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ABSTRACT 

WENJIE YE: Oxidative Damage to Guanine in DNA Caused by Reactive Oxygen Species 

(Under the direction of Dr. Louise M. Ball) 

 

Oxidative damage to DNA, a factor in cancer, mutation, and aging, is attributed to 

reactive oxygen species (ROS). The less well characterized ROS, organic peroxyl radicals 

and peracid are present during lipid peroxidation and also produced by peroxidases from 

organic hydroperoxides. Peracetic acid is also formed in mitochondria. Guanine (Gua) is the 

nucleobases most susceptible to oxidation due to its lowest electron potential. The study 

described here focuses on Gua oxidation by epoxidizing reagents including peroxyl radicals 

and organic peracids. Dimethyldioxirane (DMDO), peracetic acid and m-chloroperbenzoic 

acid selectively oxidizes the guanine moiety of dGuo, dGMP and dGTP to 5-carboxamido-5-

formamido-2-iminohydantoin (2-Ih). Structures were established on mass spectrometry and 

NMR studies. Labeling studies support a mechanism involving initial epoxidation of the 

guanine 4-5 bond and contraction of the pyrimidine ring by a 1,2-migration of the guanine 

carbonyl C6 to form a transient dehydrodeoxyspiroiminodihydantoin followed by hydrolytic

 ring opening of the imidazolone ring. The 2-Ih is shown to be a major transformation in the 

oxidation of the single-stranded DNA 5-mer d(TTGTT) and the 5-base pair duplex

 d[(TTGTT)·(AACAA)]. 2-Ih has not previously been reported as an oxidative lesion in DNA. 

Consistent with the proposed mechanism, no 8-oxoguanine was detected as a product of the 

oxidations of the oligonucleotides or monomeric species mediated by the monooxygen 
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donors. The 2-Ih base thus appears to be a pathway-specific lesion and holds promise as a 

potential biomarker. 

N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine is a highly mutagenic DNA 

adduct arising from exposure to known occupational and environmental carcinogens and 

lipid peroxidation products in vivo. Chemical synthesis has proven to be challenging because 

of the reported lability of the glycosidic bond under conditions generally applicable to 

chemical synthesis. Enzymatic and chemical glycosylations of N
2
,3-ethenoguanine were 

attempted as approaches to obtain this nucleoside under mild conditions. Both glycosylations 

led to nucleosides with ribosylation at positions corresponding to N7- and N
2
 of the Gua 

framework. A minor product of the enzymatic ribosylation has tentatively been assigned as 

the α-anomer of the desired N3 riboside, and rigorous confirmation of this structure would 

demonstrate an unusual stereochemistry for the trans ribosylation. 
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I.  Literature Review 

1.1 Oxidation pressure in vivo 

Oxidative stress is a physiological condition that occurs when there is a significant 

imbalance between production of reactive oxygen species and antioxidant defenses. In 

humans, oxidative stress is involved in many diseases, such as atherosclerosis, Parkinson's 

disease and Alzheimer's disease[Valko M. et al, 2005], but it may also be important in 

prevention of aging by induction of a process named mitohormesis. ROS can be beneficial, 

as they are used by the immune system as a way to attack and kill pathogens. ROS are also 

used in cell signaling. This is dubbed redox signaling. A particularly destructive aspect of 

oxidative stress is the production of ROS, which include free radicals and peroxides. Some 

of the less reactive of these species (such as superoxide) can be converted by 

oxidoreduction reactions with transition metals or other redox cycling compounds 

(including quinones) into more aggressive radical species that can cause extensive cellular 

damage. [Valko M. et al, 2005] The major portion of long term effects is inflicted by 

damage on DNA [Evans M.D. et al., 2004]. Most of these oxygen-derived species are 

produced at a low level by normal aerobic metabolism and the damage they cause to cells 

is constantly repaired.



 
 

2 
 

1.1.1 Sources of the endogenous and exogenous oxidizing species  

1.1.1.1 Sources of the endogenous oxidizing species 

The production of oxidizing species occurs through a variety of endogenous 

processes which was summarized in the following paragraphs and Table 1.1[Williams, G. 

and Jeffrey, A.2000], [Frenkkel, 1992].  

Oxidizing species are even produced daily during normal respiration by the 

mitochondrial respiratory chain and during the production of energy by each and every 

mitochondrion. Therefore, one may consider oxidative stress a necessary outcome of 

physiological functions such as respiration, digestion, and metabolism. 

NADPH oxidase, the best characterized source of ROS, several other enzymes may 

contribute to ROS generation, including nitric oxide synthase, lipoxygenases, cyclo-

oxygenases, xanthine oxidase and cytochrome P450 enzymes [Williams, G. and Jeffrey, 

A.2000]. 

In addition, metals and certain fatty substances can also cause oxidative stress. 

Metals (i.e., iron copper) acting as pro-oxidants and fatty substances (carbon-based 

molecules reacting with oxygen) undergoing lipid peroxidation are prime examples in 

which oxidative stress is accentuated. 

1.1.1.2 Sources of the exogenous oxidizing species 

Exogenous sources, like radiation, ozone, xenobiotics etc. [Williams, G. and Jeffrey, 

A., 2000], also can increase the level of the ROS.  One cause of oxidative stress includes the 

redox cycling of toxins called xenobiotics. This occurs during drug or contamination 

metabolism and can cause oxidative stress from a variety of methods. Many inorganic 
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substances, particularly iron, chromium, cobalt(II), and nickel salts in the presence of 

hydrogen peroxide, have been long recognized as forming oxidized bases in DNA [Klein et 

al.,1991; Nackerdien et al., 1991; Standeven et al., 1991].Other cause of increased free 

radical generation occurs if the toxin increases damage by interfering with the antioxidant 

defenses. Finally, the toxin can also stimulate more free radical generation by damaging the 

mitochondrial electron transport system.  

1.1.2 Types of ROS 

1.1.2.1 Superoxide Radical  

The O2
•-
 is created by the reduction of oxygen to form superoxide (O2 - e = O2

-
). 

This oxygen-centered free radical is formed by autoxidation reactions or by the 

mitochondrial electron transport chain (ETC). It is not reactive unless it comes in contact 

with other radicals, such as nitric oxide (NO), or certain metals, such as iron. O2
-
 

undergoes dismutation in the presence of superoxide dismutase (SOD) to form H2O2 (2 O2
-
 

+ 2 H
+
 = H2O2 + O2). This radical is highly selective and has beneficial and damaging 

effects to tissues. It is considered a vital part of the cellular signaling pathways that 

provide important genetic information [Salo D.C., et al, 1990]. 

1.1.2.2 Hydrogen Peroxide  

Many enzymes can generate H2O2, including xanthine, urate, and several protein 

oxidases. In fact, any biologic system that generates O2
-
 also produces H2O2. Although 

H2O2 is considered a nonradical because it has paired electrons, it is an important biologic 

molecule. H2O2 can degrade certain haem proteins (ie, myoglobin, hemoglobin) to release 

iron. The reaction of H2O2 with metals like iron is called the Fenton reaction, and it can 

generate more dangerous free radicals. Furthermore, the additional reduction of Fe III by 
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O2
-
 can accelerate the Fenton reaction, giving an O2

-
-assisted Fenton reaction (H2O2 + O2

-
 

(Fe/Catalyst) = OH
-
 + OH + O2) [Halliwell B. 2003]. 

1.1.2.3 Hydroxyl Radical  

This more potent hydroxyl radical (
•
OH) is often generated during the Fenton reaction, 

forming peroxynitrite (ONOO
-
) from NO acid reacting with oxygen and from ionizing 

radiation. This radical attacks and damages most cellular components [Mandelker L., 2008]. 

1.1.2.4 Hypochlorous Acid  

Hypochlorous acid (HOCl) is highly reactive and lipid soluble. It is formed from 

H2O2 and the enzyme myeloperoxidase. It is especially dangerous to protein constituents, 

in which it can oxidize and damage biomolecules [Mandelker L., 2008].  

1.1.2.5 Alkoxyl Radicals/Peroxyl Radicals  

Alkoxyl (RO) radicals/peroxyl (ROO) radicals are organic radicals formed from 

lipid peroxidation reactions. They are not stable; thus, they react readily with molecular 

oxygen, thereby creating a ROO or RO fatty acid radical. The new radicals are also 

unstable and can react with other free fatty acids molecules, producing more fatty acid 

radicals and H2O2. This is a chain reaction mechanism and stops only when forming a 

nonradical species. Certain antioxidants, such as vitamin E, can stop the ―chain reaction‖ 

seen with the formation of these free radicals [ Aikens J., et al, 1991], [ Kyaw M.,et al, 

2004]. 

http://www.mdconsult.com/das/article/body/105273515-4/jorg=clinics&source=&sp=20414464&sid=0/N/627858/1.html?issn=0195-5616#r07001337007
http://www.mdconsult.com/das/article/body/105273515-4/jorg=clinics&source=&sp=20414464&sid=0/N/627858/1.html?issn=0195-5616#r07001337008
http://www.mdconsult.com/das/article/body/105273515-4/jorg=clinics&source=&sp=20414464&sid=0/N/627858/1.html?issn=0195-5616#r07001337008
http://www.mdconsult.com/das/article/body/105273515-4/jorg=clinics&source=&sp=20414464&sid=0/N/627858/1.html?issn=0195-5616#r07001337008


 

5 
 

1.1.2.6 Organic hydroperoxides 

Organic hydroperoxides (ROOH) Formed by radical reactions with cellular 

components such as lipids and nucleobases, which will be discussed in detail at following 

text (3.1.3 Lipid peroxidation). 

1.1.2.7 Peracid 

Peracids (RC(O)OOH) may arise biologically during lipid peroxidation, through formation of 

triplet excited ketones and aldehydes by the Russell mechanism [Russell, G. et al, 1957] followed by 

β-cleavage and coupling with O2, by peroxidase-catalyzed autoxidation of aldehydes [Adam, W., 

Kurz, A. et al, 1999], or by aldehyde oxidation catalyzed by transition metals [Nam, W. et al, 1996]. 

In mitochondria, three ThDP-dependent enzymes (S. typhimurium ALS II, Baker‘s yeast 

pyruvate decarboxylase and Zymomonas mobilis pyruvate decarboxylase) have been shown 

to catalyze the formation of peracetic acid [CH3C(O)OOH] from pyruvate and O2 under 

certain conditions [Abell, L. M. et al, 1991], [Bunik, V. I. et al, 2007], an observation that is 

significant because mitochondrial DNA repair capability appears to decrease with age [Ledoux, S. P. 

et al, 2007], [Croteau, D. L. et al, 1999] and accumulated of mutations are implicated in age related 

neuropathology and the ageing process in general [Dimauro, S. et al, 2005]. 

1.1.3 Lipid peroxidation 

Lipid peroxidation refers to the oxidative degradation of lipids. It is the process 

whereby free radicals "steal" electrons from the lipids in cell membranes, resulting in cell 

damage. This process proceeds by a free radical chain reaction mechanism. It most often 

affects polyunsaturated fatty acids, because they contain multiple double bonds in between 

which lie methylene (-CH2-) groups that possess especially reactive hydrogens. Lipid 

peroxidation, which may be initiated by radicals generated in both endogenous processes and 

http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Nucleobase
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Radical_(chemistry)
http://en.wikipedia.org/wiki/Cell_membranes
http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Polyunsaturated
http://en.wikipedia.org/wiki/Fatty_acids
http://en.wikipedia.org/wiki/Methylene
http://en.wikipedia.org/wiki/Hydrogen
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by metabolism of exogenous chemicals, has been recognized since the 1980s as an important 

contributor of reactive oxygen species involved in genotoxic endpoints. The primary species 

generated during lipid peroxidation are lipid hydroperoxides. From polyunsaturated lipids 

with 3 or more double bonds, cyclic peroxides and endoperoxides can also be generated [Yin, 

H. et al, 2005]. 

The hydroperoxides can yield alkylperoxyl and alkoxy radicals via redox reactions 

mediated by transition metals both within and external to the cellular environment [Aoshima, 

H. et al, 1997] (Scheme 1.1, eq 1, 2).   

Peroxyl radicals also result from the coupling of allyl radicals with molecular oxygen 

following H• abstraction from lipids in the initiation step of lipid peroxidation (Scheme 1.1. , 

eq 3, 4). In addition, a variety of oxy radicals and other oxidizing species are generated 

during the peroxidation process. The reactions are summarized in (Scheme 1.1, eq 5–10). 

Coupling of peroxyl radicals in a chain terminating reaction can yield singlet oxygen or 

triplet excited ketones and aldehyded [Miyamoto, S. et al, 2006], [Miyamoto, S. et al, 2003] 

(Scheme 1.1 ,eq 6, 7) by the Russell mechanism[Russell, G. A. et al,1957]. The triplet 

ketones can, in turn, undergo α-cleavage to acyl radicals (Scheme 1.1 ,eq 8), and subsequent 

coupling with O
2
 leads to peracyl radicals (Scheme 1.1. , eq 9) and peracids (Scheme 1.1, eq 

10) [Adam, W. et al, 1999], [Adam, W. et al ,2001], [Adam, W., Nau, W.M. et al, 2001] .   

1.2 Reactions between oxidizing species and guanine, guanosine and 

deoxyguanosine. 

  ROS can induce plenty of covalent modification to DNA, which encompass single-

nucleobase lesions, strand breaks, inter and intrastrand cross-link, along with protein-DNA 
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cross-link [Evans, M.D. et al, 2004]. Since the focus of this proposal is damage to guanine, 

the Background review will not be concerned with the other kinds of damage to the DNA. 

Oxidation of dGuo by hydroxyl radical, one-electron abstraction and 
1

O
2
 has been the focus 

of  considerable work and the results covered in several recent reviews [Neeley W. L. et al, 

2006], [Tudek, B. et al, 2003].   

1.2.1 Oxidation of Guanine by hydroxyl radical 

Products of reaction with hydroxyl radical are postulated to result from initial 

addition to the base, summarized in Scheme 1.2. Addition at C8 leads to 8-oxodGuo 

following oxidation or to a formamido pyrimidine (FAPyG) following reduction. Hydroxyl 

radical can also add to the C4-C5 bond. Addition at C4 is calculated by several methods to be 

favored over addition to C5 [Colson, A. et al, 1997]. Dehydration of the neutral radical 

adduct at C4, followed by oxidation, leads to 2-amino-5-(2-deoxyribosylamino) imidazolone 

(dIz) and subsequently to 2,2-diamino-5-(2-deoxyribosylamino)-5(2H)-oxazolone (dZ).  

In addition to hydroxyl radical, one-electron abstraction from dGuo is accomplished 

by other radical species, including NO•, SO
4

•/-

, and a variety of transition metal complexes 

that have been investigated as probes for one-electron oxidation or as potential antineoplastic 

drugs. (Cr
V

[Sugden, K. D. et al, 2002], Cr
VI

, Mn
II

, Fe
III

, Co
II

, Ni
II

 and Cu
II 

[Choi, S. et al, 

2004] ) and ionizing radiation. The radical cation resulting from one-electron oxidation of 

dGuo deprotonates at physiological pH to a neutral radical with substantial spin density 

calculated to reside at positions C5 and C8 [Hole, E. O. et al, 1987]. 
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1.2.2 Oxidation of Guanine by superoxide anion 

Addition of superoxide anion (O
2

•/-

) to the C8 or C5 followed by protonation gives 

the corresponding hydroperoxides. The C8-hydroperoxide leads to 8-oxodGuo under 

reducing conditions and the C5-hydroperoxide leads to dIz and dZ (Scheme 1.3. ).   Reaction 

of the Gua radical at C8 or C5 with O
2
, gives the corresponding peroxyl radicals and, 

following hydrogen abstractions, the C8 or C5 hydroperoxides, which follow the respective 

pathways summarized in Scheme 1.3.  

1.2.3 Oxidation of Guanine by singlet oxygen 

dGuo undergoes a 2 + 4 cycloaddition with singlet oxygen to form a transient 4,8-

endoperoxide, which rearranges to 8-hydroperoxy-dGuo. The hydroperoxide then reacts via 

two pathways (Scheme 1.4.) : (A) reduction to 8-oxodGuo and a 2+ 2 addition of a second 

molecule of 
1

O
2
 to form the 4,5-endoperoxide [Neeley W. L. et al, 2006] which rearranges to 

5-hydroperoxy-8-oxodGuo leading to dZ, via dehydroguanidinohydantoin (DGh); (B) 

decomposition to 8-oxodehydro-dGuo followed by addition of water leading to Sp and Gh 

through the transient 5-hydroxy-8-oxodG. It may be remarked that formation of the 

endoperoxides is formally a two-electron oxidation.  

Recently, a diminoimidazole has been reported as a minor product [Suzuki, T. et al, 

2003] directly from the reaction of dGuo with 
1

O
2
.  

1.2.4 Oxidation of Guanine by peracyl and peroxyl radicals 

While research efforts have focused on the damage caused by the hydroxyl radical, 

1

O
2
, and one-electron oxidations, other oxidizing species generated during the reactions that 
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produce ROS (Scheme 1.1. , eq 4, 6, 7, 9, 10) have received less attention. The proposed 

research is directed at elucidating the role of peracids in ROS-mediated DNA damage, 

through the characterization of base modifications and mechanisms of oxidation.  

Oxidation of dGuo by a mixture of peracyl and peroxyl radicals generated either by 

photolysis of ketones or thermolysis of dioxetanes [Adam, W. et al, 2001] or by peroxyl 

radicals generated from hydroperoxides by the action of Coprinus or horseradish peroxidases 

[Adam, W. et al, 2000] yielded Sp (incorrectly identified as 4-OH-8-oxodGuo) and 

―guanidine releasing‖ products (not characterized further). 8-oxodGuo was identified in trace 

quantities, but was determined to be further oxidized under the reaction conditions, implying 

that it was an important intermediate [Adam, W. et al, 1995]. Interestingly, dGuo 4, 5-

epoxide is a transient in the proposed mechanism [Adam, W. et al, 2001]. In the horseradish 

peroxidase-catalyzed oxidation of dGuo by isobutanal, the active oxidants were concluded to 

be the peracid and peracyl radical [Adam, W. et al, 1999]. Peroxyacyl radicals and peracids 

are also generated during the autoxidation of aldehydes. In support of this conclusion, m-

chloroperbenzoic acid (mCPBA) alone or in the presence of the enzyme efficiently oxidized 

dGuo. dZ and dIz were the only products identified in this work, although they accounted for 

at most 50% of the dGuo consumed. Under the experimental conditions, no 8-oxodGuo was 

detected. mCPBA has been reported to modify dGuo and dAdo residues in ssDNA and to 

generate modified nucleotides having altered moblilities from dGMP and dAMP [Jacobsen, J. 

S. et al, 1986]. However, the investigators did not characterize either the DNA lesions or the 

modified bases. Although reaction schemes have been proposed for the oxidation of dGuo by 

peroxyacyl/peroxyl radicals, the mechanisms of oxidation are completely speculative. No 

mechanistic schemes have been proposed for the peracid-mediated oxidation.  
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1.2.5 Oxidation of Guanine by metal complexes 

In addition to two-electron oxidations of dGuo by peracids and 
1

O
2
, a two-electron 

oxidation of dGuo mediated by an oxoruthenium complex has been reported and of dGMP by  

Pt
IV

(1,2-diaminocyclohexane). The latter oxidation yielded 8-oxodGuo via intramolecular 

donation of a phosphate oxygen to C8. Of interest with regard to the work proposed here is 

the oxidation of guanine in short dsDNA by a Mn
III

(porphyrin)/KHSO
5
 system. On the basis 

of mass spectrometric analysis of the modified DNA, the major product corresponded to a 

gain of 34 amu by Gua (G + 34), and was tentatively identified as 5,8-dihydroxy-7,8-

dihydroGua via two-electron oxidation of Gua and deprotonation to a cation [Vialas C. et al, 

2000]. Mechanistic studies of Foote [McCallum J.E.B et al., 2004], [Sheu C. et al, 1993], 

[Sheu C. et al, 1995]
 

on the transients generated during oxidation of Gua and 8-oxoGua by 

1

O
2
, argue strongly against the likelihood of the proposed structure because of the lability of 

5-hydroxy-substituted guanine and 8-oxoguanine. An alternative structure for the G + 34 

product is 4-carboxamido-4-formamido-2-iminohydantoin, identified by our laboratory as the 

two-electron oxidation product of Gua by dimethyldioxirane [Ye W. et al, 2006]. As 

discussed in the following section. 

1.2.6 Oxidation of Guanine DMDO 

Dimethlydioxirane (DMDO) is a three-membered cylic peroxide that efficiently 

transfers oxygen and reacts selectively [Adam W. et al., 1989]. The preparation method of 

DMDO reported in the literature yields a 0.1M solution [Adam W. et al., 1987]. DMDO 

demonstrates efficient transfer of oxygen through a single concentrated step [Edwards et al., 

1979]. DMDO can be applied as a good model agent for 2-electron epoxidation in the 
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research of the DNA oxidation, not only because of the reasons mentioned above, but also 

the characteristic is low temperature, no residue of oxidant, short time and mild pH value 

which mimics the environment in vivo and provides the convenience for purification and 

analysis. 

Oxidation of Gua and dGuo by DMDO has been studied with regard to its use in 

DNA sequencing by selectively introducing piperidine-labile lesions at guanine in both ss- 

and dsDNA [Davies J. R. et al, 2002],  [Davies J. R. et al, 1990]. Following 2-minutes of 

DMDO treatment and appropriate workup, samples of ss- and ds-DNA underwent selective 

strand breakage at the guanine sites observed with the Maxam-Gilbert procedure, indicating 

efficient and selective oxidation of Gua bases. Preliminary oxidations of Gua and dGuo were 

carried out to characterize the lesions; however, the reaction mixtures were worked up by 

heating for 5 h at 85 
o

C prior to chromatographic isolation of products [Davies J. R. et al, 

1990], [Ye W. et al, 2006]. Guo and dGuo both yielded 4-amadinocarbamoyl-5-

hydroxyimidazole, but the product from dGuo was substituted at C2 with the deoxyribose-

derived trihydroxy-n-butyl group. Both products are at the same oxidation level as the 

starting bases. Evidently, prolonged heating of the crude reaction mixture resulted in the 

reduction and, in the case of dGuo, rearrangement. The investigators proposed that DMDO 

initially epoxidized the C4-C5-bond of dGuo, by analogy with DMDO epoxidation of C5-C6 

of the pyrimidine ring of 5′-O-trityl-dThyd [Lupatelli, P. et al, 1993].    

Since peracids and the peroxyacyl and peroxyl radicals can epoxidize double bonds 

[Reed G.A. et al, 1990], [Dix T.A. et al, 1983] [Lang B. et al, 1986], we propose DMDO as a 

convenient model to investigate the role of epoxidation by these transient ROS in oxidations 
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of dGuo.  

1.3 Basic information of the N
2
,3-εGuanine  

1.3.1 Formation of the etheno nucleobase in vivo 

Among exocyclic DNA adducts, ethenobases have been most widely studied in the last 33 

years, as this class of DNA lesions is formed by many genotoxic chemicals including the 

human carcinogen vinyl chloride (VC) and the multi-species carcinogen urethane [Bartsch H. 

et al, 1994]. Ethenobases were first described by Kochetkov et al. [Kochetkov N. K. et al, 

1971] who identified them as reaction products of 2-chloroacetaldehyde with adenine and 

cytosine. Interest in the ε-lesions was renewed in 1975 when it was found that they were 

generated in vitro by the vinyl chloride metabolites, chloroethylene oxide and 2-

chloroacetaldehyde (Scheme 1.5.) [Barbin A. et al, 1975], [Laib R.J. et al, 1977], [Laib R.J. 

et al, 1978].  Using replication and transcription fidelity assays and ε -modified oligo- or 

polynucleotides, it was established that εdA and εdC have miscoding or ambiguous base 

pairing properties [Barbin A.et al, 1981], [Hall J.A. et al, 1981], [Spengler S. et al, 1981] and 

thus could be involved in the mutagenic and carcinogenic effects of VC [IARC, 1979], 

[Barbin, H. et al, 1986]. 

In the 1990s, ε -adducts have received renewed attention, because background levels 

of etheno adducts have been detected in tissues from unexposed humans and rodents, 

suggesting an alternative, endogenous pathway of formation (Figure 1.1.) [Nair J., Barbin A. 

et al,1999]. This background which can be affected by dietary factors could arise from the 

reaction of lipid peroxidation products such as trans-4-hydroxy-2-nonenal via its 2,3-epoxy-

intermediate with nucleic acid bases [Nair J., Vaca C.E. et al, 1997] (Scheme 1.6.). 
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Subsequently, it was shown that high intake of dietary ω-6 –polyunsaturated fatty acids by 

female volunteers greatly increased LPO-derived etheno-DNA adducts in white blood cells 

in vivo [Fang J.L., Vaca C.E. et al, 1996]. Further, elevated levels of ε -adducts were found 

in hepatic DNA from patients and rodents with genetic predisposition to oxidative stress, 

lipid peroxidation and increased risk of liver cancer due to metal storage disease [Nair J., 

Sone H., et al 1996]. Also, during inflammatory processes a cascade of reactive 

Oxygen/nitrogen intermediates can be generated, that could lead directly to oxidative DNA 

damage and/or to formation of ε -adduct via reaction of bifunctional 4-hydroxyalkenals and 

epoxides derived from LPO (Figure 1.2) 

1.3.2 Significance of N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine 

N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine(8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)-imidazo[2,1-b]purine) is a one of highly mutagenic etheno DNA adduct 

both in vitro and in vivo research [Bartsch H., Barbin A. et al, 1994], [Kochetkov N.K. et al, 

1971], [Nair J., Barbin A.et al, 1999]. 8,9-dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-

imidazo[2,1-b]purine in DNA is therefore of  considerable interest as a biomarker of 

exposure and in studies of molecular mutagenesis. Several labs have reported the level of N
2
, 

3-εG both in human and rat tissue. During the analyses of vinyl chloride induced DNA-

adducts in rats, using a specific GC-MS method, a peak co-eluting with the internal standard 

identified as the pentaflurobenzyl derivative of N
2
, 3-εG was detected as background in 

untreated rat liver at levels 60±40 fmols (9±6 adducts/10
8
 G) [Fedtke, N. et al, 1990]  

assuming that the level reported was based on the analysis of 1 mg DNA. Using a LC-MS 

method, N
2
, 3-εG was detected in one human liver sample at 60 fmol/mg DNA (9–10 

adductsr10
8
/G

2
) [Yen, T.Y. et al, 1996] while a level of 70 fmol/μmol G (7 adducts/10

8
 G) 



 

14 
 

[Scheller, N. et al, 1995] was reported, using a GC-MS method. However, the same 

laboratory reported that εG formed from endogenous sources occurred at a much higher level 

in 10/10 human liver samples (means of 3 and range from 0.7–7 per 10
7
 G) [Swenberg, J.A. 

et al,1995]. 

1.3.3 Synthesis of N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine 

Quantitative analysis of DNA adducts requires both unambiguously characterized 

standards and on occasion, labeled isotopomers. Preparation of certain classes of 

deoxynucleoside adducts can be problematic because instability of intermediates under 

conditions of established synthetic routes, deglycosylation at low pH or elevated temperature 

often present particular difficulties. Chemical synthesis of 8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)-imidazo[2,1-b]purine has proven to be challenging precisely because of 

the reported lability of the glycosidic bond under conditions generally applicable to chemical 

synthesis [Barbin A., Brĕsil H.et al, 1975], [Laib R.J., Bolt H.M., 1977], [Laib R.J., Bolt 

H.M., 1978].   

Several labs reported the synthetically routes of N
2
,3-εdGuo (8,9-dihydro-9-oxo-3-(β-

D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine). Kuśmierek et al [Kuśmierek, J. T. et al, 

1989] introduced an O
6
-benzyl group to N

2
,O

3‘
,O

5‘
-triacetyl-2‘-deoxyguanosine by using the 

Mitsunobu reaction. After deacetylation with sodium methoxylate/methanol in dioxane, the 

resulting O6-benzyl-2‘-deoxyguanosine was phosphorylated the target compound starting 

with O
6
-benzyl-2‘-deoxyguanosine-5‘-phosphate. Then bromoacetaldehyde was drop inside 

at pH 8.5-7.5 which prevented significant loss of the sugar. Finally, the monophosphate 

derivative was treated by phosphatase to gain the corresponding nucleoside. The routes of 

synthesis were shown in the Scheme1.7. However, the overall yield of this method is only 
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1% if we try to use the labeled dGuo as the starting material to synthesize the internal 

standard for quantitative analysis.  

Johnson‘s Group [Khazanchi R. et al, 1993] described a route starting in the riboside 

series. O
6
-Benzylguanosine when treated with bromoacetaldehyde under conditions of 

continuous buffering gives the N
2
,3-etheno derivative in 48% yield. The 3',5'-O-(1,1,3,3-

tetraisopropyldisiloxa-l,3-diyl) derivative when allowed to react with phenyl 

chlorothionoformate led to the corresponding 2' ester. 2‘-Deoxygenation of 10 by the Barton 

procedure then afforded 65 % of 11, and deprotection of the latter (BuN+F
-
) gave 12 

quantitatively. Catalytic hydrogenation of 12 then produced pure N
2
,3-εdGuo in 86% 

yield.(see scheme 1.8.). The overall yield of this route is still lower than 5%. The synthetic 

route of this procedure is too long which will lead the synthesis of internal standard 

unpractical because of the high price of the labeled starting material. 

N-Deoxyribosyltransferases (DRTases) [Anand, R. et al, 2004] catalyze the transfer 

of a 2‘-deoxyribosyl group from a donor deoxynucleoside to an acceptor nucleobase. 

DRTases can be divided into two classes on the basis of their substrate specificity. The 

DRTase I class (also called purine deoxyribosyltransferase (PDT)) is specific for the transfer 

of deoxyribose between two purines. The DRTase II class (also called nucleoside 

deoxyribosyltransferase ) catalyzes the transfer of deoxyribose between either purines or 

pyrimidines, but has a strong preference for deoxypyrimidines as the donor. DRTase was 

applied in the synthesis of N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine in 

Guengerich‘ s Lab[ Müller, M. et al, 1996]. A mixture of 25 μg of partially purified trans-N-

deoxyribosylase protein and 5.3 mM dCyd (as the deoxyribose donor) in a total volume of 

1.0 mL of 0.1−0.5 M potassium 2-(N-morpholino)ethanesulfonate buffer (pH 6.0) and 
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containing 0.3−0.5 mM N
2
,3-ethenoguanine, dissolved either in 50−100 μL of 0.1−1 N HCl. 

Incubations proceeded for 15 h (under Ar), then products were separated by HPLC and 

analyzed by UV, 
1
H NMR and mass spectrometry. They reported the difference between the 

N9:N7 (using the numbering system for Gua) coupling ratios is  92:8 for N
2
,3-ε-dGuo. 

However, the apparent fraction linked at the N9 atom instead of N7 was only estimated from 

1
H NMR measurements, using the chemical shifts of the sugar protons as a guide. 
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Scheme 1.1 Generation of oxidizing species in vivo 
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Scheme 1.2 Oxidation of Guanine by hydroxyl radical 
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Scheme 1.3 Oxidation of Guanine by superoxide anion 
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Scheme 1.4 Mechanism of oxidation of guanine by singlet oxygen 
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Scheme 1.5 Enzymatic oxidation of vinly chloride to 2-chlorooxirane and rearrangement to 

ClCH2CHO and design of experiments for in situ destruction of reactive intermediates  

 

 

Scheme 1.6 Possible Mechanism of Formation of N
2
,3-εGua from 2-Substituted Oxiranes  
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Scheme 1.7 Kuśmierek‘s synthetic routes of N
2
,3-εdGuo [Kuśmierek, J. T. et al, 1989] 
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Scheme 1.8 Khazanchi‘s synthetic routes of N
2
,3-εdGuo [Khazanchi R. et al, 1993] 
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Figure 1.1  A hypothetical scheme for carcinogenic factors leading to endogenous species 

and exocyclic DNA-base damage [Nair J., Barbin A. et al,1999] 
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Figure 1.2 Suggested mechanism for the formation of etheno adducts from DNA nucleosides 

and LPO products such as trans-4-hydroxy-2-nonenal derived from PUFAs, as exemplified 
fro linoleic acid, a ω-6 PUFA (dR=deoxyribose)  
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Table 1.1 Process leading to generation of ROS [Williams, G. and Jeffrey, A.2000], 

[Frenkkel, 1992] 

 

 

1. Cellular Respiration 

 

—Mitochondrial electron transport 

—Hexose monophosphate shunt 

 

2. Biosynthetic and biodegrading processes of normal intermediary 

metabolism 

 

—Arachidonic acid metabolism 

—b-Oxidation of high-molecular-weight fatty acids (fatty acid CoA oxidase) 

—Amino acid oxidation (D-amino acid oxidase, tyrosine oxidase, etc.) 

—Iron metabolism 

—Ascorbic acid biosynthesis (L-gulonolactone oxidase: absent inhumans) 

—Polyamine oxidation 

—Steroidogenesis 

—Purine oxidation (urate oxidase: absent in humans, xanthine oxidase) 

 

3. Biotransformation of xenobiotics 

 

—Microsomal electron transport (cytochrome P450 and b3) 

—Other mixed function oxidases 

—Peroxidative oxidation (myeloperoxidase, prostaglandin H synthetase) 

 

4. Activation of phagocytic cells by natural stimuli 

 

—Peripheral blood leukocytes 

—Tissue macrophages 

—Kupffer cells (liver) 

—Clara Cells (lung) 

 
 

 



 

 

II. Oxidation of Guanine by Epoxidizing Reagents 

2.1 Abstract 

Oxidative damage to DNA, of concern as a factor in cancer, mutation, and aging, is 

attributed to reactive oxygen species. Organic peroxyl radicals, known to be present during 

lipid peroxidation and also products of the action of peroxidases on organic hydroperoxides, 

have received much less attention. Guanine (Gua) is the most susceptible to oxidation due to 

the lowest electron potential in all of nucleobases. This chapter focuses on Gua oxidation by 

epoxidizing reagents. The structure of the product of Gua oxidized by epoxidizing model 

agent, dimethyldioxirane (DMDO), 5-carboxamido-5-formamido-2-iminohydantoin (2-Ih, 

Chart 2.1) was established on the basis of mass spectrometry and NMR studies on 2-Ih and 

its isotopomers generated by the oxidation of [4-
13

C] and [7-
15

N] guanine. The mononeric 

species dGuo, dGMP and dGTP were oxidized to study the reaction mechanism and to 

characterize fully the oxidation products. The DMDO selectively oxidizes the guanine 

moiety of dGuo, dGMP and dGTP to 2-Ih (see Chart 2.1 and Scheme 2.2), peracetic acid and 

m-chloroperbenzoic acid also oxidize the base moiety of dGuo to 2-Ih. The presence of the 

glycosidic bond results in the stereoselective induction of an asymmetric center to give a 

mixture of diastereomers, with each diastereomer in equilibrium with a minor conformer 

through rotation about the formamido C-N bond. Labeling studies with 
18

O2-m-CPBA as 

oxidant and with DMDO as oxidant in the presence of H2
18

O, in concert with the study of the 

DMDO oxidation of [4-
13

C] and [7-
15

N]-labeled guanine, support a mechanism involving 
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initial epoxidation of the guanine 4-5 bond and contraction of the pyrimidine ring by a 1,2-

migration of the guanine carbonyl C6 to form a transient 

dehydrodeoxyspiroiminodihydantoin followed by hydrolytic ring opening of the imidazolone 

ring. The 2-Ih is shown to be a major transformation in the oxidation of the single-stranded 

DNA 5-mer d(TTGTT) by m-CPBA and DMDO and in the oxidation of the 5-base pair 

duplex d[(TTGTT)·(AACAA)] with DMDO. 2-Ih has not previously been reported as an 

oxidative lesion in DNA. The lesion is stable to DNA digestion and chromatographic 

purification suggesting that 2-Ih may be generated as a stable lesion in vivo in DNA by 

peracids and possibly other epoxidizing agents. Consistent with the proposed mechanism, no 

8-oxoguanine was detected as a product of the oxidations of the oligonucleotides or 

monomeric species mediated by the monooxygen donors. The 2-Ih base thus appears to be a 

pathway-specific lesion and holds promise as a potential biomarker. 

2.2 Introduction 

Oxidative damage to DNA, of concern as a factor in cancer, mutation, aging, and 

degenerative diseases is attributed to reactive oxygen species [Klaunig, J. E., et al, 2004], 

[Hoeijmakers, J. H. J. et al, 2001]. Processes initiated by one-electron oxidations mediated by 

hydroxyl radical, ionizing radiation and transition metals have been extensively characterized 

[Burrows, C. J. et al, 1998], [Neeley W. L et al, 2006], [Dedon, P. C., 2008] resulting in 

identification of numerous products from the oxidation of guanine, the most easily oxidized 

of the nucleobases. Of these, only 8-oxo-7,8-dihydroguanine (8-oxoGua) and its further 

oxidation products guanidinohydantoin and spiroiminohydantoin (Sp) have been reported in 

vivo.  8-Oxo-Gua, found in vivo at background levels of 1 – 2 x 10
–6

 guanines [Gedick, C. 

M.et al, 2002] is widely used as a biomarker of oxidative stress although it is not highly 
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mutagenic [Neeley W. L et al, 2006],.  By contrast, DNA damage by initial two-electron 

processes, whether direct or via rapid sequential one-electron oxidations, has only recently 

come into focus [Neeley W. L. et al, 2006], [Dedon, P. C. et al, 2008], [Gedick, C. M.et al, 

2002], [Hong, I. S. et al, 2007], [Xu, X. et al, 2008]. The project is examining oxidation of 

DNA by peracids and by dimethyldioxirane (DMDO) as a model congruent in mechanism to 

peracids [Bach, R.D. et al] [Porter, N. A. et al]. These compounds function as monooxygen 

donors by formally concerted, two-electron oxidations. Peracids may arise biologically 

during lipid peroxidation, through formation of triplet excited ketones and aldehydes by the 

Russell mechanism [Russell, G. et al, 1957] followed by β-cleavage and coupling with O2, by 

peroxidase-catalyzed autoxidation of aldehydes [Adam, W., Kurz, A. et al, 1999], or by 

aldehyde oxidation catalyzed by transition metals [Nam, W. et al, 1996]. In mitochondria, 2-

oxoacid decarboxylases have been shown to generate peracids under certain conditions 

[Abell, L. M. et al, 1991], [Bunik, V. I. et al, 2007], an observation that is significant because 

mitochondrial DNA repair capability appears to decrease with age [Ledoux, S. P. et al, 

2007], [Croteau, D. L. et al, 1999] and accumulated of mutations are implicated in age 

related neuropathology and the ageing process in general [Dimauro, S. et al, 2005].  

In both single and double stranded DNA, guanine appears to be the predominant 

target of both peracids and DMDO [Adam, W., Kurz, A. et al, 1999], [Jacobsen, J. S. et al, 

1986], [Davies, J. R. et al, 1990]. The action of m-CPBA on DNA appears to be associated 

with damage targeted to purines that is strongly blocking to replication, particularly in loop 

regions [Jacobsen, J. S. et al, 1986]. 
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2.3 Materials and methods 

2.3.1 Nuclear magnetic resonance and mass spectrometric analyses  

NMR spectra were recorded on a Varian Inova NMR spectrometer operating at for 

500 MHz 
1
H and at 125 MHz for 

13
C. 

13
C shifts were obtained from HSQC and HMBC 

spectra 
1
JC-H were derived from unsuppressed 1-bond coupling in the heteronuclear shift 

correlation spectra. Low resolution electrospray ionization-mass spectrometry (ESI-MS) and 

tandem mass spectrometry (ESI-MS/MS) were performed on a Finnigan DECA ion trap 

system. Liquid chromatography ESI-MS (LC-ESI-MS) and LC-ESI-MS/MS were performed 

on a Finnigan TSQ Quantum system. Exact mass measurements were acquired on an IonSpec 

HiRes QFT ion cyclotron resonance mass spectrometer (Lake Forest, CA) equipped with a 

9.4 T superconducting magnet and a Waters/Micromass Z-spray source. Samples were 

injected at a flow rate of 500 nL/min. The instrument was employed in the positive ion and 

broadband modes with a probe voltage of 3.2 kV, a cone voltage of 45 V, an accumulation in 

Q3 of 5000 ms, and quadrupole ion guide burst optimized to transmit ions in the 200 m/z 

mass range. Matrix-assisted laser desorption/ionization-MS (MALDI-MS) data were 

acquired on a Bruker Ultraflex II MALDI-time of flight (TOF)/TOF mass spectrometer 

(Bruker Daltonics, Billerica, MA).  Samples were dissolved in 50:50 MeOH: 0.1% TFA, and 

MALDI spectra were acquired in the negative ion reflectron mode, using α-cyano-4-

hydroxy-cinnamic acid as the matrix.   Spectra were acquired over the mass range 500 to 

2500 Da, using ACTH(1-17) and ACTH(18-39) as calibration standards. 

2.3.2 Chemicals 

Guanine, [2-
13

C] bromoacetic acid, Na
15

NO2, 2,4-diamino-4-hydroxypyrimidine, 

dGuo, dGMP, dGTP, 77 % m-chloroperbenzoic acid (m-CPBA) and 32 % peracetic acid 
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purchased from Sigma-Aldrich (Milwaukee, WI) were used as received. DMDO was 

generated by potassium monopersulfate oxidation of acetone and was analyzed by iodometric 

titration immediately prior to use [Murray, R. W., and Jeyaraman, R., 1985]. d(TTGTT) and 

d(AACAA) were synthesized by the Oligonucleotide Synthesis Core Facility at UNC – 

Chapel Hill and purified by HPLC on a reverse phase Vydac C18 250 x 4.6mm column 

eluted with a linear gradient 8 to 15% MeOH in water over 10 min at flow rate of 1ml/min 

monitored at a detector wavelength of 260nm. 

18
O2-m-CPBA was synthesized as follows (personal communication, Spiro, T. G.). A 

flask containing methylene chloride (35 mL) and m-chlorobenzaldehyde (3 mL) was 

degassed by 3 freeze-thaw cycles on a high-vacuum manifold, frozen in liquid nitrogen under 

vacuum (1x10
-3

 mm) and then 
18

O2 (500 mL, >95 %) from a break-seal vessel was condensed 

into the reaction flask. The reaction flask was isolated, removed from the vacuum line and 

irradiated with a Fisher Biotech UV lamp at 365 nm with vigorous stirring for 8 h at -20 
o
C. 

Following transfer to a round bottom flask, the reaction mixture was reduced in volume 

under aspirator pressure to 10 mL and the precipitate collected by filtration and washed with 

cold hexane, yielding 700 mg 
18

O2-m-CPBA, activity 55 % by iodometric titration. 

2.3.3 Synthesis of [4-
13

C]-and [7-
15

N]Gua 

Syntheses of [4-
13

C]Gua and [7-
15

N]Gua were based on Scheme 2.1 [Scheller, N. et al, 

1995], using the appropriately labeled synthons. For [4-
13

C]Gua, Scheme 2.1 was followed in 

its entirety starting with [2-
13

C]bromoacetic acid to give the 
13

C-labeled product in 21% 

overall yield. [7-
15

N]Gua was synthesized from 2,4-diamino-6-hydroxypyrimidine as the 
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starting point and Na
15

NO2 as the labeled synthon to give the 
15

N-labeled product in 30% 

overall yield.  

2.3.4 Oxidation of Gua 

To a suspension of Gua (15 mg, 0.1 mmol) in 2 mL of distilled H2O, 2 mL of a 

solution of NaOH (1% w/v) and 14.2 mg of Na2CO3 were added with stirring until the Gua 

completely dissolved. The solution was diluted with an additional 6 mL of distilled H2O and 

cooled to 0 °C in an ice bath, and 1 mL of a 0.11 mM solution of DMDO was added with 

stirring. After 30 min, the reaction was allowed to warm to ambient temperature (final pH 7.5) 

and adjusted with acetic acid to pH 7.0. The solvent was removed under a stream of Ar, and 

the solid residue was lyophilized overnight to give 81.1 mg of a mixture of 2-Ih and salts as 

an off-white powder. HPLC separation of a 13.6 mg aliquot of the mixture on a 250 mm × 

9.4 mm ZORBAX C8 column eluted isocratically with 70% H2O: 30% MeOH gave pure 2-

Ih (retention time, ~8.6 min) in the amount of 2.2 mg (71%, calcd from aliquot). UV: ~max 

(H2O) 229 nm. ESI-MS, natural abundance isotopomer (NA-2-Ih) (Figure 2.1): m/z 186 

[MH]
+
. ESI-MS/MS

+
 (Figure 2.2), NA-2-Ih: m/z 186 [MH]

+
, 169 [MH -NH3]

+
, 158 [MH -

CO]+, 141 [MH -formamide]
+
. ESI-MS, [7-

15
N]-2-Ih: m/z 187 [MH]

+
. ESI-MS/MS [7-

15
N]2-

Ih: m/z 187 [MH]
+
, 169 [MH -

15
NH3]

+
, 159 [MH -CO]

+
, 142 [MH-formamide]

+
. ESI-MS, [4-

13
C]2-Ih: m/z 187 [MH]

+
. ESI-MS/MS, [4-

13
C]2-Ih: m/z 187 [MH]

+
, 170 [MH -NH3]

+
, 159 

[MH -CO]
+
, 142 [MH -formamide]

+
. High-resolution mass determined as the protonated 

dimer by ESI FT-ICR: calcd for [C5H7N5O3]2H
+
, 371.11760; found, 371.11783 (mass error) 

0.6 ppm). 
1
H and 

13
C NMR data are described in detail below. 
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2.3.5 Oxidation of d(TTGTT) by DMDO 

 d(TTGTT) (1 μmol) in 0.5 mL of 0.1 M bicarbonate buffer (pH 8.1) was cooled in an 

ice bath and treated with 80 μL of 0.09 M DMDO in acetone for 30 min and total reaction 

mixture was then lyophilized. The total crude reaction mixture was analyzed by MALDI-

TOF and positive- and negative ion ESI-MS. The reaction mixture was then separated by 

HPLC on a Vydac C18 250 x 2.1 mm, 5 μm column under the following conditions: 0 to 10 

% MeOH in 10 mM TEAA over 20 min at a flow rate of 1 mL/min and showed one major 

peak at 9.5 min. ESI-MS data on the collected peak were acquired by loop injection under the 

following conditions: 25 % methanol/75 % 10 μM aqueous ammonium formate (pH 6.0) at 

an injector flow rate of 50 μL/min. 

2.3.6 Digestion of oxidized d(TTGTT)  

D(TTGTT) (2 μmole) was oxidized as described above. An aliquot of the crude 

reaction mixture (~ 400 nmole) was dissolved in 1050 μL of a solution of 20 mM MgCl2 in 

80 μM Tris-HCl buffer (pH 7.4) to which 50 μL Dnase I (bovine pancreas, 4000U/mL) was 

added. Doubly distilled water was added to bring the total volume to 2100 μL, the sample 

was vortexed and incubated at 37 °C for 10 min. Alkaline phosphatase (50 μL, type VII-T, 

from bovine intestinal mucosa, 200U/mL) and phosphodiesterase I (50 μL, type II, from 

Crotalus ademanteus venom, 0.26U/mL) were added, the sample vortexed and incubated at 

37 
o
 for 60 min. Protein was removed by Centricon-10 filtration for 90 min at 4 °C, and the 

filters rinsed by addition of H2O followed by centrifugation for a further 90 min.  The 

combined filtrates were lyophilized and the product separated by HPLC on an Econosphere 

C8 column (9.4 x 250 mm) eluted at 2 mL/min using a gradient of 5% to 40% MeOH in 

water over 30min. 
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2.3.7 Oxidation of d(TTGTT) by m-CPBA 

To d(TTGTT) (3.8mg, 2.29μmol) dissolved in 5 mL 0.1 mM ammonium acetate 

buffer at pH 4.65, 0.5 mL of a methanol solution of m-CPBA (5.1 mg, 22.9 μmol) was added 

dropwise with stirring. After 48 hours, the reaction mixture was extracted with 3 x 5 mL 

dichloromethane. The aqueous portion was lyophilized and the residue analyzed by ESI-

MS/MS following desalting by ZIPTIP C18 (Millipore Corp., Billerica, MA). 

2.3.8 Oxidation of d[(TTGTT)·(AACAA)] 

 One μmole of d(AACAA) in 500 μL of 50 mM NaCl and 0.1 M NaHCO3 (pH 6.5) 

was mixed with 0.9  μmole d(TTGTT) in 465 μL of 50 mM NaCl and 0.1 M NaHCO3 (pH 

6.5), heated to 90 
o
C and slowly cooled in to 0 

o
C (estimated Tm of duplex, 12 

o
C [Kibbe, W. 

A., 2007]). The duplex was oxidized and digested as described above. The mixture obtained 

from lyophilization of the Centricon-10 filtrates was separated on an Econosphere C8 column 

(9.4 x 250 mm) eluted at 2 mL/min using a gradient of 0% to 30% MeOH in water over 

20min. 

2.3.9 Oxidation of dGuo by Peracetic Acid 

A solution of 0.1 mmol dGuo and 50 μL 32 % peracetic acid (0.2 mmol) in 10 mL 

H2O was stirred at ambient temperature, with further additions of 0.2 mmol peracetic acid at 

24, 48 and 68 h. Ammonium carbonate (27 mg) was added during the reaction to maintain a 

pH of ~3.9. After 72 h, most of the volatiles were removed under a stream of Ar and the 

residue lyophilized overnight. The resulting solid residue was separated by semi-preparative 

HPLC on an Econosphere C8 column (9.4  250 mm) eluted isocratically at 2mL/min with 

13% methanol in deionized water. Peaks at 6.4 min (spiroiminodihydantoin nucleoside; Sp-

dR), 6.6 min (spiroiminodihydantoin base; Sp), 7 min (2-Ih) and 15.8 min (dGuo) were 
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collected and characterized by NMR and ESI-MS. A yield of 2-Ih = 25 % was estimated 

from the chromatographic trace at 230 nm by comparing the peak areas (adjusted for ε230) (2-

Ih)/( Sp-dR + Sp + 2-Ih + dGuo). 

2.3.10 Oxidation of dGuo by m-CPBA  

dGuo (0.1 mmol) and 0.1 mmol m-CPBA in 10 mL 9:1 aqueous buffer (0.1 M 

NH4OAc, pH 4.5)/methanol was stirred at ambient temperature with a further addition of 0.1 

mmol m-CPBA at 36 h. After 72 h, m-CBA and residual m-CPBA were extracted with 3 × 5 

mL CH2Cl2 and the aqueous reaction layer lyophilized overnight. The resulting residue was 

separated by semi-preparative HPLC on an Econosphere C8 column (9.4  250 mm) eluted 

isocratically at 2mL/min with 10% methanol in deionized water. Peaks at 7 min (2-Ih-dR /2-

Ih, 3:1, 80 % resolved) and 15.8 min (dGuo) were collected. A combined yield 2-Ih-dR + 2-

Ih = 79 % was determined from the chromatographic trace at 230 nm by comparing the peak 

areas (adjusted for ε230) (2-Ih-dR + 2-Ih)/( 2-Ih-dR + 2-Ih + dGuo). 

2.3.11 Oxidation of dGuo by 
18

O2-m-CPBA  

Oxidation of dGuo with 
18

O-m-CPBA was performed as described above, except that 

18
O2-m-CPBA was used in place of natural abundance m-CPBA.  

2.3.12 Incorporation of 
18

O into 2-Ih from H2
18

O  

Gua (0.001 mmol) was suspended in 0.2 mL H2O and dissolved by slow addition of 

0.2 mL 1 % (w/v) aqueous NaOH. Then 0.4 mL H2
18

O was added, the reaction mixture was 

cooled in an ice bath and 0.15 mL 0.1 M DMDO in acetone was added. After stirring for 30 

min, the solvents were evaporated under a stream of Ar, and the solid analyzed by ESI-MS. 

2.3.13 Oxidation of dGuo by DMDO  
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dGuo (0.1 mmol) was dissolved in 10 mL NaHCO3 buffer (pH 8.1) cooled in an ice 

bath. To this solution was added with stirring DMDO in acetone (1.2 mL, 0.10 M) and after 

30 min, acetone was evaporated under a stream of Ar. The remaining aqueous solution was 

lyophilized overnight to give a mixture of products and salts as an off-white powder. The 

diastereomers were desalted by semi-preparative HPLC on an Econosphere C8 column (9.4 x 

250 mm) eluted isocratically with 30% MeOH in water at 2 mL/min and the product mixture 

collected as a single peak at retention time ~8.25 min. UV: λmax (H2O) 230 nm. Positive ion 

ESI-MS: m/z 302 ([MH]
+
). Positive ion ESI-MS/MS: m/z 302 ([MH]

+
), 284 ([MH – H2O]

+
), 

186 ([MH – deoxyribose]
+
), 141 ([MH – deoxyribose – formamide]

+
). Positive ion high 

resolution Fourier transform-ICR-ESI-MS (as protonated dimer): calcd for [C10H15N5O6]2H
+
, 

603.21229, found 603.21511. 
1
H NMR (500 MHz, D2O, 5 

o
C): 1a, 8.59 (s, 1H, H9), 5.62 (ψt, 

1H,  J= 7.06 Hz, H1‘), 4.35 (m, 1H, H3‘), 3.93 (m, 1H, H4‘), 3.82, 3.72, m, H5‘, H5‖ 

overlapping with other isomers), 2.61 (m, >1H, H2‖, overlapping with H2‖-1b), 2.31 (m, 1H, 

H2‘) ppm; 1b, 8.65 (s, 1H, H9), 5.57 (ψt, 1H,  J= 6.61 Hz, H1‘), 4.43 (m, 1H, H3‘), 3.98 (m, 

1H, H4‘), 3.70 – 3.64, m, H5‘, H5‖, overlapping with other isomers), 2.61 (m, >1H, H2‖, 

overlapping with H2‖-1a), 2.45 (m, 1H, H2‘) ppm;  1a’, 8.36 (s, 1H, H9), 5.72 (1H, H1‘), 

4.39 (m, 1H, H3‘), 2.59 (m, 1H, H2‖) ppm; 1b’, 8.31 (s, 1H, H9), 5.68 (1H, H1‘), 4.46 (m, 

1H, H3‘) ppm. 
13

C NMR (125 MHz, D2O, 5 
o
C) 1a, 164.2 (C6), 163.8 (

1
JC9-H9 = 206.3 Hz, 

C9), 85.5 (
1
JC1‘-H1‘ = 170.4 Hz, C1‘), 83.3 (

1
JC4‘-H4‘ = 148.0 Hz, H4‘), 76.2 (C5), 67.8 (

1
JC3‘-H3‘ 

= 152.8 Hz, H3‘), 58.9 (C5‘), 37.2 (
1
JC2‘-H2‘‘ = 148.5 Hz, C2‘) ppm; 1b, 163.8 (

1
JC9-H9 = 207.0 

Hz, C9), 85.2 (
1
JC1‘-H1‘ = 171.6 Hz C1‘), 84.1 (

1
JC4‘-H4‘ = 149.2 Hz, H4‘), 76.7 (C5), 68.1 

(
1
JC3‘-H3‘ = 152.3 Hz, H3‘), 64.1 (C5‘), 35.5 (

1
JC2‘-H2‘‘ = 138.4 Hz, C2‘) ppm. 

2.3.14 Separation of diastereomers 1a and 1b 
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 Diastereomers 1a and 1b from the oxidation of dGuo described above were separated 

by semi-preparative HPLC on an AQUASIL C18 column (10 x 250 mm) eluted isocratically 

with 1.5 % acetonitrile in 17 mM ammonium acetate. Peaks were collected at 8.84 min (1b) 

and 9.40 min (1a). Proton shifts of 1a and 1b observed in 
1
H NMR, NOESY and ROESY 

spectra (500 MHz, D2O, 5 
o
C) were identical to those assigned to 1a and 1b in the mixture 

above. 

2.3.15 Oxidation of dGMP by DMDO  

dGMP (0.1mmol) was dissolved in 10 mL of 0.1 M NaHCO3 buffer (pH 8.1) with 

stirring in an ice bath. To this solution was added 1.2 mL of 0.10 M DMDO in acetone with 

stirring. After 30 min, the acetone was evaporated under a stream of Ar, and the residue 

lyophilized overnight to give an off-white powder. Desalting was accomplished by semi-

preparative HPLC on an Econosphere C8 column (9.4  250 mm) eluted isocratically with 

30% MeOH in H2O at 2mL/min. The mixture of diastereomers was collected as a single 

peak, with retention time ~ 4.7 min. UV: max (H2O) 230 nm. Negative ion ESI-MS: m/z 380 

[MH] 
–
. Negative ion ESI-MS/MS: m/z 380 [MH] 

–
, 337 [MH – formamide] 

–
, 240 [MH – (5-

formamido-2-iminohydatoin)] 
–
. Positive ion high resolution Fourier transform-ICR-ESI-MS 

(as protonated dimer): calcd for [C10H15N5O6]2H
+
, 763.14495; found, 763.14832. 

1
H NMR 

(500 MHz, D2O, 5 
o
C) 2a: 8.21 (s, 1H, H9), 5.70 (ψt, 1H, J ~ 6.7 Hz, H1‘), 4.35 (m, 1H, 

H3‘), 3.95 (m, 1H, H4‘), 3.73 – 3.56 (m, overlapping with other isomers, H5‘,H5‖), 2.36 (m, 

1H, H2‖), 1.91 (m, 1H, H2‘) ppm; 2b: 8.50 (s, 1H, H9), 5.38 (ψt, 1H, J ~ 5.5 Hz, H1‘), 4.39 

(m, 1H, H3‘), 3.79 (m, 1H, H4‘), 3.73 – 3.56 (m, overlapping with other isomers, H5‘,H5‖), 

2.55 (m, 1H, H2‖), 2.20 (m, 1H, H2‘) ppm; 2a’: 8.38 (s, 1H, H9), 5.47 (ψt, 1H, J ~ 5.4 Hz, 

H1‘), 4.27 (m, 1H, H3‘), 3.83 (m, 1H, H4‘), 3.73 – 3.56 (m, overlapping with other isomers, 
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H5‘,H5‖), 2.41 (m, 1H, H2‖), 2.17 (m, 1H, H2‘) ppm; 2b’: 8.32 (s, 1H, H9), 6.01 (dd, 1H, , J 

~ 4.8, 9.4 Hz, H1‘), 4.31 (m, 1H, H3‘), 3.88 (m, 1H, H4‘), 3.73 – 3.56 (m, overlapping with 

other isomers, H5‘,H5‖), (H2‖, H2‘ not resolved) ppm. 
13

C NMR (125 MHz, D2O, 5 
o
C) 2a: 

180.5 (C4), 171.9 (C2), 167.1 (C6), 164.6 (
1
JC9-H9 = 206.9 Hz, C9), 88.3 (C1‘), 87.7 (

3
JP-C4‘ = 

8.6 Hz, C4‘), 79.0 (C5), 71.8 (C3‘), 64.2 (
3
JP-C5‘ = 4.5 Hz, C5‘), 42.0 (

1
JC2‘-H2‘‘ = 136.8 Hz, 

C2‘) ppm; 2b: 181.9 (C4), 171.8 (C2), 167.3 (C6), 166.5 (
1
JC9-H9 = 207.9 Hz, C9), 88.7 

(C1‘), 86.3 (
3
JP-C4‘ = 9.0 Hz, C4‘), 79.6 (C5), 71.7 (C3‘), 64.4 (

3
JP-C5‘ = 4.2 Hz, C5‘), 39.0 

(C2‘) ppm; 2a’: 181.8 or 182.6 (C4), 172.1 (C2), 167.5 (C6), 165.6 (
1
JC9-H9 = 208.2 Hz, C9), 

88.6 (C1‘), 85.9 (
3
JP-C4‘ = 8.7 Hz, C4‘), 78.7 (C5), 71.5 (C3‘), 65.3 (

3
JP-C5‘ = 4.6 Hz, C5‘) 

ppm, C2‘, not resovled; 2b’: 182.4 (C4), 171.4 (C2), 163.8 (C9), 85.4 (
3
JP-C4‘ = 7.9 Hz, C4‘), 

84.7 (C1‘), 79.0 (C5), 72.3 (C3‘) ppm, C2‘, C5‘ signals could not be resolved. 

2.3.16 Oxidation of dGTP by DMDO 

dGTP (0.05 mmol) was dissolved in 0.1 mM NaHCO3 buffer (pH8.1) at 0 
o
C. To this 

solution was added 0.75 mL of 0.081 M DMDO in acetone with stirring. After stirring 30 

min at 0 
o
C, acetone was removed under a stream of Ar and the reaction mixture lyophilized 

and stored at -80 
o
C. The product mixture was characterized without further purification. 

Negative ion ESI-MS: m/z 584 ([MNa2 – H]
-
), 562 ([MNa – H]

-
), 540 ([M – H]

-
), 460 ([M – 

H2PO3]
-
], 387 ([MNa – HP2O7]

-
). 

1
H NMR (500 MHz, D2O, 0 

o
C) 8.45 (s), 8.43 (s), 8.42 (s), 

8.18 (s), 5.90 (m), 5.75 (m), 5.59 (m), 4.51 (m), 4.48 (m), 4.36 (m), 4.24 (m), 4.16 (m), 4.04 

– 3.83 (m), 2.60 – 2.44 (unresolved), 2.32 (m), 2.17 (m) ppm. 

2.4 Results 

2.4.1 Oxidation of guanine 
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The structure of 2-Ih has been established on the basis of mass spectrometry and 

NMR studies on NA-2-Ih and its isotopomers generated by the oxidation of [4-
13

C] and [7-

15
N]Gua, which yield [5-

13
C]-2-Ih and [7-

15
N]-2-Ih, respectively. By ESI-MS in the positive 

mode, the protonated molecular ion of NA-2-Ih was observed at m/z 186, a gain of 34 amu 

relative to Gua (Figure 2.1). In the ESI-MS/MS
+ 

of NA-2-Ih (Figure 2.2) and [7-
15

N]2-Ih, a 

product ion at m/z 169 in both fragmentation patterns indicated loss of NH3 and 
15

NH3, 

respectively, from the carboxamido group, as expected for 
15

N at position 7. The high-

resolution mass of NA-2-Ih, obtained as the protonated dimer [M2H]
+ 

by HR ESI/ FT-

ICRMS
+ 

, corresponds to the required composition [C5H8N5O3]2H
+ 

.  

By comparison of 
1
H NMR spectra acquired on NA-2-Ih in 

2
H2O and DMSO-d6, a 

single nonexchangeable proton resonance was identified at 7.94 ppm (DMSO-d6) (Figure 

2.3a). Assignment of this signal to the 5-formyl CH is confirmed by the 
1
H,

13
C heteronuclear 

single quantum coherence (HSQC) spectrum, in which a single cross-peak is observed 

between the nonexchangeable proton and a carbon signal at 161.5 ppm in the region reported 

for formamido carbon [Ferris, T. D. et al, 1997], [Breitmaier, E. et al, 1973], and therefore 

assigned to C9 (data not shown). Relatively sharp proton signals present in DMSO-d6 at 7.19, 

7.29, and 8.77 ppm (Figure 2.3a) represent three protons undergoing slow exchange with 

residual H2O at ambient temperature.  

On the basis of the strong cross-peaks observed in the double quantum-filtered COSY 

(DQFC) spectrum (Figure 2.4) between the signals of the slowly exchanging protons at 7.19 

and 7.29 ppm, these resonances are assigned to nonequivalent 5-carboxamido protons NHa 

and NHb, confirmed in the proton spectrum of [7-
15

N]-2-Ih (Figure 2.3b) by 
1
JN-H coupling of 
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89.7 and 88.8 Hz, respectively. The splittings are identical to 
1
JN-H coupling reported for the 

amido protons of acetamide, propiolamide, and formamide, with the smaller coupling 

constant assigned to NHb trans to the carbonyl oxygen [Ferris, T. D. et al, 1997]. Magnetic 

nonequivalence of NHa and NHb is expected because of hindered rotation around the amido 

C-N bond [Ferris, T. D. et al, 1997]. In the 
1
H NMR spectrum of [5-

13
C]-2-Ih (Figure 2.3c), a 

three-bond coupling with 
3
JC-H ) 7.1 Hz is resolved for the signal assigned as NHb providing 

further confirmation of amido proton non-equivalence. Additionally, a three-bond coupling 

with 
3
JC-H 6.3 Hz (Figure 2.3c) is resolved for the signal assigned as H9 consistent with 

structure 2-Ih.  

In the proton-decoupled 
13

C NMR spectrum of NA-2-Ih (Figure 2.5a), carbon signals 

at 181.3 and 172.9 ppm and a quaternary carbon at 74.3 ppm have shifts similar to the 

iminohydantoin ring carbons of the Gua oxidation product spiroiminodihydantoin [Adam, 

W.et al, 2002], [Niles, J. C. et al, 2001]. By comparison with the 
13

C NMR chemical shifts 

reported for neutral 5,5-disubstituted iminohydantoin bases [Olofson, A. et al, 1998], the 

signals at 181.3 and 172.9 ppm can be assigned to C4 and C2, respectively, and the upfield 

signal at 74.3 ppm can be assigned to the quaternary carbon C5, which is the only carbon in 

an sp
3 
hybridization state. The resonances at 172.9, 167.4, and particularly 161.5 ppm display 

broadening and some structure, the possible origins of which are discussed below.  

The 
13

C NMR spectrum of the 
15

N isotopomer of 2-Ih (Figure 2.5b) is consistent with 

the presence of the 
15

N label at position 7 and is helpful in confirming the remaining carbon 

resonances. The signals at 167.4 and 74.3 ppm appear as doublets, with splittings of 17.6 and 

7.8 Hz, respectively. The splitting of 17.6 Hz is within the range reported for the one-bond 
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C(=O)-N coupling in amides [Stothers, J. B., 1972 ] and the signal can therefore be assigned 

to carboxamido carbon C6. The splitting of 7.8 Hz is in the range reported for two-bond C-N 

couplings [Otting, G., 1996] consistent with the assignment of the signal at 74.3 ppm to the 

quaternary carbon of 2-Ih made above. In agreement with the single peak observed in HSQC 

spectrum, the remaining carbon signal at 161.5 ppm belongs to formamido C9.  

The weak off-diagonal peak x (approximately aligned with H8) is due to a minor 

impurity with signals that are overlapping H8 and the broad exchangeable NH proton 

resonance of 2-Ih between 8.2 and 8.5 ppm. The exchange-broadened peaks on the diagonal 

are not observed at the contour level of the DQF COSY spectrum. 

In the 
13

C NMR spectrum of 2-Ih from oxidation of [4-
13

C]Gua (Figure 2.5c), the 
13

C 

label appears as the quaternary carbon C5. The 
13

C-
13

C couplings in Figure 2.5c are in accord 

with the structure [5-
13

C]-2-Ih and support carbon assignments made from the 
13

C NMR 

spectra of the NA and 
15

N isotopomers. The 38.3 Hz coupling of the signal at 181.3 ppm 

assigned to C4 is in good agreement with 
1
JC-(C=O) coupling reported for five-membered 

cyclic ketones, and the 55.1 Hz coupling of the signal at 167.4 ppm assigned to C6 

corresponds to 
1
JC-(C=O) reported for acyclic amides [Stothers, J. B., 1972]. As in NA-2-Ih and 

[7-
15

N]-2-Ih, resonances assigned to C2 and C9 are broadened, with the result that 
2
J 

coupling with 
13

C5 is not resolved.  

The 
1
H,

13
C heteronuclear multiple bond correlation (HMBC) spectrum (Figure 2.6) 

shows cross-peaks expected from the 
1
H and 

13
C assignments. Formamido carbon C9 at 

161.5 ppm shows an unsuppressed 
1
JC-H coupling of 194.5 Hz with the C9H at 7.94 ppm. 
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This coupling is in the range reported for 
1
JC-H of the formamido group [Ferris, T. D.et al, 

1997], [Breitmaier, E. et al, 1973] and is significantly smaller than one-bond C,H coupling of 

≥ 200 Hz reported for intact imidazole rings at C8 of purines (pH 5.6) [Read, J. M., and 

Goldstein, J. H., 1965]. A two-bond coupling is also observed between the C9 and the slowly 

exchanging proton at 8.77 ppm, which is accordingly assigned to the formamido H8. 

Quaternary carbon C5 at 74.2 ppm has the expected cross-peaks with H9, H8, and 

carboxamido H7b. In accord with hindered rotation about the carboxamido C-N bond and 

different HNCC torsion angles, as well as the coupling pattern observed in the 
1
H NMR 

spectrum (Figure 2.3c), no cross-peak is present between C5 and H7a. Carboxamido carbon 

C6 at 167.2 ppm has cross-peaks with NHa and NHb as well as with H8. C4 has a cross-peak 

only with H8, since the other slowly exchanging protons and nonexchanging H9 are four 

bonds distant. No cross-peaks were observed for C2, which is separated by four bonds from 

the nearest slowly exchanging proton.  

In the NOESY spectrum of NA-2-Ih (Figure 2.7), the expected cross-peaks were 

observed between the nonexchangeable formyl H9 and the slowly exchanging protons 

formamido H8 and carboxamido H7a and H7b.In addition, exchange cross-peaks were 

observed between the exchangeable protons and between the exchangeable protons and the 

water. On the basis of exchange cross-peaks with H2O, three broad signals around 9.2, 8.1, 

and 7.8 ppm in Figure 2.3a can be identified with NH1, NH3 and the exocyclic imino-NH, 

although specific assignments are not possible.  

In the 
13

C NMR of NA-2-Ih‚HCl recorded in 9:1 H2O/
2
H2O, C2 and C4 showed 

upfield shifts reported to be diagnostic for the iminohydantoin ring [Olofson, A. et al, 1998]. 
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As indicated above, the 
13

C NMR signals of C2, C6, and C9 show broadening and/or 

structure, with C9 being most significantly affected. In the 
13

C NMR spectrum of the 

hydrochloride salt, the C9 resonance displayed well-resolved structure (Figure 2.8), with one 

predominant narrow line flanked by low intensity peaks (spread over ~ 0.5 ppm) over which 

well-resolved multiplets were superimposed.  

The pattern observed is similar to patterns reported in 
13

C NMR spectra of amides and 

is ascribed to a distribution of rotational conformers [Johnston, E. R. et al, 2000], [Bulai, A. 

et al, 1997],  [Bulai, A. et al, 1996], [Hamilton, J. G. et al, 1976]. Analogous rotational 

isomerism has been observed in formamidopyrimidine derivatives of dGuo [Gates, K. S. et al, 

2004], [Tomasz, M. et al, 1987]. In 2-Ih, steric hindrance and H-bonding between the gem 

substituents on C5 and the ring carbonyl oxygen are expected to contribute to multiple 

conformers. Equilibration between carbonyl and hydrated forms of the formamido 

substituent could cause additional complication of the C9 signal. For the spectrum of NA-2-

Ih‚HCl recorded in H2O/
2
H2O, further complexity is anticipated from 

2
H isotope effects and 

13
C,

2
H coupling in the partially 

2
H-exchanged compound [Reuben, J., 1985], [Garcia-Martín, 

M. L. et al, 2002].  

2.4.2 Oxidation of d(TTGTT) 

  Following treatment of the 5-mer with a 7-fold excess of DMDO, the total crude 

reaction mixture was analyzed directly by NMR, MALDI-TOF and ESI-MS. In the 
1
H NMR 

spectrum of the total reaction mixture (Figure 2.9), pairs of signals are present at 8.72/5.84 

ppm and 8.68/5.57 ppm with a 1:4 ratio. The resonances at 5.57 and 5.84 ppm are in the 

region associated with H1‘ signals while those at 8.68 and 8.72 ppm are singlets in the region 



 

44 
 

where the formyl H9 of 2-Ih is expected [Davies, J. R. et al, 1990]. The pattern observed in 

Figure 2.9 is consistent with formation of 2-Ih diastereomers in the oxidized 5-mer in a 1:4 

ratio. Based on integrated signals from unreacted 5-mer and the 2-Ih diastereomers, > 95 % 

of the 5-mer was oxidized, with at least 40 % conversion to 2-Ih-containing product. The 

MALDI-TOF mass spectrum in the negative ion mode showed a strong ion at m/z 1516, 

corresponding to a gain of 34 mass units as expected for formation of the 2-Ih lesion, in 

addition to unmodified 5-mer (Figure 2.10). The negative ion ESI-MS acquired by loop 

injection (Figure 2.11) shows strong ions at m/z 1516 and 758 as expected for the [M – H]
-
 

and [M – H]
2-

  ions, respectively, of the 5-mer containing the 2-Ih modification. In the ESI-

MS, ions corresponding to unmodified 5-mer are not observed, consistent with the estimate 

from the NMR spectrum that only 5 % of the 5-mer was unreacted and that a substantial 

proportion of the 5-mer was converted to the 2-Ih-modified oligonucleotide. ESI-MS/MS of 

the ion at m/z 1516 (Figure 2.12) yielded a product ion at m/z 1376 corresponding to loss of a 

2-iminoimidazole fragment (2-imino-5-oxo-2,5-dihydro-1H-4-imdazole-4-carboxamide) to 

yield a ribosyl formamide-containing 5-mer anion, a fragmentation pattern consistent with 

oxidation of the Gua to 2-Ih.  The positive ion ESI-MS (Figure 2.13) by loop injection, was 

entirely in accord with this result, having ions at m/z 1518 ([MH]
+
) and 1540 ([MNa]

+
), along 

with product ions at m/z 1400 for loss of 2-iminoimidazole from (MNa)
+
, 729 [sodium 

adduct of  5‘-O-(2-methylene-2,3-dihydrofuran-3-yl)-pdTpdT), 671 (disodium adduct of 

(pdT)2) and 649 (sodium adduct of (pdT)2) and no protonated molecular ion corresponding to 

the unmodified 5-mer. ESI-MS/MS of (MH)
+
 (Figure 2.14) yielded a product ion at m/z 1378 

( [MH]
+
 - 2-iminoimidazole). The HPLC trace of the reaction mixture showed a major peak 

at 9.5 min (Figure 2.15). In the positive ion ESI-MS of this collected peak, a major ion at m/z 
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1540 was identified as the sodium adduct (MNa)
+
 of the 2-Ih-modified 5-mer by ESI-

MS/MS, which gives a product ion at m/z 1400, corresponding to the sodium adduct of the 5-

mer containing ribosyl formamide following loss of the 2-iminoimidazole fragment (Figure 

2.16). The slight inflection at the leading edge of the 9.5 min peak in Figure 2.15 may 

represent the unoxidized 5-mer (5 % by 
1
H NMR, not detected in the ESI-MS of the 

collected peak) or partially resolved diastereomeric product. In the mixture of 

mononucleosides resulting from digestion of the oxidized 5-mer, 2-Ih-dR was definitively 

identified both by HPLC retention time (vide infra) and protonated molecular ion (m/z 302) 

in the ESI-MS. These data establish transformation of guanine to 2-Ih as the major oxidation 

pathway of the 5-mer. Treatment of the 5-mer with m-CPBA yields a product mixture having 

an ion at m/z 1518 by positive ion ESI-MS, confirmed as 2-Ih by ESI-MS/MS which yields 

the expected product ion at m/z 1378. 

2.4.3 Oxidation of d[(TTGTT)·(AACAA) 

d(TTGTT) complexed to its complement d(AACAA) was oxidized by DMDO under 

the same conditions as the single-stranded 5-mer and the reaction mixture was digested to 

nucleosides. The presence of 2-Ih-dR in the digest was confirmed by retention time and ESI-

MS/MS of the collected peak (Figure 2.17). 

2.4.4 Oxidation of dGuo by peracids  

Figure 2.18a, b shows the HPLC traces of reaction mixtures from peracetic acid and 

m-CPBA oxidations of dGuo. 2-Ih aglycone, Sp aglycone and Sp-dR were identified by ESI-

MS and chromatographic retention times in the peracetic acid oxidation. The yields of 2-Ih 

and total spiroiminodihydantoins (aglycone + nucleoside) were estimated to be ~ 25 % and 

50 %, respectively, from integration of the HPLC peaks in Figure 2.18a adjusted for 
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extinction coefficients, assuming approximately equivalent extinction coefficients for the 

broad absorption maximum of the three oxidation products at 230 nm. Oxidation of dGuo by 

m-CPBA, gave 2-Ih and 2-Ih-dR in a combined yield of 79 % and Figure 2.18b shows that 

they are the only products present in significant yield.  The mass spectrum of the broad, low 

peak eluting at 4 min (Figure 2.18b) shows traces of m-chlorobenzoic acid and Sp/Sp-dR. No 

8-oxo-dGuo was detected in the HPLC and ESI-MS analysis of the peracid oxidation 

mixtures. 

2.4.5 
18

O Labeling reactions 

We addressed the origins of the added oxygens in two experiments: (1) by oxidizing 

guanine with DMDO in 1:1 H2
18

O/H2O and (2) by oxidizing deoxyguanosine with 
18

O2-m-

CPBA (>95 % 
18

O2). The use of deoxyguanosine for oxidation with 
18

O2-m-CPBA was 

dictated by the insolubility of guanine in aqueous medium at pH 4.5 required for activity of 

the peracid. Negative ion ESI-MS analysis of the oxidation mixture obtained with DMDO in 

1:1 H2O/H2
18

O yielded the ion chromatogram in Figure 2.19.a in which the ratio 
16

O-2-

Ih/
18

O-2-Ih is > 40 %. Making allowances for contamination of the reaction with natural-

abundance water from the acetone solution of DMDO and from atmospheric condensate 

during transfer of the cold (-80 
o
C) DMDO, the ion chromatogram is in accord with 

incorporation of 50 % of one atom of 
18

O. Comparison of the negative ion ESI-MS/MS of the 

[M – H]
-
 ions of  the labeled and unlabeled 2-Ih shows that the 

18
O is lost with the formamide 

fragment (Figure 2.19.b, 2.19.c). 

Exchange of the formamido oxygen with H2
18

O during work-up was ruled out by 

determining that no 
18

O-incorporation could be detected on stirring natural abundance 2-Ih in 

H2
18

O under the reaction conditions for 2 h. In the positive ion ESI-MS of the product from 
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oxidation of deoxyguanosine with 
18

O2-m-CPBA, the protonated molecular ion shifts from 

m/z 302 to m/z 304, indicating complete incorporation of a single 
18

O label. The major 

product ions in the positive ion ESI-MS/MS (Figure 2.20) of the ion at m/z 304 corresponded 

to loss of the deoxyribose (m/z 188), loss of deoxyribose along with natural abundance CO 

(m/z 160) and loss of natural abundance deoxyribosylformamide (m/z 143). As shown in 

Figure 2.20, 
18

O label is retained in the product ions corresponding to loss of deoxyribose, 

CO and deoxyribosylformamide. 

2.4.6 Oxidation of dGuo by DMDO  

Product from desalting the DMDO oxidation mixture by semi-preparative HPLC was 

collected as a single peak which, by accurate mass measurement, corresponded in 

composition to the protonated dimer (2-Ih-dR)2H
+
. ESI-MS/MS of the protonated molecule 

(MH
+
) yielded the same product ions as shown in Figure 2.20a for 2-Ih-dR from oxidation of 

dGuo by natural abundance m-CPBA. Multiple signals in the 
1
H NMR spectrum of the total 

reaction mixture (Figure 2.21) were identified at chemical shifts expected for formyl H9 [Ye, 

W. et al, 2006] of the 2-Ih base and H1‘ of the deoxyribose [Ippel, J. H.et al, 1996], 

indicating the presence of diastereomers. In all, the reaction mixture appeared to contain two 

major and two minor species. The diastereomer mixture was confirmed by the ROESY 

spectrum (Figure 2.22) which contained independent sets of NOESY connectivities (Tables 

2.1, 2.8). By virtue of the NOESY connectivities between H9 and H1‘ signals (Figure 2.22; 

Tables 2.1, 2.2), sugar-base connectivity was established for the two major components 1a 

and 1b of the product mixture, demonstrating the presence of nucleosides rather than a 

mixture of modified nucleobases bases and sugars. Exchange cross peaks permitted 1a and 

1b to be correlated with the minor components, 1a’ and 1b’, respectively (Figure 2.22). 
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Based on observations of rotational isomerism around the N8-C9 formamido bond of the 2-Ih 

base
24 

and the formyl C-N bond of N-(2'-deoxyribosyl)formamide [Guy, A.et al, 1991], 

[Maufrais, C. et al, 2003],  rotational isomerism can be ascribed as the exchange mechanism 

and 1a’ and 1b’ are assigned as the minor rotational isomers around the formamido N8-C9 

bond of the respective major nucleoside components. A signal present in the 
1
H NMR 

spectrum at 5.72 ppm partially overlaps H1‘ assigned to 1a’ (Figures 2.21 and 2.22) and 

shows NOESY connectivity to a signal overlapping H9 of 1b at 8.65 ppm. However, this set 

of signals (indicated by ―X‖ in Figure 2.21) lacks exchange or NOESY connectivity to any 

other component of the sample, and must therefore be an impurity or oxidation side-product. 

To discount the effect of the impurity, the ratio of diastereomers (1a + 1a’)/(1b + 1b’) was 

estimated from integrated signals of 1a’ and 1b’ in the H9 region and 1a and 1b in the H1‘ 

region and found to be ~ 2:1, while the ratios 1a/1a’ (estimated from 1a’-H9/1a-H9) and 

1b/1b’ (estimated from 1b’-H1‘/1b-H1‘) are ~ 10, indicating that a single rotamer is strongly 

favored for both diastereomers. 

Consistent with the ROESY spectrum, the HMBC spectrum of the oxidation mixture 

(Figure 2.23) shows the two independent sets of correlations derived for 1a and 1b. The 

HMBC spectrum of the diastereomer mixture confirms sugar-base connectivities for the 

major rotational isomers 1a and 1b observed in the ROESY spectrum and allows assignment 

of the deoxyribose carbon shifts as well as the shifts of formyl C9 and spiro C5 of the 

hydantoin ring. 
3
JC,H Sugar-base couplings observed for 1a are between C9-H1‘ and H1‘-C5. 

Both H1‘ and H9 are coupled to a carbon at 76.2 ppm having no attached proton (no C/H 

cross peak observed at the corresponding carbon shift in the HSQC spectrum (Figure 2.24)) 

which is therefore assigned to spiro C5 (Table 2.3). A carbon shift of 76.2 ppm is within the 
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range of shifts reported for the spiro carbons of the 2-Ih [Ye, W. et al, 2006] and 

spiroiminodihydantoin bases and the diastereomeric spiroiminodihydantoin 

deoxynucleosides [Adam, W. et al, 2002], [Niles, J. c. et al, 2001]. A similar set of sugar-

base couplings are observed for 1b (Table 2.4). All remaining deoxyribose C/H cross peaks 

of 1a and 1b could be assigned by a similar analysis of the HMBC and HSQC spectra of the 

product mixture. The low concentrations of minor rotamers 1a’ and 1b’ precluded 

observation of C,H coupling in the heteronuclear shift correlation spectra. 

Diastereomers 1a and 1b could be separated with ~ 90 % efficiency by semi-

preparative HPLC. The later-eluting product proved to be 1a. The ROESY spectra of the 

resolved diastereomers (Figures 2.25, 2.26) permitted the deoxyribose NOESY connectivities 

to be identified for the major rotational isomers (Table 2.1, 2.2). 

2.4.7 Oxidation of dGMP by DMDO  

Exact mass measurement of the single molecule ion from the mixture dGMP 

oxidation products corresponded in composition to the protonated 2-Ih-dRP dimer (2-Ih-

dRP)2H
+
. The 

1
H NMR spectrum (Figure 2.27) was qualitatively similar to that of the 

mixture of 2-Ih nucleosides and shows two major components 2a, 2b along with two minor 

components 2a’, 2b’. The components of the dGMP oxidation mixture were identified by 

applying the same strategy described above for the nucleosides. Signals in the H9 – H1‘ and 

H2‘ – H2‘‘ regions were well-resolved. In the ROESY spectrum (Figure 2.28), independent 

sets of NOESY connectivities were determined for 2a and 2b, as well as for one of the minor 

components, which we have assigned as a rotational isomer of 2a’ by virtue of exchange 

connectivity with 2a (Tables 2.5 –  2.7). An expansion of the H9 - H1‘ region of the ROESY 

spectrum (Figure 2.29) shows exchange connectivity of both minor components 2a’ and 2b’ 
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to corresponding major components 2a and 2b. With the exception of the H5‘, H5‘‘ region, 

where signals of all species in the product mixture overlap, resolution of signals in the 
1
H 

NMR and ROESY spectra was sufficient to permit unambiguous assignment of proton 

signals for three of the four species present. The concentration of 2b’ was too low to allow 

assignment of signals aside from H1‘ and H9. By summing integral ratios in the H1‘ region, 

the ratio (2a + 2a’)/(2b + 2b’) is ~ 2:1, in line with the results from dGuo oxidation, while 

the ratio of rotamers 2a/2a’ is ~ 3:1 and 2b/2b’ is > 5:1. For 2a, 2a’ and 2b, NOESY cross 

peaks between formyl H9 and sugar H1‘ signals demonstrate the required connectivity 

between the base and sugar (Figure 2.29).In the case of 2b’, the connectivity between sugar 

and base can be inferred from the observation that 2b’ is generated from 2b by rotational 

exchange. 

For 2a, 2a’ and 2b, assignment of cross-peaks in the heteronuclear shift correlation 

spectra was determined from the HMBC, HSQC and 
13

C spectra (Figures 2.30 – 2.32). 
1
H 

and 
13

C assignments derived from these data are given in Tables 2.8 – 2.10. The 
1
H 

assignments are in complete accord with those derived from the ROESY spectrum. Base – 

sugar connectivity was confirmed by the 3-bond couplings H9-C1‘, C9-H1‘ and C5-H1‘ 

observed for 2a, 2a’ and 2b. The chemical shifts of the spiro carbons were assigned from the 

HMBC spectrum on the basis of 
13

C cross peaks at shifts of ~ 80 ppm with H1‘ protons and 

the absence of signals from carbons in this region of the HSQC spectrum. The assignment of 

carbon signals to C4‘ and C5‘ are established by observation of the 
31

P-
13

C coupling in the 

13
C NMR spectrum (Figure 2.32). Because of the low concentration of 2b’ in the mixture, 

only the H1‘/C5 cross peak in the HMBC spectrum could be assigned. Nevertheless, this 
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assignment is important because it unequivocally establishes the sugar-base connectivity of 

2b’. 

2.4.8 Oxidation of dGTP by DMDO  

Because of the lability of the phosphates in dGTP, the oxidation mixture was 

maintained at 0 
o
C and the products were characterized in the total reaction mixture without 

attempting further purification. The major ions in the negative ion ESI-MS corresponded to 

mono- and disodium adducts of the deprotonated molecular ion [M – H]
-
:  [MNa – H]

-
 and 

[MNa2 – H]
-
, along with product ions [M – H2PO3]

-
 and [MNa – HP2O7]

-
. The 

1
H NMR 

spectrum of the crude reaction mixture (Figure 2.33) was qualitatively similar to those of the 

product mixture from oxidation of dGuo and dGMP.  In the HMBC spectrum (Figure 2.34), 

one set of connectivities could be unambiguously ascribed to one 2-Ih-dRTP diastereomer. A 

component of a multiplet at ~ 5.75 ppm in the H1‘ region couples with a carbon resonance at 

164.0 ppm which can be assigned to C9 of the 2-Ih base by virtue of unsuppressed 1-bond 

coupling to a formyl H9 signal at 8.43 ppm. The H1‘ and formyl H9 signals both couple to a 

carbon at 78.3 ppm having no attached proton and identified on this basis as spiro-C5 of the 

2-Ih base. The formyl H9 also couples to a carbon signal in the C1‘ region at 88.4 ppm which 

in turn couples to a proton in the H2‘ region at 2.11 ppm. Two additional products in the 

HMBC spectrum have signals within the H9 region of 2-Ih which show unsuppressed 1-bond 

coupling to carbons at shifts consistent with 2-Ih formyl C9 and also coupling to carbons in 

the 2-Ih spiro C5 region. However, connectivity between the base moieties and a sugar 

cannot be definitively established for these components from the HMBC data. 

2.5 Discussion 

2.5.1 Oxidation of Guanine  



 

52 
 

We propose 2-Ih as an alternative structure to the isomeric 5,8-dihydroxy-7,8-

dihydro-Gua, tentatively identified by mass spectrometry as the major oxidative lesion in 

double-stranded DNA generated by treatment with the tetrakis(1-methyl-4-

pyridiniumyl)manganese porphyrin/KHSO5 oxidation system [Vialas, C. et al,2000]. The 

manganese porphyrin/KHSO5 oxidant, like DMDO, is known to epoxidize double bonds 

[Bernadou, J. et al, 1994], and 5-O-substituted Gua derivatives have been observed only as 

transients at low temperature [McCallum, J. E. B. et al, 2004]. This structural reassignment 

supports the suggestion that iminohydantoin 2-Ih may be a primary oxidative DNA lesion.  

2.5.2 Oxidation of DNA 

Of paramount interest was whether peracids and DMDO would transform guanine to 

2-Ih in single- and double-stranded DNA. We approached this question by DMDO oxidation 

of the 5-mer d(TTGTT) and the short duplex  d[(TTGTT)·(AACAA)]. The single-stranded 5-

mer d(TTGTT) treated with ~ 7-fold excess of DMDO was 95 % oxidized, with at least 40 % 

conversion to 2-Ih-modified oligonucleotides estimated from 
1
H NMR analysis based on 

integration of signals identified as H1‘ and H9. Negative ion MALDI-TOF MS of the crude 

oxidation mixture showed a strong ion at m/z 1516, a gain of 34 mass units relative to the 

deprotonated molecular ion of the unmodified sequence and consistent with formation of the 

2-Ih lesion. Fragmentation of this ion, observed by ESI-MS/MS, provided further support for 

the oxidation of Gua to 2-Ih, showing a collision-induced fragmentation pattern consistent 

with breaking of the C5-N8 bond to yield ions of the oligonucleotide containing the 

deoxyribosyl formamide group in both positive and negative ion modes (Figures 2.13, 2.11). 

The HPLC trace of the reaction mixture indicates a single major product, having an ESI-MS 

consistent with the 2-Ih-modified 5-mer. 2-Ih in the oxidized 5-mer was definitively 
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confirmed by digestion and identification of 2-Ih-dR in the mixture of mononucleosides. 

Oxidation of d(TTGTT) annealed to its complement also resulted in generation of 2-Ih, 

unequivocally identified as the nucleoside by retention time in the HPLC of the digest and by 

positive ion ESI-MS/MS of the ion corresponding to [MH]
+
 (Figure 2.14). Significantly, the 

2-Ih lesion is sufficiently stable to withstand both digestion and chromatographic separation. 

This observation, and the stability of the glycosidic bond under acid conditions as evident 

from the isolation of 2-Ih nucleoside from m-CPBA oxidation of dGuo, indicate that 2-Ih, if 

formed in vivo, might be expected to persist as a stable lesion. Oxidation of DNA by m-

CPBA has been reported to target purines, particularly in loop regions, with generation of 

blocking lesions
22

. The lesions were not structurally characterized, but our determination that 

2-Ih is a product of Gua oxidation in DNA by m-CPBA suggests that 2-Ih may in part 

account for the reported interference of the oxidative lesions with replication.  

Gua + 34 species have been reported from the oxidation of Gua in DNA by a Mn-

porphyrin/KHSO5 system, which can function as a monooxygen transfer catalyst [Vialas, C. 

et al, 2000],
 
and by a dicopper-phenolate complex, via a putative hydroperoxo dicopper(II) 

transient [ Li, L. et al, 2005]. A putative mechanism for the formation of this product with the 

Mn-porphyrin catalyst has been proposed which involves the trapping of water by a transient 

guanine cation, formation of dehydrodeoxyspiroiminodihydantoin followed by hydrolytic 

opening of the imidazolone ring by breaking the bond between imino carbon and the nitrogen 

attached to the deoxyribose to give an N-formylamido-substituted structure rather than the N-

formylamino-substituted structure of Scheme 2.2. However, the assignment of the N-formyl 

carboxamido structure was speculative, while we have rigorously established the N-
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formylamino substitution of 2-Ih by a combination of labeling and NMR studies discussed 

below. We therefore suggest the N-formylamino structure of 2-Ih as a plausible alternative. 

2.5.3 Oxidation of dGuo by peracids  

Peracetic acid is representative of low molecular weight alkyl peracids that might be 

generated in biological processes[Russell, G. et al, 1957], [Adam, W., Kurz, A. et al, 1999], 

[Nam, W. et al, 1996], [Abell, L. M. et al, 1991], [Bunik, V. I. et al, 2007], and is also a 

convenient model oxidant because the acetic acid by-product of oxidation can be removed 

from reaction mixtures under vacuum, avoiding the need for chromatographic separation of 

products from spent oxidant. A drawback of aqueous peracetic acid is the presence of 

hydrogen peroxide as a ~ 6 % equilibrium component [Dul‘neva, L. V., Moskvin, A. V., 

2005], raising the possibility of concurrent oxidation via an alternative hydroxyl radical 

pathway. Indeed, Sp and Sp-dR, products of dGuo oxidation by hydroxyl radicals [Lou, W., 

et al, 2000], [Cadet, J. et al, 2003], were identified in the reaction mixture and can most 

likely be attributed to hydroxyl radical oxidation. Deglycosylation of  the 2-Ih and Sp 

nucleosides evident in Figure 2.18.a is not surprising in view of the lengthy reaction time at 

pH < 4 required to maintain peracetic acid in the active, protonated form. The choice of m-

CPBA as a peracid oxidant rested on the availability in our laboratory of 
18

O2- m-CPBA with 

an 
18

O content >95 %, allowing us to determine the number and site of oxygen atoms 

incorporated from the peracid. The m-CPBA oxidation yielded 2-Ih-dR and a minor amount 

of the aglycone as virtually exclusive oxidation products (Figure 2.18.b) supporting the 

suggestion that Sp observed in the oxidation of Gua with peracetic acid was generated by 

hydroxyl radical. Only trace quantities of Sp-dR and its aglycone were detected in the 

mCPBA oxidation, possibly products of a minor radical pathway via O-O homolysis of m-
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CPBA [Ryu, E. K., MacCoss, M., 1981], [Bravo, A. et al, 1996]. The product profile 

generated by m-CPBA oxidation strongly supports 2-Ih as the product of the peracid 

oxidation of dGuo in protic solvents, and the predominance of the nucleoside as a product at 

pH 4.5 indicates that the glycosidic bond is robust and should be stable under physiological 

conditions.  

2.5.4 Labeling studies and oxidation mechanism  

A mechanism for the oxidation of Gua consistent with the positions of the 
13

C and 

15
N labels in the isotopomeric iminohydantoin products is given in Scheme 2.2. Epoxidation 

of the 4,5-double bond is followed by a 1,2-acyl migration and hydrolytic opening of the 

imidazole ring [Vialas, C. et al, 1998]  to give 2-Ih. As required by the 1,2-carbonyl shift, the 

13
C label at position 4 of guanine becomes spiro carbon C5 of 2-iminohydantoin. Also in 

accord with Scheme 2.2, oxidation of [7-
15

N]guanine yielded 2-Ih with 
15

N label at the 

carboxamido nitrogen [Ye, W., et al]. Hydrolytic opening of the transient imidazolone ring 

via dehydrodeoxyspiroiminodihydantoin (4, Scheme 2.2) is then predicted to give 2-Ih. Ring 

cleavage of 4 to 2-Ih according to Scheme 2.2 has been definitively established by the 

presence of two inequivalent carboxamido NH signals in the 
1
H NMR spectrum of 2-Ih, 

which show 
1
JN-H coupling of ~ 90 Hz in the 7-

15
N isotopomer These observations rule out an 

N-formylamido structure which, as discussed above, has been proposed to result from the 

hydrolytic ring opening of transient 4 in the Mn-porphyrin-catalyzed persulfate oxidation of 

Gua in DNA [Pratviel, G.; Meunier, B., 2006].  Along with the 
18

O-incorporation studies, 

which show that the carboxamide oxygen is derived from oxidant and the formamide oxygen 

from water, definitively establish the oxidation mechanism proposed in Scheme 2.2. The 

high yield of 2-Ih-dR on oxidation of dGuo by m-CPBA along with the absence of 8-oxo-
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dGuo or other products that have been identified in radical-mediated oxidation of dGuo, 

support Scheme 2.2 as the predominant oxidation pathway by peracids and DMDO and also 

support the high level of conversion of guanine to 2-Ih in the oxidation of DNA, as implied 

by the analysis of the oxidized single and double stranded oligonucleotides. 

2.5.5 Structural Analysis of the DMDO Oxidation of dGuo, dGMP and dGTP 

 Oxidations with DMDO as oxidant were carried out on a scale permitting rigorous 

structural characterization of the product profiles. The presence of the N9 sugar substituent 

would be expected to result in enantioselective induction of the asymmetric center at spiro 

C5. The DMDO oxidations of dGuo and dGMP conform to expectation; both starting 

compounds yield two diastereomers in a ~ 2:1 mixture. In addition, slow rotation around the 

N8-C9 formamido bond resulted in resolution of two rotational isomers for each 

diastereomer, analogous to behavior reported for the 2-Ih base [Ye, W., 2006] and the N-(2'-

deoxyribosyl)formamide lesion [Guy, A. et al, 1991], [Maufrais, C. et al, 2003]. The major 

rotational isomers of the 2-Ih deoxynucleoside diastereomers were favored by an order of 

magnitude over the minor rotamers, with the result that only the major components 1a and 1b 

gave detectable NOESY interactions in homonuclear shift correlation spectra and C,H cross 

peaks in the heteronuclear shift correlation spectra. Exchange cross peaks in the ROESY 

spectrum permitted the proton signals of minor rotamers 1a’ and 1b’ to be correlated with 

those of the corresponding major rotamers 1a and 1b, respectively (Figure 2.22). Rotamer 

preference was less pronounced for the deoxynucleotide diastereomers, with ratios being 3:1 

for the major diastereomer 2a and ~ 5:1 for the minor diastereomer 2b. In the ROESY 

spectrum, two sets of NOESY peaks could be related by exchange and were assigned to the 

major diastereomer (2a and 2a’). One set of NOESY cross peaks was assigned to 2b (Table 
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2.3). The signals assigned to diastereomer 2b were related by exchange to the remaining 

minor component 2b’ which was too dilute for detection of NOESY cross peaks. Sugar-base 

connectivities were established for all deoxynucleoside and 5‘-monophosphate 

diastereomers.
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Chart 2.1 Structure of 5-carboxamido-5-formamido-2-iminohydantoin (2-Ih) and 2-Ih-containing products 1a, b (2-Ih-dR); 2a, b(2-

Ih-dRP); 3a, b(2-Ih-dRTP).  

 

 

Scheme 2.2 Mechanism of guanine epoxidation by DMDO or peracid 
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Scheme 2.1 Synthetic scheme of labeled Guanine 
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Figure 2.1 Full scan ESI-MS
+
 of NA-2-Ih: m/z 186 [MH]

+
, 208 [M + Na]

+
. 
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Figure 2.2 ESI-MS/MS
+
 of NA-2-Ih: m/z 186 [MH]

+
, 169 [MH-NH3]

+
, 158 [MH-CO]

+
, 141 [MH-formamide]

+
. 
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Figure 2.3 
1
H NMR (500 MHz, DMSO-d6) of (a) NA-2-Ih, (b) [7-

15
N]-2-Ih, and (c) [5-

13
C]-2-Ih. Signal assignments are discussed in 

the text. The dependence of the chemical shifts of rapidly exchanging protons on sample concentration and residual water is evident.  
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Figure 2.4 DQF COSY spectrum of NA-2-Ih. Cross peaks between the signals of the slowly exchanging carboxamido protons at 7.19 

(NHa) and 7.29 (NHb) ppm and between the formyl proton H9 at 8.77 ppm and the formamido proton H8 at 7.94 ppm are indicated in 

the figure.  
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     Figure 2.5 Proton-decoupled 
13

C NMR (125 MHz, DMSO-d6) of (a) NA-2-Ih, (b) [7-
15

N]-2-Ih, and (c) [5-
13

C]-2-Ih. Signal 

assignments are shown above the top panel. Peaks denoted x are impurities; peaks denoted y are acetate from buffer. 
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Figure 2.6 HMBC spectrum of NA-2-Ih. C,H cross-peaks are indicated on the spectrum. 
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Figure 2.7 NOESY spectrum of NA-2-Ih. True NOESY cross peaks (blue contours) between the 4-carboxamido protons H7a and H7b 

and between and the formyl CH at 7.94 ppm and between the formyl proton and the slowly exchanging NH at 8.77 ppm are indicated 

on the spectrum. Cross peaks between the exchangeable protons as well as between the exchangeable protons and residual water (red 

contours) are also observed. 
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Figure 2.8 
13

C NMR (125 MHz, 9:1 H2O/
2
H2O) of NA-2-Ih‚ HCl showing the structure of the signal assigned to formamido carbon 

arising from rotational isomers and deuterium exchange.  
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Figure 2.9 
1
H NMR (500 MHz, D2O) of oxidized d(TTGTT) in the H1′ - H9 range. Signals identified with 2-Ih are identified on trace.  
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Figure 2.10 Negative ion MAL DI-TOF mass spectrum of total reaction mixture of oxidized d(TTGTT) showing unoxidized 5-mer 

(m/z 1482) and product at +34 mass units (m/z 1516).  
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Figure 2.11 Negative ion ESI-MS of oxidized 5-mer. 
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Figure 2.12 Negative ion ESI-MS/MS of ion m/z 1516 of oxidized 5-mer. 
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Figure 2.13 Positive ion ESI-MS of oxidized 5-mer. 
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Figure 2.14 Positive ion ESI-MS/MS of ion at m/z 1518, 9 min peak in HPLC of oxidized 5-mer. 
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Figure 2.15 HPLC trace (detector at 260 nm) of reaction mixture from DMDO oxidation of 5-mer.  
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Figure 2.16 Positive ion ESI-MS/MS of m/z 1540 ([MNa]
+
) from peak at 9.5 min in HPLC of oxidized 5-mer. 
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Figure 2.17 HPLC (UV detector set at 252 nm) of digest of oxidized 5-mer. Peaks are identified on trace.
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Figure 2.18 HPLC traces (detector set at 230 nm) of reaction mixtures from dGuo oxidation 

by (a) peracetic acid and (b) m-CPBA, following extraction of spent oxidant. Products 

identified are indicated on traces. 
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Figure 2.19 (a) Negative ion ESI-MS showing 
16

O/
18

O distribution in 2-Ih base from DMDO oxidation of Gua in 1:1 mixture of 

H2
16

O/H2
18

O, (b) Negative ion ESI-MS/MS of molecular ion of natural abundance 2-Ih and (c) Negative ion ESI-MS/MS of 

molecular ion 
18

O-labeled 2-Ih showing loss of the label with the formamide moiety. 
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Figure 2.20 Positive ion ESI-MS of 2-Ih-dR from oxidation of dGuo with (a) natural 

abundance m-CPBA and (b) 
18

O2-m-CPBA, indicating retention of 
18

O label in the product 

ion at m/z 143 from loss of deoxyribosylformamide. 
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Figure 2.21 
1
H NMR (500 MHz, D2O) of mixture of 2-Ih-dR diastereomers and rotamers 1a, 1b, 1a′, 1b′ from the oxidation of dGuo 

by DMDO. For clarity, only well-resolved signals are identified on trace. An impurity in the H1′ region is indicated by ―X‖. 
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Figure 2.22 ROESY spectrum of diastereomer mixture from oxidation of dGuo. H9-H1′ NOESY connectivities are detected for the 

major rotamers (red). The dashed line indicates an impurity having a NOESY cross peak with a signal in the H9 region. Minor 

rotamers are identified by exchange cross peaks (blue). 
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Figure 2.23 HMBC spectrum of diastereomer mixture from the oxidation of dGuo. For major rotamers, the coupling of H1‗  and H9 

with C5 and C9 (solid lines) and coupling of H1‗ with C1‗, C9 and C5 (dashed lines) are indicated. Brackets indicate unsuppressed 1-

bond couplings. 
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Figure 2.24 HSQC spectrum of diastereomer mixture from oxidation of dGuo. C,H coupling detected for major rotamers of 1a (solid 

lines) and 1b (dashed lines) is indicated on spectrum. 
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Figure 2.25 ROESY spectrum of diastereomer 1a. Proton signals and cross peaks of major rotamer are indicated on the spectrum. 
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Figure 2.26 ROESY spectrum of diastereomer 1b. Proton signals and cross peaks of major rotamer are indicated on the spectrum. 
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Figure 2.27 
1
H NMR (500 MHz, D2O) of mixture of 2-Ih-dRP diastereomers and rotamers 2a, 2a′, 2b, 2b′ from the oxidation of 

dGMP by DMDO. Signal assignments are given on the trace.  
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Figure 2.28. ROESY spectrum of diastereomer mixture from oxidation of dGMP. NOESY connectivities are indicated in 

blue, and exchange connectivities in red. Cross peak assignments are shown on spectrum. Connectivities of minor 

rotamers are indicated by dashed lines.

 

Figure 2.28 ROESY spectrum of diastereomer mixture from oxidation of dGMP. NOESY connectivities are indicated in blue, and 

exchange connectivities in red. Cross peak assignments are shown on spectrum. Connectivities of minor rotamers are indicated by 

dashed lines.  
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Figure 2.29 ROESY NMR spectrum of the H1′ - H9 region of the mixture of diastereomers and rotamers from the oxidation of dGMP 

by DMDO. Cross peaks of signals related by rotational exchange are red, and NOESY cross peaks blue. Exchange and NOESY 

connectivities between 2a and 2a′ are indicated by solid lines and between 2b and 2b′ by dashed lines.  
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Figure 2.30 HMBC spectrum of diastereomer mixture from oxidation of dGMP. C,H coupling is indicated for major rotamers 2a 

(solid lines) and 2b (dashed line) are: H1‗ with C1‗, C9 and C5; H9 with C1‗, C5 and C9. Unsuppressed 1-bond couplings are 

indicated by brackets. 
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Figure 2.31 HSQC spectrum of diastereomer mixture from oxidation of dGMP. C,H cross peaks are identified on spectrum.  
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Figure 2.32 
13

C NMR spectrum (125 MHz, D2O) of diastereomer mixture from oxidation of dGMP. Carbon signals are identified on 

trace. Expansions show 
31

P,13C coupling.  
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Figure 2.33 
1
H NMR (500 MHz, D2O) of the H1‘ – H9 region of the product mixture from oxidation of dGTP.  Signals of the major 

rotamer of the major diastereomer of the 2-Ih-dRTP and of residual dGTP are indicated on trace. 
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Figure 2.34 HMBC spectrum of oxidation mixture of dGTP in the C1‗ – H9 region. C,H couplings for the major 2-Ih-dRTP species 

(solid lines) and residual dGTP (dashed lines) are identified on the spectrum.  Unsuppressed 1-bond couplings are indicated by 

brackets. 
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Table 2.1 Proton signal assignments and NOESY interactions (●) for 1a. 

  H9 H1′ H3′ H4′ H2′′ H2′ 

  8.21 5.70 4.35 3.95 2.36 1.91 

H9 8.21  ●    ● 

H1′ 5.70 ●  ● ● ● ● 

H3′ 4.35  ●  ● ● ● 

H4′ 3.95  ● ●  ●  

H2′′ 2.36  ● ●   ● 

H2′ 1.91 ● ● ●  ●  

 

 

Table 2.2 Proton signal assignments and NOESY interactions (●) for 1b. 

  H9 H1′ H3′ H4′ H2′′ H2′ 

  8.50 5.38 4.39 3.79 2.55 2.20 

H9 8.50  ● ●  ●  

H1′ 5.38 ●   ●  ● 

H3′ 4.39 ●   ● ● ● 

H4′ 3.79  ● ●   ● 

H2′′ 2.55 ●  ●   ● 

H2′ 2.20  ● ● ● ●  
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Table 2.3 Proton signal assignments and NOESY interactions (●) for 1a′. 

  H9 H1′ H3′ H4′ H2′′ H2′ 

Shift (ppm)  8.38 5.47 4.27 3.83 2.41 2.17 

H9 8.38  ● ●  ●  

H1′ 5.47 ●  ●  ● ● 

H3′ 4.27 ● ●   ●  

H4′ 3.83      ● 

H2′′ 2.41 ● ● ●   ● 

H2′ 2.17  ●  ● ●  

 

Table 2.4 C,H cross peaks resolved in the HMBC spectrum of 1a. 

  H9 1′ 3′ 4′ 5′,5′′ 2′′ 2′ 

 Shift 

(ppm) 

8.21 5.70 4.35 3.95 3.73-3.76 2.36 1.91 

C9 164.6 ● ●      

C1′ 88.3 ● ● ● ●   ● 

C3′ 71.8    ● ● ● ● 

C4′ 87.7    ● ● ●  

C5′ 64.2   ● ● ●   

C2′ 42.0  ●    ●  

C2 171.9        

C4 180.5        

C5 79.0  ●      

C6 167.1        
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Table 2.5 C,H cross peaks resolved in the HMBC spectrum of 1b. 

  H9 1′ 3′ 4′ 5′,5′′ 2′′ 2′ 

  8.50 5.38 4.39 3.79 3.73-3.56 2.55 2.20 

C9 166.5 ● ●      

C1′ 88.7  ● ●   ●  

C3′ 71.7  ●  ●  ● ● 

C4′ 86.3  ●   ●   

 C5′ 64.4        

C2′ 39.0        

C2 171.8        

C4 181.9        

C5 79.6 ● ●      

C6 167.3        

Table 2.6 C,H cross peaks resolved in the HMBC spectrum of 1a′. 

  H9 1′ 3′ 4′ 5′,5′′ 2′′ 2′ 

  8.38 5.47 4.27 3.83 3.73-3.56 2.41 2.17 

C9 165.6 ● ●      

C1′ 88.6   ●     

C3′ 71.5    ●   ● 

C4′ 85.9        

 C5′ 65.3        

C2′         

C2 172.1        

C4 181.8/182.6        

C5 78.7 ● ●      

C6 167.5        
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Table 2.7 NOESY cross peaks for 2a. 

  H9 H1′ H3′ H4′ H5′,5′′ H2′′ H2′ 

  8.59 5.62 4.35 3.93 3.82, 3.72 2.61 2.31 

H9 8.59  ●      

H1′ 5.62 ●   ●  ● ● 

H3′ 4.35    ● ● ● ● 

H4′ 3.93  ● ●   ● ● 

H5′,5′′ 3.82, 3.72   ●     

H2′′ 2.61  ● ●    ● 

H2′ 2.31  ● ●   ●  

 

Table 2.8 NOESY cross peaks for 2b. 

  H9 H1′ H3′ H4′ H5′,5′′ H2′′ H2′ 

  8.65 5.57 4.43 3.98 3.70-3.64 2.61 2.45 

H9 8.65  ● ●     

H1′ 5.57 ●   ●  ● ● 

H3′ 4.43 ●   ● ● ● ● 

H4′ 3.98  ● ●    ● 

H5′,5′′ 3.70-3.64   ●     

H2′′ 2.61  ● ●    ● 

H2′ 2.45  ● ● ●  ●  
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Table 2.9 Multiple-bond (x) and one-bond (y) C,H cross peaks for 2a. 

  H9 H1′ H3′ H4′ H5′,5′′ H2′′ H2′ 

  8.59 5.62 4.35 3.93 3.82, 3.72 2.61 2.31 

C9 163.8 y x      

C5 76.2 x x      

C1′ 85.5 x y x   x  

C2′ 37.2      y y 

C3′ 67.8   y x x x x 

C4′ 83.3    y x  x 

C5′ 58.9   x  y   

 

Table 2.10 Multiple-bond (x) and one-bond (y) C,H cross peaks for 2b. 

  H9 H1′ H3′ H4′ H5′,5′′ H2′′ H2′ 

  8.65 5.57 4.43 3.98 3.70-3.64 2.61 2.45 

C9 163.8 y x      

C5 76.7 x x      

C1′ 85.2  y x   x  

C2′ 35.5      y y 

C3′ 68.1  x y   x x 

C4′ 84.1    y x   

C5′ 64.1   x  y   

 



 

 

 

III. Investigation of ribosylation routes to 8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)-imidazo[2,1-b]purine (N9-β-deoxyribosyl-N
2
, 3-εdGuo) 

 

3.1 Abstract 

N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine (8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)imidazo[2,1-b]purine) is a highly mutagenic DNA adduct arising from 

exposure to known occupational and environmental carcinogens and is also generated under 

conditions associated with oxidative stress. N9-β-deoxyribosyl-N
2
, 3-εGua is therefore of 

considerable interest for quantitation in DNA as a biomarker of exposure both in vivo and in 

vitro in studies of molecular mutagenesis. Chemical synthesis has proven to be challenging 

because of the reported lability of the glycosidic bond under conditions generally applicable 

to chemical synthesis. We investigated enzymatic glycosylation and chemical glycosylation 

of N
2
, 3-ethenoguanine as approaches to obtaining this nucleoside under mild conditions. We 

report that both enzymatic and chemical glycosylation of N
2
, 3-εGua led to nucleosides 

having spectroscopic data compatible with ribosylation at positions corresponding to N7- and 

N
2
 of the Gua framework. A minor product of the enzymatic ribosylation had a C,H coupling 

pattern in the HMBC spectrum that was consistent with ribosylation at the target Gua N9, but 

the HPLC retention time and NMR data ruled out the target structure. This product has 

tentatively been assigned as the α-anomer of the desired N3 riboside, and rigorous 
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confirmation of this structure would demonstrate an unusual stereochemistry for the trans 

ribosylation. We re-investigated a route to 8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)imidazo[2,1-b]purine via cycloaddition of  bromoacetaldehyde to O
6
-

benzyl-protected dGuo, which gave the target compound, albeit in only 6 % overall yield. 

Despite the low overall yield, cycloaddition appears to be the only unambiguous route to 8,9-

dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)imidazo[2,1-b]purine. 

3.2 Introduction 

N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine (8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)imidazo[2,1-b]purine) is a highly mutagenic DNA adduct arising from 

exposure to known occupational and environmental carcinogens, including vinyl chloride 

and chloroacetaldehyde [Guengerich, F. P. et al, 1979], [Guengerich, F. P. et al, 1992] and is 

also generated under conditions associated with oxidative stress [Gros, L. et al, 2003].  

Among exocyclic DNA adducts, ethenobases have been most widely studied in the 

last 33 years, as this class of DNA lesions is formed by many genotoxic chemicals including 

the human carcinogen vinyl chloride (VC) and the multi-species carcinogen urethane 

[Bartsch H. et al, 1994]. Ethenobases were first described by Kochetkov et al. [Kochetkov N. 

K. et al, 1971] who identified them as reaction products of 2-chloroacetaldehyde with 

adenine and cytosine. Interest in the ε-lesions was renewed in 1975 when it was found that 

they were generated in vitro by the vinyl chloride metabolites, chloroethylene oxide and 2-

chloroacetaldehyde [Barbin A. et al, 1975], [Laib R.J. et al, 1977], [Laib R.J. et al, 1978].  

Using replication and transcription fidelity assays and ε-modified oligo- or polynucleotides, 

it was established that εdA and εdC have miscoding or ambiguous base pairing properties 

[Barbin A.et al, 1981], [Hall J.A. et al, 1981], [Spengler S. et al, 1981] and thus could be 
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involved in the mutagenic and carcinogenic effects of VC [IARC, 1979], [Barbin, H. et al, 

1986]. 

In the 1990s, ε -adducts have received renewed attention, because background levels 

of etheno adducts have been detected in tissues from unexposed humans and rodents, 

suggesting an alternative, endogenous pathway of formation  [Nair J., Barbin A. et al,1999]. 

This background which can be affected by dietary factors could arise from the reaction of 

lipid peroxidation products such as trans-4-hydroxy-2-nonenal via its 2,3-epoxy-intermediate 

with nucleic acid bases [Nair J., Vaca C.E. et al, 1997]. Subsequently, it was shown that high 

intake of dietary ω-6 –polyunsaturated fatty acids by female volunteers greatly increased 

LPO-derived etheno-DNA adducts in white blood cells in vivo [Fang J.L., Vaca C.E. et al, 

1996]. Further, elevated levels of ε -adducts were found in hepatic DNA from patients and 

rodents with genetic predisposition to oxidative stress, lipid peroxidation and increased risk 

of liver cancer due to metal storage disease [Nair J., Sone H., et al 1996]. Also, during 

inflammatory processes a cascade of reactive oxygen/nitrogen intermediates can be generated, 

that could lead directly to oxidative DNA damage and/or to formation of ε -adduct via 

reaction of bifunctional 4-hydroxyalkenals and epoxides derived from LPO. 

  (8,9-dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)imidazo[2,1-b]purine) in DNA is 

therefore of considerable interest as a biomarker of exposure and in studies of molecular 

mutagenesis. Quantitative analysis of DNA adducts requires both unambiguously 

characterized standards and on occasion, labeled isotopomers. Preparation of certain classes 

of deoxynucleoside adducts can be problematic because instability of intermediates under 

conditions of established synthetic routes, deglycosylation at low pH or elevated temperature 

often present particular difficulties. Chemical synthesis of (8,9-dihydro-9-oxo-3-(β-D-2-
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deoxyribofuranosyl)imidazo[2,1-b]purine) has proven to be challenging precisely because of 

the reported lability of the glycosidic bond under conditions generally applicable to chemical 

synthesis [Kusmierek, J. et al, 1989], [Khazanchi, R. et al, 1993], [Müller, M. et al, 1996]. 

We investigated both enzymatic glycosylation and chemical glycosylation of N
2
,3-

ethenoguanine (N
2
,3-εGua) as approaches to obtaining this nucleoside adduct under mild 

conditions. Deoxyribosyl transferases serve for preparation of therapeutic nucleoside 

analogues [Anand, R. et al, 2004]. Enzymatic or chemical glycosylation would also be highly 

advantageous for synthesis of product multiply labeled with 
13

C and/or 
15

N because of the 

availability of labeled N
2
,3-εGua aglycone from labeled Gua [Scheller, N., Sangaiah, R., etal, 

1995] in high yield and furthermore, has the distinct advantage of being readily adaptable to 

small scale reactions for synthesis of labeled standards. We report that both enzymatic and 

chemical glycosylation of N
2
,3-εGua led to nucleosides having spectroscopic data compatible 

with ribosylation at positions corresponding to N7- and N
2
 of Gua. A minor product of the 

enzymatic ribosylation had C,H coupling pattern in the HMBC spectrum that was consistent 

with ribosylation at the target Gua N9, but the HPLC retention time and NMR data appear to 

rule out the target structure. Consequently, we re-investigated an unambiguous route to (8,9-

dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)imidazo[2,1-b]purine) via cycloaddition of  

bromoacetaldehyde to O
6
-benzyl-protected dGuo [Kusmierek, J. et al, 1989]. Conducted on a 

small scale, the cycloaddition pathway gave the target compound, albeit in only 6 % over all 

yield. Although we use the nomenclature N
2
,3-ε-Gua for convenience,  we will refer to the 

heterocyclic system as 8,9-dihydro-9-oxoimidazo[2,1-b]purine when elaborating the 

structural characterization of the ribosylated products described below. 
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3.3 Materials and methods 

3.3.1 Instrumentation 

NMR spectra were recorded on a Varian Inova NMR spectrometer at 500 MHz for 

acquisition of 
1
H data and 125 MHz for 

13
C data with cold probe. Low resolution ESI-

MS/MS data were acquired on a Finnigan DECA system. High resolution mass 

measurements were performed on a Bruker FT-ICR-MS equipped with an capillary ESI 

source by flow injection of 4-6 μL samples. The calibration standard was Angiotensin I 

solution (0.02 mg/mL). UV-vis spectra were recorded on a Cary 300, with Cary Win UV 

software. HPLC was performed using a Thermo LC with an Altech detector and Ezstar 

software (EZCHROM). Both analytical and semi-preparative separations were achieved on a 

reverse phase Eclipse XDB C18 column (250×10mm) at a flow rate of 2 ml/min, using 

gradient programs described below. 

Analytical thin-layer chromatography (TLC) was performed on silica-coated 

aluminum plates (particle size 17 μm thickness) purchased from Sigma-Aldrich and 

preparative TLC, on silica-coated glass plates (particle size 40-63 μm, 500 or 1000 μm 

thickness), purchased from Analtech Inc. 

3.3.2 Chemicals 

Solvents were HPLC grade and were purchased from Fisher Scientific Co. or 

Mallinckrodt Baker, Inc., with the exception of ethanol, purchased from AAPER Alcohol and 

Chemical Co. The following reagents were purchased from Fisher Scientific Co.: ammonium 

hydroxide, sodium bicarbonate, HCl, acetic acid, acetic anhydride, and potassium 

monohydrogen phosphate. 2′-Deoxyguanosine was purchased from USB Corp. and benzyl 
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alcohol, from J. T. Baker. All other reagents were purchased from Sigma-Aldrich. Hydrogen 

gas was purchased from National Welders Supply Co. 

3,5-Di-O-(p-toluyl)-2-deoxy D-ribofuranosyl chloride was synthesized according to a 

published procedure [Hoffer. M., 1960], as was O
6
-benzylguanine [Barth, C. et al, 2004]. 

3.3.3 Enzymes 

Lactobacillus helveticus (L. helveticus) purine N-2′-deoxyribosyl transferase type I 

[Anand, R. et al, 2004] and Lactobacillus fermentum (L. fermentum) nucleoside deoxyribosyl 

transferase type II were a gift from the laboratory of Steven Ealick. Lactobacillus leichmanni 

(L. leichmanni) nucleoside deoxyribosyl transferase type II was a gift from the laboratory of 

Pierre Kaminski. 

3.3.4 Synthesis of 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N
2
, 3–ethenoguanine) 

(Scheme 3.1) 

O
9
-benzyl-8,9-dihydro-9-oxoimidazo[2,1-b]purine (O

6
-benzyl-N

2
,3-εGua). O

6
-benzylguanine 

[Barth C. et al, 2004] (241mg, 1mmol) was dissolved in 15ml EtOH at 37ºC. 5ml of 1M 

pH4.5 sodium acetate buffer and 0.628ml of 50%(w/v) (4mmol) aqueous chloroacetaldehyde 

solution were added in to flask with stirring at 48ºC [Sattsangi, P. D. et al, 1977]. After 60hr, 

the mixture was evaporated; the residue was triturated with 5ml of water. Following the pH 

was adjusted to neutral; the light yellow precipitate was collected by filtration (237.7mg, 

yield 89.7%). UV (MeOH) max1=220nm, max2=274 nm; ESI-MS m/z 266 ([M+H]
+
, 100), 

m/z 284 ([M+H+H2O]
+
, 50); ESI-MS/MS m/z 266[M+H]

+
, 188[M+H-phenyl]

+
, 91[M+1-εG]

+
; 

1
H NMR [DMSO-d6]  13.91(bs, 1H, N3H), 8.33( s, 1H, H2), 7.91 (s, 1H, H-5), 7.59 (d, 

J=7.3Hz, 2H, phenyl H), 7.43 (s, 1H, H6), 7.35-7.14(M, 3H, phenyl H), 5.62(s, 2H, 

Methylene H in Benzyl). 



 

105 
 

 

8,9-dihydro-9-oxoimidazo[2,1-b]purine (N
2
, 3–ethenoguanine). 64mg O

6
-Bz-N

2
,3-εG was 

dissolved in solution of 10ml H2O, 8ml MeOH, 3 ml conc. NH3 aqueous solution. 74 mg 

10% Pd/C was suspended in the reaction solution under 1.1 ATM H2 at room temperature for 

24hr. After filtration of the Pd/C and blow off the MeOH under Ar, the clear solution was 

neutralized with formic acid, then cooled at 4 ºC over night. The suspension of solution was 

filtered and washed with water, MeOH and ether, then dried with lyophilization  to gain off 

white powder (37.5mg, yield 88%): UV (H2O, pH7) max1=273nm, max2=251 nm; ESI-MS 

m/z 176 ([M+H]
+
, 83), m/z 351 ([2M+H]

+
, 100); 

1
H NMR [DMSO-d6]  7.11 (d, J=1.2Hz, 

1H, H-6), 7.61 (d, J=1.5Hz, 1H, H-5), 8.15(s, 1H, H-2).  

3.3.5 Unambiguous synthesis of 8,9-dihydro-9-oxo-3-(2-deoxy-β-D-ribofuranosyl)-

imidazo[2,1-b]purine (Scheme 3.2) 

3′,5′-Di-O-acetyl-2′-deoxyguanosine. 3′,5′-Di-O-acetyl-2′-deoxyguanosine was synthesized 

by slight modification of a published procedure (12). dGuo (267 mg, 1 mM) and 

tetraethylammonium bromide (770 mg) were dissolved in distilled water and then lyophilized. 

The residue was stirred with acetic anhydride in anhydrous pyridine for 18 hr protected from 

light. Excess acetic anhydride was destroyed by addition of 5 mL ethanol, the solvents 

removed under vacuum and pure 3′,5′-di-O-acetyl-2′-deoxyguanosine was purified by 

crystallization from methanol (330mg, 95%). UV-vis (MeOH) max=251 nm; positive ion 

ESI-MS m/z (rel intensity) 725 (100) [M2Na]
+
, 703 (50) [M2H]

+
, 352 (28) [MH]

+
,152 (42) 

[MH- deoxyribose]
+
. 

1
H NMR (methanol-d4) 7.90 (s, 1H), 6.30 (ψt, 1H, J = 6.6 Hz ), 5.47 

(m,1H), 4.35-4.44 ( m, 2H), 4.33 (m, 1H), 3.02(m, 1H), 2.59(ddd, 1H, J = 14.5, 6.2, 2.5 Hz), 

2.15 (s, 3H), 2.09 (s, 3H) ppm. 
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O
6
-benzyl-3′,5′-di-O-acetyl-2′-deoxyguanosine.  To a suspension of 3′,5′-di-O-acetyl-2′-

deoxyguanosine (200 mg) under Ar in dry tetrahydrofuran (8 mL), were added 

triphenylphosphine (194.8 mg) and benzyl alcohol (102.4 μL).  Diisopropyl azodicarboxylate 

(65.2 mg) was added drop wise with stirring in an ultrasonic bath at 25 C. After 48 hr, the 

reaction solution was evaporated under reduced pressure. Semipreparative TLC over SiO2 

eluted with 3: 97 by vol. CH3OH/CH2Cl2, yielded crystalline of O
6
-benzyl-3′,5′-di-O-acetyl-

2′-deoxyguanosine (35 mg, 14%, Rf 0.31). Positive ion ESI-MS m/z (rel intensity) 464 (100) 

[MNa]
+
, 442 (58) [MH]

+
, 242 (94) [MH-deoxyribose]

+
. 

1
H NMR (methanol-d4) 7.88 (s, 1H), 

7.31 (t, 2H, J = 7.4 Hz), 7.24 (m, 3H), 6.27 (dd, J = 7.5, 6.6 Hz 1H), 5.44 (m, 1H), 5.31 (s, 

2H), 4.39 (dd, 1H, J =11.7, 4.5 Hz), 4.33 (dd, 1H, J = 11.7, 4.5 Hz), 4.29 (m, 1H), 3.03 (m, 

1H),  2.55 (ddd, 1H, J = 14.2, 6.6, 2.6, Hz) 2.10 (s, 3H), 2.03 (s, 3H) ppm. 

O
6
-Benzyl -2′-deoxyguanosine.  O

6
-benzyl-3′,5′-di-O-acetyl-2′-deoxyguanosine (20 mg) was 

dissolved in  methanolic 2M ammonium hydroxide (8mL) and stirred overnight at room 

temperature. Following the evaporation of solvent, the residue was purified by 

semipreparative TLC over SiO2 eluted with 15: 85 CH3OH/CH2Cl2 to give O
6
-benzyl -2′-

deoxyguanosine (15.9mg, 98%, Rf 0.6). UV (MeOH) max=256 nm. Positive ion ESI-MS m/z 

(rel intensity) 380 (100) [MNa]
+
, 358 (8) [M+H]

+
. 

1
H NMR (methanol-d4) 7.98 (s, 1H), 7.31 

(ψt, 2H, J = 7.4 Hz), 7.25 (t, 1H, J = 7.4 Hz), 7.22 (d, 2H, J = 7.3 Hz), 6.28 (ψt, 1H, J = 7.0 

Hz), 5.32 (s, 2H), 4.52 (td, 1H, J = 5.9, 2.9 Hz), 3.99 (dd, 1H, J = 6.7, 3.5 Hz), 3.79 (dd, 1H, 

J = 12.0, 3.6 Hz), 3.72 (dd, 1H, J = 12.0, 3.6 Hz), 2.71 (ddd, 1H, J = 13.5, 7.2, 6.2 Hz), 2.35 

(ddd, 1H, J = 13.5, 6.9, 3.1 Hz) ppm. 

8,9-Dihydro-9-oxo-3-(2-deoxy-β-D-ribofuranosyl)-imidazo[2,1-b]purine.  
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O
6
-Benzyldeoxyguanosine (18.0 mg) was dissolved in saturated aqueous NaHCO3 (6 

mL) and bromoacetaldehyde (1 mL, ~1.3 M) solution and ethanol (2 mL) added at room 

temperature. The mixture was stirred at 50 C for 48 h, lyophilized and the residue purified 

by HPLC, eluting with the gradient program: 40% to 70% MeOH in water over 15 min to 

give O
9
-benzyl-8,9-dihydro-9-oxo-3-(2-deoxy-β-D-ribofuranosyl)-imidazo[2,1-b]purine (0.6 

mg, 3.1 %, retn time,12min). Positive ion ESI-MS m/z (rel intensity) 382 (100) (MH)
+
, 266 

(41), (MH-deoxyribose)
+
. Unreacted starting material (retention time 10.5 min) was collected 

for repetition of the cycloaddition reaction to accumulate 2.2 mg of the intermediate, which 

was used directly in the next reaction.  

O
9
-Benzyl-8,9-dihydro-9-oxo-3-(2-deoxy-β-D-ribofuranosyl)-imidazo[2,1-b]purine 

(2.2 mg) was dissolved in a mixture of conc. NH4OH (0.5 mL), D.I. water (1 mL), ethanol 

(2.5 mL) and methanol (1 mL) and stirred over 2.2 mg 10% Pd/C catalyst (containing 50% 

water) under 1.1 atm H2 at 25 C for 30h. The reaction was monitored by HPLC using a 

gradient program: 25% to 30% MeOH in H2O over 5min, then 30% to 90% MeOH in H2O 

over the next 9 min. Material eluting at a retn time of 5.4 min was collected. Volatiles were 

removed under a stream of Ar, and the remaining aqueous solution lyophilized. The residue 

was purified by HPLC, using the above gradient program to give 8,9-dihydro-9-oxo-3-(2-

deoxy-β-D-ribofuranosyl)-imidazo[2,1-b]purine (1.6 mg, 95% yield). Over all yield based on 

O
6
-benzyl-dGuo consumed was estimated to be 6 %. UV max  (MeOH) 228, 263 nm. 

Positive ion ESI-MS m/z (rel intensity) 314 (100) (MNa)
+
, 292 (57) (MH)

+
,176 (32) (MH-

deoxyribose)
+
. Positive ion ESI-MS/MS m/z 292 (MH)

 +
, 176 (MH- deoxyribose)

+
. 

1
H NMR 

(DMSO-d6) 7.94 (s, 1H, H2), 7.44 (bs, 1H, H5), 6.96 (bs, 1H, H6), 6.40 (t, 1H, J = 6.2 Hz, 

H1′), 4.26 (dd, 1H, J = 10.1, 4.4 Hz, H3′), 3.89 (q, 1H, , J = 4.4 Hz,  H4′), 3.49 (dd, 1H, J = 
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11.8, 4.4 Hz, H5′ or H5′′), 3.43 (dd, 1H, partially overlapping H2O, H5′ or H5′′), 2.70 (dt, 1H, 

J = 12.9, 6.2 Hz, H2‘), 2.39 (m, 1H, H2‖) ppm. (Figure 3.1) 

3.3.6 Chemical Glycosylation of 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N
2
, 3-

ethenoguanine) (Scheme 3.3) 

Chemical glycosylation of O
9
-benzyl-8,9-dihydro-9-oxoimidazo[2,1-b]purine (O

6
-benzyl-

N
2
,3-εGua). To a stirred suspension of 75 mg of O

9
-benzyl-8,9-dihydro-9-oxoimidazo[2,1-b]purine 

in 10 mL of acetonitrile (distilled from P2O5), 20 mg NaH was added and stirring continued for 2 h at 

ambient temperature. The reaction was then cooled in ice for 10 min and 120 mg 3,5-di-O-(p-toluyl)-

2-deoxy-D-ribofuranosyl chloride added in one portion. Stirring was continued overnight, allowing 

the reaction to warm to ambient temperature. The reaction mixture was filtered from solid, the filter 

washed with ether and the combined filtrate and washings taken to dryness under vacuum. The oil 

was purified by semi-preparative TLC on SiO2 eluted with 6 % methanol in chloroform. Bands were 

collected with Rf values 0.44 (F1, 30 mg, 17 %) and 0.2 (F2, 28 mg, 16 %). F1 
1
NMR (chloroform-d) 

8.15 (s, 1H), 7.82 (q, 4H, J = 5.83 Hz), 7.78 (d, 1H, J = 1.4 Hz), 7.56 (d, 1H, J = 1.4 Hz), 7.48 (d, 2H, 

J = 7.8 Hz), 7.44 – 7.29 (m, overlapping with chloroform-d), 7.17 (d, 2H, J = 7.8 Hz), 6.63 (dd, 1H, J 

= 7.3, 6.3 Hz), 5.70 (d, 1H, J = 12.0 Hz), 5.62 (d, 1H, J = 12.0 Hz), 5.58 (m, 1H), 4.70 (m, 1H), 4.68 

– 4.63 (m, 2H), 2.83 (ddd, 1H, J = 14.1, 6.3, 1.9 Hz), 2.53 (m, 1H), 2.47 (s, 3H), 2.36 (s, 3H) ppm. F2 

1
NMR (chloroform-d) 8.05 (s, 1H), 8.01 (d, 2H, J = 8.11 Hz), 7.81 (d, 2H, J = 8.11 Hz), 7.74 (d, 1H, 

J = 2.3 Hz), 7.53 (d, 2H, J = 7.7 Hz), 7.41 (d, 1H, J = 2.3 Hz), 7.33 – 7.26 (m, 5H), 7.16 (d, 2H, J = 

7.7 Hz), 6.64 (dd, 1H, J = 7.4, 6.0 Hz), 5.78 – 5.70 (m, 3H), 4.79 (dd, J = 12.1, 3.3), 4.69 (m, 1H), 

4.64 (dd, 1H, J = 12.1, 3.3), 2.84 (ddd, 1H, J = 14.2, 6.0, 2.2 Hz), 2.71 (m, 1H), 2.44 (s, 3H), 2.36 (s, 

3H) ppm. 

3’,5’-Deprotection of glycosylated F1 and F2. F1 and F2 were each stirred in ammonia-

saturated methanol (15 mL) overnight at ambient temperature. The solvent was evaporated 

under a stream of Ar, the resulting solids triturated with methylene chloride, filtered and the 
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filters washed with methylene chloride. Evaporation of the collected filtrates yielded F1-1 

(12.6 mg, 68 %) and F2-1 (13.0 mg, 70 %). F1-1 
1
NMR (DMSO-d6) 8.68 (s, 1H), 7.94 (d, J = 

0.8 Hz, 1H), 7.56 (d, 2H, J= 7.37 Hz), 7.49 (d, 1H, J =  0.8 Hz), 7.41 (ψt, 2H, J = 7.4 Hz), 

7.35 (t, 1H J = 7.3 Hz), 6.55 (t, 1H, J = 5.8 Hz), 5.63 (q, 2H, J = 13.0 Hz), 5.32 (d, 1H, J = 

4.4 Hz), 5.07 (t, 1H, J = 5.2 Hz), 4.31 (dd, 1H, J = 10.2, 5.2), 3.87 (q, 1H, J = 3.9), 3.62 (dd, 

1H, J = 11.9, 4.0 Hz), 3.54 (dd, 1H, J = 11.9, 4.0 Hz), 2.52 (m, overlap with DMSO-d6), 2.36 

(m, 1H) ppm. F2-1 
1
NMR (DMSO-d6) 8.19 (d, J = 1.8 Hz), 8.12 (d, 1H, J = 1.8 Hz), 7.87 (bs, 

1H), 7.58 (d, 2H, J = 7.4 Hz), 7.43 (ψt, 1H, J = ~7.2 Hz), 7.38 (t, 2H, J = 7.4 Hz) 6.62 (t, 1H, 

J = 6.4 Hz), 5.71 (s, 2H), 5.43 (d, 1H, J = 4.2 Hz), 5.07 (t, 1H, J = 5.1 Hz), 4.43 (m, 1H), 

3.92 (dd, 1H, J = 7.1, 3.8 Hz),  3.68-3.55 (m, 2H), 2.56 (m, 1H), 2.39 (m, 1H) ppm. 

Hydrogenolysis of O
9
-benzyl-F1-1 and -F2-1. O

9
-Benzyl-protected compound (F1-1 or F2-1, 

10 mg) was dissolved in methanol (6 mL) and stirred for 2 h with 2 mg 10 % Pd/C under an 

atmosphere of H2. The reaction mixture was filtered, the filter washed with additional 

methanol (5 mL) and the combined washings and filtrate taken to dryness under a stream of 

Ar followed by evacuation under oil pump vacuum. F1-2, 8,9-dihydro-9-oxo-1-(β-D-2-

deoxyribofuranosyl)-imidazo[2,1-b]purine (6.7 mg, 88 %), UV-vis (H2O): λmax (ε) 217 (20867), 

263 (9066) nm; ESI-MS m/z 176 ([M+H-deoxyribose]
+
, 50), 292( [M+H]

+
,18), 314 ([M+Na]

+
, 

20), 330 ([M+K]
+
, 100); ESI-MS/MS m/z 292 [M+1]

+
, 176 [M+H- deoxyribose]

+
; NMR 

(DMSO-d6) (Figure 3.2) 12.38 (bs, 1H, NH8), 8.51 (s, 1H, H2), 7.63 (d, 1H, J = 1.6 Hz, H5), 

7.15 (d, 1H, J = 1.6 Hz, H6), 6.68 (t, 1H, J = 6.2 Hz, H1‘), 5.35 (bs, 1H, 3‘-OH), 5.07 (bt, 1H, 

5‘-OH), 4.33 (m, 1H, H3‘), 3.89 (q, 1H, J = 4.0 Hz, H4‘), 3.58 (m, 2H, H5‘, H5‘‘), 2.42 (m, 

2H, H2‘, H2‘‘) ppm. F2-2, 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-

b]purine (6.0 mg, 79 %): UV-vis (H2O): λmax (ε) 218 (22342), 263 (11056) nm; NMR (DMSO-
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d6) (Figure 3.3) 13.52 (bs, 1H, NH3), 8.09 (s, 1H, H2), 7.76 (d, 1H, J = 2.7 Hz, H5), 7.65 (d, 

1H, J = 2.7 Hz, H6), 6.32 (ψt, 1H, J = 6.8 Hz, H1‘), 5.33 (d, 1H, J = 3.7 Hz, 3‘-OH), 5.08 (bt, 

1H, 5‘-OH), 4.35 (m, 1H, H3‘), 3.84 (dd, 1H, J = 6.9, 4.0 Hz, H4‘), 3.56 (m, 2H, H5‘, H5‘‘), 

2.43 (m, 1H, H2‘), 2.22 (ddd, 1H, J =  13.2, 6.8, 3.1 Hz, H2‘‘) ppm. The high-resolution 

mass of both of samples obtained as the Potassiumated monomer [MK]
+
, corresponds to the 

required composition C12H13N5O4K
+
 (Gained 330.0599, Calced 330.0599, see Figure 3.4 and 

Figure 3.5). 

3.3.7 Enzymatic glycosylation of N
2
,3 –ethenoguanine 

The enzymatic glycosylations were conducted under the following general conditions. 

N
2
,3-εGua (25.2 μmol) and deoxynucleoside donor (75.6 μmol) were dissolved in buffer at 

pH 7.5 (phosphate) or 8.0 (2-(N-morpholino)ethanesulfonic acid) and the transglycosylase 

was added (reaction volume 10 mL). Reactions were incubated overnight at 45 
o
C, filtered 

and the products isolated from the filtrate by HPLC, eluted with methanol/1 mM phosphate 

buffer (pH 8) using a gradient program: 5% methanol/buffer - 12 % methanol/buffer over 20 

min.. For incubations with L. helveticus type I, 40 μg of enzyme were added with dGuo as 

donor, with type II L. fermentum and L. leichmanni, 40 μg of enzyme were added with dCyd 

as donor. For glycosylation with the Thyd phosphorylase (E. coli)/nucleoside phosphorylase, 

0.846 IU phosphorylase and 2.536 unit purine nucleoside phosphorylase were incubated with 

25.5 μmol N
2
,3-εGua and dThyd in 10 mL phosphate buffer (pH 8.0) at 41 

o
C. 

The Lactobacillus incubations were filtered, lyophilized, redissolved in ~ 2 mL H2O 

and the products separated by HPLC on an Eclipse XDB C18 column (250 X 10 mm) at a 

flow rate of 2 mL/min, using the gradient program: 5 % methanol in 95 % 1 mM phosphate 

buffer (pH 8.0) to 12 % methanol in buffer over 20 min. The incubation mixture from Thyd 
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phosphorylase/nucleoside phosphorylase incubation mixture was filtered, reduced ~ 50 % in 

volume on the lyophilizer and then separated by HPLC as described for the Lactobacillus 

incubations. Products were collected at 12.0, 16.4 and 18.3 min. Under these conditions, the 

authentic 8,9-dihydro-9-oxo-3-(2-deoxy-β-D-ribofuranosyl)-imidazo[2,1-b]purine eluted at 

5.4 min. Fraction collected at 12 min: UV-vis (H2O): λmax (ε) 218 (22342), 263 (11056) nm. 

NMR was identical to 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-

b]purine. Fraction collected at 16 min: UV-vis (H2O): λmax (ε) 217 (20867), 263 (9066) nm. 

NMR was identical to 8,9-dihydro-9-oxo-1-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-

b]purine. Fraction collected at 18 min, tentatively assigned as 8,9-dihydro-9-oxo-3-(α-L-2-

deoxyribofuranosyl)-imidazo[2,1-b]purine: UV-vis (H2O): λmax (ε) 226 (15863), 284 (5318) 

nm. NMR (D2O) 8.11 (s, 1H, H2), 7.62 (d, 1H, J = 2.4 Hz, H5), 7.32 (d, 1H, J = 2.4 Hz, H6), 

6.41 (ψt, 1H, J = 6.9 Hz, H1′), 4.63 (dt, 1H, J = 6.4, 3.4 Hz, H3′), 4.13 (dd, 1H, J = 7.5, 3.6 

Hz, H4′), 3.81 (dd, 1H, J = 12.5, 4.1 Hz, H5′ or H5′′), 3.75 (dd, 1H, J = 12.5, 4.1 Hz, H5′′ or 

H5′), 2.85 (m, 1H, H2‘), 2.51 (ddd, 1H, J = 14.1, 6.3, 3.5 Hz, H2‖) ppm. NMR (DMSO-d6) 

(Figure 3.6) 7.81 (s, 1H, H2), 7.39 (d, 1H, J = 0.9 Hz, H5), 7.05 (d, 1H, J = 0.9 Hz, H6), 6.22 

(dd, 1H, J = 8.4, 6.0 Hz, H1′), 5.82 (bs, 1H, OH3′), 5.22 (d, 1H, J = 3.6 Hz, OH5′), 4.38 (m, 

1H, H3′), 3.87 (m, 1H, H4′), 3.61 (dt, 1H, J = 11.7, 3.6 Hz, H5′ or H5′′), 3.52 (m, 1H, H5′′ or 

H5′), 2.76 (m, 1H, H2‘), 2.13 (ddd, 1H, J = 12.3, 6.0, 1.8 Hz, H2‖) ppm. The high-resolution 

mass of both of samples obtained as the Potassiumated monomer [MK]
+
, corresponds to the 

required composition C12H13N5O4K
+
 (Gained 330.0598, Calced 330.0599, see Figure 3.7). 

3.4 Results and Discussion 

The glycosylation pathways shown in Scheme 3.1 were developed for eventual 

application to synthesis of a standard containing a labeled Gua moiety. Therefore Scheme 3.1 
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includes synthesis of O
6
-benzylguanine, although this compound is available commercially 

as the natural abundance isotopomer. 

3.4.1 Enzymatic glycosylations 

Glycosylation of N
2
,3-εGua by trans N-deoxyribosylase partially purified from L. 

helveticus has been reported give the N3/N1-nucleosides (N9/N7 in terms of the Gua skeleton) 

with a selectivity of 98:2 at pH 8 decreasing to 50:50 at pH 6, the optimal pH for L. 

helveticus [Müller, M.et al, 1996], suggesting that with N
2
,3-ε-Gua as substrate, the basic pH 

favored formation of the target nucleoside in addition to helping prevent degradation of the 

product by deglycosylation. We investigated glycosylation of N
2
,3-ε-Gua by purified Type I 

trans N-deoxyribosyltransferase from L. helveticus, the Type II transferases from L. 

leichmanni (structurally similar to the transferase from L. helveticus [Anand, R. et  al, 2004] 

and L. fermentum and by commercially available E. coli purine nucleoside phosphorylase. 

Glycosylations with the trans N-deoxyribosyltransferase enzymes were performed at pH 7.5 

and 8.0 to determine the effect of pH on product formation and distribution. The 

Lactobacillus trans N-deoxyribosyltransferase enzymes generated major products having 

HPLC retention times (Figure 3.8 of ~ 12 and 16 min and one minor product with a retention 

time of ~ 18 min. The chromatographic trace of the transglycosylation mixture from L. 

fermentum at pH 7.5 shown in Figure 3.8 typifies the resolution of the products. The total 

extent of conversion was high and independent of pH for L. fermentum and L. leichmanni, 

but the product profiles at lower pH show an increase in the 16 min peak at the expense of 

the 12 minute peak. Transribosylation by L. helveticus is more efficient at lower pH, and the 

effect of lower pH on the product profile is reversed, with the 12 minute peak increasing at 

the expense of the 16 minute peak. The E. coli phosphorylase generated the same three 
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products, but at a very low level of conversion, and in contrast to the deoxyribosyl 

transferases, the 18 min peak was the predominant product.  

By high-resolution mass spectrometry, all products of enzymatic glycosylation 

correspond to addition of the 2-deoxyribosyl moiety to N
2
,3-εGua. Since the chemical shifts 

of the etheno protons in 
1
H NMR spectra have been reported to depend strongly on solvent 

environment [Guengerich, F. P. et al, 1993] , we established the structures of the enzymatic 

ribosylation products by heteronuclear multiple bond shift correlation (HMBC) and NOESY 

NMR studies. The HMBC and NOESY spectra of the nucleoside eluting at 12 minutes are 

presented in Figure 3.9 and 3.10, respectively. Key features of the HMBC spectrum are 

H1′/C7a and H1′/C6 coupling, which are consistent with sugar substitution at N7 and the 

absence of H1′/C3a, H1′/C9a, H1′/C2 or H2/C1′ coupling, which rule out ribosylation at N1 

or N3. N7 ribosylation is confirmed by the NOESY spectrum, where a cross peak between 

H1′ and H6 is observed and no NOESY interactions are detected between H2 and any of the 

deoxyribose protons. 

In the HMBC spectrum of the nucleoside eluting at 16 min (Figure 3.11), ribosylation 

at N1 is established by H1′/C2, H2/C1′ and H1′/C9a coupling and the absence of H1′/ C3a 

coupling. A NOESY cross peak between H1′ and H2 (Figure3.12) is the only NOESY 

interaction between H1′ and the base, consistent with N1 ribosylation assigned by the HMBC 

spectrum. 

In the HMBC spectrum of the minor product eluting at 18 min (Figure 3.13), H1′/C3a 

and H1′/C2 couplings are observed, indicative of ribosylation at N3. Because of the small 

quantity of sample collected, however, neither the reciprocal H2/C1′ nor unsuppressed 
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H1′/C1′ one-bond coupling, characteristically observed for deoxyribonucleosides, were 

detected. Although the HMBC spectrum requires attachment of the ribosyl group at N3, 

chemical shifts of the etheno protons as well as deoxyribose protons H1′, H5′, H5′′ and H2′ in 

the NMR spectrum in DMSO-d6 do not match the shifts of the corresponding protons of  8,9-

dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine in the NMR spectrum 

acquired in DMSO-d6 in this work or in work reported by others [Khazanchi, R. et al, 1993]. 

The significance of differences in the chemical shifts of the etheno proton signals may be 

questionable because of the variability of etheno proton shifts with solvent environment cited 

above [Guengerich, F. P. et al, 1993]. In contrast to the etheno proton shifts, however, the 

chemical shifts of the deoxyribose protons and the coupling pattern of H1′ with H2′,H2′′ do 

not appear to vary from sample to sample. In particular, the difference in the shift and 

splitting pattern of H1′, which appears as a doublet-of-doublets, centered at 6.22 ppm in the 

spectrum of the enzymatic product and as a pseudo triplet centered at 6.40 ppm in the NMR 

spectra of 8,9-dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine 

determined in this and other reports, argues strongly against assignment of the enzymatically 

N3-coupled product as the desired β-anomer. In the NOESY spectrum (Figure 3.14), an 

H1′,H2 interaction was present but an expected H1′,H5 interaction was absent [Guengerich, 

F. P. et al, 1993]. Finally, the 18 min retention time of the enzymatic ribosylation product is 

significantly longer than that of the authentic sample of 8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)-imidazo[2,1-b]purine (described below) under identical conditions. We 

considered formation of the N3 α-anomer, and inspected the NOESY spectrum for an H1′, 

H3′ interaction, since a strong cross peak would support this assignment. Unfortunately, 

observation of a NOESY interaction between H1′ and H3′ was precluded by suppression of 
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the water peak, which resulted in a significant decrease in the intensity of the nearby H3′ 

signal along with any possible cross peaks. Based on the site of ribosylation at N3 determined 

by the HMBC spectrum and both NMR and HPLC properties that argue against the 8,9-

dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine structure, we tentatively 

assign the minor ribosylation product as the α-anomer. Table 1 presents relative efficiencies 

in terms of per cent N
2
,3-εGua substrate converted as well as product profiles for the trans N-

deoxyribosyltransferase enzymes and the E. coli phosphorylase. 

3.4.2 Chemical glycosylation 

Glycosylation in solution might be expected to impose less rigorous steric constraints 

than glycosylation within the active sites of the enzymes. However, chemical glycosylation 

of N
2
,3-εGua did not yield the target 8,9-dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-

imidazo[2,1-b]purine, but gave products identical by NMR and NOESY spectra to the N1 

and N7 ribosides generated by the enzymes. 

3.4.3 Unambiguous synthesis of 8,9-dihydro-9-oxo-3-(2-deoxy-β-D-ribofuranosyl)-

imidazo[2,1-b]purine  

Since neither enzymatic nor chemical glycosylation of N
2
, 3-εGua gave the target 

compound, we reinvestigated an unambiguous synthetic route based on cycloaddition of 

bromoacetaldehyde to O
6
-protected dGuo followed by deprotection Kusmierek, J. T. et al, 

1989], [Khazanchi, R. et al, 1993] (see Scheme 3.2 ) . 

Two steps in the procedure proved to be problematical. In anticipation of applying 

this route to synthesis of 8,9-dihydro-9-oxo-3-(2-deoxy-β-D-ribofuranosyl)-imidazo[2,1-

b]purine using labeled dGuo, we synthesized O
6
-benzyl dGuo, although the natural 

abundance isotopomer is available commercially. While a 91 % yield for benzylation of Gua 
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using this procedure has been reported (10), the relatively small scale benzylation of 3′,5′-di-

O-acetyl-dGuo gave the desired O
6
-benzyl-protected derivative in only 14 % yield. The yield 

can undoubtedly be improved, but for this work, we did not attempt to optimize conditions. 

The penultimate step, cycloaddition of bromoacetaldehyde to O
6
-benzyldeoxyguanosine, also 

proved to be refractory. The basic conditions required to avoid deglycosylation of the product 

resulted in low conversion (3.1 %). However, unreacted O
6
-benzyldeoxyguanosine could be 

recovered in high yield and recycled. We did not continue the recycling process until O
6
-

benzyldeoxyguanosine was completely consumed, nor make a systematic effort to optimize 

the cycloaddition conditions. However, it is likely that this step could also be improved, 

increasing the over all yield of this scheme. 

Comparison of the NMR spectrum acquired on our sample with spectra reported for 

the two other published syntheses [Kusmierek, J. et al, 1989], [Khazanchi, R. et al, 1993] is 

in accord with the cited variability of etheno proton chemical shifts [Guengerich, F. P. et al, 

1993]. However, the chemical shifts of the deoxyribose protons and the appearance of H1′ as 

a pseudo triplet are identical for all samples. The 
1
H NMR spectrum of our synthetic product 

is thus in accord with published data [Kusmierek, J. et al, 1989], [Khazanchi, R. et al, 1993]. 

Since nuclear overhauser effect data has been reported for O
9
-ethyl-8,9-dihydro-9-oxo-3-(β-

D-ribofuranosyl)-imidazo[2,1-b]purine [Guengerich, F. P. et al, 1993] but not for 8,9-

dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine, we also acquired the 

NOESY spectrum and confirmed the expected H1′,H5 interaction (Figure 3.15). An 

interesting feature of the NOESY spectrum is the absence of an H1′, H2 interaction. 
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Scheme 3.1 Synthesis of  N

2
, 3–εGua and chemical and enzymatic glycosylation of N

2
, 3–

εGua  

 

 
 

 

 

 

 

 

 

 



 
 

 

1
1
8
 

 
Scheme 3.2 Designed route for chemical synthesis of 8,9-dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine via 

cycloaddition of bromoacetaldehyde to O
6
-benzyl-protected dGuo  
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Scheme 3.3 Chemical Glycosylation of N

2
, 3-εGua 
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Figure 3.1 

1
H NMR of 8,9-dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-imidazo-[2,1-b]purine. 
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Figure 3.2 

1
H NMR of 8,9-dihydro-9-oxo-1-(β-D-2-deoxyribofuranosyl)-imidazo-[2,1-b]purine.  
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Figure 3.3 

1
H NMR of 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo-[2,1-b]purine.  
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Figure 3.4 Exact Mass of 8,9-dihydro-9-oxo-1-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine(K
+
). 
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Figure 3.5 Exact Mass of 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine(K
+
). 
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Figure 3.6 
1
H NMR of minor product at 18 min. Possible structure: 8,9-dihydro-9-oxo-3-(α-D-2-deoxyribofuranosyl)-imidazo-[2,1-

b]purine.  
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Figure 3.7 Exact Mass of minor product at 18 min. Possible structure: 8,9-dihydro-9-oxo-3-(α-D-2-deoxyribofuranosyl)-imidazo[2,1-

b]purine(K
+
).  
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Figure 3.8 HPLC trace monitored at 260 nm, of mixture from ribosylation of N
2
,3-εGua by L. fermentum transribosylation at pH 7.5.  
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Figure 3.9 HMBC NMR spectrum (DMSO-d6) of 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine spanning 

the region of H1‘-enthenoguanine interaction. Protons are identified on spectrum. Unsuppressed 
1
JC-H coupling are indicated by 

brackets.  
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Figure 3.10 NOESY NMR spectrum (DMSO-d6) of 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine spanning 

the region of H1‘-enthenoguanine interaction. Protons are identified on spectrum.  
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Figure 3.11 HMBC NMR spectrum (DMSO-d6) of 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo-[2,1-b]purine spanning 

the region of H1‘-enthenoguanine interaction. Protons are identified on spectrum. Unsuppressed 
1
JC-H coupling are indicated by 

brackets.  
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Figure 3.12 NOESY NMR spectrum (DMSO-d6) of 8,9-dihydro-9-oxo-7-(β-D-2-deoxyribofuranosyl)-imidazo[2,1-b]purine spanning 

the region of H1‘-enthenoguanine interaction. Protons are identified on spectrum.  
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Figure 3.13 HMBC NMR spectrum (DMSO-d6) of minor product at 18 min. Possible structure: 8,9-dihydro-9-oxo-3-(α-D-2-

deoxyribofuranosyl)-imidazo-[2,1-b]purine spanning the region of H1‘- enthenoguanine interaction. Protons are identified on 

spectrum. Unsuppressed 
1
JC-H coupling are indicated by brackets.  
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Figure 3.14 NOESY NMR spectrum (DMSO-d6) of minor product at 18 min. Possible structure: 8,9-dihydro-9-oxo-7-(β-D-2-

deoxyribofuranosyl)-imidazo[2,1-b]purine spanning the region of H1‘-enthenoguanine interaction. Protons are identified on spectrum.  
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Figure 3.15 NOESY NMR spectrum (DMSO-d6) of 8,9-dihydro-9-oxo-3-(β-D-2-deoxyribofuranosyl)-imidazo-[2,1-b]purine spanning 

the region of H1‘-enthenoguanine interaction. Protons are identified on spectrum. 



 

 

 

IV. Discussion and Future Research 

Oxidation of DNA leads to the formation of an assortment of oxidation products 

[Neeley, W. L. et al, 2006]. Relative to the other DNA nucleobases, the oxidation of Gua 

occurs most readily due to its low oxidation potential. Overall goals of these projects are 

isolation, identification, characterization and quantitation oxidized Gua adducts both in vitro 

and in vivo; furthermore investigate the genotoxic and mutational properties of DNA lesions 

4.1 Oxidation of guanine by epoxidizing reagents 

Gua + 34 species have been reported from the oxidation of Gua in DNA by a Mn-

porphyrin/KHSO5 system, which can function as a monooxygen transfer catalyst [Vialas, C. 

et al, 2000],
 
and by a dicopper-phenolate complex, via a putative hydroperoxo dicopper(II) 

transient [ Li, L. et al, 2005]. A putative mechanism for the formation of this product with the 

Mn-porphyrin catalyst has been proposed which involves the trapping of water by a transient 

guanine cation, formation of dehydrodeoxyspiroiminodihydantoin (N-formylamido-

iminohydantoin) followed by hydrolytic opening of the imidazolone ring by breaking the 

bond between imino carbon and the nitrogen attached to the deoxyribose to give an N-

formylamido-substituted structure rather than the N-formylamino-substituted structure of 

Scheme 2.2. However, the assignment of the N-formyl carboxamido structure was 

speculative, while we have rigorously established the N-formylamino substitution of 2-Ih by 

a combination of labeling and NMR studies. We therefore suggest the N-formylamino 

structure of 2-Ih as a plausible alternative. 
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2-Ih has been proved as a stable lesion of Gua oxidation in DNA by epoxidizing 

reagents which included peracetic acid, mCPBA and DMDO, based on the previous study. In 

mitochondria, 2-oxoacid decarboxylases have been shown to generate peracids under certain 

conditions [Abell, L. M. et al, 1991], [Bunik, V. I. et al, 2007], an observation that is 

significant because mitochondrial DNA repair capability appears to decrease with age 

[Ledoux, S. P. et al, 2007], [Croteau, D. L. et al, 1999] and accumulated of mutations are 

implicated in age related neuropathology and the ageing process in general [Dimauro, S. et 

al, 2005]. Therefore, 2-Ih probably exists in the mitochondrial DNA. If we verified this 

hypnosis, we can develop an in-depth understanding of the pathology of neurodegenerative 

diseases and aging though the genotoxicity and mutagenicity of 2-Ih. Furthermore, the 2-Ih 

base holds promise as a potential biomarker to build up the risk assessment between ROS 

and mitochondria related diseases. In the further research, we will characterize the 

genotoxicity and mutagenicity of 2-Ih and whether 2-Ih exists in the mitochondrial DNA 

4.1.1 Determination of structures of oxidative lesions in duplex DNA by NMR. 

2-Ih has been proved as a stable lesion in single and double stranded DNA, based on 

the previous study, therefore, next step, the octamer 5′-CCTCGTCC-3′ will be oxidized. This 

sequence was selected as having a high probability of forming a stable duplex suitable for 

determination of the molecular structure of the lesion in ds-DNA by NMR. DMDO will be 

used initially as a model to facilitate characterization of Gua-derived lesions formed by 

epoxidizing agents. This 2-Ih containing oligonucleotide will be annealed to the 

complementary partner having C opposite the modified G. 
13

C, 
15

N labeled dGuo can be used 

as a pro-lesion site in the octamer to aid in NMR structure determination. Determination of 

the molecular structure of the oxidative lesion in a duplex would be the first structure of an 
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oxidative lesion other than 8-oxodGuo derived from Gua. If this sequence is not suitable for 

structural determination by NMR, additional duplexes will be investigated, the selection to be 

determined by the nature of the difficulty encountered.  

Preparation of labeled 5′-CCTCGTCC-3′ for NMR structure determination of lesion.  

The availability of a modified octamer containing a lesion with 
13

C or 
15

N label at 

specific position(s) could be helpful in a structural determination if signal overlap causes 

uncertainty in establishing connectivity. First, labeled guanine at designated position will be 

synthesized following the literature [Scheller, N. et al, 1995], and then the isotopomeric 

nucleobase will be glycosylated enzymatically [Stout, M. D. et al, 2006]. The N
2

-isobutyryl-

5′-DMT-3′-phosphoramidite derivative of the labeled dGuo will be prepared on a 0.1 mmole 

scale by standard procedures [Jones, R. A., 1990] and used to for preparation of the labeled 

octamer. 

Determination of structures of oxidative lesions in duplex DNA by NMR 

We will begin our structural studies of 2-Ih in duplex DNA with the sequence 5‘-

d(CCTCG*TCC)-3‘ / 3‘-d(GGAGCAGG)-5‘, (G* = modified guanine).  This sequence was 

selected with several considerations in mind.  (1) The sequence has already been used in a 

published solution structural study (PDB code 1XRW). (2) The spectral regions of the 

unmodified duplex shown in citation [Baruah, H. et al, 2005] and supporting information 

appear to have relatively good chemical shift dispersion and resolution with little overlap. 

The authors have also listed their nearly complete proton and phosphorus assignments for 

both the modified and unmodified duplexes. (4) It is a relatively short sequence with a single 

guanine in the target strand, which should aid our efforts to separate the different 
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isomers/conformers that are apt to be produced in our synthesis.  

Once the individual strands were synthesized and purified, the duplex will be formed 

by titrating one strand with the other, monitoring single peaks from the separate strands. This 

would be a check on our calculations of the individual concentrations based on their 

extinction coefficients. To ensure stable duplex formation, the sample would be heated to 

~75 
°

C, and then allowed to cool slowly. One-dimensional temperature studies would be 

performed with the annealed duplex to determine the optimal temperature(s) to record spectra. 

It remains to be seen if a pH study is also necessary; we would begin at a slightly acidic pH 

with the intention of slowing exchange.    

The assignment procedures for small duplexes are primarily based on NOESY, 

TOCSY, and DQF-COSY experiments.  Phosphorus assignments can be obtained with 
1

H-

31

P HETCOR and/or hetero TOCSY experiments.  

 4.1.2 Whether the DNA lesion, 2-Ih, exist in mitochondrial DNA? 

Peracids (RC(O)OOH)  have be identified which can cause the Gua form 2-Ih by 

epoxidation though the completed studies. In mitochondria, three ThDP(Thiamine 

diphosphate)-dependent enzymes (S. typhimurium ALS II, Baker‘s yeast pyruvate 

decarboxylase and Zymomonas mobilis pyruvate decarboxylase) have been shown to 

catalyze the formation of peracetic acid [CH3C(O)OOH] from pyruvate and O2 under certain 

conditions [Abell, L. M. et al, 1991], [Bunik, V. I. et al, 2007], an observation that is 

significant because mitochondrial DNA repair capability appears to decrease with age 

[Ledoux, S. P. et al, 2007], [Croteau, D. L. et al, 1999] and accumulated of mutations are 
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implicated in age related neuropathology and the ageing process in general [Dimauro, S. et al, 

2005]. Here we propose a hypothesis that the 2-Ih could exist in the mitochondrial DNA. 

Characterization whether 2-Ih can be produced in the system of ThDP-dependent enzymes 

Purchased or separated S. typhimurium ALS II will be  presented in 0.1 M Tricine-

NaOH buffer, pH 7.8, containing 0.1 mM TPP, 0.1 mM FAD, 10 mM MgCl,, and either 30 

mM pyruvate, 30 mM a-ketobutyrate, or 5.5 mM acetolactate. The dGuo, dGMP or Gua 

contained oligonucleotide will be added in to reaction system. The solution will be incubated 

in 25 °C over night with the bubbling oxygen. Enzymes will be removed by Centricon-10 

filtration for 90 min at 4 °C, and the filters rinsed by addition of H2O followed by 

centrifugation for a further 90 min.  The combined filtrates will be lyophilized and the 

product analyzed and separated by HPLC coupling with ESI-MS or directly analyzed by LC-

MS/MS. 

Characterization whether 2-Ih can be produced in the mitochondrial system  

Mitochondrial  will be separated from cells following the standard procedure, and 

then be presented in 0.1 M Tricine-NaOH buffer, pH 7.8, containing 0.1 mM TPP, 0.1 mM 

FAD, 10 mM MgCl,, and either 30 mM pyruvate, 30 mM a-ketobutyrate, or 5.5 mM 

acetolactate. The solution will be incubated in 25 °C over night with the bu bbling oxygen. 

The mitochondrial DNA will be extracted and tested by LC-ESI-MS. The low level 

qualitative or quantitative analysis will be built though this process.   

 Characterization whether 2-Ih can be generated in cells  

If the 2-Ih was been identified in the previous experiment, we can develop the 

qualitative or quantitative analysis method for the yeast, certain kind of cell line, or the rat 

tissue to search 2-Ih in the cell. If the 2-Ih existed in the cell, which means 2-Ih is one of the 
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relative stable DNA adducts oxidized by ROS in vivo.  The 2-Ih base thus appears to be a 

pathway-specific lesion and holds promise as a potential biomarker for epoxidizing agents in 

vivo.  

4.2 Synthesis of N9-(β-D-2-deoxyribofuranosyl)-N
2
,3-ethenoguanine 

4.2.1 Can we increase the overall yield of N9-β-deoxyribosyl-N2
,3-εdGuo? 

We investigated both enzymatic glycosylation and chemical glycosylation of N
2
,3-

εGua as approaches to obtaining this nucleoside adduct under mild conditions, but both 

routes led to nucleosides having spectroscopic data compatible with ribosylation at positions 

corresponding to N7- and N
2
 of Gua as major products. Consequently, I designed an 

unambiguous route to N9-β-deoxyribosyl-N2
,3-εdGuo (8,9-dihydro-9-oxo-3-(β-D-2-

deoxyribofuranosyl)imidazo[2,1-b]purine) via cycloaddition of  bromoacetaldehyde to O
6
-

benzyl-protected dGuo. Conducted on a small scale, the cycloaddition pathway gave the 

target compound, albeit in only 6 % overall yield. The overall yields of Kuśmierek‘s and 

Khazanchi‘s synthetic routes are respectively 1% and 4% starting from dGuo [Kuśmierek, J. 

T. et al, 1989], [Khazanchi R. et al, 1993]. Comparing with these reported synthetic routes, 

the yield of our method has increased. However there is still intensive potential for 

improvement, such as the benzylation of 3′,5′-di-O-acetyl-2′-deoxyguanosine at O
6
 (yield: 

~14%) and the cycloaddition of  bromoacetaldehyde to O
6
-benzyl-protected dGuo (total yield: 

~40%). We can improve yields of these two steps in the future. 

 4.2.2 Whether structures of enzymatic products can provide a tool to demonstrate the 

structure of active domain and reaction mechanisms? 

Enzymatic glycosylation has been widely employed in preparation for the synthesis 

of isotopically substituted deoxynucleosides, antitumor agents, and biologically active 
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molecules [Krenitsky, T. A. et al 1986], [Holy, A. et al, 1987], [Müller, M. et al, 1996], 

[Gaffnev. B. L. et al, 1990]. N
2
-(2-oxoethyl)Gua, 5,6,7,9-tetrahydro-7-acetoxy-9-

oxoimidazo[1,2-a]purine, M1G, 1,N
2
-ethenoGua, Xanthine, hypoxanthine, N

1
-

methylhypoxanthine, uric acid, kinetin, 5-methylCyt, 8-azaAde, 6-mercaptopurine, N
6
-

methylaminopurine, 2-ethyl-6-hydroxypurine, 5-fluoroUrd, 2-aminopurine and 8-Br-purine 

are reported substrates for enzymes [Bessman, M. J. et al, 1974], [Sowers, L. C. et al, 

1989][Müller, M. et al, 1996]. The first advantage of enzymatic glycosylation is the reaction 

is under mild pH, since the chemical preparation of certain classes of deoxynucleoside 

adducts is problematic because of the instability of intermediates to the conditions of 

synthetic transformations (e.g., the acid lability of purine deoxyribosides). An approach to 

the synthesis of sensitive deoxynucleosides is coupling of adducted bases to activated 

deoxyribose derivatives [Srivastava, P. C. et al, 1988]. This approach has found limited 

application because of problems of yield and stereochemistry and the need for multiple 

protecting groups. Therefore the other reason is the enzymatic glycosylation would be highly 

advantageous for synthesis of small scale reactions for labeled standards.  

Steven E. Ealick et al. reported that although the PTD is highly selective for purine 

deoxynucleosides, the transfer of the deoxyribosyl moiety can occur at several positions on 

the purine base [Anand, R. et al, 2004]. The collection of structures of purine trans-

deoxyribosylase and purine complexes shows purine bases in the three different orientations, 

each consistent with one of the N9, N7and N3 deoxyribosyl transfer reactions in previous 

study.  Interestingly, two major products, N7- and N
2
 glycosylated N

2
,3-εGua (basing on the 

Gua numbering system) were characterized in the enzymatic deoxyribosylation, while the 

target compound N9 glycosylated N
2
,3-εGua doesn‘t exist in the reaction mixture. Hence, we 
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can suppose that the orientations of N
2
,3-εGua in purine trans-deoxyribosylase will different 

from purine. 

Furthermore, a minor product of the enzymatic ribosylation had a C,H coupling 

pattern in the HMBC spectrum that was consistent with ribosylation at the target Gua N9, but 

the HPLC retention time and NMR data ruled out the target structure. Thus, this product has 

tentatively been assigned as the α-anomer of the desired N3 riboside. However, the 

conformation of α-deoxyribosyl-anomer conflicts with the conclusion in Ealick‘s research 

[Anand, R. et al, 2004].  They stated that the binding of the deoxyribose has only one 

possible conformation (β-anomer).  

We can understand the structure of this enzyme and catalysis mechanisms further, if 

the x-ray crystallography is used to get the docking screen of the PDT- N
2
,3-εGua complexes. 

Therefore, we will prepare the crystal of PDT first. After diffusion of N
2
,3-εGua into the 

PDT crystal, an X-ray absorption spectrum will be determined for the PTD- N
2
,3-εGua 

complex crystal by recording the X-ray fluorescence as a function of wavelength, then do the 

MIRAS phasing, model building and refinement to finally identify the structure and reaction 

mechanism of the crystal complexes. 
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