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ABSTRACT

Sean M. Sanders: Techniques for the Analysis of Modern Web Page
Traffic Using Anonymized TCP/IP Headers

(Under the direction of Jasleen Kaur)

Analysis of traces of network traffic is a methodology that has been widely adopted for studying the Web

for several decades. However, due to recent privacy legislation and increasing adoption of traffic encryption,

often only anonymized TCP/IP headers are accessible in traffic traces. For traffic traces to remain useful

for analysis, techniques must be developed to glean insight using this limited header information. This

dissertation evaluates approaches for classifying individual web page downloads — referred to as web page

classification — when only anonymized TCP/IP headers are available.

The context in which web page classification is defined and evaluated in this dissertation is different from

prior traffic classification methods in three ways. First, the impact of diversity in client platforms (browsers,

operating systems, device type, and vantage point) on network traffic is explicitly considered. Second,

the challenge of overlapping traffic from multiple web pages is explicitly considered and demultiplexing

approaches are evaluated (web page segmentation). And lastly, unlike prior work on traffic classification,

four orthogonal labeling schemes are considered (genre-based, device-based, navigation-based, and video

streaming-based) — these are of value in several web-related applications, including privacy analysis, user

behavior modeling, traffic forecasting, and potentially behavioral ad-targeting.

We conduct evaluations using large collections of both synthetically generated data, as well as browsing

data from real users. Our analysis shows that the client platform choice has a statistically significant impact

on web traffic. It also shows that change point detection methods, a new class of segmentation approach,

outperform existing idle time-based methods. Overall, this work establishes that web page classification

performance can be improved by: (i) incorporating client platform differences in the feature selection and

training methodology, and (ii) utilizing better performing web page segmentation approaches.

This research increases the overall awareness on the challenges associated with the analysis of modern

web traffic. It shows and advocates for considering real-world factors, such as client platform diversity and

overlapping traffic from multiple streams, when developing and evaluating traffic analysis techniques.
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CHAPTER 1: INTRODUCTION
1.1 Motivation

1.1.1 Overview of the Web: The Most Popular Application on the Internet

The Web is an Internet application that links web pages, which are transferred via HTTP and viewed

using browsers.1 In its infancy, the Web consisted of mostly static web pages, which were used to display

non-interactive content and supported only a limited set of applications. However, as browsers and other

computing technology have advanced, web pages have become dynamic and are used for many modern web

services, including video streaming, gaming, social networking, and email, which has vastly increased Web

usage. In fact, Internetlivestats.com [2015] reports that the number of web sites has gone from 23,500 in

1995 to over 600 million in 2015, and Popa et al. [2010] reports that Web traffic accounts for over 80% of

the Internet traffic mix. The Web is thus the most popular application on the Internet.

1.1.2 Applications of Traffic Trace Analysis

Given its popularity and scale, the Web must be monitored to ensure that it can meet the increasing

demand. Content providers (e.g., Google and Facebook) and analytics companies (e.g., Quantcast and

Alexa), who have access to servers and/or clients, own a vast amount of proprietary data that is used to study

web usage. This proprietary data is not accessible to most Web researchers (enterprises, universities, and

Internet service providers, or ISPs). Internet traffic traces, which capture all data transferred on a network

link, are an accessible alternative to proprietary Web data [Xu et al., 2011]. Traffic trace analysis has been

used for several decades by researchers and network administrators for many different applications, some of

which are detailed below.

• Network Monitoring, Forecasting, and Capacity Planning: Understanding network traffic and its

growth allows ISPs, universities, and enterprise network administrators to meet the increasing de-

mand for Web services [Xu et al., 2011, Erman and Ramakrishnan, 2013]. In addition to monitoring

1 Please refer to Chapter 2 for formal definition of web pages and other terms used in this chapter.
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aggregate traffic volume, trace analysis is used to analyze application usage and performance trends to

build more accurate forecasting models that predict future network use and identify potential capacity

limitations so that they can be addressed before performance issues affect user experience [Ihm and

Pai, 2011, Smith et al., 2001].

• Traffic Modeling: Traffic models are developed by studying the statistical properties of Internet traffic

traces (e.g., packet sizes and inter-arrival times). The traffic generated with these models is used to

drive simulation and testbed experiments that can be used for network forecasting and protocol testing

before deployment [Weigle et al., 2006, Barford and Crovella, 1998].

• Privacy and Security Analysis: Traffic traces have been analyzed to examine packet payloads for sig-

natures that correspond to known malware [White et al., 2013]. Traffic trace analysis techniques are

routinely used by intrusion detection systems, specialized tools that improve network security [Pax-

son, 1999, Gu et al., 2008]. Security researchers also use traffic trace analysis to test data anonymiza-

tion techniques [Yen et al., 2009].

Recent trends in the networking and Web communities may soon make traffic trace analysis more diffi-

cult. Some of these trends are discussed in the following section.

1.1.3 Motivation for Using Only Anonymized TCP/IP Headers

Deep-packet inspection of traffic traces has been used for applications such as botnet detection and

traffic engineering [Tegeler et al., 2012, Sen and Wang, 2004], but it is viewed as an invasion of user privacy

because it scans the content of network communications [Asghari et al., 2013]. Analysis of traffic traces

that invade user privacy are becoming increasingly infeasible for the following reasons:

• Privacy Legislation: Recent privacy legislation in the United States explicitly forbids the analysis of

content data [Law, Sicker et al., 2007] (i.e., HTTP header analysis or deep-packet inspection). In

fact, according to the Federal Wiretap Act, analyzing the content of network communications without

user consent or a provider protection exception [Sicker et al., 2007] is a felony. The Pen Register and

Trap and Trace Act similarly limits the analysis of non-content of network communications, including

TCP/IP headers.2 These laws present problems for network traffic monitoring. First, many entities,

2 Analysis of non-content of network communications was legal before revisions to The Pen Register and Trap and Trace Act that
came bundled with the Patriot Act of 2001.
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such as ISPs and universities, find it difficult to obtain consent from all users. Second, the provider

protection exception limits the amount of data collected and the type of analysis that can be performed

on the data. For instance, service providers that invoke this exception must specify the purpose of the

network monitoring, collect the minimum amount of data necessary for analysis, and follow best

practices for anonymizing the data. Arguably, the only non-content data that can legally be analyzed

in the United States is anonymized TCP/IP header data.3

• Traffic Obfuscation: The increasing amount of obfuscated (encrypted or compressed) traffic makes

deep-packet inspection infeasible, because obfuscation distorts the content. Approximately 86% of

traffic is now obfuscated White et al. [2013]. New protocols—such as HTTP/2, which encrypts all

traffic—exacerbate this problem [Register, Belshe et al., 2015, Jerome]. HTTP/2 is already being

adopted; 2.9% of web sites currently support the protocol [W3Techs]. These changes suggest that it

will soon be too arduous to obtain content data for traffic analysis.

As noted above, the challenges of privacy legislation and traffic obfuscation mean that, in some scenar-

ios, only anonymized TCP/IP headers are available for traffic trace analysis, which offer only header and

time-related (non-content) information.

1.2 Overview of Dissertation

For traffic trace analysis to remain useful as a network analysis methodology, techniques must be de-

veloped to glean insight from traffic traces using the limited information in anonymized TCP/IP headers.

To that end, this dissertation evaluates approaches to classifying individual web page downloads when

only anonymized TCP/IP header data is available; we refer to these approaches as web page classifica-

tion approaches. Classifying individual web page downloads is a critical building block for numerous web

measurement-related applications, including privacy analysis, user behavior modeling, traffic forecasting,

and behavioral ad-targeting.

This dissertation also investigates two issues that are not usually considered in the traffic classification

literature [Lim et al., 2010, Kim et al., 2008, Erman et al., 2007b, Dyer et al., 2012, Herrmann et al., 2009,

Miller et al., 2014, Schatzmann et al., 2010]: classifying web page download traffic that is generated using

3 In an anonymized TCP/IP header, the source and destination IP addresses cannot be directly resolved to a hostname, preserving
user privacy.
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multiple client platforms, and classifying traffic that is not separated according to individual web page

downloads. Next, we present an overview of these issues.

• Client platform choice may influence web page download traffic: Real traffic traces consists of a mix-

ture of traffic that is generated from multiple different client platforms, including different operating

systems (e.g., Mac OSX, Windows, and Linux), browsers (e.g., Chrome, Firefox, Safari), and de-

vices (e.g., laptop, smartphone, or tablet). Different client platforms may generate different web page

traffic despite referencing the same source HTML. Researchers disagree about the degree of impact

client platform choice has on traffic [Yen et al., 2009, Butkiewicz et al., 2011]. This dissertation col-

lects a diverse traffic sample that includes traffic generated from different web pages and different

client platforms in order to determine whether these factors impact the characteristics of modern web

page traffic. If so, these factors should be considered in the design and evaluation of traffic analysis

techniques.

• Real web page download traffic is not well-separated: Most methods that classify individual web

page download traffic assume that the traffic data has been processed and that identifying the traffic

for each individual web page download is trivial. However, real traffic traces consist of a mixture of

different web page downloads that are difficult to demultiplex into individual page downloads. This

type of mixed data requires an approach that can separate, or segment, web traffic into individual web

page downloads. These approaches, referred to as web page segmentation approaches, have not been

evaluated in over a decade, and better approaches to web page segmentation will likely improve the

applicability of web page classification to real traffic traces.

Thesis Statement When only anonymized TCP/IP headers are available, web page classification perfor-

mance is influenced by traffic from multiple client platforms and requires reliable segmentation of web page

traffic. Its performance can be improved by using traffic features that are consistent across client platforms

and using web page segmentation approaches that outperform the current state-of-the-art approaches.

Contributions This thesis details the results of three related studies which each support our high-level

goal of making traffic trace analysis (specifically, traffic classification) more useful in practice. The first

study investigates whether modern web page traffic is impacted by different client platforms (e.g., browsers,
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operating systems, etc); the second study investigates the web page classification problem; and the third

study conducts a comprehensive evaluation of state-of-the-art web page segmentation techniques. These

studies make meaningful contributions to the areas of Internet measurement and traffic analysis, which are

described below.

1. This work conducts the first comprehensive study of modern web page traffic and of how client plat-

form (i.e., browser, operating system, etc) affects it. This study, detailed in Chapter 3, includes mea-

surements taken from HTTP headers, TCP/IP headers, DNS headers, and the HTML source. Results

show that modern web page traffic differences across many different factors, including browser, op-

erating system, device, and vantage point, are statistically significant. These results can help interpret

aggregate web measurement data and encourage development of measurement analysis techniques

(e.g., traffic classification) that are robust to these differences.

2. This work investigates whether well-separated web page downloads can be classified according to four

orthogonal labeling schemes (namely, device-based labels, video streaming-based labels, navigation-

based labels, and Alexa genre-based labels) using learning-based classification methods to analyze

data from the anonymized TCP/IP headers of traffic that is generated by multiple different client plat-

forms. The labeling schemes that we study are not prominently considered in the traffic classification

literature [Lim et al., 2010, Kim et al., 2008, Erman et al., 2007b, Dyer et al., 2012, Herrmann et al.,

2009, Miller et al., 2014, Schatzmann et al., 2010]. We argue that each of the considered labeling

schemes is enabling for different application domains. This study also evaluates the performance of

several popular supervised machine-learning methods (e.g., classification trees, Naive Bayes, etc.)

and find that they perform better than random guessing. We also show that features that are relatively

robust to client platform-specific differences perform better than those that are not, demonstrating the

value of incorporating data generated from multiple client platforms into the feature-selection and

training process. Lastly, we show that the web pages classified with our approach are statistically

similar to the ground-truth labeled data. Thus, our approach can be used to label traffic that is similar

to the training dataset.

3. This work conducts the first comprehensive evaluation of web page segmentation approaches in over

a decade. Results show that idle time-based web page segmentation methods do not perform well on

modern web page traffic. This work, which is provided in Chapter 5, proposes a new class of web
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page segmentation techniques, which we call change point detection methods, and shows that these

perform better than idle time-based methods. All tested web page segmentation methods had diffi-

culty detecting web page downloads with small inter-arrival times (< 10s); however, some change

point detection methods are able to approximate the statistical properties of real user browsing behav-

ior, including the number of web pages downloaded and the average inter-arrival time of web page

downloads. We also show that the choice of web page segmentation method impacts the performance

of web page classification methods with both real user-generated browsing streams and synthetically

generated browsing streams.

We provide a more detailed overview of the the related studies described above, including more details

of the methodology used and a more complete summary of the results, in the rest of this introduction.

1.2.1 Study 1 - Determine whether modern web page traffic is impacted by different client platforms

Importance of Adequate Sampling To avoid bias, any sound web measurement study must ensure that

the diversity of web traffic is represented in the sample traffic. Most web measurement studies address

sampling issues by intentionally incorporating traffic diversity — for example, by increasing the number

of web pages included in a sample [Xu et al., 2011, Barford and Crovella, 1998, Newton et al., 2013,

Butkiewicz et al., 2011]. Because different web pages exhibit different traffic characteristics, larger traffic

samples are less likely to be biased.

Problem Addressed: Examining Impact of Client Platforms on Web Page Traffic However, larger

samples don’t take into account the diversity of client platforms used. Modern client platforms consist of a

wide variety of different browsers (e.g., Chrome, Safari, and Firefox), operating systems (e.g., Mac OS X,

Linux, and Windows), devices (smartphone, tablet, laptop), and vantage points. There is some disagreement

in the literature about whether the type of client platform used impacts web page download traffic [Yen

et al., 2009, Butkiewicz et al., 2011], and most previous web measurement-related studies do not explicitly

include traffic generated by different client platforms [Dyer et al., 2012, Butkiewicz et al., 2011, Xu et al.,

2011, Neasbitt et al., 2014]; it is thus possible that many prior studies are biased towards a specific client

platform and not generally applicable.

The goal of the first study presented in this dissertation is to determine whether modern web page traffic

is impacted by different client platforms, a determination that has implications for the design and evalu-
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ation of measurement analysis techniques. For instance, if browser choice impacts web page traffic, then

different browsers should be included in the methodology for evaluating traffic analysis techniques. This

study aims to provide quantitative evidence about the impact of client-specific factors on web page traffic,

which might affect research in several web-related application domains, including privacy and performance

analysis [Butkiewicz et al., 2011, Neasbitt et al., 2014].

Basic Approach An overview of this study’s basic methodology is provided below.

• Diverse sample set: Using data that is publicly available from Alexa [Inc.], a third-party Internet

analytics provider, we compose a list of over 3600 web pages from the 250 most popular web sites

in the world, which are responsible for the vast majority of the web traffic on the Internet [Callahan

et al., 2013, Xu et al., 2011, Bump].

• Multiple client platforms: We use four different types of client platforms to download web pages: dif-

ferent browsers (e.g., Google Chrome, Internet Explorer, Firefox), operating systems (e.g., Windows

7 and Mac OSX), devices (e.g., laptops, smartphones, and tablets), and client locations. We also take

repeated measurements of each web page download to determine whether the results are significantly

impacted by the time of the measurement.

• Quantitative feature extraction: Each web page download is processed to extract quantitative features

that summarize the traffic that was downloaded. We derive two different types of features, traffic-

based and source HTML-based, from the web page downloads. Traffic-based features, which we

derive from packets containing information related to the IP, TCP, HTTP, and DNS protocols, cor-

respond to metrics for protocol performance. Source HTML-based features correspond to metrics

for the frequency of HTML tags and unique terms present in the source HTML, and are useful in

determining whether different client platforms reference different source HTML. Both traffic-based

and source HTML features are useful for comparing the web page download traffic generated across

client platforms. We consider 575 traffic-based and 127 source HTML-based features (702 web page

features total). A complete list of these features is provided in Appendix 3.

• Statistical testing: We use a standard non-parametric statistical test, the Kruskal-Wallis test, to deter-

mine which traffic-based and source HTML-based features differ significantly across different client

platforms.
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• Implications for application: Lastly, we explicitly investigate the implications of any significant

platform-specific differences that we observe. For instance, differences in traffic generated by dif-

ferent browsers may have implications for web performance, while differences in traffic generated by

different vantage points may have implications for privacy.

Summary of Results The key findings of this study are provided below.

• We find that browser type has a significant impact (p-value < 0.05) on the majority of web page

traffic features, including the number of bytes transferred (p = 1.5× 10−198), the number of servers

contacted (p = 9.2×10−45), the number of web objects transferred (p = 4.8×10−51), and the number

of TCP connections established (p = 1.4×10−39). In total, we found that 534 of the 575 traffic-based

features yielded p < 0.05.4 We also found that many of these web page traffic features differ across

browsers, even when the browsers reference the same source HTML. This research is the first to

show such strong evidence that browsers have a significant impact on web page traffic features. Past

work usually acknowledges only that browsers may manage TCP connections differently, rather than

considering that the amount of data—the number of web objects transferred—is different [Butkiewicz

et al., 2011, Yen et al., 2009]. For instance, we found that Chromium-based browsers (Chrome and

Opera) can transmit more than 4 times as many bytes than other browsers (Firefox and IE) when

rendering a web page, because Chromium-based browsers request objects that other browsers do not.

We also find that the majority of these objects have hostnames that generally correspond to servers

that provide ads, tracking, and CDN services.

• We find that operating system has a minor, and mostly negligible, influence on web page traffic com-

pared to browsers. The only statistically significant differences that we observe are the frequency

with which the RESET (p = 7.3×10−121) and FIN (p = 9.8×10−123) flags are set in TCP segments.

Statistically significant here implies only that there are differences in TCP implementation across op-

erating systems, and it is well-known that TCP implementation differences can be used to fingerprint

desktop operating systems [Nma]. We show that operating systems can be detected using a single

coarse feature (number of segments with RESET flag set); other methods rely on more fine-grained

(byte-level) features. Because we only observe significant differences at the TCP/IP level, not at the

4 Most of these p-values were < 10−10.
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application level, our observations imply that web developers do not optimize web pages according to

different operating systems; it is likely unnecessary to measure web pages across different desktop op-

erating systems for different web-related applications. Prior web measurement studies simply assume

this result, do not perform experiments to verify it, or do not consider the possibility that operating

systems significantly impact web traffic [Butkiewicz et al., 2011, Maciá-Fernández et al., 2010, Miller

et al., 2014, Newton et al., 2013, Dyer et al., 2012].

• We find that device type has a significant impact on web page download traffic: 541 out of 575

traffic-based features yielded p-values < 0.05. However, contrary to our browser-based analysis, the

differences in web page traffic across devices are caused primarily by differences in the source HTML

that is served when different types of devices request the same web page (servers redirect web requests

by mobile devices to mobile-optimized versions of the web page). This difference in source HTML

is evidenced by the observation that 66 out of 127 source HTML-based features yielded p-values <

0.05.5When we ensure that the same source HTML is downloaded by different devices, we observe

no statistically significant differences in the traffic across devices. Past work has shown that source

HTML-based features are impacted by device type (i.e., mobile optimized web pages vs traditional

web pages) and that these differences impact web page download traffic on desktops [Johnson and

Seeling, 2014, Butkiewicz et al., 2011]. Our work builds on this by showing that the device itself does

not impact traffic features when the source HTML is the same. We also build on this work, which

considered only smartphones and desktops, by measuring the traffic generated by tablets; results

show that tablets may download pages that are designed for smartphones (i.e., small screen), tablets

(i.e., moderate screen size), or even laptops (i.e., large screen). This observation suggests that web

designers currently do not agree on how to design web pages for tablets.

• As expected, we find that vantage point has a significant impact on temporal traffic features such as

average RTT (p = 6.1× 10−245). The differences in RTT observed across different vantage points

are likely influenced by delays incurred by middle-boxes within a network, as well as by the distance

between end-hosts. The average RTT observed in China is over 4 times the average RTT observed

in Japan, despite requesting similar content and being in similar regions of the world. We observe

5 For context, the number of source HTML-based features that were <0.05 for the browser-based and operating system-based
analysis were eight and zero, respectively.
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similar, yet less extreme, differences in RTT even within the United States. Prior studies have also

shown that web page download performance is impacted by vantage point [Li et al., 2015b, Zaki et al.,

2014, Ahmad et al., 2016, Bischof et al., 2015].

We also find that vantage point has a minor, and mostly negligible, impact on non-temporal traffic

and source HTML-based features. Many of these minor differences are because hosts in certain

countries download objects unique to that region. We also observe differences that are due to content

personalization (i.e., downloading a different search result page for the same search query because the

results are targeted to location) or to different web privacy laws in different countries (other countries’

web privacy laws are generally more stringent than those in the United States [pri]). For example,

the international web site of cnn.com displays a warning that their web site may track users, but their

U.S. web site does not. These minor differences do not have a statistically significant impact on

traffic-based features. The content-based differences (or similarities) observed across vantage points

have been anecdotally known, but not widely studied. Investigating content-based differences in

web pages—for example, price discrimination on web pages downloaded in different regions—is a

growing research area that is related to the recent data transparency initiative [Laoutaris et al., Mikians

et al., 2013].

1.2.2 Study 2 - Investigating the Web Page Classification Problem

Overview of Traffic Classification: One common technique for the analysis of anonymized TCP/IP head-

ers (or other coarse information, such as NetFlow logs) is traffic classification. Traffic classification research

has in the past focused primarily on two different types of classification problems: application layer protocol

classification and web page identification.

1. Application layer protocol classification: Most traffic classification work using anonymized TCP/IP

headers and flow-level data has focused on application protocol classification. Application cate-

gories that have been of particular interest in the past include HTTP, FTP, P2P, video streaming,

and mail [Lim et al., 2010, Kim et al., 2008, Erman et al., 2007b]. While distinguishing between

some types of applications can be useful, determining whether an application is Web (i.e., HTTP)

or not is less informative; the Web itself includes a wide variety of diverse applications, including

video streaming, gaming, social networking, mail, and file hosting. This diversity in web applications
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is only expected to grow as the Web becomes the standard front-end for emerging services and as

existing services continue to migrate to the Web [Labovitz et al., 2010]. In the near future, there will

be little utility in classifying something as Web traffic, since most observed traffic will be Web traffic.

Thus, it is important to ask whether we can classify HTTP traffic using more fine-grained labels.

2. Web page identification: The security and privacy research community have focused on another type

of traffic classification problem, here referred to as web page identification. Prior studies have shown

that it is possible to identify the exact web page that the traffic corresponds to with flow-level and/or

TCP/IP packet-level data, using existing techniques such as similarity metrics (e.g., the Jaccard index)

or learning-based classification (e.g., Naive Bayes) [Dyer et al., 2012, Herrmann et al., 2009]. Web

page identification is thus possible, but “in the wild” it is useful for little besides showing that traffic

analysis attacks are a threat; web page identification does not scale well with increasing numbers of

web pages [Dyer et al., 2012]. There are too many web pages (on the order of millions) to measure,

fingerprint, store, and reliably identify. Web page identification is typically used only when trying to

identify a small set of targeted web pages.

Application layer protocol classification is too coarse a classification for modern traffic traces, and web

page identification is too fine-grained. We propose investigating “web page classification,” which we believe

can serve as a middle ground between these two traffic classification frameworks.

Problem Addressed: Web Page Classification Web page classification gives traffic a label more fine-

grained than just “web traffic,” but avoids the scaling problems of web page identification by allowing

multiple web pages to share the same label, reducing the number of classes of web pages that must be

characterized and labeled. Labels for web applications are already commonly used for traffic trace analysis

when available [Xu et al., 2011, Rao et al., 2011, Schneider et al., 2008, Butkiewicz et al., 2011]. The

added information provided by labels on traffic gives additional insight to how the network is being used

without compromising user privacy. The classification labels used depend on the intended purpose of the

classification. Some specific examples of web page classification for different applications are provided

below.

• Profiling video streaming (application type) usage: Video streaming is now reported to occupy nearly

50% of network bandwidth, and consumption is expected to grow [Sandvine, Bump]. The ability
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to distinguish between bandwidth-hungry video and non-video streams at critical traffic aggregation

points can facilitate better network planning and control. For instance, a campus network manager

may be able to prevent network abuse and/or rate-limit video streams destined for student dorms;

researchers may want to build profiles of enterprise video traffic to facilitate traffic modeling and

forecasting studies; and ISPs may want to limit resources per business interests [Brodkin].

• Profiling mobile device usage: By 2017, it is estimated that the average number of devices per Internet

user will grow to 5 [Bort], most of them mobile devices. The ability to identify downloads of web

pages targeted for mobile devices can help to build profiles of mobile web usage within an enterprise

(for capacity planning, modeling, and forecasting purposes) and can be used to deliver personalized

content and advertisements customized for the constrained displays, power, and connectivity of mo-

bile devices.

• Profiling web browsing navigation styles: The way users navigate through web pages can be classified:

they access a landing page (homepage), clickable content (non-landing pages), or a search result. This

kind of navigation-based classification can be useful for identifying network misuse, such as web

crawlers being misused for the purposes of web page scraping [Jacob et al., 2012]. Recent studies

have shown that malicious bots can be identified by the pattern of web page navigation from a given

end-point [Tegeler et al., 2012, Wang et al., 2013].

• Profiling the content type of a web page: The content of web pages can typically be categorized into

genres: Games, Shopping, News, Education, Business, etc [Inc., Xu et al., 2011]. Knowing the genre

of web pages downloaded by a given user may be used to gauge user interest, which is invaluable

for delivering personalized content and targeted advertisements [Yan et al., 2009]. Service providers

currently rely on deep-packet inspection to assess what content consumers are interested in [Corpo-

ration]. This classification will also be useful for some types of measurement studies, which perform

content-based analysis of web traffic to better understand network use [Xu et al., 2011, Butkiewicz

et al., 2011].

Basic Approach The basic approach used for this analysis is provided below.

• Diverse sample: As in the previous study, we collect a sample of web pages from the top 250 web

sites in the world.
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• Ground-truth labels using multiple labeling schemes: For classification methods to work, each web

page must be labeled. We use four orthogonal labeling schemes: 1) Target device-based; 2) Video

streaming-based; 3) Navigation-based; and 4) Genre-based. As previously noted, the labeling scheme

used directly impacts the applicability of web page classification.

• Multiple client platforms: We apply the results from our previous study to this study’s data collection

and feature selection methodology. We explicitly consider traffic features that are relatively stable

over time and consistent across client platforms, because selecting robust traffic features is likely to

improve web page classification performance.

• Evaluate classifications: We empirically evaluate web page classification performance while using

both parametric and non-parametric methods. We do this performance evaluation for each of the

labeling schemes considered.

• Investigate the applicability of web page classification: Lastly, we study whether web page classifica-

tion methods can be used for different web-related application domains. We conduct two application-

specific case studies, one investigating web page classification’s usefulness for applications in traffic

forecasting and simulation modeling, and the other examining whether web page classification can be

used to build and approximate user browsing profiles to gauge user interest.

Summary of Results The primary results and contributions of the study are given below.

• As previously mentioned, we classify web page download traffic according to four orthogonal labeling

schemes, which are not usually considered in the traffic classification literature [Lim et al., 2010,

Kim et al., 2008, Erman et al., 2007b, Dyer et al., 2012, Herrmann et al., 2009, Miller et al., 2014,

Schatzmann et al., 2010].

• We find that non-parametric methods, such as K-Nearest Neighbors (KNN), outperform parametric

methods, such as Linear Discriminant Analysis (LDA), on numerous metrics, including F-score, pre-

cision, recall, and accuracy. The performance difference between these methods ranges from 8% to

50% for all major metrics. We believe this is because theoretical distributions are not able to approxi-

mate the empirical distributions of the different traffic features. Prior traffic classification studies that
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use supervised machine-learning techniques also found that KNN and classification trees outperform

other classification methods [Lim et al., 2010, Kim et al., 2008].6

• Features that are identified as being stable over time and consistent across client platform achieve

higher classification performance (up to an increase of 12% in F-score). This analysis of whether

different traffic features are effective across client platforms has not been explicitly considered in past

work [Lim et al., 2010, Kim et al., 2008, Erman et al., 2007b, Dyer et al., 2012, Herrmann et al.,

2009, Miller et al., 2014]. The study by Yen et al. [2009] is, to our knowledge, the only work in

traffic classification that considers that traffic features may differ across client platforms. However,

Yen et al. [2009] addresses this problem by filtering web page traffic according to browser before

applying a web page identification technique. This browser-based filtering improves the performance

of the classification technique, showing that considering client platform-specific differences in web

traffic may improve classification performance.

• We find that the distributions of well-separated web page download traffic classified using our ap-

proach are statistically indistinguishable (p > 0.05) from distributions derived using ground-truth

labels. This result indicates that web page classification can be used for web-related application do-

mains such as traffic modeling and user profiling.7 While prior work in traffic classification states

that the results of classification can be used for traffic modeling, they do not provide results from a

simulation study or conduct a statistical analysis to demonstrate this [Lim et al., 2010, Kim et al.,

2008, Erman et al., 2007b].

1.2.3 Study 3 - Comprehensively Evaluating the State of the Art in Web Page Segmentation

Overview of Web Page Segmentation: The problem of grouping individual TCP/IP segments into the

web pages that they collectively represent is called web page segmentation. Web pages must be segmented

to perform any type of page-level analysis on traffic trace data, including general-purpose web traffic char-

acterization and web page classification. These applications are described below.

6 Supervised machine-learning methods are the current state of the art in traffic classification, outperforming unsupervised and
heuristic methods for traffic classification. Please refer to Chapter 2 for a more complete overview of traffic classification methods.

7 Our case studies also suggest this.
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• Web Page Characterization: Measurement and characterization studies of web traffic have been con-

ducted for a number of different applications, including traffic forecasting and web usage model-

ing [Hernández-Campos et al., 2003a, Choi and Limb, 1999, Butkiewicz et al., 2011, Newton et al.,

2013, Mah, 1997, Ihm and Pai, 2011, Barford and Crovella, 1998]. Many of these studies attempt web

page segmentation, but do not make it their primary focus and do not evaluate it. It is therefore not

clear whether they work well for modern web traffic [Newton et al., 2013, Ihm and Pai, 2011], or even

if these studies’ conclusions might have been impacted in unexpected ways by their segmentation

methods.

• Web Page Classification: While there have been significant recent advances in the design of clas-

sification and fingerprinting approaches, the vast majority of analysis techniques designed over the

past two decades assume the availability of perfectly segmented web page traffic [Miller et al., 2014].

Although many recognize the critical need to understand how well web page segmentation can be

performed in practice [Miller et al., 2014], few studies have tested actual web page segmentation in

an applied setting.

While web page segmentation methods have been used for numerous traffic analyses in the past [Hernández-

Campos et al., 2003a, Choi and Limb, 1999, Butkiewicz et al., 2011, Newton et al., 2013, Mah, 1997, Ihm

and Pai, 2011, Barford and Crovella, 1998], it is unclear whether existing techniques are effective for traf-

fic analysis on modern web page traffic, which introduces new challenges that make segmentation more

difficult. Some of these challenges are described below.

• Increase in Automatically Generated Traffic: Modern web pages may use technology such as AJAX,

which generates traffic without downloading a new page. For example, Facebook web pages load new

content on the same page by scrolling, while Youtube web pages subsequently auto-play additional

videos on the same page as the original video. This automatically generated traffic, which may be

used to update the content of a web page, presents a problem for web page segmentation, which may

treat it as a new page download.

• Increase in Overlapping Traffic: Modern browsers support multi-tab browsing, which allows mul-

tiple browser windows to be open simultaneously. This is a problem for web page segmentation

approaches, because increasing the number of tabs increases the degree of traffic that overlaps [Miller
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et al., 2014]. Overlapping traffic (traffic that consists of multiple web pages) is tougher to demulti-

plex, or segment, than traffic that only includes a single web page. This problem is further exacerbated

when we consider that modern web pages can automatically generate traffic in the background while

the user is not directly consuming the content. There are also environments where multiple users share

a single IP address (e.g., NATs) that also increase the degree of overlapping traffic [Guha and Francis,

2005, Tsuchiya and Eng, 1993].

Problem Addressed in this Work: Evaluation of Web Page Segmentation Approaches Previous liter-

ature has studied web page segmentation using TCP/IP headers as a timeseries analysis problem and has ap-

proached this problem using idle time-based approaches. These approaches estimate the beginning of a web

page download by detecting whether the network activity level (e.g., the number of bytes observed) exceeds

pre-defined thresholds after a certain amount of idle time [Maciá-Fernández et al., 2010, Newton et al., 2013,

Ihm and Pai, 2011, Mah, 1997, Barford and Crovella, 1998]. Another class of segmentation approaches rely

on change point detection, and these identify if/when a timeseries exhibits a substantial increase in network

activity. Change point detection methods, such as fused lasso regression and hidden Markov models, have

been applied in other fields, including computational biology and speech recognition [Rabiner, 1989, Tib-

shirani and Wang, 2008, Bleakley and Vert, 2011]. Neither idle time-based approaches nor change point

detection approaches have been comprehensively evaluated on modern web page traffic, which produces

noisier traffic and more difficult segmentation problems than older web traffic.

Through a comprehensive empirical evaluation of idle time-based and change point detection approaches

using both synthetic and real browsing data, we will determine whether web page segmentation approaches

can be used to analyze modern web page traffic using only anonymized TCP/IP headers. A successful web

page segmentation approach should be able to approximate some of the statistical properties of real user

browsing behavior, including the number of web page downloads a user requests and the average inter-

arrival time between these downloads—metrics that can be used to model user behavior. A successful web

page segmentation approach can also be used to enable and/or facilitate web page classification “in the

wild,” rather than in an isolated test environment.

Basic Approach An overview of the methodology used for this study is provided below:
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• Browsing stream generation: Our data collection methodology considers both synthetically generated

and real user browsing data. The synthetic data generation explicitly incorporates different inter-

arrival time distributions, client platforms (browsers), and number of tabs used into the data collection

methodology. The web pages browsed using the synthetic data is the same sample of web pages used

in the previous two studies described. The real user browsing data was collected by recruiting 40 real

users in an IRB-approved study [Sanders and Kaur, 2015c] in order to study personalized pages and

those with user-interactive content, which may not be included in the synthetic data.

• Web page segmentation: We evaluate the performance of 2 types of web page segmentation methods:

idle time-based methods and change point detection methods. We apply these web page segmenta-

tion methods to browsing streams derived from the number of bytes and the number of SYNs traffic

features—two features that have been previously used to segment web pages using TCP/IP head-

ers [Maciá-Fernández et al., 2010, Newton et al., 2013, Ihm and Pai, 2011, Mah, 1997].

• Applicability of web page segmentation: We study whether the web page segmentation method used

has a measurable impact on different web traffic analysis domains. We do this by conducting case

studies for the application domains of (i) user behavior modeling and (ii) web page classification.

Summary of Results A summary of the results of this empirical evaluation is provided below.

• For web page segmentation, the number of SYNs is a more robust and informative feature than the

number of bytes. Using the number of SYNs rather than the number of bytes improves the true

positive rate, or recall, of the best web page segmentation methods by approximately 5%, and some

methods, such as the basic idle-time based method, improve by over 40%. A recent study by Newton

et al. [2013] also found that the number of SYNs was more effective for web page segmentation than

the number of bytes.

• We find that the best-performing change point detection methods tested (fused lasso and a heuristic

method) yield F-scores that are 20-30% higher than idle time-based methods. Thus, we find that

change point detection methods can more robustly segment modern web traffic than existing idle

time-based approaches. This study is the first work to consider change point detection methods for

web page segmentation, although in a recent study, Ihm and Pai [2011] showed that idle time-based
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approaches may perform poorly on modern web traffic. However, Ihm and Pai [2011] proposes that

web pages should be segmented using content-based methods, which do not work on anonymized

TCP/IP headers; we recommend change point detection methods, which do.

• We find that the inter-arrival time between web page downloads has a significant impact on web page

segmentation performance. Our results show that web pages with small inter-arrival times (< 5s)

are detected less than 30% of the time, while web pages with large inter-arrival time (> 10s) are

detected approximately 85% of the time. We find that browser choice has only a small impact on

segmentation performance, and that the number of tabs open in a browser begins to significantly

impact segmentation performance only when the number of tabs increases from 4 to 8 (true positive

rate and other metrics decrease by over 10%). These factors have not previously been considered in

the literature on web page segmentation [Maciá-Fernández et al., 2010, Newton et al., 2013, Ihm and

Pai, 2011, Mah, 1997, Xie et al., 2013, Neasbitt et al., 2014].

• We find that the performance of web page segmentation methods impacts the performance of different

applications domains that leverage segmentation, such as user behavior modeling and web page clas-

sification. Higher-performing web page segmentation methods are beneficial for applications where

web page segmentation is critical, with both synthetically generated and real user browsing data. This

work is the first to evaluate the performance of multiple web page segmentation methods on traffic

classification when only anonymized TCP/IP headers are available [Lim et al., 2010, Kim et al., 2008,

Erman et al., 2007b, Dyer et al., 2012, Newton et al., 2013, Ihm and Pai, 2011].

1.3 Outline of Dissertation

The rest of this dissertation is organized as follows. Background and related work in the fields of Internet

measurement, traffic classification, and web page segmentation is described in Chapter 2. The first contri-

bution of this dissertation, a comprehensive measurement study that provides insight on the characteristics

and diversity in modern web page traffic, is provided in Chapter 3. Web page classification and web page

segmentation are investigated in Chapter 4 and Chapter 5, respectively. Concluding remarks and possible

directions for future work are provided in Chapter 6.
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CHAPTER 2: BACKGROUND AND RELATED WORK

The Web, the most popular application on the Internet, is a highly complex application because it uses

multiple technologies — some of these technologies include web browsers (i.e., Google Chrome and Fire-

fox), web pages (i.e., HTML and javascript), web servers (i.e., Apache), and communication protocols (i.e.,

HTTP, TCP/IP, and DNS). This complexity makes the discussion of the Web difficult because the term

“Web” can be used to describe many related, yet different, technologies. Thus, it is important for any work

that involves web technologies to clearly define the context for the aspect of “the Web” that is being con-

sidered. This dissertation focuses on the development and evaluation of techniques that analyze “the Web”

using only anonymized TCP/IP headers — this focus touches upon multiple technologies and research areas

that are each related to it. This chapter provides the context for the aspects of “the Web” that this dissertation

considers and is divided into three parts:

• Background: The first part of this chapter provides a brief background on the Web. Here, we clearly

define key terms such as the Web, a web page, and web page traffic. We also provide background

on web technologies including Hypertext Markup Language (HTML), javascript, Hypertext Transfer

Protocol (HTTP), and other protocols that are used by web technologies including Domain Name

System (DNS), Transmission Control Protocol (TCP), and Internet Protocol (IP). Readers familiar

with this background material may read ahead to Section 2.3.

• State of the Art in Web Measurement Methods and Tools: The second part of this chapter discusses

the methods and tools used for Web measurement. This discussion provides additional background

on how related studies collect data to study the Web.

• Related Work: The last part of this chapter discusses the literature on the research areas that is related

to this dissertation. These include Web measurement studies, traffic classification methods, and web

page segmentation methods.
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2.1 Background

2.1.1 Background on the Web

What is the Web? The Web is an application that allow clients to obtain files from web servers [Kurose,

2005] over the Internet. A client is an end-host (i.e., device) that initiates the request for a file from a server,

while a server is an end-host that responds to a client’s request by sending the requested file to the client.

HTTP is an application layer protocol that specifies the format for the communication between web clients

and servers. Web browsers, such as Google Chrome, implement client-side components of HTTP, while

web servers, such as Apache Tomcat, implement the server-side components of HTTP. Any communication

between web clients and web servers that use HTTP as its application layer protocol is referred to as web

traffic.

What is a Web Page? A web page is a file that uses the HTML markup language to specify how in-

formation should be displayed via a web browser.1 The HTML language allows web pages to reference

files that are needed to properly display the web page. These files are either located locally on the same

end-host as the web browser, or externally on a web server, and are traditionally called web objects. Web

objects are files that can be referenced with a Uniform Resource Locator (URL) — these include a number

of different file types including HTML, image, audio, and video files to name a few. A URL is an identifier

that specifies the location of a web object in terms of the hostname — a human-friendly identifier for a

device — of the web server and the path where the web object can be retrieved on the web server. In the

context of this dissertation, a web page is a term that refers to any HTML file that is referenced by a URL

and is displayed/rendered on a web browser. Therefore, other file types (e.g., image, audio, and video files)

and HTML files that are displayed on a mobile app are not considered web pages. Please note, that this

definition also means that web pages with URLs that share the same hostname, say www.yahoo.com and

www.yahoo.com/sports/article.html, are considered different web pages — instead, we use the term web site

to refer to a set of web pages that share the same hostname.2

There are also many other features and technologies used by web pages including (i) hyperlinks which

allow for navigation between web pages, (ii) javascript which allow for dynamic interaction with a web page,

1 Web pages are stored as HTML files.

2 We formally define terms such as hostname later.
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and (iii) Cascading Style Sheets (CSS) which allow for externally modifying the style in which web pages

are displayed. While these technologies are widely used for designing web pages and likely influence web

page traffic (discussed next), we do not explicitly control for these in this dissertation. More specifically, we

simply assume that these technologies exist and allow them to execute without controlling for, modifying, or

disabling them. We do this primarily because this dissertation focuses on studying and analyzing web page

traffic, but also because these technologies (particularly javascript) are difficult to manipulate and control

for in a scientific manner without manually inspecting and modifying them for each web page studied.

Explicitly studying the impact that these technologies have on web page traffic is valuable and is an avenue

for future work.

What is Web Page Traffic? Web page traffic is a term that we use to refer to the data that is transmitted

by web clients and servers that is used to display/render a web page via a web browser — this definition

excludes data that is transmitted by non-browser web clients, such as mobile apps. In this dissertation, web

page traffic includes the following:

• Data obtained from the different network protocols that comprise the Internet Protocol Stack [Kurose,

2005]. Data that is not transmitted over the network, such as data that is cached by a web browser, is

not considered web page traffic.

• Data from all of the web objects (e.g., source HTML, image files, audio files, etc) that are transferred

over the network that are explicitly referenced by a web page’s source HTML. This includes traffic

generated by web pages that are downloaded due to being referenced using the iframe HTML tag.

• Data that is automatically generated by web technologies, such as javascript, AJAX, or the web

browser, that results from processing the source HTML. Please note that this includes traffic generated

by modern web features such as instant search (updating the content of a page by typing), auto-play

(automatically playing a video), and ever scroll (loading new content on a page by scrolling). This

also includes traffic generated by DNS and web object prefetching features within browsers.

A web page download refers to the web page traffic that occurs when a browser downloads and renders

a single web page. Thus, web page traffic consists of one or more web page downloads. This distinction

between an individual web page download and web page traffic is important for some of the applications
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discussed in this dissertation (e.g., web page classification and web page segmentation) because it is the

basic unit in which we make inferences on Web usage. Some details regarding the specifics of the definition

of a web page download used in this dissertation, including when a web page download starts and ends, are

provided below:

• A web page download starts when a web client (browser) sends the first packet to initiate the web

page download process — we describe this process this detail later in this section.

• A web page download ends when the last packet is transmitted between the client and web servers

involved in the web page download. This means that web page downloads that transmit traffic after

the web page has displayed/rendered on a browser may continue for an indefinite amount of time. It

is difficult to predict when a web page download ends unless the browser window in which the web

page is rendered is closed. This is because many web pages leverage technologies that automatically

generate traffic (e.g., AJAX technologies).

• Any interaction with a web page that initiates a new web page download or reloads a web page is con-

sidered the start of a new web page download. Thus, dynamic and automated web page interactions,

such as instant search or video auto-play, that update an already rendered/displayed web page or sim-

ply download additional web objects are not categorized as a new web page download — the traffic

generated by these interactions correspond to the web page download in which it originated. Some

web page interactions which may initiate a new web page download include clicking on a hyperlink

and submitting a search query in a search engine.

• It is possible for multiple web page downloads to overlap (i.e., occur during the same time interval on

the same web client) — this is because many modern browsers support multi-tab and/or multi-window

browsing. While the traffic from multiple web page downloads may overlap, we always assume that

each packet observed originates from, or is considered part of, a single web page download.3 However,

it is difficult to demultiplex web page traffic (i.e., determine which traffic corresponds to which web

page download) in practice — in fact, this problem is an active area of research [Xie et al., 2013,

Newton et al., 2013, Neasbitt et al., 2014, Ihm and Pai, 2011, Barford and Crovella, 1998].

3 Please recall that a web page download consists of traffic that is referenced by the source HTML of a single web page or any
traffic generated by the browser that is due to processing this source HTML.
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What is the Internet Protocol Stack? The Internet Protocol Stack is a collection of network protocols that

are used for communication of packets over the Internet — the term packet is jargon for a formatted unit of

data that is transferred over a network. Network researchers and designers organize these network protocols

into layers to organize the structure and design of these network protocols [Kurose, 2005]. The Internet

Protocol Stack consists of 5 layers — the application, transport, network, link, and physical layers [Kurose,

2005]. Each layer includes network protocols that implement services that are used by other layers. The Web

requires the services from each layer of the Internet Protocol Stack. An overview of the services provided

by each layer of the Internet Protocol Stack is provided below.

• Application Layer: The application layer includes protocols that specifies the format for the exchange

of packets between applications on end-hosts [Kurose, 2005]. Packets at the application layer are

referred to as messages. For example, HTTP is the application layer protocol that is used to request

and transfer web objects, while DNS is the application layer protocol that translates between device

identifiers that are understandable by humans and the network.

• Transport Layer: The transport layer provides services that support the delivery of application-layer

messages. Packets at the transport layer are referred to as segments. TCP and UDP are two transport

layer protocols used in the Internet. Some common services provided by transport protocols are

provided below:

– Error detection: Transport layer protocols use error detection mechanisms, such as a checksum,

to determine whether the segment transferred between end-hosts have been corrupted. Corrupted

segments are discarded and are not used by the application layer protocol.

– Multiplexing: Transport layer protocols also support multiplexing. Multiplexing allows for the

end-hosts to transfer segments for multiple network applications simultaneously.

TCP also provides additional services such as reliable delivery, flow control, and congestion control.

We provide additional details on some of these services in Section 2.1.2.

• Network Layer: The network layer provides services that support transferring network-layer packets,

referred to as datagrams, from one host to another [Kurose, 2005]. IP is the network layer protocol that

is used by the Internet. Two important services that are supported by the network layer are routing

and forwarding. Forwarding refers to the action of transferring a datagram from an inbound link
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interface to an appropriate outbound link interface on a local host, while routing refers to the network-

wide process that determines the end-to-end path that datagrams take between two end-hosts [Kurose,

2005].

• Link and Physical Layers: The communication medium that connects two adjacent hosts in a network

are referred to as links. The link layer provides services that support the transfer of link-layer packets,

referred to as frames, across the link between two adjacent hosts [Kurose, 2005]. Some examples of

link layer services include medium access control and error detection [Kurose, 2005]. The physical

layer transports individual bits within link layer frames across a link — please note that the notion

of a packet does not exist at the physical layer because bits are the smallest unit of data for digital

communication. There are physical layer protocols for that correspond to different mediums of links

including wireless, coaxial cable, and fiber optic cable — in each case, a bit is transferred across a

link differently [Kurose, 2005]. We do not discuss the link and physical layers in detail because this

dissertation is concerned only with the information present at the application, transport, and network

layers.

We present an overview of how some of network protocols, in particular HTTP, DNS, TCP, UDP, and

IP, are used to download a web page in the next section.

2.1.2 Web Page Download Process - Web Traffic Background

High-level Overview of the Web Page Download Process Multiple steps are required in order for a web

client to download and display a web page. These steps require the use of network protocols and web

technologies.The high-level process of downloading and displaying a web page, with a focus on application

layer protocols, is described below:

1. Hostname resolution using DNS: The first step to download a web page is for the web client to

determine the IP address a web server given its hostname — this process is referred to as hostname

resolution. An IP address is an identifier that is used by IP to route datagrams over the Internet. DNS

is the protocol that is used resolve a hostname to an IP address. Figure 2.1 shows an illustration of

this process. Here, the client makes a DNS request to a DNS server (i.e., a server that provides DNS

services) to obtain the IP address for the hostname amazon.com. In this example, the DNS server

responds to this request with the appropriate IP address. Please note that Figure 2.1 also illustrates
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Figure 2.1: Illustration of the hostname resolution process.

Figure 2.2: Illustration of a client downloading a source HTML file from a server.
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the existence of lower layer protocols on the end-hosts (i.e., Transport, Network, Link, and Physical

layer protocols) — though, their functionality are not shown in detail for brevity. Application layer

protocols, such as DNS and HTTP, are not aware of lower layer protocols and logically communicate

directly over the Internet. This direct communication between the application layer protocol, DNS in

this case, is shown with the black arrows in Figure 2.1.

2. Client downloads source HTML from Web Server: The second step to download a web page is for the

client to download the source HTML from the web server. This step involves the following:

• The client must first send an HTTP request for the HTML source file to the appropriate web

server. This HTTP request is shown in Figure 2.2.

• The web server then receives the HTTP request from the client. If the server can satisfy the

request for the web object (in this case, the HTML source file), the server will send an HTTP

response with the appropriate web object (HTML source file) to the client. This HTTP response

is shown in Figure 2.2. If the server does not contain the web object it will send an HTTP

response indicating that an error occurred.

3. Client Browser interprets HTML source and Downloads Additional Web Objects if Needed: For mod-

ern web pages, the HTML source will typically include references to other web objects that are located

on other web servers. These web objects must be requested by the web browser using new HTTP re-

quests. The process of requesting additional web objects continues until all the web objects referenced

by the web page have been downloaded — though, the use of javascript and other technology allow

for additional objects to be requested indefinitely. This process is illustrated in Figure 2.3. Please note

that the additional web objects are not necessarily located on the same web servers — this concept is

also illustrated in the Figure 2.3. Also note, that we do not include the black arrows that illustrate the

logical communication between the application layers between end-hosts for simplicity.

These steps describe the high-level behavior of the application layer protocols, DNS and HTTP, that

are used by the Web. We provide additional details for these protocols as well of other protocols and web

technologies that are related to this dissertation next.
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Figure 2.3: Illustration a client browser downloading additional web objects.

Hostname Resolution with DNS DNS is the protocol that is used by the Internet for hostname resolution.

The hostname resolution process with DNS is described below:

• DNS request: The client sends a DNS request to its local DNS server — this request is either initiated

by the browser or by the operating system on the browser’s behalf. The DNS request includes the

hostname that the client needs to resolve to an IP address.

• DNS response: The local DNS server responds to the DNS request with a DNS record. The DNS

record includes the IP address of the requested hostname. DNS can also be used to obtain the host-

name that corresponds to an IP address — this is known as a DNS reverse lookup.

Details of the HTTP Request and Response Process

• HTTP request: An HTTP request consists of an HTTP header that includes information regarding

the web object that the client wants to download. HTTP headers contain many fields that organizes

this information according to the HTTP protocol standard [Fielding et al., 1999]. Some of the most

important fields include:

– URL: An identifier that specifies the web object to download.
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– Host: The domain name of the server to contact to download the object specified by the URL.

In many cases, browsers derive this information from the URL.

– Method: Specifies the HTTP request type. The two most common types of HTTP requests

(methods) are GET and POST. The GET method is typically used to specify that the client wants

to retrieve whatever information that is identified by the URL. The POST method is used by the

client to send information designated by the URL (i.e., HTTP content) to the server — please

note that the actual action performed by the server when the POST method is received depends

on the particular server that receives the POST method and the URL that is specified by the

client. Other HTTP methods include TRACE, CONNECT, PUT, DELETE and HEAD [Fielding

et al., 1999].

– User-agent: Specifies details of the client that is making the HTTP request. These details may

include the browser type, browser version, operating system, and even CPU-related information.

The server may use the information provided in the User-agent field as a parameter to help target

HTTP responses to different clients.

– HTTP Version: Specifies the version of HTTP that is used during the communication between

the client and server. Most web traffic that is transferred today uses HTTP/1.1.

• HTTP response: An HTTP response consists of an HTTP header that includes information about the

web object that the server is sending to the client. HTTP responses may also include the web object

that was requested by the client that make up the payload of the message. Some of the important fields

in the HTTP header of an HTTP response include:

– Status: The status field includes information about the attempt by the server to satisfy the HTTP

request. There are many status codes, some of which are more popular than others. A status

code of 2XX corresponds to a request that was successfully received and processed. Here, an

“X” corresponds to any digit 0-9.4 A status code that is not 2XX typically corresponds to an

error that occurred while interpreting or satisfying the HTTP request. For example, status codes

of 3XX correspond to redirections (i.e., the server sends the request to another server because

it cannot satisfy it alone), while status codes of 4XX and 5XX correspond to client and server

4 The most popular status code for a request that was processed successfully is 200.
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errors respectively.

– Mime-type: The mime-type specifies metadata about the category of the web object that is sent

by the server. The mime-type contains a type and a subtype of a web object. An example

mime-type is text/html. Here, text is the type and html is the subtype. There are many different

mime-types that specify the category of a web object including image/jpeg (i.e., an image of

type jpeg), application/javascript (i.e, a javascript application), and video/mp4 (i.e., a video of

type mp4). Freed et al. [2015] provides a more complete list of mime-types.

– Cache-control: This field specifies whether or not the web object sent should be cached. This

information is accompanied with information regarding how long the object should be in the

cache before expiring. An object that is in the cache (i.e., has been downloaded previously) can

be reused as long as the cached object has not expired. Caching is a common strategy to improve

network performance by reducing the number of redundant requests for data. The cache may be

located on the client or on a proxy service within the Internet. The Pragma field in the HTTP

header may also be used to inform clients or proxy services that the web object can be cached.

– HTTP Version: Specifies the version of HTTP that is used during the communication by the

client.

HTML Formatting As noted before, the HTML source file contains information about how to display

content. The information regarding how to display content is defined by HTML tags which are the building

blocks of an HTML source file. For example, the <i> tag is used to denote that text should be italic, whereas

the <table> tag is used to denote that information should be in the format of a table. Some HTML tags

function as references to web objects (content external to the HTML source file) that should be included to

display the web page. For example, the <img> tag can be used to reference an image that can be displayed

on a web page. In this example, if the image is not located on the client it must be downloaded via an HTTP

request. It is the responsibility of the web browser to (i) interpret the HTML source so that it can make

all of the necessary HTTP requests for the referenced web objects and (ii) display the information and web

objects as specified by the HTML source.

Underlying Transport Protocols (TCP and UDP) Application layer protocols, such as HTTP and DNS,

require the services of transport layer protocols to support the delivery of messages over the Internet. TCP
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is a transport layer protocol that is used by HTTP, while UDP is used by DNS. Segments consists of both

header information and payload information. Header information provides logic for how the segment should

be treated by the network and end-host applications (depending on the layer of the protocol), while payload

information is the actual application-layer message, including the application layer headers, that is trans-

ferred. The header information in transport protocols are used by end-systems and the Internet to success-

fully provide its services to application layer protocols.

TCP provides a number of services that support the transmission of segments over the Internet. Some of

these services include:

• Reliability: A service ensures that segments are reconstructed at the receiver in order, despite any

segment disordering, corruption, or loss that may have occurred during transmission.

• Congestion control: A service that controls the rate in which segments are transferred across a network

without causing network congestion. Network congestion is not desirable because it can significantly

reduce the rate in which segments are transferred between end-hosts.

• Flow control: A service that controls the rate in which the sender sends segments to the receiver such

that the receiver can process the segments without being overwhelmed by the transmission rate of the

sender.

TCP requires maintaining state about the status of segment transmissions to support these services. This

state is established using a handshaking procedure known as the three-way handshake and is denoted as a

TCP connection. A TCP connection is a sequence of segments between two end-hosts — TCP connections

are also referred to as flows in this dissertation. Maintaining the state required for TCP connections may be

costly in some scenarios. UDP, another transport protocol, is known as a connectionless protocol because it

does not provide services such as reliability and congestion control that require maintaining state about the

segments transferred. UDP is suitable for applications that are impacted by the overhead required of TCP

(e.g., real-time applications).

A TCP header contains at least 20 bytes of information and includes many different fields that serve a

specific purpose. A description of some of the most important fields in a TCP header is shown below, while

an illustration of the structure of a TCP header is shown in Figure 2.4.

• Sequence Number: The sequence number is a value that is used by TCP to ensure that segments are

30



received in the correct order.

• Acknowledgement Number: The acknowledgement number is a value that is used by TCP to verify

that a segment with a corresponding sequence number was received.

• Source Port Number: A port number identifies the specific application process in which the segment

can be forwarded to when it arrives to the receiver. The port number of the end-host that sends the

segment is known as the source port number.

• Destination Port Number: The port number of the end-host that receives the segment.

• Flags: TCP headers include a 8 bit field for flags that act as control messages for TCP — this 8 bit

field is shown in Figure 2.4 to the right of the Reserved field. Each bit of this 8 bit field corresponds

to a different control message. The SYN flag is used to establish a TCP connection. The ACK flag

is used to indicate that a segment was successfully transmitted and received. The FIN and the RST

flags are used to close TCP connections, while the PSH flag is used to tell the receiving application

to immediately load the segment (i.e., do not buffer the segment). Please note that more than one of

these flags can be set at the same time. There are also other flags that are outside the scope of this

work.

A UDP header, not shown, contains 8 bytes of data and also include fields that allow UDP to function

properly. We do not provide any more information on UDP since it is not the focus on this dissertation.

Underlying Network Protocol (IP) IP is the network layer protocol that is used by both TCP and UDP.

We focus our background discussion on IPv4 because it is the most widely used version of IP in the Internet

today. An IP header contains at least 20 bytes of data and includes many different fields that serve a specific

purpose. A description of some of the important header fields for IP is shown below, while an illustration of

the structure of an IP header is shown in Figure 2.5:

• Protocol: A number indicating the transport layer protocol that is using IP. A value of 6 corresponds

to UDP, while a value of 17 corresponds to TCP.

• Source IP address: The IP address of the end-host that sends the datagram.

• Destination IP address: The IP address of the end-host that receives the datagram.
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Figure 2.4: Illustration of the structure of a TCP header.

• Total Length: A 16 bit field that represents the number of bytes transmitted by the datagram.

• Options and Padding: The IP also contains an optional options and padding field. The options and

padding fields are not commonly used, so most IP headers consists of 20 bytes of data.

We refer readers to the work by Kurose [2005] for more details about other protocols (i.e., link and

physical layer protocols) that are also used by the Internet. We only provide an overview of the application,

transport, and network layer protocols that are studied in this dissertation.

TCP/IP Headers and Anonymization A TCP/IP header is nomenclature for when analysts refer to both

the TCP and IP headers of a datagram at the same time. This nomenclature is useful because TCP and IP

headers are tightly coupled and many important concepts require analyzing both headers simultaneously. For

example, datagrams from the same TCP connection have the same source port, destination port, source IP

address, destination IP address, and transport layer protocol. At a high-level, an anonymized TCP/IP header

is TCP/IP header where the source and destination IP addresses have been anonymized or obfuscated in a

manner in which they cannot be easily used to obtain the hostname of the servers they reference — recall that

a reverse DNS lookup can be used to determine the hostname of a server given its IP address. Anonymizing

IP addresses is a technique that is used to increase the privacy of users by making it more difficult for an
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Figure 2.5: Illustration of the structure of an IP header.

analyst to determine which servers were communicating with each other. This process is done because

hostnames alone may contain information about the type of content that a user is consuming. For example,

a user that contacts a server owned by webmd.com is likely consuming health-related content.

A simple approach to anonymizing a TCP/IP packet trace is to map each real IP address observed in the

trace to another random, or otherwise obfuscated, address. Usually, the only requirement is that the mapping

from each real IP address to each random address be one-to-one [Fan et al., 2004b] — the anonymization

of the TCP/IP trace is achieved by keeping the mapping between these addresses secret [Fan et al., 2004b].

There are two basic methods to performing this simple anonymization: 1) Table-based methods; and 2)

Cryptography-based methods. These are described below:

• Table-based anonymization methods create a one-to-one mapping between a real IP address and a

random address by simply generating a new random IP address for each real IP address observed

in the trace — some tools that anonymize traces in this manner include TCPdpriv [Minshall, 1996]

and IPsumdump [Kohler]. One drawback of table-based methods is that the mapping between real IP

addresses to random IP addresses is random — that is, a different mapping will usually be generated

each time a table-based method is applied to a traffic trace. This is a potential problem because the

one-to-one mapping between IP addresses will not be preserved across multiple traces which may
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include traffic from hosts that have the same IP address — this drawback also means that table-based

methods cannot be easily used in a parallel/distributed computing environment.

• Cryptography-based anonymization methods create a one-to-one mapping between IP addresses by

leveraging concepts in key-based encryption [Daemen and Rijmen, 1999, Fan et al., 2004b]. Essen-

tially, given a key and an encryption algorithm, the one-to-one mapping is achieved by encrypting,

or hashing, a real IP address to an obfuscated IP address — the anonymization is achieved by keep-

ing the key secret.5 Also, contrary to table-based methods, cryptography-based methods are able to

create one-to-one mappings that are consistent across multiple traces provided that the key used for

the anonymization is the same. The most well-known cryptography-based anonymization tool is per-

haps Crypto-PAn [Fan et al., 2004a] — many other network measurement tools incorporate or extend

Crypto-PAn [Armitage and But, 2007, Kirstoff, 2005, Moore et al., 2001].

By default, the one-to-one mapping of IP addresses does not preserve the bit-order of the original IP ad-

dresses. Indeed, the bit order of an IP address reveal information about the relative location of a device/host

and the structure of the network — such information is useful for some applications such as routing per-

formance analysis [Fan et al., 2004b]. Anonymization algorithms are referred to as prefix-preserving if

the bit-order of the IP addresses in the trace are preserved such that the network structure is maintained.

Most of the anonymization tools that we discussed (both table-based and crytography-based) support prefix-

preserving anonymization [Minshall, 1996, Fan et al., 2004a].

It is important to note that while anonymization methods make it more difficult to determine which

hosts were communicating on a network, they may still leak information that can be used to determine the

hostname of users. For example, an analyst may combine frequency-related information obtained from an

anonymized TCP/IP trace, say a list of the most frequently observed anonymized IP addresses, with infor-

mation that is obtained from third party analytics services, say a list of the most popular hostnames, to guess

the hostnames that correspond to some of the anonymized IP addresses. This risk of information leakage

is a legitimate concern that must be considered when using anonymization methods in general [Fan et al.,

2004b]. Please note that prefix-preserving anonymization methods leak potentially sensitive information

because they intentionally preserve the network structure. Thus, prefix-preserving methods should not be

used unless knowledge of the structure of the network is needed for the intended application/study.

5 In the field of cryptography, the encryption algorithm is usually assumed to be known [Stallings, 2006].
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In this dissertation, when we refer to an anonymized TCP/IP traffic trace we assume that:

• All application layer header and payload information was removed — this includes DNS and HTTP

headers. Thus, application layer information such as hostname, MIME-type, and HTTP status codes,

are not included in the dataset. While methods exist for anonymizing application layer and payload

information [Koukis et al., 2006, Pang and Paxson, 2003], we do not leverage these because we

assume that traffic is encrypted.6

• Simple anonymization was applied to the TCP/IP headers such that the mapping between real IP

addresses and obfuscated addresses is one-to-one. We do not assume that the anonymization is prefix-

preserving since, in this dissertation, we do not explicitly consider applications where understanding

network structure is critical. Also, we do not make strong assumptions about the frequency or struc-

ture of the IP addresses observed in the trace which may weaken the anonymization itself — more

specifically, we do not use the IP address to resolve or link the hostnames of different clients and

servers in a non-trivial way.

• All other information present in the TCP and IP headers, such as the port numbers, length fields, and

TCP flags, remain unchanged.7 Please refer to Table 2.4 and Table 2.5 for a visualization of these

fields for the TCP and IP headers, respectively.

Please note that we refer to the information present in an anonymized TCP/IP traffic trace as limited

because some information in the original traffic trace was either removed (application layer headers) or

obfuscated (IP address).

Limitations of Using Different Types of Web Page Traffic The Web is studied by analyzing the func-

tionality of these different types of technologies and protocols that are used by the Web. Some aspects of the

Web can be more easily analyzed using certain types of data than others. For example, HTML source data is

useful for understanding the semantics of a web page but it cannot be used to directly understand the network

implications of a web page download. Similarly, DNS data is useful for understanding the hostnames and IP

addresses of the servers that are referenced by a web page but it cannot be used to exactly understand which

6 Hence, simply removing the application layer header and payload information is reasonable for our scenario.

7 It is important to note that these fields may be obfuscated to improve user privacy [Koukis et al., 2006]. However, most popular
anonymization tools do not support/perform such obfuscation [Minshall, 1996, Fan et al., 2004a].
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web objects were requested via HTTP — although, methods exist that are able to determine which DNS and

HTTP messages that are likely associated [Krishnan and Monrose, 2011]. The many different types of data

available (e.g., HTML source, HTTP header, TCP header, IP header, DNS header, and message payloads)

allows for the analysis of the Web from many different perspectives. Generally speaking, HTML source,

HTTP header, and message payload data are most useful for analyzing Web usage in terms of the types

of pages that are downloaded and the patterns in which users navigate web pages, while TCP/IP headers

are most useful for analyzing the performance of the network. The challenge addressed in this dissertation

research is inferring web usage (i.e., the types of web page downloaded and the patterns in which users

download pages) using only the limited information available in anonymized TCP/IP headers.

2.2 State of the Art - Web Measurement Methods and Tools

2.2.1 Web Measurement Methods

In the previous section, we present a broad overview of the web page download process and the many

technologies that are needed in order for it to complete successfully. Web pages can be studied by collecting

and analyzing web page traffic. The type of analysis that can be performed using web page traffic depends on

the data collection methodology. Web page traffic can be collect either (i) on the server, (ii) on an aggregate

link on the network, and/or (iii) on the client. In this section, we describe some of the common approaches

to measuring web page traffic and the corresponding types of analysis that can be performed.

Measuring web page traffic on the server Servers host the web objects that clients download. A traffic

monitor can be placed on the server to collect and analyze the traffic that it sends and receives. Some

common metrics that are collected by servers include the timestamp of the HTTP request, the IP address

of the client, the requested web object URL, and the status code — many of these metrics are derived

from analyzing TCP/IP and HTTP headers. It is not uncommon for servers to maintain state about how

users access its web objects — cookies exchanged in HTTP request-responses or login-related information

are commonly used for this purpose [Spiliopoulou et al., 2003, Jansen and Spink, 2006]. This type of

information is typically recorded in a server log. Server logs have great value to content providers and

are routinely processed for a number of purposes including security analysis, performance analysis, and

to improve the functionality of their services. It is because of this value that server logs are considered

proprietary information and are not commonly made available to the public. Content providers are able to
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leverage both the provider protection and informed consent exceptions in the law that allow them to analyze

server logs without limits — this monitoring is allowed because one party of the communication (i.e., the

server) consented to the communication [Ohm et al., 2007].8

While collecting and analyzing web page traffic on the server is important for understanding how a

content provider’s web service is used by users, it only provides data about a single server [Jansen and

Spink, 2006]. Monitoring a single server results in a limited view of the web page traffic that is observed on

other servers. This limitation is particularly an issue because modern web pages may refer to objects that

are located on dozens of servers. Monitoring many servers from a diverse sample of content providers is an

alternative to monitoring a single server. However, this alternative will require a significant effort to place

monitors at the different servers which may be owned by other content providers to be useful [Jansen and

Spink, 2006].

Measuring Web page traffic on an aggregate Link ISPs and network administrators typically use a

Data Acquisition and Generation (DAG) card to monitor web page traffic that flows on their network on an

aggregate link — these devices/monitors are placed within the Internet [Benevenuto et al., 2009, Smith et al.,

2001, Newton et al., 2013, Lim et al., 2010, Gu et al., 2008, Ihm and Pai, 2011, Shafiq et al., 2012, Xu et al.,

2011, White et al., 2013, Erman and Ramakrishnan, 2013, Schneider et al., 2008]. These monitors capture

packets and store them for post-analysis — some tools, such as NetFlow [Claise, 2004], record statistics

of the network properties instead of capturing and storing each individual packet.9 This web page traffic

can be archived for an indefinite amount of time.10 This approach results in a rich dataset that includes the

communication between many clients and servers, where the scope of the measurement depends on where

the monitor is placed. For example, an ISP will have access to more web page traffic than a University

because its network is larger and reaches more users.

HTTP headers, message payloads, and TCP/IP headers are captured when collecting web page traffic

on an aggregate link.11 However, due to privacy laws, HTTP headers, message payloads, and IP addresses

cannot be analyzed by these entities without a provider protection exception or consent [Ohm et al., 2007].

8 Please note that in some regions in the U.S., both parties of the communication must consent to being monitored. In either case,
the provider protection exception can easily be applied.

9 Makes copies of the packets.

10 On the order of days to years. The archival time usually depends on the amount of disk space available for archival.

11 Please note that HTML source information can be extracted from payload of messages.
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Contrary to the analysis of data collected on the server, consent is difficult to obtain because network mon-

itors are eavesdropping on the communication between clients and servers. In other words, the client and

the server are not aware that they are being monitored. Thus, obtaining consent to analyze client and server

communications is not easy. The provider protection exception is difficult to obtain as well because one

must justify the need to collect content-level information for managing a network. Thus, most aggregate

measurement collection efforts focus primarily on improving the performance and efficiency of the network

instead of analyzing how users use web services. This limitation places significant barriers on potential

applications of aggregate trace data such as behavioral ad targeting and user behavioral modeling [Smith

et al., 2001, Maciá-Fernández et al., 2010, Sanders and Kaur, 2015b].

Collecting web page traffic on the client Clients download web objects from servers. Thus, monitoring

the client is another approach to collecting web page traffic [Gavaletz et al., 2012, Drago et al., 2012,

Butkiewicz et al., 2011, Sanders and Kaur, 2014b, 2015b, Sun et al., 2002, Liberatore and Levine, 2006]. In

this scenario, however, all the web objects that are needed to load a web page is present because all of the

web objects requested by the client will be transferred to the client by all the servers contacted. In addition,

HTTP headers, TCP/IP headers, and message payloads are legally available because the client consented

to the communication with the servers. A limitation of collecting web page traffic on the client is that it

provides limited diversity of client behaviors that can be observed on the Web. A web crawler is a common

tool that is used to collect a large and diverse sample of web page traffic to overcome this limitation [Heydon

and Najork, 1999, Boldi et al., 2004].

Some entities may install tools or plug-ins on client browsers that send messages to servers on how users

are browsing the Web [Liu et al., 2010]. One method to collect client usage statistics is to reference a web

object that needs to be requested within a web page — except in this case, the corresponding HTTP request

serves as a beacon for client usage. This type of technology serves as the foundation of modern analytics

and tracking services. Many users are unaware of the prevalence of such tracking technology [Chen and

Stallaert, 2014, Li et al., 2015a].

2.2.2 Web Measurement Tools

In addition to the many ways that web page traffic can be collected, there are many tools available to

analyze it. Most of the tools that are widely available and used are specialized for a particular type of web
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page traffic such as HTML source data or TCP/IP and HTTP headers. Some of these tools are described

next.

Tools for the Analysis of HTML Source Data HTML source data is typically stored as a simple text

file. Tools that analyze HTML source data must be able to parse the HTML syntax to extract information

about the tags and attributes that describe how the web page should be displayed and the objects that it

references. Popular tools that process HTML source files include JSoup, a java-based tool, and Beautiful

Soup, a python-based tool [Hedley, 2010, Richardson, 2015].

Tools for the Analysis of Header Data Web page traffic that is transferred on the network is commonly

stored using a packet capture tool. Tcpdump and windump are packet capture and analysis tools that use the

libpcap library [Jacobson et al., 1989, Deogioanni et al., 2000, Jacobsen et al., 2005]. The libpcap library

contains the details of the link technology used for the network communication and is operating system

dependent [Paxson, 1999] — Tcpdump is used for MacOSX and Linux operating systems, while windump

is used for Windows operating systems. Wireshark is another tool that can capture and analyze web page

traffic [Combs et al., 2007]. Wireshark, however, is a GUI-based tool while tcpdump and windump and

command-line based. These packet capture tools store data in a .pcap file. These packet capture tools

can also analyze web page traffic and output log files that organize protocol header-related information

(e.g., IP, TCP, UDP, or DNS headers) in a format that can be easily analyzed using scripts. NetFlow is

a tool that processes captured packets and output summary statistics on the flows that correspond to the

observed packets [Claise, 2004]. NetFlow is a popular tool that is used by routers to record TCP connection

information of the observed packets and is a light-weight alternative to a packet capture tool.12 Packet

capture, NetFlow, and similar tools have been used primarily to study the performance of the network and

the communication patterns between the end-hosts [Smith et al., 2001, Gu et al., 2008].

The analysis of HTTP headers using the logs generated by packet capture tools is more difficult than the

analysis of other protocols because HTTP header fields are not extracted by these tools by default. Pcap2har

is a tool that extracts HTTP header fields from .pcap files and outputs a .har file [pcap2har]. A .har file

is a log file that includes HTTP header fields in the, easy to process, json format. There are also browser

plugins that can capture and analyze HTTP header such as HTTP Watch and Firebug [Watch, Mozilla] —

12 Packet capture tools record information about each packet, while NetFlow only record summaries about the flows that the packets
correspond to. Though, some information is lost in the process of summarizing packet transfers as TCP connections.
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these tools also store the HTTP headers as a .har file. These browser-based tools only capture and analyze

HTTP headers and do not analyze TCP or other protocols. These browser-based tools are typically browser-

specific so it is difficult to use the same tool for multiple browsers — Firebug, for example, is only available

for Firefox. HTTP header analysis tends to be more content-based than say TCP/IP header analysis which

tends to be more performance based — though some metrics on network performance can be inferred from

HTTP headers as well.

Some browsers, such as Safari and Chrome, include a suite of development tools that are used to analyze

and inspect web pages in real-time [Chr, Saf]. These tools include features that are able to perform a number

of web page monitoring and analysis tasks which include analyzing source HTML (including javascript),

logging messages to the console (both source HTML and HTTP messages), and analyzing network perfor-

mance (say, request and response times for HTTP requests) [Chr, Saf]. These tools are typically used by

developers for debugging and optimizing web pages, and are not commonly used by researchers for Internet

measurement studies.

Specialized deep packet inspection tools Packet capture tools can be tuned to record payload/content data

— in this context payload data corresponds the payload of TCP segments. However, it takes a significant

amount of effort to analyze payload data. The process of analyzing payload data is known as deep packet

inspection — HTTP headers are considered payload data here because it can contain sensitive information

about the content of the data (i.e., URLs) [Ohm et al., 2007]. Specialized deep packet inspection tools have

been developed that perform packet filtering, traffic classification, malware detection, and other network

management tasks. nDPI, Libprotoident, and L7-filter are examples of deep packet inspection tools [Deri

et al., 2014, Levandoski et al., 2008, Alcock and Nelson, 2012]. Deep packet inspection tools are ineffective

on encrypted or obfuscated traffic [White et al., 2013]. Though, recent methods have been developed that

can infer the content of payloads using the statistical properties of the HTTP and TCP/IP headers transferred

over the network [Barford et al., 2002, Lakhina et al., 2005, Soule et al., 2005, Brauckhoff et al., 2006,

White et al., 2011]. We discuss some of these methods in Section 2.3.2.3.

2.3 Related Work

We next discuss the literature that is relevant to the goals of this dissertation research. An overview of

the work in the areas of Internet measurement, traffic classification, and web page segmentation is provided
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below:

• Internet Measurement: The first part of this section discusses the literature on Internet measurement.

This prior work consists primarily of Internet measurement studies that focus on studying web usage

and investigating methods to improve web performance. The literature in the Internet measurement

area is diverse because there are many different types of data that can be used for Web measurement

and analysis. For example, Web usage has been studied using HTML, HTTP, TCP/IP, and DNS data.

While these different types of data all contain information about web usage, each type of data reveals

different information about web usage and/or performance. We discuss Web measurement studies that

use these different types of data in detail in this section.

• Traffic Classification: The second part of this section presents literature on traffic classification. The

traffic classification literature consists of three primary types of methods: 1) Methods that rely on deep

packet inspection; 2) Methods that focus on classifying broad categories of traffic (e.g., classifying

traffic as email or not); and 3) Methods that focus on identifying a predefined set of web pages. An

overview of each of these general methods to traffic classification with specific examples of each is

provided in this section.

• Web Page Segmentation: The last part of this section discusses prior work that is related to web page

segmentation. We discuss both methods that examine HTTP headers and methods that work when

using only anonymized TCP/IP headers.

2.3.1 Internet Measurement

Prior literature that analyze web page traffic, in particular those that analyze source HTML, HTTP,

TCP/IP, and DNS traffic, are discussed next.

2.3.1.1 HTML-based studies

Text and link-based analysis One of the first problems associated with analyzing web page traffic is being

able to collect data. The process of collecting web page traffic using a client, particularly HTML-based data,

is known as web crawling or simply crawling. Web crawlers are client-side tools that measure the Web by

downloading many web pages. Cho et al. [1998] noted that it is infeasible to download all web pages in

a reasonable amount of time due simply to the sheer number of web pages that exist and the amount of
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memory required to store those pages. Thus, Cho et al. [1998] addressed the problem of how to efficiently

crawl such that one can crawl and store web pages that are important to a particular query or goal.

One of the first approaches to studying web pages was to use text mining metrics and techniques to

analyze the source HTML. For example, Cho et al. [1998] used word count features and inverse term

document frequency similarity metrics to analyze the textual content of web pages to determine whether the

page was relevant to the input query. Other work leverages some of the well-defined structure of HTML

data to help with text mining. Smith and Chang [1997], for example, performs a text-based analysis but

also focused on analyzing the visual content referenced by HTML data (e.g., images and video).

The work by Spertus [1997] proposed using link-based information, not just hyperlinks, to study the

Web. This study notes that links for HTML data can correspond to hyperlinks between web pages, relation-

ships between the directory structure of web pages on the same web site, relationships between the domain

names of web pages, and links related to the taxonomy of web pages [Spertus, 1997]. This work, however,

only discusses using this different link information for studying the Web at a high-level and did not perform

a large scale study of the relationship between web pages using this link information. Page and Brin [1998]

leveraged the hyperlink structure present in HTML data to understand how web pages were organized. Page

and Brin [1998] constructed a hyperlink-based graph of the Web where web pages (i.e., HTML document)

were represented as vertices. Here, directed edges between vertices were formed from vertex i to vertex j

if a hyperlink in web page i exists that referenced web page j. By applying graph theoretical techniques to

this hyperlink-based web graph, Page and Brin [1998] showed that important web pages tend to be refer-

enced by many other web pages. The PageRank score, a metric derived from this technique, is used to rank

web pages according to their popularity as measured by the number of hyperlinks that reference them. The

PageRank score has been used by web crawlers to help make their crawl more efficient by crawling pages

with high importance. In fact, Najork and Wiener [2001] showed that the breadth first search crawl strategy

is an efficient method to crawling web pages because the web pages crawled tend to have high PageRank.

The analysis of source HTML is relevant to this dissertation because source HTML reference the web ob-

jects that are transferred over the Internet. Thus, any observation in web page traffic is linked to the source

HTML. In Chapter 3, we use these techniques to help quantify the impact that source HTML has on other

types of web page traffic including HTTP headers and TCP/IP headers.
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Challenges of Crawling Web Pages Much of the previously mentioned prior work highlight some key

limitations of crawling web pages. The most important of these issues include the limited amount of disk

space available for storage and the amount of time required to perform a crawl.13 One factor that makes this

issue worse is that web pages may change over time. Cho and Garcia-Molina [1999] performed a study

that focused on studying how often web pages change. This type of study is important for web crawling

efforts because it has implications on how often web crawlers need to download the same web pages.14 To

address this issue, Cho and Garcia-Molina [1999] crawled 720,000 web pages everyday for over 4 months.

A key result from this study was the observation that over 50% of all web pages and over 80% of web pages

with the .com domain will change within 4 months — Douglis et al. [1997] observed similar results. These

results imply that web crawlers need to incrementally crawl the Web to obtain “fresh” versions of a web

page. One limitation of this study was that the metric used only identified whether a page changed and not

how much a page change. This limitation is a problem because web pages that do not change much may

not need to be crawled again. Fetterly et al. [2003] performed a similar study and this limitation by using

a text mining technique that can quantify the degree of change between web pages. One of the key findings

that Fetterly et al. [2003] report is that the degree of change between web pages varies a lot, and that larger

web pages change more often and to a larger degree than smaller web pages.

These observations have been used when performing large web crawling efforts. For example, the Inter-

net Archive has been using incremental crawls to repeatedly download web pages for over a decade [Notess,

2002]. Though, with the continued rapid change and growth of the Web and the diversity of content, large

web crawling efforts (e.g., web archival and search engines) still have difficulty collecting a vast amount

of fresh web pages [Costa and Silva, 2012]. This issue is exacerbated as web pages become increasingly

personalized and depend more on factors such as location [Mikians et al., 2013] and client platform [John-

son and Seeling, 2014]. Understanding the limitations of web crawlers it is important for this dissertation

research because we must use one to collect the data used for our analysis. Any significant issues with web

crawling, such as not crawling a diverse set of web pages, will limit the scope and application of this work.

Common Specialized Applications of HTML-based data While designing search engines and monitor-

ing the evolution of web pages are examples of analysis-driven applications of HTML-based data, there has

13 The amount of time to do a representative crawl can take months.

14 The logic here being that web pages only need to be crawled again if they change.
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been much work in other applications as well. For example, Qi and Davison [2009] and Choi and Yao

[2005] describe many different techniques for classifying web pages using HTML-based data. These tech-

niques leverage a wide variety of information represented by HTML content to classify web pages including

link/graphical properties, textual properties (word counts), and information derived from HTML tags. Shen

et al. [2004] show that web page classification performance can be improved if summaries of the text data

are taken before applying the classifier. This document summarization procedure improves classification

performance by reducing the amount of noise in the feature set. Document summarization for HTML-based

data is commonly used in the Web analysis literature [Pera et al., 2010, Delort et al., 2003].

An alternative to doing web page classification using HTML-based data is to do web page topic model-

ing [Lin et al., 2014, Zhang et al., 2013]. Web page classification and topic modeling are different because

web page classification methods use supervised approaches to categorize web pages while web page topic

modeling methods use unsupervised approaches to cluster web pages. Supervised approaches require a

training dataset that has been labeled/categorized while unsupervised techniques does not. Unsupervised

techniques can be preferred over supervised techniques because obtaining labeled data can be prohibitively

difficult. Past work on web page topic modeling typically use widely accepted text mining approaches such

as Probabilistic latent semantic analysis and Latent Dirichlet allocation [Lin et al., 2014, Zhang et al., 2013].

Pera et al. [2010] and de Boer et al. [2014] use sentiment analysis techniques for analyzing online cus-

tomer reviews. These techniques are used by content providers to understand and better address the needs

of their customers. HTML-based data can even be used for security analysis [Canali et al., 2011, Likarish

et al., 2009, Seifert et al., 2008]. These studies use features derived from HTML-based data including the

number of tags, features derived from javascript code, and URL information to help predict whether a web

page is malicious or not. These approaches are considered to be lightweight because they use textual infor-

mation (i.e., HTML files) instead of network or other systems-based information [Canali et al., 2011]. These

approaches are useful because they can be used as filters to more reliable and computationally expensive

systems-based tools for identifying malicious pages [Wang et al., 2006].

This past research, which is summarized in Table 2.1, is complementary to the goals of this dissertation

research because it involves developing learning-based techniques to help analyze web pages. The work

presented in this dissertation, however, focuses on developing techniques that can analyze web page traffic

using only anonymized TCP/IP headers. Results on this study on web page classification using anonymized

TCP/IP headers is provided in Chapter 4.
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TABLE 2.1: Summary of Prior Work on Internet Measurement (HTML-based studies)

Author(s) Purpose of Mea-
surement

Type of
Data

Scale of study Analysis
Type

Key Insight/Notes

Cho et al.
[1998]

Evaluation of Web
Crawling Methods

Source
HTML

179,000 web
pages

Performance
Analysis

PageRank performs the best ac-
cording to numerous metrics
for web page importance

Page and
Brin [1998]

Evaluation of In-
formation Retrieval
System

Source
HTML

24 million web
pages

Performance
Analysis

Modeling the web as a graph is
useful for ranking pages

Najork
and Wiener
[2001]

Evaluation of Web
Crawling Methods

Source
HTML

325 million
web pages

Performance
Analysis

Breadth-first crawling strat-
egy is yields pages with high
PageRank.

Cho and
Garcia-
Molina
[1999]

Evaluation of Web
Crawling Methods

Source
HTML

720,000 web
pages (4 month
span)

Exploratory
Analysis

Web crawlers must be selective
in which pages to crawl because
some web page update more of-
ten than others

Douglis
et al.
[1997]

Evaluation of Web
Cache Effective-
ness

Web ob-
jects

474,000 web
objects

Exploratory
Analysis

Half of the web pages measured
updated within 2 weeks

Fetterly
et al.
[2003]

Evaluation of Fac-
tors Correlation
with Web Page
Change

Source
HTML

150,836,209
web pages (11
week span)

Exploratory
Analysis

Rate of change in HTML is cor-
related with factors such as do-
main name, number of words,
and file size

Mikians
et al.
[2013]

Investigating Price
Discrimination
across different
Locations

Source
HTML

1,500 requests
(6 month span)

Exploratory
Analysis

Price discrimination exists
across different locations

Zhang
et al.
[2013]

Evaluation of Topic
Modeling methods

Source
HTML

6.6 million
wikipedia
pages

Topic Model-
ing

Online dictionary learning al-
gorithms outperform traditional
topic modeling methods

Lin et al.
[2014]

Evaluation of Topic
Modeling methods

Source
HTML

1,119,264
Twitter pages

Topic Model-
ing

Sparse Topic Modeling outper-
forms prior topic models

Pera et al.
[2010]

Evaluation of
Summarization for
Sentiment Analysis
Approaches

Source
HTML

1,000 reviews
web sites

Classification Summarization approaches im-
pact sentiment analysis perfor-
mance

Shen et al.
[2004]

Evaluation of Web
page classification

Source
HTML

153,019 web
pages

Classification Using summarization for fea-
ture selection improves classifi-
cation

Canali
et al.
[2011]

Evaluation of Fea-
tures for Classifica-
tion of Web Pages

Source
HTML

205,073 web
pages

Classification No single class of feature
(URL, javascript, etc) is suffi-
cient for classification

Smith
and Chang
[1997]

Evaluation of In-
formation Retrieval
System

Source
HTML +
Images

16,733 web
pages

Classification It is possible to classify web
pages based on the type/subject
of the web page

Likar-
ish et al.
[2009]

Evaluation of clas-
sification methods
for detecting mali-
cious javascript

Javascript
source

63 million
scripts

Classification One of the first studies that eval-
uated script-level features for
classifying malicious scripts

Seifert
et al.
[2008]

Evaluation of clas-
sification methods
for detecting mali-
cious web pages

Source
HTML
+ HTTP
responses

561,000 web
pages

Classification Simple rules-based classifica-
tion can detect malicious web
pages with high accuracy
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2.3.1.2 HTTP-based studies

HTTP headers provide information about the type of content (e.g., image, audio, etc) that are being trans-

ferred over the Internet. The focus of Web measurement studies conducted in the late 1990s and early 2000s,

however, were motivated primarily by improving the network performance of the Internet. Thus, early web

traffic measurement studies opted to use TCP/IP headers instead of HTTP headers even though they were

studying the Web [Crovella and Bestavros, 1997, Barford and Crovella, 1998]. HTTP headers were not used

for web traffic measurement until the focus of Internet analysis shifted from being performance-oriented to

content-oriented. This shift occurred mainly because the type of content transferred over the Internet has

implications on network performance, user experience, and user privacy [Xu et al., 2011, Rao et al., 2011].

This shift also occurred because of an industry-wide trend to add HTTP support for interactive and dynamic

applications such as video streaming and file sharing [Popa et al., 2010]. While HTTP headers, TCP/IP

headers, and even DNS headers can be analyzed in isolation of one another, it is best to analyze the behavior

of all of these network protocols because, their behavior and performance are tightly coupled for Web-based

applications. Though, most measurement studies focus on a subset of these protocols to reduce and narrow

the scope of the study. We focus on studies that use HTTP header information for traffic analysis in this

section and discuss studies that use TCP/IP headers and DNS headers in Section 2.3.1.3 and Section 2.3.1.4

respectively.

Aggregate Web Measurement Studies Callahan et al. [2010] conducted a measurement study on the

evolution of web traffic at a small institute over a 3 year period of time. This study showed the benefit of

analyzing web traffic over an extended period of time. Callahan et al. [2010] shows that web traffic has

been growing over the years and even highlighted the prevalence and growth of certain types of technologies

including content distribution networks. Other types of analysis including understanding which hostnames

were frequently (and infrequently) contacted by users, and investigating the cause and frequency of errors

were also performed. This study also showed that the behavior of AJAX applications, such as gmail, can

be identified using HTTP headers — in particular, the authors tracked the adoption of gmail by monitoring

the number of POST requests over time. Schneider et al. [2008] performed a measurement study that

focused exclusively on understanding the network characteristics of AJAX applications. AJAX applications

are essentially web pages that automatically transfer traffic without the need for a user to request a new web

page. The methodology adopted in this study was to use HTTP headers to filter web traffic depending on
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whether it was an AJAX application or a traditional web application. AJAX applications were identified

by performing regular expressions on the URL field of the HTTP header — the regular expressions used

by Schneider et al. [2008] targeted four AJAX applications. Schneider et al. [2008] found that AJAX

applications tend to be make many more HTTP requests and consume more bandwidth than traditional web

applications because they tend to aggressively prefetch web objects to improve user experience by reducing

network latency.

Ihm and Pai [2011] conducted a longitudinal study of web traffic, similar to the study conducted by

Callahan et al. [2010]. Ihm and Pai [2011] however presented more results about the trends of web traffic.

Some of these results include observing an increase in CSS and javascript web objects that is correlated to

the increased adoption of AJAX-based technology. Other key results from this study is that URLs of web

objects tend to become more popular despite an increase in the number of unique and unpopular URLs.

This result has an implication on web object caching because caching popular URLs will likely help with

caching while caching unpopular URLs will likely hurt caching. Ihm and Pai [2011] also showed that

client location is correlated with a number of factors including (i) the browser preference among the user

population and (ii) the types of web services that are used by the user population. These prior studies

are related to this dissertation because they show that web page traffic has evolved over time and provide

insight on the properties of modern web page traffic. The results of these studies, which are included in

Table 2.2, also suggests that prior traffic analysis methods, such as traffic classification, may be impacted

when considering the characteristics of modern web traffic.

Measurement Studies for Emerging Web Applications The Web was widely considered to be the most

popular application on the Internet in the late 1990s and early 2000s [Crovella and Bestavros, 1997, Chris-

tiansen et al., 2000]. However, the Web’s popularity began to decline in the mid 2000s as video streaming,

audio streaming, file sharing, email, and most notably P2P applications became more popular [Popa et al.,

2010]. In particular, this shift in the popularity of Internet applications resulted in a number of measure-

ment studies that focus on studying the traffic characteristics of P2P applications and being able to compare

and distinguish it from web applications [Sen and Wang, 2004, Basher et al., 2008, Erman et al., 2007b,

Choffnes and Bustamante, 2008]. Recent studies show, however, that this trend has reversed and web traffic

is regaining its traffic share from other applications [Popa et al., 2010]. In fact, an increasing number of

applications including video streaming (Youtube and NetFlix) [Rao et al., 2011, Reed and Aikat, 2013],
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social networking (Facebook) [Benevenuto et al., 2009], and file sharing (Dropbox) [Drago et al., 2012]

are using HTTP. Indeed, HTTP has become the defacto standard of communication over the Internet [Popa

et al., 2010].

HTTP headers have been used to analyze the traffic generated by these new web applications. However,

studying how these new applications are used using HTTP headers is not trivial and depends on the applica-

tion that is being studied. Rao et al. [2011] and Reed and Aikat [2013] analyzed Web-based video streaming

traffic. The web traffic for these studies were collected using a client side measurement methodology — so

heuristics were not needed to filter video streaming traffic from non-video streaming traffic. These studies

found that the web traffic observed for streaming technologies depends on many factors including the type

of web technology used (say Flash or HTML5), browser choice (say Firefox or Internet Explorer) and the

provider of the video streaming service (say Youtube or NetFlix)[Reed and Aikat, 2013, Rao et al., 2011].

Rao et al. [2011] explicitly showed that web traffic collected using a client-side measurement methodol-

ogy can be used to help understand aggregate traffic. In particular, this work used their client-side traffic

measurements to develop a model for aggregate video streaming traffic. This model was used to show that

tuning certain video streaming parameters can produce smoother video streaming traffic. Reed and Aikat

[2013] made similar observations and modeling efforts for video streaming applications except it focused

more on simulation applications.

Benevenuto et al. [2009] performed a study about understanding how users use social networking ser-

vices. This work initially performed client-side measurements to understand the URL structure present in

HTTP headers so that it can be used to (i) identify social networking traffic on an aggregate link and (ii)

identify the way that users were interacting with different social networking application features (e.g., view-

ing a profile, uploading a photo, etc). Benevenuto et al. [2009] showed that understanding web traffic in a

controlled environment can be used to study web traffic on an aggregate link — though the authors highlight

that their approach is error prone. This methodology was used in this study to compare and contrast the

web traffic of different social networking services. Drago et al. [2012] use a similar methodology to study

the traffic characteristics of Dropbox, an online storage system. Drago et al. [2012] found that users may

prefer to access some Web-based services (e.g., storing a file on the cloud) by interfacing with a specialized

application that is installed on the client instead of interfacing with a general purpose web browser.

There is a current trend for developers to develop specialized applications for interacting with the Web

using mobile devices. These specialized applications are referred to as mobile apps. Xu et al. [2011]
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performed a measurement study that focused on characterizing the web traffic observed on mobile apps.

Xu et al. [2011] found that the web traffic that corresponds to mobile apps can be easily filtered in aggregate

traces using the User-agent field in HTTP headers. This User-agent field uniquely identifies the mobile app

that generated the traffic. The biggest contribution of this study is showing that mobile app traffic already

make up a non-negligible portion of aggregate web traffic and that the type of device a user has impacts their

web browsing experience. Efforts have already been taken to improve the performance [Huang et al., 2010],

and user-friendliness of the Web for mobile devices [Johnson and Seeling, 2014].

These studies on emerging applications,which are included in Table 2.2, provide additional insight on

the diversity of modern web page traffic. We use this insight in this dissertation to collect a diverse dataset

that includes these emerging applications. This diverse dataset is used throughout this dissertation research.

Web Page Performance Bouch et al. [2000] conducted a study to determine if network performance

metrics (i.e., QoS metrics) are correlated with a user’s subjective perceptions of web performance quality.

The results of this study showed that a user’s subjective perceptions of web performance quality are, in

fact, related to network performance. Galletta et al. [2004] performed a similar study that showed that a

user’s attitude towards web performance quality diminished as the web page load time increases. Delays in

loading web pages can have serious economic consequences. In fact, several recent studies have found that

even slight increases in page load delays, say 100ms - 1s, can cause a noticeable drop in web application

use and can result in significant revenue losses for major web sites [Schroter, 2011, Group, 2011].

While most web performance studies are done using TCP/IP headers, there has been some recent work

to analyze web performance using HTTP headers. Browser-based tools, such as YSlow and PageSpeed,

have been developed in industry that use the information present in HTTP, and even DNS, headers to make

recommendations on how to improve web page download performance [Yahoo, Google]. However, these

browser specific tools do not make performance recommendations based on web page load time — web page

load time is not used because it cannot be reliably and consistently measured despite using the same browser

and under similar network conditions [Gavaletz et al., 2012]. Instead, these tools provide recommendations

on how to improve web page performance based on rules-of-thumb — example rules include avoiding

HTTP errors and minimizing the number of HTTP requests. Butkiewicz et al. [2011] conducted a client-

side study to specifically study the relationships between HTTP-related features and web page load time.

Some of the HTTP-related features that this study highlighted that impact web page download performance
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include the number of HTTP requests, the number of javascript objects (HTTP responses with MIME type

text/javascript or application/javascript) and the number of hosts contacted. These results support many

of the rules-of-thumb that are used by industry tools. Ihm and Pai [2011] also studied web page load

performance but focused primarily on identifying opportunities for caching web objects — this study was

described before.

There have also been some recent studies that study how SPDY [Jerome], a fairly new networking

protocol developed primarily at Google, performs on modern web traffic. HTTP/2.0, the most recent ver-

sion of HTTP that is currently being deployed, adopts many of the ideas and features developed in SPDY

[W3Techs]. Wang et al. [2014] performed a client side measurement study to evaluate the performance

of SPDY and found that SPDY improves the efficiency of web objects transferred in a single TCP con-

nection. However, Wang et al. [2014] also notes that SPDY does not necessarily improve web page load

times. The authors attributed this observation to the fact that most web pages reference objects that are dis-

tributed across multiple servers, and the dependency between these web objects is a performance bottleneck

that is not addressed by SPDY. The performance of SPDY is also significantly impacted by other network

characteristics such as high RTT and high loss rates [Wang et al., 2014]. Erman et al. [2013] performed

a similar study on SPDY performance that confirmed that networks with high RTT and loss rates, such as

cellular networks, do not benefit from the performance enhancements implemented in SPDY. Erman et al.

[2013] recommends using a cross-layer approach to improve the performance of the Web, because web

object transfers are dependent on multiple protocol layers.

These prior studies on web performance, which are summarized in Table 2.2, is related to this disser-

tation because we consider web performance analysis as an application domain. Specifically, we identify

some of the limitations of the tools used for web page performance analysis and (ii) show that web page

classification can be used to supplement traditional web page performance analysis. These contributions are

made in Chapters 3 and 4, respectively.

User modeling using server-side logs Web page traffic can also be analyzed using server-side logs. While

these server-side logs are not necessarily considered a HTTP header, they are usually derived from HTTP

requests and responses between a client and server.15 The most unique type of analysis that is possible using

15 Please note that these server-side logs can also include other types of web traffic. We consider server-log data in the HTTP header
analysis portion of this discussion because it is primarily derived from HTTP headers.
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TABLE 2.2: Summary of Prior Work on Internet Measurement (HTTP-based studies)

Author(s) Purpose of Mea-
surement

Type of
Data

Scale of study Analysis
Type

Key Insight/Notes

Schneider
et al.
[2008]

Study Characteris-
tics of AJAX

HTTP,
TCP, and
IP Headers

≈ 30 million
HTTP requests

Exploratory
Analysis

AJAX applications send more
HTTP requests and consume
more bandwidth than normal

Ihm and Pai
[2011]

Evaluation of Web
Cache Performance

HTTP,
TCP, and
IP Headers

>138 million
requests across
187 countries
(5 year span)

Exploratory
Analysis

AJAX traffic has been steadily in-
creasing over time and caching
behavior has also improved

Rao et al.
[2011]

Study Characteris-
tics of Video

HTTP,
TCP, and
IP Headers

≈ 15,000
videos

Exploratory
Analysis

Different streaming technologies
have different traffic characteris-
tics

Benevenuto
et al.
[2009]

Study Characteris-
tics of Social Media

HTTP,
TCP, and
IP Headers

802,574 HTTP
requests (12
day span)

Exploratory
Analysis

First to show access patterns of
users can be used to improve so-
cial network sites

Drago et al.
[2012]

Study Characteris-
tics of Cloud Stor-
age

HTTP,
TCP, and
IP Headers

≈ 4.2 million
flows (42 day
span)

Exploratory
Analysis

First to find that storage applica-
tions are highly used and some in-
efficiencies in traffic management

Johnson
and Seeling
[2014]

Comparison be-
tween mobile vs
desktop pages

HTTP
Headers

1 million down-
loads (2 year
span)

Exploratory
Analysis

Mobile web pages reference
fewer objects than desktop pages

Xu et al.
[2011]

Study Characteris-
tics of Smartphones

HTTP,
TCP, and
IP Headers

≈ 22,000 apps
(1 week span)

Exploratory
Analysis

First to perform large-scale study
on smartphone app usage

Callahan
et al.
[2010]

Longitudinal Study
of Web Traffic

HTTP,
TCP, and
IP Headers

≈ 29 million
connections
(3.5 year span)

Exploratory
Analysis

Some aspects of web traffic have
been fairly static over time while
others have changed

Liu et al.
[2010]

Study Characteris-
tics of User Dwell
Time

HTTP
headers

205,873 web
pages with
10,000+ visits
each

Exploratory
Analysis

Web page dwell time follows a
weibull distribution moreso than
an exponential distribution

Bouch et al.
[2000]

Identify Network
Metrics that are
correlated with
User performance

HTTP,
TCP, and
IP Headers

User Study of
22 web pages
and 30 partici-
pants

Exploratory
Analysis

Metrics such as delay is cor-
related with user-perceived web
performance

Butkiewicz
et al.
[2011]

Study Characteris-
tics of Web Traffic

HTTP
Headers

1,700 web
pages at 4
locations (7
week span)

Exploratory
Analysis

Web page category seems to im-
pact traffic. Also, number of ob-
jects and servers impact page load
times

Wang et al.
[2014]

Evaluation of Web
Performance of
HTTP vs SPDY

HTTP,
TCP, and
IP Headers

200 web pages Performance
Analysis

The performance gains of us-
ing SPDY over HTTP is usually
marginal

Huang et al.
[2010]

Evaluation of Web
Performance Dif-
ferences Across
Smartphones

HTTP,
TCP, IP,
and UDP
Headers

≈ 20 web pages
(4 different
smartphones)

Performance
Analysis

Factors such as device type and
network technology (WiFi and
3G) impact web performance

Gavaletz
et al.
[2012]

Evaluation of
In-browser mea-
surement tools

HTTP
Headers

1,000 HTTP re-
sponses (across
5 browsers)

Performance
Analysis

In-browser measurement tools
should not be used because mea-
surements vary wildly

Erman et al.
[2013]

Evaluation of Web
Performance of
HTTP vs SPDY

HTTP,
TCP, and
IP Headers

20 web pages
(over LTE and
WiFi networks)

Performance
Analysis

HTTP and SPDY perform simi-
larly
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this type of server-side logs is user-browsing modeling. One of the first steps to analyzing server-side logs is

to reconstruct user sessions. A user session is defined here as the ordered set of HTTP requests and responses

that correspond to a single user. Sessions are often limited in duration, so a user that accesses a web service

on two different occasions is considered two different sessions. Reconstructing a web session using server-

side logs is difficult because HTTP headers do not necessarily uniquely identify users nor provide a feature

that informs a server when a user is done browsing. Spiliopoulou et al. [2003] discusses a number of

methods and heuristics to overcome these issues using HTTP headers. One common method to identifying

unique users is to use cookie field in HTTP headers.16 The primary limitation of using the cookie field for

identifying users is that all users may not enable cookies within their browser. Content providers can get

around this issue altogether by requiring users to login before using their service. This login information,

which is unique to a user, can be merged with HTTP headers to uniquely identify users. Login and cookie

information are not enough to identify the beginning and end of sessions for a number of reasons including

the fact that users may not be actively browsing a web page despite being logged in. Timeout heuristics,

where a session ends after a user does not interact with a service after a predefined amount of time, are

typically used to approximate the end of a session. Common timeout values used in this domain are 10

minutes, 15 minutes, and 30 minutes [Jansen and Spink, 2006, Spiliopoulou et al., 2003].

A number of studies have used server-side logs and the concept of user sessions to model user browsing

behavior. Early studies of user web browsing behavior found that user navigation patterns can be approx-

imated using a markov model [Chen et al., 2005, Cadez et al., 2003].17 These results were not surprising

given that web pages can be navigated using hyperlinks that are present on a page. Please recall that the hy-

perlink structure between web pages is the theoretical foundation for many web analysis methods including

PageRank [Page and Brin, 1998]. Chen et al. [2005] and Cadez et al. [2003] showed that user browsing

patterns that are approximated using markov models can be used to cluster users according to their brows-

ing patterns. Content providers use these markov models to understand how users browse to improve user

experience and the utility of their web sites [Borges and Levene, 2004]. A recent study by Chierichetti et al.

[2012] has challenged the notion that Web users are markovian. Indeed, features like the “back” button and

multi-window browsing, introduce “memory” into a web browsing session. Chierichetti et al. [2012] found

16 IP addresses from other data sources, say TCP/IP headers, can be used in a similar way. Though, this approach has limitations
because multiple users can share the same IP address.

17 The next page visited by a user only depends on the current page the user is viewing and not on the entire browsing history of the
user.

52



that user browsing behavior can depend on as many as the past 7 web pages visited by a user, which is much

more than only considering the current page that is being viewed. These results show that user browsing be-

havior may change as web sites and/or client browsers evolve and provide different features and/or services

to users.

Often times, content providers are interested in how users utilize their services so that they can improve

them. For example, a search engine provider may look at search engine user logs to determine how a user

searches for content. Jansen and Spink [2006] performed an analysis of search engine transaction logs from

multiple search engine providers. The key observation of this study is that different search engines are used

in a similar manner by users especially if they have similar features — similar observations were made in

the social networking study by Benevenuto et al. [2009]. Another key observation is that users tend to

select the first result of the search result page and will rather make a new search query than click on multiple

pages. This observation is important because it shows that the first search result is critical for engaging a

user and highlights the importance of ranking web search results. Liu et al. [2010] studied user behavior by

investigating the amount of time users spent on a web page. Liu et al. [2010] found that the amount of time

a user spends on a web page, referred to as dwell time, follows two extremes. Dwell times are either really

short, under 10s, or really long, on the order of dozens of seconds. This observation is useful because it

shows that users determine whether they will continue reading a web page fairly quickly. The cause of this

result, whether it was that users left web pages prematurely because of performance issues (slow loading

web page) or because the user found the web page boring, is unknown.

Prior work that used server-side logs to analyze web page traffic is relevant to this dissertation because

the techniques used for user behavioral modeling are related to the problem of web page segmentation which

this dissertation addresses. Some of the methods for modeling users that were developed for server-side logs,

in particular user session timeouts, might be useful when using anonymized TCP/IP headers. These related

techniques are considered and evaluated in Chapter 5.

2.3.1.3 TCP/IP-based studies

Most studies that use TCP/IP headers to study the Web are focused on web monitoring, modeling, and

performance evaluation applications. We provide an overview of the most related prior work that primarily

use TCP/IP data next.
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TCP/IP for Monitoring and Characterizing Web Usage Crovella and Bestavros [1997] performed one

of the earliest studies on the workload characteristics of web traffic using primarily TCP/IP headers. Crovella

and Bestavros [1997] found that web workloads exhibit many of the properties of self-similar processes —

similar observations were already made about Internet traffic as a whole [Willinger et al., 1997, Leland

et al., 1994]. Self-similar processes follow heavy-tailed distributions and are autocorrelated. Crovella and

Bestavros [1997] noted that the fact that users share the same links and access similar web pages are some

of the primary factors that explain the self-similar characteristics that web traffic exhibits. Other factors

include the underlying distributions of file sizes and the notion that users pause, or think, before requesting

new web pages. Many of these factors still influence web traffic properties today [Ihm and Pai, 2011].

Smith et al. [2001] also conducted a measurement study on web traffic using TCP/IP headers. Smith

et al. [2001] show that TCP/IP headers can be used to make inferences about how the Web is used. Some

examples that were highlighted in their study include being able to comment on the increased adoption of

banner ads by content providers and the increased adoption of Web-based email services using only TCP/IP

headers. There are also studies that tracked the evolution of the Web using only TCP/IP headers [Hernández-

Campos et al., 2003a, Newton et al., 2013]. The goals and key results of these studies are similar to the

HTTP header based studies previously discussed [Ihm and Pai, 2011, Callahan et al., 2010]. Paxson [1999]

proposed a real-time monitor that can be used for security and network performance analysis. The monitor

proposed by [Paxson, 1999], called Bro, processes TCP/IP headers in real-time and generates logs that

correspond to events that the network administrator may want to investigate further. Moore et al. [2001]

and Roesch et al. [1999] proposed tools, called CoralReef and Snort respectively, that perform similar

tasks. These tools can perform deep packet inspection to obtain more information about how the network is

being used that can be used detect when a network has been compromised. Gu et al. [2008] also proposed

a similar tool that analyzes TCP/IP headers to determine whether a network is being used in a malicious

manner. Gu et al. [2008] used TCP/IP headers for this analysis because most applications on the Internet

use TCP and the system is intended to be application layer protocol independent. Gu et al. [2008] showed

that host communication patterns derived from TCP/IP headers could be used to detect malicious activity

without application layer protocol headers. These studies show that application layer headers are not always

needed to analyze web traffic.

One of the most popular applications of web traffic monitoring is web traffic modeling and traffic gen-

eration. Barford and Crovella [1998] proposed one of the first tools, called SURGE, that generates realistic
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web traffic. SURGE generates traffic using statistical models that approximate the distributions of network

features that influence the network properties that are observed on a real link. Examples of network features

that are modeled include file size and the duration of active/inactive periods in traffic. Barford and Crovella

[1998] showed that theoretical distributions, such as weibull, pareto, and lognormal, can be used to model

these network features in a manner that approximates real web traffic. However, theoretical distributions are

not enough to model web traffic as it becomes more complex. Hernandez-Campos [2006] acknowledged

this issue and proposed models for replaying web traffic at the level of HTTP requests and responses.18

Weigle et al. [2006] used the ideas behind the models by Hernandez-Campos [2006] to develop a web traffic

generator, called TMIX, that can replay web traffic measured “in the wild” in a manner that approximates

the properties of real web traffic.

This past research, which is included in Table 2.3, is relevant to this dissertation because it shows that

TCP/IP headers can be used to study the properties of web traffic. In this dissertation, we build upon this past

research by expanding the scope in which TCP/IP headers can be used to study the modern Web to include

web page traffic classification. We also use many of the analysis methods and tools, including TMIX and

theoretical distributions, to study and model web page traffic.

Evaluating Web Performance using TCP/IP It is inevitable to use TCP/IP headers when evaluating the

performance impact that protocol enhancements at the network and transport layers have on the Internet.

Nielsen et al. [1997] designed experiments to determine whether the adoption of new technology will im-

pact web performance. In particular, this study determined that HTTP/1.1 outperformed HTTP/1.0. This

study also showed that the widespread use of CSS style sheets and the use of a more compact PNG image

representation improved web performance. These results were obtained by analyzing only TCP/IP header

data via a carefully designed experimental methodology. More or less, the authors ran multiple experiments,

where one enabled an existing feature, say HTTP/1.0, and another enabled a different feature, say HTTP/1.1.

Conclusions were drawn from such experiments by simply comparing the TCP/IP data generated using the

experiments. This simple approach is heavily used for TCP/IP based analysis of web traffic [Le et al., 2007,

Wang et al., 2014, Christiansen et al., 2000].

Le et al. [2007] and Christiansen et al. [2000] conducted studies similar to Nielsen et al. [1997] ex-

cept their focus was to analyze the impact that different active queue management methods have on web

18 This method is more generally referred to as replaying traffic at the source level
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performance. Active queue management (AQM) refers to a class of approaches that attempt to improve

the performance of the Web at the network layer by managing the amount of datagram queuing at routers.

These methods typically achieve this goal by having routers either (i) drop datagrams19 or (ii) sending ex-

plicit notifications to end-hosts to reduce their sending rates. Christiansen et al. [2000] found that actively

managing router queues by simply dropping datagrams does not significantly improve web performance

alone. Le et al. [2007] found that active queue management approaches that send explicit notifications to

end hosts in addition to dropping datagrams can noticeably improve web performance in many scenarios.

Le et al. [2007] noted that performance improvements were less significant for TCP connections that have

a high variance in RTTs. Recent performance evaluations that use TCP/IP data investigate whether SPDY

improves web performance over HTTP/1.1 [Wang et al., 2014, Erman et al., 2013]. We discussed these the

prior section since they also leverage HTTP headers.

This body of work, which is included in Table 2.3, is related to this dissertation because it highlights

that differences at other layers of the Internet Protocol Stack, say at the network and application layers, can

be studied using TCP/IP headers. In this dissertation, we focus on developing techniques that can classify

such differences using anonymized TCP/IP headers.

Comments on Anonymization of Web Traffic TCP/IP headers include IP address information which

can be used to determine sensitive hostname information that can have implications on user privacy. The

studies by Hernández-Campos et al. [2003a], Newton et al. [2013], and Smith et al. [2001] make extra

efforts to preserve user privacy by anonymizing the IP addresses so hostnames cannot be easily obtained.

However, the details of the anonymization procedures used in Web studies are rarely described [Sicker

et al., 2007]. This lack of detail in the anonymization process is a serious issue because data that is weakly

anonymized can still be a privacy concern. There have been a number of instances where a content provider

releases “anonymized” user data only to have the data be analyzed by others to obtain the private information

that the content providers were trying to protect via anonymization [He and Naughton, 2009]. Such cases

have made the owners of web traffic data (e.g., researchers, Content providers, ISPs, etc) more reluctant

to share/release it. Content providers are also increasingly encrypting network content to address privacy

issues [White et al., 2013]. There have been a number of efforts to improve anonymization approaches [Fan

19 TCP will reduce the sending rates of end-hosts when datagrams are dropped/lost. Dropping a datagram is an indirect and
aggressive approach of reducing send rates.
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et al., 2004b, Koukis et al., 2006, Le Blond et al., 2013, Schneier, 2013, Chen et al., 2013]. Despite these

efforts to improve user privacy, it is still possible to deanonymize portions of anonymized web traffic and to

infer the content of encrypted communications. We discuss these approaches when we discuss the related

work on traffic classification.

2.3.1.4 DNS-based studies

Resolving domain names is the first step in requesting and rendering web pages. While DNS is essential

to the functionality of the Web, DNS data is not typically used to study the Web because it does not provide

much additional information for how the Web is used outside of an obvious impact on web performance.

Jung et al. [2002] performed one of the first large scale studies of DNS functionality and performance. This

study investigated different avenues for improving web performance by understanding the cause of DNS

query failures and the impact of the TTL value on DNS cache performance. A recent study by Callahan et al.

[2013] found that there is still room for web performance improvement by addressing client-side caching

issues with DNS. Krishnan and Monrose [2011] showed that, at times, DNS-related web performance

improvements (i.e., DNS prefetching) can increase privacy risks. This finding is important because DNS

data is not encrypted. In fact, there are no proposed enhancement to DNS, even DNSSEC, that utilize

encryption. Not encrypting DNS traffic provides an avenue for malicious users to eavesdrop on network

communications [Paxson et al., 2013]. Paxson et al. [2013] found that malicious users leverage DNS to

send covert messages over the Internet despite not being encrypted — DNS is used for this purpose because

malicious users know that DNS has not been monitored and analyzed in the past [Paxson et al., 2013]. Most

recent DNS-based studies focus on analyzing the malicious aspects of DNS use [Antonakakis et al., 2011].

These DNS studies, which are included in Table 2.4, show that (i) DNS performance can impact the temporal

properties of HTTP headers, and (ii) adding features to web technologies (e.g., browser prefetching) can

be reflected in DNS traffic. These observations are relevant to this dissertation because it shows that the

behavior of multiple protocols and technologies are dependent on each other and that observations using

one protocol can be reflected in others — we made similar observations previously when we discussed

HTTP-based studies.
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TABLE 2.3: Summary of Prior Work on Internet Measurement (TCP/IP-based studies)

Author(s) Purpose of Mea-
surement

Type of
Data

Scale of study Analysis
Type

Key Insight/Notes

Leland et al.
[1994]

Study of Statistical
Properties of Inter-
net Traffic

TCP and IP
Headers

Over 1 billion
packets mea-
sured (1-2 day
span)

Exploratory
Analysis

First study to show that Internet
traffic is exhibits properties of a
self-similar process

Willinger et al.
[1997]

Study of Statistical
Properties of Inter-
net Traffic

TCP and IP
Headers

11025 source-
destination
pairs (27 hour
span)

Exploratory
Analysis

Found that self-similarity in net-
work traffic occurs on a flow-level

Crovella and
Bestavros
[1997]

Study of Statistical
Properties of Web
Traffic

HTTP,
TCP, and
IP Headers

575,775 URLs
requested (6
week span)

Exploratory
Analysis

First to find that Web traffic is
self-similar and discussed possi-
ble causes for it

Smith et al.
[2001]

Study of Character-
istics of Web Traf-
fic

TCP and IP
Headers

≈ 2.7 billion
packets over
numerous 1
hour periods (2
year span)

Exploratory
Analysis

First to show that TCP/IP headers
can be used to make inferences
about web usage

Hernández-
Campos et al.
[2003a]

Longitudinal Study
of Web Traffic

TCP and IP
Headers

≈ 200 million
objects over nu-
merous 1 hour
periods (4 year
span)

Exploratory
Analysis

The size of web objects and the
number of web objects has been
steadily increasing

Newton et al.
[2013]

Longitudinal Study
of Web Traffic

TCP and IP
Headers

≈ 1.5 billion
packets over
numerous 1
hour periods
(13 year span)

Exploratory
Analysis

TCP Connection duration length
and the number of servers con-
tacted per web page download has
increased

Barford and
Crovella [1998]

Comparison of
Web Workload
Generators

TCP and IP
Headers

Synthetically
Generated
Workloads

Performance
Analysis

Discuss challenges associated
with generating realistic web
workloads

Hernandez-
Campos [2006]

Comparison of
Models for Gen-
erating Traffic
Workloads

TCP and IP
Headers

Numerous 1
hour capture
periods [Smith
et al., 2001]

Performance
Analysis

Proposed sequential and concur-
rent a-b-t models for replaying
web traffic and showed that it ap-
proximates the properties of real
traffic

Weigle et al.
[2006]

Proposed traffic
generation tool for
ns2

TCP and IP
Headers

Collected over
numerous 1
hour capture
periods [Smith
et al., 2001]

Performance
Analysis

Proposed tool which uses a-b-t
model generates traffic that ap-
proximates the characteristics of
real traffic

Nielsen et al.
[1997]

Evaluation of
HTTP/1.1 with and
without Pipelining

TCP and IP
Headers

Single “Test”
web site

Performance
Analysis

HTTP/1.1 outperformed
HTTP/1.0 for all tests done

Christiansen
et al. [2000]

Evaluation of per-
formance impact of
RED on web traffic

TCP and IP
Headers

Laboratory
Experi-
ment [Crovella
and Bestavros,
1997]

Performance
Analysis

RED provides little gain in web
performance

Le et al. [2007] Evaluation of per-
formance impact of
ECN on AQM

TCP and IP
Headers

Laboratory
Experi-
ment [Smith
et al., 2001]

Performance
Analysis

ECN does not always improve
web performance
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TABLE 2.4: Summary of Prior Work on Internet Measurement (DNS-based studies)

Author(s) Purpose of Mea-
surement

Type of
Data

Scale of study Analysis
Type

Key Insight/Notes

Jung et al.
[2002]

Evaluation of
Cache Performance
of DNS

TCP, IP,
and UDP
Headers
+ DNS
queries

≈ 14 million
TCP connec-
tions and 10
million DNS
lookups (2 day
span)

Exploratory
Analysis

There a significant number of in-
efficiencies in DNS

Callahan et al.
[2013]

Study Character-
istics of Modern
DNS Traffic

TCP, IP,
and UDP
Headers
+ DNS
queries

Residential
Network of 85
clients — 200
million DNS
queries (14
month span)

Exploratory
Analysis

Observed DNS Prefetching and
Caching Failures

Krishnan
and Monrose
[2011]

Evaluation of Ef-
fectiveness of DNS
Prefetching

HTTP,
TCP, IP,
and UDP
headers
+ DNS
queries

Campus Net-
work — ≈
40-65 million
queries per day
(5-7 month
span)

Exploratory
Analysis

DNS prefetching leaks private in-
formation about web usage and
provides minimal performance
benefits

Paxson et al.
[2013]

Study Information
Content in DNS
Payloads

DNS
queries

Campus and
Enterprise
Networks —
≈ 230 billion
queries

Exploratory
Analysis

Developed approach to measure
the amount of content that is
transmitted in a covert manner
over DNS

Antonakakis
et al. [2011]

Evaluate Tech-
niques for Detect-
ing Malware with
DNS

DNS
queries

Domain Name
Registers —
100000 do-
main names (8
month span)

Classification
(Malicious
or not)

Malicious domain names can be
detected by analyzing query reso-
lution patterns
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2.3.1.5 Open Relevant Issues in Internet Measurement

The past work on Internet measurement that we discussed has given tremendous insight into the state-

of-the-art of web traffic analysis and how to address different types of Web-related problems. However,

there have been few studies that understand the Web in terms of the web page. While, there has been much

interest in understanding web page traffic using an aggregate measurement methodology, most prior work

either cannot reconstruct traffic into web pages or use error-prone heuristics for doing so. The work that is

most related to understanding web page traffic is the work by Butkiewicz et al. [2011]. This work analyzes

HTTP traffic that correspond to individual web page downloads using the Firefox browser. There are little

issues in teasing out traffic into individual web page downloads since the traffic is generated and collected in

a controlled environment. This study shows that there is tremendous diversity in web page traffic. However,

the conclusions that can be drawn from it is limited due to the following:

• Analysis of only HTTP headers: The traffic analysis is restricted to HTTP headers. This leaves many

research areas including the characterization of DNS and TCP/IP traffic for performance and privacy

implications.

• Impact of client platform: The web page traffic was collected on a single platform using the Firefox

browser. However, modern users have a choice of different client platforms including browser (e.g.,

Chrome, Internet Explorer, Opera), operating system (e.g., Windows, Linux, Mac OSX), and device

(e.g., Smartphone, Laptop, and Tablet). It is possible that web page traffic will differ significantly

across different client platforms. Client access point and cache settings may also impact web page

traffic [Joumblatt et al., 2012, Callahan et al., 2013]. It is imperative to study the impact that different

client platforms, and other factors, have on web page traffic so that it will be easier to understand

the sources of variation in observed web page traffic (e.g., the web page itself or the client platform).

HTML source data can also be used to help determine whether any differences in traffic is due to

implementation differences on client platforms or due to client platforms processing different HTML

source.

• Limited diversity in web page type: This study focuses entirely on characterizing landing pages.

There are other types of web pages that users browse including news articles, video pages, and search

engines that make up a substantial share of traffic [Bump, Gill et al., Zhou et al., 2010, Cheng et al.,
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2010]. Restricting a study to a particular type of web page may yield misleading conclusions on the

diverse characteristics of web page traffic.

The above factors are important to address in order to adequately characterize and understand the di-

versity of web page traffic. This understanding can then be used to develop techniques that can identify

individual web pages from aggregate traffic traces (i.e., web page segmentation) and perform web page

traffic inference (i.e., web page classification).

2.3.2 Traffic Classification

The broad problem of attaching a label to traffic is called traffic classification. This dissertation research

directly contributes to the field of traffic classification. Traffic classification problems vary according to

the type of traffic analyzed (e.g., anonymized TCP/IP headers, HTTP headers, etc) and the type of labels

used (e.g., application protocol – HTTP, P2P, etc). Background on the state-of-the-art methods in traffic

classification that are related to this dissertation is presented in this section.

2.3.2.1 Classification via Commonly Used Port Numbers

The simplest approach to traffic classification is to label traffic according to commonly used port num-

bers. The Internet Assigned Numbers Authority (IANA) defines designated ports that should be used by

certain applications [Touch et al., 2013]. For example, TCP segments with a port number of 80 correspond

to applications that use HTTP, or web applications, while TCP segments with a port number of 22 correspond

to SSH applications — please refer to the work by Touch et al. [2013] for a complete list of commonly used

port numbers in the Internet. While these port numbers are designated for certain applications, there are

no strict requirements for content providers to use them. In fact, many content providers, especially those

hosting undesirable or illegal services (i.e., some P2P and file sharing applications), may intentionally avoid

using IANA designated port numbers in order to avoid being detected by a firewall. To avoid being detected

by a firewall, a content provider may “tunnel” their application through another application or simply use a

different port number [Borges and Levene, 2004]. Deri et al. [2014] notes that many popular applications

that used to use other designated ports, including video streaming, audio streaming, and email, are now

using port 80 (i.e., the port designated for HTTP).20 With HTTP rapidly becoming the application layer

20 These applications may also use HTTPS (port 443).
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protocol of choice to transmit a wide variety of services (e.g., audio streaming, social networking, etc), the

effectiveness of port number-based classification decreases. Thus, much research has been done to develop

different approaches to classify applications [Deri et al., 2014, Schatzmann et al., 2010, Kim et al., 2008].

The limitations of port number-based classification is one of the primary motivations of this dissertation

research.

2.3.2.2 Classification via Deep Packet Inspection

Moore and Papagiannaki [2005] proposed a number of approaches and heuristics for classifying traffic

without necessarily relying on port numbers. Some of these approaches and heuristics include (i) classifying

simplex flows21 as malicious and (ii) classifying flows by comparing the first few transport-layer segments or

bytes of a flow, also known as signatures, with known flows from applications that have matching signatures.

The process of classifying flows via matching the signatures of unknown flows in traffic with the flows of

applications with known signatures is called signature detection. Moore and Papagiannaki [2005] also

uses IP addresses and the traffic pattern history of hosts to help classify flows. Sen et al. [2004] used

the signature-based detection approach that Moore and Papagiannaki [2005] used to classify traffic. Sen

et al. [2004] focuses on identifying P2P applications (e.g., Kazaa, Bittorent, Gnutella, eDonkey) that were

particularly undesirable to ISPs because they consumed a substantial amount of bandwidth and the content

of the communication were widely viewed as being illegal.22 The signature-based detection method used by

Sen et al. [2004] is costly because signatures must be manually generated by analyzing the behavior of the

traffic that is being classified. Haffner et al. [2005] showed that machine learning approaches can be used

to automatically generate traffic signatures.

There has been some effort to make additional optimizations to deep packet inspection methods to

improve the classification process by making them faster. Aceto et al. [2010] showed that deep packet

inspection can be effective when only considering the first 32 bytes of application-layer message payloads.

Alcock and Nelson [2012] expanded upon this idea and showed that the first 4 bytes of application-layer

message payload could be used to classify traffic. Using less data not only increases the performance of the

of deep packet inspection, but also makes the analysis less privacy sensitive.

Many of the ideas for classifying applications using deep packet inspection are used by commercial deep

21 Flows that transmit traffic in only one direction.

22 The P2P applications were used to transfer music, video, and other multimedia files.
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packet inspection tools that are used today [Shen and Huang, 2012, Deri et al., 2014, Levandoski et al., 2008,

Alcock and Nelson, 2012]. Carela-Español et al. [2014] conducted a study and showed the performance of

these deep packet inspection tools can be quite different. In particular, Carela-Español et al. [2014] found

that the commercial tool, PACE [Shen and Huang, 2012], consistently outperformed open-source tools such

as nDPI23 and Libprotoident [Deri et al., 2014, Alcock and Nelson, 2012]. These performance differences

are likely due to extra features included in a commercial tool (PACE), such as an increased number of

application signatures and the use of flow statistics to supplement performance when signature information

is not enough for classification alone.

While deep packet inspection is widely used, it does not work on obfuscated traffic. In fact, a recent

study shows that an increasing share of traffic is obfuscated which implies that deep packet inspection may

not be a viable option for traffic classification in the future [White et al., 2013]. White et al. [2013] proposed

using a hypothesis testing approach to filter traffic that cannot be analyzed by DPI tools. White et al. [2013]

found that their filtering approach free up valuable computational resources24 to allow a DPI tool to process

more application-layer messages and detected more events in their data that otherwise would have not been

detected. Uceda et al. [2015] proposed a method that uses regular expression matching to detect ASCII

characters in application-layer message payloads. The assumption of this work is that non-ASCII data,

likely encrypted or otherwise obfuscated, cannot be analyzed by DPI engines. Thus, the authors designed

a tool that can be used to filter this undesirable traffic. While these approaches are used to filter obfuscated

traffic, additional methods are still needed to classify it. One goal of this dissertation research is to develop

techniques that can perform such classification.

2.3.2.3 Classification using TCP/IP Headers

Application Protocol Classification Since deep packet inspection approaches do not work on encrypted

traffic and raise privacy concerns, approaches that use only TCP/IP headers need to be developed to classify

traffic. Karagiannis et al. [2004] proposed a method for classifying traffic as being either a P2P application

or not. Karagiannis et al. [2004] leveraged a common behavior exhibited by P2P applications where they

use both UDP and TCP during the same time interval to distinguish it from other applications. Karagiannis

et al. [2004] also used other heuristics such as segment size to help classify P2P applications. Karagiannis

23 Formerly known as OpenDPI.

24 Deep packet inspection is an CPU and Memory intensive process.
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et al. [2005] extended the ideas of this work by using additional heuristics to identify other applications in

addition to P2P including HTTP, chat, or even an attack. For example, Karagiannis et al. [2005] classified

flows that do not send transport-layer segment payloads as attacks. Karagiannis et al. [2005] also proposed

using segment transmission patterns to identify a collection of hosts that frequently communicate — this

collection of hosts are referred to as a community. The authors used these communities to identify gaming

applications. Dewes et al. [2003] conducted a study that was focused on identifying chat traffic. Dewes

et al. [2003] found that segment interarrival time, TCP connection duration, and small segment sizes were

particularly informative for distinguishing chat traffic from other types of traffic.

These prior work used a wide variety of features to classify applications. However, these methods

rely on heuristics to perform the classification. There are a number of techniques with a strong theoretical

foundation that can be used for traffic classification. Crotti et al. [2007] proposed classifying traffic by

using probability distributions of applications and determine whether unknown traffic matches the stored

traffic distribution within a certain predefined threshold. Similar to prior approaches, Crotti et al. [2007]

classified traffic that corresponds to application layer protocols including POP3 and HTTP. Moore and Zuev

[2005] used the Naive Bayes classifier, a probabilistic machine learning approach, for traffic classification.

Roughan et al. [2004] also proposed using machine learning approaches, particularly Linear Discriminant

Analysis and K-Nearest Neighbors, for traffic classification. The study by Roughan et al. [2004] is unique

from most prior classification studies in that it was interested in classifying traffic for traffic engineering

applications. Traffic engineering is a problem where ISPs strategically allocate network resources for traffic

with different performance or Quality of Service (QoS) requirements. Thus, the categories of traffic that

were targeted were not based entirely on application protocols. Some of the classes that Roughan et al.

[2004] targeted were bulk (large file transfers), interactive (realtime applications that require user input such

as a remote login), streaming (real-time applications such as video), and transactional (applications that

transfer a small number of requests). Schatzmann et al. [2010] used the Support Vector Machines (SVM)

machine learning approach to classify traffic as either being mail or non-mail. Schatzmann et al. [2010]

found that some temporal features (e.g., duration of a TCP connection and TCP connection interarrival

times) can be reliably used to differentiate mail from non-mail traffic.

Kim et al. [2008] conducted a study to compare the performance of the many different methods used

in the traffic classification literature. Kim et al. [2008] found that the machine learning approaches outper-

forms heuristic methods [Karagiannis et al., 2005] and port-based approaches [Moore et al., 2001, Touch
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et al., 2013]. Kim et al. [2008] also highlighted that machine learning methods require a large amount of

training data in order to achieve high performance. Lim et al. [2010] conducted a study that investigated

which machine learning approaches performed the best. Lim et al. [2010] concluded that machine learning

methods can achieve similar performance if appropriate, and sometimes essential, preprocessing and data

transformation methods are used on the traffic features. Though, Lim et al. [2010] also found that some

techniques such as classification trees and K-Nearest neighbors performed well without any additional pre-

processing. We note that the authors of this study did not tune each machine learning method during their

evaluation. Thus, it is unclear whether other methods, such as Support Vector Machines or Naive Bayes,

can perform well without preprocessing as well.

The machine learning methods that have been discussed are supervised machine learning techniques.

Recall, supervised machine learning techniques require labeled training data to work. There have also been

traffic classification methods that use unsupervised machine learning techniques which do not require la-

beled data. Unsupervised machine learning techniques are commonly referred to as clustering algorithms.

While clustering algorithms do not require training data, additional effort, and most likely the assistance

from a domain expert, is needed to label and interpret the clusters that are output from them. McGregor

et al. [2004] investigated the feasibility of using the expectation maximization (EM) algorithm (a clustering

method) for traffic classification. McGregor et al. [2004] found that the resulting clusters included many

different types of applications. Ideally, different applications should appear in different clusters. Erman

et al. [2006] also investigated whether clustering algorithms can be used for traffic classification. Erman

et al. [2006] evaluated the DBSCAN, K-means, and Autoclass clustering approaches and found that ap-

proximately 150 clusters were needed for the majority of each cluster to include a single type of traffic. 150

clusters is a large number considering that Erman et al. [2006] were trying to distinguish less than 10 classes

of traffic. This result implies that traffic behavior is diverse and a single cluster cannot be used to classify

an application. Hernández-Campos et al. [2003b] used a different class of clustering approach, hierarchical

clustering, for distinguishing traffic. Hierarchical clustering groups instances in a hierarchy and is more

robust than traditional clustering methods at clustering diverse datasets. Hernández-Campos et al. [2003b]

found that the results from hierarchical clustering were able to distinguish applications such as P2P and

Web. This body of work, which is included in Table 2.5, is related to this dissertation because it consists of
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the state-of-the-art traffic classification methods that use TCP/IP headers.25 However, the related work that

we discussed focuses primarily on the problem of application classification. The work presented in Chapter

4 uses similar techniques, particularly learning-based classification methods, to advance the state-of-the-art

in traffic classification by focusing on the problem of web page classification.

Anomaly detection is an area of traffic analysis that is related to traffic classification. The goal of

anomaly detection is to identify instances in network traffic that deviate from “normal” behavior. Thus,

anomaly detection problems at their simplest level consider two classes of traffic, normal and abnormal/anomalous.

Most anomaly detection methods in the literature are not focused on understanding and classifying web ap-

plications nor other application layer protocols. These methods are instead more focused on the network

layer information and identifying security or network management-related issues (e.g., port scanning, flash

crowds, attacks, routing errors, etc) [Barford et al., 2002, Lakhina et al., 2005, Soule et al., 2005, Brauckhoff

et al., 2006, Ringberg et al., 2007, John and Tafvelin, 2007, Nychis et al., 2008, Milling et al., 2012, Silveira

et al., 2010, Yan et al., 2012].

2.3.2.4 Web Page Identification

The security and privacy research community have focused on a problem similar to traffic classification

that is best referred to here as web page identification. Web page identification is the problem of identifying

the exact web page given an encrypted traffic trace. In other words, successfully solving the web page

identification problem means that fine-grained information such as the web page visited by a user can still

be inferred from traffic despite being encrypted. The presence of encrypted traffic means that only TCP/IP

headers are available for web page identification.

Sun et al. [2002] showed that exact web pages can be identified using information derived from network

traffic. One primary metric used for this problem is the size of a web object. Here, the size of a web object,

or any type of web traffic (say transport-layer segments), is the number of bytes it contains. Sun et al. [2002]

first derived web object sizes using TCP/IP headers, and then used the jaccard similarity classifier to compare

traffic signatures that are known with those present in the traffic. The primary assumption of this approach is

that the sizes of web objects that are referenced by different web pages are different. Sun et al. [2002] went

on to propose mechanisms to help make their method less effective — hence, improving network security.

These mechanisms include padding transport-layer segments (increasing size of web objects to be larger

25 Erman et al. [2006] also published another similar study that only considered the K-means method Erman et al. [2007b].
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TABLE 2.5: Summary of Prior Work on Traffic Classification

Author(s) Classification Labels Features Used Methods
Moore and
Papagiannaki
[2005]

Application Type (Mail, Web, P2P,
Games, Multimedia, Services, Interac-
tive, Bulk, Database, Malicious)

Packet payloads + Coarse flow-
level features

Signature Detection +
Heuristics

Sen et al.
[2004]

Application Type (P2P vs Non-P2P) TCP Payloads (string matching
on payloads)

Signature Detection

Aceto et al.
[2010]

Application Type (P2P, Web,Unknown,
Services, Encryption, Network man-
agement, Mail, Multimedia, Tunneling,
Filesystem, Bulk, Games, Interactive)

Packet Payloads (restricted to
first 32 bytes of payload) + TCP
Protocol Type

Signature Detection

Alcock and
Nelson [2012]

Application Type (ESP over UDP,
Web, Bittorent, Razor, Garena, Skype,
RTMP, Xbox Live)

Packet Payload (First 4 bytes) +
IP Address + Port number

Signature Detection

Karagiannis
et al. [2004]

Application Type (P2P vs Non-P2P) TCP, UDP, and IP Headers
(non-temporal features such as
Packet Size and IP address)

Heuristics

Karagiannis
et al. [2005]

Application Type (P2P, Web, Mail,
Chat, FTP, Network management,
Games)

TCP, UDP, and IP Headers
(non-temporal features such as
Packet Size and IP address)

Heuristics

Dewes et al.
[2003]

Application Type (Chat vs Non-Chat) Packet Payloads + TCP, IP,
UDP, and HTTP Headers
(specifically, temporal features)

Heuristics

Crotti et al.
[2007]

Application Type (Web, SMTP, POP3,
Other)

TCP and IP Headers (e.g.,
port numbers, temporal fea-
tures, and segment size)

Heuristics

Moore and
Zuev [2005]

Application Type (Bulk, Database, In-
teractive, Mail, Services, Web, P2P, At-
tack, Games, Multimedia)

TCP/IP headers (e.g., port num-
bers, temporal features, packet
size, and TCP flags)

Supervised Machine
Learning (NB)

Roughan et al.
[2004]

Application Type (Domain, FTP,
HTTP/Web, P2P, Telnet, HTTPS)

TCP and IP Headers (e.g.,
port numbers, temporal fea-
tures, packet size, and TCP
flags)

Supervised Machine
Learning (KNN and
LDA)

Schatzmann
et al. [2010]

Application Type (Webmail vs Non-
webmail)

Coarse flow-level features
(specifically, temporal features)

Supervised Machine
Learning (SVM)

Kim et al.
[2008]

Application Type (Web, DNS, Mail,
Chat, FTP, P2P, Streaming, Game)

TCP, UDP, and IP Headers
(e.g., port numbers, packet size,
and TCP flags)

Supervised Machine
Learning (NB, CT,
KNN, SVM)

Lim et al.
[2010]

Application Type (Web, P2P, Attack,
FTP, DNS, Mail, Streaming, Network
Operation, Games, Encryption, Chat,
Unknown)

TCP, UDP, and IP Headers
(non-temporal features such as
port numbers, packet size, and
TCP flags)

Supervised Machine
Learning (NB, LDA,
CT, KNN)

McGregor et al.
[2004]

Application Type (Web, ICMP, SMTP,
IMAP, NTP, FTP)

TCP, UDP, and IP Headers
(e.g., port numbers, packet size,
temporal features, and TCP
flags)

Clustering (Expectation
Maximization)

Erman et al.
[2006]

Application Type (Web, POP3,
Database, P2P, Other, FTP, limewire)

TCP, UDP, and IP Headers
(e.g., port numbers, packet size,
and TCP flags)

Clustering (K-means,
AutoClass, DBScan)

Hernández-
Campos et al.
[2003b]

Application Type (Web, HTTPS, POP3,
Gnutella, Telnet, POP, FTP,SMTP,
NNTP, Database)

TCP, UDP, and IP Headers
(e.g., port numbers, packet size,
and TCP flags)

Clustering (Hierarchi-
cal Clustering)
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than expected) and adding extra background traffic (increasing the number of web objects referenced by a

web page to be higher than expected).

Liberatore and Levine [2006] performed a similar study except they focused on using transport-layer

segment size as the primary feature instead of web object sizes — the direction of the communication

was also used as a feature for classification. Liberatore and Levine [2006] used segment sizes because

some encryption technologies hide the notion of a web object in a manner that cannot be recovered using

TCP/IP headers alone. Liberatore and Levine [2006] showed that web page identification is still possible

using segment size as the primary feature. Liberatore and Levine [2006] also showed that the Naive Bayes

classifier performed better than the Jaccard Similarity classifier primarily because the Jaccard similarity does

not account for some traffic features such as the number of segments transferred. Herrmann et al. [2009]

and Panchenko et al. [2011] conducted similar studies except Herrmann et al. [2009] used a Multinomial

Naive Bayes Model while Panchenko et al. [2011] used an SVM model for web page identification. The

method proposed by Panchenko et al. [2011] is different from most prior methods in web page identification

in that it uses coarse traffic features (i.e., features derived from multiple segments), such as TCP connection

duration and bandwidth, in addition to fine-grained features (i.e., features that use each segment) such as the

distribution of segment sizes observed in traffic.

Dyer et al. [2012] compared many of these web page identification approaches to determine which one

works best. Dyer et al. [2012] found that the classification method used did not matter as much as the types

of features used for the classification. In particular, Dyer et al. [2012] highlighted that the coarse features

used by Panchenko et al. [2011] were particularly informative for web page identification. Coarse features

are especially useful for identifying web pages when different countermeasures are used because they are

more robust to the noise that these countermeasures add to the traffic. Cai et al. [2012] conducted a similar

study that showed that web page identification can still work without the use of the segment size feature and

despite the use of countermeasures. Yen et al. [2009] and Coull et al. [2007] also use coarse features for

web page identification. Though, these studies only consider coarse features while the study by Panchenko

et al. [2011] considers both coarse and fine-grained features. Both studies show that coarse features can be

used to effectively identify web pages without fine-grained features. A key result from the study by Yen

et al. [2009] is that it shows that browsers have an impact on web page identification and being able to detect

browsers can help in building specialized classifiers for each browser that work better than a single classifier.

Miller et al. [2014] conducted a study that investigated whether browser-specific features such as
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browser caching can impact web page identification performance. The results of this study show that the

browser cache has an impact on web page traffic and can consequently impacts web page identification per-

formance. Miller et al. [2014] also found that a hidden Markov model can be used to provide navigation

information to help identify the web page that a user visited. The assumption of this approach is that the

navigation patterns of a user can be used to predict the domain of the web page (i.e., web site) that was

visited — thus reducing the set of possible web pages that a user visited. Cai et al. [2012] and Danezis also

showed that the navigation patterns of users can be used to supplement web page identification techniques.

The majority of the work in web page identification assume a closed world model [Cai et al., 2012,

Yen et al., 2009, Dyer et al., 2012, Liberatore and Levine, 2006, Herrmann et al., 2009, Miller et al., 2014].

The closed world model assumes that the web page traffic trace includes only the traffic resulting from

downloading a finite set of k known web pages. Indeed, in a real-world scenario one will observe web page

traffic that includes download traffic from unknown web pages. The open world model considers such a

scenario. Panchenko et al. [2011], Coull et al. [2007], and Sun et al. [2002] conducted some of the few

studies that consider the open world model.

A summary of the prior work described in this section is provided in Table 2.6. The body of work

presented in this section is related to this dissertation because (i) it is related to the general problem of traffic

classification or (ii) it involves classifying web page traffic using TCP/IP headers.

2.3.2.5 Open Relevant Issues in Traffic Classification

More and more applications including video streaming, social media, mail, and file sharing are using

web technologies. Simply classifying network traffic as Web is no longer enough information to provide

useful insight about the content of traffic because the vast majority of traffic on the Internet is Web. Thus, a

method to further classify web traffic into meaningful categories is desirable. One well-researched problem

for further classifying web traffic is web page identification. However, web page identification is a problem

that does not scale in the wild because there are too many web pages to measure, fingerprint, store, and reli-

ably identify. Web page classification, the process of classifying web page traffic into a web page category,

is an alternative to web page identification. Web page classification is different from web page identifica-

tion because multiple web pages may have the same classification label — thus, web page classification

will likely scale better than web page identification because there will be a substantially smaller number of

classes of web pages to characterize and subsequently label. Web page classification is thoroughly investi-
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TABLE 2.6: Summary of Prior Work on Web Page Identification

Author(s) Fundamental
Data Type

Features Used Methods Open/Closed
World

Sun et al.
[2002]

Web Object Web object size Similarity-based (Jaccard Simi-
larity)

Open

Liberatore and
Levine [2006]

Single Flow
(SSH Tunnel)

TCP, UDP, and IP Headers —
TCP segment size and direction

Supervised machine learning
(Naive Bayes with Gaussian
kernel). Also, compared perfor-
mance with Jaccard similarity.

Closed

Herrmann et al.
[2009]

Single Flow
(SSH Tunnel)

TCP, UDP, and IP Headers —
TCP segment size and direction

Supervised machine learning
(Naive Bayes with Multinomial
kernel). Also, compared per-
formance with Jaccard similar-
ity and Naive Bayes with Gaus-
sian kernel.

Closed

Panchenko
et al. [2011]

Single Flow
(Tor browser)

TCP, UDP, and IP Headers —
TCP segment size and direction
+ Coarse Flow-level features

Supervised machine learning
(Support Vector Machines)

Considered
both Open
and Closed

Dyer et al.
[2012]

Single Flow
(SSH Tunnel)

TCP, UDP, and IP Headers —
TCP segment size and direction
+ Coarse Flow-level features

Supervised machine learning
(Naive Bayes)

Closed

Cai et al. [2012] Single Flow
(Tor browser)

TCP, UDP, and IP Headers —
TCP segment size and direction
+ Coarse Flow-level features +
User navigation patterns

Supervised machine learning
(Support Vector Machines with
edit distance-based kernel)

Closed

Yen et al.
[2009]

Multiple Flows Coarse Flow-level features Supervised machine learning
(Support Vector Machines)

Closed

Coull et al.
[2007]

Multiple Flows Coarse Flow-level features Kernel Density Estimation and
Bayes Belief Networks

Open

Miller et al.
[2014]

Multiple Flows TCP, UDP, and IP Headers —
TCP segment size and flows +
User Navigation patterns

Supervised Machine Learning
(Logistic Regression)

Closed

Danezis Multiple Flows TCP, UDP, and IP Headers—
TCP segment size and flows +
User Navigation patterns

Supervised Machine Learning
(Hidden Markov Model)

Closed
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gated in this dissertation.

2.3.3 Web Page Segmentation

Web page segmentation approaches are used to identify when an individual web page download begins.

Web page segmentation is a problem that is directly addressed by this dissertation research. Much of the

past work in Internet measurement and traffic classification described in this Chapter make use or assume the

availability of a web page segmentation approach as a critical step in their analysis [Yen et al., 2009, Maciá-

Fernández et al., 2010, Choi and Limb, 1999, Hernández-Campos et al., 2003a]. Web page segmentation

approaches fall into two categories: 1) Content-based approaches and 2) Idle time-based approaches. These

prior approaches are described in this section — please refer to Table 2.7 for a summary of these approaches.

2.3.3.1 Content-based Approaches

Content-based approaches leverage HTTP headers to segment web pages from web page traffic. Choi

and Limb [1999] proposed a method that assumes that each HTML object (a web object with MIME type

text/html) corresponds to a new web page while non-HTML objects do not. Indeed, modern web pages

may be reference of multiple HTML objects, making this method outdated. Ihm and Pai [2011] proposed

a method, called StreamStructure, that leverages the fact that some web pages reference easily identifiable

web objects to web analytics companies once they finish loading (e.g., Google Analytics). StreamStructure

uses these web objects, also referred to as analytics beacons, to identify when the traffic for a particular web

page download ends. StreamStructure also uses a number of heuristics used in prior methods to determine

the beginning of a web page. These include using HTML objects to identify the “start” of a page and using

a timeout heuristic that treats multiple HTML objects that occur in quick succession as a single web page.

Ihm and Pai [2011] presented results that showed that only a relatively small fraction of web pages,

approximately 24%, reference analytics beacons. Thus, StreamStructure is not an approach that can be

generally applied “in the wild”. Xie et al. [2013] proposed a method, called Resurf, that leverages the

referer field in HTTP headers to segment web pages. Similar to StreamStructure, Resurf also uses timing

heuristics to assist in the web page segmentation process. Xie et al. [2013] showed that Resurf can perform

web page segmentation more effectively than StreamStructure. Neasbitt et al. [2014] proposed using a

method, called Clickminer, that uses the assistance of a browser to help segment web pages. At a high-level,

Clickminer uses HTTP headers as input to a browser emulator to approximate and model the possible user
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click behavior that resulted in the observed network traffic [Neasbitt et al., 2014]. Neasbitt et al. [2015] also

developed a similar tool, Webcapsule, which is designed to run within a browser, in real-time. One advantage

that Webcapsule has over Clickminer is that it is able to use additional information that is collected by the

browser to help with web page segmentation — this additional information consists of details related to

user-browser interactions (e.g., scrolling on page, clicking a link, etc), messages related to web-rendering

API events, and more [Neasbitt et al., 2015].

Nelms et al. [2015] developed a web security tool, called Webwitness, which classifies web malware

download paths (or a sequence of web page downloads) such that administrators can more effectively deter-

mine how malware is downloaded on a host. Some categories of the paths considered in this work include

social engineering and drive-by downloads. However, in order to classify web page download paths Web-

witness first determine the web pages that should be included in each web page download path. This is done

by first identifying different types of heuristics which likely associate two web page downloads. Some of

these include the determining whether the referer field in HTTP header match other web page downloads,

determining whether domain names between downloads match, and determining whether different down-

loads include similar content types (e.g., .swf, .pdf, and .jar). These are used to build a web page download

graph which models the likelihood that web page downloads follow the same path — additional heuristics

are applied to this graph to determine which web page downloads belong to the same path [Nelms et al.,

2015].

There are also related approaches that attempt to identify web page sessions using server logs — many

of these approaches were previous mentioned when we discussed the study by Spiliopoulou et al. [2003].

However, identifying web page sessions and segmenting web pages are different problems. Though, some

of the ideas used for these different problems, such as using idle time-based heuristics, are applicable in

both problem domains [Ihm and Pai, 2011, Spiliopoulou et al., 2003]. Specific idle time-based heuristics

that have been used for web page segmentation are described next.

2.3.3.2 Idle time-based Approaches

While there are many content-based web page segmentation methods, they require the use of HTTP

headers and are ineffective against encrypted traffic. Idle time-based approaches are used when HTTP

headers are not available due to privacy concerns or encryption. Idle time-based approaches assume that new

web page downloads begin when new web traffic is observed after a predefined idle-time period [Barford and
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Crovella, 1998, Hernández-Campos et al., 2003a] — in this case, new web page traffic corresponds to any

additional segments that are observed. This idea was originally proposed by Barford and Crovella [1998]

and was later identified to be effective by others [Smith et al., 2001]. This assumption was reasonable when

web pages were static and referenced few web objects. However, modern web pages, which uses dynamic

technology, such as Ajax, and references many web objects, will generate web traffic that will reduce the

effectiveness of idle time-based approached. Newton et al. [2013] identified this issue and proposed using

an additional predefined threshold for the amount of web page traffic features (in particular the number of

segments with the SYN flag set) for detecting new web page downloads. The addition of a threshold for

web page traffic is intended to reduce the chances of falsely identifying automatically generated traffic as

a new web page download. However, this method was not extensively evaluated so it is unclear whether it

works for modern web page traffic. This dissertation research performs such an evaluation.

2.3.3.3 Open Relevant Issues in Web Page Segmentation

Content-based approaches (i.e., methods that use HTTP headers) are ineffective against encrypted traffic

and raise privacy concerns. Thus, idle time-based approaches are the only existing methods that are appli-

cable to anonymized TCP/IP header traces. However, idle time-based approaches have not been extensively

tested on modern web page traffic. An extensive evaluation of idle time-based approaches, and other appro-

priate approaches, on modern web page traffic is conducted in this dissertation to determine whether modern

web pages can be segmented using only anonymized TCP/IP headers.
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TABLE 2.7: Summary of Prior Work on Web Page Segmentation

Author(s) Type Content/Idle
time-based

Features Used Scope of Evaluation Key Insight/Notes

Barford and
Crovella [1998]

Web page Idle time-
based

TCP/IP headers Did not explicitly
evaluate segmentation
method

Idle time in traffic is corre-
lated to new web page down-
loads — used 1s as thresh-
old for idle time — please
note that Hernández-Campos
et al. [2003a], Smith et al.
[2001], and Maciá-Fernández
et al. [2010] use the same ap-
proach as Barford and Crovella
[1998].

Newton et al.
[2013]

Web page Idle time-
based +
Threshold

TCP/IP headers Did not thoroughly
evaluate method

Proposed using an additional
threshold for network activity
to reduce false web page de-
tection rate. Used SYN+ACKs
over bytes as a feature. The
parameterization that Newton
et al. [2013] found performed
best was a threshold of network
activity of 2 SYN+ACKS and
an idle time of 2.5s.

Choi and Limb
[1999]

Web page Content-
based

HTTP headers Did not explicitly eval-
uate the proposed seg-
mentation method.

MIME-type field in HTTP
response headers are key for
determining boundaries of web
pages. Specifically, response
headers with MIME-type
“.html”, “.cgi”, or “.asp”.

Ihm and Pai
[2011]

Web page Content-
based

HTTP headers The evaluation in-
cluded comparison
with methods by Bar-
ford and Crovella
[1998] and Choi and
Limb [1999]

The referer field of HTTP head-
ers are useful for segmentation.
Requests from known analytics
beacons are useful as well.

Xie et al.
[2013]

Web page Content-
based

HTTP headers Extensive evaluation
against the method by
Ihm and Pai [2011].

The referer field in HTTP head-
ers and time-related informa-
tion can be used to reconstruct
web pages.

Nelms et al.
[2015]

Web page
download
paths

Content-
based

HTTP headers Evaluation did not in-
clude comparison with
other methods.

Used the location, hostname,
and referer fields in HTTP
headers as features.26

Neasbitt et al.
[2014]

Web page Content-
based +
Browser-
assisted

Browser and
HTTP headers

Adequate evaluation
with the work by Xie
et al. [2013].

The browser can be used to
replay captured traffic to de-
termine whether certain actions
(web-interactions) caused the
traffic observed

Neasbitt et al.
[2015]

Web page Content-
based +
Browser-
assisted

Browser and
HTTP headers

Evaluation did not in-
clude comparison with
other methods.

Information obtained from
browser is useful for segmen-
tation (e.g., rendering API
events)

Spiliopoulou
et al. [2003]

Web ses-
sions

Content-
based
+ Idle
time-based

Server Logs,
HTTP headers,
and TCP/IP
headers

Extensive evalua-
tion which compared
many techniques was
performed

Web browsing cookies, login
information, and idle time fea-
tures are useful for reconstruct-
ing web sessions
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CHAPTER 3: CHARACTERIZATION OF MODERN WEB PAGE TRAFFIC1

Any sound web measurement study must appropriately sample traffic such that the diversity in web

traffic is considered. The results of web measurement studies that ignore this are at an increased risk of

being biased because the dataset analyzed only represents a targeted subset of traffic. Such biased results are

undesirable because they only apply to the subset of traffic considered in the study and may not be generally

applicable “in the wild”. Many web measurement-related studies — including traffic characterization, traffic

classification, and privacy analysis — attempt to avoid this bias by ensuring that diversity in web page traffic

is included in their traffic sample by studying a large volume of different web pages — this is typically done

by considering either (i) a large volume of web traffic or (ii) a set of popular web pages which account for

a large fraction of traffic [Dyer et al., 2012, Herrmann et al., 2009, Butkiewicz et al., 2011, Xu et al., 2011,

Neasbitt et al., 2014, Rao et al., 2011].

However, the diversity in web page traffic may also be influenced by the different client platforms that

are available to users when downloading web pages, including browser types, operating systems, the type of

device (e.g., laptops, smartphones, and tablets), and vantage points. Buckler acknowledges this diversity by

reporting usage statistics for a plethora of client platforms including 5 desktop browsers, 6 mobile browsers,

and 9 operating systems (including mobile, desktop, and video game consoles). This diversity in client

platform usage, and its impact on traffic, is only expected to grow as the types of devices that are web-

enabled (e.g., smartphones, video game consoles, smartwatches, etc) and their adoption by users increases;

in fact, the average number of devices per user is estimated to grow from 3 in 2014 to 5 by 2017 [Bort].

While there is a large number of client platforms available to users, it is unclear whether these impact web

traffic measurements differently; in fact, there is some disagreement on this issue in the literature [Yen et al.,

2009, Butkiewicz et al., 2011]. Despite this possible issue, most prior web measurement-related studies

do not explicitly consider the potential impact that client platforms have on their study, nor on related

applications [Dyer et al., 2012, Herrmann et al., 2009, Butkiewicz et al., 2011, Xu et al., 2011, Neasbitt

et al., 2014]. The results and implications of such studies are at risk of being biased towards a specific client

1The contents of this chapter includes material from articles published in two conferences [Sanders and Kaur, 2014b, 2015a]
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platform and hence not generally applicable.

To address this problem, we perform the first comprehensive measurement study that investigates the

question — Do different client platforms generate different web page traffic despite processing the same

source HTML? This study can be used to assist in the development of traffic analysis tools and techniques

that are robust to client platform-specific traffic differences. More specific to this dissertation, we use the

results of this study to help design the web page classification and segmentation techniques considered in

Chapters 4 and 5, respectively. We provide details of the methodology, results, and implications of this

measurement study in the rest of this chapter.

3.1 Data Collection Methodology

To answer the question considered in this study, it is critical to collect a dataset where the web page

traffic has been (i) filtered on a per web page basis, (ii) labeled according to the client platform that was

used to load the page, and (iii) labeled according to the web page that was downloaded. These properties

will allow us to definitively state what type of traffic is generated by an individual web page and determine

whether it is influenced by client platforms. There are two data collection methodologies that are available

to us for web page traffic measurement. These are the widely used aggregate measurement methodology

and the less common client-side measurement methodology— details on these measurement methodologies

are provided in Chapter 2. While the aggregate measurement methodology is more popular and has the

advantage of easily measuring more web traffic than the client-side measurement methodology [Smith et al.,

2001, Hernández-Campos et al., 2003a, Schneider et al., 2008], little is known about the web pages and the

client platforms that generated the actual traffic that is measured using this methodology. This is due to the

following:

1. Difficulty in identifying web page download events: Modern web pages consist of many individual

objects that are distributed across multiple sources. Given a traffic trace that is collected on an ag-

gregate link, it is non-trivial to group these individual objects into individual web page units—this

process is important because information about the properties of individual web pages is difficult to

understand when the individual web objects that make up the individual page are not clearly identi-

fiable. Although several methods have been recently proposed to solve this important problem, such

methods are error-prone [Xie et al., 2013, Neasbitt et al., 2014, Ihm and Pai, 2011].
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2. Difficulty in identifying client platform: Privacy concerns, recent legislation, and the increase in en-

crypted and compressed traffic dictate that only relatively coarse data such as anonymized TCP/IP

headers and NetFlow logs are available for analysis. Information about browsers, operating systems,

device type, and client location is not obtainable from this data.

Due to these issues, we instead use the less common client-side methodology where the web page

requested and the client platform is known and can be controlled for. Using a client-side measurement

methodology means that we must be sure to explicitly study a large and diverse sample of web pages and

client platforms in order for our results to be generalizable to traffic observed “in the wild”. To cater to

different types of client platforms available today, our measurement methodology is split into: (i) desktop-

based measurement, (ii) mobile device-based measurement, and (iii) planetLab-based measurement. We

describe the details of our client-side measurement methodology next.

3.1.1 Desktop-based Measurement Methodology

Our desktop-based measurement methodology addresses several issues, including diversity in web pages

studied, using multiple operating systems and browsers, and repeated measurements. These are discussed

below:

• Diversity in web pages studied: The Web consists of over 600 million web sites [Internetlivestats.com,

2015]. Since downloading web pages from each web site is infeasible, we focus primarily on the most

popular web sites. In particular, we study web pages from the top 250 web sites in the world [Inc.] —

recent studies show that the majority of web traffic (over 90% of bytes) originate from these 250 web

sites [Callahan et al., 2013, Xu et al., 2011, Bump]. A list of the URLs for the landing page of these

web sites is provided in Appendix 1. However, landing pages alone do not account for the diversity of

web applications that is present on the modern Web. Such web applications include search engines,

video streaming, and audio streaming. To account for this diversity in our study, we manually browse

each of these 250 web sites to collect a list of URLs that correspond to search result pages and other

non-landing pages (e.g., Facebook user profiles, news articles on CNN.com, videos on Youtube.com,

etc). This list was collected by (i) clicking on 4 random links on each landing page and (ii) using the

search box to make 4 different search queries that were arbitrarily chosen.2 We repeat this process for

2 The 4 search terms that we used were “golden”, “ray lewis”, “stone mountain”, and “mcdonalds”.
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TABLE 3.1: Desktop-based Clients (8 clients - 2 devices)

Operating System Chrome Opera IE Firefox Safari
Mac OSX 10.9.4 v38.0 v25.0 N/A v33.0 v537.77.4
Windows 7 v38.0 v25.0 v11 v33.0 N/A

web sites that have mobile versions. Thus, for each web site, we download 18 web pages if we find

a mobile optimized web page and 9 web pages if we do not — we download fewer web pages if the

web site does not include a search service. In total, we analyze 3614 diverse web pages from these

250 web sites. A list of the URLs for these web pages is provided in Appendix 2.

• Operating Systems and Browsers Studied: A goal of this study is to determine whether client platforms

impact web page download traffic. To achieve this goal, we must download these web pages using

multiple browsers and operating systems. The 5 browsers that we use are Google Chrome, Mozilla

Firefox, Safari, Internet Explorer, and Opera. We focus on these browsers because they are the most

popular and generate over 98% of the traffic share in the world [Sta, b]. The operating systems that we

use are Windows 7 and Mac 10.9.4. These operating systems were selected because they are currently

supported by Mozilla Firefox, Opera, and Google Chrome — Safari and Internet Explorer, however,

are not supported on Windows and Mac OS X platforms respectively. We only study operating systems

that support the same browser type and version to determine whether operating systems influence web

page traffic when the same browser is used — differences in browser type and version across operating

systems may introduce noise in our analysis which may make our conclusions unreliable. Please note

that Linux-based operating systems are not considered because (i) the most popular browsers are out-

of-date as compared to their Mac OS X and Windows 7 counterparts and (ii) the other browsers that

are supported by Linux-based operating systems, such as Konquerer, Chromium, and Web, are not

supported by Mac OS X and Windows 7 [Sta, a]. Table 3.1 provides details on the versions of the

different browsers and operating systems used. These clients are located on a University campus that

access the Internet via 1Gbps Ethernet NICs.

We use tcpdump/windump to capture all web page traffic that is generated [Jacobsen et al., 2005]. The

data collection procedure is automated as:

1. Start packet capture tool
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TABLE 3.2: Mobile Device-based Clients (6 clients- 5 devices).

Device Type and Operating System Browser
Mac OSX 10.9.4 (Laptop) Chrome v38.0
Mac OSX 10.9.4 (Laptop) Safari v537.77.4
Android 4.4.2 Samsung Galaxy (Tablet) Chrome v35.0
iOS7 iPad 3 (Tablet) Safari v9537.53 Mobile/11A501
iOS8 iPod Touch (Smartphone) Safari v600.1.4 Mobile/12A405
Android 4.4.4 Motorola X (Smartphone) Chrome v37.0

2. Start a browser with a web page URL as an argument

3. Close the browser after 60 seconds

4. Start a browser with a web page URL as an argument to capture traffic with a full cache

5. Clear the local DNS resolver cache

6. Clear the browser cache

7. Go to Step 1 using a new URL

Using these steps, we perform multiple web page measurements to minimize the effects that outliers

may have on our analysis. Our data is collected over a period of 16 weeks between December 12, 2014 and

March 20, 2015. It takes approximately 4 weeks to download 3614 web pages for 4 browsers for two cache

states (empty cache and full cache). We also stagger the time of day at which each iteration begins by 6

hours each, as a modest attempt to account for the impact of peak traffic hours. Overall, our dataset includes

4 repeated measurements for each browser, operating system, and cache state.

3.1.2 Mobile device-based Measurement Methodology

The key differences between the above measurement methodology for mobile devices as opposed to

desktops are:

• Devices and Browsers Studied: We take measurements using 5 devices — these include 2 tablets,

2 smartphones, and a laptop. Table 3.2 shows details on the versions of the operating systems and

browsers used for each device. We only study mobile devices (i.e., tablets and smartphones) that use

either the Android and iOS operating systems since they are the most popular — these two operating

systems account for over 95% of the mobile operating system market [IDC]. We study Google Chrome
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on Android platforms and Safari on iOS platforms because they are the most popular and are exclusive

to these operating systems. The laptop is included in this study as a baseline for comparison against

the mobile devices — the browsers used for the laptop, Safari and Chrome, are intended to match the

browsers used by the different mobile devices.

• Web Traffic Trace Collection: The web traffic trace collection for mobile devices is different from

desktop machines because it is not straightforward to run scripts that (i) open web pages and (ii)

start tcpdump. We instead tether our mobile devices to a desktop machine running Mac OS X 10.9.4

using a bluetooth Internet connection — the Internet sharing utility on the desktop is used for this

purpose.3 This desktop machine connects to the Internet using a 1Gbps Ethernet link and captures

all of the traffic that is transferred on this interface, including the web traffic generated by the mobile

devices, using tcpdump. We develop a web page whose primary purpose is to automatically open

and close web pages on mobile devices. This process is done using a simple javascript command

(i.e., window.open(“url”)) that allow us to open web pages as a popup on any browser, irrespective of

device type.4 We also install Zend Server v 3.0, a web server, on the desktop machine [Zen]. Zend

Server is used by the desktop to synchronize the web traffic generated by the mobile devices that are

tethered to it. This synchronization process is done by transferring AJAX commands that notify a

single mobile device that it may request a new web page. The other mobile devices are notified to

load a “dummy” web page that is hosted on the desktop machine — this dummy page is used to end

any background web traffic generated by the browser and will not be captured by the wired interface

on the desktop machine. However, other apps may still generate traffic in the background and may

be captured — we only allow a minimum number of apps that are essential to the functionality of the

mobile devices to remain active (e.g., settings app).

We run into two issues when measuring web pages using mobile devices. First, bluetooth connections

are unstable on mobile devices and may get disabled intermittently, which halts data collection until the

procedure has been manually rebooted. Second, Android devices do not allow for the sleep feature to be

disabled, which also halts our data collection procedure. We use the StayAwake and NoLock apps that

3 We tether bluetooth connections instead of WiFi connections to comply with campus policies.

4 The only requirement is that the browser allows for pop-up blocking to be disabled — else the requested web pages will be
blocked. Our methodology does not work for Windows Phone because this option is not currently available for the mobile version
of Internet Explorer.
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TABLE 3.3: Hostnames of planetLab nodes.

Hostname Geographical Region
pl2.eng.monash.edu.au Austraila
planetlab1.pop-mg.rnp.br Brazil
cs-planetlab4.cs.surrey.sfu.ca Surrey, Canada
planetlab2.cs.ubc.ca Vancouver, Canada
planetlab2.cqupt.edu.cn China
planetlab4.goto.info.waseda.ac.jp Japan
pluto.cs.brown.edu Rhode Island, USA
planetlab2.csee.usf.edu Florida, USA
planet-lab1.cs.ucr.edu California, USA
planetlab1.csuohio.edu Ohio, USA
planetlab4.mini.pw.edu.pl Poland
planetlab3.cs.uoregon.edu Oregon, USA
pl3.cs.unm.edu New Mexico, USA

are designed to avoid sleep events on Android devices but it only partly addresses the issue [StayAwake,

NoLock]. Despite using these apps, our data collection procedure for mobile devices is significantly slower

than for desktops. To account for this slowdown, we reduce the number of web pages studied for mobile

devices from 3614 web pages to 1010 — else, the data collection for mobile devices will take a prohibitively

long amount of time (i.e., over 1 year). These 1010 web pages correspond to the first 1010 URLs provided

in Appendix 2. We still, however, collect 4 repeated measurements for each web page download.

3.1.3 PlanetLab-based Measurement Methodology

We use 13 planetLab nodes to understand the impact that vantage points have on web page download

traffic. These nodes are located in Australia (1 node), China (1 node), Japan (1 node), Brazil (1 node),

Canada (2 nodes), Poland (1 node), and the United States (6 nodes – Oregon, Rhode Island, California,

Florida, New Mexico, and Ohio) — a list of these nodes is provided in Table 3.3. Each planetLab node runs

a single browser, Firefox v17.1.5 Otherwise, the traffic trace collection procedure for the planetLab data

follows the same procedure as the desktop-based measurement methodology.

3.1.4 Potential Issues Related to Data Collection

There are two potential caveats associated with the collection and analysis of web page download traffic

that are worth mentioning — these may impact the reproducibility of the results presented in this work. The

5 The PlanetLab nodes all run Linux that is based on Fedora Core 8 and have a fairly old version of Firefox installed (v 17.1).
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first issue is the frequency in which web pages are updated by content providers. Web pages that constantly

update may generate different web page traffic — thus, any observed differences in web page traffic may

either be due to the client platform or due to the web page itself. Indeed, it is important to check whether

web pages change over time before drawing conclusions — this issue is investigated in Section 3.7.1. The

second issue is the possibility that browsers may auto-update during our data collection period [Bott]. In

our dataset, we find that the Internet Explorer, Safari, and Opera browsers did not update, while the Chrome

and Firefox browsers updated multiple times during our data collection period— each update that occurred

during this period, along with the date of the update, is provided in Appendix 6.6

The fact that these updates occur is important to note because an update in browser version may impact

web page download traffic [DUp]. While it would be ideal to study the traffic generated by a single browser

version, some browsers auto-update so frequently that it is difficult to obtain multiple web page samples for

a single browser version — for instance, Chrome updated 9 times during our data collection period which

includes 4 repeated measurements. Thus, our data collection procedure does not completely control for the

impact that browser version may have on web page traffic. Despite this limitation, we find that the key

results across each repeated measurement for each browser type during our data collection procedure are

similar. An overview of the results for these repeated measurements, which include differences in source

HTML and browser version, is provided in Section 3.7.2 — additional/supplemental figures which show the

similarities across the repeated measurements are provided in Appendix 7.

3.2 Data Analysis Methodology

3.2.1 Feature Extraction

A traffic feature is a measurable property of web page traffic that can be derived from our tcpdump traffic

traces. These traffic traces include the first 60 seconds of web page download traffic and consist of HTTP,

TCP/IP, and DNS headers, and source HTML files. Some details of the traffic features that we derive are

provided below.

DNS-based Features: We developed scripts to extract DNS-based traffic features from tcpdump logs. We

use port-numbers (destination port 53) to identify DNS messages. From this, we are able to compute traffic

features such as the number of DNS requests, the number of DNS responses, and the TTL of DNS records.

6 Please note, however, that the Firefox browser on the PlanetLab nodes did not update.
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We are also able to compute temporal metrics such as the response time of DNS requests and the inter-arrival

times of DNS requests.

HTTP-based Features: HTTP(S) messages are also identified using a port-based approach (80 and 443).

We use pcap2har to convert .pcap files (i.e., tcpdump traffic traces) to .har logs (i.e., JSON formatted HTTP

archive logs) and developed scripts to extract traffic features from these [pcap2har]. We process the .har log

files to extract fields from HTTP headers, including the MIME type, hostname, and length of the web object.

We are unable to process encrypted HTTP messages (i.e., HTTPS).7

TCP/IP-based Features: We developed scripts to extract TCP/IP-based traffic features from tcpdump logs.

We use the 5 tuple heuristic to identify TCP connections and classify it as a TCP connection if we observe

the three-way handshake during the web traffic trace. We use TCP header fields to compute the number of

TCP flags observed (i.e., PUSH, RESET, FIN, SYN, and ACK), and the number of bytes transferred within

each segment. In addition to these statistics, we compute temporal metrics such as the duration of TCP

connections and round-trip-time (RTT). RTT is defined as the time between the initial SYN segment sent

by the client and the time it receives a SYN-ACK response segment from the server. We also measure the

inter-connection arrival time—this metric is defined as the amount of time between the start of consecutive

TCP connections, where the sending of the initial SYN segment is the event that is taken to be the start of a

TCP connection. The last temporal traffic feature that we measure is TCP connection duration — this metric

is defined as the amount of time between the first and last segments transmitted during a connection.

Heuristic for web page download times: Web page download time is approximated by taking the amount

of time between the first DNS request sent by the client and the last payload byte sent by the server [Huang

et al., 2010]. To compute robust statistics of this metric, we also compute several measures of the time until

P% (50%, 90%) of the bytes in a given web page are downloaded. Although this metric does not completely

correspond to user perceived load times of web pages, it is correlated with user perceived web page load

times [Yahoo, Huang et al., 2010].

HTML-based Features: We use the BeautifulSoup python library to extract features from the source

HTML of the web pages [Richardson, 2015]. Count statistics that are derived from tags that represent (i)

hyperlink-level information (e.g., “a” and “link” tags) and (ii) the extensions of embedded objects that are

referenced by a page (e.g., .jpeg, .gif, and .png extensions for embedded image objects) are used for object-

7 18% of our observed TCP connections transfer HTTPS traffic.
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based features and analysis— these have commonly been used in other HTML-based analysis [HTM, Canali

et al., 2011]. We also derive a feature to analyze the textual-related differences between HTML documents.

We use a simple bag-of-words model to count the frequency of all the words that are present in a document

— bag-of-words models are commonly used in natural language processing, machine learning, and com-

puter vision [Weinberger et al., 2009]. A word in this model is defined as any sequence of characters that is

present in an HTML document that is delimited by >, <, ”, newline, or whitespace characters. This model

allows us to derive features that can measure the overall text-related differences between two documents. To

compactly represent these text-related differences, we derive the number of different words feature which

is computed as the number of words that are different between two documents (that is, a baseline document

and a test document). We use this feature simply as a measure to flag significant differences in text for

further analysis.

Please note that our study is focused primarily on the analysis of web page traffic. We analyze source

HTML primarily to assist in understanding the traffic differences that we observe. In particular, we want

to understand if any difference we are observing in web page traffic across client platforms is the result of

differences in the source HTML, or is due to the choice of client platform.

3.2.2 Feature Selection Procedure

In total, we derive 26 primary traffic features, 549 secondary traffic features, and 127 HTML-based

features (702 features total). Here, primary traffic features are traffic features that represent coarse traffic

information, such as the number of bytes transferred, number of PUSH flags, number of objects, and number

of TCP connections. Secondary traffic features are more fine-grained traffic features, such as the number of

javascript objects or the number of HTTP responses with status code 404, and derived multi-flow features

such as the average number of bytes sent per TCP connection or the maximum object size observed. Lastly,

HTML-based features are features that are derived from the source HTML. A complete list of the features

used in this study are provided in Appendix 3.

We also leverage statistical tests for our analysis that focuses on determining the influence that client

platforms have on web page download traffic. In particular, we use a standard non-parametric statistical

test, the Kruskal-Wallis test, to determine which traffic features differ significantly across different client

platforms. The Kruskal-Wallis test yields p-values that represent the statistical significance of each feature

for different client platforms. Here, lower p-values correspond to results that have greater statistical signifi-
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cance. We deem results statistically significant if the p-value is less than 0.05. We then use these results to

dig deeper into our dataset to determine the source of any statistically significant difference.

3.3 Impact of Browser on Web Page Traffic Features

In this section, we examine whether browser choice has an impact on traffic. Browser choice may impact

traffic for different reasons. For example, browsers may generate different traffic because servers may send

different browsers different source HTML despite referencing the same URL — indeed, different source

HTML can impact web page traffic even when the browser considered is the same. It is also possible that

differences in traffic can occur even when the source HTML is the same across browsers. For instance,

different browsers may process the same source HTML differently because they may implement browser-

specific features which influence traffic (e.g., object prefetching) [Wu and Kshemkalyani, 2004, Vieira].

Even if browsers implement the same features in a similar manner, browsers may encounter scripts that

have conditional statements that depend on browser type (that is, different browsers may execute different

paths in the same source HTML).

We perform experiments to understand the differences between browsers with respect to both traffic and

source HTML. The results of these are used determine whether any significant differences in traffic are likely

due to differences choice of browser. We do this by comparing the statistical properties (e.g., cumulative

distributions) of the features derived from source HTML with the features derived from traffic — we only

attribute differences to be due to choice of browser if the statistical properties for the traffic is substantially

different even when the source HTML is the same. This general approach to the analysis of our dataset is

used for each type of client platform considered.

3.3.1 Does the source HTML differ, when the same URL is downloaded by different browser type?

We compare the latest versions of the Internet Explorer, Chrome, Firefox, and Opera browsers for the

Windows 7 operating system. The Kruskal-Wallis test for the HTML-based features yields 8 features that

have p-value < .05 across browser platforms — in fact, these p-values are generally less than 10−3. These

8 statistically significant features are: the number of “label” tags, the number of “tr” tags, the number of

“table” tags, the number of “td” tags, the number of “style” tags, the number of “legend” tags, javascript

length (i.e., the number of characters present between script tags), and the number of different words. Upon

further analysis of our data, we find that these statistically significant features correspond to the following:
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• Differences in javascript: We find that many content providers such as soundcloud.com and bing.com

(particularly image search results) use different javascript code that is suited for different browsers

— these javascript related differences were identified using the number of different words feature.

We find that some javascript methods are implemented differently across browser platforms and/or

have conditional statements that branch for different client browser platforms. For example, sound-

cloud.com uses conditional statements that takes the client platform into account during javascript

execution to determine whether HLS (HTTP Live Streaming) is supported by the client platform.

Alternatively, Figure 3.1 shows an example where a Youtube.com page has javascript that is browser-

specific — here the Chrome javascript for loading a video appears to be HTML5-based while the

Firefox javascript appears to be flash-based (this flash content is identified by the “swf” references

in Figure 3.1). It is known that if different client platforms are not taken into account, rendering

differences across browsers can occur when the same source HTML is processed — for example, tar-

get.com has differences in rendered tables across browsers despite referencing the same source code

that renders that portion of the page.

• Ads: We also observe “ads” that attempt to get a user to download a particular browser or app that is

browser dependent. For example, Yahoo.com recommends that users update to the latest version of

Firefox for client platforms that are not Firefox, whereas target.com recommends that Chrome users

download the Target mobile app. These ads seem to be attempts to get users to utilize software that is

fully supported by the content provider.

Figure 3.2 plots the cumulative distribution of the number of different words between the Chrome and

the IE, Firefox, and Opera browsers. Please note that web pages that are the same across browser will have

a number of different words value of 0 — hence, this feature for the baseline curve (Chrome vs Chrome)

is always 0. This plot shows that over 50% of source HTML across different browsers do not have any

differences (i.e., a value of 0 for the number of different words feature). In fact, approximately 75% of web

pages differ by fewer than 50 words. This result shows that while there are some statistically significant

features across browser platforms, many web pages are not influenced by client platforms at all.
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Figure 3.1: Example where javascript is different for different browsers (Chrome vs Firefox).

3.3.2 Does the source HTML differ, when the same URL is downloaded by different browser ver-
sion?

We also briefly consider the impact that browser version may have on source HTML pages. Our data

collection methodology, which downloads a web page using a browser, must be modified for this browser

version analysis because it is difficult to use multiple versions of the same browser on a single device. We

instead use the urllib2 python library to make HTTP requests for each web page listed in Appendix 3 and

extract features from the corresponding HTTP responses (i.e., the source HTML) [Documentation]. Please

note that the urllib2 library is used because the User-Agent field in the HTTP request header can be modified

such that the server will believe that the request originated from the client platform of interest (i.e., operating

system, browser type, browser version, etc). This approach, however, cannot be used to approximate the

actual web page traffic downloaded when a browser processes source HTML —this is because different

browsers have different source code and may generate different web page traffic despite referring to the

same HTML.8 Hence, the only way to measure web page traffic generated by a browser is to download the

page using said browser. Thus, we do not consider web page traffic features in this analysis.

We consider four pairs of browsers on Windows 7; 1) Firefox v 33.0 and Firefox v 17.0; 2) Internet

Explorer v 11.0 and Internet Explorer v 9.0; 3) Chrome v 38.0.2125.122 and Chrome v 33.0.1750.154;

and 4) Opera v 25.0.1614.68 and Opera v 12.16. When comparing two samples of web pages, a sample

8 Understanding whether browsers indeed generate different traffic is part of the goal of this study.
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Figure 3.2: Cumulative distribution of number of different words across browser as compared against
Chrome.

comprised of the four outdated browsers vs a sample of four up-to-date browsers, our statistical test yields 13

statistically significant features. The most notable features that are not also influenced by browser platform,

say Internet Explorer vs Firefox, are the number of script tags and the number of HTML5 tags. With

respect to the number of script tags, we observe similar differences in scripting behavior as we did with the

differences in browser platform. With respect to the number of HTML5 tags, we observe that there tends

to be more HTML5-related tags for the latest browser versions as compared to the older versions — we

believe this occurs because HTML5 is the newest and current version of HTML that is likely only supported

on newer browsers.

We also observe cases where content providers treat outdated or unsupported browsers in the following

ways. First, the content provider can respond to the HTTP request, but provide a warning to the user that

their browser needs to be updated (e.g., zillow.com and soundcloud.com) — this may also result in failed

HTTP requests. Second, the content provider can respond to the HTTP request by sending source HTML

that is compatible with the user’s browser. This is explained next.

We find multiple instances when browser version has an impact on some of the HTML tag-based fea-

tures. Figure 3.3 shows Google search results that were requested and rendered using an outdated Opera

browser, while Figure 3.4 shows Google search results using an up-to-date Chromium-based Opera browser

— these web pages are displayed differently for these different versions of Opera. These observed differ-

ences are almost purely stylistic with respect to image size and the visibility of URLs on images — though

there are some images present in the new version that are not present in the original. We next show a different
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Figure 3.3: Search result page for old version of Opera

Figure 3.4: Search result page for new version of Opera.

example of when a web server responds with a web page for an outdated browser. Here, the HTTP request

is for a mobile web page of a product on Amazon.com. Figure 3.5 shows that when a mobile web page is

requested using an up-to-date mobile device and browser (an iPhone in particular), the request is satisfied

as expected. When we make the same request for a mobile web page using an outdated Firefox browser

on a laptop we also get the same mobile web page — though we do not observe an ad for downloading an

app. This web page is shown in Figure 3.6. Figure 3.7 shows that when the same request is made to Ama-

zon.com using an up-to-date Firefox browser on a laptop we get a different mobile web page that is clearly

representing the same product shown in Figure 3.5. It is clear that these downloaded web pages are both (i)

mobile-optimized web pages and (ii) different, where the version of the page shown in Figure 3.7 appears to

be an older mobile web page design than the page shown in Figure 3.5. We conclude two things from these
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Figure 3.5: Product web page for Amazon site as rendered using Safari browser on iPhone.

Figure 3.6: Product web page for Amazon site as rendered using an old Firefox Browser.

observations: 1) mobile web pages may sometimes be used to fulfill HTTP requests to outdated browsers

(we observe similar behavior for yahoo.com and att.com — please refer to Figure 3.8 for an example of a

mobile page being returned for an outdated Firefox browser and Figure 3.9 for the normal up-to-date ver-

sion); and 2) interesting and unexpected quirks exist for some HTTP requests that are influenced by browser

choice.9 The impact that browser version has on web page downloads is important for web crawling tools

because (i) web crawlers may be used for years without receiving any significant upgrades and (ii) content

providers may respond to known web-crawler User-Agents in a manner that results in errors or downloading

data that is limited (in a manner similar to mobile web pages) [Notess, 2002].

Implications of HTML-based differences: We found that source HTML can be influenced by browser

9 Please note that the significant differences discussed here are primarily true for browser version analysis for Opera and Firefox
because we have the largest range in release dates for these two browsers.
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Figure 3.7: Product web page for Amazon site as rendered using a new Firefox Browser.

type and version. A summary of the implications of our analysis is below:

• Our results show that it is definitely possible that web pages can differ across client platform. Thus,

any measurement study or web-related application that relies on source HTML, such as web page

archival, should verify that the web pages that they visit is not influenced by the browser that is used

— else, it is possible that the downloaded source HTML is biased for a particular browser which will

limit the scope of the analysis.

• We find that most of the differences observed across browser platforms correspond to compatibility

issues across browser type and version or browser-specific ads. In fact, most of the significant differ-

ences that we observe involve HTML tags that impact the way the page is displayed. These features

do not tend to influence the number of web objects that are referenced by the page. Thus, it is not

expected that these differences will have a dramatic impact on the TCP/IP and HTTP headers that

correspond to these web pages.

• We find that approximately 50% of web pages differ, to some degree, across browser platform. While

this is a large fraction of web pages, we are aware that time is a possible factor that may bias our

results — we investigate this factor in Section 3.7. Nevertheless, this observation is important in the

context of this dissertation because it provides a baseline for determining whether source HTML is the

only cause for any possible differences in traffic observed across browsers. Specifically, if more than

50% (i.e., the approximate percentage of web pages that have different source HTML) of web page

traffic differs across browsers we can confidently state that there are cases where choice of browser
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Figure 3.8: Example where mobile web page is returned for an old desktop Firefox browser.

influence web page traffic when the source HTML is the same.

3.3.3 Does traffic differ across different browsers?

We next study whether web page download traffic differs across client platforms and investigate whether

such differences can occur when the source HTML is the same. We start by analyzing the differences in

traffic as observed due to different browsers, but on the same operating system. We focus on the Windows 7

OS since it is the most popular. Using our statistical testing methodology, we find that a vast majority of the

traffic features (534 out of the 575 traffic features) have p-values less than .05 in our dataset — in fact, most

p-values are < 10−10. Most of these features are secondary traffic features which are derived from the 26

primary traffic features that we defined in Section 3.2.2.10 Thus, differences in the primary traffic features

are likely the root cause of the significant differences that we observe. In this section, we summarize the

significant primary traffic features when secondary traffic features are also statistically significant to avoid

redundancy in our discussion — we also present secondary traffic features when primary traffic features are

not statistically significant.

10 Recall that primary and secondary traffic features are the only two types of traffic features that we consider. Please refer to
Appendix 3 for a list of the primary traffic features
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Figure 3.9: Example where traditional web page is returned for an up-to-date desktop Firefox
browser.

3.3.3.1 Differences in the Number of Bytes Transferred

We analyze the total number of application layer bytes in traffic observed when a web page is down-

loaded. This traffic feature yielded a highly significant p-value that is less than 10−20. Figure 3.10 plots the

cumulative distribution of this feature — please note that the x-axis is shown on a log-scale. Figure 3.10

shows that there are two groups of browsers that transmit a similar number of bytes — Opera and Chrome

vs. IE and Firefox. Chrome and Opera are both based on the Chromium browser [CCh, OPC] (referred to

as Chromium browsers), so it is likely that the Chrome and Opera browsers share much of the same source

code. The IE and Firefox browsers are proprietary and are not based on the Chromium browser (referred

to as non-Chromium browsers). So, while IE and Firefox transfer a similar number of bytes and do not

share the same source code, they also transfer a consistently different number of bytes than Chrome and

Opera. This observation suggests that Chromium-based browsers include unique features which cause them

to behave differently than the other browsers.

Figure 3.10 shows that Chrome and Opera consistently send more bytes than IE and Firefox. For each

web page in our dataset, we compute the ratio of the number of bytes transferred by Chrome, a Chromium-

based browser, and IE, a non-Chromium browser. Figure 3.11(a) plots the cumulative distribution of this

ratio. This figure shows that the median ratio of bytes transferred by Chrome and IE is 2. Figure 3.11(a)

also shows that Chrome sends over 4 times more bytes than IE for 20% of web pages downloaded. Similar

results for the ratios between Chrome and Firefox, Opera and IE, and Opera and Firefox, and are shown in
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Figure 3.10: Network impact of browser selection (Raw cumulative bytes).

Figures 3.11(b), (c), and (d) respectively.

Implication - Network Impact Object prefetching, a browser-specific feature that uses heuristics to pre-

emptively download objects, is a possible explanation for the large difference in the number of bytes feature

we observe across browsers [Wu and Kshemkalyani, 2004, Vieira]. This large difference in bytes transferred

may result in unwanted and unnecessary congestion and capacity issues, as well as unwanted charges for

network usage. Please note that our dataset includes only popular web pages. Thus, such differences in

the number of bytes downloaded across browser platforms are likely observable on aggregate links in the

Internet today.

3.3.3.2 Differences in Number of Web Objects Transmitted

The source HTML may differ across browser because content providers may use the User-Agent field in

HTTP requests to serve web pages that are targeted for specific browser platforms. Thus, we next consider

whether the primary source of the differences in the number of bytes downloaded across browser is due

to differences in the source HTML downloaded across browser. We found that over 50% of the source

HTML of the web pages downloaded did not show any difference across browsers (i.e., our number of

different words feature that was derived from our bag-of-words model was 0 for over 50% of pages). We

also observe similar results, with respect to the number of bytes transferred, when considering only web

pages that have the same source HTML — this is shown in Figure 3.12. These results mean that choice of

browser must be causing some of the differences that we consistently observe across browser since traffic
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Figure 3.11: Network impact of browser selection (Ratio of bytes across browsers)
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Figure 3.12: Network impact of browser selection when the source HTML is the same (Raw cumula-
tive bytes).

95



0 20 40 60 80 100

Other

CnC

Unique

Common

All Objects

 Median Number of Objects
 Requested per Webpage

 

 

Chrome
Opera
IE
Firefox

Figure 3.13: Breakdown of the average number of objects transmitted for each web page download
for different browsers.

differs for more than 50% of the web pages downloaded — the observation that Chromium-based browsers

behave similarly also supports this claim.11 We assume that the large differences in the number of bytes

downloaded are the result of browsers downloading a different number of objects to load the same web page

— prefetching mechanisms within browsers may influence such behavior [Wu and Kshemkalyani, 2004,

Vieira]. We next investigate the objects that are downloaded by each browser to gain a better understanding

of the byte-related differences that we observe.

We measure the total number of objects as the number of HTTP responses observed in traffic when a

web page is downloaded. The median number of total objects transmitted by each browser to download

a web page is shown in the top-most bars in Figure 3.13 (labeled “All Objects”). Similar to the number

of bytes feature, Chromium-based browsers transmit more objects than IE and Firefox. This result shows

that it is likely that the number of bytes transmitted is different because the number of objects transmitted

is different — the logic here being that more objects transmitted result in more bytes being transmitted.

In fact, Figure 3.13 shows that Chromium-based browsers transmit approximately 33 more objects than

Firefox and IE on average. Figure 3.14(a) plots the cumulative distribution of the number of objects feature

11 We do not know whether browser of choice are causing the significant differences for the 50% of web pages with different source
HTML.
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Figure 3.14: Cumulative distribution of Number of objects observed across browsers.

for each browser. Figure 3.15(a) shows a similar plot where only web pages with the same source HTML

is considered. These plots confirm that the difference in the total number of objects transmitted between

Chromium and non-Chromium objects is indeed consistent and is not skewed by the tails of the distribution.

We next categorize different classes of objects to further analyze the difference in the total number of objects

observed across browser. We find that:

• Common Objects: We define a common object as an object that is downloaded at least once for every

browser per web page downloaded — here an object is identified using the string referenced in the

URL field of the HTTP response header.12 Figure 3.13 shows that the median number of common

objects are similar across browser. Thus, common objects do not account for a significant amount of

the difference in the total number of objects observed across browsers. Figure 3.13 also shows that

common objects account for 30-50% of the total number of objects downloaded per web page.13 This

result shows that less than half of the objects downloaded across browsers per web page are similar.

• Unique Objects: Unique objects are objects that are observed exclusively on one of the four browsers

per web page download. Figure 3.13 shows that unique objects account for approximately 30-45% of

the total objects downloaded per web page — please note that the percentage of objects downloaded

depends on the browser used. We find that unique objects account for a difference of approximately

12 All browsers may download the same object multiple times when loading same web page. Downloading multiple copies of the
same object occurs for 0.7% of objects and do not significantly impact our results.

13 The percentage of common objects downloaded per web page load depends on the browser used.
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Figure 3.15: Cumulative distribution of Number of objects observed across browsers when the source
HTML is the same.

7 out of the 33 total objects that differ across Chromium/Non-Chromium browsers (approximately

21% of the difference in total objects). While this difference is non-negligible, it does not account

for the majority of the difference in the total number of objects transmitted by different browsers.

We provide an overview of the hostnames that send the unique objects to clients in Section 3.3.3.3 to

further analyze possible sources of the differences in the number of objects observed across browser.

• CnC Objects: We next study objects that exclusively occur on Chromium or non-Chromium browsers.

Chromium objects are objects that are present exclusively on both Opera and Chrome, while non-

Chromium objects are present exclusively on both Firefox and IE — Chromium and non-Chromium

objects are collectively referred to as CnC objects. Figure 3.13 shows that the median number of CnC

objects are substantially different across browsers. In particular, CnC objects account for less than 2%

of the objects downloaded for non-Chromium browsers, while they account for approximately 30%

of the objects downloaded for Chromium-based browsers. There is a difference of approximately 25

CnC objects between the Chromium-based and non-Chromium browsers. These objects correspond to

approximately 75% of the difference in the median number of objects observed across these browsers

(25 CnC objects out of the 33 total number of different objects). Figure 3.14(b) plots the cumulative

distribution for the number of CnC objects for each browser. This plot shows that the differences

in the number CnC objects transmitted between Chromium-based and non-Chromium browsers is

consistent across the whole distribution — not just the median. Please note that similar observations
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are made even when we consider web pages with the same source HTML — this result is shown in

Figure 3.15(b). We provide an overview of the hostnames of the servers that send the CnC objects

to clients in Section 3.3.3.4 to further analyze possible sources of the differences in the number of

objects observed across browser.

• “Other” Objects: The last type of object that we consider are “other” objects — these objects cor-

respond to the objects that are not categorized as common, unique, nor CnC. Figure 3.13 shows that

“other” objects account for a small amount of the differences (i.e., approximately 2-4 objects) in the

median number of the total objects observed across browsers. While the difference in the number of

“other” objects is small compared to the differences observed for unique and CnC objects, it makes

up a larger fraction of the differences than common objects.

In summary, the categories of objects that differ the most across browsers are unique and CnC. We next

investigate whether there are any clear patterns in the frequency in which different servers, as identified

using their hostname, transmit unique and CnC objects. We perform this analysis because it may provide

insight into the hostnames of the servers (i.e., which content providers), and likely the types of web-related

services (i.e., ads, tracking, or CDNs), that are frequently contacted by different browsers — please note

that we study the frequency of the hostnames of the objects instead of the full URL of the object because

full URLs are much more difficult to interpret.

3.3.3.3 Hostnames for Unique Objects

We first investigate the frequency of hostnames of the unique objects in our dataset. 6976 different

hostnames are observed in our dataset. We observe 5318 hostnames that correspond to objects that are

unique to a particular browser. Despite this large number of hostnames that correspond to servers that host

unique objects, 400 hostnames corresponds to approximately 75% of the unique objects observed in our

dataset. We observe that the most popular hostnames in our dataset are associated with ads, tracking, and

analytics services.14 Table 3.4 shows 30 hostnames which correspond to servers that send the most unique

objects that we observe (35% of the total unique objects) in our dataset (please note that these observations

14 The classification we use here is obtained using details from the URL and services such as Crunchbase and search engines. URLs,
hostnames, and descriptions from different services (e.g., search results and Crunchbase) that include the keywords “ad”, “track”,
“trk”, “analytics”, “trc”, “static”, “google”, and “beacon” are included in the ads, tracking, and analytics group.
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were repeatable across multiple iterations).15 While many of these unique objects yield a similar number of

objects across browsers, there are some exceptions that are worth mentioning. First, gstatic.com, a hostname

that is managed by Google, is primarily only contacted as an unique object for the Chrome browser. Other

observations include that the servers with the hostname bid.g.doubleclick.net are visited significantly more

for the Chrome browser than others, and that servers with the hostnames googleads4.g.doubleclick.net and

s0.2mdn.net (both owned by Google) are visited more on Chromium-based browsers than others. We believe

that it is by design that these Google-based services are more prevalent on the Chrome and/or Chromium-

based browsers.

We also observe that some browsers may contact servers with different hostnames than other browsers

for similar services. For example, apx.moatads.com and v4.moatads.com both serve approximately 1000

more objects for the Opera, Firefox, and IE browsers than the Chrome browser — this difference equates

to approximately 2000 more objects that are transmitted to a moatads.com server for browsers other than

Chrome. However, it seems that Chrome makes up for this 2000 object difference by requesting approx-

imately 2000 objects from afs.moatads.com, whereas the Opera, Firefox, and Internet Explorer browsers

do not request any unique objects from this server. Clearly, there is some type of browser dependence for

the hosts that are contacted. This result may be due to load balancing efforts by moatads.com — multiple

sources state that Chrome accounts for approximately half of the browser usage in the U.S [W3C, Sta, b].

There are many other examples of where the prevalence of the differences in the number unique objects

for a hostname differs across browser, but the explanations are similar. We present only the top differences

in Table 3.4 for brevity.

3.3.3.4 Hostnames for CnC Objects

We next discuss the frequency of hostnames that correspond to CnC objects. We observe 1571 host-

names that correspond to CnC objects, where the top 200 hostnames account for 75% of these objects.

Table 3.5 and Table 3.6 together show a list of approximately 30 hostnames that correspond to these

objects (40% of the total CnC objects). CnC objects consists of both ad and tracking services (e.g.,

pagead2.googlesyndication.com and b.scorecardresearch.com), shown in Table 3.5, and CDN services that

serve images or other content (e.g., g-ecx.images-amazon.com, img.s-msn.com, and foodnetwork.sndimg.com),

15 Please note that our dataset downloads 3614 web pages for each iteration. So, 3614 is a good reference point for understanding
how often an object from a server with a particular hostname is requested per web page download.
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TABLE 3.4: Frequency in Hostnames for Objects that are Uniquely Observed Across All Browsers
(List Consists Primarily of Ads and Tracking Services).

Hostname Chrome Opera IE Firefox
b.scorecardresearch.com 3005 2466 2755 2581
pubads.g.doubleclick.net 2759 2507 2151 2065
pagead2.googlesyndication.com 2250 2466 1596 1913
v4.moatads.com 1116 2196 2149 2190
www.google-analytics.com 1623 1653 1614 1646
ad.doubleclick.net 1712 1601 1342 1390
googleads.g.doubleclick.net 1420 1305 1347 1288
www.google.com 1282 1303 1250 1225
ping.chartbeat.net 1168 1024 1009 1046
data.t.bleacherreport.com 459 811 1237 1449
apx.moatads.com 191 1143 1082 1142
www.gstatic.com 1007 76 68 42
l.betrad.com 882 722 667 775
s0.2mdn.net 1095 959 428 405
c.betrad.com 953 817 454 431
stats.g.doubleclick.net 543 592 439 622
secure-us.imrworldwide.com 701 459 498 442
pixel.quantserve.com 592 442 512 486
afs.moatads.com 2028 0 0 0
ib.adnxs.com 530 487 476 470
beacon.krxd.net 470 504 447 492
dt.adsafeprotected.com 590 331 365 481
trk.vidible.tv 80 116 1006 534
cm.g.doubleclick.net 482 398 457 372
optimized-by.rubiconproject.com 329 357 435 387
crl.microsoft.com 217 305 772 178
ads.yahoo.com 348 332 403 329
bid.g.doubleclick.net 499 263 299 289
trc.taboola.com 343 343 317 314
googleads4.g.doubleclick.net 585 526 20 20
at.atwola.com 397 196 211 218
beacon.walmart.com 249 252 241 263
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TABLE 3.5: Frequency in Hostnames for Objects that are Chromium Only or Non-Chromium Only
Across All Browsers (Ads and Tracking Services List).

Hostname Chrome Opera IE Firefox
pagead2.googlesyndication.com 1090 1126 56 56
b.scorecardresearch.com 955 955 0 0
global.fncstatic.com 819 819 0 0
tpc.googlesyndication.com 703 708 0 0
www.google.com 706 704 1 1
c.betrad.com 658 661 56 49
partner.googleadservices.com 604 604 1 1
static.huluim.com 566 566 12 12
cbsnews2.cbsistatic.com 540 540 0 0
cbsnews1.cbsistatic.com 508 508 0 0
static.ak.facebook.com 488 488 0 0
fonts.gstatic.com 440 479 8 16

shown in Table 3.6. The observation that ads and tracking services account for a large fraction of CnC ob-

jects shows that these services are influenced by choice of browser [Research]. Also, the observation that

many of the CnC objects originate from CDN services means that it is likely that many of these objects have

a MIME type of image [Butkiewicz et al., 2011]. The transmission of such objects is a possible explanation

for the significant difference in the number of bytes observed between the different types of browsers in Fig-

ure 3.10 because image objects usually consist of a large fraction of the bytes in web page traffic [Butkiewicz

et al., 2011].

Implication - Privacy Concerns We observe that many of the objects that make up the differences in

the number of objects transmitted when loading a web page across browsers correspond to ad, tracking,

and analytics services. This observation raises privacy concerns for users because the more objects that

are transmitted from such services to a browser increases the chance and the extent that a user’s browsing

behavior is being tracked. Users may not be aware that browsers contact different servers, particularly ad

and tracking servers, when browsing the same web pages. If users are aware of such differences they may

choose to use a browser that tend to request a fewer number of web objects from ads, tracking, and/or

analytics services (i.e., Non-Chromium browsers) [Chaabane et al., 2014, Li et al., 2015a].
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TABLE 3.6: Frequency in Hostnames for Objects that are Chromium Only or Non-Chromium Only
Across All Browsers (CDN or Other Services List).

Hostname Chrome Opera IE Firefox
www.gannett-cdn.com 5192 5190 7 7
img.s-msn.com 2350 2350 88 88
z-ecx.images-amazon.com 981 981 0 0
foodnetwork.sndimg.com 825 825 0 0
tags.tiqcdn.com 764 764 12 12
i.dailymail.co.uk 737 737 0 0
l.yimg.com 707 706 10 10
g-ecx.images-amazon.com 697 697 3 3
data.t.bleacherreport.com 645 633 442 437
s.huffpost.com 577 577 0 0
o.aolcdn.com 568 569 7 7
www.usmagazine.com 540 540 0 0
cdn.krxd.net 490 490 0 0
assets.macys.com 474 484 4 4
www.nbc.com 453 453 0 0
www.bing.com 447 447 13 13
ak1.ostkcdn.com 428 428 8 8
www.concast.com 401 401 0 0
img.webmd.com 390 390 0 0
platform.twitter.com 396 382 0 0
i2.cdn.turner.com 382 382 1 1
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3.3.3.5 Differences in other TCP Connection-related features

We also discuss other primary traffic features that vary significantly across browser that are not di-

rectly related to the differences in web page traffic that we discussed earlier (i.e., the number of bytes

and objects transmitted). We first discuss the difference between the number of secure TCP connec-

tions established across browser. Secure TCP connections are TCP connections where the destination

port number is 443. Figure 3.16(a) shows a cumulative distribution plot of this feature. We find that the

number of secure TCP connections established for the Chrome browser is consistently higher than other

browsers. We refer to DNS traces to understand the hostnames of the servers that many of these con-

nections are contacting.16 We find that different browsers contact servers with unique hostnames for al-

most every web page download: (i) Opera contacts sitecheck2.opera.com and update.geo.opera.com, (ii)

Firefox contacts ocsp.digicert.com, safebrowsing.google.com, and dtex4kvbppovt. cloudfront.net, (iii) In-

ternet Explorer (IE) contacts go.microsoft.com and iecvlist.microsoft.com, and (iv) Chrome contacts ac-

counts.youtube.com, mtalk.google.com, clients4.google.com, www.googleapis.com, accounts.google.com,

ssl.gstatic.com, www.google.com, translate.googleapis.com, and clients4.google.com. Clearly, many of

these requests are contacting servers that are associated with the developer of these respective browsers.

In particular, the Chrome browser consistently contacts 9 hostnames while the other browsers tend to con-

tact 2-3 hostnames — this difference accounts for most of the consistent differences across browser that we

observe in Figure 3.16(a) (i.e., the shifts in the cumulative distribution curves in Figure 3.16(a)). We believe

that the hostnames of these servers correspond to authentication, location-based, and tracking services. The

other hostnames that account for the remainder of the difference between the curves (approximately 1-2 se-

cure TCP connections on average) in Figure 3.16(a) do not consistently appear for each web page download

— these secure TCP connections instead depend more on the particular web page that is downloaded. Please

note that we observe similar results when considering only web pages that have the same source HTML —

this is shown in Figure 3.17(a).

Another traffic feature that we discuss is the number of unused TCP connections. Unused TCP connec-

tions are TCP connections that do not transmit bytes that correspond to application layer data. Unused TCP

connections are possibly due to the TCP pre-connect feature in browsers which uses heuristics to establish

TCP connections preemptively to possibly reduce web page load times [Newton et al., 2013, Souders]. Fig-

16 Please note that we cannot observe the details of the objects transferred in secure TCP connections
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ure 3.16(b) plots the cumulative distribution of this feature. One observation from this plot is that (i) the

curves for non-Chromium and Chromium browsers differ to a large degree and (ii) non-Chromium browsers

tend to establish more unused TCP connections than Chromium-based browsers. Similar observations can

be made when the source HTML is the same — this is shown in Figure 3.17(b). Clearly, different browsers

rely on these features to different extents.
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Figure 3.16: Differences in number of TCP connections established across browsers.
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Figure 3.17: Differences in number of TCP connections established across browsers when the source
HTML is the same.
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3.3.3.6 Implications on Performance Analysis

Tools and metrics have been developed/used to evaluate the performance of web pages. One popular tool

is Pagespeed [Google], a trace-driven tool for performance analysis developed by Google. Pagespeed uses a

set of rules to determine whether web pages are designed using best-practices — some of these rules include

“combine external CSS”, “enable compression”, “combine external Javascript” , “minify Javascript”, and

“minimize redirects”. For each rule, Pagespeed outputs a score that ranges from 0 to 100, where higher

scores are better, to denote how well a web page is designed according to that rule. Please note that Page-

speed does not use time-based metrics, such as RTT, to evaluate web page performance. Thus, Pagespeed

scores are robust to the influence that vantage point and/or network conditions (e.g., congestion) may have

on web page performance.

Our observation that the number of objects and bytes downloaded is different across browsers leads

us to believe that Pagespeed will output results that may vary according to the type of browser that is

used.17 We use Pagespeed to investigate whether browser choice will impact the scores for some rules

output from this tool for different web pages. Figure 3.18 plots the cumulative distribution for several scores

that correspond to the rules that Pagespeed uses to evaluate web pages. Figure 3.18(a) shows that the score

for the “enable compression” rule is similar across all browsers, whereas Figure 3.18(b) shows that the score

for the “combine external CSS” rule follows different patterns for Chromium/Non-Chromium browsers that

we observed before. In particular, Figure 3.18(b) shows that there are 30% more web pages that have a score

of 100 for non-Chromium browsers than Chromium-based browsers. Figure 3.18(c) shows a similar result

for the score of the “combine external Javascript” rule except that the difference in the percentage of web

pages with a score of 100 is approximately 10% in this case. Figure 3.18(d) shows a cumulative distribution

plot of the score for the “minify Javascript” rule. Contrary to other examples, Figure 3.18(d) shows that the

of Pagespeed scores for a rule that generally performs worse for IE and Firefox browsers than Chromium-

based browsers (i.e., the curves for the Chromium-based browsers are consistently below the curves for the

Firefox and IE browsers). These results imply that browsers can influence the scores for multiple Pagespeed

rules for different web pages to a differing degree. These results also highlight the importance of testing web

pages on multiple browsers to validate that the web page behavior is intended and/or acceptable. We believe

that it may be better to have Pagespeed, or a similar tool, evaluate the performance of a page by using only

17 Browsers may impact the temporal properties of traffic.
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Figure 3.18: Cumulative distribution plots for Pagespeed scores across browsers.

the objects that are “common” across browsers instead of including objects that are exclusively present for

some browsers to facilitate a more apples-to-apples web page performance comparison across browsers.

3.3.4 Summary of observations

Browser type has a statistically significant impact on the majority of web page traffic features. The

differences in the number of objects and bytes transmitted features are large and have implications on multi-

ple domains including network utilization, privacy analysis, and web performance analysis. While we only

focus on a few of the statistically significant traffic features that differ across browser in this section, we ob-

serve many other features that are different across browser (e.g., number of TCP RESET flags) — many of

these differences are likely due to the fact that there is a different amount of data/objects that are transferred
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TABLE 3.7: P-values for Notable Traffic Features.

Traffic Feature P-value
Number of RESET segments 6.6 ×10−38

Number of PUSH segments 3.2 ×10−51

Number of FIN segments 3.3 ×10−218

Number of Packets 1.2 ×10−162

Number of servers contacted 9.2 ×10−45

Number of TCP connections 7.9 ×10−39

Number of Port 80 TCP connections 1.1 ×10−2

Number of DNS requests 2.4 ×10−155

Average RTT 7.4 ×10−28

Average TCP connection interarrival time 9.19 ×10−57

Average TCP connection duration 3.7 ×10−28

across browsers. For example, requesting a different number of objects that are from different servers will

naturally lead to a different number of servers being contacted and a different number of TCP connections

being established when loading a web page. We do not discuss such results in detail because it does not add

to the value of our discussion — statistically significant p-values for the other primary traffic features are

provided in Table 3.7. Our results show that differences in source HTML is not the only possible cause of

the differences in traffic that we observe across browser platforms. In fact, our results suggest that a large

number of the differences observed across browsers are due to browser choice (e.g., aggressive prefetching,

browser specific ads, TCP pre-connect, etc). Please note that we cannot verify this claim without the source

code of each browser.18

3.4 Impact of operating system on traffic

3.4.1 Does web page traffic differ across different operating systems?

We next investigate the impact that operating system may have on web page traffic features. We focus

only on the Opera, Chrome, and Firefox browsers that are currently supported on both MacOSX 10.9.4

and Windows 7. We find that only two primary traffic features, the number of packets with the RESET

flag set per web page and the number of packets with the FIN flag set per web page, differ significantly

across operating systems. Figure 3.19(a) plots the cumulative distribution for the number of packets with

the RESET flag feature. This plot shows that the RESET flag is set more often on Windows 7 platforms than

18 While portions of Chromium-based browsers source code is available, we do not have access to the source code of proprietary
browsers such as IE and Firefox.
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Figure 3.19: Cumulative distributions of differences observed across operating system.
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Figure 3.20: Operating system detection performance.

on MacOSX 10.9.4. Figure 3.19(b) plots the cumulative distribution for the number of TCP connections

that do not include a single FIN flag per web page. This plot shows that this feature follows a similar pattern

as the number of RESET flags feature. Given these observations, it is likely that MacOSX 10.9.4 closes

TCP connections with the RESET flag at a higher rate than Windows 7. We do not find any statistically

significant HTML source features that occur for the same browser across different operating systems. So,

we are confident that these differences in traffic are, in fact, due to an operating system specific change.

Implication: OS Classification The number of RESET flags feature differs so much across operating

systems (Windows 7 and MacOSX 10.9.4) that it may be used as a feature to identify operating systems
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via traffic analysis. We developed a simple classifier using a classification trees model to determine the

efficacy of such an approach. We train our model on half of our dataset using the number of RESET flags

per web page download as the only traffic feature. We test our model on the other half of the dataset using a

streaming-based approach. This steaming-based approach randomly selects a stream of N web pages from

the test set from a given operating system (Windows or MacOSX) and classifies each of the N pages using

the trained model. The final label assigned for the stream of N web pages is the mode of the individual

classifications of the N web pages. We believe that this classification approach is reasonable because users

are likely to request more than one page for a single operating system. This streaming-based approach

simply leverages the fact that multiple web pages can be used to help classify a host’s operating system.

The results of this classification is provided in Figure 3.20. Figure 3.20 shows that the operating system

classification performance using a single web page sample can achieve an accuracy of 78%, whereas a 9 web

page sample can achieve an accuracy of 97%. This result can be used in network security applications where

the detection of malicious and/or vulnerable hosts commonly depends on operating system or browser [Yen

et al., 2009].
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Figure 3.21: Device type has a significant impact on HTML features.

3.5 Impact of Device on Web Page Features

3.5.1 Does source HTML differ across different devices?

We next study the impact that different devices have on web page downloads. We start by comparing

the iOS 7 iPhone smartphone, iOS 7 iPad tablet, and the MacOSX 10.9.4 laptop where each device runs a
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Figure 3.22: Example mobile web page for 163.com.

Figure 3.23: Example tablet web page for 163.com.

version of Safari. The key results and implications of this analysis are summarized below:

1. Device type has a statistically significant impact on web pages: Pages designed for the small screens

of mobile devices are likely to have simpler and smaller content. Thus, as can be expected, devices

have a statistically significant impact on many features (66 total) by design intent — please refer to

Appendix 4 for a full list of these features. The most prominent features that differ across phones,

tablets, and laptops are embedded object-related features such as the number of images, scripts, and

CSS references found in an HTML source, content-related features such as the total number of words

present on a page, and the total number of links — all of these features have p-values that are on the

order of 10−10 or less.
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Figure 3.24: Example traditional web page for 163.com.

2. Lack of consensus on the design of tablet-specific web pages: Figure 3.21(a) shows the cumulative

distributions of the number of images and Figure 3.21(b) shows the number of link tags stratified

by device type. The cumulative distributions in these figures show that smartphone devices tend to

exhibit the fewest number of images and link tags, while laptop devices tend to exhibit the largest. The

cumulative distributions for the tablet devices tend to occur between the smartphone and laptop device

distributions. In fact, the cumulative distributions for the tablet devices overlaps with the cumulative

distributions of both the smartphone and laptop cumulative distributions at different ranges. This

behavior of tablet devices is attributed to the lack of a consensus among content providers on the

design of web pages for tablets. Content providers tend to either have (i) a unique web page design for

each device type (e.g., 163.com shown in Figure 3.22, Figure 3.23, and Figure 3.24), (ii) similar web

page designs for both laptop and tablet devices (e.g., imdb.com shown in Figure 3.25, Figure 3.26, and

Figure 3.27), or (iii) similar web page designs for both tablet and smartphone devices (e.g., twitter.com

shown in Figure 3.28, Figure 3.29, and Figure 3.30). We also find that different tablet manufacturers

may receive different web pages. For example, android devices may receive ads to download android

apps while iOS devices will receive ads to downloads apps on the Apple store. More interestingly, we

find that the Amazon Fire Tablet will receive a smartphone version of a web page (espn.com) while

the iPad Tablet will receive the desktop version of the page — this occurrence suggests that screen

size can be a more important factor in determining which page is downloaded than simply referring

to the device as a tablet or smartphone.
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3. Inconsistent redirect behavior that is based on device type across content providers: We also find that

there is a lack of consistency in the device-triggered redirect behavior across content providers. For

example, some content providers will redirect mobile web page requests made by laptop clients to its

corresponding laptop-based web page, while other content providers will not redirect requests in such

a manner. This observed redirect behavior for devices is similar to the redirect behavior we observed

for browser versions. This behavior can be problematic for some web-related applications. For in-

stance, web crawlers may be redirected from the mobile view of a web page to the laptop view of a

web page (in an undesired manner). This result has an impact for web page archival because undesir-

able, or less informative views of a page (mobile or desktop), may be archived instead of the desired

page. This observation also raises concerns for information sharing across social media (e.g., search

engines and social networking) because users can be referring to different views of information, or, at

times, entirely different information altogether, via the same hyperlink. For example, if a user shares a

link on a social media site, say Facebook.com, and a friend uses a different client platform to view it,

the two users could be observing different content (especially comments and recommendations listed

on a page). This can be particularly difficult if one user is referring to a particular comment or review

on a page that is not immediately viewable by another user.

4. Different search result sets for web search queries: Device type is taken into account by web search

engines such as bing.com and google.com when returning search results. We find that generally,

smartphones tend to have more mobile optimized web pages included in a search result set than tablet

and laptop devices — search providers take into account the mobile-friendliness of a web page when

providing search results [Mob, b]. We also find that the search result set may have different semantics

on different devices — this difference is mainly because search engines are increasingly providing

web content to users instead of simply links to pages. For example, the search result set for the “nba

standings” search query yields a different order of the basketball team rankings for a smartphone

and a laptop (division rankings vs conference standings). This result further underscores the impact

that device type can have on information sharing and other applications because a user may refer to

portions of a page, say the rank of a basketball team, where a friend does not immediately see the

same ranking that is being referenced.
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Figure 3.25: Example mobile web page for imdb.com.

Figure 3.26: Example tablet web page for imdb.com.

Figure 3.27: Example traditional web page for imdb.com.
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Figure 3.28: Example mobile web page for twitter.com.

Figure 3.29: Example tablet web page for twitter.com.

Figure 3.30: Example traditional web page for twitter.com.
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Figure 3.31: Cumulative distributions of differences observed across device (Safari browsers).

3.5.2 Do other traffic features differ across devices despite referencing the same source HTML?

We next focus our analysis on investigating whether device type has an impact on other traffic features.

Our statistical analysis reveals that, similar to the browser analysis, most of the traffic features are significant

across devices (541 out of 575 traffic features). Figure 3.31(a) plots a cumulative distribution of the number

of TCP connections established per web page, while Figure 3.31(b) plots the number of objects observed per

web page across different devices. These plots show that these traffic features differ in a largely expected

manner. The mobile and desktop versions of Safari tend to exhibit the fewest and largest number of TCP

connections and objects respectively — while the tablet version of Safari behaves in the middle, where it

is similar to a mobile browser for some web pages, and is similar to the desktop browser for others. This

result shows that there is a current lack of consensus among web designers on the properties of a web page

that is designed for a tablet. We observe similar results for the different Chrome browsers measured on the

different devices — these are shown in Figure 3.32.19

We next investigate whether these observed, and largely expected, differences in traffic features across

devices are influenced by differences in the source HTML or not. Our statistical analysis reveals that most

of the HTML-based features (66 of the 127 HTML-based features) are statistically significant — please note

that for the browser analysis this difference was a modest 8 features. This result suggests that the root cause

of the traffic differences we observe across devices is likely due to the differences in the source HTML.

19 Though, the values are different because of browser-related differences that we previously discussed.
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Figure 3.32: Cumulative distributions of differences observed across device (Chrome browsers).

The source HTML is different across devices because content providers typically redirect web page requests

such that they are targeted for certain devices (e.g., laptops, smartphones, and tablets). We must compare

the traffic generated by devices when the web pages are not redirected to confirm whether the root cause of

the differences in traffic observed across different devices is due to source HTML differences.

Typically, servers will respond to requests by mobile devices for the full/desktop version of a web page

by redirecting the request to a mobile optimized web page — this behavior does not work for our purposes.

However, servers do not redirect requests by desktops for the mobile-optimized version of web pages to

the full/desktop version of a page. Figure 3.33(a) plots the cumulative distribution for the number of TCP

connections established per web page, while Figure 3.33(b) plots the cumulative distribution for the number

of objects established be web page of when the same source HTML is used by different devices. This plot

was generated by loading mobile optimized web pages using both the iOS iPhone Safari and the desktop

Safari browsers — the 332 mobile optimized web pages used for this analysis are listed in Appendix 5.

The number of TCP connections, shown in Figure 3.33(a), and the number of objects downloaded, shown

in Figure 3.33(b), are similar across devices — our statistical analysis shows that these two features are

statistically similar. All of the other traffic features are also statistically equivalent across devices in this

scenario. This result shows that, while the traffic generated across devices are statistically significant by

default (that is, without ensuring the same source HTML is downloaded), the root cause of these statistically

significant differences is the source HTML when considering mobile optimized web pages. Though, we

acknowledge that it is indeed possible that devices can influence traffic in a statistically significant manner

117



0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of TCP Connections

Fr
ac

tio
n 

of
 W

eb
 P

ag
es

 

 

iPhone Safari
Desktop Safari

(a)

0 10 20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Objects

Fr
ac

tio
n 

of
 W

eb
 P

ag
es

 

 

iPhone Safari
Desktop Safari

(b)

Figure 3.33: Cumulative distributions of similarity of mobile web page traffic across different devices.

when the HTML is the same or even different when considering other types of web pages (say full/desktop

version of a page) — we cannot verify this with our current methodology because mobile browsers tend to

get redirected when requesting the full/desktop version of a web page.

3.5.3 Summary and Implications of Results

The results in this section show that mobile devices have a significant impact on source HTML and web

page traffic. However, we did not find any strong evidence that device-specific enhancements are the root

cause of the differences in traffic that we observe. These results suggest that web page designers assume

the majority of the responsibility for designing efficient mobile web pages. Thus, there is plenty of room

for research into performing device or browser-based optimizations for mobile platforms. These results also

show that web measurement studies must specifically account for mobile web pages because they exhibit

traffic characteristics that is substantially different from traditional web pages — we explicitly do this in

Chapters 4 and 5.

3.6 Impact of Location on Web Page Features

3.6.1 Does source HTML differ across vantage point?

We next discuss the impact of vantage point on base HTML pages. Our data includes web pages re-

quested from 13 vantage points using the planetLab system across different continents including Asia,
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North America, South America, Europe, and Australia — please refer to Table 3.3 for a full list of the

vantage points studied in this Section [Chun et al., 2003]. The web pages considered for this analysis are

the 3614 web pages that were used in Sections 3.3 and 3.4, which are provided in Appendix 2. These web

pages were downloaded using Firefox v 17.1 on Linux systems that are based on Fedora Core 8 [Chun et al.,

2003] — these systems are outdated as compared to the systems used in the previous section, which limits

our ability to compare our vantage point results across other sections. We perform Kruskal-Wallis tests on

each feature where each group in this test corresponds to a single vantage point. Thus, there are 13 groups

for the Kruskal-Wallis tests used in this analysis. We find that:
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Figure 3.34: Impact of vantage point on number of different words (U.S.(a) and World(b)). The
baseline for comparison located in California.

1. Our statistical analysis shows that none of the HTML tag-based features are significantly impacted by

vantage point. This result shows that web page design and formatting is not significantly influenced

by location. This result is surprising given cultural preferences in content layout and appearance.

2. Vantage point has a significant impact on the number of different words feature. This feature is com-
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Figure 3.35: Example search result of a bing.com web page that was targeted for an audience in
Vancouver, Canada.

puted as the number of words that are different between two documents (that is, a baseline document

and a test document). For this analysis, the baseline documents are web pages that were downloaded

from the planetLab node in California (planet-lab1.cs.ucr.edu) while the test documents are web pages

from the other nodes. Each pair of baseline and test documents correspond to web pages that were

requested using the same URL. The average number of different words metric for a node is the mean

of the number of different words computed for all test documents (or web pages) for that node. Fig-

ure 3.34 (a) shows that the average number of different words for each vantage point in the U.S is

roughly 200-250 words, while Figure 3.34 (b) shows that the average number of different words for

each vantage point that are outside of the U.S is over 500 — Figure 3.34 (a) and Figure 3.34 (b) both

include 95% confidence interval bars around the average.20 Many of these differences across all van-

tage points correspond to differences in search result sets that depend on location, while a few of these

differences correspond to specialized versions of web pages that occur outside the United States. We

discuss these below:

• Differences in search results: Bing search results, whether it is Web, news, or image search,

may yield different links, ads, and images across different vantage points — please note that

20 Please note that while we study the top 250 web sites in the world, many of these sites are served by content providers that are in
the U.S.
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Figure 3.36: Example search result of a bing.com web page that was targeted for an audience in
California, USA.

Figure 3.37: Example search result of a bing.com web page that was targeted for an audience in the
CA-USA.
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Figure 3.38: Example search result of a bing.com web page that was targeted for an audience in
RI-USA.

we verified that this is not primarily a consequence of time.21 Some of these differences are

obvious due to location-based searches, say when a user is searching for McDonalds and the

search engine returns the address of the nearest McDonalds — most of these differences occur

even when the search result is made in the same country. Examples of such search results

for a “McDonalds” query made in Vancouver, Canada and California, USA are provided in

Figure 3.35 and Figure 3.36 respectively. Other differences are more complex, such as when

more generic and random search queries such as “a hello berry” and “golden” yield different

search results — example search results for the query “golden” for the vantage point in California

and Rhode Island are shown in Figure 3.37 and Figure 3.38 respectively. The impact of vantage

point on search results is important to note because search engines are a primary tool for various

applications including web page scraping [Jacob et al., 2012] and web security [Leontiadis et al.,

2011]. Vantage point driven search results also impact users because location can be misleading

for users who access the Web via 3G or 4G services — thus, the wrong location can be used to

target search results.

• International versions of web pages: We observe two cases where the landing page of a web site

is different when requested outside of the United States. We believe that the larger difference

21 We discuss results pertaining to bing.com because other search engines such as google.com are blocked in some countries.
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between the vantage points around the world and the United States is mainly due to content

providers having international versions of content that is likely to be of interest to the local

population. Figure 3.39 and Figure 3.40 show examples of yahoo.com web pages as rendered

in different countries — the United States and Australia in this case. A similar example for

cnn.com where the United States version of the web page is shown in Figure 3.41 and the inter-

national version, as observed from China, is shown in Figure 3.42. However, in this example we

find that the United States version of cnn.com, shown in Figure 3.41, does not explicitly notify

the user that their browsing behavior is being tracked while the international version, shown in

Figure 3.42, does — the international version even informs the user about (i) how they are being

tracked, (ii) why they are being tracked, and (iii) explicitly asks users to agree to being tracked.

These differences are likely due to differences in privacy laws across different countries [Pri].

In particular, privacy laws in the United States do not require content providers to explicitly no-

tify users that they are being tracked while privacy laws in many countries outside of the United

States do [Pri]. We do find other web sites that have additional privacy-related information when

accessed outside of the United States including foxnews.com and twitter.com.22 This observa-

tion suggests that content providers will not be transparent with users on how their browsing

behavior is being tracked and used unless privacy laws are in place that require them to do so.

3.6.2 Do other traffic features differ across vantage point?

We next investigate the impact that vantage point has on web page traffic. We find that temporal features,

including RTT, TCP connection interarrival time, and TCP connection duration, are heavily influenced by

vantage point, while only one non-temporal traffic feature, the number of DNS requests, is influenced by

vantage point in a statistically significant manner. We discuss these in detail below:

• Temporal features are significantly influenced by vantage point: Vantage point has the biggest impact

on the temporal properties web page traffic — these include the RTT, TCP connection arrival time,

and TCP connection duration features discussed in Section 3.2. The average RTT metric for a given

web page corresponds to the mean of the RTTs measured for each TCP connection established during

each web page download. Figure 3.43 shows that the average RTT across different vantage points is

22 We do not have an exact number of how often this behavior occurs in our dataset, due to the difficulty in extracting such informa-
tion from source HTML.
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Figure 3.39: Example of a yahoo.com web page that was targeted for an audience in the United States.

Figure 3.40: Example of a yahoo.com web page that was targeted for an audience in Australia.

Figure 3.41: Example of a cnn.com web page that was targeted for an audience in the United States.
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Figure 3.42: Example of a cnn.com web page that was targeted for an international audience.

significantly impacted by vantage point — this figure also shows 5%-95% percentile bars for each

vantage point. This impact is most significant for vantage points that are located outside of North

America including Australia, China, Brazil, Japan, and to a lesser extent Poland. We believe that

the average RTT is higher for vantage points that are outside of the United States because the most

popular web sites in the world are largely hosted in North America [Inc.].
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Figure 3.43: Average RTT observed across vantage point with 5%-95% percentile bars.

Figure 3.43 shows that there is also an unusually high RTT for the vantage point in China. More

specifically, we find that while China and Japan are both in a similar region in the world, the average

RTT of China is over 4x higher than the RTT in Japan. We also observe that many of the hostnames

that are observed at other vantage points are not observed in China — we discuss more details about

this later. These hostnames, including google.com and nytimes.com, are missing in China because

network services are used in China that block web content from certain servers [Chi]. We believe that

these network services within China perform extra processing that make the RTT appear to be larger
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than it would be otherwise. We observe similar differences in the average RTT measurements, though

to a lesser extreme, across vantage points within the United States as well. Overall, our results show

that the average RTT observed across different vantage points are likely influenced by delays incurred

by middle-boxes within a network in addition to the distance between end-hosts. This observation is

important because it shows that moving servers closer to end-users may not improve performance as

much as expected because other factors may serve as a bottleneck in network latency.
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Figure 3.44: Average TCP connection arrival time observed across vantage point with 5%-95% per-
centile bars.

We also compute metrics for the average TCP connection interarrival time and TCP connection du-

ration per web page download. The average TCP connection interarrival time metric for a given web

page corresponds to the mean of the TCP connection interarrival times measured during each web

page download, while the TCP connection duration is computed in a similar manner. These metrics

are shown in Figure 3.44 and Figure 3.45 respectively. However, the results shown in these figures are

difficult to explain. For instance, in Figure 3.44, we find that the average TCP connection interarrival

time is moderately higher for the China and Kentucky vantage points as compared to the others. In

Figure 3.45, we find that the average duration of TCP connections tends to be slightly lower for van-

tage points that are outside the United States. While we know that these features are influenced by

RTT and that networking conditions may differ across vantage points [Zaki et al., 2014], we do not

have a more specific explanation for the behavior that we observe in these figures.

• Most non-temporal features are mildly influenced by vantage point: Our statistical analysis shows

that all but one of the non-temporal traffic features are not impacted by vantage point in a statistically

significant manner. Figure 3.46 shows a bar plot of the average number of objects transmitted with
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Figure 3.45: Average TCP connection duration observed across vantage point with 5%-95% per-
centile bars.

5%-95% bars when loading a web page across different vantage points. Our statistical analysis and

Figure 3.46 shows that the number of objects transmitted when loading a web page do not vary in a

statistically significant manner across vantage points.23 While the number objects transmitted is not

statistically significant, there are some differences in the objects that are downloaded across vantage

point that are worth explaining. For instance, the vantage point located in China has fewer objects as

compared to other sites — this result occurs because many of these hostnames are blocked in China

including google.com, nytimes.com, and phcdn.com [Chi].
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Figure 3.46: Average number of objects observed across vantage point with 5%-95% percentile bars.

We also observe objects that are unique to a vantage point. For example, some hostnames that are

only present at the China vantage point include cn.bing.com, static.googleadsserving.cn, admas-

ter.com.cn, and image.skype.gmw.cn, whereas some hostnames that are only observed in Japan in-

23 Though the number of objects observed is lower than in prior plots. PlanetLab nodes have an older version of Firefox installed on
nodes. We find that browser version impacts the number of objects downloaded because of (i) outdated javascript engines and (ii)
some hosts such as yahoo.com will serve a mobile-optimized page to clients with outdated clients instead of a desktop page

127



clude cs.genieessp.jp, overseas.weibo.com, and mmtest2.wechatos.net. Similar results occur for other

vantage points including Australia, Brazil, and Canada. In general, the unique hostnames that we

observe for individual vantage points only account for a dozen or so objects in our entire dataset

— so unique objects are rare. There are also instances where we visit a web page and only a se-

lect few countries make certain requests. For example, when we visit a product page on ebay.com,

we observe objects from ads.rubiconproject.com only for the clients in Japan and China. However,

hostnames that generally occur outside the United States (i.e., objects that are exclusively present in

multiple countries outside the USA) are much more common — we observe 448 such hostnames in

our dataset. Some of these hostnames include edition.cnn.com (the international version of CNN),

adtech.de, ins.traffic.com, extended.dmtracker.com, and user.lucidmedia.com.

• Number of DNS requests varies greatly across vantage point: Despite the fact that the number of ob-

jects requested on each vantage point are statistically similar, the number of DNS requests made are

not. In fact, the number of DNS requests made across vantage point is the only statistically significant

non-temporal traffic feature observed in our vantage point analysis (p-value = 2.5−15). Figure 3.47

shows a bar plot of the average number of DNS requests made when loading a web page for each van-

tage point with 5%-95% percentile bars. We investigate the DNS data to determine whether different

DNS requests are being made at each vantage point. We find that hosts in different planetLab nodes,

not necessarily different countries, send unique DNS requests to resolve hostnames within their re-

spective local network. These DNS requests to local servers may be duplicated to a different degree

at different planetLab nodes — for example, the host in Canada (Canada 1 in Figure 3.47) sends 4

DNS requests to resolve cs-planetlab4.cs.surrey.sfu.ca, while the host in Florida sends a single DNS

request to resolve planetlab2.acis.ufl.edu (USA-FL in Figure 3.47). When excluding these duplicate

DNS requests, all other DNS requests made are largely the same across vantage points— please note

the mean difference of 3 DNS requests shown in Figure 3.47 for this example. We do not find any ob-

vious explanation for this duplication of DNS requests to resolve the hostnames of local servers given

that (i) the responses to requests are received before duplicate requests are made, (ii) the responses

provide the same information, and (iii) the TTL is set to large enough values such that duplicate re-

quests are not warranted (greater than 1 hour). Thus, we suspect that a planetLab-related quirk is

causing these duplicate DNS requests and are unsure that this result is generalizable to non-PlanetLab
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vantage points.
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Figure 3.47: Average number of DNS requests observed across vantage point with 5%-95% percentile
bars.

3.6.3 Summary of Observations

The key findings of our vantage point analysis are the following:

• Location impacts the content of source HTML: We observe that many web pages, particularly search

results and landing pages, have content that is customized for different locations. However, tag-based

source HTML features are not impacted by vantage point in a statistically significant manner. Thus,

while content is customized to different user populations, the general format of web pages are the

same irrespective of location. This result shows that there is plenty of room in the market for content

providers to tailor web page templates to the different preferences that different user populations may

have.

• Location impacts temporal traffic features: As expected, location has a substantial impact on the

temporal features of traffic. This result emphasizes that temporal traffic features should be avoided

when developing measurement analysis techniques such as traffic classification [Lim et al., 2010]

to maximize the chance of scaling to multiple environments. There may also be some quirks in

DNS requests across planetLab hosts on different networks that can also impact the performance of

measurement analysis techniques that use DNS data.

• Object requests are largely similar for the same browsers: The majority of the objects that are re-

quested for a given browser is largely the same when the location is different. Though, in rare cases

the location of the client can influence a small number of unique objects that are requested.
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3.7 Impact of Time on Web Page Traffic Features
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Figure 3.48: P-values for numerous HTML-based features between 4 samples which are ≈ 1 month
apart each (comparison across time).

3.7.1 Does time influence our HTML-based results?

We investigate the impact that time has on base HTML source files. We perform many univariate

Kruskal-Wallis tests between our first measurement (i.e., baseline measurement) and four subsequent mea-

surements that was taken at 1 month increments. Each sample/measurement includes a single web page

measurement for each client platform measured at that instance in time — that is, 4 browsers × 2 operating

systems × 3614 web pages + 13 vantage points × 3614 + 6 devices/browsers × 1010. A plot which shows

the differences observed across time for some of the HTML tag-based features is provided in Figure 3.48.

Here the y-axis corresponds to the p-value of the difference between the baseline measurement (Sample 1)

and the subsequent sample measurements, while the x-axis corresponds to the sample/measurement number

— please note that the p-value for Sample 1 is one since it is a comparison to itself. Figure 3.48 shows

that all of the HTML tag-based features shown have p-values that are higher than .05 for each sample

measurement— in fact, we observe this for all HTML tag-based features. Thus, time does not have an im-

pact on the HTML tag-based differences that we discussed earlier (specifically, across browser and device).

To illustrate this, cumulative distribution plots for some of the HTML-based features measured across client

platforms across the first two samples is provided in Figure 3.49. This figure shows that the cumulative

distribution for many of the HTML-based features, including the number of images, number of script tags,
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Figure 3.49: Cumulative distributions showing that time does not significantly impact many HTML-
based features.
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number of style tags, and the number of hyperlinks, overlap — that is, the distribution of these HTML-based

features do not differ significantly over time.

We also consider the influence that time may have on the number of different words feature that we re-

port. Our statistical analysis shows that time has a statistically significant impact on this feature. Figure 3.50

shows the cumulative distribution of this feature as computed when comparing web pages measured which

were measured 4 times for all client platforms. The measurements or samples shown are separated by ap-

proximately 1 month — that is, the time difference between Sample 1 and Sample 2 is one month, while the

time difference for Sample 1 and Sample 3 is two months. This plot shows that only approximately 12%

of web pages do not change at all after 4 months, whereas the rest do change to an increasing degree as

time increases. This observation means that the implications and results presented relating to the number of

different words feature could have been influenced by time.
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Figure 3.50: Cumulative distribution plot of number of different words feature between 4 samples
which are ≈ 1 month apart each.

We do, however, find rare cases where web page design has changed over time. For example, Figure 3.51

shows that the format for CNN web pages changed during our data collection procedure. We observe the

new format for the CNN page (Figure 3.52) for all browsers and devices and conclude that CNN made

this format change in order to serve a single web page that adapts to various screen sizes instead of serving

multiple web pages to different device types. We also find that Overstock.com will display different versions

of a page, one that includes product recommendations and another that does not, at different points in time

(we find similar results for zillow.com with respect to content recommendations and imdb.com with respect
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to ads that completely change the layout of a page). We observe these differences over several browsers and

believe that product recommendations are missing at certain instances in time for performance reasons —

dynamically generating pages with up-to-date recommendations or ads may be costly. It is important to note

these dynamic changes in web page design because it will impact the effectiveness of web page parsing tools

that are optimized for a particular page design. These changes may also impact web crawling procedures

because some pages may have links to related/recommended pages while others do not.

(a)

Figure 3.51: Web page layout and design can be changed over time (initial layout)

(a)

Figure 3.52: Web page layout and design can be changed over time (updated layout).

3.7.2 Does time influence our traffic-based results?

We also investigate whether the traffic features we consider vary significantly over time. Some p-values

for prominent features which we identified to vary significantly for each of the 4 measurements taken are
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shown in Figure 3.53. It is important to note that while some of the p-values observed are less than .05 none

of them are less than .001 — we observe similar results for all non-temporal features. For instance, please

recall the p-value for the number of bytes differences across browser or RESET flags across operating system

were on the order of 10?100. Thus, the differences observed across time are small relative to the p-values of

the significant differences we discussed in this chapter.

Figure 3.54(a) and Figure 3.54(b) also visually shows this result for the number of TCP connections and

number of bytes traffic features for each web page measurement across browsers, operating systems, and

vantage points (i.e., each sample includes measurements from (i) web pages generated from the Firefox,

Chrome, and Opera browsers on Windows 7 and Mac OSX and (ii) the web pages requested using the 13

different vantage points considered in this study). Similar observations are made for other traffic features

such as the number of objects and servers — these are shown in Figure 3.55. Thus, we conclude that time is

not a primary factor that influenced the non-temporal differences that we observed across browser, operating

system, and vantage point in previous sections — cumulative distribution plots for the most significant

traffic-based differences across client platform for each repeated measurement are provided in Appendix

7 to show that the non-temporal differences highlighted in this chapter are repeatable. We also find that

the temporal traffic features including average RTT, TCP connection inter-arrival time, and TCP connection

duration differs in a statistically significant manner over time across browser, operating system, and vantage

point. In fact, each of the p-values for these temporal features are less than 10−5. Thus, these differences in

temporal traffic features may be due to randomness and/or client platforms.

3.8 Contributions and Concluding Remarks

In this chapter, we attempt to understand how modern web page traffic is impacted by different client

platforms. We generate traffic in a controlled manner that includes samples from different (i) browsers, (ii)

operating systems, (iii) devices, and (iv) vantage points. We find that:

• Browser type has a significant impact on the majority of the web page traffic features including the

number of objects requested, number of servers contacted, and the number of TCP connections es-

tablished. We find cases where the web page traffic across different browsers differ in a statistically

significant manner despite the browsers referencing the same source HTML — we attribute these

differences to choice of browser [Sanadhya et al., 2012]. One key result is that Chromium-based

134



1 2 3 4
Sample Number (1-4)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 W

eb
 P

ag
es

RESET flags
Packets
Bytes
TCP Connections
Objects

(a)

Figure 3.53: P-values for numerous traffic-based features between 4 samples which are ≈ 1 month
apart each (comparison across time).

browsers (Chrome and Opera), at times, can transmit over 4 times more bytes when rendering a web

page than other browsers (Firefox and IE). We find that this large difference in the number of bytes

transferred is due to the fact that Chromium-based browsers tend to request objects that other browsers

do not. We also find that the majority of these objects have hostnames that generally correspond to

servers that provide ads, tracking, and CDN services. Some of the implications of these results are:

– Web page performance analysis: State of the art web page performance analysis tools, such as

Pagespeed [Google], are not robust to the traffic differences we observe across browsers. Thus,

different browsers will identify different performance issues for the same web page — this is

important because there are currently no mechanisms in such tools to identify browser-specific

performance issues, which makes it more difficult for web page designers to optimize web page

performance.

– Privacy analysis: The fact that different browsers may contact different servers, particularly ads

and tracking services, raises privacy concerns for users who may want to limit the number of

hosts that their device contacts and may be unaware that choice of browser may influence such

behavior [Chaabane et al., 2014, Li et al., 2015a].

• We find that choice of operating system has a minor, and mostly negligible, influence over web page

traffic as compared to browsers. The only significant difference is the frequency with which the RE-
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Figure 3.54: Cumulative distributions showing that time does not significantly impact many traffic
features across 4 samples which are ≈ 1 month apart each (Number of TCP connections and bytes).
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Figure 3.55: Cumulative distributions showing that time does not significantly impact many traffic
features across 4 samples which are ≈ 1 month apart each (Number of web objects and servers).
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SET and FIN flags are set in segments. We show, however, that these differences can be used to

classify operating systems. We developed a classification model that can identify the operating sys-

tem of a user with an accuracy that is as high as 97%. Operating system detection can be useful

for security applications that are operating system specific (e.g., detecting operating system specific

malware) [Canali et al., 2011], traffic classification [Yen et al., 2009], and general purpose character-

ization of network use with coarse traffic features such as anonymized TCP/IP headers [Sanders and

Kaur, 2015b, Newton et al., 2013, Smith et al., 2001].

• As expected, device type has a significant impact on web page download traffic. We also find that

tablets may serve pages that are designed for smartphones (i.e., small screen), tablets (i.e., moderate

screen size), or even laptops (i.e., large screen). This observation suggests that there is a current

lack of consensus among web designers on the properties of a web page that is designed for a tablet.

Though, contrary to our browser-based analysis, the differences in web page traffic we observe across

devices is primarily due to differences in the source HTML served when different types of devices

request the same web page (servers will redirect web requests by mobile devices to mobile-optimized

versions of the web page). In fact, when we ensure that the same source HTML is downloaded for

different devices, we do not observe any differences in the traffic across devices.

• Vantage point has a significant impact on temporal traffic features such as average RTT. We find that

the RTT observed across different vantage points are likely influenced by delays incurred by middle-

boxes within a network in addition to the distance between end-hosts. For example, the average RTT

observed in China is over 4 times the average RTT observed in Japan despite being in similar regions

of the world and requesting similar content. We observe similar, yet less extreme, differences in RTT

even within the United States. This observation is important because it shows that moving servers

closer to end-users may not improve web performance as much as expected because other factors

within the network may serve as a bottleneck in network latency. We also find that vantage point has a

minor, and mostly negligible, impact on non-temporal traffic features. Most of these minor differences

are due to when hosts in certain countries download objects that are unique to that region. Again, such

observations are rare and do not impact web page traffic features in a statistically significant manner.
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CHAPTER 4: WEB PAGE CLASSIFICATION1

Traffic classification using only anonymized TCP/IP headers has received much attention in the liter-

ature, because emerging privacy legislation [Sicker et al., 2007] and increase in obfuscated traffic [White

et al., 2013] make packet payloads inaccessible. The intended application domains of such classification are

fairly diverse — including traffic engineering [Kim et al., 2008, Erman et al., 2007b], network characteri-

zation [Hernández-Campos et al., 2003b], and privacy analysis [Dyer et al., 2012, Panchenko et al., 2011,

Liberatore and Levine, 2006, Sun et al., 2002]. The granularity at which these different domains classify

traffic, is fairly diverse as well. At one extreme, for instance, traffic engineering applications have tradition-

ally classified traffic according to coarse-grained labels such as application type (e.g., peer-to-peer or Web or

Email), in order to provide differentiated services to different types of applications [Kim et al., 2008, Erman

et al., 2007b, Sen and Wang, 2004, Lim et al., 2010, Schatzmann et al., 2010, Xie et al., 2012, Erman et al.,

2007a]. At the other extreme of granularity, are applications such as security and privacy analysis, which

may classify web traffic at the fine granularity of even identifying exactly which web page is being down-

loaded (also referred to as web page identification) [Dyer et al., 2012, Panchenko et al., 2011, Liberatore

and Levine, 2006, Sun et al., 2002].

Both of these granularity extremes, however, face practical issues. First, classifying traffic according

to the application type is too coarse of a label for modern traffic. Indeed, many applications such as file

sharing, social networking, email, and video streaming, continue to migrate to the Web — in fact, recent

studies show that web traffic accounts for over 80% of Internet traffic and is still gaining traffic share [Popa

et al., 2010, Ihm and Pai, 2011]. As such, there is little benefit to simply classifying a given traffic sample

as Web or non-Web — a more fine-grained label would be more useful. On the other hand, classifying web

traffic according to the granularity of the exact web page being downloaded (i.e., web page identification),

has limited applicability “in the wild” because it does not scale well to a large number of web pages —

there are simply too many web pages to measure, fingerprint, store, and reliably identify. In fact, most prior

studies show that the effectiveness of this fine-grained classification decreases as the number of web pages

1This chapter includes material from an article published in the proceedings of IEEE Infocom 2015 [Sanders and Kaur, 2015b] —
the differences in the methodology and results between these two versions are summarized in Section 4.5.
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considered increases [Dyer et al., 2012, Liberatore and Levine, 2006].

In this chapter, we adopt a middle-ground and consider classification of web traffic according to labels

that correspond to the type of web page downloaded using only anonymized TCP/IP headers — we refer to

this problem as web page classification. Web page classification is different from web page identification be-

cause multiple web pages may have the same classification label — thus, web page classification will likely

scale better “in the wild” than web page identification because there will be a substantially smaller number

of classes of web pages to characterize and subsequently label. The applicability of web page classification,

however, depends directly on the type of labels that are used to categorize web pages. For example, catego-

rizing a web page as being malicious or not is useful for security applications while categorizing a web page

as bandwidth sensitive is useful for traffic engineering applications. Thus, it is important to study multiple

different labeling schemes when evaluating the feasibility and applicability of web page classification. Some

of the labeling schemes that we consider in this chapter are:

• Video-streaming based: A labeling scheme that is based on whether video streaming content is the

primary focus on the page. For example, a Netflix or a Youtube video is considered a video page.

A page with a banner ad that plays a video or does not play a video is not considered a video page.

The ability to distinguish between bandwidth-hungry video and non-video streams, at critical traffic

aggregation points, can be used for traffic engineering applications [Rao et al., 2011]. For instance,

a network manager may be able to prevent network abuse and/or rate-limit video streams that use a

large amount of network resources.

• Targeted-device based: A labeling scheme that is based on the type of device that the page is intended

for. In the Chapter 3, we found that the device that is used to request a web page influences the

HTML source that is downloaded and ultimately the traffic that is generated. Here, we consider

mobile optimized web pages and traditional web pages (everything else). The ability to identify web

page downloads targeted for mobile devices can help in: (i) building profiles of mobile web usage

within an enterprise (for capacity planning, modeling, and forecasting purposes), and (ii) delivering

personalized content and advertisements that are customized for constrained displays, power, and

connectivity [Xu et al., 2011, Butkiewicz et al., 2011].

• Navigation based: A labeling scheme that is based on the type of page a content provider uses to

navigate users to their desired content. We consider 3 types of pages here: 1) Homepages; 2) Search
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result pages; and 3) Clickable content pages (everything else). Such navigation-based labels can be

useful for identifying network misuse. For instance, web crawlers can be misused for purpose of

scraping search result pages [Jacob et al., 2012].

• Content-genre based: A labeling scheme that is based on the genre of a web page. The genre is

obtained from the third party analytics service Alexa [Inc]. Example genres include News, Business,

Computer, and Shopping. Knowledge of the genre of web pages downloaded by a given user can be

used for gauging user interest, which is invaluable for delivering personalized content and targeted

advertisements [Yan et al., 2009, Maciá-Fernández et al., 2010].

In the rest of this chapter, we present our data collection methodology in Section 4.1; feature selection

methodology, classification results, and an applicability study in Sections 4.2 -4.4; comments regarding the

differences between the results presented in this Chapter and the results published in an earlier version of

this work in Section 4.5 [Sanders and Kaur, 2015b]; and our conclusions in Section 4.6.

4.1 Data Collection Methodology

This study requires the collection of web page traffic that has been (i) filtered on a per web page basis,

(ii) labeled according to the client platform that was used to load the page, and (iii) labeled according to the

web page that was downloaded. These requirements are the same as those for the study provided in Chapter

3. Thus, we adopt a client side measurement methodology for similar reasons. Details of the client-side

measurement methodology that is specific to this work is provided in this section.

Web Page Selection The methodology used to select the web pages that are downloaded is the same as

the methodology used in Chapter 3 — we focus on the top 250 web sites in the world [Inc.] and browse each

of these web sites to collect a list of URLs for their landing pages, as well as non-landing pages, including

search results and media content.2 A list of these 250 web sites is provided in Appendix 1. Overall, we

include a list of 3345 web page URLs — these web pages are listed in Appendix 2.3

2 Our methodology does not capture the fact that some web sites present different landing pages to users who are logged in (e.g.,
facebook.com) — study of such “personalized” web pages is left for future work.

3 Please note that these web pages correspond to the first 3345 URLs provided in Appendix 2. The number of web pages studied
in this chapter is different from Chapter 3 because there were more web page load failures for the outdated Safari browser for the
Windows 7 platform — we only include web pages that download at least one object with a status code of 200 for each browser in
our analysis.
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Ground Truth Labels Web pages must be labeled in order for us to train and evaluate classification

methods. We assign labels to each web page (Table 4.1), according to the four labeling schemes as follows:

• VSL: The video-streaming (vs. non-video streaming) label is manually assigned to web pages where

a video has played — these web pages include samples from top video streaming providers such

as Netflix, Youtube, and Hulu. The non-video category corresponds to all other web pages. These

include web applications that are fairly bandwidth-intensive, including radio sites (soundcloud and

pandora) and file transfer sites with large files (dropbox and thepiratebay) — these web pages are

included to make the classification of video pages more challenging and realistic.

• TDL: This set of labels correspond to mobile-optimized or traditional pages and are also manually

assigned. We only include mobile web pages that also have a traditional web page that serves the

same content — e.g., a superbowl article on bleacherreport.com that also appears on its mobile web

site. Only including web pages with two distinct versions eliminates the ambiguity of determining

whether a page has been optimized for mobile or not, since some web pages may have only a single

version that is efficient for all devices [Sanders and Kaur, 2015a].

• WNL: A navigation-based label is manually assigned based on whether the web page was a landing

page, a search-result page (obtained by entering random keywords in a search box), or a clickable

content page (including news articles, video content, and social networking pages).4

• AGL: A content-genre based label is assigned to each web page, using the top-level Alexa genre

for the corresponding web site. Alexa assigns multiple top-level genres to some web pages — we

categorize each web page according to each genre that Alexa specifies. Thus, the total number of web

pages for the the content-genre based labels is greater than 3345. There are also web pages that are

not assigned a label by Alexa — we label these as “unknown”.

Trace Collection Methodology In Chapter 3, we performed a study to understand some of the properties

of modern web page traffic and to determine if it is impacted by client platforms. We found that browser

platform was the only client platform that had a consistent impact on web page traffic when the source

4 There may be several landing pages per web site — e.g., www.yahoo.com and www.finance.yahoo.com. We classify each of these
as landing pages.
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TABLE 4.1: Distribution of Class Labels

Labeling Scheme Class Names # Web Pages
Video Streaming Video page 169 (5.05%)
(2 Classes) Non-Video page 3176 (94.95%)
Targeted Device Traditional page 2481 (74.17%)
(2 Classes) Mobile optimized page 864 (25.83%)
Web page Clickable content page 1505 (44.99%)
Navigation Search result page 1226 (36.65%)
(3 Classes) Landing page 614 (18.36%)
Alexa Genres Computers 821 (24.54%)
(18 Classes) Business 568 (16.98%)

Shopping 470 (14.05%)
News 409 (12.23%)
Arts 391(11.69%)
Games 32 (0.96%)
Adult 103 (3.08%)
Health 32 (3.96%)
Home 140 (4.19%)
Kids and Teens 42 (1.26%)
Recreation 31 (0.93%)
Reference 96 (2.87%)
Regional 401 (11.99%)
Science 45 (1.35%)
Society 84 (2.51%)
Sports 80 (2.39%)
World 68 (2.03%)
Unknown 321 (9.60%)

TABLE 4.2: Browser Usage Statistics [Sta, b]

Chrome Internet Explorer Firefox Safari Opera

42.09% 25.32% 20.58% 9.49% 2.52%
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HTML is the same. Thus, in this chapter, we explicitly consider the impact of multiple browsers when

developing and evaluating web page classification methods. The 5 browsers — Internet Explorer (IE) v

9.0.8112.16502, Firefox v 23.0.1, Google Chrome v 29.01547.66m, Safari v 5.1.7, and Opera v 12.16 —

are run on a Windows 7 desktop.5 We focus on these 5 browsers and the Windows 7 operating system

because they are the most popular for desktop platforms [Sta, b]. TCP/IP traces are automatically collected

for each download as:

1. Start packet capture tool (windump)

2. Start a browser with a web page URL as an argument

3. Close the browser and packet capture tool after 120 seconds

4. Clear the local DNS resolver and browser cache

5. Go to Step 1 using a new URL

Web pages are also updated over time [Ihm and Pai, 2011]. To study which TCP/IP features remain

stable over time for a given web page, we also repeat the above 3345×5 downloads 6 times each, over a

period of 20 weeks (Mar 10 - July 24, 2014). Overall, this results in 100,350 web page downloads.

4.2 Feature Selection

4.2.1 Quantitative Feature Extraction

We process tcpdump traffic logs to extract TCP/IP header-based features — these features are provided

in Appendix 8. Some of these include many bidirectional traffic features — such as the number of PUSH

flags or the size of web objects transmitted in a TCP connection — that are not available from other sources

such as NetFlow logs.6 These features also include multi-flow features which span the multiple TCP connec-

tions characterizing a given page download — these include, the number of TCP connections, the number

of distinct servers contacted (i.e., IP pairs), the TCP connection inter-arrival times, and the total number of

5 Apple does not support Safari on Windows. Thus, the version of Safari used for this study is outdated compared to the version
used on OSX.

6 We use the method by Weigle et al. [2006] to identify application data units in TCP/IP traces — these generally correspond to
objects.
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segments transmitted. We also include statistical derivatives — such as the minimum, maximum, and sev-

eral percentiles — of the occurrence of a given feature. In total, we extract 162 quantitative features derived

from anonymized TCP/IP headers for processing.

The success of classification models relies critically on the selection of informative, uncorrelated, and

robust features [Hall, 1999]. Prior traffic classification studies have focused on the first two properties

by using automated correlation-based feature selection algorithms (e.g., [Lim et al., 2010]) — robustness

of features has not been considered though. Given the diversity and dynamism present in the Internet (and

especially in the World Wide Web), this lack of attention to feature selection is a rather serious issue [Fetterly

et al., 2003, Cho and Garcia-Molina, 1999, Douglis et al., 1997]. Specific to our goal, it is important to

consider the impact of at least two factors:

• Time: Modern web pages may change several times a day [Fetterly et al., 2003]. It is important

to study how this impacts the stability over time of the TCP/IP features generated when the page is

downloaded — indeed, classifiers that are trained on features that are stable over time are more likely

to perform well on unseen data and do not need to be retrained often.

• Browsers: Browser platforms differ in their configurations and may generate different TCP/IP features

when downloading the same web page (as shown by our analysis in Chapter 3). It is important to

study which features are consistent (similar) across different browsers — else, classifiers trained on

one browser will not perform well on unseen data that may have been generated by a different browser.

We do not consider the impact of client location, device type, or operating system in this chapter. Our results

in Chapter 3 show that these factors do not impact the majority of non-temporal web page traffic features

when the source HTML is the same.7 Our analysis in Chapter 3 also found that temporal traffic features can

differ in a statistically significant manner across client platforms (most notably vantage points). Thus, we

do not consider temporal traffic features for web page classification.

In order to incorporate the above aspects, browser and time, we use a 3-step process for feature selection:

(i) identify a set of the most informative features for web page classification; (ii) group the most informative

features into subsets of highly correlated features; and (iii) select the most stable (over time) and consistent

(across browsers) features from each of the above subsets.
7 As a summary, vantage point and device did not impact non-temporal TCP/IP features when referencing the same source HTML.
Operating system only impacted the number of FIN and RESET flags set features — these features, along with there statistical
derivatives, are not considered in this analysis.
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We elaborate on these steps below. In what follows, for each feature i, let Mi
n,b,t represent an N×B×T

matrix populated with the measurements of feature i across the N (= 3345) web pages, B (= 5) browsers,

and T (= 6) repeated web page downloads over time.

Identifying and Grouping Informative Features For selecting informative features, we first minimize

noise due to browser selection or time of measurement by computing the average of the B×T measurements

of a feature for a given web page. We then use the RELIEF method [Hall, 1999] to rank the 162 averaged

features according to their ability to classify the 3345 web pages. We select the top 40 (∼ top 25%) most

informative features for each of the four labeling schemes — of the total 160 features, we find that only 57

are unique (many features were informative for multiple labeling schemes).

We then group the 57 features into correlated subsets. For this, we use the pearson correlation, ρ , to

identify 7 groups of highly correlated features (listed in Appendix 9). The features within each group have

ρ ≥ 0.75, whereas the correlation between features from different groups is less than 0.35.

4.2.2 Selection of Stable and Consistent Features

Next, we estimate how stable these 57 features are over time. Recent statistics show that some browsers

are more widely used than others “in the wild” [Sta, b]. In order to incorporate this into our analysis,

and hence make our study more realistic, we explicitly consider the scenario where the usage fraction

for browsers is not evenly distributed. Given this scenario, for each feature i we define an N×T matrix:

Si
n,t = ∑b w(b)Mi

n,b,t , where w(b) ∈ [0,1] represents the usage fraction for browser b (Table 4.2).

We define the stability over time for each feature i and web page n as:

DSi
n = 100 ·

∑
T
t=1

∣∣Si
n,t −µ i

n

∣∣
T µ i

n
(4.1)

where, µ i
n =

∑t Si
n,t

T . For each feature i, we then extract the median, 10- and 90-percentile values of the

stability DSi
n observed across the 3345 web pages — these values are plotted in Figure 4.1(a). The features

are first grouped according to the 7 correlated subsets, and then sorted according to the median value of DSi
n.

Appendix 9 lists these features in the same order.

We use a similar formulation to estimate the consistency across browsers for each feature i and web page
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Figure 4.1: Stability(a) and Consistency(b) of features in Groups 1-7.

n. This is computed as:

DCi
n = 100 ·

∑
B
b=1 w(b)

∣∣∣Ci
n,b−ν i

n

∣∣∣
ν i

n
(4.2)

where, Ci
n,b =

∑t Mi
n,b,t

T is an N×B matrix, each element of which represents the average measurement of

feature i when browser b downloads web page n repeatedly; and ν i
n = ∑b w(b)Ci

n,b.

Figure 4.1(b) plots the median, 10- and 90-percentile values of DCi
n observed across the 3345 web pages

— the x-axis uses the same feature index as Figure 4.1.

We use Figure 4.1(a) and Figure 4.1(b) to select the most time agnostic and browser agnostic features

from each of the 7 groups of correlated features. The groups of correlated features are provided in Appendix
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9. By comparing these two plots we find that the median, 10- and 90-percentiles for nearly all features

in the feature consistency plot are larger than the corresponding values in the feature stability plot. This

clearly implies that the TCP/IP features generated by the download of a given web page vary more across

client browser platforms than over time — the analysis in Chapter 3 provides details for these observed

differences. Based on this, we select the most consistent feature from each group (7 features total) to be the

features that we include in our classification model — these are bolded in Appendix 9 and are discussed in

the next section.

Although most of our selected features vary significantly across browsers, some features vary much

more across browsers than others. For example, feature 6, the number of non-secure TCP connections is

relatively stable over time like other features within its group (Group 1). However, this feature changes

much more dramatically across browsers.

4.2.3 Which Features are Informative as Well as Robust?

Number of servers contacted The total number of distinct servers contacted for downloading a web

page is discriminatory for several classes across the 4 labeling schemes. Cumulative distribution plots for

the number of servers feature are shown in Figure 4.2(a), Figure 4.2(b), Figure 4.2(c), and Figure 4.2(d)

for the TDL, WNL, AGL, and VSL labels, respectively. We find that mobile optimized web pages contact

significantly fewer servers than traditional web pages — this result is presumably because they are designed

for devices with constrained resources. We also find that video pages contact more servers than non-video

pages — these extra servers correspond to increased number of ads, images, and comment boxes. This is

especially true for Youtube pages, which establish around 400 TCP connections (whereas Netflix uses 60

connections). We also find that search results generally display less content from multiple servers than do

clickable content pages. In the genre-based category, we find that News pages contact significantly more

servers than other categories — this was also previously observed in a study by Butkiewicz et al. [2011],

and is presumably because News sites tend to summarize multiple types of topics (sports, weather, finance,

etc) on the same page.

Total number of bytes transferred The number of bytes is a feature that approximates the amount of data

transferred to render a web page. Cumulative distribution plots for the maximum number of bytes sent by the

client per TCP connection feature are shown in Figure 4.3(a), Figure 4.3(b), Figure 4.3(c), and Figure 4.3(d)
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Figure 4.2: Discriminatory Power of Non Temporal Features (Number of servers contacted)

for the TDL, WNL, AGL, and VSL labels, respectively. When considering the TDL labeling scheme, the

cumulative distribution for the mobile optimized web pages is consistently to the left of the cumulative

distribution for the traditional web pages — this result is expected since, as shown in Chapter 3, mobile

web pages usually reference less data than traditional web pages [Sanders and Kaur, 2015a, Johnson and

Seeling, 2014, Huang et al., 2010]. We observe similar results when comparing the cumulative distributions

for the non-video and video streaming web pages for the VSL labeling scheme. For the WNL labeling

scheme, we find that the cumulative distributions for the landing and search result web pages overlap, while

the cumulative distribution for clickable content pages is consistently to the right of these — thus, it is likely

that clickable content pages are the most distinguishable/unique among the navigation-based labels. We

observe similar results for the cumulative distributions that correspond to the classes for the AGL labeling
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scheme — specifically, the cumulative distributions for the Business and Computer pages overlap while the

cumulative distributions for the Shopping and News pages are consistently to the right in this case.
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Figure 4.3: Discriminatory Power of Non Temporal Features (Maximum number of bytes transferred
in a connection)

Number of PUSH flags per TCP connection Figure 4.4(a), Figure 4.4(b), Figure 4.4(c), and Figure 4.4(d)

shows the median number of PUSH segments sent per TCP connection by the client for the TDL, WNL,

AGL, and VSL labels, respectively. We find that the different types of web pages for the TDL labeling

scheme have cumulative distributions that significantly overlap — given this observation, it is likely that

this feature will not be critical for the classification of TDL labeled web pages. We also find that landing

pages use PUSH flags slightly more often than non-landing or search pages. This is presumably because

landing pages are likely to collect many more objects summarizing the web site; these objects are co-located
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on a small number of servers — this may be done to help reduce the load time for the “entry page” of the

web site by using persistent connections and by contacting fewer servers. We observe similar trends for

the AGL labels as we did for the WNL labels — that is, PUSH segments are consistently sent more often

for some types of web pages than others. For instance, Figure 4.4(c) shows that the cumulative distribution

for the number of PUSH segments do not completely overlap, where the News pages are the leftmost, the

Shopping and Computer pages are in the middle, and the Business pages are the rightmost. For the VSL

labeling scheme, we find that video streaming pages rarely have a median number of PUSH segments that

is above 3 — from this, we can infer that any web page that has a median number of PUSH segments ¿ 3 is

likely not a video page.
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Figure 4.4: Discriminatory Power of Non Temporal Features (Median number of PUSH segments
sent)
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The maximum number of push segments sent in a TCP connection for a given web page is also an infor-

mative feature for all labeling schemes — cumulative distributions for this feature are shown in Figure 4.5(a),

Figure 4.5(b), Figure 4.5(c), and Figure 4.5(d) for the TDL, VSL, AGL, and WNL labels, respectively. Pre-

vious studies show that the PUSH flag corresponds to an HTTP object [Maciá-Fernández et al., 2010] — our

data also yields a high correlation (ρ = .98) between the two. Thus, it is likely that the multiple PUSH seg-

ments sent in a TCP connection are associated with TCP connection reuse. We find that this is more popular

for traditional (non-mobile) web pages and video pages as compared to their counterparts (Figure 4.5(a) and

Figure 4.5(b)). We also find that shopping web pages transmit slightly more PUSH segments per connection

than the other genre-based labels shown (Figure 4.5(c)), while clickable content pages transmit more PUSH

segments per connection than landing and search result pages (Figure 4.5(d)).
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Figure 4.5: Discriminatory Power of Non Temporal Features (Maximum number of PUSH segments
sent)
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Epoch size The number of bytes transferred by the server for each epoch (or web object) is a valuable

feature for discerning video and mobile traffic and is not useful for any other labeling scheme — that is,

such features were not selected when considering the genre-based and navigation-based labeling schemes.

Figure 4.6 shows cumulative distribution plots of the size of the largest epoch downloaded per web page (i.e.,

largest object) for the video streaming and targeted device labeling schemes. In the case for video traffic,

Figure 4.6(a) shows that it is common for video web pages to transfer epochs that are larger than 200 KB,

which is rare for other types of traffic — please note that the x-axis is scaled by a factor of 107. Figure 4.6(b)

shows a similar difference between mobile and non-mobile traffic — please note that the x-axis is scaled

by a factor of 106. These results are expected because (i) video traffic accounts for large amount of traffic

and that (ii) mobile web page are designed to be more efficient that traditional web pages — that is, they

transmit fewer bytes.
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Figure 4.6: Discriminatory Power of Non Temporal Features (Number of objects).

Are port numbers and first few segments helpful? Prior work on traffic classification (identifying the

application layer protocol) has found port numbers and the sizes of the first few segments to be the most

informative features [Lim et al., 2010]. Our analysis of web page classification, which also incorporates

features that span multiple flows finds a completely different set of informative features — while port num-

bers are not even an applicable feature for web-only traffic, we find that even the first few packet sizes does

not help distinguish between different types of web downloads. We believe that this is because the first

few segments may capture handshaking mechanisms that are application protocol/application specific, but
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do not capture the differences between different types of web pages which are transmitted over the same

application.

4.3 Web Page Classification Performance Evaluation

4.3.1 Background on Machine Learning Approaches Tested

We compare diverse types of machine learning methods to classify web pages including parametric and

non-parametric methods [Bishop, 2007]. We use the classification trees (CT) and K-Nearest Neighbors

(KNN) as our non-parametric methods, and the Naive Bayes (NB) and linear discriminant analysis (LDA)

as our parametric methods.

KNN Procedure We compute the K nearest neighbors of an unseen web page with features, Y , with

labeled web pages that comprise the training dataset. The unseen web page is classified with the same

label as the most frequent label that is present among its K nearest neighbors — here, K is a parameter

for the KNN classification method. We break ties by selecting the label that includes the web pages that

have the shortest cumulative distance between the unseen web page in question. KNN also has a parameter

for the type of distance metric used for the computation. We evaluate performance using the euclidean,

city block, cosine, and correlation distance functions — for each of these distance functions, we also tune

the parameter K for all integers from 1 to 10. We use the MATLAB knnclassify procedure for our KNN

classification [MAT].

Classification Trees Procedure Classification trees are non-parametric models that construct decision

trees by recursively splitting a node, according to a split criterion function. We use the classification tree

model because it is known to be robust, requires very little data preparation, and generally performs well on

large datasets. We use the MATLAB classificationtree procedure to train the classification tree [MAT]. We

do not specify a prior distribution (i.e., each class is equally probable) because we do not know how frequent

each class of web page occurs “in the wild”. We do, however, evaluate the performance of the classification

trees procedure using different split criteria — these serve as the single parameter for the classification trees

procedure that we vary. The three split criteria that we consider are the Gini’s diversity index, twoing rule,

and deviance (or cross entropy).
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Naive Bayes Procedures We use the NaiveBayes.Fit procedure in MATLAB to fit our Naive Bayes classi-

fier [MAT]. This procedure approximates probability distributions for each class in the input dataset in order

to develop a robust probabilistic model that can be used for classification. One of the parameters that we

vary for the Naive Bayes classifier is the type of distribution used to model the features in the dataset. We

evaluate the performance of our Naive Bayes classifier by fitting a number of different distributions to the

feature set. These include the normal distribution, the multinomial distribution, and the kernel distribution

with a normal, triangle, box, and epanechnikov distributed kernel smoother. Similar to previous methods

we assume a constant prior distribution.

Linear Discriminant Analysis We use the MATLAB classify procedure to train our LDA classifier [MAT].

Contrary to the Naive Bayes assumption, LDA does not assume that the features are conditionally indepen-

dent. We also reduce our feature space using principal component analysis (PCA) and use these features

as input to the classify procedure. If we do not reduce the feature space using PCA, the procedure will fail

because LDA has an assumption, that the data matrix is positive definite, that is violated by our dataset. We

consider the influence of one parameter, the discriminant function, which characterizes the LDA classifier

during training and evaluation. We train and evaluate the LDA classifier using with the linear, quadratic, and

mahalanobis discriminant functions.

4.3.2 Evaluation Methodology

We evaluate the classification performance using the different parameters for each classification method

that we discussed before. To ensure that the dataset used in this section is consistent with prior knowledge

of browser usage in real-world traces, we randomly sample our 100,350 captured web page downloads by

browser (using weights from Table 4.2). This data is then used to evaluate web page classification using the

4 independent labeling schemes: video streaming-based (VSL), web page navigation-based (WNL), target

device-based (TDL), and Alexa genre-based (AGL). We conduct 10 independent 10-fold cross validation

trials (90% of the dataset is used for training and 10% is used for testing). Please note that during this

process, we ensure that a sample of the same web page is not included in both the training and test data set.

Also note that some web pages may have multiple genre-based labels (e.g., Cnn.com web page is classified

as both Arts and News). In such scenarios, we randomly select a single label for each cross validation trial.

We next consider which metrics are best suited for evaluating the different classification methods. The
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most basic metric that has been used for classification problems is perhaps the accuracy metric [Erman et al.,

2006, Dyer et al., 2012]. This metric is defined as:

Accuracy =
∑

L
i=1 t pi

N
(4.3)

where L is the number of classes considered, N is the number of samples, and t pi is the number of true

positives for class i [Erman et al., 2006]. While the accuracy metric is applicable to classification problems,

and is also an easy metric to interpret, the accuracy metric itself is not ideal for performance evaluation

because it does not incorporate the impact that other factors, such as the number of false negatives and

false positives, have on the performance of different methods. Other prominent metrics that consider these

include the precision, recall, and F-score [Chase Lipton et al., 2014, Erman et al., 2006, Schatzmann et al.,

2010]. These metrics, which are functions of the number of true positives (t p), false positives ( f p), and

false negatives ( f n), are defined below:

Precision =
t p

t p+ f p
(4.4)

Recall =
t p

t p+ f n
(4.5)

Fscore =
Precision×Recall
Precision+Recall

(4.6)

Most prior work that evaluates the performance of classification methods uses the F-score as the single

metric for determining the overall best performing method. This is because the F-score is the harmonic

mean of the precision and recall metrics which, when considered together, encapsulate information about

the number of true positives, false positives, and false positives into a single metric. One weakness of using

the F-score is that it is difficult to interpret since it is a function of multiple metrics. It is because of this

difficulty that most prior work that report the F-score also report the precision and recall metrics to provide

intuition on how the F-score is influenced by each [Schatzmann et al., 2010, Ihm and Pai, 2011]. Another

weakness of the F-score is that it is only defined for binary classification problems — that is, the F-score

(and also the precision and recall metrics) only exists for problems where the number of classes considered

is two. This is a problem for our evaluation because we consider two labeling schemes that include more
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than two classes (the WNL and AGL labels). Instead, we opt to use modified versions of the F-score,

called the micro and macro F-scores, that are also applicable to classification problems with two or more

classes [Chase Lipton et al., 2014]. These metrics are defined below:

• Micro F-score: The Micro F-score, MiF , is a metric that is the function of the micro precision, MiP,

and micro recall, MiR, of each of the L classes in a classification problem. For each class i, we define

t pi as the number of true positives, f pi as the number of false positives, and f ni as the number of false

negatives. MiP, MiR, and MiF are defined below:

MiP =
∑

L
i=1 t pi

∑
L
i=1 t pi + f pi

(4.7)

MiR =
∑

L
i=1 t pi

∑
L
i=1 t pi + f ni

(4.8)

MiF = 2 ·MiR×MiP
MiP+MiR

(4.9)

Due to the way MiR and MiP are computed, MiF is biased towards classes that make up a large

fraction of the dataset.

• Macro F-score: The Macro F-score, MaF , is a metric that is the function of the macro precision, MaP,

and macro recall, MaR. The macro precision and recall is a function of the individual precisions and

recalls for each of the L classes in the classification problem.

MaP =
∑

L
i=1

t pi
t pi+ f pi

L
(4.10)

MaR =
∑

L
i=1

t pi
t pi+ f ni

L
(4.11)

MaF = 2 ·MaR×MaP
MaP+MaR

(4.12)
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MaF gives an average performance across each class in the classification problem and is not biased

for datasets that may have labels that make up a large fraction of the data set.

Please note that while we determine the best classification method using the macro and micro F-score

metrics, we also report the precision, recall, and accuracy metrics across each labeling scheme for the best

performing classification method since they are easier to interpret than F-scores. The mean performance for

each metric above, M̄, for the 10 cross validation trials is computed as: M̄ = ∑
10
i=1 Mi/10.

For comparison, we also include results for a baseline heuristic called random guessing (RG), which

randomly assigns a label to a web page.8 We also add another, more challenging baseline heuristic called

apriori guessing (AG), which relies on prior knowledge of the frequency of the most common class. Apriori

guessing always assigns a label to the class that appears most often in the dataset — that is, the expected

accuracy of apriori guessing can be expressed as maxi∈[1,L]{Fi}, where Fi is the fraction of times class i

appears in a dataset (obtained from Table 4.1). Outperforming the apriori guessing baseline heuristic, using

any metric, means that the classification performance is not biased towards dominant classes in the dataset.

Outperforming these baseline heuristics also shows that web page classification using anonymized TCP/IP

headers is feasible.

4.3.3 Classification Results

In this section, we present the results of our performance evaluation in three steps. First, we deter-

mine which classification method performs the best by using the micro F-score and macro F-score metrics.

Second, we compare the performance of the best performing classification method across different label-

ing schemes to determine how labeling scheme choice impacts classification performance. And lastly, we

use the precision and recall metrics to further analyze the performance of the best performing classification

method.

For the stable tcpdump derived features we find that:

• Table 4.3 summarizes the mean classification performance for the micro F-score for each labeling

scheme and classification method tested. The micro F-scores of the non-parametric KNN and Classi-

fication Trees models are comparable (usually differ by less than .08), where KNN with the City Block

8 Thus, the expected accuracy of random guessing is 1/L, where L is the number of classes for a given labeling scheme.

157



TABLE 4.3: Web Page Classification Performance: Micro F-score

Classification Model VSL TDL AGL WNL
Stable Tcpdump features
K Nearest Neighbors (KNN)
KNN - Euclidean (K=1) .9969 .8931 .7195 .8137
KNN - City Block/L1 distance (K=1) .9976 .9020 .7371 .8298
KNN - Cosine (K=1) .9938 .8921 .7188 .8131
KNN - Correlation (K=1) .9962 .8922 .7176 .8100
Classification Trees (CT)
CT - Gini Diversity Index .9957 .8526 .6009 .7441
CT - Twoing Rule .9962 .8529 .6071 .7479
CT - Deviance .9978 .8698 .5951 .7671
Naive Bayes (NB)
NB - Normal .9182 .3626 .2212 .3216
NB - Kernel: Normal .9804 .4418 .2018 .3808
NB - Kernel: Triangle .9727 .4678 .2106 .3835
NB - Kernel: Box .9688 .4983 .2273 .3930
NB - Kernel: Epanechnikov .9728 .4735 .2077 .3844
NB - Multinomial/Histogram .9884 .7340 .3198 .4264
Linear Discriminant Analysis (LDA)
LDA - Linear .9878 .5457 .4362 .4297
LDA - Quadratic .9760 .3907 .3845 .3679
LDA - Mahalanobis .9436 .6645 .1047 .4340
Random Guessing (RG) .5000 .5061 .0613 .3414
Apriori Guessing (AG) .9495 .7417 .2454 .4499
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TABLE 4.4: Web Page Classification Performance: Macro F-score

Classification Model VSL TDL AGL WNL
Stable Tcpdump features
K Nearest Neighbors (KNN)
KNN - Euclidean (K=1) .9908 .8637 .6624 .8210
KNN - City Block/L1 distance (K=1) .9928 .8679 .6785 .8367
KNN - Cosine (K=1) .9893 .8625 .6614 .8131
KNN - Correlation (K=1) .9887 .8629 .6624 .8173
Classification Trees (CT)
CT - Gini Diversity Index .9877 .8100 .5040 .7468
CT - Twoing Rule .9887 .8105 .4855 .7515
CT - Deviance .9934 .8325 .4989 .7722
Naive Bayes (NB)
NB - Normal .8465 .5823 .2788 .4719
NB - Kernel: Normal .9477 .6278 .2789 .5325
NB - Kernel: Triangle .9280 .6365 .2859 .5311
NB - Kernel: Box .9182 .6466 .2793 .5335
NB - Kernel: Epanechnikov .9267 .6396 .2817 .4607
NB - Multinomial/Histogram .9514 .8128 .3040 .5827
Linear Discriminant Analysis (LDA)
LDA - Linear .9631 .6241 .0815 .4498
LDA - Quadratic .9366 .5999 .1021 .4715
LDA - Mahalanobis .8799 .6192 .0588 .3685
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TABLE 4.5: Web Page Classification Performance: Accuracy

Classification Model VSL TDL AGL WNL
Stable Tcpdump features
K Nearest Neighbors (KNN)
KNN - Euclidean (K=1) .9969 .8927 .7198 .8140
KNN - City Block/L1 distance (K=1) .9976 .8959 .7374 .8300
KNN - Cosine (K=1) .9964 .8625 .7190 .8132
KNN - Correlation (K=1) .9962 .8919 .7177 .8102
Classification Trees (CT)
CT - Gini Diversity Index .9959 .8557 .6010 .7398
CT - Twoing Rule .9960 .8557 .6050 .7477
CT - Deviance .9975 .8662 .5993 .7703
Naive Bayes (NB)
NB - Normal .9183 .3628 .2005 .3213
NB - Kernel: Normal .9779 .4403 .2245 .3805
NB - Kernel: Triangle .9624 .4614 .2072 .3744
NB - Kernel: Box .9557 .4872 .2245 .3855
NB - Kernel: Epanechnikov .9615 .4666 .2050 .3784
NB - Multinomial/Histogram .9788 .4581 .2340 .4014
Linear Discriminant Analysis (LDA)
LDA - Linear .9877 .5460 .0432 .4296
LDA - Quadratic .9760 .3902 .0384 .3684
LDA - Mahalanobis .9436 .6640 .1044 .4344
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distance metric and with K = 1 performs the best for all labeling schemes. We only show the best per-

forming K value for the KNN methods provided in Table 4.3 — please refer to Appendix 10 for results

with other values of K. The different distance functions for the non-parametric methods do not impact

the micro F-scores by more than .02. These non-parametric methods perform much better than the

parametric Naive Bayes and LDA models in all cases — in fact, the Naive Bayes and LDA classifiers

sometimes perform worse than apriori guessing (though all methods outperform random guessing in

most cases). This is likely because the non-parametric methods do not rely on assumptions about the

distribution of the features and are able to handle arbitrary feature distributions — that is, parametric

methods assume specific theoretical distributions of features (e.g., Normal distribution) which is not

typically the case for network traffic [Lim et al., 2010, Barford and Crovella, 1998]. This result is also

consistent with the observations made in [Lim et al., 2010]. While data transformation and other pre-

processing techniques may help improve the performance of parametric machine learning methods,

say by transforming features such that they follow a theoretical distribution, we do not perform such

an analysis in this work. Instead, we focus on examining the performance of the different machine

learning methods by treating them as a black-box and do not perform any extra preprocessing to make

the features more suitable for a particular method.9 As noted before, using this approach, KNN is the

best performing method while Classification Trees performs second. Similar results were obtained

when using the macro F-score and accuracy metrics— these are shown in Table 4.4 and Table 4.5,

respectively. Thus, for the rest of the analysis in this section we use KNN as the classification method

for evaluation.

• The performance for the best performing method, KNN with the City Block distance, differs greatly

across the different labeling schemes. Table 4.3 shows that the micro F-score for the VSL labeling

scheme is the best of all of the labeling schemes at .9976 — the TDL labeling scheme is the second-

best at .9020, the WNL labeling scheme is third at .8298, and the genre-based labeling scheme is last

with a micro F-score of .7371. Table 4.4 and Table 4.5 show that we observe very similar results when

using the macro F-score and accuracy metrics — we do not discuss these metrics further since they

do not contribute additional insight on the performance of KNN.

9 We do perform a simple standardization procedure to normalize our features (that is, each feature in a feature set is subtracted by
its mean and divided by its standard deviation).
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• With respect to the distance functions used by KNN, we find that the City block distance function

performs the best, while the Euclidean distance function performs the second-best — though, the

distance functions for KNN do not significantly impact the performance of KNN. We also find that,

for the VSL labeling scheme, all classification methods can achieve a micro F-score above .980 and

are fairly similar (within .018 of KNN). However, we observe much more considerable differences

in performance between the classification methods for the other labeling schemes. For instance, the

micro F-score for the best classification method for the AGL labeling scheme is .7374, while the

micro F-score for the NB-Normal method is .2005. As described before, we believe that much of the

performance differences between these methods is due to the distributional assumptions of parametric

methods. It is also important to note that KNN performs better than classification trees despite the fact

that both methods are non-parametric and significantly outperform the parametric approaches — more

specifically, the micro F-scores for KNN are over 5% higher than the micro F-scores for classification

trees for the WNL and AGL labeling schemes. It is likely that this is due to known issues with the

optimization of classification tree models which may produce locally-optimal models instead of the,

much more preferred, globally-optimal models. This issue usually worsens as classification/decision

trees become larger and/or the number of classes considered increases [Rokach and Maimon, 2014].

KNN does not have this issue [Mikolajczyk and Schmid, 2005].

• We next discuss the metrics of precision and recall, shown in Table 4.6, for the KNN method with

the City Block distance function — we do this to provide more details on web page classification

performance than is present when analyzing micro and macro F-scores alone. For the video streaming

labeling scheme, the precision and recall are higher than .99 for all labels except for the video label

whose recall is .9834. This result shows that while the video streaming labeling scheme can be used

to classify pages at a high rate, there is a slightly higher false negative rate for the video label itself

— that is, the recall is smaller for the video label because the number of false negatives for this label

is higher.10 We believe this occurs because the classification method may, at times, confuse a video

streaming page with other types of bandwidth-intensive web pages that are included in our dataset

(such as audio streaming web pages). For the targeted device labeling scheme, we find (i) that the

precision and recall are above .79 and (ii) that precision is always higher than the recall. We also find

10 Please refer to the definition of precision and recall.
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that the precision for the traditional web page label is over .10 higher than the precision of the mobile

optimized web page labels. This result shows that the traditional web page label has a much lower

false positive rate than the mobile optimized web page label — that is, mobile optimized web pages

are more likely to be misclassified as traditional web pages than the reverse. This is likely because

there are many traditional web pages that are efficient across all devices despite not being labeled as

a mobile optimized web page.11 This result also implies that there are more efficient traditional web

pages than inefficient mobile web pages. Observations for the navigation-based labeling scheme are

fairly similar to the video streaming and targeted device-based labeling schemes where the precision

and recall tend to be higher than .80. In this case, the landing page label has a precision and recall that

is higher than the search result and clickable content labels. This result shows that the landing page

label can be classified slightly more effectively than the others. Overall, the precision and recall are

fairly high (i.e., consistently above .79) and relatively consistent across the video streaming, targeted

device, and navigation-based labeling schemes. This result shows that the KNN classification method

is able to classify web pages according to these labeling schemes without being excessively biased

towards these classes.

Within the Alexa genre labeling scheme, there are labels, particularly the games and adult labels, that

have precision and recall values that are above .80 while there are other labels, particularly the sports

and health labels, that have precision and recall values that are approximately .55. Most of the other

labels within the Alexa genre labeling scheme (e.g., business, computers, science, etc) have precision

and recall values that are between .68-.80. These results imply that while each label can be classified

at a rate higher than random guessing (i.e., precision and recall above .50), some web page categories

can be classified much more effectively than others (i.e., precision and recall above .75).

4.3.4 Sensitivity Analysis

Importance of Feature Stability We next study whether the features selected in Section 4.2.1 actually

outperform features that are less robust. Specifically, we compare classification accuracy when the most

unstable (over time) features are selected from each of the 10 feature groups in Section 4.2.1, instead of the

most stable ones — the most unstable features correspond to the last feature listed in each group in Appendix

11 Please refer to Section 4.1 for our definition of a mobile optimized page.
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TABLE 4.6: Precision and Recall (KNN - City Block Distance, Stable Tcpdump Features)

Labeling Scheme Class Names Precision Recall
Video Streaming Video .9913 .9834

Non-video .9984 .9992
Targeted Device Traditional .9342 .7933

Mobile optimized .8200 .7993
Web page Clickable content .8440 .8084
Navigation Search result .7992 .8211

Landing .8579 .9054
Alexa Genres Computers .7710 .7750

Business .7690 .7939
Shopping .5592 .6788
News .7214 .7283
Games .9089 .8335
Adult .9051 .8373
Arts .6914 .7088
Health .5355 .5541
Home .6891 .7235
Kids and Teens .5467 .5054
Recreation .6855 .5459
Reference .5785 .6395
Regional .6714 .6295
Science .7526 .7409
Society .5509 .6799
Sports .5712 .5121
World .6864 .6370
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TABLE 4.7: KNN - City Block Distance Classification Performance for Different Features and Train-
ing Data Sets: Micro F-score

Features Used VSL TDL AGL WNL
Stable Tcpdump features .9977 .9100 .7380 .8355
Unstable Tcpdump features .9969 .8410 .6140 .7680
Stable Netflow features .9945 .8816 .6782 .7805
Stable Tcpdump: different browsers .9837 .8468 .5690 .7280
Stable Tcpdump: different time .9940 .8920 .7056 .8051

9. Recall that all features in each group are fairly informative (for classification) and are highly correlated

with each other. These results are summarized in Table 4.7. Table 4.7 shows that the micro F-score obtained

when using unstable features can be up to .10 lower than when using stable features. Thus, we conclude

that it is important to include not just informative features for classification (as most prior work on traffic

classification does), but to also consider the stability of features.

Classification with NetFlow-based Features Our results above are obtained with classification performed

based on fine-grained features derived from per-packet TCP/IP headers. Sometimes, access to such packet

traces may be infeasible or costly. We next ask: what accuracy can be achieved if only coarse-grained fea-

tures that are obtainable from Netflow logs are used for classification? For this, we consider those (stable)

features from each group that can be derived from Netflow logs. For instance, instead of the maximum

number of PUSH segments sent by the client (Group 2), we include the maximum number of bytes sent by

the client per TCP connection. None of the features in Group 6 and 7 qualify, though.

Table 4.7 shows that while video-streams can still be identified with high accuracy, netflow-derived

features yield lower classification accuracy by up to .06 for the other classes. It is important to note that the

performance with even coarse-grained netflow features is better than with unstable tcpdump features — this

further underscores the importance of considering stability in selecting fine-grained features.

Sensitivity to Time and Browser Our dataset includes 6 repeated downloads of each web page, using 5

different browsers for each. While we have explicitly identified features that are the most robust across time

and browsers, it is important to understand the impact of training on one portion of a dataset and testing

on another. We first consider the impact of time on classification performance, controlling for browser —

this is done by training our classifier using data obtained at an instance in time, say the first measurement
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taken for each web page which includes measurements across all browsers, and testing on data obtained at

a later time sample, say the first repeated measurement.12 We repeat this process by training on the data

obtained using each repeated measurement and testing on all others (occurs 6 times total, once for each

repeated measurement) — the results for each train and test procedure were averaged. Table 4.7 shows that

this hardly impacts classification performance at all on average. This result is promising, because it implies

that classifiers do not have to be trained on data every day. In fact, our dataset includes measurements spaced

out over a period of nearly 20 weeks.

We next consider the impact of browser on classification performance, controlling for time — this is

done by training our classifier using data obtained using a single browser, say Firefox, and testing on data

obtained using all other browsers. We repeat this process by training on the data obtained using each browser

and testing on all other browsers (occurs 5 times total, once for each browser) — the results for each train and

test procedure were averaged. Table 4.7 shows that while video streams can still be identified with the same

rate, the micro F-scores for the mobile-targeted and navigation-labels reduces by about .06-.10. The most

significant impact, however, is on the genre-based labels, which have a micro F-score of .58 as compared

to .73. These results imply that traffic classification performance is much more browser-dependent than

time-dependent — our analysis of repeatability and consistency of traffic features in Section 4.2.1 supports

this observation. We conclude that it is important to train models on data that is representative of browser

mixes found in real-world traces.

Miscellaneous Comments on Web Page Classification Results Traffic classification studies from recent

literature boast of classification accuracies higher than even 94% [Kim et al., 2008, Schatzmann et al., 2010].

In comparing our results from this section to those, it is important to keep in perspective several fundamental

differences:

• Our classification framework is subject to the web page design decisions of developers. Standards

do not exist that ensure that web pages of a particular category yield similar traffic. We find that

many web sites that host similar content tend to follow similar web page design trends. For example,

mobile web sites tend to design their pages to be more resource conscious than traditional web sites.13

Modern web sites also use web page templates and content management systems. Thus, many of their

12 Recall, our data includes 6 repeated measurements.

13 Also, modern search engines include similar search options such as web search, image search, and news search.

166



corresponding web pages follow a predefined structure that can be observed in traffic. We stress the

need of strategically sampling web sites that are likely to be included in a real data set — we focus on

popular web sites in this work. It is also necessary to keep the training data set up to date, since web

pages evolve over time.

• The Alexa genre classification may be particularly noisy. Web page designers and third party analytics

services have the freedom to arbitrarily assign labels to web pages. Even when web pages serve a

particular purpose, its label may be unclear. For example, what type of web site is the gaming review

web site www.ign.com – a news web site, an entertainment web site, or a game web site? Should

social networking sites be considered news sites? These factors dramatically increase the variance

and noise in each of the class labels.

• There is also legitimate room for improvement in performance by incorporating prior information

(about how often a particular class appears “in the wild”) into the classification models. We elect

to not use prior information because our dataset is synthetic — any prior information would give an

inappropriate and non-representative increase in performance. A real-world dataset that was collected

“in the wild”, would be able to benefit from such information.

• Our feature selection methodology identified a few temporal traffic features that were particularly

informative for the video labeling scheme. However, our analysis in Chapter 3 shows that temporal

traffic features is impacted by time and is significantly impacted by vantage point. Thus, we recom-

mend training web page classification methods using data collected from the vantage points in which

they are being used.

4.4 Applicability of Web Page Classification

In the previous section, we found that the performance of the classification methods differed across the

different labeling schemes. Specifically, we observe micro F-scores of over .90 for the video streaming and

targeted device-based labeling schemes and somewhat lower performance for the others. Given these results,

it is natural to ask — is the classification performance that we observe for the different labeling schemes good

enough? The answer to this question depends on the intended application of web page classification. Many

applications rely on measuring statistical properties of metrics that are observable in traffic — common
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metrics include the fraction of traffic contributed by different types of applications [Butkiewicz et al., 2011,

Ihm and Pai, 2011], distributions of file sizes [Smith et al., 2001, Callahan et al., 2010, Schneider et al.,

2008], and usage profiles [Liu et al., 2010, Maciá-Fernández et al., 2010]. In this section, we conduct three

case studies to determine whether web page classification can be realistically applied to different application

domains. An overview of the application domains in which these three case studies will be useful is provided

below:

• Network Usage Characterization: In many scenarios it is imperative to understand the traffic charac-

teristics of the applications that are observed in a network [Hernández-Campos et al., 2003b, Smith

et al., 2001]. For instance, network administrators may need to understand the extent to which emerg-

ing applications, such as mobile and video streaming applications, are used in their network [Mob, c].

Understanding the properties and statistical distributions of the traffic features for different types of

web applications is necessary for domains such as web page performance analysis [Liu et al., 2010,

Butkiewicz et al., 2011] and click bot detection [Wang et al., 2013, Gu et al., 2008]. In one case study,

we evaluate whether web page classification can be used to estimate the statistical distributions of

different types of web page traffic.

• Simulation Modeling and Network Forecasting: The properties of the network traffic that is observed

today are often used to predict the network traffic that will be observed in the future [Moore and

Zuev, 2005, Karagiannis et al., 2004, McGregor et al., 2004]. These predictions are commonly used

to determine when capacity issues in a network will occur — the idea being that these issues will be

addressed preemptively. Network forecasting models require (i) simulation models and (ii) data on the

statistical properties of previously observed traffic. We perform a case study that investigates whether

network forecasts produced when using ground truth data is statistically equivalent to the forecasts

produced when using data derived from our web page classification procedure.

• Behavioral Ad Targeting: Accounting for approximately 170 billion US dollars in spending in 2015,

digital advertising is an important driver of the Internet economy [Statista]. Behavioral ad targeting is

an advertising approach that uses user profiles to recommend ads that are more likely to be relevant

to users than when using traditional advertising approaches [Chen and Stallaert, 2014]. These user

profiles, however, are typically created a user’s browsing history which is generally only available

to analytics companies and content providers [Maciá-Fernández et al., 2010]. We conduct a case
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study to determine whether web page classification can be used to approximate these user profiles

using only anonymized TCP/IP headers. This study is useful because it will show whether ISPs, or

similar entities, can leverage web page classification to assist in expanding into the digital advertising

industry.
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Figure 4.7: Distribution of the number of TCP connections across 3 navigation-based classes

4.4.1 Approximating Labeled Traffic Distributions

We want to study if our classification results are useful in extracting the true distributions of features

within a given class — that is, for a given class, do the feature distributions observed across classified web

pages match those observed across ground-truth labels? If they do, then our classification methodology can

be used to derive ground-truth feature distributions from real traces — which can then be used for traffic

modeling and simulation studies. They can also be used to monitor and understand the general usage profile

of a user population.

For studying this issue, we first divide traffic into two groups according to (i) the ground-truth labels

and (ii) the classified labels. We then compare the distributions of features obtained from these two groups

of traffic. We first present our analysis using two hypothesis testing approaches (and later visually). The

first test, the Wilcoxon sum ranked test, tests the hypothesis that the medians of the two distributions in

question are the same. We use the Wilcoxon sum ranked test because it does not rely on strong distribution

assumptions such as normality. The second hypothesis test method, the Kolmogorov-Smirnov test, tests

whether the two empirical distributions are the same. Recall that a p-value that is larger than .05 validates

the concerned hypothesis.
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Table 4.8 shows the p-values for two traffic features, the number of TCP Connections and the number of

bytes transmitted, when the traffic is classified using either KNN or LDA. We show results for the number

of TCP connections and number of bytes transmitted features in this table because they are important when

modeling and simulating TCP/IP traffic [Weigle et al., 2006, Barford and Crovella, 1998] — results for

other features such as the number of segments and objects (epochs) transferred are provided in Appendix

11. We also only show results for the KNN and LDA methods in Table 4.8 because they were the best and

worst performing classification methods, respectively — Appendix 11 provides results for all classification

methods considered in this chapter. We find that:

• With the KNN classifier, the Wilcoxon sum ranked and Kolmogorov-Smirnov tests yield p-values that

indicate that both the median as well as the empirical distributions of these two features are the same

across classes identified using either classified labels or ground truth labels. More importantly, the

tests for the results for KNN are favorable with p-values that are larger than .05 for all classes for each

feature shown — this is true even for the AGL labeling scheme (results shown only for the 4 most

common genres).

• This result is not true for all classification methods. In fact, LDA usually outputs p-values that favor

the alternative hypothesis in which the distributions of the classified traffic differ from the ground

truth — these p-values are generally much lower than 10−10. There are exceptions, where the p-

values for LDA yield results in favor of the null hypothesis for some classes, but this is not true for an

overwhelming majority of classes in each respective labeling scheme.

We have also analyzed other features that are relevant for traffic generation and simulation modeling, in-

cluding the number of servers contacted, the number of objects transferred, and the number of segments

transferred, and arrived at the same statistical conclusions — a list of the p-values for these features for each

labeling scheme and classification method considered in this chapter is provided in Appendix 11.

Figures 4.7 and 4.8 plot the cumulative distributions for the number of TCP connections feature, as

yielded using the KNN and LDA classification methods — we show these plots as a visual representation of

the results in Table 4.8. Figure 4.7 shows the results for the navigation-based labeling scheme. We observe

that in most cases, KNN is able to classify web pages into classes that closely match the distribution of the

ground truth dataset. Similar to the hypothesis testing results, LDA is not able to consistently achieve this.

In particular, LDA exaggerates the number of TCP connections required for the search result and clickable
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(b) Traditional

Figure 4.8: Distribution of the number of TCP connections across 2 target device-based classes

content pages. These results are more clear in Figure 4.8, which shows distributions corresponding to

the targeted device-based labels. LDA, essentially classifies the data such that it maximizes the separation

between the two classes — this behavior is similar to that of a clustering method [Erman et al., 2006]. Hence,

the large shift of the number of TCP connections for web pages for the traditional web page class. This shift

is unrealistic and does not align with the ground truth distribution. The nonparametric KNN method does

not have this problem.

We conclude that classification methods that perform well, such as KNN, can be used to extract true

distributions of traffic features within classes (matching the trained distribution), while other methods, such

as LDA, have difficulty doing so.

4.4.2 Simulation Modeling and Network Forecasting

We next compare traffic generated using ground-truth and classified labels. We use the ns-2 network

simulator to simulate the web browsing behavior of 400 web users where all traffic gets aggregated on a

shared 1Gbps link — the traffic for each individual web page download is taken from our data set. Each

user behaves independently and randomly visits a web page. The inter-arrival time for web page downloads

by a given user is gaussian distributed with a mean of 30s and standard deviation of 15s — this distribution

is chosen for simplicity (and is adequate for our purpose of comparing distributions).

The download of each web page itself is simulated using TMIX, which provides a source-level traffic

generation interface in ns-2 [Weigle et al., 2006]. Specifically, we provide this tool with the TCP/IP trace
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TABLE 4.8: Comparing Feature Distributions from Classified Web Pages and Ground Truth Labels

Feature - Statisical Test - Label - p-value (KNN/LDA)

Number of TCP Connections Ranked Sum Mobile web page .6066/.0230
Kolmogorov-Smirnov Mobile web page .7969/1.728×10−9

Ranked Sum Traditional web page .9998/1.66×10−136

Kolmogorov-Smirnov Traditional web page 1.000/1.846×10−49

Number of TCP Connections Ranked Sum Video web page .8764/1.13×10−8

Kolmogorov-Smirnov Video web page 1.000/8.1467×10−12

Ranked Sum Non-video web page .9583/.4879
Kolmogorov-Smirnov Non-video web page 1.000/.2954

Number of TCP Connections Ranked Sum Computers .6405/3.26×10−6

Kolmogorov-Smirnov Computers .8773/3.211×10−12

Ranked Sum Business .8193/7.9043×10−11

Kolmogorov-Smirnov Business .9828/4.5604×10−1

Ranked Sum Shopping .6660/.0019
Kolmogorov-Smirnov Shopping .9997/1.8681×10−10

Ranked Sum News .7675/0.0115
Kolmogorov-Smirnov News .6255/3.4481×10−6

Number of TCP Connections Ranked Sum Homepage .3018/3.2032×10−74

Kolmogorov-Smirnov Homepage .9828/8.3124×10−9

Ranked Sum Search .9262/2.88×10−106

Kolmogorov-Smirnov Search .6814/4.5578×10−18

Ranked Sum Clickable Content .5667/6.9477×10−31

Kolmogorov-Smirnov Clickable Content .4800/1.0665×10−28

Number of Bytes Ranked Sum Mobile web page .3133/1.449×10−4

Kolmogorov-Smirnov Mobile web page .4775/1.5063×10−19

Ranked Sum Traditional web page .8597/6.413×10−84

Kolmogorov-Smirnov Traditional web page .9999/4.6465×10−89

Number of Bytes Ranked Sum Video web page .9173/.4364
Kolmogorov-Smirnov Video web page 1.00/4.2076×10−4

Ranked Sum Non-video web page .9924/.3151
Kolmogorov-Smirnov Non-video web page 1.00/.7021

Number of Bytes Ranked Sum Computers .7127/6.0806×10−13

Kolmogorov-Smirnov Computers .9999/2.122×10−09

Ranked Sum Business .9440/6.2451×10−10

Kolmogorov-Smirnov Business .9941/2.573×10−1

Ranked Sum Shopping .2248/.0045
Kolmogorov-Smirnov Shopping .9821/4.933×10−13

Ranked Sum News .9108/3.1335×10−5

Kolmogorov-Smirnov News .5558/9.5609×10−10

Number of Bytes Ranked Sum Homepage .1847/4.9872×10−33

Kolmogorov-Smirnov Homepage .8981/3.3592×10−17

Ranked Sum Search .6982/6.0573×10−99

Kolmogorov-Smirnov Search 4978/1.4042×10−5

Ranked Sum Clickable Content .2476/0.0765
Kolmogorov-Smirnov Clickable Content .9998/1.4113×10−99
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of a web page download (selected randomly from the 100,350 downloads we collect in Section 4.1). TMIX

then derives from the trace, application-level descriptors of the corresponding traffic sources — including

request sizes, response sizes, user think times, and server processing times. It then generates corresponding

traffic in ns-2 by reproducing these source-level events. Thus, this tool allows us to faithfully produce

realistic source-level behavior for each web page download. We use this traffic generation methodology in

the context of the forecasting application below.
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Figure 4.9: Distribution of aggregate throughput for mobile model (a) and video model (b)

Modeling Growth in Mobile Web Usage We first construct a baseline model, in which each user visits

a mobile-optimized web page 20% of the time and a traditional page 80% of the time — nearly 20% of

current web traffic is considered mobile [Mob, a]. The TMIX input for each user is obtained by randomly

selecting a mobile (or traditional) page download from our set of 100,350 downloads — we conduct two

experiments, in which the mobile or traditional pages are selected based on either ground-truth (GT) labels

or KNN labels (ML). The throughput on the 1 Gbps aggregated link is observed every 1ms — its cumulative

distribution is plotted in Figure 4.9(a).

We next conduct two sets of experiments that incorporate growth in mobile traffic. In the first set,

referred to as alternate model 1, we envision the scenario in which all users increase their reliance on mobile

devices — specifically, in this model, each user visits a mobile-optimized web page 50% of the time (labelled

using either GT or ML). In the second set of experiments, we envision growth in the number of users that

rely solely on mobile devices. In this model, referred to as alternate model 2, we retain the behavior of the
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400 baseline users, but simulate an additional 200 users that browse only (GT or ML-identified) mobile-

optimized web pages (100% of the time).

The distribution of the aggregate throughput for each of the forecasting experiments is also plotted in

Figure 4.9(a). We find that the distributions yielded by the ground-truth (GT) and the classified (ML) labels

are quite similar to each other. In fact, we run the hypothesis testing approaches mentioned earlier to confirm

that the distributions are, in fact, statistically equivalent. This is true for the baseline traffic, as well as each

of the forecasted alternative models. This confirms that web page classification, based only on anonymized

TCP/IP headers, can be used to effectively conduct traffic modeling studies involving mobile web traffic.

Modeling Growth in Video Streaming We use the same approach as above to construct a baseline model,

in which a user downloads pages with video traffic 20% of the time, and an alternate model 1, in which users

access video-based web pages 50% of the time — please note that these percentages were arbitrarily chosen

to compare the distributions of the different models. The aggregate throughput is plotted in Figure 4.9(b).

We find that, as before, the distributions obtained by relying on classified (ML) labels are nearly identical

to the ones derived using ground-truth (GT) labels. This is true even when the forecasted traffic drives the

network to nearly full-utilization (alternate model 1).

We emphasize that our intention is not to make forecasting claims, but simply to illustrate that our

classification work can very well facilitate such traffic modeling applications.

4.4.3 Behavioral Ad Targeting

Applications such as behavioral ad targeting use browsing profiles to infer what the user is likely to be

most interested in. For instance, if the user has been recently visiting sports sites, it may be a good idea to

pop up jersey ads for him/her. Our goal here is to analyze the accuracy with which web page classification

(for the genre-based labeling scheme) can help build a useful browsing profile for the user browsing sessions.

We define a browsing session as a sequence of N web page downloads by a single user. We synthetically

generate browsing sessions by randomly selecting a sequence of N web pages using a Markov model of

web browsing — we obtain a list of the transition probabilities of the top 5 web sites that a user is most

likely to visit while on a given web site from Alexa [Chierichetti et al., 2012, Inc.]. We use these transition

probabilities and a simple Markov model to generate browsing sessions that include N web page downloads

by doing the following steps:
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TABLE 4.9: Accuracy in Identifying Most-visited Genres.

Labeling scheme N = 20 N = 50 N = 200

Genre-based labels
K = 1 86.1% 85.1% 89.2%
K = 2 89.0% 89.2% 89.2%
K = 3 83.2% 87.1% 87.1%
K = 4 84.9% 83.0% 81.8%
K = 5 80.5% 82.2% 91.8%

1. Select a single browser to download all web pages for a single browsing session.

2. Randomly select and browse a “seed” web page from our list of 3345 web pages using the selected

browser.

3. Given the previous web page, select a web site to browse according to the transition probabilities ob-

tained from Alexa — if the web site selected is not included in our dataset of 250 web sites, randomly

select a web site.

4. Randomly browse a web page in our dataset that is hosted by the selected web site.

5. Repeat steps 3 and 4 until N web pages have been browsed.

We perform the above steps to generate 1000 browsing sessions for N = 20, N = 50, and N = 200 —

that is, 3000 browsing sessions total. Please note that the steps above do not explicitly download web pages.

We are simply grouping previously downloaded web pages into browsing sessions with N web pages —

thus, we do not consider the scenario of overlapping traffic which requires using a web page segmentation

approach.

We collect statistics on the top-K (in terms of frequency) AGL genres observed in each browsing session

— we collect two sets of statistics, one based on ground-truth genre labels, and the other based on classified

genre labels.

In Table 4.9, we list the percent of users for which the unordered set of top-K genres based on classified-

labels matches with the ground-truth labels. We find that the top-5 genres that a user is interested in can be

estimated for more than 80% of the users for each of the parameters tested (K and N). The impact of these

parameters on the performance of the user-profiles is discussed below:
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• We find that the impact of K on the performance of the user profiles depends on two cases: 1) K ≤ 2;

and 2) K > 2.

– When K ≤ 2, the performance for the profiles usually increases as K increases. This result

occurs because there are browsing streams where the two most frequently observed classes were

classified in the wrong order — that is, the most frequently observed label was classified second

and the second most frequently observed label was classified first. In such scenarios, the profile

for K = 1 would be incorrect whereas it would be correct for when K = 2 — recall that our

metric for top K labels preferences is based on unordered sets.

– When K > 2, the performance of the user profiles usually decreases as K increases — we believe

that this result is reasonable because adding more labels to a profile will increase the chances for

errors.14

• We find that increasing N from 20 to 200 usually improves the performance of the user profiles

anywhere from 0-10%. We believe that this modest performance improvement for increasing N is

due to using more samples of web pages to build more reliable user profiles — indeed, additional

samples provide more chances for the web page classification method to correctly classify web pages

in a browsing stream. While we observe a modest performance decline of 3.1% when K = 4, we

believe that this decline is an anomaly (essentially noise).

Overall, these results are highly encouraging and suggest that targeted ad delivery can significantly

benefit from web page classification based on just anonymized TCP/IP headers.15

Another piece of useful information that may be needed from a user browsing profile is the fraction of

web pages visited by a user that correspond to a particular genre. For instance, if a user visits the top genre

for 95% of the web pages that they browse, he/she is unlikely to be interested in ads related to any of the other

top genres. We collect statistics on the fraction of web pages that a user visits for each of their respective top-

5 genres (both based on ground-truth labels as well as classified labels). Figure 4.10 plots the median and

95% confidence intervals of these per-user fractions, for their top-5 genre and navigation preferences. We

find that the top genre-based and navigation-based browsing frequencies yielded by classified labels align

14 Though, the performance will increase as K approaches the number of possible classes.

15 It is important to note that even though the classification micro F-score for the AGL class were only around .75, the user browsing
profiles being constructed here are simply relying on a comparison of the sets of top-K genres (and not correct classification of each
of the N web-page visited).
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Figure 4.10: Frequency of Labels (Ground Truth and KNN classified).

extremely well with those based on ground-truth labels for both genre-based and navigation-based labels.

We conclude that web page classification is fairly well suited for building frequency-based user browsing

profiles, even for content-genre based labels.16

4.5 Comparison with the Previously Published Version of this Work

An earlier version of the work presented in this Chapter was published in the proceedings of IEEE

Infocom 2015 [Sanders and Kaur, 2015b]. While most of the methodology used and the results presented

in this Chapter are the same as those in the previously published version, there are a few key differences.

These include the following:

• Features considered for web page classification: The previous version of this work did not consider

the impact that operating systems, device type, and vantage point may have on the features used for

classification. Thus, features that we found in our analysis in Chapter 3 that differ significantly across

these client platforms — such as the number of FIN flags, number of RESET flags, and temporal traffic

features — were included in the feature set of the previously published version [Sanders and Kaur,

2015b]. We do not include these features in this chapter since they are not likely to be consistent across

the different client platforms — hence, the number of features considered was reduced from 216 to

162 in this chapter. We find that reducing this feature set had a minimal impact on the results in this

16 It is important to note that identifying individual users via traffic analysis may be difficult due to network proxies and other
technology. However, previous work shows that other methods for identifying malicious users behind proxies are still effective
despite this limitation [Jacob et al., 2012].
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study. We believe this occurs for two reasons. First, the non-temporal traffic features that we removed

were not selected for classification in the previous version. And second, the temporal traffic features

that we removed were included because they were among the most informative features for only the

video streaming labeling scheme. When comparing the results between these two versions, we find

that removing the temporal traffic features did not significantly impact the performance of the video

streaming labeling scheme.17 We believe that this occurs because the other features included in the

classification methods (e.g., number of servers and number of bytes transferred per TCP connection)

are informative enough to perform well without the temporal features.

• Parameters used for classification methods: The previous version of this work did not consider the

many different parameters for the classification methods used in this Chapter — these include the split

criteria functions for the Classification Trees classifier, the distance functions for the KNN classifier,

the discriminant functions for the LDA classifier, and the distribution functions for the Naive Bayes

classifier. The best performing classification method in this Chapter was the KNN method with the

City block distance function, while the best performing method in the previous version was the KNN

method with the Euclidean distance function — both methods performed best when K = 1. Please

note that the City Block distance function was not considered in the previously published version of

this work. Thus, if it were considered, it is likely that KNN would have performed best with the City

block distance function in the previous version as well.

• Metrics used for performance evaluation: This Chapter considers the metrics of macro F-score and

micro F-score for performance evaluation in addition to the accuracy, precision, and recall metrics

used in the previous version. The addition of these extra metrics did not change the conclusions of

this study.

Overall, while the methodology used in this Chapter is more comprehensive than the previous version,

the high-level conclusions drawn from both versions of this work are the same — that is, KNN is the

best performing classification method and web page classification can be applied to different web-related

application domains including traffic characterization and simulation modeling.

17 Or rather, any labeling scheme.
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4.6 Contributions and Concluding Remarks

This chapter advances the state of the art in traffic classification both methodologically as well as by

offering new insights. We make the following key contributions:

1. Data collection: We use five different modern browser platforms to conduct and analyze downloads

of 3345 web pages, all belonging to the top-250 most popular web sites. Overall, we analyze more

than 100,000 web page downloads. For each download, we process TCP/IP data as well as collect the

ground-truth about the type of the corresponding web page, based on four classification schemes.

2. Feature extraction and selection: We process the TCP/IP headers to derive 216 features, including

temporal and multi-flow features as well as their statistical derivatives. We then conduct a system-

atic analysis of these features to identify robust and discriminatory features — to the best of our

knowledge, this is the first work that argues for, and explicitly considers, consistency (across different

browser platforms) and stability (over time) while selecting robust features.

3. Web page classification: Using the selected robust features, we then evaluate how effectively can these

help classify web page downloads according to each of the four diverse labeling schemes. We find

that while mobile-targeted and video downloads can be KNN-classified with more than 90% accuracy,

the genre- and navigation-based categories can be classified with a somewhat lower accuracy.

4. Applicability of classification: We then evaluate the impact of our work on traffic modeling applica-

tions. Specifically, we study the distributions of (i) traffic modeling parameters, as well as (ii) proper-

ties of the generated traffic — we find that these are statistically indistinguishable from distributions

derived using ground-truth labels.

In summary, methodologically, we (i) establish the need for (and present metrics for) finding consistent

(across browsers) and stable (over time) informative features, (ii) use features that span multiple TCP/IP

flows, and (iii) use a statistical framework to study the applicability of classification results in the context of

real-world applications. Our analysis leads to new insights on which multi-flow TCP/IP features are robust

and informative for web page classification, as well as what type of web page classes that can be successfully

identified using these.
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CHAPTER 5: WEB PAGE SEGMENTATION

In the previous chapter, we explored web page classification as a method for analyzing modern web page

traffic using anonymized TCP/IP headers [Maciá-Fernández et al., 2010, Sanders and Kaur, 2015b]. While

the results were promising, we only considered traffic traces that were (i) associated with a known user, (ii)

Web-only, and (iii) separated according to individual web page downloads — also, the web page downloads

were allowed to continue for 60s. This is in stark contrast to real traffic traces which are comprised of a

mixture of traffic from different applications (e.g., HTTP, P2P, and FTP), from multiple users that may use

different client platforms, and from multiple web page downloads.1 These additional characteristics make it

non-trivial to separate/demultiplex real traffic on a per-user, Web-only, and individual web page download

basis.2 Some of these limitations have been explored in the literature. For instance, filtering traffic according

to different application types when using only anonymized TCP/IP headers has been explored in the traffic

classification literature [Lim et al., 2010, Kim et al., 2008, Erman et al., 2007b]. Other limitations may be

addressed by strategically measuring traffic at vantage points where traffic is less obfuscated. For example,

demultiplexing traffic from multiple users is more feasible in environments where IP addresses are not

shared (e.g., NATs) — in such an environment, it is reasonable to assume that each IP address corresponds

to a single user [Smith et al., 2001].3

One limitation, or problem area, that has not been recently explored and is not likely addressable by

strategic traffic measurement is that of demultiplexing web page traffic according to individual web page

downloads. Thus, an approach that is able to separate, or segment, web traffic into individual web page

downloads is needed in order for web page classification to be applicable “in the wild.” In fact, many

other web page traffic analysis applications, such as web page performance analysis [Huang et al., 2010,

Butkiewicz et al., 2011, Dhawan et al., 2012] and privacy analysis [Yen et al., 2009, Dyer et al., 2012,

Chierichetti et al., 2012], also assume the availability of an approach that can do this.

1 It is likely that real traffic traces include client platforms that we did not consider in previous chapters.

2 These web page downloads may not have been allowed to load for 60s.

3 Although, it is important to note that strategic measurement of traffic may not be possible in all environments.
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These approaches, referred to as web page segmentation approaches, are needed in order for these

traffic analysis applications to be usable “in the wild.” For example, in the area of web page performance

analysis, web page traffic measurements lose meaning in the absence of a web page segmentation approach

because the traffic for the individual web page downloads are not grouped [Ihm and Pai, 2011] — this

limits the performance analysis to the web object-level, which is, at times, insufficient [Newton et al., 2013].

Similar issues occur in the area of privacy analysis which focuses on making inferences on obfuscated

traffic [Yen et al., 2009, Dyer et al., 2012, Chierichetti et al., 2012]. Indeed, the absence of a web page

segmentation approach limits what can be inferred from web traffic including the (i) number of web pages

a user downloaded and (ii) the inter-arrival time between web page downloads — these are useful for both

web performance and privacy applications [Neasbitt et al., 2014, Chierichetti et al., 2012, Wang et al., 2013].

Web page segmentation using anonymized TCP/IP headers is usually done by identifying the beginning

of a web page download in traffic — the assumption being that all traffic detected between the beginning

of the current download and the beginning of the next download correspond to the same web page [Maciá-

Fernández et al., 2010, Newton et al., 2013, Mah, 1997, Barford and Crovella, 1998]. Detecting the be-

ginning of a web page download using only anonymized TCP/IP headers is challenging because identi-

fiers/references do not exist in TCP/IP headers that map each segment to a web page download. Instead, the

characteristics of the TCP/IP traffic must be studied in order to determine robust heuristics that are able to

detect new web page downloads — a reliable method should be able to do this while limiting the number of

false positives (i.e., incorrectly identified web page downloads) and false negatives (i.e., missed web page

downloads). Please note, however, that HTTP headers include fields, such as the host and referrer fields, that

have been shown to be useful for grouping web objects that belong to the same web page download [Neasbitt

et al., 2014, Xie et al., 2013]. We do not consider these methods in this work because we assume that only

anonymized TCP/IP headers are available.

Web page segmentation using anonymized TCP/IP headers has been addressed in the past using idle

time-based approaches [Mah, 1997, Barford and Crovella, 1998]. These approaches estimate the beginning

of a web page download by detecting if network activity levels exceed a threshold after a predefined amount

of idle time [Maciá-Fernández et al., 2010, Newton et al., 2013, Ihm and Pai, 2011, Mah, 1997, Barford

and Crovella, 1998]. The assumption of these methods is that new web page downloads usually transmit

a certain amount of traffic (a minimum threshold) and occur after the previous web page download has

finished (a minimum idle time) [Barford and Crovella, 1998]. These assumptions are reasonable for static
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web pages that do not transmit additional traffic after they have been rendered by a browser — thus, an

increase in traffic after an idle-time delay usually corresponds to a user initiating a new web page download.

However, idle time-based methods were proposed over a decade ago and have not been comprehensively

evaluated on modern web page traffic which consists of dynamic web pages that may transmit traffic after

the web page has rendered. This increased transmission of traffic by modern web pages, reduces the amount

of idle time on a link — this reduced idle time will likely make it more difficult for idle time-based methods

to detect new web page downloads [Mah, 1997, Barford and Crovella, 1998, Newton et al., 2013].4 It is

not known whether idle time-based methods will work for modern web traffic where idle time periods are

reduced.

In this chapter, we bridge this knowledge gap by conducting the first comprehensive evaluation of web

page segmentation approaches on web page traffic in over a decade. We do this by evaluating both idle time-

based methods (which have been previously proposed) and change point detection methods (which have

not been considered before) on synthetically generated and real-user browsing data. We also conduct case

studies that investigate whether web page segmentation methods can be applied to domains that are restricted

to using only anonymized TCP/IP headers — the two application domains that we consider are web page

classification and user behavior modeling. For the web page classification case study, we investigate whether

the performance of web page segmentation approaches impact the applicability of web page classification

to real traffic traces. We do this (i) to “put together” the concepts researched in this dissertation5 and (ii)

to determine the strengths and limitations of using web page segmentation and web page classification in

tandem. For the user behavior modeling case study, we investigate whether web page segmentation methods

can approximate web browsing metrics such as the number of web pages a user downloaded and the average

inter-arrival time between web page downloads.

In the rest of this chapter, we describe the web page segmentation problem, existing idle time-based

approaches, and results from a preliminary analysis of the time series characteristics of modern web page

traffic in Section 5.1; details on the change point detection methods and evaluation methodology in Sec-

tion 5.2 and Section 5.3, respectively; results of our performance evaluation using synthetic and real user

browsing data in Section 5.3.2 - 5.4; results of our case studies and high-level conclusions in Section 5.5 -

4 Please note that other modern web features, such as multi-tab browsing and automatically generated traffic, may also reduce the
amount of idle time observed in traffic.

5 These include incorporating diversity of client platform when designing traffic analysis techniques (Chapter 3), web page classi-
fication (Chapter 4), and web page segmentation (Chapter 5).
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5.6.

5.1 High-Level Analysis of Time Series Characteristics of Modern Web Page Traffic

5.1.1 Defining Web Page Segmentation using Anonymized TCP/IP Headers

In order to evaluate web page segmentation approaches we must first define a “web page download.”

This is non-trivial because modern web pages are complex and may consist of many components includ-

ing: objects from different servers, flash content, advertisements, text, css technology, AJAX technology,

javascript, and more. In the context of this work, a web page download is initiated when a user either (i)

enters a URL into the browser window, (ii) clicks on a hyperlink, and/or (iii) enters text in a browser that

results in a new web page such as a search query and its corresponding result web page — please note

that the web page download itself is the traffic that results from these actions.6 This is the same definition

for a web page download that was used in [Neasbitt et al., 2014]. The web page segmentation problem

that we address in this work involves identifying the time in which a web page download starts when only

anonymized TCP/IP headers are available for analysis. Some of the implications of these definitions are

described below:

• What about automatically generated traffic? Web page interactions must initiate a new web page

download or reload a web page7 in order for us to consider it as a web page download. Dynamic

and automated web page interactions such as instant search or video auto-play that update an already

downloaded web page or simply download additional web objects are not categorized as a web page

download — the traffic generated by these interactions correspond to the web page in which it orig-

inated. Please note that some web page interactions, such as instant search, may either download a

new a web page or update an already downloaded page — in this work, we use changes in the URL

in the browser as a trigger for new web page downloads.

• When does a web page download end? A web page download ends when the last packet is transmitted

between the client and web servers involved that web page download event. This means that web page

6 Please refer to Chapter 2 for specifics regarding our definition of a web page, web object, and other terms frequently used in this
chapter.

7 Please note that a web page download correspond to traffic being transmitted over the network. So, while some web objects can
be satisfied by a local cache on the client, at least one object must be obtained from a web server or proxy in order to be considered
a web page download.
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downloads that transmit traffic after the web page has rendered on a browser may continue for an

indefinite amount of time. It is difficult to predict when a web page download ends unless the browser

window in which the web page is rendered is closed. This is because many web pages leverage

technologies that automatically generate traffic (e.g., AJAX technologies).

• What about web page downloads that have overlapping traffic? Lets assume that web page down-

load A starts at time t1 and web page download B starts at a later time t2. Indeed, it is possible for

traffic from web page download A to be transmitted after web page download B starts — this results

in overlapping traffic. Precisely determining which traffic corresponds to which web page download

has not been addressed in the literature when only anonymized TCP/IP headers are available [Maciá-

Fernández et al., 2010, Newton et al., 2013, Mah, 1997, Barford and Crovella, 1998].8 This is likely

because there are many scenarios where there is simply not enough information available to do so

properly. For instance, it is possible that a user will browse multiple web pages from the same web

site that may contact servers that share the same IP address. In this case, TCP connections that are

established by the first web page, but after the second web page starts downloading, may easily get

confused with the second web page. Such realistic and challenging scenarios are not likely address-

able with the limited information present in anonymized TCP/IP headers — although, methods have

been proposed which address such challenges when HTTP headers are available [Ihm and Pai, 2011,

Xie et al., 2013]. Instead of precisely determining which traffic corresponds to which web page down-

load, prior work usually estimate the web page download start time and make assumptions on which

traffic corresponds to different web page downloads [Maciá-Fernández et al., 2010, Newton et al.,

2013, Mah, 1997, Barford and Crovella, 1998]. This essentially relaxes a very difficult problem into

something that is feasible.

In this work we simply assume that all traffic that is transmitted via TCP connections established

after time t1 and before time t2 correspond to web page download A, while all traffic transmitted via

TCP connections established after time t2 and before the next web page download correspond to web

page download B and so on.9 This assumption, while not true, is reasonable since web applications

are usually designed to load as quickly as possible [Gavaletz et al., 2012, Ihm and Pai, 2011]. This

8 This past work only considers identifying the start of a web page download.

9 Most prior work make similar assumptions [Maciá-Fernández et al., 2010, Newton et al., 2013, Mah, 1997, Barford and Crovella,
1998].
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assumption is also reasonable since human users are likely only actively browsing a single web page

at a time [Jansen et al., 2008] — in fact, some browsers limit the traffic transmitted by web pages

that are inactive (e.g., pages in background tabs) [CCr]. We also assume that each user has a unique

IP address — this assumption eliminates the possibility of observing overlapping traffic which may

occur when multiple users share an IP address (e.g., NATs). Please note that the work in this chapter

is likely not applicable to scenarios in which these assumptions are unreasonable.

• Why explicitly consider when a web page download starts? Knowing the time in which a web page

download starts is critical for a number of applications. For example, in the area of user modeling

the difference in the time between two consecutive web page downloads is needed for gauging user

interest in a page [Neasbitt et al., 2014] — this can be easily derived from the times in which web page

downloads are initiated. Also, understanding when a web page download starts is an important step in

determining which portions of traffic (TCP segments) corresponds to which web page download [Mah,

1997, Ihm and Pai, 2011, Wang et al., 2013] — this may be useful for web page classification and is

explored in this chapter.

A web page segmentation approach is a method which processes web traffic in a manner that detects

the beginning of a web page download. Indeed, the performance of a web page segmentation approach is

influenced by the characteristics of web page traffic. In Chapters 3 and 4, we discussed the characteristics

of modern web page traffic using cumulative distributions of different web page traffic features. However,

cumulative distributions do not illustrate the time series characteristics of web page traffic features. For

instance, they do not reveal how many bytes are typically transferred during the first 5, 10, or 15 seconds

of a web page download. In this section, we address this lack of understanding by performing a high-level

analysis of the time series characteristics of modern web page traffic. We do this by first providing a brief

overview of existing web page segmentation approaches and describing some of the reasoning behind them.

We then analyze the time series characteristics of modern web page traffic. And lastly, we discuss the impact

that such characteristics have on web page segmentation.

5.1.2 Idle time-based Approaches

Existing web page segmentation methods use idle time heuristics to detect web page downloads. Details

on the approaches that use such heuristics are described below:
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• Idle time method: Most prior methods identify web page downloads when a traffic feature of interest

(i.e., a byte or a TCP segment with the SYN flag set) is observed after I seconds of idle network

activity. These methods assume that any increase in network activity after I seconds is the result of a

new web page download. Typical values for I are 1 second [Mah, 1997, Maciá-Fernández et al., 2010,

Hernández-Campos et al., 2003a] and 10 seconds [Yen et al., 2009].

• Idle time method with a threshold for activity: [Newton et al., 2013] proposed a method that detects

web page downloads only when the number of observed SYN segments exceeds T (a predefined

threshold for network activity), while enforcing a minimum idle time of I between consecutive page

detections. The number of SYN segments feature is used instead of the number of bytes feature to

represent network activity, because of the high amount of variance in the latter. The recommended

values for T and I are 2 and 2.5s, respectively. This approach can be interpreted as a generalization

of the previously discussed idle time method with an additional threshold for network activity. It is

also possible to apply this method using the number of bytes feature instead of the number of SYN

segments feature.

The above approaches have not been thoroughly evaluated to determine their strengths and weaknesses. In

the next section, we take a closer look at modern web page traffic to determine the challenges associated

with (i) web page segmentation using idle time-based approaches and (ii) web page segmentation in general.

5.1.3 Analysis of Time Series Behavior of Modern Web Page Traffic

We next perform a preliminary analysis of the time series characteristics of modern web page traffic.

We do this to (i) understand the time series characteristics of the web page traffic and (ii) determine some

factors that may impact web page segmentation performance including traffic feature selection (e.g., number

of bytes or number of SYN segments) and browser choice. The data collection methodology, details of the

time series representation of web traffic, and the implications of this analysis are provided in this section.

Data Collection Methodology We adopt a client-side measurement methodology for the same reasons

provided in Chapters 3 and 4. More specifically, we use scripts to automatically download a diverse set of

web pages using the Google Chrome v 37.0.2062.124, Firefox v 32.0.2, and Safari v 7.1 (9537.85.10.17.1)
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browsers on a Mac desktop running OSX 10.9.4.10 We focus on Mac OS X 10.9.4 over the Windows

7 and Linux operating systems in this work because there is a tool exclusive to Mac OS X platforms,

Applescript, which enables the automated control of all browsers and other applications — other tools that

were available on different operating systems, including Selenium Web driver, are limited by browser type

and version [SeleniumHQ]. We do, however, collect and analyze time series data generated using multiple

browsers running Windows 7 to determine whether the high-level time series characteristics of web page

traffic is impacted by operating system.

Details of the traffic generation and capture process is provided below:

1. Start packet capture tool (tcpdump)

2. Start a browser with a web page URL as an argument

3. Close the browser after 60 seconds

4. Clear the local DNS resolver cache

5. Clear the browser cache

6. Go to Step 1 using a new URL

Time Series Representation of Traffic We then process the resulting TCP/IP header traces to generate

two types of time series, Xbt and Xst . The resolution (the time interval over which bytes/SYNs are counted),

r, is a tunable parameter of Xbt and Xst . For simplicity, we use r = 1 second in this section.11 Xbt is a time

series that represents the number of application layer bytes that were observed within time [t, t + r) for each

t, while Xst is a time series that represents the number of SYN segments (including SYN+ACKs) that were

observed within time [t, t+r) — please note that we only consider HTTP and HTTPS traffic. These features

are the two primary features that have been used for web page segmentation when using TCP/IP headers in

past work [Maciá-Fernández et al., 2010, Newton et al., 2013, Ihm and Pai, 2011, Mah, 1997].

10 A complete list of the web pages downloaded is provided in Appendix 2.

11 We discuss the influence that r has on web page segmentation performance in Section 5.3.2.
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Why Use SYNs Over Bytes? Figure 5.1(a) shows the time series for the number of SYNs observed

during each of the first 20 seconds of a page download.12 The bars correspond to the median number of

SYN segments observed for all web pages (across all browsers), while the dashed lines correspond to the 10

and 90 percentiles. We find that there is a large amount of variation in the number SYN segments transmitted

when loading a web page. In particular, the median number of SYN segments observed during the 1st second

of the download is less than a third of its corresponding 90th percentile. This general observation holds true

for each subsequent second of the download. Figure 5.1(b) shows similar results for the number of bytes

feature except the difference between the median and the 90th percentile observation is much higher (∼ up

to 10x). Thus, the SYN feature is likely the more stable metric to use for web page segmentation.
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Figure 5.1: Overview of the variability in the magnitude of the traffic features across web pages.

Why Idle-time Based Methods May Not Work? Figures 5.1(a) and 5.1(b) show that, over time, there

is a general monotonically decreasing behavior in the traffic metrics for a page download that peaks fairly

quickly. If this behavior is universal, a simple peak detection heuristic may suffice as a web page segmenta-

tion approach.

However, the high 90 percentile values in several of the first 8-9 seconds suggest that peaks may occur

anytime in this duration. To study this, we analyze the 20-second SYNs/bytes time series for each of

the 10872 web page downloads (3 browsers × 3614 web pages). We use cluster analysis to analyze the

12 We restrict our analysis to the first 20 seconds of the web page download process because most of the traffic occurs within this
time-frame — similar results were observed in [Ihm and Pai, 2011].
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(a) SYN Cluster 1 size: 1641
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(b) SYN Cluster 2 size: 1718
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(c) SYN Cluster 3 size: 1787
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(d) SYN Cluster 4 size: 2504
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(e) SYN Cluster 5 size: 3212

Figure 5.2: K-mean cluster centroids for web page download time series (SYNs).

shapes of these time series — we normalize each time series by the magnitude of the number of SYNs/bytes

transferred for its download so that the clusters will be dominated by shape instead of absolute differences in

traffic metrics. We use K-means, a popular clustering approach, for this analysis [Hartigan, 1975]. The input

to the K-means algorithm is essentially N web pages with 20 features (i.e., one feature for each second).

K-means also takes a parameter, k, that specifies the number of clusters to generate. We empirically test

multiple values of k and find that k = 5 works well for our purposes.13

The centroids for the 5 clusters that we find for the number of SYNs and number of bytes time series are

13 The values of k that we tested were 2, 3, 4, 5, 6, 7, 8, 9, and 10.
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shown in Figure 5.2 and Figure 5.3, respectively.
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(a) Byte Cluster 1 size: 1143
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(b) Byte Cluster 2 size: 1780
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(c) Byte Cluster 3 size: 1678
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(d) Byte Cluster 4 size: 1801
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(e) Byte Cluster 5 size: 4474

Figure 5.3: K-mean cluster centroids for web page download time series (Bytes).

We find that:

• Figure 5.2(e) shows that some web pages may transmit SYN segments for over 20 seconds — similar

results are shown for the number of bytes time series provided in Figure 5.3(e). It is possible that

this long load time is likely due to javascript and other traffic that occurs in the background after

the page renders. This is an important observation because it shows that there are cases where two

web pages can be requested within 20 seconds of each other without having an idle time period. In

such a scenario, an idle time-based approach would simply guess that these two web page downloads
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correspond to a single page.

• The above suggests that peak detection, instead of idle time detection, may be a more robust approach.

These clusters shown in Figure 5.2 and Figure 5.3 show that the time series for web page downloads

tend to have either 1 or 2 peaks. For the number of SYNs time series centroids, approximately half of

the web page downloads for the exhibit two peaks (Figure 5.2(e) and to a lesser extent Figure 5.2(d)),

while the other time series only exhibit one primary peak (Figures 5.2(a), 5.2(b), and to a lesser extent

5.2(c)). We observe similar results for the number of bytes time series — that is, two of the centroids

(Figure 5.3(e) and Figure 5.3(d)) exhibit two peaks and the other centroids (Figures 5.3(a), 5.3(b), and

extent 5.3(c)) exhibit only one peak. These results imply that peak detection approaches themselves

must be designed to be robust to this diversity — else, two consecutive web page requests with a

single peak each may get confused by a single web page request that has two peaks. Consequently,

a segmentation method may consider the two peaks as a single web page request (depending on

how close the peaks occur) or identify each of the two peaks as an individual web page download

(essentially two pages).
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Figure 5.4: Overview of the variability in the magnitude of the traffic features across different
browsers and web pages.

Do Browsers Impact Web Page Segmentation? Figure 5.4 shows a plot of the cumulative distribution

of the number of SYN segments transferred when downloading a page. We find that browser choice has an
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impact on the traffic features, where the number of SYNs transferred by the Chrome browser is larger than

the other browsers — these observations are similar to those made in Chapter 3. This observation means

that it is likely that the differences in the traffic across browser may impact the performance of different web

page segmentation approaches.

Does Operating System Choice Impact Time Series Characteristics? As noted before, we investigated

whether operating systems impact the time series characteristics that we observe. A summary of the sim-

ilarities and minor differences between the time series characteristics across operating system is provided

below:

• The variance in the values for the number of bytes time series is higher than the variance in the values

for the number of SYNs time series. This result is consistent for the Mac OSX 10.9.4 and Windows 7

operating systems and is shown in Figure 5.1 and Figure 6.7 (in Appendix 12), respectively.

• The time series that we observe usually increases and decreases at least once — the number of times

this occurs is equivalent to the number of peaks present in the time series. In general, the time series

that we observe exhibit one or two peaks. This result is consistent for the Mac OSX 10.9.4 and

Windows 7 operating systems and is shown, for the number of SYNs time series, in Figure 5.2 and

Figure 6.8, respectively — please refer to Figure 5.3 and Figure 6.9 for the number of bytes time

series for these operating systems.

• Most of the web page time series (≈ 50%) are non-zero for only the first 10 seconds. That is, most

web page downloads finish in less than 10 seconds. However, a significant fraction of web page time

series (over 30%) is non-zero for over 20 seconds. This result shows that web page download time

can vary significantly across different web pages. We observe these results for both operating systems

and for both the number of SYNs time series (Figure 5.2 and Figure 6.8) and the number of bytes time

series (Figure 5.3 and Figure 6.9).

• In Chapter 3, we found that the total number of SYNs and bytes observed for each web page download

is similar across operating systems. Despite this, we observe minor disparities in the number of

bytes and SYNs transmitted on a per second basis across operating system. For instance, on average

there are slightly more bytes and SYNs transmitted (10-15%) during the first second of the web page
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download on the Windows 7 client than the Mac OSX 10.9.4 client — the Mac OSX 10.9.4 client

compensates for this increase later during the web page download. Please refer to Figure 5.1 and

Figure 6.7 (in Appendix 12) for a visual representation of such minor differences.

In the next section, we consider some change point detection techniques to achieve the above peak

detection based segmentation. In subsequent sections, we comprehensively evaluate different web page

segmentation approaches with modern web traffic to understand the extent to which the above challenges

impact performance in practice.

5.2 Change Point Detection Methods

In the previous section we found that there may be very little idle time during modern web page down-

loads — thus, idle time-based methods are not likely to be effective for the modern traffic mix. Given this,

it is clear that modern web page segmentation methods should be robust to traffic that is rarely idle. We

believe that change point detection methods, a class of time series approaches that are able to detect signifi-

cant increases or decreases in time series data (essentially peak detection), will be effective for modern web

traffic since they do not require idle activity to work. There are three primary types of change point detec-

tion methods that are used in the literature: 1) Heuristic/Sliding window methods; 2) Regression methods;

and 3) Probabilitistic/Stochasitic methods [Newton et al., 2013, Rabiner, 1989, Tibshirani and Wang, 2008,

Bleakley and Vert, 2011, Rabiner, 1989]. We provide background on these approaches and describe how

they are applicable to the web page segmentation problem in this section.

Time series Definition and Methods Overview: Let Xt be the time series of the number of SYN segments

or bytes observed at a timescale of r, for a given source IP — that is, at each time t, Xt represents the number

of SYNs or bytes observed in [t, t + r). This raw time series signal, Xt , has a high degree of noise, which

makes it difficult for change point detection methods to be applied directly. A moving average filter (i.e.,

a simple lowpass filter) is used to reduce noise in the traffic signal. Given Xt , a moving average is defined

as: Mt = ∑
k
i=0 Xt−i/k for all t ∈ (k,N), where N is the number of elements in the time series and k is the

lag of the moving average. We use Mt as an input for the change point detection approaches investigated in

this work because it has less noise than Xt — this is a common preprocessing step for analyzing time series
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data [Nose-Filho et al., 2011, Chen and Chen, 2003].14

5.2.1 Heuristic Method for Change Point Detection

We first consider a simple heuristic method for change point detection that can be applied to web page

segmentation. At a high-level, this method detects web pages when the thresholds for several parameters

including idle-time and the number of bytes/SYNs observed are exceeded — this type of method is perhaps

the simplest method for change point detection. More specifically, we propose a heuristic that takes three

parameters, Tthreshold , Ldelay, and Iidle. Web page detections are identified when Xt is greater than or equal

to Tthreshold [Newton et al., 2013], there has been no traffic observed in the last Iidle time units, and the time

since the previous detection is more than Ldelay — all of these thresholds must be exceeded in order to detect

new web pages. Please note that this method is different from idle time-based approaches because it can

work realistically even with zero idle-time (i.e., Iidle can be 0).15 Intuitively, an idle time value of 0 for the

idle time method will identify every part of traffic activity as a new page. In other words, the number of web

pages will be equal to the number of non-zero instances in traffic — clearly, this will result in a high false

positive rate. We add the Ldelay term so that methods can detect new web pages in scenarios in which traffic

activity is rarely idle. Because of this, we consider this heuristic approach more of a threshold-based change

point detection method with an option for idle-time.

5.2.2 Fused Lasso Regression

Regression and stochastic models have been used to solve change point detection problems in other

fields. In particular, fused lasso, a regression model, and the hidden Markov model (HMM), a stochas-

tic model, have been used in the fields of computational biology and speech recognition [Rabiner, 1989,

Tibshirani and Wang, 2008, Bleakley and Vert, 2011].

Fused lasso regression performs a very specific task: outputs an “optimal” denoised version of an input

signal that approximates a piecewise constant function (i.e., a step function) [Tibshirani and Wang, 2008]

— such piecewise constant (or in some areas piecewise linear) approximation is perhaps the most popular

regression approach for segmenting time series data [Keogh et al., 2004]. Although this method has been

14 Please note that we initially explored using Xt instead of Mt for web page segmentation using change point detection methods.
However, the performance that we observed when using Xt was inferior to the performance when using Mt .

15 Similarly, Ldelay can also be 0.
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widely used for computational biology and clustering applications, to the best of our knowledge it has not

been applied to network traffic analysis.

The convex optimization problem for fused lasso regression is given by:

argminY 1/2||M−Y ||2F +λ ||Y ||1 +µ||DY ||1 (5.1)

where ||A||1 = ∑i, j |Ai, j| is the L1 norm and ||A||F =
√

∑i, j A2
i, j is the frobenious norm for arbitrary A, D is

an N×N matrix such that DY is a differenced Y vector (i.e., DYi =Yi−Yi+1), M is the input moving average

vector, and Y is the denoised version of M which solves the above optimization problem. This convex

optimization problem computes an optimal denoised signal, Y , that minimizes the L1 norms of Y and DY .

Intuitively, minimizing the L1 norm of Y reduces measurements that are small, while minimizing the L1

norm of DY groups values of similar levels together. In other words, this problem (i) eliminates small traffic

signatures (background noise or AJAX traffic) and (ii) groups traffic that are likely to be linked to a single

event together (individual web page requests). The λ and µ terms in the above equation are parameters that

impact the solution of the optimization problem (Y ) by influencing the L1 norms of Y and DY — in short,

increasing λ and µ increases the degree in which traffic measurements are reduced and grouped together,

respectively.

The convex optimization problem in Equation 5.1 can be solved via Alternating Directions Method of

Multipliers (ADMM) [Boyd et al., 2011]. Algorithm 1, denoted FLADMM, provides the pseudocode for

this, where st(B,α) = max(B−α,0) for any non-negative B.16

Web page detections are identified as the point where Yt changes behavior from monotonically non-

increasing to increasing — this function is denoted as DetectChangeFL(A). The complete regression method,

SegmentationFL, is summarized in Algorithm 2. It is important to note, however, that SegmentationFL is

identifying increases in web traffic — it is conceivable that events other than new web page downloads (such

as scrolling down on some pages) may result in similar increases in traffic.

16 Line 2-3 of FLADMM includes a pseudo-inverse operation which is implemented in MATLAB using gaussian elimination (i.e.,
A−1B = A\B).
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Algorithm 1 FLADMM

input: M, λ , µ

initialize: γ , δ , ζ , Y1, Y2, Y3 to a N×1 vector of zeros
1: for k = 0,1, ....,MAXIT ER do

2: Y =

 I
I
D

−1 Y1 +ζ

Y2 +δ

Y3 + γ


3: Y1 =

[
I
I

]−1[ M
Y −ζ

]
4: Y2 = st(Y −δ ,λ )
5: Y3 = st(DY − γ,µ)
6: ζ = ζ +(Y1−Y )
7: δ = δ +(Y2−Y )
8: γ = γ +(Y3−DY )
9: end for

output: Y

Algorithm 2 SegmentationFL

input: X , k, λ , µ

1: M = MovingAverage(X ,k)
2: Y = FLADMM(M,λ ,µ)
3: B = DetectChangeFL(Y )

output: B

5.2.3 Hidden Markov Model

Stochastic models incorporate random variables and probability distributions in the modeling process.

Hidden Markov Models (HMMs), perhaps the most common stochastic method for change point detection,

are commonly used for change point detection in speech processing [Rabiner, 1989, Fridlyand et al., 2004].

An HMM is essentially a Markov model where the current state is unknown. An overview of the elements

of an HMM and how it can be applied to web page segmentation is provided below:

• Finite number of States: An HMM has a finite number of states, N, that are denoted as S0, S1, S2,

..., SN−1. A state at a given time t is denoted as Xt . The state transition probabilities of an HMM

follow the Markov property (i.e., Pr(Xt+1 = S j|Xt = Si)).17 The thing that makes an HMM different

17 The Markov property is a simplifying assumption that is rarely true. However, it has tremendous benefits and utility for real
applications.
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from a regular Markov model is that the states are hidden. Although the states are hidden, there

is some significance attached to the states that stem from observable variables. In terms of web

page segmentation, it makes sense to identify two hidden states:1) S0 = User idle; and 2) S1 = User

downloading page.

• Observation symbols per state: As noted before, the transition between states, or rather the state itself,

is hidden in an HMM. Instead, the current state must be observed from some measurable phenomena,

or more formally, observation symbols. An HMM has Q observation symbols that are denoted as V0,

V1, V2, ..., VQ−1. In terms of web page segmentation, we identify two observation symbols: 1) V0 =

A non-increase in a traffic feature (i.e., Mt ≤Mt−1); and 2) V1 = An increase in a traffic feature (i.e.,

Mt > Mt−1).18

• Observation symbol probability in state j: Observation symbols, V , are the only information available

to infer the hidden state, S, of an HMM. A key assumption of an HMM is that hidden states exhibit

probability distributions of observation symbols. The observation symbol probability distribution in

S j, is B jk, where B jk = P [Vk at t — Xt = S j], 1≤ j ≤ N, 1≤ k ≤ Q.

• State transition probability: HMMs also include a state transition probability matrix, Ai j. Ai j encodes

the probability of going from Si to S j.

Given appropriate values of N, M, B, and A, the HMM can be used to determine the state sequence X1, X2,

... , XT that was most probable provided an observation sequence O1,O2, ..., OT , where T is the length of

the sequence. Here, each Ot corresponds to one of the observation symbols, V . In the context of the web

page segmentation problem, O1,O2, ..., OT are measurements in time that correspond to traffic features, and

X1, X2, ... , XT are the hidden states that correspond to web page segments. The Viterbi algorithm can

be used to solve for the most probable state sequence, X1, X2, ... , XT , given N, M, B, A, and O1,O2, ...,

OT [Forney Jr, 1973] — this procedure is denoted as HMMViterbi(N,M,B,A,O). Web page detections are

identified as the point when the states in Xt−1 and Xt changes from S0 to S1 — this function is denoted as

DetectChangeHMM(X). The complete SegmentationHMM(X) is provided in Algorithm 3.19

18 Mt is the moving average of the input time series described previously.

19 MovingAverage(X,k) outputs a moving average of raw time series X with lag k that has been processed to yield a sequence of
observational symbols consisting of V0 and V1.
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Algorithm 3 SegmentationHMM

input: X , k, A, B, N, M
1: J = MovingAverage(X ,k)
2: Z = HMMViterbi(N,M,B,A,J)
3: C = DetectChangeHMM(Z)

output: C

5.3 Evaluation With Synthetic Data

5.3.1 Synthetic Data Traffic Generation

We first conduct a controlled evaluation of segmentation approaches using web traffic generated by web

requests made by automated scripts (non-humans). Ideally, if good models existed for how a typical user

browses the web, the scripts could use these for generating per-user browsing streams to evaluate the ability

of different approaches to segment the resulting traffic. However, such models do not exist.20 Thus, we use

a simple approach to study, and control for, the key factors that are likely to impact web page segmentation

performance — these include web page inter-arrival time, the number of tabs that are simultaneously open

in a browser, and browser choice [Sanders and Kaur, 2014a, Miller et al., 2014]. This approach is described

in this section.

Web page inter-arrivals: To the best of our knowledge, previous evaluations of web page segmentation

methods do not explicitly investigate the impact of web page inter-arrival times (IATs) on performance [Ihm

and Pai, 2011, Xie et al., 2013, Newton et al., 2013, Hernández-Campos et al., 2003a]. This is a problem

since, from our analysis in Section 5.1, it is clear that inter-arrival time may impact web page segmentation

performance. Since we do not have any clear evidence that web page IATs follow a particular theoreti-

cal distribution, we generate traffic using multiple theoretical distributions. These include: uniform(0,60);

uniform(0,30); normal(20,5); normal(10,3); weibull(30,.5); and weibull(20,.5).21 We selected these distri-

butions to incorporate a good mix of inter-arrival times that: (i) are evenly spread among a wide range of

20 Markov models have been used in past work to model web site navigation patterns [Chen et al., 2005]. However, recent work
has challenged the notion that web users are Markovian [Chierichetti et al., 2012]. Indeed, features like the “back” button and
multi-window browsing, introduce “memory” into a browsing session.

21 Uniform(a,b) is a uniform distribution defined for lower bound a and upper bound b in seconds; normal(µ ,σ ) is a normal distri-
bution defined for mean µ and standard deviation σ in seconds; weibull(λ ,k) is an weibull distribution with mean rate parameter λ

and shape parameter k.
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values (i.e., the uniform distributions), (ii) concentrate around a mean inter-arrival time (i.e., the normal

distributions), and (iii) includes a balance of both large and small inter-arrival times (i.e., the weibull distri-

butions). We select the parameters of the distributions such that their mean is between 10-30 seconds, but

also include fairly small inter-arrival times. Note that we do not claim that these distributions approximate

IAT distributions observed “in the wild.” Instead, we use this diverse set of distributions to increase the

coverage of IATs in our empirical evaluation.

Number of Simultaneous Browser Tabs: Modern browsers support multi-tab browsing — this essen-

tially allows for multiple browser windows to be open at a given time. This may present a problem because

increasing the number of tabs will increase the number of web page requests whose traffic overlaps in the

network (and will reduce idle time observed in the traffic), thereby negatively impacting web page segmen-

tation performance [Miller et al., 2014]. To account for this, we evaluate the impact that the number of

simultaneous tabs — 1, 2, 4, or 8 — may have on web page segmentation performance.

Diverse Browsers and Web Pages: Our analysis in Chapter 3, Chapter 4, and Section 5.1 shows that web

page traffic is diverse and is influenced by browser choice. Thus, it is important to include this diversity in

our evaluation. We sample web pages from the same list of 3614 URLs provided in Appendix 2, which is

composed of a diverse set of web pages from the top-250 US web sites [Inc.] — the process to obtaining

this list of URLs is also discussed in Chapter 3. These URLs correspond to a diverse mix of web pages

including landing pages, search results, media content, and mobile web pages. As discussed before, web

pages are downloaded using multiple modern browsers including Chrome v 37.0.2062.124, Firefox v 32.0.2,

and Safari v 7.1 (9537.85.10.17.1) on Mac OS X 10.9.4.

Browsing Stream Generation: Web page downloads are initiated at times defined by the inter-arrival

time distribution — for each, a random web page is selected from the list of 3614 URLs on the current

tab. The tabs cycle from tab number 1 to tab number N for each web page download for simplicity.22 For

example, if N = 2, we load the first random page on the first tab, load the second random page on the second

tab, and load the third random page on the first tab.

For each combination of inter-arrival time distribution, number of tabs, and browser, we generate web

22 Here, N corresponds to the number of tabs tested for the particular browsing stream. In this study, N is either 1, 2, 4, or 8.
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traffic as described for a duration of 15 minutes — this is referred to as a browsing stream. These browsing

streams are automatically generated using Applescript. Applescript is a scripting language that is built

into Mac OS X that can be used to automatically control any application, including browsers. The traffic

generated by these browsing streams are captured using tcpdump. We log the time and URL for each web

page downloaded in each browsing stream — this information is kept in our operating system log and is

later used to match web page downloads initiated by the operating system with the web pages observed in

traffic. The browser cache is also cleared after each browsing stream.

We repeat this process 40 times for each combination of inter-arrival time distribution and browser —

so, there are 6 IAT distributions × 3 browsers × 4 tab configurations × 40 repetitions for a total of 2880

browsing streams lasting 12 minutes each. Thus, there is a total of 43,200 minutes of browsing streams that

are used for evaluation — this includes over 100,000 web page downloads.

Ground Truth Determination: Ground truth times for web page segmentation are determined by corre-

lating the web page request time observed in the operating system log with the web page traffic times that are

observed in our traffic log — our traffic log includes the time in which each HTTP message, DNS message,

and TCP segment was captured on the link and is generated using tcpdump and pcap2har [Jacobson et al.,

1989, pcap2har].23 A web page j is determined to have been detected if we observe (i) an HTTP request in

our traffic log that has a URL field that matches the URL in our operating system log or (ii) a DNS request

that has a hostname field that matches the hostname in our operating system log. These matching HTTP

and/or DNS messages in the traffic log must occur between the times web page j and web page j+1 were

observed in the operating system log in order to be identified as the ground truth time in which a web page

was requested in our traffic log — the resulting ground truth web page request time is the time observed in

the traffic log. We allow this small window between detecting web page requests in the traffic log because

there are delays between the web page request time at the operating system level and at the network level —

that is, the times in the operating system and traffic logs do not completely match. Statistics regarding how

often web pages are (i) detected using an HTTP message that matches the operating system log, (ii) detected

using a DNS message that matches the operating system log, or (iii) not detected when using neither HTTP

nor DNS messages but present in our operating system log are shown in Table 5.1.

23 Tcpdump is used to generate logs with TCP-level and DNS-level information while pcap2har is used to generate logs with
HTTP-level information.
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TABLE 5.1: Number of Web Pages Detected and Missed by Different Approaches

Detected Using HTTP Detected Using DNS Not Detected Total Number of Requests
92814 (84.19%) 102989 (93.42%) 2918 (2.64%) 110240

We also explicitly allow a small deviation of s seconds between the time a web page segmentation

method detects a web page and the ground truth time because these values do not always match — this

occurs because the ground truth DNS and HTTP request times do not necessarily occur at the same time

the thresholds for the number of SYN and/or bytes transmitted are satisfied for the different web page

segmentation methods. We arbitrarily test several values of s including .250, .500, 1, and 5 seconds to

determine if it impacts the conclusions drawn from our study. We discuss this impact in more detail in

Section 5.3.2.

Performance Metrics: We must also consider the metrics to use when comparing the performance of

the different web page segmentation approaches. Metrics that are appropriate for evaluating web page

segmentation methods are the same metrics that are used for evaluating binary classification problems —

these include precision, recall, F-scores, and accuracy [Schatzmann et al., 2010, Ihm and Pai, 2011, Erman

et al., 2006]. These metrics, which are defined in chapter 4, can be difficult to interpret since they are

functions of the number of true positives, false positives, and false negatives. For problems where there are

only two classes (in this case, the presence of a detection or not) it is informative to report the rates in which

true positives, false positives, and false negatives occur in addition to the other metrics, such as an F-score,

which are more difficult to interpret. The metrics that we present in this section are defined below:

• True positive rate (T PR): We identify a true positive if the web page segmentation method is able

to detect a web page that corresponds to a ground truth time. The true positive rate, T PR, is then

calculated as the number of True Positives divided by the number of Web Page Downloads.

• False positive rate (FPR): We identify a false positive for detections that do not align with the ground

truth. The false positive rate, FPR, is calculated as the number of False Positives divided by the

number of Web Page Downloads.

• False negative rate (FNR): A false negative occurs when the ground truth indicates that a detection

should occur and the web page segmentation method fails to detect it. For web page segmentation,
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TABLE 5.2: Parameter Search Space for Optimization of Web Page Segmentation Approaches

Segmentation Approach Parameter Search Space
Idle-time method (SYNs) I 250ms to 20s in steps of 250ms
Idle-time method (Bytes) I 250ms to 20s in steps of 250ms
Idle-time method with threshold (SYNs) I 250ms to 20s in steps of 250ms
Idle-time method with threshold (SYNs) T 1 to 50 in steps of 1
Idle-time method with threshold (Bytes) I 250ms to 20s in steps of 250ms
Idle-time method with threshold (Bytes) T 1 to 50000 in steps of 1000
Heuristic Change Detection Method (SYNs) I 250ms to 20s in steps of 250ms
Heuristic Change Detection Method (SYNs) T 1 to 50 in steps of 1
Heuristic Change Detection Method (SYNs) L 250ms to 20s in steps of 250ms
Heuristic Change Detection Method (Bytes) I 250ms to 20s in steps of 250ms
Heuristic Change Detection Method (Bytes) T 1 to 50000 in steps of 1000
Heuristic Change Detection Method (Bytes) L 250ms to 20s in steps of 250ms
Fused Lasso (SYNs) λ 0 in steps of .05 to 3
Fused Lasso (SYNs) µ 0 in steps of .05 to 3
Fused Lasso (Bytes) λ 0 in steps of 1000 to 30000
Fused Lasso (Bytes) µ 0 in steps of 1000 to 30000
HMM (SYNs and Bytes) Ai, j 0 in steps of .01 to 1,where ∑

2
j=1 Ai, j = 1

HMM (SYNs and Bytes) Bi, j 0 in steps of .01 to 1,where ∑
2
j=1 Bi, j = 1

the false negative rate, FNR, is the number of False Negatives divided by the number of Web Page

Downloads. This metric is equivalent to 1−T PR — hence, we do not report it since it is redundant.

• Precision: The precision metric is defined as T P
T P+FP , where T P is the number of true positives and

FP is the number of false positives.

• Recall: The recall metric is defined as T P
T P+FN , where T P is the number of true positives and FN is

the number of false negatives. Please note that the recall metric is equivalent to the true positive rate

and accuracy metrics in this analysis.

• F-score: The F-score metric is defined as the harmonic mean between the precision and recall — this

is expressed as 2× precision×recall
precision+recall .

Web Page Segmentation Method Parameterization: All of the segmentation methods that we use for

our analysis have parameters that must be configured. We perform an explicit exhaustive search for the

parameters for each method and select the settings that result in the “best” performance — one that yields a

high T PR and a low FPR. For this study, we do this by selecting the parameters that result in the highest F-
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TABLE 5.3: Optimal Parameter Settings Used for Web Page Segmentation Approaches for r = 250ms

Segmentation Approach Optimal Parameters
Idle-time method (Number of SYNs) I = 9s
Idle-time method (Number of Bytes) I = 10s
Idle-time method with threshold (Number of SYNs) I = 9s; T =6
Idle-time method with threshold (Number of Bytes) I = 3s; T =3000
Heuristic Change Detection Method (Number of SYNs) I=0s; T =6; L=8s
Heuristic Change Detection Method (Number of Bytes) I=0s; T =7000; L=9s
Fused Lasso (Number of SYNs) λ = .2; µ=2.25; k = 5s
Fused Lasso (Number of Bytes) λ = 2000; µ=15000; k = 5s
HMM (Number of SYNs) k = 5s; A1,1=.9; A1,2=.1;

A2,1 =.05; A2,2 =.95
B1,1=.99; B1,2=.01;
B2,1 =.8; B2,2 =.2

HMM (Number of Bytes) k = 5s; A1,1=.87; A1,2=.13;
A2,1 =.03; A2,2 =.97
B1,1=.98; B1,2=.02;
B2,1 =.77; B2,2 =.23

score (which is a measure that incorporates in true positives, false positives, and false negatives into a single

metric) for each web page segmentation method by processing a random sample of half of our browsing

streams — please note that we use the F-score metric to determine the best methods in this work since it is

a function of each metric that we consider. The parameter space that we searched during this optimization

is in Table 5.2.

We searched this parameter space for when the resolution parameter, r, is 100ms, 250ms, 500ms, and

1000ms. The optimal parameters selected for each web page segmentation method when r = 250ms is shown

in Table 5.3 — please refer to Appendix 13 for the optimal parameters for when r is 100ms, 500ms, and

1000ms. We discuss the impact that r has on the performance of web page segmentation methods in the

next section.

5.3.2 Evaluation Results

Before we go into details about our overall performance results, we highlight some of the strengths and

weaknesses of the different segmentation approaches. Figure 5.5 plots the time series of a synthetically gen-

erated web page browsing stream with annotations for when web pages are detected by different segmenta-

tion approaches. The vertical dashed bars in these plots correspond to the ground truth web page download

start time, while the vertical “diamond” markers correspond to the time that the web page segmentation
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Figure 5.5: Time series plots showing how idle time-based methods work.

method specified in Figure 5.5 detected new pages — we use this notation for illustrating the performance

of different web page segmentation methods in this section.24 Some key observations are outlined below.
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Figure 5.6: Time series plots showing how change point detection methods work

Bytes are more volatile than SYNs: Figure 5.5(a) shows a time series for the number of bytes, while Fig-

ure 5.5(b) shows a time series for the number of SYN segments. There are many instances in Figure 5.5(a),

for example around 60-100s, where there are many bytes being transferred when a page is not being explic-

itly downloaded. These instances makes it difficult for idle time-based approaches to distinguish web page

24 The settings for each web page segmentation method plotted is provided in Table 5.3.
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downloads from background traffic. This is particularly an issue because the example in Figure 5.5 is a fairly

“easy” web page browsing stream to process because there are large web page inter-arrival times between

subsequent downloads. This is not as common in the number of SYN segments time series in Figure 5.5(b)

— this highlights the need to use the number of SYN segments as the primary traffic feature over the number

of bytes for web page segmentation.

Performance of methods on a simple example: It is clear from the raw time series plots in Figure 5.5(a)

and Figure 5.5(b) that idle time-based approaches will be unable to correctly identify all web page downloads

without identifying false positives — this is due to the background traffic. Figure 5.6(a) shows an example

of how fused lasso, a change point detection method, will smooth the number of SYN segments time series

to help detect the beginning of a web page download — note that a web page is “detected” using fused lasso

at the point when the smoothed time series changes from being monotonically non-increasing to increasing.

For this simple case, fused lasso is able to identify all the web page downloads without any false positives.

Similar observations can be made for the HMM smoothed time series in Figure 5.6(b) — note that a web

page is detected here when the state transitions from State 0 to State 1. The primary difference is that the

HMM approach groups two web page downloads together into a single download (around the 50-60s portion

of the plot), when it should be two distinct pages. From this simple example, it is clear that HMMs will have

more difficulty than fused lasso in distinguishing between two web pages with small inter-arrival time. This

occurs despite an “optimal” parameterization of each method.
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Figure 5.7: Time series plot showing some of the difficulties of applying idle time-based methods on
synthetic data.
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A more noisy example: Figure 5.7 shows a time series for the number of SYN segments for a web brows-

ing stream where some features (i.e., number of SYNs) are rarely idle. In this scenario, most web pages

will not be identified using idle time-based methods because the idle time threshold is rarely met. Figure 5.8

shows the fused lasso smoothed time series. Here, we can see that fused lasso has more difficulty identifying

web pages than in the past example. For instance, we notice that fused lasso does not immediately detect

the web page request at around 162s due to the small inter-arrival time between the 157s download and the

162s download. Instead, this page is detected late at around the 170s portion of the plot — this delayed

detection is technically a false positive, but it is clear that it could correspond to the earlier missed request.

The 215-240s portion of the plot shows that fused lasso is able to detect some pages when there is little idle

time period — it essentially identifies areas where the time series peaks as a new page.
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Figure 5.8: Time series plot showing some of the difficulties of applying Fused Lasso on synthetic data.

There are times when detecting pages in this manner can backfire. For example, at around the 250-270s

portion of the time series, we observe a web page is requested that takes dozens of seconds to load and

exhibits multiple peaks. Here, fused lasso correctly identifies the first peak (around 252s) as a true positive

and incorrectly identifies the second peak (around 262s) as a new page (i.e., a false positive). We also

find that the HMM time series, shown in Figure 5.9, tends to group these active periods of traffic into a

single web page download — this result is not surprising given what we observed on the easier example in

Figure 5.6(b). This results in fewer true positives and fewer false positives.

Overall Performance Results: We next discuss the overall performance results for all web page segmen-

tation methods. Table 5.4 summarizes the results for the different web page segmentation methods when
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Figure 5.9: Time series plot showing some of the difficulties of applying HMM on synthetic data.

TABLE 5.4: Overall Performance of Segmentation Methods for Synthetic Data

Segmentation Approach SYNS Bytes
TPR/Recall FPR TPR/Recall FPR

Idle-time method .4148 .0869 .0889 .0770
Idle-time method with threshold .4016 .0328 .8951 .7623
Heuristic Change Detection Method .7320 .2038 .8393 .5476
Fused Lasso .8217 .0629 .8115 .1863
HMM .5079 .0584 .0257 .0107

Precision F-score Precision F-score
Idle-time method .8268 .5524 .5359 .1525
Idle-time method with threshold .9245 .5600 .5401 .6737
Heuristic Change Detection Method .7822 .7563 .6052 .7033
Fused Lasso .9289 .8720 .8133 .8124
HMM .8969 .6485 .7060 .0496

using either the number of bytes or the number of SYN segments as the traffic feature. We find that:

• Most web page segmentation methods perform better overall in terms of a higher F-score (which is

a single metric that is a function of the number of true positives, false positives, and false negatives)

when the number of SYNs is used as the traffic feature than when the number of bytes is used. This

result is not surprising given that our analysis in Section 5.1 showed that the number of bytes feature

has a much higher variance and exhibits more noise than the number of SYNs feature. The idle-

time method with threshold is the only approach that had a F-score that was higher when the number

of bytes feature was used. Upon further inspection, we find that the best parameterization for this

approach follows two different extremes with respect to the T PR and FPR metrics. In particular,

Table 5.4 shows that the T PR is modest (.4016) and the FPR is low (.0328) when the number of
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SYNs feature is used, while the T PR and FPR are both high (.8951 and .7623) when the number of

bytes feature is used. In fact, no other approach shown in Table 5.4 yielded a T PR and FPR that was

this high. Recall that the F-score is a metric that encapsulates multiple metrics in an attempt to find

the best balance between T PR, FPR, and FNR. However, the best balance between these is debatable

when one approach is very conservative (i.e., has a modest to high T PR with a low to modest FPR)

and a competing approach is very aggressive (i.e., has a T PR and FPR that are both high). Indeed, a

web page segmentation approach that has a high T PR is usually not preferred if the FPR is also high.

• The change point detection methods (i.e., fused lasso, HMM, and heuristic change detection method)

are able to achieve a true positive rate that is at least .09 higher than the idle time-based methods

when using the number of SYN segments traffic feature. We believe that this is largely because the

idle time-based methods have difficulty finding an idle period that is long enough to detect a new

page, while being short enough to not detect many false positives. We find that change point detection

methods have F-scores that are at least .08 higher than idle-time based methods. We also find that the

fused lasso method achieves the best overall performance with a F-score of .8720 when the number

of SYNs feature is used.
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Figure 5.10: Overall of performance of web page segmentation approaches by inter-arrival time.

We further investigate the performance of the different web page segmentation methods when consid-

ering the impact of other factors such as web page inter-arrival time, browser choice, and the number of

simultaneous tabs. We present results here with respect to different ranges of web page inter-arrival times to
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show its impact on performance in all cases. We also restrict our analysis to the number of SYN segments

traffic feature since it outperforms the number of bytes feature for most web page segmentation methods

tested. We find that:
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Figure 5.11: Impact that the browser choice have on web page segmentation performance.

• Impact of Inter-arrival Time: We first discuss the impact that web page inter-arrival time has on some

performance metrics for different web page segmentation methods. Plots for this impact are provided

in Figures 5.10(a) and 5.10(b). The web page inter-arrival times, which are divided into four groups

(< 5s, 5−8s, 8−10s, and > 10s), are provided on the x-axis of these plots while the true positive rate

and false positive rate are provided on the y-axis of Figures 5.10(a) and 5.10(b), respectively — please

note that these plots include the cumulative measurements taken from each of the 40 repetitions for all

browsers, interarrival time distributions, and tab configurations considered. Figure 5.10(a) shows that

the true positive rate usually increases as the inter-arrival time increases. At one extreme, when the

inter-arrival time is less than 5s, all methods have difficulty detecting web pages — that is, the T PR for

each web page segmentation method is the lowest in this range. This result is expected because pages

with small inter-arrival time are more likely to be considered as a part of the previous web page. At the

other extreme, the T PR for most web page segmentation methods is the highest when the inter-arrival

time is > 10s — the only exception being the heuristic method which has a slightly higher T PR of

.836 in the 8-10s range as compared to a T PR of .811. A higher T PR when the inter-arrival between

web pages is high (>10) is expected since there is additional time for web page traffic from previous

web page downloads to end — this makes it easier for web page segmentation methods to detect

new web page downloads. The T PR between 5-10s for each method is between the performance
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achieved when the inter-arrival time is < 5s and > 10s. More specifically, the performance for each

method, excluding the HMM approach, either increases or remains unchanged in the 5-10s range.

This result suggests that the performance of web page segmentation methods will usually increase or

remain constant as web page inter-arrival times increases. Although, the magnitude of the increase

in performance depends on the web page segmentation approach. For example, Figure 5.10(a) shows

that the T PR of the fused lasso and the heuristic change detection methods increased by over 0.20 in

the 5-10s range, while the performance of the idle time-based methods are largely unchanged. It is

not surprising that the T PR for the idle time-based methods do not change significantly in this range

since many web page downloads continue for a significant amount of time (over 10s) — that is, it is

unlikely that the idle time periods for these methods are satisfied in less than 10s after a web page

download starts. This is also a possible explanation for the poor T PR (< 0.06) for idle time-based

methods when the inter-arrival time is less than 10s.25 The HMM method is unique in that the T PR

moderately decreases (≈ .12) in the 5-10s range. This moderate decrease in performance between the

5-8s and 8-10s range is difficult to explain. Nevertheless, the high T PR when the inter-arrival time is

> 10s (0.58) as compared to the T PR when the inter-arrival time is < than 10s (< 0.18) suggests that

the HMM approach struggles when the inter-arrival time is small.

Figure 5.10(b) shows that the false positive rate is also low for inter-arrival times less than 5s. Similar

to the case with the true positive rate, web page segmentation approaches have difficulty detecting

anything, even false positives, when the inter-arrival time is small. For the 5-8s and the 8-10s inter-

arrival times, we observe an increase in false positives. This is likely due to the “two peak” behavior

we observed for some pages in Figure 5.2 (i.e., detecting the same page download twice). This

observation is most pronounced with the heuristic method and, to a lesser extent, the fused lasso

approach.26 The idle time-based and HMM approaches are not impacted by this as much because

they tend to group multiple web page downloads into a single download. Most methods have lower

false positive rates when the inter-arrival time is greater than 10s. Overall the fused lasso method has

25 Please refer to Section 5.1 for a discussion on the time series characteristics of time series.

26 Recall that Figure 5.2 shows that traffic features for web pages may peak between the 7-11 second range after the web page
download process started — this observation means that it is possible for change point detection methods to detect web pages
more than once since the web page traffic feature peaks multiple times. For the heuristic change detection method, it is likely that
web pages are being detected twice since Ldelay = 8, which falls within the range where web pages may peak — this is a possible
explanation for the surge in false positive rate during this period. Despite this issue, we still recommend this heuristic method over
the idle-time methods because it can achieve a much higher true positive rate.
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the best performance with respect to being able to achieve both a high true positive rate and a low

false positive rate.

• Impact of Browsers: We next discuss the impact that browser choice has for on web page segmentation

performance. Plots that show the true positive rate and false positive rate across different browsers

for the fused lasso regression method (i.e., the overall best approach) are provided in Figures 5.11(a)

and 5.11(b), respectively — please note that these figures include the cumulative results for the dif-

ferent interarrival time distributions, tab configurations, and browsers for the fused lasso method.

Figure 5.11(a) and Figure 5.11(b) shows that the true positive rate and false positive rate for the fused

lasso regression method (i.e., the overall best approach) is not heavily influenced by browser choice.

This result implies that browser choice should not significantly impact web page segmentation per-

formance “in the wild”.

<5 5−8 8−10 >10

0

0.2

0.4

0.6

0.8

1

1.2

Inter−arrival Time(s)

Tr
ue

 P
os

tiv
e 

R
at

e

 

 

1 Tab
2 Tabs
4 Tabs
8 Tabs

(a) Impact of Tabs: True positive
rate

<5 5−8 8−10 >10

0

0.2

0.4

0.6

0.8

1

1.2

Inter−arrival Time(s)

Fa
ls

e 
Po

st
iv

e 
R

at
e

 

 

1 Tab
2 Tabs
4 Tabs
8 Tabs

(b) Overall Results: False positive
rate

Figure 5.12: Impact that the number of tabs have on web page segmentation performance.

• Impact of Multiple Tabs: We next consider the impact that the number of simultaneously open tabs

in browser window has on web page segmentation performance. Plots that show the impact that the

number of tabs have on the true positive rate and false positive rate are provided in Figures 5.12(a)

and 5.12(b), respectively. Please note that while these figures include the cumulative measurements

from the different tab configurations, interarrival time distributions, and browsers considered in this

study, it only includes the performance of the fused lasso regression method (i.e., the overall best

approach). The results in Figure 5.12(a) and Figure 5.12(b) show that the number of tabs that are

open may have an impact on performance. In particular, the true positive and false positive rates for

the data collected when there are 8 simultaneous tabs open are consistently worse than for the case
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when there are 1, 2, and 4 tabs. This result implies that it is expected that increasing the number of

tabs beyond a modest number (in this case 4) will decrease the performance of web page segmentation

methods. This is likely due to a higher amount of background traffic from multiple web pages that

essentially decreases the effective inter-arrival time of web requests and increases the interleaving of

traffic from different pages.

Impact of Resolution Parameter r: The parameters in Table 5.3 were optimized for when the resolution,

r, is 250ms. We also evaluated against several values for r, including 100ms, 500ms, and 1000ms. We

found that r has little impact on the performance of idle time methods and a modest impact on change point

detection methods. The little impact on idle time approaches is to be expected — r will only impact the idle

time-based approaches if the optimal value for idle time is less than r, which is not the case (greater than

9 seconds). However, r does have an impact on change point detection methods. This is mainly because

changing the resolution of a time series will impact its perceived burstiness (i.e., lower values of r will

appear more bursty). We find that we can achieve similar performance for all values of r tested by simply

modifying the other parameters of the change point detection methods. This includes either increasing or

decreasing the threshold for the heuristic change detection method, changing the amount of smoothing for

fused lasso regression (i.e., λ and µ), or changing the transition probabilities of the HMM.27 The optimal

parameterization and performance of each web page segmentation method for different r is provided in

Appendix 13.

Impact of Ground Truth Parameter s: Please recall that the ground truth times used for our performance

analysis allows for a delay of s seconds which accounts for the minor differences between ground truth times

and the web page segmentation method times. All of the results shown in this section were computed where

s = 1 second. To determine whether s impacts the conclusions from the analysis conducted in this chapter,

we recompute results using different values of s. More specifically, we compute results where s is .250,

.500, 1, and 5 seconds — these results are shown in Table 5.5. Table 5.5 shows results for the T PR and

FPR metrics — results for the precision and F-score metrics are provided in Appendix 13.28 We find that,

27 The value of r may also be influenced by environmental factors such as link speed and end-host performance. We do not consider
these factors in this chapter.

28 Please note that the conclusions drawn from these metrics are similar since they are functions of the same primary metrics (i.e.,
number of true positives, false positives, and false negatives).
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TABLE 5.5: Impact of s Parameter on Web Page Segmentation Performance (r = 250ms)

Segmentation Approach s (seconds) TPR (SYNs) FPR (SYNs) TPR (Bytes) FPR (Bytes)
Idle-time method .250 .4148 .0869 .0889 .0770
Idle-time method (threshold) .250 .4016 .0328 .8951 .7623
Heuristic Change Detection .250 .7320 .2038 .8393 .5476
Fused Lasso .250 .8217 .0629 .8115 .1863
HMM .250 .5079 .0584 .0257 .0107
Idle-time method .500 .4213 .0804 .0896 .0763
Idle-time method (threshold) .500 .4112 .0231 .8956 .7618
Heuristic Change Detection .500 .7411 .1947 .8410 .5459
Fused Lasso .500 .8250 .0596 .8147 .1831
HMM .500 .5214 .0449 .0260 .0104
Idle-time method 1 .4338 .0679 .0998 .0661
Idle-time method (threshold) 1 .4150 .0194 .8998 .7576
Heuristic Change Detection 1 .7613 .1745 .8574 .5295
Fused Lasso 1 .8415 .0431 .8230 .1748
HMM 1 .5354 .0309 .0280 .0084
Idle-time method 5 .4576 .0441 .1104 .0555
Idle-time method (threshold) 5 .4173 .0171 .9543 .7031
Heuristic Change Detection 5 .8141 .1217 .8812 .5057
Fused Lasso 5 .8522 .0324 .8754 .1224
HMM 5 .5531 .0132 .0294 .0070

as expected, increasing s increases the true positive rate and decreases the false positive rate for all methods.

This occurs because the range for ground truth time becomes more “loose” which increases the number of

detections that are classified as a true positive — that is, false positives that were previously outside the

ground truth time range with small s become true positives with larger s. While increasing s modifies the

true positive and false positives rates of all methods, it does not change the conclusions drawn from the

performance analysis conducted in this section. In other words, fused lasso outperforms all other methods

and change point detection methods outperform idle time-based methods.

5.4 Evaluation With Real User Data

5.4.1 Real User Data Collection

We next evaluate the segmentation approaches using data collected from browsing sessions by real users.

Our motivation in doing so is to: (i) include in our dataset, personalized pages as well as those with user-

interactive content; (ii) include pages that are not restricted to only the top-250 U.S. web sites; and (iii) use

real web browsing data to study the impact of segmentation performance on application domains that rely
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on web traffic analysis [Ihm and Pai, 2011].

TABLE 5.6: Overview of Real User Browsing Dataset (40 users)

Property/Metric Min Median Mean Std Max Total
# Web page downloads (per user) 5 41 39 17 90 1567
# Web page downloads in Top 250 (per user) 0 22 24 16 71 980
Web page IAT statistics (among all users) 1s 10s 24s 42s 507s N/A

We collect data by recruiting 40 real users in an IRB approved study [Sanders and Kaur, 2015c]. We

provide the users with a desktop machine running Mac OSX 10.9.4. We instruct the users to browse the

Internet using Chrome v 37.0.2062.124 for 15-20 minutes. The users are encouraged to do whatever type of

web activity they desire, including visiting sites that host dynamic content such as Facebook and Youtube

— in fact, many users visited such sites. We record the browser history and the tcpdump trace for the web

browsing sessions. The browser history is used to determine the ground truth web page download times by

matching the browsing logs with the traffic observed in the traffic logs, similar to how it was performed for

the synthetic data collection — please note, however, that we are not able to track tab usage for the real user

dataset. A summary of some of the properties of this dataset, such as the number of web page downloads

observed, the number of web pages that were among the top 250 web sites, and web page interarrival time-

related statistics, are provided in Table 5.6.29

It is also important to note that we do not re-parameterize the web page segmentation approaches on the

real user data — in practice, we will not be able to tune our methods for real traffic observed “in the wild.”

Thus, we choose to use the optimal parameters determined from the synthetic data analysis for the real data

analysis — this reduces the odds of overfitting.

5.4.2 Real User Browsing Data Results

Overall Performance Results: Table 5.7 shows the overall true positive and false positive rates for the

real data, while Figure 5.13(a) and Figure 5.13(b) shows the impact inter-arrival time have on true positive

and false positive rates, respectively. We find that:

• Similar to the analysis using synthetic data, change point detection methods usually have a higher

29 We use abbreviations for a number of terms in Table 5.6 for conciseness — specifically, std is short for standard deviation, min is
short for minimum, and max is short for maximum. Also, please refer to Section 5.5.1 for a plot of the cumulative distribution of
the interarrival times for the real user browsing data.
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TABLE 5.7: Overall Performance of Segmentation Methods for Real Data

Segmentation Approach TPR/Recall FPR Precision F-score
Idle-time method (Number of SYNs) .4107 .3690 .5267 .4615
Idle-time method (Number of Bytes) .0759 .2128 .2629 .1178
Idle-time method with threshold .4299 .1355 .7603 .5492
Heuristic Change Detection Method .6610 .3636 .6451 .6530
Fused Lasso .5701 .2150 .7261 .6387
HMM .4567 .2620 .6354 .5314

F-score metric than idle time-based approaches. More specifically, the best performing methods are

fused lasso and the heuristic change method which have F-scores of .6387 and .6530, respectively —

though, the overall performance observed when considering real data is worse than the performance

for synthetic data. Generally speaking, many of the issues we identified in the synthetic data evaluation

occur in real data. Figure 5.14(a) shows an example of where a change point detection method (fused

lasso) performs in a manner that is fairly expected. This includes grouping web pages with small

inter-arrival time together (i.e., around the 310s part of the plot).

• Overall, web page segmentation approaches perform worse on real user data than on the synthetically

generated web browsing data. We believe that this is due to a number of factors, many of which boil

down to an increase in automatically downloaded traffic that does not correspond to a “new web page

download”, and the presence of web pages with traffic characteristics that makes web page segmen-

tation difficult. Despite this, the best segmentation methods can still identify web page segments with

inter-arrival times higher than 10s with true positive rate of approximately 70%. However, the false

positive rate is also higher. We discuss some of the possible causes for this behavior below.

Issues with Automatically Generated Traffic: Figure 5.14(b) shows an example of where a user visited

a web page that played a video. Based on the this user’s browsing history, and visiting the page that the user

browsed, we believe that the user played a video within a web page at around the 80s portion of the plot.

Once we played the only video that was present on this page, we found that a new video automatically plays

after the previous video finishes. Thus, we believe that the multiple increases in traffic, at approximately

the 150s, 250s, 390s, and 430s parts of the plot, are likely due to a new video loading immediately after

each video ends — please note that we manually verified that (i) these new videos generate new traffic and
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(a) Real Data:True positive rate
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(b) Real Data: False positive rate

Figure 5.13: Plot showing the performance of using web page segmentation approaches using real
data.

(ii) the user did not click on a new web page during these time periods. The segmentation approaches are

technically doing what they are designed to do, which is detect increases in traffic. However, in this case,

an increase in traffic does not correspond to a web page download as requested by the user (which is our

definition of a web page download). Thus, this behavior of automatically starting a new video within an

already loaded page gets classified as a false positive which negatively impacts segmentation performance.

We also find a more troublesome case where a web page can generate such random and sporadic network

activity that web page segmentation approaches essentially become unusable. Figure 5.15(a) shows an

example of a browsing stream that is rarely idle. This is surprising given that this is a plot of the number

of SYN segments traffic feature — similar behavior is observed for the number of bytes traffic feature.

Figure 5.15(b) shows that this high degree of noise makes web page segmentation via fused lasso particularly

difficult (i.e., a high false positive rate). Upon further inspection, we find that this user was browsing on a

forums web page which continuously communicates with the client long after the page has loaded. This is

the only example web page in the real user data that we found that had characteristics that were this sporadic

for both the number of SYNs and number of bytes time series.

Discussion of Web Page Download Definition In Section 5.1, we define a web page download as an event

that is initiated when a user either (i) enters a URL into the browser window, (ii) clicks on a hyperlink, and/or

(iii) enters text in a browser that results in a new web page such as a search query and its corresponding result
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(a) Example when segmentation
“works”
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(b) Auto generated traffic: Video

Figure 5.14: Examples of where web page segmentation works as expected for real data.

web page. The web page segmentation methods that we consider are evaluated based on their ability to detect

the web page download event as it is defined. However, we found that there are scenarios where a web page

segmentation method may confuse an increase in traffic as a new web page download when it actually

corresponds to some other type of event — these include cases where traffic is automatically generated. It

is important to note that, in such scenarios, an increase in traffic that do not correspond to a new web page

download may correspond to an event that may be of interest. For instance, being able to detect when a new

video is playing within a web page may be useful for monitoring user-interactions with a web page [Neasbitt

et al., 2014]. One approach for addressing scenarios where web page segmentation methods identify false

detections is to assume that methods exist, essentially a classifier, that can correctly label detections — such

methods must also be able to differentiate between web page downloads, user-interactions, noise, and other

events of interest.30 The definition of a web page, or rather an event, when using a web page segmentation

method will depend on the classifier’s ability to label detections according to the correct event. In this work,

we only consider the case where we assume all detections correspond to web pages.

30 This classification is beyond the scope of this work.
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Figure 5.15: Examples of where web page segmentation fails for real data.

5.5 Impact of Web Page Segmentation Performance on Web-related Applications

In the previous section, we found that fused lasso outperforms all other methods and change point

detection methods outperform idle time-based methods. While the metrics we base our performance analysis

on are effective for determining which web page segmentation method performs the best overall, they do

not provide insight on whether web page segmentation method choice has a measurable impact on different

web traffic analysis domains. In this section, we explicitly consider this by conducting two case studies to

ascertain if web page segmentation choice impact the application domains of (i) user behavior modeling and

(ii) web page classification. An overview of these application domains, along with some details about how

web page segmentation is applied to each, is provided below:

• User behavior modeling: In many scenarios, organizations are interested in the click behavior of users

to understand how they use different web-related services [Neasbitt et al., 2014, Chierichetti et al.,

2012, Wang et al., 2013]. For example, in security applications, the number of user-invoked clicks

(that is, the number of web page requests) within a browsing stream can be used to help determine

whether a user has malicious-intent or not [Wang et al., 2013], while in web performance applications

this information can be used to determine whether users are engaged in a web page. Web page

segmentation methods, which estimate when a web page is requested, can be applied directly on

traffic to obtain two important metrics that are useful for such problems: 1) the number of clicks
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observed in a browsing stream; and 2) the average inter-arrival time between clicks. In our first case

study, we use statistical tests to determine whether the web page segmentation approaches that we

study are able to estimate these metrics in a manner that is statistically equivalent to the ground truth.

If successful, then these methods can be used to model the click behavior of users.

• Web page classification: In Chapter 4, we discuss and evaluate the problem of web page clas-

sification. We showed that web pages can be classified according to several orthogonal labeling

schemes [Sanders and Kaur, 2015b]. These include labeling schemes that can be used for traffic

engineering applications such as the video streaming-based labels, and labeling schemes that can be

used for user profiling such as the genre-based labels. However, a critical step in applying web page

classification, or even web page identification [Liberatore and Levine, 2006], to traffic “in the wild” is

to first use a web page segmentation approach to separate browsing streams into individual web page

downloads. If this step is ignored, classification methods may incorrectly classify traffic by treating

multiple web page downloads as if it were single web page — this is detrimental to the interpretation

of the classification results. In this section, we explicitly study whether the choice of web page seg-

mentation approach impacts the performance of web page classification by first applying web page

segmentation on the browsing streams and then performing web page classification on the segmented

traffic.

We use both synthetic and real user browsing data to evaluate the impact that web page segmentation

methods have on these different applications. We consider the domains of estimating user browsing behavior

and web page classification in Section 5.5.1 and Section 5.5.2, respectively. We also discuss the implications

of applying web page segmentation to these application in Section 5.5.4.

5.5.1 Estimating User Browsing Behavior

Two key metrics of user browsing behavior that should be obtainable from an effective web page seg-

mentation approach are the number of clicks made by a user (i.e., number of web page downloads) and the

average inter-arrival times of those web pages. In our first case study, we compare the ground truth values

for these metrics with those calculated after applying web page segmentation to determine whether there

is a statistically significant difference between the two. We use paired t-tests for this analysis. A paired

t-test yields a p-value that indicates whether the two sets of measurements (i.e., ground truth vs estimated
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web page segmentation) are similar. Lower p-values (generally p-values < .05), correspond to statistically

significant differences, while higher p-values indicate that the two sets are statistically equivalent.

TABLE 5.8: Table of P-values for Testing Whether Web Page Segmentation Can Approximate User
Browsing Metrics (Synthetically Generated Web Browsing Data)

Segmentation Approach Number of Clicks Average IAT IAT Distribution
Idle-time method (Number of SYNs) 1.05×10−51 2.94×10−19 6.13×10−109

Idle-time method (Number of Bytes) 9.36×10−106 4.78×10−15 4.65×10−74

Idle-time method with threshold 1.23×10−37 1.06×10−27 3.28×10−100

Heuristic Change Detection Method 1.50×10−31 5.68×10−35 7.31×10−55

Fused Lasso 2.42×10−4 7.02×10−43 4.84×10−31

HMM 4.31×10−5 3.98×10−57 3.85×10−91

Evaluation Using Synthetic Data Table 5.8 shows the calculated p-values for this analysis using synthet-

ically generated browsing streams — this is the same synthetic dataset that was used in the previous section.

We find that none of the web page segmentation approaches are able to approximate the number of clicks

or the average inter-arrival time metrics — that is, not a single approach yielded a p-value that was greater

than .05 for either metric.

We next investigate whether the web page segmentation methods can approximate the empirical dis-

tribution of the interarrival time. We used the Kolmogorov-Smirnov test, a well-known statistical test that

yields a p-value that indicates whether the two empirical distributions are similar, to determine this. The

p-values that correspond to this test are also shown in Table 5.8. These p-values show that these empiri-

cal distributions are not statistically equivalent (i.e., p-values < .001) — that is, it is likely that web page

segmentation methods cannot approximate the empirical distribution of interarrival times.

Figure 5.16 shows cumulative distribution plots which compare the interarrival time distributions of the

web page segmentation methods to the ground truth — the different web page segmentation approaches

used are labeled in the captions of the Figure. We find that the cumulative distributions for each of the web

page segmentation methods do not significantly overlap with the cumulative distribution of the ground truth.

This result is expected since the results of our distribution comparison tests, shown in Table 5.8, all yielded

p-values that were very small (< 10−10).

We also find that the cumulative distributions for most of the change point detection methods considered

are consistently to the right of the ground truth distribution. This is likely because the interarrival times for
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web pages that are “missed” by web page segmentation approaches are added to the interarrival time of the

next page that is detected. That is, every web page that is missed increases the interarrival time for the next

web page that is subsequently detected. This cumulative increase in inter-arrival time is likely a contributing

factor for why none of the web page segmentation methods yield interarrival time distributions that are sta-

tistically equivalent to the ground truth. The web page segmentation approaches that are not consistently to

the right of the ground truth distribution are the heuristic change detection method and the idle time method

with SYNs. We believe these exceptions are related to the fact that these methods have the highest false

positive rates among the methods considered — more specifically, Table 5.4 shows that heuristic change

detection method has a FPR of .2038 while the idle time method with SYNs has a FPR of .0869. Indeed,

each additional false positive resets the inter-arrival time to zero which negates the cumulative increase in

inter-arrival time that we previously discussed — that is, higher false positive rates are likely correlated to

a reduction in interarrival time. This is also a possible explanation why the cumulative distribution for the

heuristic change detection method, which has a FPR that is > 2× the FPR of all other methods, the farthest

to the left of the ground truth distribution as compared to the cumulative distributions for the other web page

segmentation methods.

TABLE 5.9: Table of P-values for Testing Whether Web Page Segmentation Can Approximate User
Browsing Metrics (Real User Web Browsing Data)

Segmentation Approach Number of Clicks Average IAT IAT Distribution
Idle-time method (Number of SYNs) 2.27×10−4 7.93×10−5 6.7252×10−30

Idle-time method (Number of Bytes) 5.22×10−8 1.10×10−4 3.7947×10−29

Idle-time method with threshold 4.63×10−7 1.04×10−6 4.7784×10−50

Heuristic Change Detection Method .7174 .5421 2.4585×10−10

Fused Lasso .1182 .3726 4.6371×10−13

HMM 5.40×10−3 4.74×10−2 1.1652×10−54

Evaluation Using Real User Data Table 5.9 shows the calculated p-values for this analysis using real

user browsing data — this is the same real user browsing dataset that we used in the previous section. In this

scenario, we find that the p-values for the Heuristic Change Detection Method and the Fused Lasso method

are above .05 for both the number of clicks and average inter-arrival time metrics. This is different from

our analysis using synthetic data where neither method yielded p-values higher than .05 for these metrics.

Based on our analysis in the previous section, it is likely that small interarrival times are the root cause
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Figure 5.16: Distribution comparison between ground truth web page inter-arrival time and the web
page segmentation approximated inter-arrival times (Synthetic Dataset).

of the disparity in the performance for web page segmentation approaches — that is, it is likely that the

performance difference between the real user browsing data and the synthetically generated data is due to

differences in their interarrival time distributions. To investigate this, we plot the cumulative distributions of

the interarrival times for these two datasets in Figure 5.17. We find that:

• The interarrival time distributions for the real user data and the synthetic data have different charac-

teristics. In fact, the p-value resulting from performing a Kolmogorov-Smirnov test between these is

statistically significant (p = 1.2084×10−78).

• Approximately 10% of the interarrival times for the synthetic data is ≤ 2s, while it is rare for the in-

terarrival time for the real data to be≤ 2s. This is a significant fraction of very small interarrival times

that is exclusive to the synthetic data. It is likely that these small interarrival times negatively impact
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the results for the web page segmentation methods since their corresponding web page downloads

will be difficult to detect using the approaches that we consider.

• In summary, the web page segmentation methods have more difficulty approximating the number of

clicks and average interarrival time metrics for the synthetic dataset than the real dataset.
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Figure 5.17: Distribution comparison between synthetic and real user browsing interarrival time
distributions.

Next, we used the Kolmogorov-Smirnov to determine whether web page segmentation methods can

approximate the complete empirical distribution of web page inter-arrival times using real user data — the p-

values that correspond to this are shown in Table 5.9. These p-values show that these empirical distributions

are not statistically equivalent. The cumulative distributions for the web page interarrival times as computed

using the heuristic change method and the fused lasso regression method are provided in Figure 5.18(a)

and Figure 5.18(b), respectively — these plots also include the ground truth cumulative distribution as a

reference. These plots show that even the best performing web page segmentation approaches have difficulty

identifying web pages with low inter-arrival time. Despite this limitation, being able to approximate the

average web page inter-arrival time is a significant enabler for driving simulations and modeling problems

in many application domains.

These results imply two things: 1) some user browsing metrics can be derived from real user browsing

data using web page segmentation approaches; and 2) the web page segmentation approach used can make
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a significant difference in estimating such metrics.
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Figure 5.18: Distribution comparison between ground truth web page inter-arrival time and the web
page segmentation approximated inter-arrival times (Real Dataset).

5.5.2 Impact Web Page Segmentation Methods have on Web Page Classification Performance

We next investigate whether web page classification methods are impacted by the performance of web

page segmentation approaches. To do this, we apply web page classification on browsing streams that have

been segmented using different web page segmentation approaches. More specifically, we use the KNN

algorithm,31 the best performing classification method in Chapter 4, to classify web pages according to

different labeling schemes when applied to browsing streams that are segmented using different web page

segmentation methods. For clarification we refer to the browsing streams that are segmented using a web

page segmentation approach as web page segments — each web page segment includes all traffic that was

transferred within each TCP connection established between web page inter-arrivals. This definition of a

web page segment means that traffic that is transmitted in persistent TCP connections after a new web page

download starts is included in the previous web page download.

Metrics used for evaluation In this case study, it is possible for the performance of the web page segmen-

tation method to indirectly impact the performance of the web page classification method that is applied to

the segmented traffic. This is because the web page segments that are input to the web page classification

31 Where K = 1 and the distance function is city block.
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method are determined by the web page segmentation method — these may not align with the ground truth

web page segments. Thus, there are scenarios where the web page segments that are being classified differ

from the ground truth web page segments. This is an issue because it impacts the interpretability and value

of traditional metrics such as the number of false positives and the number of true positives. For example,

if we consider a web page traffic trace that includes a single web page download of class A but the web

page segmentation method detects two web page downloads — how should we evaluate the performance?

Clearly, we are classifying two web pages where there is only one web page considered in the ground truth.

It is possible that we correctly classify the web page as class A in one segment, and that we incorrectly

classify the web page as class B in the other segment — one may consider such a classification as being one

true positive and one false positive. It is also possible that we correctly classify both web page segments

as class A. For this case, should we consider the results as two true positives since they both categorize the

same page correctly, or should we consider it as one true positive and one false positive since, according to

the ground truth, there is only one web page to classify? Indeed, it is important to clearly define how we

address such scenarios.

We address this issue by ensuring that at most one web page segment q j, as identified using a web page

segmentation approach, can be considered as either a true positive or a false positive per ground truth web

page segment ti — other web page segments q j that overlap with a ground truth segment ti are considered

duplicates.32 In practice, this is done by first checking whether any of the segments q j, which overlap with

ground truth segment ti, share the same label as ground truth segment ti. If at least one segment q j shares

the same label as a segment ti, a single segment q j is selected as a true positive – if not, a single segment q j

is chosen to be a false positive.33 We prioritize the results primarily so that the labeling procedure of true

positives and false positives is consistent across browsing streams. Prioritizing the selection of true positives

over false positives biases results towards a higher number of true positives. We do this because we assume

that true positives are a better match with the ground truth. We do not believe that this is a significant

problem since (i) our performance evaluation is largely relative to the performance of different web page

segmentation methods and (ii) we use other metrics such as the number of duplicate false positives and the

number of duplicate true positives to quantify the degree of overlapping segments in our analysis. Details

32 Either duplicate true positives, duplicate false positives, or duplicate positives. We described these in more detail later.

33 In both cases, the segment that is selected prioritized according to ascending temporal order — that is, segments that occur first
take priority in labeling.
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Algorithm 4 Pseudocode for Labeling Segmented Web Pages (Phase 1 and 2)
input: q, t . q and t are ordered temporally
initialize: Q as length of q, and T as length of t
initialize: qlabels to array of length Q
initialize: tlabels to array of length T . Phase 1:

1: for i = 0,1, ....,T do
2: for j = 0,1, ....,Q do
3: if qlabels j equals TruePositive OR tlabelsi equals TruePositive then
4: continue
5: end if
6: if ti overlaps with q j AND Label(ti) equals Label(q j) then
7: qlabels j = TruePositive
8: tlabelsi = TruePositive
9: break

10: end if
11: end for
12: end for . Phase 2:
13: for i = 0,1, ....,T do
14: if tlabelsi equals TruePositive then
15: continue
16: end if
17: for j = 0,1, ....,Q do
18: if qlabels j equals TruePositive OR qlabels j equals FalsePositive then
19: continue
20: end if
21: if ti overlaps with q j AND Label(ti) not equals Label(q j) then
22: qlabels j = FalsePositive
23: tlabelsi = FalsePositive
24: break
25: end if
26: end for
27: end for

on how we define such metrics (e.g., number of duplicate true positives and duplicate false positives) for a

number of different scenarios are provided below:

• True positives: A true positive occurs when a web page segment q j, as identified using a web page

segmentation method, is classified using the same label associated with at least one ground truth web

page segment ti in which it overlaps with in time. Please note, however, that multiple ground truth

web page segments, ti, may overlap with a single web page segment q j. This is because, at times,

web page segmentation methods may not detect web page downloads. Also note, that multiple web
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page segments q j may overlap with a single ground truth web page segment ti. In either case, there is

at most one true positive per ground truth segment. The true positive rate (TPR) is calculated as the

number of true positives divided by the number of web page downloads.

• Duplicate true positives: A duplicate true positive occurs when multiple web page segments q j are (i)

correctly classified and (ii) overlap in time with a web page segment ti — this occurs when a web page

segmentation method is overly aggressive when segmenting web page traffic. For example, a scenario

where there are three q j segments that are correctly classified with the same label as ti, will yield 1

true positive and 2 duplicate true positives. The duplicate true positive rate (DTPR) is calculated as

the number of duplicate true positives divided by the number of web page downloads.

• False positives: A false positive may occur when a web page segment q j is incorrectly classified for

at least one of the segments t in which it overlaps with in time. There can be at most one segment q j

that can be categorized as a false positive per ground truth segment. Also, a ground truth segment ti

cannot have multiple segments q j that are a labeled as a true positive or false positive — that is, the

sum of the number of true positives and false positives for all segments q j that overlap with a single

web page segment t must be less than or equal to 1. The false positive rate (FPR) is calculated as the

number of false positives divided by the number of web page downloads.

• Duplicate false positives: A duplicate false positive occurs when (i) a web page segment q j does not

share the same label with all of the segments t in which it overlaps with in time and (ii) another web

page segment q j exists that is either a true positive or false positive for segment t — please note that

a duplicate false positive cannot exist for web page segment t unless another segment q is categorized

as a true positive or a false positive. Duplicate false positives and duplicate true positives are assigned

only after all true positives and false positives have been assigned. The duplicate false positive rate

(DFPR) is calculated as the number of duplicate false positives divided by the number of web page

downloads.

• Duplicate positives: It is important to note that it is possible for a single web page segment q j to

serve as both a duplicate false positive and a duplicate true positive. This may occur when a single

web page segment q j overlaps with multiple web page segments ti — specifically, when segment q j

is a duplicate true positive for one segment ti in which it overlaps with in time and is a duplicate false
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positive for the other segment. In such scenarios, we denote the web page segment q j as a duplicate

positive. The duplicate positive rate (DPR) is calculated as the number of duplicate positives divided

by the number of web page downloads.

• False negatives: A false negative occurs when a web page segment q does not exist to be classified

as any of the above metrics for a ground truth web page segment ti.34 This occurs when a web

page segmentation method is too conservative and fails to detect web page downloads. The false

negative rate (FNR) is calculated as the number of false negatives divided by the number of web page

downloads.

Pseudocode for the procedures we use to label web page segments according to the above metrics is

provided in Algorithms 4 and 5. These procedures includes 4 main phases that are denoted as Phase 1,

Phase 2, Phase 3, and Phase 4, respectively. Phase 1 and Phase 2 are provided in Algorithm 4, while Phase

3 and Phase 4 are provided in Algorithm 5. The purpose of Phase 1 is to determine which segments q j and

ti should be labeled as true positives — please note that the Label(A) method outputs the classification label

of A (either a ground truth label or web page classification-based label). Phase 2 is similar to Phase 1, except

the purpose is to determine which segments q j and ti should be labeled as false positives. Phase 3 determines

which segments q j should be labeled as duplicates (either duplicate true positives, duplicate false positives,

or duplicate positives), while Phase 4 determines which segments ti should be labeled as false negatives.

A summary of some of the primary ways in which these metrics should be interpreted is provided below:

• Web page segments q and web page segments t have the same number of true positives and false

positives. That is, there is a one-to-one match between each true positive and false positive between

web page segments q and t.

• Duplicate true positives, duplicate false positives, and duplicate positives only occur for web page

segments q — these are best viewed as extra or alternative segments that were not matched as a true

positive or false positive with a web page segment ti. The sum of these is a measure of the number

of times a web page segmentation method detected extra web pages. Thus, high values for DT PR,

DFPR, and DPR are primarily due to overly aggressive web page segmentation. Please note that this

means that the DT PR, DFPR, and DPR for the ground truth segmentation are 0.

34 Each web page segment q j must be categorized as either a true positive, false positive, duplicate false positive, duplicate true
positive, or duplicate positive.
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Algorithm 5 Pseudocode for Labeling Segmented Web Pages (Phase 3 and 4)

input: q, t, qlabels, tlabels, Q, T . Phase 3: Continued from Phase 2
1: for j = 0,1, ....,Q do
2: if qlabels j equals TruePositive OR qlabels j equals FalsePositive then
3: continue
4: end if
5: f true = 0
6: f f alse = 0
7: for i = 0,1, ....,T do
8: if ti overlaps with q j AND Label(ti) not equals Label(q j) then
9: f f alse = 1

10: else if ti overlaps with q j AND Label(ti) equals Label(q j) then
11: f true = 1
12: end if
13: end for
14: if f f alse equals 1 AND f true equals 1 then
15: qlabels j = DuplicatePositive
16: else if f f alse equals 1 then
17: qlabels j = DuplicateFalsePositive
18: else if f true equals 1 then
19: qlabels j = DuplicateTruePositive
20: end if
21: end for

. Phase 4:
22: for i = 0,1, ....,T do
23: if tlabelsi equals TruePositive OR tlabelsi equals FalsePositive then
24: continue
25: else
26: tlabelsi = FalseNegative
27: end if
28: end for

out put : qlabels, tlabels

• False negatives only occur for ground truth web page segments t. The number of false negatives

is a measure for the number of times a web page segmentation method failed to detect a web page

download — thus, the FNR for the ground truth segmentation is 0.

• Web page segments t can only be labeled as true positives, false positives, and false negatives. Thus,

the sum of the rates for these is equal to 1.

We are able to derive traditional classification performance metrics, such as precision, recall, and F-

score, using the number of true positives, false positives, and false negatives observed in our results. The
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number of duplicate true positives and duplicate false positives are used to give a measure of the impact

that excessive segmentation of web page traffic may have on the interpretation of the web page classifica-

tion results. Conversely, the number of false negatives is used to give a measure of the impact of overly

conservative segmentation.

Evaluation Using Synthetic Browsing Data For the evaluation using synthetic data, we consider the

same synthetic dataset used in the previous Section 5.3. For each web page browsing stream in this dataset,

we classify each web page segment (as determined using a web page segmentation approach) according

to each of the 4 orthogonal labeling schemes — the performance for the genre-based, navigation-based,

video streaming-based, and target device-based labeling schemes are provided in Table 5.10, Table 5.11,

Table 5.12, and Table 5.13, respectively. We find that:

TABLE 5.10: Classification Performance Using Web Page Segmentation for Synthetic Data (Genre-
based Labels)

Segmentation Approach TPR/Recall FPR Precision F-score
Idle-time method (Number of SYNs) .2765/.3148 .1216 .6945 .4332
Idle-time method (Number of Bytes) .0513/.0576 .1093 .3194 .0976
Idle-time method with threshold .2416/.2671 .0954 .7169 .3892
Heuristic Change Detection Method .4401/.6611 .3338 .5687 .6114
Fused Lasso .4812/.6673 .2789 .6331 .6497
HMM .3140/.3697 .1507 .6757 .4779
Ground Truth Segmentation .6234/1 .3766 .6234 .7680

DTPR DFPR DPR FNR
Idle-time method (Number of SYNs) .0319 .0591 .0126 .6019
Idle-time method (Number of Bytes) .0012 .0030 .0011 .8394
Idle-time method with threshold .0052 .0288 .0023 .6630
Heuristic Change Detection Method .0571 .0845 .0203 .2261
Fused Lasso .0619 .0608 .0018 .2399
HMM .0322 .0521 .0173 .5353
Ground Truth Segmentation 0 0 0 0

• Change point detection methods outperform idle time-based methods: Table 5.10 shows that, accord-

ing to the F-score metric, the change point detection methods outperform the idle time-based methods

(.09-.43 vs .47-.64), where the fused lasso method performs the best (.6497) — we observe similar

results when considering the navigation-based, video streaming-based, and target device-based label-

ing schemes. This result is expected since change point detection methods more accurately segments
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TABLE 5.11: Classification Performance Using Web Page Segmentation for Synthetic Data
(Navigation-based Labels)

Segmentation Approach TPR/Recall FPR Precision F-score
Idle-time method (Number of SYNs) .3172/.3451 .0810 .7966 .4816
Idle-time method (Number of Bytes) .1208/.1258 .0398 .7522 .2156
Idle-time method with threshold .2763/.2942 .0607 .8199 .4330
Heuristic Change Detection Method .5728/.7170 .2011 .7401 .7284
Fused Lasso .6007/.7146 .1534 .7966 .7534
HMM .3780/.4139 .0867 .8134 .5486
Ground Truth Segmentation .6811/1 .3189 .6811 .8103

DTPR DFPR DPR FNR
Idle-time method (Number of SYNs) .0443 .0341 .0252 .6019
Idle-time method (Number of Bytes) .0037 .0009 .0006 .8394
Idle-time method with threshold .0244 .0086 .0033 .6630
Heuristic Change Detection Method .0980 .0414 .0225 .2261
Fused Lasso .0783 .0345 .0117 .2399
HMM .0406 .0450 .0160 .5353
Ground Truth Segmentation 0 0 0 0

web page browsing sessions than idle time-based methods.35 It is also important to note that other

metrics also usually perform better for the change point detection methods than for idle time-based

methods. For instance, the true positive rates for change point detection methods are higher than the

true positive rates for the idle time-based methods, while the false negative rates are lower.36 One

important exception to this is the observation that the false positive rate is higher for change point

detection methods than for the idle time-based methods (.09-.20 vs .06-.08). We believe that this is

due to the fact that change point detection methods are able to detect more web page downloads than

idle time-based methods — thus, there are more opportunities for web page classification methods to

both correctly classify and incorrectly classify web page segments. Overall, the higher false positive

rates (and true positive rates) for the change point detection methods is a benefit to the performance of

these techniques — we know this because, as noted before, the F-score calculated for these methods

is higher than the F-score for idle time-based methods.

• Ground truth segmentation outperforms all methods: Table 5.10, Table 5.11, Table 5.12, and Ta-

ble 5.13 shows that the ground truth web page segmentation outperforms all the other web page

35 Please refer to Table 5.4.

36 We discuss the false negative rate in more detail later.
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segmentation methods when using the F-score metric. Indeed, this result is expected since web page

classification should perform better when more accurate web page segments are provided. Never-

theless, this result is important because it supports the premise that accurate web page segmentation

improves web page classification performance — please note that this is also supported by the obser-

vation that change point detection methods outperform idle time-based methods.

The difference in the classification performance between the ground truth web page segmentation and

the other web page segmentation methods is non-negligible. In particular, the decline in the F-score

metric between the ground truth segmentation and the next best performing web page segmentation

method ranges from 7-17% depending on which labeling scheme is used — please note that the genre-

based labeling scheme exhibits the largest performance decline while the navigation-based labeling

scheme exhibits the smallest. It is likely that this 7-17% drop in F-score is significant enough to

impact the utility of web page classification in the “real world” where the ground truth segmentation

is not known.

• High false negative rates: We find that every web page segmentation method for the synthetic dataset

has a high false negative rate that is at least .22 — in fact, some web page segmentation methods have

false negative rates that are as high .84. This high false negative rate is due to the difficulty that web

page segmentation approaches have in detecting web pages in the synthetic dataset. We specifically

highlight the false negative rate as a key metric for reduced classification performance because it

defines an upper bound for the true positive and false positive rates when classification methods are

used in tandem with web page segmentation — indeed, a web page must first be detected in order to

be classified by as classification method.37 Thus, the fairly low F-scores and true positive rates (less

than .75) across all segmentation methods shown in the tables is largely due to the difficulty of web

page segmentation methods to detect web page downloads (i.e, an FNR that is at least .22).

• The number of duplicates is lower than the number of true positives and false positives: We find that

the sum of the TPR and FPR metrics is less than the sum of the DTPR, DFPR, and DPR metrics for

each web page segmentation approach — this result occurs for every labeling scheme considered. This

result means that, for all web page segmentation methods, it is more likely that web page segments

correspond to a single ground truth segment than multiple ground truth segments.

37 For example, a false negative rate of .25 means that the highest possible true positive rate is .75.
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• Labeling scheme choice impacts classification performance: Labeling scheme choice has an impact

on web page classification performance when used in tandem with web page segmentation methods.

For example, when we consider the ground truth segmentation, the best performing labeling scheme

according to the F-score metric is the video streaming-based labeling scheme (.9333) — this is fol-

lowed by the target device-based labels (.8992), navigation-based labels (.8103), and the genre-based

labels (.7680). This result is similar to those discussed in Chapter 4 in that the video streaming la-

beling scheme performs the best, while the target device-based, navigation-based, and genre-based

labeling schemes perform second, third, and fourth, respectively.

We also find that the F-score for each of these labeling schemes when web page segmentation and

web page classification are used in tandem are within .06 of the F-scores presented in Chapter 4.

Though, it is important to note that the F-scores presented in this section are inflated as compared to

the F-scores presented in Chapter 4 — this is due to the fact that the recall metric for the ground truth

segmentation is always one.38 When we compare the T PR (accuracy)39 between these two sets of

results, we observe that the web page segmentation-based results are 9-15% lower than the results in

Chapter 4. The navigation-based labeling scheme suffers the largest performance decline of 15% —

this is followed by performance declines of 12%, 11%, and 8% for the video streaming-based, genre-

based, and target device-based labeling schemes, respectively. It is difficult to determine a concrete

explanation for the different degree of performance declines across the different labeling schemes

since many key factors, such as the impact of overlapping traffic, are difficult to account for.

Evaluation Using Real User Browsing Data For the evaluation using real user browsing data, we focus

on the genre-based (17 classes) and targeted device-based (2 classes) labeling schemes considered in Chapter

4. We consider the genre-based labeling scheme since it is the only labeling scheme that we considered in

Chapter 4 that is straightforward to categorize using web browser history logs. More specifically, all that is

needed is to extract the hostname from the URL and categorize the page according to the genre provided

by Alexa for that hostname — if Alexa does not classify the web page, the label assigned is “Unknown.”

The navigation-based, video-based, and targeted device-based labeling schemes that we use in Chapter 4

38 This is because the false negative rate, according to our definition in this section, is zero for the ground truth segmentation —
thus, the recall, r, calculation simplifies from r = T P

T P+FN to 1.

39 which does not suffer from such inflation issues
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TABLE 5.12: Classification Performance Using Web Page Segmentation for Synthetic Data (Video
streaming-based Labels)

Segmentation Approach TPR/Recall FPR Precision F-score
Idle-time method (Number of SYNs) .3435/.3633 .0547 .8626 .5113
Idle-time method (Number of Bytes) .0841/.0911 .0765 .5237 .1551
Idle-time method with threshold .2719/.2908 .0651 .8068 .4275
Heuristic Change Detection Method .6874/.7525 .0865 .8882 .8147
Fused Lasso .6942/.7431 .0599 .9206 .8224
HMM .3586/.4012 .1061 .7717 .5279
Ground Truth Segmentation .8750/1 .1250 .8750 .9333

DTPR DFPR DPR FNR
Idle-time method (Number of SYNs) .0218 .0499 .0319 .6019
Idle-time method (Number of Bytes) .0029 .0020 .0009 .8394
Idle-time method with threshold .0047 .0279 .0037 .6630
Heuristic Change Detection Method .1246 .0175 .0198 .2261
Fused Lasso .0794 .0241 .0210 .2399
HMM .0642 .0288 .0086 .5353
Ground Truth Segmentation 0 0 0 0

TABLE 5.13: Classification Performance Using Web Page Segmentation for Synthetic Data (Targeted
device-based Labels)

Segmentation Approach TPR/Recall FPR Precision F-score
Idle-time method (Number of SYNs) .3275/.3524 .0707 .8224 .4934
Idle-time method (Number of Bytes) .0719/.0789 .0887 .4477 .1341
Idle-time method with threshold .1641/.1984 .1729 .4869 .2819
Heuristic Change Detection Method .6703/.7485 .1036 .8666 .8032
Fused Lasso .6444/.7287 .1097 .8545 .7866
HMM .3491/.3947 .1156 .7512 .5175
Ground Truth Segmentation .8169/1 .1831 .8169 .8992

DTPR DFPR DPR FNR
Idle-time method (Number of SYNs) .0781 .0120 .0135 .6019
Idle-time method (Number of Bytes) .0041 .0004 .0008 .8394
Idle-time method with threshold .0308 .0032 .0023 .6630
Heuristic Change Detection Method .1302 .0257 .0060 .2261
Fused Lasso .0818 .0301 .0126 .2399
HMM .0747 .0148 .0121 .5353
Ground Truth Segmentation 0 0 0 0
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TABLE 5.14: Classification Performance Using Web Page Segmentation for Real Data (Genre-based
Labels)

Segmentation Approach TPR/Recall FPR Precision F-score
Idle-time method (Number of SYNs) .2317/.3362 .3108 .4271 .3762
Idle-time method (Number of Bytes) .0824/.0976 .1561 .3455 .1522
Idle-time method with threshold .1998/.2259 .1155 .6337 .3331
Heuristic Change Detection Method .4674/.5314 .2646 .6604 .5889
Fused Lasso .4582/.5001 .2338 .6895 .5797
HMM .3810/.4607 .1729 .6878 .5518
Ground Truth Segmentation .6162/1 .3838 .6162 .7625

DTPR DFPR DPR FNR
Idle-time method (Number of SYNs) .1204 .0944 .0224 .4575
Idle-time method (Number of Bytes) .0218 .0227 .0057 .7615
Idle-time method with threshold .0772 .1243 .0486 .6847
Heuristic Change Detection Method .1098 .1554 .0321 .2680
Fused Lasso .0503 .0320 .0108 .3080
HMM .0626 .0947 .0075 .4461
Ground Truth Segmentation 0 0 0 0

cannot be consistently categorized using a URL alone. Please recall that we addressed this problem in

Chapter 4 by manually inspecting each web page download. This is not possible using real user browsing

logs because many users (60%) visited at least one web site that requires login information (so we do not

know specific details such as whether the user was searching for content, watching a video, or even visiting

a mobile-optimized web page).40 However, for the case of the targeted device-based labeling scheme, we

know that the users in our study were using a desktop machine during their browsing session. Thus, we use

the targeted-device labeling scheme since it is reasonable to assume that all of the web pages downloaded

by the real users can be labeled as traditional web pages.

The web page classification results when using the genre-based and target device-based labeling schemes

are shown in Table 5.14 and Table 5.15, respectively. Table 5.14 shows that the F-scores for the change

point detection methods (i.e., heuristic change detection method, fused lasso, and HMM) are higher than

the F-scores for the idle time-based methods for the genre-based labeling scheme — similar observations

can be made for the classification results for the target device-based labeling scheme (Table 5.15). More

specifically, for the genre-based labels, the F-scores for the change point detection methods are between .55-

40 28.16% of the total number of web pages visited by the users in our study requires login information. Also, we found many cases
during our analysis where search queries could not be classified using simple heuristics such as having a “q=” in the URL. Similar
observations were made for mobile optimized web pages which may not include the “m dot” prefix.
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.59, while the F-score for the idle-time based methods are between .15-.37 — the gap between these ranges

is .18. Other key observations that were made from analyzing the other metrics provided in Table 5.14 and

Table 5.15 are similar to the observations made from the synthetic dataset (e.g., high false negative rates and

ground truth segmentation outperforms all other methods).

It is also important to note that the overall performance of web page classification is modest even when

we use the “best” web page segmentation methods for the real browsing streams. In fact, the highest true

positive rate, or accuracy, that we observe for the genre-based labels is less than .42, while the highest true

positive rate that we observe for the target device-based labels is less than .60. Recall, that the classification

performance that we observed for the genre-based and target device-based labeling schemes in Chapter 4 was

.71 and .89, respectively. Overall, this corresponds to approximately a .30 decline in T PR when we consider

the realistic scenario where web pages must be segmented before being classified — other metrics such as

F-score, precision, and recall are impacted in a similar manner. Overall, these performance declines show

that using web page classification in a more realistic scenario than considered in Chapter 4 faces significant

practical challenges. Improvements are needed in order for the web page classification to be more robust to

more realistic traffic. This includes improving the web page segmentation approaches such that the number

of true positives increase, the number of false negatives decrease, and the number of duplicate positives (or

overlapping segments) decrease. This also includes designing web page classification methods that are more

robust to error-prone web page segments.

5.5.3 Evaluation Using User Profiles

Pure classification performance is not the only way to interpret the performance of web page classifi-

cation. For instance, the user browsing profiles considered in Chapter 4, which are constructed using the

frequency of which web pages are classified in a browsing stream, may be useful for gauging user interest.

Thus, we investigate the efficacy of using web page classification to approximate a user browsing profile.

We provide details on our methodology for building user profiles and present classification results that are

based on these profiles in this section.

Building User Profiles In order to build profiles of user browsing behavior we must (i) categorize the

web pages that were visited by a user during their web browsing session and (ii) weight the preference

of each category for each user. We use the Alexa genre to categorize web pages for this study since it
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TABLE 5.15: Classification Performance Using Web Page Segmentation For Real Data (Target device-
based Labels)

Segmentation Approach TPR/Recall FPR Precision F-score
Idle-time method (Number of SYNs) .5202/.4787 .0223 .7746 .5917
Idle-time method (Number of Bytes) .2068/.2136 .0317 .8671 .3428
Idle-time method with threshold .2768/.2879 .0385 .8779 .4336
Heuristic Change Detection Method .6434/.6170 .0886 .9389 .7447
Fused Lasso .5966/.5726 .0954 .9233 .7068
HMM .4787/.5176 .0752 .8642 .6474
Ground Truth Segmentation .7418/1 .2582 .7418 .8518

DTPR DFPR DPR FNR
Idle-time method (Number of SYNs) .1804 .0568 0 .4575
Idle-time method (Number of Bytes) .0258 .0244 0 .7615
Idle-time method with threshold .1639 .0862 0 .6847
Heuristic Change Detection Method .2076 .0850 0 .2680
Fused Lasso .0507 .0424 0 .3080
HMM .1105 .0543 0 .4461
Ground Truth Segmentation 0 0 0 0

straightforward to categorize using web browser history logs.41 Profiles for each user are then generated

by sorting the frequency in which each Alexa genre occurred in the web browsing history for each user.

For example, a user that downloaded 8 web pages in which four web sites were categorized as “News”,

3 web sites categorized as “Business”, and 1 categorized as “Weather” would have a profile of {News,

Business, Weather}, where “News” is the most frequent genre and “Weather” is the least frequent.42 We

build profiles according to the each other the four labeling schemes when considering the synthetic data and

for the genre-based and target device-based labeling schemes when considering the real data.43

Performance of Profile-based Classification We first consider the performance of the profile-based clas-

sification when using the real user browsing data. The user profile-based classification performance for the

genre-based and target device-based labels are shown in Table 5.16 and Table 5.17, respectively.44 The

41 All that is needed is to extract the hostname from the URL and categorize the page according to the genre provided by Alexa for
that hostname — the navigation-based, video-based, and device-based labels that we use in Chapter 4 cannot be consistently/reliably
categorized using a URL alone for the same reasons discussed earlier in this section.

42 Web pages without an Alexa genre are ignored.

43 Please note that we only considered the genre-based and target device-based labeling schemes for the real user browsing data for
the same reasons provided in the previous section.

44 The percentages only include 36 of the 40 users. This is because a few users browsed pages that Alexa did not have a label for.
More specifically, four users generated browsing streams where over 90% of the web pages observed in the browser history did not
a genre-based label. So we are unable to reliably profile their browsing behavior.
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TABLE 5.16: Table Showing the Impact that Web Page Segmentation Approach has on Web Page
Classification User Profiles (Genre-based labels).

Segmentation Approach 1st 2nd 3rd
Ground Truth Segmentation 76% 70% 38%
Fused Lasso 76% 62% 28%
Heuristic Change Detection Method 68% 62% 28%
HMM 52% 48% 25%
Idle-time method with threshold 58% 38% 22%
Idle-time method (Number of SYNs) 50% 30% 22%
Idle-time method (Number of Bytes) 41% 9% 0%

TABLE 5.17: Table Showing the Impact that Web Page Segmentation Approach has on Web Page
Classification User Profiles (Targeted device-based labels).

Segmentation Approach 1st
Ground Truth Segmentation 100%
Fused Lasso 97%
Heuristic Change Detection Method 97%
HMM 97%
Idle-time method with threshold 97%
Idle-time method (Number of SYNs) 100%
Idle-time method (Number of Bytes) 100%
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columns in Table 5.16 correspond to the rate in which the classification and segmentation method can clas-

sify the 1st, 2nd, and 3rd most popular content genres visited by a user in a given web browsing stream —

please note that Table 5.17 only includes a single column since there are only two categories considered

for the target device-based labeling scheme. Table 5.16 shows that the selection of web page segmenta-

tion technique has a large impact on the performance of web page classification methods. In particular, the

heuristic change detection method and fused lasso can identify the top 2 most popular categories visited

in over two-thirds of the users. This is comparable to the performance that the ground truth segmentation

yields. We also observe that the performance achieved when using the heuristic change detection method

and fused lasso are better than the other methods. Overall, the results for the user browsing profiles show

that web page segmentation method choice can have a significant impact on the performance while profiling

user behavior.

The conclusions made when analyzing the results for the genre-based labeling scheme do not hold when

considering the target device-based labeling scheme. Instead, Table 5.17 shows that the performance for the

different web page segmentation methods are comparable. More specifically, each web page segmentation

method identifies traditional web pages as the dominant web page category for either 97% or 100% of the

browsing streams. While we expected promising results from the change point detection methods, since

they are more effective at segmenting browsing streams than idle time-based methods, the high performance

of the idle time-based approaches are somewhat unexpected. Upon further inspection, we find that the

poor web page segmentation performance of the idle time-based methods is surprisingly beneficial for web

page classification in this scenario. This is because fewer web page segments detected yields larger web

page segments on average. Thus, in this scenario, larger web page segments will likely be classified as

“traditional web pages” which is the only category of web pages present in our browsing stream — please

note that the low FPR for the idle time-based methods in Table 5.15 supports this. Because of this, we

believe that the high performance of the idle-time based methods for the target device-based labels is due to

coincidence and, therefore, is not a positive reflection of the performance of web page classification when

used in tandem with these methods.

We next consider, the performance of the profile-based classification when using synthetically generated

using browsing data — this is the same synthetic dataset considered in the previous section. The profile-

based classification results for synthetically generated browsing schemes for the genre-based, navigation-

based, target device-based, and video streaming based labels are shown in Table 5.18, Table 5.19, Table 5.21,
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TABLE 5.18: Table Showing the Impact that Web Page Segmentation Approach has on Web Page
Classification User Profiles for Synthetic Data (Genre-based labels).

Segmentation Approach 1st 2nd 3rd
Ground Truth Segmentation 75% 67% 53%
Fused Lasso 71% 64% 51%
Heuristic Change Detection Method 63% 55% 43%
HMM 59% 54% 32%
Idle-time method with threshold 52% 48% 33%
Idle-time method (Number of SYNs) 45% 29% 20%
Idle-time method (Number of Bytes) 32% 23% 16%

TABLE 5.19: Table Showing the Impact that Web Page Segmentation Approach has on Web Page
Classification User Profiles for Synthetic Data (Navigation-based labels).

Segmentation Approach 1st 2nd
Ground Truth Segmentation 78% 71%
Fused Lasso 71% 66%
Heuristic Change Detection Method 70% 61%
HMM 70% 59%
Idle-time method with threshold 62% 56%
Idle-time method (Number of SYNs) 54% 44%
Idle-time method (Number of Bytes) 53% 42%
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TABLE 5.20: Table Showing the Impact that Web Page Segmentation Approach has on Web Page
Classification User Profiles for Synthetic Data (Targeted device-based labels).

Segmentation Approach 1st
Ground Truth Segmentation 94%
Fused Lasso 91%
Heuristic Change Detection Method 92%
HMM 90%
Idle-time method with threshold 87%
Idle-time method (Number of SYNs) 91%
Idle-time method (Number of Bytes) 85%

TABLE 5.21: Table Showing the Impact that Web Page Segmentation Approach has on Web Page
Classification User Profiles for Synthetic Data (Video streaming-based labels).

Segmentation Approach 1st
Ground Truth Segmentation 92%
Fused Lasso 92%
Heuristic Change Detection Method 91%
HMM 89%
Idle-time method with threshold 92%
Idle-time method (Number of SYNs) 65%
Idle-time method (Number of Bytes) 56%

and Table 5.21, respectively. The results shown in these tables are similar to the results shown in the real user

evaluation when considering the genre-based labeling scheme. That is, the user profiles generated using the

change point detection methods approximate the ground truth profiles at least as effectively as the idle time-

based methods for all labeling schemes investigated and the ground truth segmentation performs the best.

Though, for the synthetically generated data the video streaming-based and target device-based labeling

schemes approximates profiles above a rate of 90%, while the navigation-based and genre-based labeling

schemes do not perform better than 78% — that is, for the dataset and methods tested, the target device-

based and video streaming-based labeling schemes outperform the others. This result is rather expected

since we observe similar results previously in this chapter and in chapter 4.

5.5.4 Discussion: Importance and Implications of Accurate Web Page Segmentation

In this section, we evaluate whether web-related application domains are impacted by the web page

segmentation method used. We find that higher performing web page segmentation approaches are beneficial

for multiple web-related applications — particularly, web page classification and user behavior modeling.
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This result is important because it is common for web measurement and traffic classification efforts to

either adopt methods which have not been recently evaluated or do not consider the web page segmentation

problem altogether. Thus, current and future efforts would likely benefit by utilizing web page segmentation

methods which are more effective than prior idle time-based methods. For example, web measurement

studies, which characterize user browsing behavior and/or web page traffic, would yield more accurate

characterizations with more effective web page segmentation [Newton et al., 2013, Ihm and Pai, 2011].

Similarly, web page classification and web page identification will likely perform more effectively “in the

wild” if the web page segmentation methods improve — in fact, if the performance improves enough, more

advanced techniques for web traffic measurement and classification may not be needed [Maciá-Fernández

et al., 2010, Yen et al., 2009, Dyer et al., 2012]. Nevertheless, we believe that the results in this section

suggests that the web page segmentation problem warrants significant attention in order to successfully

study the web in the future.

5.6 Contributions and Concluding Remarks

In this chapter, we conduct an empirical evaluation of approaches for web page segmentation using only

anonymized TCP/IP headers. We make the following key contributions:

• We perform an extensive empirical evaluation of time series approaches for web page segmentation.

Our analysis includes both synthetically generated and real user browsing data. This work is the first

comprehensive empirical evaluation of time series-based web page segmentation approaches in over

a decade.

• We find that web page segmentation is a challenging problem given the properties of modern web page

traffic. The primary factors that influence this are the inter-arrival times of web pages, the number of

simultaneous tabs open in a client browser, and the presence of automatically generated traffic (due

to AJAX-based technology). The resulting increase in network activity is so high that idle time-based

approaches are unable to reliably differentiate between new web page requests and this background

noise traffic because the links are rarely idle.

• We also evaluate a new class of segmentation approaches that rely on change point detection, which

instead identify if/when a time series exhibits a substantial increase in network activity. We find
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that change point detection methods can more robustly segment modern web traffic than existing idle

time-based approaches.

• We extend our analysis by explicitly addressing the issue of whether web page segmentation approach

choice has an impact on application domains that conduct web traffic analysis. We first consider

the domain of user behavior modeling, and find that the performance of a web page segmentation

approach has a significant impact on estimating several parameters, including (i) the number of clicks

a user made and (ii) the average inter-arrival time of web page downloads.

• We then consider the domain of web page classification, in the context of estimating the content genre

of web pages visited most often by a given user. We find that the classification performance is also

impacted by the choice of the web page segmentation method. These are important insights because

segmentation methods are widely used for web page fingerprinting and web traffic characterization.

Thus, we conclude that web traffic segmentation is a problem that requires significant attention and

will impact the performance of multiple web-related applications.

We also highlight a few limitations of our methodology and provide some possible areas for further

study. First, our methodology assumes that a single user is represented by a single IP address. Based on

our analysis, we believe that an environment where multiple users share a single IP address (e.g., NATs)

will negatively impact the performance of the web page segmentation approaches evaluated in this chapter.

This decrease in performance is due to the expected increase in background/noisy traffic. Also, time series

approaches are likely to be sensitive to the performance of the network and the clients. Thus, web page

segmentation methods should be tuned in an environment that has comparable performance characteristics

to the environment in which they will be used.
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CHAPTER 6: CONTRIBUTIONS AND CONCLUDING REMARKS

Traffic trace analysis is a network analysis methodology that has been widely adopted for studying the

Web for several decades. However, recent privacy legislation and the increasing amount of encrypted traffic

has made traffic trace analysis more challenging than it was in the past because the amount of content data

that is available for analysis is decreasing [Law, Sicker et al., 2007, Register, Belshe et al., 2015, Jerome].

These challenges imply that, in some scenarios, only anonymized TCP/IP headers are available for traffic

trace analysis. This dissertation explores web page classification when only anonymized TCP/IP headers

(a type of non-content data) are available. Web page classification is important because it can be used

as a building block for numerous web measurement-related applications including privacy analysis, user

behavior modeling, traffic forecasting, and potentially behavioral ad-targeting.

In addition to studying web page classification when only anonymized TCP/IP headers are available, this

dissertation also explicitly investigates two realistic issues which likely impact classification performance

“in the wild” — these include classifying web page download traffic which (i) consists of web traffic that is

generated using different client platforms and (ii) consists of web traffic that is not separated according to

individual web page downloads (i.e., traffic traces which include a mixture of multiple web page downloads).

These issues are not usually considered in the traffic classification literature [Lim et al., 2010, Kim et al.,

2008, Erman et al., 2007b, Dyer et al., 2012, Herrmann et al., 2009, Miller et al., 2014, Schatzmann et al.,

2010]. We conclude our discussion of this research by summarizing the contributions, limitations, open

issues, and possible future directions of this work. This summary is provided below.

• Summary of contributions: This dissertation makes three primary contributions. These are summa-

rized below:

– This dissertation first comprehensive measurement study of modern web page traffic that in-

vestigates the impact that client platforms have on the measured traffic. We found that client

platform choice (i.e., browsers, operating system, device, and vantage point) has an impact on

the traffic that web pages generate. While some of these observations are anecdotally known,

this research is the first that quantitively measures the prevalence of these influences. The results
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of this study suggests that web page classification methods should be designed to be robust to

client platform-specific differences.

– This dissertation is the first to perform a comprehensive empirical evaluation of web page seg-

mentation methods that uses anonymized TCP/IP headers. We evaluate both prior idle time-

based methods and a new class of techniques known as change point detection methods. Our

results explicitly show that the change point detection methods outperformed idle time-based

methods.

– This dissertation evaluates web page classification and the impact that client platform and web

page segmentation method choice may have on its performance. We found that selecting features

that were more consistent across client platforms is more effective for web page classification

than selecting features that were not. We also found that web page segmentation method choice

impacts the performance of web page classification — specifically, change point detection meth-

ods tend to outperform idle time-based methods when used for web page classification.

• Summary of limitations: A list of the primary limitations of this work is provided below:

– This dissertation only considers web page traffic. Thus, the methods that we propose and the

measurement results that we presented are not necessarily applicable to other types of HTTP

applications including mobile applications and smart watches.

– The results presented in this dissertation are biased for the top 250 web sites. Traffic character-

istics that are exclusive to emerging or less popular web sites are not captured.

– The web page segmentation approaches that we consider, which work for anonymized TCP/IP

headers, are designed to determine when a web page download starts and do not determine

when a web page download ends. This is different from web page segmentation approaches that

inspect HTTP headers and packet payloads which determine the web objects that correspond to

each individual web page download — this helps in determining when a web page downloads

starts and ends.

– Each web page segmentation method that we consider struggle with detecting web page down-

loads with small inter-arrival time (< 10s) and may confuse automatically generated traffic as

new web page downloads.
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• Open Issues not addressed in this dissertation: There are a number of issues that are not considered

in this dissertation. Some of these are described below:

– We assume that all web traffic in the traffic traces that we consider is web page traffic. Real

traces may include traffic from emerging technologies (such as speech recognition systems such

as Google Home, and mobile applications) that also use HTTP. Traffic from such applications

will likely exhibit characteristics that were not considered in this dissertation — thus, the per-

formance of the web page classification and segmentation approaches will likely decrease when

the traffic from such emerging technologies are included in the traffic mix.

– We do not explicitly characterize the traffic generated by AJAX technology or personalized

web pages — the methods proposed in this dissertation will likely be impacted by the traffic

characteristics of these. We did not consider characterizing AJAX technology and personalized

web pages because it requires the development of more advanced tools that would enable us to

perform more complex web browsing behavior such as login, logout, scroll, and more.

– Scenarios where individual users share the same IP address have not been considered. Such

scenarios will increase the chances that the traffic from multiple web page downloads will over-

lap. This extra overlapping of traffic will make it more difficult for web page segmentation

approaches to identify and separate each respective web page download because the perceived

inter-arrival times between web pages will be reduced — please recall that a key limitation of

the web page segmentation methods studied in this dissertation is that they do not perform well

for browsing streams with small web page inter-arrival times (less than 10s).

• Possible directions for further work: Some possible directions for further work include:

– Investigating the impact that traffic generated by AJAX technology, personalized web pages,

and/or mobile applications have on web page classification and web page segmentation perfor-

mance would help further determine the applicability of these approaches.

– In this dissertation, we explore 4 orthogonal labeling schemes for web page classification. How-

ever, there are other labeling schemes that exist that may also be useful. Additional studies that

investigate whether additional labeling schemes (such as a labeling scheme which identifies a

web page as malicious or not) are useful will help further demonstrate the overall applicability
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of web page classification.

– Investigating whether other types of web page segmentation methods, besides change point de-

tection and idle time-based methods, can more accurately segment modern web page traffic

would likely be useful for further improving web page classification “in the wild.”
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APPENDIX 1: LIST OF WEB SITES STUDIED

This appendix includes a list of the web sites studies in this dissertation.

1 -http://www.godaddy.com, 2 -http://www.bankofamerica.com, 3 -http://www.wikipedia.org,

4 -http://www.java.com, 5 -http://www.twitch.tv, 6 -http://www.zedo.com, 7 -http://www.

wunderground.com, 8 -http://www.okcupid.com, 9 -http://www.craigslist.org, 10 -http://www.

pandora.com, 11 -http://www.sogou.com, 12 -http://www.jcpenney.com, 13 -http://www.linkedin.

com, 14 -http://www.bestbuy.com, 15 -http://www.swagbucks.com, 16 -http://www.stumbleupon.com,

17 -http://www.fidelity.com, 18 -http://www.amazon.de, 19 -http://www.reddit.com, 20 -http:

//www.jackhenrybanking.com, 21 -http://www.dailymotion.com, 22 -http://www.ettoday.net, 23

-http://www.oracle.com, 24 -http://www.yelp.com, 25 -http://www.ebay.com, 26 -http://www.

kohls.com, 27 -http://www.homedepot.com, 28 -http://www.drudgereport.com, 29 -http://www.

microsoftstore.com, 30 -http://www.youtube.com, 31 -http://www.tmall.com, 32 -http://www.

reference.com, 33 -http://www.163.com, 34 -http://www.ndtv.com, 35 -http://www.conduit.com, 36

-http://www.forbes.com, 37 -http://www.qq.com, 38 -http://www.priceline.com, 39 -http://www.

life.com.tw, 40 -http://www.pornhub.com, 41 -http://www.amazon.in, 42 -http://www.blogger.com,

43 -http://www.douban.com, 44 -http://www.accuweather.com, 45 -http://www.southwest.com,

46 -http://www.zappos.com, 47 -http://www.leboncoin.fr, 48 -http://www.wikimedia.org, 49 -

http://www.mapquest.com, 50 -http://www.buzzfeed.com, 51 -http://www.dailyfinance.com, 52 -

http://www.amazon.cn, 53 -http://www.dailymail.co.uk, 54 -http://www.uol.com.br, 55 -http:

//www.constantcontact.com, 56 -http://www.yellowpages.com, 57 -http://www.deviantart.com,

58 -http://www.wikia.com, 59 -http://www.bycontext.com, 60 -http://www.rakuten.co.jp, 61 -

http://www.bbc.co.uk, 62 -http://www.nba.com, 63 -http://www.groupon.com, 64 -http://www.

adobe.com, 65 -http://www.idrudgereport.com, 66 -http://www.livejournal.com, 67 -http://www.

aweber.com, 68 -http://www.pogo.com, 69 -http://www.netflix.com, 70 -http://www.amazon.es,

71 -http://www.staples.com, 72 -http://www.woot.com, 73 -http://www.usatoday.com, 74 -http:

//www.nih.gov, 75 -http://www.costco.com, 76 -http://www.overstock.com, 77 -http://www.jd.com,

78 -http://www.surveymonkey.com, 79 -http://www.webmd.com, 80 -http://www.babylon.com, 81 -

http://www.online.wsj.com, 82 -http://www.people.com, 83 -http://www.taobao.com, 84 -http:

//www.soso.com, 85 -http://www.answers.com, 86 -http://www.pornhublive.com, 87 -http://www.ask.

com, 88 -http://www.flipkart.com, 89 -http://www.cbslocal.com, 90 -http://www.stylelist.com,

91 -http://www.zillow.com, 92 -http://www.nytimes.com, 93 -http://www.cbs.com, 94 -http://

www.aili.com, 95 -http://www.reimageplus.com, 96 -http://www.coupons.com, 97 -http://www.

youporn.com, 98 -http://www.hulu.com, 99 -http://www.csnphilly.com, 100 -http://www.gmx.net,

101 -http://www.indeed.com, 102 -http://www.chinadaily.com.cn, 103 -http://www.blogspot.com,

104 -http://www.gap.com, 105 -http://www.bloomberg.com, 106 -http://www.dmm.co.jp, 107 -http:

//www.time.com, 108 -http://www.mama.cn, 109 -http://www.npr.org, 110 -http://www.tumblr.com,
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111 -http://www.naver.com, 112 -http://www.bankrate.com, 113 -http://www.shopathome.com, 114

-http://www.xcar.com.cn, 115 -http://www.addthis.com, 116 -http://www.empowernetwork.com,

117 -http://www.search-results.com, 118 -http://www.nfl.com, 119 -http://www.ancestry.com,

120 -http://www.daum.net, 121 -http://www.facebook.com, 122 -http://www.china.com.cn, 123 -

http://www.earthlink.net, 124 -http://www.tubecup.com, 125 -http://www.foodnetwork.com, 126

-http://www.redtube.com, 127 -http://www.adnxs.com, 128 -http://www.tripadvisor.com, 129 -

http://www.espn.go.com, 130 -http://www.americanexpress.com, 131 -http://www.avg.com, 132

-http://www.google.com, 133 -http://www.chase.com, 134 -http://www.photobucket.com, 135 -

http://www.yahoo.com, 136 -http://www.about.com, 137 -http://www.goodreads.com, 138 -http:

//www.aliexpress.com, 139 -http://www.outbrain.com, 140 -http://www.boston.com, 141 -http:

//www.amazon.co.jp, 142 -http://www.etsy.com, 143 -http://www.siteadvisor.com, 144 -http://www.

slideshare.net, 145 -http://www.bing.com, 146 -http://www.pch.com, 147 -http://www.target.com,

148 -http://www.lowes.com, 149 -http://www.kayak.com, 150 -http://www.weather.gov, 151 -http:

//www.nbc.com, 152 -http://www.irs.gov, 153 -http://www.huffingtonpost.com, 154 -http://www.

yaolan.com, 155 -http://www.jabong.com, 156 -www.abcnews.go.com, 157 -http://www.orange.fr,

158 -http://www.pof.com, 159 -http://www.xvideos.com, 160 -http://www.ca.gov, 161 -http://www.

usmagazine.com, 162 -http://www.today.com, 163 -http://www.att.com, 164 -http://www.hp.com, 165

-http://www.youku.com, 166 -http://www.verizonwireless.com, 167 -http://www.newegg.com, 168 -

http://www.barnesandnoble.com, 169 -http://www.intuit.com, 170 -http://www.concast.com, 171

-http://www.zol.com.cn, 172 -http://www.wikihow.com, 173 -http://www.flickr.com, 174 -http:

//www.examiner.com, 175 -http://www.alibaba.com, 176 -http://www.skype.com, 177 -http://www.

patch.com, 179 -http://www.theblaze.com, 180 -http://www.imdb.com, 181 -http://www.legacy.com,

182 -http://www.realtor.com, 183 -http://www.ups.com, 184 -http://www.ticketmaster.com, 185 -

http://www.amazon.co.uk, 186 -http://www.t-mobile.com, 187 -http://www.snapdeal.com, 188 -

http://www.baidu.com, 189 -http://www.weather.com, 190 -http://www.drudgereportArchives.com,

191 -http://www.washingtonpost.com, 192 -http://www.tube8.com, 193 -http://www.capitalone.com,

194 -http://www.pconline.com.cn, 195 -http://www.retailmenot.com, 196 -http://www.hao123.com,

197 -http://www.msn.com, 198 -http://www.doublepimp.com, 199 -http://www.reuters.com, 200 -http:

//www.tmall.hk, 201 -http://www.mozilla.org, 202 -http://www.amazon.fr, 203 -http://www.trulia.

com, 204 -http://www.worldstarhiphop.com, 205 -http://www.guardian.co.uk, 206 -http://www.

nicovideo.jp, 207 -http://www.ehow.com, 208 -http://www.backpage.com, 209 -http://www.amazon.it,

210 -http://www.tudou.com, 211 -http://www.xhamstercams.com, 212 -http://www.warriorforum.

com, 213 -http://www.ign.com, 214 -http://www.apple.com, 215 -http://www.tagged.com, 216 -

http://www.rr.com, 217 -http://www.sina.com.cn, 218 -http://www.indiatimes.com, 219 -http:

//www.ebay.de, 220 -http://www.globo.com, 221 -http://www.macys.com, 222 -http://www.aol.com,

223 -http://www.whitepages.com, 224 -http://www.goo.ne.jp, 225 -http://www.latimes.com, 226 -
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http://www.walmart.com, 227 -http://www.salesforce.com, 228 -http://www.fool.com, 229 -http://

www.microsoft.com, 230 -http://www.match.com, 231 -http://www.xnxx.com, 232 -http://www.bbc.com,

233 -http://www.thefreedictionary.com, 234 -http://www.sohu.com, 235 -http://www.ebay.co.uk, 236

-http://www.incredibar.com, 237 -http://www.expedia.com, 238 -http://www.onet.pl, 239 -http://

www.tmz.com, 240 -http://www.sears.com, 241 -http://www.yandex.ru, 242 -http://www.monster.com,

243 -http://www.amazon.com, 244 -http://www.youjizz.com, 245 -http://www.xhamster.com, 246 -

http://www.roblox.com, 247 -http://www.fedex.com, 248 -http://www.directrev.com, 249 -http:

//www.meetup.com, 250 -http://www.usps.com,
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APPENDIX 2: LIST OF WEB PAGES STUDIED

This appendix includes a list of the web pages studied in this dissertation.

1-http : / / www . google . com / #q = golden&biw = 1280&bih = 596&fp = f2197e5262a0e58e, 2-

http://www.google.com/#q=ray\%20lewis&biw=1280&bih=596&fp=f2197e5262a0e58e, 3-http:

//www.google.com/#q=mcdonalds&biw=1280&bih=596&fp=f2197e5262a0e58e, 4-http://www.google.

com/#q=stone\%20mountain&biw=1280&bih=596&fp=f2197e5262a0e58e, 5-http://www.google.

com/search?q=golden&biw=1280&bih=596&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=

wi&ei=_sW8UYvUI4LQ9ASY_IH4Aw, 6-http://www.google.com/search?q=ray+lewis&biw=1280&bih=

596&um=1&ie=UTF-8&hl=en&tbm=isch&source=og&sa=N&tab=wi&ei=_sW8UYvUI4LQ9ASY_IH4Aw, 7-

http://www.google.com/search?q=mcdonalds&biw=1280&bih=596&um=1&ie=UTF-8&hl=en&tbm=

isch&source=og&sa=N&tab=wi&ei=_sW8UYvUI4LQ9ASY_IH4Aw, 8-http://www.google.com/search?

q=stone+mountain&biw=1280&bih=596&um=1&ie=UTF- 8&hl=en&tbm=isch&source=og&sa=N&tab=

wi&ei=_sW8UYvUI4LQ9ASY_IH4Aw, 9-https://www.facebook.com/, 10-http://m.facebook.com/,

11-http://www.facebook.com/search.php?q=golden, 12-http://www.facebook.com/search.

php ? q = ray + lewis, 13-http : / / www . facebook . com / search . php ? q = stone + mountain, 14-http :

//www.facebook.com/search.php?q=mcdonalds, 15-https://www.facebook.com/officialraylewis,

16-https : / / m . facebook . com / officialraylewis, 17-https : / / www . facebook . com / McDonalds,

18-https : / / m . facebook . com / McDonalds, 19-https : / / www . facebook . com / stonemountainpark,

20-https : / / m . facebook . com / stonemountainpark, 21-http : / / www . youtube . com/, 22-http :

//m.youtube.com/, 23-http://m.youtube.com/results?hl=en&gl=US&client=mv-google&q=golden,

24-http://www.youtube.com/results?search_query=golden, 25-http://www.youtube.com/results?

search_query=ray+lewis, 26-http://m.youtube.com/results?hl=en&gl=US&client=mv-google&q=

ray+lewis, 27-http://m.youtube.com/results?hl=en&gl=US&client=mv-google&q=mcdonalds,

28-http://m.youtube.com/results?hl=en&gl=US&client=mv- google&q=stone+mountain, 29-

http://www.youtube.com/results?search_query=mcdonalds, 30-http://www.youtube.com/

results?search_query=stone+mountain, 31-http://www.yahoo.com/, 32-http://m.yahoo.com/,

33-http : / / search . yahoo . com / search ; _ylt = Am . lj255Am1uvsUH9qmVz12bvZx4 ? p = golden, 34-

http : / / search . yahoo . com / search ; _ylt = Am . lj255Am1uvsUH9qmVz12bvZx4 ? p = ray + lewis, 35-

http://search.yahoo.com/search;_ylt=Am.lj255Am1uvsUH9qmVz12bvZx4?p=stone+mountain,

36-http://search.yahoo.com/search;_ylt=Am.lj255Am1uvsUH9qmVz12bvZx4?p=mcdonalds, 37-

http : / / m . yahoo . com / w / search \ %3B _ ylt = A2KL8yAj1LxRZ1AA . AIp89w4 ? submit = oneSearch& .

intl = US& . lang = en& . tsrc = yahoo& . sep = fp&p = golden&x = 0&y = 0, 38-http : / / m . yahoo . com /

w / search \ %3B _ ylt = A2KL8yAj1LxRZ1AA . AIp89w4 ? submit = oneSearch& . intl = US& . lang = en& .

tsrc = yahoo& . sep = fp&p = mcdonalds&x = 0&y = 0, 39-http : / / m . yahoo . com / w / search \ %3B _ ylt =

A2KL8yAj1LxRZ1AA.AIp89w4?submit=oneSearch&.intl=US&.lang=en&.tsrc=yahoo&.sep=fp&p=

ray+lewis&x=0&y=0, 40-http://m.yahoo.com/w/search\%3B_ylt=A2KL8yAj1LxRZ1AA.AIp89w4?
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submit=oneSearch&.intl=US&.lang=en&.tsrc=yahoo&.sep=fp&p=stone+mountain&x=0&y=0,

41-http://images.search.yahoo.com/search/images;_ylt=Ak7Fnn5y_wsfbJPGilB4lI2bvZx4?

p=golden&toggle=1&cop=mss&ei=UTF-8&fr=yfp-t-748, 42-http://images.search.yahoo.com/

search/images;_ylt=Ak7Fnn5y_wsfbJPGilB4lI2bvZx4?p=ray+lewis&toggle=1&cop=mss&ei=UTF-

8&fr = yfp - t - 748, 43-http : / / images . search . yahoo . com / search / images ; _ylt = Ak7Fnn5y _

wsfbJPGilB4lI2bvZx4 ? p = stone + mountain&toggle = 1&cop = mss&ei = UTF - 8&fr = yfp - t - 748, 44-

http://images.search.yahoo.com/search/images;_ylt=Ak7Fnn5y_wsfbJPGilB4lI2bvZx4?p=
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APPENDIX 3: LIST OF WEB PAGE FEATURES

This appendix includes a list of the web page features analyzed in Chapter 3 and 4.

Primary Traffic Features

1 - Client sends SYN segments, 2 - server sends SYN segments, 3 - Bidirectional SYN segments, 4 - Client sends RESET

segments, 5 - server sends SYNACK segments, 6 - server sends RESET segments, 7 - Bidirectional SYNACK segments, 8 -

Bidirectional RESET segments, 9 - Client sends PUSH segments, 10 - Client sends FIN segments, 11 - server sends PUSH segments,

12 - server sends FIN segments, 13 - Bidirectional PUSH segments, 14 - Bidirectional FIN segments, 15 - Client sends segments,

16 - Client sends Bytes, 17 - server sends segments, 18 - server sends Bytes, 19 - Bidirectional segments, 20 - Bidirectional Bytes,

21 - number of IPPairs, 22 - number of TCP connections, 23- number of DNS requests, 24- Sum Web Object Requests, 25- number

of unused TCP connections, 26 - number of HTTPS connections

TCP/IP header-based features: 1 - Client sends SYN segments, 2 - server sends SYN segments, 3 - Bidirectional SYN seg-

ments, 4 - Client sends RESET segments, 5 - server sends SYNACK segments, 6 - server sends RESET segments, 7 - Bidirectional

SYNACK segments, 8 - Bidirectional RESET segments, 9 - Client sends PUSH segments, 10 - Client sends FIN segments, 11 -

server sends PUSH segments, 12 - server sends FIN segments, 13 - Bidirectional PUSH segments, 14 - Bidirectional FIN segments,

15 - Client sends segments, 16 - Client sends Bytes, 17 - server sends segments, 18 - server sends Bytes, 19 - Bidirectional segments,

20 - Bidirectional Bytes, 21 - number of IPPairs, 22 - number of TCP connections, 23 - Mean number of RESET segments per TCP

connection server sends, 24 - Minimum RESET per TCP connection server, 25 - 10 percentile RESET per TCP connection server,

26 - 25 percentile RESET per TCP connection server, 27 - 50 percentile RESET per TCP connection server, 28 - 75 percentile

RESET per TCP connection server, 29 - 90 percentile RESET per TCP connection server, 30 - Maximum percentile RESET per

TCP connection server, 31 - Mean number of RESET segments per TCP connection Client sends, 32 - Minimum RESET per TCP

connection server, 33 - 10 percentile RESET per TCP connection client, 34 - 25 percentile RESET per TCP connection client, 35 -

50 percentile RESET per TCP connection client, 36 - 75 percentile RESET per TCP connection client, 37 - 90 percentile RESET

per TCP connection client, 38 - Maximum percentile RESET per TCP connection client, 39 - Mean number of PUSH segments

per TCP connection Client sends, 40 - Minimum PUSH per TCP connection client, 41 - 10 percentile PUSH per TCP connection

client, 42 - 25 percentile PUSH per TCP connection client, 43 - 50 percentile PUSH per TCP connection client, 44 - 75 percentile

PUSH per TCP connection client, 45 - 90 percentile PUSH per TCP connection client, 46 - Maximum percentile PUSH per TCP

connection client, 47 - Mean number of PUSH segments per TCP connection server sends, 48 - Minimum PUSH per TCP con-

nection server, 49 - 10 percentile PUSH per TCP connection server, 50 - 25 percentile PUSH per TCP connection server, 51 - 50

percentile PUSH per TCP connection server, 52 - 75 percentile PUSH per TCP connection server, 53 - 90 percentile PUSH per TCP

connection server, 54 - Maximum percentile PUSH per TCP connection server, 55 - Mean number of bytes per TCP connection

Client sends, 56 - Minimum bytes per TCP connection client, 57 - 10 percentile bytes per TCP connection client, 58 - 25 percentile

bytes per TCP connection client, 59 - 50 percentile bytes per TCP connection client, 60 - 75 percentile bytes per TCP connection

client, 61 - 90 percentile bytes per TCP connection client, 62 - Maximum percentile bytes per TCP connection client, 63 - number

of unused TCP connections client client, 64 - Mean number of bytes per TCP connection server sends, 65 - Minimum bytes per

TCP connection server, 66 - 10 percentile bytes per TCP connection server, 67 - 25 percentile bytes per TCP connection server, 68

- 50 percentile bytes per TCP connection server, 69 - 75 percentile bytes per TCP connection server, 70 - 90 percentile bytes per
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TCP connection server, 71 - Maximum percentile bytes per TCP connection server, 72 - number of unused TCP connections client

server, 73 - number of unused TCP connections server, 74 - Mean number of bytes per IP Pair Client sends, 75 - Minimum bytes

per IP Pair client, 76 - 10 percentile bytes per IP Pair client, 77 - 25 percentile bytes per IP Pair client, 78 - 50 percentile bytes per

IP Pair client, 79 - 75 percentile bytes per IP Pair client, 80 - 90 percentile bytes per IP Pair client, 81 - Maximum percentile bytes

per IP Pair client, 82 - number of unused IP Pairs client , 83 - Mean number of bytes per IP Pair server sends, 84 - Minimum bytes

per IP Pair client, 85 - 10 percentile bytes per IP Pair server, 86 - 25 percentile bytes per IP Pair server, 87 - 50 percentile bytes per

IP Pair server, 88 - 75 percentile bytes per IP Pair server, 89 - 90 percentile bytes per IP Pair server, 90 - Maximum percentile bytes

per IP Pair server, 91 - number of unused IP Pairs server, 92 - number of port 80 TCP connections, 93 - Mean RTT port 80 TCP

connection, 94 - Minimum RTT port 80 TCP connection, 95 - 10 percentile RTT port 80 TCP connection, 96 - 25 percentile RTT

port 80 TCP connection, 97 - 50 percentile RTT port 80 TCP connection, 98 - 75 percentile RTT port 80 TCP connection, 99 - 90

percentile RTT port 80 TCP connection, 100 - Maximum percentile RTT port 80 TCP connection, 101 - number of port 443 TCP

connections, 102 - Mean RTT port 443 TCP connection, 103 - Minimum RTT port 443 TCP connection, 104 - 10 percentile RTT

port 443 TCP connection, 105 - 25 percentile RTT port 443 TCP connection, 106 - 50 percentile RTT port 443 TCP connection,

107 - 75 percentile RTT port 443 TCP connection, 108 - 90 percentile RTT port 443 TCP connection, 109 - Maximum percentile

RTT port 443 TCP connection, 110 - number of Unused Secure connections, 111 - number of port 443 and 80 TCP connections,

112 - Mean RTT port 443 and 80 TCP connection, 113 - Minimum RTT port 443 and 80 TCP connection, 114 - 10 percentile

RTT port 443 and 80 TCP connection, 115 - 25 percentile RTT port 443 and 80 TCP connection, 116 - 50 percentile RTT port 443

and 80 TCP connection, 117 - 75 percentile RTT port 443 and 80 TCP connection, 118 - 90 percentile RTT port 443 and 80 TCP

connection, 119 - Maximum percentile RTT port 443 and 80 TCP connection, 120 - duration TCP connections, 121 - Mean dura-

tion TCP connection, 122 - Minimum duration TCP connection, 123 - 10 percentile duration TCP connection, 124 - 25 percentile

duration TCP connection, 125 - 50 percentile duration TCP connection, 126 - 75 percentile duration TCP connection, 127 - 90

percentile duration TCP connection, 128 - Maximum percentile duration TCP connection, 129 - Sum duration TCP connections,

130 - Mean bytes port 443 TCP connection, 131 - Minimum bytes per 443 TCP connection , 132 - 10 percentile 443 bytes per

TCP Connection, 133 - 25 percentile 443 bytes per TCP Connection, 134 - 50 percentile 443 bytes per TCP Connection, 135 -

75 percentile 443 bytes per TCP Connection, 136 - 90 percentile 443 bytes per TCP Connection, 137 - Maximum percentile 443

bytes per TCP Connection, 138 - Sum bytes port 443 TCP connection, 139 - Mean bytes port 80 TCP connection, 140 - Minimum

bytes per 80 TCP connection server, 141 - 10 percentile bytes per 80 TCP connection server, 142 - 25 percentile bytes per 80 TCP

connection server, 143 - 50 percentile bytes per 80 TCP connection server, 144 - 75 percentile bytes per 80 TCP connection server,

145 - 90 percentile bytes per 80 TCP connection server, 146 - Maximum percentile bytes per 80 TCP connection server, 147 - Sum

bytes port 80 TCP connection, 148 - Mean duration port 80 TCP connection, 149 - Minimum duration port 80, 150 - 10 percentile

duration port 80, 151 - 25 percentile duration port 80, 152 - 50 percentile duration port 80, 153 - 75 percentile duration port 80,

154 - 90 percentile duration port 80, 155 - Maximum percentile duration port 80, 156 - Mean duration port 443 TCP connection,

157 - Minimum duration port 443, 158 - 10 percentile duration port 443, 159 - 25 percentile duration port 443, 160 - 50 percentile

duration port 443, 161 - 75 percentile duration port 443, 162 - 90 percentile duration port 443, 163 - Maximum percentile duration

port 443, 164 - Mean inter TCP connection arrival time, 165 - Minimum inter TCP connection arrival time, 166 - 10 percentile inter

TCP connection arrival time, 167 - 25 percentile inter TCP connection arrival time, 168 - 50 percentile inter TCP connection arrival
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time, 169 - 75 percentile inter TCP connection arrival time, 170 - 90 percentile inter TCP connection arrival time, 171 - Maximum

percentile inter TCP connection arrival time, 172 - Mean number of epochs per TCP connection, 173 - Minimum number of epochs

per TCP connection, 174 - 10 percentile number of epochs per TCP connection, 175 - 25 percentile number of epochs per TCP

connection, 176 - 50 percentile number of epochs per TCP connection, 177 - 75 percentile number of epochs per TCP connection,

178 - 90 percentile number of epochs per TCP connection, 179 - Maximum percentile number of epochs per TCP connection,

180 - Minimum bytes sent client per epoch, 181 - number of epochs, 182 - Mean number of bytes sent by client per epoch, 183 -

Minimum bytes sent client per epoch, 184 - 10 percentile number of bytes sent by client per epoch, 185 - 25 percentile number of

bytes sent by client per epoch, 186 - 50 percentile number of bytes sent by client per epoch, 187 - 75 percentile number of bytes

sent by client per epoch, 188 - 90 percentile number of bytes sent by client per epoch, 189 - Maximum percentile number of bytes

sent by client per epoch, 190 - Sum number of bytes sent by client epoch, 191 - Minimum bytes sent client per epoch, 192 - Mean

interarrival epoch, 193 - Minimum interarrival epoch, 194 - 10 percentile interarrival epoch, 195 - 25 percentile interarrival epoch,

196 - 50 percentile interarrival epoch, 197 - 75 percentile interarrival epoch, 198 - 90 percentile interarrival epoch, 199 - Maximum

percentile interarrival epoch, 200 - Time until 5 percent bytes load, 201 - Time until 10 percent bytes load, 202 - Time until 25

percent bytes load, 203 - Time until 50 percent bytes load, 204 - Time until 75 percent bytes load, 205 - Time until 90 percent bytes

load, 206 - Time until 95 percent Bytes, 207 - 235 , 208 - Mean number of bytes sent by server per epoch, 209 - Minimum bytes

sent server per epoch, 210 - 10 percentile number of bytes sent by server per epoch, 211 - 25 percentile number of bytes sent by

server per epoch, 212 - 50 percentile number of bytes sent by server per epoch, 213 - 75 percentile number of bytes sent by server

per epoch, 214 - 90 percentile number of bytes sent by server per epoch, 215 - Maximum percentile number of bytes sent by server

per epoch, 216 - Sum number of bytes sent by server epoch

HTTP-based features:

217 - Mean Web Object Length (HTTP level), 218 - 10 percentile Web Object Length (HTTP level) , 219 - 25 percentile Web

Object Length (HTTP level), 220 - 50 percentile Web Object Length (HTTP level), 221 - 75 percentile Web Object Length (HTTP

level), 222 - 90 percentile Web Object Length (HTTP level), 223 - Maximum percentile Web Object Length (HTTP level), 224 -

Sum Web Object Requests , 225 - Mean Total Web Object Length per TCP connections, 226 - Minimum Total Web Object Length

per TCP connections, 227 - 10 Total Web Object Length per TCP connections, 228 - 25 Total Web Object Length per TCP connec-

tions, 229 - 50 Total Web Object Length per TCP connections, 230 - 75 Total Web Object Length per TCP connections, 231 - 90

Total Web Object Length per TCP connections, 232 - Maximum Total Web Object Length per TCP connections, 233 - Sum Total

Web Object Length across TCP connections, 234 - Mean GET request per TCP connections, 235 - Minimum GET request per TCP

connections, 236 - 10 GET request per TCP connections, 237 - 25 GET request per TCP connections, 238 - 50 GET request per

TCP connections, 239 - 75 GET request per TCP connections, 240 - 90 GET request per TCP connections, 241 - Maximum GET

request per TCP connections, 242 - Sum GET Requests, 243 - Mean POST request per TCP connections, 244 - Minimum POST

request per TCP connections, 245 - 10 POST request per TCP connections, 246 - 25 POST request per TCP connections, 247 - 50

POST request per TCP connections, 248 - 75 POST request per TCP connections, 249 - 90 POST request per TCP connections, 250

- Maximum POST request per TCP connections, 251 - Sum POST Requests, 252 - Mean HEAD request per TCP connections, 253

- Minimum HEAD request per TCP connections, 254 - 10 HEAD request per TCP connections, 255 - 25 HEAD request per TCP

connections, 256 - 50 HEAD request per TCP connections, 257 - 75 HEAD request per TCP connections, 258 - 90 HEAD request
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per TCP connections, 259 - Maximum HEAD request per TCP connections, 260 - Sum HEAD Requests, 261 - Mean TRACE re-

quest per TCP connections, 262 - Minimum TRACE request per TCP connections, 263 - 10 TRACE request per TCP connections,

264 - 25 TRACE request per TCP connections, 265 - 50 TRACE request per TCP connections, 266 - 75 TRACE request per TCP

connections, 267 - 90 TRACE request per TCP connections, 268 - Maximum TRACE request per TCP connections, 269 - Sum

TRACE Requests, 270 - Mean PUT request per TCP connections, 271 - Minimum PUT request per TCP connections, 272 - 10

PUT request per TCP connections , 273 - 25 PUT request per TCP connections, 274 - 50 PUT request per TCP connections, 275 -

75 PUT request per TCP connections, 276 - 90 PUT request per TCP connections , 277 - Maximum PUT request per TCP connec-

tions , 278 - Sum PUT Requests , 279 - Mean DELETE request per TCP connections, 280 - Minimum DELETE request per TCP

connections, 281 - 10 DELETE request per TCP connections, 282 - 25 DELETE request per TCP connections, 283 - 50 DELETE

request per TCP connections, 284 - 75 DELETE request per TCP connections, 285 - 90 DELETE request per TCP connections,

286 - Maximum DELETE request per TCP connections, 287 - Sum DELETE Requests, 288 - Mean OPTIONS request per TCP

connections, 289 - Minimum OPTIONS request per TCP connections, 290 - 10 OPTIONS request per TCP connections, 291 - 25

OPTIONS request per TCP connections, 292 - 50 OPTIONS request per TCP connections, 293 - 75 OPTIONS request per TCP

connections, 294 - 90 OPTIONS request per TCP connections, 295 - Maximum OPTIONS request per TCP connections, 296 -

Sum OPTIONS Requests, 297 - Mean PATCH request per TCP connections, 298 - Minimum PATCH request per TCP connections,

299 - 10 PATCH request per TCP connections, 300 - 25 PATCH request per TCP connections, 301 - 50 PATCH request per TCP

connections, 302 - 75 PATCH request per TCP connections, 303 - 90 PATCH request per TCP connections, 304 - Maximum PATCH

request per TCP connections, 305 - Sum PATCH Requests, 306 - Mean HTTP request per TCP connections, 307 - Minimum HTTP

request per TCP connections, 308 - 10 HTTP request per TCP connections, 309 - 25 HTTP request per TCP connections, 310 - 50

HTTP request per TCP connections, 311 - 75 HTTP request per TCP connections, 312 - 90 HTTP request per TCP connections,

313 - Maximum HTTP request per TCP connections, 314 - Sum HTTP Requests, 315 - number of HTTP hostnames contacted,

316 - Mean number of HTTP objects per hostname, 317 - Minimum number of HTTP objects per hostname, 318 - 10 number of

HTTP objects per hostname, 319 - 25 number of HTTP objects per hostname, 320 - 50 number of HTTP objects per hostname, 321

- 75 number of HTTP objects per hostname, 322 - 90 number of HTTP objects per hostname, 323 - Maximum number of HTTP

objects per hostname, 324 - Total number of HTTP objects for hostname factor, 325 - Mean number Duplication of an Object, 326 -

Minimum number Duplication of an Object, 327 - 10 number Duplication of an Object, 328 - 25 number Duplication of an Object,

329 - 50 number Duplication of an Object, 330 - 75 number Duplication of an Object, 331 - 90 number Duplication of an Object,

332 - Maximum number Duplication of an Object, 333 - number Objects Object, 334 - Mean number of IP addresses Contacted

for each Object, 335 - Minimum number of IP addresses Contacted for each Object, 336 - 10 number of IP addresses Contacted

for each Object, 337 - 25 number of IP addresses Contacted for each Object, 338 - 50 number of IP addresses Contacted for each

Object, 339 - 75 number of IP addresses Contacted for each Object, 340 - 90 number of IP addresses Contacted for each Object,

341 - Maximum number of IP addresses Contacted for each Object, 342 - number of IP addresses Contacted for each Object, 343

- Mean number Duplication of an Object, 344 - Minimum number Duplication of an Object, 345 - 10 number Duplication of an

Object, 346 - 25 number Duplication of an Object, 347 - 50 number Duplication of an Object, 348 - 75 number Duplication of

an Object, 349 - 90 number Duplication of an Object, 350 - Maximum number Duplication of an Object, 351 - number Objects

Object, 352 - Mean number of IP addresses Contacted for each Object, 353 - Minimum number of IP addresses Contacted for each
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Object, 354 - 10 number of IP addresses Contacted for each Object, 355 - 25 number of IP addresses Contacted for each Object,

356 - 50 number of IP addresses Contacted for each Object, 357 - 75 number of IP addresses Contacted for each Object, 358 -

90 number of IP addresses Contacted for each Object, 359 - Maximum number of IP addresses Contacted for each Object, 360 -

number of IP addresses Contacted for each Web Object Overall, 361 - Mean number of Hosts Contacted for each Object, 362 -

Minimum number of Hosts Contacted for each Object, 363 - 10 number of Hosts Contacted for each Object, 364 - 25 number of

Hosts Contacted for each Object, 365 - 50 number of Hosts Contacted for each Object, 366 - 75 number of Hosts Contacted for

each Object, 367 - 90 number of Hosts Contacted for each Object, 368 - Maximum number of Hosts Contacted for each Object,

369 - Status code 200, 370 - Status code 204 , 371 - Status code 300 , 372 - Status code 301 , 373 - Status code 302 , 374 - Status

code 304 , 375 - Status code 307 , 376 - Status code 400 , 377 - Status code 401 , 378 - Status code 403 , 379 - Status code 404 ,

380 - Status code 410 , 381 - Status code 500 , 382 - Status code 501 , 383 - Status code 503 , 384 - Status code 550 , 385 - Total

Web Object Length (HTTP level), 386 - MIME type application, 387 - MIME type text, 388 - MIME type image, 389 - MIME

type video, 390 - MIME type audio, 391 - MIME type font, 392 - MIME type content, 393 - MIME type binary, 394 - MIME type

application/js, 395 - MIME type application/swf, 396 - MIME type application/xhtmlxml, 397 - MIME type application/xjavascript,

398 - MIME type application/pkixcrl, 399 - MIME type application/javascript, 400 - MIME type application/xml, 401 - MIME type

application/fontwoff, 402 - MIME type application/rssxml, 403 - MIME type application/pdf, 404 - MIME type application/fontttf,

405 - MIME type application/xpnacl, 406 - MIME type application/vndgoogle, 407 - MIME type application/xfontwoff, 408 -

MIME type application/xmsdod, 409 - MIME type application/opensearch, 410 - MIME type application/msfont, 411 - MIME type

application/xjson, 412 - MIME type application/xshockwaveflash, 413 - MIME type application/xfontttf, 414 - MIME type applica-

tion/json, 415 - MIME type application/xjavascript, 416 - MIME type application/unknown, 417 - MIME type application/fonteot,

418 - MIME type application/xmlxhtml, 419 - MIME type application/vndgooglesafebrowsingupdate, 420 - MIME type applica-

tion/xfcs, 421 - MIME type application/smil, 422 - MIME type application/octet stream, 423 - MIME type application/xamf, 424

- MIME type application/xwoff, 425 - MIME type application/atomxml, 426 - MIME type application/xchromeextension, 427 -

MIME type application/xpkcs7crl, 428 - MIME type application/ocspresponse, 429 - MIME type binary/octetstream, 430 - MIME

type image/webp, 431 - MIME type image/jpeg, 432 - MIME type image/png, 433 - MIME type image/bmp, 434 - MIME type

image/xicon, 435 - MIME type image/vndmicrosoft, 436 - MIME type image/svgxml, 437 - MIME type image/gif, 438 - MIME

type multipartmixed, 439 - MIME type video/realgravity, 440 - MIME type video/xflv, 441 - MIME type video/mp4, 442 - MIME

type video/xm4v, 443 - MIME type video/webm, 444 - MIME type video/xmsasf, 445 - MIME type audio/mp4, 446 - MIME type

audio/ogg, 447 - MIME type audio/mpeg, 448 - MIME type contentunknown, 449 - MIME type font/xwoff, 450 - MIME type

font/eot, 451 - MIME type font/woff, 452 - MIME type font/ttf, 453 - MIME type text/css, 454 - MIME type text/crossdomain, 455

- MIME type text/html, 456 - MIME type text/javascript, 457 - MIME type text/json, 458 - MIME type text/cachemanifest, 459

- MIME type text/plain, 460 - MIME type text/xml, 461 - MIME type text/xcomponent, 462 - MIME type text/ecmascript, 463 -

MIME type text/xcrossdomain, 464 - MIME type text/xjson

DNS-based features: 465 - Mean number of DNS responses per Query, 466 - Minimum number of DNS responses per Query,

467 - 10 number of DNS responses per Query, 468 - 25 number of DNS responses per Query, 469 - 50 number of DNS responses

per Query, 470 - 75 number of DNS responses per Query, 471 - 90 number of DNS responses per Query, 472 - Maximum number

of DNS responses per Query, 473 - Sum number of DNS responses ALL Queries, 474 - number of DNS responses ALL Queries,
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475 - Mean number of DNS A responses per Query, 476 - Minimum number of DNS A responses per Query, 477 - 10 number of

DNS A responses per Query, 478 - 25 number of DNS A responses per Query, 479 - 50 number of DNS A responses per Query,

480 - 75 number of DNS A responses per Query, 481 - 90 number of DNS A responses per Query, 482 - Maximum number of

DNS A responses per Query, 483 - Sum number of DNS A responses ALL Queries, 484 - Mean number of DNS PTR responses

per Query, 485 - Minimum number of DNS PTR responses per Query, 486 - 10 number of DNS PTR responses per Query, 487

- 25 number of DNS PTR responses per Query, 488 - 50 number of DNS PTR responses per Query, 489 - 75 number of DNS

PTR responses per Query, 490 - 90 number of DNS PTR responses per Query, 491 - Maximum number of DNS PTR responses

per Query, 492 - Sum number of DNS PTR responses ALL Queries, 493 - Mean number of DNS CNAME responses per Query,

494 - Minimum number of DNS CNAME responses per Query, 495 - 10 number of DNS CNAME responses per Query, 496 -

25 number of DNS CNAME responses per Query, 497 - 50 number of DNS CNAME responses per Query, 498 - 75 number of

DNS CNAME responses per Query, 499 - 90 number of DNS CNAME responses per Query, 500 - Maximum number of DNS

CNAME responses per Query, 501 - Sum number of DNS CNAME responses ALL Queries, 502 - Sum PTR overall, 503 - Sum A

overall, 504 - Sum CNAME overall, 505 - number of DNS queries with TTL responses, 506 - Mean DNS TTL, 507 - Minimum

DNS TTL, 508 - 10 percentile DNS TTL, 509 - 25 percentile DNS TTL, 510 - 50 percentile DNS TTL, 511 - 75 percentile DNS

TTL, 512 - 90 percentile DNS TTL, 513 - Maximum percentile DNS TTL, 514 - number of DNS queries with A TTL responses,

515 - Mean DNS A TTL, 516 - Minimum DNS A TTL, 517 - 10 percentile DNS A TTL, 518 - 25 percentile DNS A TTL, 519 -

50 percentile DNS A TTL, 520 - 75 percentile DNS A TTL, 521 - 90 percentile DNS A TTL, 522 - Maximum percentile DNS A

TTL, 523 - number of DNS queries with CNAME TTL responses, 524 - Mean DNS CNAME TTL, 525 - Minimum DNS CNAME

TTL, 526 - 10 percentile DNS CNAME TTL, 527 - 25 percentile DNS CNAME TTL, 528 - 50 percentile DNS CNAME TTL,

529 - 75 percentile DNS CNAME TTL, 530 - 90 percentile DNS CNAME TTL, 531 - Maximum percentile DNS CNAME TTL,

532 - number of DNS queries with responses, 533 - number of DNS queries without responses, 534 - Mean DNS Response Time,

535 - Minimum DNS Response Time, 536 - 10 percentile DNS Response Time, 537 - 25 percentile DNS Response Time, 538 - 50

percentile DNS Response Time, 539 - 75 percentile DNS Response Time, 540 - 90 percentile DNS Response Time, 541 - Maximum

percentile DNS Response Time, 542 - Total DNS queries, 543 - number of NXDomain responses, 544 - Mean DNS bytes Client,

545 - Minimum DNS bytes Client, 546 - 10 percentile DNS bytes Client, 547 - 25 percentile DNS bytes Client, 548 - 50 percentile

DNS bytes Client, 549 - 75 percentile DNS bytes Client, 550 - 90 percentile DNS bytes Client, 551 - Maximum percentile DNS

bytes Client, 552 - Mean DNS bytes Server, 553 - Minimum DNS bytes Server, 554 - 10 percentile DNS bytes Server, 555 - 25

percentile DNS bytes Server, 556 - 50 percentile DNS bytes Server, 557 - 75 percentile DNS bytes Server, 558 - 90 percentile

DNS bytes Server, 559 - Maximum percentile DNS bytes Server, 560 - Mean DNS bytes Bidirectional, 561 - Minimum DNS bytes

Bidirectional, 562 - 10 percentile DNS bytes Bidirectional, 563 - 25 percentile DNS bytes Bidirectional, 564 - 50 percentile DNS

bytes Bidirectional, 565 - 75 percentile DNS bytes Bidirectional, 566 - 90 percentile DNS bytes Bidirectional, 567 - Maximum

percentile DNS bytes Bidirectional, 568 - Mean DNS interarrival, 569 - Minimum DNS interarrival, 570 - 10 percentile DNS

interarrival, 571 - 25 percentile DNS interarrival, 572 - 50 percentile DNS interarrival, 573 - 75 percentile DNS interarrival, 574 -

90 percentile DNS interarrival, 575 - Maximum percentile DNS interarrival

HTML-based features: 576 - number of code tags, 577 - number of kbd tags, 578 - number of tbody tags, 579 - number of

font tags, 580 - number of noscript tags, 581 - number of style tags, 582 - number of img tags, 583 - number of title tags, 584 -
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number of menu tags, 585 - number of tt tags, 586 - number of tr tags, 587 - number of param tags, 588 - number of li tags, 589 -

number of source tags, 590 - number of tfoot tags, 591 - number of th tags, 592 - number of input tags, 593 - number of td tags, 594

- number of main tags, 595 - number of dl tags, 596 - number of blockquote tags, 597 - number of fieldset tags, 598 - number of

extensions of type image, 599 - number of dd tags, 600 - number of meter tags, 601 - number of optgroup tags, 602 - number of dt

tags, 603 - number of wbr tags, 604 - number of button tags, 605 - number of summary tags, 606 - number of p tags, 607 - number

of menuitem tags, 608 - number of output tags, 609 - number of div tags, 610 - number of dir tags, 611 - number of em tags, 612

- number of datalist tags, 613 - number of frame tags, 614 - number of hgroup tags, 615 - number of meta tags, 616 - number of

video tags, 617 - number of characters within script tags, 618 - number of .jpeg extension, 619 - number of rt tags, 620 - number

of canvas tags, 621 - number of rp tags, 622 - number of sub tags, 623 - number of section tags, 624 - number of bdi tags, 625 -

number of label tags, 626 - number of acronym tags, 627 - number of progress tags, 628 - number of body tags, 629 - number of

HTML5 tags, 630 - number of basefont tags, 631 - number of small tags, 632 - number of base tags, 633 - number of br tags, 634 -

number of address tags, 635 - number of article tags, 636 - number of strong tags, 637 - number of legend tags, 638 - number of ol

tags, 639 - number of caption tags, 640 - number of s tags, 641 - number of dialog tags, 642 - number of col tags, 643 - number of

a tags, 644 - number of h1 tags, 645 - number of header tags, 646 - number of table tags, 647 - number of select tags, 648 - number

of noframes tags, 649 - number of span tags, 650 - number of area tags, 651 - number of .gif extension, 652 - number of mark tags,

653 - number of dfn tags, 654 - number of strike tags, 655 - number of cite tags, 656 - number of thead tags, 657 - number of head

tags, 658 - number of option tags, 659 - number of form tags, 660 - number of var tags, 661 - Percent of HTML5 tags, 662 - number

of ruby tags, 663 - number of b tags, 664 - number of colgroup tags, 665 - number of link tags, 666 - number of keygen tags, 667

- number of ul tags, 668 - number of applet tags, 669 - number of del tags, 670 - number of iframe tags, 671 - number of embed

tags, 672 - number of pre tags, 673 - number of frameset tags, 674 - number of Included Elements, 675 - number of figure tags,

676 - number of ins tags, 677 - number of nonjavascript scripts, 678 - number of javascript scripts, 679 - number of isResponsive

tags, 680 - number of aside tags, 681 - number of html tags, 682 - number of nav tags, 683 - number of details tags, 684 - number

of samp tags, 685 - number of map tags, 686 - number of track tags, 687 - number of object tags, 688 - number of style tags, 689 -

number of figcaption tags, 690 - number of script tags, 691 - number of .png extensions, 692 - number of center tags, 693 - number

of textarea tags, 694 - number of footer tags, 695 - number of i tags, 696 - number of q tags, 697 - number of u tags, 698 - number

of time tags, 699 - number of audio tags, 700 - number of abbr tags, 701 - number of Words, 702 - number of Different Words
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APPENDIX 4: LIST OF STATISTICALLY SIGNIFICANT HTML-BASED MOBILE WEB PAGE
FEATURES

This appendix includes a list of the statistically significant HTML-based mobile web page features.

1-number of tbody tags, 1.040251e-05, 2-number of font tags, 8.189950e-03, 3-number of img tags, 2.221504e-21, 4-number

of noscript tags, 1.848504e-13, 5-number of style tags, 8.029846e-06, 6-number of title tags, 2.985116e-05, 7-number of tr tags,

3.388648e-14, 8-number of param tags, 9.754458e-06, 9-number of li tags, 7.207601e-45, 10-number of th tags, 4.937559e-06,

11-number of input tags, 1.922421e-25, 12-number of td tags, 6.939682e-14, 13-number of dl tags, 4.268245e-03, 14-number

of fieldset tags, 2.361830e-09, 15-number of extensions of type image, 5.173600e-25, 16-number of dd tags, 5.369374e-03, 17-

number of dt tags, 3.042719e-03, 18-number of wbr tags, 3.926414e-03, 19-number of button tags, 7.107152e-06, 20-number

of p tags, 9.265052e-19, 21-number of div tags, 1.304351e-27, 22-number of em tags, 8.101569e-04, 23-number of meta tags,

1.406754e-12, 24-number of .jpeg extension, 2.867897e-02, 25-number of section tags, 3.130847e-07, 26-number of label tags,

7.414462e-31, 27-number of body tags, 3.598524e-08, 28-number of HTML5 tags, 5.245314e-05, 29-number of br tags, 1.291483e-

09, 30-number of strong tags, 1.488312e-10, 31-number of legend tags, 3.048210e-05, 32-number of ol tags, 2.911072e-02, 33-

number of nonjavascript scripts, 4.849987e-13, 34-number of s tags, 7.361247e-05, 35-number of a tags, 8.850201e-34, 36-number

of h1 tags, 5.385250e-06, 37-number of header tags, 2.114162e-03, 38-number of table tags, 1.562030e-14, 39-number of se-

lect tags, 8.698680e-06, 40-number of span tags, 1.281466e-25, 41-number of area tags, 1.168378e-12, 42-number of .gif exten-

sion, 2.657471e-29, 43-number of strike tags, 8.593438e-03, 44-number of option tags, 4.112953e-06, 45-number of form tags,

5.795814e-24, 46-number of link tags, 4.637175e-16, 47-Percent of HTML5 tags, 5.245314e-05, 48-number of b tags, 2.650473e-

11, 49-number of link tags, 1.213222e-17, 50-number of ul tags, 7.655419e-46, 51-number of iframe tags, 8.557930e-15, 52-

number of embed tags, 3.585427e-02, 53-number of Included Elements, 1.330106e-19, 54-number of ins tags, 2.807726e-06,

55-number of script tags, 4.849987e-13, 56-number of isResponsive tags, 1.144375e-152, 57-number of map tags, 2.094166e-12,

58-number of object tags, 3.023122e-04, 59-number of javascript scripts, 2.488999e-12, 60-number of .png extensions, 5.148947e-

17, 61-number of center tags, 4.900131e-02, 62-number of textarea tags, 3.586174e-03, 63-number of footer tags, 6.930330e-18,

64-number of i tags, 4.357242e-03, 65-number of q tags, 3.460826e-02, 66-number of Different Words, 7.580967e-65
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APPENDIX 5: LIST OF MOBILE WEB PAGES STUDIED

This appendix includes a list of the mobile web pages studied in Section 1.5.2.

1-http : / / m . facebook . com/, 2-https : / / m . facebook . com / officialraylewis, 3-https :

/ / m . facebook . com / McDonalds, 4-https : / / m . facebook . com / stonemountainpark, 5-http :

//m.youtube.com/, 6-http://m.youtube.com/results?hl=en&gl=US&client=mv-google&q=golden,

7-http : / / m . youtube . com / results ? hl = en&gl = US&client = mv - google&q = ray + lewis, 8-http :

//m.youtube.com/results?hl=en&gl=US&client=mv-google&q=mcdonalds, 9-http://m.youtube.

com/results?hl=en&gl=US&client=mv-google&q=stone+mountain, 10-http://m.yahoo.com/, 11-

http://m.yahoo.com/w/search\%3B_ylt=A2KL8yAj1LxRZ1AA.AIp89w4?submit=oneSearch&.intl=

US&.lang=en&.tsrc=yahoo&.sep=fp&p=golden&x=0&y=0, 12-http://m.yahoo.com/w/search\

%3B_ylt=A2KL8yAj1LxRZ1AA.AIp89w4?submit=oneSearch&.intl=US&.lang=en&.tsrc=yahoo&.

sep=fp&p=mcdonalds&x=0&y=0, 13-http://m.yahoo.com/w/search\%3B_ylt=A2KL8yAj1LxRZ1AA.

AIp89w4?submit=oneSearch&.intl=US&.lang=en&.tsrc=yahoo&.sep=fp&p=ray+lewis&x=0&y=0,

14-http://m.yahoo.com/w/search\%3B_ylt=A2KL8yAj1LxRZ1AA.AIp89w4?submit=oneSearch&.

intl=US&.lang=en&.tsrc=yahoo&.sep=fp&p=stone+mountain&x=0&y=0, 15-http://m.yahoo.

com/w/ygo- frontpage/lp/story/us/3348478/coke.bp\%3B_ylt=A2KL8xzg1bxR2UwAAggp89w4\

%3B _ ylu = X3oDMTFybGdnODRoBGNwb3MDMQRjc2VjA21vYmlsZS10ZARpbnRsA3VzBHBrZwNpZC =

0zMzQ4NDc4BHBvcwMzBHNsawNtb3Jl ? ref _ w = frontdoors&view = today& . intl =

US& . lang = en, 16-http : / / m . yahoo . com / w / ygo - frontpage / lp / story /

us / 3346216 / coke . bp \ %3B _ ylt = A2KL8xv . 1bxRYTMAMg4p89w4 \ %3B _ ylu =

X3oDMTFzc21sYmhiBGNwb3MDMwRjc2VjA21vYmlsZS10ZARpbnRsA3VzBHBrZwNpZC0zM =

zQ2MjE2BHBvcwMxBHNsawN0aHVtYg -- ?ref _ w = frontdoors&view = today& . intl =

US& . lang = en, 17-http : / / m . yahoo . com / w / ygo - frontpage / lp / story /

us / 3345618 / coke . bp \ %3B _ ylt = A2KL8yBo17xRO3UA9QIp89w4 \ %3B _ ylu =

X3oDMTFzMjZpYWIwBGNwb3MDNARjc2VjA21vYmlsZS10ZARpbnRsA3VzBHBrZwNp =

ZC0zMzQ1NjE4BHBvcwMxBHNsawN0aHVtYg-- ?ref_w=frontdoors&view=today&.intl=US&.lang=en,

18-http://www.amazon.com/gp/aw, 19-http://www.amazon.com/gp/aw/s/ref=is_box_?k=golden,

20-http://www.amazon.com/gp/aw/d/1442452161/ref=mp_s_a_1_1?qid=1371330635&sr=8-1,

21-http://www.amazon.com/gp/aw/s/ref=is_s_?ie=UTF8&k=ray+lewis&url=i\%3Daps, 22-

http://www.amazon.com/gp/aw/d/B00BEZQJ5A/ref=mp_s_a_1_10?qid=1371330819&sr=8-10, 23-

http://www.amazon.com/gp/aw/s/ref=is_s_?ie=UTF8&k=stone+mountain&url=i\%3Daps, 24-http:

//www.amazon.com/gp/aw/d/1596296828/ref=mp_s_a_1_1?qid=1371331323&sr=8-1, 25-http://m.

bing.com/, 26-http://m.bing.com/search?q=golden, 27-http://m.bing.com/search?q=ray+lewis,

28-http://m.bing.com/search?q=stone+mountain, 29-http://m.bing.com/search?q=mcdonalds, 30-

http://m.bing.com/images/search?q=golden, 31-http://m.bing.com/images/search?q=ray+lewis,

32-http://m.bing.com/images/search?q=stone+mountain, 33-http://m.bing.com/images/
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search ? q = mcdonalds, 34-http : / / en . m . wikipedia . org / wiki / Main _ Page, 35-http : / / en . m .

wikipedia.org/wiki/Golden, 36-http://en.m.wikipedia.org/wiki/Ray_Lewis, 37-http://en.m.

wikipedia.org/wiki/Stone_Mountain, 38-http://en.m.wikipedia.org/wiki/Mcdonalds, 39-https:

//touch.www.linkedin.com/login.html, 40-https://login.live.com/?wa=wsignin1.0&rpsnv=

11&ct=1368921021&rver=6.1.6206.0&wp=MBI_SSL_SHARED&wreply=https\%3a\%2f\%2fmail.live.

com\%2fm\%2f\%3ffl\%3d635045178212091183&lc=1033&id=64855&mspco=1&pcexp=false, 41-https:

//mobile.twitter.com/signup, 42-https://mobile.twitter.com/search?q=mcdonalds&src=typd,

43-https://mobile.twitter.com/search?q=ray+lewis&src=typd, 44-https://mobile.twitter.com/

search?q=golden&src=typd, 45-https://mobile.twitter.com/search?q=stone+mountain&src=typd,

46-https://mobile.twitter.com/raylewis, 47-https://mobile.twitter.com/McDonalds, 48-

https://mobile.twitter.com/StoneMtnPark, 49-https://mobile.twitter.com/Ashton5SOS, 50-

http://www.blogger.com/mobile-start.g, 51-http://m.aol.com/portal/, 52-http://m.aol.com/

search/aol/search?q=mcdonalds&s_it=srch_entr, 53-http://m.aol.com/search/aol/search?

q=ray+lewis&s_it=srch_entr, 54-http://m.aol.com/search/aol/search?q=stone+mountain&s_

it=srch_entr, 55-http://m.aol.com/search/aol/search?q=mcdonalds&s_it=srch_entr, 56-

http://m.aol.com/search/aol/images?q=ray+lewis&v_t=srch_entr, 57-http://m.aol.com/search/

aol/images?q=mcdonalds&v_t=srch_entr, 58-http://m.aol.com/search/aol/images?q=stone+

mountain&v_t=srch_entr, 59-http://m.aol.com/search/aol/images?q=golden&v_t=srch_entr,

60-http: //www .huffingtonpost .com/ 2013/06 /16/ pope- francis- blessing, 61-http: //www .

huffingtonpost.com/2013/06/14/the-best-summer-ice-cream_n_3417468.html?icid=maing-

grid7\%7Cmain5\%7Cdl2\%7Csec1_lnk2\%26pLid\%3D329265, 62-http://www.sportingnews.com/

mlb/story/2013-06-15/alex-cobb-tampa-bay-rays-hit-by-line-drive-eric-hosmer-royal-

skull - stretcher ? icid = maing - grid7 \ %7Cmain5 \ %7Cdl3 \ %7Csec1 _ lnk2 \ %26pLid \ %3D330099,

63-http://m.pinterest.com/, 64-http://m.pinterest.com/search/pins/?q=ray+lewis, 65-
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http : / / sports . mobile . msn . com / en - us / articles . aspx ? aid = 1906639&acid = 2&afid = 0, 304-

http:// mobile .backpage.com/, 305-http://mobile .backpage.com/Events/reptile - super-

show - july - 6 - 7 - 2013 - san - diego - ca - concourse - civic - center - downtown / 7978335, 306-

http : / / mobile . backpage . com / Events / nighttalker - radio - show - michael - hastings - car -

crash - assassination / 7924589, 307-http : / / mobile . backpage . com / Events / hookup - party -

this - weekend - saturday - july - 13th / 8050194, 308-http : / / mobile . backpage . com / Events /

?keyword = golden, 309-http : / / mobile . backpage . com / Events / ?keyword = ray + lewis, 310-

http://mobile.backpage.com/Events/?keyword=stone+mountain, 311-http://mobile.backpage.

com/Events/?keyword=mcdonalds, 312-https://mobile.southwest.com/p?stpp=true&formid=main,

313-http : / / m . baidu . com/, 314-http : / / m . baidu . com / ssid = 0 / from = 0 / bd _ page _ type = 1 /

uid = 51D9DEB13A6F4949623FC7CA2BC3E04D / baiduid = E6642719F9F904A9AF5B1ECBD542168B /

s ? word = golden, 315-http : / / m . baidu . com / ssid = 0 / from = 0 / bd _ page _ type = 1 / uid =

51D9DEB13A6F4949623FC7CA2BC3E04D / baiduid = E6642719F9F904A9AF5B1ECBD542168B / s ?

word = ray + lewis, 316-http : / / m . baidu . com / ssid = 0 / from = 0 / bd _ page _ type = 1 / uid =

51D9DEB13A6F4949623FC7CA2BC3E04D / baiduid = E6642719F9F904A9AF5B1ECBD542168B / s ? word =

mcdonalds, 317-http://m.intuit.com/, 318-http://m.ca.gov/, 319-http://m.realtor.com/,

320-http://m.realtor.com/#results?loc=golden&type=single_family\%2Ccondo\%2Cland, 321-

http://m.realtor.com/#results?loc=ray+lewis&type=single_family\%2Ccondo\%2Cland, 322-

http://m.realtor.com/#results?loc=stone+mountain&type=single_family\%2Ccondo\%2Cland,

323-http://m.realtor.com/#results?loc=mcdonalds&type=single_family\%2Ccondo\%2Cland, 324-

http://m.cbsnews.com/, 325-http://m.cbsnews.com/searchstory.rbml?query=golden&btnSearch.

x=0&btnSearch.y=0&nbActionFormEncoding=UTF- 8, 326-http://m.cbsnews.com/searchstory.

rbml ? query = ray + lewis&btnSearch . x = 0&btnSearch . y = 0&nbActionFormEncoding = UTF - 8,

327-http : / / m . cbsnews . com / searchstory . rbml ? query = stone + mountain&btnSearch . x =

0&btnSearch . y = 0&nbActionFormEncoding = UTF - 8, 328-http : / / m . cbsnews . com / searchstory .
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rbml ? query = mcdonalds&btnSearch . x = 0&btnSearch . y = 0&nbActionFormEncoding = UTF - 8, 329-

http://m.cbsnews.com/storysynopsis.rbml?catid=57592558&feed_id=0&videofeed=36, 330-

http://m.cbsnews.com/storysynopsis.rbml?catid=57592575&feed_id=0&videofeed=36, 331-

http://m.cbsnews.com/storysynopsis.rbml?catid=57592567&feed_id=0&videofeed=36, 332-

http://m.cbsnews.com/storysynopsis.rbml?catid=57592553&feed_id=0&videofeed=36
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APPENDIX 6: LIST OF UPDATED BROWSER VERSIONS DURING COLLECTION

This appendix includes a list of the different browser updates that occurred for Firefox and Chrome during

data collection. This list is provided below:

• Chrome/38.0.2125.122 - Updated on December 13, 2014

• Chrome/39.0.2171.95 - Updated on December 13, 2014

• Chrome/39.0.2171.99 - Updated on January 20, 2015

• Chrome/40.0.2214.91 - Updated on January 23, 2015

• Chrome/40.0.2214.93 - Updated on January 27, 2015

• Chrome/40.0.2214.94 - Updated on February 5, 2015

• Chrome/40.0.2214.111 - Updated on February 7, 2015

• Chrome/40.0.2214.115 - Updated on February 22, 2015

• Chrome/41.0.2272.76 - Updated on March 11, 2015

• Chrome/41.0.2272.89 - Updated on March 16, 2015

• Firefox/33.0 - Updated on December 13, 2014

• Firefox/34.0 - Updated on January 20, 2015

• Firefox/35.0 - Updated on February 7, 2015

• Firefox/36.0 - Updated on March 19, 2015
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APPENDIX 7: ADDITIONAL CLIENT PLATFORM DIVERSITY PLOTS

This appendix includes plots which show that the most prominent differences across client platforms (browsers

and operating systems) were repeatable in this dataset.
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Figure 6.1: Differences in the number of bytes (a) and objects (b) observed across browser — Sample
2.
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Figure 6.2: Differences in the number of bytes (a) and objects (b) observed across browser — Sample
3.
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Figure 6.3: Differences in the number of bytes (a) and objects (b) observed across browser — Sample
4.
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Figure 6.4: Differences in the number of RESET packets across operating system — Sample 2.
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Figure 6.5: Differences in the number of RESET packets across operating system — Sample 3.
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Figure 6.6: Differences in the number of RESET packets across operating system — Sample 4.

366



APPENDIX 8: TCP/IP TRAFFIC FEATURES USED FOR WEB PAGE CLASSIFICATION

This appendix includes a list of the TCP/IP-based features that are used for web page classification in

Chapter 4.

1 - Client sends SYN segments, 2 - server sends SYN segments, 3 - Bidirectional SYN segments, 4

- Client sends RESET segments, 5 - server sends SYNACK segments, 6 - server sends RESET segments,

7 - Bidirectional SYNACK segments, 8 - Client sends PUSH segments, 9 - server sends PUSH segments,

10 - Bidirectional PUSH segments, 11 - Client sends segments, 12 - Client sends Bytes, 13 - server sends

segments, 14 - server sends Bytes, 15 - Bidirectional segments, 16 - Bidirectional Bytes, 17 - number of

IPPairs, 18 - number of TCP connections, 19 - Mean number of PUSH segments per TCP connection Client

sends, 20 - Minimum PUSH per TCP connection client, 21 - 10 percentile PUSH per TCP connection client,

22 - 25 percentile PUSH per TCP connection client, 23 - 50 percentile PUSH per TCP connection client,

24 - 75 percentile PUSH per TCP connection client, 25 - 90 percentile PUSH per TCP connection client,

26 - Maximum percentile PUSH per TCP connection client, 27 - Mean number of PUSH segments per TCP

connection server sends, 28 - Minimum PUSH per TCP connection server, 29 - 10 percentile PUSH per TCP

connection server, 30 - 25 percentile PUSH per TCP connection server, 31 - 50 percentile PUSH per TCP

connection server, 32 - 75 percentile PUSH per TCP connection server, 33 - 90 percentile PUSH per TCP

connection server, 34 - Maximum percentile PUSH per TCP connection server, 35 - Mean number of bytes

per TCP connection Client sends, 36 - Minimum bytes per TCP connection client, 37 - 10 percentile bytes

per TCP connection client, 38 - 25 percentile bytes per TCP connection client, 39 - 50 percentile bytes per

TCP connection client, 40 - 75 percentile bytes per TCP connection client, 41 - 90 percentile bytes per TCP

connection client, 42 - Maximum percentile bytes per TCP connection client, 43 - number of unused TCP

connections client client, 44 - Mean number of bytes per TCP connection server sends, 45 - Minimum bytes

per TCP connection server, 46 - 10 percentile bytes per TCP connection server, 47 - 25 percentile bytes per

TCP connection server, 48 - 50 percentile bytes per TCP connection server, 49 - 75 percentile bytes per TCP

connection server, 50 - 90 percentile bytes per TCP connection server, 51 - Maximum percentile bytes per

TCP connection server, 52 - number of unused TCP connections client server, 53 - number of unused TCP

connections server, 54 - Mean number of bytes per IP Pair Client sends, 55 - Minimum bytes per IP Pair

client, 56 - 10 percentile bytes per IP Pair client, 57 - 25 percentile bytes per IP Pair client, 58 - 50 percentile

bytes per IP Pair client, 59 - 75 percentile bytes per IP Pair client, 60 - 90 percentile bytes per IP Pair
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client, 61 - Maximum percentile bytes per IP Pair client, 62 - number of unused IP Pairs client , 63 - Mean

number of bytes per IP Pair server sends, 64 - Minimum bytes per IP Pair client, 65 - 10 percentile bytes

per IP Pair server, 66 - 25 percentile bytes per IP Pair server, 67 - 50 percentile bytes per IP Pair server, 68 -

75 percentile bytes per IP Pair server, 69 - 90 percentile bytes per IP Pair server, 70 - Maximum percentile

bytes per IP Pair server, 71 - number of unused IP Pairs server, 72 - number of port 80 TCP connections, 73 -

Mean bytes port 443 TCP connection, 74 - Minimum bytes per 443 TCP connection , 75 - 10 percentile 443

bytes per TCP Connection, 76- 25 percentile 443 bytes per TCP Connection, 77 - 50 percentile 443 bytes

per TCP Connection, 78 - 75 percentile 443 bytes per TCP Connection, 79 - 90 percentile 443 bytes per

TCP Connection, 80 - Maximum percentile 443 bytes per TCP Connection, 81 - Sum bytes port 443 TCP

connection, 82 - Mean bytes port 80 TCP connection, 83 - Minimum bytes per 80 TCP connection server, 84

- 10 percentile bytes per 80 TCP connection server, 85 - 25 percentile bytes per 80 TCP connection server,

86 - 50 percentile bytes per 80 TCP connection server, 87 - 75 percentile bytes per 80 TCP connection

server, 88 - 90 percentile bytes per 80 TCP connection server, 89 - Maximum percentile bytes per 80 TCP

connection server, 90 - Sum bytes port 80 TCP connection, 91 - 75 percentile inter TCP connection arrival

time, 92 - 90 percentile inter TCP connection arrival time, 93 - Maximum percentile inter TCP connection

arrival time, 94 - Mean number of epochs per TCP connection, 95 - Minimum number of epochs per TCP

connection, 96 - 10 percentile number of epochs per TCP connection, 97 - 25 percentile number of epochs

per TCP connection, 98 - 50 percentile number of epochs per TCP connection, 99 - 75 percentile number

of epochs per TCP connection, 100 - 90 percentile number of epochs per TCP connection, 101 - Maximum

percentile number of epochs per TCP connection, 102 - Minimum bytes sent client per epoch, 103 - number

of epochs, 104 - Mean number of bytes sent by client per epoch, 105 - Minimum bytes sent client per epoch,

106 - 10 percentile number of bytes sent by client per epoch, 107 - 25 percentile number of bytes sent by

client per epoch, 108 - 50 percentile number of bytes sent by client per epoch, 109 - 75 percentile number of

bytes sent by client per epoch, 110 - 90 percentile number of bytes sent by client per epoch, 111 - Maximum

percentile number of bytes sent by client per epoch, 112 - Sum number of bytes sent by client epoch, 113 -

Minimum bytes sent client per epoch, 114 - Mean number of bytes sent by server per epoch, 115 - Minimum

bytes sent server per epoch, 116 - 10 percentile number of bytes sent by server per epoch, 117 - 25 percentile

number of bytes sent by server per epoch, 118 - 50 percentile number of bytes sent by server per epoch, 119

- 75 percentile number of bytes sent by server per epoch, 120 - 90 percentile number of bytes sent by server

per epoch, 121 - Maximum percentile number of bytes sent by server per epoch, 122 - Sum number of bytes

368



sent by server epoch, 123 - The number of bytes in the first segment in the first TCP connection, 124 -

The number of bytes in the second segment in the first TCP connection, 125 - The number of bytes in the

third segment in the first TCP connection, 126 - The number of bytes in the fourth segment in the first TCP

connection, 127 - The number of bytes in the fifth segment in the first TCP connection, 128 - The number

of bytes in the sixth segment in the first TCP connection, 129 - The number of bytes in the seventh segment

in the first TCP, 130 - The number of bytes in the eighth segment in the first TCP connection connection,

131 - The number of bytes in the ninth segment in the first TCP connection, 132 - The number of bytes in

the tenth segment in the first TCP connection, 133 - The number of bytes in the first segment in the second

TCP connection, 134 - The number of bytes in the second segment in the second TCP connection, 135 -

The number of bytes in the third segment in the second TCP connection, 136 - The number of bytes in

the fourth segment in the second TCP connection, 137 - The number of bytes in the fifth segment in the

second TCP connection, 138 - The number of bytes in the sixth segment in the second TCP connection, 139

- The number of bytes in the seventh segment in the second TCP, 140 - The number of bytes in the eighth

segment in the second TCP connection connection, 141 - The number of bytes in the ninth segment in the

second TCP connection, 142 - The number of bytes in the tenth segment in the second TCP connection, 143

- The number of bytes in the first segment in the third TCP connection, 144 - The number of bytes in the

second segment in the third TCP connection, 145 - The number of bytes in the third segment in the third

TCP connection, 146 - The number of bytes in the fourth segment in the third TCP connection, 147 - The

number of bytes in the fifth segment in the third TCP connection, 148 - The number of bytes in the sixth

segment in the third TCP connection, 149 - The number of bytes in the seventh segment in the third TCP,

150 - The number of bytes in the eighth segment in the third TCP connection connection, 151 - The number

of bytes in the ninth segment in the third TCP connection, 152 - The number of bytes in the tenth segment

in the third TCP connection, 153 - The number of bytes in the first segment in the fourth TCP connection,

154 - The number of bytes in the second segment in the fourth TCP connection, 155 - The number of bytes

in the third segment in the fourth TCP connection, 156 - The number of bytes in the fourth segment in the

fourth TCP connection, 157 - The number of bytes in the fifth segment in the fourth TCP connection, 158

- The number of bytes in the sixth segment in the fourth TCP connection, 159 - The number of bytes in

the seventh segment in the fourth TCP, 160 - The number of bytes in the eighth segment in the fourth TCP

connection connection, 161 - The number of bytes in the ninth segment in the fourth TCP connection, 162 -

The number of bytes in the tenth segment in the fourth TCP connection
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APPENDIX 9: LIST OF INFORMATIVE TCP/IP FEATURES

This appendix includes a list of the informative TCP/IP features used in Chapter 4. Each feature has the

labeling schemes in which they were identified as being informative.

Group 1:

Client Sends Push Packets - video, mobile, genre, content Number of IPPairs - video, mobile,

genre, content Bidirectional Push Packets - video, mobile, genre, content Server Sends Push Packets

- video, mobile, genre, content Number of TCP connections - video, mobile, genre, content Number

of Port 80 TCP connections - video, mobile, genre, content Client Sends Syn Packets - video, mobile,

genre, content Bidirectional Syn Packets - video, mobile, genre, content Server Sends Syn Packets

- video, mobile, genre, content Server Sends Synack Packets - video, mobile, genre, content Bidi-

rectional Synack Packets - video, mobile, genre, content Number of epochs/objects - video, mobile,

genre, content

Group 2:

90 percentile Number of epochs per TCP connection - mobile, genre, content 90 percentile Num-

ber of Bytes sent by client per epoch - genre,mobile,content,video 75 percentile push per TCP Con-

nection server - content,mobile,genre 75 percentile bytes per TCP Connection client - mobile, con-

tent,genre 75 percentile push per TCP Connection client - genre,content,mobile 90 percentile push

per TCP Connection client - genre, mobile, content 90 percentile push per TCP Connection server

- genre, content, mobile Max percentile Number of epochs per TCP connection - genre, mobile,

video,content 90 percentile bytes per TCP Connection client - genre, mobile, content Max per-

centile push per TCP Connection client - genre, mobile, content, video Max percentile Number of

Bytes sent by client per epoch -video,mobile,content,genre Max percentile push per TCP Connec-

tion server - genre, content, mobile 90 percentile bytes per IPPair client - genre,mobile,content,video

Max percentile bytes per TCP Connection client - mobile,content,video Max percentile bytes per

IPPair client - genre,mobile,content,video Max percentile bytes per TCP Connection server - mo-

bile,content,video Max percentile bytes per IPPair server - genre,mobile,content,video 90 percentile

bytes per TCP Connection server - genre,mobile,content,video 90 percentile bytes per IPPair server -

genre,mobile,content,video 50 percentile Number of Bytes sent by server per epoch - video, mobile
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Group 3: Min bytes per TCP connection client - mobile Min bytes per TCP connection server - mobile

Min bytes per IPPair client - mobile Min bytes per IPPair client - mobile

Group 4: Average Number of push packets per TCP connection Client Sends - genre, content 50

percentile bytes per TCP Connection client - genre, content Average Number of push packets per

TCP connection Server Sends - genre Average Number of bytes per TCP connection Client Sends -

content, genre 50 percentile push per TCP Connection server - content, genre 50 percentile Number of

epochs per TCP connection - content, genre 50 percentile push per TCP Connection client - content,

genre Average Number of epochs per TCP connection - content, genre Average Number of bytes per

TCP connection Server Sends - genre, mobile, content 50 percentile bytes per TCP Connection server

- genre, content

Group 5 Bidirectional Packets - video, mobile, genre, content Server Sends Packets - video, mobile,

genre, content Bidirectional Bytes - video, mobile, genre, content Server Sends Bytes - video, mobile,

genre, content

Group 6 Maximum percentile bytes per epoch by server- video, mobile 90 percentile bytes per epoch

by server- video, mobile 75 percentile bytes per epoch by server - video Average bytes per epoch by

server - video

Group 7 90 percentile Number of Bytes sent by client per epoch - genre, content, mobile 75 percentile

Number of Bytes sent by client per epoch - genre, content, mobile Max percentile Number of Bytes

sent by client per epoch - genre, content, mobile
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APPENDIX 10: CLASSIFICATION PERFORMANCE FOR KNN FOR DIFFERENT VALUES OF
K

This appendix includes the classification performance for the KNN methods tested in Chapter 4 for

values of K ranging from 3 to 10.

• Targeted Device Based Labeling

– KNN: Euclidean (K = 3), Micro F Score = 7.801724e-01, Macro F Score = 7.151038e-01

– KNN: City Block (K = 3), Micro F Score = 8.006897e-01, Macro F Score = 7.432232e-01

– KNN: Cosine (K = 3), Micro F Score = 7.743103e-01, Macro F Score = 7.037417e-01

– KNN: Correlation (K = 3), Micro F Score = 7.760345e-01, Macro F Score = 7.079799e-01

– KNN: Euclidean (K = 4), Micro F Score = 8.353448e-01, Macro F Score = 7.834862e-01

– KNN: City Block (K = 4), Micro F Score = 8.444828e-01, Macro F Score = 7.975839e-01

– KNN: Cosine (K = 4), Micro F Score = 8.320690e-01, Macro F Score = 7.777322e-01

– KNN: Correlation (K = 4), Micro F Score = 8.310345e-01, Macro F Score = 7.768153e-01

– KNN: Euclidean (K = 5), Micro F Score = 8.293103e-01, Macro F Score = 7.734458e-01

– KNN: City Block (K = 5), Micro F Score = 8.348276e-01, Macro F Score = 7.827649e-01

– KNN: Cosine (K = 5), Micro F Score = 8.229310e-01, Macro F Score = 7.632376e-01

– KNN: Correlation (K = 5), Micro F Score = 8.205172e-01, Macro F Score = 7.602077e-01

– KNN: Euclidean (K = 6), Micro F Score = 8.327586e-01, Macro F Score = 7.776919e-01

– KNN: City Block (K = 6), Micro F Score = 8.406897e-01, Macro F Score = 7.899215e-01

– KNN: Cosine (K = 6), Micro F Score = 8.300000e-01, Macro F Score = 7.729737e-01

– KNN: Correlation (K = 6), Micro F Score = 8.275862e-01, Macro F Score = 7.700085e-01

– KNN: Euclidean (K = 7), Micro F Score = 7.717241e-01, Macro F Score = 6.898190e-01

– KNN: City Block (K = 7), Micro F Score = 7.896552e-01, Macro F Score = 7.187916e-01

– KNN: Cosine (K = 7), Micro F Score = 7.646552e-01, Macro F Score = 6.796516e-01
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– KNN: Correlation (K = 7), Micro F Score = 7.644828e-01, Macro F Score = 6.802773e-01

– KNN: Euclidean (K = 8), Micro F Score = 8.081034e-01, Macro F Score = 7.395466e-01

– KNN: City Block (K = 8), Micro F Score = 8.248276e-01, Macro F Score = 7.649577e-01

– KNN: Cosine (K = 8), Micro F Score = 8.050000e-01, Macro F Score = 7.341270e-01

– KNN: Correlation (K = 8), Micro F Score = 8.051724e-01, Macro F Score = 7.348018e-01

– KNN: Euclidean (K = 9), Micro F Score = 8.013793e-01, Macro F Score = 7.286198e-01

– KNN: City Block (K = 9), Micro F Score = 8.179310e-01, Macro F Score = 7.544366e-01

– KNN: Cosine (K = 9), Micro F Score = 7.932759e-01, Macro F Score = 7.160006e-01

– KNN: Correlation (K = 9), Micro F Score = 7.941379e-01, Macro F Score = 7.174323e-01

– KNN: Euclidean (K = 10), Micro F Score = 8.091379e-01, Macro F Score = 7.393919e-01

– KNN: City Block (K = 10), Micro F Score = 8.270690e-01, Macro F Score = 7.672785e-01

– KNN: Cosine (K = 10), Micro F Score = 8.048276e-01, Macro F Score = 7.323916e-01

– KNN: Correlation (K = 10), Micro F Score = 8.034483e-01, Macro F Score = 7.309758e-01

• Video Streaming Based Labeling

– KNN: Euclidean (K = 3), Micro F Score = 9.941379e-01, Macro F Score = 9.826433e-01

– KNN: City Block (K = 3), Micro F Score = 9.955172e-01, Macro F Score = 9.866700e-01

– KNN: Cosine (K = 3), Micro F Score = 9.936207e-01, Macro F Score = 9.810669e-01

– KNN: Correlation (K = 3), Micro F Score = 9.932759e-01, Macro F Score = 9.800142e-01

– KNN: Euclidean (K = 4), Micro F Score = 9.948276e-01, Macro F Score = 9.847117e-01

– KNN: City Block (K = 4), Micro F Score = 9.958621e-01, Macro F Score = 9.877115e-01

– KNN: Cosine (K = 4), Micro F Score = 9.946552e-01, Macro F Score = 9.841619e-01

– KNN: Correlation (K = 4), Micro F Score = 9.943103e-01, Macro F Score = 9.831400e-01

– KNN: Euclidean (K = 5), Micro F Score = 9.941379e-01, Macro F Score = 9.826154e-01
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– KNN: City Block (K = 5), Micro F Score = 9.943103e-01, Macro F Score = 9.830298e-01

– KNN: Cosine (K = 5), Micro F Score = 9.936207e-01, Macro F Score = 9.810394e-01

– KNN: Correlation (K = 5), Micro F Score = 9.937931e-01, Macro F Score = 9.815395e-01

– KNN: Euclidean (K = 6), Micro F Score = 9.950000e-01, Macro F Score = 9.851404e-01

– KNN: City Block (K = 6), Micro F Score = 9.950000e-01, Macro F Score = 9.851052e-01

– KNN: Cosine (K = 6), Micro F Score = 9.944828e-01, Macro F Score = 9.836139e-01

– KNN: Correlation (K = 6), Micro F Score = 9.944828e-01, Macro F Score = 9.835917e-01

– KNN: Euclidean (K = 7), Micro F Score = 9.932759e-01, Macro F Score = 9.799172e-01

– KNN: City Block (K = 7), Micro F Score = 9.934483e-01, Macro F Score = 9.803915e-01

– KNN: Cosine (K = 7), Micro F Score = 9.925862e-01, Macro F Score = 9.779330e-01

– KNN: Correlation (K = 7), Micro F Score = 9.927586e-01, Macro F Score = 9.784054e-01

– KNN: Euclidean (K = 8), Micro F Score = 9.939655e-01, Macro F Score = 9.819816e-01

– KNN: City Block (K = 8), Micro F Score = 9.941379e-01, Macro F Score = 9.824647e-01

– KNN: Cosine (K = 8), Micro F Score = 9.929310e-01, Macro F Score = 9.789600e-01

– KNN: Correlation (K = 8), Micro F Score = 9.927586e-01, Macro F Score = 9.784323e-01

– KNN: Euclidean (K = 9), Micro F Score = 9.936207e-01, Macro F Score = 9.809494e-01

– KNN: City Block (K = 9), Micro F Score = 9.934483e-01, Macro F Score = 9.803588e-01

– KNN: Cosine (K = 9), Micro F Score = 9.932759e-01, Macro F Score = 9.799869e-01

– KNN: Correlation (K = 9), Micro F Score = 9.927586e-01, Macro F Score = 9.784323e-01

– KNN: Euclidean (K = 10), Micro F Score = 9.939655e-01, Macro F Score = 9.819816e-01

– KNN: City Block (K = 10), Micro F Score = 9.934483e-01, Macro F Score = 9.803588e-01

– KNN: Cosine (K = 10), Micro F Score = 9.934483e-01, Macro F Score = 9.805134e-01

– KNN: Correlation (K = 10), Micro F Score = 9.927586e-01, Macro F Score = 9.784323e-01

• Alexa Genre Based Labeling
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– KNN: Euclidean (K = 3), Micro F Score = 4.803448e-01, Macro F Score = 3.711311e-01

– KNN: City Block (K = 3), Micro F Score = 5.168966e-01, Macro F Score = 4.016612e-01

– KNN: Cosine (K = 3), Micro F Score = 4.706897e-01, Macro F Score = 3.586735e-01

– KNN: Correlation (K = 3), Micro F Score = 4.700000e-01, Macro F Score = 3.612125e-01

– KNN: Euclidean (K = 4), Micro F Score = 5.036207e-01, Macro F Score = 3.821891e-01

– KNN: City Block (K = 4), Micro F Score = 5.589655e-01, Macro F Score = 4.375162e-01

– KNN: Cosine (K = 4), Micro F Score = 5.013793e-01, Macro F Score = 3.718116e-01

– KNN: Correlation (K = 4), Micro F Score = 4.979310e-01, Macro F Score = 3.760411e-01

– KNN: Euclidean (K = 5), Micro F Score = 5.003448e-01, Macro F Score = 3.793015e-01

– KNN: City Block (K = 5), Micro F Score = 5.500000e-01, Macro F Score = 4.297137e-01

– KNN: Cosine (K = 5), Micro F Score = 4.948276e-01, Macro F Score = 3.656709e-01

– KNN: Correlation (K = 5), Micro F Score = 4.944828e-01, Macro F Score = 3.623283e-01

– KNN: Euclidean (K = 6), Micro F Score = 5.136207e-01, Macro F Score = 3.813165e-01

– KNN: City Block (K = 6), Micro F Score = 5.662069e-01, Macro F Score = 4.506725e-01

– KNN: Cosine (K = 6), Micro F Score = 5.108621e-01, Macro F Score = 3.886743e-01

– KNN: Correlation (K = 6), Micro F Score = 5.148276e-01, Macro F Score = 3.75584e-01

– KNN: Euclidean (K = 7), Micro F Score = 4.784483e-01, Macro F Score = 3.821933e-01

– KNN: City Block (K = 7), Micro F Score = 5.227586e-01, Macro F Score = 4.130418e-01

– KNN: Cosine (K = 7), Micro F Score = 4.710345e-01, Macro F Score = 3.891266e-01

– KNN: Correlation (K = 7), Micro F Score = 4.691379e-01, Macro F Score = 3.865641e-01

– KNN: Euclidean (K = 8), Micro F Score = 4.913793e-01, Macro F Score = 3.7823229e-01

– KNN: City Block (K = 8), Micro F Score = 5.479310e-01, Macro F Score = 4.436172e-01

– KNN: Cosine (K = 8), Micro F Score = 4.863793e-01, Macro F Score = 3.877852e-01

– KNN: Correlation (K = 8), Micro F Score = 4.853448e-01, Macro F Score = 3.864499e-01
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– KNN: Euclidean (K = 9), Micro F Score = 4.586207e-01, Macro F Score = 3.801921e-01

– KNN: City Block (K = 9), Micro F Score = 5.077586e-01, Macro F Score = 3.800443e-01

– KNN: Cosine (K = 9), Micro F Score = 4.532759e-01, Macro F Score = 3.880305e-01

– KNN: Correlation (K = 9), Micro F Score = 4.534483e-01, Macro F Score = 3.865609e-01

– KNN: Euclidean (K = 10), Micro F Score = 4.706897e-01, Macro F Score = 3.819095e-01

– KNN: City Block (K = 10), Micro F Score = 5.222414e-01, Macro F Score = 3.801228e-01

– KNN: Cosine (K = 10), Micro F Score = 4.648276e-01, Macro F Score = 3.876880e-01

– KNN: Correlation (K = 10), Micro F Score = 4.639655e-01, Macro F Score = 3.859975e-01

• Navigation Based Labeling

– KNN: Euclidean (K = 3), Micro F Score = 6.234483e-01, Macro F Score = 6.297429e-01

– KNN: City Block (K = 3), Micro F Score = 6.508621e-01, Macro F Score = 6.569172e-01

– KNN: Cosine (K = 3), Micro F Score = 6.122414e-01, Macro F Score = 6.174243e-01

– KNN: Correlation (K = 3), Micro F Score = 6.141379e-01, Macro F Score = 6.192414e-01

– KNN: Euclidean (K = 4), Micro F Score = 6.706897e-01, Macro F Score = 6.671849e-01

– KNN: City Block (K = 4), Micro F Score = 6.948276e-01, Macro F Score = 6.941832e-01

– KNN: Cosine (K = 4), Micro F Score = 6.648276e-01, Macro F Score = 6.615954e-01

– KNN: Correlation (K = 4), Micro F Score = 6.629310e-01, Macro F Score = 6.598777e-01

– KNN: Euclidean (K = 5), Micro F Score = 6.631034e-01, Macro F Score = 6.622070e-01

– KNN: City Block (K = 5), Micro F Score = 6.887931e-01, Macro F Score = 6.897249e-01

– KNN: Cosine (K = 5), Micro F Score = 6.615517e-01, Macro F Score = 6.600786e-01

– KNN: Correlation (K = 5), Micro F Score = 6.637931e-01, Macro F Score = 6.623127e-01

– KNN: Euclidean (K = 6), Micro F Score = 6.789655e-01, Macro F Score = 6.772107e-01

– KNN: City Block (K = 6), Micro F Score = 6.929310e-01, Macro F Score = 6.917707e-01

– KNN: Cosine (K = 6), Micro F Score = 6.736207e-01, Macro F Score = 6.725245e-01
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– KNN: Correlation (K = 6), Micro F Score = 6.682759e-01, Macro F Score = 6.668703e-01

– KNN: Euclidean (K = 7), Micro F Score = 5.924138e-01, Macro F Score = 5.895979e-01

– KNN: City Block (K = 7), Micro F Score = 6.120690e-01, Macro F Score = 6.081146e-01

– KNN: Cosine (K = 7), Micro F Score = 5.872414e-01, Macro F Score = 5.831213e-01

– KNN: Correlation (K = 7), Micro F Score = 5.812069e-01, Macro F Score = 5.761234e-01

– KNN: Euclidean (K = 8), Micro F Score = 6.301724e-01, Macro F Score = 6.246410e-01

– KNN: City Block (K = 8), Micro F Score = 6.506897e-01, Macro F Score = 6.457086e-01

– KNN: Cosine (K = 8), Micro F Score = 6.265517e-01, Macro F Score = 6.206297e-01

– KNN: Correlation (K = 8), Micro F Score = 6.232759e-01, Macro F Score = 6.167180e-01

– KNN: Euclidean (K = 9), Micro F Score = 5.910345e-01, Macro F Score = 5.801763e-01

– KNN: City Block (K = 9), Micro F Score = 6.246552e-01, Macro F Score = 6.173230e-01

– KNN: Cosine (K = 9), Micro F Score = 5.855172e-01, Macro F Score = 5.740050e-01

– KNN: Correlation (K = 9), Micro F Score = 5.832759e-01, Macro F Score = 5.714570e-01

– KNN: Euclidean (K = 10), Micro F Score = 6.134483e-01, Macro F Score = 6.047412e-01

– KNN: City Block (K = 10), Micro F Score = 6.406897e-01, Macro F Score = 6.335305e-01

– KNN: Cosine (K = 10), Micro F Score = 6.058621e-01, Macro F Score = 5.950387e-01

– KNN: Correlation (K = 10), Micro F Score = 6.022414e-01, Macro F Score = 5.913638e-01
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APPENDIX 11: LIST OF P-VALUES FOR DISTRIBUTION COMPARISON BETWEEN
CLASSIFICATION METHODS

This appendix includes a list of the resulting p-values when performing a Kolmogorov-Smirnov test for

features that are useful for simulation modeling. The p-values presented below are the result of conducting

statistical tests between the ground truth distribution of these features with the classification procedures.

The results shown below are organized according to: Traffic Feature, Classification Method, Classifica-

tion Label, P-value

• Number of TCP Connections

– KNN City Block Distance (K = 1)

∗ Mobile Optimized, 7.969499e-01

∗ Traditional, 1.000000e+00

– Classification Trees - Deviance

∗ Mobile Optimized, 9.952932e-01

∗ Traditional, 1.000000e+00

– Naive Bayes - Multinomial

∗ Mobile Optimized, 8.595523e-48

∗ Traditional, 3.727902e-12

– LDA - Linear

∗ Mobile Optimized, 1.728203e-09

∗ Traditional, 1.846144e-49

– Random Guessing

∗ Mobile Optimized, 6.127685e-51

∗ Traditional, 1.335308e-11

– KNN City Block Distance (K = 1)

∗ Video, 1.000
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∗ Nonvideo, 1.000000e+00

– Classification Trees - Deviance

∗ Video, 1.000

∗ Nonvideo, 1.000000e+00

– Naive Bayes - Multinomial

∗ Video, 1.839656e-01

∗ Nonvideo, 6.564360e-02

– LDA - Linear

∗ Video, 8.146736e-12

∗ Nonvideo, 2.954539e-01

– Random Guessing

∗ Video, 5.642288e-02

∗ Nonvideo, 5.176586e-36

– KNN City Block Distance (K = 1)

∗ Business, 9.828392e-01

∗ Adult, 9.640330e-01

∗ Arts, 9.994220e-01

∗ Computers, 8.773017e-01

∗ Games, 1.000000e+00

∗ Health, 9.776655e-01

∗ Home, 8.737124e-01

∗ Kids and Teens, 3.087469e-01

∗ News, 6.254663e-01

∗ Recreation, 9.487841e-01

∗ Reference, 9.901704e-01
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∗ Regional, 9.799545e-01

∗ Science, 3.827947e-01

∗ Shopping, 9.997474e-01

∗ Society, 9.841684e-01

∗ Sports, 9.903195e-01

∗ World, 9.437779e-01

– Classification Trees - Deviance

∗ Business, 7.205575e-01

∗ Adult, 8.350765e-01

∗ Arts, 6.039600e-01

∗ Computers, 8.525914e-01

∗ Games, 9.311919e-01

∗ Health, 4.063501e-01

∗ Home, 9.871593e-01

∗ Kids and Teens, 2.663928e-01

∗ News, 7.400380e-01

∗ Recreation, 3.456606e-01

∗ Reference, 8.384995e-01

∗ Regional, 3.694098e-01

∗ Science, 2.094731e-01

∗ Shopping, 7.081727e-01

∗ Society, 8.574617e-01

∗ Sports, 7.475772e-01

∗ World, 6.671081e-01

– Naive Bayes - Multinomial

∗ Business, 1.798867e-02

∗ Adult, 6.195595e-02
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∗ Arts, 1.074055e-09

∗ Computers, 2.203120e-06

∗ Games, 4.551635e-01

∗ Health, 7.009434e-04

∗ Home, 3.061002e-01

∗ Kids and Teens, 1.541953e-02

∗ News, 3.210848e-06

∗ Recreation, 2.117827e-01

∗ Reference, 7.943265e-07

∗ Regional, 5.751698e-01

∗ Science, 8.384923e-05

∗ Shopping, 4.161680e-04

∗ Society, 2.626440e-02

∗ Sports, 5.763426e-01

∗ World, 7.399185e-01

– LDA - Linear

∗ Business, 4.560472e-01

∗ Adult, 1.949473e-06

∗ Arts, 1.676528e-10

∗ Computers, 3.210711e-12

∗ Games, 1.082525e-01

∗ Health, 3.345310e-02

∗ Home, 8.221657e-01

∗ Kids and Teens, 3.257351e-02

∗ News, 3.448062e-06

∗ Recreation, 1.610210e-01

∗ Reference, 8.303009e-02
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∗ Regional, 1.562155e-02

∗ Science, 6.817367e-01

∗ Shopping, 1.868109e-10

∗ Society, 1.936138e-01

∗ Sports, 6.635939e-03

∗ World, 8.308815e-02

– Random Guessing

∗ Business, 3.923436e-07

∗ Adult, 1.426969e-05

∗ Arts, 3.590498e-06

∗ Computers, 6.640714e-02

∗ Games, 4.185450e-03

∗ Health, 2.696946e-01

∗ Home, 2.694666e-05

∗ Kids and Teens, 9.499657e-08

∗ News, 3.252373e-04

∗ Recreation, 1.887119e-01

∗ Reference, 7.046161e-01

∗ Regional, 8.376703e-01

∗ Science, 6.782937e-01

∗ Shopping, 8.877651e-02

∗ Society, 4.834888e-01

∗ Sports, 1.232587e-04

∗ World, 2.593929e-03

– KNN City Block Distance (K = 1)

∗ Homepage, 9.827662e-01

∗ Clickable Content, 4.800181e-01
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∗ Search Results, 6.814027e-01

– Classification Trees - Deviance

∗ Homepage, 9.994633e-01

∗ Clickable Content, 9.553413e-01

∗ Search Results, 9.187428e-01

– Naive Bayes - Multinomial

∗ Homepage, 1.427481e-01

∗ Clickable Content, 7.776364e-11

∗ Search Results, 1.448096e-05

– LDA - Linear

∗ Homepage, 8.312447e-09

∗ Clickable Content, 1.066514e-28

∗ Search Results, 4.557833e-18

– Random Guessing

∗ Homepage, 1.911268e-03

∗ Clickable Content, 3.991731e-06

∗ Search Results, 1.106638e-02

• Number of Bidirectional Bytes

– KNN City Block Distance (K = 1)

∗ Mobile Optimized, 4.774819e-01

∗ Traditional, 9.999932e-01

– Classification Trees - Deviance

∗ Mobile Optimized, 8.552577e-01

∗ Traditional, 9.996620e-01
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– Naive Bayes - Multinomial

∗ Mobile Optimized, 3.199858e-75

∗ Traditional, 1.585956e-166

– LDA - Linear

∗ Mobile Optimized, 1.506361e-19

∗ Traditional, 4.646497e-89

– Random Guessing

∗ Mobile Optimized, 7.094954e-92

∗ Traditional, 9.634609e-24

– KNN City Block Distance (K = 1)

∗ Video, 1

∗ Nonvideo, 1.000000e+00

– Classification Trees - Deviance

∗ Video, 1

∗ Nonvideo, 1.000000e+00

– Naive Bayes - Multinomial

∗ Video, 1.247966e-03

∗ Nonvideo, 2.645609e-22

– LDA - Linear

∗ Video, 4.207618e-04

∗ Nonvideo, 7.021330e-01

– Random Guessing

∗ Video, 1.281741e-09

∗ Nonvideo, 1.605416e-207
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– KNN City Block Distance (K = 1)

∗ Business, 9.940872e-01

∗ Adult, 9.772871e-01

∗ Arts, 9.999134e-01

∗ Computers, 9.999562e-01

∗ Games, 9.982084e-01

∗ Health, 9.999992e-01

∗ Home, 6.048471e-01

∗ Kids and Teens, 7.808956e-01

∗ News, 5.558294e-01

∗ Recreation, 9.921193e-01

∗ Reference, 9.980502e-01

∗ Regional, 1.000000e+00

∗ Science, 8.372938e-01

∗ Shopping, 9.821134e-01

∗ Society, 1.000000e+00

∗ Sports, 9.998535e-01

∗ World, 9.999998e-01

– Classification Trees - Deviance

∗ Business, 2.916434e-01

∗ Adult, 9.965339e-01

∗ Arts, 9.941741e-01

∗ Computers, 9.963833e-01

∗ Games, 1.915453e-01

∗ Health, 9.749530e-01

∗ Home, 9.945730e-01

∗ Kids and Teens, 8.040408e-01
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∗ News, 9.587885e-01

∗ Recreation, 9.949878e-01

∗ Reference, 4.182255e-01

∗ Regional, 8.047613e-01

∗ Science, 1.284729e-02

∗ Shopping, 5.542601e-01

∗ Society, 6.758099e-01

∗ Sports, 6.778845e-01

∗ World, 1.067033e-01

– Naive Bayes - Multinomial

∗ Business, 1.672599e-01

∗ Adult, 2.541755e-04

∗ Arts, 5.219294e-40

∗ Computers, 2.843006e-03

∗ Games, 2.616177e-01

∗ Health, 0

∗ Home, 6.231220e-01

∗ Kids and Teens, 1.541953e-02

∗ News, 4.391006e-03

∗ Recreation, 8.943972e-01

∗ Reference, 5.290266e-10

∗ Regional, 4.547292e-02

∗ Science, 3.274436e-09

∗ Shopping, 4.123988e-19

∗ Society, 5.904710e-03

∗ Sports, 1.392094e-02

∗ World, 1.501536e-01
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– LDA - Linear

∗ Business, 2.573437e-01

∗ Adult, 4.490945e-04

∗ Arts, 7.667922e-15

∗ Computers, 2.122138e-09

∗ Games, 9.325108e-07

∗ Health, 3.978250e-04

∗ Home, 1.843479e-02

∗ Kids and Teens, 7.919902e-03

∗ News, 9.560907e-10

∗ Recreation, 6.869806e-02

∗ Reference, 1.501172e-02

∗ Regional, 1.169344e-02

∗ Science, 2.183749e-08

∗ Shopping, 4.933331e-13

∗ Society, 3.742857e-02

∗ Sports, 8.289128e-04

∗ World, 1.167155e-02

– Random Guessing

∗ Business, 6.207791e-10

∗ Adult, 1.755783e-25

∗ Arts, 5.265419e-08

∗ Computers, 9.662568e-02

∗ Games, 8.530924e-08

∗ Health, 3.982158e-03

∗ Home, 1.627928e-03

∗ Kids and Teens, 1.029429e-11
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∗ News, 3.367470e-01

∗ Recreation, 9.287807e-02

∗ Reference, 4.431061e-05

∗ Regional, 1.070639e-01

∗ Science, 1.948593e-16

∗ Shopping, 2.443829e-02

∗ Society, 1.020441e-02

∗ Sports, 7.846725e-04

∗ World, 8.004550e-02

– KNN City Block Distance (K = 1)

∗ Homepage, 8.980712e-01

∗ Clickable Content, 9.863119e-01

∗ Search Results, 4.977701e-01

– Classification Trees - Deviance

∗ Homepage, 7.249996e-01

∗ Clickable Content, 9.998357e-01

∗ Search Results, 9.788912e-01

– Naive Bayes - Multinomial

∗ Homepage, 1.417794e-34

∗ Clickable Content, 2.509826e-130

∗ Search Results, 6.143993e-04

– LDA - Linear

∗ Homepage, 3.359221e-17

∗ Clickable Content, 1.411337e-99

∗ Search Results, 1.404193e-05
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– Random Guessing

∗ Homepage, 6.826242e-14

∗ Clickable Content, 8.066855e-11

∗ Search Results, 1.001127e-31

• Number of Servers

– KNN City Block Distance (K = 1)

∗ Mobile Optimized, 8.950941e-01

∗ Traditional, 1.000000e+00

– Classification Trees - Deviance

∗ Mobile Optimized, 9.901304e-01

∗ Traditional, 9.999999e-01

– Naive Bayes - Multinomial

∗ Mobile Optimized, 6.696808e-48

∗ Traditional, 1.672604e-06

– LDA - Linear

∗ Mobile Optimized, 2.009603e-10

∗ Traditional, 7.607447e-40

– Random Guessing

∗ Mobile Optimized, 3.745382e-46

∗ Traditional, 2.270249e-11

– KNN City Block Distance (K = 1)

∗ Video, 1

∗ Nonvideo, 1

– Classification Trees - Deviance
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∗ Video, 1

∗ Nonvideo, 1

– Naive Bayes - Multinomial

∗ Video, 1.893484e-01

∗ Nonvideo, 2.123292e-02

– LDA - Linear

∗ Video, 1.000000e+00

∗ Nonvideo, 1.000000e+00

– Random Guessing

∗ Video, 5.651089e-01

∗ Nonvideo, 2.565372e-08

– KNN City Block Distance (K = 1)

∗ Business, 9.998722e-01

∗ Adult, 9.514054e-01

∗ Arts, 9.992799e-01

∗ Computers, 8.738320e-01

∗ Games, 1.000000e+00

∗ Health, 9.768581e-01

∗ Home, 9.247056e-01

∗ Kids and Teens, 2.932152e-01

∗ News, 9.819199e-01

∗ Recreation, 9.854286e-01

∗ Reference, 9.346716e-01

∗ Regional, 9.973532e-01

∗ Science, 8.385739e-01

∗ Shopping, 9.999961e-01
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∗ Society, 9.765766e-01

∗ Sports, 7.860754e-01

∗ World, 6.851466e-01

– Classification Trees - Deviance

∗ Business, 6.624027e-01

∗ Adult, 8.547788e-01

∗ Arts, 7.528675e-01

∗ Computers, 6.460346e-01

∗ Games, 5.245912e-01

∗ Health, 4.164604e-01

∗ Home, 9.967455e-01

∗ Kids and Teens, 2.262396e-01

∗ News, 5.416420e-01

∗ Recreation, 7.190816e-01

∗ Reference, 8.722464e-01

∗ Regional, 7.919526e-01

∗ Science, 1.203945e-02

∗ Shopping, 9.006634e-01

∗ Society, 9.788866e-01

∗ Sports, 7.934647e-01

∗ World, 8.883390e-01

– Naive Bayes - Multinomial

∗ Business, 3.757601e-01

∗ Adult, 2.728743e-01

∗ Arts, 1.374716e-05

∗ Computers, 1.119869e-13

∗ Games, 1.072337e-01
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∗ Health, 0

∗ Home, 5.822085e-01

∗ Kids and Teens, 2.297604e-01

∗ News, 5.045282e-07

∗ Recreation, 2.632904e-01

∗ Reference, 3.137847e-09

∗ Regional, 4.826011e-01

∗ Science, 1.998443e-02

∗ Shopping, 2.434695e-11

∗ Society, 1.436340e-01

∗ Sports, 1.913320e-02

∗ World, 7.399185e-01

– LDA - Linear

∗ Business, 8.939208e-02

∗ Adult, 7.348541e-02

∗ Arts, 3.181326e-08

∗ Computers, 4.536154e-12

∗ Games, 1.764841e-02

∗ Health, 5.681021e-03

∗ Home, 4.353342e-02

∗ Kids and Teens, 6.334784e-03

∗ News, 7.072774e-11

∗ Recreation, 4.037785e-01

∗ Reference, 1.001810e-03

∗ Regional, 6.118861e-06

∗ Science, 1.992831e-13

∗ Shopping, 4.344587e-13
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∗ Society, 6.119660e-02

∗ Sports, 1.164970e-01

∗ World, 1.160040e-03

– Random Guessing

∗ Business, 9.771616e-07

∗ Adult, 1.651121e-03

∗ Arts, 2.263240e-05

∗ Computers, 1.929651e-01

∗ Games, 3.688511e-05

∗ Health, 1.034780e-01

∗ Home, 5.212033e-06

∗ Kids and Teens, 7.991845e-10

∗ News, 6.583784e-07

∗ Recreation, 8.179732e-01

∗ Reference, 3.686094e-02

∗ Regional, 7.088230e-02

∗ Science, 4.556930e-12

∗ Shopping, 6.056420e-01

∗ Society, 3.557411e-01

∗ Sports, 3.054775e-08

∗ World, 2.194456e-04

– KNN City Block Distance (K = 1)

∗ Homepage, 9.999632e-01

∗ Clickable Content, 6.867079e-01

∗ Search Results, 5.899846e-01

– Classification Trees - Deviance
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∗ Homepage, 9.943930e-01

∗ Clickable Content, 9.658874e-01

∗ Search Results, 7.485196e-01

– Naive Bayes - Multinomial

∗ Homepage, 6.734300e-01

∗ Clickable Content, 1.966331e-02

∗ Search Results, 5.398247e-03

– LDA - Linear

∗ Homepage, 8.215819e-06

∗ Clickable Content, 2.740834e-14

∗ Search Results, 4.688613e-10

– Random Guessing

∗ Homepage, 1.379406e-01

∗ Clickable Content, 4.198363e-05

∗ Search Results, 5.189463e-04

• Number of Bidirectional Segments

– KNN City Block Distance (K = 1)

∗ Mobile Optimized, 8.681408e-01

∗ Traditional, 1.000000e+00

– Classification Trees - Deviance

∗ Mobile Optimized, 9.365595e-01

∗ Traditional, 9.999792e-01

– Naive Bayes - Multinomial

∗ Mobile Optimized, 7.029645e-75
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∗ Traditional, 7.932697e-171

– LDA - Linear

∗ Mobile Optimized, 2.750753e-20

∗ Traditional, 1.365849e-105

– Random Guessing

∗ Mobile Optimized, 3.762549e-91

∗ Traditional, 1.622602e-23

– KNN City Block Distance (K = 1)

∗ Video, 1

∗ Nonvideo, 1

– Classification Trees - Deviance

∗ Video, 1

∗ Nonvideo, 1.000000e+00

– Naive Bayes - Multinomial

∗ Video, 1.656106e-03

∗ Nonvideo, 2.133030e-20

– LDA - Linear

∗ Video, 1.000000e+00

∗ Nonvideo, 6.640748e-01

– Random Guessing

∗ Video, 8.414154e-10

∗ Nonvideo, 4.776861e-207

– KNN City Block Distance (K = 1)

∗ Business, 9.988493e-01

395



∗ Adult, 9.532255e-01

∗ Arts, 9.993482e-01

∗ Computers, 1.000000e+00

∗ Games, 9.982084e-01

∗ Health, 9.991395e-01

∗ Home, 5.510404e-01

∗ Kids and Teens, 7.377679e-01

∗ News, 7.559213e-01

∗ Recreation, 9.965709e-01

∗ Reference, 9.869087e-01

∗ Regional, 9.999974e-01

∗ Science, 9.384791e-01

∗ Shopping, 9.981183e-01

∗ Society, 9.999999e-01

∗ Sports, 9.987011e-01

∗ World, 9.954277e-01

– Classification Trees - Deviance

∗ Business, 6.398089e-01

∗ Adult, 9.579182e-01

∗ Arts, 8.554191e-01

∗ Computers, 9.697956e-01

∗ Games, 1.915453e-01

∗ Health, 5.772498e-01

∗ Home, 9.209584e-01

∗ Kids and Teens, 4.762603e-01

∗ News, 8.167495e-01

∗ Recreation, 9.926633e-01
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∗ Reference, 6.691148e-01

∗ Regional, 7.421163e-01

∗ Science, 5.110980e-02

∗ Shopping, 5.685722e-01

∗ Society, 6.338860e-01

∗ Sports, 8.533837e-01

∗ World, 1.067033e-01

– Naive Bayes - Multinomial

∗ Business, 9.195638e-02

∗ Adult, 2.541755e-04

∗ Arts, 4.613082e-41

∗ Computers, 4.955141e-02

∗ Games, 2.616177e-01

∗ Health, 0

∗ Home, 9.622295e-01

∗ Kids and Teens, 1.541953e-02

∗ News, 2.458541e-03

∗ Recreation, 3.653853e-01

∗ Reference, 2.471514e-11

∗ Regional, 5.541286e-03

∗ Science, 6.783779e-01

∗ Shopping, 2.780317e-18

∗ Society, 5.613111e-03

∗ Sports, 1.367964e-01

∗ World, 1.501536e-01

– LDA - Linear

∗ Business, 1.008631e-01
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∗ Adult, 4.490945e-04

∗ Arts, 5.128302e-16

∗ Computers, 1.862155e-12

∗ Games, 1.932733e-06

∗ Health, 1.445641e-02

∗ Home, 1.299254e-01

∗ Kids and Teens, 2.268978e-02

∗ News, 2.598492e-11

∗ Recreation, 3.394833e-01

∗ Reference, 1.881004e-01

∗ Regional, 1.008519e-02

∗ Science, 1.283988e-01

∗ Shopping, 8.374265e-13

∗ Society, 1.762935e-04

∗ Sports, 1.196946e-05

∗ World, 2.971282e-02

– Random Guessing

∗ Business, 8.161453e-10

∗ Adult, 1.039321e-18

∗ Arts, 1.194699e-08

∗ Computers, 7.911335e-02

∗ Games, 8.530924e-08

∗ Health, 1.310853e-02

∗ Home, 2.433564e-03

∗ Kids and Teens, 1.881920e-11

∗ News, 3.721474e-01

∗ Recreation, 5.020308e-02

398



∗ Reference, 1.797532e-03

∗ Regional, 5.742149e-02

∗ Science, 9.283746e-01

∗ Shopping, 2.443829e-02

∗ Society, 9.896470e-03

∗ Sports, 7.671102e-04

∗ World, 5.080001e-02

– KNN City Block Distance (K = 1)

∗ Homepage, 9.934163e-01

∗ Clickable Content, 9.789054e-01

∗ Search Results, 4.506664e-01

– Classification Trees - Deviance

∗ Homepage, 8.363577e-01

∗ Clickable Content, 9.947511e-01

∗ Search Results, 9.922539e-01

– Naive Bayes - Multinomial

∗ Homepage, 6.506030e-21

∗ Clickable Content, 2.922743e-126

∗ Search Results, 9.716675e-03

– LDA - Linear

∗ Homepage, 1.453289e-09

∗ Clickable Content, 5.911520e-104

∗ Search Results, 1.163678e-12

– Random Guessing

∗ Homepage, 3.010576e-06
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∗ Clickable Content, 1.132606e-12

∗ Search Results, 3.511810e-28

• Number of Objects/Epochs

– KNN City Block Distance (K = 1)

∗ Mobile Optimized, 7.944660e-01

∗ Traditional, 1.000000e+00

– Classification Trees - Deviance

∗ Mobile Optimized, 8.007933e-01

∗ Traditional, 9.990047e-01

– Naive Bayes - Multinomial

∗ Mobile Optimized, 6.537436e-74

∗ Traditional, 5.043031e-38

– LDA - Linear

∗ Mobile Optimized, 2.265689e-17

∗ Traditional, 1.494170e-64

– Random Guessing

∗ Mobile Optimized, 4.122601e-79

∗ Traditional, 2.928726e-17

– KNN City Block Distance (K = 1)

∗ Video, 1

∗ Nonvideo, 1.000000e+00

– Classification Trees - Deviance

∗ Video, 1

∗ Nonvideo, 1.000000e+00
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– Naive Bayes - Multinomial

∗ Video, 1.692669e-02

∗ Nonvideo, 2.327775e-03

– LDA - Linear

∗ Video, 1

∗ Nonvideo, 9.502916e-01

– Random Guessing

∗ Video, 1.903623e-03

∗ Nonvideo, 2.595300e-59

– KNN City Block Distance (K = 1)

∗ Business, 9.835103e-01

∗ Adult, 9.977981e-01

∗ Arts, 9.992629e-01

∗ Computers, 9.998671e-01

∗ Games, 1.000000e+00

∗ Health, 6.871176e-01

∗ Home, 5.510404e-01

∗ Kids and Teens, 9.472889e-01

∗ News, 9.615116e-01

∗ Recreation, 8.781801e-01

∗ Reference, 9.973954e-01

∗ Regional, 9.999993e-01

∗ Science, 2.338744e-01

∗ Shopping, 9.218577e-01

∗ Society, 9.999919e-01

∗ Sports, 1.000000e+00
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∗ World, 9.998394e-01

– Classification Trees - Deviance

∗ Business, 5.072299e-01

∗ Adult, 9.997564e-01

∗ Arts, 9.774073e-01

∗ Computers, 9.874899e-01

∗ Games, 1.028227e-01

∗ Health, 8.473341e-01

∗ Home, 2.137905e-01

∗ Kids and Teens, 2.663928e-01

∗ News, 9.052003e-01

∗ Recreation, 4.139153e-01

∗ Reference, 3.797396e-01

∗ Regional, 9.420360e-01

∗ Science, 7.774923e-02

∗ Shopping, 6.093171e-01

∗ Society, 9.904457e-01

∗ Sports, 9.569115e-01

∗ World, 3.054084e-01

– Naive Bayes - Multinomial

∗ Business, 3.104792e-01

∗ Adult, 4.647533e-02

∗ Arts, 2.196994e-07

∗ Computers, 2.830330e-02

∗ Games, 3.829776e-01

∗ Health, 0

∗ Home, 1.211001e-02
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∗ Kids and Teens, 1.541953e-02

∗ News, 2.086029e-01

∗ Recreation, 6.660552e-02

∗ Reference, 1.905006e-11

∗ Regional, 3.324938e-04

∗ Science, 8.119221e-05

∗ Shopping, 1.700183e-06

∗ Society, 8.020590e-06

∗ Sports, 2.343055e-02

∗ World, 3.788332e-01

– LDA - Linear

∗ Business, 1.866651e-01

∗ Adult, 4.786060e-02

∗ Arts, 1.520112e-21

∗ Computers, 5.198083e-13

∗ Games, 2.910778e-04

∗ Health, 2.418753e-06

∗ Home, 4.325192e-05

∗ Kids and Teens, 6.475561e-05

∗ News, 1.883162e-15

∗ Recreation, 4.681125e-01

∗ Reference, 6.709096e-03

∗ Regional, 3.365982e-04

∗ Science, 4.886120e-08

∗ Shopping, 8.388555e-14

∗ Society, 4.802667e-01

∗ Sports, 3.365486e-03
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∗ World, 4.449033e-01

– Random Guessing

∗ Business, 4.139337e-12

∗ Adult, 3.512530e-08

∗ Arts, 7.852916e-08

∗ Computers, 3.450601e-02

∗ Games, 3.521883e-08

∗ Health, 5.698458e-03

∗ Home, 6.842047e-07

∗ Kids and Teens, 1.259717e-11

∗ News, 3.618618e-04

∗ Recreation, 1.676714e-01

∗ Reference, 3.709225e-02

∗ Regional, 4.657560e-02

∗ Science, 2.212655e-04

∗ Shopping, 1.497245e-04

∗ Society, 1.837060e-01

∗ Sports, 2.657635e-09

∗ World, 3.131206e-03

– KNN City Block Distance (K = 1)

∗ Homepage, 9.999554e-01

∗ Clickable Content, 9.954072e-01

∗ Search Results, 9.802824e-01

– Classification Trees - Deviance

∗ Homepage, 9.914308e-01

∗ Clickable Content, 9.793335e-01

404



∗ Search Results, 9.999998e-01

– Naive Bayes - Multinomial

∗ Homepage, 6.402773e-07

∗ Clickable Content, 3.113979e-29

∗ Search Results, 1.778612e-02

– LDA - Linear

∗ Homepage, 1.097070e-03

∗ Clickable Content, 1.515659e-59

∗ Search Results, 9.206878e-07

– Random Guessing

∗ Homepage, 2.090200e-04

∗ Clickable Content, 6.080219e-05

∗ Search Results, 1.055630e-08
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APPENDIX 12: TIME SERIES CHARACTERISTICS OF WEB PAGE TRAFFIC

This appendix includes plots which characterize the time series generated by downloading web pages using

the Google Chrome v 37.0.2062.124, Firefox v 32.0.2, and Opera v 25.0 browsers on a box running Windows

7. These plots supplement the plots provided in Section 5.1 of Chapter 5.
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Figure 6.7: Overview of the variability in the magnitude of the traffic features across web pages -
Windows 7 operating system.
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(a) SYN Cluster 1 size: 985
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(b) SYN Cluster 2 size: 1346
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(c) SYN Cluster 3 size: 1690
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(d) SYN Cluster 4 size: 3205
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(e) SYN Cluster 5 size: 1246

Figure 6.8: K-mean cluster centroids for web page download time series (SYNs) - Windows 7 operat-
ing system.
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(a) Byte Cluster 1 size: 1691
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(b) Byte Cluster 2 size: 1520
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(c) Byte Cluster 3 size: 924
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(d) Byte Cluster 4 size: 1464
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(e) Byte Cluster 5 size: 2958

Figure 6.9: K-mean cluster centroids for web page download time series (Bytes) - Windows 7 operat-
ing system.

408



APPENDIX 13: WEB PAGE SEGMENTATION PERFORMANCE

This appendix includes performance results for the web page segmentation methods when the resolution

parameter is adjusted. Web page segmentation approach performance is described in Chapter 5.

TABLE 6.1: Optimal Parameter Settings Used for Web Page Segmentation Approaches for r = 100ms

Segmentation Approach Optimal Parameters
Idle-time method (Number of SYNs) I = 9s
Idle-time method (Number of Bytes) I = 10s
Idle-time method with threshold (Number of SYNs) I = 9s; T 4
Idle-time method with threshold (Number of Bytes) I = 3s; T =3000
Heuristic Change Detection Method (Number of SYNs) I=0s; T =4; L=8s
Heuristic Change Detection Method (Number of Bytes) I=0s; T =6000; L=9s
Fused Lasso (Number of SYNs) λ = .1; µ=1.25; k = 5s
Fused Lasso (Number of Bytes) λ = 1000; µ=10000; k = 5s
HMM (Number of SYNs) k = 5s; A1,1=.9; A1,2=.1;

A2,1 =.05; A2,2 =.95
B1,1=.99; B1,2=.01;
B2,1 =.8; B2,2 =.2

HMM (Number of Bytes) k = 5s; A1,1=.87; A1,2=.13;
A2,1 =.05; A2,2 =.95
B1,1=.97; B1,2=.03;
B2,1 =.79; B2,2 =.21
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TABLE 6.2: Optimal Parameter Settings Used for Web Page Segmentation Approaches for r = 500ms

Segmentation Approach Optimal Parameters
Idle-time method (Number of SYNs) I = 9s
Idle-time method (Number of Bytes) I = 10s
Idle-time method with threshold (Number of SYNs) I = 9s; T =6
Idle-time method with threshold (Number of Bytes) I = 3.5s; T =5000
Heuristic Change Detection Method (Number of SYNs) I=0s; T =6; L=8s
Heuristic Change Detection Method (Number of Bytes) I=0s; T =9000; L=9s
Fused Lasso (Number of SYNs) λ = .3; µ=3.25; k = 5s
Fused Lasso (Number of Bytes) λ = 3000; µ=18000; k = 5s
HMM (Number of SYNs) k = 5s; A1,1=.9; A1,2=.1;

A2,1 =.05; A2,2 =.95
B1,1=.99; B1,2=.01;
B2,1 =.8; B2,2 =.2

HMM (Number of Bytes) k = 5s; A1,1=.87; A1,2=.13;
A2,1 =.03; A2,2 =.97
B1,1=.98; B1,2=.02;
B2,1 =.77; B2,2 =.23

TABLE 6.3: Optimal Parameter Settings Used for Web Page Segmentation Approaches for r = 1000ms

Segmentation Approach Optimal Parameters
Idle-time method (Number of SYNs) I = 9s
Idle-time method (Number of Bytes) I = 10s
Idle-time method with threshold (Number of SYNs) I = 9s; T =6
Idle-time method with threshold (Number of Bytes) I = 3.5s; T =5000
Heuristic Change Detection Method (Number of SYNs) I=0s; T =6; L=8s
Heuristic Change Detection Method (Number of Bytes) I=0s; T =12000; L=9s
Fused Lasso (Number of SYNs) λ = .35; µ=3.4; k = 5s
Fused Lasso (Number of Bytes) λ = 5000; µ=20000; k = 5s
HMM (Number of SYNs) k = 5s; A1,1=.9; A1,2=.1;

A2,1 =.04; A2,2 =.96
B1,1=.99; B1,2=.01;
B2,1 =.82; B2,2 =.18

HMM (Number of Bytes) k = 5s; A1,1=.87; A1,2=.13;
A2,1 =.02; A2,2 =.98
B1,1=.99; B1,2=.01;
B2,1 =.75; B2,2 =.25
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TABLE 6.4: Impact of Resolution Parameter (r) on Web Page Segmentation Performance - Number
of SYNs

Segmentation Approach r (s) TPR/Recall (SYNs) FPR (SYNs) Precision F-score
Idle-time method 1.000 .4148 .0869 .8268 .5524
Idle-time method with threshold 1.000 .4016 .0328 .9245 .5600
Heuristic Change Detection 1.000 .7115 .1970 .7832 .7456
Fused Lasso 1.000 .8129 .0776 .9129 .8600
HMM 1.000 .5113 .0594 .8959 .6510
Idle-time method .500 .4148 .0869 .8268 .5524
Idle-time method with threshold .500 .4112 .0471 .8972 .5639
Heuristic Change Detection .500 .7218 .2011 .4148 .0869
Fused Lasso .500 .8155 .0610 .9304 .8692
HMM .500 .5028 .0541 .9029 .6459
Idle-time method .250 .4148 .0869 .8268 .5524
Idle-time method with threshold .250 .4016 .0328 .9245 .5600
Heuristic Change Detection .250 .7320 .2038 .7822 .7563
Fused Lasso .250 .8217 .0629 .9289 .8720
HMM .250 .5079 .0584 .8969 .6485
Idle-time method .100 .4148 .0869 .8268 .5524
Idle-time method with threshold .100 .4328 .0514 .8939 .5832
Heuristic Change Detection .100 .7412 .2263 .7822 .7563
Fused Lasso .100 .8376 .0720 .9208 .8773
HMM .100 .5215 .0619 .8939 .6587
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TABLE 6.5: Impact of Resolution Parameter (r) on Web Page Segmentation Performance - Number
of Bytes

Segmentation Approach r (s) TPR/Recall (Bytes) FPR (Bytes) Precision F-score
Idle-time method 1.000 .1092 .0723 .6017 .1847
Idle-time method with threshold 1.000 .9127 .7462 .5502 .6865
Heuristic Change Detection Method 1.000 .8417 .5518 .6040 .7033
Fused Lasso 1.000 .8012 .1655 .8288 .8147
HMM 1.000 .0234 .0098 .7048 .0453
Idle-time method .500 .0911 .0752 .5478 .1562
Idle-time method with threshold .500 .8987 .7688 .5390 .6738
Heuristic Change Detection Method .500 .8289 .5374 .6067 .7006
Fused Lasso .500 .8099 .1634 .8321 .8209
HMM .500 .0241 .0105 .6965 .0460
Idle-time method .250 .0889 .0770 .5359 .1525
Idle-time method with threshold .250 .8951 .7623 .5401 .6737
Heuristic Change Detection Method .250 .8393 .5476 .6052 .7033
Fused Lasso .250 .8115 .1863 .8133 .8124
HMM .250 .0257 .0107 .7060 .0496
Idle-time method .100 .0986 .0836 .5412 .1668
Idle-time method with threshold .100 .9187 .7916 .5372 .6779
Heuristic Change Detection Method .100 .8551 .5520 .6077 .7105
Fused Lasso .100 .8389 .2092 .8004 .8192
HMM .100 .0266 .0113 .7019 .0513
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TABLE 6.6: Impact of s Parameter on Web Page Segmentation for Precision and F-score Metrics (r =
250ms)

Segmentation Approach s (seconds) SYNS Bytes
s (seconds) Precision F-score Precision F-score

Idle-time method .250 .8268 .5524 .5359 .1525
Idle-time method (threshold) .250 .9245 .5600 .5401 .6737
Heuristic Change Detection .250 .7822 .7563 .6052 .7033
Fused Lasso .250 .9289 .8720 .8133 .8124
HMM .250 .8969 .6485 .7060 .0496
Idle-time method .500 .8397 .5611 .5401 .1537
Idle-time method (threshold) .500 .9468 .5734 .5404 .6740
Heuristic Change Detection .500 .7919 .7657 .6064 .7047
Fused Lasso .500 .9326 .8755 .8165 .8156
HMM .500 .9207 .6658 .7143 .0502
Idle-time method 1 .8646 .5777 .6016 .1712
Idle-time method (threshold) 1 .9553 .5786 .5429 .6772
Heuristic Change Detection 1 .8135 .7865 .6182 .7184
Fused Lasso 1 .9513 .8930 .8248 .8239
HMM 1 .9454 .6837 .7692 .0540
Idle-time method 5 .9121 .6094 ..6655 .1894
Idle-time method (threshold) 5 .9609 .5819 .5758 .7182
Heuristic Change Detection 5 .8700 .8411 .6354 .7384
Fused Lasso 5 .9634 .9044 .8773 .8734
HMM 5 .9767 .7063 .8077 .0567
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enabled behavioral ad targeting without deep packet inspection. In INFOCOM, 2010 Proceedings IEEE,
pages 1–9. IEEE, 2010.

Bruce A Mah. An empirical model of http network traffic. In INFOCOM’97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution.,
Proceedings IEEE, volume 2, pages 592–600. IEEE, 1997.

Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. Flow clustering using machine learning
techniques. In Passive and Active Network Measurement, pages 205–214. Springer, 2004.
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