dδe) × (n + dδe) grid extending beyond the range of the scatterplot. Here dδe is

the smallest integer greater than or equal to δ. Finally, our modified test statistic is

T (δ) =
1

n2

n+dδe∑
i=1−dδe

n+dδe∑
j=1−dδe

I(dij ≤ δ), (2.4)

where the range of {i, j} reflects the outer boundaries of a larger region to account for

edge effects. Note that the same divisor n2 is used allowing T (δ) to be greater than 1.

T (δ) can be interpreted as the proportion or area covered by the disks as compared to

the area of Rn, the n× n region which is the range of the original scatter plot.

The null distribution of T depends entirely on n, so tables based on simulated null

distibutions can be pre-computed for various sample sizes. The following lemma shows

that the grid based statistic T (δ) is asymptotically equivalent to the corresponding
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area-based statistic.

Lemma 1. Let TA(δ) be the area based test statistic corresponding to T (δ) with areas of

the disks extending beyond the n× n square being taken into account. For δ = O(
√
n),

|TA(δ)− T (δ)| a.s.−−→ 0 as n→∞.

Proof. For a single disk with radius δ, by the Gauss circle problem (Gauss 1986), the

difference of its actual area and its lattice based approximation N(δ) is bounded by

2
√

2πδ.

Therefore, for δ = O(
√
n), with probability 1, |TA(δ) − T (δ)| ≤ 2n

√
2πδ

n2 = O( 1√
n
) → 0

as n→∞. .

The implication of this lemma becomes obvious in (Section 2.6) when we discuss

large sample properties of RankCover. In small samples, the two statistics TA(δ) and

T (δ) might be quite different. However, there is no reason to believe that one is inferior

to the other in small samples since T (δ) actually computes similar disk coverage statistic

for a different disk shape that looks like a polygon.
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Figure 2.3: Showing the comparison of power of the method using the area under the
EDF (AUC method) and that of the method using δopt =

√
n
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2.3 Choice of parameters and distance metric

The choice of the disc size δ is an important consideration. We have proposed the

use of a single optimum choice of δ as opposed to the whole δ versus F̂ (δ) curve used

by Diggle (1983). The argument for choosing δopt =
√
n for Euclidean distance and

δ =
√

π
2
n is somewhat heuristic, but based on empirical observations for several sample

sizes.
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Figure 2.4: Showing the expected δ for which A. T (D1) = 1 B. F̂RG(D1) = 1

The external region beyond Rn is used to take care of the edge effects. However,

it is the behavior of the disks inside Rn that primarily differentiates between null and

alternative. While trying to find a disk size that will enhance this difference the most,

it is reasonable to believe that increasing disk size will not provide much of information

onceRn is completely covered. Since the computational cost increases with the increase

of the disk size, one would like to stop increasing the disk size when it stops providing

much information. Therefore, we try to find out the disk size for whichRn is completely

covered.

It is a difficult problem to analytically determine the ‘stopping’ disk size. Further-
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more, Hall et al. (1985) proved that for a Boolean process (Discussed in Section 2.6),

the probability of coverage is 1 if the area of the disk an satisfies

an/n− log(n)− log(log(n))→∞ as n→∞. (2.5)

It is evident that for δ = nα, this condition is satisfied if and only if α > 1
2
. Even

though this result does not have a direct implication in our case, it is suggestive of the

order of the ‘stopping’ disk size. To further explore the stopping condition, we used

simulated data and calculated the expectation of two variables D1 and D2 defined as

below.

D1 = Smallest disk size for which the realized T (D1) > 1.

D2 = Smallest disk size for which the realized F̂RG(D1) > 1.

Figure 2.4 Shows that both E(D1) and E(D2) are probably of the order
√
n.
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Figure 2.5: Showing the mean, sd and coefficient of variation of T (δ) for sample size
50 (Euclidean distance is used)

Next, we examine the expectation and standard deviation of T (δ) under the null

for varying δ. These curves calculated based on 1000 simulations under the null are

shown in Figure 2.5 and Figure 2.6 for Euclidean distance. There is a clear change

of curvature in the expectation in the vicinity of δ =
√
n, and the standard deviation

exhibits a local maximum and minimum in the vicinity. We reason that the local
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minimum of the standard deviation represents a good choice for δ. We also note that

the point where the expectation curve changes the curvature is approximately the same

point as the local minimum of the standard deviation, and the coefficient of variation

is almost constant beyond this point. However, there is no closed form expression for

this point of local minimum. From simulations under different sample sizes, we have

established that such local minima occur near δ =
√
n for Euclidean distance, and

propose it as our choice of δopt.
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Figure 2.6: Showing the mean, sd and coefficient of variation of T (δ) for sample size
100 (Euclidean distance is used)

Thus, there is enough reasons to believe that the optimal δ should be of the order
√
n

even though the minimum of the standard deviation is not exactly at
√
n. Rather, the

minimum can be better empirically modeled as
√
n+

√
n/5− 10 for sample sizes up to

500 (Figure 2.7). However, all these heuristic arguments deal with the behavior of the

test statistic under null. We have also compared its power against different alternatives

for varying δ. Figure 2.8 shows the average p-value in −log10 scale for different forms of

association. Clearly there is no single δ for which the power is maximized. However, the

power for δ =
√
n is close to the maximum power achieved in all the cases. Therefore

we conclude that it is not possible to find out a disk size that is ‘optimum’ in the true

sense, but δopt =
√
n can be considered as a reasonable choice for Euclidean distance.

Also, it is observed from simulations that the shape of these curves depends on δ
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Figure 2.8: Showing the Average p-value using different disk sizes when testing against
various forms of association

only through the area of the disk (also shown by Hall (1988) for Boolean process), and

so we use δopt =
√

π
2
n for the Manhattan distance. Using simulations, we have tested

that such a choice of δ produces similar curves for Manhattan distance.
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For the distance metric d, we consider here both Euclidean and Manhattan dis-

tances, for which simulations show similar performance (Section 2.7.1). However, the

Manhattan distance has advantages in approximating tail areas since the rejection

thresholds follow a sawtooth pattern (Figure 2.9), with jump points occurring at the

values of n where [δ] changes. For large values of n, to reduce computation, one can

perform direct simulation for the values of n at, and just prior to, the jump points,

followed by linear interpolation for remaining values of n. Therefore we recommend its

use and here present results using Manhattan distance.
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Figure 2.9: Showing the pre-computed thresholds for the RankCover method with
Manhattan distance. 100000 simulations were used to calculate the thresholds in each
case. Simulations were performed for n = 20, ..., 100. For large values of n, to reduce
computation, tables were generated by (i) performing direct simulation for the values
of n at, and just prior to, the jump points, followed by (ii) linear interpolation for
remaining values of n.

2.4 Fast Computation of the test statistic

The crude way to compute the test statistic needs to calculate the distances of

the n sample points from each of the (n + dδe)2 points on the grid. Thus, the order

of computation is n3. We have proposed a method with complexity O(n2) (Zhou,

Wright; personal communication, November 2014). The algorithm first calculates a

(2dδe+ 1)× (2dδe+ 1) prototype matrix of 1’s and 0’s that represents the shape of the
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disk. Then the prototype matrix is used to “punch” a hole at each of the sample points

(Figure 2.10).

Scatter plot of ranks Prototype matrix Coverage

Figure 2.10: Showing the fast computation of RankCover

2.5 Exact expectation of the RankCover statistic for Manhattan distance

We exploit the desirable properties of Manhattan distance to obtain the exact value

of E(Tn(δ)). Let us define the random variables Iij, i = 1, 2, ..., n; j = 1, 2, .., n, for each

point (i, j) on the grid. Iij is 1 if there is any sample point within the distance δ from

(i, j) and 0 otherwise.

            

            

            

            

            

            

            

            

            

            

            

            

 

Figure 2.11: Schematic to illustrate calculation of P (Iij = 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Let us consider the case where the δ-ball lies completely within the Rn. From

Figure 2.11, clearly,
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P (Iij = 1) = 1− n−1
n
, 0 < δ < 1

P (Iij = 1) = 1− n−3
n

n−2
n−1

n−3
n−2 , 1 ≤ δ < 2

P (Iij = 1) = 1− n−5
n

n−4
n−1

n−5
n−2

n−4
n−3

n−5
n−4 , 2 ≤ δ < 3 and so on.

In general, if [δ] = k,

P (Iij = 1) = 1− (n− 2k − 1)k+1(n− 2k)k

(n)(2k+1)

(2.6)

It becomes more complicated when a part of the δ-ball lies outside the n×n region.

It is difficult to obtain a simplified formula like above, but similar counting procedure

can be used to get the expression of the expectation.

Let [δ] = k and n are given. We need to find pij(k, n) = P (Iij = 1) for a given point

(i, j) on the grid. Define

nl(t, k, n) = min{t− 1, k}

nr(t, k, n) = min{n− t, k}

and

n(i, k, n) = 1 + nl(t, k, n) + nr(t, k, n)

.

nl(t, k, n) is the number of points at the left of (t, .) on the same horizontal line

within the δ-ball as well as within the n × n region. nr(t, k, n) is the number of such

points at the right and n(t, k, n) is the number of such points on that horizontal line.

Let I(t, k, n) denote the index vector of the relative positions of the n(t, k, n) points

with respect to (t, .). We assume that I(t, k, n) consist of the sorted absolute values

and call the rth element of it Ir(t, k, n). For example, in Figure 2.11, for δ = 2,

I(6, 2, 12) = (0, 1, 1, 2, 2).

Using simple arguments of geometric probability, clearly,
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pij(k, n) = 1−
n(i,k,n)∏
r=1

n− r + 1− n(j, k − Ir(i, k, n), n)

n− r + 1
(2.7)

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                        

                

                                                                                                             

Figure 2.12: Showing the existence of (i0, j0) for a point (i, j) outside the n× n region

Equation 2.7 applies to any point (i, j) within the n × n region. For (i, j) outside

the region, there exists a point (i0, j0) (See Figure 2.12) on the edge of the region such

that

pij(k, n) = pi0j0(k0, n)

.

Here

i0 = I{i < 1}+ nI{i > n}+ iI{1 ≤ i ≤ n},

j0 = I{j < 1}+ nI{j > n}+ jI{1 ≤ j ≤ n},

k0 = k − |i− i0| − |j − j0|.

Equation 2.7 can then be used to obtain pi0j0(k0, n).
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2.6 Large sample properties of RankCover

The computation of the RankCover statistic might be quite slow if the sample size is

very large. For instance, with n > 10000, the Monte Carlo simulations to produce the

null distribution of the test statistic becomes computationally expensive. The testing

procedure will be much simpler and faster if the large sample theoretical distribution

of RankCover can be determined. In the following sections we discuss the established

large sample results pertaining to the theory of coverage process and RankCover’s

relationship with them. Euclidean distance is considered as the distance metric, but

the same arguments can be easily shown to apply for Manhattan distance too.

2.6.1 Coverage Process

The theory of coverage process is related to the idea of RankCover. In a simple

set up, a coverage process can be thought of as a countable sequence of sets in an

Euclidean space (Section 2.6). Suppose P = {ξ1, ξ2, ..} is a countable collection of

points in Rk (which might be a stochastic point process (Karr 1991)), and {S1, S2, ...}

is a countable collection of non-empty sets (might be random sets). If ξi + Si denotes

the set {ξi + x : x ∈ Si}, then C = {ξi + Si : i = 1, 2, ...} is a coverage process. The

union of all sets in C is known as a ‘germ-grain’ model where the points ξi are referred

to as ‘germs’ and the sets Si as ‘grains’. If P is a stationary Poisson process and Si’s

are iid random sets independent of P , then C is known as a ‘Boolean’ process.

In a simpler version of coverage process, which is relevant to our problem, the sets

Si are all equal to a fixed set S (in our case, the disks), and the point process {ξ1, ξ2, ...}

is assumed to be generated from a region R, which is known as the ‘experiment space’.

While C = ∪i(ξi + Si) is called the total coverage, the vacancy within a subset R of Rk

is defined as

V = V (R) = R \ C.
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Note that the set R does not have to be same as the experimental space R although

most of the coverage process literature deals with the vacancy V (R) within R. The

proportion of vacancy within R is called the porosity, and is directly related to the

way RankCover is formulated. The major difference is the point process in RankCover

which is not a Poisson process due to the use of ranks.

Various researchers has found out moments and limiting distributions of vacancy

under different conditions. Hall (1985) proved the aymptotic normality of vacancy for a

Boolean process and provided the expressions for its mean and variance. Moran (1974)

computed limiting distributions of coverage assuming that the points are generated

from a normal distribution. Similar work has been done by Miles (1969), Ailam (1966),

Hall (1984). However, most of the work in this area has assumed that the points are

generated independently. In the presence of dependency, the derivation of these limit

theorems becomes extremely complicated (Hall 1988). Little work has been done with

dependent cases, and very specific situations are handled in the few attempts that have

been made (Moran 1973). Those situations are not similar to RankCover.

We present a few early results with the conjecture that as n becomes large, the dif-

ference between RankCover and the case considered by Hall (1985) becomes negligible.

We provide empirical evidence to support the conjecture that for very large n the two

distributions to become similar.

2.6.2 Asymptotic Negligibility of the edge effect

Hall (1984) proved that the edge effects are asymptotically negligible in the sense

that the distribution of vacancy under Boolean process remains the same even if edge

effects are ignored. However, the way edge effects are defined by Hall (1984) are quite

different from what we consider for RankCover. The coverage was considered within

the experimental spaceR, and the edge effects in that case were the way the probability

of a point within R being covered changes when it is near the edge. For RankCover,
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we consider the coverage beyond the experimental space R. Therefore the result due

to Hall (1984) does not directly apply. The following lemma proves that the edge effect

for RankCover converges to zero as n becomes large.

Lemma 2. For δ = O(
√
n), |T (δ)− F̂RG(δ)| a.s.−−→ 0 as n→∞.

Proof. We consider Euclidean distance as the distance metric. Let δ = O(
√
n) be the

radius of the disks, and k = [δ]. For any circular disk lying partially outside Rn, there

exists a rectangle within which the circular portion can be inscribed. Considering the

area of such rectangle as an upper bound for the area of the portion of the circle, we

obtain, with probability 1,

|T (δ)− F̂RG(δ)| ≤ 4{2δ2 + 2δ(δ − 1) + 2δ(δ − 2) + ...+ 2δ(δ − k)}

= 8δ{(k + 1)δ − k(k−1)
2
} = O( 1√

n
)→ 0 as n→∞.

One should note that such convergence is clearly quite slow and the sample size needs

to be very large in order for the edge effect to be negligible for practical purposes.

2.6.3 Asymptotics of coverage for Boolean process

Hall (1985) proved the aymptotic normality of vacancy V for Boolean process and

provided the expressions for its mean and variance. The expression for the mean and

variance of the proportion of coverage C follows directly from those. For δ =
√
n, the

expressions are

E(C) = 1− exp(π) (2.8)

σ2 = nV (C) = πe−2π(8

ˆ 1

0

u{e2πJk(u) − 1}du− π) = πe−2π(8× 0.997216− π), (2.9)

where Jk(u) = 1
π
(π
2
− sin−1(u)− 1

2
sin(2sin−1u)).

It also follows that
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√
n(C − E(C))

d−→ N(0, σ2). (2.10)

However, these results do not directly apply to RankCover, and the difference might

be substantial even for moderately large n (Figure 2.13).
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Figure 2.13: Showing the difference in mean and standard deviation between total
coverage C for Boolean process and the RankCover statistic.

2.6.4 Applicability of the results to RankCover

If it can be shown that the difference between the total coverage as in Hall (1985)

and the RankCover statistic becomes negligible as n becomes large, then Equation 2.8,

Equation 2.9 and Equation 2.10 can be conveniently used for large n to test for general

association.

Let us examine the difference between the joint distributions of ((x1, y1), ..., (xn, yn))

under the null in both cases. If ((x1, y1), ..., (xn, yn)) are independent samples from a

bivariate discrete uniform distribution over {1, 2, ..., n} × {1, 2, ..., n}, the joint density

is

f1((x1, y1), ..., (xn, yn)) =
1

n2n
. (2.11)
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If ((x1, y1), ..., (xn, yn)) are the ranks, the joint density becomes

f2((x1, y1), ..., (xn, yn)) =
1

n!2
. (2.12)

The Hellinger distance between the two distributions is H(f1, f2) =

√
1−

√
n!2

n2n →

1 as n → ∞. Therefore, the effect of rank does not wash away as n becomes large.

However, the effect of rank on the test statistic might still be asymptotically negligible.

But, it is difficult to prove or disprove it analytically.
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Figure 2.14: Showing the A. mean and B. standard deviation of
√
n(C − E(C)) for

Boolean process and the corresponding statistic for F̂RG(δ).

To see the differences, we examined the behavior of coverage proportion C as in

Hall (1985) and the RankCover test statistic for simulated datasets (Figure 2.14, Fig-

ure 2.15). Figure 2.14 indicates that the expectation and variance of C and F̂RG(δ)

might be sufficiently close for very large n, but there is no conclusive proof. By

Lemma 2, this implies that C and T (δ) might also be close asymptotically. How-

ever, it requires even larger sample size for them to be close enough (Figure 2.15).

Based on Figure 2.14, we suggest that for sample sizes in the range 2000-10000, F̂RG(δ)

can be used as the test statistic and the asymptotic results in Equation 2.10 hold ap-

proximately true. Based on our simulations, the type-I errors using Equation 2.10 for
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n = 2000, 5000 and 10000 were 0.045, 0.054 and 0.053.
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Figure 2.15: Showing the A. mean and B. standard deviation of
√
n(C − E(C)) for

Boolean process and the corresponding statistic for T (δ).

2.7 Simulation Results

2.7.1 Comparison of different methods for simulated datasets

Following the simulation procedure used in Simon and Tibshirani (2014), we have

simulated pairs of variables with several canonical dependency relationships (Figure 2.16)

and with varying noise levels. In each scenario, the X values were simulated iid from a

uniform distribution, while the noise distribution was Gaussian. However, the overall

results were similar for other distributional forms.

The simulation results indicate that RankCover and dCor have some complementary

characteristics, and so we additionally propose a hybrid statistic using results from

RankCover and dCor. The hybrid method uses the minimum p-value from RankCover

and rank-based dCor as a new statistic.

Figure 2.17 shows the power for the methods for various relationships, with varying

noise levels, for sample size n = 50. Here the ‘noise level’ is a scale quantity appropriate

to each relationship form, following Simon and Tibshirani (2014). It is evident that
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Figure 2.16: Showing the scatter plots for different relationships between the pair of
variables (low noise level).

RankCover performs better than MIC in all the situations we have considered. It is

found to be more powerful than dCor and HHG in several cases while these methods are

found to be more powerful in other cases. Even when dCor or HHG is more powerful,

RankCover still has reasonable power to identify the association. We have tested that

these observations hold true for varying sample sizes, levels of noise, and functional

forms for the originating X and noise distributions.

A careful look into the results indicate that dCor is more powerful than RankCover

when the type of association is monotone. When the relationship is non-monotone,

dCor is typically not as powerful. We attribute this behavior to the fact that dCor
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Figure 2.17: Showing the power of different methods (type-I α = 0.05) against different
relationships at varying noise levels (Manhattan distance), n = 50.

is less sensitive to non-monotone relationships for the reasons described earlier (Sec-

tion 1.1.4). We have also observed that with monotone relationships, the Spearman’s

rank correlation is as powerful as dCor. Therefore, one might simply use Spearman’s

rank correlation if there is prior knowledge that the relationship is monotone. On the

other hand, RankCover is more sensitive to local clustering of points rather than trends.

Thus, it is powerful against even non-monotone relationships like cubic, circular or the

“X” relationship.

These observations motivate the use of a hybrid method utilizing both RankCover
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Figure 2.18: Showing the power of different methods (type-I α = 0.05) against different
relationships at varying noise levels (Euclidean distance), n = 50.

and dCor, as the two methods appear powerful in different situations. Formally, a

new statistic is defined shybrid = min(pdCor, pRankCover), where pRankCover is the p-value

obtained by using RankCover, and pdCor is that using dCor on (rank(x), rank(y)). The

p-value for the hybrid method is phybrid = P (Shybrid ≤ shybrid). As with RankCover,

the p-value can be obtained by using pre-computed simulations. The hybrid method,

as expected, is always less powerful than the most powerful statistic for each scenario,

but seems to be robust against all forms of association investigated.

The HHG method also appears to be relatively robust. However, the ability of
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RankCover and the hybrid method to detect periodic relationships and non-functional

relationships makes it very useful against such alternatives. The fact that RankCover

is especially powerful against periodic relationships will be reinforced by the results in

Section 2.8.3 and Section 2.8.4.

We summarize by emphasizing that RankCover and the hybrid method are powerful

and robust in comparison to competing methods, and that these simulations cover a

large range of relationships and noise levels. The broad conclusions are also not very

sensitive to the marginal distributions of X and the error distributions.
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Figure 2.19: Showing the power comparison of dCor and Spearman’s rank correlation
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2.7.2 Comparison of dCor and Rank Correlation

Distance Correlation (dCor) seems to be the most powerful method among all the

competing methods when the relationship is monotone (eg linear, X1/4, Two curves).

However, further simulations show that even Spearman’s rank correlation is equally

powerful in those cases (Figure 2.19). Therefore, if we have prior knowledge that

the relationship is monotone, then we do not gain power by using the more recently

developed methods anyway, and could use Spearman’s rank correlation instead. We

note that Spearman’s rank correlation does not have much “generality” in the sense

that it is not powerful against non-monotone alternatives. However, dCor has also been

shown to have similar limitations.

2.8 Application on Real Data

In addition to simulated data, we illustrate all the approaches on several real

datasets.

2.8.1 Example 1: Eckerle4 data

We show data from a study of circular interference transmittance (Eckerle 1979)

from the NIST Statistical Reference Datasets for non-linear regression. The data were

analyzed by Székely and Rizzo (2009) to illustrate dCor, and contain 35 observations

on the predictor variable wavelength and the response variable transmittance.

Figure 2.20 shows the scatter plot of the predictor and the response along with the

fitted curve (NIST StRD for non-linear regression) based on the model

y = β1
β2
exp{ (x−β3)

2

2β2
2
}+ ε,

where β1, β2 > 0, β3 ∈ R and ε is random Gaussian noise.

From the plot, it is evident that there is a very strong non-linear relationship between

the two variables. For dCor, p = 0.02072, while MIC and HHG have p-values < 10−5.
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Figure 2.20: Showing the scatter plot and the fitted curve for the Eckerle4 dataset

The RankCover method and the hybrid method are also highly significant, with p <

10−5.

2.8.2 Example 2: Aircraft data

We have explored the Saviotti aircraft data (Saviotti 1996) which was also ana-

lyzed by Székely and Rizzo (2009). We consider the wing span (m) vs. speed (km/h)

(n = 230, Bowman and Azzalini (1997)). Figure 2.21 shows the scatter plot of the two

variables, alongside non-parametric density estimate contours (log scale). It is clear

from the plot that there is a non-linear relationship ( Pearson’s product moment cor-

relation is a modest 0.0168, p-value= 0.8001), although the relationship is complicated

and apparently not monotone.

All of the methods described here were significant at α = 0.05. The p-values for

dCor, MIC, and HHG were 0.00013, 0.00004, and < 10−5, respectively. For RankCover

the test was also significant with a p = 0.0008, and for the hybrid method p = 0.0002.
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Figure 2.21: Showing the scatter plot and the density estimate contours for the aircraft
speed and wing span

2.8.3 Example 3: ENSO data

The ENSO data ( also taken from the NIST Statistical Reference Datasets for non-

linear regression) consists of monthly average atmospheric pressure differences between

Easter Island and Darwin, Australia (Kahaner et al. 1989), with 168 observations.

There are 168 observations.The data form a time series, and has different cyclical

components which were modeled (NIST StRD for non-linear regression) by the proposed

model

y = β1+β2cos(
2πx
12

)+β3sin(2πx
12

)+β5cos(
2πx
β4

)+β6sin(2πx
β4

)+β8cos(
2πx
β7

)+β9sin(2πx
β7

)+ε,

where β1, β2, ..., β9 ∈ R and ε is random Gaussian noise.

Figure 2.22 shows the scatter plot of the data along with the fitted curve. The

cyclical fluctuations are evident, but no linear trend is observed. Thus, the Pearsonian

correlation (0.0843) fails to capture the pattern. However a simple serial correlation

with lag 1 (0.6102) reveals the association. With 100,000 simulations, the RankCover

test is significant with p-value 0.00032. The hybrid test and MIC test are also significant
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Figure 2.22: Showing the scatter plot and the fitted curve for the ENSO dataset

with p-values 0.00064 and 0.00027 respectively. However dCor and HHG fail to detect

significant association (p-values 0.13521 and 0.07617, respectively).

2.8.4 Example 4: Yeast data

In this example, we analyze a yeast cell cycle gene expression dataset with 6223 genes

Spellman et al. (1998). The experiment was designed to identify genes with activity

varying throughout the cell cycle (Spellman et al. 1998), and thus transcript levels would

be expected to oscillate. This data has been analyzed by many researchers, including

Reshef et al. (2011), who used it to verifying the ability of MIC to detect oscillating

patterns. We have run dCor, MIC, HHG, RankCover and the hybrid methods of test

on the data and used the Benjamini-Hochberg method to control the false discovery

rate.

We have listed the genes identified by different methods after controlling the false

discovery rate (FDR) at the 5% level and compared them with the list of genes iden-

tified by Spellman et al. (1998). Of all the genes identified by Spellman et al. (1998),

RankCover found 16% to be significant, while dCor, MIC and HHG found only 6%, 2%

and 8% respectively. The hybrid method could identify 12% of those genes. Instead
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Figure 2.23: A. The plot comparing the FDR adjusted q-values of the test using
RankCover and that using dCor for the genes in Spellman’s list in a log scale. It
is evident that most of the genes in Spellman’s list have a smaller q-value when the
RankCover test is used. B. A similar plot comparing the q-values of RankCover and
MIC. C. A similar plot comparing the q-values of RankCover and HHG. D-I. Examples
of genes in the Spellman’s list that were identified by RankCover, but not by at least
one of dCor, MIC or HHG. The values in parentheses are the Spellman scores for the
genes.

controlling the FDR at 25%, the figures for HHG, dCor, MIC, RankCover and the

hybrid method become 39%, 23%, 18%, 57% and 47% respectively.

For these data, RankCover was clearly successful at identifying oscillating patterns

expected for the experiment. This is also clear from Figure 2.23 (panel A, B and C)

which compares the FDR adjusted q-values of our RankCover test with those of dCor,
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MIC and HHG on a logarithmic scale. Most of the genes in Spellman’s list which were

identified by dCor, MIC or HHG were also identified by RankCover, but RankCover

identified more genes than the other methods. Figure 2.23 (panels D-I) shows some

of the genes that were found significant by RankCover at 5% level, but not found

significant by at least one of the other three methods. PDR5 was found significant

by MIC, HHG and RankCover, but not by dCor. On the other hand MIC could not

identify FET3, which was identified by dCor, HHG and RankCover. The other four

genes shown in Figure 2.23 were found significant by RankCover but not by dCor,

MIC or HHG. Note that all of the six genes were found to be significant by the hybrid

method.

2.9 Method to test the association of two variables after adjusting the

effect of a third variable

The ideas of partial and multiple correlation coefficients do not easily generalize

to the case of general association. Little work has been done in this area. Kendall

(1942) discussed partial rank correlations and Moran (1951) proposed some methods

to quantify partial and multiple rank correlations. However, the distribution of the

statistics are difficult to obtain even in large samples (Maghsoodloo 1975). RankCover

easily lends itself to the generalization to a multiple correlation analogue by computing

the proportion of coverage in higher dimensions. The approach can have some usefulness

in the theory of model selection, but an analogue of the partial correlation would be

the more useful and interesting quantity.

The partial correlation coefficient is used to quantify and test the association of

two variables after adjusting for other variables. However it applies only to linear

associations. In the linear case, the correlation of two variables x and y for a fixed

value of a third variable z does not depend on the fixed value. However, that may
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not be true in the general case, which makes the situation more complicated (Speed

2011). The early works on this subject have either used Cochran-Mantel-haenszel type

contingency table approach (Birch 1965), or are similar to rank correlation (Kendall

1942, Moran 1951). In both cases, the measures are expected to suffer for non-monotone

relationships. Lehmann (1977) and Hubert (1985) discussed association and partial

association in a more general set up, that also, is powerful only against monotone

relationships. Recently, Qiuheng et al. (2014) proposed a method Partial Maximal

Information Coefficient (PMIC) that attempts to fit a curve and the compute the MIC

of the residuals. However, the model to be fitted is chosen separately on a case by

case basis using other methodologies, and this defeats the idea of general association.

Szekely et al. (2014) defined Partial Distance Correlation (pdCor) by introducing a

Hilbert space and also proposed a method to test if the pdCor is significantly different

from 0. Since dCor has been shown to suffer from lack of power to detect non-monotone

relationships, pdCor is expected to have similar problems.

Using RankCover, we propose a general test of association after controlling the effect

of a third variable. It can be generalized to more variables.

Our method consists of calculating the test statistic T (δ) for a number of strata and

take the average of them. The strata are formed by different ranges of values of the

third variable that is believed to be controlling the two variables of interest. For a fixed

stratum size, s, we sort our observations in order of the values of the third variable and

classify the first s observations to the first stratum, the next s observations to the next

stratum and so on. In order to do the hypothesis test, we permute the ranks of x and

y within each stratum.

The choice of s is vital. If s is too large, ie the number of strata is very small, the

procedure will not be able to control the type-I error since there will be some association

within each stratum between the two variables due to the effect of the third variable.

On the other hand, a very small value of s will lead to loss of power. A value of s
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which controls the type-I error at desired level and maximizes the power should be the

optimal one.
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Figure 2.24: Showing the effect of number of strata on the type-I error of stratified
approach. The horizontal line is the type-I error of the RankCover test in the ideal
situation where one knows the exact form of x-z and y-z dependence. A. x-z and y-z
are linear B. x-z is linear and y-z is quadratic.

Here we present results for simulated data with a sample size 200. We considered

six different cases for the marginal relationships between x, y and z:

1. x-y, x-z and y-z are linear, all the slopes have the same sign.

2. x-y is quadratic, x-z and y-z are linear.

3. x-y is circular, x-z and y-z are linear.

4. x-y is circular, x-z is linear and y-z is quadratic.

5. x-y is X
1
4 , x-z is linear and y-z is quadratic.

6. x-z and y-z are linear with positive slopes, x-y is linear with a negative slope.

In order to test how the type-I error is controlled as s is decreased, we used the cases

where x and y are conditionally independent given z, and (i) x-z and y-z are linear or

(ii) x-z is linear and y-z is quadratic.
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These examples cover different situations such as (a) the association x and y is

enhanced by their relationship with z (1,2,3 above), (b) the association may not be

enhanced, but is of a different shape (4,5 above), (c) the association is masked by

the effect of z (6 above), (d) there is no association between x and y, but spurious

association is introduced by the effect of z.
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Figure 2.25: Showing the effect of number of strata on the power of stratified approach.
The horizontal line is the power of the RankCover test in the ideal situation where one
knows the exact form of x-z and y-z dependence. A. x-y, x-z and y-z are linear, all the
slopes have the same sign B. x-y is quadratic, x-z and y-z are linear C. x-y is circular,
x-z and y-z are linear D. x-y is circular, x-z is linear and y-z is quadratic E. x-y is X

1
4 ,

x-z is linear and y-z is quadratic F. x-z and y-z are linear with positive slopes, x-y is
linear with a negative slope.

Figure 2.24 shows the type-I error of the test against the number of strata. Fig-

ure 2.25 shows the power of the test for different situations. The power (or type-I error)

for the ideal situation where one knows the exact form of x-z and y-z dependence is

also presented. It is obvious from the figure that the power of the test decreases with

the increase in the number of strata. However, if z masks the association of x and

y, then the power increases initially and decreases when stratum size becomes very
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small. The power can drop drastically as compared to the ideal situation especially

when the x-y relationship is non-linear. Fortunately, the type-I error is controlled with

a few strata (in these cases, 10). The choice of optimal number of strata for various

situations requires further studies on this topic.

2.10 Discussion and future work

Our RankCover testing procedure serves as a simple and powerful method to test

for general association between a pair of variables. The method is applicable to the

problem of testing general association irrespective of the marginal distributions of the

(continuous) variables. Use of the rank scale also allows a pre-computed null distribu-

tion for the statistic, avoiding the need for actual permutation. This, along with the

introduction of the idea of using a single disk size, makes the procedure computationally

feasible. The testing procedure has been shown to be powerful in simulated datasets

even with a small sample size. A variety of real datasets, ranging from studies of cell

cycle effects in gene expression to studies involving circular interference transmittance

show that the approach provides useful and interpretable results.

Although dCor is theoretically motivated by consideration of characteristic func-

tions, in practice it suffers for non-monotone relationships. Our RankCover procedure

is generally powerful and robust, and is more powerful than MIC, dCor and HHG for a

number of scenarios. RankCover may be especially useful to detect oscillating relation-

ships, keeping in mind that such relationships need not be periodic and the amplitudes

may vary. A hybrid of RankCover and dCor is proposed, which is shown to be highly

robust against many forms of associations.

With the rapid rise of large datasets in today’s scientific community, RankCover

provides a useful tool to detect general association. The approach is both sensitive

and relatively powerful, even with small samples, against various and general forms of
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association.

We have demonstrated that when the sample size is very large, the large sample dis-

tributions of coverage for Boolean coverage process can be used as the null distribution

of RankCover without edge effect correction, thus avoiding the need for permutation..

However, we have not been able to provide an analytical proof and further research is

required. Also, central limit theorems related to the coverage process for ranks might

be pursued independently.

We have also proposed a partial RankCover technique that is shown under different

situations to control the type-I error and at the same time have reasonable power to

detect the association after removing the effect of a confounder. However, the choice of

the stratum size is critical to strike this balance. Also, the procedure to form the strata

for more than one covariate is unclear, unless the sample size is sufficient to allow for

stratification by multiple variables.. Hence, in our future work, it might be interesting

to find a way to determine optimum stratum size for a given dataset and try to define

the test statistic in a definitive way for more than one covariates.
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CHAPTER 3: CONTROL OF FALSE DISCOVERIES IN GROUPED
HYPOTHESIS TESTING FOR EQTL DATA

Expression quantitative trait loci (eQTL) analysis aims to detect the loci that affect

the expression of one or more genes. The gene expression is considered as the quantita-

tive trait potentially associated with the genotypes at different sites in the genome that

are usually various single nucleotide polymorphisms (SNPs). As mentioned in Chap-

ter 1, even though there has been substantial literature on both eQTL mapping and

grouped hypothesis testing, consideration of the natural grouping in the eQTL data is

comparatively unexplored. Analysis of gene-level eQTLs and specifying causal SNPs is

an important biological problem. Testing whether there is any eQTL in an entire gene

after controlling FDR for multiple genes may be interesting for various reasons. In the

following sections, we discuss the structure of the eQTL data and how the grouped

nature can be accounted for using a random effects model. We consider only the case

of a cis-eQTL, i.e. when the variant affecting the gene expression is in the immediate

neighborhood of the gene.

3.1 Structure of the eQTL data and the hypotheses

The eQTL data is usually in the form of an expression matrix consisting of a number

of genes (say N) along with a genotype matrix which has genotypes of the same samples

for several SNPs. Suppose that the number of samples is n and let the expression matrix

be YN×n. We can consider the genotype matrix X
(i)
mi×n, i = 1, 2, ..., N , corresponding

to each gene by picking up the SNPs that are local to the gene. The genotype matrices

are often adjusted for covariates, and thus can be considered to be continuous.
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Let H0ij denote the gene-SNP level null hypothesis that there is no eQTL at the jth

SNP local to the ith gene, j = 1, 2, ...,mi, i = 1, 2..., N . Therefore there are
∑N

i=1mi

gene-SNP level tests. These tests can be grouped into N groups corresponding to the N

genes with mi tests in the ith group. Define H0i to be the gene level null hypothesis for

the ith gene that there is no eQTL in the ith gene. Therefore the gene level hypothesis

can be written as

H0i = ∩mij=1H0ij, (3.1)

i.e. the gene level null requires that all mi hypotheses be null.

3.2 The empirical Bayes set up

We adopt an empirical Bayes approach for controlling the FDR. Empirical Bayes

approaches have been used in many genetic applications in recent times (Efron and Tib-

shirani 2002, Ferkingstad et al. 2008). The merit of using an empirical Bayes approach

using the local false discovery rate (lfdr) instead of p-value based FDR controlling

approaches has been discussed in Efron et al. (2001a) and Kendziorski et al. (2003).

Let us define the lfdr corresponding to the gene level and gene-SNP level hypotheses

respectively as

λi(Yi, X
(i)) = P (H0i|Yi, X(i)), i = 1, 2, ..., N, (3.2)

and

λij(Yi, X
(i)
j ) = P (H0ij|Yi, X(i)

j ), j = 1, 2, ...,mi, i = 1, 2..., N, (3.3)

where Yi is the ith row of Y and X
(i)
j is the jth row of X(i).

If we can obtain the lfdr λi for each of the gene level hypothesis, we can control the
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FDR at target level α for gene-level testing using the following adaptive thresholding

procedure which appears in Newton et al. (2004), Sun and Cai (2007), Cai and Sun

(2009), Li et al. (2013).

1. Enumerate the index i1, i2, ..., iN of the genes such that λi1 ≤ λi2 ≤ ... ≤ λiN .

2. Reject hypotheses H0i1 , ..., H0iL where L is the largest integer such that

1

L

L∑
l=1

λil ≤ α.

Sun and Cai (2007) and subsequently Cai and Sun (2009) showed that the adaptive

thresholding procedure is valid in the sense that it controls the FDR at target level α

for an ‘oracle’ procedure where the true parameters of the model are assumed to be

known. It is asymptotically valid for a ‘data-driven’ procedure when the parameters

are consistently estimated from the data. Li et al. (2013) proved its validity under

further relaxed conditions. The proof makes use of the following theorem (Averaging

Theorem, Efron and Tibshirani (2002)).

Theorem 1. Let lfdr(z) = P (H0|z) denote the lfdr for observed data z. Then, for a

rejection region R, the FDR will be given by

FDR(R) = P (H0|Z ∈ R) = E(lfdr(Z)|Z ∈ R)

A similar procedure can be used to control the FDR for gene-SNP level tests. In

the next section, we suggest a model which enables us to calculate the lfdr’s.

3.3 The Random Effects model and testing procedure for Group-level FDR

control (REG-FDR)

Our REG-FDR is a model to obtain the gene-level lfdr’s that can be subsequently

used to test the gene level hypotheses after controlling the FDR using the adaptive
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thresholding method. The model is based on the following assumptions.

1. For any gene i, under the gene level alternative hypothesis Hc
0i, there exists

a single causal SNP that influences its expression.
(A1)

2. Each of the mi SNPs has equal probability to be the causal SNP. (A2)

We will use the above assumptions throughout even though the assumption (A2)

can be relaxed if required. One might use some other probability distribution over

the SNPs instead of the uniform distribution if there is prior knowledge about the

distribution. Assumption (A1) may not always be valid, however such an assumption

is not uncommon (Kendziorski et al. 2006, Gelfond et al. 2007, Ardlie et al. 2015).

Under these assumptions, the gene level lfdr for the ith gene has the following form.

λi(Yi, X
(i)) = P (H0i|Yi, X(i)) =

π0f0(Yi)

π0f0(Yi) + (1− π0) 1
mi

∑mi
j=1 f1(Yi|X

(i)
j , β)

, (3.4)

where π0 = P (H0i), f0(Yi) is the density of Yi under the null and f1(Yi|X(i)
j , β) is

the conditional density under the alternative given that the jth SNP is causal. The

marginal density p(X(i)) is cancelled from numerator and denominator. Importantly,

this cancellation allows us to bypass the modeling of the dependence structure of the

SNPs which might have been difficult to estimate.

We assume that f0(.) is the density of Nn(0, In) and f1(.|X(i)
j , β) is the density

of Nn(βX
(i)
j , (1 − β2)In), and β is the correlation between Yi and X

(i)
j . The choice

of this density ensures that the unconditional variance of Yi is free of β. To take

care of the variability across the genes, we assume β to be a random effect such that
√
n− 3 tanh−1(β) has a N(0, σ2) distribution. Since β is a correlation coefficient, the

Fisher transformation is used to ensure that the variance does not depend on the mean.
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Similarly, the gene-SNP level lfdr for the jth SNP local to the ith gene is given by

λij(Yi, X
(i)
j ) = P (H0ij|Yi, X(i)

j ) =
π̃0f0ij(Yi|X(i))

π̃0f0ij(Yi|X(i)) + (1− π̃0)f1(Yi|X(i)
j )

, (3.5)

where π̃0 = P (H0ij), f0ij(.) is the density under H0ij. Under the assumption that X
(i)
j ’s

for varying j’s are related by an AR(1) structure with serial correlation ρ, it can be

shown that

f0ij(Yi|X(i)) = θf0(Yi) + (1− θ)
∑
k 6=j

f2jk(Yi|X(i)
j , β, ρ), (3.6)

where θ = P (H0i|H0ij) = π0
π0+

mi−1

mi
(1−π0)

, and f2jk(.|X(i)
j , β, ρ) is the probability density

of Nn(βρ|k−j|X
(i)
j , (1− β2ρ2|k−j|)In). However, this assumption is not necessary for the

estimation of π0, σ and the gene level lfdr.

We can estimate the parameters π0 and σ using a maximum likelihood approach

and plug the estimates into Equation 3.4 or Equation 3.5. This enables us to use

the adaptive thresholding procedure for carrying out the tests with proper control of

the FDR. Note that we cannot bypass the modeling of the dependence structure of the

SNPs in order to obtain the λij’s. However, simulations show that when the dependence

is not very strong, f0(.) can be used as an approximation of f0ij(.).

3.4 An EM algorithm to estimate REG-FDR parameters

The log-likelihood for REG-FDR is

L(π0, σ|X, Y ) = log(p(X)) +
N∑
i=1

log[π0f0(Yi) + (1− π0)
1

mi

mi∑
j=1

f1(Yi|X(i)
j , σ)]

where p(X) is the marginal density of X that we avoid modelling, but assume to be
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free of π0 and σ. We introduce the following unobserved variables.

δi = 1 or 0 according as the ith gene has an eQTL or not, i =

1, 2, ..., N .

Sij = 1 or 0 according as the jth SNP local to the ith gene is causal

or not, j = 1, 2, ...,mi.

Given the data (X, Y ), δi followsBernoulli(π0). Given the data and δi = 1, (Si1, Si2, ..., Simi)

follows a Multinomial(1; 1/mi, 1/mi, ..., 1/mi) distribution.

Now the complete log-likelihood becomes

Lc(π0, σ|X, Y, δ, S)

= log(p(X)) +
∑N

i=1 log[(π0f0(Yi))
(1−δi)((1− π0) 1

mi

∏mi
j=1 f1(Yi|X

(i)
j , σ)Sij)δi ]

= log(p(X))+
∑N

i=1 [(1− δi) log(π0) + δi log(1− π0)]+
∑N

i=1

∑m
j=1 Sijδilog[f1(Yi|X(i)

j , σ)]

The M-step gives

π̂0 =
1

N

N∑
i=1

(1− δi)

and

σ̂ = ArgMax
σ

N∑
i=1

m∑
j=1

Sijδi log[f1(Yi|X(i)
j , σ)]

In the kth iteration, the E-step replaces δi by E(δi|X, Y, π̂(k−1)
0 , σ̂(k−1)) and Sijδi by

E(Sijδi|X, Y, π̂(k−1)
0 , σ̂(k−1)). These are given by

E(δi|X, Y, π̂(k−1)
0 , σ̂(k−1)) =

π̂
(k−1)
0 f0(Yi)

π̂0(k−1)f0(Yi) + (1− π̂0(k−1)) 1
mi

∑mi
j=1 f1(Yi|X

(i)
j , σ̂(k−1))

and

E(Sijδi|X, Y, π̂(k−1)
0 , σ̂(k−1)) = E(δi|X, Y, π̂(k−1)

0 , σ̂(k−1))×
f1(Yi|X(i)

j )∑mi
t=1 f1(Yi|X

(i)
t , σ̂(k−1))
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The updating continues until |L(π̂
(k+1)
0 , σ̂(k+1)|X, Y ) − L(π̂

(k)
0 , σ̂(k)|X, Y )| becomes

sufficiently small.

3.5 The Z-REG-FDR model

One computational challenge with the REG-FDR model is that the density f1(Yi|X(i)
j )

doesn’t have a closed form expression. It can be expressed as the following integral.

f1(Yi|X(i)
j ) =

ˆ 1

−1
f1(Yi|X(i)

j , β)

√
n− 3√

2πσ(1− β2)
e−

n−3

2σ2
{tanh−1(β)}2 (3.7)

The maximum likelihood estimation becomes computationally burdensome if the

integral is evaluated using numerical quadrature. We propose an alternative model

entitled Z-REG-FDR which avoids this problem. In this approach, we consider the

Fisher transformed and scaled z-statistics as our data. Thus, for each gene i, we have

a vector of z-statistics

z(i) = (z
(i)
1 , z

(i)
2 , ..., z

(i)
mi), i = 1, 2, ..., N,

where z
(i)
j =

√
n− 3 tanh−1(r

(i)
j ), r

(i)
j being the sample correlation of Yi and X

(i)
j .

The Fisher transformation and scaling ensures that z(i) is approximately normal

and variance of each component is 1 under both null and alternative. Under the null,

the mean of z(i) is zero.

We treat the zi’s as if they are independent across different genes. This assumption

is realistic since very few genes share common SNPs. We keep our assumptions (A1)

and (A2) of having only one causal SNP under the alternative which can be any one

of the mi SNPs with equal probability. Let the kth SNP be the causal one. Then, we

assume the following.

1. The distribution of (z
(i)
1 , ..., z

(i)
k−1, z

(i)
k+1, ..., z

(i)
mi) given z

(i)
k under the alterna-

tive is same as that under the null.

(A3)
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In particular, this assumption is true if the components of z(i) have a Markov depen-

dence structure with the serial correlation being the same under null and alternative,

which is true in the special case that the successive marker correlations are zero. In

general, this assumption is obviously violated, but as shown in Section 3.6, the overall

procedure appears to work well in many circumstances.

Under the above assumptions, we can write the joint distribution of the random

vector z(i) = (z
(i)
1 , z

(i)
2 , ..., z

(i)
mi) as

f1(z
(i)
1 , z

(i)
2 , ..., z

(i)
mi

) = p1(z
(i)
k )f0|k(z

(i)
1 , ..., z

(i)
k−1, z

(i)
k+1, ..., z

(i)
mi

) (3.8)

under the alternative, and

f0(z
(i)
1 , z

(i)
2 , ..., z

(i)
mi

) = p0(z
(i)
k )f0|k(z

(i)
1 , ..., z

(i)
k−1, z

(i)
k+1, ..., z

(i)
mi

) (3.9)

under the null.

We assume p0(.) to be the density of N(0, 1) and p1(.) to be the density of N(µ, 1)

where µ is assumed to be random with a N(0, σ2) distribution. We do not assume

anything about the form of f0|k except that it is multivariate normal and does not

involve the other parameters, in this case π0 and σ.

The gene level lfdr for this model reduces to

P (H0i|z(i)) =
1

1 + 1−π0
π0

1
mi

∑mi
k=1

p1(z
(i)
k )

p0(z
(i)
k )

, i = 1, 2, ..., N. (3.10)

We have not modeled a part of the full likelihood
∏N

i=1 (π0f0(z
(i)) + (1− π0)f1(z(i))).

Instead we maximize
∏N

i=1
π0f0(z(i))+(1−π0)f1(z(i))

f0(z(i))
. This is equivalent to the maximum

likelihood estimation under the assumption that f0|k does not involve the parameters

π0 and σ. Note that we need to estimate only the parameters π0 and σ to obtain the

gene level lfdr using Equation 3.10.
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Table 3.1 shows the results for simulated datasets (1000 simulations) where z’s

are directly simulated from an autoregressive structure. The estimates are accurate

to within about 15% when the true σ is at least 2. The control of the FDR is also

satisfactory.

True True True Mean π̂0 Mean σ̂ SE(π̂0) SE(σ̂) Realized Realized
π0 σ ρ FDR(5%) FDR(10%)

0.20 1 0.10 0.2030 0.9964 0.1841 0.0823 0.0954 0.1236
0.20 2 0.10 0.1865 1.9660 0.0469 0.0374 0.0576 0.1136
0.20 5 0.10 0.1977 4.9383 0.0094 0.0306 0.0507 0.1014
0.20 1 0.50 0.1932 0.9919 0.1613 0.0757 0.0922 0.1252
0.20 2 0.50 0.1873 1.9663 0.0417 0.0352 0.0565 0.1121
0.20 5 0.50 0.1977 4.9383 0.0092 0.0303 0.0508 0.1013
0.20 1 0.80 0.1857 0.9875 0.1308 0.0664 0.0882 0.1245
0.20 2 0.80 0.1894 1.9673 0.0325 0.0317 0.0545 0.1090
0.20 5 0.80 0.1979 4.9388 0.0085 0.0292 0.0507 0.1012

Table 3.1: Showing summary of the simulation studies with directly simulated z from
an AR(1) model with correlation ρ

When the required assumptions are not satisfied, this method can still be used

as an approximate maximum likelihood approach. For instance, when the X
(i)
j ’s are

related by an AR(1) structure, it can be shown that the correlation between the z-

statistics depends on the effect size, i.e. the correlation between Yi and the causal SNP,

hence violating the assumption (A3). The following lemma shows the extent to which

the conditional distribution f0|k might depend on the effect size for any correlation

structure among normally distributed SNPs. We use a trivariate normal distribution

for illustration, as it is rich enough for demonstration while still analytically tractable.

Lemma 3. Suppose (X1, X2, X3) are jointly normal with mean (0, 0, 0) and covariance

matrix 
1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

 .
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Let Y = βX1 + ε, where ε ∼ N(0, 1 − β2), and r1, r2,r3 denote the sample product

moment correlation coefficient of Y with X1, X2 and X3 respectively for a sample of

size n. The asymptotic correlations between these sample correlations are given by

Cor(r1, r2) = ρ12 =
ρ1(2− β2 − β2ρ21)

2n(1− β2ρ21)

and

Cor(r2, r3) = ρ23 =
2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1)

2n(1− β2ρ21)(1− β2ρ22)
,

ρ13 having the same form as ρ12.

Proof. For the ith sample, let us define

Zi = (X1i, X2i, X3i, Yi, X
2
1i, X

2
2i, X

2
3i, Y

2
i , X1iYi, X2iYi, X3iYi).

Clearly, E(Zi) = µ = (0, 0, 0, 0, 1, 1, 1, 1, ρ1, ρ2, ρ3), and suppose V (Zi) = Σ = (σij)11×11.

Define the functions g1, g2 and g3, all R11 → R, as

g1(x1, x2, ..., x11) =
x9 − x1x4√

(x5 − x21)(x8 − x24)
,

g2(x1, x2, ..., x11) =
x10 − x2x4√

(x6 − x22)(x8 − x24)
,

g3(x1, x2, ..., x11) =
x11 − x3x4√

(x7 − x23)(x8 − x24)
.

Then, r1 = g1(Z̄), r2 = g2(Z̄) and r3 = g3(Z̄).

By the delta method,

√
n(r1 − β, r2 − βρ1, r3 − βρ2)

d−→ N(0,Γ),
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where Γij =
11∑
k=1

11∑
l=1

σkl
∂gi
∂µk

∂gj
∂µl

; i = 1, 2, 3; j = 1, 2, 3.

Now,

∂g1
∂µ1

=
∂g1
∂µ2

=
∂g1
∂µ3

=
∂g1
∂µ4

=
∂g1
∂µ6

=
∂g1
∂µ7

=
∂g1
∂µ10

=
∂g1
∂µ11

= 0,

∂g1
∂µ5

=
∂g1
∂µ8

= −1

2
β,

∂g1
∂µ9

= 1.

∂g2
∂µ1

=
∂g2
∂µ2

=
∂g2
∂µ3

=
∂g2
∂µ4

=
∂g2
∂µ5

=
∂g2
∂µ7

=
∂g2
∂µ9

=
∂g2
∂µ11

= 0,

∂g2
∂µ6

=
∂g2
∂µ8

= −1

2
βρ1,

∂g2
∂µ10

= 1.

∂g3
∂µ1

=
∂g3
∂µ2

=
∂g3
∂µ3

=
∂g3
∂µ4

=
∂g3
∂µ5

=
∂g3
∂µ6

=
∂g3
∂µ9

=
∂g3
∂µ10

= 0,

∂g3
∂µ7

=
∂g3
∂µ8

= −1

2
βρ2,

∂g3
∂µ11

= 1.

Since the partial derivative matrix is very sparse, we don’t need to calculate all the

terms of the matrix Σ. The ones that are needed are calculated below.

σ5,6 = E(X2
1X

2
2 )− 1 = 2ρ21 + 1− 1 = 2ρ21

σ5,8 = E(X2
1Y

2)− 1 = 2β2 + 1− 1 = 2β2

σ5,10 = E(X2
1X2Y )− βρ1 = 3βρ1 − βρ1 = 2βρ1

σ8,6 = E(X2
2Y

2)− 1 = 2β2ρ21 + 1− 1 = 2β2ρ21

σ8,8 = E(Y 4)− 1 = 2

σ8,10 = E(X2Y
3)− βρ1 = 3βρ1 − βρ1 = 2βρ1

σ9,6 = E(X1X
2
2Y )− β = 2βρ21 + β − β = 2βρ21

σ9,8 = E(X1Y
3)− β = 3β − β = 2β

σ9,10 = E(X1X2Y
2)− β2ρ1 = 2β2ρ1 + ρ1 − β2ρ1 = ρ1(1 + β2)

σ6,7 = E(X2
2X

2
3 )− 1 = 2ρ23 + 1− 1 = 2ρ23

σ6,11 = E(X2
2X3Y )− βρ2 = 2βρ1ρ3 + βρ2 − βρ2 = 2βρ1ρ3
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σ8,7 = E(X2
3Y

2)− 1 = 2β2ρ22 + 1− 1 = 2β2ρ22

σ8,11 = E(X3Y
3)− βρ2 = 3βρ2 − βρ2 = 2βρ2

σ10,7 = E(X2X
2
3Y )− βρ2 = 2βρ2ρ3 + βρ2 − βρ2 = 2βρ2ρ3

σ10,11 = E(X2X3Y
2)− β2ρ1ρ2 = ρ3 + 2β2ρ1ρ2 − β2ρ1ρ2 = ρ3 + β2ρ1ρ2

Combining, we get,

Cov(
√
n(r1 − β),

√
n(r2 − βρ1)) =

ρ1
2

(1− β2)(2− β2 − β2ρ21),

Cov(
√
n(r2 − βρ1),

√
n(r3 − βρ2)) = 2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1).

Also,

V ar(
√
n(r1−β)) = (1−β2)2, V ar(

√
n(r2−βρ1)) = (1−β2ρ21)

2, V ar(
√
n(r3−βρ2)) = (1−β2ρ22)

2.

Hence,

Cor(r1, r2) = ρ12 =
ρ1(2− β2 − β2ρ21)

2n(1− β2ρ21)

and

Cor(r2, r3) = ρ23 =
2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1)

2n(1− β2ρ21)(1− β2ρ22)
.

Corollary 3.1. Let z1, z2 and z3 be the Fisher transformed unscaled z-statistics corre-

sponding to r1, r2 and r3. Then,

√
n− 3

(
z1−tanh−1(β)

z2−tanh−1(βρ1)

z3−tanh−1(βρ2)

)
d−→ N(0,

[ 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

]
),

where

ρ12 =
ρ1(2− β2 − β2ρ21)

2(1− β2ρ21)
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and

ρ23 =
2ρ3 + β2(ρ21 + ρ22)(β

2ρ1ρ2 − 2ρ3) + β2ρ1ρ2(ρ
2
3 − 1)

2(1− β2ρ21)(1− β2ρ22)
,

ρ13 having the same form as ρ12.

Corollary 3.2. The covariance of the z-statistics converge to the covariance matrix

for the case β = 0 as |ρ1| → 1 and |ρ2| → 1, or |ρ1| → 0 and |ρ2| → 0. This is also

true for the conditional mean E(z2, z3|z1).

The proof of Corollary 3.1 and Corollary 3.2 follows directly from Lemma 3. Clearly,

similar results apply to more than three variables. Corollary 3.2 immediately implies

that the conditional distribution of (z2, z3|z1) is approximately free of β when the

correlations ρ1 and ρ2 are very large or very small. So, if the data has a block structure

where there is very high correlation among SNPs within a block and there is very small

correlation across blocks, then assumption (A3) may hold approximately, in a manner

that supports the use of Z-REG-FDR.

To understand the difference between null and alternative of the conditional covari-

ance matrices and mean vectors, we calculated the large sample means and covariance

matrices under the two cases using Corollary 3.1. The dependence structure among the

SNPs is (i) assumed to be an AR(1) structure with serial correlation 0.9, (ii) obtained

from a real SNP matrix (Lonsdale et al. 2013).

For case (i), Figure 3.1 shows the plot of the elements of the conditional covariance

matrix under the null and that under the alternative for different effect sizes. The

maximum difference in the conditional mean is also reported for each case. Figure 3.2

shows the same plot for case (ii). The fact that the differences are small, especially for

the real SNP matrix, is an encouraging sign in favor of Z-REG-FDR.
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Figure 3.1: Comparing the elements of conditional covariance matrix of Z under the
null and those under the alternative. The R2 as well as the maximum difference in the
conditional means are reported. The correlation structure of the SNPs is assumed to
be AR(1). β is the effect size.
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Figure 3.2: Comparing the elements of conditional covariance matrix of Z under the
null and those under the alternative. The R2 as well as the maximum difference in
the conditional means are reported. The correlation structure of the SNPs is obtained
from a real data. β is the effect size.

3.6 Results of Z-REG-FDR as an approximate maximum likelihood esti-

mation

To study the accuracy of the estimation when the method is only an approximate

maximum likelihood estimation, we have simulated data which uses the covariate ad-

justed genotype matrix of a real dataset from the GTEx project (Lonsdale et al. 2013).

The genotype matrix corresponding to the tissue ‘heart’, which had 83 samples, is se-

lected for analysis. For computational purposes, 10,000 genes were chosen randomly

64



from 28991 genes. Use of genotype matrices from real data ensures that we are not

enforcing assumption (A3) while simulating, and our choice of f0|k for the simulation

is realistic. We simulate the Yi’s (1000 simulations) using the following scheme.

1. For each gene, decide whether it has an eQTL using a Bernoulli(π0) distribution.

2. Pick a causal SNP using a discrete uniform distribution over the mi SNPs. Let

it be the kth SNP.

3. If the gene has an eQTL, simulate Yi from N(βX
(i)
k , 1) with

√
n− 3 tanh−1(β)

simulated from a N(0, σ2) distribution. If the gene doesn’t have an eQTL, simu-

late Yi from N(0, 1).

True π0 True σ Mean π̂0 Mean σ̂ SE(π̂0) SE(σ̂) Realized
FDR(5%)

Realized
FDR(10%)

0.10 1 0.1665 1.0771 0.0829 0.0479 0.0415 0.0659
0.10 2 0.0871 2.0443 0.0234 0.0234 0.0616 0.0964
0.10 5 0.0994 5.1088 0.0073 0.0221 0.0509 0.0974
0.20 1 0.2599 1.0802 0.0846 0.0534 0.0512 0.0903
0.20 2 0.1864 2.0437 0.0237 0.0263 0.0568 0.1106
0.20 5 0.1986 5.1075 0.0080 0.0275 0.0518 0.1017

Table 3.2: Showing summary of the simulation studies using the SNP matrix from real
data

Table Table 3.2 shows the results for this data which indicates that the estimates

are still accurate and control of FDR is satisfactory unless σ is very small. We often

observe large effect sizes for eQTL data, so that σ is not expected to be very small.

Therefore, the Z-REG-FDR has valid applications for eQTL data. When the SNP

correlation structure is assumed to be AR(1), the results are slightly anti-conservative

even for large σ (Table 3.3). This indicates that the accuracy of the Z-REG-FDR

method depends on the actual correlation structure among the SNPs even though we

avoid modeling such correlation structure. However, the results from Table 3.2 support

the validity of the method for real data.
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True True True Mean π̂0 Mean σ̂ SE(π̂0) SE(σ̂) Realized Realized
π0 σ ρ FDR(5%) FDR(10%)

0.20 1 0.10 0.1955 1.0358 0.1559 0.0644 0.0982 0.1333
0.20 2 0.10 0.1521 1.9561 0.0465 0.0356 0.0757 0.1392
0.20 5 0.10 0.1918 4.9370 0.0092 0.0306 0.0534 0.1053
0.20 1 0.50 0.2169 1.0392 0.1431 0.0665 0.0838 0.1232
0.20 2 0.50 0.1608 1.9613 0.0412 0.0337 0.0700 0.1318
0.20 5 0.50 0.1924 4.9383 0.0089 0.0298 0.0532 0.1049
0.20 1 0.80 0.2375 1.0367 0.1221 0.0657 0.0706 0.1078
0.20 2 0.80 0.1808 1.9742 0.0325 0.0306 0.0590 0.1156
0.20 5 0.80 0.1948 4.9448 0.0084 0.0287 0.0523 0.1034

Table 3.3: Showing summary of the simulation studies where the SNP matrix has an
AR(1) structure with correlation ρ

Figure 3.3 shows the plot of REG-FDR estimates against the Z-REG-FDR estimates

for simulated datasets (500 simulations) using the above scheme. It is clear from the

plot that the two methods agree with each other to a large extent (having correlations

0.9064 and 0.9522 for π0 and σ respectively) and largely falling near the unit line,

which implies that the approximate maximum likelihood method in Z-REG-FDR is

quite effective in controlling the FDR with a much improved computation speed. A

comparison of the estimated lfdr and estimated FDR of the two methods is also shown

(Figure 3.4).

Based on these simulations, the Z-REG-FDR estimate of π0 has a relative efficiency

of 0.81 when compared with the corresponding estimate of REG-FDR. The relative

efficiency of the σ estimate of Z-REG-FDR is 0.96. Figure 3.5 shows the histogram of

correlations between the estimated FDR based on the true values of the parameters

and that based on REG-FDR or Z-REG-FDR. Clearly, the correlations are very high,

especially for REG-FDR. The higher correlation in case of REG-FDR is believed to

be partly due to the higher efficiency of the parameter estimates and partly due to

the fact that it uses the ‘correct’ expression for the lfdr. However, we have seen from

simulations that in a few cases, REG-FDR estimates are much worse as compared to

Z-REG-FDR. This may be due to convergence issues as the likelihood surfaces can
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Figure 3.3: Showing the comparison of the estimates using REG-FDR and Z-REG-
FDR. Except a small number of cases, the two estimates agree with each other. The
blue lines show the true values of the parameters.
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Figure 3.4: Showing the A. estimated lfdr and B. estimated FDR for REG-FDR and
Z-REG-FDR.

sometimes be very flat.

It is a standard result that the expected log-likelihood is maximized at the true

value of the parameter under standard regularity conditions (Cox and Hinkley 1979).

Since REG-FDR is the true maximum likelihood method for the proposed model, it

is expected to satisfy this property. However, Z-REG-FDR is only an approximate
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Figure 3.5: Showing the histograms of correlations between the estimated FDR based
on the true values of the parameters and that based on A. REG-FDR B. Z-REG-FDR.

maximum likelihood method and may not have the property. We explored several

combinations of the true parameters and observed that the pseudo-log-likelihood of Z-

REG-FDR peaks near the true value. It is a difficult task to analytically compute the

expected pseudo-log-likelihood, and so Monte-Carlo integration was used. Figure 3.6

shows the expected pseudo-log-likelihood surface of Z-REG-FDR for π0 = 0.2 and

σ = 3. A contour plot is also confirms the fact the surface peaks near the true values

of the parameters.

3.7 Comparison with other methods

It is possible to use other methodologies to control FDR in grouped hypothesis

testing problem for eQTL data. A conservative approach might be to obtain the Bon-

ferroni adjusted p-values for each gene where the p-value for each gene-SNP pair is

computed based on usual t-test or z-test, and using an FDR controlling approach (eg

Benjamini and Hochberg 1995, Storey 2002, Strimmer 2008) with those p-values. Ardlie

et al. (2015) used a permutation based approach for GTEx data. The method uses the
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smallest gene-SNP p-value for a gene as the test statistic and computes its distribution

by permuting the expression values. Such a distribution can be used to obtain p-values

for each gene that can subsequently be used to control the FDR.
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Figure 3.7: Showing the power curves of different methods for varying combinations of
the true parameter values.

The Bonferroni method is usually very conservative and hence less powerful. Even

the permutation method can suffer from lack of power to detect the genes having an

eQTL since it uses an extreme value statistic (not based on likelihood). Our model, on
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the other hand, utilizes more data through its likelihood. We have carried out some

simulation studies to compare the performance of the methods in terms of their power.

The simulations were done using the simulation scheme described in Section 3.6. As

expected, the Bonferroni method turned out to have very low power. The permutation

method, along with Storey’s q-value method (Storey 2002), appeared to be conservative

and less powerful as compared to Z-REG-FDR (Figure 3.7). We also applied an ad-

justed version of Storey’s method that controls the FDR at some target level α > 0.05

such that the realized FDR is 0.05. Note that this method is applied just for the com-

parison purpose and is inapplicable in real data scenarios as it requires the knowledge

of the true states of the hypotheses. The method still appears to be less powerful than

Z-REG-FDR.
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Figure 3.8: Showing the histogram of correlations between estimated FDR using the
permutation method and that using Z-REG-FDR.

The estimated FDR (Strimmer 2008) using the permutation method and our Z-

REG-FDR method tend to be highly correlated (Figure 3.8). The correlation of the

estimated FDR using the true parameter values and that using the permutation method

is also high, but not as high as REG-FDR or Z-REG-FDR. The correlations are much

lower for the Bonferroni method (Figure 3.9).
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Figure 3.9: Showing the histogram of correlations between estimated FDR using the
true parameter values and that using permutation method or Bonferroni method.

3.8 Advantage of Z-REG-FDR over other methods

The major advantage of Z-REG-FDR seems to be its computational efficiency.

While other methods can take days to complete the analysis of a real eQTL dataset,

Z-REG-FDR can do the same in a few minutes. For instance, it takes about two min-

utes to fit the model and find significant genes by Z-REG-FDR for a data with 4.5

million SNPs grouped into 10000 genes. REG-FDR takes about a day and the per-

mutation method (for 10, 000 permutations) takes about 6 hours to analyze the same

data. Since there are thousands of simultaneous tests, even 10, 000 permutations may

not be enough to detect significance properly. While the Bonferroni method is very

fast, it has little power to detect the genes having eQTL.

Z-REG-FDR has other advantages too. One important feature of the method is that

it does not require the access to the full data. In fact, the symmetry of the distributions

involved in the Z-REG-FDR pseudo-likelihood ensures that only the gene-SNP level p-

values (or equivalently the absolute z-values) are sufficient to fit the model. Not only

do we not model the correlation structure of the SNPs, we do not even need to have
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access to that data. This might be very useful since in many genetic applications, data

are found in the form of summary measures.

Also, Z-REG-FDR apparently does not suffer from the convergence issues that some-

times affect the estimation for REG-FDR. Therefore, it can be considered as a slightly

less efficient, but reliable method. Z-REG-FDR can be slightly anti-conservative de-

pending on the true values of the parameters. Various simulations show that if σ is

large enough, which is often the case for eQTL data, the control of FDR is satisfactory.

The fact that assumption (A3) is not satisfied does not affect the FDR control too

much. Therefore that assumption can be thought of as a means to reduce computation

burden, rather than a necessary assumption for the model. In the next section, we will

demonstrate empirical evidence that the method remains valid even for more than one

causal SNPs under certain conditions.

3.9 Effect of more than one causal SNPs

One concern about our model is that it may have limited applicability for large

cis-windows since it uses the assumption of only one causal SNP. We have explored

through simulation the effect of more than one causal SNPs on the control of the FDR.

We observed that under certain conditions, even in the presence of two causal SNPs,

Z-REG-FDR is only very slightly anti-conservative.

True π0 True σ Mean π̂0 Mean σ̂ SE(π̂0) SE(σ̂) Realized
FDR(5%)

Realized
FDR(10%)

0.10 1 0.2178 1.1354 0.0800 0.0508 0.0320 0.0533
0.10 2 0.0942 2.1099 0.0237 0.0264 0.0566 0.0945
0.10 5 0.0884 5.1313 0.0070 0.0218 0.0574 0.0999
0.20 1 0.3039 1.1353 0.0764 0.0550 0.0439 0.0780
0.20 2 0.1926 2.1071 0.0241 0.0294 0.0545 0.1066
0.20 5 0.1885 5.1269 0.0077 0.0278 0.0549 0.1075

Table 3.4: Showing summary of the simulation studies for two causal SNPs

Table 3.4 shows the results for simulated dataset. Under the alternative hypothe-
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sis, the expressions are simulated using one primary causal SNP for which the Fisher

transformed effect size follows a normal distribution with standard deviation σ, and

there might exist (with probability 1/2) a secondary causal SNP which has an effect

size that is smaller in magnitude and has the same sign as the primary effect size. Note

that it is not possible to have the secondary effect size to be unconstrained and at the

same time maintain the desired variance of Y . It can be shown that the simulation

using the above mentioned conditions is always feasible (For more details see Appendix

C). Table 3.4 demonstrates that if the secondary effect size is not very large and has

the same direction, then Z-REG-FDR achieves reasonable control of the FDR.

3.10 Analysis of real data

In this section, we will present the results of application of Z-REG-FDR on some

real datasets. The data were taken from the GTEx pilot study (Lonsdale et al. 2013).

Z-REG-FDR, along with the Bonferroni method and the permutation method, was

applied on the eQTL data for nine tissues separately. For more details about the

datasets and the data pre-processing, see Appendix C.

Tissue π̂0 σ̂ Number of Number of Number of
significant significant significant
genes by genes by genes by

Z-REG-FDR Bonferroni Permutation
Adipose 0.4536 2.6525 2857 1338 3578
Artery 0.4032 2.8706 3806 1851 3944
Heart 0.4591 2.4807 2443 1094 3591
Lung 0.4249 2.9145 3688 1787 3769

Muscle 0.4481 2.8733 3340 1629 3188
Nerve 0.3562 2.6904 4032 1791 4739
Skin 0.3999 2.6156 3320 1451 3820

Thyroid 0.3511 2.9399 4794 2269 4875
Blood 0.4817 3.2248 3718 2078 3535

Table 3.5: Showing Z-REG-FDR parameter estimates and summary of the findings for
the GTEx datasets
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The results of the analysis are summarized in Table 3.5. Clearly the methods agree

with each other to some extent in terms of number of discoveries. The Z-REG-FDR

method has much higher number of discoveries compared to the Bonferroni method, but

in most cases has fewer discoveries compared to the permutation method that controls

the FDR using the Benjamini-Hochberg method.

3.11 Inverse Average Method

There are a number of methods that can be used to estimate the lfdr at the gene-

SNP level. Therefore it will be useful if those gene-SNP level lfdr’s within a gene can

be combined in some way to obtain the gene level lfdr. Given the set up in Section 3.3,

Equation 3.4 and Equation 3.5 indicate that the inverse average or harmonic mean of

the λij’s can be equal to the gene level lfdr λi except for the difference in the priors

(π0 and π̃0) and the difference between f0(.) and f0ij(.). In fact, it can be shown that

the inverse average of λij’s is an upper bound for the gene level lfdr λi. To show this,

consider

λij =
f(H0ij, Yi, X

(i)
j )

f(H0ij, Yi, X
(i)
j ) + f(Hc

0ij, Yi, X
(i)
j )

≥
f(H0i, Yi, X

(i)
j )

f(H0i, Yi, X
(i)
j ) + f(Hc

0ij, Yi, X
(i)
j )

=
π0f0(Yi)

π0f0(Yi) + (1− π̃0)f1(Yi|X(i)
j )

≥ π0f0(Yi)

π0f0(Yi) + (1− π0)f1(Yi|X(i)
j )

The first inequality follows since H0i ⊆ H0ij, and the second inequality follows from

the fact π̃0 ≥ π0. Therefore, using Equation 3.4, we obtain

Inequality 1. 1
1
mi

∑mi
j=1

1
λij

≥ λi.
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However, Figure 3.10 shows that such upper bound might not be sharp enough for

feeding it into the adaptive thresholding procedure for controlling FDR. The difference

is believed to be due the difference in the priors which, under the set up in Section 3.3,

are related by the equation

π̃0 = π0 +
mi − 1

mi

(1− π0) (3.11)
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Figure 3.10: Showing the sharpness of the Inverse Average bound using a simulated
data. The black line shows the sorted true gene lfdr’s and the red dots are the inverse
average of the corresponding gene-SNP level lfdr’s. The simulation procedure used is
similar to the scheme described in Section 3.5.

We propose an adjustment factor to adjust the inverse average which addresses the

difference between π̃0 and π0. The proposal is to use the adjusted inverse average given

by

1
AF
mi

∑mi
j=1

1
λij

+(1−AF )

where AF is the adjustment factor defined as

AF =
π̃0(1− π0)
π0(1− π̃0)

(3.12)
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When such adjustment is used, the performance of the inverse average improves

greatly in terms of the sharpness of the bound (See Figure 3.11). The realized FDR

while controlling FDR at 5% level is 0.046. The results from the simulations under var-

ious conditions show that once adjusted for the differences in the priors, the difference

between f0(.) and f0ij(.) does not have much effect.
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Figure 3.11: Showing the sharpness of the Inverse Average bound after adjustment.
The black line shows the sorted true gene lfdr’s and the red dots are the adjusted
inverse average of the corresponding gene-SNP level lfdr’s.

However, the use of the inverse average method for eQTL data has a serious diffi-

culty. It is difficult to obtain the lfdr’s λij for the gene-SNP level hypotheses that tests

whether the SNP is causal for the gene. The SNPs that are in linkage disequilibrium

with the causal SNP will also show high association with the expression of the tran-

script and that will lead to under-estimation of the lfdr’s in general. Therefore, even

after the adjustment, the inverse average may not be an upper bound for the gene level

lfdr.

Even though there is no guarantee in the real data scenario for the inverse average

to be an upper bound for the gene level lfdr, it might still be useful in some cases.

For instance, consider a hypothetical situation where the SNPs are divided into several

blocks with the correlations within block being very high and those across blocks near
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Figure 3.12: Showing the sharpness of the Inverse Average bound for a blocked data
structure. The black line shows the sorted true gene lfdr’s and the red dots are the
adjusted inverse average for the hypothesis of causality. The blue dots are the adjusted
inverse average for the gene-SNP level significance test.

zero. Simulations show that in such a situation, the adjusted inverse average serves as

an approximate upper bound of the gene level lfdr (Figure 3.12).
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Figure 3.13: Showing the sharpness of the Inverse Average bound for a window type
data structure. The black line shows the sorted true gene lfdr’s and the red dots are the
adjusted inverse average for the hypothesis of causality. The blue dots are the adjusted
inverse average for the gene-SNP level significance test.

Figure 3.13 illustrates that if the data is such that all the SNPs within a window

around the causal SNP have significantly small gene-SNP level lfdr, then the adjusted
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inverse average is an upper bound when the lfdr are small, but is not an upper bound

for larger values. Therefore, in such a scenario, the method may be useful if the target

FDR level is small. However, one needs to look at the sorted inverse average values

carefully and decide from its shape whether or not to use them as approximate gene

level lfdrs. For more details of the simulation schemes, see Appendix C.
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Figure 3.14: Showing the comparison of inverse average method with REG-FDR

Figure 3.14 shows the behavior of the inverse averages for a real SNP data while the

expressions are simulated using our model. The comparison with REG-FDR shows that

the inverse average method might be useful in this case. For the particular example, the

realized FDR using inverse average method was 0.0652 implying that it is somewhat

anti-conservative, but can still be used by setting the target FDR level slightly lower.

However, one needs to know or estimate both the gene level and gene-SNP level priors

in order to calculate the adjustment factor.

3.12 Discussion and future work

The REG-FDR method is the true maximum likelihood approach for the assumed

model. However, the Z-REG-FDR method is computationally much efficient, and as

shown above, produces estimates very similar to the REG-FDR procedure. Therefore,

it enjoys the desirable properties of the maximum likelihood estimator with an improved
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computation speed. It was also shown that the Z-REG-FDR method remains valid even

when the assumptions are not fully true. Its performance under simulations and real

data seem satisfactory in terms of controlling the FDR and at the same time achieving

higher power as compared to some other methods.

Our model may be useful to analyse other similar data types. For instance, a similar

version can be proposed for genome-wide association stuides (GWAS). However, GWAS

data seldom have a true σ as large as what we observed in eQTL data. When the true

σ is small, both REG-FDR and Z-REG-FDR seem to be inefficient. In particular, the

estimation using both methods perform poorly when σ is smaller than 1. Therefore,

even though this model may be applicable to many types of data, it is not advisable to

use it unless the true σ is expected to be large.

The method might be slightly anti-conservative in some situations and future re-

search is needed to understand the bias of the estimators so that the procedure can be

adjusted to take care of such anti-conservativeness. Also, the current research focuses

only on cis-eQTL. Analysis of trans-eQTL is an interesting statistical problem that is

beyond the scope of the model in its current form. Further studies are required to

modify the model in order to apply it to trans-eQTL problem.

The inverse average method is a simple tool to combine individual level lfdr to obtain

the group level lfdr. However, in order to gurantee that the inverse average method

will work, one needs to know the individual level lfdr for the hypothesis of causality,

which is difficult to model statistically. Regardless, the inverse average has been shown

to have the potential to work under different circumstances. However, it is inferior to

the Z-REG-FDR in the sense that it is expected to be more anti-conservative.

Future research is required to verify if there are situations other than the eQTL

data where a simple adjusted inverse average can be applied. One such hypothetical

situation is described below.

Consider a similar set up, but not necessarily related to eQTL data. Suppose
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we have an n-dimensional y-vector for each of N groups. Corresponding to a group

i, we have a matrix X(i) with n columns and mi rows. Let us call the mi rows

X
(i)
1 , X

(i)
2 , ..., X

(i)
mi . We won’t model the correlation structure of the X

(i)
j ’s and assume

that Yi may have a causal relationship with at most one of the X
(i)
j ’s. Suppose each

X
(i)
j consists of two parts given by

X
(i)
j = w

(i)
j + e

(i)
j .

While w
(i)
j ’s might be considered either fixed or random, e

(i)
j ’s are random errors and

they have a correlation structure that generates the correlation structure of the X
(i)
j ’s.

w
(i)
j ’s are assumed to be independent of the e

(i)
j ’s and independent among themselves.

The causal relationship of Yi with the causal X
(i)
j is given by

Yi = βw
(i)
causal + εi.

Under this situation, the sample correlations r
(i)
j = Cor(Yi, X

(i)
j ) will have a spike

only at the causal location even though the X
(i)
j ’s are correlated. Note however that the

r
(i)
j ’s are not independent, the alternativeness is not “transferred” to the other r

(i)
j ’s.

If the lfdr’s are known for each location, one can combine them using inverse average

to obtain the lfdr for each group. Verifying the existence of such a problem in practice

and finding methods to estimate the priors (to calculate the adjustment factor) requires

more research on this topic.
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CHAPTER 4: MULTI-TISSUE EXTENSION OF Z-REG-FDR

Recently, some studies have been using eQTL data for multiple tissues simultane-

ously (Li et al. 2013, Petretto et al. 2010, Flutre et al. 2013). Such use of multi-tissue

data is expected to provide better results by borrowing strength across tissues. It can

be shown that (Li, Nobel; personal communication, September 2014) use of more data

facilitates the inference in the expected sense as follows.

Lemma 4. Let z1 be a set of data to test the null hypothesis H0 and z2 is an additional

set of data. Then

E(P (H0|Z1)|H0) ≤ E(P (H0|Z1, Z2)|H0).

The same result is true for H1 since there is no specific role of the null hypothesis

in Lemma 4. Li et al. (2013) also provided empirical evidence that the power to detect

eQTL increases when more tissues are used. However, there have not been multi-tissue

eQTL studies to test hypotheses at the gene level. In the following sections, we will

propose an extension of the Z-REG-FDR model to a multi-tissue set up.

4.1 Data, notations and basic assumptions

We assume that the data are collected on the exact same SNPs for each tissue.

However, the sample sizes may be different for each tissue. There may or may not be

shared samples across tissues. Most methods are incapable of accommodating different

sample sizes in different tissues, but that is not a problem here due to the use of variance

stabilized z-statistics. Suppose z
(i)
k. = (z

(i)
k1 , z

(i)
k2 , ..., z

(i)
kmi

) is the Fisher transformed and
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scaled z-vector for the ith gene in the kth tissue, i = 1, 2, ..., N , k = 1, 2, ..., K. Also

define z
(i)
.j = (z

(i)
1j , z

(i)
2j , ..., z

(i)
Kj) as the z-vector across the tissues for the jth SNP local

to the ith gene, j = 1, 2, ...,mi, i = 1, 2, ..., N .

With such a matrix of z-values for every gene and no missing values, we make the

following assumptions.

1. For any gene with an eQTL, there is exactly one causal SNP. (A4)

2. Given that there is a causal SNP, it might be any of the mi SNPs with

probability 1/mi.
(A5)

3. The causal SNP is the same in all the tissues, however it might be ‘active’

in some tissues and ‘inactive’ in some others. (The probability structure of

such a causal SNP being ‘active’ will be discussed in the next section.)

(A6)

The assumption of the same causal SNP for each tissue may not always be true,

but it is often assumed that a particular SNP may act as the causal one for multiple

tissues (Ardlie et al. 2015).

4.2 Further assumptions and the MT-Z-REG-FDR model

The configuration of the ‘activity’ status at the causal locus will be a vector of 0

and 1’s. Suppose, for ith gene, the configuration vector is C(i) = (C
(i)
1 , C

(i)
2 , ..., C

(i)
K ),

C(i) ∈ {0, 1}K . Note that C(i) = (0, 0, ..., 0) refers to the case that there is no eQTL in

the ith gene.

Clearly there are 2K possible configurations. Let us call them c(0), c(1), ..., c(2K−1)

for some order of the configurations and let the corresponding prior probabilities be πr,

r = 0, 1, ..., 2K − 1, with r = 0 specifically corresponding to the case c(0) = (0, 0, ..., 0).

We can model the πr’s in different ways.

1. We can assume nothing about the πr’s, ie πr ∈ (0, 1) with
∑

r πr = 1

2. We can assume that the gene is null with a certain probability π0, and if it is
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alternative, then at the causal SNP any tissue’s activity status follows a Bernoulli

distribution independent from other tissues. The parameter of the Bernoulli

distribution might be allowed to vary across the tissues if there is any biological

reason to believe that some tissue might be more likely to have an active causal

SNP as compared to other tissues.

There might be possible other models. Without any prior knowledge about these

probabilities, we proceed with the unstructured case.

Now we make further assumptions as we did in case of univariate Z-REG-FDR

model. Suppose the tth SNP is the causal SNP for the ith gene.

1. We assume that the conditional distribution of (z
(i)
.1 , ..., z

(i)
.t−1, z

(i)
.t+1, ..., z

(i)
.mi)

given z
(i)
.t under the alternative is same as that under the null and does not

depend on the configuration at the causal SNP.

(A7)

2. There exists a correlation structure among the z
(i)
.j ’s, j = 1, 2, ...,mi, due

to commonalities among tissues arising from the underlying sampling process,

for example, shared samples among tissues. We assume that such correlation

structure, reflected by the covariance matrix ∆, also does not depend on the

configuration at that SNP.

(A8)

3. We assume that E(z.j) = 0 for non-causal SNPs and E(z
(i)
.t ) = c.µ, c being

the configuration vector, where µ = (µ1, µ2, ..., µK) is the vector of random

effects and is assumed to be following a NK(0,Σ) distribution. x.y denotes the

Hadamard (entrywise) product of x and y. The covariance matrix Σ refelects

the biological commonalities among the tissues.

(A9)
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4.3 The likelihood

Given the above set up and unstructured π = (π0, π1, ..., π2K−1), we have 2K+K2−1

free parameters to estimate. The diagonals of the matrix ∆ are all 1 due to the variance

stabilizing transformation, and the sum of the components of π is 1. The likelihood is

of the following form.

L(π,∆,Σ|z) =
N∏
i=1

{π0 +
∑
r>0

πr
mi

∑
j

pr1(z
(i)
.j )

p0(z
(i)
.j )
}f0(z(i).1 , z

(i)
.2 , ..., z

(i)
.mi

) (4.1)

where pr1(.) is the density of NK(c(r).µ,∆) and p0(.) is the density of NK(0,∆), ∆ being

the assumed covariance matrix of z
(i)
.j ’s given the effect sizes. The µ vector is distributed

as N(0,Σ). It can be easily shown that at the causal SNP t, z
(i)
.t marginally follows

as multivariate normal distribution with mean 0 and covariance matrix ∆ + Σ.ccT . In

particular, for the case where there is no eQTL in any of the tissues for the ith gene,

z
(i)
.j follows NK(0,∆) for all j.

f0(z
(i)
.1 , z

(i)
.2 , ..., z

(i)
.mi) is the density of (z

(i)
.1 , z

(i)
.2 , ..., z

(i)
.mi) under the null. Unlike the

univariate case, f0(z
(i)
.1 , z

(i)
.2 , ..., z

(i)
.mi) is not independent of all the parameters we want

to estimate as it involves ∆. Therefore, dividing the likelihood by that value and

maximizing the ratio will not be equivalent to maximum likelihood estimation even if

all the assumptions are true. On the other hand, it is not completely specified by the

model since we avoid modeling the correlation structure among the SNPs. To overcome

this difficulty, we assume that f0(z
(i)
.1 , z

(i)
.2 , ..., z

(i)
.mi) is the product of mi independent

NK(0,∆) densities. Note that this is not a ‘real’ assumption, but a ‘computational

trick’ required for the maximization of the likelihood. The rationale for the approach

reflects the belief that the correlation structure among the SNPs do not contain much

information about the parameters we estimate, and even with this assumption, most

of the information about (π,∆,Σ) is preserved.
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4.4 Application on simulated datasets

We have applied the method on a simulated dataset with two tissues, 20, 000 genes,

and the following choice of the true parameters:

π = c(0.2, 0.25, 0.4, 0.15),

∆ =

1 0

0 1

 ,

Σ =

4.25 3.5

3.5 5

 .

The average of the estimates for 500 simulations are

π = c(0.1236, 0.3447, 0.4972, 0.0344),

∆ =

 1 0.0089

0.0089 1

 ,

Σ =

4.3374 2.2636

2.2636 5.1564

 .

Clearly, the estimates of ∆ and the diagonals of Σ are quite accurate, whereas

the off-diagonal of Σ and π are not accurately estimated. Our observation is that

the smaller components of π are usually under-estimated and the larger components

are over-estimated. Also, the biological correlations among tissues as reflected by the

off-diagonals of Σ are usually under-estimated.
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4.5 Application on real datasets

We also applied the method to a real dataset from GTEx (Lonsdale et al. 2013). We

used the data for the two tissues adipose and thyroid, and applied the MT-Z-REG-FDR

method. The estimates of the parameters are:

π = c(0.0123, 0.2855, 0.1503, 0.5519),

∆ =

 1 0.3211

0.3211 1

 ,

Σ =

5.4274 3.8199

3.8199 6.9346

 .

Our estimates of the diagonal entries of the Σ matrix appear to be larger as com-

pared to the estimates by the MT-eQTL model of Li et al. (2013). This is justified due

to the fact that the Σ matrix applies to only the causal SNP in our model, while it

applies to all the gene-SNP pairs in the model by Li et al. (2013). The estimate of the

off-diagonal element of Σ is reported to be slightly smaller compared to their estimate.

The estimate of π0 is much smaller as compared to their estimate which is expected

since a null gene requires all the corresponding gene-SNP pairs to be null.

4.6 Discussion and future work

Our MT-Z-REG-FDR model shows potential to be useful in gene level multi-tissue

eQTL studies. However, until now, we have applied the method to a very limited set

up. It requires further research to explore its performance in different situations. The

procedure was applied for only two tissues. It remains to be seen how it performs with

larger number of tissues.

The estimates of the prior configuration probabilities π appear to be biased. It may
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be possible to adjust for such bias, but that requires further research on this topic.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

A.1 Details of the analysis of simulated data

This section explains the details of the analysis of simulated data in Section 3.1.

We have used Manhattan distance throughout all the analyses due to the ease of tail

area computation (Section 2.3). The RankCover procedure with Manhattan distance

appears to give similar results to that with Euclidean distance.

The sample size is 50 and we used 1000 simulations under the null for RankCover

and MIC. For dCor and HHG, 1000 permutations are used. The power curves are

obtained based on 500 simulations. The independent variable x is simulated as U(0, 1).

The dependent variable y is calculated using the equation

y = f(x) + ν × error, (4.2)

where ν is the noise scale parameter and increases from 0.1 to 1 as in Figure 4. The

error distribution was chosen to be normal. However, as in Simon and Tibshirani (2014),

the variance of the error distribution was considered differently for different forms of

relationship. Section A.2 shows how the results are similar with other distributions

also. The details of the forms of the function f(.) and the error distributions are as

below.

• Linear: f(x) = x , error distribution is N(0, 1)

• Quadratic: f(x) = 4(x− 1/2)2 , error distribution is N(0, 1)

• Cubic: f(x) = 128(x− 1/3)3 − 48(x− 1/3)2 − 12(x− 1/3) , error distribution is

N(0, 100)

• Sine: f(x) = sin(4πx) , error distribution is N(0, 4)
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• X1/4: f(x) = x1/4 , error distribution is N(0, 1)

• Circle: f(x) = (2r− 1)
√

1− (2x− 1)2 , error distribution is N(0, 1/16), where r

is a Bernoulli(1/2) variable

• Two curves: f(x) = 2rx+ (1− r)
√
x/2 , error distribution is N(0, 1/4), where r

is a Bernoulli(1/2) variable

• X-function: f(x) = rx+ (1− r)(1− x) , error distribution is N(0, 1/25), where r

is a Bernoulli(1/2) variable

• Diamond: f(x) = r1I(x < 0.5) + r2I(x ≥ 0.5) , error distribution is N(0, 1/100),

where r1 is a U(0.5− x, 0.5 + x) variable and r2 is a U(x− 0.5, 1.5− x) variable

A.2 Details of Simulation results for different marginal distributions of the

variables

We have carried out the simulation analysis for different marginal distributions of

x and different error distributions. Three distributions of different shapes are used

for the marginal distribution of X: uniform, truncated normal (a normal distribu-

tion with mean 1/2 and variance 1/12 truncated between 0 and 1)and a U-shaped

beta (beta(1/2, 1/2)). The choices for the error distributions are normal, U(0,1) and

beta(1/2, 1/2) with appropriate shift of origin and scale so that the mean and variance

of the error distributions are 0 and 1 respectively.

The results of these nine cases show that RankCover has reasonable power in all

these cases. Table 4.1 shows a summary of all the cases. The mean power over all the

noise levels are shown for each case. Since the power curves rarely cross each other,

the mean power (which is approximately proportional to area under the power curve)

appears to be a good indicator of performance.
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Table 4.1: Showing the mean power of the different methods for the nine cases. eg.
Beta-Normal refers to the case where marginal of x is beta and error distribution is
normal

Linear Quadratic Cubic Sine X1/4 Circle 2-Curves X-function Diamond

Beta-Beta

dCor 0.90 0.48 0.67 0.47 0.67 0.11 1.00 0.20 0.09

RankCover 0.97 0.94 0.91 0.63 0.85 1.00 1.00 0.95 0.84

Hybrid 0.95 0.90 0.87 0.56 0.79 1.00 1.00 0.93 0.76

MIC 0.88 0.50 0.55 0.43 0.69 0.71 0.96 0.50 0.14

HHG 0.94 0.72 0.74 0.47 0.77 0.97 1.00 0.89 0.76

Beta-Normal

dCor 0.90 0.52 0.69 0.51 0.69 0.10 1.00 0.19 0.09

RankCover 0.75 0.72 0.75 0.48 0.54 1.00 0.97 0.94 0.81

Hybrid 0.86 0.67 0.74 0.49 0.62 1.00 0.99 0.91 0.74

MIC 0.70 0.61 0.61 0.51 0.46 0.73 0.93 0.51 0.15

HHG 0.81 0.65 0.70 0.46 0.59 0.98 0.99 0.89 0.77

Beta-Uniform

dCor 0.89 0.49 0.67 0.46 0.66 0.11 1.00 0.20 0.09

RankCover 0.85 0.80 0.81 0.50 0.63 1.00 0.99 0.94 0.83

Hybrid 0.86 0.74 0.77 0.47 0.62 1.00 0.99 0.91 0.75

MIC 0.74 0.51 0.56 0.44 0.47 0.71 0.93 0.50 0.15

HHG 0.82 0.62 0.69 0.41 0.60 0.97 0.99 0.88 0.76

Normal-Beta

dCor 0.71 0.42 0.38 0.34 0.40 0.05 0.94 0.46 0.05

RankCover 0.86 0.76 0.68 0.81 0.58 0.87 0.90 0.89 0.63

Hybrid 0.81 0.68 0.59 0.72 0.51 0.82 0.90 0.84 0.49

MIC 0.69 0.32 0.44 0.47 0.42 0.33 0.73 0.33 0.08

HHG 0.77 0.64 0.55 0.50 0.49 0.57 0.90 0.92 0.64

Normal-Normal

dCor 0.73 0.44 0.40 0.35 0.42 0.05 0.94 0.47 0.04

RankCover 0.56 0.50 0.41 0.61 0.30 0.85 0.85 0.88 0.63

Hybrid 0.65 0.45 0.40 0.55 0.36 0.79 0.88 0.84 0.50

MIC 0.48 0.38 0.37 0.58 0.25 0.33 0.69 0.35 0.08

HHG 0.58 0.53 0.43 0.48 0.32 0.57 0.89 0.93 0.63

Normal-Uniform

dCor 0.70 0.41 0.37 0.34 0.40 0.06 0.93 0.47 0.05

RankCover 0.65 0.57 0.49 0.69 0.36 0.84 0.85 0.87 0.62

Hybrid 0.65 0.50 0.44 0.60 0.36 0.78 0.87 0.83 0.50

MIC 0.50 0.33 0.35 0.50 0.26 0.33 0.67 0.33 0.08

HHG 0.59 0.53 0.42 0.45 0.33 0.55 0.88 0.91 0.63

Uniform-Beta

dCor 0.82 0.47 0.32 0.44 0.51 0.06 0.98 0.32 0.07

RankCover 0.93 0.88 0.74 0.76 0.71 0.98 0.98 0.94 0.77

continued to next page. . .
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Linear Quadratic Cubic Sine X1/4 Circle 2-Curves X-function Diamond

Hybrid 0.90 0.81 0.65 0.67 0.64 0.97 0.97 0.91 0.68

MIC 0.79 0.42 0.38 0.46 0.55 0.50 0.87 0.42 0.10

HHG 0.87 0.68 0.52 0.48 0.61 0.78 0.97 0.93 0.73

Uniform-Normal

dCor 0.81 0.46 0.27 0.43 0.51 0.12 0.97 0.26 0.04

RankCover 0.66 0.62 0.51 0.59 0.39 0.98 0.94 0.93 0.78

Hybrid 0.76 0.57 0.45 0.54 0.46 0.96 0.96 0.90 0.68

MIC 0.59 0.51 0.42 0.58 0.33 0.50 0.82 0.44 0.09

HHG 0.71 0.60 0.44 0.46 0.43 0.80 0.96 0.94 0.76

Uniform-Uniform

dCor 0.80 0.46 0.32 0.44 0.50 0.07 0.98 0.33 0.06

RankCover 0.75 0.70 0.57 0.64 0.47 0.97 0.95 0.92 0.78

Hybrid 0.76 0.63 0.50 0.58 0.46 0.95 0.96 0.89 0.68

MIC 0.61 0.43 0.36 0.48 0.35 0.49 0.82 0.42 0.10

HHG 0.71 0.59 0.43 0.44 0.43 0.76 0.96 0.92 0.74

A.3 Details of real data analyses

While analyzing real data, some ties may be present even if the variables under

study are continuous. Whenever we found ties during the data analysis, we randomly

broke the ties many (100) times, and considered the average RankCover as our test

statistic.

A.3.1 Example 1: Eckerle4 data

100,000 simulations were used for RankCover and MIC. 100,000 permutations were

used for dCor and HHG. The estimates of β1, β2, β3 obtained from NIST website are

used for plotting the fitted curve in Figure 5. Source of data: NIST StRD for non-linear

regression.

A.3.2 Example 2: Aircraft data

100,000 simulations were used for RankCover and MIC. 100,000 permutations were

used for dCor and HHG. Source of data: sm Package in R (Bowman and Azzalini 2013).
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A.3.3 Example 3: ENSO data

100,000 simulations were used for RankCover and MIC. 100,000 permutations were

used for dCor and HHG. The estimates of β1, β2, ..., β9 obtained from NIST website are

used for plotting the fitted curve in Figure 7. Source of data: NIST StRD for non-linear

regression.

A.3.4 Example 4: Yeast data

100,000 simulations were used for RankCover and MIC. 100,000 permutations were

used for dCor and HHG. The data was pre-processed before analysis as follows. The

data contained several missing observations. Since the sample size is small (24), we

removed all the genes that had more than 3 missing observations. All other missing

observations were imputed using KNN imputation (Troyanskaya et al. 2001). Then

quantile normalization was used to normalize the data. Unlike Reshef et al. (2011), we

didn’t remove any of the time points and didn’t use any interpolation to find expres-

sion values for intermediate timepoints. Source of data: Comprehensive Identification

of Cell Cycle regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray

Hybridization.
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APPENDIX B: TABLES OF THRESHOLDS OF RANKCOVER

Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

20 1.31000 1.28500 1.26000 1.23250 1.16500 1.10500

21 1.27211 1.24717 1.22449 1.19501 1.12925 1.07936

22 1.23554 1.21281 1.19215 1.16529 1.10331 1.06405

23 1.39698 1.37240 1.35161 1.32325 1.26087 1.20227

24 1.36111 1.33854 1.31771 1.29167 1.23090 1.16493

25 1.32960 1.30720 1.28640 1.26240 1.20640 1.14720

26 1.30030 1.27959 1.25888 1.23373 1.17899 1.12574

27 1.27298 1.25240 1.23320 1.20850 1.15501 1.10151

28 1.24745 1.22832 1.20918 1.18622 1.13520 1.08291

29 1.22473 1.20452 1.18668 1.16290 1.11415 1.07134

30 1.20222 1.18333 1.16444 1.14222 1.09222 1.04889

31 1.18106 1.16233 1.14464 1.12279 1.07700 1.03018

32 1.30469 1.28613 1.26855 1.24609 1.19922 1.15625

33 1.28375 1.26538 1.24885 1.22865 1.18182 1.14509

34 1.26384 1.24567 1.22924 1.20934 1.16263 1.11938

35 1.24490 1.22776 1.21061 1.19102 1.14286 1.10286

36 1.22685 1.20988 1.19367 1.17361 1.13040 1.09259

37 1.21110 1.19430 1.17823 1.15997 1.11395 1.08400

38 1.19453 1.17798 1.16274 1.14474 1.10319 1.06856

39 1.17883 1.16239 1.14727 1.12821 1.08613 1.05523

40 1.16375 1.14813 1.13375 1.11563 1.07437 1.04375

41 1.26413 1.24866 1.23379 1.21594 1.17668 1.14456

42 1.24943 1.23413 1.21995 1.20181 1.16213 1.12132

43 1.23580 1.22012 1.20606 1.18875 1.15035 1.10871

44 1.22159 1.20713 1.19318 1.17717 1.13998 1.10795

45 1.20889 1.19407 1.18074 1.16395 1.12444 1.09284

46 1.19660 1.18195 1.16824 1.15217 1.11531 1.08932

47 1.18470 1.17021 1.15708 1.14079 1.10457 1.07062

48 1.17231 1.15842 1.14497 1.12934 1.09115 1.06510

49 1.16160 1.14744 1.13369 1.11828 1.08330 1.05373

50 1.15080 1.13640 1.12400 1.10760 1.07360 1.04520

51 1.13995 1.12611 1.11342 1.09765 1.06267 1.03114

52 1.22337 1.20969 1.19749 1.18158 1.14756 1.11501

53 1.21289 1.19972 1.18726 1.17230 1.13884 1.11463

54 1.20302 1.18964 1.17764 1.16324 1.12929 1.10391

55 1.19273 1.17983 1.16793 1.15372 1.12066 1.09421

56 1.18367 1.17060 1.15912 1.14445 1.11129 1.07175

57 1.17421 1.16159 1.15020 1.13573 1.10249 1.07572

58 1.16498 1.15250 1.14090 1.12634 1.09304 1.06421
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

59 1.15628 1.14392 1.13243 1.11807 1.08475 1.05918

60 1.14778 1.13528 1.12361 1.11000 1.07805 1.05333

61 1.13948 1.12739 1.11610 1.10266 1.06987 1.04139

62 1.13137 1.11889 1.10744 1.09417 1.06322 1.03668

63 1.12371 1.11111 1.10028 1.08743 1.05694 1.03452

64 1.19434 1.18237 1.17188 1.15845 1.12524 1.10181

65 1.18627 1.17467 1.16426 1.15101 1.12260 1.09870

66 1.17906 1.16736 1.15657 1.14371 1.11524 1.08655

67 1.17153 1.15995 1.14970 1.13678 1.11049 1.08599

68 1.16436 1.15268 1.14208 1.12954 1.10208 1.07656

69 1.15690 1.14556 1.13506 1.12329 1.09494 1.07498

70 1.15041 1.13898 1.12878 1.11612 1.08898 1.06510

71 1.14323 1.13212 1.12200 1.10930 1.08173 1.05237

72 1.13657 1.12558 1.11555 1.10359 1.07485 1.05112

73 1.12986 1.11878 1.10884 1.09758 1.06943 1.04447

74 1.12381 1.11304 1.10299 1.09112 1.06410 1.03853

75 1.11769 1.10702 1.09707 1.08533 1.05778 1.04000

76 1.11165 1.10059 1.09107 1.07877 1.05315 1.03116

77 1.10525 1.09462 1.08501 1.07320 1.04638 1.02749

78 1.16650 1.15631 1.14678 1.13560 1.11012 1.08695

79 1.16055 1.15014 1.14084 1.12931 1.10383 1.08348

80 1.15453 1.14437 1.13484 1.12344 1.09922 1.07344

81 1.14906 1.13900 1.12986 1.11888 1.09282 1.07194

82 1.14307 1.13311 1.12433 1.11288 1.08864 1.06856

83 1.13805 1.12818 1.11932 1.10814 1.08434 1.06474

84 1.13265 1.12259 1.11338 1.10247 1.07851 1.05782

85 1.12720 1.11696 1.10754 1.09689 1.07170 1.05190

86 1.12196 1.11195 1.10289 1.09248 1.06963 1.04070

87 1.11692 1.10715 1.09856 1.08733 1.06223 1.04082

88 1.11170 1.10176 1.09310 1.08226 1.05850 1.03719

89 1.10668 1.09670 1.08787 1.07650 1.05328 1.03055

90 1.10198 1.09235 1.08346 1.07284 1.04901 1.02914

91 1.09733 1.08767 1.07910 1.06883 1.04516 1.02210

92 1.15064 1.14130 1.13268 1.12228 1.09983 1.07999

93 1.14591 1.13666 1.12880 1.11840 1.09481 1.07619

94 1.14113 1.13207 1.12381 1.11374 1.09110 1.07209

95 1.13651 1.12720 1.11889 1.10903 1.08632 1.06825

96 1.13184 1.12250 1.11404 1.10406 1.08203 1.06272

97 1.12754 1.11829 1.11021 1.09980 1.07716 1.05707

98 1.12349 1.11454 1.10641 1.09652 1.07434 1.05269

99 1.11887 1.10978 1.10183 1.09193 1.07091 1.05387

100 1.11470 1.10580 1.09740 1.08760 1.06480 1.04480
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

101 1.11229 1.10332 1.09536 1.08528 1.06346 1.04473

102 1.10803 1.09910 1.09122 1.08117 1.05942 1.04081

103 1.10377 1.09488 1.08707 1.07706 1.05538 1.03689

104 1.09951 1.09066 1.08292 1.07295 1.05134 1.03298

105 1.09525 1.08644 1.07878 1.06884 1.04730 1.02906

106 1.09099 1.08222 1.07463 1.06473 1.04326 1.02514

107 1.08673 1.07800 1.07048 1.06062 1.03922 1.02122

108 1.13400 1.12543 1.11806 1.10897 1.08813 1.07073

109 1.13053 1.12200 1.11464 1.10560 1.08484 1.06766

110 1.12706 1.11857 1.11123 1.10223 1.08154 1.06459

111 1.12358 1.11514 1.10782 1.09886 1.07824 1.06152

112 1.12011 1.11171 1.10441 1.09550 1.07495 1.05845

113 1.11664 1.10828 1.10100 1.09213 1.07165 1.05537

114 1.11316 1.10485 1.09759 1.08876 1.06835 1.05230

115 1.10969 1.10143 1.09418 1.08539 1.06505 1.04923

116 1.10622 1.09800 1.09077 1.08203 1.06176 1.04616

117 1.10274 1.09457 1.08735 1.07866 1.05846 1.04309

118 1.09927 1.09114 1.08394 1.07529 1.05516 1.04002

119 1.09580 1.08771 1.08053 1.07192 1.05187 1.03695

120 1.09233 1.08428 1.07712 1.06856 1.04857 1.03388

121 1.08885 1.08085 1.07371 1.06519 1.04527 1.03081

122 1.08538 1.07742 1.07030 1.06182 1.04197 1.02773

123 1.08191 1.07399 1.06689 1.05845 1.03868 1.02466

124 1.07843 1.07056 1.06348 1.05509 1.03538 1.02159

125 1.12051 1.11296 1.10630 1.09811 1.07776 1.05946

126 1.11767 1.11013 1.10349 1.09531 1.07514 1.05713

127 1.11482 1.10731 1.10068 1.09251 1.07252 1.05480

128 1.11198 1.10448 1.09786 1.08971 1.06990 1.05247

129 1.10913 1.10166 1.09505 1.08690 1.06728 1.05014

130 1.10628 1.09883 1.09223 1.08410 1.06466 1.04782

131 1.10344 1.09601 1.08942 1.08130 1.06204 1.04549

132 1.10059 1.09318 1.08661 1.07850 1.05942 1.04316

133 1.09775 1.09036 1.08379 1.07570 1.05681 1.04083

134 1.09490 1.08753 1.08098 1.07290 1.05419 1.03851

135 1.09206 1.08471 1.07816 1.07009 1.05157 1.03618

136 1.08921 1.08188 1.07535 1.06729 1.04895 1.03385

137 1.08637 1.07906 1.07254 1.06449 1.04633 1.03152

138 1.08352 1.07623 1.06972 1.06169 1.04371 1.02919

139 1.08068 1.07341 1.06691 1.05889 1.04109 1.02687

140 1.07783 1.07058 1.06409 1.05608 1.03847 1.02454

141 1.07499 1.06776 1.06128 1.05328 1.03585 1.02221

142 1.07214 1.06493 1.05846 1.05048 1.03323 1.01988
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

143 1.06929 1.06211 1.05565 1.04768 1.03061 1.01756

144 1.10745 1.10050 1.09418 1.08656 1.06964 1.05314

145 1.10505 1.09812 1.09183 1.08422 1.06736 1.05108

146 1.10266 1.09574 1.08948 1.08188 1.06508 1.04901

147 1.10026 1.09336 1.08712 1.07954 1.06281 1.04694

148 1.09787 1.09098 1.08477 1.07720 1.06053 1.04487

149 1.09548 1.08860 1.08242 1.07486 1.05825 1.04281

150 1.09308 1.08622 1.08006 1.07252 1.05598 1.04074

151 1.09069 1.08384 1.07771 1.07018 1.05370 1.03867

152 1.08830 1.08146 1.07536 1.06784 1.05142 1.03660

153 1.08590 1.07908 1.07300 1.06550 1.04915 1.03454

154 1.08351 1.07670 1.07065 1.06316 1.04687 1.03247

155 1.08111 1.07432 1.06830 1.06081 1.04459 1.03040

156 1.07872 1.07193 1.06594 1.05847 1.04232 1.02833

157 1.07633 1.06955 1.06359 1.05613 1.04004 1.02627

158 1.07393 1.06717 1.06123 1.05379 1.03776 1.02420

159 1.07154 1.06479 1.05888 1.05145 1.03548 1.02213

160 1.06915 1.06241 1.05653 1.04911 1.03321 1.02006

161 1.06675 1.06003 1.05417 1.04677 1.03093 1.01800

162 1.06436 1.05765 1.05182 1.04443 1.02865 1.01593

163 1.09895 1.09248 1.08657 1.07949 1.06421 1.05123

164 1.09692 1.09046 1.08456 1.07749 1.06225 1.04937

165 1.09488 1.08844 1.08255 1.07549 1.06030 1.04752

166 1.09285 1.08643 1.08054 1.07349 1.05834 1.04566

167 1.09081 1.08441 1.07853 1.07149 1.05638 1.04381

168 1.08878 1.08239 1.07652 1.06949 1.05443 1.04196

169 1.08674 1.08037 1.07451 1.06749 1.05247 1.04010

170 1.08471 1.07836 1.07250 1.06549 1.05052 1.03825

171 1.08267 1.07634 1.07049 1.06348 1.04856 1.03640

172 1.08064 1.07432 1.06848 1.06148 1.04660 1.03454

173 1.07860 1.07231 1.06647 1.05948 1.04465 1.03269

174 1.07657 1.07029 1.06446 1.05748 1.04269 1.03084

175 1.07453 1.06827 1.06245 1.05548 1.04073 1.02898

176 1.07250 1.06626 1.06044 1.05348 1.03878 1.02713

177 1.07047 1.06424 1.05843 1.05148 1.03682 1.02528

178 1.06843 1.06222 1.05642 1.04948 1.03486 1.02342

179 1.06640 1.06020 1.05441 1.04748 1.03291 1.02157

180 1.06436 1.05819 1.05240 1.04548 1.03095 1.01971

181 1.06233 1.05617 1.05039 1.04348 1.02900 1.01786

182 1.06029 1.05415 1.04838 1.04148 1.02704 1.01601

183 1.05826 1.05214 1.04637 1.03948 1.02508 1.01415

184 1.08994 1.08388 1.07872 1.07242 1.05801 1.04182
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

185 1.08820 1.08216 1.07699 1.07071 1.05634 1.04025

186 1.08647 1.08044 1.07526 1.06899 1.05468 1.03868

187 1.08473 1.07872 1.07353 1.06728 1.05301 1.03711

188 1.08300 1.07700 1.07181 1.06556 1.05134 1.03554

189 1.08126 1.07527 1.07008 1.06384 1.04968 1.03397

190 1.07952 1.07355 1.06835 1.06213 1.04801 1.03240

191 1.07779 1.07183 1.06663 1.06041 1.04635 1.03083

192 1.07605 1.07011 1.06490 1.05869 1.04468 1.02926

193 1.07432 1.06839 1.06317 1.05698 1.04301 1.02769

194 1.07258 1.06666 1.06145 1.05526 1.04135 1.02612

195 1.07084 1.06494 1.05972 1.05354 1.03968 1.02455

196 1.06911 1.06322 1.05799 1.05183 1.03801 1.02298

197 1.06737 1.06150 1.05626 1.05011 1.03635 1.02141

198 1.06564 1.05977 1.05454 1.04840 1.03468 1.01984

199 1.06390 1.05805 1.05281 1.04668 1.03301 1.01827

200 1.06216 1.05633 1.05108 1.04496 1.03135 1.01670

201 1.06043 1.05461 1.04936 1.04325 1.02968 1.01513

202 1.05869 1.05289 1.04763 1.04153 1.02802 1.01356

203 1.05696 1.05116 1.04590 1.03981 1.02635 1.01199

204 1.05522 1.04944 1.04417 1.03810 1.02468 1.01042

205 1.05348 1.04772 1.04245 1.03638 1.02302 1.00885

206 1.05175 1.04600 1.04072 1.03466 1.02135 1.00728

207 1.08098 1.07536 1.07029 1.06418 1.05092 1.03650

208 1.07947 1.07385 1.06879 1.06268 1.04946 1.03508

209 1.07795 1.07234 1.06729 1.06119 1.04800 1.03365

210 1.07643 1.07083 1.06579 1.05969 1.04654 1.03223

211 1.07492 1.06932 1.06429 1.05820 1.04508 1.03081

212 1.07340 1.06781 1.06279 1.05670 1.04361 1.02938

213 1.07189 1.06630 1.06129 1.05521 1.04215 1.02796

214 1.07037 1.06479 1.05979 1.05371 1.04069 1.02654

215 1.06886 1.06328 1.05829 1.05222 1.03923 1.02511

216 1.06734 1.06177 1.05679 1.05073 1.03777 1.02369

217 1.06582 1.06026 1.05529 1.04923 1.03631 1.02227

218 1.06431 1.05875 1.05379 1.04774 1.03484 1.02084

219 1.06279 1.05724 1.05229 1.04624 1.03338 1.01942

220 1.06128 1.05573 1.05078 1.04475 1.03192 1.01800

221 1.05976 1.05422 1.04928 1.04325 1.03046 1.01657

222 1.05825 1.05271 1.04778 1.04176 1.02900 1.01515

223 1.05673 1.05120 1.04628 1.04026 1.02753 1.01373

224 1.05521 1.04969 1.04478 1.03877 1.02607 1.01230

225 1.05370 1.04818 1.04328 1.03727 1.02461 1.01088

226 1.05218 1.04667 1.04178 1.03578 1.02315 1.00946
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

227 1.05067 1.04516 1.04028 1.03428 1.02169 1.00803

228 1.04915 1.04365 1.03878 1.03279 1.02023 1.00661

229 1.04763 1.04214 1.03728 1.03129 1.01876 1.00519

230 1.07488 1.06968 1.06493 1.05941 1.04715 1.03673

231 1.07355 1.06836 1.06362 1.05811 1.04591 1.03557

232 1.07222 1.06704 1.06231 1.05680 1.04466 1.03441

233 1.07090 1.06571 1.06100 1.05550 1.04342 1.03325

234 1.06957 1.06439 1.05969 1.05419 1.04218 1.03210

235 1.06824 1.06307 1.05838 1.05289 1.04094 1.03094

236 1.06691 1.06175 1.05707 1.05158 1.03970 1.02978

237 1.06559 1.06043 1.05576 1.05028 1.03846 1.02862

238 1.06426 1.05911 1.05444 1.04897 1.03722 1.02746

239 1.06293 1.05778 1.05313 1.04767 1.03598 1.02630

240 1.06161 1.05646 1.05182 1.04636 1.03474 1.02515

241 1.06028 1.05514 1.05051 1.04506 1.03350 1.02399

242 1.05895 1.05382 1.04920 1.04375 1.03226 1.02283

243 1.05763 1.05250 1.04789 1.04244 1.03102 1.02167

244 1.05630 1.05118 1.04658 1.04114 1.02978 1.02051

245 1.05497 1.04985 1.04527 1.03983 1.02854 1.01935

246 1.05364 1.04853 1.04395 1.03853 1.02730 1.01820

247 1.05232 1.04721 1.04264 1.03722 1.02606 1.01704

248 1.05099 1.04589 1.04133 1.03592 1.02482 1.01588

249 1.04966 1.04457 1.04002 1.03461 1.02358 1.01472

250 1.04834 1.04325 1.03871 1.03331 1.02234 1.01356

251 1.04701 1.04192 1.03740 1.03200 1.02110 1.01240

252 1.04568 1.04060 1.03609 1.03070 1.01986 1.01124

253 1.04436 1.03928 1.03478 1.02939 1.01862 1.01009

254 1.04303 1.03796 1.03346 1.02809 1.01738 1.00893

255 1.06817 1.06341 1.05913 1.05390 1.04269 1.03194

256 1.06702 1.06225 1.05796 1.05274 1.04155 1.03085

257 1.06587 1.06109 1.05680 1.05159 1.04041 1.02975

258 1.06471 1.05993 1.05563 1.05043 1.03926 1.02865

259 1.06356 1.05877 1.05447 1.04927 1.03812 1.02756

260 1.06241 1.05761 1.05330 1.04811 1.03698 1.02646

261 1.06126 1.05645 1.05213 1.04695 1.03583 1.02537

262 1.06010 1.05529 1.05097 1.04580 1.03469 1.02427

263 1.05895 1.05413 1.04980 1.04464 1.03355 1.02318

264 1.05780 1.05297 1.04863 1.04348 1.03241 1.02208

265 1.05664 1.05181 1.04747 1.04232 1.03126 1.02099

266 1.05549 1.05066 1.04630 1.04116 1.03012 1.01989

267 1.05434 1.04950 1.04514 1.04000 1.02898 1.01880

268 1.05319 1.04834 1.04397 1.03885 1.02783 1.01770
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

269 1.05203 1.04718 1.04280 1.03769 1.02669 1.01660

270 1.05088 1.04602 1.04164 1.03653 1.02555 1.01551

271 1.04973 1.04486 1.04047 1.03537 1.02441 1.01441

272 1.04857 1.04370 1.03930 1.03421 1.02326 1.01332

273 1.04742 1.04254 1.03814 1.03306 1.02212 1.01222

274 1.04627 1.04138 1.03697 1.03190 1.02098 1.01113

275 1.04511 1.04022 1.03581 1.03074 1.01983 1.01003

276 1.04396 1.03906 1.03464 1.02958 1.01869 1.00894

277 1.04281 1.03790 1.03347 1.02842 1.01755 1.00784

278 1.04166 1.03674 1.03231 1.02727 1.01641 1.00674

279 1.04050 1.03559 1.03114 1.02611 1.01526 1.00565

280 1.03935 1.03443 1.02997 1.02495 1.01412 1.00455

281 1.06263 1.05794 1.05390 1.04900 1.03793 1.02781

282 1.06161 1.05693 1.05288 1.04798 1.03696 1.02694

283 1.06059 1.05591 1.05187 1.04696 1.03600 1.02607

284 1.05957 1.05490 1.05085 1.04594 1.03503 1.02520

285 1.05855 1.05389 1.04983 1.04492 1.03406 1.02433

286 1.05753 1.05288 1.04882 1.04390 1.03310 1.02347

287 1.05652 1.05186 1.04780 1.04288 1.03213 1.02260

288 1.05550 1.05085 1.04679 1.04186 1.03117 1.02173

289 1.05448 1.04984 1.04577 1.04084 1.03020 1.02086

290 1.05346 1.04883 1.04475 1.03982 1.02923 1.01999

291 1.05244 1.04781 1.04374 1.03880 1.02827 1.01912

292 1.05143 1.04680 1.04272 1.03778 1.02730 1.01825

293 1.05041 1.04579 1.04170 1.03676 1.02633 1.01738

294 1.04939 1.04478 1.04069 1.03574 1.02537 1.01651

295 1.04837 1.04376 1.03967 1.03472 1.02440 1.01564

296 1.04735 1.04275 1.03865 1.03369 1.02343 1.01477

297 1.04633 1.04174 1.03764 1.03267 1.02247 1.01390

298 1.04532 1.04073 1.03662 1.03165 1.02150 1.01303

299 1.04430 1.03971 1.03561 1.03063 1.02054 1.01217

300 1.04328 1.03870 1.03459 1.02961 1.01957 1.01130

301 1.04226 1.03769 1.03357 1.02859 1.01860 1.01043

302 1.04124 1.03668 1.03256 1.02757 1.01764 1.00956

303 1.04023 1.03566 1.03154 1.02655 1.01667 1.00869

304 1.03921 1.03465 1.03052 1.02553 1.01570 1.00782

305 1.03819 1.03364 1.02951 1.02451 1.01474 1.00695

306 1.03717 1.03263 1.02849 1.02349 1.01377 1.00608

307 1.03615 1.03161 1.02748 1.02247 1.01280 1.00521

308 1.03513 1.03060 1.02646 1.02145 1.01184 1.00434

309 1.05700 1.05279 1.04895 1.04417 1.03414 1.02581

310 1.05608 1.05187 1.04804 1.04325 1.03324 1.02492
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

311 1.05517 1.05096 1.04712 1.04234 1.03233 1.02402

312 1.05426 1.05004 1.04621 1.04143 1.03143 1.02313

313 1.05335 1.04913 1.04529 1.04052 1.03052 1.02224

314 1.05244 1.04821 1.04438 1.03960 1.02962 1.02135

315 1.05153 1.04730 1.04347 1.03869 1.02871 1.02046

316 1.05062 1.04638 1.04255 1.03778 1.02781 1.01957

317 1.04971 1.04547 1.04164 1.03687 1.02691 1.01868

318 1.04880 1.04456 1.04072 1.03595 1.02600 1.01779

319 1.04789 1.04364 1.03981 1.03504 1.02510 1.01690

320 1.04698 1.04273 1.03889 1.03413 1.02419 1.01601

321 1.04606 1.04181 1.03798 1.03322 1.02329 1.01512

322 1.04515 1.04090 1.03706 1.03230 1.02238 1.01423

323 1.04424 1.03998 1.03615 1.03139 1.02148 1.01333

324 1.04333 1.03907 1.03523 1.03048 1.02057 1.01244

325 1.04242 1.03816 1.03432 1.02957 1.01967 1.01155

326 1.04151 1.03724 1.03341 1.02866 1.01876 1.01066

327 1.04060 1.03633 1.03249 1.02774 1.01786 1.00977

328 1.03969 1.03541 1.03158 1.02683 1.01695 1.00888

329 1.03878 1.03450 1.03066 1.02592 1.01605 1.00799

330 1.03787 1.03358 1.02975 1.02501 1.01514 1.00710

331 1.03696 1.03267 1.02883 1.02409 1.01424 1.00621

332 1.03605 1.03175 1.02792 1.02318 1.01334 1.00532

333 1.03513 1.03084 1.02700 1.02227 1.01243 1.00443

334 1.03422 1.02993 1.02609 1.02136 1.01153 1.00354

335 1.03331 1.02901 1.02518 1.02044 1.01062 1.00264

336 1.03240 1.02810 1.02426 1.01953 1.00972 1.00175

337 1.05310 1.04897 1.04528 1.04088 1.03216 1.02235

338 1.05227 1.04815 1.04446 1.04007 1.03131 1.02156

339 1.05145 1.04733 1.04364 1.03926 1.03046 1.02077

340 1.05063 1.04651 1.04282 1.03844 1.02961 1.01999

341 1.04980 1.04569 1.04200 1.03763 1.02876 1.01920

342 1.04898 1.04487 1.04118 1.03682 1.02791 1.01841

343 1.04816 1.04405 1.04037 1.03601 1.02706 1.01763

344 1.04734 1.04323 1.03955 1.03519 1.02622 1.01684

345 1.04651 1.04241 1.03873 1.03438 1.02537 1.01605

346 1.04569 1.04159 1.03791 1.03357 1.02452 1.01526

347 1.04487 1.04077 1.03709 1.03275 1.02367 1.01448

348 1.04404 1.03995 1.03627 1.03194 1.02282 1.01369

349 1.04322 1.03913 1.03546 1.03113 1.02197 1.01290

350 1.04240 1.03830 1.03464 1.03032 1.02112 1.01212

351 1.04158 1.03748 1.03382 1.02950 1.02028 1.01133

352 1.04075 1.03666 1.03300 1.02869 1.01943 1.01054
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

353 1.03993 1.03584 1.03218 1.02788 1.01858 1.00975

354 1.03911 1.03502 1.03136 1.02707 1.01773 1.00897

355 1.03828 1.03420 1.03055 1.02625 1.01688 1.00818

356 1.03746 1.03338 1.02973 1.02544 1.01603 1.00739

357 1.03664 1.03256 1.02891 1.02463 1.01518 1.00661

358 1.03582 1.03174 1.02809 1.02381 1.01434 1.00582

359 1.03499 1.03092 1.02727 1.02300 1.01349 1.00503

360 1.03417 1.03010 1.02645 1.02219 1.01264 1.00424

361 1.03335 1.02928 1.02564 1.02138 1.01179 1.00346

362 1.03252 1.02846 1.02482 1.02056 1.01094 1.00267

363 1.03170 1.02763 1.02400 1.01975 1.01009 1.00188

364 1.03088 1.02681 1.02318 1.01894 1.00924 1.00110

365 1.03006 1.02599 1.02236 1.01812 1.00840 1.00031

366 1.02923 1.02517 1.02154 1.01731 1.00755 0.99952

367 1.04869 1.04481 1.04132 1.03715 1.02815 1.01890

368 1.04795 1.04407 1.04059 1.03642 1.02743 1.01826

369 1.04722 1.04333 1.03986 1.03569 1.02670 1.01762

370 1.04648 1.04260 1.03912 1.03496 1.02598 1.01699

371 1.04575 1.04186 1.03839 1.03423 1.02525 1.01635

372 1.04501 1.04113 1.03765 1.03350 1.02453 1.01571

373 1.04428 1.04039 1.03692 1.03277 1.02380 1.01507

374 1.04354 1.03965 1.03619 1.03204 1.02308 1.01443

375 1.04281 1.03892 1.03545 1.03131 1.02235 1.01379

376 1.04207 1.03818 1.03472 1.03058 1.02162 1.01315

377 1.04134 1.03744 1.03398 1.02985 1.02090 1.01251

378 1.04060 1.03671 1.03325 1.02912 1.02017 1.01187

379 1.03987 1.03597 1.03252 1.02839 1.01945 1.01123

380 1.03913 1.03524 1.03178 1.02766 1.01872 1.01059

381 1.03840 1.03450 1.03105 1.02693 1.01800 1.00995

382 1.03766 1.03376 1.03031 1.02620 1.01727 1.00931

383 1.03693 1.03303 1.02958 1.02547 1.01655 1.00868

384 1.03619 1.03229 1.02884 1.02474 1.01582 1.00804

385 1.03546 1.03156 1.02811 1.02401 1.01510 1.00740

386 1.03472 1.03082 1.02738 1.02328 1.01437 1.00676

387 1.03399 1.03008 1.02664 1.02255 1.01364 1.00612

388 1.03325 1.02935 1.02591 1.02182 1.01292 1.00548

389 1.03252 1.02861 1.02517 1.02109 1.01219 1.00484

390 1.03178 1.02787 1.02444 1.02036 1.01147 1.00420

391 1.03105 1.02714 1.02371 1.01963 1.01074 1.00356

392 1.03031 1.02640 1.02297 1.01890 1.01002 1.00292

393 1.02958 1.02567 1.02224 1.01817 1.00929 1.00228

394 1.02884 1.02493 1.02150 1.01744 1.00857 1.00164
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

395 1.02811 1.02419 1.02077 1.01671 1.00784 1.00101

396 1.02737 1.02346 1.02004 1.01598 1.00711 1.00037

397 1.02664 1.02272 1.01930 1.01525 1.00639 0.99973

398 1.04487 1.04108 1.03781 1.03391 1.02503 1.01735

399 1.04421 1.04042 1.03715 1.03325 1.02437 1.01671

400 1.04354 1.03976 1.03648 1.03258 1.02371 1.01607

401 1.04288 1.03910 1.03582 1.03192 1.02305 1.01543

402 1.04221 1.03844 1.03516 1.03126 1.02239 1.01479

403 1.04155 1.03778 1.03449 1.03059 1.02173 1.01415

404 1.04088 1.03711 1.03383 1.02993 1.02107 1.01351

405 1.04022 1.03645 1.03317 1.02926 1.02041 1.01287

406 1.03955 1.03579 1.03250 1.02860 1.01975 1.01223

407 1.03889 1.03513 1.03184 1.02793 1.01909 1.01159

408 1.03822 1.03447 1.03118 1.02727 1.01843 1.01095

409 1.03756 1.03380 1.03051 1.02660 1.01777 1.01031

410 1.03689 1.03314 1.02985 1.02594 1.01710 1.00967

411 1.03623 1.03248 1.02919 1.02528 1.01644 1.00903

412 1.03556 1.03182 1.02852 1.02461 1.01578 1.00839

413 1.03490 1.03116 1.02786 1.02395 1.01512 1.00775

414 1.03423 1.03049 1.02720 1.02328 1.01446 1.00711

415 1.03357 1.02983 1.02653 1.02262 1.01380 1.00647

416 1.03290 1.02917 1.02587 1.02195 1.01314 1.00583

417 1.03224 1.02851 1.02521 1.02129 1.01248 1.00519

418 1.03158 1.02785 1.02454 1.02062 1.01182 1.00455

419 1.03091 1.02718 1.02388 1.01996 1.01116 1.00391

420 1.03025 1.02652 1.02322 1.01929 1.01050 1.00327

421 1.02958 1.02586 1.02255 1.01863 1.00984 1.00263

422 1.02892 1.02520 1.02189 1.01797 1.00918 1.00199

423 1.02825 1.02454 1.02123 1.01730 1.00852 1.00135

424 1.02759 1.02387 1.02056 1.01664 1.00786 1.00071

425 1.02692 1.02321 1.01990 1.01597 1.00720 1.00007

426 1.02626 1.02255 1.01924 1.01531 1.00654 0.99943

427 1.02559 1.02189 1.01857 1.01464 1.00588 0.99879

428 1.02493 1.02123 1.01791 1.01398 1.00522 0.99815

429 1.02426 1.02056 1.01725 1.01331 1.00455 0.99751

430 1.02360 1.01990 1.01658 1.01265 1.00389 0.99687

431 1.04110 1.03745 1.03418 1.03052 1.02236 1.01457

432 1.04050 1.03685 1.03359 1.02991 1.02176 1.01399

433 1.03990 1.03625 1.03299 1.02931 1.02116 1.01342

434 1.03929 1.03565 1.03239 1.02871 1.02056 1.01285

435 1.03869 1.03505 1.03179 1.02810 1.01995 1.01227

436 1.03809 1.03445 1.03119 1.02750 1.01935 1.01170
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

437 1.03749 1.03385 1.03059 1.02690 1.01875 1.01112

438 1.03688 1.03325 1.02999 1.02630 1.01815 1.01055

439 1.03628 1.03265 1.02940 1.02569 1.01755 1.00997

440 1.03568 1.03205 1.02880 1.02509 1.01694 1.00940

441 1.03507 1.03145 1.02820 1.02449 1.01634 1.00883

442 1.03447 1.03085 1.02760 1.02388 1.01574 1.00825

443 1.03387 1.03025 1.02700 1.02328 1.01514 1.00768

444 1.03327 1.02965 1.02640 1.02268 1.01454 1.00710

445 1.03266 1.02905 1.02580 1.02207 1.01393 1.00653

446 1.03206 1.02845 1.02521 1.02147 1.01333 1.00596

447 1.03146 1.02785 1.02461 1.02087 1.01273 1.00538

448 1.03086 1.02725 1.02401 1.02026 1.01213 1.00481

449 1.03025 1.02665 1.02341 1.01966 1.01152 1.00423

450 1.02965 1.02605 1.02281 1.01906 1.01092 1.00366

451 1.02905 1.02545 1.02221 1.01845 1.01032 1.00309

452 1.02844 1.02485 1.02161 1.01785 1.00972 1.00251

453 1.02784 1.02425 1.02102 1.01725 1.00912 1.00194

454 1.02724 1.02365 1.02042 1.01664 1.00851 1.00136

455 1.02664 1.02305 1.01982 1.01604 1.00791 1.00079

456 1.02603 1.02245 1.01922 1.01544 1.00731 1.00022

457 1.02543 1.02185 1.01862 1.01484 1.00671 0.99964

458 1.02483 1.02125 1.01802 1.01423 1.00611 0.99907

459 1.02423 1.02065 1.01742 1.01363 1.00550 0.99849

460 1.02362 1.02005 1.01683 1.01303 1.00490 0.99792

461 1.02302 1.01945 1.01623 1.01242 1.00430 0.99735

462 1.02242 1.01885 1.01563 1.01182 1.00370 0.99677

463 1.02182 1.01825 1.01503 1.01122 1.00310 0.99620

464 1.02121 1.01765 1.01443 1.01061 1.00249 0.99562

465 1.03769 1.03430 1.03122 1.02757 1.01995 1.01307

466 1.03714 1.03375 1.03067 1.02702 1.01939 1.01253

467 1.03659 1.03319 1.03012 1.02647 1.01884 1.01199

468 1.03604 1.03264 1.02957 1.02592 1.01828 1.01146

469 1.03549 1.03209 1.02902 1.02537 1.01773 1.01092

470 1.03494 1.03154 1.02847 1.02482 1.01717 1.01038

471 1.03439 1.03099 1.02791 1.02427 1.01662 1.00984

472 1.03384 1.03043 1.02736 1.02372 1.01606 1.00931

473 1.03329 1.02988 1.02681 1.02317 1.01551 1.00877

474 1.03274 1.02933 1.02626 1.02262 1.01495 1.00823

475 1.03219 1.02878 1.02571 1.02207 1.01440 1.00769

476 1.03164 1.02823 1.02516 1.02152 1.01384 1.00716

477 1.03109 1.02767 1.02461 1.02097 1.01329 1.00662

478 1.03054 1.02712 1.02406 1.02042 1.01273 1.00608
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Table 4.2: Showing the p-th quantiles of the RankCover statistic

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

479 1.02999 1.02657 1.02351 1.01987 1.01218 1.00554

480 1.02944 1.02602 1.02296 1.01932 1.01163 1.00501

481 1.02889 1.02547 1.02241 1.01876 1.01107 1.00447

482 1.02834 1.02491 1.02186 1.01821 1.01052 1.00393

483 1.02779 1.02436 1.02131 1.01766 1.00996 1.00339

484 1.02724 1.02381 1.02076 1.01711 1.00941 1.00286

485 1.02669 1.02326 1.02021 1.01656 1.00885 1.00232

486 1.02614 1.02271 1.01966 1.01601 1.00830 1.00178

487 1.02559 1.02215 1.01911 1.01546 1.00774 1.00124

488 1.02504 1.02160 1.01856 1.01491 1.00719 1.00071

489 1.02449 1.02105 1.01801 1.01436 1.00663 1.00017

490 1.02394 1.02050 1.01746 1.01381 1.00608 0.99963

491 1.02340 1.01995 1.01691 1.01326 1.00552 0.99910

492 1.02285 1.01939 1.01636 1.01271 1.00497 0.99856

493 1.02230 1.01884 1.01580 1.01216 1.00441 0.99802

494 1.02175 1.01829 1.01525 1.01161 1.00386 0.99748

495 1.02120 1.01774 1.01470 1.01106 1.00330 0.99695

496 1.02065 1.01719 1.01415 1.01051 1.00275 0.99641

497 1.02010 1.01663 1.01360 1.00996 1.00219 0.99587

498 1.01955 1.01608 1.01305 1.00941 1.00164 0.99533

499 1.01900 1.01553 1.01250 1.00886 1.00108 0.99480

500 1.03464 1.03135 1.02835 1.02489 1.01768 1.01220

Table 4.3: Showing the p-th quantiles of the hybrid p-values

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

20 0.06682 0.03219 0.01591 0.00659 0.00065 0.00007

21 0.06464 0.03226 0.01573 0.00632 0.00062 0.00005

22 0.06512 0.03175 0.01531 0.00620 0.00062 0.00006

23 0.06590 0.03182 0.01594 0.00618 0.00070 0.00007

24 0.06512 0.03226 0.01601 0.00647 0.00062 0.00006

25 0.06479 0.03165 0.01585 0.00622 0.00064 0.00006

26 0.06357 0.03102 0.01566 0.00631 0.00063 0.00006

27 0.06366 0.03112 0.01531 0.00607 0.00062 0.00007

28 0.06309 0.03098 0.01512 0.00599 0.00061 0.00007

29 0.06346 0.03038 0.01503 0.00600 0.00060 0.00006

30 0.06293 0.03024 0.01495 0.00590 0.00057 0.00005

31 0.06257 0.03042 0.01481 0.00586 0.00058 0.00007

32 0.06206 0.03057 0.01498 0.00579 0.00058 0.00006

33 0.06207 0.03016 0.01502 0.00606 0.00056 0.00005

34 0.06169 0.03010 0.01497 0.00592 0.00058 0.00005
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Table 4.3: Showing the p-th quantiles of the hybrid p-values

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

35 0.06171 0.03003 0.01490 0.00584 0.00059 0.00005

36 0.06153 0.03016 0.01465 0.00572 0.00058 0.00007

37 0.06146 0.02965 0.01465 0.00574 0.00058 0.00005

38 0.06027 0.02944 0.01454 0.00565 0.00057 0.00006

39 0.06069 0.02942 0.01447 0.00566 0.00055 0.00005

40 0.06032 0.02926 0.01420 0.00564 0.00056 0.00005

41 0.06083 0.02960 0.01451 0.00572 0.00052 0.00006

42 0.05989 0.02923 0.01446 0.00574 0.00055 0.00005

43 0.06029 0.02928 0.01470 0.00577 0.00054 0.00005

44 0.06045 0.02904 0.01431 0.00558 0.00055 0.00006

45 0.05955 0.02907 0.01417 0.00570 0.00057 0.00005

46 0.05950 0.02885 0.01419 0.00553 0.00054 0.00006

47 0.05953 0.02891 0.01410 0.00558 0.00055 0.00006

48 0.05962 0.02908 0.01415 0.00553 0.00055 0.00005

49 0.05952 0.02874 0.01410 0.00549 0.00054 0.00005

50 0.05903 0.02858 0.01417 0.00561 0.00053 0.00005

51 0.05913 0.02857 0.01412 0.00558 0.00055 0.00006

52 0.05933 0.02896 0.01406 0.00540 0.00053 0.00005

53 0.05925 0.02884 0.01417 0.00557 0.00053 0.00004

54 0.05918 0.02879 0.01408 0.00553 0.00052 0.00005

55 0.05867 0.02861 0.01393 0.00550 0.00055 0.00005

56 0.05871 0.02862 0.01423 0.00554 0.00052 0.00005

57 0.05874 0.02838 0.01382 0.00552 0.00056 0.00005

58 0.05874 0.02865 0.01394 0.00543 0.00053 0.00005

59 0.05868 0.02845 0.01408 0.00550 0.00052 0.00006

60 0.05843 0.02840 0.01378 0.00545 0.00053 0.00005

61 0.05849 0.02840 0.01398 0.00547 0.00055 0.00006

62 0.05806 0.02831 0.01390 0.00541 0.00052 0.00005

63 0.05810 0.02812 0.01372 0.00546 0.00053 0.00005

64 0.05832 0.02852 0.01391 0.00544 0.00053 0.00005

65 0.05770 0.02831 0.01386 0.00543 0.00054 0.00006

66 0.05831 0.02817 0.01378 0.00543 0.00052 0.00005

67 0.05779 0.02805 0.01379 0.00539 0.00051 0.00005

68 0.05776 0.02800 0.01379 0.00551 0.00054 0.00005

69 0.05768 0.02780 0.01356 0.00534 0.00052 0.00005

70 0.05776 0.02806 0.01382 0.00536 0.00054 0.00005

71 0.05744 0.02778 0.01368 0.00536 0.00053 0.00005

72 0.05746 0.02776 0.01363 0.00540 0.00053 0.00005

73 0.05736 0.02798 0.01370 0.00544 0.00052 0.00005

74 0.05709 0.02770 0.01358 0.00537 0.00053 0.00005

75 0.05712 0.02766 0.01352 0.00526 0.00051 0.00005

76 0.05675 0.02759 0.01362 0.00538 0.00053 0.00006

continued to next page. . .

105



Table 4.3: Showing the p-th quantiles of the hybrid p-values

Sample Sizes p=0.1 p=0.05 p=0.025 p=0.01 p=0.001 p=0.0001

77 0.05669 0.02769 0.01355 0.00531 0.00053 0.00005

78 0.05698 0.02765 0.01361 0.00534 0.00052 0.00005

79 0.05656 0.02766 0.01354 0.00538 0.00053 0.00005

80 0.05704 0.02791 0.01359 0.00534 0.00053 0.00005

81 0.05709 0.02756 0.01352 0.00530 0.00051 0.00005

82 0.05706 0.02765 0.01360 0.00530 0.00051 0.00005

83 0.05659 0.02730 0.01336 0.00527 0.00052 0.00005

84 0.05707 0.02768 0.01363 0.00539 0.00051 0.00005

85 0.05680 0.02755 0.01347 0.00526 0.00052 0.00005

86 0.05686 0.02750 0.01362 0.00538 0.00054 0.00005

87 0.05707 0.02766 0.01352 0.00535 0.00053 0.00006

88 0.05655 0.02756 0.01347 0.00530 0.00051 0.00005

89 0.05685 0.02762 0.01352 0.00532 0.00051 0.00005

90 0.05624 0.02709 0.01332 0.00524 0.00053 0.00005

91 0.05628 0.02728 0.01343 0.00527 0.00053 0.00005

92 0.05639 0.02727 0.01346 0.00529 0.00051 0.00005

93 0.05645 0.02736 0.01344 0.00530 0.00051 0.00005

94 0.05645 0.02751 0.01347 0.00536 0.00051 0.00005

95 0.05639 0.02755 0.01353 0.00530 0.00051 0.00005

96 0.05637 0.02727 0.01341 0.00529 0.00051 0.00005

97 0.05646 0.02716 0.01337 0.00528 0.00051 0.00005

98 0.05668 0.02731 0.01350 0.00524 0.00050 0.00005

99 0.05615 0.02736 0.01346 0.00527 0.00053 0.00006

100 0.05616 0.02737 0.01343 0.00527 0.00052 0.00005
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APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 3

C.1 Pre-processing of the GTEx data

We have used the GTEx pilot data (Lonsdale et al. 2013) for our analysis of real

data. The data consists of genotype and expression data across nine tissues - adipose,

artery, heart, lung, muscle, nerve, skin, thyroid and blood. There were 175 geno-

typed individuals who had expression data in at least one of the tissues. The tissues

had shared samples in the sense that many individuals had expression data for more

than one tissues. The sample sizes corresponding to these tissues were respectively

94, 112, 83, 119, 138, 88, 96, 105, 156.

The elements of the genotype matrix are the minor allele frequencies (MAF) of

donors in different SNP locations. Any missing value in this matrix was imputed by

the average MAF of that locus across all donors. Loci that had less than 5% MAF for

all donors were discarded and the final genotype matrix had about 7 million SNPs.

The expression levels were measured by the number of mapped reads per kilobase

per million reads (RPKM). Genes with less than 10 donors with RPKM greater than

0.1 in some tissue were discarded resulting in about 22000 common genes. Finally, the

expression values were inverse quantile normalized.

The SNPs located within 100 kilobases of the transcription start site of a gene were

considered cis to that gene. This resulted in about 10 million gene-SNP pairs that were

grouped by about 22000 genes.

There were a total of 19 covariates including 15 PEER factors, 3 principal compo-

nents and 1 gender covariate. For each tissue, both the expression and the genotypes

were residualized using linear regression on these 19 covariates. The residualized data

were treated as the inputs Y and X of our model. While computing the z-statistics, the

scaling factor was adjusted by the loss of degrees of freedom due to such residualization.

Therefore the scaling factor
√
n− 22 was used instead of the usual

√
n− 3.
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C.2 Details of the simulation procedures for Z-REG-FDR

The simulation procedure mentioned in Section 3.6 was used for simulating the data

analysed in any simulation study with one causal SNP. The SNP matrix was prepared

in different ways. For the data analysed in Table 3.3, the SNPs were simulated from

from AR(1) structured normal distributions. For the data analysed in Table 3.2, the

SNP data was picked up from the data on the tissue heart from GTEx. We used only

10000 genes among all the genes having at least 10 and at most 1000

For Table 3.1, however, the z-values were directly simulated from an AR(1) structure

instead of using our usual simulation scheme. The only difference for causal locations

and non-causal locations was in the expectation of z.

C.3 Details of the simulation procedures for two causal SNPs

For the simulation in case of two causal SNPs, it is important to note that it is not

possible to have both the effect sizes unconstrained and maintain the variance of Yi at

the same time. As the correlation between the two causal SNPs, say X
(i)
k and X

(i)
l , is

already given by data, the two effect sizes, that are the correlations between Yi and the

respective SNPs, have to be such that the correlation matrix is positive definite. It can

be shown that the required condition is

1 + 2ρρ1ρ2 − ρ2 − ρ21 − ρ22 ≥ 0

where ρ = Cor(X
(i)
k , X

(i)
l ), ρ1 = Cor(X

(i)
k , Yi), ρ2 = Cor(X

(i)
l , Yi). We assume that

the second causal SNP is ‘secondary’ in the sense that |ρ2| < |ρ1|. This along with

Sign(ρ2) = Sign(ρ)Sign(ρ1) ensures that the above condition is true, and hence the

correlation matrix of (Y,X
(i)
k , X

(i)
l ) is positive definite.

For Table 3.4, we used a simulated data where for half of the genes under alternative

are assumed to have two causal SNPs and half are assumed to have one causal SNP.
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For the genes with two causal SNPs, we simulate
√
n− 3 tanh−1(ρ1) from N(0, σ2),

and then simulate ρ2 as

ρ2 = Sign(ρ)Sign(ρ1)|ρ1|r

r is simulated from a Beta(1, 2) distribution. For a gene with two causal SNPs, given

ρ, ρ1 and ρ2, Yi is simulated from a normal distribution with mean 1
1−ρ2{X

(i)
k (ρ1 −

ρρ2)+X
(i)
l (ρ2−ρρ1)} and variance

1+2ρρ1ρ2−ρ2−ρ21−ρ22
1−ρ2 . Usual computation for conditional

distribution of a multivariate normal distribution shows that such simulation procedure

generates the expression so that the desired variance and covariances are maintained.

C.4 Details of the simulation procedures for inverse average

We simulated 20000 genes and 100 SNPs per gene for the inverse average examples.

For the block example, it was assumed that the correlation within each block is 1 and

outside block is 0. The block size was 10. The gene-SNP level lfdr were calculated

based on such assumption. For the window type model, it was assumed that all the

SNPs within a window of size 10 around the causal SNP will have significant gene-SNP

level lfdr.
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Kraskov, A., Stögbauer, H., and Grassberger, P. (2004), “Estimating mutual informa-
tion,” Physical review E, 69, 066138.

115



Lehmann, E., Romano, J. P., et al. (2005), “Generalizations of the familywise error
rate,” The Annals of Statistics, 33, 1138–1154.

Lehmann, R. (1977), “General derivation of partial and multiple rank correlation coef-
ficients,” Biometrical Journal, 19, 229–236.

Li, G., Shabalin, A. A., Rusyn, I., Wright, F. A., and Nobel, A. B. (2013), “An
Empirical Bayes Approach for Multiple Tissue eQTL Analysis,” arXiv preprint
arXiv:1311.2948.

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters,
G., Garcia, F., Young, N., et al. (2013), “The genotype-tissue expression (GTEx)
project,” Nature genetics, 45, 580–585.

Maghsoodloo, S. (1975), “Estimates of the quantiles of Kendall’s partial rank correla-
tion coefficient,” Journal of Statistical Computation and Simulation, 4, 155–164.

Mann, H. B. (1945), “Non-parametric test against trend,” Econometrika, 13, 245–259.

Meinshausen, N. (2008), “Hierarchical testing of variable importance,” Biometrika, 95,
265–278.

Miles, R. (1969), “The asymptotic values of certain coverage probabilities,” Biometrika,
56, 661–680.

Moon, Y.-I., Rajagopalan, B., and Lall, U. (1995), “Estimation of mutual information
using kernel density estimators,” Physical Review E, 52, 2318.

Moran, P. (1951), “Partial and multiple rank correlation,” Biometrika, 26–32.

— (1973), “A central limit theorem for exchangeable variates with geometric applica-
tions,” Journal of Applied Probability, 837–846.

Moran, P. A. (1974), “The volume occupied by normally distributed spheres,” Acta
Mathematica, 133, 273–286.

Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004), “Detecting differential
gene expression with a semiparametric hierarchical mixture method,” Biostatistics,
5, 155–176.

Owen, A. B. (2005), “Variance of the number of false discoveries,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67, 411–426.

Paninski, L. (2003), “Estimation of entropy and mutual information,” Neural Compu-
tation, 15, 1191–1253.

Petretto, E., Bottolo, L., Langley, S. R., Heinig, M., McDermott-Roe, C., Sarwar, R.,
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Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007), “Measuring and testing depen-
dence by correlation of distances,” The Annals of Statistics, 35, 2769–2794.

Szekely, G. J., Rizzo, M. L., et al. (2014), “Partial distance correlation with methods
for dissimilarities,” The Annals of Statistics, 42, 2382–2412.

118



Torabi, H. and Vahidi-Asl, M. G. (2009), “Testing for “Randomness in Spatial Point
Patterns, Using the Number of Empty-Quadrants in the Region,” Applied Mathe-
matical Sciences, 3, 1595–1608.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., and Altman, R. B. (2001), “Missing value estimation methods for DNA
microarrays,” Bioinformatics, 17, 520–525.

van der Laan, M. J., Dudoit, S., and Pollard, K. S. (2004), “Augmentation proce-
dures for control of the generalized family-wise error rate and tail probabilities for
the proportion of false positives,” Statistical Applications in Genetics and Molecular
Biology, 3.

Wang, W., Wei, Z., and Sun, W. (2010), “Simultaneous set-wise testing under de-
pendence, with applications to genome-wide association studies,” Stat. Interface, 3,
501–511.

Westfall, P. and Young, S. (1993), Resampling-based multiple testing: Examples and
methods for p-value adjustment, vol. 279, John Wiley & Sons.

Wright, F. A., Shabalin, A. A., and Rusyn, I. (2012), “Computational tools for discovery
and interpretation of expression quantitative trait loci,” Pharmacogenomics, 13, 343–
352.

Yang, T. Y. and Jeong, S. (2013), “Grouped False-Discovery Rate for Removing the
Gene-Set-Level Bias of RNA-seq,” Evolutionary bioinformatics online, 9, 467.

Yekutieli, D. (2008), “Hierarchical false discovery rate–controlling methodology,” Jour-
nal of the American Statistical Association, 103, 309–316.

Yekutieli, D. and Benjamini, Y. (1999), “Resampling-based false discovery rate con-
trolling multiple test procedures for correlated test statistics,” Journal of Statistical
Planning and Inference, 82, 171–196.

Zhao, H. and Zhang, J. (2014), “Weighted p-value procedures for controlling FDR of
grouped hypotheses,” Journal of Statistical Planning and Inference.

Zhao, Z. and Gene Hwang, J. (2012), “Empirical Bayes false coverage rate controlling
confidence intervals,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 74, 871–891.

119


	List of Tables
	List of Figures
	: Introduction
	Testing of General Association
	Classical non-parametric tests
	Methods in spatial statistics
	Other methods of detecting general association
	Recent advancements
	Summary

	Control of False Discovery Rate for Grouped Hypotheses
	Classical methods and family-wise error rate
	The false discovery rate approach
	Extension and different approaches to FDR
	The empirical Bayes approach and local false discovery rate
	Grouped Hypotheses
	Application in eQTL studies
	Summary

	Overview of the thesis

	: A Procedure to Detect General Association
	Motivation
	The test statistic
	Choice of parameters and distance metric
	Fast Computation of the test statistic
	Exact expectation of the RankCover statistic for Manhattan distance
	Large sample properties of RankCover
	Coverage Process
	Asymptotic Negligibility of the edge effect
	Asymptotics of coverage for Boolean process
	Applicability of the results to RankCover

	Simulation Results
	Comparison of different methods for simulated datasets
	Comparison of dCor and Rank Correlation

	Application on Real Data
	Example 1: Eckerle4 data
	Example 2: Aircraft data
	Example 3: ENSO data
	Example 4: Yeast data

	Method to test the association of two variables after adjusting the effect of a third variable
	Discussion and future work

	: Control of False Discoveries in Grouped Hypothesis Testing for eQTL data
	Structure of the eQTL data and the hypotheses
	The empirical Bayes set up
	The Random Effects model and testing procedure for Group-level FDR control (REG-FDR)
	An EM algorithm to estimate REG-FDR parameters
	The Z-REG-FDR model
	Results of Z-REG-FDR as an approximate maximum likelihood estimation
	Comparison with other methods
	Advantage of Z-REG-FDR over other methods
	Effect of more than one causal SNPs
	Analysis of real data
	Inverse Average Method
	Discussion and future work

	: Multi-tissue Extension of Z-REG-FDR
	Data, notations and basic assumptions
	Further assumptions and the MT-Z-REG-FDR model
	The likelihood
	Application on simulated datasets
	Application on real datasets
	Discussion and future work
	APPENDIX A: Technical Details for Chapter 2

	Details of the analysis of simulated data
	Details of Simulation results for different marginal distributions of the variables
	Details of real data analyses
	Example 1: Eckerle4 data
	Example 2: Aircraft data
	Example 3: ENSO data
	Example 4: Yeast data

	APPENDIX B: Tables of thresholds of RankCover
	APPENDIX C: Technical Details for Chapter 3
	Pre-processing of the GTEx data
	Details of the simulation procedures for Z-REG-FDR
	Details of the simulation procedures for two causal SNPs
	Details of the simulation procedures for inverse average
	BIBLIOGRAPHY



