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ABSTRACT 

KATELYN EMILY ZULAUF: The role of SecA2 protein export in the virulence of 
Mycobacterium tuberculosis  

(Under the direction of Miriam Braunstein) 

 

In order to promote disease, Mycobacterium tuberculosis exports proteins outside 

of the bacterial cell into the host environment where the proteins can interfere with host 

defense mechanisms such as phagosome maturation. The SecA2 pathway is one system 

M. tuberculosis utilizes to export such proteins. SecA2 is a non-essential specialized 

SecA ATPase required for exporting a relatively small subset of proteins.  The SecA2 

pathway, although not essential for growth of M. tuberculosis in vitro, is required for 

virulence of M. tuberculosis. The requirement for SecA2 during infection suggests that 

SecA2 and its exported effectors play important roles in M. tuberculosis pathogenesis. 

Therefore, we set out to both identify M. tuberculosis proteins that are exported by the 

SecA2 pathway and identify functions of SecA2 in M. tuberculosis virulence. Using 

quantitative proteomics, we identified solute binding proteins and Mce proteins as two 

classes of proteins exported by SecA2 as well additional proteins of unknown function 

that may account for the role of SecA2 in virulence. We additionally investigated the 

function of the SecA2 pathway in phagosome maturation arrest which is critical for M. 

tuberculosis replication and pathogenesis, by identifying and investigating proteins 

exported by the SecA2 pathway that play essential roles in this process. Work presented 

in this dissertation shows that SecA2 exports two effectors of phagosome maturation 

arrest: SapM and PknG. We further show that the role of SecA2 in exporting these 
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effectors contributes to phagosome maturation arrest and growth of M. tuberculosis in 

macrophages. Finally, to further elucidate the functions and mechanisms of the SecA2 

export pathway of M. tuberculosis beyond phagosome maturation arrest, we utilized 

genome-wide genetic interaction mapping of secA2. Our results expand our 

understanding of the SecA2 pathway by identifying candidate substrates and components 

of the export machinery and by revealing roles for SecA2 in M. tuberculosis processes 

involving transporters, phosphate import, copper resistance, peptidoglycan synthesis, and 

lipid metabolism and homeostasis. Taken together, the findings presented in this 

dissertation have significantly advanced our understanding of the roles of the SecA2 

export pathway in the virulence of M. tuberculosis.
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CHAPTER 11 

 

Introduction 

 

Despite the identification of Mycobacterium tuberculosis as the etiological agent of 

the disease tuberculosis over 100 years ago, there remain over 10 million new cases of 

tuberculosis and 1.8 million deaths attributed to M. tuberculosis each year (1). This 

significant burden of disease makes M. tuberculosis the leading infectious killer worldwide. 

Furthermore, the lack of an efficacious vaccine and the increasing emergence of drug 

resistant strains has complicated treatment and the elimination of M. tuberculosis (2). A 

better understanding of the mechanisms of M. tuberculosis pathogenesis could lead to the 

identification of novel treatments for M. tuberculosis.  

 M. tuberculosis is spread person to person by aerosols that reach the alveolar spaces 

of the lung, where the bacterium is phagocytosed by alveolar macrophages. Typically, once 

taken up by macrophages, the host delivers microbes to membrane bound compartments 

called phagosomes, and the host mounts multiple anti-microbial defenses against the 

pathogen (3). In contrast, M. tuberculosis blocks these host responses in order to create a 

hospitable niche for replicating in the phagosomal compartment (4,5). The ability of M.  

																																																													
1Adapted for this dissertation from: Miller BK, Zulauf KE, Braunstein M. 2017. The Sec 
Pathways and Exportomes of Mycobacterium tuberculosis. Microbiol Spectr 5 (2). 
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tuberculosis to replicate in host cells, specifically macrophages, is critical for virulence. In 

order to replicate in macrophages, M. tuberculosis exports a variety of effector proteins to the 

host-pathogen interface (6,7). These exported proteins can either be localized to the bacterial 

surface or fully secreted into the host where they have diverse functions that include limiting 

damaging host responses to M. tuberculosis (e.g. phagosome-lysosome fusion and antigen 

presentation), resisting immune defense mechanisms (i.e. ROS and RNI), and promoting 

nutrient uptake (i.e. cholesterol) (7,8). The SecA2-dependent protein export pathway is 

required for virulence of M. tuberculosis and more specifically replication of M. tuberculosis 

in macrophages (9,10). The research described in this thesis is directed at elucidating the 

mechanisms of SecA2 export that contributes to the success of M. tuberculosis as an 

intracellular pathogen. 

 

Protein export in M. tuberculosis 

Approximately 20% of all bacterial proteins must be exported beyond the bacterial 

cytoplasm in order to function (11). Consequently, all bacteria possess protein export 

pathways that transport proteins beyond the cytoplasmic membrane. These exported proteins 

may remain in the bacterial cell envelope or be further secreted to the extracellular 

environment (11). Many exported proteins function in essential physiological processes. 

Additionally, in bacterial pathogens, including M. tuberculosis, many exported proteins have 

functions in virulence. Consequently, the pathways that export proteins are commonly 

essential and/or are important for pathogenesis. Across bacteria, including mycobacteria, 

there are conserved protein export pathways: the general Sec secretion (Sec) and the twin-

arginine translocation (Tat) pathways. Both Sec and Tat pathways are essential to the 



	
3 

	

viability of M. tuberculosis and both also contribute to virulence (Rank and Braunstein 

unpublished, 12-14). In addition to these highly conserved pathways, bacterial pathogens 

commonly have specialized protein export systems that are important for pathogenesis due to 

their role in exporting virulence factors. Mycobacteria also have specialized protein export 

systems: the SecA2 export pathway and five ESX (Type VII) pathways.  

 

Sec (SecA1) protein export pathway 

The majority of protein export in bacteria is carried out by the general secretion (Sec) 

pathway. The Sec pathway is highly conserved and essential in all bacteria (15). The Sec 

pathway transports proteins from the cytoplasm across the cytoplasmic membrane (Figure 

1.1). Sec exported proteins can then remain in the cell envelope or be fully secreted into the 

extracellular space. Sec exported proteins are transported in an unfolded state through the 

SecYEG membrane channel. Proteins exported by the Sec export pathway possess an N-

terminal signal peptide that directs them to the Sec pathway to be exported (16). 

In addition to the SecYEG channel, Sec export requires the essential SecA ATPase 

that is peripherally associated with SecYEG. SecA is a multifunctional protein that binds to 

Sec exported proteins in the cytoplasm, targets them to SecYEG, and harnesses energy from 

repeated rounds of ATP binding and hydrolysis to drive the stepwise export of proteins 

through the SecYEG channel (17). An unusual feature of mycobacteria is that they possess 

two SecA proteins (named SecA1 and SecA2) (18). These two SecAs are distinct and have 

unique functions, with the mycobacterial SecA1 being the essential SecA (described above) 

that functions in the conserved Sec pathway of mycobacteria to transport the majority of 

exported proteins.  
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SecA2 protein export pathway 

In contrast to SecA1, the mycobacterial SecA2 is not essential for growth in vitro. 

SecA2 exports a smaller subset of proteins than SecA1. However, among the proteins 

exported by SecA2 are proteins with roles in the virulence of the pathogenic mycobacteria M. 

tuberculosis and M. marinum in macrophage and animal models of infection (9,10,19-21). As 

with mycobacteria, in other bacterial pathogens with SecA2 proteins, such as L. 

monocytogenes, Staphylococcus aureus, Streptococcus gordonii, SecA2 is also nonessential 

but has a role in virulence (22-24). The mycobacterial SecA2 pathway exports diverse 

substrates, and studies suggest that SecA2 likely works with the canonical SecYEG channel 

to export its specific subsets of proteins (Figure 1.1) (19,20,25,26).  

 

Features of SecA2-exported proteins 

Studies in M. tuberculosis, M. marinum, and M. smegmatis have identified proteins 

that are exported in a SecA2-dependent manner (19,20,26). The list of SecA2-dependent 

proteins includes examples with N-terminal Sec signal peptides as well as proteins lacking 

recognizable signal peptides (e.g. SodA and PknG). The SecA2-only systems of other 

pathogens, such as L. monocytogenes, are also associated with export of proteins with or 

without signal peptides (27).  

The best studied SecA2-dependent substrates are the M. smegmatis lipoproteins 

Msmeg1704 and Msmeg1712 (26). These proteins are both solute binding proteins (SBPs) 

that are synthesized as preproteins with Sec signal peptides containing lipobox motifs. SBP 

lipoproteins are also identified in M. marinum as a category of protein exported by the SecA2 

pathway (20). The lipidated nature of these proteins does not confer their SecA2-dependency 
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for export; an amino acid substitution of the invariant cysteine in the lipoboxes of 

Msmeg1704 and Msmeg1712, which prevents lipid attachment, does not eliminate the 

requirement for SecA2 in export (28). Although SecA2-dependent substrates containing 

signal peptides, such as Msmeg1704 and Msmeg1712, require their signal peptide to be 

exported, their signal peptides do not contain any SecA2 distinguishing features. If their 

signal peptides are swapped for the signal peptide of a SecA1-dependent substrate, 

Msmeg1704 and Msmeg1712 retain their SecA2-dependency (28). Thus, the mature domains 

of these proteins, not signal peptides, impart the requirement for SecA2 in their export.  

One possible explanation for the defining feature of the mature domains of SecA2-

dependent substrates is a propensity to fold in the cytoplasm prior to export. In support of 

this idea, when the mature domain of Msmeg1704 is fused to a signal peptide that directs 

preproteins for export through the twin-arginine translocase (Tat) pathway, Msmeg1704 is no 

longer exported in a SecA2-dependent manner (28). Instead, when fused to a Tat signal 

peptide Msmeg1704 is exported by the Tat pathway. The Tat pathway differs from the Sec 

system in that it requires preproteins to be folded prior to export, unlike Sec export in which 

preproteins must remain unfolded to be export competent. Thus, the fact that the mature 

domain of a SecA2 substrate is compatible with export by the Tat pathway suggests that 

SecA2 dependent substrates can fold in the cytoplasm prior to export and that the role of 

SecA2 may be to facilitate export of these problematic substrates through the SecYEG 

channel, which requires proteins to be unfolded. It remains unclear how SecA2 may assist in 

the export of these substrates. Three nonexclusive possibilities for how SecA2 could be 

influencing export are either that SecA2 serves a chaperone-like role, is capable of working 

with a chaperone that keeps preproteins unfolded prior to export, or that SecA2 cooperates 
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with SecA1 to provide additional energy to translocate challenging substrates through 

SecYEG.  

SecA2-dependent features of the mature domain may also help explain the SecA2-

dependence of M. tuberculosis proteins lacking signal peptides (e.g. SodA and PknG). There 

are also SodA proteins lacking signal peptides reported to be exported by the canonical Sec 

pathway in Rhizobium leguminosarum and by the SecA2-only pathway in L. monocytogenes 

(29,30). Further studies of the role of SecA2 in the export of these unconventional proteins is 

needed because it also remains possible that the effect of SecA2 on exported proteins like 

SodA is indirect.  

 

Proteins exported by SecA2 

As indicated by the virulence defects of secA2 mutants of M. tuberculosis and M. 

marinum, the SecA2-dependent pathway exports proteins with roles in pathogenesis 

(9,10,19-21). Compared to SecA1 which is responsible for the majority of protein export in 

the bacterial cell, SecA2 is thought to only export a small number of proteins (likely around 

25) (6). Early studies identified a small number of SecA2 exported proteins using 

comparative two-dimensional gel electrophoresis of cell wall or secreted proteins of M. 

smegmatis and M. tuberculosis (19,26). More recent quantitative mass spectrometry analyses 

of cell envelope fractions of secA2 mutant M. marinum identified additional SecA2 

substrates (20). While this mass spectrometry study increased our knowledge of SecA2 

exported proteins, further studies are still required to validate the SecA2-dependency of 

many of the more recently identified proteins as well as to identify SecA2 dependent proteins 
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in M. tuberculosis. Below, we highlight examples of validated SecA2 substrates along with 

common themes among proteins exported by SecA2. 

Solute binding proteins (SBPs) 

The best studied SecA2 substrates, the Msmeg1704 and Msmeg1712 lipoproteins of 

the model organism M. smegmatis, represent one class of SecA2 dependent substrates, solute 

binding proteins (SBPs) (26). SBPs are cell wall localized proteins that deliver solutes to 

permease components of ATP-binding cassette (ABC) transporters for import using energy 

from ATP hydrolysis. Although most SBPs in M. tuberculosis have not been directly studied 

and their substrates remain unknown, mycobacterial SBPs are predicted to import a wide 

range of solutes (from phosphate to sugars) (31). Thus, the role of SecA2 in exporting SBPs 

could be important for nutrient acquisition and affect the ability of M. tuberculosis to thrive 

and persist in the host. 

SodA and KatG 

The Fe-superoxide dismutase SodA is another protein identified as being exported in 

a SecA2-dependent manner (19). The secA2 mutant of M. tuberculosis secretes less SodA 

protein and exhibits less secreted superoxide dismutase activity than wild type or 

complemented strains (19,32). As an antioxidant that converts superoxide to hydrogen 

peroxide and oxygen, secreted SodA could be important for counteracting the macrophage 

antimicrobial oxidative burst (33). SodA also has cytoplasmic functions and therefore is also 

localized in the mycobacterial cytoplasm in addition to being secreted (19). SodA is an 

example of a SecA2-dependent protein lacking a signal peptide. In L. monocytogenes a Mn-

superoxide dismutase that lacks a signal peptide is also SecA2 dependent (30).  
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The catalase-peroxidase KatG is another antioxidant reported to be SecA2 dependent 

for secretion (19). KatG works with SodA to detoxify oxygen radicals by converting 

damaging hydrogen peroxide to oxygen and water (34). KatG is also able to detoxify the 

reaction product of superoxide and nitric oxide, peroxynitrite (35). Like SodA, KatG lacks a 

signal peptide and can be found in the mycobacterial cytoplasm (19). The role of SecA2 in 

the export of SodA and KatG could translate to a function of the SecA2 pathway in 

protecting M. tuberculosis from the oxidative burst of macrophages.  

PknG 

The eukaryotic-like serine-threonine kinase PknG is also dependent upon SecA2 for 

export. In M. marinum reduced levels of PknG are detected in the cell envelope of the secA2 

mutant compared to wild type or complemented strains (20). Like SodA and KatG, PknG 

lacks a signal peptide. Additionally, like SodA and KatG, PknG can be found in both the 

mycobacterial cytoplasm and its exported location which is consistent with this protein 

cytoplasmic and exported functions (36,37).  

Although PknG is primarily localized in the cell wall and bacterial cytoplasm, PknG 

has been reported to be fully secreted and has even been identified as reaching the 

macrophage cytosol (36,38). In the bacterial cytoplasm, PknG regulates glutamate 

metabolism and redox homeostasis (37,39). PknG is also considered a virulence factor as an 

M. tuberculosis pknG mutant has an in vitro growth defect and is attenuated in mice (36). A 

hallmark of macrophage infections with M. tuberculosis is that the bacterium arrests the 

normal process of phagosome maturation (4,5). Consequently, M. tuberculosis avoids 

delivery to a mature, fully acidified phagolysosome. Although the mechanistic details remain 

entirely unknown, PknG plays a role in phagosome maturation arrest. A pknG mutant of 
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BCG fails to block phagosome maturation, and a strain of M. smegmatis expressing the BCG 

pknG prevents phagosome maturation unlike wild type M. smegmatis (38). This specific role 

of PknG in phagosome maturation is intriguing because secA2 mutants of M. tuberculosis 

and M. marinum are defective in phagosome maturation arrest (9,20).  

Despite the recent expansion in our knowledge of SecA2 substrates, the list of known 

SecA2 exported proteins likely remains incomplete. Commonly, SecA2 substrates are only 

partially dependent upon SecA2 for export; residual export of these substrates occurs in 

secA2 mutants through yet unidentified mechanisms (19,20,26). Interestingly, secA2 mutants 

of other SecA2-only systems also exhibit incomplete export defects (22,27,30,40). The 

partial dependency of SecA2 substrates creates a unique challenge in identifying substrates 

and understanding how SecA2 export contributes to M. tuberculosis pathogenesis.  

 

SecA2 and virulence of M. tuberculosis 

In M. tuberculosis, SecA2 is not required for growth in vitro, but it is required for 

virulence (10,19). A secA2 mutant of M. tuberculosis is attenuated in the mouse model of 

infection. Mice infected with the secA2 mutant (either by intravenous injection or aerosol) 

have reduced bacterial burden in initial replication phase of infection, but the secA2 mutant is 

able to persist throughout the infection (10,19). Mice infected with the secA2 mutant also 

survive significantly longer than mice infected with wild type M. tuberculosis (10). The 

SecA2 pathway is also required for virulence in M. marinum, a mycobacterial pathogen of 

fish and frogs. In both embryonic and adult zebrafish, infection with a secA2 mutant of M. 

marinum results in reduced bacterial burden and an increased fish survival time (20,21). The 
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M. marinum secA2 mutant also has a phenotype in the murine tail vein infection model 

(fewer tail lesions) (21).  

Growth in macrophages is vital for M. tuberculosis pathogenesis and a secA2 mutant 

of M. tuberculosis has a significant growth defect in macrophages which fits with the 

requirement for SecA2 during the replicative phase of murine infection (10). While our 

understanding of how M. tuberculosis survives in macrophages and elicits disease remains 

incomplete, M. tuberculosis is known to limit many anti-microbial activities of macrophages 

(e.g.  phagosome-lysosome fusion, attack by reactive oxygen and nitrogen intermediates 

(ROI, RNI), apoptosis, inflammatory responses and antigen presentation) (Figure 1.1) (7). 

Studies of the M. tuberculosis secA2 mutant in macrophages reveal roles for the SecA2 

pathway in these processes (10). 

The SecA2 pathway and inhibition of apoptosis 

A phenotype exhibited by macrophages infected with the secA2 mutant is increased 

apoptosis, which indicates a role for the M. tuberculosis SecA2 pathway in blocking 

macrophage apoptosis (32). Macrophage apoptosis is detrimental to M. tuberculosis as 

subsequent efferocytosis of M. tuberculosis infected, apoptotic macrophages will kill the 

bacteria (41). Apoptosis can also drive establishment of a protective immune response, which 

is detrimental to the pathogen, by promoting antigen presentation to T cells (32,42). 

Interestingly, superoxide can be a signal for apoptosis and the pro-apoptotic phenotype of the 

secA2 mutant is attributed to the defect in SodA export (9,32). When secretion of SodA is 

restored in a secA2 mutant, by overexpressing a version of SodA with a Sec signal peptide 

fused at its N-terminus (α-SodA), secreted superoxide dismutase activity and anti-apoptotic 

activity are both restored. However, when tested in macrophages and mice, virulence of the 
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secA2 mutant expressing α-SodA remains attenuated (9). Thus, on its own, inhibition of 

apoptosis is insufficient to explain the role of the SecA2 pathway in pathogenesis. However, 

it is common for bacterial pathogens to have overlapping/redundant virulence mechanisms, 

which leaves open the possibility of the role of SecA2 in limiting macrophage apoptosis 

contributing to M. tuberculosis pathogenesis. 

The SecA2 pathway and immunomodulation 

In response to infection with the secA2 mutant, macrophages produce increased levels 

of MyD88-dependent RNI and pro-inflammatory cytokines, such as TNF-α and IL-6, in 

comparison to macrophages infected with wild-type M. tuberculosis (10). This altered 

cytokine profile suggests that the SecA2 pathway has an immunomodulatory effect of 

inhibiting the innate immune responses of macrophages to M. tuberculosis infection. On its 

own, the altered immune response to the secA2 mutant is insufficient to explain the 

attenuated phenotype of the secA2 mutant in macrophages because the secA2 mutant remains 

attenuated in myd88-/- macrophages and mice (Sullivan and Braunstein unpublished;9). 

These results indicate immunomodulation is not the sole function of the SecA2 export 

pathway; however, it may still be important for pathogenesis given the possibility of 

redundant immunomodulatory mechanisms.  SecA2 substrates may also function in 

suppressing the adaptive immune response, as the SecA2 pathway additionally impacts the 

level of IFN-γ-induced MHC II levels during M. tuberculosis infection (10). The SecA2 

exported proteins that produce immunomodulatory effects are currently unknown. 

The SecA2 pathway and reactive radicals 

Because SodA and KatG, enzymes important for detoxifying oxygen radicals, are 

secreted in a SecA2-dependent manner, an additional function of the SecA2 pathway could 
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be to protect against the damaging reactive oxygen radicals produced by infected 

macrophages (10). The SecA2 pathway also limits production of RNI produced by 

macrophages (mentioned above) (43). Both ROI and RNI are important for controlling 

microbial growth in macrophages. However, when phox-/- macrophages, which fail to 

undergo an oxidative burst, or NOS2-/- macrophages, which fail to produce RNI, are infected 

with the secA2 mutant, the mutant remains attenuated for intracellular growth (9). While 

these results indicate that protection from reactive radicals is not the sole function of the 

SecA2 pathway in pathogenesis, due to the potential for redundant mechanisms that protect 

against reactive radicals in M. tuberculosis, this role for SecA2 could still also contribute to 

virulence.  

The SecA2 pathway and phagosome maturation arrest 

Following phagocytosis by macrophages, M. tuberculosis replicates intracellularly. 

Typically, once phagocytosed, microbes are delivered to phagosomes that subsequently 

mature, acidify, and fuse with a lysosome resulting in destruction of the microbe. In contrast, 

M. tuberculosis arrests this process at an early stage, and M. tuberculosis avoids delivery to 

acidified phagolysosomes (5). One of the most striking phenotypes exhibited by M. 

tuberculosis and M. marinum secA2 mutants in macrophages is that a secA2 mutant fails to 

arrest phagosome maturation, which results in the mutant residing in a more mature, acidic 

phagosome (9,20). When phagosome acidification is chemically inhibited, the M. 

tuberculosis secA2 mutant grows comparably to wild-type, indicating SecA2 inhibition of 

phagosome maturation is required for intracellular growth in macrophages (20).  

In summary, SecA2 affects several diverse host immune pathways highlighting the 

importance of the SecA2 pathway and its exported proteins in mycobacterial infection. While 
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the role of the SecA2 pathway in phagosome maturation arrest is proven to be critical for M. 

tuberculosis virulence, additional effects of SecA2 export on macrophages may also be 

significant. The significance of these other SecA2 effects may be masked by redundant 

virulence mechanisms as M. tuberculosis has additional, and likely SecA2-independent, 

apoptotic inhibitory factors, ROI resistance mechanisms and immunomodulatory factors. 

More research is needed to understand all of the distinct roles SecA2 substrates play in 

promoting pathogenesis.  

 

Phagosome maturation arrest by M. tuberculosis 

To avoid trafficking to the antimicrobial environment of acidified phagolysosomes, 

M. tuberculosis blocks the normal series of phagosome maturation events that occurs 

following phagocytosis (5). As a result, M. tuberculosis resides in phagosomes that resemble 

early endosomes. In addition to creating a hospitable environment for bacterial replication, 

preventing maturation of the phagosome also reduces antigen presentation and thus has 

implications in inhibiting a successful adaptive immune response by the host (44). Although 

the ability of M. tuberculosis to arrest phagosome maturation and replicate in macrophages is 

established as critical for virulence, the mechanisms and host-pathogen interactions that 

block phagosome maturation remain to be clarified (9). Phagosome maturation is complex 

and involves many host pathways. The mechanisms of M. tuberculosis phagosome 

maturation arrest appear equally complex (4). Therefore M. tuberculosis targets multiple 

steps of phagosome maturation and in many cases, there are redundant mechanisms targeting 

a single step. 
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Typically when microbes are taken up into phagosomes, the phagosomes progress 

through a series of maturation stages in which the phagosomes sequentially acquire host 

proteins culminating in the fusion of the phagosome with the proteolytic degradative 

lysosome. First the phagosomes accumulate the GTPase Rab5 and the lipid 

phosphatidylinositol-3-phosphate (PI3P) (45). Rab5 and PI3P in turn recruit host proteins 

including early endosome antigen 1(EEA1) and hepatocyte growth factor-regulated tyrosine 

kinase substrate (Hrs) that drive further maturation events of the phagosome (46). EEA1 

promotes fusion events between phagosomes and endosomes in the cell (47). Hrs also 

promotes fusion of the phagosome with endosome compartments. Hrs additionally 

contributes to the fusion of the phagosome with late, more mature endosomes and lysosomes 

(48). As phagosomes mature, Rab5 is exchanged for the GTPase Rab7 through mechanisms 

that are not well understood (45). The host exchange factor Mon1/Ccz1 is reported to 

mediate exchange of Rab5 and Rab7 but it is not known what other host proteins contribute 

to this important process (49). Rab7 in turn recruits many proteins that promote fusion of 

phagosomes with lysosomes. In addition to Rab proteins, phagosomes acquire the Vacuolar 

H+ ATPase (V-ATPase) as they mature. V-ATPase is a multi-subunit proton pump that 

acidifies the phagosome (50). 

As mentioned above, M. tuberculosis is able to block the maturation of the 

phagosomes and resides in a compartment that resembles early endosomes (5). The early 

endosome-like M. tuberculosis phagosome is characterized by the retention of Rab5 on the 

phagosomal membrane (51). The high levels of Rab5 in conjunction with high levels of the 

transferrin receptor on M. tuberculosis phagosomes indicate that the M. tuberculosis 

phagosome, despite being arrested, interacts and fuses with other early endosomes in the 
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macrophage (52,53). In fact, M. tuberculosis phagosomes also contain high levels of Rab14, 

which is thought to promote fusion with early endosomes. It remains unknown how M. 

tuberculosis retains these host factors on the phagosome (54). M. tuberculosis phagosomes 

also contain high levels of the actin binding Coronin 1-A (TACO) (55). The M. tuberculosis 

exported effector LpdC has been shown to promote this Coronin-1A accumulation on 

phagosomes. Notably, Coronin-1A activates the host phosphatase calcineurin, which acts to 

inhibit phagosome-lysosome fusion through unknown mechanisms (55).  

In addition to retaining host markers of early endosomes, M. tuberculosis 

phagosomes actively subvert subsequent phagosome maturation events.  PI3P is a vital host 

factor that drives maturation of the phagosomal compartment (56). By inhibiting PI3P 

production as well as dephosphorylating PI3P, M. tuberculosis prevents the recruitment of 

PI3P binding proteins to the phagosome (57,58). PI3P binding proteins such as EEA1 and 

Hrs drive downstream maturation events of the phagosome (discussed above). Vps34 is the 

host phosphoinoitide-3 kinase (PI3K) that phosphorylates phosphatidylinositol (PI) to 

generate PI3P on the phagosomal membrane (59). A cell-envelope glycolipid of M. 

tuberculosis, Mannosylated Lipoarabinomannan (ManLAM), alters calcium concentrations 

in the macrophage, which prevents recruitment of Vps34 to the phagosome (60). However, 

ManLAM is not the only M. tuberculosis effector impacting PI3P levels on phagosomes. M. 

tuberculosis also secretes the phosphatase SapM, which dephosphorylates PI3P(58). In 

addition to preventing recruitment of Hrs through reducing PI3P levels on the phagosome, M. 

tuberculosis also exports the EsxH protein, which directly interacts with and inhibits Hrs 

activity by preventing binding of Hrs with other host proteins that promote fusion of the 

phagosome with the lysosome (61). The existence of multiple M. tuberculosis mechanisms to 
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limit PI3P levels and PI3P binding protein functions exemplifies the complexity and 

redundancy of M. tuberculosis effectors of phagosome maturation arrest. 

Another step in phagosome maturation targeted by M. tuberculosis is the exchange of 

the early endosome marker Rab5 for Rab7, which promotes fusion with late endosomes and 

lysosomes. The prevention of Rab7 recruitment to the phagosome is a requisite step in 

phagosome maturation arrest by M. tuberculosis (51). The specific mechanism of Rab7 

inhibition by M. tuberculosis is not well understood. PI3P promotes the exchange of Rab5 for 

Rab7 so M. tuberculosis may inhibit Rab7 through dephosphorylation of PI3P (56). 

Additionally, the host exchange factor Mon1/Ccz1 functions in the exchange of Rab5 and 

Rab7 (49). However, it is not known if M. tuberculosis affects this host factor.  In addition to 

inhibiting Rab7 recruitment, M. tuberculosis also inactivates Rab7. Rab proteins are GTPases 

that are functionally active when bound to GTP. M. tuberculosis secretes Ndk which 

dephosphorylates GTP in Rab7 producing GDP thereby blocking Rab7 activity (62). 

M. tuberculosis also inhibits recruitment of Rab20 to phagosomes. Although not 

much is known about Rab20 and its recruitment to phagosomes, it is known that Rab20 

mediates phagosomal spaciousness (63). Through inhibiting Rab20, M. tuberculosis 

maintains a phagosomal membrane that is tightly associated with the mycobacterial cell wall 

(63). The connection between phagosomal spaciousness and phagosome maturation arrest by 

M. tuberculosis is intriguing and highlights the importance of mycobacterial cell wall 

associated proteins and lipids in the process of phagosome maturation arrest. The ability of 

M. tuberculosis to inhibit Rab20 recruitment depends upon the Esx-1 secretion system (63). 

It is unknown if Esx-1 exports a protein that interferes with Rab20 localization or if the 
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phagosome membrane perturbations caused by the Esx-1 exported effector ESAT 6 result in 

this exclusion of Rab20 (discussed below).  

Yet another step in phagosome maturation blocked by M. tuberculosis is phagosomal 

acidification. M. tuberculosis phagosomes only acidify slightly to a pH of 6.5. The failure 

of M. tuberculosis phagosomes to fully acidify has been attributed to the ability of M. 

tuberculosis to prevent phagosome recruitment and assembly of V-ATPase, a multi-subunit 

proton pump that acidifies the phagosome (64). M. tuberculosis has multiple mechanisms of 

inhibiting V-ATPase recruitment. M. tuberculosis induces the host cytokine inducible SH2 

containing protein, CISH, which leads to ubiquitination and subsequent degradation of the 

catalytic subunit of V-ATPase (65). The M. tuberculosis effector that induces this 

degradation pathway remains unknown. Additionally, M. tuberculosis secretes a phosphatase 

PtpA which binds directly to the H subunit of the V-ATPase preventing assembly of the 

proton pump on the phagosome (66). PtpA has an additional role in phagosome maturation 

arrest in dephosphorylating the host protein VPS33B, which blocks fusion of the phagosome 

with lysosomes (67).  

In addition to the specific effectors of phagosome maturation arrest discussed above, 

there are other phagosome maturation arrest effectors of unknown function (ie PknG) (38). 

Additionally, several putative effectors have been identified in transposon mutagenesis 

screens, although these effectors have yet to be validated as functioning in phagosome 

maturation arrest (68-70). Furthermore, the interplay between effectors remains to be 

determined, and it remains unclear if all the effectors of phagosome maturation arrest have 

been identified at this point. The gaps in our understanding are partly due to redundancy 

among effectors and the potential for effectors to be multi-functional proteins that act in 
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additional aspects of M. tuberculosis pathogenesis or physiology beyond phagosome 

maturation arrest. 

As effectors need to reach their host target, they must either be localized to the 

mycobacterial cell wall or be fully secreted into the host; therefore, the export systems 

responsible for localizing effectors are also required for phagosome maturation arrest.  As 

mentioned above, the SecA2 dependent protein export system is required for phagosome 

maturation arrest by M. tuberculosis indicating proteins exported by SecA2 contribute to 

phagosome maturation arrest (9).  SecA2 is required for the inhibition of Rab7, V-ATPase, 

and phagosome acidification (9). It is not known what proteins are exported by SecA2 that 

contribute to inhibition of these host factors. In addition to SecA2, the specialized Esx-1 and 

Esx-3 secretion systems have also been demonstrated to function in phagosome maturation 

arrest by M. tuberculosis (61,71). Esx-3 is responsible for exporting EsxH (discussed above) 

(61). As the host target of some effectors are localized beyond the phagosomes some 

effectors of phagosome maturation arrest need to cross the phagosomal membrane into the 

macrophage cytosol in order to function. Esx1 secretes the ESAT-6 protein, which 

permeabilizes the phagosomal membrane and allow cytoplasmic access to at least some M. 

tuberculosis molecules (72). 

In addition to residing in phagosomes, intracellular M. tuberculosis can also localize 

to double membrane bound compartments known as autophagosomes. Autophagosomes 

progress through similar maturation stages as phagosomes, ultimately fusing with lysosomes 

to form degradative autophagolysosomes (73). As with phagosomes, M. tuberculosis is able 

to arrest autophagosome maturation and prevent fusion with lysosomes (74,75).  However, 

unlike the process of phagosome maturation arrest, there has been very little study of M. 
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tuberculosis mechanisms and effectors of autophagosome maturation arrest. Additionally, it 

is not clear how many host factors are shared between phagosome and autophagosome 

maturation. 

 

Summary  

Our understanding of the multiple roles played by the SecA2 export pathway and its 

substrates in the virulence of M. tuberculosis remain limited. Further complicating our 

understanding of the role of SecA2 in M. tuberculosis virulence is the fact that we likely have 

not identified all proteins exported by the SecA2 pathway and all functions of the SecA2 

pathway during infection. The goal of my thesis research was to fill in these gaps in our 

understanding of the SecA2 export pathway. 

Chapter 2 describes the use of a semi-quantitative comparative mass spectrometry 

approach to identify new examples of proteins that are exported to the cell wall of M. 

tuberculosis by the SecA2 pathway. We identify two classes of SecA2 exported proteins in 

M. tuberculosis: solute binding proteins of ABC transporters as well as Mce lipid 

transporters. We additionally identify the kinase PknG with functions in phagosome 

maturation arrest as exported by the SecA2 pathway of M. tuberculosis. In addition to 

identifying previously unknown SecA2 exported proteins, we also reveal altered 

transcriptional regulation in the secA2 mutant of M. tuberculosis that indicates that the secA2 

mutant may be under more innate stress or be more prone to stress. 

Chapter 3 demonstrates how SecA2 export of two effectors contributes to both 

phagosome and autophagosome maturation arrest by M. tuberculosis. We identify the 

phosphatase SapM as a SecA2 exported protein that contributes to phagosome maturation 
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arrest. Using an approach of restoring export of effectors to the secA2 mutant, we reveal that 

SecA2 export of SapM and another SecA2 exported protein PknG contribute to multiple 

stages of phagosome maturation arrest and growth of M. tuberculosis in macrophages. We 

additionally reveal a previously unknown role for SecA2, SapM, and PknG in 

autophagosome maturation arrest by M. tuberculosis. 

Chapter 4 describes the use of genome-wide genetic interaction mapping to further 

elucidate the functions and mechanisms of the SecA2 export pathway of M. tuberculosis.  

Genetic interaction mapping involves identifying mutations that result in altered fitness when 

combined with the absence of secA2. We identify alleviating and aggravating interactions 

with secA2 in a murine model of M. tuberculosis infection. Alleviating interactions represent 

genes in the same pathway as SecA2 and they could encode for components of the SecA2 

export machinery or SecA2 exported proteins. Aggravating interactions represent genes in a 

separate pathway that have redundant functions as SecA2 (and SecA2 exported effectors) and 

could indicate currently unknown functions of the SecA2 pathway in virulence. Our results 

expand our understanding of the SecA2 pathway by identifying putative substrates and 

components of the export machinery and by revealing roles for SecA2 in M. tuberculosis 

transporters, phosphate import, copper resistance, peptidoglycan synthesis, and lipid 

metabolism and homeostasis. 

 Together, these studies reinforce the importance of the SecA2 pathway to the 

pathogenesis of M. tuberculosis, and they expand our knowledge of proteins exported by the 

pathway and the mechanisms used by M. tuberculosis to arrest phagosome and  
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autophagosome maturation. Our identification of genetic interactions with secA2 leads to 

new hypotheses of SecA2 functions and the identification of proteins exported by the SecA2 

pathway that warrant further investigation in the future.  
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Figure 1.1 Models of SecA1 and SecA2 export in M. tuberculosis.  

(A) SecA1 uses ATP hydrolysis to export preproteins through the SecYEG channel in an 
unfolded, export competent state. Sec signal peptides (black rectangle) target preproteins 
(blue ribbon) for export through SecYEG and are then cleaved by a signal peptidase (SP). (B) 
SecA2 also uses the SecYEG channel and possibly SecA1 to export its own subset of 
preproteins (green ribbon). The signal peptide (black rectangle) is indistinguishable from 
canonical Sec signal peptides. Instead, the mature domain’s propensity for cytoplasmic 
folding is predicted to confer specificity for SecA2.  
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Figure 1.2 SecA2 export is required for M. tuberculosis virulence.  

The SecA2 pathway combats multiple host immune mechanisms of macrophages. SecA2 
export of PknG in addition to other unknown effectors prevents phagosome acidification and 
fusion with degradative lysosomes. Export of SodA and KatG by SecA2 combats harmful 
reactive oxygen radicals and limits apoptosis. SecA2 also inhibits signaling through MyD88 
by unknown mechanisms, resulting in lower levels of pro-inflammatory cytokines Il-6 and 
TNF-a along with nitric oxide. Additionally, SecA2 reduces IFN-g induced MHC II levels, 
which could impact antigen presentation to CD4+ T-cells. 
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CHAPTER 21 

 

Label-free quantitative proteomics reveals a role for the Mycobacterium tuberculosis 

SecA2 pathway in exporting solute binding proteins and Mce transporters to the cell 

wall  

 

INTRODUCTION 

Mycobacterium tuberculosis, the etiological agent of tuberculosis, remains a severe 

health concern, infecting an estimated one-third of the global population and causing an 

approximated 1.3 million deaths annually (1).  Following inhalation into the lung, M. 

tuberculosis bacilli are engulfed by macrophages, which fail to destroy the pathogen and 

instead provide a niche for M. tuberculosis replication (2).  M. tuberculosis proteins that are 

exported from the cytoplasm to the bacterial cell wall or into the host environment are ideally 

positioned for host-pathogen interactions or physiologic processes important to infection, 

																																																													
1	Adapted for this dissertation from: Feltcher ME*, Gunawardena HP*, Zulauf KE*, Malik S, Griffin 
JE, Sassetti CM, Chen X, Braunstein M. Label-free quantitative proteomics reveals a role for the 
Mycobacterium tuberculosis SecA2 pathway in exporting solute binding proteins and Mce 
transporters to the cell wall. Mol Cell Proteomics. 2015 Mar 26. pii: mcp.M114.044685. PubMed 
PMID: 25813378.   *contributed equally 
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such as nutrient uptake and cell wall biogenesis (3).  M. tuberculosis has several systems for 

exporting proteins to extracytoplasmic locations, one of which is the SecA2-dependent  

protein export pathway (4).  In M. tuberculosis, SecA2 is required for virulence in both mice 

and macrophage models of infection, making the identification of SecA2-dependent exported 

proteins important for understanding M. tuberculosis pathogenesis (5-7). 

Mycobacteria, including M. tuberculosis, are among a select group of bacteria that 

have two non-redundant SecA ATPases, known as SecA1 and SecA2 (8). SecA1 is the 

housekeeping SecA, conserved throughout bacteria, and a central component of the essential 

general secretion (Sec) pathway.  SecA1 powers translocation of unfolded proteins across a 

cytoplasmic membrane channel comprised of SecYEG proteins.  Proteins exported by 

SecA1/SecYEG possess N-terminal Sec signal peptides that are cleaved following export to 

liberate the mature protein.  In bacteria with two SecA proteins, SecA2 is generally 

nonessential but required for export of a limited set of proteins and, in the case of bacterial 

pathogens, SecA2 often contributes to virulence (8, 9).  Bacterial SecA2 systems fall into two 

main groups based on the membrane channel they work with and the types of substrates they 

transport. One type of system, called a SecA2-SecY2 system, utilizes an accessory SecY2 

channel protein and appears to be dedicated to exporting a single glycosylated protein (10-

13).  The other type of system, which is the case in mycobacteria, does not include an 

accessory SecY and the repertoire of exported proteins is more diverse (5, 14-17).  In these 

SecA2-only or multi-substrate SecA2 systems, SecA2 appears to work with the SecYEG 

channel for protein translocation (9, 17-20). Studies conducted in mycobacteria suggest that 

the proteins exported by its SecA2-only pathway have a tendency to fold in the cytoplasm 

prior to export, which distinguishes them from proteins that remain unfolded and are 
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exclusively exported by SecA1.  This folding feature of SecA2-exported proteins may dictate 

the need for SecA2 in their export (21).   

In mycobacteria, and more specifically M. tuberculosis, the number of known SecA2-

dependent proteins remains small.  In the non-pathogenic Mycobacterium smegmatis, there 

are two cell wall proteins that are well-established as being exported via the SecA2 pathway: 

Ms1704 and Ms1712 (15, 20, 21).  Both of these proteins are lipoproteins with Sec signal 

peptides and members of the solute-binding protein (SBP) family (15).  SBPs are cell wall 

proteins that work with membrane localized ABC transporters to import solutes into the 

bacterial cytoplasm.  Like all mycobacteria, Mycobacterium marinum, a pathogen of fish and 

frogs, also has a SecA2-only system (16, 22).  As many as 40 M. marinum proteins are 

predicted by proteomics to be SecA2-dependent (16).  The most striking finding of this M. 

marinum study is that PknG, a protein associated with virulence and lacking a Sec signal 

peptide, is reduced in abundance in a cell envelope fraction of a M. marinum secA2 mutant 

compared to wild type (16, 23, 24).  There are no direct orthologs of Ms1704 and Ms1712 in 

M. tuberculosis and the mode of PknG export by M. tuberculosis has not been established.  

Past efforts to identify SecA2-dependent proteins in M. tuberculosis are limited to 

comparative two-dimensional gel electrophoresis (2D-GE) of fully secreted proteins.  With 

this approach, superoxide dismutase SodA (5) was identified as a protein requiring SecA2 for 

its secretion.  Like PknG, SodA lacks a predicted Sec signal peptide.  However, because 

inadequate SodA secretion is insufficient to explain the virulence defect of a M. tuberculosis 

secA2 mutant (7), there must exist additional M. tuberculosis SecA2-dependent proteins.  

Here, we set out to identify M. tuberculosis proteins dependent on SecA2 for their export by 
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comparing the cell wall and cytoplasmic proteomes of M. tuberculosis wild type and a secA2 

mutant using label-free quantitative (LFQ) shotgun proteomics.   

Our LFQ analysis revealed reduced cell wall levels of almost all of the predicted M. 

tuberculosis SBPs in the secA2 mutant versus wild type, suggesting a broad role for SecA2 in 

the export of this family of proteins.  Further, multiple protein components of Mce1 and 

Mce4 transporters were reduced in the secA2 mutant cell wall, suggesting a dependence on 

SecA2 for cell wall localization of these transport systems.  Our proteomics approach also 

revealed an unexpected role for SecA2 in the DosR-regulated stress response of M. 

tuberculosis, with higher abundance of many cytoplasmic DosR-dependent proteins detected 

in the secA2 mutant compared to wild type.  Finally, we obtained data consistent with M. 

tuberculosis PknG being exported by the SecA2 pathway.  By expanding our knowledge of 

the types of proteins exported by the mycobacterial SecA2 system, this study helps our effort 

to understand the mechanism of this specialized protein export pathway.  At the same time, 

the SecA2-dependent proteins identified in this work provide valuable insight into potential 

role(s) of the SecA2 pathway in M. tuberculosis virulence and physiology.  

 

MATERIALS AND METHODS 

M. tuberculosis strains and plasmids used in this study.  

The following M. tuberculosis strains were used in this study: H37Rv (wild type), 

mc23112 (secA2) and a complemented strain MBTB476 (mc23112, pSM15) (5).  Plasmid 

pSM15 is a derivative of pMV306.kan that carries the M. tuberculosis secA2 gene under the  
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control of the hsp60 promoter.  In experiments involving the complemented strain, H37Rv 

and secA2 strains carried the empty pMV261.kan plasmid to allow all strains to be grown in 

the presence of kanamycin. 

 

Growth conditions.  

 M. tuberculosis strains were first grown at 37°C in Middlebrook 7H9 medium 

(Difco) supplemented with 0.5% glycerol, 1X ADS [0.5% bovine serum albumin, 0.2% 

glucose, 0.85% NaCl], 0.05% Tyloxapol (Sigma), and 20m g/ml kanamycin, if necessary. 

After reaching an OD600 of 2, cells were centrifuged and twice washed in modified 7H9 

media: Middlebrook 7H9 supplemented with 0.1% glycerol, 1 mM propionic acid (Sigma), 

0.5% bovine serum albumin, 0.1% Tyloxapol, pH adjusted to 6.5 and buffered with 100 mM 

2-(4-morpholino)-ethane sulfonic acid. This modified 7H9 media was used in all subsequent 

steps of preparing samples and was designed to reflect features of the host environment 

encountered by M. tuberculosis.  During infection, M. tuberculosis is exposed to a mildly 

acidic pH of 6.5 in a macrophage (25) and utilizes fatty acids as a carbon source (26-28).  

Washed cells were used to inoculate modified 7H9 medium at an OD600 of 0.08.  Upon 

reaching an OD600 of 1.0, the cells were pelleted, washed with 1X phosphate-buffered saline 

(PBS) and sterilized by gamma-irradiation in a JL Shephard Mark I 137Cs irradiator (Dept. 

of Radiobiology, University of North Carolina at Chapel Hill) prior to removal from BSL-3 

containment.  In some experiments, a 40 ml volume of cells in modified 7H9 medium (OD600 

of 0.8-1.0) was transferred to a 50 ml conical tube and let stand at 37°C for 2 or 24 hours as a 

strategy to induce the DosR-dependent regulon (29).  
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Preparation of subcellular fractions. 

 Subcellular fractions were isolated as previously described (30). Briefly, irradiated 

cells suspended in 1X PBS containing protease inhibitors were lysed by passage through a 

French pressure cell. Unlysed cells were removed by centrifugation at 3,000 x g to generate 

clarified whole cell lysates (WCLs), which were then spun at 27,000 x g for 30 minutes to 

pellet the cell wall fraction. The supernatant was then spun at 100,000 x g for 2 hours to 

separate the cytoplasmic membrane fraction and collect the soluble cytoplasm-containing 

fraction. Protein concentrations were determined by Bicinchoninic acid assay (Pierce).  

 

SDS-PAGE separation and in-gel trypsin digestion of proteins.  

Cell wall proteins (34 µg) and cytoplasmic proteins (91 µg) from three biological 

replicates each of H37Rv and the secA2 mutant were separated on individual lanes of a 

precast 12% SDS-PAGE gel.  Protein bands were visualized by Coomassie Blue R-250 

staining (Bio-Rad, Hercules, CA) and each lane was cut into 32 gel slices for cell wall 

samples and 10 gel slices for cytoplasmic samples.  In-gel trypsin digestion was performed, 

as previously described (31), with each gel slice being processed individually in a single well 

of a 96-well polypropylene plate. Peptides were stored at -80°C until lyophilized.  

 

Liquid chromatography and tandem mass spectrometry analysis.   

Peptides were desalted using PepClean C18 spin columns (Pierce, Rockford, IL) and 

re-suspended in an aqueous solution of 0.1% formic acid.  Samples were analyzed by 

reversed phase LC-MS/MS using a 2D-nanoLC ultra system (Eksigent Inc, Dublin, CA) 
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coupled to an LTQ-Orbitrap XL system with ETD (Thermo Scientific, San Jose, CA).  The 

Eksigent system was configured to trap and elute peptides in 1D mode of operation via a 

sandwiched injection of ~ 250 fmol of sample. The trapping was performed on a 3 cm long 

100 µm i.d. C18 column while elution was performed on a 15 cm long 75 µm i.d., 5 µm, 

300Å particle; ProteoPep II integraFrit C18 column (New Objective Inc, Woburn, MA).  

Analytical separation of tryptic peptides was achieved with a linear gradient of 2-40% over 

120 min at a 200 nL/min flow rate, where buffer A is aqueous solution of 0.1% formic acid 

and buffer B is a solution of acetonitrile in 0.1% formic acid. Mass spectrometric data 

acquisition was performed in a data dependent manner. A full scan mass analysis on an LTQ-

Orbitrap (externally calibrated to a mass accuracy of < 1 ppm, and resolution of 60 000 at 

400 Th) was followed by intensity dependent MS/MS of the 10 most abundant peptide ions. 

The dynamic exclusion time window was set to 60 s. with monoisotopic precursor ion 

selection (MIPS) and charge state screening enabled for charges ≥ +2  for triggering data 

dependent MS/MS scans.  

 

Peptide and protein identification.  

Mass spectra were processed, and peptide identification was performed using Mascot 

ver. 2.3 (Matrix Science Inc.) implemented on Proteome Discoverer ver. 1.3 (Thermo-Fisher 

Scientific). All searches were performed against the National Center for Biotechnology 

(NCBI) M. tuberculosis H37Rv protein sequence database (RefSeq NC_000962 uid 57777, 

3906 protein entries). Peptides were identified using a target-decoy approach with a peptide 

false discovery rate (FDR) of 1% (32, 33). A precursor ion mass tolerance of 200 p.p.m. and 

a product ion mass tolerance of 0.5 Da (34) were used during the search to increase search 
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space and reduce false positive identifications with a maximum of two missed trypsin 

cleavage sites and oxidation of methionine residues as dynamic modification.  

 

Peptide validation and spectral count-based label-free quantitation (LFQ). 

Peptide and protein validation and label-free spectral count-based quantitation was 

performed using ProteoIQ: ver 2.3.02 (PREMIER Biosoft international, Palo Alto, CA).  

Mascot search engine results against forward and decoy M. tuberculosis databases were 

obtained for all RAW data. Both forward and decoy search results were imported as DAT 

files into ProteoIQ to asses FDR.  A peptide FDR of 1% and protein FDR of 5% were used to 

filter valid spectra. Peptide assignment to proteins was achieved by considering Occam’s 

Razor principle that takes into account the presence of protein groups and penalizes proteins 

containing peptides identified in multiple proteins. The PROVALT algorithm in ProteoIQ 

was used to determine ion score thresholds and protein FDR (33).  Mascot protein 

identifications were also subjected to probability-based confidence measurements using an 

independent implementation of the statistical models commonly known as peptide and 

protein Prophet deployed in ProteoIQ (35, 36). All protein hits were filtered with peptide 

Prophet using a minimum probability threshold of 0.5. Evaluation of sensitivity and error 

rates in this filtered data set for the cell wall proteome demonstrated a sensitivity of 95% with 

a 4.8% error rate while the filtered data for the cytoplasm had 90% sensitivity with a 6.2% 

error rate.   From a total of 2194 proteins detected in the cell wall and 2226 detected in 

cytoplasmic samples the data was filtered for proteins identified by a minimum of 2 peptides 

resulting in 1729 cell wall and 1810 cytoplasmic proteins identified, reported and used in all 

further analysis in this study. 
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Relative protein quantitation was performed using spectral count-based LFQ.  For 

each biological sample, data from the individual gel slices were combined. Statistical 

analysis was performed on all proteins identified with average spectral counts of >4 among 

the three replicates of at least one strain. The spectral count data was normalized by total 

spectral counts in each sample, using ProteoIQ, to adjust for differences in overall protein 

levels between samples. The normalized spectral count data was then used to calculate a ratio 

of the average spectral counts obtained for each strain secA2/H37Rv.  Proteins were 

considered to have a significant difference in abundance if there was a difference of 2-fold or 

greater in average spectral counts between strains and a p value ≤ 0.01 using an unpaired 

two-tailed Student’s t-test. Multiple hypothesis testing was also applied to the data by 

computing q values using QVALUE software 

(http://genomics.princeton.edu/storeylab/qvalue/).  The q values for quantitated proteins are 

reported on the data tables.  The q value is an estimate of the minimum FDR for proteins 

judged to be significantly changed at a given p value (in our case p<0.01) (37).  

 

Immunoblotting.  

 Equal protein content for whole cell lysates, cell wall or cytoplasmic fractions from 

H37Rv, secA2 mutant, and the complemented strain were separated by SDS-PAGE and then 

transferred to nitrocellulose membranes.  After blocking for 1 hour at room temperature, 

proteins were detected using the following antibodies: anti-Mce1A at 1:10,000, anti-Mce1C 

at 1:5,000, anti-Mce1F at 1:10,000, anti-LprK at 1:5,000, anti-19kD at 1:20,000 (provided by 

Douglas Young, Imperial College, United Kingdom), anti-PhoS1 at 1:20,000 (IT23, NIH 

Biodefense and Emerging Infections Research Resources Repository, NIAID), anti-PknG at 
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1:5,000 (provided by Yossef Av-Gay, University of British Columbia, Canada) and anti-

HspX at 1:1000 (IT20, NIH Biodefense and Emerging Infections Research Resources 

Repository, NIAID).  Anti-mouse and anti-rabbit IgG conjugated horseradish peroxidase 

(Bio-Rad) secondary antibodies were used and signal was detected using Western Lightning 

Chemiluminescent detection reagent (Perkin-Elmer).  

 

Anti-Mce antibody production.   

Anti-peptide antibodies for Mce1A, 1C, 1F, and LprK were generated in rabbits using 

peptides conjugated to keyhole limpet hemocyanin by Open Biosystems (Huntsville, AL). 

The peptides used were the following: GRVDTISEVTRDGESA (Mce1A), 

DLLVDRKEDLAETLTILGR (Mce1C), SAVYSPASGELVGPDGVKY (Mce1F), and 

DPSPVPLKDGDTIPLKRS (LprK). Immunoaffinity chromatography was used for antibody 

purification.  

 

Bioinformatic analysis.   

Sec signal peptides were predicted using Signal P 4.01 and default options for Gram 

positive bacteria (38). Tat signal peptide predictions were compiled using TatP 1.03, 

TATFIND v1.44, and TigrFAM5 (39-42). Transmembrane predictions were made using 

TMHMM 2.06 (43). Mycobacterial lipoproteins were predicted using the list compiled by 

Sutcliffe and Harrington (44). Protein associations were predicted using the Search Tool for 

the Retrieval of Interacting Genes/Proteins (STRING) (version 9.1) set for a medium 

confidence level (0.4) (45).  
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Quantitative Real-Time PCR.   

Triplicate cultures were grown in modified 7H9 medium to an OD600 of 1.0 and 

pelleted by centrifugation at 3,000 rpm for 10 min. Bacteria were lysed in 1 ml 3:1 

chloroform-methanol, then vortexed with 5 ml TRIzol (Invitrogen) and incubated for 10 min 

at room temperature. Phases were separated by centrifugation at 3,000 rpm for 15 min at 4°C, 

and RNA was precipitated from the upper phase using 1X volume of isopropanol. RNA was 

pelleted by centrifugation at 12,000 rpm for 30 min at 4°C, washed twice with cold 70% 

ethanol, and resuspended in RNase-free water. RNA samples were treated with DNase 

(Promega) and then column purified (Zymo RNA clean and concentrator kit). Following 

RNA isolation, cDNA was synthesized with random primers using the iScript cDNA 

Synthesis Kit (BioRad). Real-time PCR was completed using 25ng of cDNA template in 

triplicate technical replicates using the SensiMix SYBR and fluorescein kit (Bioline). 

Transcripts were normalized to the housekeeping gene sigA (46).  

 

RESULTS 

Proteomic analysis of differentially abundant proteins in the cell wall of H37Rv (wild 

type) versus secA2 mutant M. tuberculosis.   

 Triplicate cultures of M. tuberculosis H37Rv (wild type) and secA2 mutant were grown to 

mid-log phase, at which time cells were sterilized by gamma irradiation and lysed with a 

French pressure cell to generate whole cell lysates (WCL).  WCLs were then subjected to 

differential ultracentrifugation to generate cell wall fractions.  Immmunoblot analysis of the 

cell wall fractions demonstrated the presence of the 19 kD lipoprotein but not the 

cytoplasmic SigA and MtrA proteins, as expected (data not shown). 
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Since cell wall proteins often exhibit solubility problems, we combined SDS-

solubilization and SDS-PAGE separation of cell wall fractions with LC-MS/MS to analyze 

the cell wall proteomes, as previously described (30).  For each biological replicate, cell wall 

proteins were collected from an entire lane of an SDS-PAGE gel in 32 slices of equal size.  

Tryptic peptides from each slice were analyzed separately by LC-MS/MS.  In total, we 

identified 1729 proteins with a minimum of two unique peptides among the cell wall 

fractions of H37Rv (wild type) and the secA2 mutant.  These cell wall-associated proteins 

fall into diverse functional categories (Figure 2.1). The largest functional groups of proteins 

identified are predicted to be involved in cell wall processes, intermediary 

metabolism/respiration, or are conserved hypothetical proteins (47).  This distribution of cell 

wall-associated proteins among functional groups is similar to what is seen in other M. 

tuberculosis cell wall proteome studies (48, 49). 

Of these 1729 proteins identified, 501 are predicted to be fully exported across or 

inserted into the cytoplasmic membrane due to the presence of a predicted Sec or Tat signal 

peptide (183 proteins) and/or a transmembrane domain (405 proteins).  Additionally, 67 

proteins were predicted to be lipoproteins, representing 70% of the lipoproteins predicted in 

the H37Rv genome (44), which is consistent with the role of lipidation in anchoring proteins 

to the bacterial cell envelope (50).  The identification of proteins lacking a predicted signal 

peptide or transmembrane domain in the cell wall fraction was not surprising as past 

proteomic studies of mycobacterial membrane and cell wall fractions identify a similar 

percentage of proteins lacking export signals (31, 48, 49, 51, 52).  Some of these proteins  
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may be unconventional exported proteins lacking recognizable signals for export.  However, 

due to the high sensitivity of mass spectrometry, cytoplasmic and cytoplasmic membrane 

contaminants can also be identified in the cell wall fraction.   

Using spectral counting, we compared the composition and relative levels of proteins 

in the secA2 mutant to H37Rv cell wall fractions.  Spectral counting is based on the 

observation that the total number of MS/MS spectra assigned to a protein correlates with the 

abundance of that protein (53). In order to avoid low abundance proteins that fall outside of 

the linear dynamic range of spectral counting, we limited our analysis to the 1,318 proteins 

identified by a minimum of 2 peptides with an average of >4 spectral counts (53) among the 

replicates of at least one of the strains (H37Rv or secA2 mutant). When the spectral count 

data for each replicate was compared, a good correlation was revealed between biological 

replicates (Pearson’s correlation coefficient of r>0.92).  Following normalization by total 

spectral counts for each protein, spectral count ratios (log2(secA2/H37Rv)) were calculated 

for 1,300 proteins that were detected in both strains.  For 18 proteins with average of >4 

spectral counts, spectral count ratios could not be calculated because these proteins were only 

identified in one of the two strains: 4 proteins were exclusively identified in H37Rv 

(unidentified in the mutant) and 14 proteins were only identified in the secA2 mutant. 

Proteins exclusively identified in one of the strains are most likely present in the other strain, 

but at levels that fall below our limit of detection.  For the 1,300 proteins with spectral count 

ratios calculated, significant differences in protein levels between the two strains were 

determined by a Student’s t-test  (p<0.01) and by having a difference of 2-fold or greater 

between strains (log2 spectral count ratio of +1.0).  To visualize the distribution of spectral 

count ratios for the cell wall proteins, a volcano plot of the log2 ratio of secA2 /H37Rv versus 



	
44 

	

–log p value was generated (Figure 2.2).  The majority of proteins were present at similar 

levels in the two strains.  Of note, the SecA1 ATPase was detected at equivalent levels in the 

secA2 mutant and H37Rv (Figure 2.2), which reinforces past conclusions that the absence of 

SecA2 does not alter the level of SecA1 (54).  Among the proteins exhibiting significant 

differences (>2-fold difference, p<0.01), there were 33 proteins with significantly decreased 

levels in the cell wall fraction of the secA2 mutant versus H37Rv and 33 proteins with 

significantly increased levels in the secA2 mutant cell wall fraction relative to H37Rv. 

Proteins chosen for independent validation in this study are labeled on the volcano plot.   

 From the spectral counting analysis, we expected to detect protein abundance 

differences resulting from SecA2-dependent export defects as well as regulatory 

consequences of the absence of SecA2.  Altogether, there were 37 proteins whose level was 

either reduced or unidentified in the secA2 cell wall when compared to H37Rv.  Of these 

proteins, which represent candidates for being exported by the SecA2 pathway, 46% possess 

a predicted Sec or Tat signal peptide or putative transmembrane domain, with 4 of these 

proteins being predicted lipoproteins.  Conversely, there were 47 proteins either increased or 

uniquely identified in the secA2 mutant compared to H37Rv.  In this latter collection of 

proteins, there were a smaller percentage of predicted exported proteins (28%) and only 1 

predicted lipoprotein.  This latter group of proteins seems likely to include more examples of 

contaminating cytoplasmic proteins.   

 

Protein families and networks exhibiting differences in the secA2 mutant versus H37Rv.   

 To identify functional categories and protein families that are SecA2-dependent we 

plotted the percentage of proteins in a given functional group, as defined by Tuberculist (47), 
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that exhibited differential levels between the secA2 mutant and H37Rv (Figure 2.3).  

However, none of these broad functional categories revealed a strong association with 

SecA2-dependent proteins (Figure 2.3).   

Solute Binding Proteins (SBPs).   

Due to the precedent of two M. smegmatis SBPs being SecA2-dependent exported 

proteins (15), we inspected the spectral counting data for the 15 SBPs we identified in the 

cell wall fraction (18 SBPs are predicted to exist in M. tuberculosis) (44, 55).  This analysis 

revealed a trend in SBPs being reduced in the cell wall of the secA2 mutant when compared 

to H37Rv (Figure 2.3; Table 2.1).  There were 4 SBPs significantly reduced (>2-fold 

decreased, p<0.01) in the secA2 mutant cell wall compared to H37Rv.  Furthermore, there 

were an additional 9 SBPs reduced in the secA2 mutant cell wall, although the reduction 

relative to H37Rv did not always reach 2-fold or achieve statistical significance.  All of these 

SBPs are predicted lipoproteins, which is consistent with their localization to the cell wall.   

Altogether, 13 of the 15 SBPs we identified were reduced to some degree in the secA2 

mutant cell wall.   

Mce Proteins.  

As an alternate approach to find functional categories or networks influenced by 

SecA2, we entered the SecA2-dependent proteins showing significant differences between 

strains (>2-fold difference, p<0.01, or unidentified) into the Search Tool for the Retrieval of 

Interacting Genes (STRING) database of known and predicted protein associations (45).  For 

clarity, Figure 2.4 only shows portions of the STRING analysis.  Among the proteins 

reduced/unidentified in the cell wall of the secA2 mutant versus H37Rv, there was a cluster 

of members of two of the four Mce transporter systems (Mce1 and Mce4) (Figure 2.4A).  
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When the percentage of all Mce transporter components showing differential abundance in 

the secA2 mutant versus H37Rv was plotted, the reduction in Mce protein family members in 

the secA2 cell wall was evident (Figure 2.3).    

Mce transporters are multi-protein complexes localized to the cell envelope (56, 57) 

that are proposed to function in lipid uptake by mycobacteria.  Mce transporters are encoded 

by 8-12 gene operons.  Each system contains yrbE genes encoding putative membrane-

spanning proteins, five mce genes encoding proteins with potential signal peptides or N-

terminal transmembrane domains and one lpr gene encoding a lipoprotein (Figure 2.5).  Most 

Mce systems also have genes that encode Mce-associated proteins (mas) possessing 

transmembrane domains.  Of the 9 proteins encoded by the mce4 locus, 6 proteins were 

significantly reduced in the secA2 mutant cell wall (>2-fold, p <0.01) (Figure 2.5, Table 2.1).  

Mce4F and Mas4B were also reduced in the ΔsecA2 mutant, although the differences did not 

meet one or both of our cutoffs. Among the 12 components of the Mce1 system, 6 proteins 

were significantly reduced in the secA2 mutant cell wall (p < 0.01); however, only 2 of them 

(Mce1A and Mce1F) were reduced by >2-fold.  The Mce-associated ATPase MceG (Mkl) 

was also significantly reduced in the DsecA2 mutant by 1.8-fold.    

DosR-regulated proteins.  

Among the proteins that were increased in the secA2 mutant relative to H37Rv, the 

STRING database identified a cluster of proteins that are members of the DosR regulon (58) 

(Figures 2.3 and 2.4B).  Of the 21 DosR-regulated proteins we identified, 13 were increased 

(>2-fold, p<0.01) or exclusively identified in the secA2 cell wall. The mostly cytoplasmic 

proteins within the DosR regulon are under the transcriptional control of the DosR/S/T two 

component regulatory system.  One of the proteins significantly increased in the secA2 
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mutant was the DosR response regulator, which is known to autoregulate itself at the 

transcriptional level (59).  The remaining 8 DosR-regulated proteins we identified in the cell 

wall followed the same trend of being increased in the secA2 mutant, although their 

differences failed to meet our significance and/or 2-fold cut-offs (Figure 2.3, Table 2.2).   

 

Validation of cell wall protein differences.   

To validate the spectral counting identifications of the above families and networks of 

differentially abundant proteins, we performed immunoblot analysis on sets of newly 

prepared cell wall samples that included a complemented strain, which represents the secA2 

mutant carrying a plasmid expressing wild type secA2.  Using antibodies to PhoS1, we 

monitored the abundance of this representative SBP in the cell wall fractions of H37Rv, 

secA2, and the complemented strain (Figure 2.6A).  As predicted by the spectral counting 

analysis, PhoS1 was partially reduced in the secA2 mutant cell wall.  Importantly, the level of 

PhoS1 in the cell wall was restored in the complemented strain.  PhoS1 levels in whole cell 

lysates were the same between strains (Figure 2.6B) indicating that the reduced amount of 

PhoS1 in the secA2 cell wall is not due to an effect on total PhoS1 levels.  Rather, these 

results support PhoS1 being dependent on SecA2 for export to the cell wall.  Using a series 

of antibodies to Mce1 components (Mce1A, Mce1C, Mce1F, LprK) we similarly assessed 

the levels of Mce1 proteins in the cell wall.  The levels of all four of these proteins were 

reduced in the cell wall of the secA2 mutant when compared to H37Rv and the 

complemented strain (Figure 2.6A).  In this case, lower levels of the Mce proteins were also 

observed in whole cell lysates of the secA2 mutant (Figure 2.6B).  Immunoblot analysis of  
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cell wall fractions was also performed with anti-19kDa lipoprotein antibodies.  As predicted 

by the spectral counting data of cell wall fractions, the amount of the 19kDa lipoprotein was 

the same in the cell wall of all three strains.     

We attempted immunoblot analysis with antibodies to HspX, as a representative 

DosR-regulated protein; however, the amount of HspX in the cell wall was below the level of 

detection.  Therefore, in order to test the effect of SecA2 on HspX, we prepared samples 

from cultures that were left standing in 50 ml conical tubes for 2 or 24 hours to induce DosR-

dependent hspX expression (29).  In these induced samples, HspX was detected in the cell 

wall and was present at higher levels in the secA2 mutant (Figure 2.6C).  Higher levels of 

HspX were also observed in the whole cell lysate as well as in the cytoplasm of the secA2 

mutant indicating an overall increase in HspX levels in the secA2 mutant.  

 

Transcriptional effects do not account for the reduced cell wall localization of Mce 

proteins but can account for DosR-regulated effects.   

Genes in the mce1 and mce4 loci (Figure 2.5) are organized in operons (61), which 

raises the possibility of a transcriptional effect accounting for the reduced levels of multiple 

Mce components that we observed in whole cell lysates and cell wall fractions of the secA2 

mutant.  To address the possibility of their being a transcriptional effect, we performed 

quantitative real time PCR (qRT-PCR) on RNA prepared from H37Rv, secA2, and 

complemented strains using primers for mce1A, mce1F, mce4A and mce4F.  Transcript levels 

were normalized to the housekeeping control sigA (46).  For all four genes, there was no 

significant difference in transcript levels between H37Rv and the secA2 mutant (Figure 

2.7A). This result argues against a transcriptional effect on mce loci.  Rather, it supports the 
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alternate explanation for the immunoblot data, which is that there is a Mce export defect in 

the secA2 mutant and subsequent degradation of unexported Mce transporter components.  In 

multiple experiments, the complemented strain showed a significantly lower level of mce1A, 

mce1F, mce4F transcript than either H37Rv or secA2.  The explanation for this effect is not 

clear, although it could reflect feedback regulation of mce expression in the presence of 

higher than normal SecA2 levels resulting from the complementation construct.    

 The DosR-regulated proteins identified as more abundant in the secA2 mutant are all 

under transcriptional control of the DosR/S/T system.  To test if SecA2 affects transcription 

of DosR-regulated genes we measured hspX transcript levels in H37Rv, secA2, and 

complemented strains.  RNA was prepared from uninduced samples and standing cultures 

that sat for 2 or 24 hours to induce the DosR-regulon.  In all conditions (+/- induction), the 

level of hspX transcript was higher in secA2 versus H37Rv or the complemented strain 

(Figure 2.7B).   We also found that the level of dosR transcript was higher in the secA2 

mutant, although the difference was only statistically significant after 2 hr induction.  

Interestingly, in both the hspX and dosR transcript analyses the difference between H37Rv 

and secA2 samples was most pronounced at 2 hrs and waned at 24 hours.  Overall, these 

results indicate that the higher abundance of DosR-regulated proteins in the secA2 mutant 

can be attributed to increased transcription.   

 

Proteomic analysis of differentially abundant proteins in the cytoplasm of H37Rv 

versus the secA2 mutant.  

Our detection of upregulated cytoplasmic members of the DosR regulon in the secA2 

mutant was fortuitous: a likely consequence of these proteins being highly expressed 
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contaminants of cell wall fractions.  To more directly test for cytoplasmic effects in the secA2 

mutant, we performed LFQ analysis on cytoplasmic fractions prepared from triplicate H37Rv 

and secA2 mutant cultures.  A total of 1,810 proteins were identified by a minimum of 2 

peptides among the cytoplasmic fractions of H37Rv and the secA2 mutant.  As expected, 

proteins identified in the cytoplasmic fraction fall into diverse functional categories (Figure 

2.8A).  As with the cell wall proteome, intermediary metabolism/respiration and conserved 

hypothetical proteins were among the largest functional groups of proteins identified in the 

cytoplasmic proteome.  However, a much smaller percentage of proteins with predicted 

functions in cell wall processes were identified in the cytoplasm versus the cell wall (9.7% vs 

22.7%), as expected.   

 Spectral count ratios were calculated for the 1,266 proteins in the cytoplasmic 

fraction having average spectral counts >4 across the biological replicates of at least one of 

the strains.  Once again, there was strong correlation between the spectral count data of 

replicates (Pearson’s correlation coefficient of r>0.99 between replicate cytoplasmic 

fractions).  A volcano plot of the log2 ratio of secA2/H37Rv shows the distribution of spectral 

count ratios (Figure 2.8B).  Among the proteins exhibiting significant differences (>2-fold, 

p<0.01) between strains, there were 17 proteins with higher levels in the secA2 mutant and 1 

protein with reduced levels of protein in the mutant. There were an additional 3 proteins with 

>4 average spectral counts that could not be quantitated because they were undetected in one 

of the two strains: 2 proteins were exclusively identified in secA2 mutant samples and SecA2 

was the only protein exclusively identified in H37Rv.  Of the proteins that were significantly 

increased or only identified in the secA2 mutant, 68% of them were DosR-regulated proteins 

(13 of 19 proteins) (Table 2.2).  As seen in the cell wall fractions, the other DosR-regulated 
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proteins identified followed the same trend of being upregulated in the secA2 mutant 

although the differences failed to meet our significance cut-offs.  STRING analysis 

performed on proteins showing significant differences between strains (>2-fold difference, 

p<0.01, or unidentified) identified no pathways, besides the DosR regulon, as being altered in 

the secA2 mutant.  

 

PknG levels are increased in the cytoplasm of the M. tuberculosis secA2 mutant.   

Among the small number of non DosR-regulated proteins detected at significantly 

higher levels in the cytoplasm of the secA2 mutant was the virulence factor PknG (6.1 fold 

increased, p=0.009), which is reported to be SecA2-dependent in M. marinum (16).  In some 

cases, when a protein is not being properly exported it will accumulate in the cytoplasm (15).  

Therefore, to follow up on this result, we performed immunoblot analysis with anti-PknG 

antibodies on fractions prepared from H37Rv, secA2 mutant, and the complemented strain.  

While PknG levels in the whole cell lysate were the same between the strains, the 

immunoblot confirmed a higher amount of PknG was present in the cytoplasmic fraction of 

the secA2 mutant (Figure 2.9).  Further, immunoblotting revealed less PknG in the cell wall 

fraction of the secA2 mutant when compared to H37Rv and the complemented strain. 

Therefore, although PknG did not meet our criteria of a significant difference in the LFQ 

analysis of the cell wall, our combined results from LFQ analysis of the cytoplasmic samples 

and immunoblot analysis are consistent with PknG being exported by the SecA2 pathway of 

M. tuberculosis, as reported to be the case for M. marinum (16).  
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DISCUSSION  

Despite progress in understanding the mycobacterial SecA2 system, the identity of 

the proteins exported by the SecA2 pathway, most specifically of M. tuberculosis, has 

remained a critical unknown.  Here, we took an unbiased proteomic approach using LFQ 

analysis with spectral counting to discover new proteins exported by the SecA2 pathway of 

M. tuberculosis.  Using a cutoff of a >2-fold difference and p<0.01 we substantially 

increased the list of mycobacterial proteins observed to be affected by deletion of secA2 (5, 

15, 16). We mined this dataset to identify probable SecA2-dependent exported substrates and 

differences reflective of physiological effects of the SecA2 export pathway (Figure 2.10).  As 

with all proteomic studies of this sort, generating a comprehensive list of biologically 

significant differences is a challenge.  Some differences and their significance will not be 

detected, as appears to have occurred for PknG in the cell wall analysis. Possible reasons for 

this occurring include quantitative measurement bias from missing data, incomplete sampling 

due to dynamic range issues, or matrix interference.  At the same time, it is critical that 

differences detected in discovery experiments be validated with independently prepared 

samples, as performed for several proteins in this study.   

 

Differences in protein families and networks in the secA2 mutant.   

A striking observation from this study was the lower level of nearly all signal peptide-

containing SBP lipoproteins identified (13 of 15) in the secA2 mutant versus H37Rv cell 

wall. Although the best-studied mycobacterial SecA2 substrates are M. smegmatis SBPs (15, 

20, 21), this is the first demonstration of SecA2-dependent SBP export in M. tuberculosis.  
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The reduction in SBP localization to the M. tuberculosis secA2 cell wall was not complete 

(i.e. residual export occurred in the absence of SecA2).  However, partial export defects were 

also seen with other proteins identified in this study and in past studies of SecA2-dependent 

proteins of M. tuberculosis, M.smegmatis, and M. marinum (5, 15, 16).  Our data argues for a 

general property of SBPs that imparts a requirement for SecA2 in their export.  In support of 

this idea, three SBPs are among the proteins reduced in a proteomic study of the M. marinum 

cell envelope of a secA2 mutant (16).  An association of SBPs with SecA2-dependent export 

may also exist outside of mycobacteria.  The Listeria monocytogenes SecA2-only system is 

reported to export 3 SBPs to the cell surface (14), although there are conflicting reports about 

the SecA2-dependent nature of some of these substrates (62, 63).     

An interesting observation is that 4 of the 13 SBPs reduced in the M. tuberculosis 

secA2 mutant have predicted or proven Tat signal peptides (Table 2.1) (39).  The twin-

arginine translocation (Tat) pathway operates independently and quite differently from the 

Sec pathway.  The most notable feature of the Tat pathway is that it exports folded proteins 

across the cytoplasmic membrane (64).  There are also examples of SBPs with Tat signal 

peptides in other bacteria, which suggests that cytoplasmic folding may be a common 

property of the SBP protein family (65, 66).  A propensity for SecA2 exported proteins to 

fold in the cytoplasm is consistent with current models proposing a role for SecA2 in 

facilitating the export of such problematic proteins through the SecYEG channel that is built 

to accommodate proteins in an unfolded state (Figure 2.10) (19, 21).  These findings raise the 

possibility of at least some SBPs being compatible with Tat or SecA2 pathways, and for the  
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Tat pathway being responsible for the residual export of SBPs that occurs in the absence of 

SecA2.  It is important to note that only a subset of Tat substrates were SecA2-dependent in 

our study, ruling out a more general role for SecA2 in Tat export.   

A new finding of this study was the effect of SecA2 on Mce1 and Mce4 transport 

systems.  Since Mce2 or Mce3 proteins were not identified by an average of >4 spectral 

counts, we do not know if other M. tuberculosis Mce systems depend on SecA2.  However, 

reduced levels of LprM (Mce3E) as well as Mce4D were observed in the proteomic study of 

the M. marinum secA2 mutant cell envelope suggesting export of other Mce systems may 

also depend on SecA2 (16).  With qRT-PCR, we ruled out transcriptional effects being the 

cause of reduced Mce levels.  The large number of exported Mce components reduced in the 

secA2 mutant could reflect a role for SecA2 in exporting numerous Mce transporter 

components.  However it is also possible that SecA2 exports one or a small number of Mce 

components and that a defect in localizing a single Mce protein in the secA2 mutant 

destabilizes the entire complex.  Along these lines, we identified reduced MceG levels in the 

secA2 mutant versus H37Rv.  MceG is a predicted Mce-associated cytoplasmic ATPase and 

previous studies show MceG stability is influenced by the presence of Mce transporters (67).  

Mce systems are proposed to import lipids in a manner analogous to solute import by ABC 

transporters (68, 69).  Furthermore, Mce and Lpr proteins have been considered functionally 

similar to the SBPs of ABC transporters (68, 69), making our identification of both SBPs and 

Mce proteins as SecA2-dependent an interesting similarity. 

Our studies of cell wall and cytoplasmic fractions revealed increased induction of the 

DosR regulon in the secA2 mutant (58, 70).  Although first identified as a coordinated 

response to hypoxia, a condition associated with M. tuberculosis latency, the DosR regulon is 
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now appreciated as being induced by a number of stresses (29, 70-75).  Standing cultures of 

M. tuberculosis are reportedly able to induce expression of DosR-regulated proteins, 

presumably due to hypoxic conditions for the settled bacteria (29).  Our storage of cell pellets 

prior to irradiation and fractionation likely provided a DosR-inducing signal, revealing an 

unanticipated SecA2-dependent effect on this regulatory response.  Using qRT-PCR, we 

showed increased transcription of DosR-regulated genes occurs in the secA2 mutant.  

Interestingly, with both hspX and dosR transcripts the fold difference observed in the secA2 

mutant was greater at earlier times points and less dramatic at 24 hrs post-induction.  

Together, our results demonstrate increased transcription and possibly accelerated induction 

of the DosR regulon in the secA2 mutant.  The secA2 mutant may be altered in a way that 

allows it to recognize or respond more quickly to DosR inducing stimuli.  Alternatively, the 

absence of SecA2 could produce an underlying level of stress that primes the mutant for 

DosR induction, although our LFQ analysis of cytoplasmic fractions did not reveal other 

stress pathways being upregulated in the secA2 mutant.  Our discovery of enhanced DosR 

responses could be useful for efforts to develop the M. tuberculosis secA2 mutant into a live 

attenuated vaccine (76, 77).  Because of the desire for a tuberculosis vaccine to work with 

latent M. tuberculosis infections, a vaccine with improved ability to elicit immune responses 

to latency associated antigens, such as DosR-regulated proteins, would be advantageous (78).   

 

SecA2-dependent proteins with functions in virulence.  

 SecA2 is required for growth and survival of M. tuberculosis in macrophages and 

mice (5-7).  Although many differences detected by LFQ analysis remain to be validated, the  
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results presented serve to expand the list of candidates to consider as SecA2-dependent 

effectors and help to develop new hypotheses for how SecA2 contributes to the pathogenesis 

of M. tuberculosis.   

One way the SecA2 pathway functions in M. tuberculosis virulence is by enabling the 

bacterium to arrest phagosome maturation and avoid acidified phagolysosomes in 

macrophages (7).  We identified two proteins that may help explain the role of M. 

tuberculosis SecA2 in arresting phagosome maturation.  A predicted esterase LipO was 

significantly reduced in the secA2 mutant cell wall in comparison to H37Rv (6.9 fold 

reduced, p=0.005).  A lipO (rv1426c) mutant is defective in phagosome maturation arrest, 

indicating a potential role for LipO as an effector of this process (79).  LipO has a predicted 

Sec signal peptide to account for its export to the cell wall.  While further studies are needed, 

our results raise the possibility of SecA2 localizing LipO to the cell wall and, thereby, 

enabling LipO to carry out a role in phagosome maturation arrest.  An additional candidate 

for a being a SecA2 exported effector of phagosome maturation arrest is the protein kinase 

PknG, which is also implicated in phagosome maturation arrest (23).  SecA2-dependent 

export of PknG likely contributes to phagosome maturation arrest, but there are probably 

additional SecA2-dependent effectors involved.  This likelihood is supported by an 

experiment performed with the M. marinum secA2 mutant that shows restoration of PknG 

export in a secA2 mutant rescues some, but not all, phagosome maturation arrest in 

macrophages (16). Like the SecA2-dependent secreted SodA protein, PknG lacks an export 

signal.  Thus, our results in support of PknG being exported by the SecA2 pathway of M. 

tuberculosis are also important in reinforcing earlier observations that SecA2-dependent 

substrates of mycobacteria include examples with and without signal peptides (5, 15, 16).  
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A role of SecA2 in exporting SBPs and Mce transporters may additionally contribute 

to M. tuberculosis virulence.  Although most SBPs have yet to be investigated in terms of 

function, a wide range of solutes are predicted to be imported by these proteins.  Collectively, 

the role of SecA2 in proper localization of SBPs could have a significant impact on nutrient 

acquisition or signaling during M. tuberculosis infection.  Mce1 and Mce4 transporters are 

more firmly established as having roles in M. tuberculosis virulence.  Although there is one 

conflicting report, multiple studies show Mce1 (like SecA2) is important for growth in 

macrophages and during the early phase of murine infection (5-7, 67, 80-83).  The specific 

function of Mce1 during infection is not clear, but a potential role of Mce1 in importing free 

mycolic acids was recently proposed (57, 84).  Mce4 is the best studied Mce transporter, with 

a demonstrated role in cholesterol import (85, 86) and a role in virulence (85, 87).  Thus, 

another way that the SecA2 pathway may contribute to M. tuberculosis infection could be 

through its role in SBP and Mce transporter localization. 

 

Conclusion.  

 Using a large-scale LFQ proteomic approach, we generated a list of candidates for 

cell wall proteins exported by the SecA2 pathway of M. tuberculosis.  Our results are 

significant in highlighting SBPs as a family of SecA2-exported proteins and reinforcing prior 

observations that mycobacterial proteins exported in a SecA2-dependent fashion include 

examples with and without Sec signal peptides.   At the same time, our results revealed 

unexpected contributions of SecA2 to Mce transport and DosR regulation.  The proteins  
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identified in this report represent a valuable resource for understanding the mechanism of 

SecA2-dependent export and contributions of this pathway to M. tuberculosis virulence and 

biology.   
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Figure 2.1: Functional categories of cell wall proteins identified by LC-MS/MS.  The 
1,729 cell wall-associated proteins identified by LC-MS/MS by a minimum of two peptides 
were assigned to functional categories according to Tuberculist (47). 
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Figure 2.2: Relative quantitation of proteins in H37Rv and ΔsecA2 mutant cell wall-
fractions. Ratios for the 1,300 proteins having average spectral counts of >4 in H37Rv 
and/or ΔsecA2 are shown plotted by log2 (ΔsecA2/H37Rv) and –log10(p-value). The shaded 
area of the graph indicates proteins showing 2-fold differences, p<0.01. Solute binding 
proteins (green circles), Mce transporter proteins (blue squares) and DosR-regulated proteins 
(red triangles) are marked on the plot, and proteins later validated are identified.  In addition, 
SecA1, is identified on the plot as a protein expected to be present in similar amounts 
between strains (54).   
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Figure 2.3: Percent of functional protein categories showing differences in the cell wall 
between H37Rv and the ΔsecA2 mutant.  Shown is the percent of proteins in a given 
functional category showing SecA2-dependence, defined as >2-fold difference, p<0.01 
between H37Rv and ΔsecA2 or exclusively identified in one of the two strains.  With the 
exception of SBPs (44, 55), Mce transporters (representing Mce1-4 systems) (68), and DosR-
regulated proteins (58), functional groups were predicted by Tuberculist (47).  The total 
number of proteins in each functional category is denoted in parentheses. # indicates no 
proteins in that category.   
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Figure 2.4: Protein associations among proteins identified as having differential 
abundance in the cell wall fractions of H37Rv versus the ΔsecA2 mutant. (A) Proteins 
that were less abundant (<2-fold, p<0.01) or not identified in the ΔsecA2 mutant and (B) 
proteins that were more abundant (>2-fold, p<0.01) or exclusively identified in the ΔsecA2 
mutant were examined for protein associations. A portion of the protein associations 
predicted using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
v9.1 using medium confidence are shown (45).   Each line represents a different association 
between proteins.  
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Figure 2.5: Multiple components of Mce1 and Mce4 transporters are reduced in the cell 
wall of the ΔsecA2 mutant.  The M. tuberculosis H37Rv genome contains four mce loci 
encoding putative lipid transporters. The genomic regions encoding Mce1 and Mce4 
transporter components are shown with Open Reading Frames (ORF) colored for significant 
differences between strains of p<0.01, as observed by spectral counting.  An asterisk above 
the ORF indicates a difference of at least 2-fold.    
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Figure 2.6: Immunoblot validation of protein abundance differences between H37Rv 
and the ΔsecA2 mutant.  (A) Equalized cell wall fractions of H37Rv, ΔsecA2, and 
complemented (ΔsecA2+psecA2) strains were analyzed by immunoblot using anti-PhoS1, 
anti-Mce1A, anti-Mce1C, anti-Mce1F, anti-LprK, and anti-19KDa antibodies to monitor 
differences in protein levels. The 19kDa lipoprotein was used as a control for a protein 
present in equal amounts across the strains. (B) Equalized whole cell lysates of H37Rv, 
ΔsecA2, and complemented (ΔsecA2+psecA2) strains were analyzed by immunoblot using 
anti-PhoS1, anti-Mce1A, anti-Mce1F, and anti-LprK antibodies. (C) H37Rv, ΔsecA2, and 
ΔsecA2+psecA2 samples in which the DosR regulon was induced for 2 or 24 hours were 
analyzed. Whole cell lysate (WCL), cell wall (CW) and cytoplasmic (CYT) fractions were 
equalized for protein content and analyzed by immunoblot using anti-HspX antibodies.  For 
all data shown, a representative experiment is presented of a minimum of three that were 
performed. 
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Figure 2.7: Transcript levels for mce genes are unchanged but transcript levels for 
DosR-regulated genes are higher in the ΔsecA2 mutant.  (A) RNA was isolated from 
H37Rv, ΔsecA2, and complemented (ΔsecA2+psecA2) strains. mce transcript levels were 
measured by quantitative RT-PCR and normalized to the level of sigA transcript. Data shown 
is for the mean of three biological replicates. (*p<0.05 by ANOVA) (B and C) RNA was 
isolated from H37Rv, ΔsecA2, and complemented (ΔsecA2+psecA2) stains in which the 
DosR regulon was not intentionally induced or was induced for 2 or 24 hours. (B) hspX 
transcript levels and (C) dosR transcript levels were measured by quantitative RT-PCR and 
normalized to sigA transcript. Data represents the means of three biological replicates. 
(*p<0.05 by ANOVA) 
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Figure 2.8: Relative quantitation of proteins in H37Rv and ΔsecA2 mutant cytoplasmic 
fractions. (A) The 1,810 cytoplasmic proteins identified by LC-MS/MS by a minimum of 
two peptides were assigned to functional categories according to Tuberculist (47). (B)Ratios 
for the 1,266 proteins identified by an average >4 spectral counts in H37Rv and/or ΔsecA2 
are shown plotted by log2 (ΔsecA2/H37Rv) and –log10(p-value). The shaded area of the graph 
indicates proteins showing 2-fold differences, p<0.01. DosR-regulated proteins (red 
triangles) and PknG (black circle) are marked on the plot. 
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Figure 2.9: The level of PknG is increased in the cytoplasm and reduced in the cell wall 
of the ΔsecA2 mutant. Equalized fractions of H37Rv, ΔsecA2, and complemented 
(ΔsecA2+psecA2) stains were analyzed by immunoblot using anti-PknG antibodies. PknG 
levels in whole cell lysate (WCL), cell wall (CW) and cytoplasmic (CYT) fractions are 
shown.  Shown is a representative of three experiments.    
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Figure 2.10: A model for SecA2-dependent effects in M. tuberculosis. In the current 
model for SecA2-dependent protein export, the SecA2 ATPase promotes the export of select 
proteins across the cytoplasmic membrane through the SecYEG channel, possibly with the 
help of SecA1 (8, 19, 20).  Proteins identified as being exported by the SecA2 pathway 
include examples with signal peptides (hatched rectangle) (i.e. SBPs) and examples lacking 
signal peptides (i.e. PknG).  The SecA2-dependent proteins identified in this study are shown 
in the model with proteins identified as reduced in the secA2 mutant colored blue (i.e. PknG, 
SBPs, LipO, Mce, Lpr) and proteins identified as increased in the ΔsecA2 mutant colored red 
(i.e. DosR-regulated proteins).   
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Table 2.1: Functional categories of proteins showing reduced abundance in the cell wall 
fraction of the M. tuberculosis ΔsecA2 mutant versus H37Rv 

 

Shaded areas of the table indicate proteins that satisfied our criterion of having >2-fold 
difference in abundance between the ΔsecA2 mutant and H37Rv and p<0.01 or were 
exclusively identified in one of the strains. 
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Table 2.2: DosR regulated proteins have altered abundance in the cell wall and 
cytoplasmic fractions of the M. tuberculosis ΔsecA2 mutant  

 

Shaded areas of the table indicate proteins that satisfied our criterion of having >2-fold 
difference in abundance between the ΔsecA2 mutant and H37Rv and p<0.01 or were 
exclusively identified in one of the strains. 
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CHAPTER 31 

 

 

The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in 

concert to arrest phagosome and autophagosome maturation 

 

 

INTRODUCTION 

In 2015, 1.8 million deaths were attributed to infection with Mycobacterium 

tuberculosis, the causative agent of tuberculosis (1). M. tuberculosis is an intracellular 

pathogen that subverts multiple antimicrobial mechanisms of the host in order to survive and 

replicate in macrophages (2). To avoid trafficking to the antimicrobial environment of 

acidified phagolysosomes, M. tuberculosis blocks the normal series of phagosome maturation 

events that occurs following phagocytosis (2,3). As a result, M. tuberculosis resides in 

phagosomes that resemble early endosomes in retaining Rab5 on their surface, avoiding host 

factors that drive downstream maturation events (e.g. phosphatidylinositol-3-phosphate 

[PI3P], Rab7, and the vacuolar-H+-ATPase [V-ATPase]) and failing to fuse with lysosomes 

(4-7). Notably, the ability of M. tuberculosis to prevent phagosome recruitment and assembly 

																																																													
1	Contributing authors: Jonathan Tabb Sullivan and Miriam Braunstein (Department of 
Microbiology and Immunology, School of Medicine, The University of North Carolina at 	
Chapel Hill, Chapel Hill, NC)		
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of V-ATPase, the proton pump that acidifies the phagosome, helps explain the failure of M. 

tuberculosis phagosomes to fully acidify (4).  

Phagosome maturation is a complex multi-step process and there are multiple M. 

tuberculosis protein and lipid effectors that are thought to play a role in arresting phagosome 

maturation (8).  However, the specific function(s) of effectors and the interplay between 

effectors remains to be determined. It also remains unclear if all the effectors of this process 

are known. The gaps in our understanding are partly due to redundancy among effectors and 

the potential for effectors to have functions in other aspects of M. tuberculosis pathogenesis 

or physiology beyond phagosome maturation arrest (9-15).  These features of effectors make 

it difficult to study the contribution of individual effectors to phagosome maturation arrest 

using loss of function mutants. 

In addition to residing in phagosomes, intracellular M. tuberculosis can also localize 

to double membrane bound compartments known as autophagosomes. Autophagosomes 

progress through similar maturation stages as phagosomes and culminate in fusion with 

lysosomes to form degradative autophagolysosomes (16). As with phagosomes, M. 

tuberculosis is able to arrest autophagosome maturation and prevent fusion with lysosomes 

(17,18).  However, unlike the process of phagosome maturation arrest, there has been very 

little study of M. tuberculosis mechanisms and effectors of autophagosome maturation arrest. 

Most of the reported effectors of M. tuberculosis phagosome maturation arrest are 

either exported to the bacterial cell wall or fully secreted (19). In M. tuberculosis, the SecA2 

protein export pathway is required for phagosome maturation arrest, which indicates that this 

pathway exports effectors required to inhibit phagosome maturation (20). Unlike the 

paralogous SecA1 ATPase, which is responsible for the bulk of housekeeping export and is 
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essential for bacterial viability, SecA2 is a non-essential specialized SecA ATPase required 

for exporting a relatively small subset of proteins (21-24). Although not required for growth 

in vitro, SecA2 is required for M. tuberculosis replication in macrophages and mice (22,25). 

Unlike wild type M. tuberculosis, during macrophage infection, a secA2 mutant of M. 

tuberculosis is delivered to acidified mature phagosomes (20). The failure of the secA2 

mutant to arrest phagosome maturation was previously shown to be responsible for its 

intracellular growth defect (20).  

We hypothesized that the role of the SecA2 pathway in phagosome maturation arrest 

is to export multiple effectors of the process. Here, we identify SapM, a secreted phosphatase 

previously reported to function in phagosome maturation arrest, as being exported by the M. 

tuberculosis SecA2 pathway (7,26). We further show that the SecA2 dependent export of this 

protein contributes to both phagosome maturation arrest and intracellular growth of M. 

tuberculosis. By identifying a histidine residue that is essential for SapM phosphatase 

activity, we confirm that the phosphatase activity of SapM is required for its function. Along 

with SapM, our data indicates the existence of other SecA2-dependent effectors of 

phagosome maturation arrest and we identify the M. tuberculosis eukaryotic-like 

serine/threonine protein kinase PknG as one of these additional factors.  By restoring export 

of SapM and PknG individually and in combination to the secA2 mutant, we provide unique 

insight into specific steps in phagosome maturation arrest that are impacted by one or both of 

these effectors, as well as extend our understanding of the role of SecA2, SapM, and PknG to 

M. tuberculosis inhibition of autophagosome maturation. These studies additionally reveal 

the value of using the secA2 mutant as a novel platform to study functions of effectors in 

phagosome maturation arrest. 
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RESULTS  

The SapM phosphatase is secreted by the SecA2 pathway.  

With the goal of understanding the contribution of SecA2 to phagosome maturation 

arrest by M. tuberculosis, we tested the possibility that the SapM phosphatase, which is a 

known effector of phagosome maturation arrest, is exported by the SecA2 pathway (26).  

Immunoblot analysis with SapM antisera was performed on M. tuberculosis culture 

supernatants. Compared to the parental M. tuberculosis strain, H37Rv, and a complemented 

strain, the M. tuberculosis secA2 mutant had significantly reduced levels of secreted SapM, 

although a low residual level of SapM secretion was always observed in the mutant (Figure 

3.1A). The amount of SapM in whole cell lysates was also reduced, albeit more modestly 

(Figure 3.1B). These reduced levels of SapM were not due to transcriptional effects in the 

secA2 mutant, as shown by qRT-PCR measurements of sapM transcript in the secA2 mutant 

compared to H37Rv (data not shown). Thus, the lower levels of secreted and cellular SapM 

in the secA2 mutant are the likely consequence of a SapM export defect. 

We also examined the contribution of SecA2 to SapM export by quantifying 

phosphatase activity in culture supernatants using p-nitrophenyl phosphate (pNPP) as a 

substrate. There was significantly less phosphatase activity in culture supernatants of the 

secA2 mutant when compared to H37Rv or the complemented strain (Figure 3.1C). 

Importantly, in the presence of sodium molybdate, a known inhibitor of SapM, the secreted 

phosphatase activity of the secA2 mutant was equivalent to that of H37Rv and complemented 

strains which is consistent with a SapM secretion defect (data not shown)(27). Together, the 

immunoblot and activity data provide the first evidence of SapM being secreted by the 

SecA2 pathway. 
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SapM secretion by the SecA2 pathway limits EEA1 localization to phagosomes.  

SapM was previously shown to dephosphorylate PI3P, which should limit recruitment 

of PI3P binding proteins, such as EEA1, that promote downstream phagosome maturation 

events (7,28,29). Consequently, we hypothesized that SapM secretion by the SecA2 pathway 

contributes to phagosome maturation arrest by enabling M. tuberculosis to avoid EEA1 

localization to phagosomes. As a first step to test this possibility, murine bone marrow 

derived macrophages were infected with the secA2 mutant, H37Rv or the complemented 

strain and EEA1 localization to M. tuberculosis-containing phagosomes was determined 

using the endogenous auto-fluorescent signal of M. tuberculosis and immunostaining with 

anti-EEA1 antibodies.  Compared to phagosomes containing H37Rv or the complemented 

strain, which avoid EEA1 localization, phagosomes containing the secA2 mutant exhibited 

significantly higher EEA1 co-localization at both 1hr and 24hrs post infection (Figure 3.1D-

E, data not shown).  

 We next set out to determine if the failure of the secA2 mutant to prevent EEA1 

recruitment to phagosomes is due to the SapM secretion defect of the mutant.  For this 

purpose, we built a strain of the secA2 mutant with the amount of secreted SapM restored to 

wild type levels.  If SapM is the only SecA2-dependent effector preventing EEA1 

recruitment, then restoring SapM secretion to wild type levels in the secA2 mutant 

background should rescue this step of phagosome maturation arrest.  However, if additional 

SecA2-dependent effectors exist with roles in this step of phagosome maturation arrest, their 

export will remain compromised and the EEA1 defect will persist. To restore the level of 

SapM secretion, we introduced a plasmid that overexpressed SapM in the secA2 mutant 

background (secA2+SapM). In this secA2 mutant strain, the level of secreted SapM was 
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restored, even surpassing the level seen with H37Rv (Figure 3.2A). While the mechanism of 

restored secretion is not clear, we suspect the overexpressed SapM is exported by an alternate 

pathway, as some SapM is observed in culture supernatants of the secA2 mutant (Figure 

3.1A).  Importantly, the overexpressed SapM was functional as demonstrated by the 

increased secreted phosphatase activity of the secA2+SapM strain (Figure 3.2B).  

 Using this secA2+SapM strain, we tested how restored SapM secretion affects EEA1 

recruitment to secA2 mutant containing phagosomes. Restored SapM secretion in the secA2 

mutant fully rescued the secA2 mutant defect in preventing EEA1 (Figure 3.2F, data not 

shown) (i.e. the percent EEA1+ M. tuberculosis containing phagosomes was equivalent 

between secA2+SapM and H37Rv).  This result indicates that the defect in SapM secretion of 

the secA2 mutant accounts for the failure to exclude EEA1 from phagosomes. In other words, 

SecA2 secretion of SapM is required for M. tuberculosis to prevent EEA1 recruitment to 

phagosomes. The effect of overexpressing SapM was specific to the secA2 mutant, as SapM 

overexpression in H37Rv did not further reduce EEA1 recruitment (Figure 3.2F, data not 

shown).  

 

SapM phosphatase activity prevents phagosomal EEA1 localization.   

Past studies lead to a model of SapM functioning to block phagosome maturation by 

dephosphorylating PI3P (7). However, there is no direct evidence that the role of SapM in 

phagosome maturation arrest is through its phosphatase activity. By overexpressing a SapM 

variant lacking phosphatase activity in the secA2 mutant we were able to directly test the 

significance of SapM phosphatase activity. Since catalytic residues and the active site of 

SapM are unknown, to create a phosphatase defective SapM, we substituted an alanine for  
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histidine 204, which aligns with a catalytically important residue in fungal acid phosphatases 

(Figure 3.2C) (30). When plasmids overexpressing SapM or SapM H204A were introduced in 

the secA2 mutant, the level of secreted SapM was comparable, as measured by immunoblot 

(Figure 3.2D). However, unlike overexpressed wild-type SapM, when SapM H204A was 

overexpressed there was no increase in secreted phosphatase activity, indicating H204 is 

essential for SapM phosphatase activity (Figure 3.2E). Using SapM H204A, we then tested the 

importance of phosphatase activity to the role of SapM in preventing EEA1 recruitment to M. 

tuberculosis containing phagosomes. Unlike overexpressed SapM (secA2+SapM), SapMH204A 

(secA2+SapMH204A) was unable to rescue the defect of the secA2 mutant in preventing EEA1 

recruitment (Figure 3.2G, data not shown). This result proves that the phosphatase activity of 

SapM is essential for SapM to exclude EEA1 from M. tuberculosis containing phagosomes. 

 

SapM affects multiple steps of phagosome maturation and is not the only SecA2-

dependent effector of phagosome maturation arrest.  

During the normal process of phagosome maturation, Rab5 is recruited to early 

phagosomes and is then exchanged for Rab7 as phagosomes mature. However, phagosome 

maturation arrest caused by M. tuberculosis results in Rab5 retention and the exclusion of 

Rab7 from phagosomes (5). As PI3P, a substrate of SapM, contributes to the exchange of 

Rab5 for Rab7, we examined the association of Rab5 and Rab7 on M. tuberculosis 

containing phagosomes (31). Using immunofluorescence microscopy, we measured percent 

co-localization of Rab5 and Rab7 with secA2 mutant containing phagosomes.  In contrast to 

H37Rv-containing phagosomes, secA2 mutant-containing phagosomes retained less Rab5 

and recruited more Rab7, confirming the secA2 mutant is defective for phagosome 
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maturation arrest (Figure 3.3A-B). Taking advantage of the secA2+SapM strain, we tested if 

SapM additionally impacts Rab5-Rab7 exchange.  When secreted SapM was restored to the 

secA2 mutant, a partial, but significant, rescue of M. tuberculosis inhibition of Rab5-Rab7 

exchange on phagosomes was observed (i.e. restoring secreted SapM significantly increased 

Rab5 retention and reduced Rab7 recruitment) (Figure 3.3A-B).  Furthermore, as shown with 

the phosphatase defective SapMH204A, the phosphatase activity of SapM is required for its 

function in inhibiting Rab5-Rab7 exchange (Figure 3.3C-D).  However, because the 

secA2+SapM strain did not restore the block in Rab5-Rab7 exchange to levels seen with 

H37Rv infected macrophages, this data argues for the existence of additional M. tuberculosis 

effectors exported by the SecA2 pathway impacting this step of phagosome maturation. It is 

noteworthy that the effect of the secA2+SapM strain on Rab5 retention and Rab7 exclusion 

waned as infection progressed (1 hr versus 24 hrs post infection) (Figure 3.3A-B).   

Avoiding phagosome acidification is another feature of M. tuberculosis phagosome 

maturation arrest that is impaired in secA2 mutant containing phagosomes (20).  Using 

LysoTracker, an acidotropic dye that accumulates in acidified compartments, we examined if 

restoring secreted SapM to the secA2 mutant rescues the ability of the mutant to avoid 

acidified phagosomes.  The secA2+SapM strain was associated with a significant reduction in 

the percent LysoTracker co-localization (acidification) when compared to the secA2 mutant, 

indicating that SapM secretion by the SecA2 pathway contributes to M. tuberculosis 

inhibition of phagosome acidification (Figure 3.3E, data not shown). However, the 

percentage of LysoTracker co-localization observed for the secA2+SapM strain was still 

significantly higher than that observed for H37Rv-containing phagosomes. This partial 

rescue reinforces the above conclusion that SapM is not the only SecA2-dependent effector 
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of phagosome maturation arrest. The phosphatase activity of SapM is also required to prevent 

phagosome acidification as shown with SapMH204A (Figure 3.3F, data not shown). We next 

examined the effect of restoring secreted SapM to the secA2 mutant on the ability to inhibit 

V-ATPase, the proton pump that acidifies the phagosome (4). We previously showed that V-

ATPase is excluded from M. tuberculosis containing phagosomes but has a significantly 

higher association with secA2 mutant-containing phagosomes (20). In stark contrast to the 

effect restoring SapM secretion to the secA2 mutant had on phagosome acidification, no 

effect was observed on V-ATPase recruitment (Figure 3.3G, data not shown). These results 

are significant in revealing a role of SapM in preventing phagosome acidification that is 

independent from inhibiting recruitment of V-ATPase to phagosomes. 

 

SapM contributes to the role of SecA2 in promoting M. tuberculosis intracellular 

growth.   

Having previously linked the failure of the secA2 mutant to arrest phagosome 

maturation with the intracellular growth defect of the mutant, we tested the effect of restoring 

secreted SapM to the secA2 mutant on growth in macrophages. Intracellular growth was 

monitored over time by plating macrophage lysates for viable bacilli.  As shown previously, 

intracellular growth of the secA2 mutant was significantly attenuated compared to H37Rv 

(Figure 3.3H).  When secreted SapM was added back to the secA2 mutant, intracellular 

growth of the mutant significantly improved (Figure 3.3H).  However, intracellular growth of 

the secA2+SapM strain was not restored to the level exhibited by H37Rv, which reinforces 

the above conclusions that additional SecA2 exported effectors must exist. Notably, there 

was no effect on intracellular growth with SapM overexpression in H37Rv.  
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SecA2 export of PknG contributes to phagosome maturation arrest and growth 

in macrophages.  

Recent studies identified the PknG kinase, a protein with functions in M. tuberculosis 

physiology as well as phagosome maturation arrest, as being exported by the SecA2 pathway 

to the cell wall of M. tuberculosis and Mycobacterium marinum (11,23,32,33). To elucidate 

the role of SecA2 export of PknG in phagosome maturation arrest, we took the same 

approach as used with SapM of testing the effect of restoring PknG export to the secA2 

mutant. By overexpressing pknG in the secA2 mutant (secA2+PknG) we were able to restore 

export of PknG to greater than wild type levels (Figure 3.4A).  

In contrast to the full rescue in EEA1 inhibition observed with SapM restoration in 

the secA2 mutant, restoring PknG export to the secA2 mutant had no effect on EEA1 (Figure 

3.4B, data not shown). However, restoring the levels of exported PknG to the secA2 mutant 

significantly increased the ability of the secA2 mutant to retain Rab5 and exclude Rab7 on 

phagosomes (Figure 3.4 C-D).  This result reveals a role for PknG in preventing Rab5-Rab7 

exchange that has not been described previously. However, like the secA2+SapM strain, the 

secA2+PknG strain was not as effective as H37Rv in inhibiting Rab5-Rab7 exchange, 

indicating it is not the only SecA2 exported effector involved in inhibiting this step of 

phagosome maturation. Intriguingly, unlike SapM, the effect seen with PknG restoration was 

consistent at both 1hr and 24hrs post infection (Figure 3.4 C-D).   

When we examined phagosome acidification using LysoTracker, restored PknG 

export in the secA2 mutant partially rescued the ability of the mutant to inhibit phagosome 

acidification (Figure 3.4E, data not shown). However, as with restoring SapM secretion, V-
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ATPase recruitment was unaffected by restoring export of PknG in the secA2 mutant (Figure 

3.4F, data not shown).  

Finally, we tested the effect of restored levels of exported PknG on intracellular 

growth of the secA2 mutant. The secA2+PknG strain grew significantly better than the secA2 

mutant in macrophages, indicating SecA2 export of PknG contributes to intracellular growth 

of M. tuberculosis but, again, additional SecA2 exported proteins are also required, as growth 

was not restored to the levels seen with H37Rv (Figure 3.4G).  

 

When added back simultaneously, SapM and PknG have a combined effect on 

phagosome maturation arrest and intracellular growth.  

We next tested the effect of restoring export of SapM and PknG in combination to 

determine if these effectors have cumulative effects and if together they are sufficient to fully 

rescue the defects of a secA2 mutant. We simultaneously overexpressed sapM and pknG to 

restore export of both effectors in the secA2 mutant (secA2+SapM+PknG). As expected, the 

secA2+SapM+PknG strain fully inhibited EEA1 recruitment, like the secA2+SapM strain 

(Figure 3.2F, 3.5A, data not shown).  When we examined Rab5 and Rab7 localization on 

phagosomes, simultaneous restoration of exported SapM and PknG to the secA2 mutant 

inhibited Rab5-Rab7 exchange significantly more than restoration of either effector 

individually (Figure 3.5 B-C). In fact, when compared to H37Rv at 1hr post infection, full 

rescue of the Rab5-Rab7 exchange inhibition was observed for the secA2+SapM+PknG 

strain. However, at 24hrs post infection the effect waned, which is reminiscent of what was 

observed with the secA2+SapM strain (Figure 3.3 A-B).  

In regards to phagosome acidification, the secA2+SapM+PknG strain had a greater 
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effect on inhibiting phagosome acidification (LysoTracker) than observed with restoration of 

either effector individually (Figure 3.5D, data not shown).  However, phagosome 

acidification was still not inhibited to wild-type levels by the secA2+SapM+PknG strain 

(Figure 3.5D, data not shown). Furthermore, even when export of both effectors was 

restored, there was no rescue of the ability to exclude V-ATPase from the phagosome (Figure 

3.5F, data not shown). 

Finally, we tested the effect of restoring export of both effectors on growth of the 

secA2 mutant in macrophages. The secA2+SapM+PknG strain grew significantly better than 

the secA2 mutant with each effector restored individually (Figure 3.5F, data not shown). 

However, as seen with phagosome maturation arrest, the secA2+SapM+PknG strain was not 

fully rescued in its ability to grow intracellularly (Figure 3.5F, data not shown).  

Thus, the secA2+SapM+PknG strain revealed a cumulative effect of adding back 

exported SapM and PknG on Rab5-Rab7 exchange, acidification and intracellular growth.  

However, in nearly all cases adding back these two effectors was insufficient to restore 

phenotypes to the level seen with H37Rv, which indicates the existence of even more SecA2-

dependent effectors of phagosome maturation arrest. 

 

The SecA2 pathway is required to inhibit autophagosome maturation (flux). 

 In addition to phagosome maturation arrest, M. tuberculosis inhibits the maturation 

of autophagosomes to autophagolysosomes which is sometimes referred to as autophagy flux 

(17,18). To determine if the SecA2 pathway is additionally required for autophagosome 

maturation arrest, we used LC3-II, the lipid modified form of LC3 that is associated with 

autophagosomes, to monitor autophagy in H37Rv and secA2 mutant infected RAW 264.7 
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macrophages (34). Lower levels of LC3-II were observed in secA2 mutant infected 

macrophages when compared to H37Rv infected macrophages (Figure 3.6A). The lower 

LC3-II levels were not due to a reduced bacterial burden in secA2 mutant infected RAW cells 

as there was no difference in intracellular burden of H37Rv or the secA2 mutant at these time 

points (data not shown). The lower levels of LC3-II in secA2 mutant infected macrophages 

could indicate a defect of the secA2 mutant in arresting autophagosome maturation such that 

there are more mature autophagosomes resulting in more LC3-II degradation. To test this 

possibility M. tuberculosis infected cells were treated with Bafilomycin A1, which blocks 

autophagosome acidification, maturation and the associated degradation of LC3-II. With 

Bafilomycin A1 treatment, the levels of LC3-II were comparable in secA2 mutant and 

H37Rv infected macrophages. This result is consistent with the secA2 mutant being defective 

in the ability to arrest autophagosome maturation (Figure 3.6A).  

To further examine the requirement for the SecA2 pathway in autophagosome 

maturation arrest we utilized RAW 264.7 macrophages expressing a dual RFP::GFP::LC3 

fusion protein (RAW-Difluo mLC3 cells).  While RFP is resistant to the acidic environment 

of the autophagolysosome, GFP is acid sensitive and the signal is quenched in 

autophagolysosomes. By quantifying the number of RFP+ and GFP+/- autophagosomes, this 

cell line can report on autophagosome maturation. When we infected cells expressing 

RFP::GFP::LC3 with the secA2 mutant, H37Rv or the complemented strain, there was no 

difference in the percent of M. tuberculosis that co-localized with all LC3+ compartments 

(RFP+, GFP+/-) (Figure 3.6B, data not shown). However, when we specifically examined the 

association of M. tuberculosis with mature autophagosomes by quantifying the percentage of 

M. tuberculosis that localize to autophagolysosomes (RFP+, GFP-), we found a significantly 
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higher association of the secA2 mutant with autophagolysosomes than either H37Rv or the 

complemented stain. Together, the LC3-II immunoblots and the RFP::GFP::LC3 reporter 

indicate an additional role of the SecA2 pathway in autophagosome maturation arrest (Figure 

3.6C, data not shown).  

 

SecA2 export of SapM and PknG contributes to inhibition of autophagosome 

maturation (flux). 

 Using the secA2 mutant strains with restored export of SapM and/or PknG, we next set out 

to determine if SecA2 export of SapM and PknG contributes to the function of SecA2 in 

autophagosome maturation arrest. Restored export of either SapM or PknG reduced 

localization of the secA2 mutant in autophagolysosomes indicating both SapM and PknG 

contribute to M. tuberculosis inhibition of autophagosome maturation (Figure 3.6D, data not 

shown). Notably, restored SapM secretion resulted in a more significant reduction in secA2 

localization to autophagolysosomes than PknG (Figure 3.6D, data not shown). Simultaneous 

restoration of SapM and PknG export was more effective than restoration of either effector 

individually (Figure 3.6D, data not shown). In fact, when compared to H37Rv, full rescue of 

autophagosome maturation arrest was observed for the secA2+SapM+PknG strain (Figure 

3.6D, data not shown).  

A benefit of utilizing the RFP::GFP::LC3 expressing cell line is the ability to 

simultaneously examine autophagosome and phagosome maturation in the same cells. In 

order to monitor phagosome maturation, we quantified co-localization of LC3 negative 

(LC3-) M. tuberculosis with LysoTracker. In LC3- phagosomes, the secA2 mutant localized 

more frequently to mature LysoTracker positive phagosomes than H37Rv (Figure 3.6E, data 
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not shown). Moreover, the secA2+SapM and secA2+PknG strains exhibited significantly 

reduced localization to mature LC3- phagosomes when compared to the secA2 mutant 

(Figure 3.6E, data not shown). Interestingly unlike with autophagosome maturation arrest, 

the effect on phagosome maturation of adding back exported SapM to the secA2 mutant was 

significantly less than that of PknG (Figure 3.6E, data not shown). The secA2+SapM+PknG 

strain exhibited even greater rescue of phagosome maturation arrest than observed with 

restoration of either effector individually (Figure 3.6E, data not shown). However, in contrast 

to autophagosome maturation, the secA2+SapM+PknG strain was not fully rescued in its 

ability to arrest phagosome maturation (Figure 3.6E, data not shown). The function of SapM 

in both autophagosome and phagosome maturation arrest depends on SapM phosphatase 

activity, as shown by the secA2+SapMH204A strain remaining defective in both processes 

(data not shown). Together, these results demonstrate that both phagosome and 

autophagosome maturation arrest depend on the SecA2 pathway, SapM, and PknG.  

However, these experiments also reveal differences in the contribution individual effectors 

make to each process and expose the existence of additional SecA2-dependent effectors 

required for phagosome maturation arrest but not necessarily for autophagosome maturation 

arrest. 

 

DISCUSSION 

Phagosome maturation arrest by M. tuberculosis is complex and much remains to be 

learned about the effectors involved in the process and how they work together. We showed 

previously that the SecA2 pathway is required for M. tuberculosis to inhibit phagosome 

maturation; however, the SecA2-dependent effectors of phagosome maturation arrest 
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remained unknown (20). Here, we identified two SecA2 exported effectors of M. 

tuberculosis phagosome maturation arrest as the phosphatase SapM and the kinase PknG. 

Then, using a strategy of adding back export of SapM and PknG to the secA2 mutant, we not 

only established the significance of the role of the SecA2 pathway in exporting these proteins 

but we identified steps in phagosome maturation that are impacted by these factors 

individually and in combination. Moreover, we revealed that the SecA2 pathway, SapM, and 

PknG also function in inhibiting autophagosome maturation.  

Prior to this study, SapM was not known to be secreted by the SecA2 export pathway. 

By testing the requirement for SecA2 in the export of a set of known effectors of phagosome 

maturation arrest (SapM, LpdC, Ndk) we identified SapM as a SecA2-exported protein 

(13,35). The SecA2 pathway did not contribute to LpdC or Ndk secretion, and these effectors 

were not studied further (data not shown). PknG was identified as being exported by the 

SecA2 pathways of M. tuberculosis and M. marinum in recent proteomic studies (23,32). 

While SapM and PknG are both known to function in phagosome maturation arrest and there 

are reports of M. tuberculosis mutants lacking these effectors having defects in phagosome 

maturation arrest, our understanding of their roles in inhibiting specific steps of phagosome 

maturation is far from complete (7,10,11,26).   

We established the significance of SecA2 export of SapM and PknG to phagosome 

maturation arrest and intracellular growth, using the strategy of adding back export of these 

proteins to the secA2 mutant. To create the necessary strains, we reasoned that 

overexpressing SecA2-dependent proteins in the secA2 mutant could boost their export 

through the alternate mechanism, possibly the SecA1-dependent pathway, that accounts for 

the residual export in the secA2 mutant of SapM, PknG and all SecA2 exported proteins 
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identified to date (22,23,32,36). Using overexpression, we achieved our goal of producing a 

secA2 mutant strain that has at least as much exported SapM and/or PknG as detected in the 

wild type H37Rv strain. Notably, even when overexpressed, the secA2 mutant exported less 

SapM and PknG than the corresponding H37Rv overexpression strain, confirming the 

dependency of these effectors on SecA2 for export. The effects of SapM and/or PknG 

overexpression were specific to the secA2 mutant and specific to the overexpressed proteins. 

H37Rv was unaffected by increased levels of these proteins and equivalent levels of 

overexpressed SapM H204A in the secA2 mutant had no effects. We also repeated the 

experiments using a single-copy vector with reduced, though still higher than wild-type 

levels, of secreted SapM and saw comparable restoration of phagosome maturation arrest and 

intracellular growth (data not shown).  

The secA2 mutant strains with restored levels of exported SapM and/or PknG proved 

to be powerful tools for investigating steps in phagosome maturation affected by these 

effectors (Figure 3.7). Past studies demonstrate purified SapM can dephosphorylate PI3P in 

vitro (7). This data led to a model for secreted SapM dephosphorylating PI3P and inhibiting 

recruitment of PI3P binding proteins, such as EEA1 to the phagosome to arrest phagosome 

maturation. However, critical details of this model have not been confirmed, including an 

effect of SapM on EEA1 and proof that SapM functions as a phosphatase to arrest 

phagosome maturation.  Thus, our demonstration that restored levels of exported wild type 

SapM, but not the phosphatase defective SapM H204A, inhibits EEA1 localization to 

phagosomes provides important validation of the model. Adding back wild type SapM also 

partially restored inhibition of Rab5-Rab7 exchange and this again depends on SapM 

phosphatase activity. This effect of SapM on Rab5-Rab7 exchange was not previously noted, 
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but it is consistent with the known function of PI3P in Rab5-Rab7 exchange and is intriguing 

given a report of SapM binding to Rab7 (31,37,38).  The SapM effect on Rab5-Rab7 

exchange was reproducibly more extreme at 1hr versus 24hrs post infection (Figure 3.3 A-

B). The temporal nature of effector functions revealed by this data reveals another layer of 

complexity to phagosome maturation arrest by M. tuberculosis.  

The strategy of overexpressing PknG to restore exported levels to the secA2 mutant 

was used previously in M. marinum (32). Similar to what we observed, adding back exported 

PknG to the secA2 mutant of M. marinum results in a partial restoration of phagosome 

maturation arrest. However, in the M. marinum study, the effect of PknG was only assessed 

on co-localization with the late lysosomal-associated membrane protein (LAMP1)(32). Since 

the function(s) of PknG that impact phagosome maturation is unknown, we took advantage 

of the secA2+PknG strain and examined effects on earlier steps of phagosome maturation. 

PknG had no effect on EEA1 recruitment to phagosomes, but it did partially restore 

inhibition of Rab5-Rab7 exchange, revealing for the first time a function of PknG in 

inhibiting Rab5-Rab7 exchange (Figure 3.7).  Interestingly, when exported SapM and PknG 

were added back simultaneously, a combined effect was observed that resulted in complete 

inhibition of Rab5-Rab7 exchange at 1hr post infection but waned as infection progressed.  

Thus, multiple SecA2-dependent effectors act on the same step of phagosome maturation and 

the combinatorial effects of these effectors suggests SapM and PknG work through different 

but complementary mechanisms. 

 Studies of PknG function in phagosome maturation arrest are complicated by the fact 

that, in addition to being exported, PknG is in the bacterial cytoplasm where it functions in 

glutamate metabolism, regulation of the TCA cycle, and in a redox homeostatic system 
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(RHOCS) that contributes to resistance to oxidative stress (9,10,33,39). Because M. 

tuberculosis mutants with RHOCS defects are delivered to mature phagosomes and have 

intracellular growth defects, it raised the possibility that the redox function of PknG explains 

its role in phagosome maturation arrest (10).  However, this does not appear to be the case as 

the secA2 mutant does not exhibit a RHOCS defect, as assessed by sensitivity to redox stress, 

and overexpression of PknG did not increase resistance of the mutant to redox stress (data 

not shown). Going forward the secA2 mutant, in conjunction with the secA2+PknG strain, 

may be an ideal platform to further study the function(s) and target(s) of PknG in phagosome 

maturation arrest.  

We also observed partial effects of SapM and PknG on phagosome acidification.  

Surprisingly, adding back these effectors inhibited phagosome acidification, but had no effect 

on preventing V-ATPase localization to M. tuberculosis phagosomes. The ability of M. 

tuberculosis to exclude V-ATPase from the phagosome is generally assumed to account for 

the block acidification of M. tuberculosis phagosomes (4). Our demonstration that SapM and 

PknG inhibit acidification without blocking recruitment of the V-ATPase indicates the 

existence of another mechanism for M. tuberculosis to prevent phagosome acidification.  At 

the same time, because adding back SapM and PknG failed to rescue the mutant defect in 

excluding V-ATPase from the phagosome, there is at least one additional SecA2-dependent 

effector involved in this step of phagosome maturation arrest. PtpA, which binds subunit H 

of V-ATPase and thereby excludes the proton pump from phagosomes, is a candidate for this 

missing SecA2-exported effector (15). Unfortunately, our inability to detect secreted PtpA in 

M. tuberculosis cultures prevented us from determining if PtpA is secreted by the SecA2 

pathway.   
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Compared to phagosome maturation arrest, even less is known about autophagosome 

maturation arrest by M. tuberculosis. Using the RFP::GFP::LC3 reporter, we were able to 

reveal a role for SecA2 export in the maturation arrest of both LC3- phagosomes and LC3+ 

autophagosomes. It is important to note in this study, we are unable to distinguish between 

autophagosomes and other LC3+ compartments, including LC3 associated phagosomes 

(LAP) so we cannot exclude a function for SecA2 in those processes. Using the 

secA2+SapM+PknG strain we were able to demonstrate a function for both SapM and PknG 

in autophagosome maturation arrest by M. tuberculosis. Our data confirms a recent study 

using sapM transfected cells that suggests a role for SapM in autophagosome maturation 

arrest but this is the first evidence indicating a function for PknG in this process (37). 

 Intriguingly, the SecA2 exported effectors do not affect both autophagosome and 

phagosome maturation equally. SapM seems to have more of an effect on autophagosomes 

while PknG is more impactful on altering phagosomes. Further, while simultaneous 

restoration of both effectors was able to fully rescue the defect of the secA2 mutant in 

autophagosome maturation, it was not sufficient to rescue the defect in phagosome 

maturation. Our results highlight the overlap in M. tuberculosis factors involved in 

phagosome and autophagosome maturation but at the same time reveal differences in 

specificity of M. tuberculosis effectors for both processes. 

When we investigated the effect of SecA2 export of SapM and PknG on M. 

tuberculosis growth in macrophages, we found adding back either effector individually 

improved intracellular growth of the secA2 mutant while restoring export of both effectors 

simultaneously resulted in a further improvement. This correlation between rescue of 

phagosome maturation arrest with the rescue of intracellular growth reinforces prior studies 
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which indicate that the role of SecA2 in inhibiting M. tuberculosis delivery to mature 

phagosomes is required for intracellular growth (20). Furthermore, the effect of SecA2, 

SapM and PknG on phagosome maturation arrest will likely extend beyond promoting 

replication in macrophages. By arresting phagosome maturation, M. tuberculosis also limits 

the presentation of antigenic peptides to the immune system, which contributes to suboptimal 

adaptive immune responses to M. tuberculosis (40). 

In summary, our studies demonstrate that multiple effectors require the SecA2 

pathway for their export and function in phagosome maturation arrest and they provide 

unique insight into how M. tuberculosis effectors work in concert to inhibit phagosome and 

autophagosome maturation. Through our studies, we revealed the advantages of using of the 

secA2 mutant as a platform to study the function of effectors individually or in combination. 

This approach provides an alternative to studying effectors through deletion analysis, which 

can be problematic for effectors that share redundant functions or for effectors that have 

additional unrelated functions in M. tuberculosis (such as PknG).  The use of the secA2 

mutant also provides insight on the effectors that are exported in a SecA2-independent 

manner (i.e. unchanged in the secA2 mutant). These effectors although still exported and 

functional in the mutant are still not sufficient to arrest phagosome maturation. In this study, 

we discovered new layers of complexity in how M. tuberculosis arrests phagosome 

maturation (multiple means of inhibiting acidification, temporal effects), uncovered distinct 

and cumulative effects of a pair of effectors, and revealed a broad role of the SecA2 pathway 

in phagosome and autophagosome maturation arrest that involves SapM, PknG and 

additional effectors that await identification.   
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Materials and Methods: 

Ethics Statement 

This study included the use of mice and followed recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol 

was approved by the International Animal Care and Use Committee at the University of 

North Carolina at Chapel Hill (protocol: 15-018.0). 

Strains and Media Conditions 

In this study we used the Mycobacterium tuberculosis wild type strain H37Rv, and 

the ∆secA2 mutant (mc23112) generated in the H37Rv background (22). The plasmids and 

strains over-expressing sapM and/or pknG constructed for this study are listed in Table 3.1 

and Table 3.2 respectively.   

M. tuberculosis strains were cultured in either liquid Middlebrook 7H9(BD) or on 

solid Middlebrook 7H10(BD) or 7H11 (Sigma) media supplemented with 0.05% Tween 80, 

0.5% glycerol, 1x albumin dextrose saline (ADS) and kanamycin (20µg/ml) or hygromycin 

(50µg/ml) when appropriate. Sauton media was used for preparation of culture supernatants 

containing 30mM DL-asparagine, 7mM sodium citrate, 3mM potassium phosphate dibasic, 

4mM magnesium sulfate, 0.2mM ferric ammonium citrate and 4.8% glycerol adjusted to a 

pH of 7.4. For cell wall isolation, we utilized a modified Middleboook 7H9 based media 

containing 0.1% glycerol, 1mM proprionic acid, 0.1% tyloxapol, 0.1M MES (buffer), 0.5% 

BSA, and adjusted to a pH of 6.5 (23).  
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SapM Site-directed Mutagenesis 

The Histidine at position 204 of SapM was changed to an Alanine using site directed 

mutagenesis to generate SapMH204A. The sapM expression plasmid pJTS130 was used as a 

template. Primer sequences are as follows: 5'-cgatcgagccgtcggccatgtcgttgtcgg-3' and 5'-

ccgacaacgacatggccgacggctcgatcg-3'. Dpn1 (NEB) was added to degrade the methylated 

template. Mutation was confirmed by sequencing. 

Culture Supernatant isolation 

For culture supernatant isolation, cultures were first grown to log-phase in 

Middlebrook 7H9 with 0.05% tyloxapol.  Cultures were then washed in Sauton media and 

grown in Sauton media with 0.05% tyloxapol for 5 days after which cultures were washed 

again to remove detergent and sub-cultured into 100ml Sauton media (no detergent) at a 

starting OD600 of 0.25 for 2 days. Then the entire 100 ml culture was centrifuged at 3500 

rpm and supernatants were collected and double filtered with a 0.2µm filter to remove cells. 

Culture supernatants were concentrated 100-fold using a 15 ml capacity 10,000 MW cut off 

centrifugal filter (Millipore). For Immunoblots, proteins were isolated by precipitation using 

10% trichloroacetic acid overnight. To confirm that the supernatants were free of cytosolic 

contamination due to cell lysis, samples were examined by Immunoblot for absence of the 

cytoplasmic mycobacterial proteins SigA, GroEL, and SecA1. 

Cell wall isolation 

For cell wall isolation, M. tuberculosis was first grown in 7H9 0.05% Tyloxapol to 

mid-log phase and then sub-cultured into the modified 7H9 media at a starting OD600 of 

0.125. Cultures were harvested when they reached an OD600 of 1.0 and were then sterilized 

by gamma-irradiation in a JL Shephard Mark I 137Cs irradiator (Dept. of Radiobiology, 
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University of North Carolina at Chapel Hill) prior to removal from BSL-3 containment. 

Subcellular fractions were isolated as previously described (41). Briefly, irradiated cells were 

suspended in 1X PBS containing protease inhibitors and lysed by passage four times through 

a French pressure cell. Unlysed cells were removed by centrifugation at 3500 rpm to generate 

clarified whole cell lysates (WCLs), which were then spun at 25,000 rpm for 30 minutes to 

pellet the cell wall fraction.  

Immunoblots 

Protein concentrations were determined by Bicinchoninic acid assay (Pierce). Equal 

protein for whole cell lysates, cell wall fractions, or concentrated culture supernatants was 

run on a SDS-PAGE gel, and then transferred to nitrocellulose membranes. After transfer, the 

membranes were blocked for one hour and then probed with primary antibodies. Antibodies 

to M. tuberculosis proteins were kind gifts of Vojo Deretic, University of New Mexico 

(SapM), Zakaria Hmama, University of British Columbia (LpdC and NdkA), Yossef Av-

Gay, University of British Columbia (PknG) and Douglas Young, Imperial College (19kDa). 

LC3 and Actin antibodies were acquired from Cell Signaling Technologies. Antibodies were 

used at the following dilutions (SapM 1:5,000, LpdC 1:2,000, NdkA 1:2,000, PknG 1:5,000, 

19kDa 1:20,000, LC3 1:500, and Actin 1:1000) Secondary antibodies were conjugated to 

horseradish peroxidase (BioRad) and signal was detected using chemiluminescence (Western 

Lighting Perkin Elmer). 

Phosphatase activity assay 

SapM phosphatase activity was assayed as described previously(27). The phosphatase 

activity of 5 µg of culture supernatants was assessed for triplicate samples. Each reaction 

contained 0.1mM Tris base pH 6.8 and 50mM p-nitrophenyl phosphate (pNPP)(New 
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England Biolabs) with either 2 mM sodium tartrate to inhibit background phosphatase 

activity or 1 mM sodium molybdate to inhibit SapM activity. Samples were incubated at 

37°C and the absorbance at 405nm was measured every minute for two hours. We then 

calculated the rate of pNPP conversion and normalized the data to H37Rv.  

Quantitative Real-Time PCR.   

Triplicate M. tuberculosis cultures were grown in modified 7H9 medium to an OD600 

of 1.0 and pelleted by centrifugation at 3,000 rpm for 10 min. Bacteria were lysed in 1 ml 3:1 

chloroform-methanol, then vortexed with 5 ml TRIzol (Invitrogen) and incubated for 10 min 

at room temperature. Phases were separated by centrifugation at 3,000 rpm for 15 min at 4°C, 

and RNA was precipitated from the upper phase using 1X volume of isopropanol. RNA was 

pelleted by centrifugation at 12,000 rpm for 30 min at 4°C, washed twice with cold 70% 

ethanol, and resuspended in RNase-free water. RNA samples were treated with DNase 

(Promega) and then column purified (Zymo RNA clean and concentrator kit). Following 

RNA isolation, cDNA was synthesized with random primers using the iScript cDNA 

Synthesis Kit (BioRad). Real-time PCR was completed using 25ng of cDNA template in 

triplicate technical replicates using the SensiMix SYBR and fluorescein kit (Bioline). 

Transcripts were normalized to the housekeeping gene sigA. Primer sequences are for sapM 

(ATCGTTGCTGGCCTCATGG and AGGGAGCCGACTTGTTACC) and sigA 

(GAGATCGGCCAGGTCTACGGCGTG and CTGACATGGGGGCCCGCTACGTTG). 

Macrophage Infections 

For bone marrow-derived macrophages (BMDM), femurs were isolated from 

C57/Bl6 (Jackson Labs) mice and flushed with complete DMEM (DMEM [Sigma] 

supplemented with 10% Heat inactivated fetal bovine serum [FBS] 5mM non-essential 
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amino acids and 5mM L-glutamine). Bone marrow cells were washed, re-suspended and 

plated in complete DMEM containing 20% L-929 cell conditioned media (LCM). After six 

days, the cells were lifted off the plates using cold 5mM EDTA in PBS. Macrophages were 

seeded at 2 × 105 macrophages/well in complete DMEM containing 20% LCM using either 

eight-well chambered slides to monitor growth of M. tuberculosis or chambered cover slips 

for microscopy experiments. After resting 24 hours the macrophages were infected with M. 

tuberculosis grown to log-phase, and washed twice with PBS containing 0.05% Tween 80 

and diluted in warm complete DMEM. BMDM were infected at an MOI of 1.0 for four 

hours. Infected macrophages were then washed three times with pre-warmed complete 

DMEM to remove extracellular bacteria. Macrophages were lysed using 0.1% Triton X-100 

at various time points and lysates were plated for cfu determination or slides were fixed in 

4% paraformaldehyde (PFA) for immunofluorescence staining. 

RAW 264.7 cells were cultured in DMEM supplemented with 10% FBS. Cells were 

seeded at 1*106 macrophages/well (6-well plate) or 1*105 macrophages/well (8-well chamber 

slide). For immunoblots, RAW cells were infected at an MOI of 10 for 3 hrs and washed 

three times with pre-warmed DMEM to remove extracellular bacteria. Bafilomycin A1 

(Sigma) was utilized at a concentration of 10nM and maintained throughout the course of the 

experiment. Cells were lysed using RIPA buffer (50mM Tris-HCL pH 7.4, 1% NP-40, 0.25% 

Sodium deoxycholate, 150mM NaCl, and protease inhibitors).  For cfu determination RAW 

cells were infected at an MOI of 1 for 4 hrs and washed three times with pre-warmed DMEM 

to remove extracellular bacteria. Cells were lysed using 0.1% Triton X-100 at various time 

points and lysates were plated for cfu determination. 
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RAW-Difluo mLC3 Cells expressing RFP::GFP::LC3 (InvivoGen) were cultured in 

DMEM supplemented with 10% FBS and zeocin. Cells were seeded at 1*105 

macrophages/well without zeocin and infected at an MOI of 1 for 4 hrs and washed three 

times with pre-warmed DMEM to remove extracellular bacteria. At 1hr or 24hrs post 

infection cells were fixed in 4% PFA. 

LysoTracker staining and Immunofluorescent Microscopy 

For LysoTracker staining, media on M. tuberculosis infected BMDM was replaced 

with prewarmed DMEM containing 100nM LysoTracker Red DND99 (Invitrogen) for 

BMDM and 100nM LysoTracker Deep Red (Invitrogen) for RAW 264.7 cells and incubated 

for one hour. After which, media was removed and the slides fixed in 4% PFA. 

For immunofluorescence, media was removed from M. tuberculosis infected macrophages 

and the slides were submerged in 4% PFA. The fixed slides were submerged in PBS to 

remove residual PFA and then cells were permeabilized with 0.1% Triton-X 100 in PBS for 5 

minutes at room temperature, washed in PBS and blocked in PBS containing 10% donkey 

serum. Antibodies to mammalian markers (Rab5, Rab7 and V-ATPase B1/B2) and Texas 

Red conjugated donkey anti-rabbit secondary antibodies were acquired from Santa Cruz 

Biotechnology. Antibodies to EEA1 were acquired from Abcam. Primary antibodies were 

used at a 1:50 dilution in PBS with 3% serum and incubated overnight at 4°C. After which 

slides were washed in PBS, and secondary antibodies conjugated to TR fluorophores were 

used at 1:100 dilution in PBS with 3% serum and incubated at room temperature for one 

hour. Slides were washed to remove the secondary antibody and Fluormount-G (Southern 

Biotech) was added to each well to protect the fluorescent signal. As controls we included 

unstained cells as well as stained uninfected cells with the antibodies listed above. 
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Widefield fluorescence microscopy was performed using an Olympus IX-81 

controlled by the Volocity software package. All images were taken using a 60X oil-

immersion objective. Mycobacterial autofluorescence was visualized using a CFP filter cube 

(Semroc) with an excitation band of 426-450nm and emission band of 467-600nm (20). A 

minimum of eight fields per well were captured and a minimum of 250 bacteria per well 

were scored for phagosomal markers. For each experimental group four replicate wells were 

analyzed per experiment.  

Oxidative Stress Resistance 

To assess sensitivity to oxidative stress M. tuberculosis cultures were exposed to 5mM H2O2 

in 7H9+ADS 0.05% Tween 80 for 24 and 48 hours. Survival was assessed by plating for 

viable CFU.  Cultures without H2O2 were included as controls. Strains tested in this manner 

include H37Rv and the secA2 mutant with and without PknG overexpression. A pstA1::tn 

mutant (generous gift of Jyothi Rengarajan, Emory University) which is extremely sensitive 

to oxidative stress was included as a control (42,43). 
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Figure 3.1: SapM export is dependent upon the SecA2 pathway.  
(A) Equal protein from culture supernatants or (B) cell lysates from the wild-type strain 
H37Rv, the secA2 mutant and the complemented strain were examined for levels of SapM or 
the SecA2 independent loading control 19kDa by Immunoblot. Densitometry was used to 
quantify SapM levels relative to H37Rv (ImageJ) (C) Phosphatase activity in triplicate 
culture supernatant samples was examined by quantifying cleavage of pNPP. Rates of pNPP 
cleavage were normalized to H37Rv. (D) Quadruplicate wells of murine bone marrow 
derived macrophages were infected and EEA1 recruitment to phagosomes was assessed by 
Immunofluorescence. Representative images of EEA1 stained M. tuberculosis infected 
macrophages are shown. (E) The percentage of M. tuberculosis containing phagosomes that 
co-localized with EEA1 at 1hr post infection was determined.  *p<0.01 ANOVA Holm-Sidak 
post Hoc test. Data represents at least two independent experiments. 
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Figure 3.2: SecA2 secretion of SapM is required for EEA1 exclusion from M. 
tuberculosis containing phagosomes  
(A) Equal protein from culture supernatants isolated from the H37Rv, the secA2 mutant and 
the SapM overexpression strains was examined for levels of SapM or the SecA2 independent 
loading control 19kDa by Immunoblot. (B) Phosphatase activity of triplicate culture 
supernatant samples was examined by quantifying cleavage of pNPP. Rates of pNPP 
cleavage were normalized to H37Rv. (C) The potential active site of SapM was aligned to the 
amino acid sequence of an acid phosphatase from Streptomyces sp. (WP_063837857.1), 
PhoA from Penicillium chrysogenum and AcpA from Francisella tulerenensis . Identical 
residues are shaded red and similar residues are shaded blue. The conserved active Histidine 
is highlighted in yellow. (D) Equal protein from culture supernatants isolated from H37Rv 
and the secA2 mutant overexpressing wild-type SapM as well as from H37Rv and the secA2 
mutant overexpressing SapMH204A was examined for levels of SapM or the SecA2 
independent loading control 19kDa by Immunoblot. (E) Phosphatase activity of triplicate 
culture supernatant samples was examined by quantifying cleavage of pNPP. Rates of pNPP 
cleavage were normalized to H37Rv. (F and G) The percentage of M. tuberculosis containing 
phagosomes that contain EEA1 was assessed in quadruplicate wells of M. tuberculosis 
infected BMDM by Immunofluorescence at 1hr post-infection. *p<0.05 **p<0.001 
***p<0.0001 ANOVA Holm-Sidak post Hoc test. Data represents at least two independent 
experiments.  
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Figure 3.3: SecA2 secretion of SapM contributes to phagosome maturation arrest and 
intracellular growth  
The percentage of M. tuberculosis containing phagosomes that contain (A, C) Rab5 and 
(B,D) Rab7 was assessed in quadruplicate wells of M. tuberculosis infected BMDM by 
Immunofluorescence at both 1hr and 24hrs post-infection. (E,F) The percentage of M. 
tuberculosis phagosomes that were acidified was determined using LysoTracker staining of 
quadruplicate wells of infected cells at 1hr post infection. (G) The percentage of M. 
tuberculosis containing phagosomes that contain V-ATPase was assessed in quadruplicate 
wells of M. tuberculosis infected BMDM by Immunofluorescence at 1hr post infection.  (H,I) 
Triplicate wells of BMDM were infected at an MOI of 1 and CFU burden was assessed over 
the course of a 5 day infection. *p<0.05 **p<0.001 ***p<0.0001 ANOVA Holm-Sidak post 
Hoc test. Data represents at least two independent experiments. 
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Figure 3.4: SecA2 export of PknG contributes to phagosome maturation arrest and 
growth in macrophages.  
(A) Cell wall fractions were isolated from M. tuberculosis strains and levels of PknG and the 
SecA2 independent loading control 19kDa were assessed by Immunoblot. 10x protein was 
loaded for H37Rv and secA2 mutant than the corresponding pknG overexpression strains. (B) 
The percentage of M. tuberculosis containing phagosomes that contain EEA1 was assessed in 
quadruplicate wells of M. tuberculosis infected BMDM by Immunofluorescence at 1hr post-
infection. The percentage of M. tuberculosis containing phagosomes that contain (C) Rab5 
and (D) Rab7 was assessed in quadruplicate wells of M. tuberculosis infected BMDM by 
Immunofluorescence at both 1hr and 24hrs post-infection.  (E) The percentage of M. 
tuberculosis phagosomes that were acidified was determined using LysoTracker staining of 
quadruplicate wells of infected cells at 1hr post infection. (F) The percentage of M. 
tuberculosis containing phagosomes that contain V-ATPase was assessed in quadruplicate 
wells of M. tuberculosis infected BMDM by Immunofluorescence at 1hr post-infection.  (G) 
Triplicate wells of BMDM were infected at an MOI of 1 and CFU burden was assessed over 
the course of a 5 day infection. *p<0.05 **p<0.001 ***p<0.0001 ANOVA Holm-Sidak post 
Hoc test. Data represents at least two independent experiments. 
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Figure 3.5: SecA2 export of both SapM and PknG contributes to phagosome 
maturation arrest and virulence.  
(A) The percentage of M. tuberculosis containing phagosomes that contain EEA1 was 
assessed in quadruplicate wells of M. tuberculosis infected BMDM by Immunofluorescence 
at 1hr post-infection. The percentage of M. tuberculosis containing phagosomes that contain 
(B) Rab5 and (C) Rab7 was assessed in quadruplicate wells of M. tuberculosis infected 
BMDM by Immunofluorescence at both 1hr and 24hrs post-infection. (D) The percentage of 
M. tuberculosis phagosomes that were acidified was determined using LysoTracker staining 
of quadruplicate wells of infected cells at 1hr post-infection. (E) The percentage of M. 
tuberculosis containing phagosomes that contain V-ATPase was assessed in quadruplicate 
wells of M. tuberculosis infected BMDM by Immunofluorescence at 1hr post-infection. (F) 
Triplicate wells of BMDM were infected at an MOI of 1 and CFU burden was assessed over 
the course of a 5 day infection. The fold change in CFU over the course of the 5 day 
macrophage infection for each M. tuberculosis strain was calculated. *p<0.05 **p<0.001 
***p<0.0001 ANOVA Holm-Sidak post Hoc test. Data represents at least two independent 
experiments. 
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Figure 3.6: SecA2 is required for M. tuberculosis inhibition of autophagosome 
maturation. 
(A) RAW 264.7 cells were infected with H37Rv and the secA2 mutant at an MOI of 10 and 
lysed either immediately after infection or 24hrs post-infection. One set of infected cells was 
treated with 100nm Bafilomycin A1 (Baf). Cell lysates were examined for levels of LC3 or 
the loading control Actin. Densitometry was used to quantify LC3-II relative to Actin 
(ImageJ). Values are the average of duplicate experiments. Quadruplicate wells of RAW-
Difluo mLC3 cells were infected with H37Rv, the secA2 mutant and the complemented strain 
at an MOI of 1. (B) The percentage of LC3+ M. tuberculosis (RFP+) was assessed at 1hr post 
infection. (C) The percentage of M. tuberculosis that was localized in an autophagolysosome 
(RFP+GFP-) was assessed at 1hr post infection. Quadruplicate wells of RAW-Difluo mLC3 
cells were infected with H37Rv and the secA2 mutant SapM and/or PknG restoration strains 
at an MOI of 1.  (D) The percentage of M. tuberculosis that was localized in an 
autophagolysosome (RFP+GFP-) was assessed at 1hr post infection. (E) The percentage of 
M. tuberculosis phagosomes that were acidified was determined using LysoTracker (LT) 
staining of quadruplicate wells of infected cells at 1hr post-infection. Mature phagosomes 
were identified by lack of LC3 (LC3-) and presence of LT staining (LT+RFP-). *p<0.05 
**p<0.001 ***p<0.0001 ANOVA Holm-Sidak post Hoc test. Data represents at least two 
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independent experiments. 

 
 
Figure 3.7: SapM and PknG play distinct functions in phagosome maturation arrest but 
other SecA2 effectors exist.  
SecA2 export of SapM inhibits EEA1 recruitment to M. tuberculosis phagosomes and also 
contributes to the retention of Rab5 and the exclusion of Rab7 from M. tuberculosis 
phagosomes. In addition to SapM, SecA2 exports PknG which also contributes to the 
retention of Rab5 and exclusion of Rab7 from phagosomes. However, SecA2 must also 
export at least one additional effector of phagosome maturation arrest that inhibits Rab5-
Rab7 exchange and prevents assembly of V-ATPase on phagosomes. 
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Table 3.1: Plasmids used in this study 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plasmid	 Description Reference

pSM15 Single-copy	KanR	Hsp60	driven	
secA2

[24]

pJTS130 Multi-copy	KanR	Hsp60	driven	sapM This	study

pKZ136
Multi-copy	KanR	Hsp60	driven	

sapM H204A This	study

pKZ133 Multi-copy	HygR	Hsp60	sapM This	study

pKZ121

Single	copy	KanR	Acetemide	
inducible	pknG 	(used	without	

induction)	based	on	pMK4	(generous	
gift	of	Y.	Av	Gay)	

This	study	and	[33]

pMV206 Multi-copy	HygR	empty	vector	
control [44]

pMV261 Multi-copy	KanR	empty	vector	
control [44]

pMV306 Single-copy	KanR	empty	vector	
control [44]
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Table 3.2: Strains used in this study 
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CHAPTER 41 

 

Genome-wide genetic interaction mapping: an approach for understanding the 

mechanism and functions of the SecA2 pathway of Mycobacterium tuberculosis 

 

 

INTRODUCTION 

Mycobacterium tuberculosis, the etiological agent of the disease tuberculosis, infects 

an estimated 10.4 million people each year and is responsible for approximately 1.8 million 

deaths (1). The ability of M. tuberculosis to replicate in host cells, specifically macrophages, 

is critical for the virulence of this important human pathogen (2). In order to replicate in 

macrophages, M. tuberculosis exports a variety of effector proteins either to the bacterial 

surface or into the host (3). These exported proteins have diverse roles in infection including 

inhibiting immune defense mechanisms and promoting nutrient uptake (3). 

																																																													
1 Contributing authors: Laura Rank, Brittany Miller and Miriam Braunstein (Department of 
Microbiology and Immunology, School of Medicine, The University of North Carolina at 
Chapel Hill, Chapel Hill, NC) Michael DeJesus and Thomas Ioerger (Department of 
Computer Science and Engineering, Texas A&M University, College Station TX) 
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The SecA2 pathway is one system M. tuberculosis utilizes to export proteins to the 

extra-cytoplasmic environment (4). Unlike the SecA1 ATPase, which is responsible for the 

bulk of housekeeping export and is essential for bacterial viability, SecA2 is a non-essential 

specialized SecA ATPase required for exporting a relatively small subset of proteins (5,6).  

Although not essential for growth of M. tuberculosis in vitro, the SecA2 pathway is required 

for M. tuberculosis virulence in both murine and macrophage models of infection (6-8). The 

requirement for SecA2 during infection indicates that SecA2 and its exported proteins play 

important roles in M. tuberculosis pathogenesis.  

SecA2 is required for growth in macrophages and past studies demonstrate roles of 

the SecA2 pathway in limiting many anti-microbial activities of macrophages (e.g. 

phagosome-lysosome fusion, attack by reactive oxygen and nitrogen intermediates (ROI, 

RNI), apoptosis, inflammatory responses and antigen presentation) (7,8). In addition to 

evading these host immune responses, the SecA2 pathway may also contribute to nutrient 

import during infection through its role exporting solute binding proteins of multiple ABC 

transporters as well as components of the Mce lipid transporters (9). 

While the aforementioned activities that depend on SecA2 have been identified, their 

significance to pathogenesis has often been difficult to prove. When the defects in apoptosis, 

reactive oxygen and nitrogen intermediates, and pro-inflammatory cytokine signaling are 

corrected individually in the secA2 mutant background, the secA2 mutant remains attenuated 

indicating that none of these virulence properties of the SecA2 pathway are sufficient on their 

own to explain the role of SecA2 in pathogenesis (7,8). However, like other bacterial 

pathogens, M. tuberculosis has redundant virulence mechanisms, which may mask the 

significance of the individual SecA2 effects in these experiments (2). For example, there are 
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many M. tuberculosis proteins reported to limit apoptosis, cytokine production, and antigen 

presentation, not all of which depend on SecA2 (NuoG, PknE, EsxH, etc.) (2,10,11).  

Similarly, there are multiple mechanisms that M. tuberculosis utilizes to protect against 

reactive oxygen and nitrogen intermediates (SseA, RenU, MelF-H, etc.) (2,12-14).   

Additionally, it is likely that there are yet to be discovered functions of the SecA2 

pathway. Currently there are 12 validated SecA2-exported proteins in M. tuberculosis, and 

approximately 20 additional proteins identified by proteomics as SecA2-dependent that 

remain to be validated (6,9). However, all approaches conducted so far to identify SecA2 

exported proteins are limited by their use of in vitro growth conditions. As a result, any 

proteins exclusively exported during infection were overlooked. Additionally, technical 

limitations of previous approaches may have missed identifying proteins that are exported in 

low abundance (i.e. below the limit of detection). Thus, while examples of SecA2-exported 

proteins help predict functions of the SecA2 pathway in pathogenesis, it is likely that not all 

SecA2 substrates are known.  Additionally, the majority of studies examining the role of the 

SecA2 export pathway in pathogenesis have been conducted in the macrophage model of M. 

tuberculosis infection (7,8). When compared to the complexity of a whole animal infection, 

the macrophage model is a simplified system that may be unable to reveal all functions of the 

SecA2 pathway in M. tuberculosis pathogenesis.  

Along with gaps in our understanding of the significance of the SecA2 pathway and 

SecA2 exported proteins to pathogenesis, gaps remain in our understanding of the 

mechanism of SecA2 protein export. Current models predict that SecA2 works with the 

canonical SecYEG channel to export its substrates but it is not known if other proteins are 

required or contribute to SecA2 protein export (15). Recently, our lab identified a putative 
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chaperone, SatS, that aids in the export of some SecA2 dependent proteins (Miller and 

Braunstein, unpublished). As SatS does not affect all SecA2 exported proteins, additional 

unidentified chaperones or other components of the SecA2 export machinery may exist. 

In order to fill in the gaps in our understanding of SecA2 protein export, we utilized 

genome-wide genetic interaction mapping to further elucidate the functions and mechanisms 

of the SecA2 export pathway of M. tuberculosis.  Genetic interaction mapping identifies 

mutations that result in altered fitness when combined with a mutation in a gene of interest, 

in our case secA2.  Genetic interaction mapping is a powerful approach for identifying other 

members of a pathway, as well as redundant pathways or factors. The approach we took was 

to use saturating transposon mutagenesis and compare survival during murine infection of 

individual transposon mutants in a wild-type M. tuberculosis H37Rv background to survival 

of the same mutants in the secA2 mutant background. There are two forms of genetic 

interactions: aggravating and alleviating interactions. Aggravating interactions are defined by 

a mutation that has a significantly more severe (i.e. attenuating) phenotype in the secA2 

mutant background versus the H37Rv strain. Aggravating interactions will include mutations 

in genes in pathways that have redundant functions as SecA2 (and SecA2 exported 

effectors); these interactions could reveal functions of the SecA2 pathway in virulence. 

Alleviating interactions are defined by a mutation that has a significantly less attenuating 

effect in the secA2 mutant background as compared to H37Rv. Alleviating interactions will 

include genes in the same pathway as SecA2 (e.g. components of the SecA2 export 

machinery) or in pathways in which SecA2 exported proteins act. Suppressors, mutations that 

reduce or compensate for the secA2 virulence defects, will also be included among 

alleviating interactions. Using genetic interaction mapping, we identified 27 aggravating and 
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35 alleviating interactions with secA2. Our results expand our understanding of the SecA2 

pathway by revealing roles for SecA2 in M. tuberculosis transporters, phosphate import, 

copper resistance, peptidoglycan synthesis, and lipid metabolism and homeostasis. 

 

RESULTS AND DISCUSSION 

We utilized genetic interaction mapping to further understand the mechanism and 

contribution of SecA2 to M. tuberculosis pathogenesis in a murine model of infection. We 

used transposon mutagenesis and high-throughput sequencing to define genetic interactions 

with secA2 on a genome-wide scale. First, transposon (Tn) mutant libraries were generated in 

both secA2 mutant and wild-type H37Rv strain backgrounds. Second, mice were infected 

with the Tn mutant libraries. Third, survival of individual transposon mutants following 

infection was assessed by analyzing recovered bacteria from infected mice using high-

throughput sequencing. Fourth, statistical comparison of the transposon insertion profiles of 

the wild-type and secA2 mutant libraries recovered from mice was used to identify 

alleviating and aggravating genetic interactions with secA2. 

 

Identification of genetic interactions with secA2 

Step1: To generate secA2 mutant and H37Rv Tn mutant libraries, we utilized a 

temperature sensitive mycobacteriophage system to deliver a Mariner transposon which 

inserts at TA sites throughout the genome.  Each library contained approximately 

2*105 transposon mutants resulting in a Tn insertion density of approximately 60% for 
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H37Rv and 50% for the secA2 mutant as determined by high-throughput sequencing. This 

insertional density is sufficient for subsequent genetic interaction studies (16). 

Step 2: To identify the mutants with altered fitness in the secA2 background, 

representing genetic interactions with secA2 in vivo, we first infected C57Bl6 mice with 

either the H37Rv or the secA2 mutant Tn library via tail vein injection containing 2-3*106 cfu 

(colony forming units). As the secA2 mutant is attenuated by approximately 10-fold during 

the growth in vivo phase of infection in mice, fewer cfu are recovered from each mouse 

infected with the secA2 mutant Tn library compared to the H37Rv Tn library (6). This 

disparity in cfu burden results in an unequal total Tn insertion density in the recovered 

bacteria from each strain, which complicates subsequent statistical analysis. Therefore, to 

account for the virulence defect of the secA2 mutant and start the analysis with an equal 

number of recovered cfu, we infected 7 times more mice with the secA2 mutant Tn library 

(49 mice) versus the H37Rv Tn library (7). To confirm mice were successfully infected with 

both libraries, two mice infected with each library were sacrificed at Day 1 post infection and 

bacterial burden of lungs, liver and spleens was determined by plating for cfu (Figure 4.1 B). 

Mice infected with both libraries had approximately the same bacterial burden at Day 1 post 

infection and had the correct proportion of the inoculum seeding each organ (5% lung, 20% 

spleen, 75% liver) (17). 

Step 3: We let the infection progress for 18 days. This time point allowed us to focus 

on the early replication stage rather than the persistence stage of infection.  M. tuberculosis 

replicates in vivo until an effective T-cell (TH1) cell mediated immune response is 

established at 21 days post-infection, after which time M. tuberculosis persists in the host at 

the same level of cfu throughout the remainder of the infection (18). At 18 days post-
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infection, spleens were removed from infected mice and plated for viable cfu. As mentioned 

above spleens and not lungs, the natural site of M. tuberculosis infection, were used as there 

is better seeding of the spleen compared to the lung (2*105 vs 4*104 cfu per organ). Better 

bacterial seeding means more individual transposon mutants will be analyzed which 

minimizes bottleneck effects that would result in less robust data for statistical analysis. As 

expected, from past murine infections with the M. tuberculosis secA2 mutant, at 18 days post 

infection significantly fewer cfu were recovered from individual mice infected with the 

secA2 Tn library compared to mice infected with the H37Rv Tn library reflecting the 

virulence defect of the secA2 mutant (Figure 4.1C) (6). However as more mice were infected 

with the secA2 Tn library, total cfu recovered from all infected mice were equivalent between 

the two strains (approximately 2*107 cfu). 

After 3 weeks of growth, the cfu recovered from spleen homogenates of each library 

were scraped from the agar plates into 3 independent pools, generating triplicate samples for 

sequencing (Figure 4.1A). Genomic DNA was isolated, sheared and an adapter for 

sequencing was ligated to the DNA fragments. Then, using primers that correspond to the 

transposon and the ligated adaptor sequence, the transposon insertion sites were amplified by 

PCR. High-throughput sequencing was then used to identify and quantify Tn insertion sites. 

The representation of individual Tn mutants in mice at 18 days was quantified by sequencing 

read count using Transit (77).  The Tn insertion density recovered from mice for the H37Rv 

library was 39% and 46% for the secA2 mutant which is acceptable for genetic interaction 

analysis (14,19-22). 

Step 4: Data were normalized by total read-count for each replicate sample and a 

beta-geometric correction was preformed to adjust for any disparity between replicate 
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samples and strains (23). Individual mutants with altered fitness representing genetic 

interactions with secA2 were identified in the triplicate samples using a permutation test and 

p-values were adjusted for multiple-comparisons using Benjamin-Hochberg (16,77).  A 

genetic interaction with secA2 was defined as a 2-fold or greater difference in survival when 

compared to the same mutation in the H37Rv background (log2 read-count ratio 

[secA2/H37Rv] of +1) and an adjusted p-value <0.05 (Figure 4.2A). Using this approach, we 

identified a total of 62 genetic interactions with secA2 (Table 4.1). Mutations that resulted in 

more severe attenuation in the secA2 mutant background than the H37Rv background were 

classified as aggravating interactions (log2 read-count ratio (secA2/H37Rv) < 1 indicating 

less cfu recovered in the secA2 mutant background than H37Rv background) (Figure 4.1B). 

Whereas mutations that resulted in more severe attenuation in the H37Rv background than 

the secA2 mutant background were classified as alleviating interactions (log2read-count ratio 

(secA2/H37Rv) >1 indicating more cfu was recovered in the secA2 mutant background than 

H37Rv background) (Figure 4.1B). We identified a total of 27 aggravating and 35 alleviating 

interactions with secA2 (Table 4.1). This number of genetic interactions (~1.5% of the 

genome) is similar to the number identified in other genome wide genetic interaction screens 

in M. tuberculosis and other bacteria (Figure 4.2B) (14,19-22). Additionally, the fold 

difference of the genetic interactions (log2 read-count ratio (secA2/H37Rv)) identified in this 

study is also comparable to genetic interactions identified in other studies (14,19-22). 
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Genetic interactions with secA2 are enriched for genes encoding exported proteins 

 Both alleviating and aggravating interaction categories are enriched for exported 

proteins. Compared to the 25% of the M. tuberculosis genome that is predicted to be 

exported, 43% of alleviating and 48% of aggravating genetic interactions are predicted to 

encode for exported proteins (Figure 4.2 E-F) (24). As SecA2 functions to export proteins, 

this result was not surprising and is consistent with the application of this approach to 

identify genetic interactions with an export system. 

One of the largest functional categories representing alleviating interactions 

corresponds to genes that function in M. tuberculosis cell wall and cell processes (29%) 

(Figure 4.2C). This functional category also represents over half of all identified aggravating 

interactions with secA2 (52%) (Figure 4.2 D). As only 19% of the M. tuberculosis genome 

falls into the cell wall and cell processes functional category, this finding suggests SecA2 

contributes to formation/maintenance of the mycobacterial cell wall (25). The large number 

of genetic interactions involving the mycobacterial cell wall could be due to the fact that 

several proteins in M. tuberculosis depend upon the SecA2 export pathway for export to the 

cell wall (9).  This result suggests a role for SecA2 in M. tuberculosis cell wall maintenance 

that was not appreciated before.   

 

Genetic interactions with secA2 identify putative components of SecA2 export 

machinery 

As SecA2 export is abolished in the secA2 mutant, mutations in genes corresponding 

to other components of the SecA2 export pathway should fall in the category of alleviating 
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interactions as their absence will not significantly attenuate the secA2 mutant further.  One of 

the most significant alleviating interactions with secA2 was satS. Mutations in satS is 8.5-

fold less attenuated in the secA2 mutant background when compared to the H37Rv 

background (adjusted p-value <0.0001). The identification of this alleviating interaction is 

very exciting because SatS contributes to the export of a subset of SecA2 substrates (Miller 

and Braunstein unpublished). In fact, unpublished data indicates that SatS is a chaperone for 

the SecA2 export system. Thus, the identification of satS as an alleviating interaction 

validates the genetic interaction approach as a method to identify components of the SecA2 

export machinery.  

As SatS appears to function with only a subset of SecA2 exported proteins, additional 

SecA2 chaperones may exist for other SecA2 substrates. The hypothetical protein Rv1691 is 

a candidate for such a chaperone.  A mutation in rv1691 alleviates the secA2 mutant to a 

similar degree as a satS mutation, which is consistent with Rv1691 being in the same 

pathway as SecA2. An rv1691 mutant is 8.8-fold less attenuated in secA2 mutant background 

compared to H37Rv (adjusted p-value 0.01).  Although Rv1691 is not predicted to be 

essential for M. tuberculosis virulence by TnSeq, in those studies rv1691 mutants were at 

very low abundance therefore a requirement for Rv1691 in vivo may have been missed (26). 

Rv1691 contains tetratrico-peptide repeat (TPR) domains. TPR domains consist of a series of 

34 amino acid repeat sequences and are classically protein binding domains (27,28). 

Interestingly TPR domains are common in chaperones of type III secretion systems, therefore 

Rv1691 may be an unidentified chaperone for the SecA2 export pathway (29).  An 

alternative possibility is that a rv1691 mutation may act as a suppressor and relieve the secA2 
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mutant virulence phenotype and further study is required to understand the interaction 

between Rv1691 and SecA2. 

 The most extreme interaction with secA2 is the alleviating interaction with hab 

(rv3078). A hab mutant in the secA2 background is ~100-fold less attenuated than a mutant 

in the H37Rv background (adjusted p-value <0.0001). Although Hab is not predicted to have 

a role in virulence by TnSeq, expression of hab is induced in vivo (26,30). Hab is predicted 

to function in nitrobenzene metabolism and detoxify hydroxylamino products (31). 

Intriguingly, Hab possesses a predicted wnt binding domain which targets proteins for 

secretion in mammalian cells suggesting Hab may assist in protein export via the SecA2 

pathway (32). The identification of hab as an alleviating interaction with secA2 suggests that 

Hab may function in the same pathway as SecA2 and thus may represent a novel component 

of the SecA2 export machinery. As like with rv1691, an alternative possibility is that a hab 

mutation may act as a suppressor and relieve the secA2 mutant virulence phenotype and 

further study is required to distinguish between these possibilities.  

 

Genetic interactions with secA2 identify SecA2 substrates 

Along with components of the SecA2 export machinery, proteins exported by SecA2 

can also be alleviating interactions; as they depend upon SecA2 for export, these proteins are 

in the same pathway as SecA2. One significant alleviating interaction with secA2 is sapM. A 

sapM mutant is 2.4-fold less attenuated in the secA2 mutant background than in the H37Rv 

background (adjusted p-value 0.02). SapM is a phosphatase that is exported by the SecA2 

pathway (Zulauf and Braunstein unpublished). SecA2 export of SapM contributes to both 
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phagosome maturation arrest by M. tuberculosis and growth of M. tuberculosis in 

macrophages (Zulauf and Braunstein unpublished). Specifically, SapM dephosphorylates 

PI3P on phagosomal membranes, which prevents recruitment of PI3P binding proteins 

(EEA1) and subsequent phagosome maturation steps (33).  As SapM export is already 

significantly reduced in the secA2 mutant, a Tn mutation in sapM would have less of an 

effect in the secA2 mutant background compared to the effect of this mutation in the H37Rv 

strain background that is competent for SapM export. The identification of SapM validates 

the use of genetic interaction mapping to reveal SecA2 exported effectors that contribute to 

virulence of M. tuberculosis.  

There are also four alleviating interactions with secA2 that map to putative SecA2 

exported proteins (Rv3803, Rv0875c, LppS, and Rv0265c). These four proteins were 

identified by quantitative proteomics as reduced in the cell wall of the secA2 mutant but have 

yet to be validated as SecA2 substrates by Immunoblot; however, their identification as 

alleviating interactions strengthens the likelihood that these proteins depend on SecA2 for 

export and indicates that these proteins may have functions in virulence therefore these 

proteins warrant further study (9).  

The list of alleviating genetic interactions also has the potential to contain SecA2-

dependent effectors that have not previously been discovered. To identify potential SecA2 

substrates, we searched for genes interacting with secA2 that encode for proteins with a 

predicted export signal. We loosened the statistical requirements to a p-value <0.05 for this 

analysis as residual export of SecA2 substrates occurs in the absence of secA2 which may 

affect their identification in this study (9,36). On the list of alleviating interactions, there are 

27 genes encoding proteins with a predicted Sec or Tat export signal sequence (34,35). 
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SecA2 has been shown to export proteins containing either signal sequence (Table 4.2) 

(9,36). Further studies are warranted to determine if these are SecA2-exported proteins. As 

SecA2 is also associated with the export of select proteins lacking conventional export 

signals (i.e. SodA and PknG) in M. tuberculosis and other bacterial species, alleviating 

interactions in proteins lacking a classical signal sequence could also represent new SecA2 

substrates (6,9). 

 

Genetic interactions with secA2 highlight functions of the SecA2 export pathway 

 When multiple genetic interactions have related functions, it strengthens the 

argument for the SecA2 pathway functioning in that process. Therefore, we mined the data 

set and grouped significant genetic interactions into clusters corresponding to similar gene 

functions. In order to appreciate clusters associated with the SecA2 pathway, we loosened the 

statistical requirements and included interactions with an adjusted p-value <0.1 in this 

analysis. Over 50 of the identified aggravating and alleviating interactions can be grouped 

into 8 main clusters (Figure 4.3). While not always the case, we often found aggravating and 

alleviating interactions in the same cluster. While alleviating interactions can represent genes 

in the same pathways as SecA2 or SecA2 exported proteins, alleviating interactions can also 

reflect suppressor mutations that reduce or compensate for the secA2 virulence defects. 

Aggravating interactions are in a parallel or redundant pathway as secA2. Identification of 

both alleviating and aggravating interactions in the same cluster indicates a significant role 

for the SecA2 pathway in that process as it supports the existence of both a function for 

SecA2 as well as the existence of redundant virulence mechanisms. 
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Phagosome maturation arrest  

A cluster of five alleviating interactions with connections to phagosome maturation 

arrest were identified, including SapM, the effector of phagosome maturation arrest 

discussed above (33,37-40). Given the established role of SecA2 in phagosome maturation 

arrest, the identification of alleviating mutations in genes linked to phagosome maturation 

arrest help validate the genetic interaction approach. As for SapM, the other alleviating 

interactions could represent phagosome maturation arrest effectors that are exported by 

SecA2. However, unlike SapM, these other proteins lack recognizable export signals.  

Another possibility is that these mutations act as suppressors and ameliorate the virulence 

defect of the secA2 mutant. For instance, the alleviating interactor rv2506 encodes a 

predicted transcriptional repressor (37,41). Thus, transposon insertions in rv2506 could 

upregulate proteins involved in phagosome maturation arrest that compensate for the secA2 

mutant defect in phagosome maturation arrest. Further supporting this hypothesis is the 

identification of one gene rv0575, that is predicted to be repressed by Rv2506 as an 

aggravating interaction with secA2. However the interaction between rv0576 and secA2 does 

not meet the statistical cutoffs used in this study (41). A mutation in rv0576 attenuated the 

secA2 mutant 2.8-fold more than H37Rv (adjusted p-value 0.2).  Unfortunately, nothing is 

known about the function of Rv0576. 

Cholesterol and Lipid Transport/ Homeostasis  

A cluster of 15 genetic interactions suggests roles for SecA2 in host cholesterol or M. 

tuberculosis lipid transport/homeostasis. Cholesterol is utilized by M. tuberculosis during 

infection and five genetic interactions with the secA2 mutation are associated with 
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cholesterol metabolism (20). Both aggravating and alleviating interactions in genes 

associated with cholesterol utilization were identified, which supports an important function 

of the SecA2 pathway in cholesterol utilization by M. tuberculosis. Aggravating Tn 

insertions mapped to theoxygenase kshA and glutamate dehydrogenase gdh genes while 

alleviating insertions mapped to cholesterol oxidase cyp142, enoyl-coA hydratase echA19, 

and acyl-coA dehydrogenase fadE25 genes.  All five of these cholesterol metabolism genes 

are predicted to be required for growth of M. tuberculosis on cholesterol by TnSeq analysis 

(20). All the interacting proteins in this cholesterol metabolism cluster are predicted to 

function in the bacterial cytoplasm and are, therefore, unlikely to be SecA2 exported 

effectors. However, their identification as genetic interactions support previous findings 

concerning functions of SecA2 export in cholesterol utilization.  

One class of SecA2 exported proteins are Mce transporters. Mce transporters are 

multi-component lipid transporters of which M. tuberculosis has four. Prior mass 

spectrometry studies indicate that the Mce4 cholesterol importer depends upon the SecA2 

pathway for export (9). Although no mce4 genes were identified as genetic interactors with 

secA2 this may reflect the fact that Mce4 is important for the later persistence stage of 

infection in the murine model as opposed to the earlier growth in vivo phase of infection (18 

days) that was the focus of our search for genetic interactions (42,43). The identification of 

genetic interactions related to cholesterol during the in vivo growth stage of infection may 

suggest that SecA2 has a second connection to cholesterol in addition to Mce4. Further 

research is required to fully understand the connection(s) between SecA2 and cholesterol. 

To directly examine the importance of the SecA2 pathway to cholesterol use by M. 

tuberculosis, we examined growth of the secA2 mutant in media containing cholesterol as the 
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sole carbon source. The secA2 mutant was significantly attenuated for growth on cholesterol 

when compared to H37Rv and this phenotype could be complemented (Figure 4.4). An mce4 

mutant which is known to be required for growth on cholesterol was included as a control. 

Importantly the secA2 mutant grew comparably to H37Rv in media containing glycerol (43). 

In summary, this result indicates SecA2 is required for optimal growth on cholesterol and 

validates the findings of the genetic interaction study.  

In addition to the five cholesterol related genes, our study revealed 10 genetic 

interactions involving genes with roles in synthesis or transport of M. tuberculosis cell 

envelope lipids. An alleviating interaction was identified in rv1506c, which is required for 

synthesis of 2,3-diacyltrehaloses (DAT) lipids in the cell envelope and is also in the cluster of 

genes with functions in M. tuberculosis phagosome maturation arrest (39). Additionally, an 

alleviating interaction was identified in ppm1, which modifies lipoarabinomannan (LAM), a 

lipid in the mycobacterial cell envelope with functions in pathogenesis that include anti-

inflammatory, anti-apoptotic, and anti-phagosome maturation properties (44,45). As SecA2 

has been shown to contribute to all of the aforementioned virulence mechanisms, it is 

possible that Rv1506c and Ppm1act in the same pathways as SecA2 exported effectors. An 

additional genetic interaction with secA2 in this cluster is the aggravating interaction with 

drrB which encodes a component of the ABC transporter responsible for exporting 

phthiocerol dimycocerosates (PDIM) (46). PDIM is a cell envelope lipid that contributes to 

many virulence properties including macrophage invasion, masking of immune stimulating 

pathogen associated molecular patterns (PAMPS), resistance to reactive nitrogen 

intermediates (RNI), phagosomal escape and induction of necrosis (45,47). As the SecA2 

pathway limits production of RNI produced by macrophages and suppresses the host immune 
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response to M. tuberculosis, PDIM and SecA2 exported effectors likely function in parallel 

virulence pathways (7). In summary, our studies suggest a role for the SecA2 pathway in M. 

tuberculosis utilization of cholesterol as well as lipid transport and homeostasis. 

Peptidoglycan 

Another cluster of genetic interactions with secA2 contains genes with roles in 

peptidoglycan synthesis. We identified alleviating interactions in a gene encoding an amidase 

Rv3717. Rv3717 binds peptidoglycan fragments and is predicted to function in 

peptidoglycan recycling (48). Rv3717 contains a predicted Sec signal sequence and may be 

an unidentified SecA2 substrate (35). Further, Rv3717 is previously predicted to have a role 

in M. tuberculosis virulence based on TraSH and TnSeq studies (26,49). An additional 

alleviating interaction in this category is glnA2, which encodes a protein that catalyzes 

synthesis of D-glutamine and isoglutamine which are important precursors for peptidoglycan 

synthesis (50). As GlnA2 is not predicted to be exported, GlnA2 is unlikely to be a SecA2 

substrate but instead is in the same pathway as SecA2 dependent effectors. Further 

supporting a function of SecA2 in mycobacterial peptidoglycan homeostasis are the 

aggravating interactions with ripC and rv1566c, which encode for additional peptidoglycan 

amidases (51,52). The fact that amidases involved in peptidoglycan synthesis were identified 

as both the alleviating and aggravating interaction categories could indicate that SecA2 

exports the alleviating amidase Rv3717 and the other two amidases possess redundant 

functions with Rv3717. Interestingly, although proteomics studies have not identified any 

mycobacterial amidases as exported by SecA2, amidases are a category of SecA2 dependent 

proteins in Listeria monocytogenes (53).  
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Together, these genetic interactions suggest a function of SecA2 in peptidoglycan 

synthesis or homeostasis. As peptidoglycan defects can lead to lysozyme sensitivity, we 

assessed the sensitivity of the secA2 mutant to lysozyme (54). The secA2 mutant was 

significantly more sensitive than H37Rv to lysozyme, which is consistent with the secA2 

mutant having a defect in peptidoglycan synthesis, assembly, or homeostasis. As a parallel 

approach, we examined the sensitivity of the secA2 mutant to carbenicillin, a B-lactam 

antibiotic that inhibits peptidoglycan synthesis. The secA2 mutant had a significantly reduced 

MIC95 to carbenicillin when compared to H37Rv. The increased sensitivity of the secA2 

mutant to carbenicillin was not due to reduced B-lactamase export in this strain (data not 

show). This increased sensitivity to carbenicillin of the secA2 mutant further supports the role 

of SecA2 in peptidoglycan synthesis and validates the approach of genetic interaction 

mapping to identify previously unknown functions of the SecA2 pathway in M. tuberculosis.  

Transporters 

SecA2 was previously shown to play a prominent role in the export of solute binding 

proteins (9). Solute binding proteins work with ABC transporters to import various substrates 

into the bacterial cell. Of the 62 genetic interactions identified for secA2, nine correspond to 

components of ABC transporters. However, along with interactions involving ABC 

transporter, eight additional interactions mapped to other types of transporters. The ion 

transporters chaA, which encodes a predicted Ca2+ H+ antiporter, and mgtE, which encodes a 

Mg2+ transporter, are alleviating interactions with secA2. Additionally, two genes encoding 

integral membrane components of an anion transporter, rv3679 and rv3680, are aggravating 

interactions with secA2. The interaction between ion transporters and secA2 suggests that 

SecA2 may be important for maintaining appropriate membrane potential in the 
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mycobacterial cell (55). Additionally, genetic interactions with secA2 were also identified in 

components of a predicted efflux pumps (Rv0876 and Rv1458c). In summary, this genetic 

interaction study revealed a broad role for the SecA2 export pathway in mycobacteria 

transporters that goes beyond ABC transporters.  

Although genetic interactions were identified in many types of transporters that 

import/export a wide variety of substrates, 6 of the 17 transporter interactions involved 

phosphate uptake. M. tuberculosis has two ABC transporters that import phosphate: the 

PstA2 system comprised of PstA2, PstC1, and PhoS1(also called PstS1) and the PstA1 

system comprised of PstA1, PstC2 and PstS3 (Figure 4.6) (56,57). Interestingly, components 

of the PstA2 system were identified as alleviating interactions while components of the 

PstA1 system were identified as aggravating interactions. Because PhoS1, the solute binding 

protein of the PstA2 transporter, is exported by the SecA2 pathway, it is not surprising to 

discover mutations in genes encoding other components of the PstA2 transporter as 

alleviating interactions with the secA2 mutation (9). Due to the PhoS1 export defect of the 

secA2 mutant, the PstA2 system is presumably nonfunctional in the secA2 mutant and 

additional mutations in this transporter are, therefore, expected to be alleviating interactions. 

On the other hand, our discovery of genes encoding components of the PstA1 system as 

being aggravating interactions suggests the PstA1 transporter is in a parallel redundant 

pathway of phosphate acquisition to the SecA2-dependent PstA2 pathway. If one phosphate 

import system (PstA2) is defective in the secA2 mutant, the other system (PstA1) may 

become more important to bacterial fitness. These interactions highlight the important 

contribution of the SecA2 export pathway to phosphate acquisition by M. tuberculosis during 

host infection.  
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We additionally identified ATPase components of the phosphate transporters, pstB 

and phoT, as genetic interactors with secA2. While pstB is a significant alleviating 

interaction, phoT is a significant aggravating interaction with secA2. This result is intriguing 

as it is not currently known which ATPase works with each phosphate transporter or, 

alternatively, if the ATPases are promiscuous and can function with either transporter (57). 

As components of the PstA2 system are alleviating while components of the PstA1 system 

are aggravating, our data suggests that the alleviating pstB functions with the PstA2 

transporter while the aggravating phoT functions with the PstA1 transporter. Additional 

experiments are required to validate this finding. 

Further examination of our genetic interaction data revealed signs of altered gene 

regulation in the secA2 mutant that is indicative of a defect in phosphate import. Mutations in 

regX3 and esxA5 were identified as alleviating interactions with secA2. Under low phosphate 

conditions the regX3 regulon is induced, which includes genes involved in Esx5 secretion 

and components of the SecA2 independent PstA1 phosphate transporter (58-60). RegX3 via 

Esx5 induction induces cell membrane permeability (58). Increased membrane permeability 

may be detrimental to the survival of the secA2 mutant in vivo as the secA2 mutant 

encounters several stressors in the host (7). The secA2 mutant may also have an altered cell 

wall that increases sensitivity to membrane permeability. Thus, the elimination of the 

RegX3-Esx5 signaling cascade likely restores the integrity of the M. tuberculosis cell 

membrane and increases resistance to anti-microbial host responses. It is also possible that 

the RegX3-Esx5 signaling cascade is more highly induced in the secA2 mutant than H37Rv. 

As PhoS1 is dependent on SecA2 for export there is likely less phosphate import in the secA2 

mutant (9). As low phosphate activates the RegX3-Esx5 pathway, this would lead to 
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increased expression of RegX3-Esx5 in the secA2 mutant and subsequently increased 

membrane permeability which may be detrimental in vivo (58). However, this model remains 

to be tested. 

Stress Response 

The secA2 mutant induces a pro-inflammatory response in the host and the secA2 

mutant is trafficked to an acidic degradative phagolysosome (7,8). Therefore, the secA2 

mutant encounters many stresses during infection including acid stress, hypoxia, and reactive 

oxygen and nitrogen species. Even absent exposure to these host factors there is indication 

that the secA2 mutant is innately under stress or could be more sensitive to stresses. The 

DosR regulon is induced more quickly and to a higher degree in the secA2 mutant when 

compared to H37Rv (9). Although first identified as a coordinated response to hypoxia, the 

DosR regulon is now appreciated as being induced by a number of stresses including nitric 

oxide stress (61,62). An additional reason the secA2 mutant may be more sensitive to stress is 

the altered cell wall of the mutant due to differences in peptidoglycan and lipid content 

(discussed above).  

Our genetic interaction data further highlights the stress the secA2 mutant experiences 

during infection, as 8 stress related genes represent another cluster of genetic interactions 

with secA2. Three of the alleviating interactions in this category are repressors of stress 

response pathways (BlaR, HspR, OprA) (63-65). These alleviating interactions may reflect 

suppression of secA2 mutant stress-related phenotypes. In the absence of these repressors, the 

stress response pathways are constitutively active, boosting the resistance of the secA2 

mutant to stressors encountered in the host. One such regulator, OprA, is involved in 
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resistance to osmotic stress indicating that the secA2 mutant may experience osmotic stress in 

the host (63). The osmotic stress may be due to function of the SecA2 pathway in exporting 

ABC transporter components as altered solute import/export may affect the osmotic state of 

the bacterial cell. A further indication that the secA2 mutant undergoes stress in the host is 

the identification of relA as an aggravating interaction. RelA mediates the stringent response 

and downregulates translation in response to stress (66,67). Thus, RelA may be needed to 

protect the secA2 mutant from stress encountered in the host and loss of RelA worsens the 

secA2 mutant phenotype.  

Copper 

 A cluster of genetic interactions related to copper revealed a previously unknown role 

for the SecA2 pathway in resistance to high levels of copper. Copper toxicity is one anti-

microbial defense mechanism of macrophages. M. tuberculosis has multiple mechanisms to 

detoxify copper (68). Many of these mechanisms are regulated by the transcriptional 

repressor RicR (69,70). Mutations in the ricR gene are alleviating interactions with secA2 

suggesting that induction of this copper resistance regulon suppresses the virulence defect of 

the secA2 mutant in vivo. This result could indicate either that the SecA2 pathway exports 

effectors that block or detoxify the copper influx into phagosomes such that the secA2 mutant 

resides in a higher copper environment than H37Rv or that the secA2 mutant is more 

sensitive to high levels of copper. Supporting the possibility of the secA2 mutant being 

localized to a higher-copper environment in macrophages is the identification of rv2199c as 

an alleviating interaction. Transcription of rv2199c is suppressed by high copper levels, 

therefore rv2199c may be downregulated by high copper levels encountered by the secA2 

mutant and loss of rv2199c would not attenuate a secA2 mutant further (69). Although not 
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meeting statistical cutoffs used in the cluster analysis, mutations in the multicopper oxidase 

mmcO are also alleviating interactions with secA2 (mmcO mutants are 2.3 fold less 

attenuated in the secA2 background compared to H37Rv, p-value 0.05). MmcO is exported to 

the M. tuberculosis cell envelope making it a putative SecA2 substrate (71). MmcO is 

required for M. tuberculosis copper resistance and functions by oxidizing and detoxifying 

copper (71). If the secA2 mutant has a defect in MmcO export, then it would be expected that 

the secA2 mutant would be in a high copper environment which would explain the genetic 

interactions with both ricR and rv2199c. However, the SecA2 dependency of MmcO remains 

to be tested directly. Cumulatively, our data suggest a previously unknown function for the 

SecA2 pathway in combatting the anti-microbial copper response of the host. 

Esx Protein Export 

An unexpected discovery was a cluster of interactions between Esx systems and 

SecA2. Although we identified four genetic interactions associated with specialized Esx 

export pathways, the majority of Esx secretion system components and exported effectors did 

not interact with secA2. The genetic interactions between these two classes of specialized 

export systems suggest that these systems may have similar functions in virulence and the 

identification of EspK which is involved in phagosome maturation arrest supports this (39). 

As Esx systems are composed of multiple subunits, the identification of so few Esx 

components does not support Esx and SecA2 being truly interacting pathways (72). Further 

study is required to investigate the potential connection between these export systems. 
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SUMMARY 

Using genetic interaction mapping we identified a total of 62 genetic interactions with 

secA2 comprosed of 27 alleviating and 35 aggravating interactions. Alleviating interactions 

represent genes in the same pathway as SecA2 and could represent SecA2 substrates or 

components of the SecA2 export machinery. Alleviating interactions could also reflect 

mutations that suppress secA2 mutant virulence phenotypes. On the other hand, aggravating 

interactions represent genes in a parallel pathway as secA2 and have the potential to reveal 

new functions of the SecA2 pathway in pathogenesis of M. tuberculosis. 

 As not all SecA2 exported proteins have been identified to date, genetic interaction 

mapping provides an alternative approach for identification of SecA2 substrates. Genetic 

interaction mapping takes into account the importance of the function of the protein in 

pathogenesis and it thereby provides a powerful alternative for identifying SecA2 exported 

effectors that contribute to virulence of M. tuberculosis (possibilities listed in Table 4.2). The 

identification of satS and sapM as alleviating interactions provides important validation of 

this approach to identify both components of SecA2 export machinery and SecA2 exported 

effectors. However, genetic interaction mapping is a predictive tool; thus, all findings will 

need to be validated.  Nonetheless, our results lead to several new hypotheses for how SecA2 

contributes to the pathogenesis of M. tuberculosis (i.e. peptidoglycan synthesis, phosphate 

import, resistance to copper in the host).  

Although many important discoveries of M. tuberculosis pathogenesis and SecA2 

export have been identified and studied using the macrophage model, M. tuberculosis 

infection in a whole animal model is much more complex. Multiple immune cell types, in 
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addition to macrophages, affect the progression of M. tuberculosis disease (73). This 

approach not only revealed previously unknown functions for SecA2 export in M. 

tuberculosis pathogenesis, the study also validated prior research identifying the role SecA2 

in phagosome maturation arrest as a vital virulence function of the export system. 

 As the focus of this genetic interaction study was mapping interactions with secA2 in 

vivo, this study does not take into account in vitro phenotypes. Some of the Tn mutants 

identified as genetic interactors in vivo may additionally affect the fitness of the secA2 

mutant in in vitro growth conditions. For example, the role of the SecA2 pathway in 

peptidoglycan synthesis may represent a more general function of SecA2 export and not be 

specific to the host environment. As the Tn libraries generated to infect mice were 

propagated under in vitro conditions, Tn insertions in these samples can be similarly 

evaluated to map in vitro genetic interactions with secA2.  

In total, we identified roles for the SecA2 pathway in M. tuberculosis transporter 

function, cholesterol and lipid metabolism, peptidoglycan synthesis, copper resistance, and 

M. tuberculosis stress response. We also identified new potential components of the SecA2 

export machinery as well as previously unidentified candidate SecA2 exported effectors that 

play important roles in virulence. Our study speaks to the power of genetic interaction studies 

and the application of these studies to elucidate the function and components of bacterial 

protein export systems. 
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MATERIALS AND METHODS 

Strains and Media Conditions 

In this study, we used the Mycobacterium tuberculosis wild type strain H37Rv, and 

the secA2 mutant (mc23112) generated in the H37Rv background(6). M. tuberculosis strains 

were cultured in either liquid Middlebrook 7H9(BD) or on solid Middlebrook 7H10(BD) or 

7H11 (Sigma) media supplemented with 0.05% Tween 80, 0.5% glycerol, 1x albumin 

dextrose saline (ADS) and kanamycin (20µg/ml) when appropriate.  

Tn library generation 

M. tuberculosis transposon mutant libraries were constructed in H37Rv and secA2 

strains by Himar1 mutagenesis using the MycoMarT7 temperature sensitive phage as 

previously described(74,75). M. tuberculosis cultures grown to an OD of 1.0 were incubated 

at an MOI of 10 with the MycoMarT7 phage at 39°C overnight. Ten replicate transductions 

were completed for each strain to generate comprehensive Tn libraries in each strain 

background comprised of approximately 2*105 mutants each. The following day cells were 

washed and plated to recover the Tn mutants. Three weeks after plating the Tn libraries were 

pooled and sequenced to ensure adequate insertion density. Although, the secA2 mutant has a 

higher level of intrinsic level of kanamycin resistance approximately the same number of Tn 

mutants were recovered from the secA2 mutant library. 

Murine infection 

As previously described, 8-week-old female C57Bl/6 were intravenously infected 

with 3x106 M. tuberculosis from either the H37Rv Tn library or the secA2 Tn library(6).  A 

total of nine mice were infected with the H37Rv Tn library and 51 mice were infected with 
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the secA2 Tn library. One day post-infection two mice from each group were sacrificed to 

determine bacterial seeding. Consistent with previous studies, approximately 20% of the 

inoculum seeded the spleen, 75% seeded the liver and 5% seeded the lungs(17). At 18 days 

post infection mice were sacrificed and spleens were harvested, homogenized and plated onto 

7H10 agar to isolate surviving bacteria. After 3 weeks of growth, colonies were scraped from 

the agar plates and pooled into three independent groups for each mutant library to generate 

triplicate samples. 

Genomic DNA isolation and sample preparation for sequencing 

The triplicate library samples for each strain were resuspended in TE and an equal 

volume of 2:1 chloroform-methanol was added and incubated at room temperature for 5 

minutes. Samples were centrifuged and supernatant discarded. The pellets were dried and 

then subsequently resuspended in 100ug/ml lysozyme in TE and incubated at 37 overnight. 

The next day SDS and proteinase K were added to the samples for a final concentration of 

1% and 10ug/ml respectively. Samples were incubated at 50°C for 3 hours. Samples were 

then incubated with phenol-chloroform-isoamyl alcohol (25:24:1) and centrifuged to isolate 

the aqueous phase. Two subsequent chloroform extractions were preformed and DNA was 

precipitated with 0.3M sodium acetate and 10% isopropanol and dissolved in TE. 

Genomic DNA was sheared by nebulization at 45psi for 3 minutes in TE containing 53% 

Glycerol, 37mM Tris-HCl, and 5.5mM EDTA. Sheared DNA was isolated using a Quiagen 

PCR purification kit. A blunting kit (NEB) was utilized to repair the DNA ends and 

fragments were A-tailed. Adaptors generated from primers Adaptor 1.1 and 1.2 were ligated 

to the DNA fragments (Table 4.4)(76). Fragments containing transposon insertions were 
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amplified using a mixture of primers recognizing the transposon sequence (sol-mar, sol-mar 

1b, sol-mar 4b, sol-mar 5b) and an adaptor primer containing sequences unique for each 

replicate library (Table 4.4). Fragments of 200-400bp were isolated from each sample by gel 

purification and sequenced using an Illumina HiSeq platform. 

Sequencing data analysis and identification of genetic interactions 

The sequence data were processed using the TPP tool included with TRANSIT(77). 

Reads were mapped to the genome using the Burroughs-Wheeler Aligner. The set of reads 

with a prefix matching the end of the Himar1transposon were mapped to the corresponding 

TA site in the genome (stripping off the transposon prefix). The read counts were reduced to 

template counts by discarding duplicates with the same barcode. The final template counts 

were normalized across all the data sets using Trimmed Total Reads (TTR) normalization. 

TTR normalizes data sets so that they have the same mean template count, while ignoring 

(“trimming”) the top and bottom 5% of read counts to reduce the influence of outliers. To 

reduce the number of false positives a beta-geometric correction was performed. A 

Benjamini-Hochberg correction was applied to account for multiple tests and adjusted p-

values are provided. 

Growth on cholesterol 

A cholesterol stock solution was prepared as previously described by solubilizing cholesterol 

in ethanol and tyloxapol(78). 7H9 media containing 0.025% Tyloxapol and 1X albumin 

saline (ADS lacking glucose) (7AS) was supplemented with either 6% glycerol or 0.5 mM 

cholesterol. 104 cfu of M. tuberculosis strains were aliquoted into 96 well plates containing 

the 7AS media with either glycerol or cholesterol and plates incubated shaking at 37°C for 
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seven days. Resazurin (Sigma) was added to a final concentration 0.0125 mg/ml. Resazurin 

conversion was assessed after five days using fluorescence and was monitored by a Tecan 

Infinite 200 Pro at hv=544 nm excitation and hv=590 nm emission. 

Lysozyme Sensitivity 

105 cfu of M. tuberculosis strains were aliquoted into 96 well plates containing 7AGT with or 

without 0.4mg/ml lysozyme. Plates were incubated shaking at 37°C for 24 hours. Resazurin 

(Sigma) was added to a final concentration 0.0125 mg/ml and fluorescence was assessed 48 

hours after resazurin addition. 

Carbenicillin Resistance 

105 cfu of M. tuberculosis strains were aliquoted into 96 well plates containing 7AGT with 

varying concentrations of carbenicillin (0-2mg/ml). Plates were incubated shaking at 37°C 

for four days. Resazurin (Sigma) was added to a final concentration 0.0125 mg/ml and 

fluorescence was assessed three days after resazurin addition. The concentration of 

carbenicillin that inhibited resazurin conversion by 95% as compared to untreated controls 

was defined as the MIC 95.  
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Figure 4.1: Utilizing TnSeq to identify genetic interactions with secA2 

(A) Overview of experimental approach. Transposon mutagenesis was utilized to generate 
mutant libraries in both the wild-type H37Rv and secA2 mutant strain backgrounds. Mice 
were infected with 106 cfu for 18 days and then spleens were harvested and plated for CFU. 
CFU recovered from the mice were analyzed by high-throughput sequencing to identify 
individual Tn mutants that had altered survival in each strain background. (B) Survival of 
individual Tn mutants during the murine infection was quantified by total read counts. Tn 
mutants that had equivalent read counts (equal CFU) in each strain background represent 
genes that had no interaction with secA2. Tn mutants that had more reads (increased survival 
or cfu) in the secA2 mutant background are alleviating genetic interactions with secA2. Tn 
mutants that had less reads (reduced survival or CFU) in the secA2 mutant background are 
aggravating genetic interactions with secA2. (C) Mice infected with H37Rv and secA2 Tn 
mutant libraries were sacrificed at either 1 day or 18 days post infection. Spleens were 
isolated and homogenized. Spleen homogenates were plated for viable CFU. * p<0.01. 
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Figure 4.2: Genetic interactions with secA2 

(A) Individual Tn mutants identified by sequencing are shown plotted by log2 (Fold Change: 
secA2/H37Rv) and –log10(p-value). Blue points represent mutations that had an adjusted p-
value <0.05 and a Fold change larger than 2 and are classified as genetic interactions with 
secA2 whereas grey points represent mutations that had no interaction with secA2. (B) The 
percentage of genes that have significant interactions with secA2 are shown. (C) The 
significant alleviating interactions with secA2 were assigned to functional categories by 
Tuberculist. (D) The significant aggravating interactions with secA2 were assigned to 
functional categories by Tuberculist. (E) The percentage of significant alleviating 
interactions with secA2 that encode for proteins with predicted export signals are shown. (F) 
The percentage of significant aggravating interactions with secA2 that encode for proteins 
with predicted export signals are shown. 
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Figure 4.3: Clusters of alleviating and aggravating interactions with secA2 

Genes that significantly interacted with secA2 are grouped into clusters based on predicted 
function. Significant alleviating interactions are in blue whereas significant aggravating 
interactions are in red. To be included in this analysis there must have been at least a 2-fold 
difference in survival between the H37Rv and secA2 mutant libraries and the interaction had 
to have an adjusted p-value that is less than 0.1. 
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Figure 4.4: SecA2 is required for optimal growth on cholesterol 

104 cfu of indicated Mtb strains were grown in 7H9 media with either glycerol or cholesterol 
as the sole carbon source. Metabolic activity as monitored by resazurin conversion over time 
was used to monitor growth in either carbon source. Plotted is the average RFU of five 
independent experiments relative to H37Rv five day after resazurin addition. * p<0.01, 
**p<0.001, ***p<0.0001 
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Figure 4.5: SecA2 is required for lysozyme and carbenicillin resistance 

(A) 105 cfu of indicated Mtb strains were grown in 7AGT with or without 0.4mg/ml 
lysozyme for 24 hours. Metabolic activity as monitored by resazurin conversion over time 
was used to monitor growth in either condition. Plotted is the average RFU of four replicate 
wells relative to H37Rv three day after resazurin addition. ***p<0.0001 (B) Shown is the 
MIC 95 for the indicated Mtb strains. The MIC was determined by incubating 105 cfu with a 
range of concentrations of carbenicillin (0-2mg/ml). Metabolic activity as monitored by 
resazurin conversion over time was used to monitor survival. 
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Figure 4.6: SecA2 and phosphate import in M. tuberculosis 

(A) The two Pst phosphate ABC transporters in M. tuberculosis are diagramed. Components 
of the transporters that represent aggravating or alleviating interactions with secA2 are 
colored with blue representing alleviating interactions and red representing aggravating 
interactions. (B) Reduced phosphate import in the secA2 mutant, due to reduced export of the 
solute binding protein PhoS1, may induce the RegX3 regulon which is known to be 
stimulated by low phosphate conditions. Increased RegX3 induction leads to increased levels 
of the RegX3 regulated Esx5 which is proposed to increase outer membrane permeability 
that mediates increased nutrient uptake. RegX3 also induced pstA1 which feeds back and 
negatively regulated regX3. 
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Table 4.1 Significant genetic interactions with secA2 

Genes listed possess Tn insertions that resulted in more than a 2-fold difference in survival in 
the secA2 mutant background as compared to the H37Rv background and have an adjusted p-
value<0.05. Aggravating interactions (reduced survival in secA2 mutant background) are 
shaded red while alleviating interactions (increased survival in secA2 mutant background) are 
shaded blue.  
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Table 4.2 Potential SecA2 substrates 

Presented in this table are alleviating interactions that are predicted to encode for an exported 
protein (ie have a predicted Sec or Tat signal sequence) thus have the potential to be exported 
by the SecA2 pathway (p-value<0.05).  

 



	
163 

	

Table 4.3 Clusters of genetic interactions with secA2 

Genetic interactions were grouped into clusters by predicted function. Genetic interactions 
included in this analysis represent mutations that resulted in more than a 2-fold difference in 
survival in the secA2 mutant background as compared to the H37Rv and an adjusted p-value 
< 0.1. Alleviating interactions are shaded blue while aggravating are shaded red. 
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Table 4.4 Primers used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer	name Sequence
Adapter	1.1 TAC	CAC	GAC	CA-NH2	
Adapter	2.1 ATG	ATG	GCC	GGT	GGA	TTT	GTG	NNA	NNA	NNN	TGG	TCG	TGG	TAT	
Sol-mar ’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGGGACTTATCAGCCAACC
Sol-mar	1b ’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGGGGACTTATCAGCCAACC
sol-mar	4b AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGATACGGGGACTTATCAGCCAACC
sol-mar	5b AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTATCTACGGGGACTTATCAGCCAACC
Sol-AP1-tagged-57 CAAGCAGAAGACGGCATACGAGATAAG	TAG	AGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGATGGCCGGTGGATTTGTG
Sol-AP1-tagged-100 CAAGCAGAAGACGGCATACGAGATACA	CGA	TCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGATGGCCGGTGGATTTGTG
Sol-AP1-tagged-473 CAAGCAGAAGACGGCATACGAGATCGC	GCG	GTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGATGGCCGGTGGATTTGTG
Sol-AP1-tagged-373 CAAGCAGAAGACGGCATACGAGATCAT	GAT	CGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGATGGCCGGTGGATTTGTG
Sol-AP1-tagged-598 CAAGCAGAAGACGGCATACGAGATGAG	ATC	TTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGATGGCCGGTGGATTTGTG
Sol-AP1-tagged-651 CAAGCAGAAGACGGCATACGAGATGCC	GAT	GTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGATGGCCGGTGGATTTGTG
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CHAPTER 5 

 

Discussion 

 

 Mycobacterium tuberculosis, the causative agent of the disease tuberculosis, is 

responsible for causing approximately 1.8 million deaths each year (1). Currently one-third 

of the world population is infected with M. tuberculosis. In addition to this high burden of 

disease, the spread of drug resistant strains of M. tuberculosis and the lack of an efficacious 

vaccine creates a serious global health emergency (2). Therefore, a better understanding of 

the mechanisms of M. tuberculosis pathogenesis is urgently required.   

In order to promote disease, M. tuberculosis exports proteins outside of the bacterial cell 

into the host environment where the proteins can interfere with host defense mechanisms, 

such as phagosome maturation (3). The SecA2 pathway is one system M. tuberculosis 

utilizes to export such proteins. Unlike the SecA1 ATPase, which is responsible for the bulk 

of housekeeping export and is essential for bacterial viability, SecA2 is a non-essential 

specialized SecA ATPase required for exporting a relatively small subset of proteins (4).  

The SecA2 pathway, although not essential for growth of M. tuberculosis in vitro, is required 

for virulence of M. tuberculosis in both murine and macrophage models of infection (5,6). 
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The requirement for SecA2 during infection suggests that SecA2 and its exported effectors 

play important roles in M. tuberculosis pathogenesis. 

Previously it was shown that the SecA2 pathway is required for virulence of M. 

tuberculosis; however, the proteins exported by SecA2 that contribute to pathogenesis have 

remained largely unknown (6). The work presented in this dissertation improves our 

understanding of the functions of the SecA2 pathway in virulence by identifying proteins that 

depend on SecA2 for export, characterizing the functions of two proteins exported by SecA2 

in phagosome maturation arrest, and identifying previously unknown functions of the SecA2 

pathway during murine infection. This work revealed several themes in SecA2 protein export 

discussed below. 

 

SecA2 and phagosome maturation arrest 

Typically, once taken up into macrophages, the host delivers microbes to phagosomes 

that subsequently mature, acidify, and fuse with a lysosome resulting in the killing and 

degradation of the microbe. In contrast, M. tuberculosis arrests this process and is then able 

to replicate in phagosomes that do not mature or acidify (7,8). Although the ability of M. 

tuberculosis to arrest phagosome maturation and replicate in macrophages is critical for 

virulence, much remains unknown about this basic aspect of pathogenesis (9). It was 

previously shown that the SecA2 pathway is required for phagosome maturation arrest and 

consequently growth of M. tuberculosis in macrophages, indicating proteins exported by the 

SecA2 pathway play essential roles in this process (9). 
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SecA2 export of SapM and PknG contributes to phagosome maturation arrest 

Work presented in this dissertation shows that SecA2 exports two effectors of 

phagosome maturation arrest: SapM and PknG. Through an approach of adding back export 

of SapM and/or PknG to the secA2 mutant, we demonstrated that SecA2 export of both 

effectors contributes to phagosome maturation arrest and growth of M. tuberculosis in 

macrophages. Through these experiments, we also increased our understanding of the 

functions of these individual effectors in phagosome maturation arrest. Our studies revealed 

roles for SapM phosphatase activity in inhibition of EEA1, Rab5-Rab7 exchange and 

acidification. We additionally demonstrated a role for PknG in inhibition of Rab5-Rab7 

exchange and acidification, but there was no effect on EEA1. As a host target of PknG 

remains unknown, the identification of phagosome maturation steps inhibited by PknG could 

lead to the later identification of a host target. 

SapM is predicted to function in phagosome maturation arrest by dephosphorylating 

PI3P on phagosomal membranes, and data presented in this dissertation supports this model 

(10). As PI3P is localized on the cytoplasmic face of the phagosome, it is presumed that 

SapM would need to cross the phagosomal membrane into the macrophage cytosol in order 

to function (11). Using immunofluorescence with anti-SapM antibodies (provided by Vojo 

Deretic) we investigated the location of SapM during M. tuberculosis infection of 

macrophages.  In macrophages infected with H37Rv or a strain of H37Rv with increased 

SapM secretion (pJTS130), SapM was seen expanding beyond the phagosome into the 

macrophage cytosol as infection progresses. This represents the first evidence of SapM 

localization to the host cytosol. Although export of SapM from the bacterial cell is dependent 

on SecA2, escape of SapM from the M. tuberculosis phagosome was not dependent on the 
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SecA2 pathway as evidenced by localization of SapM in the host cytosol of secA2 mutant 

infected macrophages (Figure 5.1).  

The mechanism(s) for M. tuberculosis proteins important for pathogenesis escaping 

the phagosome and reaching the host cytosol remains unknown. The Esx1 export pathway 

secretes the ESAT-6 protein, which permeabilizes the phagosomal membrane and allows 

cytoplasmic access to at least some M. tuberculosis molecules (12).  Consequently, Esx1 is a 

candidate pathway for enabling SapM transit from the phagosomal lumen to the host 

cytoplasm. By localizing SapM in macrophages infected with a M. tuberculosis mutant strain 

lacking the Esx1 export system (eccD1) we tested the possibility of SapM cytosolic access 

depending upon Esx1. Macrophages infected with the eccD1 mutant revealed SapM delivery 

to the cytoplasm at comparable levels as H37Rv.  Thus, Esx1 does not appear to be 

responsible for SapM localization to the host cytoplasm. We also constructed a secA2/eccD1 

double mutant and saw a similar result as with macrophages infected with the secA2 mutant. 

This result further confirms that SapM accesses the cytosol but that it does so in a manner 

that is independent of both SecA2 and Esx pathways indicating there must be an alternative 

mechanism releasing M. tuberculosis proteins from the phagosome and further study is 

required.  

Although we primarily see PknG localized in the cell wall and bacterial cytoplasm, 

PknG has been reported to be fully secreted and has even been detected in the macrophage 

cytosol (13-15). Like SapM, although PknG has been identified in the host cytosol the 

specific mechanism of phagosomal escape remains unknown. The specific functions and 

targets of PknG in phagosome maturation arrest by M. tuberculosis are not as clear as SapM. 

Unlike SapM, in addition to a role in phagosome maturation arrest, PknG also has 
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physiological functions in the cytoplasm of M. tuberculosis. For example, PknG 

phosphorylates GarA which de-represses the TCA cycle (16,17). PknG also phosphorylates 

the mycobacterial ribosomal protein L13 leading to redox homeostasis and thus protection 

from oxidative stresses (18). The function of PknG in redox homeostasis has been suggested 

to contribute to the role of PknG in phagosome maturation arrest (18). However, the 

cytoplasmic functions of PknG are insufficient to explain the defect of the secA2 mutant in 

phagosome maturation arrest as the secA2 mutant accumulates unexported protein in the 

cytoplasm (15). Furthermore, the secA2 mutant does not exhibit a redox homeostasis defect, 

as assessed by sensitivity to redox stress. Overexpression of PknG did not increase resistance 

of the secA2 mutant to redox stress. Taken together these findings indicate that that PknG has 

additional, exported, functions in the host. As PknG is similar to eukaryotic serine/threonine 

kinases it is not surprising that PknG has targets within the host. Our data suggest a role for 

PknG in inhibition of Rab5-Rab7 exchange as well as a function in the inhibition of 

phagosome acidification independent of the assembly of V-ATPase on phagosomes. The 

specific host target(s) of PknG are unknown but our data suggest that PknG targets a Rab5-

Rab7 exchange factor or a signaling pathway upstream.  PknG has been shown to lead to the 

degradation of the host protein PKCa; however, the implications of this on M. tuberculosis 

phagosome maturation arrest remain to be investigated (19).  

SecA2 inhibits phagosomal acidification through multiple mechanisms 

The ability of M. tuberculosis to exclude V-ATPase from the phagosome is generally 

assumed to account for the lack of acidification of M. tuberculosis phagosomes (20). 

Somewhat surprisingly, our studies demonstrate that SapM and PknG inhibit acidification 

without blocking recruitment of the V-ATPase. Restoration of SapM and/or PknG export to 
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the secA2 mutant partially rescued the acidification defect of the secA2 mutant but had no 

affect recruitment of V-ATPase to the phagosome. Thus, this result indicates the existence of 

additional mechanism(s) for M. tuberculosis to prevent phagosome acidification that were 

not previously appreciated. One potential explanation for how M. tuberculosis affects 

phagosome acidification independent of V-ATPase exclusion is by direct inhibition of the 

functionality of the V-ATPase pump. Phosphorylation of the ATPase subunit of V-ATPase 

has been shown to regulate activity of the proton pump; therefore, SapM and/or PknG may 

alter the phosphorylation state of V-ATPase (21). Another possibility is that M. tuberculosis 

indirectly alters the function of V-ATPase by affecting the counter ion flux that is required 

for acidification to occur (22). In order for V-ATPase to pump in positively charged 

hydrogen, either positively charged ions (such as sodium or potassium) need to be exported 

from the phagosome or negative charged ions need to be imported (such as chloride). Thus, 

one possibility is that M. tuberculosis affects the ability of the host to import/export these 

ions, or M. tuberculosis itself could export or import ions affecting the net charge of the 

phagosome. Unfortunately, the ion channels used by the host that provide the counter ion 

gradient in phagosomes are not known, making it difficult to directly investigate the effect, if 

any, M. tuberculosis has on these channels. An indirect way of examining the ion balance of 

the M. tuberculosis phagosome is by examining the transcriptional response of M. 

tuberculosis in phagosomes. M. tuberculosis is known to induce a specific set of genes in 

response to high levels of chloride; thus, by examining the expression levels of these genes it 

may be possible to assess the ion environment of the M. tuberculosis phagosome (23). 

Finally, in addition to affecting the counter ion gradient, M. tuberculosis could potentially 

affect an H+ importer that contributes to the acidification of the phagosome. Phagosomes in 
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macrophages possess a H+ pump called Hv1 (24,25). Unlike V-ATPase, much less is known 

about the localization and function of Hcv1. It is currently not known if M. tuberculosis 

affects recruitment and/or function of Hcv1 during infection.  

SecA2 exports additional effectors of phagosome maturation arrest 

In addition to SapM and PknG, SecA2 must export at least one additional effector of 

phagosome maturation arrest that inhibits Rab5-Rab7 exchange and V-ATPase assembly on 

the phagosome, as restoration of both SapM and PknG export in the secA2 mutant did not 

result in complete rescue of these defects.  PtpA, which binds subunit H of V-ATPase and 

thereby disrupts assembly of the proton pump on phagosomes, is a candidate for this missing 

SecA2-exported effector (26). PtpA is a phosphatase secreted by M. tuberculosis that has 

been detected in the host cytosol during infection (27). PtpA is a compelling candidate for a 

missing phagosome maturation arrest effector exported by SecA2. However, our attempts to 

detect native or overexpressed levels of secreted PtpA in culture supernatants were 

unsuccessful, which has prevented us from determining if PtpA is a SecA2-exported protein. 

Another candidate for a missing SecA2 exported effector of phagosome maturation 

arrest is LipO. We identified the predicted lipase LipO as a SecA2 dependent exported 

protein in a mass spectrometry analysis of the secA2 mutant cell wall (described in Chapter 

2). LipO was reduced approximately 7-fold in the cell wall of the secA2 mutant compared to 

H37Rv. The SecA2 dependency of LipO vas validated by constructing an HA tagged version 

of LipO and examining export to the M. tuberculosis cell wall by Immunoblot (Figure 5.2 A). 

A lipO transposon mutant of M. tuberculosis is defective in preventing phagosome 

acidification suggesting that LipO contributes M. tuberculosis phagosome maturation arrest 
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(28,29). To examine the contribution of SecA2 export of LipO to M. tuberculosis phagosome 

maturation arrest we took the same approach as with SapM and PknG. When export of LipO 

was increased in the secA2 mutant, it resulted in a partial rescue in the acidification defect of 

the mutant but had no effect on EEA1 recruitment to phagosomes (Figure 5.2 B and C). The 

specific function of LipO in the host and the importance of SecA2 export of LipO remain to 

be determined.  

Genetic interaction studies highlight the role of SecA2 in phagosome maturation arrest 

Genetic interaction studies of the secA2 mutant also highlighted the important role of 

SecA2 in phagosome maturation arrest. SapM along with three additional genes implicated in 

phagosome maturation arrest were identified as genetically interacting with secA2. For 

example, transposon mutants in rv2506 were identified as alleviating interactions with a 

secA2 mutation. Rv2506 is a transcriptional repressor, therefore absence of rv2506 may 

result in the upregulation of proteins involved in phagosome maturation arrest that have 

similar functions as SecA2 exported effectors (29,30). The genes regulated by Rv2506 are 

not currently known. Identification of the Rv2506 regulated genes could lead to further 

understanding of the SecA2 pathway in phagosome maturation arrest. More importantly, the 

regulon could reveal novel, SecA2 independent, M. tuberculosis effectors of phagosome 

maturation arrest. 

  Not only did our studies extend what was known about SecA2 and phagosome 

maturation arrest pathways, but they also uncovered a previously unknown function for the 

SecA2 pathway in autophagosome maturation arrest. Autophagy is an innate host response 

that controls M. tuberculosis infection (3). Autophagosomes progress through similar 
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maturation stages as phagosomes and M. tuberculosis is able to arrest the process of 

autophagosome maturation (31-33). However, much less is understood about the mechanisms 

of M. tuberculosis autophagosome maturation arrest. Our studies demonstrated an 

unappreciated role for SecA2 in autophagosome maturation arrest as well as roles for the 

SecA2 exported SapM and PknG in in this process. 

 

SecA2 and transporters  

The well-studied SecA2 substrates, the Msmeg1704 and Msmeg1712 lipoproteins of M. 

smegmatis, represent one class of SecA2 dependent substrates, solute binding proteins 

(SBPs) (34). SBPs are cell wall localized proteins that deliver solutes to permease 

components of ATP-binding cassette (ABC) transporters for import using energy from ATP 

hydrolysis. Although there are no direct homologs of Msmeg1704 and Msmeg1712 in M. 

tuberculosis, quantitative mass spectrometry reveals numerous SBPs that are also SecA2 

dependent in M. tuberculosis (15).  In M. tuberculosis, nearly all of the SBPs identified in the 

cell wall fraction (13 out of 15) are present at lower levels in the secA2 mutant cell wall. All 

of the M. tuberculosis SecA2 dependent SPBs are lipoproteins with predicted signal peptides. 

Given the possibility of SecA2 substrates being distinguished by a tendency to fold prior to 

export, it is notable that 4 of the 13 SBPs reduced in the secA2 mutant of M. tuberculosis 

have predicted or proven signal peptides for the Tat export pathway, which exports folded 

proteins (35). There are also examples of SBPs with Tat signal peptides in other bacteria, 

suggesting that cytoplasmic folding is a common property of the SBP family (36,37). The 
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trend of SBPs being SecA2 dependent may also extend to other SecA2-only systems, as there 

is some evidence that SecA2 may also export SBPs in Listeria (38).  

Although most SBPs in M. tuberculosis have not been directly studied and their 

substrates remain unknown, SBPs can import a wide range of solutes (39). Thus, the role of 

SecA2 in exporting SBPs could be important for nutrient acquisition and affect the ability of 

M. tuberculosis to thrive in the host. In particular, the role of SecA2 in exporting PhoS1, 

indicates an effect of SecA2 on phosphate import and levels as evidenced by genetic 

interactions identified with secA2 (40). The connection between SecA2 and phosphate 

acquisition should be validated by examining growth of the secA2 mutant in low phosphate 

conditions as well as investigating the transcriptional response of the secA2 mutant to low 

phosphate. 

Interestingly, the genetic interaction study revealed a role for SecA2 that extends beyond 

ABC transporters. Of the 62 genetic interactions identified for secA2, 9 corresponded to 

components of ABC transporters and 8 corresponded to components of different types of 

transporters. In addition to ABC transporters, genes encoding for components of ion 

transporters and efflux pumps were also found to interact with secA2. This result suggests 

that SecA2 may export components of other transporters in addition to ABC transporters. 

Alternatively, defects in the import of nutrients that result from export defects in solute 

binding proteins in the secA2 mutant may affect the transport or nutrient needs of the 

mycobacterial cell. Further studies are required to distinguish between these two possibilities. 
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SecA2 and lipid homeostasis 

Another class of proteins exported by SecA2 are Mce transporter components. Mce 

transporters are thought to function similarly to ABC transporters, in that they recognize an 

extracytoplasmic substrate (in this case a lipid) and import it into the cytoplasm using ATP 

hydrolysis (41). Mce transporters are composed of about 10 proteins.  All of these 

components are exported proteins that either possess a transmembrane domain or a signal 

peptide. The Mce proteins are proposed to recognize the lipid substrate and deliver it to a 

permease and, therefore, are functionally similar to SBPs of ABC transporters (41). 

Supporting this speculated similarity, there are presumed lipid importing SBPs of Gram 

negative bacteria that possess Mce-like domains (42). M. tuberculosis has four Mce 

transporters. The best studied Mce transporter is Mce4, which imports cholesterol (43). 

Because cholesterol catabolism is critical to M. tuberculosis pathogenesis, Mce4 has an 

important role in virulence (43,44). Furthermore, studies in mice suggest that Mce4 is 

required for M. tuberculosis persistence during chronic infection (43). Mce1 is proposed to 

be a mycolic acid re-importer (45,46). Mce1is required for optimal growth in macrophages; 

however, there are conflicting reports concerning the requirement for Mce1 in murine 

infections (46-51).  

Multiple exported components of Mce1 and Mce4 transporters are identified by 

quantitative mass spectrometry as being SecA2 dependent in M. tuberculosis (15). Six 

components of Mce1 and six components of Mce4 are significantly reduced in the secA2 

mutant cell wall. The impact of SecA2 on multiple Mce components is not a transcriptional 

effect (as ruled out by qRT-PCR). Rather, these findings are consistent with the secA2 mutant 

having a defect in the export of Mce proteins. Levels of MceG, the presumed ATPase for 
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Mce transporters, are also reduced in the secA2 mutant of M. tuberculosis. Collectively, these 

data suggest a link between SecA2 and lipid import in mycobacteria. 

Our genetic interaction study also suggests a role for SecA2 export in cholesterol and 

lipid import/metabolism. We identified 15 genetic interactions associated either with 

cholesterol or M. tuberculosis lipid transport/homeostasis. Although we did not identify 

Mce4 transporter components in this analysis, we did identify several genes involved in 

cholesterol use by M. tuberculosis as genetic interactions with secA2. Furthermore, we 

showed that SecA2 is required for optimal growth on cholesterol. The fact that no mce4 

genes were identified as genetic interactors with secA2 may reflect the fact that Mce4 is 

important for the later persistence stage of infection in the murine model as opposed to the 

earlier growth in vivo phase of infection that was the focus of our search for genetic 

interactions. M. tuberculosis replicates in vivo until an effective T-cell (TH1) cell mediated 

immune response is established at 21 days post-infection, after which time M. tuberculosis 

persists in the host throughout the remainder of the infection (43,52). The identification of 

genetic interactions related to cholesterol during the growth in vivo stage of infection may 

suggest that SecA2 has a second connection to cholesterol in addition to Mce4. Further 

research is required to fully understand the connection(s) between SecA2 and cholesterol as 

well as the potential role for SecA2 in the persistent stage of infection. 

Genetic interaction studies also revealed connections between SecA2 export and several 

lipid components of the mycobacterial cell envelope. SecA2 was linked to synthesis, 

modification, or transport of lipoarabinomannan (LAM), 2,3-diacyltrehaloses (DAT), and 

phthiocerol dimycocerosates (PDIM). LAM is a lipid in the mycobacterial cell envelope that 

has multiple functions in virulence including anti-inflammatory, anti-apoptotic, and anti-
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phagosome maturation properties (53). DAT lipids have been shown to contribute to the 

virulence of M. tuberculosis by participating in phagosome maturation arrest (54). PDIM is 

an important virulence factor in the M. tuberculosis cell envelope that contributes to many 

virulence properties including macrophage invasion, masking of immune stimulating 

PAMPS, resistance to reactive nitrogen intermediates (RNI), phagosomal escape and 

induction of necrosis (53,55).  It is intriguing that SecA2 has similar functions in the 

pathogenesis of M. tuberculosis as these three mycobacterial lipids, and it suggests that 

SecA2 or SecA2 exported proteins may be involved in the export or modification of these 

lipid components of the cell envelope. Further research is required to identify the connection 

between SecA2 and cell envelope lipids. 

 

SecA2 and the Mycobacterial cell wall 

The identification of many genes related to lipid transport and homeostasis as genetic 

interactions with secA2 suggests that SecA2 may export proteins that alter the mycobacterial 

cell envelope. One of the largest functional categories representing alleviating and 

aggravating interactions corresponds to genes that function in M. tuberculosis cell wall and 

cell processes (29% and 52% respectively). As only 19% of the M. tuberculosis genome falls 

into the cell wall and cell processes functional category, this finding further suggests SecA2 

contributes to formation/maintenance of the mycobacterial cell wall (56). The large number 

of genetic interactions involving the mycobacterial cell wall could be due to the fact that 

several proteins in M. tuberculosis depend upon the SecA2 export pathway for export to the 
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cell wall (15).  This result suggests a role for SecA2 in M. tuberculosis cell wall maintenance 

that was not appreciated before.   

Furthermore, additional genetic interactions suggest a role of SecA2 in the 

mycobacterial cell envelope that extends beyond lipids. Genetic interactions indicate that 

SecA2 may function in peptidoglycan synthesis/maintenance. Genetic interaction studies 

identified rv3717 as an alleviating interaction with secA2. Consequently, Rv3717 may 

represent a previously unknown SecA2 substrate. Rv3717 is an amidase that binds 

peptidoglycan fragments and is predicted to function in peptidoglycan recycling (57). Along 

with three other genetic interactions involved in peptidoglycan synthesis, this data suggests 

that the secA2 mutant may have altered peptidoglycan. Supporting this result, the secA2 

mutant is significantly more sensitive to both lysozyme and carbenicillin which hydrolyze 

peptidoglycan or inhibit peptidoglycan synthesis respectively. Although this study represents 

the first indication of mycobacterial amidases being exported by SecA2 in mycobacteria, 

amidases are among the SecA2 dependent proteins identified in Listeria monocytogenes (38).  

 

SecA2 and the M. tuberculosis stress response 

An unexpected discovery of quantitative mass spectrometry studies of the M. tuberculosis 

secA2 mutant, is the identification of multiple DosR regulated cytoplasmic proteins as being 

more abundant in the secA2 mutant. The DosR regulon consists of 49 genes that are under 

the control of the DosR/S/T two component system (58). DosR-regulated proteins are 

induced by a number of stresses associated with infection, including hypoxia and nitric oxide 
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stress, and it is strongly induced during M. tuberculosis infection of macrophages, mice, 

guinea pigs and humans (58-60). 

A transcriptional effect can account for the increase in DosR regulated proteins in the 

secA2 mutant. Further, under conditions that induce the DosR regulon, the secA2 mutant 

responds quicker and to a much higher degree than wild-type, leading to transiently higher 

levels of DosR regulated proteins. The earlier induction of the DosR regulon may be due to 

an increased sensitivity of the secA2 mutant to DosR- inducing stimuli or due to a basal level 

of stress in the secA2 mutant that primes the mutant to respond more quickly to stimuli. Since 

DosR is known to be induced in macrophages, this increased induction of the DosR regulon 

in the secA2 mutant is likely to occur in vivo (59). Furthermore, macrophages infected with 

the secA2 mutant produce higher levels of reactive nitrogen intermediates, which is a 

stimulus for induction of the DosR regulon, so this DosR upregulation may be even more 

pronounced during infection (60). It is possible that increased induction of DosR regulated 

proteins contributes to the phenotypes of the secA2 mutant in vivo. For example, one DosR 

regulated protein increased in the secA2 mutant, Rv0079, induces macrophage production of 

pro-inflammatory cytokines, including TNF-α, which is a phenotype elicited by the secA2 

mutant in macrophages (61). 

Further indications that the secA2 mutant is innately under stress or could be more prone 

to stress are evident in genetic interactions with secA2. Several of the identified interactions 

with secA2 are in stress response pathways.  Specifically, we identified three alleviating 

interactions in genes that encode repressors of stress response pathways. These alleviating 

interactions may reflect suppression of secA2 mutant stress-related phenotypes. In the 

absence of these repressors, the stress response pathways are constitutively active and this 
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could have the effect of making the secA2 mutant to more resistant to stressors encountered 

in the host. One such regulator, OprA, is involved in resistance to osmotic stress indicating 

that the secA2 mutant may experience osmotic stress in the host (62). The osmotic stress may 

be due to function of the SecA2 pathway in exporting ABC transporter components as altered 

solute import/export may affect the osmotic state of the bacterial cell. The increased stress in 

the secA2 mutant as well as the increased induction of DosR could be due to an altered or 

weakened cell wall (as discussed above) that renders the mutant more sensitive to stress or 

the localization of the secA2 mutant to a more stressful environment in the host (i.e.a  mature 

acidic phagosome).  

Taken together, the findings presented in this dissertation have significantly improved 

our understanding of the roles of the SecA2 export pathway in the virulence of M. 

tuberculosis. The different approaches used in this dissertation have built upon each other 

and reinforced conclusions about the function of SecA2 export in M. tuberculosis. There is 

now a greatly expanded list of known SecA2 exported proteins in M. tuberculosis along with 

additional candidates that await validation. In addition, we identified two specific SecA2 

substrates that work together to promote phagosome maturation arrest, which is the first time 

the combined effect of two effectors has been examined. Prior to this work, it was completely 

unknown which M. tuberculosis effectors were responsible for the role of SecA2 in 

phagosome maturation arrest. Furthermore, the use of genetic interaction mapping with 

secA2 revealed a larger than appreciated effect of SecA2 on transporters, the mycobacterial 

cell wall, stress response, cholesterol utilization, and copper resistance. This dissertation 

demonstrates that by identifying proteins exported by SecA2 and understanding their 

function we can further our understanding of M. tuberculosis pathogenesis. 
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Figure 5.2 SecA2 export of LipO contributes to phagosome maturation arrest 

(A) Equal protein from cell lysates or cell wall fractions from the wild-type strain H37Rv and 
the secA2 mutant expressing a HA tagged LipO construct were examined for levels of LipO 
or the SecA2 independent loading control 19kDa by Immunoblot. The percentage of M.	
tuberculosis containing phagosomes that co-localized with LysoTracker (B) or EEA1 (C) at 
1hr post infection was determined.  *p<0.01 ANOVA Holm-Sidak post Hoc test. Data 
represents at least two independent experiments. 
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Figure 5.2 SapM is localized to the cytosol of infected macrophages 

(A) Murine bone marrow derived macrophages were infected with H37Rv and fixed as 
specified time-points post infection. Using Immunoflouresece with SapM antibodies, SapM 
was visualized in the infected cells. (B) Murine bone marrow derived macrophages were 
infected with strains overexpressing SapM and fixed as specified time-points post infection. 
Using Immunoflouresece with SapM antibodies, SapM was visualized in the infected cells. 
Representative images from each timepoint are shown. M. tuberculosis was visualized using 
the native autofluorescence in the CFP channel. SapM was visualized using Texas-Red 
conjugated secondary antibodies (Santa Cruz). 
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Figure 5.3 Solute binding proteins and Mce proteins are exported by the SecA2 

pathway.  

Two classes of SecA2 dependent substrates are SBPs and Mce proteins. Both SBPs and Mce 
proteins are involved in solute acquisition. In the case of SBPs this involves import of a 
solute through an ABC transporter permease using energy provided by ATP hydrolysis. Mce 
transporters are thought to function in a similar manner as ABC transporters to import a lipid 
substrate through a YrbE permease in an ATP-dependent manner. Although the diagram of 
an Mce transporter is speculative the similarities between these two systems are compelling. 
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