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Abstract

RYAN C. MAY: Estimation Methods for Data Subject to Detection Limits
(Under the direction of Dr. Joseph G. Ibrahim and Dr. Haitao Chu)

Data subject to detection limits appear in a wide variety of studies. Data subject to

detection limits are usually left-censored at the detection limit, often due to limitations in

the measurement procedure being used. This thesis addresses three issues common to the

analysis of data subject to detection limits. The first of these is the estimation of the limit

of detection using repeated measurements from known analyte concentrations. An innovative

change-point model is proposed to more accurately model the standard deviation of measured

analyte concentrations, resulting in improved estimation of the limit of detection. The pro-

posed methodology is applied to copy number data from an HIV pilot study. The second topic

concerns estimation using generalized linear models when multiple covariates are subject to a

limit of detection. We propose a Monte Carlo version of the EM algorithm similar to that in

Ibrahim, Lipsitz, and Chen to handle a large number of covariates subject to detection limits

in generalized linear models. Censored covariate values are sampled using the Adaptive Rejec-

tion Metropolis Algorithm of Gilks, Best, and Tan. This procedure is applied to data from the

National Health and Nutrition Examination Survey (NHANES), in which values of urinary

heavy metals are subject to a limit of detection. Through simulation studies, we show that

the proposed approach can lead to a significant reduction in variance for parameter estimates

in these models, improving the power of such studies. The third and final topic addresses the

joint modeling of longitudinal and survival data using time-varying covariates that are both

intermittently missing and subject to a limit of detection. The model is motivated by data

from the Multicenter AIDS Cohort Study (MACS), in which HIV+ subjects have viral load

and CD4 cell counts measured at repeated visits along with survival data. The viral load

data is subject to both left-censoring due to detection limits (17%) and intermittent missing-

ness (27%). A Bayesian analysis is conducted on the MACS data using the proposed joint
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model. The proposed method is shown to improve the precision of estimates when compared

to alternative methods.
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Chapter 1

Change-Point Models to Estimate the

Limit of Detection

1.1 Introduction

In many laboratory assays, interest resides in quantifying very dilute quantities in solution.

As concentrations of analytes decrease, however, the resulting measured levels from a mea-

surement device often become less precise. At some low concentration level, a measured

response cannot accurately be distinguished from background noise, the measured response

from a blank sample. This low concentration point is called the limit of detection (LOD), a

point that is specific to each particular measurement device (Clinical and Laboratory Stan-

dards Institute, 2004). Though the general definition given above for the limit of detection is

widely accepted, the methodology used to determine the limit of detection is quite varied. In

this chapter we consider the estimation of the limit of detection using repeated measurements

from known analyte concentrations. This analysis is motivated by data from a study of low

levels of HIV that persist despite potent therapy, in which a novel assay was developed to

detect changes in low-level HIV expression after a drug intervention. The assay measuring

HIV expression becomes less precise as the concentration of HIV decreases, but a limit of

detection for the assay is not known. In this chapter we consider estimating the LOD for this

assay based on measurements replicated on several solutions containing known quantities of

HIV.

The rest of this chapter is organized as follows. In Section 1.2 we discuss past research

on estimating the limit of detection, and develop the notation for the rest of the chapter. We

explain how past research can incorrectly specify the error distribution for a measurement

device, leading to incorrect estimation of the limit of detection. In Section 1.3, we introduce



the proposed change-point model and discuss a two-stage estimation approach for obtaining

maximum likelihood estimates from the model. In Section 1.4, we examine the proposed

model using a simulation study, then apply the method to data from the aforementioned HIV

assay in Section 1.5. We conclude this chapter in Section 1.6 with a discussion.

1.2 Background

To distinguish between low analyte concentrations and those of a blank sample, many esti-

mation approaches aim to quantify the distribution of measurements obtained from a blank

sample. The distribution of assay measurements for a blank sample is often assumed to be

Gaussian, with mean µblank and variance σ2
blank (Anderson 1989). A limit of detection is then

chosen to fall a “reasonable” distance outside of this blank distribution. Consequently, many

definitions of LOD take the following form (Whitcomb and Schisterman 2008):

LOD = µblank +Kσblank (1.1)

where K is a definition-specific constant, usually in the range of 2.0 to 3.0 (Browne and

Whitcomb 2010, Long and Winefordner 1983, Thomsen et al. 2003).

When K = 3, it is expected that 99.9% of measurements from a blank sample will fall

below the limit of detection. Clearly, the larger value of K that is chosen, the higher the LOD

will be, and the lower the chance that a value from a blank will fall above the LOD. Using

this definition, many estimation approaches are designed to accurately estimate µblank and

σblank. In practice, such estimation is straightforward when many repeated measurements

can be obtained from a blank sample, by taking the sample mean and standard deviation

(SD) as estimates of µblank and σblank.

When blank measurements are not available, alternative estimation approaches can be

utilized. One approach involves taking repeated measurements of a known low concentration

of analyte and using these measurements as proxy measurements for a blank sample. In this

case, the LOD definition is extremely similar to (1.1). With µlow and σlow representing the

mean and standard deviation of the distribution of measurements at the low concentration
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(again assumed to follow a Gaussian distribution), the limit of detection is defined as:

LOD = µlow +Kσlow (1.2)

The previous definition of the LOD in (1.1) includes only a specification of the distribution

of a blank sample. Using this definition enables direct control of the type I error, the chance

of incorrectly specifying a blank sample as containing some concentration of analyte. For

example, when K = 3 the chance of a type I error is only 0.1% for any particular blank

measurement. However, this specification does not control for type II error, the chance of

incorrectly specifying a sample containing analyte as coming from a blank. If the type II error

is high, clearly there is still difficulty in conclusively distinguishing a concentration value near

the LOD from a blank. Consequently, many definitions of the LOD take both type I and

type II error into account. To ensure that measured values for concentrations at the LOD are

unlikely to fall in the range of a blank sample, alternative definitions of LOD account for the

distribution of measurement values at some known small concentration of analyte. The limit

of detection is defined as follows (Armbruster and Pry 2008, Browne and Whitcomb 2010):

LOD = µblank + 1.645σblank + 1.645σlow (1.3)

Using this definition, 95% of blank samples will fall below µblank + 1.645σblank (called the

“limit of blank”, or “limit of decision”), and 95% of measurements for concentrations at the

limit of detection will fall above the limit of blank. It should be noted that definition (1.3) is

only needed when it is assumed that the measurement standard deviation for a blank sample

is different from the standard deviation for any other “low” concentration sample at or around

the LOD (i.e. σblank 6= σlow). Many authors (Anderson 1989, Armbruster 1994, Browne and

Whitcomb 2010) assume a constant measurement error variance for any true concentrations

near or below the limit of detection. In this case, the choice of K in (1.1) specifies the chance

of a type I or type II error. When K = 3.29, the chance of either type of misclassification is

5%; when K = 3, the chance is 7%. Alternative (but similar) definitions to (1.3) calculate a

pooled measurement standard deviation from both blank and low samples, using the pooled
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estimate in place of both σblank and σlow (Long and Winefordner 1982).

The LOD definitions displayed in equations (1.1) and (1.3) usually are performed under

the assumption that the measurement distribution for a blank sample is Gaussian. In reality,

characteristics of the measurement device often result in non-Gaussian measurement distri-

butions for a blank. In such cases, nonparametric methods have been proposed (Linnet and

Kondratovich 2004), which involve estimating quantiles from the observed blank distribution.

For definition (1.3), the value of σlow can still be estimated with parametric methods when

it is reasonable to assume a Gaussian distribution for a low concentration sample. If the low

concentration cannot be assumed Gaussian, quantile estimation can be used to estimate σlow

as well.

In practice, data analysts often do not have access to replicates of data from blank or

“low” concentrations. This is the case for the HIV pilot study data considered in Section 1.5,

in which the number of polymerase chain reaction (PCR) cycles needed to obtain a blank

sample measurement is too high to be operationally feasible. In this case it is difficult to

directly estimate the distribution of measurements for a blank sample, or for the distribution

of any low concentration sample. Estimation often proceeds using higher analyte concen-

trations from which measurements are more easily obtained. A regression line is then fit

to (X1, Y1), ..., (Xn, Yn), the n observed pairs of analyte concentrations X and measured re-

sponses Y . This fitted regression line is known as a linear calibration curve. Assuming a

linear relationship between X and Y , we have the following model specification (Dunne 1995,

Hubaux and Vos 1970):

Yi = β0 + β1Xi + εi, εi ∼ N(0, σ2) (1.4)

Taking θ = (β0, β1, σ
2), the assumptions of (1.4) specify the distribution of Yi|Xi,θ ∼

N(β0 + β1Xi, σ
2). Clearly, the parameter estimates of the model can be used to directly

estimate the distribution of YXi=0, the response for a blank sample. When the parameter

vector θ is known, we have:

YXi=0|θ ∼ N(β0, σ
2)
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Using the definition of LOD in equation (1.1) with K = 3, the LOD under model (1.4) is:

LODY = β0 + 3σ

The above specification is conditional on the true values of the model parameters β0, β1,

and σ2. Let β̂0, β̂1, and σ̂2 denote the Maximum Likelihood Estimates (MLE’s) for β0, β1, and

σ2 (and denote V [β̂0] = σ̂2
β0

). The response distribution for a blank sample can be estimated

as follows:

YXi=0 ∼ N(β̂0, σ̂
2 + σ̂2

β0)

Consequently, the limit of detection can be estimated as (Cox 2005, Hubaux and Vos 1970):

L̂ODY = β̂0 + 3(σ̂2 + σ̂2
β0)1/2 (1.5)

In practice, the limit of detection is usually defined in terms of the concentration X instead

of the measurement Y . To obtain the limit of detection for concentration, a simple linear

transformation on L̂ODY is performed (Gibbons et al., 1992), to obtain:

L̂ODX =
3(σ̂2 + σ̂2

β0
)1/2

β̂1

(1.6)

The standard analysis for estimating the LOD with a linear calibration curve assumes that

the variance of measured responses is constant at all concentration values. In many practical

applications this is not the case, and it is common for a measurement device to become more

(or less) precise as the concentration of analyte increases. In the most basic case (or possibly

under suitable transformation), the measurement standard deviation is assumed to decrease

linearly with the concentration. This case was first considered by Oppenheimer et al. (1983),

and specifies the error distribution from model (1.4) as follows:

εi ∼ N(0, (σ0 + σ1Xi)
2) (1.7)

Using this specification, the limits of detection LODX and LODY are again estimated as in
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equations (1.5) and (1.6).

Current analysis methods for estimating the limit of detection with a linear calibration

curve either assume a constant standard deviation for measurement error as in (1.4), or a

linear change in measurement standard deviation by concentration as in (1.7). As noted by

several authors (Armbruster 1994, Hubaux and Vos 1970, Clinical and Laboratory Standards

Institute 2004, Browne and Whitcomb 2010), a more realistic assumption is that the measure-

ment standard deviation changes for “high” concentration values above the limit of detection,

while remaining effectively constant for “low” concentration values. Under this assumption,

the use of a constant standard deviation model like (1.4) for all concentration values can result

in underestimation (if precision increases with concentration) or overestimation (if precision

decreases with concentration) of the limit of detection. The use of a linear standard deviation

model like (1.7) could provide the opposite effect, overestimating the LOD when precision in-

creases with concentration and underestimating when precision decreases with concentration.

To correct these potential biases in LOD estimation with a linear calibration curve, in Section

1.3 a change-point model is proposed to more accurately model the measurement error for all

concentrations.

1.3 Change-Point Model

In Section 1.2 it was discussed that current analyses using a linear calibration curve usually

assume either a constant measurement standard deviation for all analyte concentrations, or a

measurement standard deviation that varies linearly with the analyte concentration. Because

measurements below the limit of detection are indistinguishable from a blank, it follows that

the measurement standard deviation should be constant for low analyte concentrations. Such

a distribution can be modeled using a change-point for the measurement standard deviation.

While the literature on change-point models in both regression (Bai 1997, Hawkins 2001) and

mixed (Cudeck and Klebe 2002) modeling is quite rich, to our knowledge no published articles

have looked at models with a change-point on the standard deviation of the error. Taking

the notation for a linear calibration curve presented in equation (1.4), with σi representing
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the measurement standard deviation for concentration Xi, we make the following assumption

for the form of σi:

σi =


σ0 if Xi ≤ λ

σ0 + σ1(Xi − λ) if Xi > λ

(1.8)

where λ represents the change-point for measurement standard deviation. As noted in Section

1.2, a common definition for the LOD is 3 standard deviations away from the expected value

of a blank sample. Given the assumption in equation (1.8), the standard deviation of a blank

sample is σ0. The expected value of the blank sample is the intercept term for the model, β0.

The LOD for both the measurement (Y) and true concentration (X) are:

LODY = β0 + 3σ0 (1.9)

LODX =
3σ0

β1
(1.10)

Taking β̂0, σ̂0, σ̂β0 , and β̂1 as the MLE’s for their respective parameters, the limit of

detection is estimated following equations (1.5) and (1.6):

L̂ODY = β̂0 + 3(σ̂2
0 + σ̂2

β0)1/2

L̂ODX =
3(σ̂2

0 + σ̂2
β0

)1/2

β̂1

(1.11)

In the situation described above, the MLE’s β̂0, β̂1, and σ̂ have a simple closed form.

However, in the HIV pilot study motivating this work the measured assay responses Y are

right-censored at a constant upper limit (here denoted as γ). Accounting for this censoring,

the log-likelihood for an individual observation is:

li =


− log(σi)− 1

2σ2
i
(Yi − (β0 + β1Xi))

2 if Yi ≤ γ

log
[
1− Φ

{
γ−(β0+β1Xi)

σi

}]
if Yi > γ

where Φ() is the cumulative distribution function of a standard normal random variable.

7



Again denoting (X1, Y1), ..., (Xn, Yn) as the n iid observations available for analysis, the

log-likelihood for the model can be expressed as:

l(β0, β1, σ0, σ1, λ) =
n∑
i=1

li (1.12)

In order to estimate the LOD under model 1.8, we maximize the log-likelihood (1.12) with

respect to the parameter vector (β0, β1, σ0, σ1, λ). Maximization of the log-likelihood is done

under the following constraints. First, the change-point (λ) must be constrained within the

range of the observed Xi. Taking x(1)...x(n) as the order statistics for the observed Xi, this is

expressed as x(1) ≤ λ ≤ x(n). The rationale for this constraint is that the parameters σ0 and

λ become unidentifiable when λ ≤ x(1), and the parameters σ1 and λ become unidentifiable

when λ ≥ x(n).

The second model constraint is that the error standard deviation σi cannot be negative

at x(1), and the third model constraint is that σi cannot be negative at x(n). Together, these

constraints specify that σi is nonnegative at all points in [x(1), x(n)]. One way to specify these

constraints is to require σ0 ≥ 0 and σ0 + σ1(x(n) − λ) ≥ 0. All constraints on the model are

given below:

(i) x(1) ≤ λ ≤ x(n)

(ii) σ0 ≥ 0

(iii) σ0 + σ1(x(n) − λ) ≥ 0

Constraints (i) and (ii) are both linear, so are straightforward to implement in any maxi-

mization of the resulting log-likelihood. However, constraint (iii) is not linear, as it involves

the term σ1λ. Therefore, maximizing (1.12) subject to (i), (ii), and (iii) is challenging since

many standard optimization routines only allow for linear constraints. To get around this

issue, we instead use a two-stage optimization routine (Smyth 1996). For ease of exposition,

we will define σx(n) = σ0 +σ1(x(n)−λ), the standard deviation at x(n), the maximum observed

concentration value. For generic parameter φ, we denote φ(t) as the parameter estimate at

8



the t-th iteration of the estimation routine. The proposed two-stage optimization routine is

as follows:

1. Fix λ = λ(t−1). Maximize (1.12) with fixed λ, subject to the linear constraints:

i) σ0 ≥ 0

ii) σ0 + σ1(x(n) − λ) ≥ 0

2. Taking σ̂0 and σ̂1 as the estimates from step 1, fix σx(n) = σ̂0 + σ̂1(x(n) − λ(t−1)).

Maximize (1.12) with fixed σx(n) subject to the linear constraints:

i) x(1) ≤ λ ≤ x(n)

ii) σ0 ≥ 0

Obtain estimates β
(t)
0 , β

(t)
1 , σ

(t)
0 , λ(t), set σ

(t)
1 = (σx(n) − σ

(t)
0 )/(x(n) − λ(t))

Steps 1 and 2 in the above procedure are repeated until convergence is achieved for all

parameter estimates. The convergence criterion used for parameter φ specifies that φ(t) −

φ(t−1) ≤ K, with K again representing a generic constant. The proposed optimization routine

is relatively simple to implement, as the likelihood in (1.12) is not overly complex. For

all individual model analyses presented in Sections 1.4 and 1.5, optimization in each stage

was performed using R software (R Development Core Team 2008) with the constrOptim()

function. In the following section we perform a simulation study to test the new estimation

approach, and then apply our approach to data from an HIV pilot study.

1.4 Simulation Study

A simulation study was conducted to analyze the performance of the proposed change-point

model. The data for this simulation study was generated using a parameter specification that

mirrored that for the HIV data analysis presented in Section 1.5. The model was specified

as:

Yi = β0 + β1Xi + εi, εi ∼ N(0, σ2
i )

9
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with σi having the change-point specification given by (1.8).

Following the HIV data, only 5 different values of concentration Xi were used at 1, 2,

3, 4, and 5. For each of the concentration values used, repeated measurements (Yi) were

generated. The number of Yi generated for each of the 5 concentration values was equal,

a balanced allocation. For all simulations, the parameter values were specified as follows:

β0 = 45, β1 = −3.7, σ0 = 1.1. Four different sets of simulations were run using a different

value for the change-point, with λ taking values 1.5, 2.5, 3.5, and 4.5 to span the range of Xi.

The value of σX(n)
, the standard deviation at the maximum concentration value, was kept

constant at 0.25 for all simulations (again mirroring results from the HIV data analysis). The

specified values of σ0, λ, and σX(n)
determined the parameter value of σ1 for each simulated

data set. Following the real-life data set in Section 1.5, all values of Yi falling above 42 were

set as right-censored.

For each simulation scenario, 10,000 data sets of size 80, 150, and 300 were generated. The

proposed change-point model was then fit to the data, using the two-stage estimation approach

to obtain maximum likelihood estimates of all the model parameters. For comparison, model

(1.7) assuming a linear change in standard deviation with no change-point and model (1.4)

assuming constant standard deviation were also fit to the simulated data sets.

Table 1.1 presents the mean bias and standard deviation (SD) of the 10,000 estimates

for every parameter in the model. The change-point model exhibited less bias in estimating

the LOD than both the linear standard deviation and constant standard deviation models,

for every simulation considered. The change-point model also produced LOD estimates with

a smaller standard deviation than the linear standard deviation model for all simulations

considered. The change-point model tended to slightly underestimate the limit of detection,

particularly when the change-point was small relative to the range of the observed concen-

tration values. This bias decreased as the change-point increased, a similar pattern as was

observed with the constant standard deviation model. This characteristic was reversed for the

linear standard deviation model, as the bias increased for larger values of the change-point.

Increased sample size did not seem to affect the bias in any of the models considered, though

the standard deviations of the LOD estimates decreased.
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In addition to parameter estimates, the Akaike Information Criterion (AIC, Akaike 1974)

was also calculated for each of the three models fit to every simulated data set. For each

set of 10,000 simulated data sets, the model with the lowest AIC was selected as the best

fit for the current data set. Table 1.1 displays the proportion of simulated data sets that

resulted in a particular model having the best fit. For example, with N = 80 and λ = 4.5, the

change-point model had the best model fit in 96.0% of the simulated data sets, compared to

0.6% for the linear standard deviation model and 3.4% for the constant standard deviation

model. The results displayed in table 1.1 show that the change-point model produces the best

fit to the data a much higher proportion of the time than either the linear standard deviation

or constant standard deviation models, for all simulation scenarios. This “relative fit” of the

change-point model increased with increasing change point, and also with sample size, from

60.3% in the N = 80, λ = 1.5 simulation to 100% in the N = 300, λ = 4.5 simulation.

1.5 HIV Data

Data for this analysis comes from an HIV pilot study analyzing the effects of a drug on HIV

transcription. Resting cells from HIV infected patients are treated with the drug, with interest

in the degree to which HIV transcription is increased. HIV RNA in general is too unstable

and must be reverse transcribed into the more stable form, cDNA. The concentration of HIV

RNA in patient samples is much too low to be directly measured, and following conversion

to cDNA subsequent amplification by quantitative PCR is necessary (Nolan et al. 2006,

Palmer et al. 2003). The region of the HIV genome amplified in this assay codes for a highly

conservative region known as gag which is measured with primers and probes as described

by Agarwal et al. (2007). RNA from patient samples are quantified using a standard curve

with a known concentration of HIV cDNA. The PCR machine measures unknown quantities

through fluorescence that is proportional to sample concentration and amplifies over many

cycles. A cycle-threshold is defined as the PCR cycle that results in the highest increase

in fluorescence. By comparing the cycle-threshold value for a given unknown concentration

of RNA to a linear calibration curve for different known HIV concentrations, the unknown

12



concentration can be estimated.

For each patient in the pilot study, a linear calibration curve is created by measuring

the cycle-threshold value for different known dilutions of HIV. Data for the study consists

of calibration curve data for six experiments (one for each patient), with each experiment

consisting of 20 measurements for each of 4-5 known concentrations of HIV. The goal of the

analysis is to estimate the limit of detection for the concentration of HIV individually for

each experiment. Complicating the analysis is the restriction that each sample was run for a

maximum of 42 cycles of PCR amplification; HIV concentrations resulting in more than 42

cycles are right-censored. A plot of the raw data for all six experiments is presented in Figure

1.1.

It is important to note here that the concentration of HIV (X) is inversely related to

the cycle-threshold value (Y) in the analyzed data. A lower concentration of HIV will take

more PCR cycles to fluoresce, resulting in a higher cycle-threshold value. This relationship

is the opposite of what is usually observed when relating known concentrations to measured

values, where measurement (Y) usually increases with analyte concentration (X). Because of

the inverse relationship between Y and X in the current data, the LOD estimates will be

slightly altered from (1.13), taking the form:

L̂ODY = β̂0 − 3(σ̂2
0 + σ̂2

β0)1/2

L̂ODX =
−3(σ̂2

0 + σ̂2
β0

)1/2

β̂1

(1.13)

Analysis of the data was performed in two ways. First, the change-point model proposed

in Section 1.3 was fitted separately for each individual experiment, generating experiment-

specific LOD estimates. Additionally, a mixed-model approach was also considered. The

mixed model allows for simultaneous estimation of the LOD for all experiments. The model

specification is given as follows:

Yij = β0 + β1Xij + bi0 + bi1Xij + εij , εij ∼ N(0, σ2
ij) (1.14)
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Figure 1.1: Plot of raw data from six experiments in the HIV study

σij =


σ0 if Xij ≤ λi

σ0 + σ1(Xij − λi) if Xij > λi

(bi0, bi1) ∼MVN

0,

 σ2
b0

ρσb0σb1

ρσb0σb1 σ2
b1




where Yij is the cycle-threshold value and Xij is the log10 concentration of HIV for experiment

i and measurement j. The abbreviation MVN denotes a multivariate normal distribution.

Maximum likelihood estimation for this model was performed using PROC NLMIXED in SAS

software version 9.3. As with the simulation study, both linear standard deviation and con-

stant standard deviation models were included for comparison. The model fit was again

analyzed using the AIC.

Parameter estimates for both the regression and mixed model approaches are given in

Table 1.2, and a plot of the model fit for experiments 1 and 3 is given in Figure 1.2. The dashed

lines about the predicted regression line in Figure 1.2 represent a 95% prediction interval for

the data, with the vertical and horizontal dashed lines representing the estimated LOD.

Estimates of experiment-specific LODs (denoted L̂ODX in table 1.2) using the change-point

model range from 0.468 to 1.195, which correspond to LOD estimates on the untransformed
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HIV concentrations of 2.94 to 15.68 copies of gag. LOD estimates from the change-point

model were lower than those from the linear standard deviation model, and were higher than

estimates from the constant standard deviation model, for all experiments. Interestingly, the

AIC for the change-point model was lower than the AIC for the linear standard deviation

model in only one of the six experiments tested, suggesting that the linear standard deviation

model generally provided a better fit to the data when the regression model was utilized.

In experiments 1, 2, 5, and 6, the change-point estimates equal 1.0, the lowest observed

concentration value. This makes the likelihood for the model identical to the linear standard

deviation model (notice the identical parameter estimates for β0 and β1), only with more

parameters estimated in the change-point model. This results in the higher AIC value for the

change-point model.

The mixed model results also give LOD estimates for the change-point model that are

higher than the constant standard deviation model, and lower than the linear standard devi-

ation model. The un-logged LOD estimate of 15.49 is in the range of LOD estimates for the

regression change-point models on each experiment, as expected. The AIC results indicate

that the change-point model provides a better fit to the available data than does the linear

standard deviation or constant standard deviation mixed models.
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Figure 1.2: Change-point model results for experiments 1 and 3
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Table 1.2: Parameter estimates for HIV study, using regression models and mixed models

Regression Model

Experiment β̂0 β̂1 σ̂0 σ̂1 λ̂ L̂ODX 10L̂ODX AIC

Change-Point Model
1 43.19 -3.661 1.147 -0.278 1.000 0.959 9.10 181.68
2 45.20 -4.104 1.612 -0.452 1.000 1.195 15.68 235.64
3 45.68 -3.579 0.537 -0.115 2.000 0.468 2.94 85.41
4 45.35 -3.472 0.747 -0.255 1.699 0.661 4.58 118.93
5 42.42 -3.395 1.186 -0.262 1.000 1.063 11.57 291.30
6 43.17 -3.684 1.262 -0.310 1.000 1.041 11.00 286.98

Linear Standard Deviation Model
1 43.19 -3.661 1.425 -0.278 - 1.183 15.23 179.68
2 45.20 -4.104 2.062 -0.452 - 1.522 33.25 233.64
3 45.74 -3.593 0.676 -0.085 - 0.580 3.80 86.88
4 45.43 -3.492 1.118 -0.239 - 0.971 9.36 118.10
5 42.42 -3.395 1.448 -0.262 - 1.292 19.60 289.30
6 43.17 -3.684 1.572 -0.310 - 1.291 19.55 284.98

Constant Standard Deviation Model
1 43.26 -3.688 0.920 - - 0.776 5.96 219.63
2 44.95 -4.004 1.199 - - 0.927 8.46 294.05
3 45.66 -3.563 0.464 - - 0.409 2.56 88.08
4 45.27 -3.424 0.622 - - 0.565 3.67 156.98
5 42.44 -3.406 0.920 - - 0.830 6.76 326.45
6 43.53 -3.825 0.972 - - 0.781 6.04 339.77

Mixed Model

Experiment β̂0 β̂1 σ̂0 σ̂1 λ̂i L̂ODX 10L̂ODX AIC

Change-Point Model
All 44.37 -3.698 1.342 -0.313 * 1.190 15.49 2955.9

Linear Standard Deviation Model
All 44.38 -3.703 1.459 -0.250 - 1.273 18.75 2994.0

Constant Standard Deviation Model
All 44.43 -3.725 0.973 - - 0.910 8.13 3240.4

*λ is experiment-specific in this model
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1.6 Discussion

In this chapter we have developed a change-point model to estimate the limit of detection

with a linear calibration curve. In certain settings, the proposed approach may provide a more

realistic modeling of the underlying distribution of measurement errors in a linear calibration

curve. Estimation is performed via a two-stage estimation technique, such that the nonlinear

constraints on the model parameters are satisfied. We have demonstrated application of the

proposed model using both an individual regression model and a mixed model.

The simulation results presented in Table 1.1 demonstrate that the proposed change-point

model can dramatically improve estimation of the limit of detection when compared to both

the linear standard deviation and constant standard deviation models. When measurement

error is constant for low concentrations of analyte, the linear standard deviation model tends

to overestimate the measurement error for a blank sample, and consequently tends to overes-

timate the limit of detection. This is shown quite dramatically in Table 1.1, where estimates

using the change-point model exhibit smaller bias than the linear standard deviation model,

particularly when more of the observed data falls below the true change-point. The constant

standard deviation model was shown to underestimate the LOD for all simulations considered,

with a significantly larger bias than the change-point model. When AIC fit statistics were

analyzed, the change-point model was correctly identified as the model providing the best fit

to the data, for all simulations considered.

The key assumption of the proposed change-point model is that the measurement error

standard deviation is constant below some low concentration value. If this assumption does

not hold (the standard deviation instead continues to increase or decrease with concentration),

the change-point model would be expected to exhibit a greater bias than the linear standard

deviation model. In this case, when the measurement error increases with concentration, the

change-point model would tend to overestimate the limit of detection. When the measurement

error decreases with concentration, the change-point model would tend to underestimate the

LOD.

The proposed linear regression change-point model is quite straightforward to implement,
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and convergence of the parameter estimates was achieved very quickly in both the simulation

and HIV analyses. The mixed model approach in Section 1.5 also converged very quickly,

making the proposed approaches quite feasible. Both methods produced similar estimates of

the limit of detection, suggesting that either would be appropriate for analysis.
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Chapter 2

Maximum Likelihood Estimation in

Generalized Linear Models With Multiple

Covariates Subject to Detection Limits

2.1 Introduction

While the previous chapter concerned estimation of the limit of detection itself, the current

topic considers analysis of data subject to detection limits with a predetermined limit of de-

tection. Specifically, we are interested in estimation with generalized linear models (GLM’s)

in which multiple covariates are subject to a limit of detection. While the proposed method-

ology in this chapter can be applied to both right- and left-censored covariate data, the real

and simulated examples presented here consider only left-censored data, as is most common

in real-life studies with detection limits. To motivate these methods, we consider a study in

cancer incidence conducted within the National Health and Nutrition Examination Survey

(NHANES). As part of this study, levels of urinary heavy metals were recorded, along with

presence of any form of cancer. Recorded urinary heavy metals included cadmium, uranium,

tungsten, and dimethylarsonic acid. The measurement device used to examine levels of each

urinary heavy metal can only be calibrated down to a specific limit of detection (i.e. only

above 1.7 ug/L for dimethylarsonic acid). As a result, 24.1% of the 1350 patients had at least

one covariate value that fell below the limit of detection for the measurement device. Study

subjects were also surveyed as to past cancer status, the response variable for this study.

Past research on data subject to detection limits has considered models where either

the response or covariates alone are subject to detection limits. The simplest and most

straightforward method for dealing with such data is to remove or delete all observations



falling below the limit of detection. This is known as complete-case analysis. Complete-

case analysis is generally discouraged because of the loss of useful information in the data.

Though complete-case analysis can give unbiased parameter estimates in regression models

(Rigobon and Stoker 2007, D’Angelo and Weissfeld 2008, Nie et al. 2010), the standard

errors of those estimates will be inflated due to the decreased sample size. This deficiency

is particularly significant for studies where a large proportion of data falls below the limit

of detection. Additionally, background parameter estimates for the covariate distribution

of interest will be biased (Helsel, 2005). Another very common approach is to use ad-hoc

substitution methods. These often include substituting some fraction of the limit of detection

for all observations falling below the limit of detection, such as the limit of detection itself

(LOD), LOD/2, LOD/
√

2, or zero. Such methods are commonly employed because they

are simple both to understand and implement. However, numerous authors have concluded

that such methods are statistically inappropriate (see Helsel, 2006 and Lubin, 2004 for a

discussion with censored responses, and Lynn, 2001 for censored covariates). Helsel (2005)

provides a review of several of these substitution procedures, concluding that the substitution

method leads to highly biased estimates and has no theoretical basis. Singh and Nocerino

(2002) analyzed the substitution method on censored response values in environmental studies,

concluding that highly biased estimates result even in cases with a small percent of censored

values and only a single detection limit. The bias increases as more detection limits are

introduced. For regression with a censored outcome, Thompson and Nelson (2003) found

that substitution of half the detection limit led to biased parameter estimates and artificially

small standard error estimates. These results have provided strong evidence against using

ad-hoc substitution techniques.

In a linear regression setting, further substitution methods have been proposed for cases

when a single covariate is subject to a limit of detection. Richardson and Ciampi (2003)

proposed substituting the conditional expected value of each censored covariate, given all

observed covariates. This method relies on a specification of the underlying covariate distri-

bution, which often is not known with certainty. When the covariate distribution is unknown,

Schisterman (2006) proposed substituting the average of all observed covariates in the model,
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which was shown to achieve unbiased results. Another common method is maximum likeli-

hood (ML) estimation, which also requires knowledge of the underlying covariate distribution.

These methods were compared with the previously discussed ad-hoc substitution methods in

Nie et. al (2010) when only one covariate is subject to a limit of detection. It concluded

that maximum likelihood performed best when the covariate distribution is known, as ML

estimation is unbiased and results in small standard errors. These results were echoed by

Lynn (2001), who compared substitution methods to multiple imputation and maximum like-

lihood estimation. Both papers noted that maximum likelihood estimation should not be

attempted when the underlying covariate distribution is not known. In this case, Nie et al.

(2010) suggests using complete-case analysis.

The preference for maximum likelihood approaches has also been seen in studies using

logistic regression with a single covariate subject to a limit of detection. Cole et al. (2009)

compared ad-hoc substitution methods to complete-case analysis and maximum likelihood

estimation, concluding that maximum likelihood resulted in relatively unbiased estimates

with smaller standard errors than either complete-case or substitution methods, especially

when the proportion of censored values was large (50% or more).

Methods have also been proposed for Cox Regression models with up to two covariates

subject to a lower limit of detection. D’Angelo and Weissfeld (2008) presents an index-based

EM Algorithm-type method for this problem. The E-step for this method involves substituting

the conditional expectation of each censored covariate, while the M-step uses standard Cox

regression. It found that the index-based approach provided improvements over complete-case

analysis in terms of variance estimates, but that a small bias existed in the index approach

compared to the unbiased complete-case analysis. The approach was not shown to provide

much improvement over the biased LOD/2 and LOD/
√

2 substitution approaches, however.

When the response variable is subject to a limit of detection, two common methods of

estimation include Tobit Regression (Tobin, 1958) and multiple imputation. Generally, Tobit

Regression is used when interest resides primarily on the regression parameters. When interest

is on estimating a “complete” dataset, however, multiple imputation is often used to impute

the missing values. Lubin et al. (2004) developed a multiple imputation approach based
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on bootstrapping, and compared the results to substitution methods and Tobit regression.

It found that both the proposed multiple imputation approach and Tobit Regression have

reduced biases with respect to other ad-hoc substitution methods.

All the methods previously mentioned here concern models with either a censored re-

sponse and fully-observed covariates, or a fully-observed response and at most 2 censored

covariates. To the authors knowledge, no general likelihood-based approach has been devel-

oped to account for a large number of left-censored covariates in a generalized linear model. In

this chapter, we investigate maximum likelihood methods for fitting models with covariates

subject to a limit of detection. We show that this maximum likelihood estimation can be

carried out directly via an EM algorithm called the EM by the Method of Weights (Ibrahim,

1990). For covariates subject to a limit of detection, we specify the covariate distribution

via a sequence of one dimensional conditional distributions. We discuss the missing data

mechanism for censored data and explain how the notion of missingness differs from that of

regular missing data problems.

In this chapter, we propose a method for estimating parameters in generalized linear mod-

els with censored covariates and an effectively ignorable missing data mechanism. We consider

the case of continuous covariates only in this work, because censored categorical covariates are

unlikely to occur in real-world applications. Following Lipsitz and Ibrahim (1996), the joint

covariate distribution is modeled via a sequence of one dimensional conditional distributions.

Modeling the joint covariate distribution in this fashion facilitates a more straightforward

specification of the distribution. The response variable is assumed to be completely observed,

though our method can be easily extended to the case where the response is subject to a

limit of detection. We derive the E and M steps of the EM algorithm with effectively ig-

norable missing covariate data. For continuous covariates, we use a Monte Carlo version of

the EM algorithm to obtain the maximum likelihood estimates via the Gibbs sampler. We

derive the E-step for the Monte Carlo version of EM. In addition, we show that the relevant

conditional distributions needed for the E-step are log-concave, so that the Gibbs sampler is

straightforward to implement when the covariates are continuous. The work presented in this

chapter is an extension of the methods proposed for missing data in Ibrahim, Lipsitz, and
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Chen (1999). The proposed methods are computationally feasible and can be implemented

in a straightforward fashion.

The rest of this chapter is organized as follows. In Section 2.2, we given some general

notation for generalized linear models. In Section 2.3, we discuss the proposed methods of

estimation and give a detailed discussion of the various models used. In Section 2.4, we

demonstrate the methodology with a simulation study involving a linear regression model.

In Section 2.5, we demonstrate the methodology with an example involving real data. We

conclude the chapter with a discussion section.

2.2 Notation for GLM’s

In this chapter, we will take (x1, y1), ..., (xn, yn) as a set of n independent observations, with yi

representing the response variable and xi representing a p x 1 vector of covariates. The joint

distribution of (yi, xi) is written as a sequence of one-dimensional conditional distributions

[yi|xi] and [xi], representing the conditional distribution of yi given xi and the marginal distri-

bution of xi. The notation p(yi|xi) is used throughout the chapter to denote the conditional

density of yi given xi.

The conditional distribution [yi|xi] is specified by a k × 1 parameter vector θ, with the

conditional density being represented as p(yi|xi, θ). For the class of generalized linear models,

the parameter vector θ is usually specified as θ = (β, τ), with β representing the regression

model coefficients and τ representing the dispersion parameter. The logistic, poisson, and

exponential models have a τ value exactly equal to one; in these cases, β and θ are equal. For

nonlinear models with a normal errors, we write the parameter vector as θ = (θ∗, σ2), with

θ∗ representing the expectation parameters and σ2 representing the variance of the errors.

The marginal density for xi is taken as p(xi|α), with α representing the parameters for

the marginal distribution of xi. The joint density for (yi, xi) can then be represented by the

following sequence of conditional densities for subject i.

p(yi|xi) = p(yi|xi, θ)p(xi|α) (2.1)
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Combining this formula for all subjects leads to the complete-data log-likelihood:

l(x, y|γ) =

n∑
i=1

l(xi, yi|γ)

=

n∑
i=1

log [p(yi|xi, θ)] + log [p(xi|α)] . (2.2)

Here l(xi, yi|γ) represents the log-likelihood contribution for subject i, and γ = (θ, α). In

the present analysis, our primary interest is in estimating θ; here, α is considered a nuisance

parameter.

Extending this notation to censored covariate data, we write xi = (xcens,i, xobs,i), where

xobs,i are the fully observed covariates, and xcens,i is a qi×1 vector of censored covariates. For

individual censored covariate values, we use the notation xcens,i = (x∗i1, ..., x
∗
iqi

). We allow a

different censoring interval for each covariate and subject, taking (clij , cuij) as the censoring

interval for subject i and covariate j. We note here that the censoring intervals are considered

to be fully known here. In some applications, limits of detection are not known explicitly,

and must be estimated. We also note that in most cases the censoring intervals will not vary

across subjects, this is included for generality. This notation is easily generalized to right or

left-censoring. For left-censored covariates, take clij = −∞. For right-censored covariates,

take cuij =∞. We use the shorthand notation (cl < xcens,i < cu) to denote that each element

of xcens,i takes a value within its respective censoring interval. That is:

(cl < xcens,i < cu) ≡
⋂

xij∈xcens,i

(clij < xij < cuij)

2.3 Covariate Data Subject to a Limit of Detection

We now propose maximum likelihood methods for covariate data subject to a limit of de-

tection. We will allow left, right, or interval censoring on each covariate, and for ease of

exposition will assume that τ = 1. For clarity, we develop the methodology here for the class

of generalized linear models.

Suppose y1, ..., yn are independent and
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p(yi|xi, β) = exp
{
yiθ(x

′
iβ)− b(θ(x′iβ))

}
for i = 1, ..., n. In general, the EM-algorithm maximizes the expected value of the complete

data log-likelihood of (yi, xi), given the observed data, i.e.,

Q(γ|γ(t)) =
n∑
i=1

E
[
log[p(yi|xi, β)] +

log[p(xi|α)]|observedi, γ
(t)
] (2.3)

Unlike the usual missing covariate problem in which the ‘observed data’ for subjec-

t i is (yi, xobs,i), in the censored covariate problem the ‘observed data’ are (yi, xobs,i) and

(cl < xcens,i < cu). In the usual missing covariate problem with xmis,i completely miss-

ing, the ‘weights’ in the EM by the Method of Weights are the conditional probabilities

p(xmis,i|xobs,i, yi, γ). Now, with the additional information that (cl < xcens,i < cu) in the

censored covariate problem, the weights are the conditional probabilities p[xcens,i|xobs,i, (cl <

xcens,i < cu), yi, γ].

If the censored covariates are all continuous (the most common case), then the E-step

of the EM algorithm consists of an integral, which typically does not have a closed form for

GLM’s. We can write the E-step for the ith observation as

Qi(γ|γ(t)) =∫
log[p(yi|xi, β)]p(xcens,i|xobs,i, yi, γ(t))

× I(cl < xcens,i < cu)dxcens,i

+

∫
log[p(xi|α)]p(xcens,i|xobs,i, yi, γ(t))

× I(cl < xcens,i < cu)dxcens,i

= Q
(1)
i (β|γ(t)) +Q

(2)
i (α|γ(t)).

(2.4)
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We note here that in the above equation, xcens,i is a vector consisting of all covariates

in observation i that fall within their respective censoring intervals. In cases where xcens,i

contains more than a single censored covariate, equation (2.4) consists of multiple integrations,

one over each censored covariate, integrating over the range of the censoring interval. For

example, with 3 censored covariates (xcens,i = (x∗i1, x
∗
i2, x

∗
i3)), we have:

p(xcens,i|xobs,i, yi, γ(t)) = p(x∗i1|x∗i2, x∗i3, ...)

× p(x∗i2|x∗(i3), ...)× p(x
∗
i3|...)

and

Qi(γ|γ(t)) =∫ ∫ ∫
log[p(yi|xi, β)]p(xcens,i|xobs,i, yi, γ(t))

× I(cl < xcens,i < cu)dx∗i1dx
∗
i2dx

∗
i3

+

∫ ∫ ∫
log[p(xi|α)]p(xcens,i|xobs,i, yi, γ(t))

× I(cl < xcens,i < cu)dx∗i1dx
∗
i2dx

∗
i3

From this, it should be clear that closed-form solutions to equation (2.4), even if available

(i.e. for a small number of censored covariates), are complicated, and the maximization can

be very difficult. We now propose a general approach to evaluating equation (2.4), regardless

of the number of censored covariates.

To evaluate (2.4) at the (t + 1)st iteration of EM, we use the Monte Carlo version of

the EM algorithm given by Wei and Tanner (1990). To do this, we first need to gener-

ate a sample from the truncated distribution [xcens,i|xobs,i, yi, γ(t)]I(cl < xcens,i < cu). This

truncated distribution is log-concave in each component of xcens,i for most link functions.

Thus we can use the Gibbs sampler along with the adaptive rejection metropolis algorithm

(ARMS) of Gilks, Best, and Tan (1995) to successively sample from the truncated distribu-

tion [xcens,ij |xcens,ik, k 6= j, xobs,i, yi, γ
(t)]I(cl < xcens,i < cu), where xcens,ij denotes the jth
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component of xcens,i.

The ARMS algorithm is an extension of the Adaptive Rejection Sampling (ARS) algorithm

of Gilks and Wild (1992), and can sample values from complex likelihood functions which are

not required to be log-concave. ARMS works by constructing an envelope function around

the desired log-density. It performs rejection sampling on the envelope function, shrinking

the envelope around the desired log-density with each successive sample. For log-densities

that are not concave, the ARMS algorithm performs an additional Metropolis step on each

potential sampled value (Metropolis, 1953). The shrinking envelope function provides an

efficient means of sampling from a complicated log-density, without having to evaluate each

point of the density directly. ARMS also allows for straightforward sampling from truncated

distributions, as all potential points falling outside the censoring interval are immediately

rejected.

Use of the EM algorithm requires complete sampled data for each of the n observations

in the dataset. For observation i, a new sample must be obtained for each of the qi cen-

sored covariate within xcens,i. This is done by successively sampling from the distribution of

xcens,ij , j = 1, ..., qi until a new sample vector zi is obtained for the censored vector xcens,i.

The sampled vector zi contains qi sampled values, one for each of censored covariates in

xcens,i. Now, suppose for the ith observation, we take a sample of size mi, zi1, ..., zimi , from

the truncated distribution [xcens,i|xobs,i, yi, γ(t)]I(cl < xcens,i < cu) via the Gibbs sampler in

conjunction with the adaptive rejection algorithm. We note here that each zik is a qi × 1

vector for each k = 1, ...,mi, with qi representing the length of xcens,i. The E-step for the ith

observation at the (t+ 1)st iteration for the GLM can be written as

Qi(γ|γ(t)) =
1

mi

mi∑
k=1

l(zik, xobs,i, yi, γ).

= Q
(1)
i (β|γ(t)) +Q

(2)
i (α|γ(t)). (2.5)

We notice that this E-step is the EM by the Method of Weights with each xcens,i being

filled in by a set of mi values each contributing a weight 1/mi. The M-step then maximizes
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equation 2.3, which can be expressed as

Q(γ|γ(t)) =
n∑
i=1

Qi(γ|γ(t))

The maximization can be performed first by taking

Q̇(γ|γ(t)) = (Q̇(1)(β|γ(t)), Q̇(2)(α|γ(t)))′

as the q × 1 gradient vector of Q(γ|γ(t)). This can be calculated by taking

Q̇(γ|γ(t)) ≡
n∑
i=1

Q̇i(γ|γ(t))

=
n∑
i=1

1

mi

mi∑
k=1

∂

∂γ
l{zik, xobs,i, yi, γ}

(2.6)

Using this procedure, the EM algorithm can then be run until convergence. In practi-

cal application, the maximization of the weighted log-likelihood (with respect to the model

parameters) can often be performed by standard software.

Also here we let Q̈(γ|γ(t)) denote the q × q matrix of the second derivatives of Q(γ|γ(t)).

Let γ̂ denote the estimate of γ at convergence. The asymptotic covariance matrix can then

by calculated by the method of Louis (1982). The estimated observed information matrix of

γ based on the observed data is taken as

I(γ̂) =− Q̈(γ̂|γ̂)

−

{
n∑
i=1

∑
xcens,i,j

1

mi
Si(γ̂;xi, yi)Si(γ̂;xi, yi)

′

−
n∑
i=1

Q̇i(γ̂|γ̂)Q̇i(γ̂|γ̂)′

}

where
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Si(γ̂;xi, yi) =

[
∂l(γ;xi, yi)

∂γ

]
γ=γ̂

The estimate of the asymptotic covariance matrix is then calculated as I(γ̂)−1.

We note here that the E-step for censored data is different from the standard missing data

notation. Specifically, the censored data E-step in equation (2.4) omits the
∫
log[p(ri|yi, xi, φ)]...dxcens,i

section used in missing data problems, where ri represents an indicator for missingness. This

is because the notion of ignorability is fundamentally different in detection limit problems

when compared to missing data problems. In detection limit problems it is generally assumed

that the detection limits are known values. With detection limits known, the probability of

censoring (“missingness” in the missing data case) clearly depends on the true value of the

covariate (xi), suggesting a non-ignorable mechanism. However, in the detection limits case

the true value of xi explicitly determines whether or not the value is censored. The value of

p(ri|xi) is either 0 or 1, for all values of xi. It follows that the non-ignorable component of

the E-step equation for missing data is omitted in the detection limit case.

It should be noted that having a continuous outcome variable also subject to a limit of

detection only marginally complicates the situation at hand. In this case, the E-step requires

an additional integration over the possible values of the censored outcome. Equation (2.4)

then becomes:

Qi(γ|γ(t)) =

∫ ∫
log[p(yi, |xi, β)] . . . dxcens,idycens,i

+

∫ ∫
log[p(xi|α)] . . . dxcens,idycens,i

This situation is further simplified when sampling from the distribution of an outcome

value below the detection limit, however, because we are dealing with the class of generalized

linear models. The distribution of the outcome given the covariates and parameters is assumed

to come from an exponential family. Therefore, the distribution of an outcome value below

the limit of detection is just a truncated form of a well-known distribution, be it normal,

gamma, etc. Such sampling is straightforward.

In this chapter, we will investigate the maximum likelihood estimation with censored
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covariates as outlined above. We will study the EM algorithm for this problem and consider

GLM’s with covariates subject to a detection limit. Examples analyzed include both linear

and logistic regression.

2.4 Simulation Study

Here we consider a simple linear model involving six covariates:

yi = β0 + β1xi1 + β2xi2 + β3xi3

+ β4xi4 + β5xi5 + β6xi6 + εi

where εi ∼ N(0, σ2
y). The response yi is fully observed, as are the first three covariates

x1, ..., x3. The last three covariates x4, ..., x6 are subject to a prespecified detection limit.

Detection limits are specified according to a desired overall censoring percentage. In this

case, detection limits were chosen such that 30% and 50% of observations had at least one

covariate that fell below the limit of detection. The covariate distribution was specified as

multivariate normal, with arbitrary prespecified parameter values and correlated observations

with 0.3 ≤ |ρ| ≤ 0.7 for all covariate pairs. Using this specification, datasets of size 200 were

then generated; covariate values for x4 − x6 falling below the detection limit were set as

missing.

Each simulation presented in this chapter was performed on 1000 datasets created as de-

scribed above, each from identical background parameter distributions and detection limits.

The EM by Method of Weights was then applied to each dataset. Initial parameter estimates

for the model and covariate distribution were taken from a complete-case analysis of the da-

ta. These were passed to the ARMS algorithm as parameters in the initial iteration of the

EM algorithm. For each observation with at least one covariate falling below the limit of

detection, ARMS was used to generate mi = 250 samples of complete covariate data. For

observations with a single covariate falling below the limit of detection, these samples were

taken from the distribution of xcens,i|xobs,i, yi, γ(t) truncated over the censoring interval. For

each observation with multiple covariates falling below the limit of detection, ARMS was used
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sequentially to sample from the distribution for each censored covariate until a new complete

sample of covariate values was produced. The mi = 250 samples from each censored observa-

tion were then combined, creating an augmented dataset of fully observed observations along

with sampled values. The M-step of the EM algorithm was then performed via a weighted

maximum likelihood estimation. Weights of 1 were used for each fully observed observation,

and 1/250 was used for each sampled observation. This weighted maximum likelihood proce-

dure produced new estimates for β in the model, along with updated parameter estimates for

the covariate distribution. The updated covariate parameter estimates were then passed back

to ARMS as the estimates for the following E-step, and the procedure was run iteratively

until convergence.

Convergence of this algorithm was checked by calculating the average β estimate for the

previous 10 iterations. This average was compared to the β average for the 10 iterations

prior. In other words, at iteration t the mean beta values from t:(t-9) are compared to values

from (t-10):(t-19). A difference of ≤ 10−3 was used for convergence. After convergence was

reached for all parameters, final β estimates were taken as the average of the previous 10

estimates of β in the chain.

Bootstrap standard errors were calculated for each parameter in the dataset, for com-

parison to the standard error of the estimates obtained. For each of the 1000 datasets in a

simulation, 25 bootstrapped datasets of size n = 200 were generated. The proposed EM algo-

rithm was then run on each bootstrapped dataset, and final β estimates were obtained. The

standard error for each population of 25 β estimates was then calculated for each parameter

in the model. The mean of these standard errors were then taken as the final bootstrap stan-

dard error estimate for the model, and are used for comparison with the normal β standard

error (SE) from the proposed maximum likelihood approach.

Table 2.1 displays results from analysis on all 1000 datasets. Final estimates and variances

for each parameter are calculated as the mean and variance of final beta estimates for all 1000

datasets. The true prespecified parameter values are given, along with variance estimates

calculated using the bootstrap procedure described above. Results are also presented for

an ad-hoc substitution of LOD/
√

2 for each covariate falling below the limit of detection,
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along with a complete-case analysis. As expected, both the maximum-likelihood approach

and complete-case analysis appear to be largely unbiased, while the substitution approach

produced very biased estimates. Maximum likelihood resulted in standard errors for the

parameter estimates that were lower than those obtained with complete case analysis, and

similar standard errors to the substitution approach. In addition, all calculated standard error

estimates for maximum likelihood are close to the asymptotic bootstrapped estimates. The

reduction in standard error seen with the maximum likelihood approach was large enough

to result in a change in statistical significance (here taken at the α = 0.05 level) for several

parameters in the model when compared with the complete-case analysis. These conclusions

hold for both 30% and 50% censored observations, suggesting that the benefit seen is robust

to the degree of censoring observed. The EM-algorithm was also observed to converge rather

quickly using the described criterion. Only 28 EM iterations were needed on average for all

model parameters to converge.

2.5 NHANES Data

Here we consider data from the National Health and Nutrition Examination Survey (N-

HANES) concerning the effect of urinary heavy metal levels on cancer status. The survey

years considered here are 2005-2006. The outcome variable in this study is cancer status,

a binary variable recorded via questionnaire to the question “Have you ever been told by a

doctor or other health professional that you had cancer or malignancy of any kind?”. Uri-

nary heavy metals were recorded via physical examination. The measurement device for each

urinary heavy metal in the study can only be calibrated down to a specific limit of detection

(LOD), leading to many left-censored observations. The degree of censoring varied by each

covariate. The urinary heavy metals analyzed in this study include Dimethylarsonic Acid

(13.7% below LOD), Cadmium (5.3% below LOD), Tungsten (10.7% below LOD), and Ura-

nium (9.6% below LOD). In total, 24.1% of the 1350 patients in the study had at least one

urinary heavy metal value that fell below a limit of detection. A logistic regression model was

chosen for analysis, to predict the binary outcome measure of cancer status. Other covariates
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included in the model are gender, race (dichotomized to white/nonwhite), physical activity

(dichotomized survey response for any physical activity during an average day), and current

nicotine use (yes/no). A log transformation was performed on each of the urinary heavy

metals variables prior to modeling, and a multivariate normal prior distribution was assumed

for these continuous covariates. An independent bernoulli prior was assumed for the binary

covariates gender, race, and smoking status.

Initial parameter estimates for the model were taken from a complete-case analysis. Ev-

ery observation with a urinary heavy metal covariate value falling below the LOD was then

sampled mi = 250 times using the ARMS algorithm. For observations with multiple covari-

ate values below the LOD, each missing covariate value was consecutively sampled until a

complete sampled observation was obtained. In such cases, 250 complete sampled observa-

tions were recorded. A weighted logistic regression model was then fit to the data, and MLE

estimates and standard errors were obtained. Parameter estimates for the prior distributions

were updated, and the procedure was run iteratively until convergence of the logistic model

parameter estimates. The convergence criterion used here was identical to the procedure de-

tailed in Section 2.4. Upon convergence, final beta estimates and standard errors were taken

as the average estimates of the previous 10 iterations.

Table 2.2 summarizes the results of this study again comparing the maximum likelihood

approach to both a complete-case analysis and ad-hoc substitution of LOD/
√

2. The substi-

tution of LOD/
√

2 is particularly relevant in this case, as urinary heavy metals falling below

the limit of detection are actually reported by the NHANES researchers as LOD/
√

2 in the

available public data releases. As can be seen, the maximum likelihood approach results in

significantly smaller standard errors for the parameter estimates when compared to complete-

case analysis, and slightly smaller than those obtained via substitution with LOD/
√

2. This

leads to a change in statistical significance (at the α = 0.05 level) for the effect of Tungsten on

cancer status. In this simulation, 30 EM-iterations were needed for convergence of all model

parameters. It should be noted here that the ML standard errors reported in table 2.2 are

based on only one simulation, and are calculated via a straightforward fitting of the weighted

logistic regression model at convergence. Standard errors for the simulation study reported in
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table 2.1 were calculated as the standard error of the population of 1000 final beta estimates,

one for each simulated dataset. These estimation procedures are not equivalent, and it is

important to note this difference.

It should also be noted that the fitted model used here does not include age as a covariate

in the prediction of cancer status. A logistic model including the age covariate was also fit

to this data, and age was found to be highly significant. The current model (without an

age covariate) has been included here to more clearly display the potential benefits of the

proposed methodology.

2.6 Discussion

In this chapter, we have proposed a method of maximum-likelihood estimation in generalized

linear models with an unlimited number of covariates subject to a limit of detection. We have

proposed models for the joint covariate distribution, which is based on a sequence of one-

dimensional conditional distributions. The methodology presented here can be easily extended

to cases where both the response and the covariates are subject to a limit of detection.

The maximum likelihood approach presented here is much simpler computationally than a

direct computation by way of the observed-data likelihood, especially for cases with multiple

covariates subject to a LOD. When only a single covariate (or just the response) is subject

to a LOD, closed-form solutions can often be used.

For the example considered in Section 2.4, the variance estimates for β are significantly

improved over the complete case analysis. This result was echoed in our real-life analysis of

NHANES data. This improvement can clearly lead to higher statistical power in studies that

include data subject to detection limits.

A consistent drawback to maximum likelihood estimation in GLMs with data subject

to detection limits is that a new algorithm needs to be created for each individual analysis

that is performed. For sampling within ARMS, the log-likelihood function for the model

of interest needs to be explicitly specified. In cases where the covariates are considered to

follow a multivariate normal distribution, for example, the log-likelihood function is consistent
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Table 2.2: Logistic regression model summary for NHANES data, comparing maximum like-
lihood approach to complete case analysis and ad-hoc substitution of LOD/

√
2

Parameter Method Estimate SE P-Value Significant

Intercept Complete Case -0.6047 0.7954 0.4471 No
Substitution -0.6562 0.7009 0.3492 No
ML -1.5459 0.6765 0.0221 Yes

Gender Complete Case -0.0035 0.2305 0.9879 No
Substitution -0.0934 0.2041 0.6472 No
ML 0.2730 0.1990 0.1703 No

Race Complete Case -1.6468 0.2789 <.0001 Yes
Substitution -1.6022 0.2516 <.0001 Yes
ML -1.2572 0.2288 <.0001 Yes

Physical Activity Complete Case -0.2641 0.2379 0.2671 No
Substitution -0.1984 0.2121 0.3494 No
ML -0.3139 0.2048 0.1250 No

Nicotine Complete Case -1.1471 0.3221 0.0004 Yes
Substitution -1.1103 0.2798 0.0001 Yes
ML -1.1710 0.2849 <.0001 Yes

Dimethylarsonic Acid Complete Case -0.2309 0.1856 0.2133 No
13.7% below LOD Substitution -0.1969 0.1515 0.1936 No

ML -0.0443 0.1389 0.7449 No

Cadmium Complete Case 0.6172 0.1465 <.0001 Yes
5.3% below LOD Substitution 0.7236 0.1225 <.0001 Yes

ML 0.4812 0.1159 <.0001 Yes

Tungsten Complete Case -0.2689 0.1493 0.0717 No
10.7% below LOD Substitution -0.1958 0.1234 0.1126 No

ML -0.2400 0.1157 0.0389 Yes

Uranium Complete Case 0.0769 0.1396 0.5817 No
9.6% below LOD Substitution 0.0297 0.1249 0.8120 No

ML 0.0016 0.1205 0.9980 No
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and straightforward. However, more complicated covariate distributions will require a less

standard computation of the log-likelihood, which can take significant additional time and

can lead to error.

For both the simulation study and real-data analysis presented here, mi = 250 samples

were taken for each observation with covariates below a limit of detection. Based on the

authors experience and other extensive simulations performed with this type of data, we feel

that a sample size of at least mi = 100 is necessary for accurate inference.

The computing time required to achieve EM convergence here clearly depends on the

number of covariates in a model, the degree of censoring that is observed, and the number

of samples that are taken for each censored observation. The simulation presented in Section

2.4 tended to converge quickly, with only an average of 28 iterations performed per dataset.

This simulation of 1000 datasets took about 16 hours to complete on a Lenovo laptop with a

dual-core Pentium processor, making this approach very computationally feasible.

While the analyses presented here discuss applications to generalized linear models, much

interest exists in studies of longitudinal and survival data where covariates are subject to a

limit of detection. Future research should be performed to extend the methodology presented

here to such models.
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Chapter 3

Joint Modeling of Longitudinal and

Survival Data with Missing and

Left-Censored Time-Varying Covariates

3.1 Introduction

In many longitudinal studies, time to event data is recorded in addition to the longitudinal

and baseline covariates. In such studies, interest often lies in understanding the relationships

between the longitudinal history of a process and it’s effect on the risk of an event. For analysis

of this type of data, a class of models called joint models has been developed, which jointly

model both components simultaneously. Joint modeling has been used most extensively in

studies of subjects with Human Immunodeficiency Virus (HIV, Wulfsohn and Tsiatis 1997,

DeGruttola and Tu 1994, etc.). As with any large dataset, and particularly in the case

of longitudinal data, it is often the case that a high degree of covariate and response data

is missing. Additionally, in an HIV positive individual the measurement of viral load (the

amount of virus in the blood) is only accurate down to a particular limit of detection (LOD).

Values below the limit of detection cannot be reliably quantified or distinguished from a

“blank” blood sample with no virus. In many cases (Wulfsohn and Tsiatis 1997, etc.) any

missing covariate data is usually omitted from the analysis, and estimation proceeds on the

complete data. However, in cases where a high degree of covariate data is missing, a great

deal of information is lost when a model is only fit on complete data. Additionally, analysis

using only complete data often requires the strong assumption that missing observations are

missing completely at random (MCAR, Little 1995) for these imprecise inferences to be valid.

The goal of the analysis presented in this chapter is to develop a joint modeling strat-

egy that accounts for both missing and left-censored time-varying covariates. This analysis



is motivated by data from the Multicenter AIDS Cohort Study (MACS, Kaslow 1987), a

prospective study of disease progression in participants infected with, or at risk for infection

with, HIV. The subset of MACS participants who seroconvert with HIV while under obser-

vation are followed from the date of HIV seroconversion, with many variables including CD4

cell counts and viral load measured at planned study visits every 6 months. Interest lies in

the progression of CD4 cell counts and viral load from seroconversion with HIV, and their

impact on survival. Of the available viral load data, 27% is missing and 17% falls below a

limit of detection. Using a Bayesian analysis, we model the progression of CD4 cell counts

over time, while accounting for the missingness and left-censoring on the available viral load

data. We assume that the intermittent missingness is missing at random (MAR, Little 1995).

Although a great deal of attention has been paid to developing joint models in recent

years, the literature on censored and/or missing covariate data within a joint model is sparse.

A paper by Wu et al. (2008) investigated the joint modeling in an AIDS clinical trial with

informative dropout. This paper incorporated a missing data mechanism into the joint model

likelihood, to model missingness in the model covariates due to subject dropout. Estimation

was performed using an EM algorithm. To the authors knowledge, no paper has investigated

joint modeling with intermittent missing covariate data, or with covariate data subject to

a limit of detection. Using data from the Multicenter AIDS Cohort Study, the goal of the

analysis presented in this chapter is to jointly model the longitudinal progression of disease in

study participants while accounting for both intermittent missingness and a limit of detection

on a single covariate. Estimation will be undertaken using a Bayesian framework, which

contrasts with the EM approach taken in the Wu et al. (2008) paper.

The rest of this chapter is organized as follows. In Section 3.2 we give a review of joint

models, and develop notation. In Section 3.3 we develop a Bayesian approach to this problem,

and apply this approach to the MACS data. We compare results obtained with those from

ad-hoc estimation approaches. We conclude the chapter in Section 3.4 with a discussion.
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3.2 Preliminaries

3.2.1 The Longitudinal Model

Of the two submodels included in a joint model, the longitudinal component is the lessor

complicated with a model formulation very similar (if not identical) to that of a model fit for

the longitudinal data alone. The dataset consists of data for i = 1, ..., N subjects, with j =

1, ..., ni measurements recorded for subject i. The response yij , main-effect covariate vector

xij = (x1ij , ..., xpij)
′, and random-effect covariate vector zij = (z1ij , ..., zqij)

′ are recorded at

times tij . The longitudinal model is usually specified as a linear mixed effects model (Laird

and Ware, 1982):

yij = x′ijβ + z′ijbi + εij = ψij(β,bi) + εij (3.1)

where β is the p×1 main-effect parameter vector, and bi is the q×1 vector of random effects

for subject i, with bi specified as having a multivariate normal distribution, bi ∼ Nq(µb,Σb).

We emphasize here that the random effects bi have mean µb, unlike the usual linear mixed

effects model where the random effects have mean zero. This specification is important in

longitudinal models that do not contain a main-effect intercept, which is often used to avoid

issues of nonidentifiability with the baseline hazard function in the survival component of the

joint model. The error vector εεεi = (εi1, ..., εini)
′ is usually specified to have a multivariate

normal distribution, εi ∼ Nni(0, ξ
−1Ini), where Ini represents the identity matrix of dimension

ni. The trajectory function for the model is defined as ψij(β,bi) = x′ijβ + z′ijbi. More

generally, (3.1) can be written in terms of yi(t), the response at any time t. Taking xi(t) =

(xi1(t), ..., xip(t))
′ and zi(t) = (zi1(t), ..., ziq(t)) to represent the main-effect and random-effect

covariate vectors at time t respectively, the model can be rewritten as:

yi(t) = x′i(t)β + z′i(t)bi + εi(t) = ψi(β,bi, t) + εi(t) (3.2)

where the error term εi(t) ∼ N(0, ξ), and the trajectory function ψi(β,bi, t) = x′i(t)β+z′i(t)bi.

In many AIDS studies using joint models, the longitudinal component uses random effects

with functions of time only (Tsiatis and Davidian, 2004). The form of the random effect
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covariate vector zi(t) is usually simple, including only a random slope and time effect, or at

most a quadratic term for time. In this case, the trajectory can be specified at generic time

t, as follows:

ψi(bi, t) = z′i(t)bi (3.3)

It should be noted that many authors have considered a more complex version of (3.3), involv-

ing an additional mean-zero stochastic process that does not depend on zi(t) or bi. This form

allows within-subject autocorrelation that accounts for fluctuations from the hypothesized “s-

mooth” trajectory function included in the model. This extended form is not considered in

the proposed modeling approach presented in Section 3.3.

3.2.2 The Survival Model

The second submodel in a joint model is the survival model. This is usually taken as a Cox

proportional hazards model (Cox 1972), which predicts the hazard function λi(t) for subject

i at time t. The survival component of the joint model includes a link to the longitudinal

submodel, the unique characteristic that makes the model “joint”. The link in this case is the

inclusion of a portion (or all) of the longitudinal trajectory ψi(β,bi, t) as a covariate within

the survival model. The survival component is expressed as:

λi(t) = λ0(t) exp
{
h(β,bi)θ + x′si(t)βs

}
(3.4)

Here h(β,bi) is a function of the main effects and random effects in the longitudinal model,

with θ as the scalar parameter that links the two submodels. The survival covariate vector

xsi(t) = (xsi1, ..., xsir)
′ usually includes baseline covariates for subject i, with βs representing

the r × 1 parameter vector for these baseline covariates. The baseline hazard function is

given as λ0(t). The form that h(β,bi) takes determines the type of joint model that is

fit. In a selection model, we have h(β,bi) = ψi(β,bi, t) = x′i(t)β + z′i(t)bi, such that the

full longitudinal trajectory is included in the survival component. In a shared parameter

model, only individual parameters from the longitudinal model are included instead of the

full trajectory. One example is to take h(β,bi) = z′i(t)bi, such that only the random effects
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are included in the survival component. The parameter βs in (3.4) is a parameter vector

for covariates unique to the survival submodel. These additional covariates xsi are usually

baseline covariates. In most formulations, the baseline covariates are only included in the

survival component of the model, as inclusion in the longitudinal component can lead to

problems of identifiability when fitting the full joint model.

3.2.3 Likelihood for Joint Model

With both the longitudinal and survival submodels specified, we now combine the two to

form the likelihood for the full joint model. In this case we will specify the joint model

using a selection model in the survival component, such that the full longitudinal trajectory

is included as a survival model covariate. We take Ti to represent the potential failure time

for subject i, and Ci to represent the potential censoring time for subject i. We define

Si = min(Ti, Ci) as the observed failure/censoring time for subject i, with δi taken as an

indicator for observing failure, with δi = 1 when Ti < Ci, and δi = 0 otherwise. We define

ψi(β,bi, t) as the value of the longitudinal trajectory for subject i at time t (with ψij(β,bi)

as the longitudinal trajectory for subject i at visit j). With f(·) representing a generic density

function, the likelihood for the ith subject in the joint model can be written as:

Li ∝fi(Survival | Longitudinal)× fi(Longitudinal)

=f(Si|θ, δi,βs, ψi(β,bi, t),xsi)× f(yi|Xi,Zi,β,bi)f(bi)

=

[{
λ0(Si) exp

(
ψi(β,bi, Si)θ + x′si(Si)βs

)}δi
× exp

{
−
∫ Si

0
λ0(u) exp(ψi(β,bi, u)θ + x′si(u)βs)du

}]
(3.5)

×

{ ξ

(2π)

}ni/2
exp

{
−ξ

2

ni∑
j=1

(yij − ψij(β,bi))2

}
P (bi)


and the likelihood for all subjects is L =

∏N
i=1 Li. In Section 3.3.2, the likelihood will be

appended to account for a covariate subject to left truncation and missingness.
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3.2.4 Fitting the Model

Estimation of a joint model may be performed in at least two ways. The first estimation

approach is to use the EM algorithm. This approach has been used often in past analysis

of AIDS data (DeGruttola and Tu 1994, Wulfsohn and Tsiatis 1997). The R package JM

(Rizopoulos, 2010) was recently released and fits shared parameter models using the EM

algorithm. A second approach to estimation uses a Bayesian framework, fitting the model

with Markov Chain Monte Carlo (MCMC) methods. This approach is discussed in detail

in Ibrahim, Chen, and Sinha (2001, chap.7), and has been used by many authors (Xu and

Zeger 2001, Wang and Taylor 2001, Brown and Ibrahim 2003, etc.). Guo and Carlin (2004)

provide WinBUGS software for fitting joint models using a Bayesian framework. The shared

parameter joint model that is fit is based on the models proposed by Henderson et al. (2000),

in which random effects are used in both the survival and longitudinal submodels. The

submodels are linked using common random effects, not the full longitudinal trajectory as in

our curent analysis. For the analysis presented in this chapter, a Bayesian framework is used

based on Ibrahim, Chen, and Sinha (2001), with all computation performed using R software

(R Development Core Team 2008).

3.3 MACS Data Analysis

3.3.1 Background

The motivating data for the analysis presented in this chapter comes from the Multicenter

AIDS Cohort study (MACS), a prospective study of disease progression in participants in-

fected with, or at risk for infection with, HIV. The data collected by the MACS study is of

particular interest because participants are followed from the time of seroconversion, when

they first develop antibodies to HIV (as a response to contracting the virus). The study pop-

ulation includes participants who contracted HIV during the study follow-up (1986-2005).

Participants in the study were seen at semiannual visits, where demographic information was

recorded along with laboratory measurements including viral load and CD4 cell counts. Sur-

vival data for each participant was also recorded, specifically for deaths attributable to AIDS.
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Of the 470 subjects in the study who seroconverted with HIV during follow-up, 443 were

observed at 3 or more visit times, and were included in the study analysis. This 3-visit mini-

mum was required in order to have identifiable random effect parameters in the longitudinal

component of the joint model. Of the 443 subjects, 165 (37.2%) died due to AIDS during the

study period and had the time of death recorded.

In studies of HIV progression, interest lies in the relationship between CD4 cell count and

viral load measurements over time. CD4 cell count is a measure of immune system strength,

while viral load is a measure of the amount of circulating virus. These two biomarkers are

inversely correlated, as high levels of virus (viral load) indicate low immune system strength

(CD4 count). A complication that often arises in HIV studies is that viral load values are

subject to a lower limit of detection. Values of viral load falling below this limit are unable

to be detected by laboratory tests. In long-term longitudinal studies such as MACS, it is

common for limit of detection to change over time, as newer technology is able to detect even

lower levels of viral load. The available MACS data contains viral load values subject to two

known limits of detection. Viral load data from earlier study periods is subject to a detection

limit of 400 copies/mL, while viral load data from later study periods is subject to a detection

limit of only 50 copies/mL. In total, 16.9% of the available viral load data fell below these

detection limits. Additionally, 27.1% of the viral load data is missing intermittently in the

dataset (MAR, Little 1995). A trajectory plot for CD4 since seroconversion for a random

sample of 50 participants in the study is given in figure 3.1.

One additional limitation to the public-use MACS data was that time of visit for each

participant was only available at the year level, no month or day dates are supplied. For a

participant with multiple visits in the same year, the available data only lists the year of visit

and the chronological ordering of multiple visits in the same year (i.e. that one visit precedes

another). To account for this limitation, exact visit dates were imputed for each subject in

the dataset. For a subject with two visits in year X, the time of the first visit was imputed

at X + 0.25, with visit 2 at X + 0.75. For a subject with 3 visits time was imputed as X +

0.17, X + 0.5, and X + 0.83. The time of HIV seroconversion was imputed as the midpoint

between times of the first visit where HIV antibodies were detected and the visit immediately

44



Figure 3.1: CD4 Trajectory for random sample of 50 participants
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preceding this visit. For a particular subjects data to be included in the analysis, baseline

covariates for race and age at seroconversion needed to be recorded. Additionally, at least

one of CD4 cell count or viral load needed to be recorded.

3.3.2 Joint Model

To account for both the longitudinal trajectory of CD4 and survival, a joint model was

specified for analysis. The longitudinal component of the model is specified as a mixed-effects

model, with a random slope and intercept for each subject. In this model, we again have i =

1, ..., N for each subject, and j = 1, ..., ni for each visit. Both CD4 and viral load were log10-

transformed, with CD4ij and V Lij representing the log10 transformed values of CD4 and viral

load for subject i and visit j, occurring at time tij . Additionally, a covariate was included to

account for the indirect effect of Highly Active Antiretroviral Treatment therapy (HAART), an

HIV treatment that consists of several antiretroviral drugs being taken concurrently. HAART

treatment has had a dramatic positive effect on the survival of HIV (Hammer et al. 1997,

Cameron et al. 1998). Though records for HAART treatment are available in the MACS

public-use data, we instead use HAART calendar period as an instrumental variable (Angrist,

1996) for HAART. This approach is similar to those in past HIV studies (Detels et al. 1998,
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Tarwater et al. 2001), allowing us to circumvent potential bias in results due to residual

confounding by indication that could occur if we used the direct HAART variable. We define

HAART calendar period as all visit times occurring after January 1, 1998. We define covariate

PDij as an indicator for the HAART calendar period, such that PDij = 1 if tij > 1/1/98,

and PDij = 0 otherwise. The final longitudinal model is specified as follows:

CD4ij = V Lijβ1 + PDijβ2 + b0i + tijb1i + εij (3.6)

where β = (β1, β2)′ is the vector of parameters for the main effect covariates. Following

standard estimation approaches for a linear mixed-effects model, the joint distribution of

the random effects bi = (bi0, bi1)′ was again assumed bivariate normal, with mean µb and

covariance matrix Σb. The error term εij is assumed to have a normal distribution, with

εij ∼ N(0, 1/ξ). It should be noted that equation (3.6) does not include a main-effect intercept

term. The intercept was excluded here to avoid issues of identifiability that arise when fitting

both a main-effect intercept in the longitudinal component and the baseline hazard function

in the survival component of a joint model.

A selection model was chosen for analysis, such that the full longitudinal trajectory was

included as a covariate in the survival model. This trajectory is specified as ψi(β,bi, t) =

V Litβ1 +PDitβ2 +b0i+tb1i. Here V Lit and PDit represent their respective values at the most

recent observed visit to time t. We also denote ψij(β,bi) = V Lijβ1 + PDijβ2 + b0i + tijb1i,

the value of the longitudinal trajectory for subject i at visit j. Other baseline covariates of

interest included the age at which a subject contracted HIV (AGEi), and race (RACEi),

with RACEi = 1 if subject i is white, and RACEi = 0 otherwise. We again define θ as

the parameter linking the longitudinal and survival submodels, with βs = (βs1, βs2)′ as the

parameters corresponding to the baseline covariates. The Cox proportional hazards submodel

is specified below, with λ(t) and λ0(t) representing the hazard and baseline hazard functions

at time t, respectively.

λ(t|ψi(β,bi, t)) = λ0(t) exp(ψi(β,bi, t)θ +RACEiβs1 +AGEiβs2) (3.7)
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The key innovation in this analysis is that we are able to account for the missingness

(27.1%) and left-censoring (16.9%) occurring in the viral load data. To do this, a normal

prior distribution was specified for viral load, such that V Lij ∼ N(µv, 1/ηv). For a viral load

observation V Lij falling below a limit of detection LDij , the prior distribution is truncated

at LDij , taking nonzero density only below LDij . For a viral load observations that are

missing, no such truncation is needed. The missing viral load values are assumed to be

missing at random, as parameters involving viral load are distinct from others in the model.

Because of this assumption, the complete-data likelihood that now accounts for missing and

left-censored viral load will be appended from (3.5) to include the viral load prior distribution.

We will again denote S = (S1, ..., SN ) as the vector of observed failure/censoring times for

each subject, with δ = (δ1, ..., δN ) taken as the vector of indicators for observing failure (with

δi = 1 if observed failure and 0 otherwise). The complete-data likelihood for the joint model

can be expressed as follows:

L = f(Survival|Longitudinal)× f(Longitudinal)

= f(S, δ|θ,βs, ψi(β,bi, t))× f(CD4,b,VL|β)

= f(S, δ|θ,βs, ψi(β,bi, t))× [f(CD4|β,b, ξ)f(b|µb,Σb)f(VL|µv, ηv)] (3.8)

Expanding this out into a full formula for the complete-data likelihood for subject i, we

have:
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Li ∝
[{
λ0(Si) exp

(
ψi(β,bi, Si)θ +RACEiβs1 +AGEiβs2

)}δi
× exp

{
−
∫ Si

0
λ0(u) exp

(
ψi(β,bi, u)θ +RACEiβs1 +AGEiβs2

)
du

}]

×

ξni/2 exp

−ξ2
ni∑
j=1

(
CD4ij − ψij(β,bi)

)2 (3.9)

× |Σ−1
b |

1/2 exp

{
−1

2
(bi − µb)

′Σ−1
b (bi − µb)

}

× ηni/2v exp

−ηv2
ni∑
j=1

(V Lij − µv)2




For the fully Bayesian estimation approach, noninformative and improper prior distribu-

tions were placed on each model parameter. Following the examples in Ibrahim, Chen, and

Sinha (2001, Section 7.3), independent uniform improper priors were taken for β and βs, with

π(β) ∝ 1, π(βs) ∝ 1. Additional priors are specified as follows: ξ ∼ Gamma(10−3, 10−3),

µv ∼ N(0, 105), ηv ∼ Gamma(10−3, 10−3), µb ∼ N(0, 106), Σ−1
b ∼ Wishart(3, 106I). The

baseline hazard function λ0(t) was specified as having the form of a piecewise constant haz-

ard, taking the constant value λk for each of the k = 1, ..., 10 time intervals (sk,sk+1] that span

the range of the observed times tij . Computation of exp
{
−
∫ Si

0 λ0(u) exp(...)du
}

was then

performed using the approximation given in Ibrahim, Chen, and Sinha (2001, p. 277-278). It

can be shown that with this choice of priors, the joint posterior distribution is proper.

Gibbs sampling was performed by sampling from the full conditional distribution for each

model parameter. A derivation of the conditionals is given in the Appendix. For parameters

with a closed-form conditional distribution, sampling is straightforward. For parameters with

no closed-form conditional distribution, sampling was performed using the Adaptive Rejection

Metropolis Sampling of Gilks, Best, and Tan (1995). Estimation was performed using Gibbs

samples from 10,000 iterations, with a burn-in of 1000 iterations. For comparison, several

simpler models were also applied to the MACS data. First, a two-stage model was fit, in which

each of the two submodels was fit separately. In the first stage, the longitudinal submodel in
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equation (3.6) was fit independently of the survival component. The fitted trajectory from the

longitudinal component was then fixed, and was included as a covariate in the survival model

in equation (3.7). The second stage fitted this survival model, giving parameter estimates for

the survival component only. Such a model is computationally simpler because the likelihood

functions for each model are separate, and are not combined as in equation (3.9). Additional-

ly, a joint model was also fit to only the 56% of total observations with fully observed values

of viral load (complete-case analysis). A joint model was also fit in which substituted values

of viral load were used for all left-censored viral load values. For a viral load measurement

falling below limit of detection LOD, the common substitution of LOD/
√

2 was used as the

“true” viral load value at the specified visit. This substitution analysis was then performed

on 72.9% (56% observed + 16.9% substituted) of the total observations. In addition to the

full joint model given by (3.6) and (3.7), a joint model incorporating a quadratic random time

effect in the longitudinal component was also fit to the data. To achieve parameter conver-

gence for this model, we restricted the dataset to include only subjects with observed data

at 5 visit times (compared to the minimum of 3 visits for all other models). In addition, the

effects of time and age at seroconversion were centered for this model only. The simulation

results from the two-stage, complete-case, substitution, and full joint models are given Table

3.1. Posterior estimates are taken from the 9000 sampled values. Figure 3.2 provides trace

plots and probability density histograms (with overlaid kernal smoothed density functions)

for parameters of interest from the full joint model.

3.3.3 Results

The results in Table 3.1 show that decreasing CD4 cell count is associated with an increased

risk of death, as expected. Specifically, the full joint model predicts that each 10% decrease

in CD4 cell count results in a 15.9% increase in the risk of death. This estimate ranges from

13.6% in the two-stage model to 20.5% in the substitution model. Additionally, CD4 cell

count and viral load levels are shown to be inversely related, with each 10% increase in viral

load resulting in a predicted 0.48% decrease of CD4. This estimated decrease ranges from
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Figure 3.2: Trace Plots and Sampled Densities of Selected Parameters from Full Joint Model
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0.42% in the two-stage model to 0.74% in the complete-case model. Neither race nor the age

at seroconversion were found to be significantly correlated with risk of death. The calendar

period associated with HAART treatment was shown to result in an increase in CD4 cell count

values in all models. For the full joint model, a participant during the HAART calendar period

is expected to have a CD4 cell count value that is 44.2% higher than a participant in the pre-

HAART period. Combining this estimate with θ (the survival model estimate for CD4 cell

count) indicates that the HAART calendar period is associated with a 40% decrease in the

risk of death for any particular participant. The results from the two-stage, substitution,

and complete-case models show a predicted decrease of 38%, 41%, and 44%, respectively.

The quadratic model results (not shown) indicated that a participant during the HAART

calendar period expected to have a CD4 cell count that is 32.8% higher than a participant

in the pre-HAART period, with HAART being associated with a 32% decrease in the risk of

death. It is important to note that the quadratic model was fit on a subset of the data used

for the other models, so results are not directly comparable.
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3.4 Discussion

We have proposed a joint model for the analysis of longitudinal and survival data that accounts

for both missingness and left-censoring in the longitudinal covariates. The proposed model

allows use of a much greater proportion of available data when longitudinal covariates are

missing or left-censored. In many infectious disease studies, measures of biomarkers are

subject to a lower limit of detection, resulting in many left-censored cases. Previous analyses

on only complete-case data then are not able to capture the information contained when

subjects have very low levels of left-censored biomarkers. The proposed methodology accounts

for this left-censoring, and also intermittent missingness that can be considered MAR.

The analysis of the MACS data presented in Table 3.1 shows that posterior estimates

obtained from a joint model can be strongly influenced by the inclusions of observations

with covariates that are missing or left-censored. In the available data, only 56% of viral

load measurements were observed, with 27.1% missing and 16.9% falling below the limit

of detection. Consequently, a complete-case analysis could only be performed on roughly

half of the available data points. Including all cases in the proposed joint model is clearly

more desirable, and as shown can produce results that vary from the complete-case results.

However, in the worked example we did not see a difference in the estimated relative hazard

for the calendar period associated with HAART. Yet, the precision was notably better for the

proposed method compared to a complete-case analysis.

The computing time necessary to fit the proposed model can vary widely depending on

the software that is used. The code for the simulations presented here was fit using R software

(R Development Core Team 2008), which was able to run approximately 1500 iterations in

24 hours. This relatively long computing time could likely be lessened by use of alternative

programming languages, such as C or WinBUGS.

While the proposed modeling approach can improve estimation with missing data in joint

models, the assumptions still specify that the intermittently missing covariates are MAR. In

many analyses, this assumption about the missing data mechanism may not be correct, as

missing data can often arise from a more complicated mechanism. Future research is needed
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to develop joint models for more complex missing data mechanisms.
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Appendix

This appendix displays the full conditional distributions for the full joint model with likelihood

given by (3.9). We use the same data notation given in Section 3.3.2, with slight modifica-

tions as detailed here. We define CD4i = (CD4i1, ..., CD4ini)
′, VLi = (V Li1, ..., V Lini)

′,

PDi = (PDi1, ..., PDini)
′, and ti = (ti1, ..., tini)

′ to denote the covariate vectors of CD4,

viral load, treatment period, and time for subject i. For ease of exposition, we will de-

fine zi = (RACEi, AGEi)
′ and βs = (βs1, βs2)′, such that z′iβs = RACEiβs1 + AGEiβs2.

The baseline hazard function λ0 is specified as piecewise constant, taking the the value λk

fore each of the k = 1, ...,K time intervals, with λ = (λ1, ..., λK)′. For time interval k, we

use dk to denote the number of failures that occur within that interval. Computation of

exp
{
−
∫ Si

0 λ0(u) exp(...)du
}

was performed using the approximation given in Ibrahim, Chen,

and Sinha (2001, p. 277-278). The notation for this approximation is as follows:

exp

[
−

K∑
k=1

λkBik

]
≈ exp

[
−
∫ Si

0
λ0 exp(ψi(β,bi, u)θ + z′iβs)du

]
To simplify notation when writing the full conditionals, we will take Ω = (λ, θ,βs, ξ,

Σb,β,b,µb, ηv, µv) to denote the set of all parameters in the model. We will use the notation

Ω(−β) to denote the set Ω without the parameter β (and similar notation when excluding

other parameters). We will use the notation Di to denote the set of complete data for subject

i, such that Di = (CD4i,VLi,PDi, ti, Si, δi, zi). We use the shorthand notation Di(−VLi)

to denote the set of complete data Di not including VLi. The full set of complete data is

denoted D = (D1, ...,DN ) (with D(−VLi) denoting the set of complete data excluding VLi).
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1. β : π(β) ∼ 1

P (β|Ω−β,D) ∝

exp

−ξ
2

N∑
i=1

ni∑
j=1

(CD4ij − ψij(β,bi))2


× exp

{
N∑
i=1

δi
[
(ψi(β,bi, Si)θ + z′iβs

]}

× exp

[
−

N∑
i=1

K∑
k=1

λkBik

]

= No closed form

2. bi : P (bi) ∼ N2(µb,Σb)

P (bi|Ω(−bi),D) ∝

exp

−ξ
2

ni∑
j=1

(CD4ij − ψij(β,bi))2


× exp

(
−1

2
(bi − µb)

′Σ−1
b (bi − µb)

)
× exp

{
δi
[
(ψi(β,bi, Si)θ + z′iβs

]}

× exp

[
−

K∑
k=1

λkBik

]

= No closed form
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3. ξ : P (ξ) ∼ Gamma(Shape = aξ,Rate = bξ)

P (ξ|Ω(−ξ),D) ∝

N∏
i=1

ξni/2 exp

−ξ
2

ni∑
j=1

(CD4ij − ψij(β,bi))2

× ξaξ−1 exp [−bξξ]

∝ ξ
1
2

∑n
i=1 ni+aξ−1 exp

−ξ
1

2

n∑
i=1

ni∑
j=1

(CD4ij − ψij(β,bi))2 + bξ


∼ Gamma

(
Shape =

1

2

n∑
i=1

ni + aξ,

Rate =
1

2

n∑
i=1

ni∑
j=1

(CD4ij − ψij(β,bi))2 + bξ

)

4. µv : P (µv) ∼ N(µµv , η
−1
µv )

P (µv|Ω(−µv),D) ∝

exp

−ηv2
N∑
i=1

ni∑
j=1

(V Lij − µv)2

× exp
{
−ηµv

2
(µv − µµv)2

}

Note: Nt =

N∑
i=1

ni, v̄ =
1

Nt

N∑
i=1

ni∑
j=1

V Lij

∝ exp

{
−1

2
(Ntηv + ηµv)µ

2
v + (Ntηvv̄ + ηµvµµv)µv

}
∝ exp

{
−A

2
(µv − C)2

}
Where A = Ntηv + ηµv , C =

Ntηvv̄ + ηµvµµv
Ntηv + ηµv

∼ Normal

(
Ntηvv̄ + ηµvµµv
Ntηv + ηµv

,
1

Ntηv + ηµv

)
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5. ηv : P (ηv) ∼ Gamma(Shape = aη,Rate = bη)

P (ηv|Ω(−ηv),D) ∝

N∏
i=1

ηni/2v exp

−ηv
2

ni∑
j=1

(V Lij − µv)2

× ηaη−1
v exp [−bηηv]

∝ η
1
2

∑n
i=1 ni+aη−1

v exp

−ηv
1

2

N∑
i=1

ni∑
j=1

(V Lij − µv)2 + bη


∼ Gamma

Shape =
1

2

N∑
i=1

ni + aη,Rate =
1

2

N∑
i=1

ni∑
j=1

(V Lij − µv)2 + bη



6. Σ−1
b : P (Σ−1

b ) ∼Wishart(n0, c0I), (I = Identity matrix)

P (Σ−1
b |Ω(−Σb),D) ∝

|Σ−1
b |

N/2 exp

(
−1

2

N∑
i=1

(bi − µb)
′Σ−1
b (bi − µb)

)

× |Σ−1
b |

1
2

(n0−p−1) exp

[
−1

2
tr
(

(c0I)−1Σ−1
b

)]
∝ |Σ−1

b |
1
2

(N+n0−p−1) exp

(
−1

2

[
N∑
i=1

(bi − µb)
′Σ−1
b (bi − µb)

′ + tr
[
(c0I)−1Σ−1

b

]])

∝ |Σ−1
b |

1
2

(N+n0−p−1) exp

(
−1

2
tr

[(
N∑
i=1

(bi − µb)(bi − µb)
′ + (c0I)−1

)
Σ−1
b

])

∼Wishart

N + n0,

(
N∑
i=1

(bi − µb)(bi − µb)
′ + (c0I)−1

)−1

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7. θ,βs : π(θ), π(βs) ∼ 1

P (θ|Ω−θ,D), P (βs|Ω−βs ,D) ∝

exp

{
N∑
i=1

δi
[
(ψi(β,bi, Si)θ + z′iβs

]}

× exp

[
−

N∑
i=1

K∑
k=1

λkBik

]

= No closed form

8. V Lij : P (V Lij) ∼ N(µv, ηv)I(0 ≤ V Lij ≤ cij), where cij = ∞ when V Lij is missing,

and cij = Lij when V Lij is left-censored at limit of detection Lij . I() denotes the

indicator function.

P (V Lij |Ω,D−V Lij , 0 ≤ V Lij ≤ cu) ∝

exp

{
−ξ

2
(CD4ij − ψij(β,bi))2

}
× exp

{
−ηv

2
(V Lij − µv)2

}
× exp

{
δi
[
(ψi(β,bi, Si)θ + z′iβs

]}

× exp

[
−

K∑
k=1

λkBik

]

× I(0 ≤ V Lij < cij)

= No closed form
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9. λk : P (λk) ∼ Gamma(Shape = aλ,Rate = bλ)

P (λk|Ω(−λk),D) ∝

λdkk × exp

[
−

N∑
i=1

λkBik

]

× λaλ−1
k exp [−bλλk]

∼ Gamma

(
Shape = dk + aλ,Rate =

N∑
i=1

Bik + bλ

)

10. µb : P (µb) ∼ N2(0,Σµb)

P (µb|Ω(−µb),D) ∝ 1

|Σ−1
µb |1/2

exp
[
µ′b(Σµb)

−1(µb)
]

× exp

[
−1

2

N∑
i=1

(bi − µb)
′Σ−1

b (bi − µb)

]

∝ exp

[
−1

2
µ′b(Σµb)

−1µb −
1

2

N∑
i=1

(bi − µb)
′Σ−1

b (bi − µb)

]

Note : b̄ =
1

N

N∑
i=1

bi

∼ N2

((
Σµb +NΣ−1

b

)−1 (
NΣ−1

b b̄
)
,
(
Σµb +NΣ−1

b

)−1
)
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