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ABSTRACT 
 

Jennifer L. Knies: Thermal Adaptation of the Phage G4 and Molecular Evolution of RNA 
Secondary Structures  

(Under the direction of Christina Burch) 

 
The focus of this dissertation has been to investigate the predictability of 

evolution.  This has been done in two ways.  The larger part of this thesis is devoted to 

using thermal adaptation as a model system for investigating adaptation to novel 

environments.  The second and smaller part of this thesis makes and tests a prediction for 

evolution in RNA secondary structure.   

Thermal adaptation is a useful model for studying common patterns of evolution, 

because the proximate mechanisms (e.g. biochemical rate processes) that determine the 

effects of temperature on growth or performance and the evolutiona ry causes of thermal 

adaptation are known. Two specific hypotheses about thermal adaptation are: (1) Thermal 

constraints on reaction rates will cause cold-adapted species to have lower maximal 

growth rates than hotter- adapted species at their thermal optima (i.e. “Hotter is better”), 

and (2) A trade-off between protein stability and activity underlies performance trade-

offs observed at different temperatures.   

 These predictions were investigated by developing the bacteriophage G4 as a 

model experimental system.  The growth rate of G4-like phages isolated from nature was 

examined over a wide temperature range and a positive correlation was detected between 

the phages maximal growth rates and optimal temperatures. By evolving multiple 
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independent phage populations at high and low temperatures, I was able to detect 

common patterns of adaptation to high temperatures (e.g. increased thermal stability), but 

I did not detect any loss of themal stability in the populations evolved at low 

temperatures.   By combining analyses of lab evolved and natural isolates of these phage, 

I showed that the nature of thermal constraints are predictable and repeatable. 

 Lastly, I investigated interactions between within RNA secondary structure that 

place limits on the rate and trajectory of molecular evolution.  A population genetics 

model of such interactions was used to predict that rate variation at interacting sites 

should be higher than rate variation at independent sites. This prediction was tested in 

eight RNA secondary structures by comparing the ratio of transition to transversion 

substitutions in paired sites to the ratio in unpaired sites.  Six of the eight structures show 

an excellent match to the quantitative predictions of the population genetics model. These 

findings suggest use of the transition-transversion rate ratio as a simple diagnostic to 

validate proposed secondary structures. 
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CHAPTER 1. Background and Introduction 

 In nature, organisms frequently encounter and adapt to novel environments.  

Examples in the public eye include pathogen adaptation to novel hosts (e.g. avian 

influenza adapting to humans [1]) and widespread adaptation to rising global 

temperatures (e.g. advances in the timing of bird migration [2]). Identifying general 

patterns of adaptation would improve our ability to predict the course of future adaptation 

events.  For instance, we would be better able to evaluate the risks of disease emergence 

in humans and the risks of population extinctions due to global warming.  A variety of 

common patterns of adaptation have been hypothesized, such as trade-offs between 

performance in alternative environments and genetic constraints that limit adaptation in 

specific environments, but there is little or inconsistent data for these hypotheses.   

 

Adaptation to temperature is a useful model for studying adaptation to novel 

environments [3], both because organisms frequently experience variation in temperature 

[4,5] and because the proximate mechanisms (e.g. biochemical rate processes) that 

determine the effects of temperature on growth or performance [6] are known. 

Theoretical investigations of thermal adaptation make predictions about growth rates at 

different temperatures based on this knowledge.  For example, organisms inhabiting cold 

environments are expected to have maximal growth rates that are lower than organisms 

inhabiting hot environments due to the temperature-dependent nature of enzyme kinetics.   
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These predictions have been difficult to test due to a lack of data collection and 

limitations in analysis.   The first problem in testing these predictions is that growth rate 

(or other trait of interest) tends to be measured at only a few temperatures, which limits 

the available information.  The second problem is that while growth rate varies 

continuously as a function of temperature, experimental studies tend to analyze growth 

rate at different temperatures as discrete traits. A more effective way to investigate these 

predictions is to examine thermal reaction norms, which are continuous curves describing 

how the growth rate of a genotype or species varies as a function of temperature.  One 

reason why this approach has not been more extensively used is because it requires that 

growth rates be measured at many temperatures, which is too onerous for many model 

systems.    

 

To overcome these difficulties, I developed the bacteriophage G4 as a model 

system for studying thermal adaptation.  In chapter 2, I reexamined the outcome of an 

evolution experiment in which phage were adapted to a high temperature, and 

demonstrated that this system is useful for studying thermal adaptation because one can 

readily measure phages growth rate with a degree of high replication at numerous 

temperatures across a wide range of temperatures.  By generating thermal reaction norms 

for evolved phage, I demonstrate that adaptation of a phage population to high 

temperatures results in a loss of fitness at lower temperatures.  In addition, I characterized 

the genetic basis of adaptation in this high temperature adapted population and show that 
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mutations beneficial at high temperature in the laboratory are also beneficial at high 

temperature in a natural population of these phages.  

  

Having developed G4 as a system for investigating patterns of thermal adaptation, 

I went on to test two specific hypotheses that arise from our knowledge of how 

temperature affects biochemical rate processes:  

(1) The ‘hotter is better’  hypothesis posits that thermal constraints on reaction rates cause 

species adapted to low temperatures to have lower maximal growth rates than those 

adapted to high temperatures. 

(2) Fitness trade-offs observed across temperatures are due to a trade-off between protein 

stability and catalytic activity. 

 

In Chapter 3, I investigated the ‘hotter is better’ hypothesis, which stems from the 

knowledge of how temperature affects reaction rates.  For example, low temperatures 

typically depress reaction rates simply because the collision rate of reactants is lower [4]. 

The ‘hotter is better’ hypothesis assumes that adaptation is unable to overcome the rate-

depressing effects of low temperature, therefore causing populations adapted to lower 

temperatures to have lower maximal growth rates than those adapted to higher 

temperatures.  Prior to my work, this hypothesis had been tested and the predicted pattern 

found in an inter-species insect study [7].  It was unknown whether the ‘hotter is better’ 

relationship characterized variation within a population as well as variation between 

populations, or whether the ‘hotter is better’ relationship is a general pattern across 

unrelated species.  
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In Chapter 3, I investigated this hypothesis by generating thermal reaction norms 

for the growth rates of G4-like phages isolated from nature.  From these reaction norms, I 

estimated the optimum temperature and maximum growth rate for individual phage 

genotypes.  As predicted by the ‘hotter is better’ hypothesis, I found a positive correlation 

between maximum growth rate and optimal temperature in this population of phages.   I 

was able to show that the reaction norms of my phage do share a common shape, which 

allowed me to use a more powerful method of analysis.   I also found that the reaction 

norms of the natural isolates of G4 and the reaction norms of the population characterized 

in Chapter 2 have a common general shape that may reflect thermodynamic constraints 

 

In Chapter 4, I explore a second hypothesis that predicts the proximate 

mechanisms responsible for thermal adaptation and the fitness trade-offs seen across 

temperatures (e.g. as seen in Chapter 2). At high temperatures, stability of proteins is 

expected to be under strong selection to prevent denaturation.  At low temperatures, 

protein flexibility/catalytic activity is expected to be under strong selection. Fitness trade-

offs are expected to result from a biochemical dependence of catalytic function on 

enzyme flexibility [8].  At high temperatures selection for increased stability [9] is 

expected to cause proteins to become less flexible, and thus, less active at low 

temperatures.  In contrast, at low temperatures selection for increased activity causes 

proteins to become more flexible, and thus, less stable at high temperatures. This trade-

off between catalytic activity and stability has been observed in proteins from natural 

populations/species inhabiting contrasting thermal environments [8].  However, directed 

evolution experiments have been able to evolve enzymes that have both high 
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thermostability and high catalytic activity (reviewed in [10].  It is therefore not clear 

whether the observed trade-offs are due to biological constraints or due to natural 

populations having accumulated mutations that are deleterious in environments that they 

do not encounter.   

 

In Chapter 4, I explored the proximate mechanisms of the initial adaptation to 

novel temperatures in laboratory populations of G4.   I evolved 4 independent phage 

populations at temperatures higher and lower than G4’s thermal optimum, and measured 

the thermal stability of the ancestral and evolved phages.   Consistent with the predictions 

discussed above, lines evolved at high temperature show increased thermal stability as 

compared to their ancestor.   However, lines evolved at low temperatures show no 

differences in thermal stability compared to their ancestor. 

 

Together, the first three data chapters (Chapter 2-4) of this dissertation illustrate 

the power of the bacteriophage model system for investigating general patterns of thermal 

adaptation.  Our demonstration of ‘hotter is better’ in the population of phage from nature 

is the first step towards uncovering the genetic bases of the correlation between optimal 

temperatures and maximal growth rates.  Now that we have detected this pattern in a 

population of phage from nature, we can also look for this pattern in phage adapted to 

novel temperatures in the lab.  Since the genetic differences between phage adapted in the 

lab are much fewer than the phages from nature, it should be easier to identify the genetic 

bases of ‘hotter is better’ in the lab adapted phage.  In addition, by comparing adaptation 



 6

in the lab to polymorphism in nature, we hope to learn more about selection in nature and 

the role of polymorphisms in contributing to divergence between populations.   

 

The last chapter takes a different approach to investigating the predictability of 

evolution.  Here I, along with my collaborator Kristen Dang, examined evolution in RNA 

secondary structures to determine whether the constraint imposed by the requirement to 

maintain base pairing in stems makes sequence evolution predictable.  Naively, one 

might assume that mutations that disrupt base pairing in stems will be removed by 

selection in large populations, but can become fixed in small populations via drift.   

However, Kimura [11] proposed a model, known as the compensatory neutral model, 

explaining how such deleterious mutations can become fixed in large and small 

populations.  His model uses a special class of deleterious mutations – compensatory 

mutations – or mutations that are deleterious alone, but neutral or beneficial in 

combination together.  In RNA secondary structures, compensatory mutations are those 

that restore base pairing that was disrupted by a deleterious mutation.  A unique feature 

of compensatory evolution in RNA secondary structures is that if the mutation that 

disrupts base pairing is a transition, it can only be compensated for by another transition.  

Likewise, a transversion can only be compensated for by another transversion.   Using 

this knowledge, I extended this compensatory neutral model of Kimura to predict that a 

difference in transition and transversion rates will cause rate variation to be elevated at 

paired (stem) sites as compared to unpaired (loop) sites in RNA secondary structure.  

Specifically, I expected the rate variation at paired sites to be the square of the rate 

variation at loop sites. I tested this prediction in 8 RNA secondary structures and found 
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that 7 structures are in excellent qualitative agreement with this prediction and 6 are in 

quantitative agreement with the model.  Those structures that deviate from this model are 

best explained as either experiencing structural variation or having unpaired (loop) sites 

that actually base pair to sites elsewhere in the genome.  The excellent fit of the model to 

the structures suggests that this quantitative prediction should be incorporated into 

programs that predict RNA secondary structure.  
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Chapter 2.  The genetic basis of thermal reaction norm evolution in lab and natural 
phage populations .   

The work described in this chapter was accomplished in collaboration with Katie 

Supler and Drs. Christina Burch, Joel Kingsolver, and Rima Izem. This chapter has been 

published [12] as a paper in PLoS Biology.  I would like to acknowledge Steve Marron, 

Jim Bull, and the Burch and Kingsolver lab members for helpful discussions during the 

development of this project.  
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Introduction 

The study of evolutionary responses to temperature has served as an important 

model for understanding the process of adaptation to novel environments [3], in part 

because the evolutionary and mechanistic causes of thermal adaptation are relatively 

transparent.  Temperature is a component of the environment that varies predictably, and 

for which we have knowledge of the proximate mechanisms (e.g. biochemical rate 

processes) that determine the effects of temperature on growth or performance [6].  

Theoretical explorations of thermal adaptation make predictions based on this knowledge 

[13-15].  For example, trade-offs in performance at different temperatures are expected to 

result from a biochemical trade-off between enzyme stability and function.  Enzymes 

selected for stability at high temperatures are less functional at lower temperatures, while 

enzymes selected for function at lower temperatures are less stable at high temperatures 

[8].  However, although performance trade-offs have been observed for individual 

enzymatic reactions, they have rarely been observed for physiological traits [6].  Most of 

the studies that did observe trade-offs stand out because they measured performance at 

five or more temperatures across the entire thermal niche [16-22].  However, few of these 

studies were sufficiently powerful to describe the nature of the genetic constraint 

governing the trade-off [17,19]. 

 

Thermal adaptation and constraint are viewed most naturally as a type of 

continuous reaction norm, in which the phenotypic trait value (e.g. fitness or 

performance) of a genotype varies as a function of some continuous environmental 

variable (e.g. temperature).  Reaction norms are routinely used to investigate 
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environmental effects on a variety of phenotypes.  For example, reaction norms have 

been used to understand how bacterial survival varies as a function of antibiotic 

concentration [23], immune suppression varies as a function of mold toxin concentration 

[24], and photosynthesis rate in plants varies as a function of temperature [25].   

 

Thermal reaction norms typically have a common general shape in which 

performance increases with increasing temperature, reaches a maximum at some 

intermediate temperature, and then declines rapidly with further increases in temperature 

[26].  Based on knowledge of this common shape, evolutionary physiologists have 

proposed modes of variation in thermal reaction norms that are of particular biological 

interest (Fig. 2.1):  vertical shift (in average fitness), horizontal shift (in optimal 

temperature), and generalist-specialist variation (niche width) [27].  A recent study of 

natural populations of Peiris rapae caterpillars successfully decomposed the quantitative 

genetic variation in thermal reaction norm shape into these three modes of biological 

interest, and found that most of the variation was due to generalist-specialist variation 
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[19].  Caterpillar growth rates were either intermediate across a wide range of 

temperatures, or high at intermediate temperatures and low at extreme temperatures.  

Studies like this one address the nature of standing variation in thermal reaction norm 

shape, however, the relative contributions of these different modes to the process of 

adaptation to novel thermal environments are unknown.   For example, is adaptation to 

high temperatures due primarily to evolutionary changes in average performance, in 

optimal temperature, in niche width, or in a combination of these modes?   How do 

particular genetic changes selected during evolution contribute to these modes? 

 

Studies of species found naturally in contrasting thermal environments can 

provide some insight into these questions.  For example, comparisons of the effect of 

temperature on growth rate of actinobacteria strains [28] and the photosynthetic ability of 

unrelated plant species [25] found in different thermal environments both suggest that 

adaptation to high temperature occurred primarily via a shift in the optimum temperature. 

However, these observed patterns are the result of a long history of selection on these 

species, and do not provide information as to which modes of variation were responsible 

for the initial adaptation to high temperature (e.g., mutational decay could explain why 

species no longer perform well at temperatures they no longer experience). 

   

Experiments in which laboratory populations have been adapted to a novel 

temperature should provide a more powerful means for assessing the contributions of 

changes in average performance, in optimal temperature, and in niche width to thermal 

adaptation.  Indeed, bacteria and bacteriophage model systems have made considerable 
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progress toward this goal.  Investigations of thermal adaptation in E. coli have provided 

thorough characterizations of phenotypic evolution, measuring thermal reaction norms 

with sufficient detail that a visual inspection suggests contributions from multiple modes 

of variation [17,22,29].  However, the relatively large genome of E. coli has made it 

difficult to associate reaction norm shape changes with particular genetic changes (but 

see [30]).  In contrast, experiments that investigated thermal adaptation in bacteriophage 

provide detailed ana lyses of the genetic bases of adaptation, but only a limited 

characterization of reaction norm evolution [31,32].  Investigations in both model 

systems failed to analyze thermal performance using continuous reaction norms, thus, 

limiting their ability to characterize the nature of reaction norm shape changes [19]. 

  

To illustrate the power of analyzing evolutionary responses to temperature using 

continuous reaction norms, we revisit a recent study of high temperature adaptation in the 

bacteriophages G4 and phiX-174 [31] that stands out because it was able to associate 

adaptation with particular genetic changes.  Holder and Bull demonstrated that phage 

populations readily evolved higher growth rates at high temperature, but characterized the 

correlated responses in growth rates only at the ancestral temperature optimum.  Here we 

reexamine the adaptation that occurred in their G4 lineage, measuring performance over a 

wider temperature range in order to determine how the thermal reaction norm responded 

to selection for growth at high temperature.  We employed a statistical method called 

Template Mode of Variation [19] to decompose the evolution of reaction norm shape into 

vertical shift, horizontal shift, and generalist-specialist variation.  This approach enabled 

us to quantify the contribution of each mode to adaptation to high temperatures, to 
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identify how specific mutations affect variation in thermal reaction norms, and to identify 

genetic trade-offs that were not apparent in the earlier analysis.  In addition, we 

investigated whether one of the mutations that had a large effect on reaction norm shape 

contributes similarly to genetic variation in thermal performance in natural bacteriophage 

populations. 

 

Experimental Design 

In the evolution experiment conducted by Holder and Bull [31], a single 

population of the bacteriophage G4 was adapted to the inhibitory temperatures of 41.5°C 

and 44°C and monitored for nucleotide changes throughout its entire 5 kb genome 

(experimental design is described in detail in Fig. 2.2).  Phages were evolved by serial 

transfer into fresh cultures of rapidly dividing bacterial hosts to select for phage 

genotypes with the fastest rates of reproduction.   Holder and Bull ensured rapid 

adaptation by selecting for growth beyond G4’s thermal niche boundary, and by 

maintaining large population size (Ne ˜ 106), to minimize the effect of genetic drift.  

Monitoring evolution during an initial 50 serial transfers (approximately 100 generations) 

at 41.5°C, and a further 50 serial transfers at 44°C, Holder and Bull confirmed that 

adaptation to high temperature occurred rapidly and that it was accompanied by a large 

number of genetic changes.  

 

In the current study, we isolated five individual phages from this evolving 

population at transfers 20, 50, and 100.  We sequenced the genomes of these phages, and 

used the isolate most representative of the population consensus at each transfer (as 
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described in Holder and Bull [31]) for all further analyses.  Following the convention 

from Holder and Bull [31], the notation G4t will be used to represent  the phage isolated 

from serial transfer t.  Thus, G40 represents the phage genotype used to initiate selection 

at 41.5°C, and G4100 represents the phage isolated following 100 transfers (50 transfers at 

41.5°C plus 50 at 44°C).  Our characterization of evolutionary responses to temperature 

in this population expanded on that of Holder and Bull [31] by measuring the growth 

rates of G40, and the evolved phage, G420, G450, and G4100, at numerous temperatures that 

span the thermal niche of G4.  Our measure of growth rate is a measure of absolute 

fitness in the experimental conditions (see Methods).   
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Methods 

Strains and Culture Conditions  

G4 populations from the Holder and Bull [31] experiment were obtained from J. 

Bull (University of Texas, Austin, TX).  Clonal isolates from these populations were 

designated G40, G420, G450, and G4100.  The G4-like phages, NC6, NC19, ID52, and ID13, 

were isolated from natural phage populations in 2001 and 2002 [33], and were obtained 

from H. Wichman (University of Idaho, Moscow, ID).     

 

Culture conditions were as in Holder and Bull [31].  Briefly, phage were grown 

on E. coli C, the standard laboratory host of G4, in LB (5 g Yeast extract, 10 g Bacto 

tryptone, 5 g salt/ 1 Liter ) broth supplemented with 2 mM CaCl2, and on LB plates (15% 

agar).  LB top agar (0.7% agar) was also supplemented with 2 mM CaCl2.  Phage were 

stored for short term (< 1 week) at 4oC in this growth media, and for long term at -20oC 

in LB broth supplemented with 2 mM CaCl2 and 40% glycerol.   

 

Growth Rate Assays 

Growth rate assays were designed to closely follow the selection conditions in 

Holder and Bull [31].  We used 300 µl of a stationary phase E. coli culture to inoculate 10 

ml of LB, and incubated this fresh culture in a water bath at the experimental temperature 

until the culture reached an optical density (OD600) of 0.6 ± 0.1, which corresponded to 

2-3  × 108 cells/ml at most temperatures (at 44oC an OD600 of 0.6 corresponded to 9 × 107 

cells/ml).  Approximately 106 phages were added to this exponentially growing culture, 

and the mixture was grown for 45 minutes, at which point a 1ml sample was treated with 
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50 µl chloroform to kill bacteria.  Phage numbers at the start (N0) and end (N45) of the 

assay were determined by plating.  Growth rate was calculated as the increase in phage 

number over 45 minutes (N45/N0).  Both the experimental serial transfers and the growth 

rate assays were initiated with a low ratio of phage to bacteria (~0.001) to minimize the 

possibilities for competition, and therefore, frequency dependent selection.  In this way, 

we ensure that growth rate is a valid measure of absolute fitness in the experimental 

conditions.  Although the temperatures reported here may have differed slightly from the 

temperatures reported by Holder and Bull [22], they were measured with a Factory-

Calibrated Thermometer that is accurate to within 0.1ºC (Fisher Scientific, Hampton, 

NH). 

 

Analysis of Reaction Norm Shape  

Reaction norm shape was analyzed using a statistical method called Template 

Mode of Variation (TMV) [19].  TMV is a hypothesis driven decomposition of variation 

in which the principle modes of variation are predetermined by the experimenter.  In our 

case these modes of variation are vertical shift, horizontal shift, and generalist-specialist 

variation.  Because some of these modes are non-linear, the mean curve is not a good 

representation of the center of the variation in the data.  Therefore, TMV estimates a 

template shape that represents the center of the distribution in the non- linear space of 

interest.  

 

TMV constrains the template polynomial P[t] in three ways to ensure a fit with 

biological reality.  First, the first order polynomial coefficient of the template shape is 
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held at zero to cause the template shape to have a maximum at t = 0.  This condition 

makes the mi parameters identifiable and interpretable as the location of the maximum of 

the curve corresponding to genotype i.  Second, TMV requires that P[t] = 0 for two 

values in the neighborhood of t = 0, so that there is a positive finite area under the curve.  

Finally, TMV requires that Σai = 0, to ensure a unique fit.  As a result, the template and 

all of the curves are constrained to have a positive maximum and a finite area under the 

curve in some neighborhood near the maximum.  Even with these constraints, the 

observed data for a genotype could be monotonic within the measured temperature range 

(the mi estimated for such a genotype would be outside the measured range). Thus, many 

possible curve shapes are allowed by the template.    

 

We used TMV to fit the data to a model (eqn 1) in which both the common 

template polynomial P[t] and the parameters ai, mi, and bi for each genotype are 

unknowns.  In practice, the model was fit by iteratively optimizing the template 

polynomial P[t] and the variation parameters ai, mi, and bi until the sum of squared errors 

are minimized.  We evaluated the fit of the estimated template polynomial to the data by 

rescaling the data with respect to the parameter estimates (ai, mi, bi) for each genotype, 

and measuring the residual variation around the template polynomial P[t].  We chose to 

model the common template shape using a polynomial of degree 3 because it was the 

lowest degree polynomial for which the residuals were random in direction and similar in 

magnitude across all temperatures, confirming that the polynomial gives a good 

approximation of the common template shape. 
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For further details, see a recent study that applied TMV to thermal performance 

data in natural populations of Pieris rapae caterpillars [19]. 

 

Sequencing 

Genome sequences were obtained from polymerase chain reaction (PCR) 

products. Each genome was amplified in two overlapping segments using recombinant 

Taq DNA Polymerase (Invitrogen, Carlsbad, California), purified with ExoSap-It (United 

States Biological, Swampscott, MA) and its sequence was determined from 16 

overlapping chain-termination sequencing reactions (UNC Genome Analysis Center and 

UNC Biology ABI 3100- Avant). The primers used for sequencing reactions were as 

follows, with the nucleotide position indicating the 5' end, plus or minus indicating which 

strand (positive or negative) is generated from that primer, and the length of the primer in 

parentheses.  PCR primers: 49+(21), 2702+(21)and 2495+(21), 225+(19); Sequencing 

primers: -49(21), 225(19), 548(19), 937+(21), 1447+(21), 1997+(21), 2495+(21), 

2702+(21), 3162+(21), 3645+(19), 4050+(19), 4501+(19), 4945+(19), and 5435+(19). 

Sequences were aligned and analyzed in Sequencher (version 4.5, Gene Codes 

Corporation, Ann Arbor, MI).  In all cases, the genomic DNA used for PCR was from a 

single plaque isolate. Up to five isolates were sequenced from the evolved population at 

each time point.  We chose the isolate most representative of the population consensus 

described in Holder and Bull [31] for use in the present study.   
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Characterization of genetic variation for thermal performance in natural phage 

populations. 

 We used an ANOVA [34] to assess the effects of phylogenetic relationship (as 

determined by [33]), genotype at the locus of interest, and temperature on the growth rate 

of natural phage isolates.  Phylogenetic relationship and genotype were treated as class 

variables and temperature was treated as a quantitative variable.  Replicates were 

collected in blocks (on different days), and block was treated as a random class variable.  

Residuals were normally distributed (Shapiro-Wilk test: W = 0.98, p = 0.30) and 

homogeneous across treatments.  The analysis was conducted using the GLM procedure 

in SAS (version 8, SAS Institute, Cary, NC). 

 

Results 

Responses to Selection at High Temperature  

To determine the consequences of adaptation to high temperature, we measured 

the growth rate of the ancestral phage and three evolved phages at six temperatures 

between 27°C and 44°C (Fig. 2.3A).  The evolved genotypes were isolated from the 

Holder and Bull [20] evolving population after the 20th, 50th, and 100th serial transfers at 

high temperature, and a visual inspection of the data indicates that evolution occurred 

between each of these time points (Fig. 2.3A).  Reaction norms generated for all 

genotypes had the overall shape that is characteristic of thermal reaction norms for fitness 

and performance [27].  Growth rate increased with temperature until a maximum was 

achieved around 35°C and declined as temperature increased above this maximum (Fig. 

2.3A).  Note that either a difference in temperature calibration, or an inadvertent 2-fold 
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difference in salt concentrations produced a difference in phage growth rates between our 

study and that of Holder and Bull [31].  From our measures, phage did not exhibit 

positive growth rates at 41.5°C until transfer 20, or at 44°C until transfer 100.  This 

calibration difference should not affect the measured shape of thermal reaction norms, it 

should only affect our ability to pinpoint the exact temperatures to which these phages 

were adapted. 

 

An examination of the response to selection at 41.5°C (transfers 0–50) and at 

44°C (transfers 50–100) revealed that evolutionary responses were greater at 

temperatures above 35°C than at temperatures below 35°C (Fig. 2.3B).  Correlated 

responses to selection at both 41.5°C and 44°C were positive at temperatures above 35°C.  

By contrast, evolutionary responses at temperatures below 35oC were uncorrelated with 

the response to selection at 41.5°C, and negatively correlated with the response to 

selection at 44°C (Fig. 2.3B).   
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Evolution of Reaction Norm Shape  

We analyzed reaction norm shape using a statistical method called Template 

Mode of Variation (TMV, [19]).  Briefly, the TMV approach assumes that each of the 

measured reaction norms can be described by shifting and stretching a common template 

reaction norm, represented by a polynomial P[t] of temperature t.  The growth rate 

measures for all genotypes at all temperatures were simultaneously fit to the model: 

)]([][ 11
iibibii mtPatP −+= , (1)   
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in which both the common template P[t] and the parameters ai, mi, and bi (representing, 

respectively, the average growth rate, optimal temperature, and niche width for each 

genotype i) are unknowns.   

 

In this model, differences among genotypes in average growth rate (ai) are 

modeled by vertical shifts of the template reaction norm (Fig 2.1A).  Average growth rate 

is the only parameter that does not incorporate a trade-off in performance across 

temperatures.  Differences in optimal temperature are modeled using horizontal shifts that 

move the entire reaction norm left and right (Fig 2.1B), positioning the optimum for each 

genotype at mi without stretching or skewing the reaction norms.  Differences in niche 

width are modeled by assuming a generalist-specialist tradeoff that constrains the positive 

area under the growth rate curve Pi[t] to be constant.  Thus, increases in niche width yield 

both a wider temperature range and a lower maximum growth rate (Fig 2.1C). 
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The model (equation 1) produced by the TMV analysis provides a good fit to the 

growth rate data at each time point (Fig. 2.3A).  The reaction norms conformed to a 

common shape that was well approximated by a polynomial of degree 3 (see Methods).  

The contributions of the three modes to the variation in shape are illustrated in Figure 2.4.  

Optimal temperature showed the most consistent pattern of evolutionary change, 

increasing from 33.4 to 37.1°C during the experiment, and explained the largest 

proportion (47.38%) of the shape variation (Table 2.1).  Niche width and average growth 
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rate revealed more complex patterns of change (Fig. 2.4, top), and explained 12.65 and 

11.75% of the shape variation, 

respectively.  In total, the modes of 

variation explained 71.79% of the 

shape variation, with horizontal shift 

explaining most of the evolution of 

reaction norm shape (Table 2.1).   

 

Genetic Basis of Reaction Norm Evolution 

In order to identify the mutations responsible for changes in reaction norm shape, 

we sequenced the genomes of the ancestral phage G40 and the evolved phages G420, 
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G450, and G4100.  Genome sequences indicated that 10 mutations fixed during the 100 

serial transfers.  Of these, four were present in G420, one additional mutation was present 

in G450, and the remaining 5 mutations appeared in G4100 (Table 2.2).  Although it was 

not present in phage from later time points, one additional mutation was present in G420.  

The location of the 10 mutations around the genome showed no significant deviation 

from a random distribution among the non-overlapping genes (? 2 = 3.41; df = 7; p > 

0.85).  

An examination of the genomes of 15 natural isolates of G4-like phage [33] 

indicated that four of the ten adaptive mutations are polymorphic in natural populations 

(Table 2.2). This observation allowed us to explore the possibility that variation at these 

sites might underlie variation in thermal performance in natural populations.  To address 

this question, we focused on the single mutation present at transfer 50 that was not 

already present at transfer 20 – gene H: A47V.  This is the only mutation whose 

acquisition was unambiguously associated with an increase in growth rate at the selective 

temperature (41.5oC).  All other increases in growth rate were associated with the 
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acquisition of multiple mutations.  We identified two pairs of closely related phage from  

the natural isolates that differ at this gene H locus (Fig. 2.5A).  In each pair, one genotype 

encodes the mutant amino acid (valine) and the other genotype encodes the ancestral 

amino acid (alanine).  We measured the growth rates of these phages at 39, 41, and 44°C 

and found that growth rate depended on temperature, phylogenetic relationship (pair), 

and genotype at the locus of interest, with significant temperature × pair and temperature 

× genotype interactions (Table 2.3).   Similar to the outcome of the evolution experiment, 

the temperature × genotype interaction among natural phage isolates resulted because the 

A47V mutation was associated with higher growth rates at high temperatures (41 and 

44°C), but not at intermediate temperature (39°C) (Fig. 2.5).  

 

Discussion 

 Holder and Bull [31] demonstrated that the phage G4 adapted rapidly to high 

temperatures (41.5-44°C) from an ancestral temperature of 37°C, and identified specific 

genetic changes associated with adaptation.  They also showed that the increased fitness 
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at high temperatures was not correlated with decreased fitness at the ancestral 

temperature.  In our study we considered adaptation of G4 to high temperature in the 

context of the evolutionary changes in thermal reaction norms over a wide temperature 

range (27-44°C).  Our measurements indicate that evolutionary increases in fitness 

(growth rate) at the selected temperatures (41.5 and 44°C) were associated with 

correlated increases in fitness at temperatures of 39 ºC and above, but with no change or 

decreases in fitness at temperatures of 35°C and below (Fig. 2.3B).  By measuring growth 

rate over a wider range of temperatures, we were able to detect correlated effects of 

selection on performance at high temperatures that were not detected by Holder and Bull 

[31].  However, our data are consistent with the conclusions of Holder and Bull because 

negative correlations arose over only a small subset of the temperature range, and from 

only a subset of the genetic changes. 

 

To provide a more detailed picture of the evolutionary changes in thermal 

sensitivity during adaptation, we applied the TMV statistical method [19] to our data.  

TMV takes advantage of the continuous nature and common shape of thermal reaction 

norms to decompose reaction norm evolution into changes in three underlying 

parameters:  average growth rate (a), niche width (b), and optimal temperature (m).  Our 

analysis indicates that changes in average growth rate, niche width and optimal 

temperature all contributed to the evolutionary changes in thermal reaction norms in this 

study (Fig. 2.4, top), and that these parameters contributed differently to the evolutionary 

changes in growth rate at different temperatures (Fig. 2.4, bottom).  For example, 

adaptation (increased growth rate) at higher temperatures was primarily due to 
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evolutionary increases in optimal temperature, with only small contributions from the 

other two parameters.  By contrast, increased growth rates at temperatures near 35°C 

were due largely to evolutionary increases in average growth rate.   

 

Both horizontal shifts (optimal temperature) and generalist-specialist tradeoffs 

(niche width) can generate patterns of positively and negatively correlated changes in 

performance at different temperatures (e.g. Fig. 2.3B); by using TMV were we able to 

quantify the relative contributions of these modes of variation to reaction norm evolution 

[19].  The TMV analysis confirmed that the largest and most consistent evolutionary 

changes were increases in optimal temperature (Fig. 2.4, top), which accounted for 

47.38% of the shape variation in the data (Table 2.1).  In contrast, generalist-specialist 

variation (niche width) and vertical shifts (average growth rate) contributed only 12.65% 

and 11.75%, respectively, of the shape variation (Table 2.1).    

 

It is worth considering whether the contribution of vertical shifts to reaction norm 

shape evolution in this laboratory population was artificially low because it had been 

previously adapted to 37°C, the standard lab condition [31].  Adaptation to the standard 

lab condition is a common component of microbial evolution experiments, and in this 

case it was intended to exhaust the adaptive genetic variation that was not temperature 

specific – i.e. the adaptive genetic variation composed only of vertical shift.  Our data are 

consistent with the expectation that vertical shifts that occur during adaptation to the 

experimental temperatures should occur only in combination with changes in another 

mode of variation.   
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Although the physiological basis of the thermal adaptation is unknown, horizontal 

shifts are consistent with the idea that increases in protein stability at high temperatures 

result in decreased protein activity (e.g. enzymatic reaction rates) at lower temperatures 

[8].  In addition, the random distribution of mutations among genes is suggestive of 

selection acting for increased protein stability because such selection may be expected to 

act equally on all proteins.  In contrast, selection for particular activities relevant for 

growth high temperature would likely act with different strengths on different proteins.  If 

this biochemical mechanism does explain most adaptation to novel temperatures, it is 

surprising that it has been so difficult to detect trade-offs in fitness in animals.  It is 

tempting to think that the simplicity of the virus life cycle underlies the consistency of 

our finding of horizontal shifts and the expected biochemical underpinnings of thermal 

performance trade-offs.  This is a hopeful perspective because horizontal shifts can be 

exploited in the development of live cold-adapted vaccines, as in [35].  This vaccine 

development strategy adapts viral strains for growth at temperatures substantially below 

human body temperature in an attempt to generate viruses that grow well in cell culture, 

but are avirulent in humans. 

 

Investigating thermal adaptation and constraint 

Temperature adaptation is generally assumed to be governed by performance 

trade-offs across temperatures [15,36], despite a shortage of data demonstrating their 

existence [6].  From the existing data, it is difficult to determine whether trade-offs are in 

fact rare, or whether the data and analysis methods (usually multivariate analyses of 
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variance in performance at a few temperatures) were not sufficiently powerful to identify 

trade-offs.   

 

The primary evidence for the latter explanation is that studies that measure 

performance over wider temperature ranges more often identify trade-offs [16].  Whereas 

studies that measured performance across most of the thermal niche have identified 

thermal performance trade-offs in bacteriophage (this study), bacteria [17,20], and insects 

[16,21], counterparts that measured performance over only a portion of the thermal niche 

often failed to identify trade-offs (e.g. bacteriophage: [31]; bacteria: [37]; insects: [38].  

Similarly, the power of our analysis derived from the measurement of performance over a 

wide temperature range.  Had we measured performance in this study only at 

temperatures between 37°C and 44°C, the TMV method would have misleadingly 

attributed most of the variation in reaction norm shape to vertical shift, and we would 

have concluded that trade-offs did not influence reaction norm shape variation.   

 

The genetic basis of adaptation in laboratory and natural populations  

Whereas adaptation in the laboratory population described here resulted from 

selection acting on new mutations, adaptation in nature may often result from adaptive 

genetic variation that is not new, but already existing in the population.  Whether the 

adaptive mutations identified here also contribute to genetic variation in natural 

populations will depend in part on whether their effects are neutral (or mildly deleterious) 

in the natural thermal environment.  A comparison of the novel genetic variation 

generated in lab adaptation to the standing genetic variation present in nature suggests 
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this may be the case.  We investigated the polymorphism present in natural populations at 

sites that contributed to adaptation in the lab by examining a collection of 15 G4-like 

phage recently isolated from nature [33].  Four of the 10 adaptive mutations were 

polymorphic among these phages.  Most of the polymorphisms were rare, present at 

frequencies of 0.07 or 0.13, as would be expected if these mutations are neutral or 

slightly deleterious in nature.  Furthermore, if we assume that the temperature optimum 

of  ‘lab-naïve’ G4-like phage around 29oC (unpublished data) is indicative of the natural 

thermal environment, then the minimal effects of the lab adaptive mutations at this 

temperature (Fig. 2.3, raw data) also suggest their near neutrality in nature. 

 

To examine whether these mutations do contribute to variation in thermal 

performance in natural populations, we identified one mutation that both contributed 

conclusively to adaptation in the lab and existed in multiple natural phage isolates.  Most 

of the mutations from the laboratory population of G4 occurred in temporal clusters so 

we could not identify their individual effects.  However, a single adaptive mutation in 

gene H (A47V) occurred between transfers 20 and 50.  This mutation is also present in 

two of the 15 G4-like natural isolates.  Similar to its effects in lab adaptation, the 

presence of this gene H mutation in the natural isolates is associated with thermal 

reaction norm shape variation in phages with and without the mutation.  In both the 

experimentally adapted population and among phages isolated from nature, this mutation 

was associated with higher growth rates at high temperatures, but not at low 

temperatures.  Only one of the other mutations that contributed to lab adaptation was 

differentially represented among the hot adapted (NC6 and NC13) and the cold adapted 
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(ID52 and NC19) natural isolates.  That mutation, gene F: P335S, was found only in 

phage NC19, which has an ancestral (cold adapted) allele at gene H: A47V.  If anything, 

the fact that this gene F mutation appears in NC19 should have worked against the 

finding that A47V is associated with adaptation to high temperature in natural phage 

isolates. 

 

The observation that experimental evolution can result in molecular changes that 

converge on natural isolates has been made before.  Wichman et al. [39] made similar 

observations during adaptation of the related phages phiX-174 and S13 to alternative 

hosts.  It is possible that these results are unique to phage because of their large 

population sizes and/or small genomes.  However, it is as likely that these observations 

have been made only in phage systems because, until recently, it has only been possible 

to identify the genetic basis of lab adaptations in phage [40,41].  The ease with which 

ours and the previous study identified genetic variations that are associated with 

phenotypic differences among wild phage suggests that laboratory evolution experiments 

may often predict the precise genetic basis of adaptations in nature. 
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CHAPTER 3. Hotter is better: Investigating thermodynamic constraints on phage 
growth rates.   
 

The work described in this chapter was accomplished in collaboration with Dr. 

Christina Burch. I anticipate submitting this work to American Naturalist sometime in the 

month after my defense.  This work was greatly improved by conversations with Dr. Joel 

Kingsolver, the Function Valued Group, the UNC Evolunch group, and members of the 

Burch Lab – particularly Martin Ferris.  Technical and statistical assistance was 

graciously provided by Drs. J. Steve Marron, Jack Weiss, Rima Izem, and Helen 

Olofsson.   Katie Supler contributed to the collection of preliminary data. 
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Introduction 
 

One central aim of evolutionary biology is to identify patterns of adaptation and 

use this knowledge to predict evolution.  Adaptation to temperature is an important and 

useful model for investigating such patterns due to natural populations experiencing 

predictable and unpredic table variation in temperature [3,4] and its connection to 

biochemical reaction rates. The growth rates of individuals at different temperatures 

depends, in part, on their biochemical reaction rates at those temperatures [42,43]. For 

example, low temperatures typically depress reaction rates (and thus growth rate) in 

comparison to those at high temperatures simply because the collision rate of reactants is 

lower [42]. It is not known if adaptation at low temperatures can overcome this 

depression in rates of reaction.   

 

In this paper, we focus on a hypothesis of thermal adaptation arising from this 

potential constraint on adaptation at cold temperatures. This hypothesis, termed ‘hotter is 

better’, stems from the assumption that adaptation is unable to overcome the rate-

depressing effects of low temperature, therefore causing populations adapted to lower 

temperatures to have lower maximum growth rates than those adapted to higher 

temperatures. This hypothesis predicts a positive correlation between a species optimal 

temperature and its maximum growth rate [44] [45] [27] (Fig. 3.1). If this hypothesis is 

true, then exotherms adapted to warmer environments should have faster growth rates 

than those adapted to colder environments.  It may also explain why endotherms regulate 

at high body temperatures [45].   
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While comparative studies on lizard sprinting speed [46], pine tree growth [47], 

and scallop metabolism [48] are consistent with ‘hotter is better’, to date only one study 

has explicitly tested this hypothesis. In this inter-specific meta-analysis of insect growth 

rate, Frazier and colleagues [7] were able to test ‘hotter is better’ because for each of 65 

insect species they were able to estimate a continuous thermal reaction norm, which is a 

curve relating a continuous trait (e.g. growth rate) to temperature.  From these reaction 

norms, the optimum temperature and maximum growth rate were estimated for each of 

the insect species.  Consistent with the ‘hotter is better’ hypothesis, a significant and 

positive correlation existed between the species optimal temperatures and maximum 

growth rates. However, it is unknown whether the ‘hotter is better’ relationship also 

characterizes variation within a population or whether the ‘hotter is better’ relationship is 

a general pattern across unrelated species. 

 

Here, we explore patterns of thermal adaptation, focusing on an intra-specific test 

of ‘hotter is better’ in a population of bacteriophages.   The growth rates of 15 related G4-

like phages that were isolated from nature were measured with a high level of precision 

over a wide temperature range.  An analysis of these thermal reaction norms showed that 

most of the variation in the phages growth rates is at high temperatures.  As predicted by 
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hotter is better, the correlation between the phages optimal temperatures and maximum 

growth rates is strong and positive – even after we correct for the relatedness of these 

phages.   We are also able to rule out one alternative hypothesis for this pattern.  Our 

results build on the findings of Frazier et al. [7] by confirming that hotter is better also 

characterizes intra-specific variation in thermal reaction norms.  By demonstrating that 

this pattern is true of intra-specific variation, we have taken the first step towards 

determining the genetic basis of this pattern. 

 

Methods   

Strains and Culture Conditions  

The natural isolates of the G4-like phage are described by Rokyta et al. [33], and 

were obtained from H. Wichman (University of Idaho, Moscow, ID).  Culture conditions 

were as in Holder and Bull [31].  Briefly, phage were grown on E. coli C, the standard 

laboratory host of G4, in LB (5 g Yeast extract, 10 g Bacto tryptone, 5 g salt/ 1 Liter ) 

broth supplemented to 2 mM CaCl2, and on LB plates (15% agar).  LB top agar (0.7% 

agar) was also supplemented to 2 mM CaCl2.  Phage were stored for short term (< 1 

week) at 4oC in this growth media, and for long term at -20oC in LB broth supplemented 

to 2 mM CaCl2 and 40% glycerol.   

 

Growth Rate Assays 

Growth rate assays were designed to mimic those of Knies et al. [12]. 60 µl of a 

stationary phase E. coli C culture was used to inoculate 2 ml of LB, and incubated at the 

experimental temperature until the culture reached an optical density (OD600) of 0.6 ± 
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0.06, which corresponds to 2-3  × 108 cells/ml [12].  Approximately 103 - 104 phage were 

added to this exponentially growing culture, and the mixture was grown for 45 minutes, 

at which point the culture was treated with 100 µl chloroform to kill the E.coli.  Phage 

numbers at the start (N0) and end (N45) of the assay were determined by plating and 

incubating the plates until well formed plaques were present.  Since several of the natural 

isolates were temperature sensitive at 37oC, plates were incubated at either 33oC (2.5 – 

4hrs) or 25oC (16 – 24 hrs).  Growth rate was calculated as the increase in phage number 

over 45 minutes: LN (N45/N0).   

 

Estimation of Block/replicate Effect on Growth Rate 

 The growth rates of the 15 natural isolates of G4-like phages were measured three 

times at each of nine temperatures evenly spaced between 17 and 41 °C.  A single block 

consisted of a single measurement of all 15 genotypes at one temperature.    

 

We used an ANOVA (Sokal and Rolf 1995) to assess the effects of block, 

temperature, and genotype on the growth rate of natural phage isolates.  Genotype and 

block were treated as class variables and temperature was treated as a quantitative 

variable.  All the variables were treated as fixed effects.   The analysis was conducted 

using the MIXED procedure in SAS (version 8, SAS Institute, Cary, NC).  The effect of 

temperature on growth rate was modeled as a 3rd order polynomial that was estimated 

from the mean growth rate across genotypes in relation to temperature.  The effect of 

block was modeled as an interaction between temperature and block due to block being 
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nested in temperature.  Residuals were normally distributed (Shapiro-Wilk test: W = 0.98, 

p = 0.30) and homogeneous across temperatures. 

 

The resulting estimate for each block effect was subtracted from the growth rate 

measures from that experiment to produce block corrected growth rate measures.  The 

corrected growth rate measures were used for all subsequent analyses.   

 

Analysis of Reaction Norm Shape  

 Reaction norm curves were estimated with two methods, Template Mode of 

Variation (TMV) and smoothing splines.  The first method assumes that all the curves 

share a common shaped template.  In contrast, the second method does not make the 

assumption of a common shaped template. 

 

TMV 

Reaction norm shape was first analyzed using the statistical method Template 

Mode of Variation (TMV) [19].  Briefly, the TMV approach fits the data to a model 

(equation 1) in which both the common template shape P[t] and the parameters (ai, mi, bi) 

for each genotype are unknowns.  The model is fit by simultaneously optimizing the 

polynomial coefficients and the parameters ai, mi, and bi for each curve to minimize the 

sum of squared errors.  The first order polynomial coefficient of the template shape is 

held at zero to cause the template shape to have a maximum at zero.  This condition 

makes the parameters mi identifiable, and interpretable as the location of the maximum of 

curve i.   



 39 

 

 

 

 

 

 This method has previously been applied to phages thermal reaction norms [12] 

and is described in more detail in [19]. 

 

Smoothing Splines 

 Curves were also fit to the reaction norms by spline interpolation.  Spline 

interpolation uses low-degree polynomials in each of the intervals (between each pair of 

temperature values), and chooses the polynomial pieces such that they fit smoothly 

together.  The smoothness of the splines was estimated from the mean growth rate data 

(over all genotypes) by means of Leave One Out Cross Validation (LOOCV).  LOOCV is 

a model evaluation method that estimates the error of a function by repeatedly creating 

the function using all but one of the data points. This single “left out” data point serves as 

a test which is used to compute the test error.  The test error is the difference between the 

function output given the left out pattern and the desired output.  The cross-validation 

error is the average of all individual errors calculated from the different functions tested 

on their left out pattern [49].   For our model fitting, the different functions tested were 

chosen to have different smoothing parameters: 0.05, 0.1, 0.2, 0.4, 0.8, and 1.6.  The 

global smoothing parameter that minimized cross-validation error was 0.20.  This 

smoothing error was then used to fit splines to each dataset using the csaps function in 
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Matlab (version 6.5, The Mathworks Inc.) Several of these curves were bimodal and thus 

had two optimal temperatures.  For the purposes of this experiment, the optimum having 

the higher maximum growth rate was considered to be the thermal optimum. 

 

Principal Component Analysis 

Reaction norms fit to the growth rate data of the natural isolates are defined by a 

common template shape and the parameters a,b, and m (see equation 1).  These 

parameters were subjected to principal components analysis (PCA) based on their 

correlation matrix.   The analysis was conducted using the PRINCOMP procedure in SAS 

(version 8, SAS Institute, Cary, NC).   

 

Correlation between thermal optima and maximum growth rates 

The phages sequences were available on PubMed (accession numbers are reported 

in [33]).  A phylogeny for these phages was obtained with MRBAYES v3.1.2[50] using 

the GTR + gamma + invariant model of nucleotide substitution and default parameters. 

Convergence was achieved in 100,000 generations with a 10% burn- in.  

 

The correlation measure between the thermal optima and maximum growth rates 

was estimated using the method of least squares. This analysis was performed in 

Microsoft (Redmond, WA) Excel 2004.  This correlation was repeated after controlling 

for phylogenetic relatedness using standardized independent contrasts [51] computed 

with Phenotypic Diversity Analysis Programs [52] [53].  Independent contrasts were 

computed after exponentially transforming branch lengths to eliminate correlations 
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between the absolute values of the independent contrasts and their standard deviations 

[54].   

 

Recombination Test 

 Recombination between the natural isolates was investigated using the Maximum 

Chi-Square method [55] [56], as implemented in RDP Version 2.0 [57].   Maximum Chi-

Square was identified as one of the most powerful and conservative of numerous 

recombination detection methods [58] [56].  The window size used was 0.1% of variable 

sites, gaps were stripped, and the P values were estimated by randomizing the alignment 

1,000 times. A maximum P value of 0.05 was considered significant.   

 

Results 

Variation in thermal adaptation  

To explore patterns of thermal adaptation in a population of G4-like phages, 

thermal reaction norms were generated for the 15 G4-like phages by measuring their 

growth rate multiple times between 17 °C and 41°C (see Appendix A for a description of 

how this experimental design was determined). The relationship between temperature and 

mean growth rate (after subtracting block effects - see Table 3.1) is shown in Figure 

3.2A. Reaction norms generated for all genotypes had the overall shape that is 
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characteristic of thermal reaction norms for fitness and performance [18]. Growth rate 

increased with temperature until a maximum was achieved around 32 °C and declined as 

temperature increased above this maximum.  Substantial variation exists in growth rates 

between the natural phage isolates, especially at high temperatures. 
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To maximize the accuracy in estimating the shape of these reaction norms, curves 

were fit to these reaction norms using the statistical method, Template mode of variation 

(TMV).  This method constrains all the curves to have a common template shape and 

allows the variation in curve shape to be decomposed into biologically relevant modes of 

variation.  The variation in curve shape is achieved via shifting and stretching the curves 

relative to the common shape.  Horizontal shifts in the curves produce changes in the 

optimum temperature, while vertical shifts and curve stretches produce changes in the 

maximum growth rate.  The reaction norms fit to the data by TMV are shown in Figure 

3.2B. Decomposition of the variation in curve shape by TMV explained 66% of the 

variation in curve shape. Of the total variation, 30.36% is due to horizontal shifts – or 

changes in the optimum temperature – while another 35.84% was explained by a 

combination of vertical shifts (17.27%) and stretches (18.57%) of the curve- which 

reflect changes in the maximum growth rate (Table 3.2).  This decomposition indicates 

that there is variation between genotypes in their maximum growth rates and thermal 

optima. 

 

 

 

 

 

 

 

 A Principal Components Analysis (PCA) was used to determine whether a 

general shape characterizes the thermal reaction norms of the phages.  The PCA was 
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performed on the parameter values (a,b, and m) that define the phages reaction norms, 

according to TMV (see equation 1).  PC1 explained 72.1% of the variation in these 

parameters.  PC1 loaded similarly on all 3 parameters- though the load on b was negative 

(Table 3.3).  Using the a,b, and m values that fall along the line define by PC1, it was 

possible to plot the characteristic shape of the thermal reaction norms (Fig. 3.2C).  

Genotypes with the highest optimal temperatures are expected to have the highest 

maximal growth rates.  There also appears to be fitness trade-offs across temperatures, 

such that those genotypes with the highest growth rates at high temperatures have the 

lowest growth rates at low temperatures. 

 

To verify a crucial assumption of TMV, which is that the phages thermal reaction 

norms share a common shape, we also fit curves to the raw data using smoothing splines, 

which do not assume that the datasets share a common shape. The curves fit to the data 

using smoothing splines are shown to be very similar to those fit to the data with TMV 

(Fig. 3.4: compare solid lines to dashed lines).   

 

  



 45 

Hotter is better: A positive correlation exists between a phages thermal optimum 

and maximum growth rate 

To estimate the correlation between the thermal optima and maximal growth 

rates, these parameters were estimated from the continuous reaction norms fit to the raw 

data with the statistical method TMV. The estimated optimum temperature varies 

between 28.7oC and 35.5oC.  The estimated LN maximum growth rate varies from ~2 – 5 

(7.4 – 148.4 fold increase in phages/45 minutes). There exists a significant and positive 
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correlation between the optimum temperature and maximum growth rate (R2 = 0.83, 13 

df, p <0.0001) (Fig. 3.4). When this correlation is corrected for the relatedness of the 

phages using Felsenstein’s independent contrasts, there is still a significant and positive 

correlation between optimum temperature and maximum growth rate (R2 = 0.76, 13df, p 

< 0.0001).  The correlation between the thermal optima and maximum growth rates is 

weaker, though qualitatively the same when these parameters are estimated from the 

smoothing spline functions fit to the raw data (R2 = 0.39, 13 df, p = 0.0126). 

 

To explore the possibility that this 

correlation is not due to “hotter is better”, 

we considered whether our results could be 

due to colder environments favoring 

thermal generalists.  If this was the case, 

then maximum growth rate might be lower 

in the natural isolates adapted to lower 

temperatures as a result of a trade-off 

between thermal niche and maximum growth rate [36] [59] [13] [60].  Here, thermal 

niche is defined as the temperature range over which a phages growth rate is greater than 

0.  We tested this alternative by calculating the thermal niche for each of the natural 

isolates and measuring the correlation between thermal niche and maximum growth rate.  

There exists a significant and negative correlation between thermal niche and maximum 

growth rate (R2 =0.98, 13df, p< 0.00001), which allows to reject this alternative 

hypothesis.  
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 It is possible that the mechanism underlying ‘hotter is better’ is that the phages 

maximum growth rate is simply a function of the growth rate of its host, E.coli C.  To 

explore this alternative hypothesis, we have begun to measure the growth rate of E.coli C 

at high (35.6°C) and low (29.4°C) optimal temperatures of the phage.  Pilot data indicates 

that E.coli C grows 57 % faster at the higher optimal temperature as compared to the 

lower.   

 

Discussion 

We explored patterns of thermal adaptation in a population of bacteriophages by 

measuring the growth the growth rates of these phages over a wide temperature range.  A 

visual inspection (Fig. 3.2A and B) of the reaction norms generated for these phages 

showed that most of the variation in their growth rates is at high temperatures.  Similarly, 

the phages showed considerable variation in the upper limit (35.7 - 45.87oC) of their 

thermal niche, but little variation in their lower limit (20.8 - 23.7oC).  By characterizing 

the general nature of the phages reaction norms (Fig. 3.2C), we showed that genotypes 

with high optimal temperatures tend to have performance trade-offs at low temperatures.   

In addition these same genotypes are predicted to have higher maximal growth rates than 

genotypes with low thermal optima. 

 
The general nature of the phages reaction norms (Fig. 3.2C) is consistent with the 

hypothesis that adaptation cannot overcome thermodynamic constraints at cold 

temperatures, or ‘hotter is better’.  These thermodynamic constraints are expected to 

cause the growth rate of cold adapted genotypes to be lower than the growth rate of hot 
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adapted genotypes at their thermal optimum.  This hypothesis was qualitatively assessed 

by examining the general nature of the phages thermal reaction norms (as described 

above) and quantitatively tested by estimating the thermal optimum and maximum 

growth rates of the phages from their continuous reaction norms. A strong and positive 

correlation exists between the thermal optima and maximum growth rates of the phages 

(Fig. 3.4). The demonstration of the positive correlation between optimal temperature and 

maximum growth rate for very different organisms (phages: our study, insects: [7]; E.coli 

natural isolates (results not shown) from [20].) supports the mechanism proposed for this 

pattern – that there are underlying biochemical constraints that limit adaptation to cold 

temperatures across all organisms. 

 
Alternative Hypotheses 

The correlation between the thermal optima and maximum growth rates could be 

explained by other underlying causes besides thermodynamic constraint limiting phage 

adaptation at colder temperatures.  Two alternative hypotheses for the observed 

correlation are that: (1) there is selection for thermal generalists at colder temperatures, 

and (2) the slower growth rates of the phages host (E.coli C) at colder temperatures limits 

the phages growth rates at these temperatures.  The first alternative hypothesis makes two 

assumptions.  The first is that phages in colder environments experience more thermal 

variation than those in warmer environments and the second assumption is that there is a 

trade-off between maximum growth rate and thermal niche width.  The hypothesis would 

predict phages with lower maximum growth rates will have wider the rmal niches and 

those with higher maximum growth rates would have narrow thermal niches.  This trade-

off between niche width and maximum growth rate is not evident in the curves describing 
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the general nature of the reaction norms (Fig. 3.2C).  In addition, we tested this 

hypothesis by calculating the correlation between thermal niche and maximum growth 

rate as estimated from the continuous reaction norms of the phages.  We found that these 

two parameters are strongly negatively correlated and so are able to reject this hypothesis.   

 

The second alternative hypothesis for the observed correlation between optimal 

temperature and maximal growth rates is that the phages growth rate constrained by the 

growth rate of its host, E.coli C. Pilot data indicates that the growth rate of E.coli C 

differs 57 % between the lowest (29.4°C) and highest (35.6°C) optimal temperatures of 

the phages.  At the highest optimal temperatures of the phages, E.coli C is probably 

dividing 1 additional and the phage may be getting 1 addit ional infection, which 

translates into 2-3 additional rounds of replication.  Over this temperature range (29.4°C - 

35.6°C), the maximum growth rate of the phages is predicted to differ by ~ 2000 %.   To 

think about whether this difference of 2000% in phage growth rates can be explained by 

an extra 2-3 rounds of replication, assume that a bacterium infected by a single phage will 

yield 10 progeny phage.  Two additional round of replication would result in a total of 

1000 phage and three additional round of replication would result in 10,000 progeny 

phage, which is 1000 times more than a single round of replication.  We can therefore not 

reject the possibility that differences in the host’s growth rate explain most of the 

observed differences in phage growth rates.   

 
 
 



 50 

 
Thermodynamic Constraints  

We have the unique ability to compare patterns of thermal adaptation and 

constraint in natural isolates of G4 (this study) to a lab population adapted to a single 

temperature (Chapter 2).  In Chapter 2, the growth rates of isolates from a lab adapted 

population were measured and these growth rates were fit with continuous curves using 

the same statistical method used here – TMV.  In this chapter, the general shape of 

reaction norms of both datasets was characterized with a combination of Principal 

Component Analysis and TMV (compare Fig. 3.2C to Fig. 3.5).  Obvious similarities 

exist between the reaction norms of these two datasets.  The most noticeable pattern is the 

positive relationship between maximum growth and thermal optima (e.g. ‘hotter is 

better’).   In addition, those genotypes with the highest fitness at high temperatures have 

the lowest fitness at low temperatures.    

 These results provide strong support for two hypothesized constraints of thermal 

adaptation: (i) thermodynamic constraints at low temperatures prevent adaptation from 

overcoming the rate- liming effects of temperature on enzymatic reactions, and (ii) 

adaptation to higher (or lower) temperatures results in a loss of fitness at lower (or 

higher) temperatures. 



CHAPTER 4. Exploring the Genetics and Proximate Mechanisms of Thermal 
Adaptation in the Bacteriophage G4 
 

The work described in this chapter was accomplished in collaboration with 

Matthew Kasold, Katie Supler, and Dr. Christina Burch.  At this point, I anticipate that 

this project would need more work (replication of the evolved phage lines) to be 

submitted for publication.  This work was improved by conversations with members of 

the Burch lab.  
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Introduction 

Identifying patterns of thermal adaptation provides useful insights for evaluating 

and predicting future thermal adaptation events.  Observed patterns of thermal adaptation 

include constraints that limit adaptation at specific temperatures [7] and trade-offs in 

fitness at different temperatures [12,19].  Fitness trade-offs across temperatures most 

likely reflect underlying biochemical trade-offs, but the biochemical bases of these trade-

offs is largely unknown. 

 

One observed biochemical trade-off is between thermostability and catalytic 

activity in enzymes from organisms inhabiting different thermal environments.   At high 

temperatures, selection is thought to favor increased thermostability at the cost of the 

selected enzymes being less flexible and thus less active at lower temperatures [8,61].  In 

contrast, at low temperatures, selection is thought to favor increased flexibility (for 

activity) at the cost of protein stability at high temperatures [62]. This trade-off between 

catalytic activity and stability has been observed in natural populations inhabiting 

different thermal environments [8].  However, directed evolution experiments have been 

able to evolve enzymes that have both high thermostability and high catalytic activity in 

the absence of a biological system (reviewed in [10]).  It is not clear whether the 

observed trade-offs are due to biological constraints or due to natural populations 

accumulating mutations that are deleterious at temperatures that they do not experience 

[63].   
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Laboratory experiments under controlled selective temperatures are a powerful 

way to address the adaptive processes behind thermal adaptation [29,31,64].  Previous 

laboratory studies have been sufficiently powerful to demonstrate performance trade-offs 

across temperatures and have identified the genetic basis of thermal adaptation 

[12,65,66], but rarely address the biochemical mechanisms of thermal adaptation.  A 

notable exception is the experiment conducted by Counago et al. [65], in which a 

bacterial population was adapted to an increasingly hot environment and the stability and 

activity of a single enzyme was monitored during adaptation.  This single enzyme had 

been replaced by a homologue that performed well at low temperatures and did not 

perform well at high temperatures.  As the temperature of the environment increased, this 

enzyme evolved to have a higher melting temperature and optimal temperature for 

activity.  One difficulty inherent to this single enzyme approach is that it can only detect 

mutations occurring in the enzyme being examined.  By focusing on a single trait, such as 

the ability of a particular enzyme to perform well at high temperatures, one loses the 

ability to study the genetics of adaptation for more complex traits underlain by multiple 

genes (e.g. fitness).   

 

In order to investigate the genetics and proximate mechanisms of thermal 

adaptation of a complex trait - fitness, we adapted the bacteriophage G4 to four novel 

temperatures, two above and two below the optimal temperature of the ancestral 

genotype.   This experimental design allowed us to compare and contrast adaptation at 

different temperatures through a combination of whole genome sequencing, 
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characterization of the nature of the accumulated mutations, and measurement of the 

thermal stability of the evolved and ancestral phages.   

 

Two results suggest that adaptation to high temperatures occurs in a more 

consistent manner than adaptation to low temperatures.  First, since increased 

hydrophobicity has been associated with increased thermal stability and adaptation to hot 

environments in natural populations [67], the change in hydrophobicity was measured at 

each residue at which a mutation occurred.  Consistent with observations in natural 

populations, we found that the mutations that accumulated in the hot lines consistently 

increased hydrophobicity at the affected residues.  In contrast, the mutations that 

accumulated in the cold lines had no consistent effect on hydrophobicity.  Secondly, the 

sensitivity of the phages to heat was assessed to determine if the accumulated mutations 

affected the thermal tolerance of the evolved phage.  An analysis of the thermal stability 

of the evolved and ancestral phages using Gompertz survival curves showed that the hot 

adapted lines are less sensitive to heat than their ancestor.  The lines evolved at low 

temperatures showed inconsistent changes in their sensitivity to heat – one line was 

virtually unchanged compared the ancestor and the other was slightly less sensitive to 

heat. 

 

Materials and Methods  

Phage and Culture Conditions  

The bacteriophage G4 is a single stranded lytic phage with a 5.5kB DNA genome 

that infects the bacterium Escherichia coli.   Culture conditions were as in Knies et al. 



 55 

[12].  Briefly, phage were grown on E. coli C, the standard laboratory host of G4, in LB 

(5 g Yeast extract, 10 g Bacto tryptone, 5 g salt/ 1 Liter ) broth supplemented to 2 mM 

CaCl2, and on LB plates (15% agar).  LB top agar (0.7% agar) was also supplemented to 

2 mM CaCl2.  Phage were stored for short term (< 1 week) at 4oC in this growth media, 

and for long term at -20oC in LB broth supplemented to 2 mM CaCl2 and 40% glycerol.   

 

Selective Conditions  

Four independent populations of the bacteriophage G4 were adapted to the 

following temperatures:  25°C, 31°C, 39°C, and 41°C.  The populations at 31°C and 

39°C were evolved for 50 transfers of 45 minutes in length each, while the populations at 

25°C and 41°C were evolved for 100 transfers of 60 minutes in length (Fig. 4.1).  The 

longer transfer times were required so that the populations at the extreme temperatures 

(25°C and 41°C) could successfully be transferred at the beginning of the experiment 

without going extinct due to slow growth rates at these temperatures.  A single transfer 

consisted of adding approximately 1x106 phages to an exponentially growing culture of 

E.coli C, allowing the phages to grow for 45 or 60 minutes, and then treating the culture 

with 500 µl chloroform to kill the bacteria.  A dilution of the phages was then transferred 

to another flask containing exponentially growing bacteria.  Phage density was 

determined at the start (N0) of every transfer by plating.  Growth rate per transfer was 

calculated by estimating the density of phage at the end of every transfer from the density 

of phage at the beginning of the next transfer and calculating the natural log of the 

increase in phage number over the transfer time (e.g. (ln (N45/N0))/45.   
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Sequencing 

Genome sequences were obtained from PCR products using sequence specific 

primers. Each genome was amplified in two overlapping segments, and its sequence was 

determined from 12 overlapping chain- termination sequencing reactions off the same 

strand. The following lists the G4 primer pairs, with the nucleotide position of each 

primer based on GenBank accession number J02454 ,followed by its length in 

parentheses: 492+(18), 1039+(18), 1593+(18), 2094+(18), 2610+(18), 2746+(19), 

3295+(18), 3782+(18), 4336+(18), 4831+(18), 5317+(18), 5557+(20). Sequences were 

aligned and analyzed in Sequencher (version 4.5, Gene Codes Corporation, Ann Arbor, 

Michigan, United States). Any ambiguous bases were sequenced again. An isolate of 

each evolved population was selected as the most representative isolate based on the 

consensus sequence of the population and used for all subsequent analyses.    

 

Thermostability Assays 

The phage DNA is encased in a protein coat, called the capsid, and the 

maintenance of the capsid structure is integral to the phages survival.  The capsid 

structure is maintained by intra and inter protein bonds among the proteins composing the 
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capsid (the F and G proteins).  Mutations accumulating in these proteins may affect these 

bonds and strengthen or weaken the stability of the capsid at high temperatures.   

   

  To measure the sensitivity of the phages capsid to heat, approximately 5x108 

phages in ½ ml of media were subjected to a gradual increase in temperature (from 35oC 

to 80oC at the rate of 1oC/minute).  As the temperature increases, the intra and inter 

molecular bonds stabilizing the phage capsid are expected to become destabilized, 

leading to a disassociation of the phage components and a loss of viability.  The titer of 

the surviving phages in this first aliquot was measured at 45°C.   This entire process was 

repeated to obtain independent measures of the surviving phage once the temperature 

reached 50, 55, 60, 65, 70, 72, 74, 76, 78 and 80°C.   This experiment was conducted 

simultaneously for all 5 genotypes (the 4 evolved genotypes and their ancestor) at the 

same time, referred to as a block.  This block experimental design was performed three 

times.   

 

Statistics 

Adaptation of the evolved lines was assessed in two ways.  For all the evolved 

lines, a linear regression was used to find the best fitting line describing growth rate in 

relation to transfer number.  The null hypothesis was that adaptation did not occur in 

which case the slope of the best fitting line would not be significantly different from zero.  

This analysis was conducted using the REG procedure in SAS (version 8, SAS Institute, 

Cary, NC).  In all cases, a visual assessment of the model residuals in relation to transfer 

number confirmed the appropriateness of a linear model.  For the 31oC evolved line, 
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which did not have a significantly positive slope, a t-test was used to compare the 

difference between replicate (n = 3) growth rate measures of the ancestral and evolved 

genotype at the selective temperature.  The null expectation was that adaptation did not 

occur in which case the difference between growth rate of the ancestral and evolved line 

at the selective temperature would not be significantly different from zero.  This analysis 

was conducted in Microsoft (Redmond, WA) Excel 2004. 

 

Chi-squared tests were performed to determine whether the location of mutations 

accumulated during adaptation differed significantly from a random distribution among 

genes.   Since each evolved line had only accumulated 2-5 mutations, we did not perform 

chi-squared tests on each line, but rather combined the cold lines into one analysis and 

the hot lines into another for a total of two chi-squared tests.  These analyses were 

conducted in Microsoft (Redmond, WA) Excel 2004. 

 

The change in hydrophobicity at each affected residue was calculated and then 

paired one-tailed t-tests were performed to determine whether the mean change in 

hydrophobicity differed significantly from zero.  These analyses were conducted in 

Microsoft (Redmond, WA) Excel 2004. 

 

To analyze the results of the thermal stability experiment, the data were fitted to 

three functions traditionally used [68,69] to analyze survival data: the Weibull, 

Gompertz, and Logistic functions [70-72].   Each function was fit to the log of the 
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survival data and the equations shown below are those that were solved for using the 

NLIN procedure in SAS (version 8, SAS Institute, Cary, NC). 

Weibull: 
 
Log(Survival) = log(exp(-(a/g)((Temperature-44.99)g))); 
 
Gompertz: 
 
Log(Survival) = log(exp((A/G)*(1-exp(G*(Temperature-45))))); 
 
Logistic: 
 
Log(Survival) = log(1/(1+(((Temperature-44.99)/v)w))). 
 
In these equations, a and g are respectively the shape and scale parameters describing the 

Weibull curve shape, A and G can be used to calculate the mortality rate from the 

Gompertz curve, and v and w are respectively the median temperature of inactivation and 

a measure of the rectangularization of a survival curve.  These functions are normally 

used for survival data that begins at time 0, but for this analysis, it was necessary for the 

function to be shifted over to start at 45°C (thus, ‘Temperature-44.99’).     

 

To determine a global best fit function, each of these functions was fit to a 

combined dataset having survival data for all genotypes at all temperatures and from 

every experiment.  All functions were confirmed to have converged on parameters that 

minimized the sum of squares.  The Gompertz function was found to minimize the 

residuals and the data from each genotype was then fitted by the Gompertz function.   

 

Results 
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Phage populations were adapted to 2 temperatures above, 39°C (G439), and 41°C 

(G441), and below, 25°C (G425) and 31°C (G431), the thermal optima of their ancestor 

G4ANC (~37°C).   To confirm that each population adapted to its selective temperature, 

the relationship between ln(Growth rate) and transfer number was determined using least 

squares linear regression.  In all of the adapted lines, except G431, the slope of this line is 

significantly greater than zero (Table 4.1).  A separate experiment measured the growth 

rate of the 31oC population after evolution for 50 transfers and G4ANC at 31oC and found 

that the growth rate of G431was significantly greater than that of G4ANC (p-value = 0.02).   

 

Genetic Basis of Thermal Adaptation  

Consensus population sequencing allowed us to identify the mutations 

accumulated during evolution and to choose a representative isolate to use for all 

analyses.  The representative isolates from the thermal regimes will be referred to as 

G425-I, G431-I, G439-I, and G441-I. We identified a total of 13 mutations across all 4 lines 

(Table 4.2).  The low temperature lines had a total of 5 mutations, 2 in G425-I and 3 in 

G431-I.  The high temperature lines had a total of 8 mutations, 3 in G439-I and 5 in G441-I.  

There was no parallel genetic adaptation between the hot and cold lines and only one 

parallel mutation between the hot lines (gene F: P355S).  This mutation was also seen in 
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a previous experiment that adapted a single G4 population to hot temperatures (G444) 

[31].  Two additional mutations (gene B: T103A and gene H: G424D) that accumulated 

in G441 and one mutation (gene H: A47V) that appeared in G431-I also fixed in G444.   

 

Neither the hot nor the cold lines show evidence of clustering of mutations among 

non-overlapping genes (hot lines: ? 2 = 5.18; df = 7; p > 0.50; cold lines:  ? 2 = 5.32; df = 

7; p > 0.50).   Since it is possible that there were too few mutations to detect nonrandom 

clustering of the mutations, we also analyzed an expanded dataset of high temperature 

adaptive mutations.  This expanded dataset included 19 mutations and combined all the 

mutations from G439, G441, and G444.  However, an analysis of this expanded dataset also 

found no evidence of clustering of mutations among non-overlapping genes (? 2 = 2.41; 

df = 7; p < 0.95).   

 

Because increases in amino acid hydrophobicity have been associated with 

adaptation to thermophilic environments in nature [67], we examined the change in 
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hydrophobicity at every amino acid that accumulated a change during adaptation.  In the 

high temperature treatment, 7 out of 8 mutations increased the hydrophobicity at the 

amino acid at that position according to the Kyte and Doolittle hydropathy index [73].  In 

contrast, in the low temperature treatment, there is no apparent pattern in hydrophobicity 

change.  One-tailed paired t-tests confirmed that the mean change in hydrophobicity is 

significantly positive (p = 0.045) and not significantly different from zero (p = 0.45) in 

the high and low temperature lines respectively.   
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Thermo tolerance/ stability 

To determine the effect of accumulated mutations on the sensitivity of the phages 

capsid to heat, phages survival was measured as the temperature increased from 35°C to 

80°C.  It was expected that with increasing temperature, the intra and inter molecular 

bonds maintaining the capsid structure would become destabilized and eventually result 

in phage inactivation. As expected, as temperature increase, the fraction of the surviving 

phage decreases (Fig. 4.2).  We explored methods for analyzing the survival data by 

fitting the Weibull, Gompertz, and Logistic survival functions to the complete survival 

dataset (5 genotypes x 10 temperatures x 3 replicate measures/temperature).  All three of 

the best fit curves fit the survival data well at high temperatures (70-80°C), but none of 

these curves were able to satisfactorily fit the survival data between 55 and 60°C.  The 

Gompertz function was determined to be the best fit of these 3 functions to the phages 

survival data because it explained the greatest amount of variation in the global survival 

dataset (Fig. 4.3 and Table 4.3).    
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To analyze evolved differences in capsid sensitivity, we fit the Gompertz function 

to the survival data of each genotype.  If the accumulated mutations affect the sensitivity 

of the phage capsids to heat, then the evolved phages survival would differ as compared 

to their ancestor and that survival differences would be magnified with increasing 

temperature.  The best- fit curves as determined by the Gompertz function are shown in 

Figure 4.4 (parameter estimates are in Table 4.4).  There are two ways that the best fit 

curves of the evolved phages differ from their ancestor.  First, the capsid of G425-I 

appears to have a reduced sensitivity to heat from 45-70°C, but this difference is not 

magnified with increasing temperature.  Second, the capsids of the high temperature 

lines, G439-I, and G441-I, are less sensitive to heat above 65C° and this difference in 

survival is magnified with increasing temperature.   

 

Discussion  

In this study we used the bacteriophage G4 to investigate the genetics and 

proximate mechanisms of thermal adaptation.  In contrast to the study by Counago [65] 

in which a single-enzyme approach was taken to investigate adaptation to high 
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temperatures, we chose to look at thermal adaptation of a more complex trait, fitness, at 

high and low temperatures.  The results of our study indicate that adaptation to high 

temperatures is more predictable than adaptation to low temperatures and is associated 

with increased amino acid hydrophobicity and thermo tolerance.  It may be that we have 

not found the traits that characterize adaptation at low temperatures.   

 

Increased hydrophobicity is positively correlated with increased thermal stability 

in enzymes from natural populations inhabiting thermophilic environments and in 

enzymes evolved at extreme temperatures in directed evolution experiments [67,74,75].  

Consistent with this data, in our high temperature lines, the accumulated mutations 

increased hydrophobicity at their amino acid residues, but in the low temperatures lines, 

the accumulated mutations had no significant effect on hydrophobicity.   

 

Increased thermo tolerance/stability is also associated with adaptation to 

thermophilic environments [8].   At high temperatures, stability of proteins is expected to 

be under strong selection to prevent denaturation. Consistent with this hypothesis, 

mutations in the high temperature lines confer increased thermo tolerance at high 

temperatures as compared to the ancestral phage.  In contrast, the genetic changes in the 

cold temperature lines had more complex effects on thermo tolerance.  In one line, the 

thermo tolerance of the evolved phage was actually greater than that of the ancestor at 

low-intermediate temperatures.  In the other line, the thermo tolerance of the evolved 

phage was consistently a little bit lower than that of the ancestor.   
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While few parallel genetic changes were observed between the evolved lines, one 

notable mutation (gene F: P355S) was shared between our two high temperature lines 

(G439, G441) and the line (G444) from [31].  We can hypothesize the effect of this mutation 

at high temperatures given that is effect on fitness at high temperature has previously 

been shown to be beneficial [31] and from knowledge of the function of gene F.  The 

advantage conferred by this mutation at high temperature may be that it increases the   

stability of G4 during phage morphogenesis.   During phage morphogenesis, the phage 

capsid assembles via aggregation of its component proteins – including the F protein – 

and binding between F proteins is thought to make these aggregations energetically 

favorable.  The site that was mutated in our lines, gene F: 355, is adjacent to two site (354 

and 356) known to respectively be involved in binding to other F proteins and be 

important for protein- water interactions [76]. We hypothesize that the amino acid change 

at this site stabilizes the binding between the adjacent amino acids and their binding 

partners.  This hypothesis could be tested by creating phage identical except for this 

single mutation and then measuring the rate at which the capsid intermediates assemble 

for phage with and without this mutation. 

 
While we did not anticipate that the populations adapted to low temperatures 

would show no change or increases in thermo tolerance, this result is consistent with 

directed evolution experiments on enzymes (reviewed in [10]).  In these experiments, 

enzymes are selected based on their performance at a selective temperature and their 

evolution is independent of a biological system.  In the absence of biological constraints, 

it has been possible to evolve enzymes at low temperatures that maintain a high stability 

and a high catalytic activity.  Similar results have been achieved for the evolution of 
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enzymes at high temperatures.  Our results, combined with those of Counago et al. [65], 

and those from the directed evolution experiments on enzymes [10] indicate that the 

trade-offs observed between stability and catalytic activity may not due to biochemical 

constraints and might simply be a consequence of natural populations living in their 

thermal environment for many generations. 

 

Future Directions 

While our experiment is an improvement over previous studies of thermal 

adaptation, it has a few limitations that have impacted our findings.  First, if more 

populations had been adapted to a particular thermal regime, a greater number of 

mutations would have accumulated, and we would have more power to detect nonrandom 

clustering of the mutations accumulated during evolution.  This problem is mostly 

pertinent to the cold adapted lines: these two lines only accumulated 5 mutations.  

Another reason for evolving additional lines at cold temperatures is that the temperatures 

at which the cold populations evolved at may not have been extreme enough to result in 

the predicted decrease in thermostability at high temperatures.  The second and greater 

limitation of our study is in our analysis of the thermo tolerance experiment.  We used 

Gompertz curves to fit curves to the survival data, however, these curves can not capture 

the shape of the raw data between 50 and 60°C.  One solution to this problem would be to 

fit the survival data with splines, which are more flexible, yet have less interpretable 

parameters. 
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In sum, our data suggests that there are predictable mechanisms of adaptation to 

high temperatures- namely increased thermal stability.  We demonstrated this both in our 

genetic data and phenotypic characterization of the phages thermal stability.  Increased 

replication of the number of populations and more thermal stability experiments would 

strengthen this conclusion.
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CHAPTER 5. Compensatory evolution in RNA secondary structures increases 
substitution rate variation among sites. 
 The work described in this chapter was accomplished in collaboration with 

Kristen Dang and Drs. Todd J. Vision, Noah G. Hoffman, Ronald Swanstrom, and 

Christina L. Burch.  I anticipate that this chapter will be submitted to Molecular Biology 

and Evolution before my defense date.  Technical assistance and advice was graciously 

provided by Drs. Stefanie Hartmann, Sergei Kosakovsky Pond, and Derrick Zwickl. 
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Introduction 

 Compensatory mutations, or mutations that are individually deleterious but 

neutral or beneficial in combination, permit deleterious mutation to be fixed without 

causing a net fitness loss (Poon and Otto 2000).  Experimental evidence from laboratory 

populations shows that most deleterious mutations can be compensated by numerous 

mutations at alternative sites (Burch and Chao 1999; Poon and Chao 2005) and that 

fitness recovery following the fixation of a deleterious mutation most often occurs via 

compensatory rather than back mutations (Schrag, Perrot, and Levin 1997; Maisnier-

Patin et al. 2002; Hoffman, Schiffer, and Swanstrom 2005).   

 

 Kimura developed a population genetics model in which deleterious and 

compensatory mutations arise within a single genome during the time when both 

mutations are rare in the population and they occasionally drift to fixation as a pair 

(Kimura 1985).  Because genomes with low fitness are not required to become fixed in 

this process, compensatory mutations are predicted to contribute to divergence even if 

their individual deleterious effects are large, and even in large populations.  However, 

because the waiting time until both compensatory mutations arise in the same genome is 

longer than the waiting time for an independent neutral mutation to arise, the rate of 

molecular evolution is predicted to be lower at compensatory sites than at independently 

evolving neutral sites. 

 

 The contribution of compensatory mutations to molecular evolution in natural 
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populations has been most thoroughly investigated in regions of RNA secondary 

structure.  RNA secondary structure offers a convenient model for investigating 

compensatory evolution because individual sites are readily identified as independently 

evolving (unpaired sites) or involved in a compensatory interaction (stems or paired 

sites).   Compensatory evolution clearly plays a role in the evolution of these regions 

because mutations in stems are generally accompanied by compensating mutations that 

maintain base pairing in the stem (Kirby, Muse, and Stephan 1995; Wilke, Lenski, and 

Adami 2003). In addition, the rates of substitution at compensatory and independent sites 

in RNA secondary structures show the pattern predicted by Kimura’s compensatory 

neutral model (Stephan 1996; Innan and Stephan 2001).   This difference in substitution 

rates at compensatory and independent sites is used to predict secondary structure 

{Pedersen et al 2004; Muse 1995}.   

 In addition to the slowdown in molecular evolution predicted at compensatory 

sites, inherent differences in rates are also expected to be exaggerated at paired sites in 

RNA.  Specifically, we expect the ratio of transitions to transversions to be exaggerated 

in the pairing regions.  This expectation is derived from the biochemical constraints of 

base pairing, where a transition mutation can only be compensated for by other transition 

and likewise for transversions.  Since transitions occur more frequently than 

transversions, transition will be compensated for more quickly than transversions, 

resulting in an elevated transition: transversion rate ratio (κ ) at compensatory sites. 

 Here, by extending Kimura’s model specifically to molecular evolution in RNA 

secondary structures, we make the prediction that the transition to transversion 

substitution rate ratio (κ at paired sites should be the square of that for unpaired sites, all 
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other factors being equal.  We tested this prediction in eight functionally and 

taxonomically diverse RNA molecules and found common, but not universal, quantitative 

agreement with the model.  The prediction that we test may be useful in increasing the 

accuracy of methods of RNA secondary structure prediction. 

 

Kimura’s model of compensatory neutral evolution  

 Following Kimura (1985), we consider the substitution process at a pair of loci 

involved in a compensatory interaction in a diploid population of size N (equivalent 

results are obtained for a haploid population of size 2N).  Let ? ?represent the rate of 

mutation from the wild type to the mutated allele at both loci? and ignore back mutation 

by assuming that selection is sufficiently strong to keep both mutations at a low enough 

frequency that back mutations are improbable.  Selection is assumed to act equivalently 

on mutations at both sites, so that the fitness of genomes containing either one of the two 

mutations is 1 – s.  Because the two mutations are involved in a compensatory 

interaction, however, the fitness of genomes that contain both mutations is equivalent to 

the wildtype (i.e. fitness = 1).  Finally, we assume that the loci are sufficiently close 

together that recombination between them can be ignored.  This last assumption is 

reasonable for pairing sites within RNA secondary structures. 

 In Kimura’s model, the deleterious mutations are assumed to be present initially 

at an equilibrium frequency determined by the balance between mutation and selection.  

At this equilibrium the expected number of alleles carrying either one of the two 

deleterious mutations is sN /4 µ .  Compensating mutations are assumed to arise in 



 74 

genomes that already carry an initial deleterious mutation at rate µ, and the probability 

that the newly arisen deleterious – compensatory pair of mutations drifts to fixation in the 

population is N2/1 .  Combining these effects, the substitution rate at sites involved in 

compensatory interactions is predic ted to be: 

 dC =
4Nµ
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1
2N
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2µ2

s
 (1). 

Equation (1) is equivalent to equation (8b) of the bidirectional, symmetric model of 

Stephan (Stephan 1996).  We can compare this compensatory substitution rate to the 

expectation at independently evolving neutral sites (Kimura 1985): 
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Now we consider evolution in two classes of sites – one class in which both sites 

participating in the compensatory interaction mutate at a faster rate µ 1, and one class in 

which both sites mutate at a slower rate µ 2.  We find that the ratio of the substitution rate 

between the two classes of sites: 
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 is the square of the ratio at independently evolving neutral sites: 
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 To adapt this scenario to the evolution of RNA secondary structures, we make use 
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of the widespread observation that transition mutations (purine-to-purine or pyrimidine-

to-pyrimidine) are generally more common than transversion mutations.  Furthermore, 

we note that a transition mutation in one side of an RNA stem structure can only be 

compensated by another transition mutation, and likewise for transversions.  Thus, we 

expect two rates of compensatory evolution, one for transitions ( sd TiTiC /2 2
, µ= ) and 

another for transversions ( sd TvTvC /2 2
, µ= ).  By assuming that selection against both types 

of deleterious intermediates acts with the same strength, we predict that the rate ratio of 

transition to transversion substitutions (κ ) in paired regions of RNA secondary structure 

(stems) should be:  
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 which is again the square of the rate ratio in unpaired regions (loops): 
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Methods 

To test the predictions of the model, we selected eight RNA molecules with well-

documented secondary structures for which a large number of diverse sequences are 

available.  For each set of sequences, a multiple alignment and phylogeny was inferred.  

The value of κ was then estimated for paired vs. unpaired sites and a test was performed 

to determine if these two values differed significantly. 
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Sources of sequence data and secondary structures 

Sequences were obtained from a variety of sources, as listed in Table 5.1.   For each 

molecule, sequence positions were classified as either paired or unpaired.  In most cases 

we used structures reported in the literature: RRE (Phuphuakrat and Auewarakul 2003), 

CRE (Tuplin et al. 2002; Tuplin, Evans, and Simmonds 2004), 12SrRNA (Springer, 

Hollar, and Burk 1995).  Structures for IRES, 5S rRNA (Fox and Woese 1975), (Specht, 

Wolters, and Erdmann 1991), and RNase P (Haas et al. 1991) were obtained, 

respectively, from the Viral RNA Structure Database (Thurner et al. 2004), the 5S 

Ribosomal RNA Database (Szymanski et al. 2002), and the RNase P database 

(http://www.mbio.ncsu.edu/RNaseP/home.html) (Brown 1999; Harris et al. 2001).  

Finally, tRNA structures were obtained using Mfold v. 3.0 

(http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html) (Zuker 2003)   with 

manual adjustments to fit the canonical model described in Sprinzl (Sprinzl et al. 1998). 

 

Alignment and phylogenetic Inference 

The sequences were either obtained having already been aligned or aligned de 

novo in ClustalW (Chenna et al. 2003) or MAFFT (Katoh et al. 2005). The alignments 

used for all analyses are available on request. We constructed phylogenies in MrBayes 

v3.1.2 (Huelsenbeck and Ronquist 2001) using the GTR + gamma + invariant model of 

nucleotide substitution and otherwise using default parameters.  For the pestivirus, IRES, 

5SrRNA, and RNaseP alignments 100,000 generations with a 10% (10,000 generations) 

burn- in was sufficient for convergence. For the 12SrRNA alignment and the 

mitochondrial alignments, convergence was achieved in 500,000 generations with a 10% 
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and 20% burn- in respectively. For the CRE and RRE alignments, convergence was 

achieved in 1 million generations with a 20% and 50% burn- in respectively., Three 

independent runs were conducted for each alignment and the log likelihood values of 

these runs were compared to confirm that the chains converged on the same posterior 

distribution. The consensus tree was obtained by majority rule.   There was no evidence 

of saturation as the distance from leaf to tip was <1 in all phylogenies. 

 

 In two cases, we were unable to use of all of the available sequences because the 

phylogenetic method did not converge (RRE) or the resulting phylogenetic tree was 

poorly supported (5S rRNA).  In these cases, we used a subset of the downloaded 

sequences, choosing the first 199 sequencing  (RRE) or based on the number of 

sequences available from particular genera (Bacillus and Clostridium) that resulted in a 

well supported phylogenetic tree (5S rRNA). The tree constructed for RRE had low 

interior branch support (1-2%), which indicates substantial convergent evolution or 

recombination between taxa.  For HIV, recombination commonly occurs within patients 

and between closely related genotypes, which will not affect the phylogeny.  The low 

branch support for the HIV phylogeny is most likely due to convergent evolution.  There 

is no reason to expect convergent evolution to affect the underlying κ parameters. 

 

Estimation of substitution rate parameters  

 We used the program HyPhy (Kosakovsky Pond, Frost, and Muse 2005) to 

estimate κ  separately for paired and unpaired regions of each molecule.  We 
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incorporated rate heterogeneity with a discretized gamma distribution of mutation rates 

(four rate classes), and used the  HKY85 model of nucleotide substitution (Hasegawa, 

Kishino, and Yano 1985), which allows for unequal base frequencies, one substitution 

rate for all transitions and one for all transversions.  We chose this model in order to 

obtain a single estimate for the transition-transversion rate ratio (κ ) with reasonably 

small confidence intervals, even though it is not necessarily the best fit for each 

alignment (see below). For each alignment, we report κ  and the approximate 95% 

confidence intervals derived from the Fisher information matrix.  Parameter estimates of 

κ are expected to be robust to minor errors in tree topology {Hillis 1999}. 

 We also investigated whether the HKY85 model, which allows one rate for all 

transitions and one for all transversions, gives a reasonable approximation of the 

observed substitution patterns.  For each alignment, we found the best nucleotide 

substitution model using the model testing procedure implemented in HyPhy  

(Kosakovsky Pond, Frost, and Muse 2005), which is based on that of Model-Test (Posada 

and Crandall 2001). We fit models with discrete gamma distributed rate variation and a 

fraction of invariant sites.   

 

Tests of predictions  

Likelihood ratio tests were used to decide whether the data supports estimation of a 

separate κ  for paired and unpaired regions. Formally, 
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 HO: κ  = pκ  = uκ   

 HA: pκ   ?  uκ   

 

 where κ is the transition-transversion ratio estimated from the entire molecule, pκ  is the 

transition-transversion ratio estimated from an analysis of paired positions only, and uκ is 

the transition-transversion ratio estimated from an analysis of unpaired positions only.  

We calculated a test statistic, ?, for each alignment in the following way: 

  ))ln(ln(ln2 up LLL κκκλ +−−=  (5) 

The significance of ? ?was evaluated assuming a χ2 distribution with one degree of 

freedom.  For each molecule (or alignment), the likelihood values were calculated by 

holding constant the phylogenetic tree, the rate variation parameter a (estimated from the 

complete molecule), and the nucleotide substitution model (HKY85).  

  

. 
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Table 5.1. Description of Structures 
 

a Abbreviations: RRE: Rev response element; IRES: Internal ribosome entry site; CRE: cis-acting replication element. 
b C and N are abbreviations for coding and Noncoding respectively. 
c The sequences used were non-recombinant, non-related type 1 HCV NS5B sequences (positions 7394-9170 of reference sequence M62321). 
dThe tRNAs analyzed were a concatenated alignment of Alanine, Cysteine, Glutamic acid, Asparagine, Glutamine, and Tyrosine. 
e Only one sequence per patient was downloaded.

Structure a C/Nb Organism  Source of Sequences 

RRE C HIV Los Alamos HIV Database (http://hiv-web.lanl.gov/content/index)e 

IRES N Pestivirus Viral RNA Structure Database (http://rna.tbi.univie.ac.at/cgi-
bin/virusdb.cgi) 

CRE c C Hepatitis C  Los Alamos HCV database (http://hcv.lanl.gov/content/hcv-db/index) 

5srRNA N Firmicutes Bacteria 5S ribosomal RNA database (http://www.man.poznan.pl/5SData/) 

tRNA d N Amphibian mitochondria Organellar Genome Retrieval system (http://ogre.mcmaster.ca)  

tRNA d N Mammalian mitochondria Organellar Genome Retrieval system (http://ogre.mcmaster.ca)  

12SrRNA  N Mammalian mitochondria GenBank (AB074968, AY172335, U33494 – UU3948) 

RNaseP N Mammal RNaseP database (http://www.mbio.ncsu.edu/RNaseP/home.html) 
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Results 

 We tested the prediction that compensatory evolution in regions of RNA 

secondary structure should result in the transition to transversion rate ratio (κ ) being 

approximately squared at paired relative to unpaired sites by examining eight different 

RNA secondary structures.  These molecules were selected from a diverse group of 

organisms: viruses, bacteria, amphibians, and mammals (Table 5.1). In order to 

accurately estimate ?, we used alignments that had at least 20 variable paired and 20 

variable unpaired sites and for which the secondary structure was known to be conserved 

and functionally important. The structures used here were predicted from either 

comparative sequence analyses (12S rRNA, 5S rRNA, and tRNA’s), experimental 

evidence (RRE), or both (RNaseP P, IRES, CRE).  The alignments had varying amounts 

of sequence diversity (Table 5.2) and complexity of secondary structures ranging from 

relatively simple tRNAs with 3 stem-loops to the 12S rRNA with approximately 20 stem-

loops.  
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Testing Kimura’s model of compensatory evolution. 

 Our approach assumes that transition substitution rates (G? A, C? T) are more 

similar to each other than they are to transversion substitution rates, and vice versa, and 

that the two rates differ substantially.  To examine these assumptions, we used a model-

testing procedure that allowed any combination of the six time-reversible substitution 

rates (see Methods) to find the best- fitting nucleotide substitution model for each 

alignment.  The best- fit models are shown in Figure 5.1.  Although the HKY85 model, 

which specifies one rate for transitions and one rate for transversions, was not statistically 

the best-fit model for any alignment (as determined by AIC scores), the best- fit models 

did show differences between transition and transversion rates, and that transition rates 
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were almost universally more similar to each other than to transversion rates. Only in the 

case of the 5S rRNA alignment was one of the transversion rates (A? T) similar to the 

transition rates. Thus, it is justifiable to use the HKY85 model as a reasonable 

approximation for the purposes of comparing estimates of κ . 

 We estimated κ  in two ways.  First, we considered the molecule as a whole, and 

estimated a single κ  to describe all sites (paired and unpaired).  Second, we divided the 

molecule into paired and unpaired sites, and estimated pκ  from all paired sites and uκ  

from all unpaired sites. In seven of the eight structures, pκ  was higher at paired than 

unpaired sites (Fig. 5.3), qualitatively supporting the prediction of Kimura’s model.  Only 

in the RRE structure was pκ << uκ .  Likelihood ratio tests (see Methods for details) led 

to rejection of HO: κ  = pκ  = uκ  in favor of HA: pκ   ?  uκ  for all eight molecules at 

p<0.0001 (Table 5.2).  

 

 We also examined the quantitative fit of the estimates to the model predictions.  A 

visual inspection of Figure 5.3 confirms the close match of most structures to the 

expectation that 2
up κκ = .  For six structures (12S rRNA, 5S rRNA, mammalian tRNAs, 

RNase P, IRES, and CRE) estimates of pκ  can not be statistically distinguished from 2
uκ , 

i.e. 95% confidence intervals estimated from likelihoods overlap the 2
up κκ =  line.  Only 

the HIV RRE structure, and to a lesser extent the mammalian tRNAs, deviate 

significantly from the model prediction. 
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Table 5.2 Description of Alignments and Likelihood Ratio tests for 
κ estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Numbers in parentheses indicate the number of variable positions. 
b Excluding the region between stem 38 and its complement 38’ , which is highly variable and 
difficult to align. 
* LRT value significant at p < .0001 
 

 

Structure  # Taxa # Sitesa Stemsa Loopsa κ  pκ  uκ  λ 

RRE 199 231 (140) 161 (91) 70   (49) 5.19 4.21 9.01 546.05*

IRES 11 347 (162) 198 (92) 149 (70) 6.50 15.34 3.60 73.46* 

CRE  98 255 (119) 189 (72) 66   (45) 12.5222.36 2.93 177.32*

5srRNA 15 117 (86) 73   (61) 44   (25) 3.70 4.44 2.82 35.05* 

tRNA  40 414 (344) 266 (224) 148 (120) 6.04 9.48 3.30 204.73*

tRNA  40 419 (187) 243 (98) 176 (89) 3.90 6.69 2.83 131.93*

12SrRNA b 7 930 (406) 457 (173) 473 (233) 11.9818.78 9.65 122.24*

RNaseP 10 493 (352) 291 (218) 202 (134) 3.38 5.07 1.75 80.77* 
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Substitution patterns in RRE 

 We examined three possible explanations for the surprising result that uκ > pκ  in 

RRE.  First, since both the RRE and CRE secondary structures occur within coding 

regions, we examined the possibility that the difference between uκ  and pκ is diminished 

by selection on the protein sequence.  We recalculated uκ  and pκ for both molecules 

using only data from four-fold degenerate sites in paired and unpaired regions.  In CRE, 

coding affects the estimates in the predicted direction (four-fold degenerate 

sites: 89.2
up κκ = ; all sites: 45.1

up κκ = ), though the four-fold sites overshoot the predicted 

pattern. We had less power to compare four-fold degenerate sites at the paired and 

unpaired sites of RRE because there were too few four-fold degenerate unpaired sites and 

there was insufficient sequence variability at these sites.  However, the four-fold 

degenerate paired sites did show a higher pκ  ( pκ  = 7.61 with 95% confidence interval 

[4.79, 18.48]) than the paired sites as a whole ( pκ  = 4.21 with 95% confidence interval 

[3.51 – 5.28]).  This suggests that the presence of protein coding constraints does impede 

compensatory evolution at paired sites in RNA secondary structures, although it does not 

explain why uκ  would be greater than pκ  in RRE.  

 Second, we examined the possibility that we had used a non-representative 

sample of RRE sequences.  To confirm that the observed substitution patterns in RRE 

were not specific to the particular set of HIV sequences we examined (which were all 

derived from subtype B), we estimated pκ  and uκ  from two additional RRE alignments 

of sequences drawn from higher taxonomic levels: sequences from different subtypes (A, 

B, C, F, G, H, J, and K) and sequences from different groups (M, N, and O).  In both of 
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these alignments, the results were qualitatively similar to those for subtype B: uκ was 

significantly higher than pκ  (Table 5.3). 

 Third, we cons idered whether the RRE estimates were disproportionately 

influenced by a portion of the molecule that experiences a type of selection that differs 

from the as a whole. We systematically removed each stem-loop of RRE and re-estimated 

pκ  and uκ  for the resulting partial structures.  The pκ  and uκ  estimates were 

qualitatively similar for all of these partial structures (Table 5.4).    

 

Table 5.3. Transition–transversion rate ratios (κ ) for RRE alignments from 
different taxonomic levels 

RRE alignment 
pκ  a uκ a 

Subtype B 4.21 (3.51 – 5.28) 9.01 (7.25 – 11.89) 
Subtypes 2.10 (1.45-3.09) 7.26 (3.88-15.09) 
Groups 5.56 (3.21-10.46) 15.96 (7.00-46.29) 
a Numbers in parentheses are the 95% confidence intervals for the κ  estimates. 
 

Table 5.4 Transition-transversion rate ratios (κ ) for partial RRE structures   
RRE structure a 

pκ b uκ b 
Complete 4.21 (3.51 – 5.28) 9.01 (7.25 – 11.89) 
I 4.70 (3.67 – 6.54) 8.03 (6.38 – 10.77) 
II 5.43 (4.37 -7.19) 9.73 (7.40 – 14.17) 
III 3.36 (2.78 – 4.24) 8.18 (6.55 – 10.92) 
IV 4.47 (3.70 – 5.66) 11.21 (8.77 – 15.51) 
V 4.02 (3.34 -5.05) 8.35 (6.70 – 11.07) 
a This analyzed RRE structures had the listed (e.g. I,II, see Fig. 5.1) stem-loop removed.  
The complete structure is shown for comparison. 
b Numbers in parentheses are the 95% confidence intervals for the κ  estimates. 
 

Discussion 

 We extended Kimura’s population genetic model of compensatory evolution to 
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make the prediction that substitution rate variation due to underlying mutation rate 

differences is exaggerated by compensatory interactions.  We made use of the fact that 

transition rates generally exceed transversion rates to test this prediction in regions of 

RNA secondary structure.  Specifically, we predict thatκ , the ratio of transition to 

transversion rates, should be higher in paired than in unpaired regions.  Seven of the eight 

RNA secondary structures we examined confirmed this qualitative prediction.  Moreover, 

six of the eight structures (RNase P, 5S rRNA, IRES, tRNA A, 12S rRNA, and CRE) 

closely matched the quantitative prediction that the ratio in paired regions should be the 

square of the ratio in unpaired regions (i.e. 2
up κκ = ).   

 

 We consider the implications of the close match between the model and the 

prediction by focusing on the structural and molecular evolution of these secondary 

structures.  These results tell us that over long time periods, there has been minimal 

structural evolution of these molecules.  Had structural evolution occurred, then some 

sites identified as paired would actually be unpaired in other sequences and vice versa, 

which would decrease the difference between uκ and  pκ .  The conservation of these 

structures allows them to be useful for establishing relatedness between different species.  

These results also effectively illustrate that the measured transition and transversion rates 

in secondary structures are governed by a history of compensatory evolution.  The 

observed rates in secondary structures do not represent the actual mutation rates- but may 

sometimes be treated as such.   
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Structures not explained by the model 

 Why might the data for RRE and mammalian tRNAs not fit this model?  The only 

feature that these two molecules share is a high uκ value compared to the other molecules 

we investigated, but a high ratio of µTii to µTTv does not, in itself, violate the model 

assumptions.  We focus on how the assumptions of the model could be violated in a way 

that preferentially elevates uκ  with a particular focus on mechanisms that could explain 

the observation in the most deviant structure (RRE) that 2
up κκ << .  .In addition, we 

recognize that our estimates are sensitive to misidentification of paired and unpaired 

sites, as well as inaccuracies in the alignment and/or phylogeny 

  

 The model assumptions are (i) the only determinant of molecular evolution in 

these molecules is the functional constraints on the RNA secondary structures, (ii) 

recombination is infrequent, and (iii) the underlying µTi is the same in paired and 

unpaired regions and likewise for µTTv.  As discussed in the Results, coding may affect 

the estimates of κ  for CRE and RRE, but the size of this effect is not sufficient to explain 

a reversal of the relative magnitudes of uκ and pκ  in RRE.  Recombination is also 

unlikely to explain the results for the mammalian tRNA and RRE due to recombination 

rarely occurring between mitochondria and recombination between HIV particles 

primarily occurring between closely related genotypes, which will have a minimal effect 

on   uκ  (or pκ ).  In RRE, the reversal of the relative magnitudes of uκ and pκ  may be 

due to the underlying µTii  being unequal in paired and unpaired regions due to the actions 

of a cytodine deaminating enzyme – APOBEC3.  APOBEC3 recognizes specific motifs 
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and preferentially deaminates C to T (a transition) in unpaired regions of DNA, which is 

then visible as a G to A transition on the + strand of HIV.  HIV goes through a DNA 

stage in its lifecycle and at this stage, the unpaired regions of the folded RRE may be 

vulnerable to deamination by APOBEC3 and thus experience an elevated µTii as 

compared to paired regions.  If the unpaired regions experienced very high rates of 

deamination by APOBEC enzymes, then this might explain the reversal of uκ and pκ  in 

RRE.  Consistent with this hypothesis, we find that that the nucleotide A is 

overrepresented in unpaired regions (~ 40%) of RRE as compared to paired regions 

(~19%).   

 

 We also recognize that our estimates of κ  are sensitive to misidentification of 

paired and unpaired sites, as well as inaccuracies in the alignment and/or phylogeny.   It is 

possible that sites in loops, which we have classified as unpaired, could be pairing with 

sites elsewhere (e.g. through unknown pseudoknots) and thus artifactually elevate uκ . In 

all molecules, known pseudoknots were included in our analysis as paired.  While we 

cannot rule out that a sufficiently large number of sites pair outside of the known RRE 

secondary structure to influence our estimates, we find this possibility unlikely, and the 

removal of individual stem-loops from the RRE alignment did not measurably affect uκ .  

Errors in the underlying phylogeny and alignment could also contribute to inaccurate 

estimates ofκ .  Although the RRE phylogeny had very low branch support (1-2%) on 

some of the interior branches, it is not apparent how a poorly supported phylogeny could 

could elevate uκ in RRE. While alignments were manually checked for accuracy, it is not 
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possible to ensure that every site in every sequence is correctly identified as paired or 

unpaired.  In particular, minor pervasive structural variation in the analyzed HIV 

sequences and mammalian tRNA would result in individual sites that are paired in some 

lineages and unpaired in others. While this phenomenon may contribute to a quantitative 

deviation from expectation, such as that seen in the mammalian tRNA’s, it still fails to 

explain the reversal of magnitude seen in RRE, whereκ p < κu . 

   

  In sum, only one phenomena – the action of APOBEC3 enzymes on unpaired 

regions of the HIV genome – has the ability to explain conceptually the observation in 

RRE that 2
up κκ << .   

 

Implications for RNA secondary structure prediction 

 Recently developed methods for predicting RNA secondary structure from 

sequence data capitalize on the expectation that substitution rates should be lower at 

paired than unpaired sites (Muse 1995; Pedersen et al. 2004).  These methods have been 

shown to be as strong or stronger in validating known structures and predicting new ones 

than previous methods that relied solely on the identification of co-variations (Muse 

1995; Parsch, Braverman, and Stephan 2000; Pedersen et al. 2004).  Our analysis 

parallels these recent prediction methods in that we also capitalize on the expectation that 

substitution rates should be lower at paired than unpaired sites.  Where we differ from 

these methods is that we assess an exact expectation for the difference between 

substitution rates at unpaired and paired sites.  



 91 

 In our extension of Kimura’s model, the pattern 2
up κκ ≈  results because 

transversions are suppressed in stems to a greater extent than transitions (i.e. 

TiITiCTvITvC dddd ,,,, // < ).  The secondary structure prediction method of Muse (Muse 

1995) assumes that transition and transversion rates are equally reduced in stems.  This 

method maintains up κκ = and we show that this assumption is not realistic.  The 

secondary structure prediction method of Pedersen et al (Pedersen et al. 2004) does 

assume that transition and transversion rates are reduced in stems and the reduction in 

these rates is based on empirically measured substitution patterns in known stems.  This 

method allows up κκ ≠ , but the measure of pκ  is specified identically for all structures in 

all organisms.  We show that this assumption is also not realistic.  Our finding that the 

transition:transversion rate ratio works in most cases as a simple diagnostic for the 

identification of RNA secondary structure suggests that these prediction methods could 

be refined by incorporating exact expectations for the substitution rate differences 

between unpaired and paired sites. 
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Appendix A: Simulation used to determine experimental design for data collection in 
Chapter 3 
  

A set of simulation experiments was conducted in MatLab (version 6.5, The 

Mathworks Inc.) to evaluate the experimental design that yielded the most accurate and 

least variable measures of the phages thermal optima and maximum growth rates. We 

considered seven reaction norms with different thermal optima (Fig. A1A).  The 

experimental designs considered ranged from measuring growth rate singly at many (26) 

temperatures to many (7) times at only a few (4) temperatures.   The reaction norm shape 

was assumed to be known, as was the standard deviation of growth rate at any single 

temperature.  The assumed shape was based on pilot data collected for the natural isolates 

and the standard deviation based on growth rate measures from previous published work 

[12]. 

 

A single experiment consisted of generating approximately 27 growth rate 

measurements, in which each measure of growth rate (GR) was: 

GR = GRi + e, 

in which GRi is the true growth rate at temperature i as calculated from the known 

reaction norm shape and the error (e ) was drawn from a normal distribution with mean 0 

and standard deviation =1.41.

 

The least squares method was used to fit a second order polynomial to each 

experiment.  The thermal optimum and maximum growth rates were calculated from 

these polynomials.  This process was repeated 1 million times for each experimental  
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design.  The precision of a particular experimental design in estimating a trait (e.g. the 

thermal optima) was calculated as the variance and bias in the estimates for that trait.  

 

Bias = ∑( Estimated optima  –  True optima)/ Number of Simulations. 

 

Reaction norm data collection over 17 to 41oC was simulated in Mat Lab to 

determine the optimal experimental design for estimating the thermal optima.   More 

extreme values of the optima resulted in increased variance and bias in the estimates of the 

optima.  We found that increasing the number of temperatures did decrease the bias or 

variance in the parameter estimates (Figs. A1B and C).  The experimental design that 

minimized the variance and bias in the optima consisted of 7 replicate growth rate 

measures at each of 4 temperatures evenly spaced between 17 and 41oC ( Figs. A1B –C).   

Since the experimental design would have limited our ability to detect reaction norms with 

a nonsymmetrical shape, the experiments were conducted using the next most optimal 

design: 3 growth rate measures at each of 9 temperatures evenly spaced between 17 and 

41oC. 
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