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Abstract 

Laura Bonifacio, PharmD   

Telomerase and Cellular Aging: Analysis of Telomerase RNA Structure and the 
Impact of Telomerase on miRNA Expression 

 (Under the direction of Michael B. Jarstfer, PhD) 

 

 Human cellular mortality is exquisitely regulated in order to prevent both 

premature loss of cellular replicative potential, which can lead to complications of 

aging, and the aberrant immortalization of somatic cells, which is associated with 

tumorigenesis.  Human somatic cells experience a finite term of replication, 

measured in part by telomere attrition.  As human somatic cells divide, their 

telomeres erode due to the end replication problem.  When telomeres become 

critically short, cells enter an irreversible growth arrest called senescence, 

marked by accumulation of inflammatory mediators, which ultimately cause cell 

death.  Occasionally, cells bypass senescence and continue dividing despite 

having critically short telomeres.  These cells will encounter a second growth 

arrest check point called crisis, characterized by robust inflammation and profuse 

cell death.  Rarely, cells evade the impetus to stop dividing imposed by 

senescence and crisis by activating telomerase and becoming immortalized. 

 Telomerase is a ribonucleoprotein reverse transcriptase, minimally 

comprised of an RNA subunit, TR, and a catalytic protein subunit, TERT.  Cells 

expressing high levels of telomerase (such as germline and embryonic stem 
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cells) are immortal.  In addition, telomerase is activated in and conveys 

immortality to about 90% of all cancer cells.  The most well understood 

contribution of telomerase to determining cellular mortality is its role in 

maintaining/extending telomeres, which offsets induction of replicative 

senescence.   

Despite significant advances in senescence and telomerase biology, a 

complete understanding of the mechanisms regulating senescence and the 

mechanisms by which telomerase influences cellular mortality is still lacking.  

Work presented in this dissertation will provide the first evidence confirming a 

dramatic conformational change within Tetrahymena telomerase RNA (tTR) upon 

assembly into the telomerase complex that is essential to facilitating telomerase 

activity.  In addition, work described in Chapter 3 provides the first full microRNA 

profile for replicatively senescent human foreskin fibroblasts.  Finally, 

experiments described in Chapter 4 demonstrate the ability of telomerase to 

influence expression of miRNAs that undergo regulated expression during 

senescence and thereby influence a cell’s ability to proliferate.  A thorough 

understanding of these miRNA-regulated senescence pathways, and the 

mechanisms by which telomerase influences these pathways, will facilitate new 

approaches to treat aging-related disorders and cancer. 
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Chapter 1. Introduction 

In 1965 Leonard Hayflick discovered that human fibroblasts have a finite 

ability to divide, due in part to the process of senescence [1].  As somatic cells 

divide, long G-rich repeats at the 3’ terminus of chromosomes called telomeres 

shorten due to the end replication problem [2] and the absence of telomerase.  At 

some point when the telomeres become “critically short,” the cells become 

senescent, characterized by an irreversible loss of proliferative capacity despite 

continued metabolic activity.  Senescent cells experience a profound up-

regulation of inflammatory signaling, and the accumulation of these inflammatory 

mediators eventually contributes to the death of senescent cells.  Occasionally, a 

cell may bypass senescence by abrogating p53 and continue to divide despite 

having critically short telomeres.  In this case, cells will encounter a second 

checkpoint called M2, or Crisis.  Crisis is characterized by massive cell death and 

inflammation.  Activation (or reactivation) of telomerase allows cells to bypass 

crisis and become immortal (Figure 1.1). 

 Clearly, expression of the ribonucleoprotein telomerase is a critical 

indicator in determining whether a cell is susceptible to senescence.  While the 

RNA component of the telomerase (hTR) is expressed ubiquitously in humans, 

the catalytic protein reverse transcriptase subunit of telomerase (hTERT) is not 

expressed in somatic cells.  Human embryonic stem cells and germline cells  
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Figure 1.1 Hayflick Limit.  In the absence of telomerase expression, telomere 
length decreases with increased cell divisions.  Adapted from Hayflick [1]. 
 

 

express TERT and are therefore able to maintain their telomere lengths 

throughout indefinite proliferation and without senescing.  Tissue stem cells, also 

known as progenitor cells, reside within post-mitotic tissues and function to 

replenish cells that have undergone stress and damage associated with aging.  

While progenitor cells do express telomerase, they express it at lower levels 

compared to germline cells and are thus susceptible to senescence.  

 Senescence in stem cells is thought to contribute to the age-associated 

decline in organ and tissue function because the ability of tissue stem cells to 

proliferate and replenish lost cells is diminished with age [3].  Since replicative 

senescence is critically associated with telomere length and expression of 
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telomerase, accurate and precise information regarding telomere biology and the 

structural biology of telomerase as well as pathways involved in conveying 

senescence is fundamental to understanding regulation of senescence.  Further, 

a more detailed knowledge of senescence mechanisms and associated biology 

will facilitate an informed appreciation of the contribution of senescence to aging 

and tumorigenesis.    

 

 

I. Telomeres, Telomerase, and Replicative Senescence 

 

A. Telomere Biology   

1. DNA Replication and Telomere Function 

 The replication of human chromosomes is accomplished by DNA 

polymerase and occurs in a 5’ to 3’ manner.  Each strand of the double stranded 

parent DNA chromosome is replicated, beginning at the origin of a replication 

fork and proceeding to chromosome termini.  One strand, known as the leading 

strand, is replicated in a continuous manner in the 5’ to 3’ direction.  Due to the 

requirement of DNA polymerase to bind at sites with a 3’-OH, synthesis of the 

opposite strand, known as the lagging strand, requires the aid of RNA primers.  

DNA polymerase binds the RNA primer and synthesizes short DNA segments 

known as Okazaki fragments.  When synthesis is complete, the RNA primers are 

removed and DNA polymerase fills in the gaps.  After the terminal RNA primer is 

removed on the lagging strand, DNA polymerase is incapable of binding to fill in 
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the gap left by removal of the primer.  This is commonly referred to as the end-

replication problem.  Without a mechanism to circumvent this problem, the 3’-end 

of the lagging strand would shorten with each round of replication (Figure 1.2a).  

As a solution to this problem, telomeres mask the ends of chromosomes and 

undergo attrition with each round of replication.  In this way telomeres prevent 

loss of genomic sequences during cell proliferation and prevent recognition of 

chromosomal termini by DNA repair machinery.  Although theoretically the 

chromosome generated by synthesis of the leading strand should be blunt 

ended, replication of each strand of the chromosome generates a new dsDNA 

chromosome with 3’ overhangs.  There is some evidence to suggest that leading 

strand replication incorporates a mechanism for generating a short 3’ overhang, 

possibly by utilization of exonucleases that facilitate recognition and processing 

by the reverse transcriptase known as telomerase and DNA polymerase (Figure 

1.2b) [4,5]. 
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2. Telomere Structure 

 Telomeres are synthesized by the ribonucleoprotein telomerase, a reverse 

transcriptase minimally comprised of an RNA subunit (TR) and a catalytic protein 

subunit (TERT).  Human telomeres contain approximately 5 – 15 kilo base pairs 

Figure 1.2  End Replication Problem.  Telomeres prevent loss of coding 
DNA with each round of replication due to the end replication problem [6].  
DNA polymerase is incapable of fully replicating the 3’ end of chromosomes 
due to the lack of an RNA primer required for the polymerase to bind (a).  
The ribonucleoprotein telomerase extends G-rich repeats at chromosome 
termini, facilitating DNA polymerase-mediated extension of these non-
coding repeats (b). 
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of T2AG3 repeats [6].  However, the presence of long repeats on chromosome 

termini alone is insufficient to prevent recognition of the uncapped end by DNA 

repair mechanisms and induction of senescence or apoptosis [7].  So the 

chromosome protective function conveyed by telomeres is two-fold:  Long, 

repetitive telomeric sequences provide an alternative for chromosome shortening 

with each round of DNA replication, and the telomere prevents recognition by 

DNA repair machinery and induction of senescence/apoptosis in a separate 

manner.  The ability of the telomere to inhibit recognition by DNA repair 

machinery is integrally connected to the ability of the telomere to form complex 

structures by binding to several dsDNA binding proteins.  This telomeric complex, 

also known as the “shelterin” complex, is essential in driving the cell’s ability to 

differentiate chromosome ends from dsDNA breaks [8].  In human cells, shelterin 

includes several proteins that serve to facilitate formation of a T-loop from the 

telomeric single stranded 3’-overhang [9] (Figure 1.3b).   

 While a comparison between cells, individuals, and chromosomes reveals 

that telomeres are somewhat heterogeneous in length, telomeres are maintained 

within an average range of base pairs with remarkable consistency within 

species.  This homeostasis implies a mechanism that senses telomere length 

and communicates with telomerase to activate it when telomeric repeat addition 

is appropriate and prevent it from overextending long telomeres.  Several 

components of shelterin are essential in maintaining this telomere length 

homeostasis.  TRF1, a double stranded telomeric DNA binding protein and 

shelterin member, inhibits telomerase in cis at individual telomeres [10].  TRF1 
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over-expression allows telomere attrition while expression of a TRF1 dominant 

negative mutant results in telomere elongation [10].   

 

 

 

 

Figure 1.3  Human telomeric DNA requires binding to shelterin 
proteins to form a T-loop.  Formation of a T-loop (A) by binding to 
shelterin complex proteins prevents recognition of the chromosome 
termini by cellular DNA repair machinery.  B) Electron microscopy of 
telomeric DNA from HELA cells [9]. 
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In addition, both POT1 and Rap1 have been shown to inhibit telomerase 

activity by obstructing access of the enzyme to the single-stranded region of the 

telomeric 3’ end and recruitment of co-inhibitory factors, respectively [11,12,13].  

Thus telomere structure and maintenance as well as telomerase expression are 

critical in determining a cell’s susceptibility to senescence. 

 

B. Clinical Consequences of Aberrant Telomerase/Telomere Regulation 

 A number of diseases have been linked to aberrant regulation of telomere 

maintenance and telomerase activity, and not surprisingly, most of these 

diseases are characterized by premature aging phenotypes.  Dyskeratosis 

congenita, Werner’s syndrome, and congenital aplastic anemia (AA) are all 

associated with deregulated telomere maintenance or telomerase activity [14] 

(Figure 1.4).  Dyskeratosis congenita (DC) can be caused by a mutation within 

one of six genes.  Four of these genes encode proteins associated with 

maintaining telomere structure and two encode telomerase subunits [15].  

Patients with DC are at increased risk for malignancies, display a number of 

mucocutaneous abnormalities, and frequently suffer from aplastic anemia during 

childhood.  DC was originally discovered by linking physical symptoms of the 

affected patients to a mutation in the dyskerin (DKC1) gene [16,17].  DKC1 

encodes a protein that is part of the human telomerase holoenzyme complex.  

Werner syndrome is caused by a mutation in WRN (encoding a helicase), 

resulting in an increased rate of telomere attrition uncountered by telomerase 

activity.  Patients with Werner syndrome display adult-onset progeroid 

phenotypes, aging several decades beyond their actual age [18].   
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The genetic basis for the influence of telomere and telomerase 

deregulation in development of cancer is based partly on the induction of DNA 

repair mechanisms and resultant chromosomal instability caused by non-

homologous end-joining or homology-directed repair [19,20].  For instance, 

evidence in humans reveals that constitutive telomerase mutations result in 

excessive telomere erosion and chromosome instability in patients with acute 

Figure 1.4  Telomere diseases.  Deregulation of telomere homeostasis 
contributes to a number of diseases associated with progeroid phenotypes, 
including dyskeratosis congenita and Werner’s syndrome.  Figure adapted from 
Calado et al [14]. 
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myelogenous leukemia (AML) [21].  This deregulation of telomere homeostasis is 

a pre-crisis event and presumably contributes to transformation.  Finally, a 

number of non-hematologic diseases have been associated with mutations in the 

telomerase/telomere pathway, including pulmonary and hepatic fibrosis, although 

the data for these associations is less extensive [22].   

 

C. Telomerase Structural Biology 

 Telomerase is a ribonucleoprotein composed of two main subunits, an 

RNA subunit that serves as template for the synthesis of telomeres (TR) and a 

protein subunit that contains the catalytic reverse transcriptase activity (TERT).  

While TERT is highly conserved, sequence and length of TR vary considerably 

among species [23,24].  The following will provide an overview of TERT and TR 

structural biology and highlight the challenges impeding a detailed understanding 

of the impact of TR structure on telomerase activity.  A complete understanding 

of the contribution of TR structure to telomerase activity would facilitate attempts 

at modulating telomerase activity for anti-tumor and anti-aging drug development.        

 

1. TERT 

 A comparative sequence analysis of TERT reveals the presence of seven 

conserved amino acid motifs that have similarity to retroviral reverse 

transcriptases [25].  In addition, TERT genes contain telomerase-specific 

regions, such as the N-terminal extension (TEN) and C-terminal extension (CTE) 

(Figure 1.5a) [26].  The CTE region contains domains that are highly conserved 
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among vertebrates.  In general, the N-terminal and RT domains are involved in 

RNA binding, while the N and C-terminal parts are involved in DNA binding.     

 

 

Figure 1.5  Structure of TERT.  TERT genes contain seven amino acid 
motifs that share similarity with retroviral reverse transcriptases (RT).  In 
addition, TERT genes display telomerase-specific motifs, denoted as CTE (C-
terminal extension), N terminal-extension (TEN) and a telomerase RNA 
binding domain (TRBD) (a).  Adapted from Sykorova et al [26].  TERT proteins 
contain a “fingers, palm, and thumb” structure common to other polymerases. 
Figure from Gillis et al [27] (b). 
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 TERT proteins adopt a conformation referred to as the “fingers, palm, and 

thumb” structure found in other polymerases (Figure 1.5b).  This structural 

feature is important for type I (nucleotide addition) processivity [28,29].  Type II 

processivity is specific to telomerase and requires translocation of telomerase for 

repeat addition of telomeric sequences.  Telomerase type II processivity is 

influenced by two telomerase-specific structural elements, a long insertion within 

the putative fingers doman (IFD, insertion within fingers domain) and a 

telomerase-specific domain within the N-terminal extension region [30].     

 

2. TR 

 Despite the fact that TR genes show very little sequence or length 

conservation between species, most TRs do share several secondary structural 

features, based on secondary structure predictions using phylogenetic 

comparison of sequences and the limited structural information for a few TR 

domains.  This implies an essential role for TR structure in regulating activity of 

telomerase [31].  A phylogenetic comparison of predicted secondary structures 

for ciliate and human TRs is shown below (Figure 1.6).  Common secondary 

structural features conserved between human and Tetrahymena TRs (hTR and 

tTR, respectively) include stem loop IV (also known as the transactivating 

domain), stem loop II (the template boundary element), and a pseudoknot 

structure predicted for stem loop III [31].   

 The focus here will be on analyzing current structural information for tTR, 

as Tetrahymena thermophila has emerged as a model organism for studying 
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telomerase.  An accurate knowledge of tTR structure will expedite a complete 

understanding of the contribution of telomerase RNA structure to telomerase 

activity. 

   

 

 

 The size of TR (159 nucleotides for tTR, 451 nt for hTR) presents a 

formidable barrier to obtaining direct structural evidence for these RNAs via 

conventional methods.  However, the structure of stem II and stem IV of tTR 

have been solved by NMR [33,34,35] (Figure 1.7).  Importantly, the structural 

information revealed by these NMR studies is in agreement with biochemical 

studies for these domains [36,37,38].  Biochemical studies reveal that stem loop 

Figure 1.6  Secondary structure models for telomerase RNA.  Models for 
ciliate (Tetrahymena thermophila) and human TR secondary structure are 
shown.  Figure adapted from Chen et al [32]. 
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II is essential for proper definition of the template boundary, while the distal 

portion of stem II seems dispensable for telomerase function [39].  Stem loop IV 

is suggested to be involved in proper pseudoknot formation, telomerase 

processivity, and TERT binding [36,40,41].                

 

    

  

 Current understanding of the relationship between structure and function 

of the pseudoknot region of TR is less complete, as construction of an accurate 

model for the pseudoknot structure has been challenging.  AUU base triples are 

a conserved feature present within the predicted structures of the TR pseudoknot 

from various species [42,43].  While the in-solution human pseudoknot structure 

has been resolved by NMR, [43,44] the only evidence contributing to the current 

Figure 1.7  tTR Stem II and Stem IV NMR structures.  The structures of 
stem II and IV of tTR have been solved by NMR.  Figure adapted from Chen 
et al and Richards et al [34,35]. 
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model of tTR is biochemical and phylogenetic in nature.  Further, there is no 

direct evidence of TR structure within in the telomerase complex for either 

organism.  A novel model for tTR secondary structure, based on biochemical 

evidence generated using a relatively new RNA structure analysis technique 

(unpublished data, Legassie, Bonifacio, and Jarstfer), predicts dramatic changes 

in domain III as tTR is assembled into the telomerase complex (Figure 1.8).  This 

model will be validated by studies described in Chapter 2.   

 

 

Figure 1.8  Novel Model for tTR Secondary Structure.  These models for tTR 
secondary structure are based on data using a new RNA structure analysis 
technique (Legassie, Bonifacio, Jarstfer, unpublished work).  This new model 
differs from the currently accepted model for tTR secondary structure by 
predicting a conformational change in domain III of tTR upon assembly into the 
telomerase complex.  The models are depicted in a color scheme indicating 
flexibility of each nucleotide, as revealed by the RNA structure analysis 
experiments.  Most to least flexible is indicated by red, orange, blue, and black.  
Green indicates lack of sufficient data for those nucleotides. 
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II. The Contribution of Senescence to Aging and Tumorigenesis    

 Aging is a multietiological phenomenon that occurs at both cellular and 

organismal levels, and the extent to which factors affecting cellular aging 

contribute to organismal aging remains unclear.  Several theories of aging exist, 

but can basically be classified into two groups attributing aging to either extrinsic 

(environmental exposure related) or intrinsic (programmed genetic changes) 

factors.  An emerging consensus view supports a combination of both extrinsic 

and intrinsic contributors as relevant to organismal aging; however the extent to 

which specific factors from each pathway contribute to aging is still debated.  A 

brief summary of two of the major contributors from the extrinsic and intrinsic 

pathways of aging follows in order to facilitate a better appreciation for how 

senescence might complement these pathways (Figure 1.9).   

 Reactive oxygen species (ROS), stemming from extrinsic sources such as 

UV exposure or internally generated by the mitochondria during cell stress, 

contribute to aging at the cellular level by causing damage to nucleic acids, 

proteins, and lipids [45].  In turn, this affects aging at the organismal level by 

compromising the function of tissues.  The potential environmental sources 

capable of engendering increased ROS production are endless and countered by 

the body’s antioxidant store designed to neutralize the reactive species.  

Potentiating the insult inflicted by increased ROS production during aging is the 

waning efficiency of antioxidant enzymes [45,46,47,48,49].  

 In addition to accumulation of environmental insults with age, recent work 

suggests a role for epigenetics in contributing to cellular and organismal aging.  

Age-associated chromatin remodeling can occur in a stochastic or programmed 
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manner, and thus perhaps satisfies both extrinsic and intrinsic pathways of aging 

[50].  Specifically, evidence supports an age-related change in methylation of 

PCGTs (targets of polycomb group proteins) in multiple cell types, including 

human embryonic stem cells that do not undergo senescence [51,52].  This is 

significant because repression of PCGTs is associated with the most common  

 

Figure 1.9  Extrinsic and intrinsic contributions to aging.  One of the 
major mechanisms of environmental exposure mediated aging is via 
induction of ROS pathways.  Chromatin remodeling affecting expression of 
proliferation and lifespan-associated genes affects aging.  Telomere 
attrition due to prolonged cell proliferation in the absence of telomerase 
induces replicative senescence. 
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age-related disease – cancer [53].  The functional hypothesis is that repression 

of PCGTs that occurs with aging forces various cell types to become more “stem” 

in nature (a clear shift towards tumorigenesis for a somatic cell line) since 

regulated expression of various PCGTs is required to allow embryonic stem cell 

differentiation and expansion.  The effects of age-associated chromatin 

remodeling are not limited to altered expression of PCGTs, but also include 

alterations in expression of other genes and non-coding RNAs.  For example, 

microRNAs (miRNAs), 21-23 nucleotide non-coding RNAs that repress the 

expression of target mRNAs, are regulated by epigenetic changes associated 

with aging [54]. 

 As previously mentioned, the initial discovery of replicative senescence in 

1956 spawned a theory of aging called the Replicative Senescence Theory of 

Aging [45].  Although replicative senescence is intrinsic in origin, senescence can 

be induced by multiple stimuli, including extrinsic and blended factors like 

oncogene expression and DNA damage.  In the early years of an organism’s life, 

senescence induction due to events that damage DNA or oncogene expression 

may be beneficial to the organism by preventing further proliferation of cells that 

bear unstable genomic changes.  However, senescence reduces the number of 

cycling cells in a tissue, clearly limiting the regenerative capacity of aging human 

tissues.  Thus, senescence is an example of antagonistic pleiotropism [55], a 

process that performs a beneficial (tumor suppressor) function early in life and 

contributes to decline of the organism later in life.  The extent to which 
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senescence is associated with or causative of cellular and/or organismal aging is 

highly debated.   

 

A. Evidence disparaging of a causal relationship between senescence and 
aging:   

 The major manifestations of aging and age-related decline in humans are 

most commonly noted in post-mitotic tissues (muscles, brain, and kidneys), 

which should not be sensitive to telomere length [56].  In addition, murine 

fibroblasts (which in contrast to human fibroblasts express telomerase) have a 

very short lifespan in culture compared to human fibroblasts despite having 

exceptionally long telomeres.  Thus replicative senescence doesn’t seem to play 

a predominant role in the aging of cultured murine cells.  Additionally, Mollica et 

al noted a lack of correlation between leukocyte telomere length and 

hematopoietic reserve in aging woman [57], suggesting that replicative 

senescence is likely uncoupled from decline in hematopoietic function associated 

with age .   

 

B. Evidence In support of a causal relationship between senescence and aging: 

 Recent data reveals that tissue stem cells (progenitor cells) of aging 

humans are enriched for senescent cells [58].  In contrast, embryonic stem cells 

and germline cells (which express higher levels of telomerase compared to 

progenitor cells) do not senesce despite extended proliferation.  This implies that 

replicative senescence may contribute to the attenuated ability of progenitor cells 

to replenish the accumulating cell population bearing the DNA damage 
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associated with aging [59].  The concept of progenitor cell senescence may also 

help address the previously stated concerns of Longo et al [56].  Perhaps the 

failing efficiency of progenitor cells in post-mitotic tissues resulting in age-related 

phenotypes is more apparent than decline in function of gastrointestinal or 

hematopoietic cells due to the relatively low turn-over of kidney and muscle cells.   

 

III. Senescence and Tumorigenesis 

 The role of senescence in tumorigenesis is less ambiguous than the 

previously discussed role in aging.  As earlier indicated, replicative senescence 

represents a checkpoint in the cell cycle intended to prevent further proliferation 

of cells whose telomeres are insufficient to prevent loss of genomic content due 

to the end replication problem.  Further, telomerase (which is essential in 

specifying whether a cell is capable of senescing), is expressed in 90% of all 

cancers.  In those cancers where telomerase is not active, there are alternative 

mechanisms of maintaining telomere length [60], suggesting again the 

importance of telomere length in determining mortality.   

 Other types of senescence, including DNA damage-induced and 

oncogene-induced, serve a similar function of repressing proliferation of cells 

with unstable genomic changes.  Transformation of normal human fibroblasts 

with Ras results in accumulation of p53 and p16 and induction of senescence 

[61].  In order for an oncogene such as Ras to initiate tumorigenesis, p53 and Rb 

(two of the three known critical pathways for senescence) must also be inhibited.  

Restoration of p53 in mice with p53-depleted tumors induced senescence that 
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resulted in tumor clearance [62].  Indeed, mutations of effectors within the p53 

and Rb pathways are present in the majority of, if not all, human cancers.  Thus 

repression of critical senescence pathways [63] and prevention of replicative 

senescence induction (via telomerase expression) account for two of the 

molecular changes observed in almost all human tumor formation.  Contrary to 

the tumor suppressive characteristics of senescence, a study with human 

fibroblasts and epithelial cells revealed that induction of the senescence 

associated secretory phenotype (SASP), marked by robust cytokine signaling, 

conveyed malignant phenotypes to nearby pre-malignant and malignant cells 

[64].  Likewise, although inactivation of Pten (phosphatase and tensin homolog, a 

tumor suppressor that inhibits Akt/PKB signaling) is a frequent mutation in 

tumors, acute Pten inactivation results in accumulation of p19ARF and p53, 

triggering cellular senescence [65].  This again harkens to the notion of 

senescence as an example of antagonistic pleiotropy.    

 

IV. Molecular Details of Senescence Pathways 

 Despite the fact that senescence can be induced by various stimuli, 

current evidence reveals the engagement of only a few critical pathways in all 

instances: the p53, Rb, and Skp2 pathways [63,66,67].  In fact, in most cases 

human cells that have impaired p53 and Rb pathways are refractory to 

senescence-inducing stimuli [61,67].  The complete molecular details governing 

induction and maintenance of senescence through these pathways remain to be 
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discerned; however, a summary of the current evidence for the role of each 

pathway in senescence follows.       

 p53 is a tumor suppressor protein that elicits a senescence or cell death 

response in answer to various stimuli, including DNA damage, activation of 

oncogenes, and hypoxia [68].  In the setting of replicative senescence, p53 

functions by recognizing critically short telomeres as DNA damage and responds 

by engaging the cyclin-dependent-kinase-inhibitor p21.  p21 inhibits the 

CDK2/cyclin E complex required by the cell for G1/S transition.  As the telomeres 

of human fibroblasts approach senescence, they acquire DNA damage foci that 

include the proteins p53BP1 and phosphorylated ataxia telangiectasia mutated 

kinase (ATM) [69,70].  ATM phosphorylates and activates p53 (Figure 1.10).  
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 Despite the critical role of p53 in conveying senescence, inactivation of 

either p53 or pRb independently results in senescence of most human cell types 

[71,72].  This indicates the potential for the pRb pathway to function separately in 

initiating senescence in addition to the engagement of pRb via the p53 pathway.  

p16 is up-regulated significantly during telomere shortening and DNA damage-

induced senescence in most human cells [73,74].  p16 inhibits the cyclin 

D1/CDK4 complex that keeps pRb in an inactive (hypophosphorylated) state.  

Figure 1.10  Critical Pathways of Senescence.  The pathways critical 
to establishing and maintaining senescence growth arrest are shown.  
These include p53, pRb, p21 and Skp2 pathways. 
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Thus p16 up-regulation during telomere or DNA damage-induced senescence 

activates pRb, enforcing a G1/S arrest independent of the p53 pathway. 

Until very recently, all evidence pointed to the requirement for activation of either 

the p53 or pRb pathways for induction of senescence in human cells.  New 

evidence reveals that inactivation of Skp2, an E3-ubiquitin ligase targeting p27, 

induces senescence in a p53 and pRb-independent manner [75].  The most 

interesting facet of this discovery is the fact that Skp2 inactivation alone is 

insufficient to induce senescence.  However, in the setting of a combination of 

oncogenic stress (Ras signaling) and tumor suppressor (p19ARF and p53) 

inactivation, Skp2 inactivation induces senescence and inhibits the ability of Ras 

to cause transformation [33]. 

 While it is abundantly clear that p53 and pRb are important for initiating 

senescence growth arrest, the requirements for maintaining growth arrest via 

these pathways are less straightforward.  Recent work reveals that senescence 

induced by p53 activation in cell lines lacking p16 expression, such as human 

foreskin fibroblasts, can be reversed by p53 inactivation (in contrast to the 

previously accepted idea that all senescence is irreversible) [76].  However the 

vast majority of human cells express both p53 and p16 and in this case the 

authors hypothesize that once senescence-induced p16 is expressed, 

hypophosphorylated pRb establishes a permanently repressive chromatin state 

that continues to inhibit proliferation even if pRb is subsequently inactivated 

(Figure 1.11).  
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V. MiRNA Role in Regulation of Cell Proliferation/Senescence Pathways 

 

A. MiRNA Overview 

 For the most part, the discussion of critical pathways that regulate 

senescence has been centered around changes that occur at gene and protein 

levels.  However, this focus is just beginning to broaden and include investigation 

into the influence of small non-coding RNAs, particularly microRNAs (miRNA), in 

Figure 1.11 p16 maintains permanence of senescence growth arrest.  
Although both p53 and p16 are capable of inducing senescence growth arrest, 
Rb activation by p16 results in an irreversible growth arrest in contrast to the 
reversible arrest established by direct p53 activation.  Figure from Beausejour et 
al [76]. 
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senescence.  In 1998, Andrew Fire and Craig Mello (2009 Nobel laureates) 

discovered a non-coding RNA species, now known as RNA interference or RNAi, 

that could alter the expression of target mRNAs at the post-transcriptional level 

[77].  MicroRNA, an endogenous example of RNAi, has emerged over the last 

decade as a non-coding RNA pathway with capacity to influence expression of ≥ 

60% of the human genome.  MiRNAs can reside within introns of protein-coding 

genes, or can originate from their own genes in otherwise non-coding portions of 

the genome.  MiRNAs are transcribed by RNA polymerases pol II or pol III into 

long precursor transcripts called primary miRNA (pri-miRNA).  These precursors 

contain a characteristic hairpin and are cleaved within the nucleus to generate a 

shorter precursor miRNA.  These short (60-70 nt) hairpin precursors, called pre-

miRNA, are generated by an RNase III enzyme called Drosha.  Pre-miRNAs are 

then exported out of the nucleus by Exportin-5 and Ran-GTP.  In the cytoplasm, 

pre-miRNAs are recognized by another RNase III enzyme called Dicer that 

cleaves the pre-miRNA into the mature ds miRNA.  One strand of the ds miRNA 

duplex that is the mature miRNA (the complimentary strand is referred to as 

miRNA*) is loaded into the RISC complex which facilitates binding to a 

complementary sequence in a target mRNA.  Although the majority of studies 

suggest miRNAs bind to sites within the 3’UTR of the target mRNA, recent 

evidence also suggests the capability of miRNAs to bind at exonic sites within the 

open reading frame of the target mRNAs and the 5’-UTR [78,79,80,81].  Once 

loaded into the RISC complex, the miRNA directs repression of a target mRNA 
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by one of two methods: translational repression or degradation of the mRNA.  

(Figure 1.12)   

 

 

 

 

Figure 1.12 MiRNA Biogenesis and Mechanism.  MiRNAs are short 
non-coding RNA sequences that bind to complementary sequences 
within target mRNAs and attenuate the expression of the target mRNA 
by either translational repression or mRNA degradation.  Figure from 
Winter et al [82].    
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 The prevailing theory regarding which method is used is as follows:  The 

higher the degree of complementarity between bases 2-8 of the miRNA and the 

target mRNA sequence (usually perfect complementarity is required), the more 

likely mRNA degradation will be employed.  When imperfect complementarity 

exists, it is more likely that the miRNA will cause translational repression of the 

target mRNA [83].  In plants it is more common for the miRNAs to display high 

target complementarity and direct mRNA cleavage, whereas the opposite is true 

for humans (it is more common for miRNAs to direct translational repression of 

their targets) [84].           

 

B. MiRNA Role in Proliferation, Growth Arrest, and Lifespan Determination – 
Implications for Senescence     

 There is significant literature precedence indicating the ability of miRNAs 

to influence aging phenotypes in mice and C.elegans [85,86].  In addition, there 

is a wealth of evidence indicating a role for miRNA in regulating pathways critical 

to senescence.  For example, miR-34a appears to be a downstream effector in 

the p53 pathway [87,88,89,90].  Induction of miR-34a expression in human colon 

cancer cells resulted in senescent-like growth arrest characterized by down-

regulation of the E2F pathway and up-regulation of the p53 pathway [91].  In 

general, miRNAs trend towards up-regulation during aging [85].  In 2009, Maes 

et al demonstrated that miRNAs associated with reversible and irreversible 

growth arrest states (including replicative senescence, stress-induced premature 

senescence, and quiescence) were up-regulated in a step-wise manner over 

time [92].  Recent evidence reveals that the miR-290 cluster, which includes 8 
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polycistronic miRNAs, is down-regulated in Dicer-1 deficient mice and associated 

with increased telomere elongation and recombination [93].  Retinoblastoma-like 

2 protein (Rbl-2) was validated as a target for the miR-290 cluster in these 

Dicer1-deficient mice.  Rbl-2 inhibits expression of several DNA methylation 

proteins, resulting in hypomethylation of subtelomeric regions and telomere-

elongation phenotypes [93].  Thus an increasing and convincing body of 

evidence suggests that miRNAs have an important role in aging and regulating 

the tumor-suppressive barrier known as senescence.  However, current 

knowledge of which miRNAs are involved in regulating senescence is incomplete 

and based on piecemeal reports of specific miRNAs affecting senescence 

pathways.  Work within this thesis will reveal the first comprehensive report of 

miRNAs whose expression is differentially regulated during replicative 

senescence of human foreskin fibroblasts.  Further, experiments described 

herein will begin to delineate novel senescence-regulatory pathways in human 

foreskin fibroblasts controlled by the miRNAs we identify as involved in 

senescence.  Finally, work performed under the auspices of this thesis will reveal 

a connection between telomerase expression and expression of miRNAs 

involved in senescence and aging.      
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Specific Aims of this Research 

I. (Chapter II)  Validate a novel model predicting a dynamic 

conformational change upon telomerase assembly for domain III of 

Tetrahymena thermophila telomerase RNA (tTR). 

II. (Chapter III)  Identify miRNAs involved in regulating senescence and 

miRNAs affected by expression of hTERT in human foreskin 

fibroblasts 

III. (Chapter IV)  Elucidate the Role of miRNAs and TERT in 

Proliferation/Inflammation Pathways 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 2. Validate a novel model for the secondary structure of 
 Tetrahymena thermophila telomerase RNA (tTER) 

 

I. Introduction 

 Telomerase is a ribonucleoprotein reverse transcriptase that plays a 

critical role in pathways governing aging [94], lifespan [95,96], and tumorigenesis 

[97,98].  Recent work [99,100] as well as preliminary evidence described in 

subsequent chapters within this dissertation, suggests that telomerase influences 

cellular mortality by several independent mechanisms.  However, the most widely 

appreciated role of telomerase in regulating mortality is its role in telomere 

maintenance and extension.  Despite an evolutionarily conserved role for the 

telomerase complex in maintaining telomeres across multiple kingdoms, 

including metazoans, plants [101], and fungi [102], current understanding of the 

contribution of telomerase structure to telomerase function remains incomplete.  

Although there is a requirement for species-specific accessory proteins to obtain 

telomerase activity in vivo, an active telomerase complex can be reconstituted in 

vitro by expression of the catalytic subunit (TERT) and an RNA subunit (TR), 

which represents the minimal RNP complex.  The sequence and length of TERT 

shows substantial evolutionary conservation between organisms.  TERT contains 

RT domains homologous to those found in other reverse transcriptases [26,103].  

While TR sequence and length vary considerably among species,
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several secondary structural elements are highly conserved, implying a critical 

role for TR structure in facilitating telomerase activity [23,31].  Tetrahymena 

thermophila has emerged as a model organism for studying telomerase structure 

and function.  The current model of tTR secondary structure (Figure 2.1) is based 

on phylogenetic and mutational analyses, and supported by NMR data depicting 

solution structures of domains II [33] and IV [34,35].   

 

 

 

 

 

 

 

 

  

 

Figure 2.1 Current model for tTR secondary structure.  The 
currently accepted model for tTR secondary structure is based on 
phylogenetic comparisons, mutational analyses indicating the 
importance of certain structures (like the pseudoknot) for telomerase 
activity, and very limited footprinting data. 



33 
 

 Although the current model for tTR secondary structure fits well with 

published biochemical evidence, we believe (based on unpublished data from 

Legassie, Bonifacio, and Jarstfer) this model is insufficient to describe a 

conformational change in tTR upon assembly into the telomerase complex.  We 

propose a novel model to describe tTR secondary structure (Figure 2.2).   

Figure 2.2 Proposed model for tTR secondary structure.  The models shown 
above were derived based on SHAPE footprinting data.  This model differs from 
the currently accepted model primarily in the region of stem III.  Based on 
unpublished data, we believe tTR does not form a pseudoknot or triplet 
interactions in-solution.  These interactions are formed when tTR is in complex 
with tTERT. 
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 The evidence upon which we developed our model for tTR secondary 

structure was rendered via a highly sensitive footprinting technique called 

Selective 2’ Hydroxyl Acylation Analyzed by Primer Extension (SHAPE) [104].  

SHAPE is a quantitative structure analysis technique that offers an advantage 

over other footprinting techniques because it can detect with equal sensitivity the 

flexibility of all four nucleotides in a given RNA.  SHAPE footprinting is designed 

based on the premise that unpaired RNA residues are more conformationally 

flexible than those that are base-paired.  A conformationally flexible nucleotide 

can sample different conformations, thus making it more likely that the flexible 

nucleotide will at any given time be in a reactive conformation susceptible to 2’-

hydroxyl acylation by the hydroxyl selective acylating reagent N-methyl isatoic 

anhydride (NMIA).   

Evidence will be presented in this chapter to validate this novel model for 

tTR secondary structure that reveals dynamic changes between the in-solution 

and in-complex forms and an essential contribution of this shift in tTR 

conformation to telomerase activity.  We used SHAPE (Selective 2’-Hydroxyl 

Acylation analyzed by Primer Extension) footprinting to interrogate this dynamic 

model for tTR secondary structure by introducing 2 mutations that would singly 

interrupt predicted pseudoknot interactions and restore interactions essential for 

pseudoknot formation when present together in tTR.  An accurate model for tTR 

structure will engender an understanding of TR structure contribution to 

telomerase activity and facilitate attempts to utilize telomerase as an anti-cancer 

and anti-aging therapeutic target.  
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II. Results 

A. SHAPE of In-Solution tTR Mutants 

 To interrogate the potential for tTR stem III to form a pseudoknot in-

solution, we introduced two mutations to stem III – MS1 and MS2, designed to 

singly interrupt base-pairing essential to pseudoknot formation in in-solution 

tTR(Figure 2.3).  The compensatory mutant MS1-2, which contains both 

mutations, should assume an in-solution secondary structure similar to that of 

wild type tTR if a pseudoknot is present.  In contrast, if a pseudoknot is not 

formed in WT, in-solution tTR, the compensatory mutant will assume a 

secondary structure different from that of wild type tTR.   

To probe the effects of MS1 and MS2 mutations on tTR secondary 

structure, we analyzed the mutant tTR RNAs with SHAPE [104].  SHAPE is a 

quantitative RNA structure analysis technique that detects flexibility of each 

nucleotide in a given RNA to infer likelihood of that nucleotide being base paired.  

An example of a SHAPE sequencing gel is shown in figure Figure 2.4. 
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Figure 2.3 tTR stem III mutants.  Two mutants, MS1 and MS2, were 
designed to interrupt base-pairing essential to pseudoknot formation by 
stem III of tTR.  We hypothesize that tTR is incapable of forming a 
pseudoknot in-solution, but upon assembly into the telomerase complex 
forms triplets and a complete pseudoknot.  The mutations are shown in 
this figure depicting a stem loop for stem III for in-solution tTR and a 
pseudoknot for in-complex tTR.  Nucleotide bases are colored according 
to their conformational flexibility as indicated by previous experiments 
(unpublished, Legassie, Bonifacio, and Jarstfer).  Most flexible to least 
flexible are colored as follows:  red, yellow, blue, black.  Gray indicates 
insufficient data for that nucleotide. 
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SHAPE experiments with MS1 RNA (a) reveal increased flexibility for 

nucleotide regions 61-64, 74-76 compared to WT tTR (Figure 2.5d).  This is 

consistent with the hypothesis that the MS1 mutation affects base-pairing 

between these two regions of stem III.  MS2 SHAPE results (Figure 2.5b) reveal 

Figure 2.4 SHAPE footprinting gel of tTR mutants.  MS1, MS2, and 
MS1-2 tTR mutants were subjected to SHAPE footprinting with an 
internally-binding primer to provide high resolution data on the flexibility of 
nucleotides in Stem III.  Nucleotide position in tTR is indicated on the left 
of the gel and tTR mutants are annotated on the right-hand side.  T, D, 
and N indicate ddT ladder, DMSO control lane, and NMIA hit lanes, 
respectively. 
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increased flexibility in nucleotides 51-55, 58-59, 71-76, and 81-89.  There is also 

a decrease in flexibility of the region 92-94 compared to WT.  These changes are 

consistent with the ability of MS2 to force regional unfolding by destabilizing 

base-pairing interactions at the base of stem III.  SHAPE results for MS1-2 RNA 

(Figure 2.5c) reveal increased flexibility for nucleotides 53-55, 58-62, 72, 76, 83-

84, 86 compared to WT.  These results are consistent with the potential for MS1-

2 to significantly alter the ability of stem III to form a stem-loop or pseudoknot.   
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Figure 2.5 In-solution SHAPE profiles of tTR mutants.  Flexibility of each 
nucleotide for in-solution tTR RNAs a) MS1, b) MS2, c) MS1-2, and d) WT tTR 
(courtesy of Jason Legassie) was probed by SHAPE.  The normalized hit 
frequency for each nucleotide is represented in the graph.  Mutated regions of 
tTR are highlighted with black bars in a, b, and c. 

 
 
 
 

B. tTR Pseudoknot Mutations Impact Telomerase Activity 

To determine whether the conformational changes conferred by MS1 and 

MS2 mutations within the pseudoknot region of tTR impact telomerase activity, 

we reconstituted telomerase bearing the MS1 and MS2 mutations using an in 

vitro rabbit reticulocyte lysate expression system and tested the activity of the 

telomerase complexes with the direct telomerase assay [105].  As expected 

since the tTR mutants were designed to interrupt base-pairing essential to 

pseudoknot formation, the single mutants MS1 and MS2 gave rise to telomerase 
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complexes with substantially impaired activity, whereas the compensatory mutant 

MS1-2 showed processive elongation of the telomeric primer with only slightly 

reduced activity compared to wild type (Figure 2.6).   
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Figure 2.6 MS1-2 compensatory mutant restores telomerase activity.  
Lanes 1-3 represent MS1, MS2, and MS1-2 telomerase extension assays 
from crude reticulocyte lysate, respectively.  Lanes 4-7 represent WT, 
MS1, MS2, and MS1-2 telomerase extension assay results using 
immunopurified telomerase complexes.  Lanes 4-7 courtesy of Ryan 
Hallett and Brian Bower. 
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III. Discussion 

Although telomerase RNA sequence and length varies considerably 

among species, phylogenetic comparisons reveal the conservation of several 

secondary structural features.  This implies that TR structure may play an 

essential role in permitting telomerase function.  Tetrahymena, a ciliated 

protozoan, has emerged as a model organism for studying TR structure and 

function.  The currently accepted model for tTR secondary structure is based on 

phylogenetic analyses [42,106], NMR structures for domains II [33] and IV 

[34,35], and mutational analyses for other tTR domains [38].  Although this model 

fits well with biochemical evidence for tTR structure in the telomerase complex, 

we believe, based on SHAPE data for in-solution tTR (unpublished work, 

Legassie, Bonifacio, and Jarstfer) that this model is insufficient to describe the 

structure of tTR in-solution and a conformational change in tTR associated with 

telomerase assembly.  Based on this data, we have proposed a novel model for 

tTR secondary structure (Figure 2.7).  Our model for tTR secondary structure 

predicts dramatic changes in tTR conformation as it shifts from the in-solution to 

in-complex form.  Specifically, this model differs from the currently accepted 

model for tTR conformation by indicating a lack of triplet interactions and 

pseudoknot formation for in-solution tTR.  We hypothesize that tTR undergoes a 

dramatic shift in conformation of domain III to allow pseudoknot formation in the 

telomerase complex.  Evidence from tTR mutational analyses and subsequent 

SHAPE experiments in this chapter confirm that the secondary structure for tTR 

domain III undergoes this shift as tTR is assembled into the telomerase complex.   
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Figure 2.7 Models for tTR secondary structure.  The currently 
accepted model (A) for tTR secondary structure depicts domain III as a 
pseudoknot.  Unpublished SHAPE data (courtesy of Jason Legassie), is 
consistent with a dynamic model for tTR shown in (B) and (C).  These 
SHAPE results indicate the likelihood for tTR domain III to form a stem 
loop in-solution, and the formation of a pseudoknot complete with base-
triplet interactions upon assembly into the telomerase complex.  Models 
are colored based on SHAPE reactivity of each nt as follows:  red > 
yellow > blue > green > black.  Gray indicates lack of sufficient data. 
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 To validate this new model depicting a dynamic secondary structure for 

domain III of tTR, I created the domain III mutants MS1, MS2, and the 

compensatory mutant MS1-2, which contains both mutations (Figure 2.3).  If our 

hypothesis regarding tTR secondary structure is correct, the in-solution single 

mutants MS1 and MS2 and compensatory mutant MS1-2, should yield altered 

RNA flexibility profiles compared to wild type.  Whereas, if domain III of in-

solution tTR is capable of forming a pseudoknot, the compensatory MS1-2 

mutant should yield an in-solution SHAPE profile similar to that of wild type tTR.  

As expected, the single mutants MS1 and MS2 yielded SHAPE profiles with 

increased flexibility in the domain III region (Figure 2.5).  Importantly, the 

compensatory mutant MS1-2 yielded an in-solution SHAPE profile revealing 

altered flexibility of domain III compared to wild type tTR.  If a pseudoknot was 

present in tTR in-solution, one would expect the in-solution SHAPE profile of 

MS1-2 RNA to mimic that of WT tTR.  It is well established that that the triple 

helix resulting from pseudoknot formation is essential to telomerase activity in 

humans and yeast [107].  It is also clear that disruption of pseudoknot base-

pairing in tTR prevents assembly of an active telomerase complex in vivo [108].  

Thus although a pseudoknot conformation for domain III of tTR is essential for 

telomerase activity, presumably it does not form in solution, and assumption of 

this pseudoknot conformation is an event that occurs during assembly of the 

telomerase complex.     

To confirm that the structure assumed by the MS1-2 mutant is biologically 

relevant, telomerase was assembled in vitro with MS1-2 RNA and the ability of 
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this mutant telomerase to extend a telomeric primer was measured with the 

direct telomerase assay.  One would anticipate that MS1 and MS2 mutant RNAs 

(singly) should result in an inactive telomerase complex when assembled with 

TERT by disrupting pseudoknot formation.  Likewise, the compensatory mutant 

MS1-2 should restore telomerase activity by facilitating interactions crucial for 

pseudoknot formation.  Consistent with these expectations, MS1 and MS2 RNAs 

resulted in inactive telomerase complexes, whereas telomerase assembled with 

MS1-2 RNA showed only slightly reduced activity compared to WT telomerase 

(Figure 2.6).   

 

IV. Future Directions 

SHAPE of tTR mutants MS1, MS2, and MS1-2 in the telomerase complex 

is in progress and will be completed by future graduate students using the 

constructs that I designed.  The results of these experiments will help define the 

details of tTR secondary structure in the telomerase complex.  Preliminary results 

(experiments performed within the Jarstfer lab using these tTR mutant 

constructs) indicate a SHAPE profile for MS1-2 in-complex RNA similar to that of 

in-complex WT tTR.  In addition, constraints from SHAPE data (provided by 

Jason Legassie, PhD) are being combined with other biochemical data for tTR to 

develop a model for tTR using in silico approaches.  These experiments will 

clarify details of in-solution and in-complex tTR secondary structure. 
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V. Methods 

A. Site-directed mutagenesis and transformation to create tTR mutants. 

tTR mutants were created by PCR site-directed mutagenesis from the pTet-

telo vector that encodes WT tTR modified with a 5’ hammerhead ribozyme 

sequence (HH-tTR).  Primers used to create tTR mutants MS1, MS2, and 

MS1-2 are shown in table 2.1.  The 5’ and 3’ primers are designed to have 5’ 

overlapping complimentary sites along the underlined portions.  Site-directed 

mutagenesis reactions were designed based on a protocol from Zheng, et al 

[109].  Mutagenesis reactions contained 1X Pfu buffer (Stratagene), 50 ng 

HH-tTR plasmid, 125 ng 5’-primer, 125 ng 3’-primer, 1 µl dNTP mix 

(Stratagene), 2.5 units (1 µl) PfuTurbo DNA polymerase (Stratagene), and 

ddH2O to a final volume of 50 µl.  Each mutagenesis reaction was subjected 

to the following thermal cycling parameters:  95 °C for 30 secs, 95 °C for 30 

secs, 55 °C for 1 min, 68 °C for 6 min (2 min/kb).  The underlined steps were 

repeated for 18 cycles.  Each reaction was treated with 10 units DpnI to get 

rid of parental HH-tTR DNA at 37 °C for 1 hour.  1 µl of each reaction was 

used to transform Max efficiency DH5α competent cells (Invitrogen) and 25 µl 

of each transformation reaction was plated onto LB Amp+ plates.  Mutant tTR 

plasmids were amplified, isolated by boiling lysis, and precipitated with 

isopropanol.  Mutants were verified by sequencing using pUC19f and pUC19r 

primers (Table 2.2).        
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B. Generation of SHAPE-RT constructs 

SHAPE constructs were generated by addition of a 3’ extension to the mutant 

tTRs via PCR.  This 3’ extension is designed to facilitate binding of reverse 

transcriptase, an essential step of the SHAPE footprinting process.  PCR was 

carried out using primers 5’-tTR+HH and 3’-tTER+3’-Linker (Table 2.2) and 

standard GoTaq DNA polymerase (Promega) reaction conditions utilizing 1X 

colorless GoTaq Reaction Buffer (Mg2+ free) supplemented with 1.5 mM Mg2+.  

tTR SHAPE-RT constructs were phenol chloroform extracted and EtOH 

precipitated.  Mutant tTR SHAPE RNA constructs were transcribed with the 

T7 RNA polymerase kit (Ampliscribe).  After transcription, 5’ hammerhead 

cleavage was encouraged (generating the native 5’ end for tTR) by addition of 

12 mM MgCl2 and incubation at 45 °C for 1 hour.  The reaction was then 

treated with DNase, EtOH precipitated, and resuspended in TE.  tTR mutant 

RNA was resolved by PAGE on a 10% acrylamide, 20 X 20 cm, denaturing 

gel, isolated by UV, then purified by a modified crush and soak method 

[105,110], and resuspended in TE. 

   

C. NMIA hit reactions 

1 pmol of RNA was snap annealed in ddH2O by heating to 95 °C for 2 min, 

then cooling on ice for 5 minutes.  Then 1X HIT buffer was added from a 5X 

stock (5X stock contains 250 mM HEPES (pH 8.0) and 10 mM MgCl2) and the 

solution was incubated at 30 °C for 5 minutes.  RNA modification was initiated 

by addition of 1 µl NMIA (100 mM in anhydrous DMSO) or 1 µl DMSO as 

control.  This solution was tapped gently to mix then incubated at 30 °C for 90 



48 
 

minutes.  Each HIT reaction including DMSO controls was then immediately 

quenched by addition of 80 µl H2O, 4 µl of 5M NaCl, and 200 µg/ml glycogen, 

then EtOH precipitated and resuspended in 10 µl of TE (pH 8).  Half of each 

HIT reaction (5 µl) was archived for later use in -80 °C. 

 

D. Superscript III reverse transcriptase reaction 

NMIA modifications on tTR mutants were mapped by annealing 5’-[32P]-

labeled conRT or C103 primer to the RNA with the following thermal cycler 

parameters:  95 °C for 1 min, 65 °C for 5 min, and 35 °C for 10 min.  Then 2 

µl of 5X First-Strand Buffer (Invitrogen) reverse transcription buffer, 0.5 µl 100 

mM DTT, and 0.5 µl 10 mM dNTP mix was added to each RNA solution.  One 

half of the total thymidine in the dNTP mixtures used for ddT reactions was 

ddTTP. Then 3 µl SHAPE buffer (2 µl 5X FSB, 0.5 µl 100 mM DTT, 0.5 µl 10 

mM dNTP mix) or ddT buffer (containing dNTP mix that is supplemented with 

ddTTP) was added to each primer/NMIA-RNA solution and this was heated at 

50 °C for 1 min.  1 µl of Superscript III Reverse Transcriptase (Invitrogen) was 

aded to each solution, tapped to mix, then the solution was incubated at 50 

°C for exactly 4 minutes.  Immediately following this incubation, 10 µl 400 mM 

NaOH was added to each reaction to degrade the RNA, and the samples 

were incubated at 95 °C for 5 minutes to inactivate the reverse transcriptase.  

Each solution was then neutralized and prepared for preciptaion by the 

addition of 14.5 µl Quencher solution (10 µl 400 mM HCl, 3.5 µl sodium 

acetate, and 1 µl 5 mg/ml glycogen per reaction).  Reactions were EtOH 

precipitated, washed in 70% EtOH, then resuspended in 5 µl formamide 
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denaturing loading buffer (80% formamide, 0.5X TBE, 4 mM EDTA pH 8, 

0.01% bromophenol blue and cyanol blue dyes). 

 

E. Sequencing gel electrophoresis 

2.5 µl of the radiolabled extension products from step 4 were resolved on a 40 

cm X 40 cm denaturing, 8% acrylamide gel (29:1 acrylamide: 

bisacrylamide/7M urea, 90 mM Tris/borate, 2 mM EDTA) at 2000 volts (70 

watts) for approximately 1.5 hours.  The gel was dried at 80 °C for 45 minutes 

on filter paper, then exposed to a phosphorscreen overnight before imaging 

on a Storm 860 PhosphorImager (Molecular Dynamics).  Gel images were 

visualized on ImageQuant 5.1. 

 

F. SAFA data analysis 

Individual band intensities of NMIA and DMSO lanes were integrated using 

the program SAFA [111].  SAFA utilizes Lorentzian curve integration to 

determine band densities with a high degree of accuracy.  Hit intensities were 

normalized in the following way.  Band intensity was corrected for background 

by subtracting away the density of the corresponding band in the DMSO 

control lane.  Band intensities were then ranked in descending order, and the 

top 2% of intensities by value were thrown out.  The values representing the 

next 3-8% were averaged and this average was set to 100%.  All other 

intensities were divided by this average and multiplied by 100 to give a hit 

frequency percentile ranging 1-100.   
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G. In vitro reconstitution of telomerase 

tTERT was translated and assembled with tTER using a TNT Coupled 

Reticulocyte Lysate Systems kit (Promega).  In brief, each 50 µl reaction 

contained 1µg pET-28a-tTERT, 75 ng tTER (or tTER mutant RNA), 25 µl 

rabbit reticulocyte lysate (RRL), and 34 pmole of [35S]-methionine (1175 

Ci/mmol (Perkin-Elmer) plus other reaction components specified in the kit.  

Retic reactions were incubated at 30 °C for 90 min.   

 

H. Telomerase Assay to test effect of tTER mutations on activity 

Each 20 μl telomerase assembly reaction contained 10 µl of crude RRL 

reaction, 1X telo buffer (50 mM Tris pH 8.3, 1.25 mM MgCl2, 5 mM DTT), 0.33 

μM [α-32P]-dGTP (3000Ci/mmol), 2 μM telomeric p5 primer (Table 2.2), 100 

μM dTTP, and 10 μM dGTP.  Reactions were incubated at 30 °C for 1 hour.  

Proteins were removed from the reaction by phenol/chloroform/isoamyl 

alcohol extraction and radio-labeled primer extension products were 

recovered by EtOH precipitation with 0.4M ammonium acetate, 100 μg/ml 

glycogen, and a 5’-[32P]-labeled 100 nt oligonucleotide as counter ion, carrier, 

and loading control, respectively.  Extension products were resuspended in 3 

μl TE, combined with 3 μl 2X denaturing loading buffer and resolved by PAGE 

on an 8% acrylamide, denaturing, 0.4 mm thick, 40 X 40 cm sequencing gel 

run at 70 watts for 1 hour.  Gels were transferred to filter paper, dried for 1 

hour at 80 °C, and exposed to a phosphor screen overnight.  Phosphor 

screens were imaged using a Storm 860 PhosphorImager (Molecular 

Dynamics) and ImageQuant 5.1 software.        
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Table 2.1  Primers used to create tTR mutants via site-directed 
mutagenesis.   
 

 5’ primer 3’ primer 

MS1 CTAATTGGTATCCATATATCAGCA

CTAGATTTTTGG 

GCTGATATATGGATACCAATTAGGTTCA

AATAAG 

MS2 CACTTATTTGATGGAAATTGGTAA

GGTTATATCAG 

TACCAATTTCCATCAAATAAGTGGTAAT

GCGG 

MS1-2 CTTATTTGATGGAAATTGGTATCC

ATATATCAGCACTAGATTT 

GCTGATATATGGATACCAATTTCCATCA

AATAAGTGGTAATGCG 

 
 

 

 

Table 2.2  Primers used for tTR SHAPE project. 

 

Primer 
name 

Sequence 

pUC19f GTAAAACGACGGCCAGT 

pUC19r AACAGCTATGACCATG 

5’-tTR+HH TCTAATACGACTCACTATAGGG 

3’-tTER+3’-
Linker 

GAACCGGACCGAAGCCCGATTTGGATCCGGCGAACCGGATC
GAAAAATAAGACATCCATTG 

conRT GAACCGGACCGAAGCCCG 

C103 GATAGTCTTTTGTCCCGC 

p5 GTTGGGGTTGGGGTTGG 

 



 
 

Chapter 3. Identify miRNAs involved in regulating senescence and 
 miRNAs affected by expression of hTERT 

 

Adapted from:  Bonifacio, L. and M. B. Jarstfer, MiRNA Profile Associated with 

Replicative Senescence, Extended Cell Culture, and Ectopic Telomerase 

Expression in Human Foreskin Fibroblasts.  Accepted in PlosOne, 2010. 

 

 

I. Introduction 

 Senescence is a cellular state characterized by loss of replicative potential 

and continued metabolic activity that appears to function as a tumor suppressor 

mechanism but also contributes to aging.  Several diverse stimuli including DNA 

damage, oncogene expression, and telomere attrition can lead to senescence. 

Even though diverse stresses are capable of inducing senescence, p53, Rb, and 

more recently Skp2 have been identified as critical pathways common to 

initiation, execution and maintenance of senescence-associated growth arrest 

[63,67,75].  Highlighting the importance of p53 in senescence and the role of 

senescence as a barrier against tumorigenesis, restoration of p53 activity in p53-

depleted tumors can cause activation of senescence and tumor regression [62].  

These critical pathways of senescence are controlled by a complex network that 
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regulates chromatin remodeling, proliferation arrest, cell remodeling, activation of 

the senescence associated secretory pathway, and inhibition of apoptosis [63].  

While major effectors of these critical pathways have been identified, a complete 

understanding of this molecular network is still limited.   

 Accumulating evidence suggests a role for miRNAs in conveying 

senescence.  MiRNAs are small, 19-23 nucleotide non-coding RNAs that repress 

the expression of target genes by either preventing translation of the target 

mRNA or causing its degradation.  Recent work by Maes et al [92] compared the 

miRNA profile of replicative senescence, premature senescence, and serum-

starved cells in WI-38 fibroblasts.  In this chapter, the miRNA profile for 

replicative senescence in human BJ fibroblasts is presented and compared to the 

miRNA expression profile of BJ fibroblasts immortalized by the stable 

transfection of the catalytic subunit of human telomerase (hTERT).  In contrast to 

WI-38 fibroblasts, BJ fibroblasts express negligible amounts of p16.  A 

comparison of the miRNA profile observed in BJ cells to that observed in WI-38 

cells suggests a p16-independent senescence-associated function for several 

miRNAs that were differentially expressed in both cell lines.  In addition, the 

ability of several miRNAs to specifically affect senescence-induced growth arrest 

in BJ cells is demonstrated by comparing their expression to that observed in late 

passage immortalized BJ cells and wild type (WT) contact-inhibited quiescent BJ 

cells. 

Importantly, the observation that several miRNAs are down-regulated over 

time in BJ-hTERT cells (in contrast to their up-regulation during senescence of 
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WT cells) and one miRNA is up-regulated in late-passage BJ-hTERT cells (in 

contrast to down-regulation during senescence) suggests that TERT can affect 

regulation of senescence associated miRNAs.  Finally, despite an abundance of 

evidence linking miR-34a to senescence [112], evidence in this chapter reveals 

that it is up-regulated similarly in senescent and late passage BJ-hTERT cells.  

This may imply that programmed changes in miRNA expression associated with 

aging independent of senescence can regulate miR-34a expression, at least in 

BJ fibroblasts.      

 

II. Results 

A. Characterization of senescence and extended-passage WT and immortalized 
BJ cells 

 

 

 BJ fibroblasts were passaged to approximately 50 population doublings 

before population doubling time and morphologic changes indicated senescence 

in the WT cell line, and senescence was confirmed by beta-galactosidase 

staining (Figure 3.1a, b).  While the WT fibroblasts grew more slowly as they 

approached senescence, the immortalized BJ fibroblasts maintained a consistent 

population doubling time regardless of their passage age. Senescent wild type 

BJ cells were notably larger and flattened with increased lamellipodia compared 

to their early passage counterparts.  The morphologic changes noted in the WT 
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cell line during senescence were absent in the immortalized late-passage BJ 

cells (Figure 3.1c, d).   

 

 

B. MiRNA profile of senescence in BJ fibroblasts 

 To identify those miRNAs that are differentially expressed during 

replicative senescence of BJ fibroblasts, a miRNA microarray platform was 

utilized that probes for expression of 470 human miRNAs and 64 human viral 

miRNAs, based on the Sanger miRNA database version 9.1.  Microarray results 

Figure 3.1 Beta-galactosidase staining in senescent WT and late 
passage immortalized cells.  Beta-galactosidase staining is shown as blue 
cells in senescent WT culture (A) and is absent in the late-passage 
immortalized BJ cells (B).  Senescent BJ fibroblasts (C) are flattened and 
enlarged compared to early passage WT BJs.  Late-passage BJ-hTERT 
cells (D) do not display senescence-associated morphologic changes.   
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reveal 83 miRNAs whose expression changed during senescence by more than 

1 standard deviation compared to the mean expression of each miRNA in early 

passage WT fibroblasts (Figure 3.2).  Since each total RNA sample was arrayed 

in duplicate, one of the duplicate signals for a given miRNA must have indicated 

a change in expression of more than 1 standard deviation from the mean early 

passage signal for that miRNA to be identified as differentially expressed during 

senescence.  To assist in parsing out those miRNAs that were changed during 

senescence due to a direct and specific senescence association, the array data 

from senescent BJ cells and BJ-hTERT cells that were passaged for an equal 

length of time was compared and contrasted (Figure 3.3).   

 The microarray results corroborate suggested senescence-associated 

roles for several miRNAs. The miR-424-503 polycistron as well as miRs-450, 

542-3p and 542-5p, which are all within 7kb of the 424-503 polycistron, are 

significantly up-regulated in senescent BJ cells.  This correlates well with 

previously published evidence indicating that miR-424 and 503 induce G1 arrest 

when over-expressed in human THP-1 cells by targeting several cell-cycle 

regulators [112].  Data from the microarray described here also reiterate the 

senescence associated up-regulation of miR-373* and miR-663 and down-

regulation of miR-197 observed in WI-38 cells [92], although less is known about 

the targets of these miRNAs. 

The expression of several miRNAs that appear to be regulated during 

senescence was validated with quantitative real-time PCR (RT-PCR).  MiRNAs 

for the validation experiment were chosen based on the significance of the 
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microarray results and published evidence suggesting a role for the selected 

miRNAs in senescence.  RT-PCR data confirm the differential expression of 

several miRNAs during senescence for which considerable published evidence 

suggests a role in regulating senescence or proliferation-associated pathways, 

including miR-34a [113,114,115] and miR-146a [116,117] (Table 3.1).   

The senescence-associated expression of several miRNAs with less 

abundant evidence for senescence-associated function was also validated.  This 

is the first data to reveal that expression of miR-155, a proto-oncogenic miRNA 

[118,119], is regulated during replicative senescence, consistent with the 

observed down-regulation in one study of aged WI-38 cells [120] and in aging in 

humans [121].  MiR-155 was ten-fold down-regulated during senescence of WT 

BJ fibroblasts.  MiR-10b (a miRNA tied to invasion and metastasis in several 

cancer types) [122,123], and miR-143 and miR-145 (polycistronic miRNAs that 

are down-regulated in tumors) [124] were also among the most significantly up-

regulated (approximately 7-fold, 3.5-fold, and 3.5-fold, respectively) miRNAs 

during senescence. 
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Figure 3.2 MiRNAs differentially expressed during replicative senescence 
in BJ fibroblasts.  83 miRNAs were differentially expressed (changed by more 
than 1 SD from the mean expression in early passage) during senescence.  
Array results are depicted for each duplicate (1 duplicate is represented by each 
column in the heatmap) of the senescent BJ RNA sample relative to expression 
in early passage BJ WT cells. 
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Figure 3.3 MiRNAs regulated in a senescence-specific manner in BJ 
fibroblasts.  Senescence-associated miRNAs that are not differentially 
regulated in late passage BJ-hTERT cells.  Array results are depicted for 
each duplicate of the senescent BJ RNA sample 
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MiRNA 
Senescent WT 

BJ fibroblasts* 

Early passage 

BJ-hTERT cells* 

Late passage 

BJ-hTERT cells* 

Early passage 

quiescent WT 

BJ cells* 

Let7c 0.3 0.8 0.7 0.7
¥
 

10b 7.0
¥
 0.6 13.4

¥
 4.4

¥
 

19a 1.5 3.3 3.5 1.5
¥
 

21 0.4 1.9 2.3 0.7 

23a 3.4
¥
 1.3 0.9 2.3

¥
 

26a 2.9
¥
 1.1 1.2 2.1

¥
 

34a 2.6
¥
 0.9 2.2

¥
 1.3

¥
 

143 3.6 0.3 0.1 n.d. 

145 3.4 0.3 0.1 1 

146a 3.4
¥
 4.9

¥
 55.4

¥
 2.1 

155 0.1 1 3.2 n.d. 

199a-3p 3.2 1.4 1.7 2.2
¥
 

542-5p 3.6
¥
 1.5 2.3 1.5 

   

Table 3.1  RT-PCR validation of miRNA expression in senescent and 
quiescent BJ cells and late-passage BJ-hTERT cells.  Values reflect average 
expression (experiments performed in triplicate) relative to the average 
expression of each miRNA in early passage WT cells.  The expression of each 
miRNA was normalized to that of U6 RNA.  Late passage in the wild type cell line 
indicates senescent cells.  *Values reflect expression relative to that in early 
passage BJ WT cells (set equal to 1).  ¥ Denotes statistically significant values 
relative to 95% confidence interval for experiments in early passage BJ WT cells.  
n.d. means not detected. 
  

 

 



61 
 

 

C. Expression of senescence-associated miRNAs during quiescence 

 In order to determine if the miRNAs validated as being differentially 

expressed during replicative senescence are associated specifically with 

replicative senescence pathways or more broadly associated with cell cycle 

arrest, real-time PCR was used to reveal expression levels of selected miRNAs 

in early passage, quiescent BJ fibroblasts.  For this application, RNA was 

isolated from BJ WT cells that were population doubling 7 and maintained in a 

confluent, contact inhibited state for 3 days.  Of the miRNAs identified as 

regulated during senescence and validated with RT-PCR, 6 were confirmed to be 

up-regulated in senescence and either unchanged or down-regulated (in the 

case of miR-143) in quiescent cells (Table 3.1).  MiR-146a is up-regulated 3.4-

fold during replicative senescence and lacks a significant change in expression 

during quiescence.  MiR-145, which is approximately 3.5-fold up-regulated during 

senescence, is undetected in the quiescent samples.  The expression of its 

polycistronic counterpart, miR-143, is unchanged during quiescence relative to 

expression in early passage cells.  MiR-23a, a miRNA capable of inducing 

apoptosis in HEK cells [125], is 3.4-fold up-regulated during senescence and 

shows no change during quiescence.  Three of the miRNAs screened for 

expression during quiescence were up-regulated during both senescence and 

quiescence (miR-199a-3p, miR-26a, and miR-10b) and one was down-regulated 

in both senescent and quiescent samples (miR-155). 
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D. MiRNA profile of extended passage immortalized BJ fibroblasts 

 To determine if changes in the miRNA footprint of senescent cells were 

related to extended cell culturing, a BJ cell line (BJ-hTERT) rendered immortal by 

the stable ectopic expression of hTERT, the telomerase catalytic subunit, was 

utilized.  BJ-hTERT cells experienced the same cell culture conditions as the WT 

cells and were only differentiated from the WT cell line by the expression of 

hTERT.  RNA from BJ-hTERT cells was used to reveal effects of long term cell 

culture and the expression of telomerase on miRNA expression.  The expression 

of a few miRNAs increased significantly over time in the immortalized cell line in 

contrast to a small increase or a decrease over time in the wild type BJ cells 

(Figure 3.4).  One of the most significant examples of this is hsa-miR-155, an 

oncogenic miRNA [118].  MiR-155 was expressed at similar levels in early 

passage WT and immortalized BJ fibroblasts soon after transfection (Table 3.1).  

However, miR-155 levels increased approximately three-fold in the late passage 

BJ-hTERT cells whereas in senescent WT cells miR-155 decreased ten-fold 

relative to early passage WT cells.  In addition, miR-146a increased 10-fold in the 

late passage immortalized cell line when compared to the early passage 

immortalized cells, whereas it increased only 3.4-fold in senescent WT cells.   

MiR-146a levels were also higher in early passage BJ-hTERT cells compared to 

the early passage WT cells.  Finally, whereas miR-143 and miR-145 were 

significantly up-regulated in senescent BJ cells, these miRNAs were down-

regulated approximately 2 and 3-fold respectively in late-passage BJ-hTERT 

cells. 
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Figure 3.4 MiRNAs whose expression changed over time in BJ-
hTERT cells.  83 miRNAs were differentially expressed (changed by 
more than 1 SD from the mean expression in early passage) during 
extended culturing of BJ-hTERT cells.  Array results are depicted for 
each duplicate of the late passage BJ-hTERT RNA sample relative 
to expression in early passage BJ-hTERT cells. 
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III. Discussion 

 Senescence is the result of complex input from several pathways.  Recent 

direct and indirect data indicate a role for miRNAs in regulating senescence 

[92,116,126,127].  In this chapter, an investigation of the roles for miRNAs in 

senescence was initiated by examining replicative senescence in BJ fibroblasts.  

Replicative senescence requires significant exposure to cell culture conditions, 

which potentially influences miRNA expression independently of senescence.  

For example, recent work reveals an age-related increase in DNA methylation in 

multiple cell types, including telomerase positive stem cells [52,128].  Further, 

this hyper-methylation of was shown to be present in both primary cell lines and 

extended-passage cell culture [51].  This data suggests the potential for 

programmed genetic changes to contribute to cellular aging independent from 

senescence.  To differentiate the impact of extended culture on the miRNA 

profile from changes in miRNA expression related specifically to senescence, the 

expression of miRNAs in late passage immortalized BJ-hTERT cells and 

senescent WT BJ fibroblasts were compared.   

 

A. MiRNAs with Significant Link to Senescence Pathways 

 Of the 470 human miRNAs and 64 human viral miRNAs screened, 83 

showed differential expression in BJ fibroblasts during replicative senescence.  

Many of the miRNAs up-regulated in senescent BJ cells, as revealed in the array 

data, could be plausibly linked to senescence via published data that supports a 

role for the given miRNAs in a senescence-associated pathway.  For example, 
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the miR-424-503 polycistron, miR-542-5p and 3p, and miR-450, all of which are 

likely to be part of the same primary transcript [112], are up-regulated 

significantly in senescent BJ cells.  These results are consistent with previous 

reports showing that miR-424 and miR-503 are capable of inducing G1 arrest in 

multiple cell types [112,129].  These data also corroborate the up-regulation of 

miR-373* and miR-663 and down-regulation of miR-197 observed in senescent 

and quiescent WI-38 cells [92].  While little is known about the pathways 

regulated by these miRNAs, the fact that these miRNAs are regulated in 

replicatively senescent BJ cells implies a p16-independent senescence function. 

Notably, array and RT-PCR results assisted in identification of a pair of 

miRNAs with previously characterized roles in cancer cells, but an unclear role in 

regulating proliferation of normal human cells.  MiR-143 and miR-145, both 

processed from the same primary transcript, are up-regulated approximately 3.5-

fold during senescence in WT BJ cells and either show no change or are down-

regulated in the quiescent BJ cells.  Further, both miRNAs are significantly down-

regulated in late-passage BJ-hTERT cells.  Together with the reported down 

regulation of miR-143 and miR-145 in several cancer cells, this suggests that 

miR-143 and miR-145 have a general role in regulating cellular proliferation and 

may function as tumor suppressor miRNAs.  Consistent with this hypothesis, 

forced expression of these two miRNAs in cancer cells resulted in decreased 

growth [130].  In Chapter 4, the ability of miR-143 to influence growth arrest in BJ 

cells will be examined.     
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B. MiRNAs Affected by TERT Expression and Extended Cell Culture 

 Surprisingly, the expression pattern of some miRNAs changed differently 

overtime in late-passage immortalized BJ cells when compared to the WT 

senescent BJ cells.  MiR-146a, which appears to function in a negative feedback 

loop to suppress the senescence associated secretory pathway [116] is 

expressed at 5-fold higher levels in early passage BJ-hTERT cells, relative to 

early passage WT cells, and undergoes an even more pronounced up-regulation 

in late passage BJ-hTERT cells (10-fold higher in late passage BJ-hTERT 

compared to senescent BJ cells).  MiR-146a has been shown to down-regulate 

IRAK1 (part of the IL-1 signaling pathway) in response to inflammatory signaling 

that occurs during senescence [116].   Another major inflammatory signaler, the 

Wingless family (Wnt) proteins, participate in pathways controlling differentiation, 

inflammation, and tumorigenesis [131].  Evidence supports the altered regulation 

of Wnt genes in cells which have bypassed senescence and undergone 

transformation.  For instance, the Wnt2B gene is in a chromosomal region known 

to be deleted and rearranged in a variety of cancers [132].  In addition, a recent 

report revealed that hTERT facilitates Wnt signaling by binding BRG1, a histone 

remodeling protein that signals through the β-catenin pathway, to affect 

proliferation and cell survival of progenitor cells [133].  Perhaps ectopic 

expression of TERT in a somatic cell line such as BJ fibroblasts stimulates robust 

Wnt and pro-inflammatory signaling causing up-regulation of miR-146a as part of 

a negative feed-back loop. 
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 Another miRNA exhibiting a significant increase in expression over time in 

BJ-hTERT cells is miR-155.  This is in contrast to a gradual decrease over time 

in WT BJ cells with an ultimate 10-fold down-regulation at senescence compared 

to expression during early passage populations.  The down-regulation of miR-

155 during senescence in BJ cells is consistent with published data indicating its 

role in promoting tumorigenesis [134].  MiR-155 expression is induced by a 

number of inflammatory mediators and is directly induced by AP-1 binding within 

its promoter [135].  AP-1 is a validated suppressor of the hTERT promoter in 

human cells [136].  It’s possible that the over-expression of hTERT in BJ 

fibroblasts activates a negative feedback pathway that up-regulates AP-1, 

thereby inducing expression of miR-155.  Alternatively, if ectopic expression of 

hTERT engages the Wnt pathway as has been proposed [133], any number of 

the resultant up-regulated inflammatory modulators may be involved in the up-

regulation of miR-155 in late-passage BJ-hTERT cells.        

 Although miR-34a has been linked to senescence via numerous 

publications [87,91,92], we demonstrate up-regulation of miR-34a in late-

passage BJ-hTERT cells to a similar degree as that observed in senescent WT 

cells.  Based on the previous observation that miR-34a is more frequently down-

regulated in colorectal cancer cells compared to adenomas, in contrast to the 

frequent down-regulation of miR-143 and miR-145 in both cancer cells and 

adenomas, it has been implied that miR-143 and miR-145 regulate processes 

implicated in earlier phases of tumorigenesis [130].  Thus, I postulate that miR-

143 and miR-145 are critically involved in regulating the G1/S transition, whereas 
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miR-34a may have broader roles in regulating stress response, including the 

stress of long-term cell culture conditions. 

By profiling the miRNA expression in early passage and senescent human 

BJ fibroblasts and comparing this to an immortalized version of these cells that 

expresses the human catalytic component of telomerase (hTERT) and quiescent 

samples of early passage WT fibroblasts, the following subsets of miRNAs have 

been identified:  miRNAs whose expression is regulated in the setting of 

replicative senescence in human fibroblasts devoid of substantial p16 activity and 

miRNAs whose expression is regulated over time in the presence of enforced 

hTERT expression.  This accounting of miRNAs affected by the ectopic 

expression of TERT will help fill in the details regarding the relationship between 

telomerase, replicative senescence, and senescence-independent aging.   

 

IV. Materials and Methods 

A. Cell Culture.  

Human BJ foreskin fibroblasts (ATCC) were cultured at 37 °C in a 5% CO2 

incubator in MEMα supplemented with 1mM sodium pyruvate, 1.5 g/L sodium 

bicarbonate, and 10% fetal bovine serum.  Replicative senescence was 

induced by serial passage and was determined by observing an arrest in the 

growth rate, changes in cell morphology and senescence-associated -

galactosidase staining.  HEK 293TS cells were used to generate retrovirus for 

stable transfection of hTert. 
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B. Immortalized BJ fibroblasts.   

BJ fibroblasts were immortalized by stable transfection with the catalytic 

subunit of human telomerase (hTERT).  First, 250 µl serum-free media was 

incubated with 30 µl fugene, 3 µg packaging plasmid 467, and 3 µg pBabe-

hTERT-hygro plasmid (a generous gift from Dr. Christopher Counter, Duke 

University) [25] at room temperature for 15 minutes.  HEK 293TS cells that 

were 40-50% confluent were then transfected with this mixture.  Twenty four 

hours after transfection, 5 mls of virus-laden media passed through a 0.45 µm 

filter was used to infect BJ fibroblasts in the presence of 4 µg/ml polybrene 

and 3 ml non-selective media.  Twenty four hours after infection, the media 

was changed.  Twenty four hours after the media change, the infected cells 

were split 1:2 and transduced cells were selected for in 100 µg/ml 

hygromycin.  A horizontal spread assay (mock transduction) was conducted 

to determine that BJ cells were free of contamination by virus-producing HEK 

cells.  Expression of hTERT was verified in the immortalized cells by using 

the TRAPeze Telomerase Detection kit (Chemicon.) 

 

C. Senescence-associated β-galactosidase staining. 

Cell staining was performed using a kit from Cell Signaling Technology with 

samples grown in a 6-well plate.  After removing growth medium from the 

cells, the cells were washed with PBS and fixed for 15 minutes at room 

temperature.  The cells were then washed twice with PBS and stained with X-

gal staining solution overnight at 37 °C following the manufacturer’s protocol. 
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D. MiRNA microarray sample preparation, hybridization, and analysis.  

Total RNA was isolated from wild type early passage and senescent cells, as 

well as immortalized early and late passage cells using mirVana miRNA 

Isolation kit (Ambion).  Sample quality was verified by measuring the ratio of 

28S to 18S rRNA (initially by denaturing agarose) and again just before the 

array analysis using the Agilent 2100 Bioanalyzer.  200 ng total RNA was 

dephosphorylated with CIP and labeled with pCp-Cy3.  Labeled RNA was 

purified via spin column and hybridized to the Agilent miRNA microarray chip 

version 1.  Details of protocol version 1.5 can be found on www.agilent.com.  

Mean signal for each probe was quantile normalized and log2 

transformed.  Signals that mapped to the same miRNAs were collapsed into 

individual miRNAs by averaging.  Each cell line high passage miRNA array 

was normalized to its corresponding low passage miRNA array.  MiRNAs that 

differed one standard deviation or more from the their mean expression in 

early passage WT cells were identified.  MiRNAs changing over time 

(specifically in the WT cell line and not the immortalized cells) were 

identified by selecting only those miRNAs that differed by more than one 

standard deviation in the WT BJs but not in the immortalized cells.  The array 

data are MIAME compliant and have been deposited at the GEO database at 

the NCBI: accession number GSE22134.   

 

E. Quantitative real-time PCR.   

Selected miRNA microarray expression results were validated using the 

miRNA Taqman Assay (Applied Biosystems).  PCR experiments were 
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performed in triplicate using the Applied Biosystems 7500 Real Time PCR 

instrument and normalized to the expression of U6.  10 ng of total RNA was 

reverse transcribed using a miRNA-specific primer then 1 µL of RT product 

was subjected to real-time PCR with a miRNA-specific probe.   

 

 

   

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 4. Elucidating the Role of miRNAs and TERT in 
 Proliferation/Inflammation Pathways 

 

I. Introduction 

 In Chapter 3 the miRNA footprint of replicative senescence in human 

foreskin (BJ) fibroblasts was defined.  Specifically, 83 miRNAs were identified 

that are differentially expressed during senescence.  We showed for the first time 

that anti-proliferative miRNAs miR-143 and miR-145 are up-regulated 

significantly and the pro-proliferative miR-155 is significantly down-regulated 

during replicative senescence.  Interestingly, these miRNAs undergo contrasting 

regulation during extended proliferation in fibroblasts stably expressing ectopic 

hTERT.  Specifically, miR-143 and miR-145 are down-regulated over time in BJ-

hTERT cells, while miR-155 is up-regulated over time in these immortalized cells.   

 MiR-143, located on chromosome 5, is transcribed as part of a primary 

transcript that also contains miR-145.  Both miRNA effectors in this polycistronic 

transcript are predicted to attenuate the expression of proteins involved in 

regulating the cell cycle [137,138,139].  In addition, previous evidence revealed 

that tumor growth is inhibited by enforced expression of miR-143 [130].  Using in 

silico miRNA target prediction tools, potential targets of miR-143 and miR-145 

were identified that would, upon validation, elucidate molecular details regarding 

the anti-proliferative effects of these miRNAs.  Insight into the details of these 
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miRNA-controlled pathways would clarify the link between regulation of 

senescence and tumorigenesis.  Experiments aimed towards validation of a 

potential target of miR-143 involved in regulating cell cycle and senescence-

induced growth arrest will be described in this chapter. 

 MiR-155 has well established pro-proliferative roles in various cell types 

and recent evidence suggests a role for this miRNA in sensing inflammatory 

signaling and initiating anti-inflammatory pathways as well [134,135].  In Chapter 

3, it was revealed that miR-155 is down-regulated during senescence and 

surprisingly undergoes robust up-regulation during extended cell culture in BJ-

hTERT cells.  Evidence is accumulating to support the ability of telomerase to 

confer pro-proliferative effects upon a cell by pathways separate from those 

involved in telomerase extension of telomeres [99].  In this chapter, possible 

mechanisms for TERT-mediated regulation of proliferation and inflammatory 

pathways by influencing expression of miR-143, 145, and 155 will be presented 

as well as preliminary evidence towards characterizing these hypotheses.     

 

II. Results 

A. Senescence-associated miR-143 induces cell cycle arrest in WT BJ cells  

 To determine whether miR-143 is sufficient to modulate the proliferative 

ability of BJ fibroblasts, as opposed to the possibility of it being up-regulated 

independently of cell cycle arrest, we transfected young BJ cells with miR-143 

mimic and observed effects on proliferation with the sulforhodamine B (SRB) 
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assay.  MiR-143 inhibited the proliferation of young BJ cells in a dose-dependent 

manner.  At a concentration of 60 nM, miR-143 inhibited proliferation to a degree  

comparable to growth inhibition caused by serum starvation (Figure 4.1).  

Analysis by one-way ANOVA suggests that inhibition of cell growth in cells   

transfected with miR-143 mimic is not statistically different from the inhibition 

caused by serum starvation, but produces a statistically significant difference in 

cell proliferation compared to untransfected cells.  

 

Figure 4.1  MiR-143 represses cell growth similarly to serum starvation.  
Transient transfection with miR-143 mimic repressed cell growth in WT BJ cells 
to a similar extent as serum starvation.  Cell proliferation 72 hours after 
transfection was assessed by the sulforhodamine B assay and is shown here 
relative to untransfected cells (set to 1).  *A statistically significant difference in 
the variance between denoted groups is observed via one-way ANOVA.  
**Denotes lack of statistically significant difference between indicated groups.  
Cell population of serum starved sample is equal to biomass of cells at time of 
transfection, indicating serum starvation causes complete inhibition of growth 
(data not shown).  
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 To determine the nature of miR-143 induced growth arrest, early passage 

BJ WT cells were transiently transfected with 60 nM miR-143 mimic.  48 hours 

after transfection, the cells were stained for senescence associated β-

galactosidase (SA β-gal) activity.  β-gal activity is normally only observed at low 

pH’s, however in senescent cells it can be observed at pH 6 due to increased 

activity of the lysosomal enzyme in these cells.  The increased SA β-gal activity 

  

Figure 4.2  Early passage BJ cells transfected with miR-143 mimic have 
increased β-galactosidase activity.  Early passage BJ fibroblasts were 
transfected with miR-143 mimic and stained for β-galactosidase activity (A and 
B).  Cells positive for β-galactosidase activity appear blue.  Untransfected early 
passage BJ cells are shown as a control (C and D). 
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observed in miR-143 transfected cells compared to untransfected cells  

(Figure 4.2) and an arrest of proliferation suggest that senescence is induced in 

young WT BJ fibroblasts by over-expressing miR-143. 

   
B. MiR-143 Target Prediction 

 Although others have shown that miR-143 can inhibit proliferation of 

cancer cells and demonstrated the down-regulation of miR-143 and polycistronic 

counterpart miR-145 in tumors [130], the proliferation and survival pathways 

regulated by these miRNAs in non-transformed cells remain elusive.  In silico 

miRNA target prediction algorithms TargetScan [140], Microcosm, and Pictar-

Vert [137,138,139] were used to identify potential targets of miR-143 and miR-

145 germane to regulation of proliferation and senescence in BJ fibroblasts.  

Validated targets of miR-143 known to affect cell cycle include DNA 

methyltransferase (DNMT3a) [141] and KRAS [142].  Likewise, miR-145 has 

been shown to affect cell growth by regulating expression of insulin receptor 

substrate-1 (IRS-1) [143,144], cyclin D1 and eIF4E [145].  One particularly 

intriguing (and currently unvalidated) predicted target of miR-143, cell division 

control 6 (CDC6), is a licensing factor for origins of DNA replication and is thus 

essential for entry into S phase [146].  One site within the CDC6 3’UTR that is 

predicted to bind miR-143 is conserved among 3 species – H. sapiens, M. 

mulatta, and C. familaris.  This site bears near perfect complementarity to the 

miR-143 seed sequence with the exception of two G-U wobbles, the most 

common and highly conserved non-canonical base pair in RNA [147].  All current 

online miRNA target prediction algorithms incorporate a requirement for 
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evolutionary conservation and are restricted to searches within the 3’UTR of 

mRNA sequences.  This is likely based on the fact that the first miRNAs 

discovered interacted with their targets via recognition of sites within their 3’UTR 

[148,149].  However, more recent data has indicated the ability of miRNAs to 

regulate target gene expression by interaction with regions within the coding 

sequence and 5’UTR of target mRNAs [150].  Another site bearing perfect 

complementarity to the miR-143 seed sequence was discovered by manually 

scanning within the CDC6 coding region sequence; this potential miRNA-

complimentary sequence resides in an exon 374 nucleotides upstream from the 

start of the 3’UTR (Figure 4.3).     

 Data from recent work also supports the notion that miRNA recognition 

elements that are not conserved across species can regulate expression of their 

mRNAs [151].  Based on these concepts, a new miRNA-target prediction 

algorithm was developed named rna22.  Rna22 differs from all other miRNA-

target prediction algorithms used in this study in that it does not constrain 

prediction of potential MREs to the 3’UTR and does not enforce a requirement for 

cross-species conservation of MREs.  Using rna22, an additional one potential 

miR-143 miRNA recognition element (MRE) is identified within the CDC6 3’UTR 

plus one additional MRE in the open reading frame (ORF) [152].   
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Figure 4.3  MiR-143 CDC6 predicted alignment.  MiRNA target prediction 
algorithm TargetScan identifies a site within the CDC6 3’UTR with extensive 
complementarity to miR-143.  A site within the CDC6 coding region that bears 
complete complementarity to the miR-143 seed sequence was also identified by 
manual scanning.  RNA22, a new target prediction algorithm, predicts two 
additional miR-143 MREs within CDC6. 
 

C. MiR-143 does not inhibit growth of NHF1-hTERT cells expressing mutant 
CDC6 

 To assess the requirement for miR-143 recognition and regulation of 

CDC6 to inhibit proliferation, SRB assays were performed with NHF1 cells stably 

expressing hTERT and a modified CDC6 construct lacking the 3’UTR (CDC6∆).  
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Another variation of this cell line bearing mutation of three CDC6 serine residues 

to aspartic acid (mutations that render CDC6 resistant to degradation by APC 

[153]) was also included in these assays (CDC6∆S3D).  Ectopic miR-143 

expression did not affect proliferation of NHF1 CDC6∆ or the CDC6∆S3D cells.  

However, miR-143 over-expression also had no impact on proliferation in NHF1-

hTERT cells expressing only endogenous CDC6 (Figure 4.4). 

 

Figure 4.4  CDC6 3’UTR influence on miR-143 induced growth arrest.  
Transient transfection of miR-143 mimic did not induce growth arrest in cells 
overexpressing a mutant CDC6 lacking the 3’UTR (CDC6∆) or a constitutively 
active version of this mutant (CDC6∆S3D). 

 

D. Ectopic TERT expression prevents miR-143 induced growth arrest 

 I previously observed that ectopic expression of TERT in BJ cells impacts 

miRNA expression.  Specifically, in BJ-hTERT cells, miR-143 and miR-145 are 
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significantly down-regulated over time as opposed to the up-regulation observed 

during senescence of WT cells.  Also, it should be noted that ectopic miR-143 

expression in immortalized NHF1 cells that stably express a truncated form of 

CDC6 lacking the 3’UTR had no effect on proliferation (Figure 4.4).   

 In order to determine whether the observation that TERT interferes with 

miR-143 induced growth arrest was cell type specific (to the NHF1 cells), BJ-

hTERT cells were transfected with miR-143 and the effects on proliferation were 

determined by the SRB assay.  MiR-143 over-expression in BJ-hTERT cells had 

no impact on proliferation compared to untransfected cells (Figure 4.5). 

 

Figure 4.5  MiR-143 does not induce growth arrest in cells expressing 
ectopic TERT.  Transient transfection with miR-143 mimics did not induce 
growth arrest in BJ or NHF1 cells that stably transfected with hTERT.  Results 
were obtained by SRB.  
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E. TERT effect on CDC6 expression 

 To determine whether CDC6 levels are regulated in cells in response to 

the altered miRNA expression profile associated with senescence and TERT 

expression, western blotting was used to reveal CDC6 protein levels in early and 

late passage WT BJ cells, BJ cells with control pBabe vector (lacking the hTERT 

insert), and BJ-hTERT cells (Figure 4.6).  No significant difference in CDC6 

expression between the samples representing early and late passage BJ cells 

was observed.  However, CDC6 levels were higher in BJ-hTERT cells (both early 

and late passage samples) compared to BJ WT cells. 

 

Figure 4.6  CDC6 levels in cells with varied miR-143 expression.  CDC6 
levels were obtained by western blotting in early and late passage BJ cells.  Cell 
lines shown include BJ WT, BJ cells stably expressing the pBabe vector, and BJ 
cells stably expressing hTERT.  BJ Late passage and pBabe Late Passage cells 
indicate senescent populations. 
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F. MiR-145 is predicted to regulate expression of genes in the CDC6 pathway 

 Although gross differences in the level of endogenous CDC6 were not 

detected in senescent WT BJ fibroblasts (compared to early passage BJ cells), it 

is still possible that miR-143 might attenuate CDC6 expression causing a 

biologically relevant phenotype.  MiR-143 and miR-145 are polycistronic miRNAs 

that are part of the same pri-miRNA precursor.  One might predict, based on this 

fact, that miR-143 and miR-145 should target proteins within the same pathway 

since they will be coordinately regulated at the transcriptional level.  Using 

TargetScan miRNA-target prediction algorithm [140], several potential targets for 

miR-145 that function within the cell cycle and/or CDC6 pathways were identified, 

including E2F3, Skp1, and Cyclin D2. 

 

III. Discussion 

 It is well established that miRNAs can have a profound impact on cellular 

proliferation and differentiation [154,155,156,157].  Less established is the role of 

miRNAs in regulating important cellular checkpoints such as the G1/S and G2/M 

transitions.  An essential role for miRNAs in regulation of these transitions is 

implied by the observations that miRNAs are generally down-regulated in tumors, 

and Ras-induced senescence is prevented by ectopic expression of a set of 

miRNAs that inhibit p21 [158].  In addition, several miRNAs have been identified 

that are differentially expressed during replicative senescence of WI-38 cells [92] 
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and human mesenchymal stem cells [159] and in aging human mononuclear 

cells [160] .   

 The level of telomerase expression is a key factor in determining the 

propensity of a specific cell type to senesce in a physiological setting.  This effect 

is partly explained by the fact that prevention of telomere attrition by telomerase 

inhibits DNA-damage induced senescence.  However, accumulating evidence 

also suggests a role for telomerase in promoting proliferation through pathways 

separate from telomerase action at the telomere [96,99,100].  To date, no data 

explains how the pro-proliferative properties of telomerase may contribute to 

regulation of senescence. 

 Our initial studies revealed that two polycistronic anti-proliferative miRNAs, 

miR-143 and miR-145, and the proto-oncogenic miR-155 undergo regulated 

changes in expression during replicative senescence of BJ fibroblasts.  Although 

data exists to support a role for these miRNAs as tumor suppressors [130,145] 

and oncomir, respectively, the mechanism by which these miRNAs regulate cell 

proliferation and their role in regulating proliferation in non-transformed cells 

remains to be defined.  We present evidence herein to support the ability of 

TERT to affect expression of these senescence-associated and pro-proliferative 

miRNAs and preliminary results from experiments designed to elucidate the 

molecular details of proliferation pathways controlled by miR-143.  
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A. Ectopic miR-143 induces senescence in BJ WT but not BJ-hTERT cells 

 Although many miRNAs are regulated during senescence, it was 

previously unclear whether any one specific miRNA is sufficient for induction of 

senescence.  Our previous experiments characterized the regulation of miR-143 

and polycistronic partner miR-145 during senescence in a cell line that is p16-

deficient, implying a strong probability for the requirement of p53-mediated 

pathways in conveyance of replicative senescence.  It has been previously 

shown that p53 enhances the maturation of mirR-143 and miR-145 in human 

diploid fibroblasts (WI-38 and TIG3 cell lines) in response to DNA damage [161].  

It is also established that ectopic introduction of miR-143 into tumor cells results 

in decreased proliferation and tumor regression.  In order to determine whether 

miR-143 is capable of inducing senescence in fibroblasts, we transiently 

transfected early passage BJ WT and BJ-hTERT cells with miR-143 mimic.  

Introduction of miR-143 into early passage BJ WT cells resulted in complete 

growth arrest (similar to serum starvation) and increased SA β-gal activity 

(Figures 4.1 and 4.2).  Notably, however, the transfected cells did not show a 

distinct shift towards senescence-associated morphology (larger, flattened cells 

with increased blebbing).  In addition, while SA-β-gal was increased in cells 

expressing ectopic miR-143 mimic, it wasn’t as prolific as that seen in WT BJ 

senescent cells.  This could potentially be explained by an examination of 

experimental timing and the time required for full induction of senescence.  Here, 

cells were stained 48 hours after transfection with miR-143 mimic.  We suggest 

that perhaps the conglomerate of senescence-associated changes that occur 

within a cell (including membrane remodeling, differential protein expression, and 



85 
 

full induction of senescence-associated inflammatory signaling) may require 

greater than 48 hours from the first stimulus to senesce for easiest detection.  

Another possible reason for relatively slow induction of the senescence 

phenotype after transfecting with miR-143 is the possibility that miR-143 targets 

essential for inducing senescence may have long half-lives within the cell.   

 Interestingly, introduction of miR-143 mimic into BJ-hTERT cells did not 

induce any discernable phenotypic changes or growth arrest (Figure 4.5).  Our 

initial array and RT-PCR studies (chapter 3) revealed that endogenous mature 

miR-143 is expressed at significantly lower levels in early and late passage BJ-

hTERT cells (5 and 10-fold lower, respectively) compared to early passage BJ 

WT cells.  The ability of TERT to prevent miR-143 induced growth arrest is not 

cell type specific, as we observed similar effects in NHF1 cells.  One hypothesis 

is that TERT may up-regulate a target of miR-143 that is essential for inducing 

senescence growth arrest.  Alternatively, TERT may alter expression of other 

proteins capable of impacting miR-143/miR-145 expression.  If a miR-143 target 

is up-regulated in BJ-hTERT cells, this target may function in a negative 

feedback fashion to inhibit miR-143 expression, explaining the endogenous 

down-regulation of miR-143 in immortalized cells.  

B. Potential TERT/miR-143 mediated proliferation pathways 

 Using in silico miRNA target prediction algorithms, cell division cycle 6, or 

CDC6, was identified as a potential target of miR-143.  Initial studies were 

focused on validation of this miRNA-target pair for several reasons.  First, CDC6 

is key mediator of a cell’s ability to enter S phase [162,163], and senescent cells 
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are unable to make this G1/S transition in the absence of oncogenic signaling.  

Target prediction algorithms were also used to predict proliferation-associated 

targets for miR-145.  Theoretically, miR-145 should inhibit the expression of 

proteins relevant to the pathways regulated by miR-143, since the two miRNAs 

are transcribed coordinately as part of the same pri-miRNA.  Several proteins 

were identified whose transcripts are predicted to be targeted by miR-145 that 

function within the CDC6 pathway.  Specifically, miR-145 is predicted to target 

E2F3, a prominent transcription factor that is responsible for expression of CDC6 

[164,165].  Skp1, also predicted to be targeted by miR-145, is part of the SCF-

ubiquitin ligase complex responsible for degrading p27 via direct phosphorylation 

by cyclin E-CDK2.  The cyclin E-CDK2 complex is recruited to origins of DNA 

replication by CDC6 [166,167].  Finally, cyclin D2, a component of the complex 

that phosphorylates and inactivates pRB leading to E2F transcription factor 

activation, is predicted to be a target of miR-145.      

 To explore the ability of miR-143 to affect CDC6 expression, the levels of 

endogenous CDC6 in early and late passage BJ WT and BJ-hTERT cells were 

first examined using western blotting.  MiR-143 and miR-145 levels are 

approximately 3.5-fold higher in senescent WT cells, and thus one would expect 

that CDC6 levels would be lower in senescent cells if it is a miR-143 target.  

Unfortunately, there was no detectable difference in CDC6 levels between early 

and late passage WT cells using this approach.  However, there are several 

caveats to using this type of approach to validate a miRNA-target relationship 

that support the need for using additional methods to test this relationship.  First, 
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although senescent cell lysates were derived from a cell population that was 

senescent as a whole, the population is actually heterogenous since we did not 

sort cells.  Second, it isn’t clear to what extent miRNAs can regulate expression 

of their targets singly or require co-recognition by other miRNAs to realize 

significant target attenuation producing phenotypic changes.  Also, ex vivo 

biochemical assays utilizing reporter vectors generate an average 30-50% 

reduction in expression of a target miRNA after transfection with miRNA mimics.  

These systems are often optimized for detection by incorporation of multiple 

copies of the MRE (miRNA recognition element) within the reporter construct.  

Such a relatively modest attenuation in target expression in an optimized setting 

may translate into a difficult to discern target reduction in unaltered cells where 

the chance for crosstalk between complex cellular pathways exists.  To evaluate 

the potential miRNA-target relationship between miR-143 and CDC6 additional 

experiments will be needed.     

 Another interesting result from initial experiments was the observation that 

while miR-155 is down-regulated significantly (10-fold) during senescence, it is 

up-regulated significantly over time in BJ-hTERT cells.  MiR-155 is a pro-

proliferative, proto-oncogenic [119,134,168] miRNA whose expression is induced 

by inflammation [169,170].  Suppressor of cytokine signaling 1 (SOCS1) is a 

validated target of miR-155 relevant to miR-155 induced oncogenesis [169].  In 

addition, it has been shown that SOCS family enzymes are essential for 

fibroblast ability to undergo G1 arrest [171,172].  However, this is the first 

evidence of miR-155 regulation as a result of TERT expression.  Based on this 
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result and the ability of TERT to influence miR-143 mediated growth arrest during 

senescence, I hypothesize that TERT expression in a somatic, post-mitotic cell 

line influences expression of various proliferation-associated miRNAs, potentially 

via inflammatory signaling including Wnt and/or AP-1 (Figure 4.7).   

 

Figure 4.7 TERT affects expression of miRNAs mediating senescence and 
proliferation.  Hypotheses based on data from experiments described in this 
chapter are indicated by red lines.  Known relationships between pathway 
effectors are denoted with black lines. 
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IV. Future Directions for miR-143 CDC6 miRNA-target validation and 
 revealing TERT effects on senescence and tumorigenesis-associated 
 miRNA expression  

 I have designed a reporter construct to reveal the ability of miR-143 to 

regulate CDC6 expression via recognition of the predicted CDC6 3’UTR MRE.  

The construct bears two copies of the purported CDC6 3’UTR MRE in the 3’UTR 

of the firefly luciferase gene.  To discern how TERT affects miR-143 and miR-

145 expression, one should test the effects of expressing a catalytically inert 

TERT on miRNA expression and measure levels of pri-, pre-, and mature miR-

143 and miR-145 in BJ-hTERT cells.  Additionally, it would be interesting to 

incorporate various cell lines into these experiments to determine to what extent 

these pathways can be generalized or are cell type specific.  

 

V. Methods 

A. Cell Culture.  

Human BJ foreskin fibroblasts (ATCC) were cultured at 37 °C in a 5% CO2 

incubator in MEMα supplemented with 1mM sodium pyruvate, 1.5 g/L sodium 

bicarbonate, and 10% fetal bovine serum.  NHF1-hTERT, NHF1-hTERT CDC6∆, 

and NHF1-hTERT CDC6∆S3D cells (gifts from the Jean Cook lab at UNC-CH) 

were cultured in DMEM supplemented with 10% FBS and 2mM glutamine. 

B. Transient transfection with miRNA mimics and SRB assay. 

BJ WT cells at population doubling number 5 or early passage NHF1 cells were 

transfected with 60nM miR-143 mimic or negative control miRNA mimic 

(Dharmacon miRIDIAN mimics)  for 6 hours in Opti-MEMI in the presence of 
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3µg/ml Lipofectamine 2000.  After 6 hours, media was changed to normal BJ or 

NHF1 media without antibiotic.  The sulforhodamine B assay was utilized as 

described in detail in Kirtikara et al [173] to determine effects of miR-143 on 

growth of early passage BJ cells.  SRB assays were performed 72 hours after 

transfection.  One way ANOVA was used to analyze the significance of variance 

between cell types from separate experiments, each performed in octuplet.  

 

C. Senescence-associated β-galactosidase staining. 

Cell staining was performed using a kit from Cell Signaling Technology with 

samples grown in a 6-well plate.  After removing growth medium from the cells, 

the cells were washed with PBS and fixed for 15 minutes at room temperature.  

The cells were then washed twice with PBS and stained with X-gal staining 

solution overnight at 37 °C following the manufacturer’s protocol.  

 

D. miRNA Target Prediction 

Online target prediction algorithms TargetScan, Microcosm, and Pictar-Vert were 

accessed via miRBase to predict targets of miR-143, 145, and 155 

[137,138,139].  RNA22, a database useful to predicting “non-canonical” miRNA-

target matches, was accessed to assess likelihood of the miR-143/CDC6 target 

relationship [152].  Also, the coding region sequence of CDC6 was manually 

scanned for sequences complimentary to the miR-143 seed sequence.     
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E. Detection of CDC6 levels in cells with varied expression of miR-143 

Western blotting was used to detect levels of CDC6 in early and late passage BJ 

WT, BJ-pBabe, and BJ-hTERT cells.  Samples used for western blotting 

correspond to samples used for miRNA microarray and qRT-PCR studies.  Lysis 

buffer stock (81.7 µl) containing 50 mM Tris-HCl (pH 7.6), 150 mM NaCl, and 1% 

Triton X-100 was supplemented with 14.3 µl of freshly prepared 7X Protease 

Inhibitor Cocktail (Roche) and 4 µl of 100X diluted β-mercaptoethanol.  Cell 

pellets were incubated in 20-40 µl of lysis buffer at 4 °C for 30 minutes with 

rotation.  Lysed pellets were then spun at 4 °C for 10 minutes at 13g.  

Supernatant was collected and aliquotted, and a 10X dilution was used to 

determine protein concentration by Bradford Assay (Pierce).  40 µg of each cell 

lysate was resolved on an 8% acrylamide SDS gel.  SDS gels were run in 1X 

TrisGlycine running buffer at 115 volts for approximately 70 minutes.  PVDF 

membrane from Immobilon-P blotting sandwiches (Milipore) was wetted with 

100% MeOH for 1 minute, rinsed with water, then soaked with the included filter 

paper (and two additional pieces of extra thick filter paper) in transfer buffer.  

Gels were equilibrated in transfer buffer before being assembled into blotting 

sandwich.  Resolved proteins were transferred to PVDF membrane using a 

BioRad Trans-Blot Semi-Dry Electrophoretic Transfer apparatus at 15 volts for 20 

minutes using transfer buffer containing 390 mM glycine, 50 mM Tris base (do 

not adjust pH), and 20% MeOH.  Transfer quality was assessed using Ponceau 

staining.  Post-transfer, PVDF membrane was blocked with 5% milk in TBST (10 

mM Tris pH 8.0, 150 mM NaCl, 0.2% Tween 20) for 30 minutes at room 

temperature (RT).  Blots were probed for 2 hours at RT with 1:500 anti-CDC6 
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antibody (Santa Cruz 180.2, sc-9964) then washed three times for 5 minutes 

each with TBST.  Blots were then probed with 1:1000 ECL peroxidase anti-

mouse antibody (Amersham, NA931VS) to detect CDC6 and 1:2000 to detect β -

actin for 1 hour at RT before being rinsed another three times with TBST.  ECL 

Plus reagent (Pierce) was used to detect secondary antibody.  Blots were 

stripped with 50 mM glycine (pH 2.4), 0.5 M NaCl, and 0.1% Igepal for 15 

minutes at RT, rinsed once with H2O, then “equilibrated” with 1-2 quick washes in 

PBS before probing for β-actin (Santa Cruz, sc-47778). 

 

F. Construction of a dual luciferase reporter vector to validate miR-143/CDC6 
miRNA target pair 

The dual luciferase miRNA-target expression vector pmirGLO (Promega) was 

modified for these experiments.  A construct was designed to validate the ability 

of miR-143 to regulate expression of CDC6 via recognition of the predicted (via 

TargetScan) target sequence in the 3’UTR of CDC6.   

1. Oligomers 

Single-stranded DNA oligos were obtained from IDT and annealed to create 

dsDNA bearing two copies of the predicted miR-143 seed recognition element 

from the CDC6 3’UTR.  The oligos are designed to facilitate ligation into the 

pmirGLO vector by XbaI and SacI such that successful ligation will obliterate the 

XbaI recognition site.  Oligo sequences are shown (nucleotides representing 

CDC6 3’UTR miR-143 seed complement are underlined):   

5’-CAGAGCTACAGTCTTCATTTTAGTGCTTAGAGCTACAGTCTT 
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CATTTTAGTGCTTG-3’ and 5’-CTAGCAAGCACTAAAATGAAGAC 

TGTAGCTCTAAGCACTAAAATGAAGACTGTAGCTCTGAGCT-3’   

2. Annealing to create vector insert 

The oligos shown above were each diluted to 1 µg/µl in Tris-EDTA (pH 7.6).  2 

µg of each oligo was annealed in 46 µl Oligo Annealing Buffer (Promega) by 

heating to 90 °C for 3 minutes then transferring to a 37 °C water bath for 15 

minutes. 

3. Digestion of pmirGLO vector 

5 µg pmirGLO vector was digested with 100 units XbaI (NEB) overnight at 37 °C 

in Buffer #4 (NEB) then heat inactivated at 95 °C for 3 minutes before digestion 

with 100 units SacI (NEB) for 5 hours at 37 °C.  Both digestions were performed 

in the presence of and 100 µg/ml bovine serum albumin (BSA).  SacI was heat 

inactivated then the digested plasmid was treated with shrimp alkaline 

phosphatase (SAP, Roche) at 37 °C for 1 hour to prevent religation.  Proteins 

were removed from the solution by phenol/chloroform extraction.  Linearized 

vector was concentrated by EtOH precipitation and resuspended in TE. 

4. Ligation and Transformation 

Four ligation reactions were assembled with varying amounts of cDNA (0 ng, 4 

ng, 10 ng, and 50 ng).  Ligation reactions contained 50 ng linearized pmirGLO, 1 

µl of 10X T4 DNA ligase buffer (containing ATP), 10 units bacteriophage T4 DNA 

ligase, cDNA, and H2O to a final volume of 10 µl and were completed at room 

temperature for 30 minutes.  1 µl of ligation reaction was used to transform 
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JM109 cells (Promega) and transformed cells were grown overnight on Amp 

plates.  10 colonies were used to inoculate 2-3 ml starter cultures from which the 

pmirGLO vector was purified using QiaPrep Spin Miniprep (Qiagen).  Purified 

vectors were screened for successful ligation by digestion with XbaI and NotI in 

buffer #3 (NEB) overnight at 37 °C.  Resolution of a successfully ligated vector 

should yield 1 product on an agarose gel since NotI cleaves at position 93 in the 

pmirGLO vector and ligation of the insert obliterated the XbaI cleavage site.  This 

construct was designed to be used with the Dual-GLO Luciferase Assay System 

(Promega). 
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