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ABSTRACT

Matthew A. Psioda: Statistical Methods for Bayesian Clinical Trial Design and DNA Methylation
Deconvolution

(Under the direction of Joseph Ibrahim and Wei Sun)

We consider the Bayesian clinical trial design problem in situations where a historical trial is

available to inform the design and analysis of a future trial. Currently the FDA requires that

all proposed designs exhibit reasonable type I error control. Traditionally, frequentist type I error

control has been required. This is currently the case in the Center for Drug Evaluation and Research

but no longer in the Center for Devices and Radiological Health. The requirement that a design

exhibit frequentist type I error control necessitates that all prior information be discarded. We

propose several Bayesian solutions that balance the need to control type I errors with the desire to

utilize high quality prior information.

For scenarios where the historical trial informs the parameter being tested, we propose Bayesian

versions of the type I error rate and power that are defined with respect to the posterior distribution

for the parameters given the historical data and conditional on the respective hypothesis being true.

We demonstrate that in designs that control the Bayesian type I error rate, meaningful amounts of

prior information can be borrowed but that the size of the new trial must be relatively large to justify

borrowing a large amount of historical information. We tailor our design methodology for survival

applications using proportional hazards and cure rate models. We also develop Bayesian adaptive

designs for large cardiovascular outcomes trials (CVOTs) which incorporate control information

from a historical CVOT conducted in a similar patient population. We propose an all-or-nothing

adaptive design utilizing the power prior as well as a dynamic borrowing adaptive design utilizing

a novel extension of the joint power prior.

Separately, we present a statistical deconvolution method for DNA methylation data from

bisulfite sequencing experiments. We propose a joint model for methylation data from a set of
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heterogeneous tissue samples and another set of reference tissue samples. Unlike other methylation

deconvolution methods, our method allows one to estimate the heterogeneous tissue composition

and provides improved estimates of cell type-specific methylation levels through the process of de-

convolution. We demonstrate our method using data from DNA mixture tissues and simulation

studies.
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CHAPTER 1: INTRODUCTION

In this dissertation we present research on two important but otherwise unrelated topics. The

first topic, which is treated with the most depth, is the problem of Bayesian clinical trial design in

situations where a previously completed clinical trial (i.e. a historical trial) is available to inform

the design and analysis of a future trial. The traditional frequentist approach to clinical trial design

requires that the type I error rate be controlled for every possible null value of the parameters.

However, such control is impossible if one wishes to incorporate any subjective prior information.

We propose several Bayesian design solutions that balance the need to control type I errors with

the desire to utilize high quality prior information for the purpose of decreasing the size or duration

of a future trial.

In Chapters 3 and 4 we propose and apply Bayesian versions of the type I error rate and sta-

tistical power in the design of superiority trials for time-to-event data. These Bayesian operational

characteristics are defined with respect to the posterior distribution for the parameters given the

historical trial data and conditional on the respective hypothesis being true. Chapter 3 focuses

on design (i.e. sample size determination) for time-to-event trials where a proportional hazards

assumption is tenable. Chapter 4 focuses on designs for time-to-event trials where a fraction of the

studied population is “cured” (i.e. immune to having the event).

In Chapter 5 we consider the design of large cardiovascular outcomes trials (CVOTs) utilizing

data from control subjects from a previously completed CVOT (i.e. a historical CVOT). Borrowing

information only through the control arm presents unique challenges. The benefit of randomization

in the new trial is essentially lost and it becomes important to adjust for prognostic factors to help

ensure subjects in the two trials are exchangeable. We develop two Bayesian adaptive designs to

address a potential lack of exchangeability: an all-or-nothing borrowing approach using the basic

power prior (Ibrahim and Chen, 2000) and an adaptive borrowing approach using a novel restricted

maximal borrowing power prior which is a special case of the joint power prior (Ibrahim and Chen,

1



2000).

In Chapter 6 we switch our focus to the second topic: statistical deconvolution of DNA methy-

lation levels. In this chapter we present a deconvolution method for DNA methylation data from

bisulfite sequencing experiments. We propose a joint model for methylation data from a set of

heterogeneous tissue samples and a set of reference tissue samples. Unlike other deconvolution

methods, our methods allows one to estimate the heterogeneous tissue composition and provides

improved estimates of cell type-specific methylation levels through the process of deconvolution.

Our method allows one to assess methylation at the cell type level whereas commonly used reference-

free methods do not. We demonstrate our method using real data from DNA mixture experiments

and from simulation studies.
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CHAPTER 2: LITERATURE REVIEW

2.1 Bayesian Clinical Trial Design

There is a growing demand for principled ways to incorporate knowledge from previously com-

pleted clinical trials in the design and analysis of future trials. Regulatory authorities, such as the

Food and Drug Administration (FDA), are increasingly embracing Bayesian methodology for this

purpose. For example, in 2010 the FDA issued guidance on using Bayesian methods in medical

device clinical trials (Food and Drug Administration, 2010). Recently, additional guidance has

been issued that discusses using Bayesian methods to extrapolate information from adult trials

to pediatric populations (Food and Drug Administration, 2016). At the Center for Devices and

Radiological Health, companies are encouraged to take advantage of good prior information on the

safety and effectiveness of their investigational devices through formal Bayesian analysis (Pennello

and Thompson, 2007). The FDA sees great promise in using Bayesian methods for incorporation

of prior information as well as for conducting adaptive trials (Campbell, 2011).

There is an extensive literature on Bayesian sample size determination methods. Details in

book format can be found in Spiegelhalter et al. (2004). Somewhat outdated reviews are given by

Adcock (1997) and Pezeshk (2003). Brief summaries of more recent work focusing on traditional

Bayesian operating characteristics are as follows:

Wang and Gelfand (2002) formalized a general Bayesian framework that can be used to calculate

the required sample size such that certain characteristics of the posterior meet a specified criteria

based on an assumed sampling model for the data, sampling prior for the parameters, and fitting

prior for the analysis. An example criterion is the average posterior variance criterion (APVC).

For this criterion, one seeks a sample size n such that E
[
var
(
h(θ)

∣∣yn)] ≤ ε for some chosen ε > 0,

where h(θ) is some functional of interest and yn is the data comprised of n observations. The

3



expectation is with respect to the prior predictive distribution for the data defined by the sampling

model for the data and sampling prior for the parameters. The authors present two sample size

determination examples. One is based on a survival model with censoring and the other is based on

a logistic regression model. This simulation-based framework has been widely adopted for Bayesian

sample size determination.

Pham-Gia and Turkkan (2003) present a computationally-intensive method to calculate the

exact sample size required so that the expected length of the highest posterior density (HPD)

interval for the difference in two binomial proportions is sufficiently small. M’Lan et al. (2008)

investigate binomial sample size determination using generalized versions of the average length

and average coverage criteria, median length and median coverage criteria, and the worst outcome

criterion (Joseph et al., 1995). They compare sample sizes derived from highest posterior density

intervals and equal-tailed credible intervals. In some cases, they develop closed-form sample size

formulas.

De Santis (2004) considers the problem of choosing the sample size for testing hypotheses using

Bayes factors. The predictive criterion proposed for determining the sample size is maximizing the

probability of obtaining substantial evidence in favor of the true hypotheses (or, equivalently min-

imizing the probabilities of having either misleading or weak evidence). The method is developed

for the normally distributed data and applied to the design of a bladder cancer clinical trial.

Inoue et al. (2005) explore parallels between Bayesian and frequentist methods for determining

sample size. The authors provide a simple but general framework for investigating the relation-

ship between the two approaches, based on identifying mappings to connect the Bayesian and

frequentist inputs necessary to obtain the same sample size. They highlight a somewhat surpris-

ing “approximate functional correspondence” between power-based and information-based optimal

sample sizes.

De Santis (2006) presents a robust Bayesian approach to the sample size determination problem

based on the lower bound, upper bound, and range of posterior quantities of interest. These

characteristics (e.g. the lower bound) are obtained by varying the prior over a class of distributions.

Specifically, the authors aim to select an appropriate sample size that guarantees the researcher

4



will observe a small value of the range and either a sufficiently large lower bound or a sufficiently

small upper bound for the posterior quantity of interest.

Clarke and Yuan (2006) give asymptotic expressions for the expected value (under a fixed pa-

rameter) of certain types of functionals of the posterior density. They obtain simple inequalities

which can be solved to give minimal sample sizes needed for various estimation goals. The au-

thors verify that the asymptotic bounds give good approximations to the expected values of the

functionals they approximate.

De Santis (2007) presents a general sample size determination method with a goal of choosing

the minimal sample size that guarantees probabilistic control on the performance of quantities that

are derived from the posterior distribution and used for inference. The author illustrates how the

class of power priors (Ibrahim and Chen, 2000) can be fruitfully employed to deal with lack of

homogeneity between historical data and observations of the upcoming experiment. The authors

discuss the need for discounting prior information and evaluating the effect of heterogeneity on the

optimal sample size. Some of the most popular Bayesian operational characteristics are reviewed

and their use is illustrated in several examples.

Brutti et al. (2008) consider determination of a sample size that guarantees a large posterior

probability that an unknown parameter of interest (e.g. a treatment effect) is greater than a chosen

threshold. The authors argue that a straightforward sample size criterion is to select the minimal

number of observations so that the predictive probability of a successful trial is sufficiently large.

In the paper the authors address sensitivity to prior assumptions by proposing a robust version

of the sample size criterion. Specically, instead of using a single prior distribution, the authors

consider a class of plausible priors for the parameter of interest. Robust sample sizes are then

selected by looking at the predictive distribution of the lower bound of the posterior probability

that the unknown parameter is greater than a chosen threshold. The authors consider classes of

ε-contamination priors (Berger and Berliner, 1986) for the flexibility and mathematical tractability.

Most of the aforementioned works have focused on computing sample size based on “traditional”

Bayesian operating characteristics (i.e. the APVC). As noted above, regulatory bodies such as the

FDA require evaluation of type I error rates and power as part of a study design proposal so it

5



is natural to plan a Bayesian clinical trial where the prior is calibrated to ensure adequate type

I error control and power. The idea that these operating characteristics should be considered for

Bayesian clinical trial designs is not new (Rubin et al., 1984; Box, 1980). A variety of authors have

approached Bayesian sample size determination from the perspective of statistical power and type

I error rates with some attempting to incorporate subjective prior information in the design. Brief

summaries of selected works are as follows:

Spiegelhalter and Freedman (1986) develop sample size determination method which takes into

account prior clinical opinion about the treatment difference. This method adopts the point of

clinical equivalence (determined by interviewing the study participants) as the null hypothesis.

Decision rules at the end of the study are based on whether the interval estimate of the treatment

difference includes the null hypothesis. The prior distribution is used to predict the probabilities

of making the decisions to select one of the two treatments or to reserve final judgment. The

authors advocate that the sample size be chosen to control the predicted probability of reserving

final judgment. An example is presented using normally distributed data from a cancer clinical

trial.

Brown et al. (1987) present a sample size determination method that uses the results of a

historical study to predict the outcome of a subsequent trial in a setting where the response is binary.

The author’s method can be easily generalized to other two-sample cases for which power can be

calculated in closed-form (e.g. exponential survival), and to one-sample cases such as demonstrating

a minimal response rate. Bayesian methods are used to obtain a posterior distribution based on

an analysis of the historical study and this posterior is used as the “state of knowledge” for the

parameters of interest. The probability that the future study will demonstrate treatment superiority

is obtained by using the posterior distribution to compute the average power over the parameter

space.

Weiss (1997) presents an approach to sample size determination that aims to make it a priori

probable that the Bayes factor will be greater than a given cut-off of prespecified size. Similar

to Brown et al. (1987), the approach permits the propagation of uncertainty in quantities which

are unknown (i.e. the true effect size) and permits the computation of power and type I error

6



rates either conditionally (i.e. conditional on the effect size being larger than a certain value) or

unconditionally (based on the prior distribution for the effect size). The approach is illustrated for

a one-sided and for a two-sided alternative hypothesis for continuous data with a normal prior.

Chen et al. (2011) develop a sample size determination method specifically for the design of

non-inferiority clinical trials using subject-level historical control data. The authors compare a

hierarchical modeling approach for information borrowing (which necessitates multiple historical

studies) with the power prior approach of Ibrahim and Chen (2000). The authors consider use

of the basic power prior which fixes the amount of information borrowed a priori as well as the

normalized power prior (Duan, 2005; Duan et al., 2006) which attempts to dynamically adjust the

amount of information borrowed from the historical study based on the level of agreement between

the two data sets. We note that the historical studies only provide information on the control group

in the case study and the type I error and power are computed under the implicit assumption that

the generative model for the new study data is consistent with the historical data. Hence the type I

error control demonstrated by the method is not as stringent as traditional frequentist type I error

control. The normalized power prior is a special case of the joint power prior proposed by Ibrahim

and Chen (2000) and it was developed to address some shortcomings of the joint power prior that

were described in Duan (2005).

Hobbs et al. (2011) propose the commensurate power prior which is another extension of the

normalized power prior (Duan, 2005; Duan et al., 2006). The commensurate power prior is quite

different from the normalized power prior in that it does not assume a common parameter in the

models for the historical and new study. Instead the new study parameter is assumed to be normally

distributed about the historical study parameter. The precision parameter in the normal component

of the commensurate power prior is called the commensurability parameter and this parameter is

incorporated into the prior for the parameter that controls the amount of information borrowed (i.e.

the power on the historical study likelihood). The authors compare the frequentist performance

of several informative prior choices using simulations and present an example using a colon cancer

trial that illustrates the adaptive borrowing approach in the case of a linear model. In general the

method does not lead to frequentist type I error control. However, the authors further compare

calibrated versions of their commensurate power prior and other informative priors (including the
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normalized power prior) where all methods control the type I error rate at the nominal level. The

power function with the largest area under the curve was based on the author’s commensurate

power prior. One draw back of the authors approach is that is requires normally distributed data

to apply without approximation. Hobbs et al. (2012) propose extensions to the commensurate

power prior and evaluate the frequentist and Bayesian properties using general and generalized

linear mixed regression models. The authors provide an example analysis of a colon cancer trial

comparing time-to-disease progression using a Weibull regression model. Use of the commensurate

power prior (as well as the normalized power prior and joint power prior) are closely related to

meta-analysis. Determining a sample size for a future study using these meta-analytic priors is

challenging due to the computational burden of fitting models with them. A complete review of

the basic power prior and its generalizations can be found in Ibrahim et al. (2015).

Ibrahim et al. (2012b) develop a Bayesian meta-analysis framework using survival regression

models to assess whether the size of a clinical development program is adequate to evaluate a partic-

ular safety endpoint. Their sample size determination methodology for meta-analysis clinical trial

design focuses on controlling the type I error rate and providing adequate statistical power. Using

the partial borrowing power prior (i.e. the basic power prior where not all parameters are shared

between the new and historical study), the authors incorporate the historical survival meta-data

into the statistical design. The authors develop a simulation-based algorithm for estimating relevant

operational characteristics of the Bayesian meta-analysis trial design. The proposed methodology

is applied to the design of a phase 2/3 development program including a non-inferiority clinical trial

for CV risk assessment in type II diabetes mellitus (T2DM). In Chen et al. (2014a) this methodol-

ogy is extended to a group sequential clinical trial design framework. In both papers the authors

show that minimal information can be borrowed without inflating the type I error rate (e.g. that

one can borrow ≤ 2% of the available information). The version of type I error rate that the

authors attempt to control is essentially the same as in Chen et al. (2011) with the only difference

being that information is being borrowed on the parameter being tested. This key difference makes

information borrowing essentially impossible.

Chen et al. (2014b) propose a Bayesian approach for the design of superiority clinical trials

using recurrent events frailty regression models. Historical recurrent events data from an already
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completed trial are incorporated into the design via the partial borrowing power prior. The authors

develop a simulation-based algorithm for computing various design quantities such as the type I

error rate and power. Similar to Ibrahim et al. (2012b) and Chen et al. (2014a), the results

demonstrate that little information can be borrowed if the design is required to control type I error

in a traditional sense.

2.2 Bayesian Analysis of Proportional Hazards and Cure Rate Models

Bayesian analysis of proportional hazards and cure rate models has been considered by many

authors. We briefly review the relevant literature in this section. A definitive text on Bayesian

survival analysis was provided by Ibrahim et al. (2001b). This text includes extensive discussion

on Bayesian analysis of proportional hazards models as well as cure rate models.

Bayesian analysis of the Cox partial likelihood (Cox, 1975) dates back to the work of Kalbfleisch

(1978) who was the first to give a fully Bayesian justification. A definitive work on Bayesian

justifications of the partial likelihood was given by Sinha et al. (2003). Therein the authors establish

new (both naive and formal) Bayesian justifications for the Cox partial likelihood and its various

modifications. The authors consider cases with time-dependent covariates, time-varying regression

parameters, continuous time survival data, and grouped survival data. In addition, the authors

present a Bayesian justification of a modified partial likelihood for handling ties.

Ibrahim and Chen (1998) propose a class of informative prior distributions for a proportional

hazards model. A novel construction of the prior is developed based on the notion of the availability

of historical data and using the power prior. This work discussed using the power prior several years

before the work of Ibrahim and Chen (2000), wherein the power prior was formalized. The authors

took a semi-parametric approach for modeling the baseline hazard which has become standard for

Bayesian proportional hazards models. They also developed an efficient Gibbs sampling framework

for model fitting.

Cure rate models date back to Berkson and Gage (1952) where the mixture cure rate model

was formalized. The authors develop a simple mixture model for survival data where an unknown

fraction of subjects are “cured” and the remaining complement have survival times governed by an
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exponential survival distribution. The class of promotion time cure rate models are an important

subclass of mixture cure rate models. The promotion time cure rate model was originally proposed

by Yakovlev et al. (1993). These models have a natural biological motivation based on a latent

competing risk framework where metastasis competent tumor cells (that survive treatment) define

the competing risks.

Bayesian analysis of promotion time cure rate models was considered first by Chen et al. (1999).

The authors provide a thorough discussion of the natural motivation and interpretation of the

model and derive several novel properties of it. In particular, the authors show that the model has

a proportional hazards structure on the marginal subhazard when the cured fraction is modeled

as a function of covariates. They also establish a mathematical connection with the standard

mixture cure rate model. They discuss prior elicitation in some detail and propose classes of

non-informative and informative prior distributions (the power prior being among them). Several

theoretical properties of the proposed priors and resulting posteriors are derived.

Ibrahim et al. (2001a) extend the Bayesian version of the promotion time cure rate model given

in Chen et al. (1999). Specifically, the authors propose a semi-parametric cure rate model with

a smoothing parameter that controls the degree of parametricity in the right tail of the survival

distribution. The authors argue that such a parameter is important for these models and can

influence posterior estimates. Several novel properties of the proposed model are derived and a

class of informative priors based on historical data is proposed (i.e. the power prior). A case study

involving a melanoma clinical trial is discussed in detail to demonstrate the proposed methodology.

Chen et al. (2002a) provide an interesting comparison of several Bayesian models for time-to-

event data. They consider a piecewise exponential baseline hazard proportional hazards model, a

fully parametric cure rate model, and a semi-parametric cure rate model. For each model, they

derive the likelihood function and examine some of its properties for carrying out Bayesian inference

with non-informative priors. They also examine model identifiably issues and give conditions which

guarantee identifiably. The authors compare the performance of the models based on the conditional

predictive ordinate (CPO) which is defined using the posterior predictive distribution for each data

point based on the posterior with that data point left out. The authors perform a detailed case
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study using the E1690 clinical trial (Kirkwood et al., 2000).

Ibrahim et al. (2012a) consider a joint analysis of the E1684 clinical trial (Kirkwood et al.,

1996) and the E1690 clinical trial (Kirkwood et al., 2000) using cure rate models and the power

prior. This was an interesting application of Bayesian methods to synthesize information from two

clinical trials but it did not address how to design a future trial given information from a previously

completed clinical trial.

2.3 DNA Methylation Deconvolution

The concept of DNA methylation deconvolution arises in two types of studies. In studies aimed

at identifying associations between DNA methylation and phenotypes of interest (e.g. comparing

diseased cases and healthy controls), researchers generally measure methylation levels using het-

erogeneous tissue samples, such as blood, which can be collected easily. The tissue samples are

heterogeneous in the sense that they are comprised of several (possibly many) functionally distinct

cell types with each having a potentially distinct DNA methylation signature that may or may not

be associated with the disease phenotype. For example, blood contains many different types of

white blood cells, including neutrophils, basophils, eosinophils, lymphocytes, and monocytes. In

addition to white blood cells, organs such as the liver can contribute significantly to the circulating

pool of DNA in blood (Lo et al., 1998). Presumably, each cell type represented in a heterogeneous

tissue contributes DNA for the methylation measurement in accordance with its relative abun-

dance in the tissue sample. If the cell types comprising a set of heterogeneous tissue samples have

functionally different methylation signatures, as they do in blood (Reinius et al., 2012; Houseman

et al., 2012), it is critically important to control for cell type composition in analyses that attempt

to establish associations between tissue-level methylation and phenotypes of interest. This fact is

increasingly appreciated and it has been argued that many purported associations between age and

DNA methylation can be attributed to tissue composition bias that was poorly addressed in the

analysis (Jaffe and Irizarry, 2014).

In studies aimed at identifying associations between tissue composition and phenotypes of in-

terest, DNA methylation can be used to facilitate estimation of heterogeneous tissue composition.
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In this setting, the DNA methylation levels of the constituent cell types are not of direct interest.

Rather, the cell type-specific DNA methylation levels simply offer a means to estimate the het-

erogeneous tissue’s composition. For example, Sun et al. (2015) performed a tissue composition

study in hepatocellular carcinoma (HCC) and observed increased levels of liver DNA in plasma

from cancer patients compared to healthy controls. Tissue composition studies require estimates

for the DNA methylation levels of the constituent cell types. These estimates typically comes from

reference tissue samples that are comprised predominately of one cell type though they are gener-

ally not perfectly homogeneous (Reinius et al. (2012), supplemental table 2). The reference tissues

are constructed through a procedure such as fluorescence activated cell sorting (FACS), which can

be laborious. As a result, reference tissues often have few replicates (biological or technical). In

the case of bisulfite sequencing data, there are often no replicates of any kind.

Broadly speaking, one may define DNA methylation deconvolution as the process of estimating

cell type-specific methylation levels and/or heterogeneous tissue composition using DNA methyla-

tion levels measured from heterogeneous tissue samples. The statistical approaches developed for

these studies generally fall into two classes: reference-based and reference-free methods. Reference-

based methods can be utilized for both types of studies described above whereas reference-free

methods are generally only useful for studies attempting to associate tissue-level methylation with

phenotypes of interest.

Reference-based methods use a set of reference samples from homogeneous cell type tissues

corresponding to the cell types thought to be in the heterogeneous tissues. The reference tis-

sue samples serve as the basis for deconvolution. Houseman et al. (2012) proposed the most

widely used method to estimate cell-type composition in blood. The method was designed for the

Infinium R©HumanMethylation27 BeadChip and a set of reference samples was published along with

the statistical methodology. In the publication, the authors identified a subset of probes that were

informative for the white blood cell types and these probes were used in the deconvolution process.

Jaffe and Irizarry (2014) extended the method by augmenting the selected probe set based on the

Infinium R©HumanMethylation450 BeadChip, which is newer and more popular. The Houseman

reference-based method is similar in spirit to a regression calibration method and is based on a

set of three linear models. Following Houseman et al. (2012), the model for the reference cell type
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tissue methylation levels is

Y0h = β0w0h + ε0h

where Y0h is an m× 1 vector of methylation values corresponding to homogeneous cell type tissue

sample h, w0h is a d0 × 1 ANOVA type covariate vector that identifies the cell type to which a

measurement corresponds, β0 is a m×d0 matrix of average methylation values for the d0 cell types

at the m loci, and ε0h is a vector of errors. The model for the heterogeneous tissue methylation

levels is

Y1i = β1z1i + ε1i

where Y1i is a m× 1 vector of methylation values corresponding to heterogeneous tissue sample i,

z1i is a d1 × 1 covariate vector, β1 is a m× d1 matrix, and ε1i is a vector of errors. The surrogacy

model is given by

β1 = 1mγ
T
0 + β0Γ + U

where Γ is a d0 × d1 matrix that summarizes the associations between the rows of β0 and β1, γ0

is a d1 × 1 vector and U is a matrix of errors. The author shows that, under some conditions,

one can estimate the cell type compositions of the heterogeneous tissues from this model. The key

assumption is that E [Y1i | z1i] can be written as

E [Y1i | z1i = z] = ξ(z) +

d0∑
k=1

b0,kω
(z)
k

where β0 = (b0,1, . . . ,b0,d0), ω
(z)
k is the cell type k mixture fraction in the tissue, and ξ(z) is an

m×1 vector that is orthogonal to the column space of β0. The authors show that the orthogonality

assumption can be verified to some degree through sensitivity analysis but that bias results when it

does not hold. As noted above, the extension of this method by Jaffe and Irizarry (2014) was simply

to select an appropriate set of m probes from the newest Infinium R©BeadChip technology. While

Houseman’s method attempts to account for the fact that reference samples provide estimates of the
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true average cell type methylation levels, it does not produce refined estimates of those methylation

levels by incorporating information from the heterogeneous tissues.

In a study of methylation levels in rheumatoid arthritis patients, Liu et al. (2013) attempted

to adjust for cell type composition using estimates from the Houseman referenced-based method

in a simple linear regression model. Jaffe and Irizarry (2014) demonstrated this may be a poor

approach. Jaffe and Irizarry (2014) also consider a surrogate variables approach, named RUV

(Gagnon-Bartsch and Speed, 2012), that out performed the naive method of adjustment used by

Liu et al. (2013). Application of the RUV method still resulted in significant confounding compared

to a gold standard approach based on FACS. The RUV approach attempts to remove unwanted

variation (hence the name) based on a set of negative control probes. Note that the RUV approach

was not designed to solve the deconvolution problem and so the poor performance is not surprising.

Similar approaches to that used by Liu et al. (2013) have been proposed by others. For example,

Montaño et al. (2013) and Guintivano et al. (2013) propose methods specifically for brain tissue

that use data from the CHARM array (Irizarry et al., 2008).

The second class of statistical methods are reference-free. This class of methods has the same

goal as the reference-based methods used by Liu et al. (2013), Montaño et al. (2013), and Guinti-

vano et al. (2013) in that they attempt to provide a valid comparison of tissue-level methylation by

adjusting for cell type composition. However, as suggested by their name, reference-free methods

do so without requiring reference samples. Houseman et al. (2014) employ a singular value decom-

position (SVD) to separate cell-composition effects from the effect of interest. Zou et al. (2014) use

a similar approach but the role of dependent and independent variables are reversed. The potential

utility of reference-free methods is obvious. They do not require the potentially burdensome step

of obtaining reference tissue samples. However, reference-free methods cannot provide information

about cell type-specific methylation levels which is ultimately the level of granularity that is of

greatest biological importance. Moreover, the reference-free methods are designed to detect so-

called direct effects which may not fit the biological process under study. Houseman et al. (2014),

propose the model

Y = BXT + MΩT + E
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Ω = XΓ + Ξ

where Y is an m × n matrix of methylation values, B is an m × p matrix of direct epigenetic

effects, Γ is a p × k coefficient matrix representing cell-proportion effects, X is a n × p matrix of

covariates, M is an m × k matrix of cell type-specific mean methylation values (falling between 0

and 1), Ω is an n× k matrix of of subject-specific cell proportions, E is an m× n matrix of errors,

and Ξ is an n× k matrix of errors. The authors state that in adjusted epigenome-wide association

studies (EWAS), B is of direct interest. These direct affects can be interpreted as covariate effects

that influence methylation levels in all cell types in the heterogeneous tissue equally and hence

are not mediated by cell composition. However, since the covariates may also be associated with

compositional differences, it is important to correct for tissue composition in the analysis. While

such direct affects may indeed exist, we find it more reasonable to posit that covariates (e.g. disease

phenotype) may influence the methylation level for one or more cell types in the tissue. Such cell

type-specific methylation effects are harder to study but may be more biologically meaningful. The

reference-free method proposed by Houseman et al. (2014) was used by Charlton et al. (2014) in

the study of Wilms tumors. Houseman et al. (2015) provide an review-like discussion of DNA

methylation deconvolution using the Infinium R©BeadChip data.

Recently deconvolution using bisulfite sequencing (BS-seq) data has been studied. This type

of data presents unique challenges. For methylation data collected using Infinium R©BeadChip

technology, multiple replicates for reference tissues are typically available (e.g. data from Houseman

et al. (2012) and Reinius et al. (2012)). However, for BS-seq data, reference tissues generally do not

have replication making the method of Houseman et al. (2012) impossible to apply with adaptation.

Sun et al. (2015) use a quadratic programming approach (Van den Meersche et al., 2009) to solve

a simultaneous system of equations constructed using methylation estimates from heterogeneous

tissue samples using 14 reference tissue samples: liver, lungs, esophagus, heart, pancreas, colon,

small intestines, adipose tissues, adrenal glands, brain, T cells, B cells, neutrophils, and placenta.

The majority of these data were collected as a part of the NIH Roadmap Epigenomics project

(Bernstein et al., 2010) and do not have replicates (biological or technical) although some of the

reference tissue samples are pooled from multiple donors. Using these reference tissues the authors
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identified a set of 5,820 genomic regions (500bp in length) that were informative of the 14 reference

tissue types. For each region the methylation level in each of the samples was estimated as the

percentage of all CpGs that were methylated. Then, for heterogeneous tissue sample s = 1, ..., S,

the following linear system was solved

Ys = Mρs

where Ys is a m × 1 vector of estimated methylation levels in heterogeneous tissue sample s at

the m genomic regions, M is the m× k matrix of estimated methylation levels for the k reference

samples considered in a given deconvolution problem (k was generally 5-6, not 14) and ρs was the

unknown k×1 vector of tissue composition fractions that satisfied the constraints that 0 ≤ ρs,j ≤ 1

for j = 1, ..., k and
∑k

j=1 ρs,j = 1. The authors first demonstrated their method was able to recover

the composition fractions of DNA mixture tissues. Then, the authors demonstrated their method

on a real data set comprised of plasma samples from 15 pregnant women (five from each trimester)

and validated their ability to estimates the placental composition in the mother’s blood plasma

using paternally inherited fetal SNP alleles that were not possessed by the mother.

Ziller et al. (2013) use a similar quadratic programming algorithm to deconvolve in silico mix-

tures of HUES64 and hippocampus whole genome bisulfite sequencing (WGBS) libraries (i.e. het-

erogeneous tissues constructed by combining reads from sequenced HUES64 and hippocampus

libraries). The work of Sun et al. (2015) and Ziller et al. (2013) both focus on statistical decon-

volution as a method for estimating the composition of a heterogeneous tissue. The quadratic

programming approaches does not take into account the fact that the reference tissues provide

estimates of average methylation level for a tissue type and so these approach could suffer from

some degree of measurement error bias. The quadratic programming approach used by Sun et al.

(2015) and Ziller et al. (2013) has been previously proposed for gene expression data by Gong et al.

(2011) and others.
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CHAPTER 3: BAYESIAN DESIGN OF A SURVIVAL TRIAL UNDER
A PROPORTIONAL HAZARDS ASSUMPTION USING HISTORICAL DATA

3.1 Introduction

There is a growing demand for principled ways to incorporate knowledge from previously com-

pleted clinical trials in the design and analysis of future trials. Regulatory authorities, such as

the Food and Drug Administration (FDA), are increasingly embracing Bayesian methodology for

this purpose. For example, in 2010 the FDA issued guidance on using Bayesian methods in medi-

cal device clinical trials (Food and Drug Administration, 2010). Recently additional guidance has

been issued that discusses using Bayesian methods to extrapolate information from adult trials to

pediatric populations (Food and Drug Administration, 2016).

We consider Bayesian design of a superiority survival trial in a situation where a previously

completed clinical trial (i.e. a historical trial) is available to inform the design and analysis of the

new trial. During design one must identify appropriate values of the controllable trial characteristics

such as the number of subjects to enroll and the number of events required for analysis. An appro-

priate statistical methodology must also be proposed for hypothesis testing. These choices are made

to ensure the trial design has desirable operating characteristics. For confirmatory trials, the pri-

mary operating characteristics of interest are the type I error rate and statistical power. Currently

the Food and Drug Administration (FDA) requires that all proposed trial designs demonstrate rea-

sonable type I error control. Traditionally, frequentist type I error control has been required. This

is currently the case for the Center for Drug Evaluation and Research but no longer for the Center

for Devices and Radiological Health where fully Bayesian approaches are common. For a design

to exhibit Frequentist type I error control, the type I error rate cannot exceed some pre-specified

threshold for any possible null value of the parameters. The requirement to have frequentist type

I error control is not an issue for objective Bayesian designs (i.e. designs utilizing non-informative
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priors that are designed to yield good frequentist operating characteristics). In contrast, Bayesian

hypothesis testing using informative priors directly conflicts with the frequentist notion of type I

error control. As our empirical results will demonstrate, ensuring frequentist type I error control

necessitates that all prior information be discarded. See Appendix A.1 for a proof of this result in

a sample case.

As a solution to this predicament, we propose a design methodology that yields Bayesian type

I error control. Unlike the traditional frequentist approach, our Bayesian approach controls a

weighted average type I error rate with weights determined by the posterior distribution of the

parameters given the historical data and conditional on the null hypothesis being true. Such an

approach is sensible when one has pertinent information about the null and alternative hypotheses

(in the form of data from a previously completed trial) and when one still wants to protect against

type I errors in a equitable way. The Center for Devices and Radiological Health will consider

designs that control a Bayesian version of type I error when the historical data are of high quality

(Pennello and Thompson, 2007). We demonstrate that in a design that has Bayesian type I error

control, meaningful amounts of prior information can be incorporated into the design and analysis

of the new trial. However, borrowing the prior information is not free. When the historical data are

informative about the parameter being tested, the size of the new trial must be relatively large to

justify borrowing a large fraction of the available information. We also introduce a complementary

Bayesian version of statistical power, defined as a weighted average statistical power with weights

determined by the posterior distribution of the parameters given the historical data and conditional

on the alternative hypothesis being true. We demonstrate that designing a trial to have adequate

Bayesian power can lead to a much more conservative sample size than designing a trial to have

adequate power based on fixed values of the parameters, such as their posterior means given the

historical data.

The trial design methodology we present in this chapter is essentially a Bayesian sample size

determination method. There is a large literature on Bayesian sample size determination methods.

Adcock (1997) gave an early review. More recent contributions include Rahme and Joseph (1998),

Rubin and Stern (1998), Katsis and Toman (1999), Simon (1999), Wang and Gelfand (2002),

Pham-Gia and Turkkan (2003), Spiegelhalter et al. (2004), Inoue et al. (2005), Clarke and Yuan
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(2006), De Santis (2007), M’Lan et al. (2008), Chen et al. (2011), Ibrahim et al. (2012b), Chen

et al. (2014a), and Chen et al. (2014b). Much of this literature focuses on simple models including

one and two sample normal or binomial models, linear regression models, and generalized linear

regression models. Comparatively little has been done with survival models for right-censored

data. Notable exceptions are Ibrahim et al. (2012b), Chen et al. (2014a), and Chen et al. (2014b).

Bayesian designs which control type type I error in some sense have been recently considered by

Chen et al. (2011), Ibrahim et al. (2012b), Chen et al. (2014a), and Chen et al. (2014b). The

approach to type I error control considered by these authors is closely related to frequentist type I

error control and hence, is quite different from the approach that we propose.

Our design methodology utilizes a stratified proportional hazards regression model with a flexi-

ble piecewise constant baseline hazard for each stratum. Information is borrowed from the historical

trial by way of the power prior of Ibrahim and Chen (2000). Bayesian analysis of proportional haz-

ards models using the power prior has been considered in Ibrahim and Chen (1998), Ibrahim et al.

(2001b), and Chen et al. (2002a). However, our work offers key new insights. We obtain a previously

unrecognized closed-form for the posterior distribution of the hazard ratio regression parameters

and establish a new connection between this posterior and the weighted Cox partial likelihood

(Cox, 1975). By virtue of being able to integrate out the baseline hazard analytically, we are able

to develop an efficient simulation-based design methodology that avoids Markov Chain Monte Carlo

(MCMC) methods through an accurate normal approximation to the posterior distribution for the

hazard ratio regression parameters.

The rest of this chapter is organized as follows: In Section 3.2 we develop a general cumulative

hazard model for survival data under a proportional hazards assumption and derive the corre-

sponding likelihood. In Section 3.3 we derive a closed-form for the posterior distribution of the

hazard ratio regression parameters (up to normalizing constant) and we discuss a new connection

between this posterior and the weighted Cox partial likelihood. In Section 3.4 we formally define

our Bayesian versions of type I error and power and discuss the simulation process for determining

an appropriate set of controllable trial characteristics for the future trial. Section 3.5 presents a

detailed example of our methodology using data from a previously published clinical trial. We close

the chapter with some discussion in Section 3.6.
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3.2 The Piecewise Constant Hazard Proportional Hazards Model

We consider a flexible proportional hazards model where the baseline hazard is allowed to vary

across S levels of a stratification variable. The cumulative hazard for subject i of n is given by

Λi (t) = Λ[si] (t) exp
(
γzi + βTxi

)
(3.2.1)

where si is the stratum to which subject i belongs, Λ[s] (t) is the baseline cumulative hazard for

stratum s, zi is a binary treatment indicator, xi = (xi1, ..., xip) is a p × 1 vector of baseline

covariates, γ is the log hazard ratio for treatment versus control, and β = (β1, ..., βp) is a p × 1

vector of regression coefficients.

Let λ[s] (t) denote the piecewise constant baseline hazard for stratum s. We partition the time

axis into Ks intervals according to the change points 0 = ts,0 < ts,1 < .... < ts,Ks = ∞ and let

λsk > 0 denote the constant hazard value over interval Is,k = (ts,k−1, ts,k]. We denote the set of all

baseline hazard parameters by λ and all model parameters by θ = (λ,β, γ). We refer to this model

in its entirety as the piecewise constant baseline hazard proportional hazards model (PWC-PH)

model. The PWC-PH model is commonly used in Bayesian survival analysis when the proportional

hazards assumption is tenable (Ibrahim et al., 2001b).

Let ti and ci be the time-to-event and time-to-censorship for subject i, respectively. We assume

ci is independent of ti conditional on (zi,xi). For subject i, we define yi = min (ti, ci) to be the

observation time, νi = I [ti ≤ ci] to be the indicator that an event was observed, νik to be the

indicator that the event occurred in interval Isi,k, and rik to be the subject’s time at risk in interval

Isi,k. We denote the set of indices corresponding to subjects from stratum s by Gs. The likelihood

can be written as follows:

L (θ |D) ∝
n∏
i=1

{
λ[si] (yi)φi

}νi exp
[
−Λ[si] (yi)φi

]
∝

S∏
s=1

Ks∏
k=1

λαsk
sk e

−βskλsk ×
n∏
i=1

φνii (3.2.2)

where αsk =
∑

i∈Gs
νik is the total number of events for subjects from stratum s occurring in
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interval Is,k, φi = exp
(
γzi + βTxi

)
is the hazard ratio regression function for subject i, βsk =∑

i∈Gs
φirik is the sum of scaled risk times for subjects from stratum s in interval Is,k, and D =

{(yi, νi, zi,xi) : i = 1, ..., n} is the observed data. For each stratum we assume the partition of

the time axis is known so that νik and rik are known given yi and νi. Note the factorization

of the likelihood in (3.2.2). The left term is a product of
∑S

s=1Ks independent gamma kernels

(conditional on the hazard ratio regression parameters) and the right term is a function of the

hazard ratio regression parameters that does not depend on the baseline hazard. We will exploit

this factorization to obtain a closed-form marginal distribution for the hazard ratio regression

parameters in Section 3.3.

3.3 The Posterior Distribution under the Basic Power Prior

We consider the case where a single historical trial is available to inform the design and analysis

of the future trial. The basic form of the power prior is as follows:

π0

(
θ
∣∣D0, a0

)
∝ [L(θ|D0)]a0 π0(θ) (3.3.1)

where 0 ≤ a0 ≤ 1 is a fixed scalar parameter, D0 is the historical data, L(θ|D0) is the likelihood

for θ given the historical data, and π0(θ) is an initial prior for θ. When a0 = 0 the historical data is

essentially discarded and the power prior reduces to the initial prior. In contrast, when a0 = 1 the

power prior corresponds to the posterior distribution from an analysis of the historical data using

the initial prior. For intermediate values of a0 the weight given to the historical data is diminished

to some degree leading to a prior for the new trial that is more informative than the initial prior

but less informative than using the historical trial posterior as the prior for the new trial.

The power prior is appealing for many reasons, not the least of which is the fact that it provides

a semi-automatic mechanism for transforming historical data into a prior for subsequent analyses.

One only needs to elicit a value for a0 for the prior to be fully specified. Often the value of a0 is

determined a priori to ensure the trial design has some desired operating characteristic. In our case,

we will maximize a0 under the constraint that the trial design has Bayesian type I error control.

For a complete review of the basic power prior and its generalizations see Ibrahim et al. (2015).
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We consider the same PWC-PH model for the historical trial that was given in (3.2.1). For

now, we assume that all parameters are shared. We discuss other scenarios in Appendix A.2. A

default improper initial prior is obtained by taking

π0 (θ) ∝ π0 (γ,β)× π0 (λ)

with π0 (γ,β) ∝ 1 and π0 (λ) ∝
∏S
s=1

∏Ks
k=1 λ

−1
sk . The prior for λ, when applied to a simple PWC

hazard model, is the Jeffreys prior (Jeffreys, 1946). The resulting joint posterior is proper as long as

at least one event is observed in every interval for each stratum. A proper alternative is obtained by

taking π0 (γ,β) ∝ Normal (0,Σ0) with Σ0 = σ2
0 · I and π0 (λ) ∝

∏S
s=1

∏Ks
k=1 Gamma (λsk | δ0, δ0).

For the proper priors to be non-informative, one would take σ2
0 to be large and δ0 to be small

(inverse scale parametrization). In what follows we employ the improper prior, though derivations

are similar for the proper prior.

For subject j of n0 in the historical trial we let sj be the subject’s stratum, νj,0 be the indicator

that an event was observed, νjk,0 be the indicator that the event occurred in interval Isj ,k, and rjk,0

be the subject’s time at risk in interval Isj ,k. We let Gs,0 denote the set of indices corresponding to

historical trial subjects in stratum s. The power prior can be written as follows:

π (θ |D0, a0) ∝
S∏
s=1

Ks∏
k=1

λ
αsk,0−1
sk e−βsk,0λsk ×

n0∏
j=1

φ
a0νj,0
j (3.3.2)

where αsk,0 = a0
∑

j∈Gs,0
νjk,0, βsk,0 = a0

∑
j∈Gs,0

φjrjk,0, and D0 is the observed data for the

historical trial. We refer to αsk,0 as the effective number of events borrowed from the historical

trial. Note that the likelihood factorization that was obtained in (3.2.2) is also exhibited by the

power prior.

It is straightforward to show that the posterior distribution has the form

π (θ |D,D0, a0) ∝ π (λ | γ,β,D,D0, a0)× π (γ,β |D,D0, a0)
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where

π (λ | γ,β,D,D0, a0) ∝
S∏
s=1

Ks∏
k=1

Gamma

(
λsk

∣∣∣∣α∗sk, β∗sk) (3.3.3)

and

π (γ,β |D,D0, a0) ∝
S∏
s=1

{∏
i∈Gs

φνii
∏
j∈Gs,0

φ
a0νj,0
j∏Ks

k=1

[
β∗sk
]α∗sk

}
(3.3.4)

with α∗sk = αsk+αsk,0 and β∗sk = βsk+βsk,0. This result is obtained by combining the gamma kernels

from (3.2.2) and (3.3.2), appropriately normalizing each of the resulting conditionally independent

gamma kernels, and absorbing the counterbalancing reciprocal terms into the marginal posterior

for the hazard ratio regression parameters. The factorization of the joint posterior that we have

uncovered is a desirable feature. If one considers λ a nuisance parameter then they can work directly

with (3.3.4). This is appealing for trial design since the success or failure of the trial depends on

inference for γ after integrating out all other parameters.

3.3.1 A Connection with the Weighted Cox Partial Likelihood

We can make an explicit connection between the marginal posterior for the hazard ratio re-

gression parameters under the PWC-PH model and the weighted Cox partial likelihood. Under

a particular data-dependent partition of the time axis, the marginal posterior in (3.3.4) is equal

to the Breslow approximation of the weighted Cox partial likelihood (Breslow, 1974). For ease of

exposition, we take S = 1 and omit the notation for the stratification variable. Our arguments

trivially extend to the stratified model (S > 1).

We partition the time axis into K intervals where K is the number of unique event times from

the combined studies and take the upper bound tk of each interval Ik to be the kth ordered event

time. We assume that all subjects not experiencing an event are administratively censored at time

tK and that no other censoring occurs. Thus, all subjects who are at risk in time interval Ik have

risk time equal to tk − tk−1. Without loss of generality, we combine the n + n0 subjects from the

two studies into a single set indexed by i with weight wi equal to 1 for new trial subjects and equal

to a0 for historical trial subjects. Let Dk be the set of indices for the subjects having an event at

time tk and let Rk be the set of indices for the subjects at risk in time interval Ik. Under these

23



assumptions, the marginal posterior in (3.3.4) may be reformulated as follows.

π (γ,β |D,D0, a0) ∝
∏n+n0
i=1 φwiνi

i∏K
k=1

(∑n+n0
i=1 wiφirik

)∑n+n0
i=1 wiνik

∝
K∏
k=1

∏
i∈Dk

φwi
i(∑

i∈Rk
wiφi

)∑
i∈Dk

wi
(3.3.5)

The reader will note that (3.3.5) is the weighted approximate partial likelihood with event time

multiplicity handled according to Breslow. If the historical trial is ignored altogether (a0 = 0),

the marginal posterior for the hazard ratio parameters is simply the Breslow approximation to the

Cox partial likelihood based on the new trial data. Though we may be the first to point out the

connection between the marginal posterior for the hazard ratio regression parameters in a PWC-PH

model using the power prior to the weighted Cox partial likelihood, the idea that the Cox partial

likelihood has a Bayesian justification is not new (Sinha et al., 2003).

In practice, the conditions that we have assumed for the purposes of our derivation will not be

met exactly. For example, one might partition the time axis using a small to moderate number of

change points rather than one change point per unique event time. In addition, non-administrative

censoring may occur. The impact of the time axis partition and non-administrative censoring on

the degree of agreement between the marginal posterior for the hazard ratio regression parameters

and the weighted Cox partial likelihood is not easy to characterize analytically but our experience

and simulations suggest that the agreement will be strong in most practical cases. Thus, Bayesian

inference using the PWC-PH model with the power prior will be approximately the same as Bayesian

inference using the weighted Cox partial likelihood. We demonstrate this with a simulation study

in Appendix A.3.

3.4 Simulation-Based Bayesian Design of a Superiority Study

The null and alternative hypotheses for a superiority trial are as follows:

H0 : γ ≥ 0 versus H1 : γ < 0
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where γ is the log-hazard ratio for treatment versus control. We accept H1 if

P (γ < 0 |D,D0, a0) = P (H1 |D,D0, a0) (3.4.1)

is at least as large as some critical value ψ. Both ψ and a0 are pre-specified constants. During

design, we examine various possible values for the number of events required in the new trial

(denoted by ν), a0, and ψ in search of a set of values that yield sufficient Bayesian power while

controlling the Bayesian type I error rate at no more than α. We refer to the set of values {ν, a0, ψ}

as the key controllable trial characteristics. We note that increasing of the number of enrolled

subjects n ≥ ν will decrease the time required to complete the trial, but will have virtually no

impact on the operating characteristics of primary interest.

We will set ψ equal to 1− α and attempt to find the maximum value of a0 for a given value of

ν subject to the Bayesian type I error rate restriction. Our choice of ψ is justified by the fact that

the posterior probability P (γ < 0 |D,D0, a0 = 0) will be approximately uniformly distributed in

large samples when γ = 0 and the model is correct. In other words, the posterior probability of

the alternative hypothesis (under no borrowing) has the same asymptotic distribution as a fre-

quentist p-value when the null hypothesis is true. Accordingly, rejecting the null hypothesis when

P (γ < 0 |D,D0, a0 = 0) ≥ ψ = 1 − α should provide frequentist type I error control (asymptot-

ically). Rigorous exposition on the asymptotic distribution of so-called posterior probabilities of

the half-space can be found in Dudley and Haughton (2002). In this light, one can view our design

procedure as starting out with a size α frequentist hypothesis test (based on taking a0 = 0) and

then modifying the test by borrowing increasing amounts of information from the historical trial

until it functions as a size α hypothesis test with respect to the Bayesian type I error rate.

3.4.1 Definition of the Bayesian Type I Error Rate and Power

In order to formally define the Bayesian type I error rate and Bayesian power, we first introduce

the concepts of sampling and fitting priors that were formalized by Wang and Gelfand (2002) and

extended by Chen et al. (2011) to investigate Bayesian type I error and power. Let π
(s)
0 (θ) and

π
(s)
1 (θ) be the null and alternative sampling priors and let π(f) (θ) be the fitting prior. A sampling
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prior specifies a probability distribution for θ conditional on a particular hypothesis being true.

Hence, the null sampling prior will give zero weight to values of θ having a negative γ component

and the alternative sampling prior will give zero weight to values of θ having a non-negative γ

component. The sampling priors are referred to as such because they are used to sample parameter

values in the simulation-based estimation procedure for the Bayesian type I error rate and power.

This procedure is detailed in Section 3.4.4. The fitting prior π(f) (θ) is simply the prior used to

analyze the data. In our case π(f) (θ) is the basic power prior given in (3.3.1).

For a fixed value of θ, define the null hypothesis rejection rate as

r (θ |D0, a0) = E
[
1
{
P
(
γ < 0

∣∣D,D0, a0

)
≥ ψ

} ∣∣θ,D0, a0

]
where 1

{
P
(
γ < 0

∣∣D,D0, a0

)
≥ ψ

}
is an indicator that we accept H1 based on the posterior prob-

ability P
(
γ < 0

∣∣D,D0, a0

)
determined by the observed data D (generated from p (D | θ)), the

chosen analysis model (which need not be p (D | θ)), and the chosen fitting prior. For null values

of θ the quantity r (θ |D0, a0) is the type I error rate and for alternative values of θ it is power.

For chosen null and alternative sampling priors, the Bayesian type I error rate and Bayesian power,

denoted by α(s) and 1− β(s), are defined as

α(s) = E
π
(s)
0 (θ)

[r (θ |D0, a0)] (3.4.2)

and

1− β(s) = E
π
(s)
1 (θ)

[r (θ |D0, a0)] . (3.4.3)

The expectation in (3.4.2) is with respect to the null sampling prior distribution for θ and the

expectation in (3.4.3) is with respect to the alternative prior sampling distribution for θ. We

note that Chen et al. (cf. equation 5) define the Bayesian the type I error rate and power in

terms of the null and alternative prior predictive distribution of the data,
∫
p (D | θ)π

(s)
0 (θ) dθ and∫

p (D | θ)π
(s)
1 (θ) dθ, respectively. Our presentation here simply changes the order of integration

(D before θ) to highlight the fact that the Bayesian type I error rate and Bayesian power are

weighted averages of the quantities based on fixed values of θ. Our recipe for simulation-based
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estimation of the Bayesian type I error rate and Bayesian power follows closely with the presentation

in Chen et al.

3.4.2 Default Sampling Priors

It should be clear from Section 3.4.1 that the Bayesian type I error rate and power depend

critically on the choice of the null and alternative sampling priors. It is natural that the sampling

priors would reflect one’s belief about the parameters in light of the information available from

the historical trial. Presumably, the historical data will suggest that there is treatment efficacy

but the evidence will not be overwhelming (hence the need for and the desire to conduct another

clinical trial). We propose a set of default sampling priors that are well suited for this scenario.

After collecting the historical data, our posterior belief about the parameters is determined by

π (θ |D0). If one believes the subjects in the historical and future trials are exchangeable, then the

most logical choices for the null and alternative sampling priors are π
(s)
0 (θ) = π (θ |D0, γ ≥ 0) (the

historical posterior given that H0 is true) and π
(s)
1 (θ) = π (θ |D0, γ < 0) (the historical posterior

given that H1 true), respectively. Figure 3.1 illustrates the marginal posterior distribution for γ

based on our analysis of the historical trial data used in the example application in Section 3.5 along

with the corresponding default null and alternative marginal sampling priors for γ. Though we have

only plotted the marginal sampling priors for γ, conditioning on the null or alternative hypothesis

obviously induces changes in the entire joint distribution for θ. That is to say, the distribution

for the baseline hazard parameters and other regression parameters can be quite different for the

null and alternative sampling priors. The key point is that by defining the sampling priors as we

have done, we preserve the stochastic relationships between the treatment and nuisance parameters

that are implied by the historical data under the assumption that a particular hypothesis is true.

To make this idea more explicit we contrast it with a commonly used approach that is easier

to implement. Consider a point mass alternative sampling prior with all parameters set to their

posterior means. For the null sampling prior, the value of γ is simply set to zero with other

parameters remaining unchanged. This approach is only sensible when γ is independent of the

remaining parameters in θ given D0. Of course, this is not the case as we will see in Section 3.5.
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Figure 3.1: π (γ |D0) and corresponding default marginal sampling priors.
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A fundamental challenge in implementing our suggested approach is that the default sampling

priors cannot be directly sampled from due to not having closed-forms. However, this issue is easily

overcome through the following approximation. First, we fit the model to the historical data using

MCMC methods to obtain B samples {θb : b = 1, ..., B} from π (θ |D0). We can then approximate

sampling from π
(s)
0 (θ) and π

(s)
1 (θ) by sampling with replacement from the sets {θb : γb ≥ 0} and

{θb : γb < 0}, respectively. If the number of sample points in each restricted set is large, the discrete

approximations of the sampling priors will be accurate. Obviously the choice of B will depend on

how much mass the historical trial posterior puts in the null region. Since this process only needs to

be completed once, the computational burden of choosing B to be extremely large (e.g. 5, 000, 000)

is quite reasonable.

3.4.3 Modifications to the Default Sampling Priors

The default sampling priors previously described are sensible and automatic. However, there

will be instances where it is desirable to modify the default priors to incorporate subjective external

information. For example, researchers may deem it impossible for the new treatment to cause more

than a 10% increased risk relative to the planned control. In addition, researchers may want

to compute power over a restricted alternative space that rules out implausibly large or clinically

insignificant effect sizes. In this section we introduce intuitive modifications to the default sampling

priors that still preserve the stochastic relationships between the treatment and nuisance parameters

that are implied by the historical data under the assumption that a particular (restricted) hypothesis

is true.

The general null sampling prior is defined as π
(s)
0 (θ) = π (θ |D0, 0 ≤ γ ≤ γ0,u) and the general

alternative sampling prior is defined as π
(s)
1 (θ) = π (θ |D0, γ1,l ≤ γ < γ1,u). When γ0,u = ∞,

γ1,l = −∞, and γ1,u = 0 the general sampling priors reduce to the default sampling priors. We

note that the procedure developed to sample from the default sampling priors applies to the general

sampling priors as well. As γ0,u → 0, we will see that less and less information can be borrowed

from the historical trial if the Bayesian type I error is to be controlled. Note that for γ0,u = 0, the

Bayesian type I error rate is similar to the frequentist type I error rate. Similarly for γ1,l ≈ γ1,u the
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Bayesian power is similar to the traditional notion of power. The key difference is that the Bayesian

quantities are still averaged with respect to the non-degenerate sampling prior distributions for the

nuisance parameters which are defined with respect to the historical trial posterior distribution.

Thus, even in the case where γ0,u = 0, Bayesian type I error control is still not as strict as frequentist

type I error control (which requires control of type I error for any value of the nuisance parameters).

3.4.4 Estimation of the Bayesian Type I Error Rate and Power

In this section, we describe the simulation process that is used to estimate the Bayesian operating

characteristics of interest. Let B be the number of simulation studies to be performed. To estimate

the Bayesian type I error rate we proceed as follows:

1. Sample θ(b) from the null sampling prior π
(s)
0 (θ).

2. Given θ(b), simulate the new trial data D(b) based on the assumed model for survival times

as well as other specified distributions for enrollment, censorship, and covariates.

3. Update the fitting prior π(f) (θ) based on the likelihood for the simulated data L
(
θ |D(b)

)
to

obtain the posterior distribution π
(
γ,β |D(b),D0, a0

)
and calculate the posterior probability

of the alternative hypothesis P
(
γ < 0

∣∣D(b),D0, a0

)
.

4. Compute the null hypothesis rejection indicator for simulation study b.

r(b) = 1
{
P
(
γ < 0

∣∣D(b),D0, a0

)
≥ ψ

}

5. Estimate the Bayesian type I error rate with the empirical null hypothesis rejection rate.

α(s) ≈ 1

B

B∑
b=1

r(b)

Steps 1-4 are first repeated for b = 1, ..., B to obtain the outcome for each simulation study and then

step 5 combines the results to estimate the Bayesian type I error rate. The process for estimating

Bayesian power is identical. We simply use the alternative sampling prior in place of the null

sampling prior.
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3.4.5 Efficient Computation of Posterior Quantities

Simulation-based trial design methods can be computationally demanding due to the need to

simulate a large number of datasets and fit models to each one. For Bayesian design problems, the

computational burden is substantial since MCMC methods are typically utilized for inference. To

alleviate this problem, we employ the Laplace approximation (i.e. multivariate normal approxima-

tion) to the marginal posterior for the hazard ratio regression parameters. Using this approximation

obviates the need for MCMC altogether thereby providing considerable speed benefits over even

the most efficient MCMC approach. The approximation is justified by the fact that the marginal

posterior distribution for (γ,β) tends to a multivariate normal as the effective number of events

increases. Namely, we have

(γ,β |D,D0, a0)
·∼ Normal


γ̂
β̂

 , Σ̂ =

σ̂2
11 Σ̂12

Σ̂12 Σ̂22


 (3.4.4)

where
(
γ̂, β̂

)
is the posterior mode and Σ̂ is the inverse negative Hessian matrix for the logarithm

of posterior evaluated at
(
γ̂, β̂

)
. Our proposed inference procedure is based on the posterior

probability P (γ < 0 |D,D0, a0). Under (3.4.4), this posterior probability is equal to 1 - Φ (γ̂/σ̂11)

and is readily computed without any sampling once γ̂, β̂, and Σ̂ have been obtained through a

Newton-Raphson type procedure. Thus, we replace the computational burden of MCMC with that

of optimizing a relatively simple objective function.

To assess the accuracy of the Laplace approximation we performed an array of simulation

studies. A discussion of these results can be found in Appendix A.4. The Appendix also contains

a description of our customized approach to fitting the model with MCMC, when desired. In

summary, our results suggest the difference between the posterior probability computed using the

actual marginal posterior for the hazard ratio regression parameters and that computed from the

normal approximation is negligible. Accordingly, we can think of no circumstances where one would

actually need to utilize MCMC in order to perform inference during design with the model we have

considered. We note that when performing the actual analysis, one will generally use MCMC since

it will likely be of interest to characterize the exact posterior distribution for all model parameters
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and since the computation burden of MCMC for a single analysis using the PWC-PH model is

not great. However, if one is content with the accurate Laplace approximation we have discussed,

one can simply draw Monte Carlo samples for (γ,β) from (3.4.4) and then sample (λ | γ,β) from

(3.3.3) to approximate the full posterior. This approach can be combined with rejection sampling

to draw approximate samples from the default sampling priors as well.

3.5 Application: Design of a Superiority Study

The E1684 trial was a randomized controlled trial conducted to assess the utility of Interferon

Alfa-2b (INF) as an adjuvant therapy following surgery for deep primary or regionally metastatic

melanoma. A detailed analysis of the trial was given in Kirkwood et al. (1996). The design

and primary analysis were stratified by disease stage according to four groups: (1) deep primary

melanomas of Breslow depth more than 4 mm; (2) primary melanomas of any tumor stage in the

presence of N1 regional lymph node metastasis detected at elective lymph node dissection with

clinically inapparent regional lymph node metastasis; (3) clinically apparent N1 regional lymph

node involvement synchronous with primary melanoma of T1-4; and (4) regional lymph node

recurrence at any interval after appropriate surgery for primary melanoma of any depth. Subjects

treated with the investigational therapy demonstrated a statistically significant prolongation of

relapse-free survival compared to those receiving the standard of care (SOC) based on stratified

log-rank test (p = 0.0023, one-sided). For the purposes of demonstrating the methodology we have

presented in this manuscript, we restrict our attention to subjects from the fourth stratum. Based

on this group there was evidence of efficacy but the evidence was not overwhelming according to

traditional null hypothesis testing criteria.

The number of positive nodes at lymphadenectomy was found to be highly prognostic for

relapse-free survival in this disease group and so we considered it as a stratification variable for

the future trial (number of positive nodes ≤ 1 (stratum one) versus ≥ 2 (stratum two)). Table

3.1 provides a basic summary of the relapse-free survival data by treatment group and stratum

for the targeted risk group. We make the assumption that a model with a treatment effect and

stratum-specific baseline hazard holds for these data. No other covariates available appeared to
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Table 3.1: Summary survival data for selected E1684 subjects

Treatment Stratum N # Events Risk Time

SOC 1 37 26 88.4
2 47 36 105.8

INF 1 43 21 176.3
2 39 31 81.1

be predictive of relapse-free survival and so we do not include additional covariates in the design

model.

We first analyzed the historical trial data using the PWC-PH model with the number of baseline

hazard components ranging from one to 12 per stratum and selected the best model according

to the deviance information criterion (DIC) (Spiegelhalter et al., 2002). For a given number of

components, the baseline hazard change points were chosen to coincide with observed event times

such that an approximately equal number of events were observed in each time interval.

Table 3.2 presents the posterior mean, the posterior standard deviation (SD), and 95% highest

posterior density (HPD) interval for the treatment effect parameter and for each baseline hazard

parameter using the best model according to DIC. The right end points for the chosen time axis

partition for each stratum are given in the rightmost column. We note the highest posterior density

(HPD) interval for the treatment effect puts mass in both the null region and the alternative region

though the evidence clearly favors treatment efficacy. Thus, it is reasonable to assume that if these

data were collected in one clinical trial, an additional trial might be conducted where this data

could inform the design and analysis. Table 3.3 presents the means and HPDs for all parameters

under the default null and alternative sampling priors. Note the changes in the distribution of

the baseline hazard parameters when we condition on the null hypothesis being true versus the

alternative. This illustrates why it is inappropriate to fix the baseline hazard parameters at, say,

their posterior means and simply vary the value of γ during design.

Broadly speaking, we seek a design that controls the Bayesian type I error rate at no more than

2.5% (α = 0.025) and that has a Bayesian power of approximately 80%. Our primary purpose in

this section is to compare and contrast designs based on different choices of sampling priors. To

illustrate how the choice of null sampling prior impacts the amount of historical information that
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Table 3.2: Posterior summaries for historical trial

Parm. Mean SD HPD tk
γ -0.267 0.1907 (-0.642,0.106) n/a

λ1,1 0.474 0.2172 (0.110,0.906) 0.153
λ1,2 1.217 0.4756 (0.388,2.161) 0.247
λ1,3 1.112 0.4342 (0.362,1.978) 0.356
λ1,4 0.609 0.2562 (0.175,1.122) 0.551
λ1,5 0.288 0.1323 (0.067,0.551) 0.929
λ1,6 0.471 0.2164 (0.109,0.900) 1.189
λ1,7 0.206 0.1056 (0.036,0.415) 1.710
λ1,8 0.212 0.1097 (0.036,0.429) 2.296
λ1,9 0.032 0.0167 (0.005,0.065) ∞
λ2,1 0.874 0.3376 (0.285,1.547) 0.107
λ2,2 2.529 0.9800 (0.828,4.485) 0.148
λ2,3 1.544 0.4837 (0.681,2.516) 0.266
λ2,4 0.914 0.3151 (0.358,1.544) 0.466
λ2,5 1.140 0.4146 (0.413,1.968) 0.633
λ2,6 0.418 0.1624 (0.137,0.742) 1.082
λ2,7 0.262 0.1092 (0.075,0.480) 1.833
λ2,8 0.234 0.0972 (0.068,0.429) 2.874
λ2,9 0.088 0.0365 (0.025,0.161) ∞

Table 3.3: Posterior summaries for default sampling priors

—– Alternative —– ——— Null ———
Parm. Mean HPD Mean HPD

γ -0.298 (-0.590,0.000) 0.086 (0.000 ,0.236)

λ1,1 0.481 (0.116,0.919) 0.395 (0.096,0.749)
λ1,2 1.235 (0.404,2.191) 1.006 (0.331,1.765)
λ1,3 1.129 (0.363,1.990) 0.918 (0.295,1.603)
λ1,4 0.618 (0.175,1.130) 0.501 (0.150,0.911)
λ1,5 0.293 (0.070,0.558) 0.239 (0.059,0.454)
λ1,6 0.478 (0.113,0.912) 0.386 (0.094,0.733)
λ1,7 0.210 (0.036,0.420) 0.168 (0.030,0.334)
λ1,8 0.216 (0.037,0.435) 0.168 (0.030,0.335)
λ1,9 0.033 (0.005,0.066) 0.025 (0.004,0.050)

λ2,1 0.885 (0.295,1.565) 0.750 (0.247,1.312)
λ2,2 2.562 (0.835,4.520) 2.146 (0.732,3.764)
λ2,3 1.565 (0.681,2.522) 1.307 (0.591,2.098)
λ2,4 0.926 (0.362,1.554) 0.772 (0.307,1.288)
λ2,5 1.154 (0.424,1.989) 0.968 (0.351,1.645)
λ2,6 0.424 (0.139,0.748) 0.354 (0.120,0.624)
λ2,7 0.265 (0.077,0.484) 0.222 (0.066,0.405)
λ2,8 0.237 (0.069,0.432) 0.203 (0.061,0.371)
λ2,9 0.089 (0.026,0.162) 0.078 (0.022,0.140)
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can be borrowed, we consider three possibilities: (N1) the null sampling prior obtained by taking

γ0,u = 0, (N2) the null sampling prior obtained by taking γ0,u = log(1.10), and (N3) the default

null sampling prior (γ0,u =∞). To illustrate how the choice of alternative sampling prior impacts

the number of required events to obtain 80% power, we consider two possibilities: (A1) a point

mass alternative sampling prior with parameters set to the posterior means in Table 3.2 and (A2)

the default alternative sampling prior. The first case corresponds to powering the trial to detect

the most likely effect size given the data from the historical trial. Such an approach is commonly

used in practice.

For all simulation studies, the generative baseline hazard model for the new trial used the time

axis partition from Table 3.2. For a targeted number of events ν, we took n = 3ν with no censoring

other than administrative censoring that occurred when the targeted number of events had been

reached. Simulated subjects were allocated to strata in proportions matching the historical trial

(i.e. approximately 48% stratum one) and the randomization was 1:1. The PWC-PH model fit to

the data did not make use of the true time axis partition. Instead, we took the number of baseline

hazard components to be 50 per stratum with change points chosen to coincide with observed event

times such that an approximately equal number of events occurred in each time interval within a

stratum. In general, the number of baseline hazard components used is fairly inconsequential when

interest lies solely in the baseline hazard parameters. We discuss this briefly in Appendix A.3. For

all simulation studies, we utilized the normal approximation discussed in Section 3.4.5 to compute

the required posterior probability.

For a given null sampling prior, the first step in the design process is to find the value of a0 that

yields a Bayesian type I error rate of 2.5% for each value of ν in the set under consideration. To

do this we performed 500, 000 simulations for each ν to estimate the type I error rate over a range

of a0 values, used loess methods to smooth these estimates, and then used linear interpolation to

determine the precise value of a0 that corresponded to the desired error rate.

Figure 3.2 presents loess curves of the Bayesian type I error rate as a function of a0 for all

three null sampling priors for the cases where ν = 350, ν = 450, and ν = 550. It is clear that for

these sample sizes, virtually no information can be borrowed from the historical trial under null
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Figure 3.2: Loess curves and point estimates for the Bayesian type I error rate as a function of a0

for ν = 350 (black), ν = 450 (dark gray), and ν = 550 (light gray). Each curve was estimated from
500, 000 simulation studies performed using values of a0 from 0 to 1 with a step size of 0.05.
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Table 3.4: Bayesian power estimates under various sampling priors

Null Alternative
Sampling Sampling Prior

Prior ν a0 A1 A2

N1 310 0.000 65.0 62.8
350 0.000 70.2 65.5
450 0.000 80.7 70.7
500 0.000 84.7 72.5
550 0.000 87.8 74.3
800 0.000 96.5 79.9

N2 310 0.559 75.6 69.1
350 0.593 80.2 71.5
450 0.717 89.1 76.4
500 0.780 91.9 78.4
550 0.848 94.2 79.9
800 1.000 98.7 84.7

N3 310 0.849 80.6 72.5
350 0.906 84.7 74.7
450 1.000 91.6 78.8
500 1.000 93.5 80.0
550 1.000 95.0 81.1
800 1.000 98.7 84.6

sampling prior N1. In fact, the estimates obtained for a0 under null sampling prior N1 where never

larger than 0.02 and most were approximately zero for every value of ν we considered (ν = 250 to

ν = 800). Based on these results, we set a0 = 0 for the purpose of determining power in all design

simulations using null sampling prior N1. In contrast, we see that when null sampling prior N2 or

N3 is used, we are able to borrow much of and sometimes all of the information in the historical

data without surpassing the threshold for the Bayesian type I error rate. Note that a relatively

large number of events is required for the future trial to justify borrowing all the information from

the historical trial when using the default null sampling prior. Thus, although our Bayesian version

of type I error control is less restrictive than frequentist type I error control, there is still significant

restriction on the amount of information that can be borrowed. The fundamental difference is that

the Bayesian type I error restriction can be overcome by running a future trial of adequate size.

Table 3.4 provides power estimates for each combination of null and alternative sampling priors

and for selected values of ν. Each estimate in the table is based on 500, 000 simulation studies. For

each value of ν and each null sampling prior, the value of a0 that was identified in the first stage
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of design is also provided in the table. For null sampling priors N2 and N3 we see that the general

pattern is that as ν increases, a0 can also be increased while still controlling the Bayesian type I error

rate. If we are permitted to control less restrictive versions of the Bayesian type I error rate (i.e.

using null sampling prior N2 or N3 instead of N1), we obtain a Bayesian power of approximately

80% with approximately 250 to 300 fewer events under the default alternative sampling prior (A2)

and with approximately 100 to 140 fewer events under the point mass alternative sampling prior

(A1).

3.6 Discussion

In this chapter we have developed a Bayesian design methodology for clinical trials with survival

endpoints that makes use of data from a historical trial. We have proposed new Bayesian versions

of type I error and power that are defined with respect to our belief about the model parameters

after observing the historical data. Our results illustrate that if we require frequentist type I error

control, it is not possible to borrow meaningful amounts of information from the historical data.

However, when we relax the design constraints to require Bayesian type I error control using our

default null sampling prior, we are able to borrow substantial amounts of information from the

historical trial but full borrowing only comes with a relatively large number of events in the new

trial. Thus, while Bayesian type I error control is less restrictive than frequentist type I error

control, the former still places significant restrictions on how much information can be borrowed.

We have also demonstrated that powering a trial to have adequate Bayesian power under our default

alternative sampling prior will generally lead to a much larger number of events in the new trial

compared to a point mass alternative sampling prior using the most likely effect size based on the

historical data.

The conflict between Bayesian analysis with informative priors and frequentist type I error

control is a topic of future research for the authors. In this chapter, our case study focuses on

a design application where information is borrowed on the treatment effect as well as nuisance

parameters. In this case the apparent conflict between frequentist type I error control and Bayesian

analysis with an informative prior is undeniable. However, when one borrows information only on
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the nuisance parameters, the conflict is less obvious. This is because the historical trial does not

inform the treatment effect parameter and hence, does not overtly suggest with the null hypothesis

is false. However, since the sampling priors for the nuisance parameters are defined with respect

to the historical data, there is an implicit assumption that the nuisance parameter values in the

generative model for the new study are consistent with the historical trial posterior.

Within the proportional hazards framework, there are potential extensions of our methodology

that can help protect against unanticipated systematic differences between the historical and new

trial subjects beyond what can be addressed by stratification or covariate adjustment (i.e. a lack

of exchangeability). We have considered the case where a0 is determined a priori and fixed to

control the Bayesian type I error rate but one can extend the methodology to the case where a0

is random. When the model includes stratification variables but no covariates, one can implement

the normalized power prior (Duan et al., 2006) without approximation. When the baseline risk is

allowed to differ between the historical and new studies (i.e. the baseline hazard is not shared),

one can also develop a version of the commensurate power prior (Hobbs et al., 2011) through the

accurate normal approximation to the marginal posterior for the hazard ratio regression parameters.

Both of these extensions attempt to dynamically adjust the amount of information borrowed based

on the similarity of the historical and new study data.
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CHAPTER 4: BAYESIAN DESIGN OF A SURVIVAL TRIAL WITH A CURED
FRACTION USING HISTORICAL DATA

4.1 Introduction

Survival models that accommodate a cured fraction in the studied population, commonly re-

ferred to as cure rate models (Ibrahim et al., 2001b), have become popular tools for analyzing

data from cancer clinical trials. These models have been used for modeling time-to-event data for

various types of cancers, including breast cancer (Woods et al., 2009; Tsodikov, 2002), leukemia

(Tsodikov et al., 1998), multiple myeloma (Othus et al., 2012), prostate cancer (Zaider et al., 2001),

and melanoma (Kirkwood et al., 2000). When a survival curve plateaus in the right tail after an

adequate follow-up period, cure rate models can be more advantageous than standard models such

as the Cox proportional hazards model or the piecewise exponential model. The horizontal asymp-

tote associated with the aforementioned plateau, often called a cure rate, is an important quantity

to model in these settings and using a model that explicitly does so often leads to a better fit

compared to standard survival models.

In this paper we develop a Bayesian clinical trial design methodology using the promotion time

cure rate model (Yakovlev et al., 1993; Yakovlev, 1996; Chen et al., 1999) in a scenario where

a previously completed clinical trial (i.e. a historical trial) is available to inform the design and

analysis of the new one. During clinical trial design, one must identify appropriate values of the

controllable trial characteristics such as the number of subjects to enroll in the trial. An appropriate

statistical methodology must also be proposed for hypothesis testing. These choices are made to

ensure the trial design has desirable operating characteristics. For confirmatory trials, the primary

operating characteristics of interest are the type I error rate and statistical power. Currently

the Food and Drug Administration (FDA) requires that all proposed trial designs demonstrate

reasonable type I error control. Traditionally, frequentist type I error control has been required.
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This is currently the case for the Center for Drug Evaluation and Research but no longer for the

Center for Devices and Radiological Health where fully Bayesian designs are becoming common.

For a design to exhibit Frequentist type I error control, the type I error rate cannot exceed some

pre-specified threshold at the value of the parameter defining the boundary between the null and

alternative hypotheses. For unbiased statistical tests, this ensures that the type I error rate is

controlled for every possible null value of the parameter. The requirement to have frequentist type

I error control is not an issue for objective Bayesian designs (i.e. designs utilizing non-informative

priors that are designed to yield good frequentist operating characteristics). In contrast, Bayesian

hypothesis testing using informative priors directly conflicts with the frequentist notion of type I

error control. Ensuring frequentist type I error control necessitates that all prior information be

discarded.

We propose a design methodology that is based on Bayesian type I error control. Unlike the

traditional frequentist approach, the Bayesian approach controls a weighted average type I error

rate with weights determined by the posterior distribution of the parameters given the historical

data and conditional on the null hypothesis being true. This design approach is sensible when

one has pertinent information about the null and alternative hypotheses (i.e. high-quality data

from a previously completed trial) and when one still wants to protect against type I errors in

an equitable way. We demonstrate that in a design that exhibits Bayesian type I error control,

meaningful amounts of prior information can be incorporated into the design and analysis of the new

trial. The Center for Devices and Radiological Health will consider designs that control a Bayesian

version of type I error when the historical data are of high quality (Pennello and Thompson, 2007),

although the design may still be required to control the frequentist type I error rate at an acceptable

level (e.g. twice the nominal Bayesian type I error rate). We also consider designs with this type of

added restriction. To complement the Bayesian type I error rate, we introduce a Bayesian version

of statistical power, defined as a weighted average statistical power with weights determined by the

posterior distribution of the parameters given the historical data and conditional on the alternative

hypothesis being true. We demonstrate that designing a trial to have adequate Bayesian power

can lead to a much larger sample size than designing a trial to have adequate power based on an

optimistic fixed value of the parameters.
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The trial design methodology we present in this paper is essentially a Bayesian sample size

determination method. There is a large literature on Bayesian sample size determination. Much

of it focuses on simple models including one and two sample normal or binomial models, linear

regression models, and generalized linear regression models. Comparatively little has been done

with survival models for right-censored data. Notable exceptions are Ibrahim et al. (2012b); Chen

et al. (2014a,b). Bayesian designs which control type I error in some sense have been recently

considered in Chen et al. (2011); Ibrahim et al. (2012b); Chen et al. (2014a,b). The approach to

type I error control considered by these authors is closely related to frequentist type I error control

and hence is quite different from the approach that we propose here.

For our design methodology, we extend the promotion time cure rate model of Yakovlev et al.

(1993) to allow the distribution for the promotion times to vary across levels of a stratification

variable. Our results demonstrate that this can be more appropriate than covariate adjustments

in the model for the cured fraction which is a more common approach. Information from the

historical trial is borrowed by way of the power prior of Ibrahim and Chen (2000). Bayesian

analysis of univariate cure rate models has been considered in Chen et al. (1999); Ibrahim et al.

(2001a,b); Chen et al. (2002a,b); Tsodikov et al. (2003). Although Bayesian analysis using cure rate

models with the power prior has been previously investigated, the work to date has only focused

on analysis with no attention being paid to clinical trial design. Frequentist trial design using cure

rate models was considered in Bernardo and Ibrahim (2000).

Most Bayesian design methodologies are simulation-based and the model fitting step often

requires Markov Chain Monte Carlo (MCMC) methods that can be extremely time consuming.

Through a connection between Bayesian analysis with the power prior and weighted maximum

likelihood analysis, we develop an asymptotic approximation to the posterior distribution that ob-

viates the need for MCMC in design simulations. By using the approximation, one can simply

perform weighted maximum likelihood analysis and use the corresponding asymptotic p-value to

approximate the relevant posterior probability for Bayesian hypothesis testing. For reasonably

sized trials, this approximation is highly accurate. The positive impact of this very general ap-

proximation tool is two-fold. First, since MCMC-based model fitting is replaced by optimization

of a low-dimensional objective function, the computational burden of the simulation-based design
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procedure is greatly reduced. Second, since standard software is available (e.g. SAS R© or R) for

weighted maximum likelihood analysis, implementing our method does not require extensive custom

programming.

The rest of this article is organized as follows: In Section 4.2 we develop a stratified promotion

time cure rate model, discuss some properties, and derive the corresponding likelihood. In Sec-

tion 4.3 we discuss the basic power prior and the approximation to the posterior that obviates the

need for MCMC. In Section 4.4 we formally define Bayesian versions of type I error and power and

discuss the simulation process for determining an appropriate set of controllable characteristics for

the new trial. In Section 4.5 we present a detailed example design using data from a previously

published clinical trial. We close the paper with some discussion in Section 4.6.

4.2 The Promotion Time Cure Rate Model

We consider a flexible promotion time cure rate model where the promotion time distribution

is allowed to vary over levels of a stratification variable. The unstratified version was proposed

originally by Yakovlev et al. (1993) and a thorough treatment from the Bayesian perspective was

first given in Chen et al. (1999). The model is typically motivated through a latent competing

risks framework. Using notation similar to Ibrahim et al. (2001b), we let Ni denote the number

of metastasis-competent tumor cells for subject i that remain after initial treatment. We assume

that Ni follows a Poisson distribution with parameter θi = exp
(
γzi + xTi β

)
where zi is a binary

treatment indicator, xi = (xi1, ..., xip) is a p × 1 vector of baseline covariates that includes an

intercept, γ is the treatment effect, and β = (β1, ..., βp) is a p × 1 vector of regression coefficients

corresponding to the covariates. Further let Zij denote the random time for the jth metastasis-

competent tumor cell to produce detectable disease in subject i. Hence, one can view Zij as the

“promotion time” for the jth metastasis-competent tumor cell. Conditional on Ni, the Zij are

assumed to be independent and identically distributed according to the cumulative distribution

function F (z | ψsi) = 1 − S (z | ψsi) where si is the stratum to which subject i belongs and ψs

represents the promotion time model parameters for stratum s. The time to detectable cancer

relapse for subject i is given by Yi = min {Zij , 0 ≤ j ≤ Ni} where Zi0 = ∞. Suppressing the
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notation for covariates, the marginal probability of survival past time y for subject i is given as

follows:

Sp (y | θi,ψsi) = P (Ni = 0 | θi) + P (Yi > y | Ni ≥ 1, θi,ψsi)

= exp(−θi) +
∞∑
k=1

S (y | ψsi)
k exp(−θi)

θki
k!

= exp (−θiF (y | ψsi)) (4.2.1)

The quantity in (4.2.1) is a marginal probability in the sense that it is not conditional on the latent

number of metastasis-competent tumor cells or even whether or not the subject is cured. We note

that Sp (∞| θi,ψsi) = P (Ni = 0 | θi) = exp(−θi) > 0 and hence Sp (y | θi,ψsi) is not a proper

survival function. The form in (4.2.1) shows that the time to relapse is influenced by the initial

number of metastasis-competent tumor cells as well as their rate of progression. The subdensity

corresponding to (4.2.1) is given by

fp (y | θi,ψsi) = θif (y | ψsi) exp (−θiF (y | ψsi))

with corresponding subhazard given by

hp (y | θi,ψsi) = θif (y | ψsi) . (4.2.2)

From (4.2.2), it is apparent that the promotion time formulation of the cure rate model leads

to a proportional hazards structure for the subhazard. The probability of survival past time y

conditional on subject i being uncured is given by

S∗ (y | θi,ψsi) = P (Yi > y | Ni ≥ 1, θi,ψsi)

=
Sp (y | θi,ψsi)− exp(−θi)

1− exp(−θi)
, (4.2.3)

and the corresponding hazard is

h∗ (y | θi,ψsi) =
1

P (Yi <∞| Yi > y, θi,ψsi)
h (y | θi,ψsi) (4.2.4)
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where

P (Yi <∞| Yi > y, θi,ψsi) =
Sp (y | θi,ψsi)− exp(−θi)

Sp (y | θi,ψsi)
.

We note that S∗ (y | θi,ψsi) is a proper survival function and, accordingly, h∗ (y | θi,ψsi) is a proper

hazard function. Unfortunately (4.2.4) does not have a proportional hazards structure since P (Yi <

∞| Yi > y, θi,ψsi) depends on y. It is straight forward to show that h∗ (y | θi,ψsi) is increasing in

θi which is desirable. This means that increasingly negative values of the regression parameters are

associated with a greater cured fraction and lower hazard in the uncured population.

As pointed out in Chen et al. (1999), the promotion time cure rate model has a connection with

the standard mixture cure rate model of Berkson and Gage (1952). It can be readily seen from

(4.2.3) that

Sp (y | θi,ψsi) = exp(−θi) + (1− exp(−θi))S∗ (y | θi,ψsi) .

Thus, the promotion time cure rate model is a special case of the standard mixture cure rate model.

The promotion time cure rate model may be preferred over the standard mixture cure rate model

for several reasons as noted in Chen et al. (1999). First, the model has the natural biological

motivation described above. Second, the model has a proportional hazards structure leading to

convenient interpretation of covariate effects on the subhazard. The standard cure rate model does

not have a proportional hazards structure when the cured fraction is modeled as a function of

covariates using a logistic regression function. Third, the model can be efficiently sampled with a

Gibbs sampler. Lastly, unlike the standard mixture cure rate model, the promotion time cure rate

model yields a proper posterior distribution under a wide class of non-informative improper priors

for the regression coefficients, including a uniform improper prior.

To complete the specification of the survival model in (4.2.1), we must specify a distribution for

the promotion times. Common choices are the Weibull distribution (fully parametric) and piecewise

exponential distribution (semi-parametric). Analysis with each of these promotion time models is

discussed in detail in Ibrahim et al. (2001b) for the case where a single promotion time model is

shared by all subjects. For the design example in Section 5, we utilize a separate Weibull model

for each level of the stratification variable. We note that our choice to allow stratification in the
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model for the promotion times is uncommon. However, the design model selection results discussed

in Section 5 illustrate that this approach can lead to better fit compared to the more standard

modeling framework.

Following Ibrahim et al. (2001b), the complete data likelihood can be written as follows

L (ξ,N |D) =
n∏
i=1

S (yi | ψsi)
Ni−vi (Nif (yi | ψsi))

vi e
−θiθNi

i

Ni!

where ξ = {γ,β,ψs : s = 1, ..., S} is the set of all parameters in the model, ψs = {λs, αs} is the set

of Weibull promotion time model parameters for stratum s, andD = {(yi, vi, zi,xi, si) : i = 1, ..., n}

is the observed data. In the literature, Bayesian analysis of the promotion time cure rate model

has been exclusively performed using the complete data likelihood with the Ni being treated as

missing data and therefore included in the Gibbs sampler with the parameters. This approach was

proposed in Chen et al. (1999) and described in full detail in Ibrahim et al. (2001b). The benefit of

such an approach is that the full conditionals for all parameters are log-concave (based on the priors

discussed in Ibrahim et al. (2001b)) and so the parameters can be easily sampled with rejection

sampling or adaptive rejection sampling methods (W. R. Gilks, 1992). The Ni have closed-form

full conditionals for direct Poisson sampling. Alternatively, one can analytically sum out the latent

Ni variables to obtain the observed data likelihood

L (ξ |D) =
n∏
i=1

[θif (yi | ψsi)]
vi exp {−θiF (yi | ψsi)} . (4.2.5)

For MCMC analysis based on the observed data likelihood, the regression parameters still have log-

concave full conditionals and they can be sampled efficiently with the same techniques mentioned

above. Unfortunately the full conditionals for the parameters in the promotion time model will not

necessarily have log-concave full conditionals and so we recommend slice sampling (Neal, 2003) for

those parameters. Even though slice sampling does not directly sample from the full conditionals,

since the sampling procedure using the marginal likelihood does not condition on the Ni quantities,

this approach is likely more efficient than the Gibbs sampler using the complete data likelihood. In

our analyses, when MCMC was used, we fit the model using the observed data likelihood as just

described.
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4.3 The Basic Power Prior and the Posterior Distribution

To simplify our exposition, we focus on a scenario with a single historical trial to be used for

design. The form of the basic power prior (Ibrahim and Chen, 2000) using the observed data

likelihood as given in (4.2.5) is as follows:

π0

(
ξ
∣∣D0, a0

)
∝ [L(ξ|D0)]a0 π0(ξ) (4.3.1)

where 0 ≤ a0 ≤ 1 is a fixed scalar parameter,D0 = {(yj , vj , zj ,xj , sj) : j = 1, ..., n0} is the historical

data, L(ξ|D0) is the likelihood for the historical data, and π0(ξ) is an initial non-informative prior.

When a0 = 0 the historical data is essentially discarded and the power prior reduces to the initial

prior. In contrast, when a0 = 1, the power prior corresponds to the posterior distribution from

an analysis of the historical data using the initial prior. For intermediate values of a0, the weight

given to the historical data is diminished to some degree leading to a prior that is more informative

than the initial prior but less informative than using the historical trial posterior as the prior for

the new trial.

The power prior is appealing for many reasons. We mention the two most relevant properties to

our discussion and refer the interested reader to Ibrahim et al. (2015) for a complete review. First,

the basic power prior provides a semi-automatic mechanism for transforming historical data into a

subjective prior for design and analysis of a future trial. One only needs to specify the initial prior

π0(ξ) and elicit a value for a0 for the prior to be fully specified. In our case, the value of a0 will

be chosen so that the design yields desirable Bayesian power while controlling the Bayesian type I

error rate. As an alternative to searching for a fixed value of a0 that leads to control of the Bayesian

type I error rate, one might model a0 as a random variable in an effort to dynamically adjust the

amount of information borrowed based on the degree of similarity between the historical data and

new trial data at the time of the analysis. Such an approach is a step away from a design-based

solution and a step towards meta-analysis. Several extensions of the basic power prior have been

proposed for this type of approach and all are discussed in Ibrahim et al. (2015) and the references

therein. We only consider the fixed a0 approach in this paper.
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The second appealing characteristic of the basic power prior is that analysis using it with a

non-informative initial prior is closely related to weighted maximum likelihood where historical

trial subjects are given a weight of a0 and new trial subjects are given a weight of one. To see this

connection, note that the logarithm of the posterior (ignoring the normalizing constant) is given

by

log π (ξ |D,D0, a0) = logL(ξ|D) + a0 log [L(ξ|D0)] + log π0(ξ)

=

n∑
i=1

wi [vi {log θi + log f (yi | λsi , αsi)} − θiF (yi | λsi , αsi)]

+

n0∑
j=1

w0,j

[
vj
{

log θj + log f
(
yj | λsj , αsj

)}
− θjF

(
yj | λsj , αsj

)]
+ log π0(ξ)

which is approximately equal to the weighted log-likelihood based on the combined studies with

wi = 1 for new trial subject i and w0,j = a0 for historical trial subject j. The only difference

between the logarithm of the posterior distribution and the weighted log-likelihood is the term

log π0(ξ) which has little influence since π0(ξ) is non-informative by construction. The Bayesian

central limit theorem assures us that, when the effective sample size for the combined trials is

reasonably large,

π (γ |D,D0, a0)
·∝ Normal

(
γ | γ̂, σ2

γ̂

)
where γ̂ is the weighted maximum likelihood estimator (MLE) from a joint analysis of both trials

with weights described above and σ2
γ̂ is the relevant diagonal element of the inverse of the observed

information matrix for the weighted log-likelihood evaluated at the weighted MLE. Using this

connection we can accurately approximate relevant posterior probabilities for our Bayesian analyses

using results that are readily obtainable from standard software using weighted maximum likelihood

methods. To illustrate this, consider the the null and alternative hypotheses H0 : γ ≥ 0 and

H1 : γ < 0, respectively. We can approximate the posterior probability of the alternative hypothesis

as follows:

P (γ < 0 |D,D0, a0) ≈ P
(
Z ≤ − γ̂

σγ̂

∣∣∣∣D,D0, a0

)
= 1− Φ

(
γ̂

σγ̂

)
, (4.3.2)
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where Z is a standard normal variable. We note that the right hand side of (4.3.2) is one minus the

one-sided p-value that arises from weighted maximum likelihood analysis of the combined studies.

4.4 Simulation-Based Bayesian Design of a Superiority Trial

The null and alternative hypotheses for a superiority trial are H0 : γ ≥ 0 and H1 : γ < 0,

respectively. We will accept H1 if P (γ < 0 |D,D0, a0) is at least as large as some critical value

ψ. During design, one examines various possible values for the number of subjects enrolled in the

new trial (n), the duration of the new trial (T ), a0, and ψ in search of a set of values that yield

sufficient Bayesian power while controlling the Bayesian type I error rate at no more than α. We

refer to the set of values {n, T, a0, ψ} as the key controllable trial characteristics.

In general, T should be at least as large as the duration of time it is expected to take for the

survival curves to plateau. Thus, it is natural to fix T for design purposes based on the time

when the survival curves approximately leveled off in the historical trial. This is the approach we

suggest in practice and the approach taken in our example in Section 4.5. We further restrict the

search space for the key controllable trial characteristics by fixing ψ = 1 − α. This choice of ψ is

justified by the fact that the posterior probability P (γ < 0 |D,D0, a0 = 0) (based on an analysis

of the new trial without incorporating historical data) will be asymptotically uniformly distributed

when γ = 0 and the model is correct. In other words, the posterior probability of the alternative

hypothesis has the same asymptotic behavior as a frequentist p-value when the null hypothesis is

true. Accordingly, rejecting the null hypothesis when P (γ < 0 |D,D0, a0 = 0) ≥ ψ = 1−α should

provide frequentist type I error control (asymptotically). A heuristic justification for these ideas

follows directly from the relationship in (4.3.2) but more rigorous exposition on the connection

between so called posterior probabilities of the half-space and frequentist p-values can be found

in Dudley and Haughton (2002). In this light, one can view our design procedure as starting out

with a size α frequentist hypothesis test (based on taking a0 = 0) and then modifying the test by

borrowing increasing amounts of information from the historical trial until it functions as a size α

hypothesis test with respect to the Bayesian type I error rate.
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4.4.1 Definition of the Bayesian Type I Error Rate and Power

In order to formally define the Bayesian type I error rate and Bayesian power, we first introduce

the concepts of sampling and fitting priors that were formalized in Wang and Gelfand (2002) and

extended in Chen et al. (2011) to investigate Bayesian type I error and power. Let π
(s)
0 (ξ) and

π
(s)
1 (ξ) be the null and alternative sampling priors and let π(f) (ξ) be the fitting prior. A sampling

prior specifies a probability distribution for the model parameters conditional on a particular hy-

pothesis being true. The null sampling prior will give zero weight to values of ξ having a negative

γ component and the alternative sampling prior will give zero weight to values of ξ having a non-

negative γ component. The sampling priors are referred to as such because they are used to sample

parameter values in the simulation-based estimation procedure for the Bayesian type I error rate

and power. This procedure is detailed in Section 4.4.4. The fitting prior π(f) (ξ) is simply the prior

used to analyze the data. In our case π(f) (ξ) is the basic power prior given in (4.3.1).

For a fixed value of ξ, define the null hypothesis rejection rate as

r (ξ |D0, a0) = E [1 {P (γ < 0 |D,D0, a0) ≥ ψ} | ξ,D0, a0]

where 1 {P (γ < 0 |D,D0, a0) ≥ ψ} is an indicator that we accept H1 based on the posterior prob-

ability P (γ < 0 |D,D0, a0) determined by the observed data D. For null values of ξ, the quantity

r (ξ |D0, a0) is the type I error rate and, for alternative values of ξ, it is power. For chosen null

and alternative sampling priors, the Bayesian type I error rate α(s) and Bayesian power 1 − β(s)

are defined as

α(s) = E
π
(s)
0 (ξ)

[r (ξ |D0, a0)] (4.4.1)

and

1− β(s) = E
π
(s)
1 (ξ)

[r (ξ |D0, a0)] . (4.4.2)

The expectation in (4.4.1) is with respect to the null sampling prior distribution for ξ and the ex-

pectation in (4.4.2) is with respect to the alternative prior sampling distribution for ξ. We note that

in Chen et al. (2011) (cf. equation 5) the authors define the Bayesian type I error rate and power in

terms of the null and alternative prior predictive distribution of the data,
∫
p (D | ξ)π

(s)
0 (ξ) dξ and
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∫
p (D | ξ)π

(s)
1 (ξ) dξ, respectively. Our presentation here simply changes the order of integration to

highlight the fact that the Bayesian type I error rate and Bayesian power are weighted averages of

the quantities based on fixed values of ξ. Our recipe for simulation-based estimation of the Bayesian

type I error rate and Bayesian power follows closely the presentation in Chen et al. (2011).

4.4.2 Default Sampling Priors

It should be clear from Section 4.4.1 that the Bayesian type I error rate and power depend

critically on the choice of the null and alternative sampling priors. It is natural that the sampling

priors would reflect one’s belief about the parameters in light of the information available from the

historical trial. Presumably, the historical trial data will suggest that there is treatment efficacy

but the evidence will not be overwhelming (hence the desire to conduct another trial). We propose

a set of default sampling priors that are well suited for this scenario. After collecting the historical

data, one’s belief about the parameters is determined by π (ξ |D0). If one believes the historical

and future trial patients are exchangeable (within levels of the covariates), then reasonable choices

for the null and alternative sampling priors are π
(s)
0 (ξ) = π (ξ |D0, γ ≥ 0) (the historical posterior

given that H0 is true) and π
(s)
1 (ξ) = π (ξ |D0, γ < 0) (the historical posterior given that H1 is

true).

Figure 4.1 illustrates the marginal posterior distribution for γ based on our analysis of the

historical trial data used in the example application in Section 4.5 along with the corresponding

default null and alternative marginal sampling priors for γ. Though we have only plotted the

marginal sampling priors for γ, conditioning on the null or alternative hypothesis obviously induces

changes in the entire joint distribution for ξ. The distribution for the promotion time model

parameters and other regression parameters can be quite different for the null and alternative

sampling priors. The key point is that by defining the sampling priors as we have, we preserve the

stochastic relationships between the treatment and nuisance parameters that are implied by the

historical data under the assumption that a particular hypothesis is true. To make this idea more

explicit, we contrast it with a commonly used approach that is easier to implement. Consider a

point mass alternative sampling prior with all parameters set to their posterior means. For the null
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Figure 4.1: π (γ |D0) and corresponding default marginal sampling priors.
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sampling prior, the value of γ is simply set to zero with other parameters remaining unchanged.

This approach is only sensible when γ is independent of the remaining parameters in ξ given D0.

Of course, this is never the case.

A fundamental challenge in using the proposed sampling priors is that they cannot be di-

rectly sampled from since they do not have closed-forms. However, this issue is easily overcome

through the following approximation. First, we fit the model to the historical trial data using

MCMC methods to obtain B samples {ξb : b = 1, ..., B} from π (ξ |D0). We can then approximate

sampling from π
(s)
0 (ξ) and π

(s)
1 (ξ) by sampling with replacement from the sets {ξb : γb ≥ 0} and

{ξb : γb < 0}, respectively. If the number of sample points in each restricted set is large, the discrete

approximations of the sampling priors will be accurate. Obviously the choice of B will depend on

how much mass the historical trial posterior puts in the null region. Since this process only needs to

be completed once, the computational burden of choosing B to be extremely large (e.g. 5, 000, 000)

is quite feasible.

4.4.3 Alternatives to the Default Sampling Priors

The default sampling priors previously described are sensible and automatic. However, there

will be instances where it is desirable to modify the default priors. For example, researchers may

deem it impossible for the new treatment to decrease the cure fraction by more than a certain

amount relative to the planned control. In addition, researchers may want to compute power over

a restricted alternative space that rules out implausibly large or clinically insignificant effect sizes.

In this section, we introduce intuitive modifications to the default sampling priors that still preserve

the stochastic relationships between the treatment and nuisance parameters that are implied by

the historical data under the assumption that a particular hypothesis is true. We note that the

procedure discussed in Section 4.4.2 for sampling from the default sampling priors applies to the

modified versions discussed in this section.

The general null sampling prior is defined as π
(s)
0 (ξ) = π (ξ |D0, 0 ≤ γ ≤ γ0,u). As γ0,u → 0,

less and less information can be borrowed from the historical data if the Bayesian type I error

rate is to be controlled. For γ0,u = 0, Bayesian type I error control is similar to frequentist type I
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error control. The difference is that Bayesian type I error control implicitly assumes the nuisance

parameters in the sampling model for the new trial are consistent with the posterior distribution

for the historical trial (based on the reduced model without a treatment effect). In order to have

Frequentist type I error control, the design methodology would have to be robust to differences

between the nuisance parameters in the generative model for the new trial and the historical trial

posterior. In the example application in Section 4.5, we consider designs based on the default null

sampling prior and the most restrictive general null sampling prior defined by taking γ0,u = 0.

We will see that no information can be borrowed from the historical trial in the latter case. By

extension, this implies that information borrowing is impossible if the design is required to have

frequentist type I error control.

The general alternative sampling prior is defined as π
(s)
1 (ξ) = π (ξ |D0, γ1,l ≤ γ < γ1,u). Re-

searchers will often be content with a trial design that does not lead to detection of small effect

sizes with high probability. Thus, we expect that γ1,u will be chosen to be less than zero in most

applications. Another option to be considered in lieu of the default alternative sampling prior is

the point mass alternative sampling prior

π
(s)
1 (ξ) = 1 {ξ = E [ξ |D0, γ < 0]} (4.4.3)

which sets the parameter values equal to their posterior means given the historical data and con-

ditional on the alternative hypothesis being true. Figure 4.2 illustrates the marginal posterior

distribution for γ based on the default alternative sampling prior and the restricted alternative

sampling prior obtained by setting γ1,l and γ1,u equal to the limits of a 50% HPD interval for

the treatment effect parameter based on the analysis of the historical trial used in the example

application in Section 4.5. In that section, we contrast the power of designs based on the default

alternative sampling prior, the restricted alternative sampling prior defined by choosing γ1,l and

γ1,u as just described, and the point-mass sampling prior in (4.4.3).
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Figure 4.2: Alternative marginal sampling priors for γ.

4.4.4 Estimation of the Bayesian Type I Error Rate and Power

In this section, we describe the simulation process that is used to estimate the Bayesian type

I error rate and power. Let B be the number of simulation studies to be performed. To estimate

the Bayesian type I error rate, we proceed as follows:

1. Sample ξ(b) from the null sampling prior π
(s)
0 (ξ).

2. Given ξ(b), simulate the new trial data D(b). This can be done using the following steps (for

each subject):

i. Simulate xi, zi, and si based on the chosen randomization fraction, distribution for the

covariates, and distribution for the stratification variable.

ii. Calculate θi = exp
(
γzi + xTi β

)
and simulate Ni ∼ Poisson (θi).

iii. Simulate Zij ∼ F (z | ψsi) independently for j = 1, ..., Ni and calculate zi = min (Zij : j = 0, ..., Ni)

with Zi0 = T .
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iv. Simulate the time-to-censorship, denoted as ci, according to the chosen distribution. If

only administrative censoring is entertained, then set ci = T .

iv. If zi < ci then set yi = zi and vi = 1, otherwise set yi = ci and vi = 0.

3. Update the fitting prior π(f) (ξ) based on the likelihood for the simulated data L
(
ξ |D(b)

)
to

obtain the posterior distribution π
(
ξ |D(b),D0, a0

)
and calculate the posterior probability

of the alternative hypothesis P
(
γ < 0

∣∣D(b),D0, a0

)
.

4. Compute the null hypothesis rejection indicator for simulated trial b:

r(b) = 1
{
P
(
γ < 0

∣∣D(b),D0, a0

)
≥ ψ

}

5. Approximate the Bayesian type I error rate with the empirical null hypothesis rejection rate:

α(s) ≈ 1

B

B∑
b=1

r(b)

Steps 1-4 are first repeated for b = 1, ..., B to obtain the outcome for each simulated trial and then

step 5 combines the results to estimate the Bayesian type I error rate. The process for estimating

Bayesian power is identical. One simply needs to use the alternative sampling prior in place of the

null sampling prior in the algorithm above.

4.5 Bayesian Design of a Superiority Trial in High-Risk Melanoma

The E1690 trial was conducted to assess the utility of Interferon Alfa-2b (INF) as an adjuvant

therapy following surgery for deep primary or regionally metastatic melanoma. A detailed report

on the trial was given in Kirkwood et al. (2000). Briefly, E1690 was a prospective, randomized,

three-arm clinical trial designed to evaluate the efficacy of high-dose IFN for one year and low-dose

IFN for two years relative to observation (OBS) in high-risk melanoma patients using relapse-free

survival (RFS) and overall survival endpoints. We restrict our attention to the high-dose IFN

regimen and consider the design of a follow-up RFS trial to confirm the efficacy of IFN.

Patients enrolled in the E1690 trial had histologically proven American Joint Committee on
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Figure 4.3: Kaplan-Meier curves for the high-dose INF and OBS groups.

Cancer (AJCC) stage IIB or stage III primary or recurrent regional nodal involvement from cu-

taneous melanoma without evidence of systemic metastatic disease (disease stages 1: T4cN0, 2:

T1-4pN1cN0, 3: T1-4cN1, and 4: T1-4N1 recurrent). The randomization and primary analysis

were stratified by disease stage and the number of positive nodes at lymphadenectomy. The pri-

mary analysis was based on a stratified log-rank test and the two-sided p-value was 0.054. There

were 215 subjects and 114 relapses observed in the high-dose IFN group and 211 subjects and 126

relapses observed in the OBS group. Among the set of subjects who did not experience relapse,

the median observation time was over four years. Figure 4.3 presents the Kaplan-Meier estimator

for the survival curves for the high-dose IFN and OBS groups. Note the clear plateau appearing

at approximately 4 years. This suggests a cure rate model is reasonable for these data. Overall

the data from E1690 suggests a treatment benefit for RFS but the evidence is not overwhelming

by traditional statistical criteria.

In the E1690 trial, disease stage and the number of positive nodes at lymphadenectomy were

highly prognostic for RFS and so we consider these characteristics for inclusion in the design model

to help ensure exchangeability of subjects across the two studies. To formally choose the design

model, we compared a variety of promotion time cure rate models that adjusted for these covariates
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Table 4.1: DIC for six best candidate design models

Stratification Variables Cured Fraction Model Covariates Weibull DIC Exponential DIC

Stages 1-2 and 3-4 Treatment, 2-3 nodes, ≥ 4 nodes 1011.317 1011.557
Stages 1,2,3 and 4 Treatment, 2-3 nodes, ≥ 4 nodes 1014.234 1015.368
Stages 1-2 and 3-4 Treatment, ≥ 2 nodes 1017.845 1017.530

Table 4.2: Posterior summaries for the historical trial and default sampling priors

— Posterior — — Default Alternative — — Default Null —
Parm Mean (SD) HPD Mean (SD) HPD Mean (SD) HPD

γ -0.26 (0.130) (-0.51,0.00) -0.26 (0.121) (-0.49,-0.03) 0.05 (0.044) ( 0.00, 0.14)
β1 -0.10 (0.122) (-0.34,0.14) -0.09 (0.120) (-0.32, 0.15) -0.25 (0.107) (-0.46,-0.04)
β2 0.23 (0.172) (-0.11,0.57) 0.23 (0.172) (-0.11, 0.56) 0.21 (0.172) (-0.12, 0.55)
β3 0.77 (0.158) ( 0.46,1.08) 0.77 (0.157) ( 0.46, 1.08) 0.77 (0.156) ( 0.46, 1.08)
λ1 0.48 (0.088) ( 0.31,0.65) 0.48 (0.088) ( 0.31, 0.65) 0.49 (0.086) ( 0.32, 0.66)
α1 1.20 (0.134) ( 0.94,1.47) 1.20 (0.135) ( 0.94, 1.47) 1.21 (0.133) ( 0.95, 1.47)
λ2 0.67 (0.077) ( 0.51,0.82) 0.67 (0.077) ( 0.51, 0.82) 0.67 (0.078) ( 0.51, 0.82)
α2 1.06 (0.072) ( 0.92,1.21) 1.06 (0.073) ( 0.92, 1.21) 1.06 (0.073) ( 0.92, 1.21)

in the model for the cured fraction and/or stratified by them in the model for the promotion times.

Table 4.1 lists the six best fitting models according to the deviance information criterion (DIC)

(Spiegelhalter et al., 2002). The DIC values were computed based on 50, 000 MCMC samples from

an analysis using a uniform improper prior on the regression parameters and a Gamma (0.001, 0.001)

prior on each of the parameters in the promotion time model. It is shown in Ibrahim et al. (2001b)

(cf. Theorem 5.2.1) that the resulting posterior is proper under mild conditions which are met by

the E1690 data. In addition to the six models shown in Table 4.1, a variety of other models were

considered including models that adjusted for disease stage in the model for the cured fraction and

models that stratified by treatment and/or the number of positive nodes at lymphadenectomy in

the promotion time model. We selected the model having the best fit according to DIC for design.

Thus, the design model had separate Weibull promotion time distributions for disease stages 1-2

and for disease stages 3-4. The model for the cured fraction included an intercept, a treatment

indicator, an indicator for having 2-3 positive nodes, and an indicator for having ≥ 4 positive nodes.

Table 4.2 presents the posterior mean, the posterior standard deviation (SD), and 95% highest

posterior density (HPD) interval for all parameters based on an analysis of the historical E1690

data as well as for the default sampling priors. We note the highest posterior density (HPD)

interval for the treatment effect puts a non-negligible amount of mass in both the null region and
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the alternative region though the evidence clearly favors treatment efficacy (about 97.5% of the

mass is in the alternative region). Note the dramatic change in the posterior mean for β1 (the

intercept) when we condition on the null hypothesis being true versus the alternative. If the null is

true, the data imply the cured fraction in the untreated group is much higher than if the alternative

is true (approximately 46% compared to 40%, for subjects with stage 1 or 2 cancer having ≤ 1

positive node at lymphadenectomy). This illustrates why it is inappropriate to fix the nuisance

parameters at, say, their posterior means and simply vary the value of γ during design (unless one

is purposefully considering sampling priors that are inconsistent with the historical data).

Our primary purpose in this section is to compare and contrast designs based on different

choices of sampling priors. To illustrate how the choice of null sampling prior impacts the amount

of information that can be borrowed from the historical trial, we consider two possibilities: the

frequentist-like null sampling prior obtained by taking γ0,u = 0 and the default null sampling

prior obtained by taking (γ0,u = ∞). To illustrate how the choice of alternative sampling prior

impacts power, we consider three possibilities: the point mass alternative sampling prior with

parameters set to the posterior means in Table 4.2 (for the default alternative sampling prior), the

restricted alternative sampling prior with γ1,l = −0.343 and γ1,u = −0.169 which are the limits

of the 50% HPD interval for γ based on the historical trial posterior, and the default alternative

sampling prior. The point mass alternative sampling prior corresponds to a difference in the cured

fraction of approximately 9.3% in subjects with stage 1 or 2 cancer having ≤ 1 positive node at

lymphadenectomy. For design simulations, we assumed uniform enrollment over a period of 4 years

and a trial duration of T = 6.5 years. The only censoring was administrative at trial completion.

Moreover, the distribution for cancer stage and the number of positive nodes at lymphadenectomy

was taken to match the observed distribution from E1690 and the randomization was 1:1.

For a chosen null sampling prior, the first step in the design process is to find the largest value

of a0 that leads to control of the Bayesian type I error rate for each sample size being considered.

To do this, we performed 200, 000 simulations studies for n = 550 to n = 800 with a step size of 25

over a range of values for a0 and estimated the Bayesian type I error rate for each combination of n

and a0. Next, we used degree-two polynomial regression to smooth estimates of the Bayesian type I

error rate for each sample size and interpolated the correct choice of a0. For these regression curve
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Figure 4.4: Regression curves and point estimates of the Bayesian type I error rate for n = 550,
n = 650, and n = 750 based on the Frequentist-like null sampling prior (light gray) and the default
null sampling prior (black). Each point estimate was based on 200, 000 simulation studies.

fits, the smallest R2 value was 0.994 indicating a near perfect fit. Figure 4.4 presents estimates of

the Bayesian type I error rate as a function of a0 for both null sampling priors for sample sizes

n = 550, n = 650, and n = 750. Lastly, we smoothed the chosen values of a0 based on a simple

linear regression model using sample size as the regressor. For the linear regression curve fits, the

smallest R2 value was 0.974 indicating near perfect fit. Figure 4.5 presents the estimated curves

for a0 as a function of sample size that lead to control of the Bayesian type I error rate at 2.5% for

the default null sampling prior and at 5.0% for the frequentist-like null sampling prior.

It is clear from Figure 4.4 that virtually no information can be borrowed from the historical

trial when the frequentist-like null sampling prior is used and when the Bayesian type I error rate is

to be controlled at 2.5%. In fact, the estimates obtained for a0 when using that null sampling prior

were less than 0.005 for every value of n we considered. Based on these results, we set a0 = 0 for

the purpose of determining power in all design simulations using the frequentist-like null sampling

prior (when the Bayesian type I error rate was to be controlled at 2.5%). In contrast, we see

that when using the default null sampling prior, we are able to borrow a meaningful amount of

information from the historical trial without surpassing the 2.5% Bayesian type I error threshold.

As illustrated in Figure 4.5, we can borrow approximately 33% of the historical trial information

when n = 550 and approximately 40% when n = 800. Note that due to the informativeness of the

historical trial, it is impossible to borrow all of the historical trial information unless the future
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Figure 4.5: Regression curves and point estimates for a0 as a function of sample size for designs
that control of the Bayesian Type I error rate at 2.5% based on the default null sampling prior
(black) and at level 2× 2.5 = 5.0% based on the frequentist-like null sampling prior (light gray).

trial is unrealistically large. Thus, although the Bayesian version of type I error control (based on

the default null sampling prior) is less restrictive than the frequentist-like type I error control, there

is still significant restriction on the amount of information that can be borrowed. The fundamental

difference is that when using the default null sampling prior, the restriction can be overcome by

increasing the size of the future trial. It is also apparent from Figure 4.5 that controlling the

Bayesian type I error rate at 2.5% based on the default null sampling prior does not meet the

added restriction of controlling the Bayesian type I error rate at 5.0% based on the frequentist-like

null sampling prior.

We estimated power using each of the three alternative sampling priors discussed in Section

4.4.3 for sample sizes from n = 550 to n = 800 using a step size of 25 and 200,000 simulations in

each case. For each sample size and alternative sampling prior, we considered values of a0 satisfying

three possible criteria for type I error control: values that control the Bayesian type I error rate

at 2.5% when using the default null sampling prior (DN2.5), values that control the Bayesian type

I error rate at 2.5% when using the Frequentist-like null sampling prior (FN2.5), and values that

control the Bayesian type I error rate at no more than 2.5% when using the default null sampling

prior and at no more than 5.0% when using the Frequentist-like null sampling prior (FN5.0). The

latter approach may be appealing to regulatory bodies since it ensures a reasonable upper bound
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Figure 4.6: Quadratic regression curves and point estimates for Bayesian power as a function of
sample size when the value of a0 is chosen to control the Bayesian type I error rate at 2.5% when
using the default null sampling prior (solid black line), to control the Bayesian type I error rate
at 2.5% when using the Frequentist-like null sampling prior (solid gray line), and to control the
Bayesian type I error rate at no more than 2.5% when using the default null sampling prior and at
no more than 5.0% when using the Frequentist-like null sampling prior (dashed black line).

on the frequentist-like type I error rate for the design. Using degree-two polynomial regression

model, we interpolated the power for intermediate samples sizes. For these regression curve fits,

the smallest R2 value was 0.998, indicating a near perfect fit. Figure 4.6 presents estimates of

Bayesian power as a function of sample size for each criteria for choosing a0. Table 4.3 includes

the power estimates and associated values of a0 for select sample sizes to faciliate more direct

comparison. Using the point mass alternative sampling prior (PM), we obtain 80% power with

sample sizes of approximately 590, 600, and 760 for Bayesian type I error criteria DN2.5, FN2.5,

and FN5.0, respectively. Using the more conservative restricted alternative sampling prior (RA),

we obtain 80% power with sample sizes of approximately 670 and 690 for Bayesian type I error

criteria DN2.5 and FN5.0, respectively. At the maximum sample size considered, the power only

reaches approximately 76.5% when the frequentist-like type I error rate is controlled at 2.5%. Using

the default alternative sampling prior (DA), which is the most conservative with respect to power,

we do not reach 80% power even when the sample size is 800 for any of the three Bayesian type I

error rate criteria. We expect very few trials will be powered using the default alternative sampling

prior. Nonetheless, this sampling prior can provide a realistic estimate of power for the trial design

based on what is deemed plausible given the historical data.
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Table 4.3: Power estimates for select sample sizes

————– DN2.5 ————– ————– FN5.0 ————– ——— FN2.5 ———
n a0 DA RA PM a0 DA RA PM DA RA PM

550 0.328 0.687 0.731 0.775 0.317 0.684 0.728 0.771 0.604 0.623 0.663
560 0.331 0.692 0.737 0.782 0.318 0.689 0.734 0.778 0.609 0.630 0.671
570 0.334 0.696 0.743 0.788 0.319 0.693 0.739 0.784 0.614 0.636 0.679
580 0.337 0.700 0.750 0.795 0.320 0.697 0.745 0.790 0.618 0.643 0.686
590 0.340 0.705 0.756 0.801 0.321 0.701 0.750 0.796 0.623 0.650 0.694
600 0.343 0.709 0.761 0.807 0.322 0.704 0.756 0.802 0.627 0.656 0.701

610 0.346 0.713 0.767 0.813 0.323 0.708 0.761 0.807 0.632 0.663 0.708
620 0.349 0.717 0.773 0.819 0.324 0.712 0.766 0.813 0.636 0.669 0.715
630 0.352 0.721 0.778 0.825 0.325 0.715 0.771 0.818 0.640 0.675 0.722
640 0.355 0.725 0.784 0.830 0.327 0.719 0.776 0.823 0.644 0.681 0.729
650 0.358 0.728 0.789 0.836 0.328 0.722 0.781 0.829 0.648 0.687 0.735

660 0.361 0.732 0.794 0.841 0.329 0.726 0.786 0.834 0.652 0.693 0.742
670 0.364 0.736 0.799 0.846 0.330 0.729 0.791 0.838 0.656 0.699 0.748
680 0.367 0.739 0.804 0.851 0.331 0.732 0.795 0.843 0.660 0.705 0.754
690 0.370 0.742 0.809 0.856 0.332 0.735 0.800 0.848 0.664 0.710 0.761
700 0.374 0.746 0.813 0.861 0.333 0.739 0.804 0.852 0.668 0.716 0.766

710 0.377 0.749 0.818 0.866 0.334 0.741 0.808 0.857 0.671 0.721 0.772
720 0.380 0.752 0.822 0.870 0.335 0.744 0.812 0.861 0.675 0.726 0.778
730 0.383 0.755 0.827 0.875 0.337 0.747 0.816 0.865 0.678 0.731 0.783
740 0.386 0.758 0.831 0.879 0.338 0.750 0.820 0.869 0.682 0.737 0.789
750 0.389 0.761 0.835 0.883 0.339 0.753 0.824 0.873 0.685 0.742 0.794

760 0.392 0.764 0.839 0.887 0.340 0.755 0.828 0.877 0.688 0.746 0.799
770 0.395 0.767 0.842 0.891 0.341 0.758 0.832 0.880 0.691 0.751 0.804
780 0.398 0.770 0.846 0.895 0.342 0.760 0.835 0.884 0.694 0.756 0.809
790 0.401 0.772 0.849 0.898 0.343 0.762 0.839 0.887 0.697 0.761 0.814
800 0.404 0.775 0.853 0.902 0.344 0.765 0.842 0.890 0.700 0.765 0.818
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4.6 Discussion

In this paper, we have developed a Bayesian design methodology for time-to-event clinical trials

with a cured fraction that makes use of data from a previously completed clinical trial. We have

proposed Bayesian versions of type I error and power that are defined with respect to one’s belief

about the model parameters after observing the historical study data. Our results illustrate that

if one requires the design to exhibit frequentist type I error control, it is not possible to borrow

any information from the historical data. However, when one relaxes the design constraints to

require Bayesian type I error control using our default null sampling prior, we are able to borrow

substantial amounts of information from the historical study. Depending on the informativeness

of the historical data, one may only be able to borrow a fraction of the available information.

Thus, while Bayesian type I error control is less restrictive than frequentist type I error control,

the former still places significant restrictions on how much information can be borrowed. We have

also demonstrated that powering a study to have adequate Bayesian power under a non-degenerate

alternative sampling prior will generally lead to a much larger study compared to a point mass

alternative sampling prior using the most likely effect size based on the historical study posterior.

The conflict between Bayesian analysis with informative priors and frequentist type I error

control is a topic of future research for the authors. In this paper, our case study focuses on a design

application where information is borrowed on the treatment effect as well as nuisance parameters.

In this case, the apparent conflict between frequentist type I error control and Bayesian analysis

with an informative prior is undeniable. However, when one borrows information only on the

nuisance parameters, the conflict is less obvious. This is because the historical study does not

inform the treatment effect parameter and hence, does not overtly suggest the null hypothesis is

false. However, since the sampling priors for the nuisance parameters are defined with respect

to the historical study data, there is an implicit assumption that the nuisance parameter values

in the generative model for the new study are consistent with the historical study posterior. In

future work, we plan to consider designs that borrow information on the control group only, giving

practical advice on defining and using default null and alternative sampling priors in this setting.

All design computations were performed using the weighted maximum likelihood approximation
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to the posterior distribution as described in Section 4.3 and using the KillDevil computing cluster

at the University of North Carolina at Chapel Hill. Weighted maximum likelihood analysis was per-

formed using SAS/STAT R© software, specifically the NLP procedure. The accuracy of the weighted

maximum likelihood approximation is demonstrated via simulation in Appendix B.1. Data simu-

lations and MCMC-based model fitting (to obtain discrete approximations of the sampling priors)

was performed using custom C++ programming that was written by the authors.
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CHAPTER 5: BAYESIAN DESIGN OF A CARDIOVASCULAR
OUTCOMES TRIAL

5.1 Introduction

In December of 2008, the US Food and Drug Administration (FDA) issued a guidance for

industry effectively establishing a two-stage framework for the assessment of cardiovascular risk

in all new therapeutic agents intended for the treatment of Type 2 Diabetes Mellitus (T2DM)

(Food and Drug Administration, 2008). The guidance specifies that the stage one data should rule

out an 80% increase in cardiovascular risk for treated subjects compared to controls. If the stage

one data do not also rule out a 30% increase in cardiovascular risk, and the overall risk-benefit

analysis supports approval, a randomized controlled trial will generally be required to ultimately

rule out a 30% increase in stage two. Thus, the stage one objective is to rule out a 80% increase in

cardiovascular risk and the stage two objective is to further rule out a 30% increase in cardiovascular

risk. In practice, the hazard ratio estimated from a Cox proportional hazards model is used

as the basis for cardiovascular risk assessment and so stages one and two might equivalently be

characterized as having to rule out hazard ratios of 1.8 and 1.3, respectively. The values 1.8 and

1.3 are commonly referred to as the stage one and stage two risk margins.

Various design strategies have been proposed and utilized for the evaluation of cardiovascular

risk to satisfy the two-stage framework described above. These approaches and their relative

merits are discussed in Geiger et al. (2015) and Marchenko et al. (2015). Strategies for ruling out

the stage one risk margin include performing a meta-analysis of phase II and phase III trials with

or without interim data from an ongoing cardiovascular outcome trial (CVOT) and conducting a

CVOT designed and powered to ultimately rule out the stage two risk margin. At this time, it is

expected that the stage two risk margin will be ruled out using data from a CVOT. The required

number of subjects that must be recruited to enable timely completion of a CVOT designed to
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rule out the stage two risk margin is substantial. This is because, even in the high risk T2DM

population, cardiovascular events are relatively rare. In several published CVOTs the observed

annualized event rate for major adverse cardiac events (MACE), the primary endpoint used to

evaluate cardiovascular risk in these trials, was as low as 2%-3% (The ADVANCE Collaborative

Group, 2008; The ACCORD Study Group, 2011; Scirica et al., 2013). Not surprisingly, there is

considerable interest in reducing the size of these large trials. As more and more CVOTs complete,

it is becoming increasingly apparent that the pool of completed CVOTs could be a valuable source

of information to be used in the design and analysis of future CVOTs. Koch (2015) noted that

Bayesian methods might be used to borrow information for the placebo control group leading to a

new CVOT that might complete more quickly.

In this chapter, we develop two Bayesian adaptive design strategies based on assumed availability

of subject-level placebo control data from a previously completed CVOT (i.e. a historical CVOT).

Our focus is ruling out the stage two risk margin of 1.3 using information from the CVOT being

planned as well as control information from a selected historical CVOT which is to be incorporated

through an informative Bayesian prior. Ibrahim et al. (2012b) and Chen et al. (2014a) have

previously developed Bayesian meta-design methods for CVOTs using trial-level covariate data

with a goal of controlling the type I error rate in the traditional frequentist sense. Their results

show that little to no information was borrowable under that constraint. The constraint that a

design must control the type I error rate in the traditional sense forces one to discard all prior

information (Berry et al. (2010), cf Chapter 5).

We take an approach that differs from Ibrahim et al. (2012b) in two key respects. First, we will

not attempt to control the type I error rate in the traditional sense for the reasons described above.

Instead, we propose adaptive designs that ensure the maximum type I error rate has a reasonable

upper bound (e.g. twice the targeted level) and the minimum statistical power has a reasonable

lower bound (i.e. 10% less than the targeted amount) over a range of possible parameter values for

the generative model in the planned CVOT. Second, rather than relying on trial-level covariates

(which may be extracted from publications), we propose methodology that requires subject-level

data since covariate adjustment at that level is, in our opinion, critically important for justifiable

information borrowing in a single arm of a multi-arm trial.
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We propose and evaluate two novel strategies one might take for borrowing information from

a historical CVOT. The first approach, which we call the all-or-nothing adaptive design, uses the

basic power prior (Ibrahim and Chen, 2000). The basic power prior is a traditional prior in the

sense that it allows a fixed amount of information to be borrowed from the historical CVOT. The

amount of information to be borrowed would be negotiated with the pertinent regulatory body

during the planning stages of the new CVOT. For example, one might target borrowing 25% of the

events needed to have a desired power for the new CVOT. At a pre-planned interim analysis, which

should occur after a reasonable number of events have been accrued in the new CVOT, one assesses

the degree of conflict between the prior information and the new CVOT data using a likelihood

ratio statistic where large values indicate a lack of agreement between the two data sources and

hence a potential lack of exchangeability of the enrolled subjects (beyond what is addressed by

covariate adjustment). If the likelihood ratio statistic is sufficiently large, the study continues to

the final analysis where the data are analyzed with an objective Bayesian prior (i.e. no borrowing).

Otherwise, the study is stopped at the interim analysis and the analysis is performed using the basic

power prior constructed to yield the desired amount of borrowing. One determines what qualifies as

a “sufficiently large” likelihood ratio statistic through a simulation-based procedure that evaluates

the type I error rate and statistical power of the design over a range of possible parameter values

for the generative model in the new CVOT.

For the second approach, which we call the dynamic borrowing adaptive design, one allows

the amount of information borrowed from the historical CVOT to be dynamically adjusted using

a novel extension of the joint power prior (Ibrahim and Chen, 2000) which we call the restricted

maximal borrowing power prior. In this framework, the fraction of information borrowed from

the historical CVOT is treated as a random variable (denoted by a0). The restricted maximal

borrowing power prior is constructed so that one obtains a desirable posterior distribution for a0

when the observed data in the new CVOT and historical CVOT are perfectly homogeneous. Thus,

when using this formulation of the power prior, one essentially specifies an upper bound posterior

distribution governing the amount of information that can be borrowed in a best case scenario.

At a pre-planned interim analysis, which should occur after a reasonable number of events have

been accrued in the new CVOT, the posterior mean of a0 (or an alternative posterior functional) is
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examined to determine whether or not sufficient information is being borrowed from the historical

CVOT. If it is determined that too little information is being borrowed relative to the desired

amount, the study continues to the final analysis. Otherwise, the study is stopped at the interim

analysis. In either case, the formal analysis utilizes the restricted maximal borrowing power prior

to borrow the amount of information that is supported by the level of agreement between the data

from the new and historical CVOTs at the time of the analysis. One determines the minimal amount

of information borrowing that must take place in order to stop the CVOT at the interim analysis

using a simulation-based design procedure that evaluates the type I error rate and statistical power

of the design over a range of possible parameter values for the generative model in the new CVOT.

The rest of this chapter is organized as follows: In Section 5.2 we discuss historical CVOT selec-

tion, practical considerations for specifying the sampling model, and practical design considerations

for the new CVOT so as to justify borrowing information from a selected historical CVOT. In sec-

tion 5.3 we develop the general proportional hazards model that we use as the sampling model for

both adaptive designs. In Section 5.4.1 we formalize the all-or-nothing adaptive design framework.

In Section 5.4.2 we formalize the dynamic borrowing adaptive design framework. In Section 5.5 we

discuss choosing the number of events at which to perform the interim and final analyses, possible

choices for the randomization ratio, and the simulation-based procedure for identifying a reason-

able criteria for stopping the trial at the pre-planned interim analysis. In Section 5.6 we present

and compare detailed example designs using both adaptive design methods using the SAVOR trial

(Scirica et al., 2011, 2013) as the historical CVOT. In Section 5.7 we close the chapter with some

discussion.

5.2 Practical Design Considerations

The set of CVOTs that have been initiated to date reflect a high degree of variability in vir-

tually all aspects of the targeted patient populations. There are differences in basic demographic

characteristics (e.g. age ranges), differences in the required level of glycemic control (i.e. ranges for

hemoglobin A1c), and differences in definitions of qualifying cardiovascular disease history. To il-

lustrate this, we compare select characteristics of the target patient populations for three completed
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CVOTs: the SAVOR, EXAMINE, and TECOS trials. The SAVOR trial serves as the historical

CVOT in our example design applications to follow.

This SAVOR trial (Scirica et al., 2011, 2013) was a multi-center, randomized, double-blind,

placebo-controlled CVOT designed to evaluate the effect of saxagliptin on the incidence of major

adverse cardiovascular events (MACE), which is the required primary endpoint for ruling out the

stage two risk margin in all CVOTs. In common with all other CVOTs, the target population

for the SAVOR trial was enriched to include subjects that were at comparatively high risk for

cardiovascular events. Enrolled subjects were required to be at least 40 years of age and to have a

hemoglobin A1c (HbA1c) value of at least 6.5% but also less than 12.0%. In addition to age and

glycemic control criteria, subjects enrolled in the SAVOR trial were required to have a history of

cardiovascular disease or to present with multiple risk factors that included renal failure. The set of

qualifying events defining a history of cardiovascular disease were ischemic heart disease, peripheral

arterial disease (PAD), and/or ischemic stroke. Acceptable risk factors for cardiovascular disease

included dyslipidemia, hypertension, and being a smoker at enrollment. Subjects were excluded

from the SAVOR trial if they had an acute cardiovascular event in the two month period before

enrollment, if they were severely obese (BMI>50), had severe dyslipidemia, or severe hypertension.

The EXAMINE trial (White et al., 2011, 2013) was a multi-center, randomized, double-blind,

placebo-controlled CVOT designed to evaluate the effect of alogliptin on MACE events. Subjects

were required to be at least 18 years of age. Those subjects not being treated with insulin at

enrollment were required to have a HbA1c value of at least 6.5% but also less than 11.0%. Subject

being treated with insulin at enrollment were required to have a HbA1c value of at least 7.0% but

also less than 11.0%. Unlike the SAVOR trial, the EXAMINE trial enrolled only those subjects that

presented with acute coronary syndrome (ACS) (acute myocardial infarction or unstable angina

requiring hospitalization) between 15 and 90 days prior to enrollment. Subjects were excluded from

the EXAMINE trial if they had one of several hemodynamically unstable cardiovascular disorders

(NYHA class 4 heart failure, refractory angina, uncontrolled arrhythmia, critical valvular heart

disease, or severe hypertension). Due to the requirement that enrolled subjects have ACS, the

target population in the EXAMINE trial had fundamentally higher cardiovascular risk than the

population targeted by SAVOR (at least in the period immediately following enrollment). Since an
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inclusion criteria in the EXAMINE trial was essentially an exclusion criteria for the SAVOR trial,

it should be clear that no amount of covariate adjustment could justify designing a future CVOT

in the image of EXAMINE while targeting a SAVOR-like trial for information borrowing.

The TECOS trial (Green et al., 2013, 2015) was a multi-center, randomized, double-blind,

placebo-controlled CVOT designed to evaluate the effect of sitagliptin on MACE events. The

TECOS trial did not specifically target subjects who had acute coronary events (although it appears

these subjects were not specifically excluded either). Like the SAVOR trial, the TECOS trial

enrolled subjects with chronic conditions that are associated with increased cardiovascular risk.

TECOS subjects were required to have a history of cardiovascular disease defined as having coronary

artery disease, ischemic cerebrovascular disease (e.g. ischemic stroke), or peripheral arterial disease.

These criteria would suggest the target population for TECOS was at least qualitatively similar

to SAVOR (with respect to cardiovascular disease). However, unlike in the SAVOR trial, TECOS

subjects were required to be at least 50 years old and to have a HbA1c value of at least 6.5%

and but also less than 8.0% resulting in a target population that was somewhat older but had

better glycemic control compared to the SAVOR and EXAMINE trials. Moreover, the TECOS

trial excluded subjects in renal failure.

At this point we would like to make two important observations. First, it is quite obvious

that no two CVOTs are the same in terms of their target populations (at least not yet). The

fact is most CVOTs appear to be systematically different in this respect. Thus, the assumption of

exchangeability of trials that is often made to justify the use of hierarchical models for information

borrowing across multiple historical trials seems untenable. For this reason, we suggest borrowing

information from a single historical CVOT that was selected and used, as much as possible, as a

blue print for the design of the new CVOT. By this we mean that, on paper the historical CVOT

and the new CVOT should be as similar as possible. Basic inclusion and exclusion criteria related

to age, level of glycemic control, cardiovascular disease history, and other known prognostic factors

for MACE events should be nearly identical.

The second point is that no matter what one does from a design perspective, it is not reasonable

to assume that all subjects in the historical and new CVOTs are exchangeable so as to justify
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performing the primary analysis using a very simple survival model as is commonly done in a

single randomized controlled trial. It will be necessary to adjust for a reasonable set of prognostic

factors to help better ensure exchangeability of subjects across trials. In our experience there are

a multitude of characteristics (i.e. potential covariates) that are associated with increased risk

for MACE events but only a few that are captured in clinical databases with the level of clarity

and consistency that makes them useful across CVOTs. For example, history of percutaneous

coronary intervention (PCI) is commonly collected in medical history but the information is often

incomplete. Knowing whether the procedure was elective or performed to resolve an acute life-

threatening event would be valuable as would knowing the date that the procedure was performed.

Presumably, procedures from the distant past may not be relevant. The true relationship between

a subject’s history of PCI and their underlying cardiovascular risk is likely too complicated to be

useful in a statistical analysis. In contrast, characteristics like age, duration of diabetes, baseline

HbA1c, and estimated glomerular filtration rate (eGFR) provide clear and concrete information

about the overall health of the subject and about cardiovascular risk (even if these characteristics

represent surrogates for true underlying risk factors that are not clearly captured in the available

data). We suggest one focus on adjusting for the latter type of characteristics in the statistical

model and hope that the similarity of the study designs does an adequate job of addressing the

former. This approach is admittedly imperfect and it speaks to the need for one to evaluate the

assumption of exchangeability of subjects (conditional on covariates) to determine if information

borrowing from the historical CVOT seems reasonable once some data is collected in the new

CVOT.

5.3 The Piecewise Constant Hazard Proportional Hazards Model

In this section we present the sampling model used for analysis. We consider a flexible propor-

tional hazards model where the baseline hazard is allowed to vary across S levels of a stratification

variable. The cumulative hazard for subject i in the new CVOT is given by

Λi (t) = Λ[si] (t) exp
(
γzi + βTxi

)
(5.3.1)
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where si is the stratum to which subject i belongs, Λ[s] (t) is the baseline cumulative hazard for

stratum s, zi is a binary treatment indicator, xi = (xi1, ..., xip) is a p × 1 vector of baseline

covariates, γ is the log hazard ratio for treatment versus control, and β = (β1, ..., βp) is a p × 1

vector of regression coefficients corresponding to the covariates.

Let λ[s] (t) denote the piecewise constant baseline hazard for stratum s. We partition the time

axis into Ks intervals according to the change points 0 = ts,0 < ts,1 < .... < ts,Ks = ∞ and let

λsk > 0 denote the constant hazard value over interval Is,k = (ts,k−1, ts,k]. We denote the set of all

baseline hazard parameters by λ and all model parameters by θ = (γ,β,λ). We refer to this model

in its entirety as the piecewise constant baseline hazard proportional hazards model (PWC-PH)

model. The PWC-PH model is commonly used in Bayesian survival analysis when the proportional

hazards assumption is tenable (Ibrahim et al., 2001b).

5.4 Adaptive Design Strategies

We assume the new CVOT will be an event-driven trial with J = 2 analyses and that analysis

j will be performed when a pre-planned number of events νj have been accrued. We refer to the

first analysis as the interim analysis and the second analysis as the final analysis. Throughout our

discussion, we represent the observed data for the new CVOT at the time of analysis j by Dj

and we represent the historical CVOT data by D0. Our goal is to develop a design that exhibits

reasonable type I error control and that

(1) stops early at the interim analysis, resulting in an adequately powered analysis by virtue of

borrowing control events from the historical CVOT, or

(2) stops at the final analysis, resulting in a adequately powered analysis by accruing a sufficient

number of events in the new CVOT regardless of whether or not any events are borrowed

from the historical CVOT.

In Section 5.4.1 we provide an overview of the all-or-nothing adaptive design approach and in

Section 5.4.2 we provide an overview of the dynamic borrowing adaptive design approach. As

noted previously, we consider information borrowing through historical CVOT control subjects
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only. The data from the treated subjects in the historical CVOT would be discarded. Information

from the historical CVOT is borrowed through the nuisance parameters β and λ which are common

to the sampling models for the two CVOTs.

5.4.1 All-or-Nothing Adaptive Design

The all-or-nothing adaptive design is based on the basic power prior (Ibrahim and Chen, 2000).

In this setting, the basic power prior can be written as follows:

π0

(
θ
∣∣D0, a0

)
∝ [L(β,λ|D0)]a0 × π0(γ,β,λ) (5.4.1)

where 0 ≤ a0 ≤ 1 is a fixed scalar parameter, D0 is the historical data, L(β,λ|D0) is the likelihood

for β and λ given the historical data, and π0(γ,β,λ) is an initial objective prior. We consider the

initial prior

π0(γ,β,λ) ∝ π0 (γ,β)× π0 (λ) ∝ 1×
S∏
s=1

Ks∏
k=1

λ−1
sk .

When a0 = 0 the historical CVOT data is essentially discarded and the power prior reduces to the

initial prior. In contrast, when a0 = 1 the power prior corresponds to the posterior distribution

from an analysis of the historical CVOT using the initial prior. For intermediate values of a0 the

weight given to the historical CVOT is diminished to some degree leading to a prior that is more

informative than the initial prior but less informative than using the historical CVOT posterior as

the prior for the new CVOT.

Definition of the Interim Stoppage Criteria

For the all-or-nothing adaptive design, one fixes a0 at some target value representing the desired

fraction of the ν0 control events that are to be borrowed from the historical CVOT. Generally, a0

would be chosen to ensure that the effective number of control events at the interim analysis

is sufficient to have adequate power under the assumption of no treatment effect and that the

historical CVOT provides unbiased information about the generative model parameters in the new

CVOT. The effective number of control events at the interim analysis is simply the number of
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control events in the new CVOT plus the fraction borrowed from the historical CVOT, a0ν0. At

the interim analysis one evaluates the log-likelihood for the new CVOT data at the maximum a

posteriori (MAP) estimates θ̂0 based on no borrowing and at θ̂a0 based on the pre-planned amount

of borrowing. If the log-likelihood ratio statistic

logL(θ̂0|D1)− logL(θ̂a0 |D1) (5.4.2)

is large, this suggests that the underlying generative models for the historical and new CVOTs

may be different (i.e. subjects are not exchangeable) and that information borrowing may not be

justified. If it happens that

0 < logL(θ̂0|D1)− logL(θ̂a0 |D1) ≤ ∆ (a0)

for chosen ∆ (a0), then the study is stopped and the data are analyzed using the pre-planned

amount of borrowing. If the inequality does not hold, the study continues to the final analysis and

the data are analyzed using the initial prior (i.e. a0 = 0).

The value of ∆ (a0) must be determined through simulation to ensure that the type I error rate

and power for the design are reasonable under various generative models for the new CVOT. In

particular, we propose choosing ∆ (a0) so that the statistical power does not drop by more than

10% when the baseline hazard in the generative model for the new CVOT is moderately less than

the MAP estimate from historical CVOT (in every stratum). In addition, we require that the choice

of ∆ (a0) results in a type I error rate that is less than double the targeted rate when the baseline

hazard in the generative model for the new CVOT is moderately more than the MAP estimate

from historical CVOT (in every stratum). We discuss how to formally identify an acceptable value

for ∆ (a0) in Section 5.5.1.

We note that there are an infinite number of ways in which the historical study MAP estimates

could differ from the generative model parameters in the new CVOT. Clearly, it is impossible to

investigate all possibilities. We choose to focus on equal multiplicative perturbations in all baseline

hazard parameters since this type of modification has the intuitive interpretation of systematically

shifting the baseline cardiovascular risk in the target population of the new CVOT up or down
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relative to the historical CVOT. In practice, if there is concern about a particular covariate effect, it

would make sense to consider perturbations of the corresponding hazard ratio regression parameter

as well.

5.4.2 Dynamic Borrowing Adaptive Design

The joint power prior (Ibrahim and Chen, 2000) generalizes the basic power prior by treating

the a0 parameter as a random variable and giving it a prior distribution. For control group only

borrowing using model (5.3.1), the form of the joint power prior is as follows:

π0

(
θ, a0

∣∣D0

)
∝ [L(β,λ|D0)]a0 × π0(β,λ)× π0(γ)× π0(a0) (5.4.3)

where π0(a0) is an initial prior for a0 and other quantities are the same as in (5.4.1). The joint

power prior allows the level of agreement between the observed data in the historical and new trial

to influence the amount of information that is borrowed.

Several authors have made arguments in favor of alternative generalizations of the basic power

prior. In particular, Duan et al. (2006) advocate the normalized power prior which can be viewed

a special case of the joint power prior that is obtained by dividing (5.4.3) by

∫
{L(β,λ|D0)a0 × π0(β,λ)} d (β,λ)

and thus changing the initial prior on a0. The primary argument in favor of the normalized power

prior is that it obeys the likelihood principle whereas the joint power prior does not. That is, in the

normalized power prior one can replace L(β,λ|D0) with c ·L(β,λ|D0) for c > 0 and the resulting

inference will not change. In the case of the normalized power prior, π0(a0) represents the marginal

prior distribution for a0 whereas in (5.4.3) it does not. These properties of the normalized power

prior would be compelling if the initial prior for π0(a0) represented ones belief about the parameter

a0. However, in practice, the a0 parameter is simply modeled as random to facilitate data-driven

information borrowing. Accordingly, we view π0(a0) as nothing more than a characteristic of the

statistical model that one can manipulate to control the operational characteristics of the design.
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From this point of view, it should be obvious that the choice to use the normalized power prior or

joint power prior is arbitrary.

Another generalization of the basic power prior is the commensurate power prior (Hobbs et al.,

2011, 2012). When the data are not normally distributed, the commensurate power prior cannot be

applied without likelihood approximation (e.g. Laplace approximation) which will be potentially

inaccurate for baseline hazard parameters. Moreover, the baseline hazard can be integrated out

when using the joint power prior and this greatly simplifies MCMC sampling during design (since

estimating the baseline hazard is irrelevant in design simulations). The same integration could not

be done analytically when a commensurate prior is placed on the baseline hazard and, as a result,

the computational burden of model fitting would be much greater. For these reasons we did not

consider a version of the commensurate power prior.

Choosing the Initial Prior π0(a0)

As previously discussed, we view the initial prior π0(a0) as a characteristic of the statistical

model that can and should be manipulated to ensure the design has reasonable operating charac-

teristics. The form of the initial prior that yields good operating characteristics will depend on a

variety of things including the size of the historical study (e.g. number of events) and the model

complexity. As a general rule, as the ratio of the number of parameters to total information (e.g.

number of events) increases, so to will the amount of information borrowed from the historical

CVOT even if the most likely parameter values determined by the two likelihoods are quite differ-

ent. This is because, as the number of parameters increases, the likelihoods will be increasingly flat

and, hence, relatively consistent with one another. Failing to acknowledge this property can result

in poor type I error control.

In light of these observations it would seem ideal that we specify the initial prior for a0 in a

way that takes into account the complexity of the chosen sampling model and the total number of

events in the historical CVOT and new CVOT at the time of the interim analysis. To that end,

we propose the restricted maximal borrowing power prior which has the same form as (5.4.3) with
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initial prior

π0(a0) ∝ π∗(a0)∫
{L(β,λ|D0)a0+δπ0(β,λ)} d (β,λ)

(5.4.4)

where δ is the ratio of events in the new CVOT at the interim analysis to the number of events in the

historical CVOT controls. This formulation of the joint power prior has the property that, in the

idealized scenario where the new CVOT data and historical CVOT data are perfectly homogeneous,

the posterior distribution π(a0 |D1,D0) is equal to π∗(a0). By perfectly homogeneous we mean

that the likelihood for the new CVOT is identical to the likelihood for the historical CVOT apart

from being scaled by the power δ which accounts for differing numbers of events in the two trials.

Details on the calculation of the denominator in (5.4.4) can be found in Appendix C.1.

By specifying the prior in this way, one essentially places an upper bound on the amount

of information that can be borrowed from the historical CVOT. Not only does this approach

ensure that model complexity does not unduly influence the amount of information borrowing,

it also provides a very intuitive frame of reference for how much information might be borrowed

in the analysis. In practice we propose a beta distribution for π∗(a0). When specifying the mean

parameter and dispersion parameter, it is important to note that obtaining the amount of borrowing

implied by π∗(a0) is essentially impossible. Thus, the mean parameter should be larger than the

fixed value of a0 that is used in the all-or-nothing approach. Regardless of what distribution

is chosen for π∗(a0), several choices for the parameters governing the mean and spread of the

distribution will likely need to be explored in order to ensure that the amount of borrowing actually

obtained (on average) is reasonable when the historical CVOT provides unbiased information about

the parameters in the generative model for the new CVOT.

Definition of the Interim Stoppage Criteria

At the interim analysis, one computes the effective number of events being borrowed

E [a0 |D1,D0]× ν0
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and compares that value to a pre-identified minimum acceptable number of events δ0. If it happens

that

E [a0 |D1,D0]× ν0 < δ0

then the study will continue to the final analysis. Otherwise, the study will be stopped at the

interim analysis. In either case, the formal analysis will incorporate whatever amount of information

is supported by the historical and new CVOT data at the time of the formal analysis.

5.5 The Simulation-Based Design Strategy

The null and alternative hypotheses for ruling out the stage two risk margin are as follows:

H0 : eγ ≥ 1.3 versus H1 : eγ < 1.3

where γ is the log-hazard ratio for treatment versus control. We accept H1 if the posterior prob-

ability of the alternative hypothesis is at least as large as some critical value ψ. To decrease the

search space for the number of study characteristics that are manipulated in design simulations,

we recommend fixing ψ = 1 − α where α is the targeted type I error rate for the design. One

needs to select the number of events ν1 and ν2 at which the interim and final analyses will take

place. Traditionally, the final analysis for a CVOT is performed when approximately 612 events

have accrued. This will result in approximately 90% power to rule out the stage two risk margin

under the assumption of no treatment effect (i.e γ = 0) and 1:1 randomization. Since the worst case

scenario for both the all-or-nothing adaptive design and the dynamic borrowing adaptive design

is no borrowing, it makes sense to take ν2 = 612 for both approaches. The choice of ν1 is more

challenging. If the interim analysis is very early, a large fraction of the total events will need come

from the historical CVOT and there may not be enough events in the new CVOT to fully evaluate

whether information borrowing is reasonable. For example, one would want to ensure a reasonable

amount of observation time in each time interval defined by the baseline hazard model. A very late

interim analysis will require less borrowing from the historical CVOT but will also result in less

efficiency gain over the traditional CVOT (i.e. little decrease in the average trial duration compared
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to the traditional CVOT). For our discussion, we plan the interim analysis at ν1 = 612×0.75 = 459

events which should error on the side of having accrued sufficient events in the new CVOT to allow

legitimate evaluation of the comparability of the data from the two trials.

The number of events that must be borrowed from the historical CVOT will depend on the ran-

domization strategy that is implemented. There are two reasonable choices for allocating subjects

to the treatment arms in the new CVOT. First, one could implement unbalanced randomization

(i.e. 2:1 allocation) which should result in an approximately equal effective number of events in

the two arms at the interim analysis in the situations where the CVOT actually stops at the in-

terim. In this case, the unbalanced randomization will result in the formal analysis having optimal

power (under the assumption of no treatment effect). In contrast, balanced randomization (i.e. 1:1

allocation) would be preferred if the study proceeds to the final analysis (since there will be little

or no borrowing in this case). Our simulation studies suggest that the performance of balanced

randomization is superior to unbalanced randomization and so we recommend using that allocation

strategy regardless of the adaptive design strategy taken. This means that slightly more than 153

events will need to be borrowed from the historical CVOT in order to have 90% power at the

interim analysis.

Having decided on the number of events at which to perform the interim and final analyses as

well as the treatment allocation ratio, what remains is to determine a reasonable criteria for when

the trial should be stopped at the interim analysis. This requires a large scale simulation study

using a range of possible parameter values for the new CVOT generative model. The parameter

values should range from being in complete agreement with the historical CVOT MAP estimates

to being in strong disagreement with them.

Let θ0,1,...,θ0,M represent the collection of null parameter values considered and θ1,1,...,θ1,M

represent the corresponding alternative parameter values. We assume θ0,m = θ1,m apart from

the value of γ which will be zero for alternative cases and log(1.3) for null cases. For hypothesis

h = 0, 1 and parameter value m = 1, ...,M , one must simulate the data at the time of the final

analysis for B hypothetical new CVOTs, denoted by D
(1)
hm,2, ...,D

(B)
hm,2, and then back calculate the

interim analysis data, denoted by D
(1)
hm,1, ...,D

(B)
hm,1. Next one computes the posterior probability
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of the alternative hypothesis and determines whether or not to reject the null hypothesis for each

simulated CVOT at each analysis. Let r
(b)
hm,j be the indicator that one rejects the null hypothesis

based on the observed data at analysis j for simulation study b using generative model parameter

value θh,m. Using the set of rejection indicators
{
r

(b)
hm,j : h = 0, 1;m = 1, ...,M ; b = 1, ..., B

}
along

with corresponding the interim analysis log-likelihood ratio statistic from (5.4.2) (for the all-or-

nothing adaptive design) or posterior mean for a0 (for the dynamic borrowing adaptive design),

one can determine an acceptable criteria for when the study should be stopped at the interim

analysis.

5.5.1 Stoppage Criteria for All-or-Nothing Adaptive Designs

Let `
(b)
hm denote the interim analysis log-likelihood ratio statistic for simulation study b based

on generative model parameter value θh,m. We identify a reasonable value of ∆ (a0) by examining

an array of possible values beginning at zero and ending at a value just larger than the maximum

likelihood log-likelihood ratio statistic observed over all simulation studies. If ∆ (a0) = 0 then the

CVOT will always continue to the final analysis resulting in a design that mirrors the traditional

CVOT approach. If ∆ (a0) is larger than the maximum log-likelihood ratio statistic observed in the

simulation studies, the CVOT will always stop at the interim analysis and the pre-planned amount

of information will always be borrowed. To determine the subset of choices for ∆ (a0) that yield

acceptable designs, we proceed in the following way. Let ∆ represent a potential cutoff value for the

log-likelihood ratio statistic. One computes the empirical null hypothesis rejection rate r̂h,m (∆)

defined as

r̂h,m (∆) =
1

B

B∑
b=1

[
r

(b)
hm,1 · 1

(
`
(b)
hm ≤ ∆

)
+ r

(b)
hm,2 · 1

(
`
(b)
hm > ∆

)]
(5.5.1)

for each generative model parameter value θh,m. For h = 0 the empirical null hypothesis rejection

is an estimate of the type I error rate and for h = 1 it is an estimate of power. If the maximum

estimated type I error rate over all M null parameter values is less than an acceptable upper bound

(e.g. 5.0%, twice the targeted type I error rate) and the minimum power is more than an acceptable

lower bound (e.g. 80%, 10% less than the targeted power), then the value of ∆ yields an acceptable

design for the chosen value of a0. Among the set of values that yield an acceptable design, one
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would set ∆ (a0) equal to the value that results in the the maximum estimated probability of early

stoppage.

5.5.2 Stoppage Criteria for Dynamic Borrowing Adaptive Designs

The approach for choosing when the effective number of events being borrowed from the his-

torical study is too low to justify stopping the CVOT at the interim analysis is similar to the

above procedure for the all-or-nothing design. We consider an array of possible cutoff values for

the effective number of events being borrowed ranging from 0 the mean parameter for π∗(a0). For

each potential cutoff δ, one computes the empirical null hypothesis rejection rate r̂h,m (δ) defined

as

r̂h,m (δ) =
1

B

B∑
b=1

[
r

(b)
hm,1 · 1 (E [a0 |D1,D0]× ν0 ≥ δ) + r

(b)
hm,2 · 1 (E [a0 |D1,D0]× ν0 < δ)

]
(5.5.2)

for each generative model parameter value θh,m. If the maximum estimated type I error rate over

all M null parameter values is less than an acceptable upper bound (e.g. 5.0%, twice the targeted

type I error rate) and the minimum power is more than an acceptable lower bound (e.g. 80%, 10%

less than the targeted power), then the value of δ yields an acceptable design for the given choice

of π∗(a0). Among the set of values that yield an acceptable design over all choices for π∗(a0), one

would set δ0 equal to the value that results in the the maximum estimated probability of early

stoppage.

5.6 Designing a CVOT to Borrow from the SAVOR Trial

In this section we compare the all-or-nothing adaptive design and the dynamic borrowing adap-

tive design. For this exercise, we utilize the SAVOR trial as the historical CVOT. As noted in

Section 5.2, the SAVOR trial was a multi-center, randomized, double-blind, placebo-controlled

CVOT designed to evaluate the effect of saxagliptin on the incidence of major adverse cardiovas-

cular events (MACE). The rationale for the SAVOR trial was discussed in Scirica et al. (2011) and

the study results are discussed in Scirica et al. (2013).
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We included the following characteristics in the sampling model: age, duration of diabetes,

baseline HBA1c, baseline eGFR, gender, history of MI, and history of stroke. Each of these char-

acteristics had strong association with the MACE endpoint in the SAVOR trial and it was felt

that these characteristics could be consistently measured across trials. Binary data for many other

medical history characteristics (e.g. history of PCI, history of PAD, history of hypertension) were

available and could be evaluated for potential inclusion in the sampling model. Most medical his-

tory provides imprecise information about underlying cardiovascular risk. For example, the date

of a previous MI and the underlying reason for a PCI procedure are clearly important, but both

were essentially unavailable. Our decision to include a particular characteristic in the sampling

model reflected a balance between the apparent statistical significance of the characteristic in the

SAVOR trial and the clarity of the information provided by the characteristic as judged by subject

matter experts. Building a “best” model for borrowing from the SAVOR trial is beyond the scope

of this work. Our goal here is to simply illustrate the two approaches we have developed using a

reasonable sample model.

Due to the computational complexity of the dynamic borrowing adaptive design, we were forced

to dichotomize duration of diabetes (> 10 years), baseline HbA1c (> 8%), and baseline eGFR

(< 60 mL/min). For the PWC-PH model, the data can be reduced to one observation per unique

value of the covariates. When the covariates are all discrete, this leads to a tremendous speed

up in model fitting via MCMC. For the dynamic borrowing adaptive design, MCMC cannot be

avoided. However, this is not the case for the all-or-nothing adaptive design. With virtually no

approximation error, the all-or-nothing adaptive design can be performed by exploiting a connection

between the PWC-PH model and a weighted Poisson regression model. The asymptotic p-value

from a maximum likelihood analysis of the weighted Poisson regression model is essentially equal to

the required posterior probability for Bayesian inference using the PWC-PH model with the basic

power prior. Thus, one can get what is needed for the simulation-based design without fitting the

model with MCMC. However, to facilitate comparison between the two design approaches, we used

the dichotomized covariates for both.

The sampling model was stratified by age using three stratum (≤ 60 years, > 60 years and

≤ 70 years, and > 70 years). A constant hazard was assumed for the first two strata and a three
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Table 5.1: Posterior summaries for SAVOR trial

Parameter Characteristic MAP Mean SD HPD

β1 Male 0.3666 0.3682 0.0930 (0.1887,0.5539)
β2 History of Stroke 0.6844 0.8606 0.1038 (0.4731,0.8800)
β3 History of MI 0.4864 0.4869 0.0829 (0.3233,0.6477)
β4 Diabetic > 10 years 0.2782 0.2796 0.0873 (0.1069,0.4469)
β5 HBA1c > 8.0% 0.4049 0.4043 0.0841 (0.2338,0.5627)
β6 eGFR < 60 mL/min 0.6057 0.6052 0.0861 (0.4353,0.7710)

λ1,1 Age ≤ 60 0.0104 0.0104 0.0014 (0.0078,0.0132)
λ2,1 60 < Age ≤ 70 0.0118 0.0118 0.0014 (0.0091,0.0146)
λ3,1 Age > 70 0.0121 0.0121 0.0020 (0.0084,0.0159)
λ3,2 0.0149 0.0149 0.0025 (0.0104,0.0200)
λ3,3 0.0208 0.0208 0.0033 (0.0146,0.0274)

component model was assumed for the age > 70 years stratum. The change points were fixed at

0.85 years and 1.50 years which lead to an even number of events in each time interval. The choice

to stratify by age was made due to a potential violation of the proportional hazards assumption.

There were 8145 SAVOR control subjects with complete data for each of the characteristics

that were included in the sampling model. Of those 8145 subjects, 605 experienced a MACE event.

Table 5.1 presents posterior summaries from an analysis of the SAVOR data using the objective

prior described in Section 5.4.1. Posterior summaries are based on 25,000 MCMC samples. For all

parameter estimates, the MAP estimates were essentially equal to the posterior mean.

When simulating data for the new CVOT, we used the MAP estimates from Table 5.1 for the

hazard ratio regression parameters. For the baseline hazard parameters, we considered generative

model parameters that differed from the MAP estimates in Table 5.1 by 0%, 10%, 20%, and 30%.

We considered increases and decreases to the baseline hazard parameters. The covariates and

stratification variable were simulated to match that observed marginal distribution for each based

on the SAVOR trial. Enrollment was simulated to be uniform over a two year period and no

dropout was assumed. For each possible value of the generative model parameters, we simulated

100,000 CVOTs to evaluate the all-or-nothing adaptive design and 40,000 CVOTs to evaluate the

dynamic borrowing adaptive design. The difference in the number of simulation studies was a

result of the computational burden of MCMC model fitting for the dynamic borrowing adaptive

design and the need to investigate multiple possible choices for π∗(a0). For the all-or-nothing
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borrowing approach, we took a0 = 0.263 resulting in a target of 159 events being borrowed from

the SAVOR trial (ν2 − ν1 = 153). For the dynamic borrowing approach, we consider nine possible

beta distributions for π∗(a0) corresponding to mean parameters 0.45, 0.50, and 0.55 and strength

parameters 1.5, 2.0, and 2.5. For the all-or-nothing adaptive design and for each choice of π∗(a0)

in the dynamic borrowing adaptive design, we determined a reasonable interim stoppage criteria

using the procedures described in Sections 5.5.1 and 5.5.2, respectively.

Table 5.2 presents characteristics of the optimal all-or-nothing adaptive design and the optimal

dynamic borrowing adaptive design. The optimal all-or-nothing adaptive design is based on stop-

ping at the interim analysis if the log-likelihood ratio statistic in (5.4.2) is no more than log(1.8).

The optimal dynamic borrowing adaptive design is based on stopping at the interim analysis if

the effective number of events being borrowed is at least 121 and based on a beta distribution for

π∗(a0) with mean parameter 0.55 and strength parameter 2. For this choice, the average posterior

mean for a0 at the interim analysis across all simulations was approximately 0.28 in the situation

where the historical CVOT MAP estimates were unbiased with respect to the generative model

parameters in the new CVOT. The mean decrease in CVOT duration and percent change in CVOT

duration are computed with respect to a CVOT that always proceeds to the final analysis.

The two optimal designs are quite similar in terms of the probabilities for early stoppage and

reduction in the duration of the average CVOT. The designs are also similar in terms of power and

type I error control (by construction). One key property of both designs is that when the baseline

hazard in the generative model for the new CVOT is at least 30% different from the historical

CVOT MAP estimates, the new CVOT nearly always proceeds to the final analysis leading to

adequate type I error control and high power. This highly desirable property is what allows us to

avoid considering more extreme differences between the baseline hazard in the generative model

for the new CVOT and the historical CVOT MAP estimates. If we did not observe this behavior

with a 30% difference, we would need to consider larger differences.

It is apparent that the type I error rate is most inflated when the baseline hazard in the

generative model for the new CVOT is modestly lower than the historical CVOT MAP estimates.

Similarly, the power reduction is greatest when the baseline hazard in the generative model for
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Table 5.2: Optimal adaptive designs

True New CVOT Early Estimated Mean Mean Percent
Hazard BL. Hazard Stoppage Power/Type I Duration Decrease Change
Ratio Scale Factor Probability Error Rate (years) in Duration in Duration

————————– Optimal All-or-Nothing Adaptive Design ———————–—

1.0 0.7 0.001 0.900 5.69 0.00 0.01
0.8 0.070 0.898 5.06 0.07 1.42
0.9 0.513 0.911 4.22 0.48 10.18
1.0 0.796 0.900 3.68 0.67 15.34
1.1 0.541 0.821 3.65 0.41 10.15
1.2 0.153 0.842 3.72 0.11 2.80
1.3 0.018 0.892 3.62 0.01 0.32

1.3 0.7 0.001 0.025 5.11 0.00 0.02
0.8 0.077 0.051 4.56 0.07 1.52
0.9 0.514 0.050 3.83 0.42 9.82
1.0 0.790 0.020 3.37 0.58 14.66
1.1 0.537 0.024 3.34 0.36 9.72
1.2 0.164 0.025 3.39 0.10 2.90
1.3 0.022 0.024 3.30 0.01 0.38

———————– Optimal Dynamic Borrowing Adaptive Design ——————–—

1.0 0.7 0.001 0.901 5.68 0.00 0.03
0.8 0.118 0.900 5.00 0.12 2.40
0.9 0.595 0.906 4.14 0.55 11.80
1.0 0.811 0.886 3.67 0.68 15.63
1.1 0.646 0.814 3.57 0.49 12.13
1.2 0.284 0.801 3.63 0.20 5.21
1.3 0.061 0.874 3.59 0.04 1.09

1.3 0.7 0.002 0.027 5.11 0.00 0.04
0.8 0.149 0.049 4.49 0.14 2.93
0.9 0.608 0.044 3.75 0.49 11.63
1.0 0.804 0.021 3.35 0.59 14.93
1.1 0.654 0.021 3.26 0.44 11.84
1.2 0.315 0.026 3.30 0.19 5.57
1.3 0.081 0.025 3.27 0.05 1.41
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the new CVOT is modestly higher than the historical CVOT MAP estimates. When the historical

CVOT MAP estimates are unbiased with respect to the generative model parameters in the new

CVOT, we are able stop the study early approximately 80% of the time leading to a decrease in the

mean duration of the new CVOT by more than half a year (for either design method). Even when

the historical CVOT MAP estimates are off by as much as 10% relative to the baseline hazard in

the generative model for the new CVOT, we are still able to stop the new CVOT over 50% of the

time using the all-or-nothing design and even more often using the dynamic borrowing design.

They key differences in the two optimal designs are that the dynamic borrowing design tended

to stop the new CVOT earlier leading to a slightly greater decrease in the average CVOT duration.

However, the fixed borrowing design had higher minimum power when the bias of the historical

CVOT MAP estimates was in the direction that compromised power. When discussing differences

between the two designs we must point out the major caveat that the dynamic borrowing design

characteristics are estimated with significantly lower precision than the all-or-nothing design char-

acteristics. Moreover, the dynamic borrowing adaptive design is only optimal over the choices for

π∗(a0) that we considered. Other choices for π∗(a0) may perform better.

5.7 Discussion

In this chapter we have developed two Bayesian adaptive design methodologies that allow

one to borrow control events from a previously completed CVOT as a means to increase the

efficiency of future CVOTs. We developed the all-or-nothing adaptive design which seeks to borrow

a prespecified amount of events from the historical CVOT and that uses an interim analysis to

evaluate whether borrowing is reasonable. As an alternative, we developed the dynamic borrowing

adaptive design which allows the observed data to determine the amount of events that are borrowed

from the historical CVOT and that uses the interim analysis to assess if enough events are being

borrowed to justify stopping the study. For both designs, our simulation studies demonstrated

that, when information borrowing is justifiable, the adaptive designs lead to future CVOTs that

can be significantly shorter in duration. Our methods require subject-level data and we devoted

significant discussion to the practical reasons why that is the case. We hope that our work can foster
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discussion on subject-level data sharing, standardization of data collection, and (where reasonable)

standardization of the disease populations that are targeted for recruitment into CVOTs.
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CHAPTER 6: DNA METHYLATION DECONVOLUTION USING
BISULFITE SEQUENCING DATA

6.1 Introduction

DNA methylation is the most widely studied epigenetic marker in mammals and a growing num-

ber of human diseases, including cancer, are associated with aberrant DNA methylation patterns

(Robertson, 2005; Kulis and Esteller, 2010). In addition to its implications in human disease, DNA

methylation has an important role in mammalian development (Jones and Takai, 2001) and has

been shown to uniquely characterize functionally different cell and tissue types with high fidelity

(Baron et al., 2006; Reinius et al., 2012; Varley et al., 2013).

Methylation data are usually collected from heterogeneous tissue samples, such as blood, which

can be harvested in a cost effective manner. The tissue samples are heterogeneous in the sense that

they are comprised of several (possibly many) functionally distinct cell types with each having a

potentially distinct DNA methylation signature. For example, blood contains many different types

of white blood cells, including neutrophils, basophils, eosinophils, lymphocytes, and monocytes. In

addition to white blood cells, organs such as the liver can contribute significantly to the circulating

pool of DNA in blood (Lo et al., 1998). Presumably, each cell type represented in a heterogeneous

tissue sample contributes DNA for methylation analysis in accordance with its relative abundance

in the tissue sample.

Methylation data collected from heterogeneous tissues is used in predominantly two ways: (1)

to test for differential methylation or (2) to estimate the composition of the heterogeneous tissues

using supplemental methylation data from reference tissue samples. Reference tissue samples are

comprised predominately of one cell type though they are generally not perfectly homogeneous

(Reinius et al. (2012), Supplemental Table 2).
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When testing for differential methylation, if the cell types comprising the set of heterogeneous

tissue samples have functionally distinct methylation signatures, as they do in blood (Reinius

et al., 2012; Houseman et al., 2012), it is important to control for tissue composition in analyses

performed at the tissue level. It has been argued that many purported associations between age

and DNA methylation can be attributed to tissue composition bias that was poorly addressed

in the analysis (Jaffe and Irizarry, 2014). One could argue that the far more relevant biological

question is whether differential methylation exists in one or more of the constituent cell types in the

heterogeneous tissue samples. However, no existing methods attempt to estimate cell type-specific

methylation signatures for the purposes of associating phenotypes of interest with cell type-specific

differential methylation. The method we develop herein is a first step towards filling this need.

Since our goal is to estimate cell type-specific methylation levels using reference samples, it is

quite natural to simultaneously estimate tissue composition. Quadratic programming approaches

are commonly applied to estimate tissue composition using data from high-throughput sequencing

experiments. This technique has been recently applied by Sun et al. (2015) and Ziller et al. (2013).

Quadratic programming techniques treat the reference tissue methylation levels as the known aver-

age methylation levels for the constituent cell types. Houseman et al. (2012) proposed an alternative

method designed for the Infinium R©HumanMethylation27 BeadChip that acknowledges that refer-

ence tissues only provide an estimate of average methylation levels for the constituent cell types

but this method requires reference tissue replication, making it impractical for high-throughput se-

quencing data. None of these methods produced updated estimates of cell type-specific methylation

levels.

In this chapter we develop a reference-based statistical deconvolution approach for DNA methy-

lation that is ideally suited for data from high-throughput bisfulfite sequencing experiments. By

positing a joint model for the heterogeneous tissue sample data as well as the reference tissue

sample data, our approach allows simultaneous estimation of both tissue composition and cell-type

specific methylation levels. The rest of this chapter is organized as follows: In Section 6.2, we

present a simple deconvolution model and discuss model fitting. We also discuss extensions of the

simple deconvolution model to accommodate overdispersion in the cell type-specific methylation

levels and discuss why using the more complicated model may be unnecessary in practice. In Sec-
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tion 6.3, we use real data from DNA mixture experiments to demonstrate that estimates of tissue

composition based on the proposed deconvolution model are superior to those from the typical

quadratic programming approach and from an overdispersed deconvolution model. In Section 6.4

we use simulation studies to demonstrate that estimates of cell type-specific methylation levels can

be significantly improved through deconvolution. We close the chapter with some discussion in

Section 6.5.

6.2 A Simple Deconvolution Model

In this section we develop a reference-based deconvolution model that facilitates simultaneous

estimation of heterogeneous tissue composition and average cell type-specific methylation. We

note that the term “cell type” may be replaced with “homogenous tissue type” without any loss

of generality (e.g. liver cell versus liver tissue). In many cases the latter term may be more

appropriate. We assume that G loci are available for analysis and that a subset of K cell types

comprise each heterogeneous tissue. We use locus as a generic term that may refer to a single CpG

dinucleotide or a specified genomic region. We propose a deconvolution model for the individual

DNA molecules on which methylation is measured. The model is comprised of two components: (1)

a sample-specific latent multinomial allocation distribution that identifies the cell type of origin for

each DNA molecule and (2) a locus and cell type-specific binomial methylation distribution that

identifies whether or not each DNA molecule is methylated conditional on its cell type of origin.

Let k index cell type, g index locus, n index the heterogeneous tissue sample, and d index the

DNA molecule. The latent multinomial cell type allocation model is given by

p (zngd,1, ..., zngd,K | θn) ∝ θzngd,1

n,1 · · · θzngd,K

n,K

where zngd,k is an indicator that the dth DNA molecule covering locus g from heterogeneous tissue

sample n originated from a type k cell and θn = [θn,1, . . . , θn,K ] is aK×1 vector of tissue composition

fractions that are non-negative and sum to one. The cell type allocation model arises naturally from

the assumption that the cell type of origin for each DNA molecule is determined by the relative

abundance of the cell type in the heterogeneous tissue. The binomial methylation model is given
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by

p (yngd | zngd,1, ..., zngd,K) ∝
K∏
k=1

[
π
yngd

g,k (1− πg,k)1−yngd

]zngd,k

where yngd is an indicator that the DNA molecule is methylated and πg,k is the methylation prob-

ability for type k cells at locus g. The complete data log-likelihood for the heterogeneous tissue

samples is given by

` (π,θ1, ...,θN , z1, ..., zN | y1, ...,yN )

=

N∑
n=1

G∑
g=1

Dng∑
d=1

K∑
k=1

(zngd,k [log (θn,k) + yngd log (πg,k) + (1− yngd) log (1− πg,k)])
(6.2.1)

where N is the total number of heterogeneous tissue samples, Dng is the total number of DNA

molecules covering locus g in heterogeneous tissue sample n, yn = {yngd : ∀(g, d)}, zn = {zngd,k : ∀(g, d, k)},

and π = {πg,k : ∀(g, k)}.

For the reference tissue samples, the cell type of origin for each DNA molecule is known (by

assumption) and so only the binomial methylation model is relevant for these samples. In many

cases the sequencing depth in the reference tissue samples will be much greater than in the het-

erogeneous tissue samples. We have found it to be useful to down weight the reference samples so

they do not dominate estimation of the cell type-specific methylation probabilities. The weighted

log-likelihood for the reference tissue samples is given by

`

(
π

∣∣∣∣ {ykn : ∀(n, k)
})

=

K∑
k=1

Nk∑
n=1

G∑
g=1

ωkng

Dk
ng∑

d=1

ykngd log (πg,k) + (1− ykngd) log (1− πg,k)

 (6.2.2)

where Nk is the total number of reference tissue samples comprised of type k cells, Dk
ng is the total

number of DNA molecules covering locus g in cell type k reference tissue sample n, ωkng is the

weight given to the set of DNA molecules covering locus g, ykngd is an indicator that DNA molecule

d is methylated, and ykn =
{
ykngd : ∀(g, d)

}
.

One combines (6.2.1) and (6.2.2) to form the full complete data log-likelihood. Unfortunately,

since the variables z1, ..., zN are not observed, the likelihood cannot be directly maximized. How-

ever, one can derive a simple expectation-maximization (EM) algorithm (Dempster et al., 1977)
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to optimize the associated observed data likelihood, which would theoretically be obtained by

summing out z1, ..., zN .

6.2.1 Model Fitting via the EM Algorithm

The EM algorithm is comprised of two steps that are completed in an iterative loop: the E-

step and the M-step. To complete the E-step, one needs to compute the expectation of (6.2.1)

with respect to the conditional distribution of zn given yn using the estimates of the parameters

at the current iteration of the algorithm. This is equivalent to replacing zngd,k in (6.2.1) with its

conditional expectation given yngd. It is not difficult to show that

E
[
zngd,k

∣∣yngd = 1,θ(t)
n ,π(t)

g

]
= ψ

(t)
ngk,1 =

θ
(t)
n,kπ

(t)
g,k∑K

k′=1
θ

(t)

n,k′
π

(t)

g,k′

(6.2.3)

and

E
[
zngd,k

∣∣yngd = 0,θ(t)
n ,π(t)

g

]
= ψ

(t)
ngk,0 =

θ
(t)
n,k

(
1− π(t)

g,k

)
∑K

k′=1
θ

(t)

n,k′

(
1− π(t)

g,k′

) (6.2.4)

where θ
(t)
n is the current estimate of the tissue composition fractions for heterogeneous tissue sample

n and π
(t)
g represents the current estimates for the methylation probabilities for the K cell types

at locus g.

The M-step maximizes the expected full complete data likelihood. One can obtain closed-form

updates for both sets of parameters. The update for the cell type k tissue composition fraction in

heterogeneous tissue sample n is given by

θ
(t+1)
n,k =

∑G
g=1Dng ×

(
ψ

(t)
ngk,1 + ψ

(t)
ngk,0

)
∑K

k′=1

∑G
g=1Dng ×

(
ψ

(t)

ngk
′
,1

+ ψ
(t)

ngk′ ,0

)
and the update for the methylation probability for type k cells at locus g is given by

π
(t+1)
g,k =

∑N
n=1

(
ψ

(t)
ngk,1

∑Dng

d=1 yngd

)
+
∑Nk

n=1

(
ωkng

∑Dng

d=1 y
k
ngd

)
∑N

n=1

(
ψ

(t)
ngk,1

∑Dng

d=1 yngd + ψ
(t)
ngk,0

[
Dng −

∑Dng

d=1 yngd

])
+
∑Nk

n=1 ω
k
ngD

k
ng

.
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The EM algorithm is guaranteed to find a locally optimal solution but can be sensitive to the

initial values for the parameters when the observed data likelihood is multimodal. In practice, we

initialize the methylation probability for type k cells at locus g to the value

π
(0)
g,k =

∑Nk
n=1 ω

k
ng

∑Dk
ng

d=1 y
k
ngd∑Nk

n=1 ω
k
ngD

k
ng

and all tissue composition fractions to 1/K. We have found the algorithm to be quite robust to

the initial values used for the tissue composition fractions.

6.2.2 On Overdispersion in the Cell Type-Specific Methylation Model

Modeling overdispersion is a staple in the analysis of methylation data from bisulfite sequencing

experiments in situations where tissue composition is ignored (Hebestreit et al., 2013; Dolzhenko

and Smith, 2014; Feng et al., 2014; Sun et al., 2014). It is reasonable to assume that the presence

of overdispersion in these cases is at least partially attributable to ignoring tissue composition

but it is also highly plausible that overdispersion exists for other reasons. Initially we sought to

accommodate overdispersion in our deconvolution model. This was done by using a beta-binomial

model for the cell type-specific methylation levels instead of a binomial model.

Fitting the overdispersed deconvolution model cannot be done with a simple EM algorithm.

To fit the overdispersed deconvolution model, we implemented a variational EM algorithm similar

to that proposed by Blei et al. (2003) for estimation of the latent Dirichlet allocation model. The

variational EM algorithm does not maximize the observed data likelihood but instead maximizes

a tractable lower bound on the observed data likelihood. In simulation studies we observed that,

unless the number of replicates for the reference samples were large (which will never be the case),

it was impossible to estimate the overdispersion parameters with any reliability. The dispersion

parameter estimates obtained from the variation EM algorithm were consistent with a binomial

assumption even when the data were simulated from highly overdispersed beta-binomial distribu-

tions. Moreover, we observed that the estimates of the cell type-specific methylation probabilities

were no better than those produced by fitting the simple deconvolution model described above. In

light of these findings, we elected to pursue the simplified deconvolution model. The computational
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complexity of fitting the overdispersed deconvolution model using a variational EM algorithm is

orders of magnitude greater than fitting the simple deconvolution model using an EM algorithm.

The results we present in Sections 6.3 and 6.4 provide evidence that fitting the overdispersed de-

convolution model with a variational EM algorithm leads to inferior estimates compared to those

from the simple deconvolution model we have proposed (even when the overdispersed deconvolution

model is correct).

6.3 Estimation of Tissue Composition in DNA Mixture Experiments

In this section we present results from an analysis of a set of heterogeneous tissues that were

created by Sun et al. (2015) by mixing known quantities of DNA from several cell types. Sun

et al. (2015) constructed 18 DNA mixture tissues using buffy coat DNA (i.e. white blood cells),

placental DNA, and liver DNA. The buffy coat DNA was obtained from a 40 year old, non-pregnant

woman. The placental DNA was obtained immediately following the delivery of a healthy female

baby having a gestational age of 38 weeks. The liver DNA was obtained from the non-neoplastic

liver tissue of a 57 year old female subject during resection of a hepatocellular carcinoma.

We obtained unprocessed bisulfite sequencing data for the DNA mixture tissues from Sun et al.

(2015), unprocessed bisulfite sequencing data for a reference placental tissue from Lun et al. (2013),

unprocessed bisulfite sequencing data for a reference liver tissue from the NCBI Gene Expression

Omnibus (GSM1058027), and unprocessed bisulfite sequencing data for a reference B cell tissue and

a reference neutrophil tissue from Hodges et al. (2011). We obtained processed methylation calls

for CD4+T cells and CD8+T cells from Ziller et al. (2013). Unfortunately, unprocessed bisulfite

sequencing data are not publicly available for the T cell data. All unprocessed bisulfite sequencing

data were then uniformly processed using Bismark (Krueger and Andrews, 2011) version 0.14.4

and aligned to the hg19/GRCh37 reference assembly, which matched the reference assembly used

by Ziller et al. (2013).

We restricted our attention to methylation calls for 5,820 genomic loci that were identified by

Sun et al. (2015) as being informative for one or more of 14 reference cell types (which include

the cell types used to construct the DNA mixture tissues). Each locus corresponded to a genomic
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region that was 500bp in length. Complete details on the genomic location of each region can be

found in Supplemental Table 1 from Sun et al. (2015). We combined the number of methylated

calls and the number of unmethylated calls over all CpGs in a region to form the observed data.

The average sequencing depth was 67 for the 18 heterogeneous tissues, 184 for the B cell reference

tissue, 330 for the neutrophil reference tissue, 2028 for the CD4+T cell reference tissue, 2118 for the

CD8+T cell reference tissue, 1039 for the placenta reference tissue, and 1096 for the liver reference

tissue. We excluded 103 loci that were not covered in all 18 DNA mixture tissues and/or that had

extremely high or low sequencing depth compared to the average depth in the 18 heterogeneous

tissues. This resulted in 5717 loci that were used for analysis.

For the weighted EM algorithm (used to fit the simple deconvolution model), the weight given

to a particular reference sample at a given locus was equal to the ratio of the average sequencing

depth from the 18 DNA mixture tissues to the sequencing depth in the reference tissue. We also

considered an unweighted approach but observed superior performance when using weights (data

not known). The EM algorithm was terminated when the maximum change in all parameters was

less than 10−5. We implemented the quadratic programming approach using the SAS System (v9.4,

OPTMODEL Procedure) using the most stringent convergence criteria. Following Sun et al. (2015),

the proportion of all calls in a region that were methylated was used as the response in the linear

system of equations. We also fit the overdispersed deconvolution model using a variational EM

algorithm. The overdispersed deconvolution model assumed a separate overdispersion parameter

for each cell type and locus. The algorithm was terminated after 15,000 iterations and all parameter

estimates were stable except for the dispersion parameters. Estimates of the dispersion parameters

were all very large (large values imply no overdispersion).

Figure 6.1 presents a plot of the estimated versus the true cell type composition fractions

and corresponding linear regression curves for white blood cells, liver, and placenta in the 18

DNA mixture tissues. Each point on the figure corresponds to the estimate from one of the

18 samples. The true composition fractions were assumed to equal the DNA fraction used in

the mixtures as reported by Sun et al. (2015). The quadratic programming approach resulted in

consistent over estimation of the white blood cell fraction in cases where the true fraction was small.

Correspondingly, there was consistent under estimation of the liver fraction when the true fraction
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Figure 6.1: Estimated cell type composition in 18 DNA mixture tissues
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Table 6.1: DNA Mixture tissue composition fraction estimate quality

Quadratic Overdispersed Simple
Programming Deconvolution Model Deconvolution Model

Cell Type MAD Ratio MAD Ratio MAD

White Blood Cells 0.042 2.341 0.023 1.272 0.018
Liver 0.060 1.864 0.033 1.025 0.032
Placenta 0.033 1.914 0.043 2.452 0.017

was large. Results from the simple deconvolution model and the overdispersed deconvolution model

(to a lesser extent), corrected this bias.

To provide a more quantitative assessment of the relative quality of the estimates provided by

the simple deconvolution model, we computed the mean absolute deviation (MAD) for the esti-

mated composition fraction for each cell type relative to the true composition fraction using each

of the three approaches discussed. Table 6.1 provides the mean absolute deviations as well as the

ratio of the mean absolute deviations for the other two methods to the mean absolute deviation

from the simple deconvolution model. We see that estimates based on the simple deconvolution

model are more accurate on average than those from the other two approaches. The mean absolute

deviation from the quadratic programming approach is approximately twice that from the simple

deconvolution model for each cell type. The mean absolute deviation for the overdispersed decon-

volution model is nearly the same as that from the the simple deconvolution model for liver cells

but is worse than both other methods for placenta cells.

6.4 Estimation of Tissue Composition and Cell Type-Specific Methylation in

Simulation Studies

In the DNA mixture example from Section 6.3, we were not able to assess the relative quality

of the simple deconvolution model estimates for the cell type-specific methylation probabilities. In

this section we use simulation studies to demonstrate that the estimates for this set of parameters

(and composition fractions) can improve significantly when one incorporates information from het-

erogeneous tissues through deconvolution. To accomplish this, we compare the quality of estimates

based on the simple deconvolution model to those obtained from the overdispersed deconvolution
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model and from quadratic programming. Note that all three methods allow estimation of the tissue

composition fractions but the quadratic programming approach does not produce estimates of the

cell type-specific methylation probabilities. Thus, for these parameters, we compare estimates from

the two deconvolution methods to the proportion of methylated calls in the reference samples.

We simulated bisulfite sequencing data for 25 independent studies, each with G = 1000 loci and

N = 30 heterogeneous tissue samples. The heterogeneous tissues were simulated to have neutrophil,

B cell, CD4+T cell, CD8+T cell, and placenta fractions. The composition of the heterogeneous

tissues was simulated so that the tissues were 40% neutrophils, 30% placenta, 10% B cells, 10%

CD4+T cells, and 10% CD8+T cells, on average. This composition is roughly consistent with blood

samples taken from pregnant females. The 1,000 loci were randomly selected from the set of 5,280

loci identified by Sun et al. (2015). Using the reference tissue samples discussed in Section 6.3,

we set the cell-type specific methylation probabilities at each locus equal to the proportion of

methylated calls at the locus in the reference tissue sample. For each simulated heterogeneous

tissue sample, the sequencing depth at each locus was randomly drawn from a Poisson distribution

having mean parameter equal to the average sequencing depth at the locus from the DNA mixture

tissues discussed in Section 6.3. The sequencing depth in each simulated reference tissue sample

was set to the sequencing depth in the actual reference tissue sample discussed in Section 6.3. A

single reference sample was simulated for each cell type (independently for each simulation study).

The methylation calls for the set of DNA molecules covering a locus (from a given cell type) were

simulated using a beta-binomial model having an overdispersion parameter value of 30 (larger values

mean less variability). The chosen value of the dispersion parameter corresponds to a relatively

large but realistic amount of overdispersion (Feng et al., 2014).

For the weighted EM algorithm, we weighted each reference sample as described in Section 6.3.

The quadratic programming approach was implemented as described in Section 6.3 (to estimate

composition fractions). In these simulations, data were generated from the overdispersed deconvo-

lution model. Thus, if there is a benefit to fitting that model using a variational EM algorithm,

we would expect to observe better estimates compared to the simple deconvolution model. We will

see that is not the case.
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Figure 6.2: Estimated cell type composition in simulated heterogeneous tissues

Figure 6.2 presents a plot of the estimated versus true cell type composition fractions and

corresponding linear regression curves for a randomly selected subset of 250 (out of 750) simulated

heterogeneous tissues. Each point on the figure corresponds to the estimated composition fraction

for a particular cell type for one of the selected samples. While estimates from all three methods

appear qualitatively similar for every cell type, one can clearly see that the estimates from the simple

deconvolution model have less bias than the estimates from the other two methods for the neutrophil

fraction. The other obvious observation is that none of the three methods do well at estimating the

fraction of CD4+T cells and CD8+T cells. This is not surprising since the methylation signatures

for these two cell types are highly similar (Reinius et al., 2012). This suggests that including

reference samples for cell types that do not have unique methylation signatures may not adversely
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Table 6.2: Tissue composition fraction estimate quality

Quadratic Overdispersed Simple
Programming Deconvolution Model Deconvolution Model

Cell Type MAD Ratio MAD Ratio MAD

Neutrophils 0.031 2.083 0.039 2.595 0.015
B cells 0.017 1.607 0.030 2.804 0.011
CD4+T cells 0.031 1.061 0.027 0.928 0.029
CD8+T cells 0.025 1.006 0.023 0.943 0.025
Placenta 0.011 1.957 0.010 1.697 0.006

Table 6.3: Cell type-specific methylation estimate quality

Overdispersed Simple
Reference Only Deconvolution Model Deconvolution Model

Cell Type MAD Ratio MAD Ratio MAD

Neutrophils 0.0017 1.434 0.0014 1.197 0.0012
B cells 0.0020 1.045 0.0020 1.034 0.0019
CD4+T cells 0.0020 1.048 0.0020 1.070 0.0019
CD8+T cells 0.0021 1.035 0.0022 1.106 0.0020
Placenta 0.0023 1.433 0.0016 1.159 0.0016

effect parameter estimates for cell types that do. In cases where it is of interest to study methylation

from a solid tissue (e.g. placenta or liver) using blood samples, this property is quite appealing.

Table 6.2 provides the average mean absolute deviation of the composition fraction estimates

for each cell type and deconvolution method. The average was computed over the 25 simulation

studies using all simulated heterogeneous tissue samples. For the quadratic programming and

overdispersed deconvolution model approaches, the ratio of the average mean absolute deviation to

the corresponding average mean absolute deviation from the simple deconvolution model is provided

as well. For neutrophils, B cells, and placenta, the composition fraction estimates based on the

simple deconvolution model are appreciably better (on average) than those from the other two

methods. For CD4+T cells and CD8+T cells, the estimates from all three deconvolution methods

are comparable.

Table 6.3 provides similar information for the cell type-specific methylation probability estimates

for each deconvolution method. For neutrophils and placenta, on average the estimates based on

the simple deconvolution model are appreciably better than those based entirely on the reference

samples and modestly better than those from the overdispersed deconvolution model. The fact
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that the simple deconvolution model improves estimates for neutrophils and placenta methylation

probabilities more than for the other cell types is expected. Since, B cells, CD4+T cells, and

CD8+T cells each only represent 10% of the heterogeneous tissue samples, one should not expect

the same level of improvement as seen in neutrophils and placenta, which represented 40% and

30% of the heterogeneous tissue samples, respectively. There is simply less information in the

heterogeneous tissue samples about methylation levels in B cells, CD4+T cells, and CD8+T cells.

6.5 Discussion

In this chapter we developed a reference-based deconvolution model for DNA methylation data

and proposed an easy-to-implement EM algorithm that can be used to fit the model. Using real and

simulated data, we compared the quality of the tissue composition fraction estimates based on the

proposed deconvolution model to those based on a quadratic programming approach and based on

an overdispersed deconvolution model. Using simulated data, we also compared the quality of the

cell-type specific methylation probability estimates based on the proposed deconvolution model to

those based on the overdispersed deconvolution model and to those based only on reference samples.

We observed that the estimates produced by our deconvolution model were seemingly always better

than those produced by the other approaches considered. These results suggest that the proposed

deconvolution model could be a valuable alternative to quadratic programming techniques for tissue

composition estimation.

In our results from Section 6.4 we noted that all methods considered were unable to estimate

the composition of CD4+T cells and CD8+T cells and we posited that this is because of the

similarity of the methylation signatures for these cell types. It is clear that incorporation of both

those cell types in the deconvolution model did not adversely effect composition estimation (or

methylation probability estimation) for neutrophils or placenta which both are known to have

unique methylation signatures and which both represented larger fractions of the heterogeneous

tissues. This suggests that one might choose a conservative set of blood cell references (e.g. B cells,

T cells, neutrophils, monocytes, eosinophils, etc.) to include in the deconvolution model when the

goal is to estimate the blood composition fraction or methylation levels of a tissue like placenta
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or liver whose DNA can be found in blood in reasonable amounts. For example, if the goal of a

hypothetical study is to associate a fetal disease phenotype with differential placental methylation,

it would seem possible to do this with the proposed deconvolution model using a set of blood

cell reference tissues, one reference placenta tissue for a case, one reference placenta tissue for a

control, and then a larger number of heterogeneous blood tissue samples from pregnant mothers.

A hypothesis testing framework for this type of problem is a topic of future work.
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CHAPTER 7: FUTURE WORK

7.1 Bayesian Clinical Trial Design

There are a variety of ways that the methods we have developed for Bayesian clinical trial design

can be extended. First, there is the obvious extension of the methodology developed in Chapters

3 and 4 to other, more advanced types of historical data. Our work thus far has focused on basic

time-to-event data but there is significant interest in recurrent events data with a terminating death

event (Rondeau, 2010) and data with a survival and non-survival component (Ibrahim et al., 2010).

Each of these types of data is associated with a more complicated statistical model than what we

considered in Chapters 3 and 4. Due to this added complexity, customized approaches are needed

to make Bayesian design computationally feasible.

The adaptive design methodology that we developed in Chapter 5 can also be extended to

accommodate more advanced data types (at least in the case of the all-or-nothing adaptive design).

In addition to extending the proposed adaptive design methods to other data types, one might also

consider alternative criteria for when the study should be stopped. One promising idea is to use

the prior predictive distribution for the data to assess prior-data conflict (Evans et al., 2006). This

approach would seem more Bayesian than what we have proposed but its application has not been

considered outside of very simple models.

The all-or-nothing adaptive design would seem widely applicable in situations where a single

historical study is available. While the notion of using an informative prior and checking the

exchangeability assumption at an interim analysis is intuitive, it has not been widely adopted. Our

adaptive design results demonstrate that such an approach may be as effective as more complicated

procedures that attempt dynamic information borrowing. In our opinion there is much that can be

done within the framework of the all-or-nothing adaptive design due to relative simplicity of that
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approach.

7.2 DNA Methylation Deconvolution

Our work to date on the DNA methylation deconvolution problem serves as a proof-of-concept

for the idea that one can learn about cell type-specific methylation levels through the process of

deconvolution beyond what is known from reference samples. Our long-term goal is to develop a

hypothesis testing framework that can be used to identify differential cell type-specific methylation

for one or more conditions under study using heterogeneous tissue samples. Exploring the extent

to which this type of approach requires reference samples for each condition under study is an

important intermediate goal. If reference samples are required for each condition, the practicality

of such a method may be limited. However, if under reasonable assumptions it is sufficient to have

reference tissue samples for only the healthy condition, a method of this type could prove valuable.
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APPENDIX A: CHAPTER 3 SUPPLEMENTAL MATERIALS

A.1 Type I Error Control with Informative Priors

For this example we suppose data D = {xi, i = 1, ..., Nx} from Nx subjects are available for

the new study and that Xi ∼ Normal
(
µ, σ2

)
for i = 1, ..., Nx with σ2 known. We consider testing

the interval null hypothesis as H0 : µ ≤ 0 versus alternative H1 : µ > 0. Further suppose historical

data D0 = {yi, i = 1, ..., Ny} are available form subjects assumed to be exchangeable with those

from the new study. Based on assuming the objective initial prior π0 (µ) ∝ 1, the basic power prior

has the form

π0

(
µ
∣∣D0, a0

)
∼ Normal

(
Ȳ ,

σ2

Nya0

)
(A.1.1)

where Ȳ is the sample mean based on the historical study subjects. Thus, the value of a0 has the

interpretation as the fraction of information (i.e. Fisher Information) that is borrowed from the

historical study. The corresponding posterior distribution is straight forward to derive and is given

as follows:

π (µ |D,D0, a0) ∝ Normal
(
µ∗, σ

2
∗
)

with

σ2
∗ =

1
Nx
σ2 +

Nya0
σ2

and

µ2
∗ = σ2

∗

(
Nx

σ2
· X̄ +

Nya0

σ2
· Ȳ
)

where X̄ is the sample mean from new study. We will accept the alternative hypothesis when

P (µ > 0 |D,D0, a0) ≥ φa0
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where φa0 is the posterior probability critical value associated with the chosen value of a0. We

want to compare the statistical power associated with different values of a0 when the posterior

probability critical values are chosen to provide a test procedure that controls the frequentist type

I error rate at level α. First, we consider the case where no information is borrow so that we are

effectively performing an objective Bayesian analysis of the new data. We show that the Bayesian

test is equivalent to the frequentist uniformly most powerful (UMP) test.

Lemma A.1.1. Inference based on the Bayesian rejection rule

P (µ > 0 |D,D0, a0 = 0) ≡ P (µ > 0 |D) ≥ φ0

is identical to the frequentist one-sided, level α UMP test when φ0 is 1− α.

Proof. In this setting we view the posterior probability as a test statistic in the sense that it is

simply a random function of the data. The type I error rate of the test is

E [1 {P (µ > 0 |D) ≥ φ0} | µtrue = 0] (A.1.2)

where the expectation is with respect to the data D. We want to find φ0 so that (A.1.2) is equal

to α. To do this we manipulate the quantity inside the indicator to show that it is equivalent to

the frequentist UMP rejection criteria. Note that in the posterior probability, the data are fixed

and not random. We have that

P (µ > 0 |D) ≥ φ0 ⇐⇒ P

(
µ− X̄

σ√
Nx

>
−X̄
σ√
Nx

∣∣∣∣D
)
≥ φ0

⇐⇒ P

(
Z1 >

−X̄
σ√
Nx

∣∣∣∣D
)
≥ φ0

⇐⇒ P

(
Z2 <

X̄
σ√
Nx

∣∣∣∣D
)
≥ φ0

⇐⇒ Φ

(
X̄
σ√
Nx

)
≥ φ0

⇐⇒ X̄ − 0
σ√
Nx

≥ Φ−1 (φ0) (A.1.3)
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where Z1 and Z2 are standard normal random variables. The expression in (A.1.3) is precisely

the rejection rule for the one-sided normal UMP test. Thus, the optimal choice of φ0 satisfies

Φ−1 (φ0) = Z1−α which implies φ0 = 1− α.

We have shown that for a0 = 0 the most powerful (unbiased) Bayesian test procedure requires

φ0 = 1 − α. It should be intuitive that for a0 > 0 we must then have φa0 > 1 − α in order to

maintain control type I error (when Ȳ > 0). We show this now.

Lemma A.1.2. In order for inference based on the Bayesian rejection rule

P (µ > 0 |D,D0, a0) ≥ φa0

to control type I error at level α when the true mean is zero, we must have

φa0 = Φ

[(
Φ−1(1− α)

σ√
Nx

+
Ȳ
σ2

Ny ·a0

)
σ∗

]
> 1− α. (A.1.4)

Proof. We must solve the equation

E [1 {P (µ > 0 |D,D0, a0) ≥ φa0} | µtrue = 0,D0, a0] = α

for φa0 . Just as before, we manipulate the posterior probability. We have the following:

P (µ > 0 |D,D0, a0) ≥ φa0 ⇐⇒ P

(
µ− µ∗

σ∗
>
−µ∗

σ∗

∣∣∣∣D,D0, a0

)
≥ φa0

⇐⇒ P

(
Z1 >

−µ∗

σ∗

∣∣∣∣D,D0, a0

)
≥ φa0

⇐⇒ P

(
Z2 <

µ∗

σ∗

∣∣∣∣D,D0, a0

)
≥ φa0

⇐⇒ Φ

(
µ∗

σ∗

)
≥ φa0

⇐⇒ X̄
σ2

Nx

+
Ȳ
σ2

Ny ·a0

≥ Φ−1 (φa0)

σ∗

⇐⇒ X̄ − 0
σ√
Nx

≥ σ√
Nx

(
Φ−1 (φa0)

σ∗
− Ȳ

σ2

Ny ·a0

)
(A.1.5)
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The expression in (A.1.5) is precisely the rejection rule for the one-sided frequentist UMP test.

Thus, for the Bayesian decision rule to be optimal, φa0 must satisfy the following equation.

Z1−α = Φ−1 (1− α) =
σ√
Nx

(
Φ−1 (φa0)

σ∗
− Ȳ

σ2

Ny ·a0

)
(A.1.6)

To obtain the equality in (A.1.4), one must simply solve (A.1.6) for φa0 . To show that φa0 > 1−α,

we reformulate the expression given in (A.1.4) as follows.

φa0 = Φ

[(
Φ−1(1− α)

σ√
Nx

+
Ȳ
σ2

Ny ·a0

)
σ∗

]

= Φ

[
Φ−1(1− α)

(
1
σ√
Nx

+
Ȳ

σ2

Ny ·a0 · Φ
−1(1− α)

)√
1

Nx
σ2 +

Ny ·a0
σ2

]
= Φ

[
Φ−1(1− α) · h (a0)

]
It is enough to show that h(a0) is increasing in a0 and that lima0→0 h(a0) = 1 for fixed Ȳ > 0.

Doing so is straightforward and is omitted for brevity.

Thus far we have shown that incorporating any amount of prior information that favors the

alternative hypothesis will inflate the type I error of the test procedure unless we increase the

posterior probability critical value to the quantity defined by φa0 . Now we show that by using the

correct posterior probability critical value to control type I error we effectively discard all prior

information resulting in a power function identical to that obtained by the Bayesian analysis with

a0 = 0.

Theorem 0.1. The power functions for the set of Bayesian hypothesis tests based on the rejection

rules {P (µ > 0 |D,D0, a0) ≥ φa0 : a0 ∈ [0, 1]} are identical. Hence, all prior information is effec-

tively discarded when the rejection rule based on a0 > 0 is calibrated to ensure frequentist I error

control.

Proof. The power function associated with a fixed value of a0 and corresponding posterior proba-
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bility critical value φa0 is given as follows:

E [1 {P (µ > 0 |D,D0, a0) ≥ φa0} |D0, a0, µtrue] (A.1.7)

where the expectation is taken with respect to the distribution for the new data D. To show

equality of the power functions for all a0, it is enough to show that the power function for an

arbitrary a0 is the same as the power function for a0 = 0. Further, it is enough to show equality of

the corresponding events in the indicator functions since the expectations are with respect to the

same distribution for the data.

P (µ > 0 |D,D0, a0) ≥ φa0 ⇐⇒ Φ

(
µ∗

σ∗

)
≥ Φ

[(
Φ−1(1− α)

σ√
Nx

+
Ȳ
σ2

Ny ·a0

)
σ∗

]

⇐⇒ µ∗

σ∗
≥

(
Φ−1(1− α)

σ√
Nx

+
Ȳ
σ2

Ny ·a0

)
σ∗

⇐⇒ X̄
σ2

Nx

+
Ȳ
σ2

Ny ·a0

≥ Φ−1(1− α)
σ√
Nx

+
Ȳ
σ2

Ny ·a0

⇐⇒ X̄ − 0
σ√
Nx

≥ Φ−1(1− α)

⇐⇒ P (µ > 0 |D) ≥ φ0

We have shown in a simple case that when an informative prior is used in a Bayesian analysis

where the decision rule is calibrated to control type I error in the frequentist sense, all prior

information is effectively discarded resulting in a test procedure that is identical to Bayesian analysis

with a objective prior, or in this case, the frequentist UMP test. Although the results derived are

for a very simple model, it is likely the behavior holds in all cases for which a level α hypothesis

test is available.
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A.2 Bayesian Design with Unshared Parameters

In this appendix we derived the marginal posterior for the hazard ratio regression parameters

for the scenario where the historical study model and the new study model have an identical set of

parameters. We refer to this scenario as the identical model scenario (IM). This will not always be

the case. In this section, we derive the marginal posterior for the hazard ratio regression parameters

in two additional scenarios that may be of interest to practitioners.

In the first scenario, we assume that the baseline hazard differs between the historical study and

the new study so that only the hazard ratio regression parameters are shared between the models.

We refer to this scenario as the shared hazard ratio scenario (SHR). This scenario might arise when

one wishes to provide a mechanism for the historical and new studies to differ systematically in

terms of baseline risk yet still allow information borrowing through the hazard ratio regression

parameters where it is reasonable to assume a common effect across studies. For example, one may

choose to stratify by geographic region in an effort to account for temporal changes in baseline

risk and adjust for more concrete biomarkers in the hazard ratio regression model. In the second

scenario we assume that only information about the baseline hazard (i.e. control group) is to be

borrowed. We refer to this scenario as the shared baseline hazard scenario (SBH). This scenario

might arise when the historical study targeted the same disease population that is to be targeted

in the new study and when the investigational therapies are not the same. In both the SHR and

SBH scenarios we will see that the marginal posterior for the hazard ratio regression parameters

is of the same form as that obtained in the IM scenario. Thus, from a software implementation

standpoint, a tool that can be used to perform Bayesian design for the IM scenario can address all

other design scenarios one might want to consider.

The SHR Scenario

In this scenario we assume the baseline hazard for the historical study is allowed to vary across

S0 levels of a stratification variable. We partition the time axis into Ks,0 intervals for stratum s.

Denote the baseline hazard parameters for the historical study model by λ0 and let θ0 = (λ0, γ,β)

be the complete set of parameters in that model. The power prior is simply the marginal posterior
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for the hazard ratio regression parameters based on the exponentiated historical study likelihood

multiplied by the initial prior for the new study baseline hazard.

π0

(
λ, γ,β

∣∣D0, α0

)
∝ π0

(
γ,β

∣∣D0, α0

)
× π0 (λ)

∝
S0∏
s=1

{ ∏
j∈Gs,0

φ
α0νj,0
j∏Ks,0

k=1 [βsk,0]αsk,0

}
× π0 (λ)

It follows that the marginal posterior distribution for the hazard ratio regression parameters after

observing observing new data is as follows:

π (γ,β |D,D0, α0) ∝
S∏
s=1

{ ∏
i∈Gs

φ
νi,0
i∏Ks

k=1 [βsk]
αsk

}

×
S0∏
s=1

{ ∏
j∈Gs,0

φ
α0νj,0
j∏Ks,0

k=1 [βsk,0]αsk,0

}
.

This result is identical in form to that obtained for the IM scenario when we imagine there being a

single stratification variable having S + S0 levels. Thus, we might equivalently consider this an IM

scenario with parameter vector θ = (λ,λ0, γ,β) where not every parameter is informed by both

studies.

The SBH Scenario

In this case we assume that the hazard ratio regression function φ only consists of a treatment

effect (i.e. φi = eγ or φi = 1 for all i). The historical study dataset can be reduced to the set of

subjects that belong to the control group. The marginal posterior for γ is as follows:

π (γ |D,D0, α0) ∝
S∏
s=1

{ ∏
i∈Gs

φνii∏Ks
k=1

[
β∗sk
]α∗sk

}

where α∗sk = αsk + α0
∑

j∈Gs,0
νjk,0 and β∗sk = βsk + α0

∑
j∈Gs,0

rjk,0 with Gs,0 now representing the

set of indices for the historical control subjects from stratum s. As with the SHR scenario, the

form of the posterior distribution in the SBH scenario is of the same family as the IM scenario.

One important consideration for the SBH scenario is that by only borrowing information on the
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control group, we may create imbalances in risk factors between the treated and control subjects.

That is to say, by incorporating historical control subjects that were not randomized alongside new

study subjects, the benefit of randomization in the new study is lost and it becomes important to

account for known risk factors in the statistical analysis. Thus, choosing risk factors for stratification

(or covariate adjustment) is critically important in the SBH scenario.

A.3 A Simulation Study Comparing Inference Based on the PWC-PH model

with Inference Based on the Weighted Cox Partial Likelihood

For the simulation studies in this appendix we used the same historical dataset that was used

in the example application from Section 6 of the primary text. The number of baseline hazard

components and the change points for the analysis model where taken from the best historical

study model determined by DIC. The parameter values for the new study model were fixed at the

posterior means reported in Table 2 of the primary text. The following characteristics were varied

in the stimulation studies:

1. Number of new events ν = 100, 300, and 500 with n = 3ν enrolled subjects

2. Ks = 3, 10, and 50 for both s = 1 and s = 2

3. a0 = 0.0, 0.5, and 1.0

Enrollment was assumed to be uniform over a 2 year period. Censorship times were simulated from

a scaled beta distribution with shape parameters equal to 3 and 1 with support on the interval

(0, 10). Administrative censoring occurred at the time when the targeted number of events had

been reached. Thus, there was a substantial amount of censoring in the simulated datasets. We

performed B = 1, 000 simulation studies at each of the 27 combinations of the characteristics being

varied and computed two summaries of agreement. First, we computed the R2 value based on

regressing the log
[
P
(
γ < 0

∣∣D(b),D0, a0

)]
values computed using the normal approximation to

the PWC-PH posterior onto the corresponding quantities computed using the weighted Cox partial

likelihood. Second, we computed the percentage of study decisions that were concordant between

the two approaches. Study decisions were concordant if 1
{

P
(
γ < 0

∣∣D(b),D0, a0

)
≥ ψ

}
was equal

113



Table A.1: Summary of inference agreement using the PWC-PH model and the weighted Cox
partial likelihood

—– Ks = 3 —– —– Ks = 10 —– —– Ks = 50 —–
ν a0 R2 % Concordant R2 % Concordant R2 % Concordant

100 0.0 0.98907 96.7 0.99725 98.7 0.99855 99.2
100 0.5 0.99060 96.7 0.99435 97.0 0.99474 96.9
100 1.0 0.97206 94.1 0.97506 94.2 0.97519 94.2

300 0.0 0.98663 96.8 0.99767 98.8 0.99957 99.4
300 0.5 0.99493 97.4 0.99871 98.6 0.99928 98.6
300 1.0 0.98399 97.9 0.98939 98.6 0.98924 98.5

500 0.0 0.99289 98.3 0.99932 99.5 0.99985 99.9
500 0.5 0.99214 99.1 0.99775 99.3 0.99887 99.7
500 1.0 0.98792 99.2 0.99461 98.9 0.99500 99.2

for both approaches. Analysis using the weighted Cox partial likelihood were performed using the

SAS PHREG Procedure (v9.4). Appendix Table A.1 presents the results of our simulation studies.

We see that there is strong agreement in the posterior probabilities used for inference despite the

the fact that the assumptions used to establish the connection between the PWC-PH model and the

weighted Cox partial likelihood do not hold for the simulation studies. We note a slight decrease in

both metrics of agreement as a0 increases for the case where ν = 100. This is likely attributable to

the fact that these analyses include more historical data than new study data and the fact that the

historical data is not perfectly consistent with a proportional hazards assumption. It is clear that

when the proportional hazards assumption holds definitively (a0 = 0) and the number of baseline

hazard components is large, there is near perfect agreement between the methods at all samples

sizes considered.

Lastly, since there is strong agreement between inference based on the PWC-PH model and the

weighted Cox partial likelihood for both large and small K, one can infer that inference on the

hazard ratio regression parameters is robust to the model for the baseline hazard.This suggests that

even a fairly coarse partition of the time axis will suffice when one in not concerned with estimating

the baseline hazard (such as in the design phase of a trial).
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A.4 A Simulation Study Comparing Exact Bayesian Inference Through MCMC

with the Laplace Approximation

This appendix is divided into two sections. In the first section we describe our procedure for

analysis of the PWC-PH model using MCMC methods. Our approach attempts to make the model

fitting step as efficient as possible for scenarios where using MCMC might be preferred in design.

Our MCMC implementation also serves as a tool to fit a model to historical data in order to obtain

samples from the posterior that can be used to create discrete approximations of the sampling

priors. In the second section we provide results from our simulation studies comparing analyses

using MCMC to analyses using the proposed normal approximation to the marginal posterior of

the hazard ratio parameters.

A.4.1 High Throughput Model Fitting with MCMC

In this section we discuss a reformulation of the marginal posterior for the hazard ratio pa-

rameters that is beneficial for MCMC model fitting when the design variables (treatment indicator

and covariates) are binary and few in number. This will commonly be the case during design of

a clinical trial. In this case, one can write the posterior distribution as a function of a relatively

small set of sufficient statistics to which the simulated subject level data can be reduced prior to

model fitting.

Let d index the set of D distinct values of the design variables observed in the combined

historical study and new study datasets. Write φd = exp
(
γz∗d + βTx∗d

)
, where (z∗d,x

∗
d) are the

particular values of the design variables identified by d. Let νskd and rskd be the number of events

and total time at risk in interval k for the set of new study subjects in stratum s that had design

variable values identified by d. Let νskd,0 and rskd,0 be the analogous quantities for the historical

study. The marginal posterior (3.3.4) reduces to

π (γ,β |D,D0, a0) ∝
∏D
d=1 φ

ν∗d
d∏S

s=1

∏Ks
k=1

[
β∗sk
]α∗sk (A.4.1)
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where

ν∗d =
S∑
s=1

Ks∑
k=1

(νskd + a0νskd,0) ,

α∗sk =

D∑
d=1

(νskd + a0νskd,0) , and

β∗sk =
D∑
d=1

φd (rskd + a0rskd,0) .

Thus, one only needs the set of sufficient statistics {(νskd, rskd, νskd,0, rskd,0) : ∀s, k, d} and {(z∗d,x∗d) : ∀d}

in order to evaluate the marginal posterior for MCMC sampling. When D � n+ n0, an approach

using the sufficient statistics is far superior to the straight forward approach using subject level

data. In our implementation we first reduce each simulated dataset to the sufficient statistics and

the perform MCMC model fitting using (A.4.1). Our implementation supports an arbitrary number

of binary covariates.

When the covariates are restricted to be binary it is straight forward to show that the full

conditional distribution for each of the hazard ratio parameters is log-concave. Thus, one can

use rejection sampling or adaptive rejection sampling (W. R. Gilks, 1992) to sample from the full

conditionals. In our implementation we utilize a simple Newton-Raphson algorithm to locate the

mode of the full conditional and then construct a three-part envelope function centered about the

mode for rejection sampling. We use the optimal envelope under the assumption of normality for

the full conditional. Since we only need to draw one sample at each Gibbs step and since so few

samples actually get rejected, we find that it is not necessary to adapt the envelope.

A.4.2 A Comparison of MCMC Analysis Results with Results based on the

Laplace Approximation

For the simulation studies in this section we used the same historical data set as was used in

the example application in Section 3.5. The number of baseline hazard components and the change

points for the new study model where taken from the best historical study model determined by

DIC. The parameter values for the new study model were fixed at the posterior means reported in
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Table A.2: Summary of inference agreement using MCMC and the Laplace approximation

—– K = 3 —– —– K = 10 —– —– K = 25 —–
ν a0 R2 % Concordant R2 % Concordant R2 % Concordant

40 0.0 0.9996 99.4 0.9995 99.1 0.9995 99.2
40 0.5 0.9999 98.4 0.9999 98.6 0.9999 99.6
40 1.0 0.9999 98.5 0.9998 99.2 0.9998 99.4

80 0.0 0.9999 99.3 0.9998 99.3 0.9999 99.1
80 0.5 0.9999 99.5 0.9999 99.4 0.9999 98.9
80 1.0 0.9999 99.2 0.9999 99.4 0.9999 99.2

120 0.0 0.9999 99.5 0.9999 99.7 0.9999 99.3
120 0.5 0.9999 99.3 0.9999 99.6 0.9999 99.1
120 1.0 0.9999 99.3 0.9999 99.6 0.9999 99.4

Table 3.2. The following parameters were varied in the stimulation studies:

1. Number of new events ν = 40, 80, and 120 with n = 3ν enrolled subjects

2. Ks = 3, 10, and 25 for both s = 1 and s = 2

3. a0 = 0.0, 0.5, and 1.0

Enrollment was assumed to be uniform over a 2 year period. Administrative censoring occurred

at the time when the targeted number of events had been reached. No other censoring mechanism

was simulated. We performed B = 1, 000 simulation studies at each of the 27 combinations of the

parameters being varied and computed two summaries of agreement. First, we computed the R2

value based on regressing the log
[
P
(
γ < 0

∣∣D(b),D0, a0

)]
values computed using the normal ap-

proximation onto the corresponding quantities computed using MCMC (based on 100, 000 MCMC

samples). Second, we computed the percentage of study decisions that were concordant between

the two approaches. Study decisions were concordant if 1
{

P
(
γ < 0

∣∣D(b),D0, a0

)
≥ ψ

}
was equal

for both approaches. Appendix Table A.2 presents the results of our simulation studies. For a0 = 0,

the analysis does not use any of the historical data and so the case where ν = 40 and a0 = 0 gives

good insight into small sample performance. It appears the normal approximation is valid even

when the sample size is much smaller than what will be encountered in an adequately powered

clinical trial. For all cases the R2 value was near 1.0 and the concordance between the methods

was never below 98%.
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APPENDIX B: CHAPTER 4 SUPPLEMENTAL MATERIALS

B.1 A Simulation Study Comparing Bayesian Inference using MCMC with the

Weighted Maximum Likelihood Approximation

For the simulation studies in this appendix, we used the same historical data set that was used

in the example application from Section 4.5 of the paper. Inference using MCMC methods was

based on 50,000 samples with a 1,000 sample tuning phase for the slice sampler and a post-tuning

burn-in phase of 100 samples. A uniform improper prior was used for the regression parameters

and a Gamma (0.001, 0.001) prior was used for each of the parameters in the promotion time model.

Note that in the weighted maximum likelihood (ML) approximation, the prior is not incorporated.

The following characteristics were varied in the simulation studies: sampling prior (default null

and default alternative), a0 (0.0 and 1.0), and n (550 and 800). All other characteristics of the

simulations (e.g. enrollment distribution) matched that described in the paper. We performed

B = 1, 000 simulation studies at each of the 8 combinations of the characteristics being varied and

computed two summaries of agreement. First, we computed the R2 value based on regressing the

P
(
γ < 0

∣∣D(b),D0, a0

)
values computed using the weighted maximum likelihood approximation

onto the corresponding quantities computed using MCMC. Second, we computed the percentage of

study decisions that were concordant between the two approaches. Study decisions were concordant

if 1
{

P
(
γ < 0

∣∣D(b),D0, a0

)
≥ ψ

}
was equal for both approaches. Appendix Table B.1 presents

the results of our simulation studies. We see that there is near exact agreement between the

posterior probabilities as well as the simulated outcomes. This suggests that the weighted maximum

Table B.1: Summary of inference agreement using MCMC and the weighted maximum likelihood
approximation

– Default Alternative – – Default Null –
n a0 % Concordant R2 % Concordant R2

550 0.0 99.5 0.999894 99.9 0.999884
550 1.0 99.6 0.999721 99.9 0.999840
800 0.0 99.4 0.999929 99.9 0.999902
800 1.0 99.8 0.999830 99.9 0.999879
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likelihood approximation is justified for the sample sizes considered in this paper.
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APPENDIX C: CHAPTER 5 SUPPLEMENTAL MATERIALS

C.1 Integral Computation for the Restricted Maximal Borrowing Power Prior

In this appendix we develop a highly accurate approximation for the integral in (5.4.4) which

is given by ∫
[L(β,λ|D0)]a0 [L(β,λ|D0)]δ π0(β,λ)d (β,λ)

where [L(β,λ|D0)]δ is the likelihood for the new CVOT under the assumption of perfect homogene-

ity with the historical CVOT. For this derivation we take π0(β,λ) = π0(β)×π0(λ) with π0(β) ∝ 1

and π0(λ) ∝
∏S
s=1

∏Ks
k=1 λ

−1
sk . Using notation similar to (3.2.2), the integrand can be written as

follows:

[L(β,λ|D0)]a0+δ π0(β,λ) ∝
S∏
s=1

Ks∏
k=1

λ
(a0+δ)αsk,0−1
sk e−(a0+δ)βsk,0λsk ×

(
n0∏
i=1

φνi0i

)(a0+δ)

(C.1.1)

where αsk,0 =
∑

i∈Gs
νki0 is the total number of events for historical CVOT subjects from stratum s

occurring in interval Is,k, φi = exp
(
γzi + βTxi

)
is the hazard ratio regression function for historical

CVOT subject i, βsk,0 =
∑

i∈Gs
φir

k
i0, and D0 = {(yi0, νi0, zi,xi) : i = 1, ..., n} is the observed data

from the historical CVOT. It is straight forward to integrate out the baseline hazard in (C.1.1) and

doing so yields the expression

S∏
s=1

Ks∏
k=1

Γ ((a0 + δ)αsk,0)

(a0 + δ)(a0+δ)αsk,0
× f

(
β
∣∣a0,D,D0

)
(C.1.2)

where

f
(
β
∣∣a0,D,D0

)
=

( ∏n0
i=1 φ

νi0
i∏S

s=1

∏Ks
k=1 β

αsk,0

sk,0

)a0+δ

.

When the number of combined events in the CVOTs are not very small, the term being ex-

ponentiated in f
(
β
∣∣a0,D,D0

)
is proportional to a multivariate normal density with mean β̂ and

covariance matrix of Σ̂ that only depend on D0. It follows that f
(
β
∣∣a0,D,D0

)
is proportional to
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a multivariate normal density with the same mean and covariance matrix Σ̂
a0+δ . Thus,

p
(
β
∣∣a0,D,D0

)
=

f
(
β
∣∣a0,D,D0

)
f
(
β̂
∣∣a0,D,D0

) ∣∣∣Σ̂∣∣∣−1/2
(a0 + δ)

p/2 (2π)
−p/2

is approximately a multivariate normal density. Based on this, one can easily integrate β out of

(C.1.2) to obtain the following expression which discards any term that does not depend on a0.

∫
[L(β,λ|D0)]a0 [L(β,λ|D0)]δ π0(β,λ)d (β,λ) ∝

S∏
s=1

Ks∏
k=1

Γ ((a0 + δ)αsk,0)

(a0 + δ)(a0+δ)αsk,0

f
(
β̂
∣∣a0,D,D0

)
(a0 + δ)

p/2
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