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ABSTRACT 

 

Kuan-Chieh Huang: Statistical Methods for Genetic and Epigenetic Association Studies  

(Under the direction of Yun Li) 

 

First, in genome-wide association studies, few methods have been developed for rare 

variants which are one of the natural places to explain some missing heritability left over from 

common variants. Therefore, we propose EM-LRT that incorporates imputation uncertainty for 

downstream association analysis, with improved power and/or computational efficiency. We 

consider two scenarios: I) when posterior probabilities of all possible genotypes are estimated; 

and II) when only the one-dimensional summary statistic, imputed dosage, is available. Our 

methods show enhanced statistical power over existing methods and are computationally more 

efficient than the best existing method for association analysis of variants with low frequency or 

imputation quality. 

Second, although genome-wide association studies have identified a large number of loci 

associated with complex traits, a substantial proportion of the heritability remains unexplained. 

Thanks to advanced technology, we may now conduct large-scale epigenome-wide association 

studies. DNA methylation is of particular interest because it is highly dynamic and has been 

shown to be associated with many complex human traits, including immune dysfunctions, 

cardiovascular diseases, multiple cancer, and aging. We propose FunMethyl, a penalized 

functional regression framework to perform association testing between multiple DNA 

methylation sites in a region and a quantitative outcome. Our results from both real data based 



iv 

simulations and real data clearly show that FunMethyl outperforms single-site analysis 

across a wide spectrum of realistic scenarios. 

Finally, large studies may have a mixture of old and new arrays, or a mixture of old and 

new technologies, on the large number of samples they investigate. These different arrays or 

technologies usually measure different sets of methylation sites, making data analysis 

challenging. We propose a method to predict site-specific DNA methylation level from one array 

to another – a penalized functional regression model that uses functional predictors to capture 

non-local correlation from non-neighboring sites and covariates to capture local correlation. 

Application to real data shows promising results: the proposed model can predict methylation 

level at sites on a new array reasonably well from those on an old array. 
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CHAPTER 1: MOTIVATION AND BIOLOGICAL JUSTIFICATION 

In this document, we propose statistical methods for assessing association between a 

genetic variant or sets of epigenetic marks and complex human traits. Because large studies may 

have a mixture of old and new arrays, or a mixture of old and new technologies, on the large 

number of epigenetic marks investigated, we also propose a method to predict site-specific DNA 

methylation level from one array to another. This section provides an overview of the biological 

problems we are interested in and some of the statistical strategies employed in an attempt to 

solve them. 

To begin, DNA is a double-stranded molecule consisting of four nucleic acid 

components: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). DNA is found in the 

nucleus of the vast majority of plant and animal cells and has been compared to a blueprint for 

the organism in which it is found. Humans have 22 autosomes, in addition to the sex 

chromosomes X and Y and mitochondrial DNA, accounting for over 5 billion base pairs in total. 

We will consider primarily autosomal DNA, for which each individual possesses two copies, one 

inherited maternally and the other paternally. Over 99% of the DNA sequence is the same across 

humans (Morris and Zeggini 2010); however, there are a large number of ways in which human 

DNA sequence can differ from one another in a single region including microsatellites, copy 

number variations (CNVs), insertions, deletions, inversions and single nucleotide polymorphisms 

(SNPs). Any one of these can be called a genetic variant, meaning that it contains a sequence of 

nucleic acids that is different from the consensus sequence or from what is most common. 
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A SNP is one such genetic variant that occupies only one base pair. As previously stated, 

much of the genome is shared across humans; however, some of these variants, SNPs included, 

are quite common with variant or minor allele frequency (MAF) near 0.5. In the 1990’s 

microarray technologies from companies like Affymetrix and Illumina began to capitalize on 

these common SNPs in the form of genome-wide SNP platforms. Today these technologies can 

accurately assess up as many as 1 million pre-selected SNPs [e.g. the Affy Axiom or Illumina 

1M], however these technologies are limited in that they cannot discover new variants. 

As SNP genotyping technology advances, it is now possible to genotype hundreds of 

thousands of alleles in parallel. This has made it possible to rapidly scan markers across the 

complete genomes of many people; therefore, the association between the traits of interest and 

millions of markers could be tested. Recently, genome-wide association studies (GWASs) have 

identified SNPs related to several complex diseases. The completion of The International 

HapMap Project has provided a possibility to impute missing genotypes that were not directly 

genotyped from a cohort or case-control study but were genotyped in the reference samples. 

Genotype imputation relies on the fact that even two unrelated individuals can share short 

stretches of haplotype inherited from distant common ancestors. Several methods have been 

proposed to take imputation into account in genome-wide association studies (GWASs). These 

existing methods, however, have focused primarily on common variants, which have been the 

focus of the past wave of GWASs examining either only directly genotyped (or typed) markers, 

or typed and untyped markers imputed with the aid of smaller scale, lower density reference 

panels such as those from the International HapMap Project. However, few (if any) methods 

have been developed for rare variants which have been receiving intensive attention in the past 

half decade as one of the natural places to explain some missing heritability left over from 
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common variants, for almost all complex traits studied in the genetics community. In the third 

chapter, an expectation-maximization likelihood-ratio test (EM-LRT) is developed. This method 

can accommodate either posterior genotype probabilities (EM-LRT-Prob) or imputed dosages 

(EM-LRT-Dose). We evaluated our methods and compared them with existing methods through 

extensive simulations. Our methods clearly show enhanced statistical power over existing 

methods and computationally more efficient alternative to the best existing method for 

association analysis of variants with low MAF or imputation quality. We also applied our 

methods to two data sets: the Cebu Longitudinal Health and Nutrition Survey (CLHNS) and 

Women’s Initiative Study (WHI) of Blood Cell Traits. Consequently, all methods have proper 

control of type I error and our methods generated more significant p-values (and better 

approached truth in all cases), suggesting power enhancement using our methods.  

Although GWASs have identified a large number of loci associated with complex traits, a 

substantial proportion of the heritability remains unexplained. For example, the >200 loci 

identified for height can only explain ~20% out of the ~80% total estimated heritability. Recent 

technological advances have allowed us to conduct large-scale epigenome-wide association 

studies (EWASs). DNA methylation is of particular interest because it is highly dynamic 

(Rakyan et al. 2011) and has been shown to be associated with many complex human traits, 

including immune dysfunctions, cardiovascular diseases, multiple cancer, and aging. Typically, 

methylation level at hundreds of thousands of sites is measured and each of these sites is 

examined separately (i.e., single-site analysis). However, because of the correlation structure 

among the sites and because many of them fall in naturally defined regions (e.g., belonging to 

the same gene; belonging to the same regulatory region such as an enhancer or DNAse 

hypersensitivity site), it is conceptually straightforward to imagine achieving enhanced statistical 
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power by performing region-based test (that is, simultaneously testing multiple sites together) 

especially when there are multiple low or moderate signals in that region. In the fourth chapter, a 

penalized functional region-based model is proposed to perform the association testing between 

DNA methylation marks in a region (explanatory variable) and quantitative trait (response 

variable). We evaluated our methods and compared them with the benchmark single-site analysis 

through extensive real data simulations. All the methods have proper control of type I error; 

however, our methods have enhanced statistical power over the single-site analysis across 

various settings. Moreover, our methods have much higher statistical power than the existing 

region-based tests SKAT and SKAT-O. This work is close to finish and we expect to submit the 

manuscript soon.  

Lack of high-throughput profiling technologies used to hinder our understanding of the 

dynamic state of DNA methylation. Fortunately, geneticists are embraced nowadays by 

technological advances. For the study of DNA methylation, for example, technological advances 

constantly provide us with more choices to measure DNA methylation patterns across the 

genome, including multiple commercial arrays, multiple sequencing-based technologies or 

protocols (Laird 2010). However, large studies may have a mixture of old and new arrays, or a 

mixture of old and new technologies, on the large number of samples they investigate. These 

different arrays or technologies usually measure different sets of methylation sites, making data 

analysis challenging, if not even impossible. For example, Illumina HumanMethylation27 

(HM27) and HumanMethylation450 (HM450) BeadChip are two common microarrays used by 

the Cancer Genome Atlas (TCGA) project. In several TCGA studies, the DNA methylation 

profiles of samples collected more recently were measured by HM450, while the others were still 

measured by HM27. Then when researchers want to utilize data of all samples for downstream 
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analysis, they can only focus on probes shared between two platforms for simplicity, since re-

evaluating all samples using HM450 is both costly and time-consuming. In the fifth chapter, a 

penalized function regression model is proposed for DNA methylation prediction. We applied 

the proposed model to a large-scale methylation data set from acute myeloid leukemia patients. 

As a result, the proposed model can produce accurate imputations when the reference panel 

(training set) and the target panel (testing set) characterize the same tissue under similar 

conditions. 
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CHAPTER 2: LITERATURE REVIEW 

This section presents a partial review of many of the papers previously published on the 

topic of association studies. It is by no means complete since the number of these papers is quite 

large; however, it is an attempt to show the development of several methods used for these 

studies.  

2.1 Early Methods for Association Studies 

Genotype imputation has become standard practice in modern genetic studies (Browning 

and Browning 2008; Li et al. 2009; Li et al. 2010; Marchini and Howie 2010). For each untyped 

variant imputed, standard imputation methods estimate posterior probabilities of all possible 

genotypes. For example, when the untyped variant is bi-allelic with alleles A and B, we obtain 

posterior probabilities for A/A, A/B, and B/B with the constraint of summation being one. Such 

probability information can be further summarized into degenerate one-dimensional summary 

statistics including the mode (the best-guess genotype, or the genotype with the highest posterior 

probability), or the mean (the imputed dosage).  

Since association analysis with phenotypes of interest rather than genotype imputation 

per se is usually of the ultimate interest, development and evaluation of post-imputation 

association strategies have therefore attracted considerable attention from the research 

community (Chen and Abecasis 2007; Lin et al. 2008; Aulchenko et al. 2010; Pei et al. 2010; 

Jiao et al. 2011; Kutalik et al. 2011; Zheng et al. 2011; Acar and Sun 2013; Liu et al. 2013b). 

Among them, imputation dosage based methods provide an attractive compromise between 
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modeling complexity, computational efficiency and statistical power, have been shown 

analytically to be optimal among methods based on one-dimensional summary statistics (Liu et 

al. 2013b),  and thus have been most commonly adopted in recent imputation-aided genome-

wide association studies (Chambers et al. 2011; Auer et al. 2012; Dastani et al. 2012; Berndt et 

al. 2013). On the other hand, explicitly modeling the probabilities of all possible genotypes using 

the mixture of regression models (abbreviated Mixture hereafter and detailed below) has the best 

performance in terms of statistical efficiency, particularly with low imputation quality, but at the 

cost of increased computational complexity (Zheng et al. 2011).  

GWASs have successfully identified sites associated with common diseases but still, a 

substantial proportion of the causality remains unexplained. In fact, GWASs only study the 

association between trait and genetic variants at the DNA level, and also some single nucleotide 

polymorphisms (SNPs) associated with common diseases are not localized near any gene in the 

pathways involved. Therefore, the unexplained causality could be found in epigenetic variation. 

Based on the experiences from GWASs, it is inevitable to perform large-scale and systematic 

studies to detect the epigenetic variation. Epigenome-wide association studies (EWASs) allow us 

to identify genome-wide epigenetic variants associated with common diseases. DNA methylation 

is of particular interest because it is highly dynamic and, also the profiling technology for both 

array- and sequencing-based methods has been well developed. Among these technologies, the 

whole-genome bisulphite sequencing provides the highest coverage and resolution.  

2.1.1 GWAS 

We will introduce several existing methods that are widely used in GWAS. First, let 

Fi = fi0, fi1, fi2( )  represent the genotype probability vector and Xi  represent a particular feature of 

the imputation procedure 
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Xi =
argmax

j∈ 0,1,2{ }
fij{ }

fi1 + 2 fi2








,

,

Best-guess

Dosage
 

Best-guess and Dosage methods directly regress the trait Yi  on a particular feature Xi  adjusting 

for the covariates Zi  

Yi = β0 + β1Xi +γZi +εi  

where εi ~ N 0,σ 2( ) and i = 1, 2, …, N with N being the sample size. Next, the Mixture method 

(Zheng et al. 2011) fits the following mixture of regression model  

Yi = fij ⋅ g j β0, β1,γ,εi( )
j=0

2

∑
 

where g j β0, β1,γ,εi( ) = β0 + j ⋅ β1 +γZi +εi . To estimate the parameters β0, β1,γ( )  
in the Mixture 

model, the log-likelihood function is maximized using the Nelder-Mead Simplex Method 

(Nelder and Mead 1965), implemented in R package optim.  

2.1.2 EWAS 

Typically, DNA methylation level at hundreds of thousands of sites is measured and each 

of these sites is examined separately (i.e., single-site analysis). For a given CpG site j, the 

methylated (Mj) and unmethylated (Uj) signal intensities are combined to methylation β-values: 

β − value j =
max M j, 0( )

max M j, 0( ) + max U j, 0( ) +αβ

 

where the inclusion of an offset αβ = 100 is recommended as a stabilization in the situation when 

both methylated and unmethylated signal intensities are small. By definition, the β-values are 

bounded to [0,1] interval and can be interpreted as an approximation of the percentage of 
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methylation. Most regression models used in EWAS treats DNA methylation level as response 

variable and disease-related phenotypes as explanatory variables. To directly use β-values 

without transformation, Beta regression (Ferrari and Cribari-Neto 2004) designed for modeling 

proportions bounded to [0,1] is often used.  

It was later proposed to use the log2 ratio of the methylated to unmethylated signal intensities 

(Allison et al. 2006): 

M − value j = log2

max M j, 0( ) +αM

max U j, 0( ) +αM











  

where αM =1 is usually specified and the M-values are therefore defined on −∞,∞( ). It has also 

been shown that after ignoring αβ  and αM
, there is a logit (with base 2) relationship between β-

values and M-values: 

M − value j ≈ log2

β − value j

1− β − value j









  

As a result, after transforming β-values, the linear regression model for CpG site j is fit as 

M i = α +γZi +εi , where Mi is M-valuei at site j, Zi is the covariate vector, εi ~ N 0,σ 2( ), and i = 

1, 2, …, N with N being the sample size. Moreover, if one wants to adjust for batch effect, a 

mixed model can be easily adopted by specifying a batch-specific random effect in the model. In 

addition, the feature selection using test statistics is similar for M- and β-values for relatively 

large sample sizes but M-values allow more reliable identification of true positives for small 

sample sizes (Zhuang et al. 2012).  
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2.2 Early Methods for DNA Methylation Prediction 

DNA methylation is an important epigenetic modification involved not only in normal 

development (Reik 2007; Smith and Meissner 2013) but also in risk and progression to many 

diseases (Bergman and Cedar 2013). It has been shown to play a key role in the regulation of 

gene transcription, X-inactivation, cellular differentiation, as well as other critical processes such 

as aging (Bird 2002; Gonzalo 2010). Recently, the emergence of powerful technologies such as 

microarray-based DNA methylation studies (Bibikova et al. 2011) and whole-genome bisulfite 

sequencing (Harris et al. 2010) has enabled the profiling of DNA methylation levels at high 

resolution. Numerous studies employed these high-throughput approaches to characterize 

changes of DNA methylation patterns and their corresponding tissue and disease-specific 

differentially methylated regions on a genome-wide scale (Irizarry et al. 2009; Berman et al. 

2011; Varley et al. 2013). 

As new technology emerge, researchers tend to replace old methylation profiling 

platforms with new ones. However, different platforms usually target CpG sites at different 

locations and resolutions, which hinder joint analysis of data from different platforms. For 

instance, Illumina HumanMethylation27 (HM27) and HumanMethylation450 (HM450) 

BeadChip are two common microarrays used by The Cancer Genome Atlas (TCGA) project. 

While HM27 investigates 27,578 CpG sites predominantly located near CpG islands, HM450 

provides broader coverage with 485,577 probes spanning 96% of CpG islands and 92% of CpG 

shores across a larger number of genes. Several TCGA studies have used HM450 to gather 

methylation profile data for more recently collected samples while still using HM27 to measure 

DNA methylation in the older test subjects. These mixed profiles compel researchers to focus on 

those probes shared between the two platforms when using the data for downstream analysis, as 
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re-evaluating all samples using HM450 is not only expensive but also time-consuming. 

 Most existing methods for DNA methylation prediction assume the DNA methylation is 

binary, the DNA methylation status is 0 for unmethylated and 1 for methylated. They also have 

limited predictions to specific regions of the genome. Moreover, most existing methods attempt 

to predict the DNA methylation level or status using HM450 probes as well as some features, 

such as DNA composition, predicted DNA structure, repeat elements, transcription factor 

binding sites (TFBSs), evolutionary conservation, and etc.  
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CHAPTER 3: EM-LRT 

3.1 Introduction 

Limited evaluations of existing methods (including methods that explicitly model 

posterior probabilities) on variants with low imputation quality suggest much reduced power 

compared with accurately imputed variants, for instance, as demonstrated in Figure 2 and 3 of 

(Zheng et al. 2011) and Figure 2 of (Liu et al. 2013b) Analysis of variants with low imputation 

quality is not surprisingly a challenging problem due to the low correlation between imputed and 

true genotypes. It is nevertheless an increasingly important problem because as sequencing-based 

reference panels continue to grow (Altshuler et al. 2012; Fu et al. 2013)we have increasingly 

more well imputed markers but also even more markers with relatively low imputation quality, 

particularly at markers with lower allele frequencies (Duan et al. 2013a)(Altshuler et al. 2010b; 

Liu et al. 2012; Zhang et al. 2013; Duan et al. 2013b). It is thus highly warranted to seek 

alternative and potentially more efficient methods to model imputation uncertainty for these 

markers. In this chapter, we develop expectation-maximization likelihood-ratio tests (EM-LRT) 

that can accommodate either posterior genotype probabilities, when available (EM-LRT-Prob), 

or imputed dosages (EM-LRT-Dose). Simulations and real data application demonstrate the 

validity of the proposed methods and suggest them as a computationally more efficient 

alternative to the best existing method (Mixture) for association analysis of variants with low 

MAF or imputation quality. 
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3.2 Methods 

3.2.1 A Hierarchical Modeling Framework to Simulate Data 

We adopt a hierarchical model that generates posterior probabilities, imputed dosages, 

and true genotypes using marker-specific information including minor allele frequency (MAF) 

and imputation quality measure (R2), as well as a quantitative trait with which we test for genetic 

association. The model has three stages: the first stage generates genotype probabilities based on 

marker-specific information (genotype probability stage); the second stage employs a 

multinomial distribution with probabilities from the first stage to generate allele counts (allele 

count stage); and the final stage fits a linear regression model to generate quantitative trait values 

(trait stage). 

Genotype Probability Stage. For a specific marker with MAF q and imputation quality 

R2, the genotype probability vector Fi = fi0, fi1, fi2( ) for the i-th sample is drawn from a Dirichlet 

distribution with parameters α = α0,α1,α2( ) , where fij
 is the probability of having j copies of the 

minor allele for the i-th sample and fij =1
j=0

2

∑ . The parameters in the Dirichlet distribution are: 

α0 = 1− q( )2
c , α1 = 2q 1− q( ) c , α2 = q2 c  with c = R2 1− R2( ). Here we give some brief 

explanations. First, this distribution gives reasonable expected values for Fi = fi0, fi1, fi2( ) such 

that E fi0( ) = 1− q( )2
, E fi1( ) = 2q 1− q( ), and E fi2( ) = q

2
, which are the expected probabilities of 

having 0, 1, or 2 copies of minor alleles assuming Hardy-Weinberg Equilibrium. Next, when R2 

approaches to 1, Fi = fi0, fi1, fi2( ) 
approaches to a distribution that takes three possible values, 

(1,0,0), (0,1,0), and (0,0,1) (i.e., the probability of having a particular genotype is either 0 or 1), 

which is the expected situation when there is no imputation ambiguity. Given the genotype 
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probability vector, the imputed dosage is Di = fi1 + 2 fi2 .  

Allele Count Stage. The allele count vector Xi = xi0, xi1, xi2( )  for the i-th sample is drawn 

from a multinomial distribution with genotype probabilities specified in the previous stage, 

where xij =1 if the i-th sample has j copies of the minor allele; and 0 otherwise, with the 

constraint of xij =1
j=0

2

∑ . Additionally, the genotype Gi for the i-th sample is generated using this 

allele count vector, specifically Gi = xi1 + 2xi2 . Our simulation framework, taking imputation 

quality R2 into account using c above, renders ( ) 22 , RDGcorr ii = . 

Trait Stage. In the final stage, a linear regression model is used to generate quantitative 

trait Yi using genotype Gi and covariates Zi, Yi = β0 + β1Gi +γZi +εi , where εi ~ N 0,σ 2( ) and i = 

1, 2, …, N. 

3.2.2 Expectation-Maximization Likelihood-Ratio Test 

Our primary goal is to test for marker-trait association when marker genotypes G are not 

directly observed but rather imputed. We propose the following expectation-maximization 

likelihood ratio tests (EM-LRT). We consider two common scenarios after genotype imputation: 

1) when posterior probabilities of genotypes are available and 2) when only dosages are 

available. 

Scenario I: When Posterior Probabilities Are Available [EM-LRT-Prob]. Under this 

scenario, the true genotype Gi is missing but genotype probability vector Fi = fi0, fi1, fi2( ) is 

estimated, i = 1, 2, …, N with N being the sample size. Given the observations yi,Gi, zi, fi( )  

where  is the observed value for , the complete data likelihood is if iF



15 

L* β,σ ,γ y,G, z, f( ) = f yi Gi, zi, fi( ) ⋅ P Gi zi, fi( ) =
i=1

N∏ f yi Gi, zi( ) ⋅ P Gi fi( ) ∝ f yi Gi, zi( )
i=1

N∏
i=1

N∏  

where the second equality holds because trait yi is independent of genotype probability vector fi 

conditional on true genotype Gi and true genotype is independent of covariates zi conditional on 

genotype probability vector. Therefore, with Gaussian distribution, the corresponding complete-

data log-likelihood is 

 l* β,σ ,γ y,G, z, f( ) ∝ − logσ − yi − β0 + β1Gi +γzi( ) 
2

2σ 2

i=1

N

∑  

In this complete data log-likelihood, terms involving true genotype Gi, namely Gi and Gi
2 , are 

not observed and will be replaced in the E-step by their conditional expectations given the 

observed data. Their conditional expectations are  

E Gi yi, fi, zi( ) = Gi ⋅ P Gi yi, fi, zi( ) = C
−1

Gi=0

2

∑ ⋅ Gi ⋅ P yi Gi, zi( ) ⋅ P Gi fi( )
Gi=0

2

∑  

E Gi

2
yi, fi, zi( ) = Gi

2 ⋅ P Gi yi, fi, zi( ) = C
−1

Gi=0

2

∑ ⋅ Gi

2 ⋅ P yi Gi, zi( ) ⋅ P Gi fi( )
Gi=0

2

∑  

where C = f yi Gi, zi( ) ⋅ P Gi fi( )
Gi=0

2

∑ , and  P Gi fi( ) = fi0

I Gi=0( ) fi1

I Gi=1( ) fi2

I Gi=2( )
. 

In the M-step, the maximum likelihood estimates of the parameter θ = β0, β1,γ,σ( )  
are 

obtained as follows: 

 β̂0, β̂1, γ̂( ) = I,G, Z[ ]T
I,G, Z[ ]{ }−1

I,G, Z[ ]T
Y =

I T I I TG I T Z

GT I GTG GT Z

Z T I ZTG ZT Z



















−1

I TY

GTY

ZTY



















 

 σ̂ 2 = Y − β̂0 − Gβ̂1 − Zγ̂( )T

Y − β̂0 − Gβ̂1 − Zγ̂( ) n  

We repeat the E-step and M-step until convergence (δ <10−6 ). 

To speed up the EM algorithm, we suggest using the naïve parameter estimates as 

starting values, that is, the parameter estimates derived by fitting a simple linear regression on 
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trait Y using dosage D and covariates Z (a.k.a Dosage or standard method). Our EM-LRT-Prob 

approach shares some similarity with the seminar work by Lander and Botstein (Lander and 

Botstein 1989) for interval mapping, in which the authors also used mixture model framework, 

treating genotypes at quantitative trait sites as missing data. 

Scenario II: When Only Dosages Are Available [EM-LRT-Dose]. We propose a 

framework that first uses the conditional (on dosages) distribution to sample genotype 

probabilities given the imputed dosages, and then apply the EM algorithm detailed above in 

Scenario I. 

First, we derive the probability density function for fi1 , the probability of having one 

copy of the minor allele conditioning on imputed dosage  

f fi1 = p Di( ) = ′C

B α( )
⋅ 1− 0.5 Di + p( ) 

α0−1

pα1−1 0.5 Di − p( ) 
α2−1

 

where C’ is the normalizing constant,  p ∈ 0, min 2 − Di,1, Di( )  , and B ⋅( )  is the beta function 

[Appendix B]. Second, we select the envelope function g p( ) = max
p

f fi1 = p Di( )  such that 

f p( ) ≤ g p( )  
for all p. Third, we perform the following steps to sample fi1: 1) generate 

p ~ U 0, min 2 − Di,1, Di( )( ); 2) generate U ~ U 0,1( ); 3) accept � if U < f p( ) g p( ) . Finally, we 

calculate fi0  and fi2  using the relationship Di = fi1 + 2 fi2  and fij =1
j=0

2

∑ .  

The drawback of the above rejection sampling approach is that it can be computationally 

rather expensive especially when the envelope function is large. Fortunately, we can use an 

approximation approach when MAF is not high. For example, when MAF is low enough, the 

probability of having two copies of the minor allele is close to zero. In that case, we adopt an 

approximation approach (referred hereafter as dosage approximation approach) by setting the 
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probability of having one copy of the minor allele to dosage when MAF is below certain 

threshold depending on the imputation quality [details are shown below in subsection Numerical 

Simulation: MAF Threshold].  

Hypothesis Testing. To assess whether a variant is associated with phenotypic trait of 

interest Y, we perform the following hypothesis testing H0 : β1 = 0 vs. H1 : β1 ≠ 0 . Note that the 

same β1
 is assumed across all three possible genotypes. We propose to use the likelihood ratio 

test for this purpose. Specifically, hypothesis testing is performed as follows: 1) use the EM 

algorithm described previously to find the ML estimates θ̂  for θ = β0, β1,γ,σ( ) , and then 

compute the log-likelihood l
* θ̂( ) ; 2) find the ML estimates θ̂  under H0; and 3) compute the 

likelihood-ratio statistics (LRS): . The LRT will reject the H0 if LRS > χα
2
, 

where χα
2
 is the 1−α( ) 100th percentile of the χα

2
-distribution with degree of freedom (d.f.) = 1. 

3.2.3 Numerical Simulation 

MAF Threshold. To achieve optimal balance between performance and computational 

efficiency, we use extensive simulations to find the MAF threshold between the choice of 

rejection sampling and dosage approximation. Given R2, we calculate two sets of mean squared 

error (MSE) between sampled genotype probability f̂i1  and truth fi1  using rejection sampling 

and dosage approximation, respectively.  

Type I Error Evaluation. We assess the validity of EM-LRT-Dose, Dosage, EM-LRT-

Prob, Mixture and gold-standard (based on true genotypes) under various combinations of R2 and 

MAF. Specifically, we simulate data sets each with 2,000 samples using pre-specified marker-

specific information R2 and MAF, which allows us to generate genotype probabilities, dosages, 
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and true genotypes. Next, we simulate the trait values Yi  according to the linear model for sample 

i with a set of pre-specified parameters, where i = 1, …, 2,000. For simplicity, we set 

β0, β1,γ,σ( ) = 1,0,1,1( ) . 

We repeat the simulation ten million times. For each simulated data set, we perform 

association testing based on the true genotypes (truth), as well as based on imputed data using 

the standard Dosage method, Mixture method, and our proposed EM-LRT-Prob and EM-LRT-

Dose methods. The empirical type I error rate of each method is calculated as the proportion of 

observed p-values that fall below the specified significance level. In addition, we calculate the 

Spearman correlation between the observed and gold-standard (true genotype based) p-values.  

Statistical Power Assessment. To evaluate the statistical power of different methods, we 

again simulate data sets each with 2,000 samples using a combination of marker-specific 

information R2 and MAF, and parameters β0, β1,γ,σ( ) = 1, β1,1,1( )  where β1 ∈ 0,1.5[ ] . We again 

repeat the simulations one million times. Similarly, for each simulated data set, we performed the 

same set of tests. The power of each method is calculated as the proportion of observed p-values 

that fall below the significance threshold α = 5×10−5 . 

3.3 Results 

3.3.1 MAF Threshold 

We used simulations to determine the MAF threshold specific to each R2 such that the 

rejection sampling is advantageous (quantified by lower MSE in estimating 1if , the probability 

of having one copy of the minor allele) over dosage approximation when exceeding the MAF 

threshold (Figure 1 and Table 1). We observed the two sampling methods have similar 

performance (measured by MSE) when MAF is not high (below 20%-30% depending on R2). In 
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such cases, we chose the simple dosage approximation method due to computational efficiency 

(Runtimes for rejection sampling and dosage approximation based on 2,000 samples are also 

shown). We also observed inferior performance (larger MSE) of both methods for low MAFs 

with intermediate R2 values. Both can be explained by a combination of the imputation quality 

and the variation in 1if  as a function of both imputation quality R2 and MAF q. Specifically, we 

have Var( 1if ) = R2 × 2q(1 – q) × (1 – 2q(1 – q)), which increases with MAF q as well as with R2. 

Low imputation quality R2 coupled with low MAF leads to relatively little variation in 1if , 

rendering both sampling methods capable of estimating it relatively accurately. On the other 

hand, high imputation quality implies dosages close to true genotype values 0, 1, and 2, as well 

as 1if  close to 0 or 1, thus allowing accurate inference of 1if  despite the larger variation in the 

values of 1if  across individuals. In the intermediate R2 range, variation in 1if  coupled with 

imputation uncertainty makes inference challenging for both approaches.  

3.3.2 Empirical Type I Error Simulation  

As shown in Table 2 (at significance level 5E-02) and Table 3 (at significance level 5E-

05), all the methods have proper control of type I error across in the range of R2 and MAF 

examined: 0.1 ≤ R2 ≤ 0.3 and 1% ≤ MAF ≤ 20%. Next, as shown in Figure 2, Spearman 

correlation with true p-values increases for every method when R2 increases. The overall 

correlation is low in the range of MAF and R2 examined. This low correlation is expected given 

the high level of imputation uncertainty and consistent with previous results (Zheng et al. 2011), 

confirming that association inference is challenging with low frequency variants, or with variants 

imputed with a high level of uncertainty. Although the absolute performance of all methods is 

not particularly impressive, we observe that EM-LRT methods always show slightly higher 
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Spearman correlation than Dosage method especially when MAF is low, suggesting that the EM-

LRT p-values better approach gold-standard p-values. When R2 and MAF are high, all methods 

perform similarly (results not shown), consistent with results shown in literature (Zheng et al. 

2011; Liu et al. 2013b). 

3.3.3 Empirical Power Simulations 

When R2 and MAF are high, all methods have similar performance. In this chapter, we 

focus on scenarios where 0.1 ≤ R2 ≤ 0.3 and 1% ≤ MAF ≤ 20%. As shown in Figure 3, EM-LRT-

Prob and Mixture methods are consistently the most powerful methods among all methods 

evaluated. However, these methods are not applicable in scenario II when only imputed dosages 

are available. It is thus valuable to notice that EM-LRT-Dose method approaches the statistical 

efficiency of EM-LRT-Prob, outperformng the standard Dosage method especially when R2 or 

MAF is low. For example, when R2 = 0.1 and MAF = 0.05, the power for EM-LRT-Prob, 

Mixture, EM-LRT-Dose and Dosage are 84.5%, 84.5%, 82.1%, and 61.4% under β1 = 1. 

3.4 Real Data Application 

3.4.1 CLHNS 

We applied the proposed EM-LRT methods as well as other existing methods to the Cebu 

Longitudinal Health and Nutrition Survey (CLHNS) study of 1,800 unrelated Filipino women. 

We performed association analysis across chromosome 16, where we have previously identified 

the variants near CDH13 gene associated with plasma adiponectin level (Wu et al. 2010).  

We conducted association testing with standardized adiponectin level measured in 2005 

on a log scale as the quantitative trait and adjusted for age and BMI also measured in 2005. 

Additionally, we excluded subjects from the analysis if they met one or more of the following 
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criteria: 1) subjects with adiponectin level missing or outside of the range mean +/– 4 standard 

deviations (n=19); 2) subjects carrying the R221S variant (n=53) (Croteau-Chonka et al. 2012); 

and 3) subjects with missing age or BMI covariate information (n=20). In total, 1,717 subjects 

were tested for association with adiponectin level. 

These 1,717 subjects were genotyped on the Affymetrix Genomewide Human SNP Array 

5.0 GWAS chip (Lange et al. 2010) and also on the Illumina HumanExome Beadchip. 

Specifically, we first established the truth by employing PLINK (Purcell et al. 2007) to perform 

association on the true genotypes separately, finding 10 true positives (p-value < 5×10–6) on 

Affymetrix 5.0 and 5 on exome chip (with 2 overlapping). Next, to mimic a setting of low 

imputation quality, we masked all neighboring GWAS SNPs within 2kb of the 13 true positives 

before genotype imputation (22 SNPs were masked). Finally, we performed imputation using the 

MaCH imputation software (Li et al. 2010) using the ASN panel from the Phase I 1000 Genomes 

Project (March 2012 release, version 3) as reference. To evaluate the performance of the 

proposed methods along with other alternatives, we used markers overlapping between the ASN 

reference panel and the exome chip, but not on the Affymetrix 5.0, at which we have both 

imputed genotypes and true genotypes (from exome chip genotyping). We then conducted 

association testing on the imputed genotypes (dosages or probabilities) using our proposed EM-

LRT methods, Dosage, and Mixture method.  

Figure 4 shows the Q-Q plot for the 1,135 SNPs on chromosome 16 with R2 ≤ 0.3 and 

true p-value > 5×10–6. Q-Q plots are used to assess the number and magnitude of observed 

associations between tested SNPs and the trait under study, by comparing the observed  –log10 p-

values to what is expected under the null hypothesis of no association. Early departure from the 

identity line suggests either that there is uncontrolled confouding leading to false positives (for 
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example, due to population stratification) or that a considerable proportion of SNPs are 

associated with the trait of interest (and thus not under the null distribution). Focusing on 

variants with p-values > 5×10–6 based on experimental genotypes allowed us to examine the type 

I error empirically. Overall, this Q-Q plot suggests that all methods have proper control of type I 

error with all points falling within the 95% confidence bands with the exeption of one variant. 

The single potential false positive, rs8045889 with a true p-value = 0.0148; R2 = 0.0736; and 

MAF = 0.4271, was identified by Dosage, EM-LRT-Prob, and Mixture (EM-LRT-Dose has a 

borderline p-value of 0.0002). In addition, we observe overall deflation in the test statistics 

(observed larger p-values) of all methods when compared with truth. The median (mean) p-

values are 0.6407, 0.5614, 0.5568 and 0.5568 (0.6075, 0.5552, 0.5512, and 0.5543) for Dosage, 

EM-LRT-Dose, EM-LRT-Prob and Mixture respectively, compared with the true median (mean) 

of 0.5008 (0.5009). The tendency towards large p-values is expected and driven by the loss of 

information due to imputation uncertainty.  

While establishing the validity is crucial, we are more interested in the power to identify 

genuine associations. Table 4 tabulates p-values from all four methods together with the truth for 

variants with R2 < 0.3 and true p-value < 5×10–8. Although all variants reach the genome-wide 

significance threshold regardless of the method, we observed that EM-LRT-Dose or EM-LRT-

Prob generated more significant p-values (and better approached truth in all cases) than the 

alternatives for five out of the six variants interrogated, suggesting power enhancement using our 

methods. 

3.4.2 WHI 

We have previously identified several variants associated with blood cell traits using 

whole exome sequencing in 761 African Americans coupled with imputation in > 13,000 African 
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Americans with GWAS data from genome-wide Affymetrix 6.0 genotyping (Auer et al. 2012). 

The samples are drawn from several cohorts including WHI, ARIC, CARDIA and JHS. 

Association analyses were performed separately for WHI and CARe cohorts (ARIC, CARDIA 

and JHS) and subsequently meta-analyzed across the two. Due to the ascertainment of variants 

through whole exome sequencing, 56% of our analyzed variants had MAF < 5%.  

Here, we use meta-analysis results from our previous study as a gold standard to define 

true positives and investigate the p-values in the WHI cohort using our EM-LRT-Dose and 

standard Dosage method, which had been adopted by the original study. We did not keep a copy 

of the posterior probabilities because of the large number of samples imputed and because 

standard analyses do not involve the posterior probabilities. Therefore, this is a real data example 

of scenario II. Table 5 presents all variants with MAF < 5% reported to reach genome-wide 

significant threshold in the original study, comparing p-values from our EM-LRT-Dose and the 

standard Dosage method. We notice that EM-LRT-Dose generated slightly more significant p-

values at the associated variants in three out of the four tests performed. In one case (snp.177015 

with white blood cell count [WBC]), the p-value from EM-LRT-Dose (p-value = 4.72×10–8) 

reached the conventionally employed genome-wide significance threshold of 5×10–8 while that 

from Dosage was marginally genome-wide insignificant (p-value = 6.11×10–8).   

3.5 Discussion 

 It is crucial to take imputation uncertainty into consideration when performing 

association testing. Existing methods have focused on common variants, which have been the 

focus of the past wave of GWAS using HapMap-based imputation. With the deluge of next 

generation sequencing data being generated, increasingly denser reference panels are allowing 

imputation of a much larger number of variants, including an increasing number of relatively 
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rare or poorly imputed variants. It is thus highly warranted to re-visit potential strategies for post-

imputation association analysis and to seek more powerful or efficient statistical methods. 

 In this chapter, we have proposed EM-LRT methods explicitly incorporating marker level 

imputation quality statistic into association tests. We considered two scenarios: when posterior 

probabilities of all potential genotypes are available and when only dosages are available. We 

evaluated the performance of the proposed methods along with existing alternatives using 

simulation studies and by application to real data sets.    

 In scenario I, our proposed EM-LRT-Prob demonstrated nearly identical performance as 

the Mixture model, which has been shown to be the best post-imputation association method 

particularly when imputation uncertainty is high (Zheng et al. 2011). While our EM-LRT-Prob 

effectively also fits a mixture model (therefore in terms of the underlying statistical model 

essentially the same as the Mixture method adopted in Zheng et al. 2011), we have proposed and 

implemented a much more computationally efficient algorithm to fit the model. Mixture method 

(Zheng et al. 2011) used R function optim() to find ML estimates. Technically, the optim() 

function uses numerical differentiation to obtain ML estimates based on the score function and 

Hessian matrix, which is considerably slower than our proposed EM algorithm. To quantify the 

computational efficiency, we conducted association testing on a CLHNS data set of 1,717 

subjects and 13,801 SNPs, using EM-LRT-Prob and Mixture methods with the same starting 

values (the Mixture method tends to run even slower without using the suggested starting values). 

We observed that the association tests required 279 seconds computing time and 0.91 GB RAM 

for EM-LRT-Prob and 1,505 seconds computing time and 1.23 GB RAM for the Mixture method 

on a 2.93 GHz Intel® Xeon® Processor X5670. Computing time scales linearly with sample size 

for both EM-LRT-Prob and the Mixture method (Figure 5).  
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 In scenario II, the Dosage method has been shown analytically as the optimal one 

dimensional summary statistic for association testing in a typical linear model (Liu et al. 2013b). 

In this chapter, we extended the utility of this optimal one-dimensional measure by employing it 

together with the imputation quality measure R2 first to sample posterior probabilities (in an 

attempt to rescue as much full information as possible) and then to conduct association testing on 

the sampled probabilities using our proposed EM-LRT method.  

 Our simulations suggest an advantage of the proposed methods over the standard Dosage 

method when imputation quality is relatively low, where imputation quality is measured by R2, 

the squared Pearson correlation between the imputed dosages and the unknown true genotypes. 

Since the calculation of R2 requires true genotypes, it is not available in practice and imputation 

software provides an estimate based on the observed dispersion in imputed genotypes over its 

expected value. Such an estimate (Rsq in MaCH (Li et al. 2010), MaCH-Admix (Liu et al. 

2013a), minimac (Howie et al. 2012), R2 for BEAGLE (Browning and Browning 2008) and 

INFO for IMPUTE/IMPUTE2 (Marchini et al. 2007; Howie et al. 2009)) has been widely used 

for the assessment of imputation quality and for post-imputation quality control. However, as 

shown in Figure 6 (based on the CLHNS data), MaCH Rsq is not a perfect measure of R2. For 

example, it has been reported earlier to have the tendency of underestimating true quality for 

common variants (Gao et al. 2012; Liu et al. 2012). We also observed the tendency of over-

estimation towards the lower end of the MaCH Rsq. Therefore, we still recommend post-

imputation quality filtering before application of our methods. We suggest application to variants 

with estimated R2 > 0.1, which is less stringent than what is typically recommended (Liu et al. 

2012; Duan et al. 2013a), but above which imputation quality is typically under- rather than 

over- estimated. To further examine the effectiveness of the filtering threshold, we quantified 
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type I error rate via simulations for varying R2 (four values examined: 0.05, 0.1, 0.3, 0.5) in 

combination with varying MAF (three values examined: 2.5%, 5% or 10%). Specifically, for 

each R2 and MAF combination, we simulated A (A=2500) (exchangeable) groups of data sets 

under the null hypothesis. For each group, we simulated B (B=2000) data sets (again, under the 

null hypothesis) and calculated the p-values by applying all methods to each of the B=2000 

simulated data sets. We then calculated the group-specific type I error as the proportion of 

B=2000 p-values (in that group) below the significance threshold of 0.05. We therefore obtained 

A=2500 type I error estimates. Finally, we conducted the following one-sample t-test on these 

2500 type I error estimates H0: type I error ≤ 0.05 vs. H1: type I error > 0.05. Significant results 

from the t-test indicate inflated type I error. Results are shown in Table 6. As we can see the 

results suggest that the mixture model based methods (EM-LRT-Dose, EM-LRT-Prob, and 

Mixture) have inflated type I error when R2 ≤ 0.1, which is likely caused by the tendency of the 

mixture model over-fitting the data based on additional d.f. compared to the null model. 

 In summary, we have proposed likelihood-ratio tests based on expectation maximization 

algorithms for post-imputation association testing. Simulation and real data analyses show our 

methods have protected type I error. In addition, simulation and real data results suggest slightly 

enhanced statistical power of our EM-LRT methods over a standard Dosage method, which has 

been shown to be the optimal one dimensional statistic for post-imputation association testing; 

and computationally more efficient (average more than fivefold reduction in computing time) 

than the Mixture method, which has been shown to be the most powerful at increased 

computational costs for variants imputed with high level of uncertainty. We anticipate our 

methods will replace the Mixture method for the analysis of low frequency variants or those 

imputed with high uncertainty. We envision our methods being applied on a larger scale for 
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GWASs with imputation from sequencing based reference panels, including in the public domain, 

the 1000 Genomes Project (Altshuler et al. 2010a; Altshuler et al. 2012), the UK10K Project 

(Futema et al. 2012), and the reference haplotypes assembled by the International Haplotype 

Consortium (Marchini 2013) as well as study specific reference panels (Auer et al. 2012; 

Fuchsberger et al. 2012; Liu et al. 2012; Duan et al. 2013a; Kang et al. 2013; Bizon et al. 2014). 

Our methods are implemented in software package EM-LRT, freely available at 

http://www.unc.edu/~yunmli/emlrt.html.  
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Table 1 Rejection Sampling vs. Dosage Approximation for  Estimation 

  Rejection Sampling Dosage Approximation 

R2 MAF Cutoff MSE
 

Runtime (Sec.)
 

MSE
 

Runtime (Sec.) 

0.95 20% 1.01E-02 5.82 1.42E-02 7.60E-04 

0.75 30% 4.49E-02 3.04 6.39E-02 6.80E-04 

0.50 30% 5.98E-02 2.3 6.29E-02 7.14E-04 

0.30 30% 5.71E-02 2.42 6.11E-02 8.10E-04 

0.25 30% 5.32E-02 2.61 6.06E-02 8.36E-04 

0.20 25% 3.82E-02 2.41 3.93E-02 7.56E-04 

0.10 20% 1.69E-02 2.35 1.99E-02 7.04E-04 
MAF: Minor allele frequency 

MSE: Mean square error 
  

1if
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Table 2 Type I Error Rate at Significance Level = 5E-02 

R2 MAF Dosage EM-LRT-Dose EM-LRT-Prob Mixture Truth 

0.3 

0.2 4.99E-02 5.01E-02 5.01E-02 5.01E-02 4.99E-02 

0.1 5.01E-02 5.02E-02 5.03E-02 5.03E-02 4.99E-02 

0.05 4.99E-02 5.01E-02 5.01E-02 5.01E-02 4.99E-02 

0.025 5.01E-02 5.03E-02 5.03E-02 5.03E-02 5.01E-02 

0.01 4.98E-02 4.96E-02 4.96E-02 4.96E-02 4.99E-02 

0.2 

0.2 5.00E-02 5.02E-02 5.03E-02 5.03E-02 5.00E-02 

0.1 4.99E-02 5.02E-02 5.03E-02 5.03E-02 5.00E-02 

0.05 5.00E-02 5.03E-02 5.03E-02 5.03E-02 5.01E-02 

0.025 4.99E-02 5.03E-02 5.03E-02 5.03E-02 5.01E-02 

0.01 5.00E-02 5.02E-02 5.01E-02 5.01E-02 4.99E-02 

0.1 

0.2 5.00E-02 5.08E-02 5.05E-02 5.05E-02 5.01E-02 

0.1 5.00E-02 5.06E-02 5.08E-02 5.08E-02 5.00E-02 

0.05 5.01E-02 5.11E-02 5.13E-02 5.13E-02 5.01E-02 

0.025 5.01E-02 5.15E-02 5.14E-02 5.14E-02 5.01E-02 

0.01 5.00E-02 5.09E-02 5.07E-02 5.07E-02 4.98E-02 
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Table 3 Type I Error Rate at Significance Level = 5E-05 

R2 MAF Dosage EM-LRT-Dose EM-LRT-Prob Mixture Truth 

0.3 

0.2 4.85E-05 5.00E-05 4.94E-05 4.94E-05 5.24E-05 

0.1 5.09E-05 4.98E-05 5.23E-05 5.23E-05 5.43E-05 

0.05 4.71E-05 5.03E-05 5.07E-05 5.07E-05 5.41E-05 

0.025 4.95E-05 4.92E-05 4.80E-05 4.80E-05 4.97E-05 

0.01 5.35E-05 4.79E-05 4.69E-05 4.69E-05 4.97E-05 

0.2 

0.2 4.58E-05 4.57E-05 4.58E-05 4.58E-05 5.00E-05 

0.1 4.67E-05 4.71E-05 4.84E-05 4.84E-05 5.30E-05 

0.05 5.08E-05 5.09E-05 5.05E-05 5.05E-05 5.14E-05 

0.025 5.23E-05 5.02E-05 5.09E-05 5.09E-05 5.06E-05 

0.01 4.78E-05 4.41E-05 4.26E-05 4.26E-05 4.92E-05 

0.1 

0.2 4.93E-05 5.53E-05 5.19E-05 5.19E-05 5.02E-05 

0.1 5.08E-05 5.27E-05 5.24E-05 5.24E-05 5.35E-05 

0.05 5.05E-05 5.09E-05 5.23E-05 5.22E-05 4.85E-05 

0.025 4.98E-05 5.15E-05 5.04E-05 5.04E-05 4.93E-05 

0.01 5.02E-05 5.05E-05 4.95E-05 4.95E-05 5.27E-05 
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Table 4 Associated Variants with R2 ≤ 0.3 in the CLHNS Study 

  P-values 

Coordinate* R2 Dosage EM-LRT-Dose EM-LRT-Prob Mixture Truth# 

chr16:82646152 0.251 2.13E-11 1.45E-11 4.68E-11 4.68E-11 6.77E-20 

chr16:82650717 0.282 2.88E-11 1.83E-11 5.87E-11 5.87E-11 1.35E-21 

chr16:82663288 0.268 2.67E-10 7.78E-10 6.46E-10 6.46E-10 2.16E-25 

chr16:82670249 0.270 2.04E-08 1.45E-08 1.59E-08 1.61E-08 1.72E-12 

chr16:82670539 0.249 9.26E-09 1.27E-08 4.79E-09 4.83E-09 1.25E-12 

chr16:82670636 0.230 1.22E-08 2.01E-08 7.32E-09 7.33E-09 1.78E-12 
*: Coordinates are in genome build 37. 

Bold and underlined: The most significant p-value among the four methods. 

Bold but not underlined: The second most significant p-values among the four methods. 
#Truth: established by regressing phenotype on true genotypes. 
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Table 5 Associated Variants with MAF < 5% in the WHI Study 

    
P-value 

SNP Trait Meta p-value 
 

Dosage EM-LRT-Dose 

snp.684276 hematocrit 5.70E-11 
 

5.85E-11 8.94E-11 

snp.177048 log(WBC) 3.00E-13 
 

3.95E-08 2.73E-08 

snp.177015 log(WBC) 4.30E-13 
 

6.11E-08 4.72E-08 

snp.41127 platelet 1.50E-11 
 

2.52E-08 3.71E-09 
Underlined: The most significant p-value among the two methods. 
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Table 6 One-sample T-test for Type I Error 

  
P-values 

MAF Method R2=0.05 R2=0.1 R2=0.3 R2=0.5 

0.025 

Dosage 

6.75E-01 2.72E-01 4.97E-01 7.33E-01 

0.05 2.03E-01 6.38E-01 9.21E-01 1.88E-01 

0.1 9.62E-01 8.75E-01 2.01E-01 6.78E-01 

0.025 

EM-LRT-Dose 

8.96E-183 3.00E-65 2.00E-01 9.05E-01 

0.05 6.15E-216 5.11E-35 3.89E-01 7.33E-03 

0.1 1.40E-69 9.73E-12 4.73E-03 4.17E-02 

0.025 
EM-LRT-Prob 

 

2.34E-111 2.51E-55 2.49E-01 8.69E-01 

0.05 1.54E-174 3.38E-40 2.50E-01 4.81E-03 

0.1 4.24E-134 1.04E-24 5.01E-04 2.91E-02 

0.025 

Mixture 

5.45E-111 3.72E-55 2.52E-01 8.70E-01 

0.05 2.94E-174 4.79E-40 2.55E-01 4.98E-03 

0.1 7.60E-134 1.22E-24 5.30E-04 2.95E-02 
Underlined: p-value < 5E-4. 
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Figure 1 MAF Threshold: Rejection Sampling (Black) vs. Dosage Approximation (Grey) 

MSE (Y-axis) between sampled genotype probability f̂1  and true f1  using rejection sampling (black) and dosage 

approximation (grey) is compared across a spectrum of R2. 
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Figure 2 Spearman Correlation with Gold Standard P-values 

Spearman correlation (Y-axis) between gold standard p-values and p-values from different methods is displayed 

across a spectrum of MAF and R2. 
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Figure 3 Power Comparison 

Statistical power (Y-axis) of different methods is shown across a spectrum of R2 and MAF.  
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Figure 4 Q-Q Plot for Null Variants with Low Imputation Quality in the CLHNS Study 

The observed (Y-axis) vs. expected (X-axis) –log10[p-values] are shown for 1,135 SNPs in the CLHNS data set. 

These SNPs are considered to be under the null hypothesis (true p-value > 5×10–6), and all have low imputation 

quality (R2 < 0.3). 
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Figure 5 Computing Time: Mixture Method vs. EM-LRT-Prob 

The computing time of the Mixture method and our proposed EM-LRT-Prob method is displayed across a range of 

sample sizes. For each sample size, computing time is averaged across 2,000 simulated data sets. 
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Figure 6 Estimated vs. True Imputation (Rsq vs. R2) 

The MaCH estimated imputation quality Rsq (Y-axis) is plotted against the true imputation quality R2 (X-axis), 

which were calculated between genotype data from exome chip array and imputed genotype data (dosages). The red 

45-degree line represents perfect estimation. A smooth density scatter plot is employed such that darker color 

corresponds to larger density and individual dots represent outliers.  
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CHAPTER 4: FUNMETHYL 

4.1 Introduction 

Most EWASs are conducted by testing the association between DNA methylation level 

(response variable) and quantitative traits (explanatory variables) CpG site by CpG site across 

the genome. However, because of the correlation structure among the sites and because many of 

them fall in naturally defined regions (e.g., belonging to the same gene; belonging to the same 

regulatory region such as an enhancer or DNAse hypersensitivity site), it is conceptually 

straightforward to imagine achieving enhanced statistical power by performing region-based test 

(e.g., simultaneously testing multiple sites together) especially when there are multiple small or 

moderate signals in that region. In this chapter, we propose to perform association testing 

between DNA methylation variants in a region (explanatory variable) and quantitative trait 

(response variable). Instead of collapsing DNA methylation variants or building a kernel matrix, 

the DNA methylation variants of an individual are treated as a realization of a stochastic process 

in the functional data analysis (Fan et al. 2013). Specifically, we consider every individual’s 

DNA methylation levels in a region as a stochastic process and we further use the functional data 

analysis techniques to estimate the DNA methylation function in that region. Next, the DNA 

methylation effect in the model is expanded as a combination of basis functions and coefficients. 

Finally, to test the association between the DNA methylation variants and quantitative traits, we 

test if the coefficients of DNA methylation effect are all 0. 
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4.2 Methods 

Assume p CpG sites with ordered physical locations Tttt p =≤≤≤≤ K210 . For the ease 

of notation, we normalize the location to [0,1]. Next, for i-th individual, let Yi  denote 

quantitative trait, ( ) ( )( )piii tmtmM ,,1 K=  (can be either β-value or M-value) denote DNA 

methylation at p CpG sites and ( )′= icii zzZ ,,1 K  denote a c ×1 covariate vector. For continuous 

trait, the functional linear model is 

Yi = α + Xi t( ) β t( ) dt + ′Ziγ +εi0

1

∫  

where α  is the overall mean, β t( )  is the DNA methylation effect of DNA methylation function 

Xi t( )  at the location t, γ  is a c ×1 regression coefficient vector of covariates, and εi ~ N 0,σ 2( ). 

Similarly, for dichotomous trait, the functional linear model can be easily modified as follows:  

( ) ( ) ( ) γβα iii ZdtttXYP ′++== ∫
1

0
1logit  

4.2.1 Estimation of DNA Methylation Function Xi t( )  

In this section, we introduce three different techniques used for estimating Xi t( ) . First, 

DNA methylation function can be represented as ( ) ( )tctX k

K

k iki

x φ∑ =
=

1
, where ikc  is a series of 

coefficients, φk t( )  is a series of basis functions, and k = 1, 2, …, Kx with Kx being the number of 

basis function. The choice of basis function is flexible and it can be either B-spline or Fourier 

basis function. Further, DNA methylation function can be written in matrix format 

( ) ( )tctX ii φ⋅=  where ( )
xiKii ccc ,,1 K=  and ( ) ( ) ( )( )′= ttt

xKφφφ ,,1 K . To estimate the coefficients, 

we employ the ordinary least squares (OLS) method. That is, the sum of squared error is 
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minimized across the region  

( ) ( ) ( )[ ]
( ) ( )[ ]2

1

2

1

∑

∑

=

=

⋅−=

−=

p

j jiji

p

j jijii

tctm

tXtmcSSE

φ
 

Solving for c, the DNA methylation function can be estimated as  

X̂i t( ) = M iΦ ′Φ Φ( )−1 ⋅φ t( )  

where Φ  is a p × Kx matrix containing the values φk t j( ) . This technique is simple but only 

ensures the estimated function gives a good fit to data. Moreover, it may result in the estimated 

function excessively wiggly or locally variable when data are loosely sampled. Therefore, the 

technique provides a good compromise between goodness of fit and smoothness is absolutely 

desired. To illustrate the concept, one can think of minimizing mean squared error (MSE), the 

sum of the squared bias of the estimator and the variance. A technique that minimizes only the 

squared bias or the variance is not optimal. As a matter of fact, MSE can be dramatically 

minimized by sacrificing some bias in order to minimize sampling variance. Hence, the 

smoothness is imposed on the estimated function in the second technique.  

As mentioned earlier, instead of purely minimizing the sum of squared error across the 

region, the roughness also needs to be minimized together. Consequently, the penalized sum of 

squared error is used 

( ) ( ) ( )[ ] ( )[ ]
( ) ( )[ ] ii

p

j jiji

i

p

j jijii

Rcctctm

dttXDtXtmcPENSSE

′+⋅−=

+−=

∑

∫∑

=

=

λφ

λ
2

1

22
2

1
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where λ  is the smoothing parameter, ( )[ ]∫ dttXD i

22
 is a measure of total curvature, and 

R = D2∫ φ t( ) ⋅ D2 ′φ t( )dt  is the roughness penalty matrix. Again, solving for c , the estimated 

DNA methylation function is  

X̂i t( ) = M iΦ ′Φ Φ + λR( )−1 φ t( )  

Besides, the smoothing parameter λ  needs to be determined and can be selected using 

generalized cross-validation (GCV) (Craven and Wahba 1978).  

Last but not least, DNA methylation function can be estimated by directly using the 

discrete realization ( ) ( )( )pii tmtm ,,1 K . This is perhaps the simplest way of estimating the DNA 

methylation function and hence, ( ) ( ) ( ) ( )
j

p

j jii ttmdtttX ββ ∑∫ =
≈

1

1

0
. 

4.2.2 Estimation of DNA Methylation Effect β t( )  

DNA methylation effect can be estimated as ( ) ( ) ( )( )( ) ( )btbbttt
bb KK ϕϕϕβ ′=′= ,,,, 11 KK  

where ( ) ( ) ( )( )′= ttt
bKϕϕϕ ,,1 K

 
is spline basis vector, ( )′=

bKbbb ,,1 K  
is parameter vector, and Kb 

is the number of basis function. If Kb is a large number, the model may overfit the data 

considerably. To overcome this problem, the parameters are penalized and this leads to a more 

robust model. We adopt the truncated power series basis 

( ) ( ) ( )( ) ( ) ( )( )′−−=′=
++ bb KK tttttt κκϕϕϕ ,,,,1,, 31 KK  and assume ( )DNb ,0~ , where κ k  are 

knots in the interval [0,1], ( )+− κt  is an indicator function, taking value of 1 if κ>t  and 0 if 

κ≤t , and D is a penalty matrix 

( )

( ) ( ) ( )








=

−×−×−

−××
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2222
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4.2.3 Penalized Functional Linear Model 

Thus far, we have introduced three techniques for estimating DNA methylation function 

and also one for expanding DNA methylation effect. By putting them together, the proposed 

penalized functional linear model can be written as follows: 

( ) ( )

iii

iiii

ZbV

ZdtttXY

εγα

εγβα

+′+′+=

+′++= ∫
1

0  

where Vi
′ =

mi t j( ) ′ϕ t( )
j=1

p

∑
M iΦ ′Φ Φ( )−1 φ t( ) ′ϕ t( ) dt

0

1

∫
M iΦ ′Φ Φ + λR( )−1 φ t( ) ′ϕ t( ) dt

0

1

∫













,

,

,

No-smoothing

Least-square

Roughness-penalty

 and ( )DNb ,0~
. 

4.2.4 Hypothesis Testing 

Because testing the association between DNA methylation at p CpG sites and the 

quantitative traits is of our interest, we perform the association testing with the hypothesis testing 

( ) 0,,: 10 =′=
bKbbbH K  vs. ( ) 0,,: 11 ≠′=

bKbbbH K . We propose to use F-test for testing 

0:0 =bH  vs. 0:1 ≠bH . The F-test compares two models, reduced model and full model, where 

reduced model is under the null hypothesis and nested in the full model. Moreover, under the 

null hypothesis, the test statistic follows an F distribution with Kb,n − Kb − c −1( )  degrees of 

freedom. 

4.3 Application to ARIC 

The Atherosclerosis Risk in Communities Study (ARIC) is a prospective cohort study of 

cardiovascular disease risk in four U.S. communities. Between 1987 and 1989, 7,082 men and 

8,710 women aged 45–64 years were recruited from Forsyth County, North Carolina; Jackson, 

Mississippi (African Americans only); suburban Minneapolis, Minnesota; and Washington 
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County, Maryland. The Illumina Infinium HumanMethylation450 Beadchip array (HM450) was 

used to measure DNA methylation (Illumina Inc.; San Diego, CA, USA). The platform detected 

methylation status of 485,577 CpG sites by sequencing-based genotyping of bisulphite-treated 

DNA. In this ARIC, 2,918 samples had DNA methylation data. Among these samples, 57 did not 

have body mass index (BMI) data, 51 did not have waist circumference (WC) data, and 472 did 

not have any or complete covariate data needed for confounder adjustment, leaving a final 

sample size N = 2,105. Further, there were total of 20,330 genes analyzed in our analysis and the 

number of CpG sites in genes varies from 1 to 1,940 (Min = 1, Median = 15, Mean = 20.88, Max 

= 1,940). 

Before performing association study, we first removed the batch effect by directly 

regressing the β-values on the chip, where the batch effect is accounted for, and saved the 

residuals for the subsequent analysis. Here, we considered every single gene as one region and 

for each gene, if the number of CpG site > 5 we performed the proposed penalized functional 

region-based analysis and existing region-based analysis, directly testing the association on each 

gene using F-test, SKAT, and SKAT-O (Wu et al. 2011; Lee et al. 2012). In addition, the single-

probe analysis was also performed, which identified a gene as causal when at least one p-value is 

significant at the Bonferroni-corrected level. When performing association testing across 

different genes, we directly used the residuals in place of β-values. Specifically, we used BMI 

and WC as response variable in the model, whereas the residual was the independent variable 

adjusting for covariates, including smoking, sex, age, center, leisure time physical activity, 

drinking, white blood cell count, plate and chip (array) row, and the 10 principal component (PC) 

scores from the Illumina Infinium HumanExome Beadchip genotype array, to account for 

potential confounding by genetic ancestry. 
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In addition, we removed the probes identified in single-probe analysis from the gene, and 

again performed the region-based analysis. Ideally, a powerful region-based method is capable of 

identifying the region even if the strong signal(s) is removed.  

4.4 Real Data Simulation 

4.4.1 Empirical Type I Error 

To evaluate the empirical type I error, for i-th individual the following model was first fit 

for generating quantitative trait:  

yi = zikγk
k=1

9

∑ +εi  

where zi1  to zi9  are smoking, sex, age, center, leisure time physical activity, drinking, white 

blood cell count, plate and chip (array) row, first principal component (PC) from the Illumina 

Infinium HumanExome Beadchip genotype array (Grove et al. 2013), and εi ~ N 0, 0.75( ) . 

Further, we set (γ1,γ2,…,γ9) = (-0.46,0.28,-0.03,-0.07,-0.10,0.09,0.16,-6.22,-0.03) and considered 

sample size N = 250, 500, 1000, and 2000. Next, 105 sets of quantitative trait were generated and 

therefore not associated with any DNA methylation variants. Next, we randomly selected one 

gene BCL6 (p = 53) and performed penalized functional region-based analysis as well as existing 

region-based analysis using the generated quantitative trait and the DNA methylation data of 

gene BCL6. Besides, single-probe analysis was performed. Consequently, 105 sets of test statistic 

as well as p-value were produced and stored for each region-based method whereas 105×53 were 

produced and stored for single-probe method. 

Finally, the empirical type I error rate was calculated as the average probability of p-

value less than a given α level for region-based methods, and it was calculated as the average 

probability of at least one p-value less than a bonferroni-corrected given α level (α = 0.05, 0.01, 
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0.005, 0.001) for single-probe method. 

4.4.2 Empirical Average Power 

For i-th individual and g-th gene, the following model was first fit for identifying the top 

causal CpG probes and estimated covariate effects:  

Yi = mijβ j
j=1

P

∑ + zikγk
k=1

18

∑  

where Yi  is BMI, mij
 and β j

 are the (DNA methylation) residual (see Application to ARIC 

Study) and DNA methylation effect at j-th CpG site, zi1  to zi18 are smoking, sex, age, center, 

white blood cell count, drinking, leisure time physical activity, plate and chip (array) row, 10 

principal components (PCs), γ k  are the corresponding covariate effects, and P is the number of 

CpG sites in g-th gene. Second, after the model is fit, the sign of DNA methylation effects 

sign β̂ j( )  and the estimated covariate effects γ̂ k
 were recorded. Next, the following model was 

used for generating quantitative trait: 

yi = mijbj
j∈C

∑ + zikγ̂k
k=1

18

∑ +εi
 

where bj ~ U max 0, d −1( ), d( ) × sign β̂ j( )  is the DNA methylation effect controlling by d, C is 

the indices of causal CpG sites selected, εi ~ N 0, 2σ( ) , σ  is the average standard deviation of 

DNA methylation across the causal CpG sites. Therefore, the generated quantitative trait was 

associated with the causal CpG sites selected. C is determined by the top CpG sites and causal 

rate specified. 

In order to evaluate the statistical power objectively, 500 genes were randomly selected 

to capture different possible scenarios. Because investigating the empirical power when there are 

multiple low or moderate signals in the region is of our ultimate interest, a set of DNA 
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methylation effect was specified d = 0.5, 1, 1.5 as well as causal rate r = 20%, 30%, 50%. In 

addition, different sample size N = 250, 500, 1000 was considered. For each sample size, 2000 

sets of quantitative trait were generated across 500 genes with specified DNA methylation effect 

and causal rate. Next, we fit the proposed penalized region-based models, existing region-based 

models, and single-probe model with the generated quantitative trait, residual, and covariates. 

Finally, for each region-based method, 2000 sets of test statistics as well as p-values were 

produced and stored across 500 genes. Similarly, 2000 sets were also produced and stored over 

CpG sites across 500 genes produced by single-probe method. 

For region-based methods, we defined the average power as the average probability of p-

values less than a bonferroni-corrected given α level. For single-probe method, we defined the 

average power as the average probability of at least one p-value in a gene less than a bonferroni-

corrected given α level (i.e., 0.05, 0.01, 0.005). 

4.5 Results 

4.5.1 Application to ARIC 

Throughout the rest of the chapter, “F_pNS” denotes the F-test of penalized no-

smoothing model, “F_B&pLS” and “F_F&pLS” denote the F-test of penalized least-square 

model with B-spline and Fourier basis function, respectively, and similarly “F_B&pRP” and 

“F_F&pRP” denote the F-test of penalized roughness-penalty model with B-spline and Fourier 

basis function, respectively. 

Five penalized functional region-based tests (F_pNS, F_B&pLS, F_F&pLS, F_B&pRP 

and F_F&pRP) as well as three existing region-based tests (F-test, SKAT, and SKAT-O) were 

applied on 17,728 genes interrogated by at least 5 probes. When applying the proposed tests, we 

set Kx = Kb = min(35,p-1) because 35 was considered large enough to prevent undersmoothing 
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(Goldsmith et al. 2010), and p-1 was used for preventing the number of Fourier basis functions 

exceeding p – the number of Fourier basis function specified will increase by 1 when it is even in 

our program. Besides, single-probe test was applied on every probe within these genes. However, 

we have not yet got the permission for publishing the results of the application to ARIC so only 

Q-Q plot and real data based simulation results are shown in this section. 

4.5.2 Q-Q Plot  

 To evaluate the distribution of p-value under the null hypothesis, we first shuffled the 

quantitative traits BMI and WC and then conducted the association testing using all the tests 

considered. As a result, the p-values generated by the proposed region-based tests in Q-Q plots 

adhere to an expected uniform distribution, indicating the test statistics are well behaved (Figure 

6). On the other hand, SKAT and SKAT-O constantly generated p-value larger than expected, 

which shows the conservativeness of these two tests and the results match to what we observed 

in the real data analysis. In addition, the p-values generated by single-probe test in Q-Q plots 

almost adhere to the expected uniform distribution; however, the results also show the 

conservativeness of this test especially with trait WC. This is not surprising because some CpG 

sites were potentially correlated as they were affected by the same environmental or biological 

factors.  

4.5.3 Empirical Type I Error  

The empirical type I error rates of the proposed penalized functional region-based, existing 

region-based tests, and single-probe test based on gene BCL6 are reported in Table 7. For each 

sample size considered, 105 data sets were generated. Results of four different significance levels 

α = 0.05, 0.01, 0.005, 0.001 are reported.  

Except the single-probe test, all the tests considered have empirical type I error rates around 
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the nominal α levels. Therefore, the proposed functional region-based tests as well as existing 

region-based tests have proper control of type I error rate across a spectrum of sample sizes and 

significance levels. In addition, single-probe test has smaller type I error rates across all sample 

sizes and significance levels. In general, all the tests considered are very robust and can be useful 

in the large-scale or whole epigenome-wide association studies. 

4.5.4 Empirical Average Power 

The power performance of the proposed penalized functional region-based, existing 

region-based tests, and single-probe tests are compared based on the simulated quantitative traits 

and the DNA methylation residuals of ARIC study. For each sample size, 2000 data sets were 

generated with DNA methylation effect d = 0.5, 1, 1.5 and causal rate r = 20%, 30%, 50%. The 

results of the proposed penalized region-based tests are compared with those of existing region-

based and single-probe tests in Figure 7-9.  

In Figure 7, all causal CpG sites have small DNA methylation effect (d = 0.5); when all 

causal CpG sites have moderate DNA methylation effect (d = 1), the results are shown in Figure 

8; when all causal CpG sites have large DNA methylation effect (d = 1.5), the results are shown 

in Figure 9. When DNA methylation effect is small (d = 0.5), the penalized functional region-

based tests and F-test have higher power than that of SKAT, SKAT-O, and single-probe test, 

except that single-probe test has slightly higher power when both sample size and causal rate are 

small (N = 250; r = 20%). When DNA methylation effect is moderate or large (d = 1 or 1.5), the 

penalized functional region-based tests and F-test always have higher power than that of SKAT, 

SKAT-O, and single-probe test. 

F-test has higher power than all the tests considered, except when the DNA methylation 

effect size, sample size, and causal rate are small (d = 0.5; N = 250; r = 20%). On the contrary, 



51 

single-probe test generally has smaller power but it has the highest power in such scenario. This 

is mainly because there are likely one or two causal CpG sites in that scenario, which favors the 

model of single-probe test. SKAT and SKAT-O have minimal power. 

In total, we compared five F-test statistics of penalized functional region-based models: 

four are based on the combination of least-square and roughness-penalty models and B-spline 

and Fourier basis functions, and one is based on the no-smoothing model. In general, the five F-

test statistics of the penalized functional region-based models have similar power, although the 

three tests (F_B&pLS, F_F&pLS, F_F&pRP) have slightly higher power and the test of no-

smoothing model (F_pNS) has lower power, and the rest test (F_B&pRP) has power right in the 

middle. In addition, as shown in the real data analysis, these five F-test statistics have very 

similar power level; therefore, the proposed penalized functional region-based tests do not 

strongly depend on whether the DNA methylation data is smoothed or not, and which basis 

functions are used.  

4.6 Discussion 

In this chapter, we have developed penalized functional region-based models for testing 

the association between a quantitative trait and multiple DNA methylation variants in a region. 

Because of the correlation structure among the DNA methylation variants, we considered the 

observed DNA methylation levels as realization of continuous DNA methylation functions Xi t( )  

at location t. We applied two popular smoothing techniques (least-square and roughness-penalty) 

for estimating the DNA methylation functions based on B-spline or Fourier basis function. 

Moreover, we considered using the discrete DNA methylation levels directly for estimating the 

functions. Then, the estimated DNA methylation functions were used as explanatory variable in 

the penalized functional regression model adjusting for covariates.  
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Because the ultimate goal is to test whether a quantitative trait is associated with the 

DNA methylation variants in a region, it is straightforward to test the association between a 

quantitative trait and DNA methylation functions. We proposed to use F-test for testing this 

association. Next, because the model may overfit the data due to the large number of basis 

function specified, we used penalized spline to estimate the functional parameter by assuming 

the parameter follows a normal distribution with covariance matrix being penalty matrix that 

corresponds to the particular spline basis. Specifically, the level of smoothing is estimated using 

Restricted Maximum Likelihood (REML) in an associated mixed effect model. The methods 

proposed are implemented in the statistical package R. 

From both application to ARIC and simulation study, the proposed penalized functional 

region-based tests have higher power than that of SKAT and SKAT-O in every scenario 

considered. The proposed penalized functional region-based tests use the correlation of 

methylation between adjacent CpG sites in the region. Although SKAT and SKAT-O take pair-

wise correlation into account via the kernel matrix, the higher order correlation is not modeled 

and this could be the reason the proposed tests have higher power. The performance of the 

proposed penalized functional region-based tests is not necessarily related to whether the DNA 

methylation data is smoothed and which basis functions are used. Moreover, roughness-penalty 

smoothing technique takes extra time for finding the smoothing parameter compared to least-

square and no-smoothing technique. Therefore, no-smoothing is considered as a good 

compromise between performance and computational cost. 

Among the two basis functions, B-spline basis function leads to more consistent results. 

For example, from the real data application with trait BMI, 37.7% of the genes have the exact 

same p-values from F_B&pLS and F_B&pRP. Among these, the smoothing parameter λ in the 
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roughness-penalty model with B-spline basis function are very small (Mean = 0.04), leading the 

F-test statistics F_B&pLS and F_B&pRP are nearly identical. On the other hand, only 3.8% of 

the genes have exact same p-values from F_F&pLS and F_F&pRP. Among these, the λ in 

roughness-penalty model with Fourier basis function are very large (Mean = 1.54×108). 

Finally, we envision the proposed penalized functional tests can be applied to not only 

candidate genes analysis but also epigenome-wide association studies because they have proper 

control of type I error rates at all levels (α = 0.05, 0.01, 0.005, 0.001) and also attractive 

performance in power. We hope this method can help finding more DNA methylation variants 

associated with the quantitative trait and further resolving the missing heritability problem. 



 

Table 7 Empirical Type I Error (Gene BCL6) 

Significance 

Level 

Sample 

Size 
F_pNS F_B&pLS F_B&pRP F_F&pLS F_F&pRP F-test SKAT SKAT-O Single-Probe 

0.05 

250 0.0506 0.0503 0.0507 0.0503 0.0508 0.0507 0.0497 0.0484 0.0271 

500 0.0502 0.0504 0.0504 0.0509 0.0501 0.0499 0.0490 0.0494 0.0266 

1000 0.0503 0.0499 0.0499 0.0509 0.0504 0.0505 0.0496 0.0503 0.0291 

2000 0.0511 0.0511 0.0511 0.0507 0.0506 0.0496 0.0496 0.0495 0.0336 

0.01 

250 0.0099 0.0101 0.0101 0.0101 0.0100 0.0104 0.0097 0.0094 0.0062 

500 0.0100 0.0097 0.0097 0.0102 0.0103 0.0105 0.0093 0.0093 0.0060 

1000 0.0103 0.0096 0.0096 0.0099 0.0098 0.0101 0.0102 0.0097 0.0071 

2000 0.0105 0.0103 0.0103 0.0105 0.0101 0.0102 0.0094 0.0098 0.0078 

0.005 

250 0.0052 0.0052 0.0051 0.0052 0.0050 0.0048 0.0050 0.0047 0.0032 

500 0.0051 0.0049 0.0049 0.0051 0.0051 0.0051 0.0047 0.0047 0.0033 

1000 0.0051 0.0047 0.0047 0.0047 0.0048 0.0051 0.0048 0.0048 0.0038 

2000 0.0052 0.0050 0.0050 0.0050 0.0050 0.0049 0.0046 0.0047 0.0041 

0.001 

250 0.0011 0.0010 0.0012 0.0010 0.0011 0.0009 0.0009 0.0008 0.0007 

500 0.0010 0.0011 0.0011 0.0010 0.0010 0.0012 0.0008 0.0010 0.0007 

1000 0.0010 0.0009 0.0009 0.0009 0.0010 0.0011 0.0010 0.0011 0.0009 

2000 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009 0.0009 0.0011 0.0010 
 

 

5
4
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Figure 7 Q-Q Plot of P-values Generated by Region-based Tests and Single-probe Test 

The observed (Y-axis) vs. expected (X-axis) –log10(p-values) generated by region-based tests (top) and single-probe 

test (bottom) using quantitative traits BMI (left) and WC (right) are shown. 
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Figure 8 Empirical Power with Small DNA Methylation Effect (d = 0.5) 

Empirical power (Y-axis) of different methods is shown across a spectrum of sample size (X-axis), causal rate (r), 

and significance level (α) with small DNA methylation effect. 
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Figure 9 Empirical Power with Moderate DNA Methylation Effect (d = 1) 

Empirical power (Y-axis) of different methods is shown across a spectrum of sample size (X-axis), causal rate (r), 

and significance level (α) with moderate DNA methylation effect. 
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Figure 10 Empirical Power with Large DNA Methylation Effect (d = 1.5) 

Empirical power (Y-axis) of different methods is shown across a spectrum of sample size (X-axis), causal rate (r), 

and significance level (α) with large DNA methylation effect. 
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CHAPTER 5: ACROSS-PLATFORM IMPUTATION OF DNA METHYLATION 

LEVELS USING PENALIZED FUNCTIONAL REGRESSION 

5.1 Introduction 

SNP imputation is a standard procedure used to resolve inconsistencies between genotyping 

arrays and to increase the resolution of data collected in GWASs (Li et al. 2009). Therefore, we 

propose the application of a similar concept to impute data in DNA methylation profiles from a 

subset of probes. Although DNA methylation does not exhibit as clear correlation structure as 

LD blocks among SNPs (Eckhardt et al. 2006), we observe both local and nonlocal correlations 

between probes. In this chapter, we develop a penalized functional regression model (Goldsmith 

et al. 2010) which uses functional predictors to capture these non-local correlations. Our study 

demonstrates that this model can impute a HM27 data set into a HM450 data set effectively and 

accurately. We describe the details of our methodological framework in 5.2 Methods. In 5.4 

Application to AML Data Set, we apply this approach to a large-scale methylation data set from 

acute myeloid leukemia patients. 

5.2 Methods  

We employed the penalized functional regression model (Goldsmith et al. 2010), with 

minor modification detailed below to quantify the relationship between DNA methylation from 

HM450 probes and DNA methylation density function estimated from HM27 probes together 

with other covariates [See Selection of Local Covariates]. Specifically, assume for each target 

HM450 probe (target probe), we observed data ( )[ ]iii ZtXY ,,  across all individuals i = 1, 2, …, N,
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where N is the number of samples, Yi  is the DNA methylation level for the i-th sample at the 

target HM450 probe measured as ( )[ ]ββ −1log2 , ( )tX i  is the i-th sample specific density 

function of Ti, the DNA methylation level for the i-th sample at HM27 probes, and Zi  is the 

vector of covariates for the i-th sample. We used the following generalized functional linear 

model 

Yi ~ EF µi,η( )  

( ) ( ) ( ) γβαµ iii ZdtttXg ++= ∫
1

0
 

Here, EF µi,η( )  denotes an exponential family distribution with mean µi  and dispersion 

parameter η , ( )⋅g  is a link function, α  is the overall mean, ( )tβ  is the effect of density function 

( )tX i  when Ti = t, and γ  is a regression coefficient vector of covariates. 

5.2.1 Estimation of Xi t( )  

To improve imputation, we incorporated functional predictors into our model to capture 

information such as non-linear relationship from non-local probes. We estimated the DNA 

methylation function Xi t( )  for a particular target probe with the DNA methylation data from 

HM27 probes in the same group as the target probe. Assume the target probe is in group g and 

there are q HM27 probes in the same group. The observed DNA methylation data is denoted as 

( )g

q

g

i ttt ,,1 K= , where g

jt  is the DNA methylation value at j-th HM27 probe in group g and j = 1, 

…, q. Instead of estimating ( )tX i  by expanding into the PC basis obtained from its covariance 

matrix (Goldsmith et al. 2010), we estimated the density function by using R function density() 

with the observed data ti so that ( ) ( )tftX
iTi = . 
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5.2.2 Estimation of β t( )  

β t( )  was expanded by a linear spline basis β t( ) = b1 + b2t + bk t −γ k( )+k=3

Kb∑ , where γ k  

are knots in the interval [0,1] and ( )+− kt γ  is an indicator function, taking value of 1 if kt γ>  

and 0 if kt γ≤ .  We further defined a spline basis vector 

( ) ( ) ( ) ( ){ } ( ) ( ){ }
++ −−==

bb KK ttttttt γγφφφφ ,,,,1,,, 321 KK  and a coefficient vector ( )′=
bKbbb ,,1 K . 

Further, smoothing was induced by assuming b ~ N 0, D( )  where D is a penalty matrix 

corresponding to the particular spline basis φ t( ) . 

Finally, we had ( ) ( ) ( ) ( ) ( ) ( ) bdtttfbdtttfdtttX
ii TTi ⋅== ∫∫∫ ϕϕβ

1

0

1

0

1

0
. For ease of notation, we 

denoted JXφ  as the n × Kb  matrix with the (i,k)-th entry equal to ( ) ( )∫
1

0
dtttf kTi

φ  and Z as the 

n × p  matrix with the i-th row equal to Zi  where p is the number of covariates. The model can be 

written in matrix format as 

Y | X t( ) ~ EF µ,η( )  

( ) [ ][ ]γαµ ϕ ,,,,1 bZJg X=  

b ~ N 0, D( )  

which is a mixed effect model with Kb random effects b and penalty matrix 

( )

( ) ( ) ( )








=

−×−×−

−××

2222

2222

0

00

bbb

b

KKK

K

I
D  

Typically, Kb = 35 is sufficient to avoid undersmoothing in most applications. 
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5.2.3 Selection of Local Covariate  

We exploited linear correlation with neighboring probes by including DNA methylation 

values of HM27 probes near the target HM450 probe as local covariates Z in our imputation 

model. For simplicity, we selected the five nearest upstream and the five nearest downstream 

probes to each target probe as these local covariates. 

5.2.4 Grouping Probes  

Based on the assumption that probes with similar properties tend to show similar 

methylation profiles, we divided the probes into several property groups. Here we divided the 

probes among five groups according to their relative location to a CpG island, labeled “CpG 

Island,” “North Shore,” “South Shore,” “North Shelf,” and “South Shelf” (Bibikova et al. 2011). 

Probes may also be categorized according to other properties, such as their relative location to a 

gene (Bibikova et al. 2011). 

5.2.5 Quality Filter  

When an imputation model is formed without sufficient information, it tends to be 

underfitted and yield inaccurate imputation results. It is therefore desirable to have quality 

metrics for gauging imputation quality. As such a quality metric, we proposed an under-

dispersion measure defined as the ratio of the variance of fitted methylation values to its 

expected value (the variance of the true methylation values in the training set). If this ratio is 

below a certain threshold for a probe, it indicates an underfitted model for that probe, and we 

discard imputed values for the probe before subsequent analysis. A more exacting threshold ratio 

can provide more accurate results, although at the cost of fewer probes imputed.  
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5.2.6 Imputation Quality Assessment 

We assessed imputation quality using fivefold cross-validation. Within each split, the full 

data set was divided into a training set accounting for 80% of the data and a testing set comprised 

of the remaining 20%. For each testing set, we only retained HM27 data, which contains a subset 

of HM450 probes, and masked methylation values of other HM450-specific probes. For the 

training set, we only used HM450 data. We treated methylation data on probes shared between 

HM27 and HM450 as predictors to impute methylation values at HM450-specific probes. 

Specifically, we fitted a generalized functional regression model based on the training set, 

learned the relationship between methylation values of shared and HM450-specific probes, and 

used the fitted model to impute the masked values of HM450 probes from the HM27 data in the 

testing set. Finally, we evaluated the imputation performance over splits by averaging quality 

measures. 

As quality measures, we selected the mean squared error (MSE) and the squared Pearson 

correlation (R2) between the imputed and the true methylation values in the testing sets. 

Although R2 is a more intuitive measure of quality directly related to power and sample size in 

downstream analysis, we would like to note that this metric could easily be affected by a few 

outliers. Additionally, if the variance of methylation values for a specific probe is small, R2 can 

be dramatically affected even by small imputation errors.  

5.2.7 Simulation of Association Study 

To assess the potential improvement of statistical power when using well-imputed 

methylation values for EWAS, we performed several simulated association studies. Specifically, 

we randomly selected 100 HM450 probes with imputation R between 0.4 and 0.5, and simulated 

a data set for each probe. For each probe, a trait value 
*

iY  was simulated from the methylation 



64 

level of this probe according to the linear model iii cY εβ += ∗*
 for sample i, where 

∗
iβ  is the true 

methylation β  value, the effect size { }0.1,9.0,,2.0,1.0,0 K∈c , and ( )∗
i

sNi βε 2,0~ , where ∗
i

sβ  is 

the sample standard deviation of 
∗
iβ . 

We repeated the simulation 2000 times. For each simulated data set, we performed 

association tests based on the true methylation values, as well as imputed values from the simple 

linear model and our proposed penalized functional model. The empirical power of each method 

was calculated as the proportion of observed p-values that fall below the significance threshold

05.0=α . Finally, we evaluated the empirical power for each effect size c by averaging results 

from 100 probes. 

5.3 Simulation Results 

It is not surprising to find relatively little difference in the performance of the two models 

at the two ends of the distribution (Figure 10-11) because of probes that are either trivial or 

impossible to impute. Therefore, we focus on probes with imputation R between 0.4 and 0.5. As 

shown in Figure 12, using imputed values from penalized functional model for association tests 

is consistently more powerful than using values from simple linear model, while type I error rate 

was still properly controlled when c = 0. The results suggest that even using probes with 

moderate imputation quality can improve the statistical power of association test dramatically. 

5.4 Application to AML Data Set 

We evaluated our imputation model using DNA methylation data from TCGA acute 

myeloid leukemia (AML) samples (Cancer Genome Atlas Research Network 2013). The data set 

contains DNA methylation data of tumor tissues from 194 patients with AML and is one of the 

largest methylation data sets in TCGA project. All samples were evaluated using both HM27 and 
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HM450. We transformed the initial β values into M values, defined as the log 2 ratio of β and 1 – 

β, as the M values better follow the Gaussian distribution (Network 2013). Our goal is to impute 

the HM27 data set into a HM450 data set to get an expanded view of the epigenomic landscape. 

The data set is publicly available at the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). 

Since imputation of sporadic missing data is not the focus of this work, we removed all 

probes with at least one missing value for the sake of convenience. However, these missing 

values can be imputed with existing methods to generate data without missing values. 

Additionally, we removed 743 probes designed in HM27 but not in HM450. In total, our HM27 

data set consisted of 20,794 probes and our HM450 data set consisted of 393,152 probes. The 

latter set contained all 20,794 probes in HM27, leaving the remaining 373,358 as our potential 

imputation targets. 

We noted that as HM27 and HM450 employ different biochemical methods to measure 

methylation levels, platform-specific effects might negatively impact imputation performance. 

To alleviate this systematic effect, we fitted a LOESS regression model between two platforms, 

stratified by the number of CpGs in the probe (#CpG = 0,1,2,3,4,5,6,7+), using 14 randomly 

chosen samples and normalized the HM27 data against the HM450 data (Network 2013). 

Most probes showed nearly constant methylation levels in populations, making 

imputation trivial for them. We therefore focused on probes showing large variation and chose 

the top 20,000 such probes to evaluate imputation quality. In the fivefold cross-validation 

experiment, 14 samples used for normalization were removed at first. Among the remaining 180, 

144 individuals were chosen at random as the training set and 36 as the testing set within each 

split. The empirical cumulative distribution of imputation MSE and R2 are shown in Figure 10-

11. We compared the two models with and without functional predictors and found that 
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incorporating functional predictors leads to significantly improved imputation MSE and R2 

(P<2.2 × 10-16 for both metrics, paired Wilcoxon test). Table 8 summaries some basic statistics. 

 We used as an example the target probe cg00288598 to illustrate how the functional 

predictors improve imputation quality. As shown in Figure 13, the selected local probes showed 

much lower variation than the target probe, leading to an underfitted linear regression model and 

thus low imputation quality. In contrast, the methylation profile of the target probe is strongly 

associated with the distribution of methylation levels from all HM27 probes in its assigned North 

Shelf group, as indicated in Figure 14. Therefore after the functional predictors are added, the 

model can utilize the information from these non-local probes, including probes on different 

chromosomes, to alleviate the underfitting problem. 

Because not all target probes can be imputed with the same level of accuracy, we tried to 

use the under-dispersion measure described in the 5.2 Methods section to filter out inaccurate 

imputation results. We examined the relationship between imputation MSE/R2 and the under-

dispersion measure. We observed a negative correlation between imputation MSE and this 

quality measure (Figure 15, Pearson correlation coefficient R = –0.65), and a positive correlation 

between imputation R2 and the measure (Figure 16, Pearson correlation coefficient R = 0.93). 

Therefore when performing imputation, we can calculate the under-dispersion measure and use it 

to filter out low-quality imputation results. Figure 15-16 indicates that by choosing an 

appropriate threshold, we can remove most low-quality results while simultaneously retaining 

nearly all high-quality results. 

5.5 Discussion 

In summary, we propose a penalized functional regression framework for the across-

platform imputation of methylation probes. Our real data analysis demonstrates that by 
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incorporating functional predictors, our model can produce accurate imputation results when the 

reference panel (training set) and target panel (testing set) characterize the same tissue under 

similar conditions. However, since DNA methylation profiles are highly tissue and condition-

specific (Lister et al. 2009; Laurent et al. 2010; Varley et al. 2013), our method will not work 

well if the two data sets are from different tissues or very different conditions. Recent studies 

suggest some statistical models to predict methylation profile in target tissue from a surrogate 

tissue (Ma et al. 2014), which might be helpful in this case. Moreover, other systematic errors 

such as batch effect may also harm imputation quality. Therefore, we suggest using techniques 

such as principal component analysis to check for obvious discrepancies between reference and 

target panels before applying our method. 

 Since most CpG sites display stable DNA methylation levels, imputation error is low on 

average. However, researchers may consider dynamic CpG sites to be of more interest, as these 

sites often co-localize with key regulators such as enhancers and transcription factor binding 

sites (Ziller et al. 2013). Therefore, we calculate quality metrics for individual probes, facilitating 

the evaluation of imputation quality for each probe and removing probes with low imputation 

quality for downstream analysis. For probes showing large variation of methylation levels, we 

notice that even when incorporating functional predictor, the imputation quality is still low for a 

significant portion of these probes. Possible reasons for this are as follows: First, the DNA 

methylation profile alone may not provide sufficient information for accurate imputation. We 

may need to incorporate other information to improve the imputation quality, such as local DNA 

context and binding profile of regulatory proteins (Bhasin et al. 2005; Bock et al. 2006; Zheng et 

al. 2013), although this requires additional data source in the same or similar tissue type that are 

rarely available. Second, HM27 has a much lower resolution than HM450. As such, many 
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HM450 probes may not be highly correlated with HM27 probes, making them difficult to 

impute. We expect to observe better performance if we impute from a denser microarray. Third, 

our normalization procedure does not fully eliminate the inconsistency of measurements between 

HM27 and HM450, which also affects the performance of this model. 

 After accurate imputation, we can easily combine data from multiple platforms to obtain 

methylation levels of more CpG sites for downstream analysis, such as detecting methylation 

quantitative trait loci or EWASs (Rakyan et al. 2011; Heyn and Esteller 2012). We expect this 

higher-resolution exploration of the epigenome will lead to rapid advances in understanding the 

functional role of normal DNA methylation and the impact of its aberration. 

  



69 

Table 8 Quantiles of Imputation MSE and R2 

 
Imputation MSE Imputation R2 

Q1 Median Q3 Q1 Median Q3 

Covariates only 0.0328 0.0582 0.0772 0.0485 0.1574 0.3760 

Covariates + 

Functional Predictor 
0.0292 0.0516 0.0708 0.1178 0.27 0.4536 
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Figure 11 Empirical Cumulative Distribution of Imputation MSE for Probes Showing 

Large Variation in AML Data Set 

The empirical cumulative distribution (Y-axis) of imputation MSE (X-axis) generated by Covariates only (blue) is 

compared with the one generated by Covariates + Functional Predictor (red). 
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Figure 12 Empirical Cumulative Distribution of Imputation R2 for Probes Showing Large 

Variation in AML Data Set 

The empirical cumulative distribution (Y-axis) of imputation R2 (X-axis) generated by Covariates only (blue) is 

compared with the one generated by Covariates + Functional Predictor (red). 
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Figure 13 Empirical Power of Simulated Association Tests Across A Spectrum of Effect 

Size c 

The empirical power (Y-axis) of association test using three different values, true values (red), imputed values from 

functional regression model (green), and imputed values from linear model (blue), across a spectrum of effect size b 

(X-axis) are compared.  
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Figure 14 The DNA Methylation Profile of the Target Probe vs. 10 Selected Local Probes 

The DNA methylation profile of the target probe cg00288598 (left) is compared with the profile of the 10 selected 

local probes (middle). 
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Figure 15 The Individual-specific Density Plot of DNA Methylation Level 

The density curve of DNA methylation levels generated from HM27 probes in North Shelf regions. Each line 

represents one individual’s DNA methylation density curve and is colored according to the DNA methylation level 

of the cg00288598 probe. 
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Figure 16 Scatter Plot of Imputation MSE vs. Under-Dispersion Measure 

The imputation MSE (Y-axis) calculated between true and predicted DNA methylation level is plot against the 

under-dispersion measure (X-axis). The correlation between imputation MSE and under-dispersion measure is -0.65. 
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Figure 17 Scatter Plot of Imputation R2 vs. Under-dispersion Measure 

The imputation R2 (Y-axis) calculated between true and predicted DNA methylation level is plot against the under-

dispersion measure (X-axis). The correlation between imputation R2 and under-dispersion measure is 0.93. 
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CHAPTER 6: CONCLUDING REMARKS 

This document presents several novel methods for identifying truly associated rare 

variants and causal genes in genome-wide and epigenome-wide association studies, respectively. 

While each method is intended for a specific study design and involves a variety of statistical and 

computational tools, the central goal remains the same: to build an optimal model and maximize 

the statistical power. We have demonstrated that various statistical methodologies can be used to 

improve power for association studies while maintaining acceptable type I error rates. For 

GWASs, we proposed EM-LRT and found that when posterior probabilities of all potential 

genotypes are available, the proposed EM-LRT-Prob has nearly identical performance as 

Mixture method; however, it is much more computationally efficient. On the other hand, when 

only dosages are available, the proposed EM-LRT-Dose, which incorporates the information of 

imputation quality measure R2, has enhanced power over the Dosage method for association 

analysis of variants with low frequency or imputation quality. For EWASs, we proposed 

penalized functional region-based tests and showed that they have higher power of identifying 

causal genes than the single-probe test, SKAT, and SKAT-O from both real data analysis and 

real data based simulation when there are multiple small or moderate signals in the region. That 

being said, single-probe test and the proposed penalized functional region-based tests have 

similar power performance when there are strong signals in the region.  

In addition, geneticists are embraced nowadays by technological advances. For the study 

of DNA methylation, for example, technological advances constantly provide us with more 
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choices to measure DNA methylation patterns across the genome, including multiple 

commercial arrays, multiple sequencing-based technologies or protocols. As a result, large 

studies may have a mixture of old and new arrays, or a mixture of old and new technologies, on 

the large number of samples they investigate, which makes data analysis challenging. The 

proposed penalized functional regression model can predict methylation level at sites on a new 

array, the Illumina HumanMethylation450K Beadchip, reasonably well from those on an old 

array, the Illumina HumanMethylation27K Beadchip. However, since DNA methylation profile 

is highly tissue-specific and condition-specific, our method will not work well if these two data 

sets are from different tissues or quite different conditions. 
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