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ABSTRACT
DEBABRATA MUKHERJEE: Determinants of the hypergeometric period

matrices of an arrangement and its dual.
(Under the direction of Alexander Varchenko.)

We fix three natural numbers k, n, N , such that n + k + 1 = N , and introduce the

notion of two dual arrangements of hyperplanes. One of the arrangements is an arrange-

ment of N hyperplanes in a k-dimensional affine space, the other is an arrangement of

N hyperplanes in an n-dimensional affine space. We assign weights α1, . . . , αN to the

hyperplanes of the arrangements and for each of the arrangements consider the associ-

ated period matrices. The first is a matrix of k-dimensional hypergeometric integrals

and the second is a matrix of n-dimensional hypergeometric integrals. The size of each

matrix is equal to the number of bounded domains of the corresponding arrangement.

We show that the dual arrangements have the same number of bounded domains and

the product of the determinants of the period matrices is equal to an alternating prod-

uct of certain values of Euler’s gamma function multiplied by a product of exponentials

of the weights.
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Chapter 1

Introduction

Let V be a real affine space of dimension k. Let F = { f j : j ∈ J } be a finite set of

degree one polynomials defined on V . For j ∈ J , let Hj be the hyperplane in V given

by the zero-set of f j. Consider the affine hyperplane arrangement A = {Hj : j ∈ J }.
Assume that a positive number αj is assigned to each hyperplane Hj.

A bounded connected component of V \ ∪j∈JHj is called a bounded domain of A.

Let Ch(A) be the set of bounded domains of A and β the number of bounded domains.

A logarithmic differential k-form associated to F is a k-form of the type

φ =
∑

aj1 j2 ... jk

df j1

f j1
∧ df j2

f j2
∧ · · · ∧ df jk

f jk

with aj1 j2 ... jk
∈ R. The form is regular on V \ ∪j∈JHj.

If F is ordered, then, using constructions from [DT] and [V1], one obtains

• an ordered set Φ = {φ1, φ2, . . . , φβ} of logarithmic differential k-forms,

• an order on Ch(A) = {∆1, ∆2, . . . , ∆β},

• an orientation of each ∆ ∈ Ch(A).

Consider the multi-valued function

Uα =
∏
j∈J

(f j)αj .

Fix a uni-valued branch of each function (f j)αj on each bounded domain of the ar-

rangement. This determines the uni-valued branch of the function Uα on each bounded



domain. The β × β-matrix

PM (A, α) =

(∫
∆s

Uαφt

)
, s, t = 1, 2, . . . , β,

is called the period matrix of the weighted ordered arrangement.

Example 1. Let a1 < a2 < a3 be real numbers. Consider the set of polynomials

F = { f j = x− aj : j = 1, 2, 3 }

defined on R. Then the arrangement A = {H1,H2,H3} is the set of three points

a1, a2, a3 in R. Let αj be the weight of Hj, j = 1, 2, 3.

There are two bounded domains: ∆1 = (a1, a2), ∆2 = (a2, a3). The set of 1-forms is

Φ = { φ1 = α2
dx

x− a2

, φ2 = α3
dx

x− a3

} .

Consider the function

Uα = (x− a1)
α1(x− a2)

α2(x− a3)
α3 .

Fix a uni-valued branch of each function (x − aj)
αj on each interval ∆s. The period

matrix is 
∫ a2

a1
α2

∏3
j=1(x− aj)

αj dx
x−a2

∫ a2

a1
α3

∏3
j=1(x− aj)

αj dx
x−a3∫ a3

a2
α2

∏3
j=1(x− aj)

αj dx
x−a2

∫ a3

a2
α3

∏3
j=1(x− aj)

αj dx
x−a3

 .

In [V1] and [DT], the determinant of the period matrix was computed in terms

of critical values c ((f j)αj , ∆) of the chosen branches of the functions (f j)αj on the

bounded domains and a certain function, called the beta function of the weighted ar-

rangement, see Sections 4.3.2 and 4.3.1. The beta function is an alternating product of

values of Euler’s gamma function whose arguments are appropriate linear combinations

of the αj’s. It is proved in [V1] and [DT], that the determinant of the period matrix is

given by the formula:

det

(∫
∆s

Uαφt

)
= B(A, α) ·

∏
∆∈ Ch(A)

j∈J

c ((f j)αj , ∆) ,

2



where B(A, α) is the beta function of the weighted arrangement.

Example 2. The beta function of the arrangement in Example 1 is

B(A, α) =
Γ(α1 + 1)Γ(α2 + 1)Γ(α3 + 1)

Γ(α1 + α2 + α3 + 1)
.

The product of the critical values is

(f 1)α1
∆1

(a2) · (f 1)α1
∆2

(a3) · (f 2)α2
∆1

(a1) · (f 2)α2
∆2

(a3) · (f 3)α3
∆1

(a1) · (f 3)α3
∆2

(a2) ,

where (f j)
αj

∆s
is the chosen branch of (f j)αj on ∆s, and (f j)

αj

∆s
(ai) is the value of that

branch at ai.

In this paper, we introduce the notion of dual arrangements. We fix natural numbers

k, n, N such that

k + n + 1 = N , 3 ≤ N , 1 ≤ k, n ≤ N − 2 ,

and consider the vector space RN+1 and its dual space. Let {e1, . . . , eN+1} be the

standard basis of RN+1 and {e1, . . . , eN+1} the dual basis of the dual space. We denote

RN+1 by X and the dual space by X′. Set J = {1, . . . , N, N + 1} and J = {1, . . . , N}.
Let W ⊂ X be a vector subspace of dimension k+1. Let W′ ⊂ X′ be the annihilator

of W. The subspace W′ is of dimension n + 1. We assume that for any a, b ∈ J , a 6= b,

the functions ea|W and eb|W are not proportional, and the functions ea|W′ and eb|W′ are

not proportional.

The pair τ = (X, W) with this property will be called an admissible pair in X.

Similarly, the pair τ ′ = (X′, W′) with this property will be called an admissible pair in

X′. The pairs τ and τ ′ will be called dual.

Let V = P(W) be the projective space associated with W and V ⊂ V the affine

space defined by the condition eN+1|W 6= 0. The spaces V and V are of dimension k.

The functions ej/eN+1, j ∈ J , define on V a set of degree one polynomials f j and an

arrangement of hyperplanes denoted by A[τ ].

Similarly, let V ′ = P(W′) be the projective space associated with W′ and V ′ ⊂ V ′

the affine space defined by the condition eN+1|W′ 6= 0. These are spaces of dimension

n. The functions ej/eN+1, j ∈ J , define on V ′ a set of degree one polynomials fj and

an arrangement of hyperplanes denoted by A[τ ′].

The arrangements A[τ ] and A[τ ′] will be called dual. These are arrangements of

3



N hyperplanes in affine spaces of dimensions k and n, respectively. We prove that the

number of bounded domains of A[τ ] is equal to the number of bounded domains of

A[τ ′] and study other combinatorial similarities between the dual arrangements.

Fix positive numbers {αj : j ∈ J }, then arrangements A[τ ] and A[τ ′] become

weighted arrangements. Let PM (A[τ ], α) and PM (A[τ ′], α) be their period matrices.

The period matrices depend on the choice of uni-valued branches of the corresponding

functions on the corresponding bounded domains. In this paper, we give a construction

of the choice of branches so that the determinants of the period matrices become related.

For our choice of branches we prove that

det PM (A[τ ], α) · det PM (A[τ ′], α) =

[∏
j∈J eπiαj Γ(αj + 1)

Γ(
∑

j∈J αj + 1)

]β

,

see Theorem 4.5.1. This formula relates the determinants of matrices of k-dimensional

and n-dimensional hypergeometric integrals and shows that the product of determinants

of period matrices of dual arrangements is a combinatorial quantity, not depending on

the size of the bounded domains or angles between hyperplanes. Theorem 4.5.1 is the

main result of the paper.

Example 3. For the arrangement in Example 1, the dual arrangement is also an

arrangement of three points on the real line. The points H1,H2,H3 of the dual ar-

rangement are given by the zero-sets of the polynomials

f1 =
a2 − a3

a1 − a2

(
x− 1

a3 − a2

)
, f2 =

a3 − a1

a1 − a2

(
x− 1

a3 − a1

)
, f3 = x ,

respectively. According to Theorem 4.5.1, the product of determinants of the period

matrices of the arrangement of Example 1 and its dual is equal to

e2πi (α1+α2+α3)

[
Γ(α1 + 1) Γ(α2 + 1) Γ(α3 + 1)

Γ(α1 + α2 + α3 + 1)

]2

.

The paper has the following structure. In Section 2 we discuss combinatorics of

an arrangement of hyperplanes. In Section 3 we introduce the notion of dual arrange-

ments and compare the combinatorics of dual arrangements. Section 4 is about period

matrices. The section contains the statement of the main result of the paper, Theorem

4.5.1. In Section 5 we prove Theorem 4.5.1. In Appendix A, we introduce the notion

of weak duality and show that natural constructions with dual arrangements lead to

4



weakly dual arrangements. In Appendix B, we formulate a statement which helps to

determine if two given arrangements are dual.

The author thanks E. M. Rains for citing the paper by A. L. Dixon [D], published in

1905, in which certain hypergeometric integrals of different dimensions were equated;

see an elliptic version of Dixon’s identity in [R]. E. M. Rains suggested that there might

be similar identities for determinants of periods of suitable arrangements of different

dimensions.

A future direction of research would be to investigate if Dixon’s result would lead

to the understanding of other arrangements of hyperplanes in different dimensions and

related objects.

5



Chapter 2

Preliminaries

This chapter introduces the basic notions, definitions, and relevant results of arrange-

ments of hyperplanes and the theory of matroids.

The concept of a matroid generalizes the notion of linearly independent subsets of a

set of vectors (Section 2.2). The Tutte polynomial of a matroid is a polynomial in two

variables (see Section 2.2.2). This polynomial and its recursive properties lend easily

to the definitions of several quantities associated to a matroid, see Section 2.2.2. These

quantities defined with the aid of the coefficients of the Tutte polynomial assume great

significance when specialized to the case of matroids associated to arrangements. These

notions are the subject of discussion in the Sections 2.3—2.6.

All vector and affine spaces in this paper are over the field of real numbers. For a

vector space U , P(U) denotes the projective space of one-dimensional vector subspaces

of U .

2.1 Arrangement and edges

Let W be a vector space and Σ = {uj : j ∈ J} a finite collection of nonzero vectors in

the dual space of W. For j ∈ J , denote by Ej ⊂ W the hyperplane {z : uj(z) = 0} and

by Hj = P(Ej) ⊂ P(W) its projectivization. Then A = {Hj : j ∈ J} is an arrangement

of hyperplanes in P(W).

A non-empty intersection of some of the hyperplanes of the arrangement is called

an edge. A vertex is a zero-dimensional edge.

To an edge L, we associate two arrangements:

• AL = {Hj : L ⊂ Hj}, the localization of A at L,



• AL = {Hj ∩ L : L 6⊂ Hj}, the induced arrangement on L.

An arrangement A = {Hj : j ∈ J} is called central if the intersection L = ∩j∈JHj

is not empty.

For a central arrangement, consider the projective space PL whose points are the

(dim L + 1)-dimensional projective subspaces of P(W) containing L. Any hyperplane

in P(W), containing L, determines uniquely a hyperplane in PL. Thus, the central

arrangement determines an arrangement of hyperplanes in PL called the projectivization

of the central arrangement.

The projectivization of the central arrangement AL is called the projective localiza-

tion of L and denoted by P (AL).

Let L be an edge. Let a, b ∈ J , a 6= b. We say that L is parallel to Ha in the

affine space V \ Hb, if Ha does not coincide with Hb and L does not intersect Ha in

the affine space. In that case we also say that the triple (L, Ha, Hb) is a parallelism in

the arrangement A.

2.2 Matroids

This section introduces definitions and constructions from matroid theory. For more

on matroid theory see [O] and [B].

Let J be a finite set and I a collection of subsets of J . The pair M = (J, I ) is

called a matroid if the following properties hold.

I1. ∅ ∈ I.

I2. If X is in I and Y ⊂ X , then Y is also in I.

I3. If X and Y are in I and |X| > |Y |, then there is an element x ∈ X \Y such that

Y ∪ {x} is in I.

The set J is called the ground set of the matroid and elements of I are called the

independent sets of the matroid.

Example 2.2.1. Let Σ = {uj : j ∈ J} be a finite collection of vectors in a vector space.

Define the collection I of subsets of J : a subset S ⊂ J belongs to I if and only if the

vectors {uj : j ∈ S} are linearly independent. This defines the matroid of the collection

of vectors.

7



Example 2.2.2. Let W be a vector space. Let Σ = {uj : j ∈ J} be a finite collection of

nonzero vectors in the dual space of W. The collection defines the arrangement A of

hyperplanes in P(W). The matroid of Σ is called the matroid of the arrangement.

The arrangement defines vectors of Σ up to multiplication by nonzero numbers.

This multiplication does not change the matroid of Σ. Hence, the matroid of the

arrangement does not depend on the choice of the collection of vectors.

Let M = (J, I ) be a matroid. A maximal (with respect to inclusion) element of

I is called a basis. The axiom (I3) implies that all bases have the same cardinality.

More generally, for any subset X of J , the maximal independent subsets of X all have

the same cardinality. Define

• rankMX to be the cardinality of the largest independent subset of X,

• corankMX = rankMJ − rankMX,

• nullityMX = |X| − rankMX,

• rank M = rankMJ .

2.2.1 Tutte polynomial

The Tutte polynomial of a matroid M = (J, I ) is the polynomial in x and y, given by

the formula

T(M ; x, y) =
∑
X⊂J

(x− 1)corankMX (y − 1)nullityMX .

Theorem 2.2.1 (B). Let M be a matroid on the ground set J . Let T(M ; x, y) =∑
i,j bij

M xiyj.

• If |J | ≥ 2, then b10
M = b01

M .

• If |J | ≥ 1, then b00
M = 0.

2.2.2 Contraction and deletion

Let M = (J, I ) be a matroid. For a subset X ⊂ J , denote by X̂ = J\X its complement.

For a non-empty subset X ⊂ J , |X| < |J |, define the matroid M/X = (X̂, IM/X)

called the contraction of X. A subset I ⊂ X̂ is in IM/X if and only if for some maximal

independent subset Y of X in M , the set I ∪ Y is independent in M .

8



For a non-empty subset X ⊂ J , |X| < |J |, define the matroid M −X = (X̂, IM−X)

called the deletion of X. A subset I ⊂ X̂ is in IM−X if and only if I is independent in

M .

An element j ∈ J is called a loop if it is not contained in any basis of M . Dually,

an element j is called an isthmus if it is contained in every basis.

Theorem 2.2.2 (B). If j is neither a loop nor an isthmus, then

T(M ; x, y) = T(M − {j}; x, y) + T(M/{j}; x, y).

If j is an isthmus, then

T(M ; x, y) = x T(M/{j}; x, y).

A non-empty subset X ⊂ J is called a flat if for every y ∈ J \X,

rankMX ∪ {y} > rankMX.

For a flat X, define its discrete length, width, volume as the numbers

lMX = b10
M/X , wMX = b10

M−X̂
, volMX = lMX · wMX ,

respectively. We say that a flat is spacious if it has a nonzero discrete volume.

Let X be a flat. Let a, b ∈ J , a 6= b. The triple (X, a, b) is called a parallelism in M

if a, b 6∈ X, rankM{a, b} = 2, and rankMX ∪ {a, b} = rankMX + 1.

Let (X, a, b) be a parallelism. Denote by X̂(a, b) = J \ (X ∪{a, b}) the complement

of X ∪ {a, b} in J .

For a parallelism (X, a, b), define its discrete width, volume as the numbers

wM(X, a, b) = b10
M−X̂(a,b)

, volM(X, a, b) = lMX · wM(X, a, b) ,

respectively.

2.3 Matroid of an arrangement

Let M be the matroid of an arrangement A = {Hj : j ∈ J} of hyperplanes in a

projective space V . The flats in M are in one-to-one correspondence with edges of A.

9



If L is an edge, then X = {j : L ⊂ Hj} is a flat.

Let L be an edge and X the corresponding flat. Let AL and AL be the localiza-

tion and induced arrangements, respectively. Let M [AL] and M [AL] be the matroids

associated to the arrangements AL and AL, respectively. Then

M [AL] = M − X̂ , M [AL] = M/X .

Let P (AL) be the projective localization of L. Then the matroid of AL is also the

matroid of P (AL).

Lemma 2.3.1. If rank M = dim V + 1, then rank M/X = dim L + 1. �

2.4 Edges and parallelisms in an arrangement

Define the discrete length, width, and volume of an edge L as the discrete length, width,

and volume, respectively, of the flat X,

lAL = b10
M [AL] , wAL = b10

M [AL] , volAL = lAL · wAL ,

cf. [V1]. An edge will be called spacious if it has a nonzero discrete volume.

Let L be an edge and a, b ∈ J . The edge L is parallel to Ha in V \Hb, if and only

if the triple (X, a, b) is a parallelism in the matroid M .

Define the discrete width and volume of a parallelism (L, Ha, Hb) in A as the discrete

width and volume of the parallelism (X, a, b) in M . That is,

wA(L, Ha, Hb) = wM(X, a, b) , volA(L, Ha, Hb) = lAL · wA(L, Ha, Hb).

2.5 Bounded domains of an arrangement

Let A = {Hj : j ∈ J} be an arrangement of hyperplanes in a projective space V . The

connected components of the topological space V \ ∪j∈JHj are called domains. For

j ∈ J , a domain is called bounded with respect to the hyperplane Hj if the closure of

the domain does not intersect the hyperplane.

Theorem 2.5.1 (Z). Assume that rank M = dim V + 1. Then for j ∈ J , the number

of domains of A bounded with respect to Hj is equal to b10
M . In particular, the number

of bounded domains does not depend on the choice of j.

10



If rank M = dim V + 1, then the discrete length and width of an edge L are the

numbers of bounded domains in the arrangements AL and P (AL), respectively. See

Lemma 2.3.1, Theorem 2.5.1.

2.6 Geometric interpretation of the discrete vol-

ume of a parallelism

Assume that Ha 6= Hb. In the affine space V = V \ Hb, consider the arrangement

of hyperplanes A = {Hj : j ∈ J \ {b} }, where Hj = Hj ∩ V . A domain of the

arrangement A is called bounded in V if it is contained in a suitable ball in V .

Let ∆ be a bounded domain and ∆̄ its closure. Consider the subset S ⊂ ∆̄ of all

maximally remote points from the hyperplane Ha. This subset is the union of some

open faces of ∆̄. The unique face Γ ⊂ S of highest dimension is called the Ha-external

supporting face of ∆.

Let Γ be of dimension m, then there is a unique m-dimensional edge L of the

projective arrangement A which contains Γ. The edge L is called the Ha-external

supporting edge of ∆. The triple (L, Ha, Hb) is a parallelism in A.

Lemma 2.6.1. Let (L, Ha, Hb) be a parallelism in A. Then the number of bounded

domains with Ha-external supporting edge L is equal to the discrete volume of the

parallelism (L, Ha, Hb).

The lemma is proved in Section 5.1.
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Chapter 3

Dual admissible pairs, associated

arrangements and matroids

In this chapter we start with the notion of admissible pairs (Section 3.1) and introduce

the notion of duality between two admissible pairs. To each of these admissible pairs we

associate the following objects: an arrangement of projective hyperplanes in a projective

space of appropriate dimension, a finite set of degree one polynomials defined on an

affine space of the same dimension, and an arrangement of affine hyperplanes defined by

the zero-set of these polynomials. We also associate to each admissible pair a matroid

(Section 3.2). The corresponding objects (projective arrangement, set of polynomials,

affine arrangement, and matroid) associated to two admissible pairs that are dual are

also called dual.

The notion of dual matroids, which is basic to matroid theory is examined in Section

3.5 in the context of the definitions given in Chapter 2.

Important geometric and combinatorial consequences of duality between arrange-

ments is examined in Sections 3.6 and 3.7.

3.1 Admissible pairs

Let N be a natural number, N ≥ 3. Let k, n be natural numbers such that k+n+1 = N

and 1 ≤ k, n ≤ N − 2.

Consider the vector space RN+1 and its dual space. Let {e1, . . . , eN+1} be the

standard basis of RN+1 and {e1, . . . , eN+1} the dual basis of the dual space. Denote

RN+1 by X, denote the dual space by X′. Denote J = {1, . . . , N + 1}.



Let W ⊂ X be a vector subspace of dimension k+1. Let W′ ⊂ X′ be the annihilator

of W. The subspace W′ is of dimension n + 1.

The set of linear functions { ej|W : j ∈ J } spans the dual space of W. Similarly,

the set of linear functions { ej|W′ : j ∈ J } spans the dual space of W′.

Assume that for any a, b ∈ J , a 6= b, the functions ea|W and eb|W are not propor-

tional, and the functions ea|W′ and eb|W′ are not proportional.

The pair τ = (X, W) with this property will be called an admissible pair in X.

Similarly, the pair τ ′ = (X′, W′) with this property will be called an admissible pair in

X′. The pairs τ and τ ′ will be called dual.

3.2 The arrangements and matroid of an admissible

pair, dual arrangements

Let τ = (X, W) be an admissible pair. For j ∈ J , denote Ej = {x ∈ W : ej(x) = 0 }.
These are vector subspaces of W of codimension one.

Denote

• V = P(W), the projective space of dimension k,

• Hj = P(Ej), j ∈ J , projective hyperplanes in V ,

• A[τ ] = {Hj : j ∈ J }, the arrangement of projective hyperplanes in V .

Denote

J = { 1, . . . , N } = J \ {N + 1 } .

For j ∈ J , the rational function f j = ej/eN+1 restricted to W is regular on W \ EN+1

and homogeneous of degree zero. Thus, f j is a well-defined degree one polynomial on

the affine space

V \HN+1 = P(W) \ P(EN+1) .

Denote

• V = V \HN+1, the affine space of dimension k,

• Hj = {x ∈ V : f j(x) = 0 }, j ∈ J , affine hyperplanes in V ,

13



• A[τ ] = {Hj : j ∈ J }, the arrangement of affine hyperplanes in V .

Observe that Hj = Hj ∩ V , j ∈ J .

The set F [τ ] = { f j : j ∈ J } of degree one polynomials on V will be called the

arrangement of polynomials associated to τ .

For dual admissible pairs τ and τ ′, the corresponding pairs of objects: A[τ ] and

A[τ ′], A[τ ] and A[τ ′], F [τ ] and F [τ ′] - will be called dual.

Introduce the matroid of τ , denoted M [τ ], as the matroid of the collection of vectors

{ ej|W : j ∈ J } in the dual space of W.

Observe that the matroid of τ is the matroid of the arrangement A[τ ].

3.2.1 The values of polynomials defining an arrangement at

the vertices of the arrangement at a vertex

Let P ∈ V be a vertex of the arrangement A[τ ] and let X be the flat associated to P

in the matroid M [τ ]. Let Y = {j1, . . . , jk} ⊂ X be a maximal independent subset. Let

j ∈ J . Consider two vectors

v = (ej1 ∧ ej2 ∧ · · · ∧ ejk ∧ eN+1)|W , v′ = (ej1 ∧ ej2 ∧ · · · ∧ ejk ∧ ej)|W

of the one-dimensional vector space
∧k+1 W∗, where W∗ is the dual space of W. The

first vector is nonzero. Let c ∈ R be the coefficient of proportionality: v′ = cv.

Lemma 3.2.1. The value of the polynomial f j at P is equal to c. �

3.3 A coordinate description of dual arrangements

Let τ = (X, W) and τ ′ = (X′, W′) be dual admissible pairs.

Let w1, . . . , wk, wk+1, wk+2, . . . , wN+1 be any basis of X such that w1, . . . , wk, wk+1

is a basis of W. Consider the dual basis w1, . . . , wk, wk+1, wk+2, . . . , wN+1 of X′. Then

wk+2, . . . , wN+1 is a basis of W′.

Let wi =
∑N+1

l=1 bl
iel and wi =

∑N+1
l=1 ci

le
l, for i = 1, 2, . . . , N + 1. Denote B = (bl

i),

C = (ci
l). We have C = (BT )−1.
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Introduce the (k + 1)× (N + 1)-matrix B and the (n + 1)× (N + 1)-matrix C by

B =



b1
1 b2

1 · · · bj
1 · · · bN

1 bN+1
1

b1
2 b2

2 · · · bj
2 · · · bN

2 bN+1
2

...
...

...
...

...

b1
k b2

k · · · bj
k · · · bN

k bN+1
k

b1
k+1 b2

k+1 · · · bj
k+1 · · · bN

k+1 bN+1
k+1


and

C =



ck+2
1 ck+2

2 · · · ck+2
j · · · ck+2

N ck+2
N+1

ck+3
1 ck+3

2 · · · ck+3
j · · · ck+3

N ck+3
N+1

...
...

...
...

...

cN
1 cN

2 · · · cN
j · · · cN

N cN
N+1

cN+1
1 cN+1

2 · · · cN+1
j · · · cN+1

N cN+1
N+1


.

The matrices B and C are parts of the matrices B and C, respectively. Clearly,

rank B = k + 1 and rank C = n + 1.

Let x1, . . . , xk+1 : W −→ R be the coordinate functions with respect to the basis

w1, . . . , wk+1, xi(wj) = δi
j, i, j = 1, . . . , k + 1. Observe that for any j = 1, . . . , k + 1,

we have xj = wj|W. Then for any j ∈ J , we have

ej|W = bj
1x

1 + · · ·+ bj
k+1x

k+1 .

Similarly, let x1, . . . , xn+1 : W′ −→ R be the coordinate functions with respect to the

basis wk+2, . . . , wN+1, xi(w
k+j+1) = δj

i , i, j = 1, . . . , n + 1. Observe that for any

j = 1, . . . , n + 1, we have xj = wk+j+1|W. Then for any j ∈ J , we have

ej|W′ = ck+2
j x1 + · · ·+ cN+1

j xn+1 .

Thus, the columns of B and C describe the coordinates of the functions ej|W and ej|W′ .

Denote by B[j1, j2, . . . , jk+1], the determinant of the (k + 1)× (k + 1)-submatrix of

B formed by the rows 1, 2, . . . , k + 1 and columns j1 < j2 < · · · < jk+1. Denote by

C[l1, l2, . . . , ln+1], the determinant of the (n + 1) × (n + 1)-submatrix of C formed by

the rows 1, 2, . . . , n + 1 and columns l1 < l2 < · · · < ln+1.
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The values of functions f j, j ∈ J , at the vertices of the affine arrangement A[τ ] in

V can be computed in terms of the minors of the matrix B as follows.

Lemma 3.3.1. Let P = Hj1 ∩ · · · ∩ Hjk be a vertex of the arrangement A[τ ] lying in

V , j1 < · · · < jk. Let j ∈ J \ {j1, . . . , jk}. Assume that j1 < · · · < jm < j < jm+1 <

· · · < jk where m ≤ k. Then

f j(P ) = (−1)k+m B[j1, . . . , jm, j, jm+1, . . . , jk]

B[j1, . . . , jk, N + 1]
. �

A similar statement holds for the arrangement A[τ ′] and matrix C.

3.4 A result on determinants

Theorem 3.4.1 (M, pp. 165–169). Let 1 ≤ j1 < · · · < jk+1 ≤ N + 1 be a subset and

let 1 ≤ jk+2 < · · · < jN+1 ≤ N + 1 be the complementary subset. Then

B[j1, . . . , jk+1] = (−1)σ · det B · C[jk+2, . . . , jN+1] ,

where

σ = 1 + 2 + · · ·+ (k + 1) + j1 + j2 + · · ·+ jk+1 .

3.5 Dual matroids

Let M = (J, I ) be a matroid. A subset X ⊂ J belongs to I if and only if X is contained

in at least one basis of M . In this way, a matroid is characterized by its collection of

bases.

The dual of M is the matroid M ′ on the same ground set J , whose bases are the

complements in J of the bases of M . Evidently, (M ′)′ = M .

Theorem 3.5.1 (O, B). Let M and M ′ be dual matroids. Then

• For any subset X ⊂ J , corankM X = nullityM ′ X̂,

• T(M ; x, y) = T(M ′; y, x).

Lemma 3.5.2. Let M and M ′ be dual matroids, |J | ≥ 2. Then b10
M = b10

M ′ . �

The lemma follows from Theorems 2.2.1 and 3.5.1.
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Lemma 3.5.3. Let M and M ′ be dual matroids. Let X ⊂ J , |X| < |J |. Then the

matroids M/X and M ′ −X are dual.

The lemma is proved in Section 5.2.

Theorem 3.5.4. Let X be a spacious flat in M , 1 < |X| < |J | − 1. Then the comple-

ment of X, the set X̂ = J \X, is a spacious flat in M ′. Furthermore,

• lMX = wM ′X̂,

• wMX = lM ′X̂,

• volMX = volM ′X̂.

Theorem 3.5.4 is proved in Section 5.4.

Recall that for a parallelism (X, a, b) in M , we denote by X̂(a, b) the complement

of X ∪ {a, b} in J .

Theorem 3.5.5. Let (X, a, b) be a parallelism in M , |X| < |J | − 2. Assume that

corankM(J \ {a, b}) = 0. Then (X̂(a, b), a, b) is a parallelism in M ′. Furthermore,

• lMX = wM ′(X̂(a, b), a, b),

• wM(X, a, b) = lM ′X̂(a, b),

• volM(X, a, b) = volM ′(X̂(a, b), a, b).

Theorem 3.5.5 is proved in Section 5.5.

Lemma 3.5.6. Let τ and τ ′ be dual admissible pairs. Then the matroids M [τ ] and

M [τ ′] are dual. �

The lemma is a corollary of Theorem 3.4.1.

3.6 Bounded domains, edges, and parallelisms of

dual arrangements

Lemma 3.6.1. The number of bounded domains of the arrangements A[τ ] and A[τ ′]

are equal. �

The lemma follows from Theorem 2.5.1 and Lemmas 3.5.2, 3.5.6.

For dual admissible pairs τ and τ ′, write
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• A[τ ] = {Hj : j ∈ J}, A[τ ′] = {Hj : j ∈ J},

• A[τ ] = {Hj : j ∈ J }, A[τ ′] = {Hj : j ∈ J },

• F [τ ] = {f j : j ∈ J }, F [τ ′] = {fj : j ∈ J }.

Let L be a spacious edge of the arrangement A[τ ] and X the associated flat in the

matroid M [τ ]. Denote by L̂ the edge ∩j∈X̂Hj of the arrangement A[τ ′].

Lemma 3.6.2. Let L be a spacious edge of A[τ ]. Assume that L is not a hyperplane.

Then L̂ is a spacious edge in A[τ ′]. Furthermore,

• lA[τ ]L = wA[τ ′]L̂,

• wA[τ ]L = lA[τ ′]L̂,

• volA[τ ]L = volA[τ ′]L̂. �

The lemma follows from Theorem 3.5.4.

The edges L and L̂ will be called dual.

Let (L, Ha, Hb) be a parallelism in the arrangement A[τ ]. Let X be the flat in the

matroid M [τ ] associated to the edge L. Denote by L̂(Ha, Hb) the edge ∩j∈X̂(a,b)Hj in

the arrangement A[τ ′].

Lemma 3.6.3. Let (L, Ha, Hb) be a parallelism in A[τ ]. Then (L̂(Ha, Hb), Ha, Hb) is

a parallelism in A[τ ′]. Furthermore,

• lA[τ ]L = wA[τ ′](L̂(Ha, Hb), Ha, Hb),

• wA[τ ](L, Ha, Hb) = lA[τ ′]L̂(Ha, Hb),

• volA[τ ](L, Ha, Hb) = volA[τ ′](L̂(Ha, Hb), Ha, Hb). �

The lemma follows from Theorem 3.5.5.

The parallelisms (L, Ha, Hb) and (L̂(Ha, Hb), Ha, Hb) will be called dual.

3.7 Relation between the values of polynomials defin-

ing dual arrangements

Lemma 3.7.1. Let (L, Hj, HN+1) be a parallelism in A[τ ] and

(L̂(Hj, HN+1), Hj, HN+1) the dual parallelism in A[τ ′]. The product of the value of

f j on L \HN+1 and the value of fj on L̂(Hj, HN+1) \HN+1 is −1.

Lemma 3.7.1 is proved in Section 5.6. Also, see Section 2.6.
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Chapter 4

Determinant formula

Several constructions from the works [V1] and [DT] on the definition of the period

matrix and the evaluation of its determinant are restated in brief in the Sections 4.1—

4.3, ending with Theorem 4.3.1 evaluating the determinant of the period matrix in

terms of the beta function and critical values (Section 4.3).

The Sections 4.4 and 4.5 focus on the definition of associated period matrices of dual

arrangements finishing with the statement of the main result of the paper (Theorem

4.5.1) on the evaluation of the product of determinants of associated period matrices

of dual arrangements.

4.1 Weighted arrangements

Let A = {Hj : j ∈ J} be a projective arrangement. A set of numbers α = {αj : j ∈ J}
with the property

∑
j∈J αj = 0 will be called a set of weights, where αj is the weight of

Hj. The pair (A, α) will be called a weighted arrangement.

The weight of an edge L of A is the sum, α(L), of the weights of the hyperplanes

that contain L.

Let A[τ ] = {Hj : j ∈ J} and A[τ ′] = {Hj : j ∈ J} be dual arrangements. Let

α = {αj : j ∈ J} be a set of numbers with the property
∑

j∈J αj = 0. Then (A[τ ], α)

and (A[τ ′], α) will be called dual weighted arrangements.

Let (A[τ ], α) be a weighted arrangement. For j ∈ J , the number αj is also called

the weight of the affine hyperplane Hj. The associated affine arrangement A[τ ] with

weight αj assigned to the hyperplane Hj for any j ∈ J , will be called the associated

weighted affine arrangement and denoted (A[τ ], α).



We always assume that for any j ∈ J , the weight αj of the hyperplane Hj is a

positive real number.

4.2 Period matrix of a weighted arrangement

Let (A[τ ], α) be a weighted affine arrangement. We have A[τ ] = {Hj : j ∈ J }, where

J = {1, . . . , N}. Consider J as an ordered set with the standard order.

In [DT], for an ordered affine arrangement, a collection βkbc(A[τ ]) of ordered

k-tuples B = (Hj1 ,Hj2 , . . . ,Hjk) is defined. For any tuple of that collection, the in-

tersection ∩k
l=1Hjl is a vertex. The number of tuples in that collection is equal to the

number β = β(A[τ ]) of bounded domains of the affine arrangement.

Elements of the collection are called βkbc-bases. The collection itself is ordered

lexicographically, βkbc(A[τ ]) = {B1, . . . , Bβ}.

4.2.1 Logarithmic k-forms

For B = (Hj1 ,Hj2 , . . . ,Hjk) ∈ βkbc(A[τ ]), define the associated flag of edges

ξ(B) = (L0
B ⊂ L1

B ⊂ · · · ⊂ Lk
B = V) ,

where Li
B = Hji+1 ∩Hji+2 ∩ · · · ∩ Hjk and dim Li

B = i.

Let F [τ ] = {f j : j ∈ J } be the polynomial arrangement associated to τ . Let L ⊂ V
be an edge of A[τ ]. Assign to L the differential 1-form

ω(L) =
∑

j, L⊂Hj

αj
df j

f j
.

Assign to every B = (Hj1 ,Hj2 , . . . ,Hjk) the differential k-form

φ(B) = ω(L0
B) ∧ ω(L1

B) ∧ · · · ∧ ω(Lk−1
B ) .

Thus, we get an ordered set of differential k-forms

Ψ = {φ1, φ2, . . . , φβ} ,

where φi is the form corresponding to the i-th element of the collection βkbc(A[τ ]).
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4.2.2 The βkbc-enumeration of bounded domains

Let ξ = (L0 ⊂ L1 ⊂ · · · ⊂ Lk) be a flag of edges of A[τ ] with dim Lj = j for all j. Let

∆ be a bounded domain of A[τ ] and ∆ its closure. The flag ξ is said to be adjacent to

∆, if dim (Lj ∩∆ ) = j, for all j.

Denote by Ch(A[τ ]) the set of bounded domains of the arrangement A[τ ]. In [DT],

a bijection

C : βkbc(A[τ ]) −→ Ch(A[τ ])

is defined such that for any B ∈ β kbc(A[τ ]), the associated flag ξ(B) is adjacent to

the bounded domain C(B).

Thus, one has Ch(A[τ ]) = {∆1, ∆2, . . . , ∆β}, where

∆s = C(Bs) , s = 1, 2, . . . , β .

This is called the βkbc(A[τ ])-ordering of the bounded domains of A[τ ].

4.2.3 Orientation of bounded domains

Let ∆ = C(B) and ξ(B) = (L0 ⊂ L1 ⊂ · · · ⊂ Lk). The flag ξ(B) is adjacent to the

domain ∆ = C(B) and defines the intrinsic orientation of ∆, see Section 6.2 in [V2].

The intrinsic orientation is the orientation of the unique orthonormal frame

{v1, v2, . . . , vk} where vi is the unit vector originating from the vertex L0 in the di-

rection of Li ∩∆.

4.2.4 The period matrix

Let (A[τ ], α) be a weighted affine arrangement and F [τ ] = {f j : j ∈ J } the associated

polynomial arrangement. Consider the multi-valued function

Uα =
∏
j∈J

(f j)αj : V −→ C .

Fix a uni-valued branch of each (f j)αj on each bounded domain ∆. The β × β-matrix

PM (A[τ ], α) =

( ∫
∆s

Uα φt

)
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is called the period matrix of the weighted affine arrangement (A[τ ], α). In this matrix

the differential forms are ordered as in Section 4.2.1, the domains are ordered as in

Section 4.2.2, the domains are oriented as in Section 4.2.3, and in each integral of the

matrix the uni-valued branch of Uα is chosen since the branches of each of its factors

were chosen.

Denote the determinant of the period matrix by D(A[τ ], α).

Remark. The ordered set of differential k-forms described in Section 4.2.1, the order

on the set of bounded domains as in Section 4.2.2, the orientation on bounded domains

as in Section 4.2.3 will be called canonical.

4.3 Determinant of the period matrix

4.3.1 Beta function

Let L−[τ ] be the set of all edges of A[τ ] lying in HN+1 and L+[τ ] the set of all other

edges. The beta function of the weighted affine arrangement (A[τ ], α) is defined in [V1]

as

B(A[τ ], α) =

∏
L∈L+[τ ] Γ(α(L) + 1)volA[τ ](L)∏

L∈L−[τ ] Γ(−α(L) + 1)volA[τ ](L)
,

where Γ is Euler’s gamma function.

4.3.2 Critical values

Let ∆ be a bounded domain of A[τ ]. Let j ∈ J . Let Σ be the Hj-external supporting

face of ∆. The value of the chosen branch of (f j)
αj on Σ is called the critical value of

(f j)αj on ∆ and denoted by c ((f j)αj , ∆).

4.3.3 Evaluation of the determinant

Theorem 4.3.1 (V1, DT). The determinant of the period matrix is given by the fol-

lowing formula:

D(A[τ ], α) = B(A[τ ], α) ·
∏
j∈J

∆∈ ChA[τ ]

c ((f j)
αj , ∆) .
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4.4 Special choice of branches

The definition of the period matrix PM(A[τ ], α) involves the choice of branches of each

(f j)αj on each bounded domain of A[τ ]. In this paper, we choose the branches as

follows.

Let (L, Hj, HN+1) be a parallelism in A[τ ]. On all bounded domains of A[τ ] whose

Hj-external supporting edge is L, choose the argument of f j to be the same.

Then for any two bounded domains ∆ and ∆′ with the same Hj-external supporting

edge L, the values c ((f j)
αj , ∆) and c ((f j)

αj , ∆′) will be equal. Denote this common

value by c ((f j)
αj , L).

Repeating this process for all parallelisms (L, Hj, HN+1) in A[τ ] gives a choice of

branches of each (f j)αj on each bounded domain of A[τ ].

Such a choice of branches will be called special.

Lemma 4.4.1. For a special choice of branches, construct the period matrix

PM(A[τ ], α). Then its determinant is given by the formula:

D(A[τ ], α) = B(A[τ ], α) ·
∏

c ((f j)
αj , L)volA[τ ](L,Hj ,HN+1) ,

where the product is taken over all parallelisms (L, Hj, HN+1). �

The lemma follows from Lemma 2.6.1 and Theorem 4.3.1.

4.5 Associated period matrices of dual arrangements

Let (A[τ ], α) and (A[τ ′], α) be dual weighted affine arrangements. For each of them

we can define period matrices and calculate their determinants. The period matrices

depend on the choice of branches of functions (f j)αj and (fj)
αj on bounded domains

of those arrangements.

In this section we define the associated choices of branches in such a way that the

determinants of period matrices will be related.

Consider J = {1, . . . , N} with the standard order. Then we have the canonical

ordered set of differential k-forms associated with A[τ ], ordering on the set of bounded

domains of A[τ ], and orientation on each bounded domain. We also have the canonical

ordered set of differential n-forms associated with A[τ ′], ordering on the set of bounded

domains of A[τ ′], and orientation on each bounded domain.
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Take an arbitrary special choice of branches of the functions (f j)αj on bounded

domains of the arrangement A[τ ]. We will define now the associated special choice of

branches of functions (fj)
αj on bounded domains of the arrangement A[τ ′].

Let (L, Hj, HN+1) be a parallelism in A[τ ] and (L̂(Hj, HN+1), Hj, HN+1) the dual

parallelism in A[τ ′]. Suppose that in the definition of PM(A[τ ], α), θ is the chosen

argument of f j on a bounded domain with Hj-external supporting edge L. On each

bounded domain of A[τ ′] with Hj-external supporting edge L̂(Hj, HN+1), choose the

argument of fj to be −θ + π, see Lemma 3.7.1.

With this choice of branches, define the period matrix, PM(A[τ ′], α), of (A[τ ′], α).

The period matrices PM(A[τ ], α) and PM(A[τ ′], α) will be called associated.

The main result of this paper is the following theorem.

Theorem 4.5.1. The product of determinants of the associated period matrices is given

by the formula:

D(A[τ ], α) ·D(A[τ ′], α) =

[∏
j∈J eπiαjΓ(αj + 1)

Γ(
∑

j∈J αj + 1)

]β

,

where β is the number of bounded domains in A[τ ].

Recall that the number of bounded domains in A[τ ] is equal to the number of

bounded domains in A[τ ′].

The theorem is proved in Section 5.7.
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Chapter 5

Proofs

The topic of this chapter is the proof of all the results that were postponed hitherto.

The chapter ends with the proof of the main result of this paper.

5.1 Proof of Lemma 2.6.1

Let (L, Ha, Hb) be a parallelism of the arrangement A in a projective space V . Let Σ be

a domain of the induced arrangement AL on L, bounded with respect to the hyperplane

Hb ∩ L. It is enough to show that the number of bounded domains with Ha-external

supporting face Σ is wA(L, Ha, Hb), the discrete width of the parallelism (L, Ha, Hb).

Denote by X the flat associated to L in the matroid, M , of the arrangement A. By

definition, wA(L, Ha, Hb) = b10
M−X̂(a,b)

.

Suppose that L is a vertex. Then, by Theorem 2.5.1, b10
M−X̂(a,b)

is the number of

bounded domains formed by the set of hyperplanes

A(L,Ha,Hb) = {Hj : j ∈ X ∪ {a, b}} .

Clearly, bounded domains of the arrangementA withHa-external supporting face Σ are

in one-to-one correspondence with bounded domains formed by A(L,Ha,Hb). Thus, the

number of bounded domains with Ha-external supporting face Σ is

wA(L, Ha, Hb).

If L is not a vertex, consider a subspace V ′ ⊂ V , dim V ′ = codim L, such that V ′

intersects L transversally. Then V ′ also intersects Ha and Hb transversally. Consider

the induced arrangement {Hj ∩ V ′ : j ∈ X ∪ {a, b}} on V ′. Each bounded domain of

A with Ha-external support Σ determines a unique bounded domain (with respect to



the hyperplane Hb ∩V ′) of the new arrangement. The number of which is b10
M−X̂(a,b)

by

Theorem 2.5.1. �

5.2 Proof of Lemma 3.5.3

Let B ⊂ X̂ be a basis of M/X. Then there exists a maximal independent subset Y of

X such that B ∪ Y is a basis of M . We want to show that X̂ \B is a basis of M ′−X.

That is, X̂ \B is a maximal independent subset of X̂ in M ′.

Since B ∪ Y is a basis of M , (X̂ \ B) ∪ (X \ Y ) is a basis of M ′. Hence, X̂ \ B

is independent. Now, |B| = corankMX = nullityM ′X̂ = |X̂| − rankM ′X̂. Therefore,

|X̂ \B| = rankM ′X̂. This shows that X̂ \B is maximally independent in X̂ in M ′.

Conversely, let B be a basis of M ′ −X. Then B is a maximal independent subset

of X̂ in M ′. Hence there exists an independent subset Y of X in M ′ such that B ∪ Y

is a basis of M ′. Thus, (X̂ \B)∪ (X \Y ) is a basis of M . Hence, X \Y is independent

in M . It remains to show that it is maximal independent.

Since B ∪ Y is a basis of M ′ and B is a maximal independent subset of X̂ in M ′,

|Y | = corankM ′X̂ = nullityMX. Hence, |X \ Y | = |X| − nullityMX = rankMX. �

5.3 Flats of the dual matroid

Lemma 5.3.1. Let M = (J, I ) be a matroid. Let X ⊂ J be a subset, 1 < |X| < |J |−1.

Then X̂ is a flat in the dual matroid M ′ if and only if the deletion M − X̂ does not

have an isthmus.

Proof. Suppose that M − X̂ does not have an isthmus. Then for every e ∈ X,

rankM−X̂X \ {e} = rankM−X̂X. Hence, for every e ∈ X, rankMX \ {e} = rankMX.

That is, for every e ∈ X, nullityMX \ {e} = nullityMX − 1. Thus, for every e ∈ X,

corankM ′X̂ ∪ {e} = corankM ′X̂ − 1. Then for every e ∈ X, rankM ′X̂ ∪ {e} =

rankM ′X̂ + 1. This shows that the subset X̂ ⊂ J is a flat in M ′.

The converse follows by tracing the arguments backward.

5.4 Proof of Theorem 3.5.4

Lemma 5.4.1. Let X be a spacious flat in M , 1 < |X| < |J | − 1. Then the deletion

M − X̂ does not have an isthmus.
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Proof. Let e be an isthmus in the matroid M−X̂. By Theorem 2.2.2, T(M−X̂; x, y) =

x T((M − X̂)/{e}; x, y). Hence, wM(X) = b10
M−X̂

= b00
(M−X̂)/{e}. By Theorem 2.2.1,

b00
(M−X̂)/{e} = 0 (since |X| ≥ 2). This contradicts our assumption that the flat X is

spacious. Hence M − X̂ does not have an isthmus.

Proof of Theorem 3.5.4. Let M and M ′ be dual matroids. Let X be a spacious flat in

M , 1 < |X| < |J | − 1. It follows from Lemmas 5.3.1, 5.4.1 that X̂ is a flat in M ′.

Furthermore, lMX = b10
M/X = b10

M ′−X = wM ′X̂ by Lemmas 3.5.2, 3.5.3. Hence,

volMX = volM ′X̂.

5.5 Proof of Theorem 3.5.5

Lemma 5.5.1. Let (X, a, b) be a parallelism in M , |X| < |J | − 2. Then the deletion

M − X̂(a, b) does not have an isthmus. �

The proof is similar to the proof of Lemma 5.4.1.

Proof of Theorem 3.5.5. Let (X, a, b) be a parallelism in M , |X| < |J | − 2,

volM (X, a, b) 6= 0 and corankM (J \ {a, b}) = 0. It follows from Lemmas 5.3.1, 5.5.1

that X̂(a, b) is a flat in M ′.

Clearly, a, b 6∈ X̂(a, b) and rankM ′{a, b} = 2.

Since (X, a, b) is a parallelism, rankMX ∪ {a, b} = rankMX + 1. So, corankMX =

corankMX ∪ {a, b} + 1. Thus, nullityM ′X̂(a, b) ∪ {a, b} = nullityM ′X̂(a, b) + 1. Hence

rankM ′X̂(a, b) ∪ {a, b} = rankM ′X̂(a, b) + 1. This proves that (X̂(a, b), a, b) is a paral-

lelism in M ′.

Furthermore, lMX = b10
M/X = b10

M ′−X = wM ′(X̂(a, b), a, b) by Lemmas 3.5.2, 3.5.3.

Hence, volM(X, a, b) = volM ′(X̂(a, b), a, b).

5.6 Proof of Lemma 3.7.1

Lemma 5.6.1. Let (L, Ha, Hb) be a parallelism in A[τ ] and let P = Hj1 ∩ · · ·∩Hjk be

a vertex on L \Hb for some I = {j1, . . . , jk} ⊂ J . Let Î(a, b) = J \ (I ∪ {a, b}). Then

|Î(a, b)| = n and P̌ = ∩j∈Î(a,b)Hj is a vertex on L̂(Ha, Hb)\Hb in the dual arrangement

A[τ ′].

Proof. Since corankM [τ ]I = 1 and a 6∈ X, rankM [τ ]I∪{a} = rank M . Thus, nullityM [τ ]I∪
{a, b} = 1 and hence corankM [τ ]Î(a, b) = 1. So, P̌ is a vertex on L̂(Ha, Hb).
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It remains to show that P̌ 6∈ Hb. Assume that P̌ ∈ Hb. Then nullityM [τ ′]Î(a, b)+1 =

nullityM [τ ′]Î(a, b) ∪ {b}. Thus, corankM [τ ]I ∪ {a, b} + 1 = corankM [τ ]I ∪ {a}. But,

corankM [τ ]I ∪ {a} = 0. This is a contradiction.

Proof of Lemma 3.7.1. Let (L, Hj, HN+1) be a parallelism in A[τ ] and

(L̂(Hj, HN+1), Hj, HN+1) the dual parallelism in A[τ ′]. Let P and P̌ be vertices on

L \HN+1 and L̂(Hj, HN+1) \HN+1, respectively, as in Lemma 5.6.1. We want to show

that f j(P ) · fj(P̌ ) = −1.

Let I be as in Lemma 5.6.1. Assume that I = {j1, j2, . . . , jk}, j1 < j2 < · · · < jk,

and Î(j, N + 1) = {jk+1, . . . , jk+n}, jk+1 < · · · < jk+n. Let m and m′ be the number of

elements less than j in I and Î(a, b), respectively. Then m + m′ = j − 1.

By Lemma 3.3.1,

f j(P ) = (−1)k+m B[j1, . . . , jm, j, jm+1, . . . , jk]

B[j1, . . . , jk, N + 1]

and

fj(P̌ ) = (−1)n+m′ C[jk+1, . . . , jk+m′ , j, jk+m′+1, . . . , jk+n]

C[jk+1, . . . , jk+n, N + 1]
.

By Theorem 3.4.1, f j(P ) · fj(P̌ ) = (−1)(j+N+1)+(k+m)+(n+m′) = −1.

5.7 Proof of Theorem 4.5.1

Lemma 5.7.1. Let M and M ′ be dual matroids. Let X be a flat in M , |X| = 1.

• If X is also a flat in M ′, then lMX + lM ′X = b10
M .

• If X is not a flat in M ′, then lMX = b10
M .

Proof. Suppose that X is a flat in both M and M ′. Then lMX = b10
M/X and lM ′X =

b10
M ′/X = b10

M−X . Hence, lMX + lM ′X = b10
M/X + b10

M−X = b10
M , by Theorem 2.2.2.

Let X be a flat in M . Suppose that X is not a flat in M ′. Then the matroid

M −X has an isthmus by Lemma 5.3.1. Hence, b10
M−X = 0 by Theorem 2.2.2. Hence,

b10
M/X = b10

M , by Theorem 2.2.2. That is, lMX = b10
M .

Theorem 5.7.2. Let (A[τ ], α) and (A[τ ′], α) be dual weighted affine arrangements.

Then

B(A[τ ], α) · B(A[τ ′], α) =

[∏
j∈J Γ(αj + 1)

Γ(
∑

j∈J αj + 1)

]β

.
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Proof. Let L be a spacious edge of A[τ ] that is not a hyperplane. By Lemma 3.6.2, the

dual edge L̂ is spacious in A[τ ′]. Furthermore, volA[τ ]L = volA[τ ′]L̂.

Clearly, if L ∈ L−[τ ], then L̂ ∈ L+[τ ′] and if L ∈ L+[τ ], then L̂ ∈ L−[τ ′]. We also

have α(L) + α(L̂) = 0.

If L ∈ L+[τ ], then

Γ(α(L) + 1)volA[τ ]L = Γ(−α(L̂) + 1)volA[τ ′]L̂ .

If L ∈ L−[τ ], then

Γ(−α(L) + 1)volA[τ ]L = Γ(α(L̂) + 1)volA[τ ′]L̂ .

Hence, by Lemma 5.7.1,

B(A[τ ], α) · B(A[τ ′], α) =

∏N
j=1 Γ(αj + 1)lA[τ ](H

j) · Γ(αj + 1)lA[τ ′](Hj)

Γ(−αN+1 + 1)lA[τ ](H
N+1) · Γ(−αN+1 + 1)lA[τ ′](HN+1)

=

[∏N
j=1 Γ(αj + 1)

Γ(
∑N

j=1 αj + 1)

]β

as desired.

Proof of Theorem 4.5.1. Let (L̂(Hj, HN+1), Hj, HN+1) be the parallelism in A[τ ′] dual

to the parallelism (L, Hj, HN+1) in A[τ ]. Then

c ((f j)
αj , L) · c ((fj)

αj , L̂(Hj, HN+1)) = eiπαj .

For each j ∈ J , there are β critical values of (f j)αj . Hence∏
j∈J

∆∈ ChA[τ ]

c ((f j)
αj , ∆) ·

∏
j∈J

∆′∈ ChA[τ ′]

c ((fj)
αj , ∆′) = eiπβ

P
j∈J αj .

The theorem now follows from Theorem 5.7.2

29



Appendix A

Weak duality

In this chapter we formulate the notion of weak duality starting with the definition of

a weakly admissible pair. We associate to a weakly admissible pair an arrangement of

projective hyperplanes in a projective space of appropriate dimension, and a matroid.

The matroids associated to weakly dual pairs turn out to be dual. The corresponding

projective arrangements are called weakly dual.

The Theorems A.1.1 and A.1.2 show that weakly dual arrangements arise out of

natural constructions using dual arrangements.

A.1 Statement of results

Let X, W and X′, W′ denote the same spaces as in Section 3.1. Assume that for any

j ∈ J , the functions ej|W and ej|W′ are not identically zero. The pair τ = (X, W)

with this property will be called a weakly admissible pair in X. Similarly, the pair

τ ′ = (X′, W′) with this property will be called a weakly admissible pair in X′. The pairs

τ and τ ′ will be called weakly dual.

Clearly, any dual pairs τ and τ ′ are weakly dual.

Let τ = (X, W) be a weakly admissible pair. As in Section 3.2, define the following

objects. For j ∈ J , denote Ej = {x ∈ W : ej(x) = 0 }. These are vector subspaces of

W of codimension one.

Denote

• V = P(W), the projective space of dimension k,

• Hj = P(Ej), j ∈ J , projective hyperplanes in V ,

• A[τ ] = {Hj : j ∈ J }, the arrangement of projective hyperplanes in V .

For weakly dual pairs τ and τ ′, the corresponding projective arrangements A[τ ] and

A[τ ′] will be called weakly dual.
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For a weakly admissible pair τ , introduce the matroid of τ , denoted M [τ ], as the

matroid of the collection of vectors { ej|W : j ∈ J } in the dual space of W.

Let τ and τ ′ be weakly dual pairs. Then the matroids M [τ ] and M [τ ′] are dual.

Theorem A.1.1. Let A[τ ] and A[τ ′] be dual projective arrangements. Let L be a spa-

cious edge of A[τ ] and L̂ the dual spacious edge of A[τ ′]. Then the induced arrangement

on L, denoted by A[τ ]L, is weakly dual to the projective localization of A[τ ′] at L̂, de-

noted by P (A[τ ′]L̂).

We will prove a more general result. To formulate the result we need the notion of

the projective localization of a sub-arrangement.

Let A = {Hj : j ∈ J } be a projective arrangement of hyperplanes. For a subset

I ⊂ J , the set of hyperplanes {Hj : j ∈ I } will be called a sub-arrangement of A.

Let I ⊂ J be such that ∩j∈IH
j 6= ∅. Then the projectivization of the central

arrangement {Hj : j ∈ I } will be called the projective localization of the sub-

arrangement {Hj : j ∈ I }, see Section 2.1.

Theorem A.1.2. Let A[τ ] = {Hj : j ∈ J } and A[τ ′] = {Hj : j ∈ J } be weakly

dual arrangements. Let L be an edge of A[τ ] and let X = { j ∈ J : L ⊂ Hj } be the

flat associated to L in the matroid M [τ ]. Assume that |X| < |J |.
Let ∩j∈X̂Hj = ∅. Then the induced arrangement on L, A[τ ]L, is weakly dual to the

sub-arrangement {Hj : j ∈ X̂ } of A[τ ′].

Let ∩j∈X̂Hj 6= ∅. Then the induced arrangement on L, A[τ ]L, is weakly dual to the

projective localization of the sub-arrangement {Hj : j ∈ X̂ } of A[τ ′].

A.2 Proof of Theorem A.1.2

Let τ = (X, W) and τ ′ = (X′, W′) be the weakly dual admissible tuples.

For j ∈ J , denote F j = {ej = 0} ⊂ X and Fj = {ej = 0} ⊂ X′.

Consider the vector space ∩j∈XF j with the basis ej, j ∈ X̂. Then X′/∩j∈X̂ Fj may

be identified with the dual space of ∩j∈XF j with the dual basis ej + ∩j∈X̂Fj, j ∈ X̂.

The classes of the elements of W′ in the vector space X′/ ∩j∈X̂ Fj form a subspace

of X′/ ∩j∈X̂ Fj. Denote this subspace by W′/ ∩j∈X̂ Fj.

Consider the tuples

σ =
(
∩j∈XF j , ∩j∈XEj

)
, σ′ =

(
X′/ ∩j∈X̂ Fj , W′/ ∩j∈X̂ Fj

)
.
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Remark. To make sense of the definitions of σ and σ′ the following identifications are

required.

• The element ej +∩j∈X̂Fj ∈ X′/∩j∈X̂ Fj defines a linear function on ∩j∈XF j given

by (ej + ∩j∈X̂Fj)(x) = ej(x) for every x ∈ ∩j∈XF j.

• The element ej ∈ ∩j∈X̂Fj, j ∈ X̂, defines a linear function on X′/ ∩j∈X̂ Fj given

by ej(x
′ + ∩j∈X̂Fj) = ej(x

′), for every x′ ∈ X′.

Lemma A.2.1. The tuples σ and σ′ are weakly dual.

Proof. We first show that σ and σ′ are weakly admissible. For i ∈ X̂,

(ei + ∩j∈X̂Fj)|∩j∈XEj ≡ 0 implies that ei|∩j∈XEj ≡ 0. Thus, ∩j∈XEj ⊂ Ei. This

contradicts the assumption that X is a flat.

For any i ∈ X̂, ei|W′/∩j∈X̂Fj
is a nonzero function since ei|W′ is a nonzero linear

function. This shows that σ and σ′ are weakly admissible tuples.

The space W′/ ∩j∈X̂ Fj clearly annihilates ∩j∈XEj.

We have dim ∩j∈XEj = dim W ∩ (∩j∈XF j) = corankM [τ ]X. Hence the annihilator

of ∩j∈XEj in X′/ ∩j∈X̂ Fj has dimension |X̂| − corankM [τ ]X = |X̂| − nullityM [τ ′]X̂ =

rankM [τ ′]X̂.

Observe that the spaces W′/ ∩j∈X̂ Fj and W′/ ∩j∈X̂ Ej are isomorphic. Hence,

dim W′/ ∩j∈X̂ Fj = dim W′ − dim ∩j∈X̂Ej = rank M [τ ′]− corankM [τ ′]X̂ = rankM [τ ′]X̂.

This shows that W′/∩j∈X̂ Fj is the annihilator of ∩j∈XEj in X′/∩j∈X̂ Fj. Hence, σ

and σ′ are weakly dual.

Lemma A.2.2.

(i) The arrangement A[σ] is the induced arrangement A[τ ]L.

(ii) If ∩j∈X̂Hj = ∅, then the arrangement A[σ′] is the sub-arrangement

{Hj : j ∈ X̂} of A[τ ′].

(iii) If ∩j∈X̂Hj 6= ∅, then the arrangement A[σ′] is the projective localization of the

sub-arrangement {Hj : j ∈ X̂} of A[τ ′].

Proof. Statement (i) is clear.

Let U ⊂ W′ be a subspace such that U⊕∩j∈X̂Ej = W′. Consider the isomorphism

U → W′/ ∩j∈X̂ Fj , u 7→ u + ∩j∈X̂Fj .

32



For every j ∈ X̂, the subspace Ej ∩U ⊂ U corresponds to the subspace Ej/∩j∈X̂ Fj ⊂
W′/ ∩j∈X̂ Fj. The arrangement of hyperplanes P(U ∩ Ej) ⊂ P(U), j ∈ X̂, in the

projectivization P(U) is the arrangement described in part (ii), if ∩j∈X̂Hj = ∅, and

is the arrangement described in part (iii), if ∩j∈X̂Hj 6= ∅. Statements (ii) and (iii) are

proved.

Theorem A.1.2 is a corollary of Lemmas A.2.1 and A.2.2.
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Appendix B

Plucker coordinates of dual

arrangements

We formulate a statement which helps to determine if two given arrangements are dual.

Let k, n, N denote the same natural numbers as in Section 3.1.

Let P (k + 1, N + 1) be the real projective space of dimension
(

N+1
k+1

)
− 1, whose

projective coordinates (λL) are labeled by subsets L = (l1, . . . , lk+1) such that 1 ≤ l1 <

· · · < lk+1 ≤ N + 1.

Similarly, let P (k + 1, N + 1) be the real projective space of (the same) dimension(
N+1
n+1

)
−1, whose projective coordinates (µM) are labeled by subsets M = (m1, . . . ,mn+1)

such that 1 ≤ m1 < · · · < mn+1 ≤ N + 1.

Let

δ : P (k + 1, N + 1) → P (n + 1, N + 1) , λ 7→ µ = δ(λ) ,

be the isomorphism, where for any M = (m1, . . . ,mn+1), we set µM = (−1)σλL, where

L = (l1, . . . , lk+1) is the subset complementary to M in {1, . . . , N + 1}, and σ =

1 + 2 + · · ·+ k + 1 + l1 + · · ·+ lk+1.

Let X and X′ denote the same spaces as in Section 3.1. Let Gr denote the Grass-

mannian of all k + 1-dimensional vector subspaces of X and Gr′ the Grassmannian of

all n + 1-dimensional vector subspaces of X′. Let

π : Gr → P (k + 1, N + 1) , W 7→ (λL) = π(W) ,

be the Plucker imbedding, (λL) = (el1 ∧ · · · ∧ elk+1|W). Let

π′ : Gr′ → P (n + 1, N + 1) , W′ 7→ (µM) = π′(W′) ,

be the Plucker imbedding, (µM) = (em1 ∧ · · · ∧ emn+1|W′).

Lemma B.0.3. For W ∈ Gr and W′ ∈ Gr′, the subspace W′ is the annihilator of the

subspace W if and only if π′(W′) = δ(π(W)).

34



The lemma follows from Lemma 3.3.1.
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