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ABSTRACT

Pratyaydipta Rudra: Statistical Tools for General Association Testing and Control of
False Discoveries in Group Testing
(Under the direction of Fred A. Wright and Andrew Nobel)

In modern applications of high-throughput technologies, it is important to identify
pairwise associations between variables, and desirable to use methods that are powerful
and sensitive to a variety of association relationships. In the first part of the disser-
tation, we describe RankCover, a new non-parametric association test for association
between two variables that measures the concentration of paired ranked points. Here
‘concentration’ is quantified using a disk-covering statistic that is similar to those em-
ployed in spatial data analysis. Analysis of simulated datasets demonstrates that the
method is robust and often powerful in comparison to competing general association
tests. We also illustrate RankCover in the analysis of several real datasets. Using
RankCover, we also propose a method of testing the association of two variables while
controlling the effect of a third variable.

In the second part of the dissertation, we describe statistical methodologies for test-
ing hypotheses that can be collected into groups, with each group showing potentially
different characteristics. Methods to control family-wise error rate or false discovery
rate for group testing have been proposed earlier, but may not easily apply to expres-
sion quantitative trait loci (eQTL) data, for which certain structured alternatives may
be defensible and enable the researcher to avoid overly conservative approaches. In an
empirical Bayesian setting, we propose a new method to control the false discovery rate

(FDR) for grouped hypothesis data. Here, each gene forms a group, with SNPs anno-

il



tated to the gene corresponding to individual hypotheses. Heterogeneity of effect sizes
in different groups is considered by the introduction of a random effects component.
Our method, entitled Random Effects model and testing procedure for Group-level FDR
control (REG-FDR) assumes a model for alternative hypotheses for the eQTL data and
controls the FDR by adaptive thresholding.

Finally, we propose Z-REG-FDR, an approximate version of REG-FDR that uses
only Z-statistics of association between genotype and expression at each SNP. Simula-
tions demonstrate that Z-REG-FDR performed similarly to REG-FDR, but with much
improved computational speed. We further propose an extension of Z-REG-FDR to a

multi-tissue setting, providing a basis for gene-based multi-tissue analysis.
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CHAPTER 1: INTRODUCTION
1.1 Testing of General Association

The need for statistical methods to identify general pairwise association measured
between variables is increasingly recognized, as evidenced by recent attention to meth-
ods such as distance correlation (dCor) (Székely et al. 2007, Székely and Rizzo 2009),
Maximal Information Coefficient (MIC) (Reshef et al. 2011), and the Heller-Heller-
Gorfine (HHG) method (Heller et al. 2013). The term general association refers to
any departure from independence among random variables, and methods differ in the
types of departures to which they are sensitive. The need for general association tests
is perhaps greatest for analysis of large datasets, for which discovery-based approaches
are needed, without prior hypotheses regarding the form or structure of dependence.
In addition to the need to test dependence among pairs of variables as a primary
analysis, dependencies can invalidate inference for downstream methods that require
independence among input variables (Albert et al. 2001).

The methodologies for detecting general association are numerous and consist of
several ways to approach the problem. We consider only non-parametric procedures
since the methods with parametric assumptions are not ‘general’ in the true sense.
Here, we discuss the most relevant and applicable ones from each approach with special
attention to some methods that are relatively new, easy to interpret, computationally
less expensive and at the same time most useful in terms of their robustness and power

to detect different forms of general associations.



1.1.1 Classical non-parametric tests

Classical tests attempting to detect general association date back to the early part
of the last century with Spearman’s rank correlation (Spearman 1904) and Kendall’s
tau (Kendall 1938). Standard tests based on these rank correlations assume values are
not tied, and are primarily designed for monotone relationships, but are not principally
different in spirit from Pearson’s product moment correlation.

Many trend tests (Mann 1945, Kendall 1975, Cuzick 1985, Hamed and Ramachan-
dra Rao 1998) were devised over the years for testing linear and non-linear trends, pri-
marily in time series data. However, they also suffer from insensivity to non-monotone

relationships.

1.1.2 Methods in spatial statistics

The spatial statistics literature is abundant with tests of complete spatial random-
ness (CSR), which is closely related to the general association of two variables. Com-

plete spatial randomness as defined by Diggle (1983) occurs when

1. the number of events in any planar region A with area |A| follows a Poisson

distribution with mean A|A|.

2. given n events x; in a region A, the x;’s form an independent random sample

from the uniform distribution on A.

The self-consistency of the above two conditions is a non-trivial fact that can be
proved. If two variables are associated, their scatter plot is expected to deviate from
such CSR since the points will be more clustered as compared to the independent case.
However, for testing general association to be exactly equivalent to testing CSR, the
marginal distributions of the two random variables must be uniform. Also, CSR can

be violated if the occurrence of a point is either encouraged or inhibited the occurrence



of other points in the neighborhood of it, but the alternative of inhibition is not very
relevant for testing general association. These differences can be somewhat reduced
by using the ranks of the two variables while testing general association, since each
component of rank(X) and rank(Y) has a discrete uniform distribution for any two
jointly distributed random variables X and Y. However, note that these components
are not independent since a rank vector needs to be a permutation of (1,2, ...,n), where
n is the sample size. One sided tests will be appropriate in this case to test for the
association (and not for inhibition).

A number of testing procedures sensitive to local clustering have been devised in
the field of spatial statistics (Holgate 1965b;a, Diggle et al. 1976, Donnelly 1978, Ripley
and Silverman 1978, Hines and Hines 1979, Ripley 1979, Grabarnik and Chiu 2002,
Smith 2004, Torabi and Vahidi-Asl 2009). Among the most popular ones, the G and
F functions by Diggle (Diggle 1983) use nearest neighbor distances to devise a test
against the hypothesis of complete spatial randomness. The two functions are closely
related and are proved to be asymptotically equivalent (Diggle 1983). Diggle suggested
the use of Monte Carlo simulations to obtain the distributions of empirical versions of
the whole curves G(z) and F(z), but it is computationally expensive. Clark and Evans
(1954) suggested a test based on mean nearest neighbor distances and an asymptotic
distribution was proposed by Donnelly (1978). However, it assumes joint uniformity of
the two variables and hence cannot be used in the context of general association.

Coverage processes are somewhat related to such spatial statistics ideas and find
potential applications in ballistics, queueing theory, statistical mechanics, molecular
biology and so on. In the theory of coverage process, each of the spatial points is
assumed to be generated by a stochastic point process, which is not necessarily a
Poisson process (discussed in more details in Section 2.6). However, the theory does

not directly apply to the general association testing.



1.1.3 Other methods of detecting general association

Some other important methods for detecting general association are maximal cor-
relation (Hirschfeld 1935, Gebelein 1941, Rényi 1959), Hoeffding’s D (Hoeffding 1948),
and mutual information. The maximal correlation, also known as Renyi correlation,
between two random variables X and Y, is defined as ffﬁi}fy) E(f(X)g(Y)) subject to
E(f(X)) = E(g(Y)) = 0 and E(f(X)?) = E(g9(Y)?) = 1. The maximal correlation
enjoys various desirable theoretical properties including that it is zero if and only if X
and Y are independent. However, there is no explicit formula to calculate it. Breiman
and Friedman (1985)’s Alternating Conditional Expectations (ACE) algorithm is the
most common algorithm to approximate it. Bickel and Xu (2009) provided another
way to approximate the maximal correlation and a test based on it.

Hoeffding’s D measures the difference between the joint ranks and the product of
their marginal ranks. It can identify even non-monotone associations, but fails to iden-
tify non-functional relationships like circle or cross (Fujita et al. 2009, de Siqueira Santos

et al. 2013).

The mutual information of two random variables X and Y is defined as

_ - oa (XY &Y)
M]<X7Y)_//fX,Y( 7y)l g2(fX(17>fY(y>>d dy

The mutual information is 0 if and only if Xand Y are independent. Several methods
to estimate the mutual information have been proposed (Paninski 2003, Daub et al.
2004, Kraskov et al. 2004, Moon et al. 1995). The test of general association using
these estimators of mutual information are observed to be powerful when the sample

size is large, but not satisfactory for small samples (de Siqueira Santos et al. 2013).



1.1.4 Recent advancements

Recently, a number of methods using Reproducing Kernel Hilbert Spaces (RKHS)
have been proposed (Fukumizu et al. 2007, Gretton et al. 2008, Gretton and Gyorfi
2008). These methods have some desirable properties (Gretton et al. 2009), but are
complex in nature and not always easy to compute. On the other hand, three methods
developed very recently have been extremely popular due to their simplicity, desirable
theoretical properties, relative ease of computation and power to detect several forms
of association. We discuss these methods in greater detail.

Distance correlation (dCor), introduced by Székely et al. (2007) is motivated by
consideration of distances between the empirical characteristic function under the null
vs. under the alternative. For observed data, the dCor statistic is the Pearson cor-
relation of distances (after some adjustments) between all pairs of samples. For an
observed random sample (z,y) = {(xg,yx) : £ = 1,2,...,n}, the distances between
pairs of samples are defined as ay = |xx — ;| and by, = |y — yi|; k,1 = 1,2,...,n. The
approach is intuitively sensible when the relationship is monotone, as sample pairs that
are close on the x-axis should also be close on the y-axis. However, for non-monotone
relationships, pairs of points that are close on the x-axis can be quite distant on the
y-axis (Figure 1.1).

dCor satisfies several ideal theoretical properties (Székely et al. 2007). It is zero if
and only if the two variables are independent and is the only method with an explicit
formula to enjoy such property. Also, dCor can be used in higher dimensions and has
an interpretation related to Brownian distances (Székely and Rizzo 2009).

The maximal Information Coefficient (MIC), proposed by Reshef et al. (2011) mea-
sures the largest possible mutual information achievable by any x-y grid applied to the
data. Reshef et al. (2011) provided a quick algorithm to calculate the MIC and showed

that it has two desirable properties: (i) It is general in the sense that with sufficient
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Figure 1.1: Tllustration of paired adjusted distances underlying dCor. (top row) Illus-
tration of dCor for a quadratic relationship between x and y.(bottom row) A circular
relationship between x and y. The adjusted paired distances show little correlation.

sample size it is able to detect a wide range of associations without being limited to
any specific form. (ii) It is equitable in the sense that the value of the coefficient is
similar for various forms of association that are equally ‘noisy’ in their departure from
a functional relationship.

Simon and Tibshirani (2014) argued that such equitability may not be a desirable
property while testing for general association, as it might lead to lower power of the test.
However, recently there have been debates over the appropriate definition of equitability
and whether MIC truly enjoys that property (Kinney and Atwal 2014a;b).

Heller et al. (2013) proposed HHG, a new test of general association based on a
simple geometric idea that if X and Y are associated then there will a point (g, yo)

and radii around R, and R, such that the joint distribution of X and Y will differ from



the product of marginal distributions in the Cartesian product of balls around (xg, yo).
The test uses as the test statistic a sum of n Pearson chi-square statistics where n is
the number of paired observations. It can also be extended to higher dimensions. The
method has been shown to be consistent as n grows larger and simulation studies were

presented to demonstrate that it has high power against several alternatives.

1.1.5 Summary

To summarize, several tests of association have been found to perform well in terms
of power in different situations. MIC, dCor and HHG are probably the most appealing
in terms of their power against different alternatives, desirable theoretical properties
and computational efficiency. However, their performance for small samples against
various forms of associations has been relatively unexplored. In Chapter 2 we will
present a comparison of these methods with our newly proposed method RankCouver.

Our method RankCover is robust and powerful against different forms of associa-
tion. The method has been applied on both simulated and real datasets and has been
observed to perform better than competing methods in many situations. It is truly
‘general’ in the sense that it does not depend on the distributions of the two variables

under consideration, and has the potential to detect any departure from independence.

1.2 Control of False Discovery Rate for Grouped Hypotheses

Modern scientific technology has given rise to large scale simultaneous inference
problems where thousands of tests are carried out at the same time. Special care is
needed to ensure that the incorrect rejection of null hypotheses are kept under control.
Such control of false positives can be achieved in different ways. The false discovery rate
(FDR) approach (Benjamini and Hochberg 1995) is contemporary and has been proved
to have advantages over other approaches like controlling the family-wise error rate

(FWER). The Benjamini and Hochberg method has been refined to better understand



behavior under dependency, and to accommodate certain dependency structures. Often
such hypotheses form into groups that exhibit different properties. The control of FDR
without considering the group classification has the potential problem of over or under
sensitivity as significant instances of one group might be hidden among the nulls of
another group, and insignificant instances might look like significant (Cai and Sun
2009, Efron 2008).

FDR based approaches have also been studied in the domain of interval estimation
(Benjamini and Yekutieli 2005, Jung et al. 2011, Zhao and Gene Hwang 2012). How-
ever, we will focus on the methods controlling FDR in the grouped hypothesis setting,
especially considering the applications for expression quantitative trait loci (eQTL)

data.

1.2.1 Classical methods and family-wise error rate

Methods to control type I error, after considering the effects of multiple testing,
are more than fifty years old and include the Bonferroni method (Dunn 1961) and
Sidak method of multiple comparison (Sidék 1967), being proposed after the works
of Tukey and Scheffe in the 1950’s. The Sidak method assumes the hypotheses to
be independent and can be highly conservative if the correlations are positive. The
Bonferroni method does not assume independence and can be even more conservative.
Holm (1979) introduced the concept of a stepped procedure that can be used to improve
the Bonferroni or Sidak method to obtain less conservative control. Using a similar
approach, Hochberg (1988) proposed a step up procedure to obtain higher power. The
concept of ‘Family-Wise Error Rate (FWER)’ was formalized by Westfall and Young
(1993). They also introduced a permutation based procedure, applicable to many
datasets, which can control the FWER exactly at the target level under a permutation
null.

The idea of FWER can be understood from Table 1.1. Suppose we have a total of



m hypotheses and mg of them are true null. Based on a particular rejection criterion,
let R of them be rejected. The cross-classification of the truth and the decision is as
shown in Table 1.1. Then, FWER is defined as the probability of making at least one

false discovery, i.e. P(V > 1).

True Null True Alternative | Total
Rejected Vv S R
Accepted U T m— R
Total mo m — mg m

Table 1.1: Showing the cross-classification of true and false null hypothesis against the
decision to accept or reject

1.2.2 The false discovery rate approach

Benjamini and Hochberg (1995) argued that the FWER may not be the error cri-
terion that should be used for multiple hypothesis testing. They introduced the idea
of the False Discovery rate (FDR) and claimed that it is a quantity that is desirable to
control. The FDR is the expected proportion of false positives among all rejected cases.
In the light of Table 1.1, FDR can be defined as E(m) Benjamini and Hochberg
(1995) proposed a linear step up (LSU) procedure for controlling FDR and showed
that the control of FDR at the same target level as an FWER-controlling method will
result in a less conservative procedure and higher power to detect significant cases.
Also, controlling FDR assures the weak control of FWER when all the null hypotheses
are true. Even though the original work assumed that the hypotheses are independent
(Benjamini and Hochberg 1995), later Benjamini and Yekutieli (2001) showed that the
same procedure gurantees control of FDR even when the hypotheses are positively de-
pendent in a certain way (positive regression dependence from a subset, PRDS). They
also showed that under completely unspecified dependence structure, the LSU proce-
dure still controls the FDR if the target level is adjusted by (1 + % + % + ...+ %) To

be more specific, the Benjamini-Hochberg procedure with target level ¢ works in the



following way.

FDR < 7¢q when hypotheses are independent,
FDR < "¢ when hypotheses are positively dependent
(PRDS),

FDR < ™q(1+ %+ 5+ ...+ =) for general dependence.

It is clear that the FDR control using the Benjamini-Hochberg LSU procedure can
thus be extremely conservative if the proportion of true null hypotheses (mg/m) is not
close to 1. Even though controlling FDR at the exact level may not always lead to the
most powerful procedure (Cao et al. 2013), in most cases the power is reduced when a
procedure controls the FDR at a lower level than the target. This observation inspired
the idea of ‘adaptive’ procedures, where my is first estimated from the data and then
the LSU procedure is used for a target level gm/mgo (Benjamini and Hochberg 2000,
Storey 2002, Black 2004). Such plug-in type procedures, even though valid as ‘oracle’
procedures, might not always control the FDR when my is estimated from the same
data. Especially under dependency, the variability of the estimate of 1/mg can be
very high (Farcomeni 2007b, Blanchard and Roquain 2009). Benjamini et al. (2006),
Blanchard and Roquain (2009), Benjamini et al. (2009), Gavrilov et al. (2009) proposed

several adaptive methods which can be proved to control the FDR at the target level.

1.2.3 Extension and different approaches to FDR

There has been considerable research in the field of multiple hypothesis testing using
FDR over the last two decades including many studies regarding the properties of the
FDR approach under different scenarios (Green and Diggle 2007, Ferreira et al. 2006,
Sarkar 2008; 2002, Farcomeni 2007a). The effect of dependence among the hypotheses
has been the topmost concern for the researchers. Even when the Benjamini-Hochberg

procedure controls the FDR, it might be overly conservative under dependence (Qiu
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and Yakovlev 2006, Schwartzman and Lin 2011). Owen (2005) has noted that the
variance of the number of false discoveries might be greatly inflated under dependence.
Yekutieli and Benjamini (1999) proposed a permutation based approach to take care
of the dependence, but it is computationally burdensome for large number of hypothe-
ses. Other procedures to take care of the dependence have been proposed including
a hidden Markov model based approach by Sun and Cai (2009). They propose an
‘oracle’ procedure as well as an asymptotically optimal data-driven procedure, but the
entire procedure requires a natural ordering of the hypotheses such that dependencies of
null/alternative hypotheses may be exploited. Genovese and Wasserman (2004; 2002)
extended the FDR approach and also introduced the idea of ‘False Negative Rate’
(FNR) which is the expected proportion of false negatives among all non-rejections
(Genovese and Wasserman 2002). They proposed an optimal method which minimizes
the FNR subject to a bound on FDR. Sun and Cai (2007) also provided an ‘oracle’
method based on a decision theoretic framework that minimizes FNR while controlling
the FDR. They showed that when the method is data driven, it asymptotically attains
the performance of the ‘oracle’ procedure.

Storey (2003) introduced a Bayesian approach to FDR by considering the hypotheses
to be Bernoulli random variables with probability my, where my = P(H,) for each
hypothesis. For a rejection region R and observed data z, FDR is defined from the
Bayesian veiwpoint as P(Hy|z € R). Storey and Tibshirani (2003) introduced the
concept of ‘g-values’, the FDR-equivalent of p-values, which can be used in multiple
testing without the prior fixing of a target FDR level. Multiple other error rates have
been proposed including ‘positive False Discovery Rate’ (pFDR) defined as E(V/R|R >
0) (Storey 2002), ‘Fdr’ defined as E(V)/E(R) (Benjamini and Hochberg 1995), ‘k-
FWER’ defined as P(V > k) (Lehmann et al. 2005), and tail probaility P(V/R > q)
of the false discovery proportion (van der Laan et al. 2004). Benjamini (2010) argued

that such multiplicity of error rates is welcome as they find applications in different
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situations. However, the FDR is widely seen as the most useful one, having the desirable
properties under the most general conditions (eg Fdr or pFDR cannot be controlled

when all the null hypotheses are true).

1.2.4 The empirical Bayes approach and local false discovery rate

The empirical Bayes approach uses a Bayesian set up assuming the null hypothe-
ses to be Bernoulli random variables, but estimates the prior probability 7y instead of
assuming prior belief. Empirical Bayes methods use the advantages of both classical
and Bayesian approaches and can be superior to both in many cases (Casella 1985).
Efron et al. (2001b) introduced the empirical Bayes approach for controlling FDR in
microarray datasets and mentioned that such approach has an easy appeal and inter-
pretation. The model, known as two-groups model, can be used in other applications
as well. With such a model, for a given data z related to a hypothesis, the density can

be written as a mixture density:

f(z) = mofo(2) + (1 = m0) fi(2) (1.1)

where fo and f; are the densities under null and alternative, respectively. The adaptiv-
ity is in inherent to such procedures since the estimatiion 7 is equivalent to estimating
mg in the classical FDR setting.

The local false discovery rate (Ifdr) (Efron et al. 2001a) is defined as the posterior
probability P(Hy|z) of the true null given the data. Efron et al. (2001a) showed that lfdr
has a natural connection with the Benjamini-Hochberg FDR controlling method that
allows one to control the FDR by an adaptive step up method (see Theorem 1). The
empirical Bayes approach using lfdr has, in principle, the advantage of inherently taking
care of the dependencies (Efron et al. 2001a). Thus, one doesn’t have to worry about

the dependency structure of the p-values like the Benjamini-Hochberg LSU procedure.
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The difficulty of using the empirical Bayes approach is to estimate the lfdr’s. The
requirement of the estimation of the null density f, has been discussed by many re-
searchers (Efron 2004, Jin and Cai 2007, Schwartzman 2008) although in some cases it

might be assumed to be a known distribution (Efron et al. 2001a).

1.2.5 Grouped Hypotheses

Grouped hypothesis testing is a special case of multiple testing where the hypotheses
have a natural stratification and adjustments for multiple comparison is required not
only within each group, but also for the existence of multiple groups. For instance, gene
expression data can be grouped according to the ontologies (Ashburner et al. 2000). For
cis-eQTL analysis, there is a natural grouping in terms of the different genes. Within
each gene, there are several SNPs local to the gene with which the associations are
tested. For eQTL studies such as GTEx (Lonsdale et al. 2013), it is often useful to find
out whether there is any eQTL within a particular gene since genes are believed to be
directly associated with the diseases. An example for expression data is presented by
Heller et al. (2009) where gene-sets are thought of as units of interest and a method to
find out gene-sets that are differentially expressed has been developed. Benjamini and
Heller (2007) reports an example where the clusters are of more interest than individual
locations in a neuro-imaging study. They propose an adaptive procedure to control the
FDR for clusters, i.e. to control the proportion of clusters erroneously rejected out of
all rejected clusters.

Another important factor for grouped testing is the heterogeneity of the groups.
Different groups might have different properties, and ignoring that fact might lead to
overly conservative or overly anti-conservative results (Cai and Sun 2009, Efron 2008).
Efron (2008) demonstrated that pooling all the groups together is not recommended for
such heterogeneous groups. He also showed that separate analysis controlling FDR at

a for each group and then combining the results ensures that the overall control of FDR
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at same target level a. However, such choice of a; = « for each group is not optimal
(Cai and Sun 2009). Yang and Jeong (2013) has applied such a separate analysis
approach to RNAseq data. The conditional lfdr based ‘oracle’ procedure (when the
distributional information of each group is known) introduced by Cai and Sun (2009),
when applicable, has been shown to be optimal in the sense that it controls the overall
FDR and minimizes the overall FNR. When the parameters are unknown, they propose
a data-driven procedure that is asymptotically equivalent to the ‘oracle’ procedure.

Most of the other methods use weighted p-value based approaches to combine p-
values from different groups (Benjamini and Hochberg 1997, Genovese et al. 2006, Hu
et al. 2010). Roeder and Wasserman (2009) showed that such weighted p-value based
methods are robust to weight misspecification. Hu et al. (2010) proposed a ‘Group
Benjamini Hochberg” method, but it is limited by the assumption that the non-null
distribution of different groups are same. Zhao and Zhang (2014) proposed another
weighted p-value method where the weights are obtained by maximizing a power-related
objective function. Wang et al. (2010) introduced a Hidden Markov Model based
method for group testing and succesfully applied it to GWAS data. Another method
targeted at GWAS data was proposed by Sun et al. (2006).

A different way to approach grouped testing is to adopt a hierarchical structure and
sequentially test at different levels. One such example might be to split a genome-wise
data into chromosomes, which can be further split into arms, then into genes and so
on. Only the chromosomes found to be significant in the first stage will be tested at
the next level. There exist several methods controlling FWER, in such tree-like set
up (Goeman and Finos 2012, Meinshausen 2008), Yekutieli (2008) proposed a method
that controls for the overall FDR. However, Benjamini and Bogomolov (2014) have
cautioned that such selective procedures may not control FDR at the group levels unless
some adjustments are made. The authors specifically mentioned different adjustment

methods for controlling different error rates.
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1.2.6 Application in eQTL studies

There have been a lot of studies regarding eQTL data over the past decade. eQTL
mapping methods have rapidly moved from classical genetic methods for linkage or
association mapping to modern computationally efficient algorithms. Wright et al.
(2012) provides a review of the different eQTL mapping methods. While some of the
researchers emphasize on the statistical modeling aspect (Kendziorski et al. 2006, Chen
and Kendziorski 2007, Gelfond et al. 2007), other methods focus on developing fast
and efficient algortithms for the huge eQTL datasets (Gatti et al. 2009, Shabalin 2012,
Purcell et al. 2007).

The FDR controlling procedure due to Benjamini and Hochberg (1995) and the
g-value approach by Storey and Tibshirani (2003) are the most common approaches
to control FDR in eQTL studies. Among other approaches, some clustering methods
are used by Jia and Xu (2007) and Chun and Keleg (2009). However, the natural
grouping defined by the genes in the eQTL data is relatively unexplored. Due to the
large number of groups and large number of hypotheses within the groups, many group-
testing methods become computationally burdensome for eQTL datasets. However, the
methods might be simplified by making further assumptions considering the special

structure of the eQTL data.

1.2.7 Summary

The past two decades have seen extensive studies on multiple hypothesis testing
using the FDR controlling approach. Different situations like grouped hypotheses and
mutually dependent hypotheses have been considered by researchers and methodologies
to tackle them have been proposed. However, appropriate approaches to avoid conser-
vativeness under dependence are still somewhat unclear. While there has been lot of

research on both FDR control in grouped hypothesis testing and analysis of eQTL data
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separately, the application of grouped hypothesis testing for eQTL data has not been
well explored. The natural grouping of the eQTL data using the genes as groups has
been largely ignored when applying multiple comparison techniques, except using com-
putationally intensive method such as permutation (Ardlie et al. 2015). There might be
assumptions that do not hold in general for grouped hypotheses, but hold in eQTL data
due to its special structure. In Chapter 3, we will discuss how such special structure of
the data can be used to develop new group testing methodologies for eQTL datasets.
Our method Random Effects model and testing procedure for Group-level FDR con-
trol (REG-FDR) models the alternative for the eQTL data and controls the FDR by
adaptive thresholding. Z-REG-FDR, an approximate version of REG-FDR, is also
proposed which exhibits similar results with much improved computational speed. As
Z-REG-FDR is very similar to REG-FDR, which is based on maximum likelihood es-
timation, Z-REG-FDR is conjectured to have near-optimality properties in estimation
due to its use of an approximate MLE. This method is not only very fast compared to
other grouped hypothesis testing methods, but it also does not require the full data to
fit the model. In fact, using only the p-values for each gene-SNP pair is sufficient to

conduct the gene-level hypothesis testing and control of the FDR.

1.3 Overview of the thesis

In Chapter 2 we develop RankCover, a new method to detect general association.
The results of application of the method on both simulated and real datasets are pre-
sented. Our proposed methodologies to control FDR in a grouped hypothesis set up
are described in Chapter 3. The advantages and limitations of our approaches are dis-
cussed in this chapter. In Chapter 4 we discuss a multi-tissue extension of our grouped

hypothesis testing method.
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CHAPTER 2: A PROCEDURE TO DETECT GENERAL
ASSOCIATION

2.1 Motivation

Adapting ideas from spatial analysis, we propose RankCover, a method that quanti-
fies the concentration of (x,y) values by measuring the area covered by laying disks of a
fixed radius over each point in the scatter plot of the ranks of the two variables. In the
presence of association, this area is expected to smaller than that under independence.
Therefore, a left tailed test is appropriate in this case.

RankCover starts by computing ranks of the original  and y values, and we assume
there are no tied values. The use of ranks considerably simplifies the problem, by
placing the intervals between successive ranked values on a common scale. In addition,
for ranked values, the null distribution depends only on the sample size n. Thus the
only computation lies in computing the observed statistic, while the null distribution
can be pre-computed and is applicable to any dataset of size n.

Diggle’s F'(§) function as introduced in Diggle (1983) is the distribution function of
the distance between a randomly chosen point in a region to the nearest observed point
(g, yx). To obtain an empirical estimate of the F'(9), the investigator conceptually lays
disks of radius 0 on each point (xy, yx) and calculates the proportion of the surrounding
region covered by the union of the disks (Figure 2.1). If  and y are highly associated,
the areas covered by the disks should be small, and therefore RankCover rejects only
in the left tail of the statistic described below.

Different distance metrics can be used for this purpose and the shape of the disks
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depend on the choice of the distance metric. For instance, Euclidean distance leads to
circular equidistance contours, resulting in circular disks, while the disks are diamond-

shaped for Manhattan distance (Figure 2.1).
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Figure 2.1: lustration of RankCover for sample size n = 50: A. Scatter plot of the two
variables. B. Scatter plot on the rank scale C. Disks laid on the scatter plot on rank
scale using Euclidean distance D. Disks laid on the scatter plot on rank scale using
Manhattan distance.

2.2 The test statistic

The empirical estimate of F'(0) can be obtained using the proportion of area covered
by the discs. For a given sample ((x1,v1), .., (Tn, Yn)), T € X yp € YV, k= 1,2, ..., n,
let the total area covered by the union of the disks of radius § be A(d). The empirical

estimate of F' is given by
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F(6 Al)

(6) = x| (2.1)

Let (rg, s;) denote the ranks of the kth sample pair, k = 1,2, ..., n. The correspond-

ing version of F for ranks is given by

Fp(5) = (2.2)

where Ag(§) is the area covered by union of disks placed at each of (ry, si).

However, it is difficult to calculate the exact area covered by the union of disks due to
the complex nature of possible intersections. Acknowledging the discrete nature of the
ranks, we consider only the n x n grid of possible rank pairs, {1,2,...,n} x {1,2,...,n},

and whether each of these values on the grid is covered by at least one disk.

Rank(y)

Rank(x)

Figure 2.2: Showing the Grid based approach of RankCover

Definition 1. Define d(i, j, zx,yr) = distance between the point (i,j) on the grid and

(xka yk); dzg - mink d(l,], Lk, yk)
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Using this definition, a reasonable statistic for fixed 4 is

Fra(6 ZZI d;; < 6), (2.3)

=1 j=1

where [(.) is the indicator function. The grid-based empirical distribution function
(EDF) for ranks Fre(0) can be considered as an approximation to Fg(d).

The choice of disk size 0 is an important consideration which has not been fully
addressed in the spatial statistics literature. Diggle (1983) suggested computing the
entire empirical distribution function (EDF) F(§) to develop a new summary statis-
tic to compare against the null curve. However, this approach makes the procedure
prohibitively computationally expensive, and we propose using a fixed 6 = /n for Eu-
clidean distance (Section 2.3), with slight modification under Manhattan distance. It
is observed that there is very little difference in power to detect association between
the method using the entire EDF and the statistic using a fixed § = y/n (Figure 2.3).
In addition, we modify the statistic to account for edge effects of the grid, using an
(n+4 [0]) x (n+ [J]) grid extending beyond the range of the scatterplot. Here [4] is

the smallest integer greater than or equal to ¢. Finally, our modified test statistic is

T == > Y I(dy;<0), (2.4)

where the range of {i, j} reflects the outer boundaries of a larger region to account for
edge effects. Note that the same divisor n? is used allowing T'(§) to be greater than 1.
T'(0) can be interpreted as the proportion or area covered by the disks as compared to
the area of R,,, the n x n region which is the range of the original scatter plot.

The null distribution of T depends entirely on n, so tables based on simulated null
distibutions can be pre-computed for various sample sizes. The following lemma shows

that the grid based statistic T'(J) is asymptotically equivalent to the corresponding
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area-based statistic.

Lemma 1. Let Ta(6) be the area based test statistic corresponding to T'(6) with areas of
the disks extending beyond the n X n square being taken into account. For 6 = O(y/n),

1TA(8) = T(8)] £ 0 as n — oo.

Proof. For a single disk with radius d, by the Gauss circle problem (Gauss 1986), the
difference of its actual area and its lattice based approximation N(0) is bounded by

2V/276.

Therefore, for 6 = O(y/n), with probability 1, |T4(0) — T'(d)| < %n—@“ =0(==)—0

\/Lﬁ
as n — 00. . [

The implication of this lemma becomes obvious in (Section 2.6) when we discuss
large sample properties of RankCover. In small samples, the two statistics T4(d) and
T'(§) might be quite different. However, there is no reason to believe that one is inferior
to the other in small samples since T'(§) actually computes similar disk coverage statistic

for a different disk shape that looks like a polygon.

Linear Quadratic Circle
—o-o-o\u —o-o-c\ —o-o-o-o-o-o-g:e:ezA
© \ @ L © o
o 7] 8 o ] \u o ]
5 \, 5 - \ 5
E 5 2 ) E
°c < X o < | A °c <
L o e:et o o 0\9\ L o
- 3 - 6-p -
o _| e | Q
e T T T T T © T T T T T S T T T T T
02 04 06 08 1.0 02 04 06 08 1.0 02 04 06 08 1.0
Noise Level Noise Level Noise Level

ORankCover 2AAUC method

Figure 2.3: Showing the comparison of power of the method using the area under the
EDF (AUC method) and that of the method using d,,r = /1
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2.3 Choice of parameters and distance metric

The choice of the disc size d is an important consideration. We have proposed the
use of a single optimum choice of § as opposed to the whole § versus Ia (0) curve used
by Diggle (1983). The argument for choosing 0., = y/n for Euclidean distance and

0 = y/5n is somewhat heuristic, but based on empirical observations for several sample

sizes.
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Figure 2.4: Showing the expected ¢ for which A. T(D;) = 1 B. Fra(Dy) =1

The external region beyond R, is used to take care of the edge effects. However,
it is the behavior of the disks inside R,, that primarily differentiates between null and
alternative. While trying to find a disk size that will enhance this difference the most,
it is reasonable to believe that increasing disk size will not provide much of information
once R, is completely covered. Since the computational cost increases with the increase
of the disk size, one would like to stop increasing the disk size when it stops providing
much information. Therefore, we try to find out the disk size for which R,, is completely
covered.

It is a difficult problem to analytically determine the ‘stopping’ disk size. Further-
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more, Hall et al. (1985) proved that for a Boolean process (Discussed in Section 2.6),

the probability of coverage is 1 if the area of the disk a,, satisfies

an/n —log(n) —log(log(n)) — oo as n — oo. (2.5)

It is evident that for 6 = n®, this condition is satisfied if and only if o > % Even
though this result does not have a direct implication in our case, it is suggestive of the
order of the ‘stopping’ disk size. To further explore the stopping condition, we used
simulated data and calculated the expectation of two variables D; and Dy defined as

below.

D, = Smallest disk size for which the realized T'(D;) > 1.

D, = Smallest disk size for which the realized Frg(D;) > 1.

Figure 2.4 Shows that both E(D;) and E(D,) are probably of the order y/n.
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Figure 2.5: Showing the mean, sd and coefficient of variation of T'(¢) for sample size
50 (Euclidean distance is used)

Next, we examine the expectation and standard deviation of 7°(6) under the null
for varying 0. These curves calculated based on 1000 simulations under the null are
shown in Figure 2.5 and Figure 2.6 for Euclidean distance. There is a clear change
of curvature in the expectation in the vicinity of 6 = /n, and the standard deviation

exhibits a local maximum and minimum in the vicinity. We reason that the local
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minimum of the standard deviation represents a good choice for 6. We also note that
the point where the expectation curve changes the curvature is approximately the same
point as the local minimum of the standard deviation, and the coefficient of variation
is almost constant beyond this point. However, there is no closed form expression for
this point of local minimum. From simulations under different sample sizes, we have
established that such local minima occur near § = y/n for Euclidean distance, and

propose it as our choice of d,yp.
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Figure 2.6: Showing the mean, sd and coefficient of variation of T'(4) for sample size
100 (Euclidean distance is used)

Thus, there is enough reasons to believe that the optimal § should be of the order \/n
even though the minimum of the standard deviation is not exactly at y/n. Rather, the
minimum can be better empirically modeled as \/n+ \/m for sample sizes up to
500 (Figure 2.7). However, all these heuristic arguments deal with the behavior of the
test statistic under null. We have also compared its power against different alternatives
for varying 0. Figure 2.8 shows the average p-value in —logy( scale for different forms of
association. Clearly there is no single ¢ for which the power is maximized. However, the
power for & = y/n is close to the maximum power achieved in all the cases. Therefore
we conclude that it is not possible to find out a disk size that is ‘optimum’ in the true
sense, but d,,r = 4/n can be considered as a reasonable choice for Euclidean distance.

Also, it is observed from simulations that the shape of these curves depends on ¢
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Figure 2.7: Showing the § for which standard deviation of 7'(d) is minimum for different

sample sizes
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Figure 2.8: Showing the Average p-value using different disk sizes when testing against
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SO We Use Ogpr = 4 /5n for the Manhattan distance. Using simulations, we have tested

that such a choice of § produces similar curves for Manhattan distance.
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For the distance metric d, we consider here both Euclidean and Manhattan dis-
tances, for which simulations show similar performance (Section 2.7.1). However, the
Manhattan distance has advantages in approximating tail areas since the rejection
thresholds follow a sawtooth pattern (Figure 2.9), with jump points occurring at the
values of n where [§] changes. For large values of n, to reduce computation, one can
perform direct simulation for the values of n at, and just prior to, the jump points,
followed by linear interpolation for remaining values of n. Therefore we recommend its

use and here present results using Manhattan distance.

1.20
|

® Obtained by actual simulation
Obtained by linear interpolation

5% Quantile
110 1.15
1 1
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»
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»
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Figure 2.9: Showing the pre-computed thresholds for the RankCover method with
Manhattan distance. 100000 simulations were used to calculate the thresholds in each
case. Simulations were performed for n = 20, ...,100. For large values of n, to reduce
computation, tables were generated by (i) performing direct simulation for the values
of n at, and just prior to, the jump points, followed by (ii) linear interpolation for
remaining values of n.

2.4 Fast Computation of the test statistic

The crude way to compute the test statistic needs to calculate the distances of
the n sample points from each of the (n + [§])? points on the grid. Thus, the order

of computation is n?

. We have proposed a method with complexity O(n?) (Zhou,
Wright; personal communication, November 2014). The algorithm first calculates a

(2[6]+1) x (2[d] + 1) prototype matrix of 1’s and 0’s that represents the shape of the

26



disk. Then the prototype matrix is used to “punch” a hole at each of the sample points

(Figure 2.10).

Scatter plot of ranks Prototype matrix Coverage
9
@ °°&Z>q’°e‘§
SR o £ &b
& e, R2G
@ o, 600 S
o 8° 3%
o 0 % %06 o
°, B8 %
°
o § 8% %88 .
o
. &% §,°mo°o°°°o°q°
00 ©oR° 00 ,°
oo g 8°g% & &F
o o0 8°° g9 S &
0050 “o °
0o 3® £° 0 %o oo
02" 00 o
o oq,ooe ® o & ©°
> %6, g%e’o °
@ oooi 00 oo
% wo Q° o
R a0 o0
&‘Z’o{%’ oS °
B®e ©

Figure 2.10: Showing the fast computation of RankCover

2.5 Exact expectation of the RankCover statistic for Manhattan distance

We exploit the desirable properties of Manhattan distance to obtain the exact value
of E(T,(0)). Let us define the random variables ;;, i = 1,2, ...,n;j = 1,2, .., n, for each
point (¢,7) on the grid. I;; is 1 if there is any sample point within the distance § from

(i,7) and 0 otherwise.

Figure 2.11: Schematic to illustrate calculation of P(l;; = 1) for 1 <i<n,1 <j <n.

Let us consider the case where the d-ball lies completely within the R,. From

Figure 2.11, clearly,
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P, =1)=1-m=tatat 1 <5<

P(I; =1)=1-—w8ndnindnb 9 < § < 3 and so on.

n n—1n—2n—-3n—4’

In general, if [0] = k

(n — 2k — 1)k (n — 2k)*

’ (1) 2k+1)

(2.6)

It becomes more complicated when a part of the -ball lies outside the n x n region.
It is difficult to obtain a simplified formula like above, but similar counting procedure
can be used to get the expression of the expectation.
Let [6] = k and n are given. We need to find p;;(k,n) = P(l;; = 1) for a given point
(,7) on the grid. Define
ny(t, k,n) = min{t — 1, k}

n.(t,k,n) = min{n —t, k}

and

n(i,k,n) =1+ n(t k,n)+n.(t,k,n)

ny(t, k,n) is the number of points at the left of (¢,.) on the same horizontal line
within the J-ball as well as within the n x n region. n,.(t, k,n) is the number of such
points at the right and n(t, k,n) is the number of such points on that horizontal line.
Let I(t,k,n) denote the index vector of the relative positions of the n(t, k,n) points
with respect to (¢,.). We assume that (¢, k,n) consist of the sorted absolute values
and call the rth element of it I.(¢,k,n). For example, in Figure 2.11, for § = 2,
1(6,2,12) = (0,1,1,2,2).

Using simple arguments of geometric probability, clearly,
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n(i,k,n)

pij(k’,n) =1- H

r=1

—r+1-—n(j,k—IL(i,k,n),n)
n—r+1

(2.7)

Figure 2.12: Showing the existence of (ig, jo) for a point (7, j) outside the n x n region

Equation 2.7 applies to any point (i, 7) within the n x n region. For (i, j) outside
the region, there exists a point (ig, jo) (See Figure 2.12) on the edge of the region such

that

]%j(kf, TL) = pioj0<k0’ TL)

Here

io =1{i <1} +nl{i>n}+il{l <i<n},
Jo=1I{j <1} +nl{j>n}+jI{1 < j<n},
ko =k —|i —io| — |7 — Jol-

Equation 2.7 can then be used to obtain p;;, (ko,n).
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2.6 Large sample properties of RankCover

The computation of the RankCover statistic might be quite slow if the sample size is
very large. For instance, with n > 10000, the Monte Carlo simulations to produce the
null distribution of the test statistic becomes computationally expensive. The testing
procedure will be much simpler and faster if the large sample theoretical distribution
of RankCover can be determined. In the following sections we discuss the established
large sample results pertaining to the theory of coverage process and RankCover’s
relationship with them. Euclidean distance is considered as the distance metric, but

the same arguments can be easily shown to apply for Manhattan distance too.

2.6.1 Coverage Process

The theory of coverage process is related to the idea of RankCover. In a simple
set up, a coverage process can be thought of as a countable sequence of sets in an
Euclidean space (Section 2.6). Suppose P = {&;,&,..} is a countable collection of
points in R¥ (which might be a stochastic point process (Karr 1991)), and {S;, Ss, ...}
is a countable collection of non-empty sets (might be random sets). If & + S; denotes
the set {& + 2 : 2 € S}, then C = {& + S; : i = 1,2,...} is a coverage process. The
union of all sets in C is known as a ‘germ-grain’ model where the points &; are referred
to as ‘germs’ and the sets S; as ‘grains’. If P is a stationary Poisson process and S;’s
are iid random sets independent of P, then C is known as a ‘Boolean’ process.

In a simpler version of coverage process, which is relevant to our problem, the sets
S; are all equal to a fixed set S (in our case, the disks), and the point process {&1, &, ...}
is assumed to be generated from a region R, which is known as the ‘experiment space’.
While C' = U; (& + S;) is called the total coverage, the vacancy within a subset R of R¥

is defined as

V=V(R)=R\C.
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Note that the set R does not have to be same as the experimental space R although
most of the coverage process literature deals with the vacancy V(R) within R. The
proportion of vacancy within R is called the porosity, and is directly related to the
way RankCover is formulated. The major difference is the point process in RankCover
which is not a Poisson process due to the use of ranks.

Various researchers has found out moments and limiting distributions of vacancy
under different conditions. Hall (1985) proved the aymptotic normality of vacancy for a
Boolean process and provided the expressions for its mean and variance. Moran (1974)
computed limiting distributions of coverage assuming that the points are generated
from a normal distribution. Similar work has been done by Miles (1969), Ailam (1966),
Hall (1984). However, most of the work in this area has assumed that the points are
generated independently. In the presence of dependency, the derivation of these limit
theorems becomes extremely complicated (Hall 1988). Little work has been done with
dependent cases, and very specific situations are handled in the few attempts that have
been made (Moran 1973). Those situations are not similar to RankCover.

We present a few early results with the conjecture that as n becomes large, the dif-
ference between RankCover and the case considered by Hall (1985) becomes negligible.
We provide empirical evidence to support the conjecture that for very large n the two

distributions to become similar.

2.6.2 Asymptotic Negligibility of the edge effect

Hall (1984) proved that the edge effects are asymptotically negligible in the sense
that the distribution of vacancy under Boolean process remains the same even if edge
effects are ignored. However, the way edge effects are defined by Hall (1984) are quite
different from what we consider for RankCover. The coverage was considered within
the experimental space R, and the edge effects in that case were the way the probability

of a point within R being covered changes when it is near the edge. For RankCover,
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we consider the coverage beyond the experimental space R. Therefore the result due
to Hall (1984) does not directly apply. The following lemma proves that the edge effect

for RankCover converges to zero as n becomes large.
Lemma 2. For § = O(y/n), |T(8) — Fra(8)| <25 0 as n — oco.

Proof. We consider Euclidean distance as the distance metric. Let 6 = O(y/n) be the
radius of the disks, and k = [§]. For any circular disk lying partially outside R,,, there
exists a rectangle within which the circular portion can be inscribed. Considering the
area of such rectangle as an upper bound for the area of the portion of the circle, we
obtain, with probability 1,

IT(8) — Fra(0)] < 4{262 +26(6 — 1) +26(6 —2) + ... +26(0 — k)}

= 80{(k+1)0 — *54} = O(J=) » 0 as n — . O

One should note that such convergence is clearly quite slow and the sample size needs
to be very large in order for the edge effect to be negligible for practical purposes.
2.6.3 Asymptotics of coverage for Boolean process

Hall (1985) proved the aymptotic normality of vacancy V for Boolean process and
provided the expressions for its mean and variance. The expression for the mean and
variance of the proportion of coverage C' follows directly from those. For 6 = y/n, the

expressions are

E(C)=1—exp(m) (2.8)
1
o? =nV(C) = me > (8 / w{e*™ W — 1}du — 7) = me ?"(8 x 0.997216 — 7), (2.9)
0
where Jj,(u) = (

Z — sin~u) — 3sin(2sin”u)).

It also follows that

32



Vn(C = E(C)) % N(0,0?). (2.10)

However, these results do not directly apply to RankCover, and the difference might

be substantial even for moderately large n (Figure 2.13).
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0.000
L
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—— Without rank

Figure 2.13: Showing the difference in mean and standard deviation between total
coverage C' for Boolean process and the RankCover statistic.

2.6.4 Applicability of the results to RankCover

If it can be shown that the difference between the total coverage as in Hall (1985)
and the RankCover statistic becomes negligible as n becomes large, then Equation 2.8,
Equation 2.9 and Equation 2.10 can be conveniently used for large n to test for general
association.

Let us examine the difference between the joint distributions of ((z1,y1), .., (T, Yn))
under the null in both cases. If ((z1,v1), ..., (Tn,yn)) are independent samples from a
bivariate discrete uniform distribution over {1,2,...,n} x {1,2,...,n}, the joint density
is

fl((xlvyl)v"'v(xnayn)) = % (211)
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If ((x1,91), .-, (Tn,yn)) are the ranks, the joint density becomes
fol(zr, 1), s (@, yn)) = —5- (2.12)

The Hellinger distance between the two distributions is H(fi, fo) = /1 — 1/7%1 —
1 as n — oo. Therefore, the effect of rank does not wash away as n becomes large.
However, the effect of rank on the test statistic might still be asymptotically negligible.

But, it is difficult to prove or disprove it analytically.
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Figure 2.14: Showing the A. mean and B. standard deviation of /n(C — E(C)) for
Boolean process and the corresponding statistic for Frg(0).

To see the differences, we examined the behavior of coverage proportion C' as in
Hall (1985) and the RankCover test statistic for simulated datasets (Figure 2.14, Fig-
ure 2.15). Figure 2.14 indicates that the expectation and variance of C' and Fire(9)
might be sufficiently close for very large n, but there is no conclusive proof. By
Lemma 2, this implies that C' and 7'(§) might also be close asymptotically. How-
ever, it requires even larger sample size for them to be close enough (Figure 2.15).
Based on Figure 2.14, we suggest that for sample sizes in the range 2000-10000, F rG(0)
can be used as the test statistic and the asymptotic results in Equation 2.10 hold ap-

proximately true. Based on our simulations, the type-I errors using Equation 2.10 for
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n = 2000, 5000 and 10000 were 0.045,0.054 and 0.053.
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Figure 2.15: Showing the A. mean and B. standard deviation of /n(C — E(C)) for
Boolean process and the corresponding statistic for 7°(6).

2.7 Simulation Results

2.7.1 Comparison of different methods for simulated datasets

Following the simulation procedure used in Simon and Tibshirani (2014), we have
simulated pairs of variables with several canonical dependency relationships (Figure 2.16)
and with varying noise levels. In each scenario, the X values were simulated iid from a
uniform distribution, while the noise distribution was Gaussian. However, the overall
results were similar for other distributional forms.

The simulation results indicate that RankCover and dCor have some complementary
characteristics, and so we additionally propose a hybrid statistic using results from
RankCover and dCor. The hybrid method uses the minimum p-value from RankCover
and rank-based dCor as a new statistic.

Figure 2.17 shows the power for the methods for various relationships, with varying
noise levels, for sample size n = 50. Here the ‘noise level’ is a scale quantity appropriate

to each relationship form, following Simon and Tibshirani (2014). It is evident that
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Figure 2.16: Showing the scatter plots for different relationships between the pair of
variables (low noise level).

RankCover performs better than MIC in all the situations we have considered. It is
found to be more powerful than dCor and HHG in several cases while these methods are
found to be more powerful in other cases. Even when dCor or HHG is more powerful,
RankCover still has reasonable power to identify the association. We have tested that
these observations hold true for varying sample sizes, levels of noise, and functional
forms for the originating X and noise distributions.

A careful look into the results indicate that dCor is more powerful than RankCover
when the type of association is monotone. When the relationship is non-monotone,

dCor is typically not as powerful. We attribute this behavior to the fact that dCor
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Figure 2.17: Showing the power of different methods (type-I o = 0.05) against different
relationships at varying noise levels (Manhattan distance), n = 50.

is less sensitive to non-monotone relationships for the reasons described earlier (Sec-
tion 1.1.4). We have also observed that with monotone relationships, the Spearman’s
rank correlation is as powerful as dCor. Therefore, one might simply use Spearman’s
rank correlation if there is prior knowledge that the relationship is monotone. On the
other hand, RankCoveris more sensitive to local clustering of points rather than trends.
Thus, it is powerful against even non-monotone relationships like cubic, circular or the
“X” relationship.

These observations motivate the use of a hybrid method utilizing both RankCover
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Figure 2.18: Showing the power of different methods (type-I o = 0.05) against different
relationships at varying noise levels (Euclidean distance), n = 50.

and dCor, as the two methods appear powerful in different situations.

Formally, a

new statistic is defined spypriq = MIN(Pacor, PRankCover ), WheTe Drankcover 18 the p-value

obtained by using RankCover, and pacor is that using dCor on (rank(z), rank(y)). The

p-value for the hybrid method is prybria = P(Shybria < Shypria). As with RankCover,

the p-value can be obtained by using pre-computed simulations. The hybrid method,

as expected, is always less powerful than the most powerful statistic for each scenario,

but seems to be robust against all forms of association investigated.

The HHG method also appears to be relatively robust.
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RankCover and the hybrid method to detect periodic relationships and non-functional

relationships makes it very useful against such alternatives. The fact that RankCover

is especially powerful against periodic relationships will be reinforced by the results in

Section 2.8.3 and Section 2.8.4.

We summarize by emphasizing that RankCover and the hybrid method are powerful

and robust in comparison to competing methods, and that these simulations cover a

large range of relationships and noise levels. The broad conclusions are also not very

sensitive to the marginal distributions of X and the error distributions.
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Figure 2.19: Showing the power comparison of dCor and Spearman’s rank correlation
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2.7.2 Comparison of dCor and Rank Correlation

Distance Correlation (dCor) seems to be the most powerful method among all the
competing methods when the relationship is monotone (eg linear, X'/4, Two curves).
However, further simulations show that even Spearman’s rank correlation is equally
powerful in those cases (Figure 2.19). Therefore, if we have prior knowledge that
the relationship is monotone, then we do not gain power by using the more recently
developed methods anyway, and could use Spearman’s rank correlation instead. We
note that Spearman’s rank correlation does not have much “generality” in the sense
that it is not powerful against non-monotone alternatives. However, dCor has also been

shown to have similar limitations.

2.8 Application on Real Data

In addition to simulated data, we illustrate all the approaches on several real

datasets.

2.8.1 Example 1: Eckerle4 data

We show data from a study of circular interference transmittance (Eckerle 1979)
from the NIST Statistical Reference Datasets for non-linear regression. The data were
analyzed by Székely and Rizzo (2009) to illustrate dCor, and contain 35 observations
on the predictor variable wavelength and the response variable transmittance.

Figure 2.20 shows the scatter plot of the predictor and the response along with the

fitted curve (NIST StRD for non-linear regression) based on the model

2 B2)2
Yy = g—;exp{—( 2553) }+e,

where 31, 82 > 0, 53 € R and ¢ is random Gaussian noise.
From the plot, it is evident that there is a very strong non-linear relationship between

the two variables. For dCor, p = 0.02072, while MIC and HHG have p-values < 107°.
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Figure 2.20: Showing the scatter plot and the fitted curve for the Eckerle4 dataset

The RankCover method and the hybrid method are also highly significant, with p <
107°.

2.8.2 Example 2: Aircraft data

We have explored the Saviotti aircraft data (Saviotti 1996) which was also ana-
lyzed by Székely and Rizzo (2009). We consider the wing span (m) vs. speed (km/h)
(n = 230, Bowman and Azzalini (1997)). Figure 2.21 shows the scatter plot of the two
variables, alongside non-parametric density estimate contours (log scale). It is clear
from the plot that there is a non-linear relationship ( Pearson’s product moment cor-
relation is a modest 0.0168, p-value= 0.8001), although the relationship is complicated
and apparently not monotone.

All of the methods described here were significant at a = 0.05. The p-values for
dCor, MIC, and HHG were 0.00013, 0.00004, and < 107, respectively. For RankCover

the test was also significant with a p = 0.0008, and for the hybrid method p = 0.0002.

41



o o
© | © |
v v
~ T ~ T
~ 9 ~ ©
T O~ T N
g, g .,
5 © T ©
o ie)
o | e ]
© ©
v v
w0 7 w7
o | < ]
© T T T T T © T T T T T
2.0 25 3.0 35 4.0 2.0 25 3.0 35 4.0
log(Span) log(Span)

Figure 2.21: Showing the scatter plot and the density estimate contours for the aircraft
speed and wing span

2.8.3 Example 3: ENSO data

The ENSO data ( also taken from the NIST Statistical Reference Datasets for non-
linear regression) consists of monthly average atmospheric pressure differences between
Easter Island and Darwin, Australia (Kahaner et al. 1989), with 168 observations.
There are 168 observations. The data form a time series, and has different cyclical
components which were modeled (NIST StRD for non-linear regression) by the proposed

model
y = Bi+ Pacos(2E) + Bysin(ZE) +/B5cos(2g—f) +563m(2g—f) +ﬁgcos(2g—f) +Bgsin(2g—f) +e,

where (31, Ba, ..., B9 € R and € is random Gaussian noise.

Figure 2.22 shows the scatter plot of the data along with the fitted curve. The
cyclical fluctuations are evident, but no linear trend is observed. Thus, the Pearsonian
correlation (0.0843) fails to capture the pattern. However a simple serial correlation
with lag 1 (0.6102) reveals the association. With 100,000 simulations, the RankCover

test is significant with p-value 0.00032. The hybrid test and MIC test are also significant
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Figure 2.22: Showing the scatter plot and the fitted curve for the ENSO dataset

with p-values 0.00064 and 0.00027 respectively. However dCor and HHG fail to detect

significant association (p-values 0.13521 and 0.07617, respectively).

2.8.4 Example 4: Yeast data

In this example, we analyze a yeast cell cycle gene expression dataset with 6223 genes
Spellman et al. (1998). The experiment was designed to identify genes with activity
varying throughout the cell cycle (Spellman et al. 1998), and thus transcript levels would
be expected to oscillate. This data has been analyzed by many researchers, including
Reshef et al. (2011), who used it to verifying the ability of MIC to detect oscillating
patterns. We have run dCor, MIC, HHG, RankCover and the hybrid methods of test
on the data and used the Benjamini-Hochberg method to control the false discovery
rate.

We have listed the genes identified by different methods after controlling the false
discovery rate (FDR) at the 5% level and compared them with the list of genes iden-
tified by Spellman et al. (1998). Of all the genes identified by Spellman et al. (1998),
RankCover found 16% to be significant, while dCor, MIC and HHG found only 6%, 2%

and 8% respectively. The hybrid method could identify 12% of those genes. Instead
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Figure 2.23: A. The plot comparing the FDR adjusted g-values of the test using
RankCover and that using dCor for the genes in Spellman’s list in a log scale. It
is evident that most of the genes in Spellman’s list have a smaller g-value when the
RankCover test is used. B. A similar plot comparing the g-values of RankCover and
MIC. C. A similar plot comparing the ¢g-values of RankCover and HHG. D-I. Examples
of genes in the Spellman’s list that were identified by RankCover, but not by at least
one of dCor, MIC or HHG. The values in parentheses are the Spellman scores for the
genes.

controlling the FDR at 25%, the figures for HHG, dCor, MIC, RankCover and the
hybrid method become 39%, 23%, 18%, 57% and 47% respectively.
For these data, RankCover was clearly successful at identifying oscillating patterns

expected for the experiment. This is also clear from Figure 2.23 (panel A, B and C)

which compares the FDR adjusted g-values of our RankCover test with those of dCor,
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MIC and HHG on a logarithmic scale. Most of the genes in Spellman’s list which were
identified by dCor, MIC or HHG were also identified by RankCover, but RankCover
identified more genes than the other methods. Figure 2.23 (panels D-I) shows some
of the genes that were found significant by RankCover at 5% level, but not found
significant by at least one of the other three methods. PDRS was found significant
by MIC, HHG and RankCover, but not by dCor. On the other hand MIC could not
identify FETS3, which was identified by dCor, HHG and RankCover. The other four
genes shown in Figure 2.23 were found significant by RankCover but not by dCor,
MIC or HHG. Note that all of the six genes were found to be significant by the hybrid

method.

2.9 Method to test the association of two variables after adjusting the

effect of a third variable

The ideas of partial and multiple correlation coefficients do not easily generalize
to the case of general association. Little work has been done in this area. Kendall
(1942) discussed partial rank correlations and Moran (1951) proposed some methods
to quantify partial and multiple rank correlations. However, the distribution of the
statistics are difficult to obtain even in large samples (Maghsoodloo 1975). RankCover
easily lends itself to the generalization to a multiple correlation analogue by computing
the proportion of coverage in higher dimensions. The approach can have some usefulness
in the theory of model selection, but an analogue of the partial correlation would be
the more useful and interesting quantity.

The partial correlation coefficient is used to quantify and test the association of
two variables after adjusting for other variables. However it applies only to linear
associations. In the linear case, the correlation of two variables x and y for a fixed

value of a third variable z does not depend on the fixed value. However, that may
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not be true in the general case, which makes the situation more complicated (Speed
2011). The early works on this subject have either used Cochran-Mantel-haenszel type
contingency table approach (Birch 1965), or are similar to rank correlation (Kendall
1942, Moran 1951). In both cases, the measures are expected to suffer for non-monotone
relationships. Lehmann (1977) and Hubert (1985) discussed association and partial
association in a more general set up, that also, is powerful only against monotone
relationships. Recently, Qiuheng et al. (2014) proposed a method Partial Maximal
Information Coefficient (PMIC) that attempts to fit a curve and the compute the MIC
of the residuals. However, the model to be fitted is chosen separately on a case by
case basis using other methodologies, and this defeats the idea of general association.
Szekely et al. (2014) defined Partial Distance Correlation (pdCor) by introducing a
Hilbert space and also proposed a method to test if the pdCor is significantly different
from 0. Since dCor has been shown to suffer from lack of power to detect non-monotone
relationships, pdCor is expected to have similar problems.

Using RankCover, we propose a general test of association after controlling the effect
of a third variable. It can be generalized to more variables.

Our method consists of calculating the test statistic 7(d) for a number of strata and
take the average of them. The strata are formed by different ranges of values of the
third variable that is believed to be controlling the two variables of interest. For a fixed
stratum size, s, we sort our observations in order of the values of the third variable and
classify the first s observations to the first stratum, the next s observations to the next
stratum and so on. In order to do the hypothesis test, we permute the ranks of z and
y within each stratum.

The choice of s is vital. If s is too large, ie the number of strata is very small, the
procedure will not be able to control the type-I error since there will be some association
within each stratum between the two variables due to the effect of the third variable.

On the other hand, a very small value of s will lead to loss of power. A value of s
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which controls the type-I error at desired level and maximizes the power should be the

optimal one.
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Figure 2.24: Showing the effect of number of strata on the type-1 error of stratified
approach. The horizontal line is the type-1 error of the RankCowver test in the ideal
situation where one knows the exact form of z-z and y-z dependence. A. x-z and y-z
are linear B. z-z is linear and y-z is quadratic.

Here we present results for simulated data with a sample size 200. We considered

six different cases for the marginal relationships between x,y and z:

1. x-y, x-z and y-z are linear, all the slopes have the same sign.

2. x-y is quadratic, x-z and y-z are linear.

3. x-y is circular, z-z and y-z are linear.

4. x-y is circular, z-z is linear and y-z is quadratic.

5. x-yis X i, 2-z is linear and y-z is quadratic.

6. x-z and y-z are linear with positive slopes, -y is linear with a negative slope.

In order to test how the type-I error is controlled as s is decreased, we used the cases
where x and y are conditionally independent given z, and (i) -z and y-z are linear or

(i) -z is linear and y-z is quadratic.
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These examples cover different situations such as (a) the association z and y is
enhanced by their relationship with z (1,2,3 above), (b) the association may not be
enhanced, but is of a different shape (4,5 above), (c¢) the association is masked by
the effect of z (6 above), (d) there is no association between x and y, but spurious

association is introduced by the effect of z.
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Figure 2.25: Showing the effect of number of strata on the power of stratified approach.
The horizontal line is the power of the RankCover test in the ideal situation where one
knows the exact form of z-z and y-z dependence. A. x-y, x-z and y-z are linear, all the
slopes have the same sign B. x-y is quadratic, z-z and y-z are linear C. z-y is circular,
x-z and y-z are linear D. x-y is circular, x-z is linear and y-z is quadratic E. z-y is X %,
x-z is linear and y-z is quadratic F. x-z and y-z are linear with positive slopes, z-y is
linear with a negative slope.

Figure 2.24 shows the type-I error of the test against the number of strata. Fig-
ure 2.25 shows the power of the test for different situations. The power (or type-I error)
for the ideal situation where one knows the exact form of z-z and y-z dependence is
also presented. It is obvious from the figure that the power of the test decreases with
the increase in the number of strata. However, if z masks the association of z and

y, then the power increases initially and decreases when stratum size becomes very
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small. The power can drop drastically as compared to the ideal situation especially
when the z-y relationship is non-linear. Fortunately, the type-I error is controlled with
a few strata (in these cases, 10). The choice of optimal number of strata for various

situations requires further studies on this topic.

2.10 Discussion and future work

Our RankCover testing procedure serves as a simple and powerful method to test
for general association between a pair of variables. The method is applicable to the
problem of testing general association irrespective of the marginal distributions of the
(continuous) variables. Use of the rank scale also allows a pre-computed null distribu-
tion for the statistic, avoiding the need for actual permutation. This, along with the
introduction of the idea of using a single disk size, makes the procedure computationally
feasible. The testing procedure has been shown to be powerful in simulated datasets
even with a small sample size. A variety of real datasets, ranging from studies of cell
cycle effects in gene expression to studies involving circular interference transmittance
show that the approach provides useful and interpretable results.

Although dCor is theoretically motivated by consideration of characteristic func-
tions, in practice it suffers for non-monotone relationships. Our RankCover procedure
is generally powerful and robust, and is more powerful than MIC, dCor and HHG for a
number of scenarios. RankCover may be especially useful to detect oscillating relation-
ships, keeping in mind that such relationships need not be periodic and the amplitudes
may vary. A hybrid of RankCover and dCor is proposed, which is shown to be highly
robust against many forms of associations.

With the rapid rise of large datasets in today’s scientific community, RankCover
provides a useful tool to detect general association. The approach is both sensitive

and relatively powerful, even with small samples, against various and general forms of
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association.

We have demonstrated that when the sample size is very large, the large sample dis-
tributions of coverage for Boolean coverage process can be used as the null distribution
of RankCover without edge effect correction, thus avoiding the need for permutation..
However, we have not been able to provide an analytical proof and further research is
required. Also, central limit theorems related to the coverage process for ranks might
be pursued independently.

We have also proposed a partial RankCover technique that is shown under different
situations to control the type-I error and at the same time have reasonable power to
detect the association after removing the effect of a confounder. However, the choice of
the stratum size is critical to strike this balance. Also, the procedure to form the strata
for more than one covariate is unclear, unless the sample size is sufficient to allow for
stratification by multiple variables.. Hence, in our future work, it might be interesting
to find a way to determine optimum stratum size for a given dataset and try to define

the test statistic in a definitive way for more than one covariates.
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CHAPTER 3: CONTROL OF FALSE DISCOVERIES IN GROUPED
HYPOTHESIS TESTING FOR EQTL DATA

Expression quantitative trait loci (eQTL) analysis aims to detect the loci that affect
the expression of one or more genes. The gene expression is considered as the quantita-
tive trait potentially associated with the genotypes at different sites in the genome that
are usually various single nucleotide polymorphisms (SNPs). As mentioned in Chap-
ter 1, even though there has been substantial literature on both eQTL mapping and
grouped hypothesis testing, consideration of the natural grouping in the eQTL data is
comparatively unexplored. Analysis of gene-level eQTLs and specifying causal SNPs is
an important biological problem. Testing whether there is any eQTL in an entire gene
after controlling FDR for multiple genes may be interesting for various reasons. In the
following sections, we discuss the structure of the eQTL data and how the grouped
nature can be accounted for using a random effects model. We consider only the case
of a cis-eQTL, i.e. when the variant affecting the gene expression is in the immediate

neighborhood of the gene.

3.1 Structure of the eQTL data and the hypotheses

The eQTL data is usually in the form of an expression matrix consisting of a number
of genes (say N) along with a genotype matrix which has genotypes of the same samples
for several SNPs. Suppose that the number of samples is n and let the expression matrix
be Ynyxn. We can consider the genotype matrix X,(,an, 1 =1,2,..., N, corresponding
to each gene by picking up the SNPs that are local to the gene. The genotype matrices

are often adjusted for covariates, and thus can be considered to be continuous.
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Let Hy;; denote the gene-SNP level null hypothesis that there is no eQTL at the jth
SNP local to the ith gene, 7 = 1,2,...,m;,7 = 1,2..., N. Therefore there are Zfil m;
gene-SNP level tests. These tests can be grouped into N groups corresponding to the N
genes with m; tests in the ith group. Define Hy; to be the gene level null hypothesis for
the ith gene that there is no eQTL in the ¢th gene. Therefore the gene level hypothesis

can be written as

Ho; = M%) Hogj, (3.1)

i.e. the gene level null requires that all m; hypotheses be null.

3.2 The empirical Bayes set up

We adopt an empirical Bayes approach for controlling the FDR. Empirical Bayes
approaches have been used in many genetic applications in recent times (Efron and Tib-
shirani 2002, Ferkingstad et al. 2008). The merit of using an empirical Bayes approach
using the local false discovery rate (Ifdr) instead of p-value based FDR controlling
approaches has been discussed in Efron et al. (2001a) and Kendziorski et al. (2003).
Let us define the Ifdr corresponding to the gene level and gene-SNP level hypotheses

respectively as

Ai(Yi, X)) = P(Ho|Y;, X9), i =1,2,..., N, (3:2)

and

Nij(Ye, X37) = P(Hoy|Vi, X7, 5= 1,2,...;my, i = 1,2, N, (3.3)

J

where Y; is the ith row of Y and X;i) is the jth row of X®.

If we can obtain the lfdr \; for each of the gene level hypothesis, we can control the
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FDR at target level o for gene-level testing using the following adaptive thresholding
procedure which appears in Newton et al. (2004), Sun and Cai (2007), Cai and Sun
(2009), Li et al. (2013).

1. Enumerate the index 1,1, ..., 75 of the genes such that A\;; <\, < ... <\

TN *

2. Reject hypotheses Hy;,, ..., Hy;, where L is the largest integer such that

ll

1 L
Z)\il S Q.
=1

Sun and Cai (2007) and subsequently Cai and Sun (2009) showed that the adaptive
thresholding procedure is valid in the sense that it controls the FDR at target level «
for an ‘oracle’ procedure where the true parameters of the model are assumed to be
known. It is asymptotically valid for a ‘data-driven’ procedure when the parameters
are consistently estimated from the data. Li et al. (2013) proved its validity under
further relaxed conditions. The proof makes use of the following theorem (Averaging

Theorem, Efron and Tibshirani (2002)).

Theorem 1. Let Ifdr(z) = P(Hy|z) denote the lfdr for observed data z. Then, for a

rejection region R, the FDR will be given by
FDR(R)= P(Hy|Z € R) = E(lfdr(Z)|Z € R)

A similar procedure can be used to control the FDR for gene-SNP level tests. In

the next section, we suggest a model which enables us to calculate the lfdr’s.

3.3 The Random Effects model and testing procedure for Group-level FDR
control (REG-FDR)

Our REG-FDR is a model to obtain the gene-level 1fdr’s that can be subsequently

used to test the gene level hypotheses after controlling the FDR using the adaptive
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thresholding method. The model is based on the following assumptions.

1. For any gene 7, under the gene level alternative hypothesis H§;, there exists
(A1)

a single causal SNP that influences its expression.

2. Each of the m; SNPs has equal probability to be the causal SNP. (A2)

We will use the above assumptions throughout even though the assumption (A2)
can be relaxed if required. One might use some other probability distribution over
the SNPs instead of the uniform distribution if there is prior knowledge about the
distribution. Assumption (A1) may not always be valid, however such an assumption
is not uncommon (Kendziorski et al. 2006, Gelfond et al. 2007, Ardlie et al. 2015).

Under these assumptions, the gene level lfdr for the ith gene has the following form.

Ai(Yi, X)) = P(Hy|Y;, X©) = mofo(s)_ T (34)
mofo(Ye) + (1 = mo) - 2070, A(Yil XY, B)

where m9 = P(Hy;), fo(Y;) is the density of Y; under the null and fl(Y]X(Z B) is
the conditional density under the alternative given that the jth SNP is causal. The
marginal density p(X®) is cancelled from numerator and denominator. Importantly,
this cancellation allows us to bypass the modeling of the dependence structure of the
SNPs which might have been difficult to estimate.

We assume that fo(.) is the density of N, (0, I,) and fl(.|X]@,ﬁ) is the density
of Nn(ﬂX](-i), (1 — 8%)1,,), and 3 is the correlation between Y; and X]@. The choice
of this density ensures that the unconditional variance of Y; is free of . To take
care of the variability across the genes, we assume [ to be a random effect such that
vn — 3 tanh~1(B) has a N(0,0?) distribution. Since 3 is a correlation coefficient, the

Fisher transformation is used to ensure that the variance does not depend on the mean.
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Similarly, the gene-SNP level lfdr for the jth SNP local to the ¢th gene is given by

i i 70 foij (Y| X
Xij(Ya, X37) = P(Hoy|Vi, X7) = — ofos{ | ~) o
7o foi (Y| X D) + (1 — 7o) f1 (Y3 X;")

(3.5)

where 7o = P(Hoi;), foi;(.) is the density under Hp;;. Under the assumption that X j(»i)’s

for varying j’s are related by an AR(1) structure with serial correlation p, it can be

shown that
Fois(ViIXD) = 0f6(¥) + (1= 0) D" o (VI X[, 8, p), (3.6)
k#j
where 0 = P(Hy;|Hyi;) = erif—?(l), and fgjk(.lXJ(i), B, p) is the probability density
mo+——(1=mo

of N, (BplF~ J‘X( (1 — B2p**=iN1,). However, this assumption is not necessary for the
estimation of my, o and the gene level lfdr.

We can estimate the parameters my and ¢ using a maximum likelihood approach
and plug the estimates into Equation 3.4 or Equation 3.5. This enables us to use
the adaptive thresholding procedure for carrying out the tests with proper control of
the FDR. Note that we cannot bypass the modeling of the dependence structure of the
SNPs in order to obtain the \;;’s. However, simulations show that when the dependence

is not very strong, fo(.) can be used as an approximation of fo;;(.).

3.4 An EM algorithm to estimate REG-FDR parameters

The log-likelihood for REG-FDR is

L(mo, 0| X,Y) = log(p +21097Tof0 Vi) + (1 —m)— Zf1Y| Lo

1=1

where p(X) is the marginal density of X that we avoid modelling, but assume to be

%)



free of myp and 0. We introduce the following unobserved variables.
0; = 1 or 0 according as the ith gene has an eQTL or not, ¢ =
1,2,...,N.
S;; = 1 or 0 according as the jth SNP local to the ith gene is causal

ornot, 7 =1,2,....m

Given the data (X, Y), ¢; follows Bernoulli(my). Given the data and §; = 1, (S, Sie, ...

follows a Multinomial(1;1/m;, 1/my, ..., 1/m;) distribution.
Now the complete log-likelihood becomes
L.(my,0|X,Y,4,S)
= log(p(X) + X275 log[(mo fo(Y2) "0 (1 — mo) i TT}, f1(Yil X", 0))%]
= log(p(X)+30,%, [(1 = 6) log(mo) + & log(1 — mo)[+30,L, o7, Siydiloglfi(YilX;

The M-step gives

1 N
ﬁoZN;(l—(Si)

and

o= ATgMaa:ZZSZJ(s log[f1(YilX; ), )]

i=1 j=1
In the kth iteration, the E-step replaces §; by E(9;|X,Y, fr(()k_l), 6*=1) and S;;6; by

E(S;;6:|X,Y, 757D 5¢6=D). These are given by
j 0

A( -1 .
B X, Y, w5, 6%7) = foll

7o fo(Ys) + (1—7ro’“)) - L AX 0Dy
and

FYX)
mAYXY, 60-D)

E(Sy6:] X, Y, 7D 600y = B(5,| X, Y, 78 601 x
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The updating continues until |L(7, (1) G (kt1) | X,Y) — L(fr(()k),&(k)\X, Y')| becomes

sufficiently small.

3.5 The Z-REG-FDR model

One computational challenge with the REG-FDR model is that the density f1(Y;|X ](z))

doesn’t have a closed form expression. It can be expressed as the following integral.

V=3 nftann (9))2
V2ra(l - 3?)

The maximum likelihood estimation becomes computationally burdensome if the

£ (¥ X /ler I I Lk (3.7)

integral is evaluated using numerical quadrature. We propose an alternative model
entitled Z-REG-FDR which avoids this problem. In this approach, we consider the
Fisher transformed and scaled z-statistics as our data. Thus, for each gene 7, we have

a vector of z-statistics
20 = (Z%i),zéi), Zﬁé)l), i=1,2,...,N,

where z = /n =3 tanh™(r; 2 ) 7“]@ being the sample correlation of Y; and X j(z)

The Fisher transformation and scaling ensures that 29 is approximately normal
and variance of each component is 1 under both null and alternative. Under the null,
the mean of 2 is zero.

We treat the z;’s as if they are independent across different genes. This assumption
is realistic since very few genes share common SNPs. We keep our assumptions (Al)
and (A2) of having only one causal SNP under the alternative which can be any one
of the m; SNPs with equal probability. Let the kth SNP be the causal one. Then, we

assume the following.

1. The distribution of (zl s z,(:)l, z,(;)q, s zﬁﬁ)) given ,z,(:) under the alterna-

(A3)

tive is same as that under the null.
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In particular, this assumption is true if the components of 2 have a Markov depen-
dence structure with the serial correlation being the same under null and alternative,
which is true in the special case that the successive marker correlations are zero. In
general, this assumption is obviously violated, but as shown in Section 3.6, the overall
procedure appears to work well in many circumstances.

Under the above assumptions, we can write the joint distribution of the random

vector 2V = (ZY), zéi), ey Zr(ﬁ)) as
fl(ZY)ng)a e 7(72) 1(21(;))]‘10\’6(2%2)7""Zl(clzl’zl(cz)rl’ ’27(7?1) (3'8)

under the alternative, and

folet?, 287, 0 20) = po(2”) fo(A” s 200 2 s 20) (39)

under the null.

We assume py(.) to be the density of N(0,1) and p;(.) to be the density of N(u,1)
where g is assumed to be random with a N(0,0?) distribution. We do not assume
anything about the form of fy; except that it is multivariate normal and does not
involve the other parameters, in this case my and o.

The gene level lfdr for this model reduces to

, 1 ‘
P(Hyi| ") = R T 1= L2 N (3.10)
1 + 7r00m1 Z : :))

We have not modeled a part of the full likelihood [T, (mofo(2) + (1 — 7o) f1(2@)).

7o fo(2))+(1—m0) f1(z?)
fo(z®) ‘

likelihood estimation under the assumption that fo does not involve the parameters

Instead we maximize [[._, This is equivalent to the maximum

o and 0. Note that we need to estimate only the parameters my and o to obtain the

gene level lfdr using Equation 3.10.
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Table 3.1 shows the results for simulated datasets (1000 simulations) where 2’s
are directly simulated from an autoregressive structure. The estimates are accurate
to within about 15% when the true o is at least 2. The control of the FDR is also

satisfactory.

True True True Mean 7y Mean 6 SE(7;) SE(6) Realized  Realized

™ o p FDR(5%) FDR(10%)
020 1 0.0 0.2030 00964 0.1841 0.0823  0.0954 0.1236
020 2 010 0.1865 19660 0.0469 0.0374  0.0576 0.1136
020 5 0.0 0.1977 49383 0.0094 0.0306  0.0507 0.1014
020 1 050 01932 09919 0.1613 0.0757  0.0922 0.1252
020 2 050 0.1873 19663 0.0417 0.0352  0.0565 0.1121
020 5 050 01977  4.9383 0.0092 0.0303  0.0508 0.1013
020 1 080 0.857 0.9875 0.1308 0.0664  0.0882 0.1245
020 2 080 0.1894 19673 0.0325 0.0317  0.0545 0.1090
020 5 080 0.1979 49388 0.0085 0.0292  0.0507 0.1012

Table 3.1: Showing summary of the simulation studies with directly simulated z from
an AR(1) model with correlation p

When the required assumptions are not satisfied, this method can still be used

)’S are

as an approximate maximum likelihood approach. For instance, when the X J(Z
related by an AR(1) structure, it can be shown that the correlation between the z-
statistics depends on the effect size, i.e. the correlation between Y; and the causal SNP,
hence violating the assumption (A3). The following lemma shows the extent to which
the conditional distribution fo, might depend on the effect size for any correlation

structure among normally distributed SNPs. We use a trivariate normal distribution

for illustration, as it is rich enough for demonstration while still analytically tractable.

Lemma 3. Suppose (X1, Xo, X3) are jointly normal with mean (0,0,0) and covariance

matrix

L p1 p2
pr 1 ps

p2 ps 1

29



Let Y = X + ¢, where ¢ ~ N(0,1 — (%), and ry,r9,r3 denote the sample product
moment correlation coefficient of Y with X1, Xo and X3 respectively for a sample of
size n. The asymptotic correlations between these sample correlations are given by

9 _ 32 _ 32,2
Cor(ri,ra) = p12 = p1(2n(15_ 525%)/)0

and

o C2p3+4 BT+ p3)(BPpipa — 2p3) + B2 pipa(pl — 1)
o) = = (1 - PR - F73) |

p13 having the same form as pio.

Proof. For the ith sample, let us define
Zi == (X1i7 X2i7 X3i7 }/;7 X1217 X2217 X??fn }/;27 Xlinv X2i}/;27 X3’L§/;)

ClearlY? E<ZZ> =p= (07 07 07 07 17 17 17 17 P1, P2, P3)7 and suppose V(Zl) =X = (Uij)llxll-

Define the functions g, g2 and g3, all R'* — R, as

Tg — T1Tg

Vs —a7)(ws —a3)

91(331a Ly enny (Ell) =

T10 — T2y
go(x1, X9, ..., T

) e — =)

T11 — T34
g3(x1, 29, ..., x

) 11) - .
V(w7 — 23) (s — a})
Then, r; = gl(z)a Ty = 92(2) and rg = 93(Z)~

By the delta method,

V(e — B,y — By, 13 — Bpz) > N(0,T),
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11 11
where Ty = 32 S 0y 220995 — 1,2.3: 5 = 1,2,3.
k=11=1

Opr Oy
Now,
g _ I _ g1 _ g1 _ g o o1 _ g1 _ I —0
O Oz Ous Oty Oug Opr O Opiny 7
99 _0q1 _ 1, 09 _
Ous — Opg 277 Ope
dga _ dga _ dga _ Jga _ dga _ dga . dga _ dga —0
Oy Oz Opus Oy Ops Our  Opg Opiiy ’
992 _ 092 _ Ly 992
8,u6 8,&8 2 b 8[/40 ’
dg3 _ d93 _ d93 _ 993 _ dgs _ dgs . dgs dgs 0

dgs  0gs 1 dgs
@_M? B Ous 2 P %

Since the partial derivative matrix is very sparse, we don’t need to calculate all the

terms of the matrix 3. The ones that are needed are calculated below.

056 = E(X?X3)—1=2p2+1—-1=2p2

058 = E(X?Y?) —1=282+1-1=23

05,10 = E(X?X5Y) — Bpr = 3Bp1 — Bpr = 261

o6 = E(X3Y?) = 1=28%p1 + 1 —1=25p

oss=FE(Y') —1=2

08,10 = E(X2Y3) — Bp1 = 3Bp1 — Bp1 = 2Bm

oo = BE(X1 X3Y) — 8 =2Bpi + 8 — B = 26p7

09,8 = E(X1Y3) —p=3-p=28

09,10 = E(X1XoY?) = B%p1 =208%°01 4+ p1 — B%p1 = ;i (1 + (7)

067 = E(X3XF) —1=2p]+1—1=2p3

o611 = E(X3X3Y) — Bps = 28p1ps + Bpa — Bp2 = 28p1ps
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os7 = E(X3Y?) —1=28%p5 + 1 —1=25%p}

o811 = E(X3Y3) — Bps = 3B8p2 — Bpa = 28po

o107 = E(XoX3Y) — Bpa = 2Bpaps + Bpa2 — Bpa = 2Bp2ps

oro11 = E(XoX3Y?) — B2p1pa = p3 + 2B82p1p2 — B2p1p2 = ps + B2p1pa

Combining, we get,
Cov(v/n(r = B), Vlrs = Bpr) = 5(1 = 8)(2 = 52 = B%}),

Cov(v/n(ry — Bp1), V/nlrs — Bp2)) = 2p3 + (07 + p3) (B2 prp2 — 203) + B2 prp2(p5 — 1).

Also,

Var(vn(ri—pB)) = (1-6%), Var(v/n(r2—pp1)) = (1=5p1), Var(v/n(rs—Bp2)) = (1-5"p3)".

Hence,

9_ 32_ 32,2
Cor(ri,r2) = p12 = p1(2n(15_ ﬁQf%)M)

and

203 + B%(03 + p3)(B2p1p2 — 2p3) + B2p1p2(pi — 1)
Cor(ra,r3) = pas = (1 — B2 — F22) )

O
Corollary 3.1. Let 2y, 29 and z3 be the Fisher transformed unscaled z-statistics corre-
sponding to ri,rs and r3. Then,

21 —tanh™1(B) d 1 pi2 p13
vVn— 3| z—tanh=1(8p1) | — N(O, |:p12 1 p23i| )7

z3—tanh~1(Bp2) P13 p23 1

where
(2= —5%))
P12 = 2 .2
2(1 -8 /)1>
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and
oy = 203 B%(pi + p3)(B%prp2 — 2p3) + B*p1pa(p3 — 1)
2(1 = B2p7)(1 = B%p3) ’

p13 having the same form as pis.

Corollary 3.2. The covariance of the z-statistics converge to the covariance matrix
for the case 5 =0 as |p1| — 1 and |p2| — 1, or |p1] = 0 and |p2| — 0. This is also

true for the conditional mean E(zs, z3|21).

The proof of Corollary 3.1 and Corollary 3.2 follows directly from Lemma 3. Clearly,
similar results apply to more than three variables. Corollary 3.2 immediately implies
that the conditional distribution of (z9,z3|21) is approximately free of § when the
correlations p; and p, are very large or very small. So, if the data has a block structure
where there is very high correlation among SNPs within a block and there is very small
correlation across blocks, then assumption (A3) may hold approximately, in a manner
that supports the use of Z-REG-FDR.

To understand the difference between null and alternative of the conditional covari-
ance matrices and mean vectors, we calculated the large sample means and covariance
matrices under the two cases using Corollary 3.1. The dependence structure among the
SNPs is (i) assumed to be an AR(1) structure with serial correlation 0.9, (ii) obtained
from a real SNP matrix (Lonsdale et al. 2013).

For case (i), Figure 3.1 shows the plot of the elements of the conditional covariance
matrix under the null and that under the alternative for different effect sizes. The
maximum difference in the conditional mean is also reported for each case. Figure 3.2
shows the same plot for case (ii). The fact that the differences are small, especially for

the real SNP matrix, is an encouraging sign in favor of Z-REG-FDR.
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Figure 3.1: Comparing the elements of conditiona