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ABSTRACT

ZAKARIA S KHONDKER: BAYESIAN PENALIZED METHODS FOR
HIGH-DIMENSIONAL DATA

(Under the direction of Dr. Joseph G. Ibrahim and Dr. Hongtu Zhu)

Big data presents the overwhelming challenge of estimating a large number of pa-

rameters, which is much larger than the sample size. Even for a simple linear model,

when the number of predictors is larger than or close to the sample size, such model may

be unidentifiable and the least squares estimates of regression coefficients can be unsta-

ble. To deal with such issue, we systematically investigate three Bayesian regularization

methods with applications in imaging genetics. First, we develop a Bayesian lasso esti-

mator for the covariance matrix and propose a metropolis-based sampling scheme. This

development is motivated by functional network exploration for the entire brain from

magnetic resonance imaging (MRI) data. Second, we propose a Bayesian generalized

low rank regression model (GLRR) for the mean parameter estimation and combine this

with factor loading method of covariance estimation to capture the spatial correlation

among the responses and jointly estimate the mean and covariance parameters. This

development is motivated by performing genome-wide searches for associations between

genetic variants and brain imaging phenotypes from data collected by Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI). Third, we extend GLRR to longitudinal setting

and propose a Bayesian longitudinal low rank regression (L2R2) to account for spa-

tiotemporal correlation among the responses as well as estimation of full-rank coefficient

matrix for standard prognostic factors. This development is motivated by genome-wide

searches for associations between genetic variants and brain imaging phenotypes ob-

served over time with a primary focus on role of aging and the interaction of age with

genotype in affecting brain volume.
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CHAPTER 1

SHRINKAGE ESTIMATION IN THE LITERATURE

The emergence of high-dimensional data has posed tremendous challenges to the

traditional approches to modeling and estimation, in some cases, rendering traditional

modeling approaches obsolete. As a remedy the idea of penalized mehods are gaining

popularity among the statistical community. Here we discuss the literature of early and

latest approches approaches in univariate and multivariate context. Our primary focus

is on multivariate approaches since it it most relevant to our problem.

1.1 Shrinkage of Mean Parameters for Univariate Response

The early approaches to deal with high-dimensional problems involved separation

approach− variable selection to reduce dimension and then parameter estimation. While

subset selection techniques were used in variable selection, estimation was typically done

by least squares regression. However, the subset selection approach is unstable due to

discontinuity of the process; so is the best single-model variable selection (Breiman,

1996). Bayesian model averaging provides a robust prediction remedy regarding stabil-

ity; under squared error loss optimal prediction takes the form of Bayes model averaging.

Brown et al. (2002) introduced Bayes model averaging incorporating variable selection

allowing for fast computation for dimensions up to several hundreds.



The later approaches adopted shrinkage− shrinking the parameters to achieve stabil-

ity and improve performance. The most popular among them are the L1 and L2 priors

and their variants. The L2 priors (penalties) tend to shrink the regression coefficients

to achieve stability; it forces the coefficients of highly correlated covariates towards each

other by inflating the diagonals of the XTX, where X is the matrix of covariates. The

most common example of L2 priors are normal (Ridge regression) and Cauchy priors.

Recently there has been a surge in black hole priors− priors that create a singular-

ity at the origin with a black hole around. The prior forces the maximum aposteriori

(MAP) estimates of the smaller coefficients to singularity without creating discontinuity

to perform simultaneous variable selection and estimation. The most common of them

are lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006), smoothly clipped absolute de-

viation (Fan and Li, 2001), and double Pareto (Armagan et al., 2011). Some hybrids

and other variants of these priors include grouped lasso, fused lasso, elastic net, etc.

Rothman et al. (2010) proposed simultaneous estimation of sparse coefficient matrix

and sparse covariance matrix to improve on estimation error under L1 penalty. Their

approach does not take advantage of the potential correlation among the coefficients.

The penalized methods estimates the coefficients by minimizing the residual sum of

squares (RSS) with a constraint, that is, minimizing ||Y −Xβ||2 + g(β), where g(β) is

some penalty function. A popular general choice is g(β) = λ
∑p

j=1 |βj|α, α = 2 leads

to Ridge regression and α = 1 leads to lasso regression. Ridge regression typically

achieves better prediction performance compared to ordinary least squares (OLS); how-

ever, model interpretation is difficult and it never estimates coefficients as exactly zero

since the prior is continuous. The lasso, on the other hand, reaches a sparser solution

by estimating some coefficients as zero due to discontinuity of the implied prior at zero.

Adaptive lasso and SCAD also achieves sparse solutions as lasso.

2



Bayesian shrinkage regression methods achieve regularization through shrinkage in-

duced by priors. Summarized in tabel 1.1 are the commonly used scaled mixture of

normal priors which lead to heavy-tailed priors with a peak around the origin (Carvalho

and Scott, 2009a; Armagan et al., 2011; Park and Casella, 2008; Kyung et al., 2010).

1.2 Shrinkage of Covariance Parameters

In-depth theoretical studies of the sample (empirical) covariance matrix S have shown

that without regularization, the sample covariance matrix performs poorly in high di-

mensional settings, hence stimulating research on alternative estimators. When the

dimension of the matrix is large, the largest eigenvalue can be very large compared

to the smallest eigenvalue, resulting in a large condition number and unstable estima-

tors for the precision matrix S−1. In practice, when n is relatively small compared to

the dimension d, the S matrix approaches singularity, therefore leading to unreliable

estimates for the precision matrix S−1. In many cases, such a situation may lead to

near-zero eigenvalues for S. The problem is even more serious for high-dimensional

data (when n < d) derived from structural and functional magnetic resonance imaging

where a few dozen subjects are scanned with each scan having thousands of voxels or

hundreds of regions of interest, gene arrays where few dozen or hundred samples are

arrayed each array containing several hundred to several thousand genes (Davidson and

Levin, 2005), spectroscopy, climate studies and many other applications are just a few

examples. In this case, S has a maximum rank of n which is smaller than its dimension

d, and therefore S is singular.

1.2.1 Frequentist Methods

In the frequentist framework, significant work has been done on model selection

and precision (covariance) matrix estimation in Gaussian models (Banerjee et al., 2007;

3



T
ab

le
1.

1:
B

ay
es

ia
n

p
ri

or
s

fo
r

m
ea

n
p
ar

am
et

er
es

ti
m

at
io

n

M
o
d
el

P
ri

or
on

β
h
y
p

er
-p

ri
or

h
y
p

er
-h

y
p

er
-p

ri
or

N
J

β
j
∼
N

(0
,σ

2
ψ
j
)

π
(ψ

j
)
∝

1 ψ
j

N
E

β
j
∼
N

(0
,σ

2
ψ
j
)

ψ
j
∼

E
x
p
(λ

2
),
λ
>

0
N

IG
am

β
j
ψ
j
∼
N

(0
,σ

2
ψ
j
)

ψ
j
∼

IG
ga

m
(a

0
,a

0
b2 0

)
N

G
β
j
ψ
j
∼
N

(0
,σ

2
ψ
j
)

ψ
j
∼

G
am

m
a(
a

0
,b

2 0
)

N
E

G
β
j
ψ
j
∼
N

(0
,σ

2
ψ
j
)

ψ
j
∼

E
x
p
(λ

j 2
)

λ
j
∼

G
am

m
a(
a

0
,b

0
)

L
A

S
S
O

β
j
ψ
j
∼
N

(0
,σ

2
ψ
j
)

ψ
j
∼

E
x
p
(λ

2 2
)

λ
2
∼

G
am

m
a(
a

0
,b

0
)

H
S

β
j
∼
N

(0
,ψ

j
)

ψ
j
∼
C

+
(0
,τ

)
τ
∼
C

+
(0
,σ

)

gD
P

β
j
∼
N

(0
,ψ

j
)

ψ
j
∼

E
x
p
(λ

2 2
)

λ
∼

G
am

m
a(
a

0
,b

0
)

N
J

=
N

or
m

al
J
eff

ry
’s

,
N

E
=

N
o
rm

a
l

E
x
p

o
n

en
ti

a
l,

N
IG

a
m

=
N

o
rm

a
l

In
ve

rs
e

G
a
m

m
a
,

N
G

=
N

o
rm

a
l

G
a
m

m
a
,

N
E

G
=

N
or

m
al

E
x
p

on
en

ti
a
l

G
a
m

m
a
,

H
S

=
H

o
rs

es
h

ow
,

g
D

P
=

G
en

a
ra

li
ze

d
D

o
u

b
le

P
a
re

to
.

C
+

(0
,a

)
is

a
st

an
d
ar

d
h
al

f-
C

au
ch

y
d
is

tr
ib

u
ti

on
on

th
e

p
os

it
iv

e
re

al
s

w
it

h
sc

al
e

p
ar

am
et

er
a
.

4



Friedman et al., 2008a; Fan et al., 2009; Drton and Perlman, 2004). The original pa-

per by Dempster (1972) introduced the idea of shrinkage estimation which forces some

elements of the precision matrix to be zero. In its infancy, the methods for shrinkage

estimation involved two steps: (i) identify the “correct” model by determining which el-

ements are zero; (ii) estimate the parameters for the non-zero elements. Edwards (2000)

has discussed some standard approaches for identifying the model such as greedy step-

wise forward-selection and backward-elimination procedures, achieved through hypothe-

sis testing. Drton and Perlman (2004) proposed a conservative simultaneous confidence

interval to select a model in a single step as an improvement.

Banerjee et al. (2007) proposed block coordinate descent algorithm which can be

interpreted as recursive l1-norm penalized regression. Suppose y ∼ N(µ,Σ), S =∑n
i=1(yi − µ)(yi − µ)T and Ω = Σ−1 then the estimate takes the form

Ω̂ = arg max
Ω�0

log det Ω− tr(SΩ)− λ||Ω||1; (1.1)

where � stands for positive definite, ||Ω||1 denotes the sum of the absolute values of the

elements of the positive definite matrix Ω, and λ is the penalty scalar (proxy for the

number of nonzero elements in the matrix). When S � 0, MLE of Σ can be obtained

by setting λ = 0, however Σ is not invertible for n < p.

Let W = Σ̂ be an estimate of Σ, the dual of their sparse maximum likelihood problem

is

Σ̂−1 = max{log detW : ||W − S||∞ ≤ λ}. (1.2)

They choose the penalty parameter as a function of α, the probability of zero element

of Σ falsely estimated as non-zero. Their plan is to optimize over one rwo and column

of the variable matrix W at a time and repeatedly sweep through all columns until
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convergence. In other words, partition W and S as:

W =

 W−kk wk

wT
k wkk

 and S =

 S−kk sk

sT
k skk

 , (1.3)

where θkk is the kth diagonal element of Θ, θk = (θk1, . . . , θk,k−1, θk,k+1, . . . , θkd)
T is the

vector of all off-diagonal elements of the kth column, and Θ−kk is the (d− 1)× (d− 1)

matrix of all the remaining elements, i.e., the matrix resulting from deleting the kth row

and kth column from Θ. Then the algorithm proceeds as follows:

1. Initialize W (0) = S+λI, for j = 1 . . . p let W (j−1) denote the current iterate. Solve

the quadratic program

ŷ = arg miny{yT(W
(j−1)
−(jj) )(−1)y : ||y − sj||∞ ≤ λ}.

2. Update rule: W (j) is W (j−1) with wj replaced by ŷ.

3. Let Ŵ (0) = W (p).

4. Check convergence by tr{(Ŵ (0))−1S} − p + λ||(Ŵ (0))−1||1 ≤ ε, where ε is the

convergence criterion.

Friedman et al. (2008b) used similar partitioning as Banerjee et al. (2007) and showed

that minimizing (1.1) is equivalent to minimizing: minθ ||W 1/2
11 θ− 1

2
W
−(1/2)
11 s12||2 +ρ||θ||1

Where θ̂ is the solution to the above lasso problem (3). That is they use lasso to estimate

θ̂ = arg min ||W 1/2
11 θ − 1

2
W
−(1/2)
11 s12||2 + ρ||θ||1 (1.4)

Their covariance LASSO algorithm has the following 3 steps:

1. Start with W = S + ρI. The diagonal of W remains unchanged in what follows.

2. For each j = 1, 2, . . . , p, solve the lasso problem (1), which takes as input the inner
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products W11 and s12. This gives a p−1 vector solution θ̂. Fill in the corresponding

row and column of W using w = 2W11θ̂.

3. Continue until convergence.

Fan et al. (2009) solved the following equation for sparse matrix under the penalized

likelihood framework.

max
Ω∈Sp

log det Ω− tr(Σ̂Ω)−
p∑
i=1

p∑
j=1

pλij(|ωij|), (1.5)

where ωij is the (i, j)th element of Ω, λij is the tuning parameter and p(.) is the generic

penalty function on each element.

Schäfer and Strimmer (2005) minimized the MSE compromising between bias and

variance. If Θ̂ is the unrestricted estimate and Θ̃ the restricted estimate from a reduced

model then the optimal estimate is Θ̂∗ = λΘ̃+(1−λ)Θ̂ for a suitable shrinkage intensity

λ ∈ [0, 1]. The value of λ is determined by minimizing the risk R(λ) = E(L(λ)) =

E(
∑p

i=1(θ̂∗i − θi)2. They minimized this analytically to obtain the optimal value λ∗ as a

function of variances of Θ̂ and Θ̃, their covariances and bias respectively, which is unique

and always exist. For practical purpose they replace those variances, covariances and

biases by their unbiased sample counterparts to obtain λ̂∗. For finite samples the value

might be negative or exceed unity, in which case they truncate it to zero or one.

1.2.2 Bayesian Non-Graph Theory Methods

Bayesian covariance estimation followed two major paths. The non-graph theory

methods disregard the underlying graphical structures and perform shrinkage via pri-

ors on the elements, eigenvalues, and decompositions of the matrix. The graph theory

methods rely assuming particular graphical structure and hyper-inverse Wishart priors

conditional on the graph. Among Bayesian shrinkage methods, Yang and Berger (2007)
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used reference priors on the eigenvalues of the covariance matrix to regularize the eigen

structure.

Smith and Kohn (2002) decomposed Σ−1 = Ω = BDBT where B is a lower trian-

gular matrix with 1’s on the diagonal and D is a diagonal matrix. They introduced an

indicator matrix γ where bij = 0 iff γij = 0 bij 6= 0 iff γij = 1, which ensures that the

lower triangular elements of B can be 0 with positive probability. For a given γ, some

often the lower-triangular elements of B will be zero. For the unconstrained elements of

B, denoted Bγ, they used fractional prior as p(Bγ|γ,D) ∝ p(e|B,D, γ)1/n. The elements

of γ are taken independent a priori, with p(γij = 1|ω) = ω, which implies that there will

p(p− 1)ω/2 nonzero elements in B. They assumed uniform [0,1] prior for ω.

Frühwirth-Schnatter and Tüchler (2008) used Cholesky decomposition on hierarchi-

cal linear mixed models to identify zeros on the covariance matrix Σ = CCT, where C

is a lower triangular matrix (Smith and Kohn (2002) decomposed Σ−1). This approach

allows to shrink random effects twards fixed ones. They also discussed how the ordering

of the data can change the zero pattern; although the rank of Σ, rank of C and the

number of 0 columns are unaffected by ordering. Noncentral parameterization along

with Cholesky decomposition reduces the problem of variance-covariance selection to

the more common problem of Bayesian variable selection in multiple regression. Prior

for γ, the indicator matrix that determines which elements of C are zeros, is selected

such that P (γij = 1|τ) = τ , where the hyperparameter τ ∼ U [0, 1]. So the number

of non-sero element in C follows binomial distribution B(p(p+1)
2

, τ). For the Cholesky

factor C conditionally fractional prior was chosen that depends on random effects. They

developed the MCMC scheme for simulation.
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Barnard et al. (2000) used separation strategy as Σ = diag(S) R diag(S) where

S is vector of the standard deviations and R is the correlation matrix. There is a prac-

tical motivation for this separation since most practitioners think in terms of standard

deviations and correlations. They assume S ∼ N(ξ,Λ), alternative would be to choose

independent scaled inverted chi-squared distributions for each of the variances. They

assume R independent of S, {rij, i 6= j} are a priori exchangeable, and priors are dif-

fuse to reflect week prior knowledge about R. They explored two extreme cases- (1)

marginally uniform, which can be obtained from the commonly used inverse-Wishart

distribution for Σ, and (2) jointly uniform prior for rij.

Wong et al. (2003) decomposed Σ−1 = Ω = TCTT where T is a diagonal matrix such

that Ti is the inverse of the partial standard deviation of yit and C is a correlation matrix

with Cii = 1 and Cij = −ρij the partial correlation coefficients. They put noninformative

gamma priors on {Ti, i = 1, ..., p} assuming Ti i.i.d. and independent of the elements of

C, p(Ti) ∝ p(Ωii)
dΩii
dTi
∝ T 2α−1

i e−βT
2
i . Their sampling scheme used MCMC based on the

following Metropolis-Hastings algorithm: q(Ti|Y, T(−i), C) and q(dCij|Y, T, C(−ii)). The

Ti, are generated one at a time using a Gaussian proposal. The Cij are generated one at

a time using a Metropolis-Hastings proposal that allows Cij to be identically zero, and

that uses a Gaussian proposal for the continuous part of the conditional density.

Chen and Dunson (2003) used modified Cholesky decomposition Σ = LLT = ΛΓΓTΛ

where Γ = diag(γ1, ..., γp) then the random effects model becomes yi = Xiα+ZiLbi+ εi.

In their first paper they applied the method to linear mixed model and in the second

paper they applied to logistic regression.

Huang et al. (2006) proposed nonparametric method for identifying parsimony in es-

timating covariance matrix using modified Cholesky decomposition. If cov(y) = Σ and
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ε = Ty with cov(ε) = diag(σ2
1, ..., σ

2
n) = D then Σ−1 = TTD−1T and the likelihood be-

comes −2l(Σ, y) =
∑n

t=1 log(σ2
t ) +

∑n
t=1

εt
σ2
t
. Thus the modified Cholesky decomposition

provides a parameterization of the covariance matrix with unconstrained parameters and

tramsfers the difficult task of modeling a covariance matrix to that of variable selection

in the sequence of regression yt =
∑t−1

j=1 φtjyj + εt.

Their penalized likelihood estimator was derived as the Bayes posterior mode under

independent diffuse priors. The algorithm amounts to applying a similar regression

algorithm repeatedly to the rows of the Cholesky factor T . The authors claimed this

method to be better than smoothing when T is sparse instead of being smooth.

1.2.3 Bayesian Graph Theory Methods

Bayesian graph theory methods exploit decomposability and use hyper-inverse Wishart

priors to sample from the marginal.

Dawid and Lauritzen (1993) introduced the notion of a probability distribution on

a multivariate space called hyper Markov law and concentrated on the set of Markov

probabilities over some decomposable graph. They discussed sampling distributions of

maximum likelihood estimators in decomposable graphical models, and showed that hy-

per Markov laws form natural conjugate prior distributions for a Bayesian analysis of

these models. They also constructed a range of specific hyper Markov priors, including

the hyper multinomial, hyper Dirichlet, hyper Wishart, and hyper-inverse Wishart laws.

Their work has led many to exploit the hyper-inverse Wishart (HIW) priors for Gaussian

graphical model.
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Guidici and Green (1999) used HIW priors on the precision matrix conditional on

decomposable graphs for Bayesian model determination in Gaussian graphical mod-

els. They introduced hierarchical Bayesian Gaussian graphical models and designed

reversible jump Markov chain Monte Carlo (MCMC) algorithm for structural and quan-

titative learning using local computations.

Let G = (V,E) be an undirected graph with vertex set V of v elements and edge−set

E. If there is an edge (a, b) ∈ E then the vertices a and b are called neighbors in G

and if all vertices are connected the graph is complete. A complete subgraph which

is not contained in another complete subgraph is a clique. Subgraphs (A,B,C) of G

forms a decomposition of G if any path from A to B goes through C. In other words

if V = A ∪ B, C = A ∩ B is complete, and the all paths from A and B are through C

only then (A,B,C) form a decomposition and C is said to be separator. A sequence

of subgraphs that cannot be further decomposed are the prime components of a graph

and a graph is decomposible only if all its prime components are complete.

Carvalho and Scott (2009b) developed Wishart g-prior, a default version of the hyper-

inverse Wishart prior for restricted covariance matrices and showed how it corresponds

to the implied fractional prior for selecting a graph using fractional Bayes factors. Then

they applied a class of priors that automatically handles the problem of multiple hy-

pothesis testing. They demonstrated that the combined use of a multiplicity-correction

prior on graphs and fractional Bayes factors for computing marginal likelihoods yields

better performance.

How well these graphical methods do when there is no prior knowledge of the un-

derlying graph structure is not studied yet. Furthermore, these methods don’t work for

any type of graph. Existing non-graph theory Bayesian methods rely on priors on the
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elements arising from some sort of decomposition of the precision (covariance) matrix,

which do not readily translate to any recognizable priors on the elements of the precision

(covariance) matrix itself. Furthermore, most of those methods are based on sampling

the elements of the matrix one at a time which is not efficient and not attractive for high-

dimensional data, especially when d is large. Specifically, these methods pick a single

element at a time, find an appropriate boundary that yields a positive definite matrix,

and then draw a sample of this element. Drawing one element at a time is inefficient,

and coupled with the additional computational complexities in computing boundaries

for the elements; these methods are not suitable for high-dimensional matrices. Graphs

theory methods, however, does not work for all graphical structures limiting their use.

We will focus on non-graph theory approach.

1.3 Multivariate Response Regression Model

The model for multivariate regression is

Y = XB + ε, (1.6)

where Y is the n × d matrix of responses, X is the n × p matrix of predictors, B is

the p × d matrix of regression coefficients, and ε is the n × d matrix of random errors.

Alternatively, we can write

yik =

p∑
j=1

xijβjk + εik,

where i is the subject index (i = 1, . . . n), j is the predictor index (j = 1, . . . p), and

k is the response index (k = 1, . . . d). Error terms εik and εik′ , (k 6= k′) represent the

different responses within a subject (e.g., fMRI signals from regions k and k′ of subject

i) and are likely to be correlated, while eik and ei′k, (i 6= i′) represent the same response

from different subjects (e.g., fMRI signals from regions k of subjects i and i′) and are

assumed to be independent.
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The emergence of high-dimensional data in genomics, imaging, econometrics, chemo-

metrics and other quantitative area has presented us with a large number of predictors

along with a large number of response variables that calls for simultaneous variable selec-

tion and estimation of both the mean and covariance parameters. Traditionally, subset

selection was used for variable selection and least squares was used for estimation when

presented with large number of predictors. However, the subset selection approach is

unstable due to discontinuity of the process. When either the dimension d of the covari-

ance matrix or the number of predictors p is larger than the sample size the model is not

identifiable, leading to failure of the traditional methods like least squares or maximum

likelihood. For p > n the subset selection method can be unstable because the procedure

is not continuous (Breiman, 1996). Even when the sample size is larger than both the

dimension of the covariance matrix and the number of predictors traditional methods

are stable only when both d
n

and p
n

are reasonably small. When d
n
< 1, but not small

enough, the condition numbers of the maximum likelihood estimator S of the covariance

matrix can be unusually large leading to unstable estimators for the precision matrix

(Khondker et al., 2011). When p
n
< 1, but not small enough, the condition numbers of

the matrix XTX, where X is the covariate matrix, can be unusually large leading to

unstable least squares estimators for the mean parameters.

Best single-model variable selection is inherently unstable and Bayesian model aver-

aging provides a robust prediction remedy. Under squared error loss optimal prediction

takes the form of Bayes model averaging (see Brown et al. (2002) and references therein).

The shrinkage approaches for estimation of B can be divided into two major groups -

(1) without decomposition and (2) via decomposiotn.
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1.3.1 Traditional Estimation of Regression Coefficients

The curse of dimensionality boils down to dealing with too many parameters than

the sample size reasonably permits. When dimension is larger than the sample size

the model is unidentifiable and all the parameters are not estimable. Even when the

dimension is smaller than the sample size but dimension to sample size ratio is not small

enough or there is colinearity among the predictors the estimators are unstable. The

early approaches involved separation approach− variable selection to reduce dimension

and then parameter estimation. While subset selection techniques were used in variable

selection, estimation was typically done by least squares regression. However, the subset

selection approach is unstable due to discontinuity of the process; so is the best single-

model variable selection (Breiman, 1996). Bayesian model averaging provides a robust

prediction remedy regarding stability; under squared error loss optimal prediction takes

the form of Bayes model averaging. Brown et al. (2002) introduced Bayes model aver-

aging incorporating variable selection allowing for fast computation for dimensions up

to several hundreds.

Another approach is shrinkage− shrinking the parameters to achieve stability and

improve performance. The most popular among them are the L1 and L2 priors and

their variants. The L2 priors (penalties) tend to shrink the regression coefficients to

achieve stability; it forces the coefficients of highly correlated covariates towards each

other by inflating the diagonals of the XTX, where X is the matrix of covariates. The

most common example of L2 priors are normal (Ridge regression) and Cauchy priors.

Recently there has been a surge in black hole priors− priors that create a singular-

ity at the origin with a black hole around. The prior forces the maximum aposteriori

(MAP) estimates of the smaller coefficients to singularity without creating discontinuity

to perform simultaneous variable selection and estimation. The most common of them
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are lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006), smoothly clipped absolute de-

viation (Fan and Li, 2001), and double Pareto (Armagan et al., 2011). Some hybrids

and other variants of these priors include grouped lasso, fused lasso, elastic net, etc.

Rothman et al. (2010) proposed simultaneous estimation of sparse coefficient matrix

and sparse covariance matrix to improve on estimation error under L1 penalty. Their

approach does not take advantage of the potential correlation among the coefficients.

Breiman and Friedman (1997) considered the problem of predicting several response

variables from the same set of explanatory variables and showed that even when the

random error terms eik and eik′ are independent for different responses the responses

yik and yik′ of a sample i can be correlated due to their dependence on the same pre-

dictor set Xi. They introduced shrinkage estimation called ”Cards and Whey” that

predicts the multivariate response with an optimal linear combination of the ordinary

least squares predictors method to take advantage of the correlation in the responses

arising from shared random predictors as well as correlated errors. This is a multivariate

generalization of proportional shrinkage based on cross-validation and derives its power

by shrinking in the right co-ordinate system (canonical co-ordinates).

Rothman et al. (2010) proposed simultaneous estimation of sparse mean parame-

ters and the covariance matrix called multivariate regression with covariance estimation

(MRCE). They improve prediction in the multivariate regression problem while allowing

for interpretable models in terms of the predictors. They reduced the number of param-

eters using the L−1 penalties on both the mean parameter B and covariance parameter

Ω in optimizing the likelihood. MRCE assumes the predictors are not random and fo-

cused on the conditional distribution of Y given X, althout, the formulas would be the

same with random predictors. Unlike in the Curds and Whey framework, the MRCE

assumes that correlation of the response variables arises only from the correlation in the
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errors.

1.3.2 Low Rank Estimation

Principal component analysis (PCA) is arguably the most widely used statistical

tool for data analysis and dimensionality reduction for multivariate response. A num-

ber of natural approaches to robustifying PCA have been explored and proposed in

the literature over several decades including influence function techniques, multivariate

trimming, alternating minimization, random sampling techniques, etc. (Candés et al.,

2009; Jolliffe, 2002). A convenient approach is via decompose the data matrix into a

diagonal matrix of singular values ∆ and two unitary matrices U and V , that is

Y = U∆V =
r∑
l=1

δlulv
T
l . (1.7)

A common convention is to list the singular values in descending order. The rank is

reduced by minimizing the dimension r of ∆.

Candés et al. (2009) applied robust principal component analysis when response is

a superposition of a low-rank component and a sparse component (Y = Y0 + S0) to

recover the two components individually. Their method Principal Component Pursuit

is used to recover the low rank component Y0 = U∆V T =
∑r

l=1 δlulv
T
l .

There is another less explored approach that can exploit commonality of the co-

efficients to achieve shrinkage in the presence of colinearity among regressors as well

as among responses. The emergence of high-dimensional data in genomics, imaging,

econometrics, chemometrics and other quantitative area has presented us with a large

number of predictors along with a large number of response variables, often with strong
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correlations. In quantitative trait studies problems arise when high-dimensional re-

sponse sets such as fMRI signals or volumes of each voxel in the brain are predicted by

high-dimensional covariate sets such as gene expression or SNPs. Genes or SNPs may

co-conspire, working in unison, to produce similar patterns of fMRI signals in the brain.

In such situations regression coefficients are both vertically and horizontally correlated

with rank smaller than dimension. For example, Alzheimer’s Disease Neuroimaging

Initiative (ADNI) collects clinical, imaging, genetic, and biospecimen data on elderly

controls, mildly cognitive impaired, and Alzheimer’s patients. To study the impact of

SNPs on the volumes of certain regions of interest one has to expect some common

pattern of correlation among the regression coefficients. The responses and predictors

may be associated through fewer channels than the dimensions of the coefficient matrix

leading to a reduced rank of the mean parameter B.

The relationship among correlated responses and predictors may be exploited by

dimension reduction via reduced rank decomposition of the regression parameters to

greatly reduce the number of parameters and facilitate efficient estimation of the coef-

ficient matrix. This factorization has started to receive more attention in recent years.

Several authors have explored the decomposition of the response matrix Y (see Ding

et al. (2011) and the references therein). Others took the latent model approach to re-

strict the rank of the coefficient matrix (Izenman (1975), Reinsel and Velu (1998)) and

sparsity-inducing regularization techniques to reduce the number of parameters (Tib-

shirani (1996), Turlach et al. (2005), Peng et al. (2010)). Chen et al. (2012) has used

singular value decomposition of the coefficient matrix B with L1 penalty on the singular

vectors U and V and computed the posterior modes for orthogonal design matrix. There

method, however, is limited to orthogonal design matrix where columns of X must be

independent. We relax the assumption to remove the orthonormality of U and V and

allow correlated covariates as the regression coefficients are likely to be correlated both
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ways. The coefficients in each row can be correlated as they are the effect of the same

covariate on different responses for a particular subject. Moreover, the coefficients in

each column can be correlated as they are the effect of different covariates on the same

response for a particular subject. Our approach exploits this two-way correlation struc-

ture in cases where regressors can be correlated and random.

Breiman and Friedman (1997) introduced shrinkage estimation called Cards and

Whey (C&W) method to improve on prediction error when the same set of predictors

is used for multivariate response. They showed that even when the random error terms

eik and eik′ are independent for different responses the responses yik and yik′ of a sample

i can be correlated due to their dependence on the same set of predictors Xi. The C&W

linear predictor has the form Ỹ = Ŷ OLSM , where M is a d × d shrinkage matrix esti-

mated from the data to exploit correlation in the responses arising from shared random

predictors.

Ding et al. (2011) extended the idea in Bayesian framework and introduced a rank

recovery mechanism; their low rank component is modeled as Y0 = U(Z∆)V T =∑r
l=1 δlzlulv

T
l , where Z is diagonals matrix with zl ∈ {0, 1}. They claimed that restric-

tions on U , V , and ∆ comes at a greater computational cost without any remarkable

benefit. Relaxing the orthonormality assumptions of U and V and non-negativity as-

sumption on ∆, that allows for a more flexible prior specification, they used normal

priors for ul, vl and δl to achieve shrinkage. A binomial prior is used for zl, which is

introduced for rank learning.

Chen et al. (2012) used singular value decomposition of the mean parameter B for

multivariate response model (1.7) under L− 1 (adaptive lasso) penalty. The SVD rep-

resentation shows that B is composed of r orthogonal unit-rank layers of decreasing
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importance, and each layer provides a distinct channel relating the responses to the pre-

dictors, which parsimoniously reveals the structure imposed by (1.7). They sought to

seek a B̂ with sparse SVD structure in the vicinity of some initial consistent estimator B̃

by decomposing the rank-r problem into r parallel sparse unit-rank regression problems,

by forming r ”exclusive layers”.

None of the existing approches address the simultaneous estimation of high- dimen-

sional mean parmeter matrix and high- dimensional covariance matrix.

1.3.3 Low Rank Estimation Under Longitudinal Setting

Many longitudinal biomedical studies, such as genomics and neuroimaging, repeat-

edly collect a large number of responses and covariates from a small set of subjects

and focus on establishing associations among them. For instance, in imaging genetics,

various imaging measures, such as volumes of regions of interest (ROIs), are repeatedly

measured and may be predicted by high-dimensional covariate vectors, such as single

nucleotide polymorphisms (SNPs) or gene expressions. These imaging measures can

serve as important endotraits that may ultimately lead to discoveries of genes for some

complex mental and neurological disorders, such as schizophrenia, since imaging data

provides the most effective measures of brain structure and function (Scharinger et al.,

2010; Paus, 2010; Peper et al., 2007; Chiang et al., 2011b,a). This motivates us to

develop a longitudinal low rank regression model for the analysis of longitudinal high-

dimensional responses and covariates.

Modeling longitudinal high-dimensional covariates and responses involve four chal-

lenges (i) a large number of regression coefficients, (ii) spatial correlation, (iii) temporal

correlation, and (iv) multicollinearity among predictors. When the dimension of re-

sponses and the number of covariates, which are denoted by d and p, respectively, are
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even moderately high, fitting a multivariate linear model usually requires estimating a

d × p matrix of regression coefficients, whose number pd can be much larger than the

sample size. At each given time, accounting for complicated spatial correlation among

multiple responses is important for improving prediction accuracy of multivariate analy-

sis (Breiman and Friedman, 1997). Accounting for temporal correlation is important for

both prediction and estimation accuracy. Moreover, the collinearity among genetic pre-

dictors can cause issues of over-fitting and model misidentification (Fan and Lv, 2010).

Under the cross-sectional settings, several approaches explored new methods for

high-dimensional responses and covariates. Breiman and Friedman (1997) introduced

a Cards and Whey (C&W) to improve prediction error by accounting for correlations

among the response variables when both p and d are moderate compared to the sample

size. Peng et al. (2010) proposed a variant of the elastic net to enforce sparsity in the

high-dimensional regression coefficient matrix, but they did not account for correlations

among responses. Rothman et al. (2010) proposed a simultaneous estimation of a sparse

coefficient matrix and a sparse covariance matrix to improve on estimation error under

the L1 penalty. Vounou et al. (2010) considered the singular value decomposition of the

coefficient matrix and used the LASSO-type penalty on both the left and right singular

vectors to ensure its sparse structure. They, however, do not model longitudinal data

and do not provide a standard inference tool (e.g., standard error) on the nonzero com-

ponents of the left and right singular vectors or the coefficient matrix.

Several attempts have been made to investigate the effect of genotypes on longi-

tudinal phenotypes. Chen and Wang (2011) proposed penalized spline based methods

for functional mixed effects models with varying coefficients, but they focus on small

p and d under a low-dimensional setting. Wang et al. (2012) used sparse multitask
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regression to examine the association between genetic markers and longitudinal neu-

roimaging phenotypes. However, their multi-task regression model considered subjects

with the same number of repeated measures and ignore spatial-temporal correlations

of imaging phenotypes, and thus it leads to loss of statistical power in detecting gene-

imaging associations. Vounou et al. (2011) and Silver et al. (2012) proposed various

sparse reduced-rank regression models by using penalized regression methods for the

detection of genetic associations with longitudinal phenotypes. They, however, ignore

the spatio-temporal correlations of longitudinal phenotypes, which are important for

both estimation and prediction accuracy. Moreover, none of them explore the gene

and time interaction, which can reveal important genetic traits altering time affects on

longitudinal phenotypes.

1.4 Motivating Examples

Consider the challenges in the analysis of genetic and imaging data collected by the

NIH ADNI. The NIH ADNI is an ongoing public-private initiative to test whether ge-

netic, clinical, functional and structural neuroimaging data can be combined to measure

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD)

. ADNI initiative is recruiting study subjects over 50 sites across the United States

and Canada. The genetic and clinical data along with corresponding structural brain

MRI data from baseline and follow-up were obtained from the ADNI publicly available

database (http://adni.loni.ucla.edu/). Our interest is to perform genome-wide searches

for establishing the association between the SNPs collected on top genes reported by Alz-

Gen (http://www.alzgene.org/) and the brain volumes of 93 regions of interest (ROIs),

while accounting for other time-varying covariates, such as age, and baseline covariates,

such as gender, as well as spatiotemporal correlation among responses. By using the

Bayesian GLRR for repeated measures data, we can easily carry out formal statistical

inferences,such as the identification of significant SNPs or SNPs that interact with aging
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on the differences among all 93 ROI volumes between AD and normal controls.

The MRI data was collected across a variety of 1.5 Tesla MRI scanners with indi-

vidualized protocols for each scanner. To obtain standard T1-weighted images volumet-

ric 3-dimensional sagittal MPRAGE or equivalent protocols with varying resolutions

were used. The typical protocol included: inversion time (TI) = 1000 ms, repeti-

tion time (TR) = 2400 ms, flip angle = 8o, and field of view (FOV) = 24 cm with

a 256 × 256 × 170 acquisition matrix in the x−, y−, and z−dimensions yielding a

voxel size of 1.25× 1.26× 1.2 mm3. Standard steps including anterior commissure and

posterior commissure correction, skull-stripping, cerebellum removing, intensity inho-

mogeneity correction, segmentation and registration (Shen and Davatzikos, 2004) were

used to preprocessed the MRI data. We then carried out automatic regional labeling

by labeling the template and by transferring the labels following the deformable regis-

tration of subject images. After labeling 93 ROIs, we were able to compute volumes for

each of these ROIs for each subject.

To genotype subjects in the ADNI database, the Human 610-Quad BeadChip (Illu-

mina, Inc., San Diego, CA) was used, which resulted in a set of 620,901 SNP and copy

number variation (CNV) markers. Since the Apolipoprotein E (APOE) SNPs, rs429358

and rs7412, are not on the Human 610-Quad Bead-Chip, they were genotyped sepa-

rately. These two SNPs together define a 3 allele haplotype, namely the ε2, ε3, and ε4

variants and the presence of each of these variants was available in the ADNI database

for all the individuals. The software EIGENSRAIT in the package of EIGENSOFT 3.0

was used to calculate the population stratification coefficients of all subjects. To reduce

population stratification effects, we only used 749 Caucasians from all 818 subjects who

had at least one imaging sample available.
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We also performed quality control on this initial set of genotypes. In order to im-

pute the missing genotypes in our sample, we used MACH4 version 1.0.16 with default

parameters to infer the haplotype phase. We also included the APOE-ε4 variant, coded

as the number of observed ε4 variants. We dropped SNPs with more than 5% missing

values and imputed the mode for the missing SNP for the remaining. In the final quality

controlled genotype data, we dropped the SNPs with minor allele frequency smaller than

0.1 and Hardy-Weinberg p-value < 10−6.

The data is multivariate whose covariance needs to be estimated in order to obtain

a more precise estimate for the regression coefficients and build nework among the

regions of interest. The covariates are hig-dimensional deserving special techniques for

fitting feasible regression models. The responses are measureed repeatedly calling for

accomodating speciotemporal correlation as well as age effect on response as well as

genotype-phenotype relationship. We developed a series of three papaers to address

these issues.

1.5 Methods Background

Our first paper introduces a genaralized double-gamma prior that can be reduced

to commonly used frequentist methods. Then we develop a Bayesian lasso estimator

for the covariance matrix and propose a metropolis-based sampling scheme. A major

hurdle in covariance estimation is the positive-definiteness constrain. Our columnwise

sampling scheme allowes sampling positive-definite matrices while opening the floodgate

for for many differrent priors. This development is motivated by functional network ex-

ploration for the entire brain from magnetic resonance imaging (MRI) data.

Next we propose a Bayesian generalized low rank regression model (GLRR) for the

mean parameter estimation where the regression coefficient matrix is separated into
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single-rank laers. Then we combine this with factor loading method of covariance es-

timation to capture the spatial correlation among the responses and jointly estimate

the mean and covariance parameters. We explore model evaluation and optimal rank

selection that allowes for inference on each layer of the coefficient matrix. This develop-

ment is motivated by performing genome-wide searches for associations between genetic

variants and brain imaging phenotypes from data collected by Alzheimer’s Disease Neu-

roimaging Initiative (ADNI).

Finally, we extend GLRR to longitudinal setting and propose a Bayesian longitudi-

nal generalized low rank regression (LGLRR) to account for spatiotemporal correlation

among the responses as well as estimation of full-rank coefficient matrix for standard

prognostic factors. This development is motivated by genome-wide searches for associ-

ations between genetic variants and brain imaging phenotypes observed over time. Our

primary focus is to fit nonparametric curves for age effect and model the age-genotype

interaction to explore their effect on brain volume over time.
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CHAPTER 2

THE BAYESIAN COVARIANCE LASSO

2.1 Introduction

In our firts paper we propose generalized priors which include common frequentist

penalties like the adaptive lasso penalty of Fan et al. (2009), the lasso (L1) penalty of

Friedman et al. (2008a), and the SPICE penalty of Rothman et al. (2010) as special

cases. Then we introduce a new Bayesian approach for sampling from the posterior dis-

tribution of the precision matrix one whole column at a time and rely on multiple tries

to achieve the desired acceptance rate. The proposed method is particularly attractive

and efficient compared to the existing single-step methods as it updates the matrix one

entire column at a time (on the order of d) instead of one element at a time (on the

order of d2). Our sampling scheme rejects any sample that is not a positive definite

matrix and is permutation invariant. In addition, the method is based on specifying

priors directly on the elements of the precision matrix instead of priors on the elements

of a matrix decomposition, and the proposed method performs shrinkage and estima-

tion simultaneously. We also explore the posterior distribution of the elements under

the lasso penalty and provide a Bayesian minimax estimator as an alternative to the

popular frequentist posterior mode estimators under L1 penalties.

To illustrate the proposed methodology, we consider data from functional connectiv-

ity Magnetic Resonance Imaging (fcMRI) from 90 regions of interest (ROI) of 30 2-year



old children. All images were acquired on a 3 Tesla Magnetic Resonance Imaging (MRI)

scanner with a gradient echo-planar imaging sequence. The imaging sequence was re-

peated 150 times. The images of the first 10-20 time points were typically excluded from

the data analysis to ensure that magnetization reaches the steady state. All subjects

are healthy normal controls and imaged at sleep without sedation. In this study, the

signals were obtained from the remaining 130 time points. Our primary purpose here is

to build a network among ROIs when there is no prior information about the underlying

structure of the network or graph.

2.2 The General Method

Let Yi ∼ Nd(0,Θ
−1) for i = 1, . . . , n be n independent observations, where Θ =

(θkk′) = Σ−1 is a d×d precision matrix. Then the joint distribution of Y = (Y1, · · · , Yn)

is given by

p(Y |Θ) ∝ (det Θ)
n
2 exp

{
−1

2

n∑
i=1

Y T
i ΘYi

}
I(Θ � 0),

where I(Θ � 0) is an indicator function of the event that Θ is positive definite. S =∑n
i=1 YiY

T
i /n is the maximum likelihood estimator of Σ.

2.2.1 Proposed Priors

We choose independent exponential priors for the diagonal elements; θkk ∼ Exp(βk)

and Laplace priors for the off-diagonal elements θkk′ ∼ Laplace(0, bkk′) for k > k′ and

k, k′ = 1, . . . , d. Then, the posterior distribution of Θ, p(Θ|Y ), is given by

(det Θ)
n
2

d∏
k=1

exp{−n
2
tr(SΘ)−

d∑
k=1

βkθkk −
d∑

k=2

k−1∑
k′=1

bkk′ |θkk′|},
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where det(.) denotes the determinant of a matrix. The log-posterior function equals

log p(Θ|Y ) =
n

2
log det Θ− n

2
tr(SΘ)

−
d∑

k=1

βkθkk −
d∑

k=2

k−1∑
k′=1

bkk′ |θkk′ |+ C,
(2.1)

where C is a constant independent of Θ. The popular frequentist penalized likelihoods

including ACLASSO, CLASSO and SPICE can be derived from (2.1) as special cases as

follows. If we choose βk = ndλkk/2 and bkk′ = ndλkk′ (for k > k′), then (2.1) reduces to

n

2
{log det Θ− tr(SΘ)−

d∑
k=1

d∑
k′=1

dλkk′|θkk′ |}+ C. (2.2)

Fan et al. (2009) optimized equation (2.2) as the objective function in the ACLASSO

method, which can be interpreted as the posterior mode under Exp(ndλkk/2) priors for

the diagonal elements and Laplace(ndλkk′) priors for the off-diagonal elements of the

precision matrix Θ.

If we set bkk′ = 2βk = nρ, the priors for θkk are i.i.d Exp(nρ/2) and the θkk′ are i.i.d

Laplace(nρ) for k > k′. Then (2.1) reduces to

log p(Θ|Y ) =
n

2
{log det Θ− tr(SΘ)− ρ||Θ||l1}+ C, (2.3)

where ||Θ||l1 =
∑d

k=1

∑p
k′=1 |θkk′ | is the l1 norm of Θ. Banerjee et al. (2007) optimized

equation (2.3) in their covariance selection method (ignoring n/2), while Friedman et al.

(2008a) also optimized equation (2.3) in their CLASSO method, which is essentially the

posterior mode under Exp(nρ/2) priors for the diagonal elements and Laplace(nρ) priors

for the off-diagonal elements of Θ. Banerjee et al. (2007) has shown that (2.3) is concave

in Θ, which yields that the posterior distribution of Θ is unimodal. Hence, we will use

Exp(nρ/2) priors for the diagonal elements and Laplace(nρ) priors for the off-diagonal
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elements of Θ so that our log-posterior is the same as the objective function of CLASSO

in (2.3).

If we choose not to penalize the diagonal elements of Θ, then we can let the hyper-

parameter βk approach 0 (βk → 0) or equivalently choose improper uniform priors on

(0,∞) for the diagonal elements of Θ. In that case, (2.3) further reduces to

log p(Θ|Y ) =
n

2

{
log det Θ− tr(SΘ)− ρ||Θ−||l1

}
+ C, (2.4)

where Θ− has the same off-diagonal elements as Θ but all the diagonal elements are zero.

Yuan and Lin (2007) and Rothman et al. (2010) used equation (2.4) as their objective

function (ignoring n/2 and C) and calculated the posterior mode in their SPICE method.

2.2.2 Full Conditionals

For k = 1, . . . , d, we partition and rearrange the columns of Θ and S as follows:

Θ =

 Θ−kk θk

θT
k θkk

 and S =

 S−kk sk

sT
k skk

 , (2.5)

where θkk is the kth diagonal element of Θ, θk = (θk1, . . . , θk,k−1, θk,k+1, . . . , θkd)
T is the

vector of all off-diagonal elements of the kth column, and Θ−kk is the (d− 1)× (d− 1)

matrix of all the remaining elements, i.e., the matrix resulting from deleting the kth

row and kth column from Θ. By using the Schur decomposition (Schur, 1909), we have

det(Θ) = det(Θ−kk)Dk, where Dk = (θkk − Ck) and Ck = θ
T

kΘ−1
−kkθk are scalar quanti-

ties. Similarly, skk is the kth diagonal element of S, sk is the vector of all off-diagonal

elements of the kth column of S, and S−kk is the matrix of all remaining elements.

Our primary aim is to sample from the posterior distribution of the kth column of
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Θ for k = 1, . . . , d. It follows from (2.3) that the conditional densities for θkk and θk

can be written as follows:

p(θkk|Y,θk,Θ−kk, ρ) ∝D
n
2
k exp{−n

2
(skk + ρ)θkk},

p(θk|Y, θkk,Θ−kk, ρ) ∝D
n
2
k exp{−n

2
(sT
k θk + ρ||θk||l1)}

× I(Dk > 0),

(2.6)

where I(A) is the indicator function of the event A. Under the SPICE penalty, the full

conditional distribution for θk is the same while the full conditional distribution for θkk

changes to

p(θkk|Y,θk,Θ−kk, ρ) ∝ D
n
2
k exp{−n

2
skkθkk}.

Note that in (2.6), we could replace Dk by det(Θ) which is computed faster than

Dk since θ
T

kΘ−1
−kkθk requires inverting a (d − 1) × (d − 1) matrix and then computing

a quadratic form of the same order. However, we will need to compute θ
T

kΘ−1
−kkθk to

sample the diagonal elements θkk and we will not require any additional computations

when sampling the off-diagonals θk. We are led to the following theorem.

Theorem 1: Suppose we start with a positive definite current value of Θ and sample

from

p(θkk|Y,θk,Θ−kk) ∝ D
n
2
k exp{−n

2
(skk + ρ)θkk},

p(θk|Y, θkk,Θ−kk) ∝ D
n
2
k exp{−n

2
(sk + ργk)

T

θk}I(Dk > 0),

where γk = (γk1, . . . , γkd)
T and γkk′ = sign(θkk′) for k′ = 1, . . . , d. This sampling process

guarantees that we sample positive definite values of Θ at all subsequent steps.

Theorem 1 ensures that the Bayesian covariance lasso (BCLASSO) can achieve

positive-definiteness for any non-negative penalty parameter ρ.
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2.2.3 Proposed Sampling Scheme

Gibbs sampling for the diagonal elements is straightforward since their full condi-

tionals are available in closed form. The full conditionals for the off-diagonals are not

available in closed form and therefore we will use the standard Metropolis-Hastings al-

gorithm within Gibbs to sample the off-diagonal elements. In many applications, the

off-diagonal elements are nearly symmetric suggesting a normal proposal density as a

suitable choice. The mean of the proposal density is chosen to be the current value of

Θ and the choice of the variance of the proposal density is determined from the Hessian

matrix. We can write

log p(θk|Y, θkk,Θ−kk) = 0.5n
{

logDk − (sk + ργk)
Tθk
}

+ C.

The first-order derivative of the logarithm of full conditional distribution with respect to

θk is 0.5n
{
D−1
k D

(1)
k − (sk + ργk)

}
, where D

(1)
k = −2Θ−1

−kkθk is the first-order derivative

of Dk with respect to θk. The second-order derivative matrix of the logarithm of the

full conditional distribution with respect to θk equals

−0.5n{D−1
k (D−1

k D
(1)
k D

(1)T

k +D
(2)
k )},

where D
(2)
k = −2Θ−1

−kk is the second-order derivative of Dk with respect to θk. Therefore,

the covariance matrix of the proposal density is Vk = cDk(D
−1
k D

(1)
k D

(1)T

k −D(2)
k )−1|Θ=Q,

where Q is a suitable estimate of Θ (such as S−1, (S + aI)−1, a > 0, etc.) and c > 0

is the variance tuning factor discussed below. Note that Vk is positive definite almost

surely as long as Q is positive definite. Our proposal density is therefore taken as

q(θk) ≡ Nd−1(θtk, Vk), where θtk is the current value of the k-th off-diagonal column at

iteration t. If x is the proposed value for θt+1
k , then the Metropolis-Hastings accep-

tance probability is α = min
{

1, p(x|Y, θkk,Θ−kk)/p(θtk|Y, θkk,Θ−kk)
}

. Therefore, we set

30



θt+1
k = x with probability α and θt+1

k = θtk with probability 1− α.

There are several possible sampling strategies. We could sample Θ one element at

a time, but that will be on the order of d2, which is less efficient and ignores the possi-

ble correlations between the elements in the same column. We could also sample only

the lower triangular off-diagonal elements, in which we would sample the d − 1 vector

(θ12, . . . , θ1d) first, the d− 2 vector (θ23, . . . , θ2d) second, and so on. This would update

all the elements of Θ by virtue of symmetry, which might be the most efficient way of

sampling. However, this sampling procedure still ignores the correlations between the

upper triangular elements and the lower triangular elements within the same column.

We recommend sampling the whole off-diagonal column all at once, which yields an

algorithm on the order of d. Updating the whole off-diagonal column has another ad-

vantage in that each θkk′ (k 6= k′) has two chances to get updated. We update θkk′ when

we update column k and again when we update column k′ due to θkk′ = θk′k. For each

cycle, the latter updated value of θkk′ will replace the first updated value. Thus, this will

result in one-step thinning to reduce autocorrelations between samples. Thus the actual

replacement rates for the individual elements (θkk′ ’s) are higher than the acceptance

rates of the columns θk. Our computations show that the replacement rate is roughly

(1−acceptance rate)2, implying that the acceptance of column k and column k′ (k 6= k′)

are nearly independent. This implies that, if we target an average replacement rate of

36%, which is enough for an ideal sampling scheme, we will need an average acceptance

rate for a column to be around 20%. Therefore, we can use fewer tries and/or a larger

variance to obtain an ideal sampling scheme.

Variance tuning will, in most cases, result in shrinkage. We tune the variance in

cases where the estimate Q of the parameter Θ leads to an unusually high variance

of the proposal density. Such a situation can lead to too many draws of multiple try
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method, small acceptance rates, and high autocorrelations among sampled elements.

This can also happen when we take Q = S−1, where S−1 is still positive definite but

the sample size is small relative to the dimension, leading to an inflated Vk. For high-

dimensional cases, when S is singular or close to singular, we can choose Q = (S+aI)−1

for a suitable a > 0, that is we add a small constant to the diagonals to make Q positive

definite. This can also help in making Q more stable when n is not sufficiently large

compared to d, since for larger d/n the smaller eigenvalues approach zero to destabilize

the inversion.

Shrinking the variance too much can lead to a failure in exploring the full range

of values for θk and also result in high autocorrelations among the elements. Similar

problems also arise when there is no shrinkage at all. Thus, in order to optimize the

acceptance rates, we shrink the variance moderately and combine that with the multiple

try method proposed by Liu et al. (2000) with some modifications as discussed below.

A combination of shrinkage and multiple tries is necessary since we have the positive

definiteness constraint coupled with the high dimension d of Θ. Figure 2.1 show the

trace plots and autocorrelations for 3 different choices of the proposal density variance.

Ideal shrinkage will lead to nice looking trace plots and greatly reduce the autocorrela-

tions among successive values. The use of multiple tries can lead to faster convergence

requiring fewer burn-in samples. We can now formally state our algorithm for the k-th

off-diagonal column as follows:

1. Draw m independent vectors, w1, . . . ,wm from the symmetric proposal density

Nd−1(θtk, Vk), where m is the number of tries; in our simulation we choose m = 5.

2. If I(θkk − wT
j Θ−1
−kkwj > 0) = 0 for all j = 1, . . . ,m then do not replace θk

and stop; otherwise select wj from w1, . . . ,wm with probability proportional to

p(wj|θkk,Θ−kk). Denote the selected vector as w.
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3. Draw x∗1, . . . ,x
∗
m−1 from Nd−1(w, Vk), and denote x∗m = θtk.

4. Replace θtk by w with probability

min

{
1,
p(w1|θkk,Θ−kk) + · · ·+ p(wm|θkk,Θ−kk)
p(x∗1|θkk,Θ−kk) + · · ·+ p(x∗m|θkk,Θ−kk)

}
,

where p(x∗j) ∝ p(x∗j |θkk,Θ−kk).

Note that, in the above scheme Vk remains constant for all MCMC samples;

p(wj|θkk,Θ−kk) and p(x∗j |θkk,Θ−kk) are in the same form as (2.6) where θk is replaced

by wj and x∗j , respectively.

For the BCLASSO method, we have several options for choosing the hyperparameter

ρ. First, we can choose a conjugate gamma-type hyperprior for the penalty parameter.

If we choose ρ ∼ Gamma(α0, β0), then it could be sampled using the Gibbs sampler.

The full conditional of ρ is ρ|α0, β0,Θ, Y ∼ Gamma(α0, β0 + ||Θ||l1). This choice re-

quires choosing appropriate values of the hyperparameters α0 and β0; one could choose

noninformative hyperpriors for large sample, however, for small sample the choice is not

trivial as it has to be informative to impose penalty. An alternative is to choose the

penalty parameter via cross-validation using the log-likelihood as a maximizer; we chose

5-fold cross-validation for the optimal choice of penalty parameters for each method.

We first compute BCLASSOm, which is the minimax estimator under the L1-penalty

(Yang and Berger, 2007). Since BCLASSOm estimates all of the elements of Θ as non-

zero, similar to posterior means, we also compute adhoc BCLASSOs estimators by

forcing credible interval-based sparsity. That is, we construct the credible intervals and

force an element of BCLASSOm to zero if the interval contains zero. Sparsity can be

controlled by either the penalty parameter ρ or the width of the credible interval. A

larger ρ or a prior with a larger mean will lead to a more sparse matrix when the width
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of the credible interval is fixed. A wider credible interval will also lead to a more sparse

matrix when the penalty ρ or its prior mean is fixed. We found a credible interval or

around 30% to be ideal. Forcing some elements to zero can theoretically result in non-

positive definite matrices, however, they are positive definite with high probability given

a small credible region is chooses (we suggest below 30%). Our simulation of 600 samples

have all resulted in positive definite matrices as evidenced by the ability to compute finite

L1 losses for all cases, since any zero eigenvalue will result in infinite loss and negative

eigenvalue would lead to an undefined loss. This credible- interval based thresholding has

probabilistic interpretation and deserves further attention in other Bayesian estimation

problems in which there is a need for sparsity. The threshholding also allows network

exploration since forcing some zeros is the key in such network building.

2.2.4 Credible Regions

Suppose we have E MCMC samples Θ1, . . . ,ΘE from the posterior distribution of the

d dimensional precision matrix Θ and let Ψe = log(Θe) be the matrix logarithm of the

e−th sample and Θe = exp(Ψe) be the matrix exponential of Ψe. Note that, if λ1, . . . , λd

are the eigenvalues of Θ and γ1, . . . , γd are the eigenvalues of Ψ, then γk = log(λk)

for k = 1, . . . , d. Now, let Ψ̄ is the posterior arithmetic mean of Ψ1, . . . ,ΨE then

Θ̄G = exp(Ψ) is the posterior geometric mean of Θe. We define the Euclidean distance

between Ψe = (ψe,kk′) and the posterior mean Ψ̄ = (ψ̄kk′) given by

dE,e = ||Ψe − Ψ̄||22 = {
d∑

k,k′=1

(ψe,kk′ − ψ̄kk′)0.5}2.

Then, we sort the E samples according to the values of dE,e and then use

(dE,α/2, dE,1−α/2) as the (1− α)100% credible region for Ψ. Finally, we obtain

(exp(dE,α/2), exp(dE,1−α/2))
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as the (1− α)100% geometric confidence region for Θ.

2.3 Simulation Study

We used simulations to compare the performance of our BCLASSOm and BCLAS-

SOs estimators with the three frequentist penalized likelihood methods namely, CLASSO

(Friedman et al., 2008a), ACLASSO (Fan et al., 2009), and CSCAD (Fan et al., 2009).

Among the Bayesian methods, the Yang and Berger (2007) method uses shrinkage on

the eigenvalues. This is infeasible in our non-full rank setting as some of the eigenvalues

are zero since the dimension of Θ is larger than the sample size (hence the matrix is

singular). In Smith and Kohn (2002) and Wong et al. (2003), an element-wise sampling

was used and does not specify a recognizable prior on the precision (covariance) matrix.

We restrict our comparison to permutation invariant methods that work for non-full

rank data, use priors and l1-type penalties directly on the elements of the precision ma-

trix, and perform simultaneous shrinkage and estimation.

For the simulation, we fixed the dimensionality d and considered 3 unstructured and

3 structured matrix types. Among the unstructured types, the sparse matrix has at

least 80% zeros on the off-diagonals, the moderately sparse one has at least 40% zeros

on the off-diagonals, and the dense matrix has less than 5% zeros on the off-diagonals.

The structured matrix types are tri-diagonal, autoregressive order one (i.e., AR(1)),

and diagonal. In each case, we first generated a precision matrix. Then we generated

100 datasets for a non-full rank case where the sample size is less than the dimension

(d = 20, n = 10) and compared the performance of each method based on those 100

samples.

We relied on a Cholesky decomposition to generate the 3 unstructured positive def-

inite precision matrices of different sparsity levels. We generated a matrix A = (akk′)
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such that akk = 1, akk′ = U [−.5, .5] with probability p and akk′ = 0 with probability 1−p

for k < k′, and akk′ = 0 for k > k′. Then we computed Θ = AAT and Σ = Θ−1. The

degree of sparsity was controlled by p, where a smaller p leads to a more sparse matrix.

A tridiagonal precision matrix results in an AR(1) covariance matrix. In this case, the

elements of the covariance matrix Σ are σkk′ = exp(−q|rk − rk′|), where r1 < . . . < rd

for some q > 0. Here, we chose rk − rk−1 to be i.i.d from U [0.5, 1] for ks = 2, . . . , d.

An AR(1) precision matrix results in a tridiagonal covariance matrix and we generated

the elements θkk′ = exp(−q|rk − rk′|) as above. A diagonal precision matrix results in a

diagonal covariance matrix; in this case, we generated the diagonal elements of Σ where

σkk are independently generated from U[1, 1.25] for k = 1, . . . , d. For the BCLASSOs

estimators we used thresholding on the elements of BCLASSOm based on 30% credible

intervals. This choice of the credible intervals is arbitrary and will depend on the choice

of the penalty parameter ρ or the value of the hyperparameters on the prior of ρ.

2.3.1 Criteria for comparison

There are several loss measures proposed for evaluating the performance in estima-

tion of the precision and covariance matrices as discussed in Yang and Berger (2007).

Among these, the entropy loss, denoted as L1, and the quadratic loss, denoted as L2,

are the most commonly used. The L1 and L2 loss functions for Θ are defined as

L1(Θ, Θ̂) = tr(Θ−1Θ̂)− log det(Θ−1Θ̂)− d,

L2(Θ, Θ̂) = tr(Θ−1Θ̂− I)2.

(2.7)

where vec(A) = (a11, · · · , a1d, · · · , ad1, · · · , add)T for any d×d matrix A = (akk′). Similar

loss functions for Σ will result in the Bayes estimators Σ̂L1 = {E(Θ|Y )}−1 and

vec(Σ̂L2) = {E(Θ⊗Θ|Y )}−1vec{E(Θ|Y )}−1,
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respectively. We use Θ̂L1 = {E(Σ|Y )}−1 and Σ̂L1 = {E(Θ|Y )}−1 in our simulation

studies as the BCLASSO estimators for Θ and Σ, respectively. Since Θ̂L2 and Σ̂L2

are computationally less efficient, requiring inversion of a d2 × d2 matrix at each step

of the Monte-Carlo sampling, we do not use them in our simulation. Our estimators

Θ̂L1 and Σ̂L1 in the simulation are Bayes under the L1 loss, but not under the L2 loss.

Nevertheless, we were able to achieve reasonable L2 loss for Θ̂L1 and Σ̂L1 in our non-

full rank simulation cases. Moreover, using L1-Bayes estimators is more intuitive since

we are using an L1 penalty. Another measure known as the matrix correlation was

defined by Escoufer (1973) as R(Θ, Θ̂) = tr(ΘΘ̂)/{tr(ΘΘ)tr(Θ̂Θ̂)}1/2. In this measure,

the closer the estimator Θ̂ is to Θ, the higher the value of R(Θ, Θ̂). We compared

our estimates Θ̂L1 and Σ̂L1 with the CLASSO, ACLASSO, and CSCAD methods for

the L1 loss, the L2 loss, and the matrix correlation based on 6 different matrix types

of dimension 20. For each of the 6 matrix types, we used 100 Markov chain Monte

Carlo (MCMC) samples of size 10 each. For all cases we choose Q = (S + aI)−1 with

a = 0.1, the number of tries as m = 5, the value of c = 0.5 was chosen to get about 30%

acceptance rate. We collected 10, 000 MCMC samples after 5, 000 burn-in, which gave

us an average computation time of about 10 minutes for each simulation.

We can also define the L1 and L2 loss functions for Σ in a similar fashion. The

optimal estimators minimize these loss functions. Yang and Berger (2007) showed that

the Bayes (hence minimax) estimators of Θ under L1 and L2 are, respectively, given by

Θ̂L1 = Θ̂L1 = {E(Σ|Y )}−1,

vec(Θ̂L2) = {E(Σ⊗ Σ|Y )}−1vec{E(Σ|Y )}−1.

2.3.2 Results

Table 2.1 summarizes the mean L1 losses and their standard deviations for the six

types of precision and covariance matrices. The CSCAD method performs poorly in
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terms of L1 loss for small sample non-full rank cases for all types of structures in both

the precision and covariance matrices. For both the precision and covariance matrices,

CLASSO, SPICE, ACLASSO, BCLASSOm, and BCLASSOs perform similarly. Ta-

ble 2.2 summarizes the mean L2 losses and their standard deviations for these four

methods. For all structures, except the diagonal case, CSCAD is worse than CLASSO,

SPICE, ACLASSO, BCLASSOm and BCLASSOs, while these five methods perform

somewhat similarly for all six structures compared. Only for the diagonal precision

matrix does CSCAD perform the best among the 5 methods compared. Table 2.3 sum-

marizes the mean matrix correlations and their standard deviations. In terms of the

matrix correlation measure R(Θ, Θ̂), CLASSO, BCLASSOm and BCLASSOs perform

somewhat similarly in both the precision and covariance matrices. The ACLASSO and

SPICE methods perform similarly in the precision matrix, but they are worse than

BCLASSO and CLASSO in the covariance matrix. The CSCAD method performs the

worst among all the methods in both the precision and covariance matrices for all six

types of structures considered. As evident from Tables 1 and 2, although there is minimal

or no loss in credible interval based sparsity in the precision matrix, there are substantial

gains in matrix loss for the covariance matrix. The SPICE estimator seems to improve

on the covariance over CLASSO. Performance of both SPICE and CSCAD improves

when sparsity increases. The poor performance of CSCAD is somewhat surprising due

to small sample sizes.

2.4 Application to Real Data

Example 1: The first dataset is flow cytometry data on d = 11 proteins on n = 7466

cells from Sachs et al. (2003). In Sachs et al. (2003), a Bayesian network was developed

and elucidated most of the signaling relationships reported traditionally and also pre-

dicted novel interpathway network causalities, which were verified through experiments.

The data was also used by Friedman et al. (2008a) for comparison of the agreements
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of CLASSO under different values of the penalty parameter. The data was generated

from 9 simulations on 11 proteins. We adjusted the data for a random simulation effect

as well as fixed effects of simulation and protein. Our purpose was to build a network

between proteins via partial correlations (via Θ). For the maximum likelihood network

in Figure 2.3(b), we used a hard-threshold that gives the same number of connections as

those of Sachs et al. (2003). The penalties for the CLASSO in Figure 2.3(d), ACLASSO

in Figure 2.3(e) and CSCAD in Figure 2.3(f), were obtained through 10-fold cross vali-

dation. Since the penalties based on cross validation resulted in a more sparse network

for these 3 frequentist methods than that of Sachs03, we decided to fix the penalty

manually to get the same number of connections. The results are shown in Figures 2.3

(g), 5(h) and 5(i), respectively. For CSCAD, no matter how small ρ is, the number of

connections does not increase after a certain point. Finally, for BCLASSO, we used a

gamma prior for the penalty parameter, ρ ∼ Gamma(1, 1), and used 80,000 MCMC

samples after 20,000 burn-ins to obtain posterior means and credible intervals. We con-

structed credible intervals of different widths for each element as shown in Table 2.4; the

Bayesian network that has the closest number of connections to that of Sachs is shown

on Figure 2.3. The level of agreement of each of these 4 methods to those of Sachs’ re-

sults were computed and reported in Table 2.4. The results indicate similar agreement

between the networks of BCLASSO, ACLASSO and CLASSO and Sachs et al. (2003)’s

network when the number of connections are similar.

Example 2: While it is well recognized that the human brain forms large scale

networks of distributed and interconnected neuronal populations, the study of different

brain networks has been hampered by the lack of non-invasive tools. Recently, the intro-

duction of the resting functional connectivity MRI approach offers, potentially, a potent

tool, to specifically alleviate this difficulty, allowing a direct investigation of a wide ar-

ray of brain networks. Researchers are often interested in exploring the brain networks
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through partial correlations where the connection between two regions is explored after

removing the effect of all other regions.

The data consists of average fcMRI signals from 90 brain regions (d = 90) of 30

2-year old children (N = 30). All images were acquired on a 3T MR scanner with a

gradient echo-planar imaging sequence. The imaging sequence was repeated 150 times.

The images of the first 10-20 time points were typically excluded from the data analysis

to ensure that magnetization reaches the steady state. All subjects are healthy normal

controls and imaged at sleep without sedation. In this study, the signals were obtained

from the remaining 130 repeats (T = 130, so that n = NT = 3900). Our primary

purpose here is to build a network between regions after adjusting for subject effects

and region specific means. Let Yijk (i = 1, . . . , N ; j = 1, . . . , T ; k = 1, . . . d) represent

the adjusted average fcMRI signal from subject i at repeat (time) j in region k. Then

Yij is the d-dimensional vector of adjusted responses from subject i on repeat j and

Yij ∼ Nd(0,Σ). Let n = NT , the joint distribution of Y is given by

p(Y |Θ) ∝ {det(Θ)}
n
2 exp

{
−1

2

N∑
i=1

T∑
j=1

Y T
ij ΘYij

}
I(Θ � 0).

The posterior distribution of Θ under the lasso penalty can be written as in (2.3)

and the full conditionals are given in (2.6). For the penalty parameter ρ, we take

ρ ∼ Gamma(1, 1). For thresholding, we construct credible intervals of different widths

to control sparsity. For CLASSO, ACLASSO, and CSCAD, we used 10-fold cross val-

idation to choose the optimal penalty. We report the resulting precision matrices in

Figure 2.4 and the networks in Figure 2.5. The summary statistics of the number of

connections along with the global efficiencies Eglob (a measure of how efficiently the

regions communicate in the whole brain) and local efficiencies Eloc (a measure of how

efficiently the regions in each local area communicate) are reported in Table 2.5.
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The CSCAD method performs poorly compared to the other three methods and

shows very few connections across the entire brain, leading to rather low global and

local efficiencies. This result contradicts the well formed brain networks of 2 year olds,

which has been reported in the literature using both imaging and behavioral approaches

(Gao et al., 2009). In contrast, CLASSO, ACLASSO, and BCLASSO appear to provide

more similar results, demonstrating well connected brain networks. Although there

are differences in the regions with the highest number of connections, some consistent

patterns are observed from CLASSO, ACLASSO, and BCLASSO. The brain regions that

exhibit the highest number of connections with other regions are consistently shown by

these three methods in the temporal, frontal and occipital lobes. These results suggest

that even at the age of 2 years, children develop well connected networks, particularly

in the temporal and frontal areas. More studies are clearly needed to further determine

how the proposed approach is capable of better delineating the development of brain

networks across different age groups. The top regions picked up by the different methods

are listed in Table 2.5. The BCLASSO results are based on thresholding with a 70%

credible interval. This choice was made in order to closely align the total number of

connections from BCLASSO to that of CLASSO and ACLASSO.

2.5 Discussion

We have introduced a general class of priors for the precision matrix which yield

the ACLASSO, CLASSO, and SPICE penalties as special cases. We have also devel-

oped a sampling scheme for the estimation of the precision and covariance matrices

under a special case that corresponds to the lasso penalty, which can facilitate explo-

ration of the full posterior distribution of the matrix under L1 penalites. Although

our proposed priors do not guarantee positive definiteness of Θ, we have developed a

fast sampling scheme that guarantees positive definite MCMC samples of the precision
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matrix at each iteration regardless of the value of the penalty parameter. Our pro-

posed method is the first Bayesian method that uses priors that directly translate into

the L1 penalty, the method works well for non-full rank data, and performs shrinkage

and estimation simultaneously. Simulations show that BCLASSO performs similarly

to CLASSO, SPICE and ACLASSO for non-full rank data when the sample size is

small, while performing better than CSCAD. We will further develop an efficient al-

gorithm to sample from p(θk|y, θkk, ρ). The proposed method can be easily extended

to more complex models that account for subject-specific variation for building net-

works in longitudinal data. The priors can be generalized to independent gamma priors

for the diagonal elements; θkk ∼ gamma(αk, βk) and independent double gamma pri-

ors for the off-diagonal elements θkk′ ∼ double gamma(0, akk′ , bkk′) for k > k′; that is,

p(θkk′) ∝ |θkk′ |akk′−1 exp(−bkk′|θkk′|), where akk′ > 0 and bkk′ > 0. Then, the posterior

distribution of Θ is given by

p(Θ|Y ) ∝(det Θ)
n
2

d∏
k=1

θαk−1
kk

d∏
k=2

k−1∏
k′=1

|θkk′ |akk′−1

exp{−n
2
tr(SΘ)−

d∑
k=1

βkθkk −
d∑

k=2

k−1∑
k′=1

bkk′|θkk′ |}.

This is particularly attractive for Bayseian analysis since appropriate choice of shape

and scale paramters can lead to an infinite spike of the prior at 0 and heavier tails lead-

ing to larger shrinkage of smaller parameters and smaller shrinkage of larger parameters

compared to L1-penalties.

Like many Bayesian methods, scalibility to larger dimensions is a challenge for

BCLASSO. Nevertheless, the posterior estimators for dimensions up to 50 do well and

networks dimension near 100 works similar to CLASSO and ACLASSO as evidenced

by the brain imaging data example. The main advantage of a fully Bayesian approach

is the ability to sample the whole posterior distribution instead of just estimating the
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posterior mode.
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Figure 2.1: Trace plots (top row) and autocorrelation plots (bottom row) of θ12 for d = 5
and n = 10 showing the impact of variance tuning of the proposal density.
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Figure 2.2: Image plots of the six types of precision matrices (Θ) considered in the
simulation study. The top 3 are unstructured and the bottom 3 are structured.
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Figure 2.3: Networks for 11 proteins from Sachs et al. (2003)
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Figure 2.4: Image plots of the partial correlation matrices for 90 regions of 2-year old
children’ brains using the five different methods
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Figure 2.5: Networks for 90 regions of 2-year old children’ brains using the different
methods
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Table 2.4: Agreement of Methods with the Results from Sachs et al. (2003)

Method Connections Sensitivity Specificity PPV NPV
Sachs 19 1.00 1.00 1.00 1.00
Maximum Likelihood 20 0.37 0.64 0.35 0.66
BCLASSO 10% 30 0.58 0.47 0.37 0.68
BCLASSO 20% 21 0.47 0.67 0.43 0.71
BCLASSO 25% 18 0.42 0.72 0.44 0.70
BCLASSO 30% 13 0.32 0.81 0.46 0.69
BCLASSO 35% 13 0.32 0.83 0.46 0.72
BCLASSO 40% 8 0.26 0.92 0.63 0.70
BCLASSO 50% 8 0.26 0.92 0.63 0.70
CLASSO 10-fold CV 10 0.32 0.89 0.60 0.71
ACLASSO 10-fold CV 4 0.16 0.97 0.75 0.69
SCAD 10-fold CV 1 0.05 1.00 1.00 0.67
LASSO ρ = 0.21 19 0.47 0.72 0.47 0.72
ACLASSO ρ = 0.12 19 0.47 0.72 0.47 0.72
SCAD ρ = 10−3 10 0.32 0.89 0.60 0.71
SCAD ρ = 10−20 10 0.32 0.89 0.60 0.71

CI = credible interval; PPV = Positive predictive value;
NPV = Negative predictive value.
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Table 2.5: ROIs With the Highest Number of Connections Picked by the Four Methods

Maximum Likelihood Covariance Lasso Adaptive Covariance Lasso Bayesian Covariance Lasso
Temporal Pole Mid L 35 Rectus L 33 Temporal Inf L 27 Occipital Inf R 32
Frontal Mid L 31 Temporal Inf L 30 Temporal Inf R 24 Temporal Sup L 31
Precentral R 29 Temporal Inf R 28 Rectus L 23 Frontal Inf Oper R 30
Occipital Sup R 29 Cingulum Post L 28 Supp Motor Area L 23 Angular R 29
Fusiform L 28 Frontal Sup Orb R 27 Cingulum Post L 22 Temporal Mid R 29
Temporal Inf L 28 Heschl L 26 Heschl L 20 Amygdala L 28
Temporal Inf R 28 Supp Motor Area L 25 Frontal Sup Orb R 19 Frontal Mid Orb L 26
Temporal Pole Sup R 27 Frontal Mid Orb R 24 Paracentral Lobule L 19 Frontal Inf Tri L 26
Temporal Pole Mid R 27 Paracentral Lobule L 24 Precentral R 19 Cingulum Mid L 25
Precentral L 26 Olfactory L 24 Olfactory L 18 Parietal Inf L 25
Frontal Sup L 26 Parietal Sup R 23 Occipital Mid R 18 Occipital Sup L 25
Frontal Inf Orb R 26 Frontal Mid Orb R 22 Temporal Pole Mid L 18 Frontal Mid Orb L 24
Temporal Mid L 26 Amygdala L 22 Parietal Sup L 18 Occipital Sup R 24
Angular R 25 Pallidum R 22 Frontal Sup Orb L 18 Occipital Inf L 22
Frontal Sup Orb R 24 Precentral R 21 Frontal Mid Orb R 17 Calcarine L 22
Frontal Mid Orb R 24 Frontal Mid R 21 Parietal Sup R 17 Hippocampus L 22
Occipital Inf L 24 Occipital Mid R 21 Frontal Mid Orb R 17 ParaHippocampal L 21
Parietal Inf R 24 Frontal Mid Orb L 21 Amygdala L 17 Temporal Mid L 21
Frontal Sup Orb L 23 Caudate L 21 Pallidum R 17 Heschl L 20
Frontal Inf Tri R 23 Heschl R 21 Frontal Mid R 17 Caudate L 19
Rectus L 23 Insula L 21 Frontal Mid Orb L 17 Thalamus L 19
Postcentral L 23 Putamen L 21 Calcarine R 17 Precuneus R 19
Parietal Sup R 23 Temporal Pole Mid L 20 Temporal Pole Sup R 17 Olfactory L 18
Frontal Sup R 22 Occipital Inf R 20 Occipital Inf R 16 Frontal Sup L 18
Frontal Inf Orb L 22 Parietal Sup L 20 Cingulum Post R 16 Lingual R 18
Rolandic Oper L 22 Rolandic Oper R 20 Frontal Mid L 16 Temporal Inf L 17
Frontal Sup Medial R 22 Cingulum Post R 20 Frontal Sup R 16 Temporal Pole Mid L 17
Occipital Inf R 22 Calcarine R 20 ParaHippocampal L 16 Pallidum L 17
Frontal Inf Oper R 21 Caudate R 20 Angular R 16 Angular L 17
Occipital Sup L 21 Temporal Pole Sup R 19 Occipital Inf L 16 SupraMarginal L 17
SupraMarginal L 21 Frontal Sup Orb L 19 Frontal Mid Orb L 16 Frontal Mid R 17
Temporal Sup R 21 Cingulum Ant R 19 Olfactory R 15 Calcarine R 16
Frontal Mid R 20 Cingulum Mid R 19 Cingulum Mid L 15 Thalamus R 16
Supp Motor Area L 20 Putamen R 19 Putamen L 14 Fusiform L 16
Supp Motor Area R 20 Thalamus L 19 Caudate R 14 Frontal Inf Orb L 16
Parietal Inf L 20 Frontal Mid L 18 Frontal Sup L 14 Frontal Inf Orb R 16
Angular L 20 Frontal Sup L 18 Supp Motor Area R 14 Temporal Pole Sup L 16
Precuneus L 20 Frontal Sup R 18 Hippocampus R 14 Parietal Sup R 16
Frontal Inf Oper L 19 Supp Motor Area R 18 Amygdala R 14 Olfactory R 15
Frontal Inf Tri L 19 ParaHippocampal L 18 Fusiform L 14 Paracentral Lobule R 15
Cingulum Post L 19 Frontal Sup Medial L 18 Precuneus L 14 Insula R 15
Calcarine L 19 Lingual L 18 Caudate L 13 Temporal Sup R 15
Occipital Mid R 19 Hippocampus R 18 Heschl R 13 Cuneus L 15
Fusiform R 19 Amygdala R 18 Lingual L 13 Occipital Mid R 15
Parietal Sup L 19 Thalamus R 18 Precentral L 13 Frontal Mid L 14
SupraMarginal R 19 Precentral L 17 Parietal Inf R 13 Temporal Pole Mid R 14
Temporal Pole Sup L 19 Angular R 17 Rolandic Oper L 13 Occipital Mid L 14
ParaHippocampal L 18 Parietal Inf R 17 Temporal Pole Mid R 13 Postcentral R 14
Precuneus R 18 Rolandic Oper L 17 Calcarine L 13 Parietal Sup L 14
Temporal Sup L 18 Parietal Inf L 17 Insula R 13 Temporal Pole Sup R 13
Frontal Mid Orb L 17 Cingulum Ant L 17 Temporal Sup R 13 Cingulum Ant L 13
Rolandic Oper R 17 Cuneus R 17 Cingulum Ant R 12 Frontal Inf Oper L 13
ParaHippocampal R 17 Hippocampus L 17 Cingulum Mid R 12 Temporal Inf R 13
Lingual R 17 Olfactory R 17 Putamen R 12 Cingulum Post R 12
Occipital Mid L 17 Cingulum Mid L 17 Thalamus R 12 Amygdala R 12
Temporal Mid R 17 Occipital Sup R 16 Cuneus R 12 Precentral L 12
Frontal Mid Orb R 16 Fusiform L 16 Frontal Inf Oper L 12 Cuneus R 12
Rectus R 16 Occipital Inf L 16 Fusiform R 12 Parietal Inf R 12
Cingulum Ant R 16 Precuneus L 16 ParaHippocampal R 12 Fusiform R 12
Cingulum Mid R 16 Frontal Inf Oper L 16 Frontal Inf Orb L 12 SupraMarginal R 12
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CHAPTER 3

BAYESIAN GENERALIZED LOW RANK REGRESSION

3.1 Introduction

The emergence of high-dimensional data in genomics and neuroimaging, among other

areas, has presented us with a large number of predictors as well as many response

variables, which may have strong correlations. For instance, in imaging genetics as

an emerging field, such problems frequently arise when multivariate imaging measures,

such as volumes of cortical and subcortical regions of interest (ROIs), are predicted by

high-dimensional covariate vectors, such as gene expressions or single nucleotide poly-

morphisms (SNPs). The joint analysis of imaging and genetic data may ultimately

lead to discoveries of genes for some complex mental and neurological disorders, such

as autism and schizophrenia (Cannon and Keller, 2006; Turner et al., 2006; Scharinger

et al., 2010; Paus, 2010; Peper et al., 2007; Chiang et al., 2011a,b). This motivates

us to develop low rank regression models (GLRR) for the analysis of high-dimensional

responses and covariates under the high-dimension-low-sample-size setting.

Developing models for high-dimensional responses and covariates poses at least four

major challenges including (i) a large number of regression parameters, (ii) a large co-

variance matrix, (iii) correlations among responses, and (iv) multicollinearity among

predictors. When the number of responses and the number of covariates, which are



denoted by d and p, respectively, are even moderately high, fitting conventional multi-

variate response regression models (MRRM) usually requires estimating a d× p matrix

of regression coefficients, whose number pd can be much larger than the sample size.

Although accounting for complicated correlation among multiple responses is important

for improving the overall prediction accuracy of multivariate analysis (Breiman and

Friedman, 1997), it requires estimating d(d + 1)/2 unknown parameters in a d × d un-

structured covariance matrix. Another notorious difficulty is that the collinearity among

a large number of predictors can cause issues of over-fitting and model misidentification

(Fan and Lv, 2010).

There is a great interest in developing new statistical methods to handle these chal-

lenges for MRRMs. The early developments involve a separation approach- variable

selection to reduce dimension and then parameter estimation, when both p and d are

moderate compared to the sample size (Breiman and Friedman, 1997). For instance,

Brown et al. (2002) introduced Bayesian model averaging incorporating variable selection

for prediction, which allows for fast computation for dimensions up to several hundred.

Recently, much attention has been given to shrinkage methods for achieving better sta-

bility and improving performance (Tibshirani, 1996). Notably, the most popular ones

are the L1 and L2 penalties. The L2 penalty forces the coefficients of highly correlated

covariates towards each other, whereas the L1 penalty usually selects only one predictor

from a highly correlated group while ignoring the others. L1 priors can be seen as sparse

priors since they create a singularity at the origin whose gravity pulls the smaller coeffi-

cients to zero under maximum a posteriori (MAP) estimation. There are fully Bayesian

approaches with sparse priors for univariate responses like the Bayesian LASSO (Park

and Casella, 2008), a generalization of the LASSO (Kyung et al., 2010), and the double

Pareto (Armagan et al., 2011), among many others. These methods, however, are pri-

marily developed under the univariate-response-high-dimensional-covariate setting.
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There have been several attempts in developing new methods under the high-dimensional-

response-and-covariate setting. When both p and d are moderate compared to the sam-

ple size, Breiman and Friedman (1997) introduced a Curds and Whey (C&W) method

to improve prediction error by accounting for correlations among the response vari-

ables. Peng et al. (2010) proposed a variant of the elastic net to enforce sparsity in the

high-dimensional regression coefficient matrix, but they did not account for correlations

among responses. Rothman et al. (2010) proposed a simultaneous estimation of a sparse

coefficient matrix and sparse covariance matrix to improve on estimation error under

the L1 penalty. Similarly, Yin and Li (2011) presented a sparse conditional Gaussian

graphical model in order to study the conditional independent relationships among a

set of gene expressions adjusting for possible genetic effects. Furthermore, several au-

thors have explored the low rank decomposition of the regression coefficient matrix and

then use sparsity-inducing regularization techniques to reduce the number of parame-

ters (Izenman, 1975; Reinsel and Velu, 1998; Tibshirani, 1996; Turlach et al., 2005; Chen

et al., 2012; Vounou et al., 2010). For instance, Chen et al. (2012) and Vounou et al.

(2010) considered the singular value decomposition of the coefficient matrix and used

the LASSO-type penalty on both the left and right singular vectors to ensure its sparse

structure. Since all variable selection methods require a selection of a proper amount of

regularization for consistent variable selection, some methods, such as stability selection

and cross validation, are needed for such selection (Meinshausen and Buhlmann, 2010).

They, however, do not provide a standard inference tool (e.g., standard deviation) on

the nonzero components of the left and right singular vectors or the coefficient matrix.

Moreover, frequentist inference is the primary approach for making statistical inferences

in the high-dimensional-response-and-covariate setting.

In this paper, we propose a new Bayesian GLRR to model the association between
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genetic variants and brain imaging phenotypes. A low rank regression model is intro-

duced to characterize associations between genetic variants and brain imaging pheno-

types, while accounting for the impact of other covariates. We assume shrinkage priors

on the singular values of the regression coefficient matrix, while not explicitly requir-

ing orthonormality of left and right singular vectors. This facilitates fast computation

of the regression coefficient matrix. We consider a sparse latent factor model to more

flexibly capture the within-subject correlation structure and assume a multiplicative

gamma process shrinkage priors on the factor loadings, which allow for the introduction

of infinitely many factors (Bhattacharya and Dunson, 2011). We propose Bayesian local

hypothesis testing to identify significant effects of genetic markers on imaging pheno-

types, while controlling for multiple comparisons. Posterior computation proceeds via

an efficient Markov chain Monte Carlo (MCMC) algorithm.

In Section 2, we introduce the NIH Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset. In Section 3, we introduce GLRR and its associated Bayesian estima-

tion procedure. In Section 4, we conduct simulation studies with a known ground truth

to examine the finite sample performance of GLRR and compare it with the conventional

LASSO method. Section 5 illustrates an application of GLRR in the joint analysis of

imaging, genetic, and clinical data from ADNI. Section 6 presents concluding remarks.

3.2 Generalized Low Rank Regression Models

3.2.1 Model Setup

Consider imaging genetic data from n independent subjects in ADNI. For each sub-

ject, we observe a d × 1 vector of imaging measures, denoted by Yi = (yi1, . . . , yid)
T,

and a p× 1 vector of clinical and genetic predictors, denoted by Xi = (xi1, . . . , xip)
T, for

i = 1, . . . , n. Let Y = (yik) be an n× d matrix of mean centered responses, X = (xij)

be an n× p matrix of standardized predictors, B = (βjk) be a p× d matrix of regression
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coefficients, and E = (εik) be an n × d matrix of residuals. We consider a multivariate

response regression model given by

Yi = BTXi + εi, or Y = XB + E, (3.1)

where εi ∼ Nd(0,Σ = Θ−1), in which Θ = Σ−1 is the d × d precision matrix. There

are several statistical challenges in fitting model (3.1) to real data. When both p and d

are relatively large compared to n, the number of parameters in B equals p× d and can

be much larger than n. Furthermore, the number of unknown parameters in Σ equals

d(d+1)/2. In addition to the number of unknown parameters, there are some additional

complexities arising from practical applications, including different scales for different

response variables and collinearity among the predictors.

In this model multiple responses are measured from the same subject and share a

set of common predictors. Therefore, the regression coefficient matrix B can have two-

way linear dependence coming from both the correlated responses and covariates. This

shared mean structure can lead to a low rank mean parameter matrix B. We exploit

this shared structure of B by decomposing it as

B = U∆V T =
r∑
l=1

Bl =
r∑
l=1

δluuulεl
T, (3.2)

where r is the rank of B, Bl = δluuulεl
T is the l−th layer for l = 1, . . . , r, ∆ =

diag(δ1, . . . , δr), U = [uuu1, · · · ,uuur] is a p × r matrix, and V = [ε1, · · · , εr] is a d × r

matrix. Since it is expected that only a small set of genetic variates are associated with

phenotypes, a small rank of B may be able to capture the major dependence structure.

Given the large number of parameters in Σ, we consider a Bayesian factor model to
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relate the random effects εi to the latent factors ηi as

εi = Ληi + ξi, (3.3)

where Λ is a d × ∞ factor loading matrix, ηi ∼ N∞(0, I∞), and ξi ∼ N(0,Σξ) with

Σξ = diag(σ2
1, . . . , σ

2
d). To achieve dimensionality reduction, one would typically restrict

the dimension of the latent factor vector ηi to be orders of magnitude less than that of

εi. By following Bhattacharya and Dunson (2011), we choose a prior that shrinks the

elements of Λ to zero as the column index increases. Thus, it bypasses the challenging

issue of selecting the number of factors. Finally, our GLRR integrates the low rank

model (3.2) and the Bayesian factor model (3.3). Specifically, our GLRR can be written

as

Yi =
r∑
l=1

XT
i δlεluuul

T + Ληi + ξi. (3.4)

Other than genetic markers, such as SNP’s, it is common that Xi has a subvector,

denoted by XPi, consisting of several prognostic variables, such as age, gender, and dis-

ease status in real applications. There are two different methods to deal with prognostic

factors in the presence of genetic markers. The first method is a two-step approach.

The first step is to fit the MRRM solely with these prognostics factors as covariates and

then calculate the fitted residuals as adjusted responses. The final step is to fit model

(3.4) to the adjusted responses with genetic markers as X. The second method is to

fit model (3.4) with both prognostic factors and genetic markers as covariates. Let BP

be the pP × d matrix of coefficients associated with the prognostic factors and XSi and

BS be, respectively, the subvector of Xi and the submatrix of B associated with genetic

markers. It may be reasonable to assume that BP may be unstructured and BS admits

the decomposition given by BS = US∆SV
T
S =

∑r
l=1BS,l. In this case, the model can be
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written as

Yi = BT
PXPi +

r∑
l=1

BT
S,lXSi + εi. (3.5)

We take the second approach and fit model (3.5) in real data analysis.

3.2.2 Low Rank Approximation

The decomposition (3.2) is similar to the standard singular value decomposition

(SVD), but it differs from SVD. Specifically, it is unnecessary that the columns of U

and V in (3.2) are orthonormal and this allows that ujl and vjl can take any value

in (−∞,∞), since identifiability is not critical for making inference on B. Thus, the

decomposition (3.2) can be regarded as a generalization of SVD in Chen et al. (2012).

Moreover, compared to SVD, this decomposition leads to better computational effi-

ciency, since sampling a unit vector in a high-dimensional sphere is computationally

difficult. Nevertheless, each layer Bl is a factorization with unit rank, which amounts to

estimating a common p× 1 vector of distinct regression coefficients and making the rest

of the coefficients some linear combinations of this vector with d additional parameters.

Within the l-th layer, each column of Bl shares the same uuul and δl, which facilitates the

exploitation of a common dependence structure among the covariates collected from the

same set of subjects. Similarly, each row of Bl shares the same εl and δl facilitating the

exploitation of a common dependence structure among the responses from the same set

of subjects. The number of parameters at each layer is p + d and the total number of

parameters equals r× (p+ d). Since r << min(p, d), the use of the decomposition (3.2)

leads to a huge dimension reduction.

The decomposition (3.2) differs from two other popular methods including multivari-

ate response models and stepwise unit rank regression models. Multivariate response
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models estimate a separate p × 1 vector of coefficients for each response totaling p × d

parameters. In frequentist analysis (Chen et al., 2012), it is common to sequentially

explore each layer of B based on the ordering of ∆, which leads to stepwise unit rank

regressions (SURR). Specifically, one first fits the unit rank (r = 1) regression with the

observed Y as the response to estimate the first layer B̂1 and Ŷ = XB̂1. Subsequently,

one fits another unit rank regression with Y − Ŷ as the response to estimate the second

layer B̂2. One can continue this process until the r-th rank. Thus, SURR can be viewed

as a special case of GLRR.

3.2.3 Covariance Structure

The covariance structure for Y i is given by

Σ = Θ−1 = ΛΛT + Σξ. (3.6)

It is common to impose a constraint on Λ to define a unique model free from iden-

tification problems, since Σ is invariant under the transformation Λ∗ = ΛP for any

semi-orthogonal matrix P with PPT = I. For instance, for identifiability purposes, one

may impose a full rank lower triangular constraint, which implicitly specifies an order

dependence among the responses (Geweke and Zhou, 1996). However, it is unnecessary

to impose such a constraint on Λ if our primary interest is on covariance matrix estima-

tion. Specifically, we will specify a multiplicative gamma process shrinkage prior in (4.6)

on a parameter expanded loading matrix with redundant parameters. The induced prior

on Σ is invariant to the ordering of the responses. This shrinkage prior adaptively selects

a truncation of the infinite loadings to one having finite columns. Thus, it facilitates

the posterior computation and provides an accurate approximation to the infinite factor

model.

61



3.2.4 Priors

We first consider the priors on the elements of all layers Bl. When dealing with two

highly correlated covariates, the L1 prior tends to pick one and drop the other since it

is typically a least angle selection approach to force some coefficients to zero, whereas

the L2 prior tends to force the coefficients towards each other to produce two highly

correlated coefficients. In GLRR, since our primary interest is to exploit the potential

two-way correlations among the estimated coefficients, we choose the L2 prior. Let

Ga(a, b) be a gamma distribution with scale a and shape b. Specifically, we choose

δl ∼ N(0, τ−1
δ ) with τδ ∼ Ga(a0, b0),

uuul ∼ Np(0, τ
−1
u Ip) with τu ∼ p+ Ga(c0, d0),

εl ∼ Nd

(
0, diag(τ−1

v,1 , . . . , τ
−1
v,d )
)

with τv,1, . . . , τv,d ∼ d+ Ga(e0, f0),

where a0, b0, c0, d0, e0, and f0 are prefixed hyper-parameters. The number of predictors

p is included in the hyperprior of τu to have a positive-definite covariance matrix of

high dimensional uuul and fix the scale of uuul. Similarly, we add the dimension d to all

hyper-priors for τv,l. Moreover, we standardize all predictors to have zero mean and

unit variance, and thus a single prior is sensible for all elements of uuul. The varying

dispersions τv,1, . . . , τv,d are chosen to account for different scales of different responses.

For example, the volumes of different ROIs vary dramatically across ROIs, so it is more

sensible to use separate dispersions for different ROIs.

We place the multiplicative gamma process shrinkage prior (Bhattacharya and Dun-

son, 2011) on Λ in order to increasingly shrink the factor loadings towards zero with the

column index. Such shrinkage priors avoid the drawback of order dependence from the

lower triangular constraint on Λ for identifiability. We use inverse gamma priors on the
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diagonal elements of Σξ. Specifically, these priors are given as follows:

Λ = {λkh}, k = 1, . . . , d ;h = 1, . . . ,∞, (3.7)

λkh|φkh, τλh ∼ N(0, φ−1
kh τ

−1
λh ), φkh ∼ Ga(v/2, v/2), σ−2

k ∼ Ga(aσk, bσk),

ψ1 ∼ Ga(a1, 1), ψg ∼ Ga(a2, 1), g ≥ 2, τλh =
h∏
l=1

ψl,

where ψg for g = 1, . . . ,∞ are independent random variables, τλh is a global shrinkage

parameter for the h-th column, and the φkhs are local shrinkage parameters for the

elements in the h-th column. Moreover, v, a1,, a2, aσk and bσk are prefixed hyper-

parameters. When a2 > 1, the τλh’s increase stochastically with the column index

h, which indicates more shrinkage favored over the columns of higher indices. The

loading component specific prior precision φ−1
kh τ

−1
λh allows shrinking the components of

Λ. Straightforward Gibbs sampler can be applied for posterior computation.

3.2.5 Posterior Computation

We propose a straightforward Gibbs sampler for posterior computation after trun-

cating the loadings matrix to have k∗ << d columns. An adaptive strategy for inference

on the truncation level k∗ has been described in (Bhattacharya and Dunson, 2011).

The Gibbs sampler is computationally efficient and mixes rapidly. Starting from the

initiation step, the Gibbs sampler at the truncated level k∗ proceeds as follows:

1. Update (uuul, τu) according to their conditional distributions

p(uuul|−) ∼N p

(
δlΣuuulX

TYlΘεl,Σuuul

)
,

p(τu|−) ∼ p+ Ga

(
c0, d0 + 0.5

r∑
l=1

uuuT
l uuul

)
,

where Σuuul =
{
τuIp + δ2

l (ε
T
l Θεl)X

TX
}−1

.
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2. Update (εl, τv,k) according to their conditional distributions

p(εl|−) ∼N d(δlΣεlΘY
T
l Xuuul,Σεl),

p(τv,k|−) ∼ d+ Ga

(
e0, f0 + 0.5

r∑
l=1

ε2
l

)

for k = 1, . . . , d, where Σεl =
{

diag(τv,1, . . . , τv,d) + δ2
l (uuu

T
l X

TXuuul)Θ
}−1

.

3. Update (δl, τδ) according to their conditional distributions

p(δl|−) ∼N(σ2
δl
uuuT
l X

TElΘεl, σ
2
δl

),

p(τδ|−) ∼ Ga

(
a0, b0 + 0.5

r∑
l=1

δ2
l

)
,

where σ2
δl

=
{
τδ + (εlΘ

Tεl)(uuu
T
l X

TXuuul)
}−1

.

4. Update the kth row of Λk∗ , denoted by λk, from its conditional distribution

p(λk|−) ∼N ((σ−2
k η

Tη +D−1
k )−1ηTσ−2

k Ek, (σ
−2
k ηTη +D−1

k )−1),

where η = (η1, . . . , ηn)T, Ek = (ε1k, . . . , εnk)
T is the kth column of

E = Y −XB, and Dk = diag(φ−1
k1 τ

−1
λ1 , . . . , φ

−1
kk∗
τ−1
λk∗

) for k = 1, . . . , d.

5. Update φkh from its conditional distribution

p(φkh|−) ∼ Ga

(
v + 1

2
,
v + λ2

khτλh
2

)
.

6. Update ψ1 from its conditional distribution

p(ψ1|−) ∼ Ga

(
a1 +

1

2
dk∗, 1 +

1

2

k∗∑
g=1

τ
(h)
λg

d∑
k=1

φkgλ
2
kg

)
,
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and update ψh, h ≥ 2 from its conditional distribution

p(ψh|−) ∼ Ga

(
a2 +

1

2
d(k∗ − h+ 1), 1 +

1

2

k∗∑
g=h

τ
(h)
λg

d∑
k=1

φkgλ
2
kg

)
,

where τ
(h)
λg =

∏g
t=1,t6=h ψt for h = 1, . . . , k∗.

7. Update σ−2
k , k = 1, . . . , d, from its conditional distribution

p(σ−2
k |−) ∼ Ga(aσk +

n

2
, bσk +

1

2

n∑
i=1

(yik − λT
k ηi)

2).

8. Update ηi, i = 1, . . . , n, from conditionally independent posteriors

p(ηi|−) ∼ N((Ik∗ + ΛTΘΛ)−1ΛT
k∗Θεi, (Ik∗ + ΛTΘΛ)−1),

where εi is the ith row of E.

3.2.6 Determining the Rank of B

We consider different methods for determining the rank of B. For frequentist infer-

ence, many regularization methods have been developed to recover the low rank structure

of a matrix, such as B, by shrinking δ`’s to zero in (3.2) (Chen et al., 2012). For Bayesian

inference, it may be tempting to use Bayesian model averaging and allow varying num-

ber of layers in order to improve prediction performance, but it limits us on making

statistical inference on each layer of B, U , and V . We take a fixed-rank approach and

use some selection criteria to choose an optimal value of r. Specifically, we consider five

different selection criteria including the Akaike information criterion (AIC), the Bayesian

information criterion (BIC), the normalized prediction error (PEN), the multivariate R2,

and the normalized model error (MEN) for GLRR.
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Let Ŷ = XB̂, where B̂ is the posterior estimate of B based on the MCMC samples.

Let SSE = tr((Ŷ −Y )T(Ŷ −Y )) be the error sum of squares and p∗ = r(p+ d) be the

number of parameters in B. The five evaluation criteria are, respectively, given by

AIC = log(SSE) + 2
p∗
nd
, BIC = log(SSE) +

log(nd)

nd
p∗,

PEN(Ŷ ,Y ) =
SSE

tr(Y TY )
× 100, R2(Ŷ ,Y ) =

tr
(
Ŷ

T
Ŷ
)

tr(Y TY )
× 100, (3.8)

MEN(B̂, B) =
tr((B̂ −B)TΣX(B̂ −B))

tr(BTΣXB)
× 100.

The numerator and denominator of the MEN are, respectively, the model error and

measurement error of model (3.4) (Yuan et al., 2007). Thus, the MEN is the ratio of

the model error over the measurement error as a percentage of the total magnitude of

all parameters. Similarly, the PEN and R2 are defined as percentages, which makes

comparisons more meaningful and readily comparable across studies.

To illustrate the effectiveness of all five criteria, we independently simulated 100 data

sets from model (3.4) with (n, p, d) = (100, 200, 100) and a rank 5 matrix B. For each

simulated data set, we used the Gibbs sampler to draw posterior samples to estimate

B and then calculated the five selection criteria in (3.8) as the rank varied from 1 to

10. Finally, based on all 100 simulated data sets, we calculated the mean and standard

deviation of each selection criterion as the rank varied from 1 to 10. As shown in Figure

3.1, PEN, MEN, R2, and AIC stabilize around the true rank, whereas BIC reaches the

minimum at the true rank. This may indicate that BIC outperforms other selection

criteria for determining the true rank of B.
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3.2.7 Thresholding

Based on the MCMC samples obtained from the Gibbs sampler, we are able to iden-

tify three different sets of information including (i) SNPs that significantly contribute to

a large portion of imaging phenotypes, (ii) imaging phenotypes that are associated with

those SNPs in (i), and (iii) important individual SNP effects on individual imaging phe-

notypes. Statistically, (i), (ii), and (iii) can be formulated as testing significant elements

in U , V , and B, respectively. For the sake of space, we focus on (i). Suppose that we

draw a set of MCMC samples U (m) = (u
(m)
jl ) for m = 1, . . . ,M . Due to the magnitude

ambiguity of U , we normalize each column of U = (ujl) to calculate U∗ = (u∗jl). More-

over, we develop a specific strategy to deal with the sign ambiguity of U∗. For the l−th

column of U∗, we use the normalized MCMC samples U (m)∗ = (u
(m)∗
jl ) to empirically

determine the j0−th row such that P (|u∗j0l| = maxj |ũ∗jl|) ≥ P (|ũ∗j′l| = maxj |ũ∗jl|) for all

j′ 6= j0. Then, we fix u
(m)∗
j0l

to be positive for l = 1, . . . , r and m = 1, . . . ,M .

To detect SNPs in (i), we suggest to calculate the median and median absolute de-

viation (MAD) of u
(m)∗
jl , denoted by û∗jl and su,jl, respectively, since the MCMC samples

{u(m)
jl } may oscillate dramatically between the positive solution and the negative solu-

tion due to the sign ambiguity for all j, l. Then, one may formulate it as testing the

local null and alternative hypotheses for |u∗jl| relative to su,jl given by

H0,jl :
∣∣u∗jl∣∣ ≤ T ∗ versus H1,jl :

∣∣u∗jl∣∣ > T∗,

where T∗ is a specific threshold for each u∗jl. One may calculate the probability of∣∣u∗jl∣∣T∗ = |û∗jl|/(1.4826su,jl) given the observed data and then adjust for multiple com-

parisons (Müller et al., 2004; Wang and Dunson, 2010). Another approach is to directly

calculate tu,jl and apply standard multiple comparison methods, such as the false dis-

covery rate, to determine T∗ (Benjamini and Hochberg, 1995). We have found that
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these two methods lead to similar results, and thus we take the second approach. More-

over, this Bayesian thresholding method works well even when different responses are

not on the same scale. Compared to the ‘hard’ thresholding methods used in shrink-

age methods (Chen et al., 2012; Peng et al., 2010; Rothman et al., 2010; Yin and Li,

2011), this Bayesian thresholding method accounts for the variation of each u∗jl and has

a probabilistic interpretation.

3.3 Simulation Study

3.3.1 Simulation Setup

We carried out some simulation studies to examine the finite-sample performance of

the GLRR and its posterior computation. We generated all simulated data according to

model (3.4). The simulation studies were designed to establish the association between

a relatively high-dimensional phenotype vector with a set of continuous covariates or a

set of commonly used genetic markers (e.g., SNP). For each case, 100 simulated data

sets were generated.

We simulated εi ∼ Nd(0,Σ) and used two types of covariates including (i) continuous

covariates generated from Xi ∼ Np(0,ΣX) and (ii) actual SNPs from ADNI data set.

We determined Σ and ΣX as follows. Let p0 be the binomial probability, which controls

the sparsity of the precision matrix. We first generated a p× p matrix A = (ajj′) with

ajj = 1 and ajj′ = uniform(0, 1) × binomial(1, p0) for j 6= j′, set ΣX = AAT, and stan-

dardized ΣX into a correlation matrix such that ΣX,jj = 1 for j = 1, . . . , d. Similarly,

we used the same method to generate Σ, the covariance matrix of εi. For both Σ and

ΣX , we set about 20% of the elements of Σ−1 and Σ−1
X to be zero, yielding that the

means of the absolute correlations of Σ and ΣX are close to 0.40, respectively. We chose

actual SNPs from the ADNI data set. Specifically, we only considered the 10,479 SNPs

collected on chromosome 19, screened out all SNPs with more than 5% missing data
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and minor allele frequency (MAF)< 0.05, and randomly selected 400 SNPs from the

remaining SNPs. For n = 1, 000 case, 500 subjects were randomly chosen and then

replicated twice, whereas for the n=100 case, 100 subjects were randomly chosen from

ADNI data set.

We considered five structures of B in order to examine the finite-sample performance

of GLRR under different scenarios.

• Case 1: Xi ∼ Np(0,ΣX) and a “+′′ structure was preset for B with (p, d) =

(100, 100) with the elements of B being set as either 0 or 1.

• Case 2: Xi ∼ Np(0,ΣX) and B was set as a 200 × 100 matrix with the true

rank r0 = 5. Specifically, we set B = U∆V with U = (ujl), ∆ = diag(δll) =

diag(100, 80, 60, 40, 20), and V = (vlk) being 200× 5, 5× 5, and 5× 100 matrices,

respectively. Moreover, we generated all elements ujl and vlk independently from

a N(0, 1) generator and then orthonormalized U and V .

• Case 3: Covariates are actual SNPs and B has the same structure as that in Case

2 but with (p, d) = (400, 100).

• Case 4: Xi ∼ Np(0,ΣX) and B was set as a 200× 100 matrix with high degrees of

correlation among elements with an average absolute correlation of 0.8, and then

20% of the elements of B were randomly forced to 0. After enforcing zeros, the

true rank is 100 and the average absolute correlation is close to 0.7.

• Case 5: Covariates are actual SNPs and B is the same as that in Case 4 with

(p, d) = (400, 100).

We chose noninformative priors for the hyperparameters of B and set α0 = β0 = a0 =

b0 = c0 = d0 = e0 = f0 = 10−6. Since shrinkage is achieved through dimension reduction

by choosing r << min(d, p), these noninformative choices of the hyperparameters suit
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well. For the hyperparameters of Σ, we chose somewhat informative priors in order to

impose the positive-definiteness constraint and set ν = a1 = a2 = aσk = aσk = 1 for

k = 1, . . . , d. For each simulated dataset, we ran the Gibbs sampler for 10,000 iterations

with 5, 000 burn-in iterations.

As a comparison, we considered a multivariate version of LASSO (Peng et al., 2010),

Bayesian LASSO (BLASSO) (Park and Casella, 2008), and group-sparse multitask re-

gression and feature selection (G-SMuRFS) (Wang et al., 2012) for all simulated data.

For LASSO, we fitted d separate LASSO regressions to each response with a single tun-

ing parameter across all responses by using a 5-fold cross validation. Since variances of

all columns X and E are relatively equal, the variances of all columns of Y should be

close to each other. In this case, a single tuning parameter is sensible. For BLASSO, we

chose single priors for each column of the response matrix by setting all hyperparameters

to unity. For G-SMuRFS, we used single group and selected the optimal values of the

penalty parameters by using a 5-fold cross validation.

To compare different methods, we calculated their sensitivity and specificity scores

under each scenario. For all regularization methods, since we choose all possible values

of the tuning parameters for calculating their sensitivity and specificity scores, it is

unnecessary to use the cross validation method to select the tuning parameters. Let

I(·) be an indicator function of an event and tjk = β̂jk/sβ,jk, where β̂jk and sβ,jk denote

the posterior mean and standard deviation of βjk, respectively. Specifically, for a given

threshold T0, sensitivity and specificity scores are, respectively, given by

Se(T0) =
TP(T0)

TP(T0) + FN(T0)
, and Sp(T0) =

TN(T0)

TN(T0) + FP(T0)
,
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where TP(T0), TP(T0), TP(T0), and TP(T0) are, respectively, the numbers of true pos-

itives, false positives, true negatives, and false negatives, given by

TP(T0) =
∑
j,k

I(|tjk| > T0)I(βjk 6= 0), FP(T0) =
∑
j,k

I(|tjk| > T0)I(βjk = 0),

TN(T0) =
∑
j,k

I(|tjk| ≤ T0)I(βjk = 0), FN(T0) =
∑
j,k

I(|tjk| ≤ T0)I(βjk 6= 0).

Varying T0 gives different sensitivity and specificity scores, which allow us to create

receiver operating characteristic (ROC) curves. In each ROC curve, sensitivity is plotted

against 1-specificity. The larger the area under the ROC curve, the better a method in

identifying the true positives while controlling for the false positives.

3.3.2 Results

We first performed a preliminary analysis by using five data sets simulated according

to the five structures of B and n = 1, 000. See Figure 3.2 for the true B and estimated

B̂ by using GLRR3 (GLRR with r = 3), GLRR5 (GLRR with r = 5), BLASSO,

G-SMuRFS, and LASSO under Case 1-Case 5. Inspecting Figure 3.2 reveals that for

relatively large sample sizes, the fitted GLRR with r close to the true rank does a better

job in recovering the underlying structure of B, while BLASSO and G-SMuRFS perform

reasonably well for all cases. For the ”+” structure of B with the true rank r0 = 2 in

Case 1, GLRR3 performs the best, whereas LASSO does a poor job. For B with the

true rank r0 = 5 in Cases 2 and 3, GLRR5 performs the best. The LASSO method per-

forms reasonably well in recovering B for continuous X, when B is a 200× 100 matrix,

whereas it performs poorly when X is the SNP matrix. For the high-rank B in Cases

4 and 5, LASSO performs the best in recovering B, while GLRR3 and GLRR5 perform

reasonably well.

Secondly, we examined the finite sample performance of LASSO, BLASSO, G-SMuRFS,
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GLRR3, and GLRR5 under Cases 1-5 for n = 100. In each case, 100 simulated data sets

were used and the mean and standard deviation of each of the five selection criteria were

calculated. The results are presented in Table 3.1. Inspecting Table 3.1 reveals that

GLRRs outperform LASSO in most cases. As p increases, GLRRs outperform LASSO

in terms of MEN, PEN, and R2. Under Cases 3 and 5, GLRRs outperform LASSO with

much smaller errors as well as lower standard deviations for MEN and PEN. LASSO

performs much better for continuous covariates than for discrete SNPs, but such pat-

terns do not appear for GLRRs. The results of GLRRs and BLASSO are comparable

in terms of both AIC and BIC, but the number of parameters under GLRRs is much

smaller than that under BLASSO. BLASSO and G-SMuRFS perform well in terms of

both model error and prediction, but that comes at a higher cost since these methods

have all non-zero estimates to push BIC very high. The high R2 and low prediction error

of BLASSO and G-SMuRFS in the high dimension cases may be caused by over-fitting

and model misidentification (Fan and Lv, 2010).

Thirdly, we used the ROC curve to compare LASSO, BLASSO, G-SMuRFS, GLRR3,

and GLRR5 under Cases 1-5. See Figure 3.3 for details. For Case 1, BLASSO demon-

strates consistently the best power for almost every level of specificity, while G-SMuRFS

is the second best. GLRR3 and GLRR5 fall in the middle. For Case 4, all the methods

appear to be comparable with GLRR3 and GLRR5. For Cases 2, 3, and 5, GLRRs

consistently outperform all other methods.

We also compared the timing of each method in a personal laptop with Intel Core

i5 1.7 GHz processor and 4 GB memory. It takes LASSO and G-SMuRFS roughly 5

minutes to choose the optimal penalty and calculate estimates for a single sample of

Case 5. All Bayesian methods take much longer since one has to sample many MCMC

samples. Specifically, BLASSO takes about 2.75 hours to generate 10,000 samples plus
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10,000 thousand burn-ins. For the same number of samples, GLRR3 takes about 30

minutes and GLRR5 takes about 40 minutes.

3.4 The Alzheimer’s Disease Neuroimaging Initiative

3.4.1 Imaging Genetic Data

Imaging genetics is an emergent trans-disciplinary research field to primarily evaluate

the association between genetic variation and imaging measures as continuous pheno-

types. Compared to traditional case control status, since imaging phenotypes may be

closer to the underlying biological etiology of many neurodegenerative and neuropsychi-

atric diseases (e.g., Alzheimer), it may be easier to identify underlying genes of those

diseases (Cannon and Keller, 2006; Turner et al., 2006; Scharinger et al., 2010; Paus,

2010; Peper et al., 2007; Chiang et al., 2011b,a). A challenging analytical issue of imaging

genetics is that the numbers of imaging phenotypes and genetic markers can be rela-

tively high. The aim of this data analysis is to use GLRR to specifically identify strong

associations between imaging phenotypes and SNP genotypes in imaging genetic studies.

The development of GLRR is motivated by the analysis of imaging, genetic, and

clinical data collected by ADNI. The ADNI is an ongoing public-private partnership

to test whether genetic, structural and functional neuroimaging, and clinical data can

be combined to measure the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Subjects in the ADNI data have been recruited from over 50

sites across the United States and Canada. The structural brain MRI data and corre-

sponding clinical and genetic data from baseline and follow-up were downloaded from

the ADNI publicly available database (http://adni.loni.ucla.edu/). Our problem of in-

terest is to perform genome-wide searches for establishing the association between SNPs

on the top 40 AD candidate genes as listed on the AlzGene database (www.alzgene.org)

as of June 10, 2010 and the brain volumes of 93 regions of interest, whose names and
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abbreviation are given in the supplementary document, while accounting for other co-

variates, such as age and gender. By using the Bayesian GLRR, we can easily carry

out formal statistical inferences, such as the identification of significant SNPs on the

differences among all 93 ROI volumes.

The MRI data, collected across a variety of 1.5 Tesla MRI scanners with protocols

individualized for each scanner, included standard T1-weighted images obtained using

volumetric 3-dimensional sagittal MPRAGE or equivalent protocols with varying reso-

lutions. The typical protocol included: repetition time (TR) = 2400 ms, inversion time

(TI) = 1000 ms, flip angle = 8o, and field of view (FOV) = 24 cm with a 256×256×170 ac-

quisition matrix in the x−, y−, and z−dimensions yielding a voxel size of 1.25×1.26×1.2

mm3. The MRI data were preprocessed by standard steps including anterior commissure

and posterior commissure correction, skull-stripping, cerebellum removing, intensity in-

homogeneity correction, segmentation, and registration (Shen and Davatzikos, 2004).

Subsequently, we carried out automatic regional labeling by labeling the template and

by transferring the labels following the deformable registration of subject images. After

labeling 93 ROIs, we were able to compute volumes for each of these ROIs for each

subject.

The Human 610-Quad BeadChip (Illumina, Inc., San Diego, CA) was used to geno-

type 818 subjects in the ADNI database, which resulted in a set of 620,901 SNP and

copy number variation (CNV) markers. Since the Apolipoprotein E (APOE) SNPs,

rs429358 and rs7412, are not on the Human 610-Quad Bead-Chip, they were genotyped

separately. These two SNPs together define a 3 allele haplotype, namely the ε2, ε3, and

ε4 variants and the presence of each of these variants was available in the ADNI database

for all the individuals. The software EIGENSRAIT in the package of EIGENSOFT 3.0

was used to calculate the population stratification coefficients of all subjects. To reduce
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population stratification effects, we only used 761 Caucasians from all 818 subjects. We

used the baseline T1 MRI scans and genetic data from all 742 Caucasians.

By following Wang et al. (2012), we selected SNPs belonging to the top 40 AD

candidate genes by using quality control methods. The first line quality control steps

include (i) call rate check per subject and per SNP marker, (ii) gender check, (iii) sibling

pair identification, (iv) the Hardy-Weinberg equilibrium test, (v) marker removal by the

minor allele frequency, and (vi) population stratification. The second line preprocessing

steps include removal of SNPs with (i) more than 5% missing values, (ii) minor allele

frequency smaller than 10%, and (iii) Hardy-Weinberg equilibrium p−value < 10−6.

This left us with 1,071 SNPs on 37 genes. We used the 1071 SNP and APOE-ε4 to form

X, that gives p = 1, 072.

3.4.2 Results

We fitted GLRR (3.5) with all the baseline volumes of 93 ROIs in 749 subjects as a

multivariate response vector, the 1,072 selected SNPs as X matrix, and age, intracere-

broventricular volume (ICV), gender, education and handedness as prognostic related

covariates. To determine the rank of B, GLRR was fitted for up to r = 10 layers. By

comparing the five different selection criteria, we chose r = 3 layers for the final data

analysis. We ran the Gibbs sampler for 20, 000 iterations after 20, 000 burn-in itera-

tions. Based on the MCMC samples, we calculated the posterior median and maximum

absolute deviation (MAD) of the normalized U and V , and B, and then we used the

standard normal approximation to calculate the p−values of each component of U , V ,

and B. The upper left panel of Figure 3.4 presents the estimated posterior median map

of B, in which the elements with their p−values greater than 0.01 were set to zero, which

reveals sparsely distributed points along the horizontal and vertical directions in the es-

timated B, indicating that the low-rank model would fit the ADNI data reasonably well.
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We used 1.426×MAD to compute robust standard errors from the posterior median

based MAD for each element of B and used a normal approximation to compute its

− log10(p). Specifically, we created two new matrices based on the estimated B in order

to detect important ROIs and SNPs. We first applied this thresholding method to B in

order to compute a new matrix Bbin, in which βjk was set at zero if its − log10(p) is less

than 10, and set to 1 otherwise. Then, we calculated a 93 × 93 matrix BT
binBbin and a

1072× 1072 matrix BbinB
T
bin. See the upper middle and right panels of Figure 3.4. The

second row of Figure 3.4 presents the − log10(p) maps of B, U , and V , respectively.

We selected the top ROIs corresponding to the largest diagonal elementsof BT
binBbin,

which are listed in the first column of Table 3.3. We also picked the top ROIs based

on the − log10(p)−values in each column of V , which are shown in the second, third,

and fourth columns in Table 3.3. The locations of these ROIs are shown in Figure 3.5.

Among these ROIs, the left and right sides rank close to each other, which may indicate

structural brain symmetry.

We ranked the SNPs in the BbinB
T
bin according to the sum of the columns, and in

the first three columns of the U matrix by their − log10(p)−values. The top 20 most

significant SNPs and their corresponding genes are listed in Table 3.2 under columns

BbinB
T
bin, U1, U2, and U3, respectively. To investigate the top SNPs and their relation-

ship with ROI volumes in the coefficient matrix. we retained SNPs, which are correlated

with at least one ROI at a significant level smaller than 10−6.3. For each SNP, we high-

lighted the locations of ROIs with correlation at a significant level smaller than 10−6.3,

which are shown in Figure 3.6. There are different patterns of SNPs’ effects on ROIs: i)

rs10792821 (PICALM), rs9791189 (NEDD9), rs9376660 (LOC651924), and rs17310467

(PRNP) are significantly correlated with a small number of ROIs with relative large
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coefficients; ii) rs4933497 (CH25H) and rs1927976 (DAPK1) are significantly correlated

with a small number of ROIs with relative small coefficients; iii) rs1411290 (SORCS1),

rs406322 (IL33), and rs1018374 (NEDD9) are significantly correlated with a large num-

ber of ROIs with medium coefficients; iv) rs1411290 (SORCS1), rs406322 (IL33) is

significantly correlated with a large number of ROIs with small coefficients. Figure 3.7

shows the heatmap of coefficients among these 10 SNPs and the ROIs on the left and

right hemispheres, respectively. The ROIs are chosen such that each ROI is significantly

correlated to at least one of the 10 SNPs at a significance level small than 10−6.3. Most

of these SNPs were not revealed in the literature of genome-wide association studies,

which did not take into account the imaging phenotypes.

We were able to detect some additional SNPs, such as rs439401 (gene APOE), among

others, which are not identified in existing genome-wide association studies. However,

most GWA studies mainly used case-control status as the response and fitted a simple

model, such as a logistic regression model. In contrast, the use of imaging measures

as endophenotype may dramatically increase statistical power in detecting much more

informative SNPs and genes, which deserve further investigation in Alzheimer’s research.

3.5 Discussion

We have developed a Bayesian analysis GLRR to model the association between

high-dimensional responses and high-dimensional covariates with an novel application

in imaging genetic data. We have introduced a low rank regression model to approx-

imate the large association matrix through the standard SVD. We have used a sparse

latent factor model to more flexibly capture the complex spatial correlation structure

among high-dimensional responses. We have proposed Bayesian local hypothesis testing

to identify significant effects of genetic markers on imaging phenotypes, while control-

ling for multiple comparisons. GLRR dramatically reduces the number of parameters
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to be sampled and tested leading to a remarkably faster sampling scheme and efficient

inference. We have shown good finite-sample performance of GLRR in both the sim-

ulation studies and ADNI data analysis. Our data analysis results have confirmed the

important role of well-known genes such as APOE-ε4 in the pathology of ADNI, while

highlighting other potential candidates that warrant further investigation.

Many issues still merit further research. First, it is interesting to incorporate com-

mon variant and rare variant genetic markers in GLRR (Bansal et al., 2010). Second,

it is important to consider the joint of genetic markers and environmental factors on

high-dimensional imaging phenotypes (Thomas, 2010). Third, the key features of GLRR

can be adapted to more complex data structures (e.g., longitudinal, twin and family)

and other parametric and semiparametric models. For instance, for longitudinal neu-

roimaging data, we may develop a GLRR to explicitly model the temporal association

between high-dimensional responses and high-dimensional covariates, while accounting

for complex temporal and spatial correction structures. Fourthly, it is important to

combine different imaging phenotypes calculated from other imaging modalities, such

as diffusion tensor imaging, functional magnetic resonance imaging (fMRI), and elec-

troencephalography (EEG), in imaging genetic studies.
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Figure 3.1: Simulation results: the box plots of five selection criteria including
MEN(B̂, B), PEN(Ŷ ,Y ), R2(Ŷ ,Y ), AIC, and BIC against rank r from the left to
the right based on 100 simulated data sets simulated from model (3.4) with (n, p, d) =
(100, 200, 100) and the true rank r0 = 5.
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Figure 3.2: Simulation results: comparisons of true B image and estimated true B im-
ages by using LASSO, BLASSO, G-SMuRFS, GLRR3, and GLRR5 under five different
scenarios. MEN(B, B̂) and BIC were calculated for each estimated B̂. The sample size
is n = 1000. Columns 1-5 correspond to Cases 1-5, respectively. The true ranks of B
under Cases 1-5 are, respectively, 2, 5, 5, 100 and 100. The top row contains true B maps
under Cases 1-5 and rows 2-6 correspond to the estimated B̂ under LASSO, Bayesian
LASSO, G-SMuRFS, GLRR3, and GLRR5, respectively. For simplicity, only the first
100 rows and 100 columns of B were presented. Moreover, all plots in the same column
are on the same scale.

82



Figure 3.3: Comparisons of GLRR3, GLRR5, and LASSO under Cases 1-5: mean ROC
curves based on GLRR3 (red line), GLRR5 (blue line), LASSO (black line), G-SMuRFS
(dottedd line) and BLASSO (dashed line). For each case, 100 simulated data sets of
size n = 100 each were used.
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Figure 3.4: Results of ADNI data: the posterior estimate of B̂ matrix after thresholding
out elements whose p− values are greater than 0.001 (left panel), BT

binBbin (middle
panel) and BbinB

T
bin (right panel) in the first row; and the − log10 p− value matrices

corresponding to B (left panel), U (middle panel), and V (right panel) in the second
row.
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Figure 3.5: Results of ADNI data: the top 20 ROIs based on BT
binBbin and the first 3

columns of V. The sizes of the dots represent the rank of the ROIs.
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Figure 3.6: Results of ADNI data: at a -log10(p) significance level greater than 6.3, the
top row depicts the locations of ROIs that are correlated with SNPs rs10792821 (PI-
CALM), rs9791189 (NEDD9), rs9376660 (LOC651924), rs17310467 (PRNP), rs4933497
(CH25H), respectively; the bottom row shows the ROIs correlated with SNPs rs1927976
(DAPK1), rs1411290 (SORCS1), rs406322 (IL33), rs1018374 (NEDD9), and rs439401
(APOE). The sizes of the dots represent the absolute magnitudes of the regression co-
efficients.
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Figure 3.7: Heatmaps of coefficients between SNPs and ROIs on the left (left panel) and
right (right panel) hemispheres. Coefficients with − log10(p)
-value smaller than 6.3 are set to 0.
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Table 3.3: Ranked top ROIs based on the diagonal of BT
binBbin and columns of V .

BT
binBbin V1 V2 V3

hiopp.R caud.neuc.L sup.t.gy.L sup.p.lb.L
hiopp.L caud.neuc.R sup.t.gy.R pstc.gy.L
amyg.R post.limb.L mid.t.gy.R sup.o.gy.L
unc.L post.limb.R hiopp.R prec.L
subtha.nuc.R glob.pal.R mid.t.gy.L sup.p.lb.R
sup.t.gy.R ant.caps.R hiopp.L pec.R
amyg.L glob.pal.L amyg.R sup.o.gy.R
sup.t.gy.L putamen.L lat.ve.R prec.gy.L
lat.ve.R putamen.R inf.t.gy.R pstc.gy.R
nuc.acc.L ant.caps.L subtha.nuc.R prec.gy.R
lat.ve.L thal.R amyg.L me.f.gy.L
mid.t.gy.L thal.L unc.L mid.f.gy.R
insula.L tmp.pl.R lat.ve.L ang.gyr.L
sup.f.gy.L subtha.nuc.L inf.f.gy.R sup.f.gy.L
insula.R per.cort.L lat.f-o.gy.L fornix.L
mid.t.gy.R tmp.pl.L parah.gy.L occ.pol.L
mid.f.gy.L subtha.nuc.R inf.t.gy.L ang.gyr.R
unc.R per.cort.R parah.gy.R cun.L
inf.t.gy.R nuc.acc.L nuc.acc.L occ.pol.R
inf.f.gy.R inf.t.gy.R insula.L mid.f.gy.L
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CHAPTER 4

BAYESIAN LONGITUDINAL LOW RANK REGRESSION

4.1 Introduction

Many longitudinal biomedical studies, such as genomics and neuroimaging, repeat-

edly collect a large number of responses and covariates from a small set of subjects

and focus on establishing associations among them. For instance, in imaging genetics,

various imaging measures, such as volumes of regions of interest (ROIs), are repeatedly

measured and may be predicted by high-dimensional covariate vectors, such as single

nucleotide polymorphisms (SNPs) or gene expressions. These imaging measures can

serve as important endotraits that may ultimately lead to discoveries of genes for some

complex mental and neurological disorders, such as schizophrenia, since imaging data

provides the most effective measures of brain structure and function (Scharinger et al.,

2010; Paus, 2010; Peper et al., 2007; Chiang et al., 2011b,a). This motivates us to

develop a longitudinal low rank regression model for the analysis of longitudinal high-

dimensional responses and covariates.

Modeling longitudinal high-dimensional covariates and responses involve four chal-

lenges (i) a large number of regression coefficients, (ii) spatial correlation, (iii) temporal

correlation, and (iv) multicollinearity among predictors. When the dimension of re-

sponses and the number of covariates, which are denoted by d and p, respectively, are

even moderately high, fitting a multivariate linear model usually requires estimating a



d × p matrix of regression coefficients, whose number pd can be much larger than the

sample size. At each given time, accounting for complicated spatial correlation among

multiple responses is important for improving prediction accuracy of multivariate analy-

sis (Breiman and Friedman, 1997). Accounting for temporal correlation is important for

both prediction and estimation accuracy. Moreover, the collinearity among genetic pre-

dictors can cause issues of over-fitting and model misidentification (Fan and Lv, 2010).

Under the cross-sectional settings, several approaches explored new methods for

high-dimensional responses and covariates. Breiman and Friedman (1997) introduced

a Cards and Whey (C&W) to improve prediction error by accounting for correlations

among the response variables when both p and d are moderate compared to the sample

size. Peng et al. (2010) proposed a variant of the elastic net to enforce sparsity in the

high-dimensional regression coefficient matrix, but they did not account for correlations

among responses. Rothman et al. (2010) proposed a simultaneous estimation of a sparse

coefficient matrix and a sparse covariance matrix to improve on estimation error under

the L1 penalty. Vounou et al. (2010) considered the singular value decomposition of the

coefficient matrix and used the LASSO-type penalty on both the left and right singular

vectors to ensure its sparse structure. They, however, do not model longitudinal data

and do not provide a standard inference tool (e.g., standard error) on the nonzero com-

ponents of the left and right singular vectors or the coefficient matrix.

Several attempts have been made to investigate the effect of genotypes on longi-

tudinal phenotypes. Chen and Wang (2011) proposed penalized spline based methods

for functional mixed effects models with varying coefficients, but they focus on small

p and d under a low-dimensional setting. Wang et al. (2012) used sparse multitask

regression to examine the association between genetic markers and longitudinal neu-

roimaging phenotypes. However, their multi-task regression model considered subjects
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with the same number of repeated measures and ignore spatial-temporal correlations

of imaging phenotypes, and thus it leads to loss of statistical power in detecting gene-

imaging associations. Vounou et al. (2011) and Silver et al. (2012) proposed various

sparse reduced-rank regression models by using penalized regression methods for the

detection of genetic associations with longitudinal phenotypes. They, however, ignore

the spatio-temporal correlations of longitudinal phenotypes, which are important for

both estimation and prediction accuracy. Moreover, none of them explore the gene and

time interaction, which can reveal important genetic traits altering time affects on lon-

gitudinal phenotypes.

In this paper, we propose a new Bayesian L2R2 to model the associations between a

large number of predictors and multivariate longitudinal responses. A low rank regres-

sion model is introduced to characterize the low rank structure of a regression coefficient

matrix between genetic variants and longitudinal imaging phenotypes, while accounting

for the effects of other covariates. For the low-rank structure, we assume shrinkage priors

on the singular values of the regression coefficient matrix, while not explicitly requir-

ing orthonormality of left and right singular vectors. This facilitates fast computation

of the regression coefficient matrix via the exact conditionals. We consider a penal-

ized spline based method for delineating time-varying covariates such as age, a random

effects model for capturing the within-subject temporal correlations of longitudinal re-

sponses, and a sparse factor model (Bhattacharya and Dunson, 2011) for capturing the

unstructured within-subject spatial correlations of multivariate responses. We propose

Bayesian local hypothesis testing to identify significant predictor effects on longitudinal

responses, while controlling for multiple comparisons. Posterior computation proceeds

via an efficient Markov chain Monte Carlo (MCMC) algorithm.
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4.2 The Alzheimer’s Disease Neuroimaging Initiative

As an emerging interdisciplinary research field, imaging genetics primarily aims to

evaluate the association between genetic variates and imaging phenotypes. Since imag-

ing phenotypes may be closer to the underlying etiology of many neuropsychiatric and

neurodegenerative diseases (e.g., Alzheimer’s), it may be more powerful to use imaging

phenotypes for the detection of underlying genes of those diseases compared with tra-

ditional case control status (Peper et al., 2007). Due to the high dimension of imaging

phenotypes and genotypes, it is analytically and computationally challenging for most

statistical methods. The aim of this data analysis is to develop L2R2 in identifying

associations between longitudinal phenotypes and SNP genotypes collected by the NIH

ADNI, while capturing varying coefficients of time effect on longitudinal phenotypes and

spatio-temporal correlations among longitudinal phenotypes.

The NIH ADNI is an ongoing public-private initiative to test whether genetic, clini-

cal, and functional and structural neuroimaging data can be integrated to measure the

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

ADNI initiative is recruiting study subjects over 50 sites across the United States

and Canada. The genetic and clinical data along with corresponding structural brain

MRI data from baseline and follow-up were obtained from the ADNI publicly available

database (http://adni.loni.ucla.edu/). Our interest is to perform genome-wide searches

for establishing the association between the SNPs collected on top genes reported by Alz-

Gene (http://www.alzgene.org/) and the brain volumes of 93 regions of interest (ROIs),

while accounting for other time-varying covariates, such as age, and baseline covariates,

such as gender. By using L2R2 we can easily carry out formal statistical inferences,

such as the identification of significant SNPs or SNPs that interact with aging on the

differences among all 93 ROI volumes between AD and normal controls.
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The MRI data was collected across a variety of MRI scanners with individualized pro-

tocols for each scanner to obtain standard T1-weighted images volumetric 3-dimensional

sagittal MPRAGE or equivalent protocols with varying resolutions. The typical protocol

included: inversion time (TI) = 1,000 ms, repetition time (TR) = 2,400 ms, flip angle

= 8o, and field of view (FOV) = 24 cm with a 256 × 256 × 170 acquisition matrix in

the x−, y−, and z−dimensions yielding a voxel size of 1.25 × 1.26 × 1.2 mm3. Stan-

dard steps including anterior commissure and posterior commissure correction, skull-

stripping, cerebellum removing, intensity inhomogeneity correction, segmentation and

registration (Shen and Davatzikos, 2004) were used to preprocess the MRI data. We

then carried out automatic regional labeling by labeling the template and by transfer-

ring the labels following the deformable registration of subject images. After labeling

93 ROIs, we were able to compute their volumes for each subject.

To genotype subjects in the ADNI database, the Human 610-Quad BeadChip (Illu-

mina, Inc., San Diego, CA) was used, which resulted in a set of 620,901 SNP and copy

number variation (CNV) markers. Since the Apolipoprotein E (APOE) SNPs, rs429358

and rs7412, are not on the Human 610-Quad Bead-Chip, they were genotyped sepa-

rately. These two SNPs together define a 3 allele haplotype, namely the ε2, ε3, and ε4

variants and the presence of each of these variants was available in the ADNI database

for all the individuals. The software EIGENSRAIT in the package of EIGENSOFT 3.0

was used to calculate the population stratification coefficients of all subjects. To reduce

population stratification effects, we only used 749 Caucasians from all 818 subjects who

had at least one imaging sample available.

We also performed quality control on this initial set of genotypes (Wang et al., 2012).

In order to impute the missing genotypes in our sample, we used MACH4 version 1.0.16

with default parameters to infer the haplotype phase. We also included the APOE-ε4
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variant, coded as the number of observed ε4 variants. We dropped SNPs with more than

5% missing values and imputed the mode for the missing SNP for the remaining. In the

final quality controlled genotype data, we dropped the SNPs with minor allele frequency

smaller than 0.1 and Hardy-Weinberg p-value < 10−6.

4.3 Methods

4.3.1 Model Setup

Consider n independent subjects and imaging genetic data collected atmi time points

tij for j = 1, . . . ,mi from the i-th subject for i = 1, . . . , n. Let N =
∑n

i=1mi be the

total number of observations for each response. For the i−th subject, we observe an

mi × d matrix of imaging measures Yi = (yik(tij)) for j = 1, . . . ,mi and k = 1, . . . , d, a

p×1 vector of time-invariant genetic predictors xi = (xi1, · · · , xip)T , and a q2×1 vector

of time-variant prognostic factors w2,i(t) = (w2,i1(t), · · · , w2,iq2(t))
T for j2 = 1, . . . , q2.

The original model of L2R2 can be written as

yik(t) = xT
i βk + µk(t) +w2,i(t)

Tγ2,k + zi(t)
Tbik + εik(t) for k = 1, . . . , d, (4.1)

where βk is a p×1 vector of coefficients, µk(·) is an unknown function of t, γ2,k is a q2×1

vector of coefficients, zi(t) is a pb×1 vector of time-varying covariates measured at time

point t, bik is a pb×1 vector of random effects, and εik(t) is an error term at time point t.

It is assumed that bi = (bik) ∼ N(0,Σb) and εi(t) = (εik(t)) ∼ Nd(0,Σe = Θ−1), where

Σb and Σe are pbd × pbd and d × d covariance matrices. For simplicity, it is assumed

that Σb = diag(Σb,1, · · · ,Σb,d) is a block diagonal matrix with each imaging phenotype

forming a block, which captures the temporal correlations of each longitudinal pheno-

type, and Σe = Θ−1 is an unstructured precision matrix, which captures the spatial

correlations among responses at each time point. Since w2,i(t) may vary across t, it

allows us to delineate the joint gene×time effects on longitudinal phenotypes.
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We first consider a low rank model for the p × d coefficient matrix B = [β1 · · ·βd].

Since both responses and predictors are measured from each subject, they are likely

correlated with each other, and thus B may have a two-way linear association structure.

This shared structure of B can be exploited to approximate a low rank model B as

follows:

B = U∆V T =
r∑
l=1

Bl =
r∑
l=1

δluuulεl
T, (4.2)

where r is the rank or number of layers of B, Bl = δluuulεl
T is the lth layer for l = 1, . . . , r,

∆ = diag(δ1, . . . , δr), U = [uuu1, · · · ,uuur] is a p× r matrix, and V = [ε1, · · · , εr] is a d× r

matrix. Since it is expected that only a small set of genetic variates are associated

with longitudinal phenotypes, we expect that r is relatively small and V has a sparse

structure. By using the low rank model, we are able to reduce the number of unknown

parameters of B from pd to (d + p)r, which leads to a huge dimension reduction when

r << min(p, d).

We consider different models for µ(·). If µ(t) has a parametric form (e.g., linear or

exponential), then model (4.1) reduces to a parametric random effects model. From now

on, we consider a penalized spline model for µ(t) with a polynomial of degree s given by

µk(t) = γk,0 + γk,1t+ · · ·+ γk,st
s +

q1−s−1∑
m=1

γk,s+m(t− T0,m)s+ = w1(t)Tγ1,k, (4.3)

where γ1,k = (γk,0, · · · , γk,q1−1)T , w1(t) = (1, t, · · · , ts, (t − T0,1)s+, · · · , (t − T0,q1−1)s+)T ,

and T0,1 ≤ · · · ≤ T0,q1−s−1 are a dense set of pre-determined knots over the range of

the tij’s and are typically chosen to mimic the distribution of the tij’s, such as their

q1 − s − 1 tiles. Moreover, we may choose other basis functions, such as wavelet basis,

to represent µk(t), but most methods presented below are directly applicable.
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We consider a sparse factor model for εi(t) as follows:

εi(t) = Ληi(t) + ξi(t), (4.4)

where Λ is a d×∞ factor loading matrix, ηi(t) ∼ N∞(0, I∞), and ξi(t) ∼ N(0,Σξ) with

Σξ = diag(σ2
ξ,1, . . . , σ

2
ξ,d). To achieve dimension reduction, one would typically restrict

the dimension of the latent factor vector ηi(t) to be orders of magnitude less than that

of εit. By following Bhattacharya and Dunson (2011), we choose a prior that shrinks the

elements of Λ to zero as the column index increases. Thus, it bypasses the challenging

issue of selecting the number of factors.

Our L2R2 integrates assumptions (4.1)-(4.4) and can be written in a matrix form as

follows:

Y = XU∆V T +WΓ + Zbbb+ E, (4.5)

where Y = (yik(tij)) is an N × d matrix of responses, X = (xi) is an N × p matrix

of genetic predictors with xi repeated mi times, Z = (zi(tij)) is an N × pb matrix of

covariates, and E = (εi(tij)) is an N×d matrix of error terms. Moreover, let q = q1 +q2,

W is an N × q matrix, whose first q1 columns consist of w1(tij) and second q2 columns

consist of w2,i(tij) for all i, j. Similarly, Γ is a q × d matrix and its first q1 rows consist

of γ1,k and its second q2 columns consist of γ2,k. In model (4.5), our primary interest is

to make statistical inference on both B (or (U,∆, V )) and Γ.

4.3.2 Priors

We consider the priors on the elements of B. Let Ga(a, b) be a gamma distribution

with scale a and shape b. We choose the L2 priors on the parameters at each layer Bl
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as follows:

δl ∼ N(0, τ−1
δ ), τδ ∼ Ga(a0, b0), uuul ∼ Np(0, p

−1Ip), and εl ∼ Nd(0, d
−1Id),

where a0 and b0 are pre-specified hyper-parameters. Although, we have used the same

precision parameter for each element of uuul, one could easily incorporate group informa-

tion by choosing separate precision for each group. The number of predictors p (or d)

is included in the hyperprior of uuul (or εl) to have a positive-definite covariance matrix

of high dimensional uuul (or εl). Moreover, this data driven approach on priors for uuul and

εl requires no additional hyper-parameters to choose. Since we standardize all predic-

tors to have zero mean and unit variance, a single prior is sensible for all elements of

uuul. Moreover, since we rescale all responses, we use the same dispersion for all com-

ponents of εl. Since we focus on exploiting the potential two-way correlations among

the estimated coefficients, we choose the L2 priors, which tend to borrow strength from

correlated neighbors and force the coefficients towards each other to produce two highly

correlated coefficients. Moreover, posterior computations are simpler and faster under

the L2 priors.

We consider the priors on the elements of Γ = (γjk). We also choose the L2 prior on

γjk’s as follows:

γjk ∼ N(0, τ−1
γ ) and τγ ∼ Ga(c0, d0)

for j = 1, . . . , q and k = 1, . . . , d, where c0 and d0 are hyperparameters. For the sub-

ject specific random coefficients we also choose independent and identically distributed

normal priors as

bik ∼ N(0, τ−1
b Iq∗) and τb ∼ Ga(e0, f0)

for i = 1, . . . , n and k = 1, . . . , d, where e0 and f0 are hyperparameters and q∗ is the

number of random effects in bik.
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We consider the priors on the elements of Λ and Σξ. We place the multiplicative

gamma process shrinkage prior (Bhattacharya and Dunson, 2011) on Λ in order to in-

creasingly shrink the factor loadings towards zero with the column index. Such shrinkage

priors avoid the drawback of order dependence from the lower triangular constraint on

Λ for identifiability. We use inverse gamma priors on the diagonal elements of Σξ.

Specifically, these priors are given as follows:

Λ = {λkh}, k = 1, . . . , d ;h = 1, . . . ,∞,

λkh|φkh, τλh ∼ N(0, φ−1
kh τ

−1
λh ), φkh ∼ Ga(v/2, v/2), σ−2

k ∼ Ga(aσk, bσk),

ψ1 ∼ Ga(a1, 1), ψg ∼ Ga(a2, 1), g ≥ 2, τλh =
h∏
l=1

ψl,

where ψg for g = 1, . . . ,∞ are independent random variables, τλh is a global shrink-

age parameter for the h-th column, and the φkhs are local shrinkage parameters for

the elements in the h-th column. Moreover, v, a1,, a2, aσk and bσk are prefixed hyper-

parameters. When a2 > 1, the τλh’s increase stochastically with the column index h,

which indicates more shrinkage favored over the columns of higher indices. The loading

component specific prior precision φ−1
kh τ

−1
λh allows shrinking the components of Λ.

We consider the priors on the elements of Σk,b’s. We place the independent Wishart

prior on Σk,b with p(Σ−1
k,b) ∼ W [Sb,0, ρ0, pb] for k = 1, · · · , d, where ρ0 and the positive

definite matrix Sb,0 are the given hyperparameters. Under this formulation all condition-

als have closed forms and the posterior computation can be implemented via efficient

Gibbs sampler.
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4.3.3 Posterior Computation

The joint posterior for L2R2 with the above priors can be written as

p(U,∆, V,Γ, bbb,Θ|data) (4.6)

∝ τ
ao+

1
2
r−1

δ τ
co+

1
2
q−1

γ τ
co+

1
2
nq∗−1

b e−b0τδ−d0τγ−f0τb

etr

(
−1

2

[
r∑
l=1

{
τδδ

2
l + εT

l (dId)εl + uuuT
l (pIp)uuul

}
+ Γ(τγIq)Γ

T + b(τbInq∗)b
T

])

etr

(
−1

2
(Y −XU∆V −WΓ− Zbbb)Θ(Y −XU∆V −WΓ− Zbbb)T

)

We propose a straightforward Gibbs sampler for posterior computation, which converges

rapidly. Starting from the initiation step, the Gibbs sampler at each iteration proceeds

as follows:

1. For l = 1, . . . , r update uuul from the conditional distributions

p(uuul|−) ∼ Np

(
δlΣuuulX

TYB,lΘεl,Σuuul

)
,

where Σuuul =
{
pIp + δ2

l (ε
T
l Θεl)X

TX
}−1

and YB,l = Y −X
∑r

l′ 6=lBl −WΓ− Zb.

Update εl from p(εl|−) ∼ Nd(δlΣεlΘY
T
B,lXuuul,Σεl),

where Σεl =
{
dId + δ2

l (uuu
T
l X

TXuuul)Θ
}−1

.

Update δl from p(δl|−) ∼ N
(
σ2
δl
uuuT
l X

TYB,lΘεl, σ
2
δl

)
,

where σ2
δl

=
{
τδ + (εlΘ

Tεl)(uuu
T
l X

TXuuul)
}−1

2. Update τδ from p(τδ|−) ∼ Ga(a0 + 0.5r, b0 + 0.5
∑r

l=1 δ
2
l )

3. Update Γk from p(Γk|−) ∼ N(ΣΓkW
T{yΓ,k − (YΓ,−k − WΓ−k)θk},Σ2

Γk
), where

ΣΓk = {θkkWTW + γIq}−1, yΓ,k is the kth column of YΓ = Y −XB −Zb, YΓ,−k is

the matrix after dropping the kth column of YΓ, θkk is the element at kth row and

kth column of Θ, θk is the kth column of Θ after dropping θkk, and Θ−kk is the

matrix after dropping kth row and kth column of Θ. This partioning was motivated
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by (Khondker et al., 2013); this columnwise sampling scheme allows computionally

efficient sampling with a feasible dimension of the conditinal covariance matrix.

Update τγ from p(τγ|−) ∼ Ga(co + 0.5qd, d0 + 0.5
∑q

j=1

∑d
k=1 γ

2
j′k)

4. Update bk from p(bk|−) ∼ N(ΣbkW
T{yb,k − (Yb,−k − Zb−k)θk},Σ2

bk
), where Σbk =

(θkkZ
TZ + τγInq∗)

−1, yb,k is the kth column of Yb = Y − XB −WΓ and Yb,−k is

the matrix after dropping the kth column of Yb.

Update τb from p(τb|−) ∼ Ga(eo + 0.5nq∗d, d0 + 0.5
∑n

i=1

∑q∗

j∗=1

∑d
k=1 b

2
ij∗k)

5. Update the kth row of Λk∗ , denoted by λk, from its conditional distribution

p(λk|−) ∼N ((σ−2
k η

Tη +D−1
k )−1ηTσ−2

k Ek, (σ
−2
k ηTη +D−1

k )−1), where

η = (η1, . . . , ηn)T, Ek = (ε1k, . . . , εnk)
T is the kth column of E = Y − XB −

WΓ − Zb, and Dk = diag(φ−1
k1 τ

−1
λ1 , . . . , φ

−1
kk∗
τ−1
λk∗

) for k = 1, . . . , d. Update φkh

from its conditional distribution p(φkh|−) ∼ Ga(v+1
2
,
v+λ2khτλh

2
) and σ−2

k , k =

1, . . . , d, from its conditional distribution p(σ−2
k |−) ∼ Ga(aσk+

n
2
, bσk+

1
2

∑n
i=1(yik−

λT
k ηi)

2). Update ψ1 from its conditional distribution p(ψ1|−) ∼ Ga(a1 + 1
2
dk∗, 1 +

1
2

∑k∗
g=1 τ

(h)
λg

∑d
k=1 φkgλ

2
kg),

Update ψh, h ≥ 2 from its conditional distribution

p(ψh|−) ∼ Ga(a2 + 1
2
d(k∗ − h + 1), 1 + 1

2

∑k∗

g=h τ
(h)
λg

∑d
k=1 φkgλ

2
kg), where τ

(h)
λg =∏g

t=1,t6=h ψt for h = 1, . . . , k∗.

Update ηi, i = 1, . . . , n, from conditionally independent posteriors p(ηi|−) ∼

N((Ik∗ + ΛTΘΛ)−1ΛT
k∗

Θεi, (Ik∗ + ΛTΘΛ)−1), where εi is the ith row of E.

4.4 Simulation Study

4.4.1 Simulation Setup

We carried out simulation studies for model (4.5) to examine the finite-sample perfor-

mance of the L2R2 and its posterior computation. The simulation studies were designed
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to establish the association between relatively high-dimensional longitudinal phenotypes

with a set of commonly used genetic markers (e.g., SNP). Specifically, we selected all

age records of the first n = 100 subjects (N = 422 records) of the 749 subjects from

the ADNI imaging data. Then we standardized age, formed cubic polynomial (s = 3)

and splines with eleven knots (q1− 1 = 11) and added standardized intracranial volume

(ICV), gender, and education to form W so that q = 15. The first column of W is a

column of 1s, the second column is age, the third column is age2, the fourth column is

age3, columns fifth through twelve form the B-spline basis of age where the knots are

based on every 10th percentile. Then we formed Z matrix with random effect zih as the

standardized time in years from the baseline to visit h for the ith subject. Although, the

elements of b were independently generated from N(0, 1). We formed X matrix with

actual SNPs in the ADNI data from the corresponding 100 subjects each repeating mi

times.

We simulated εi(t) ∼ Nd(0,Σe), where Σe was determined as follows. Let p0 be a

binomial probability, which controls the sparsity of the precision matrix. We first gen-

erated a d× d matrix A = (ajj′) with ajj = 1 and ajj′ = uniform(0, 1)× binomial(1, p0)

for j 6= j′, set Σe = AAT, and standardized Σ into a correlation matrix. The value of p0

was tuned so that about 20% of the elements in Σe were zeros, yielding that the mean

of the absolute correlations of Σ is about 0.40.

The low-rank coefficient matrix for SNPs B was generated with the true rank r0 = 5

for two cases (i) moderately sparse case with 25% zero elements and (ii) extremely

sparse case with 95% zero elements. Specifically, we set B = U∆V with U = (ujl),

∆ = diag(δll) = diag(100, 80, 60, 40, 20), and V = (vlk) being p × 5, 5 × 5, and 5 × d

matrices, respectively. Moreover, we generated all elements ujl and vlk independently

from a N(0, 1) × binomial(1, p0) generator and then normalized the columns of U and
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V to have zero mean and unit variance. The value of p0 was tuned so that about 25%

of the elements of B were zeros for the moderately sparse case and about 95% of the

elements were zeros for the extremely sparse case. Each element of Γ was independently

generated as γjk ∼ N(0, 1)× binomial(1, 0.8); some zero elements are required to com-

pute specificity discussed in the next section.

For posterior computation, we chose non-informative priors for the hyperparameters

and set a0 = b0 = 10−6. Since shrinkage for B is achieved through dimension reduction

by choosing r << min(d, p), these noninformative choices of the hyperparameters suit

well. For covariance parameter Σe, we chose somewhat informative priors in order to

impose the positive-definiteness constraint, we do not repeat the details in this paper.

Similarly, for the hyperparameters of Γ and b, we chose informative priors and allowed

larger shrinkage for larger dimension-to-sample size. For each simulated data set, we

ran the Gibbs sampler collected 10, 000 iterations after 5, 000 burn-in iterations. We

considered four cases with varying dimensions and priors below. For all cases, the true

rank of B was set to r = 5. For each case, 100 simulated data sets were generated. The

following cases were considered for simulation:

• Case 1: p = 50, d = 50, n = 100, c0 = d0 = 0.5, e0 = f0 = 1.

• Case 2: p = 100, d = 100, n = 100, c0 = d0 = 1, e0 = f0 = 2.

• Case 3: p = 200, d = 100, n = 100, c0 = d0 = 2, e0 = f0 = 4.

• Case 4: p = 400, d = 100, n = 100, c0 = d0 = 4, e0 = f0 = 8.

The results do not vary considerably for more or less informative priors. Gener-

ally, for higher dimension-to-sample size, more informative priors should produce better

results. We compared our results with group-sparse multitask regression and feature se-

lection (G-SMuRFS) (Wang et al., 2012) using a single group. Since the existing results
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in (Wang et al., 2012) suggest that G-SMuRFS does comparably or outperform lasso

and Bayesian lasso, we restrict our comparison to G-SMuRFS only. For G-SMuRFS, to

avoid grid search, we first set both penalty parameters equal. This reduces the search for

optimal parameter to one-way search, which was performed via a 5-fold cross validation

from a series of values. The G-SMuRFS method does not allow for separation of the

coefficient matrices like L2R2. We separated out estimated Γ and B in order to compute

model performance.

4.4.2 Comparison of Results

For performance evaluation we used six different selection criteria including the

Akaike information criterion (AIC), the Bayesian information criterion (BIC), the nor-

malized prediction error (PEN), the joint multivariate R2, the average of R2 measures

for individual responses, and the normalized model error (MEN) for B and Γ. Let

Ŷ = XB̂ + W Γ̂, where B̂ is the posterior estimate of B based on the MCMC samples.

Let SSE = tr((Ŷ − Y )T(Ŷ − Y )) be the error sum of squares and p∗ = r(p+ d) + qd be

the combined number non-zero of parameters in B and Γ. For traditional approaches

like G-SMuRFS the total number of non-zero parameters is p∗ = (p + q)d. The six

evaluation criteria are, respectively, given by

AIC = log(SSE) + 2 p∗
nd
, BIC = log(SSE) + log(nd)

nd
p∗,

PEN(Ŷ , Y ) = SSE
tr(Y TY )

× 100, JointR2(Ŷ , Y ) =
tr(Ŷ TŶ )
tr(Y TY )

× 100,

MEN(B̂, B) = tr((B̂−B)TΣX(B̂−B))

tr(BTΣXB)
× 100, MEN(Γ̂,Γ) = tr((Γ̂−Γ)TΣX(Γ̂−Γ))

tr(ΓTΣXΓ)
× 100.

(4.7)

The numerator and denominator of the MEN are, respectively, the model error and

measurement error of model (Yuan et al., 2007). Thus, the MEN is the ratio of the

model error over the measurement error as a percentage of the total magnitude of all

parameters. Similarly, the PEN and joint R2 are defined as percentages. Normaliza-

tion gives us unit-free measures, which makes comparisons more meaningful and readily
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comparable across studies. We also used average R2, which the mean of k individual

coefficients of determination corresponding to each response.

In addition, we calculated the sensitivity and specificity scores for each method. Let

I(·) be an indicator function of an event and tjk = β̂jk/sβ,jk, where β̂jk and sβ,jk denote

the posterior mean and standard deviation of βjk, respectively. Specifically, for a given

threshold T0, sensitivity and specificity scores are, respectively, given by

Se(T0) =
TP(T0)

TP(T0) + FN(T0)
and Sp(T0) =

TN(T0)

TN(T0) + FP(T0)
,

where TP(T0), TP(T0), TP(T0), and TP(T0) are, respectively, the numbers of true pos-

itives, false positives, true negatives, and false negatives. T0 gives different sensitivity

and specificity scores, which allow us to create receiver operating characteristic (ROC)

curves. In each ROC curve, sensitivity is plotted against 1-specificity. Varying sen-

sitivity and specificity values were obtained after using a series of thresholding values

from zero to the maximum value for G-SMuRFS. For L2R2, we used a varying standard

deviation multiplier for thresholding to obtain varying sensitivity and specificity values.

A larger area under the ROC curve indicates a better method in identifying the true

positives, while controlling for the false positives.

4.4.3 Results

The simulation results in Table 4.1 show that the L2R2 does better in controlling

the model error. In terms of prediction error and explanatory power (joint and average

R2) the results are similar. However, in terms of AIC L2R2 performs slightly better

and much better in terms BIC as it requires fewer parameters in the model. These

results indicate the advantage of borrowing strength from correlated phonetypes as well

as accounting for spatiotemporal correlations among longitudinal phenotypes. We also
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compared these methods in terms of ROC curves (Figure 4.1). The ROC curves reveal

that L2R2 substantially outperforms in controlling false positives and false negatives as

evident from larger area covered under the ROC curves. The results are comparatively

better for the sparser coefficient matrix B. This is also supported by better performance

of L2R2 in terms of model error. The results of L2R2 are comparatively better in terms

of ROC, suggesting that a probabilistic thresholding may outperform a constant-based

one. For the extremely sparse coefficient matrix, which may be of much lower rank than

the dimension, the use of L2R2 may be a better choice. Figure 4.2 plotted selected spline

functions from true coefficients (Γ) and estimated coefficients from both models. L2R2

more closely estimates the underlying spline functions in both settings of B matrix.

Figure 4.3 plotted true coefficients matrix (B) and estimated coefficients from both

models. L2R2 more closely estimates the true coefficient matrix and picks up less noise

under both settings of B matrix.

4.5 Application to ADNI Data

In ADNI database, we included all 749 Caucasian subjects subjects with at least

one non-missing structural MRI measures giving an unbalanced data set with n = 749

subjects and N = 2817 MRI measures. Among them, 41 subjects have only one obser-

vation and another 67 subjects have only two observations. It leads us to consider a

single random effect, since adding more than one random effect will entail heavy penalty,

especially for those subjects with single observation. Moreover, it is expected that lon-

gitudinal phenotypes of the same individual usually exhibit positive correlation and the

strength of the correlation decreases with the time separation, we proposed to use ran-

dom time coefficient to account for the temporal correlation. For the age effect, we used

a penalized spline of third degree with 11 knots based on the percentiles of standardized

age. We also included ICV, gender, education, and handedness as covariates in W .
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We consider two sets of top genes, which may be associated with AD. First, we

chose the top 10 Genes listed in the AlzGene (www.alzgene.org) database and found

114 SNPs on those genes from the ADNI database. After the quality control (removal of

SNPs with more than 5% missing, minor allele frequency larger than 10%, and Hardy-

Weinberg equilibrium testing), 87 SNPs, APOE-ε4 and their interaction with age were

included in model (4.1). Second, we chose the top 40 genes with 1,224 SNPs used by

Wang et al. (2012). After the standard quality control, we were able to get 1,072 SNP

and their interactions with age. Fig. 4.5(a) presents the map of linkage disequilibrium

(LD) among the 1,071 selected SNPs, in which the first one is APOE-ε4 and the next 87

are from the top 10 AlzGene genes. Inspecting Figure 4.5 (a) reveals a clear clustering

pattern of SNPs by gene. Specifically, SNPs within a gene have large LD correlations,

whereas SNPs between different genes have almost zero LD correlations.

After determining X, Z, and W , we fitted L2R2 model (4.1) to ADNI data as follows.

To determine the rank of B, L2R2 was run for up to r = 10 layers. By comparing the

five different selection criteria, we chose r = 3 layers as the optimal rank for the final

data analysis. We ran the Gibbs sampler for 20, 000 iterations after 20, 000 burn-in

iterations. For G-SMuRFS, we used the same Y matrix, combined W and X matrices

into a single predictor matrix, and then used the 5-fold cross validation to choose the

optimal penalty.

4.5.1 Longitudinal Age Effect

Based on the MCMC samples, we calculated the fitted spline functions of standard-

ized ROIs. See Figure 4.4 for details. Some selected ROIs, which tend to decline in

volume with age, include left and middle temporal gyri, left and superior temporal gyri,

and left and right amygdala, among others. There are other ROIs, including mostly

hollow areas and white matters, that increase in volume. These rising volume regions
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include left and right lateral ventricles, left and right frontal lobe white matter, and left

and right temporal lobe, among others. Not surprisingly, the trends in most regions

show structural symmetry.

4.5.2 Regions of Interest

Based on the MCMC samples, we calculated the posterior median and median ab-

solute deviations (MAD) of U and V , and B, and then we used the standard normal

approximation to calculate the p-values of each component of U , V , and B. We used

1.426×MAD to compute robust standard errors from the posterior median based MAD

for each element of B; then used normal approximation to compute p−values for thresh-

olding B. Specifically, we created two new matrices based on the estimated B in order

to detect important ROIs and SNPs. We first applied this thresholding method to B in

order to compute a new matrix Bbin, in which βjk was set at zero if its negative log10(p)

is less than 6, and set to 1 otherwise. Figure 4.5 (d) presents the estimated posterior

median map of B, in which the elements with their negative log10(p) values less than 6

were set to zero. Inspecting Figure 4.5 (d) reveals sparsely distributed points along the

horizontal and vertical directions in the estimated B, which indicates that the low-rank

model would fit the ADNI data reasonably well. Then, we calculated a 93× 93 matrix

BT
binBbin and a 176× 176 matrix BbinB

T
bin and presented them in the first row of Figure

4.5. Similar approach was taken for U and V .

Since at the presence of interaction inference on main affect is misleading and our

primary focus is on change of SNP’s effect over age, for netwrok building we only used

interaction parts of B, U , and V . We adopted several approaches to select the top ROIs.

First, we built column sums of BT
binBbin based on the age by SNP interaction coefficients;

then ranked the top ROIs based on the column sums of BT
binBbin giving us the ROIs with

maximum number of significant coefficients. Next, we calculated p-values for each layer
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of V similar to the p-value calculation of B, then computed negative vlues of log10(p) at

each layer V ; then ranked the ROIs based on the log10(p). Finally, we ranked the ROIs

based on the sum of the abolute values of sparse B. The results are reported in table

4.2 and 4.3; gyris are apparently predominantly affected by SNP-age interaction.

4.5.3 SNPs

Using the interaction parts of B, U , and V we and adopted several approaches to

select the top SNPs. First, we built column sums of BbinB
T
bin based on the age by SNP

interaction coefficients; then ranked the top SNPs based on the column sums of BbinB
T
bin

giving us the ROIs with maximum number of significant coefficients. Next, we calcu-

lated p-values for each layer of U similar to the p-value calculation of B, then computed

negative vlues of log10(p) at each layer U ; then ranked the ROIs based on the log10(p).

Finally, we ranked the ROIs based on the sum of the abolute values of sparse B. The

results are reported in table 4.2 and 4.3. APOE-ε4 is among the top 20 SNPs from the

model with SNPs from top 10 genes.

Among the top SNPs rs880436(BIN1) has positive age interaction with perirhinal

cortex left, perirhinal cortex right, uncus left, temporal pole right, amygdala left, uncus

right, amygdala right, temporal pole left, hippocampal formation left, hippocampal for-

mation right, entorhinal cortex left, entorhinal cortex right, inferior temporal gyrus right,

parahippocampal gyrus right, middle temporal gyrus right, middle temporal gyrus left,

superior temporal gyrus left, inferior temporal gyrus left, and parahippocampal gyrus

left. SNP rs3752237(ABCA7) has positive age interaction with lateral ventricle right,

and lateral ventricle left. It has negative age interaction with inferior temporal gyrus

left, lateral occipitotemporal gyrus right, insula right, amygdala left, uncus right, infe-

rior temporal gyrus right, superior temporal gyrus left, superior temporal gyrus right,

middle temporal gyrus left, hippocampal formation right, hippocampal formation left,
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middle temporal gyrus right, and amygdala right. SNP rs3752240(ABCA7) has neg-

ative age interaction with inferior temporal gyrus left, inferior temporal gyrus right,

superior temporal gyrus right, superior temporal gyrus left, middle temporal gyrus left,

middle temporal gyrus right, hippocampal formation right, hippocampal formation left,

and amygdala right. SNP rs33978622(CD33) has positive age interaction with amyg-

dala right, hippocampal formation left, hippocampal formation right, middle tempo-

ral gyrus left, superior temporal gyrus right, and superior temporal gyrus left. SNP

rs10501608(PICAL) has negative age interaction with , superior temporal gyrus right,

lateral occipitotemporal gyrus left, middle temporal gyrus right, superior temporal gyrus

left, lateral occipitotemporal gyrus right, and middle temporal gyrus left.

4.6 Discussion

We have developed a Bayesian analysis L2R2 to model the association between re-

peatedly measured high-dimensional responses and high-dimensional covariates with a

novel application in imaging genetic data. We have introduced a low rank regression

model to approximate the large association matrix through the standard SVD. We com-

bined a sparse latent factor model and random effects to more flexibly capture the

complex spatiotemporal correlation structure. We have incorporated splines to capture

the effect of aging and combined traditional coefficient estimation with low rank ap-

proach. L2R2 dramatically reduces the number of parameters to be sampled and tested

leading to a remarkably faster sampling scheme and efficient inference. We have shown

good finite-sample performance of L2R2 in both the simulation studies and ADNI data

analysis. Our data analysis results have confirmed the important role of well-known

genes such as APOE-ε4 in the pathology of ADNI, while highlighting other potential

candidates that warrant further investigation.

Many issues still merit further research. First, it is important to consider the joint
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of genetic markers and environmental factors on high-dimensional imaging phenotypes

(Thomas, 2010). Second, it will be interesting to incorporate common variant and

rare variant genetic markers in L2R2 (Bansal et al., 2010). Third, the key features of

GLRR can be adapted to more complex data structures (e.g., twin and family) and

other parametric and semiparametric models. Fourth, the method can be extended to

combine different imaging phenotypes calculated from other imaging modalities, such as

diffusion tensor imaging, functional magnetic resonance imaging (fMRI), and electroen-

cephalography (EEG), in imaging genetic studies. Fifth, one could incorporate group

structure among SNPs, as apparent gene-based grouping from the LD correlation plots,

by choosing group priors for U .
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Figure 4.1: Simulation results: Mean ROC curves from L2R2 (red line for B, black line
for Γ), and G-SMuRFS (blue line for B, black dashed line for Γ) based on 100 samples
of size n = 100 each. Top row for moderately sparse B and bottom row for extremely
sparse B, while Γ remains the same in both scinarios.
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Figure 4.2: Simulation results: Splines for standardized volumes of selected ROIs (from
left to right, respectively, ROIs 1, 4, 7 and 8) from single sample. Black lines are
generated by true G, red lines by estimates from G-SMuRFS, and blue by estimates
from LGLRR. Top row is based on G when B is moderately sparse and bottom row is
based on G when B is extremely sparse. L2R2 did a decent job in estimating the true
splines while G-SMuRFS can be off for some ROIs.
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Figure 4.3: Simulation results: Image plots of the low-rank component B from single
sample. True B on the left, G-SMuRFS in the middle, and L2R2 on the right. Top row
is moderately sparse B and bottom row is extremely sparse B. For moderatly sparse B
G-SMuRFS may pick up too much noise.
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Figure 4.4: Splines functions: all the ROIs on the left, selected ROIs with declining
volumes in the middle, selected ROIs with increasing volumes on the right. Top row
from the model using SNPs from top 10 genes, bottom row from the model using SNPs
from top 45 genes.
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Figure 4.5: Data analysis results from SNPs in the top 10 genes: Top panel (a) left- LD
correlation of selected SNPs from top 10 genes in AlzGene database (b) middle- ROI
network from binary B (c) right- SNP network from binary B. Bottom panel (d) left-
age by SNP interaction part of sparse B after thresholding with negative log10(p) > 10,
(e) middle- negative log10(p) of U (f) right- negative log10(p) of V .

118



Figure 4.6: Data analysis results from SNPs in the top 45 genes: Top panel (a) left- LD
correlation of selected SNPs from top 45 genes in AlzGene database (b) middle- ROI
network from binary B (c) right- SNP network from binary B. Bottom panel (d) left-
age by SNP interaction part of sparse B after thresholding with negative log10(p) > 10,
(e) middle- negative log10(p) of U (f) right- negative log10(p) of V .
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Table 4.4: Top SNPs based on BbinB
′
bin, p-values of U , and magnitude of coefficients for

model using SNPs from top 10 genes.

From BbinB
′
bin From p-values of U From Magnitude of Coefficients

rs880436(BIN1) rs880436(BIN1) rs33978622(CD33)
rs3752237(ABCA7) rs1354106(CD33) rs3752237(ABCA7)
rs3752240(ABCA7) rs3752237(ABCA7) rs880436(BIN1)
rs1408077(CR1) rs3752240(ABCA7) rs3752240(ABCA7)
rs33978622(CD33) rs33978622(CD33) rs3865444(CD33)
rs3826656(CD33) rs10501608(PICAL) rs10501608(PICAL)
rs677909(PICAL) rs12734030(CR1) rs1354106(CD33)
rs10501608(PICAL) rs10501604(PICAL) rs988337(CD33)
rs3865444(CD33) rs988337(CD33) rs10194375(BIN1)
rs988337(CD33) rs6458573(CD2AP) rs1408077(CR1)
rs1354106(CD33) APOE34(APOE) rs12734030(CR1)
rs12734030(CR1) rs10200967(BIN1) rs3826656(CD33)
rs10779339(CR1) rs3826656(CD33) rs10779339(CR1)
APOE34(APOE) rs6709337(BIN1) rs677909(PICAL)
rs10194375(BIN1) rs10194375(BIN1) APOE34(APOE)
rs1571344(CR1) rs650877(CR1) rs1571344(CR1)
rs2025935(CR1) rs677909(PICAL) rs2025935(CR1)
rs4310446(CR1) rs9395285(CD2AP) rs4310446(CR1)
rs11117959(CR1) rs610932(MS4A6) rs11117959(CR1)
rs10127904(CR1) rs662196(MS4A6) rs10127904(CR1)
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Table 4.5: Top SNPs based on BbinB
′
bin, p-values of U , and magnitude of coefficients for

model using SNPs from top 45 genes.

From BbinB
′
bin From p-values of U From Magnitude of Coefficients

rs3752237(ABCA7) rs1057490(ENTPD) rs7905923(SORCS)
rs472664(SORCS) rs6088662(PRNP) rs1997660(PGBD1)
rs1997660(PGBD1) rs17177040(SORCS) rs1358024(TF)
rs7905923(SORCS) rs4513489(CCR2) rs2900712(SORCS)
rs2239942(GAPDH) rs1473180(DAPK1) rs3752237(ABCA7)
rs2327389(NEDD9) rs10787011(SORCS) rs472664(SORCS)
rs2900712(SORCS) rs1336269(LOC65) rs1057490(ENTPD)
rs6608762(OTC) rs1358024(TF) rs2239942(GAPDH)
rs1473180(DAPK1) rs6608762(OTC) rs1330001(SORCS)
rs1358024(TF) rs6441961(CCR2) rs6608762(OTC)
rs1330001(SORCS) rs6584307(ENTPD) rs6088662(PRNP)
rs1336269(LOC65) rs2273684(PRNP) rs2327389(NEDD9)
rs7870463(DAPK1) rs583791(MS4A6) rs1336269(LOC65)
rs4935775(SORL1) rs1360246(SORCS) rs17177040(SORCS)
rs10787011(SORCS) rs10779339(CR1) rs4513489(CCR2)
rs17602572(MS4A6) rs1699105(SORL1) rs4935775(SORL1)
rs1057490(ENTPD) rs597668(EXOC3) rs1473180(DAPK1)
rs11194016(SORCS) rs4309(ACE) rs10787011(SORCS)
rs6088662(PRNP) rs11193377(SORCS) rs7870463(DAPK1)
rs10779339(CR1) rs17496723(NEDD9) rs11117959(CR1)
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CHAPTER 5

CONCLUSION

First, we focused on penalized covariance estimation and introduced a general class

of priors for the precision matrix which yield the ACLASSO, CLASSO, and SPICE

penalties as special cases. We have also developed a sampling scheme for the estimation

of the precision and covariance matrices under a special case that corresponds to the

lasso penalty, which can facilitate exploration of the full posterior distribution of the

matrix under L1 penalites. Although our proposed priors do not guarantee positive

definiteness of Θ, we have developed a fast sampling scheme that guarantees positive

definite MCMC samples of the precision matrix at each iteration regardless of the value

of the penalty parameter. Our proposed method is the first Bayesian method that

uses priors that directly translate into the L1 penalty on prevision matrix, the method

works well for non-full rank data, and performs shrinkage and estimation simultaneously.

Second, we developed a Bayesian GLRR to model the association between high-

dimensional responses and high-dimensional covariates with a novel application in imag-

ing genetic data. We have introduced a low rank regression model to approximate the

large association matrix through the standard SVD. We have used a sparse latent factor

model to more flexibly capture the complex spatial correlation structure among high-

dimensional responses. We have proposed Bayesian local hypothesis testing to identify



significant effects of genetic markers on imaging phenotypes, while controlling for multi-

ple comparisons. GLRR dramatically reduces the number of parameters to be sampled

and tested leading to a remarkably faster sampling scheme and efficient inference. We

have shown good finite-sample performance of GLRR in both the simulation studies

and ADNI data analysis. Our data analysis results have confirmed the important role of

well-known genes such as APOE-ε4 in the pathology of ADNI, while highlighting other

potential candidates that warrant further investigation.

Finally, we developed a Bayesian analysis L2R2 to model the association between

repeatedly measured high-dimensional responses and high-dimensional covariates with

a novel application in imaging genetic data. We have introduced a low rank regres-

sion model to approximate the large association matrix through the standard SVD. We

combined a sparse latent factor model and random effects to more flexibly capture the

complex spatiotemporal correlation structure. We have incorporated splines to capture

the effect of aging and combined traditional coefficient estimation with low rank ap-

proach. L2R2 dramatically reduces the number of parameters to be sampled and tested

leading to a remarkably faster sampling scheme and efficient inference. We have shown

good finite-sample performance of L2R2 in both the simulation studies and ADNI data

analysis. Our data analysis results have confirmed the important role of well-known

genes such as APOE-ε4 in the pathology of ADNI, while highlighting other potential

candidates that warrant further investigation.
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APPENDIX: DERIVATION OF CONDITIONALS

Full Conditional of LGLRR

Conditionals for ∆: from equation (4.6) we can write,

p(δl|−) ∝ etr

(
−1

2
τδδ

2
l + (YA,l − δlXuuulεl)Θ(YA,l − δlXuuulεl)T

)
∝ etr

(
δluuu

T
l X

TYA,lΘεl −
1

2
δ2
l (τδ + εlΘ

Tεl)(uuu
T
l X

TXuuul)

)
p(τδ|−) ∝ τ

ao+
1
2
r−1

δ etr

(
−1

2
(b0 +

r∑
l=1

τδδ
2
l )

)
.

This implies p(δl|−) ∼ N(σ2
δl
uuuT
l X

TYA,lΘεl, σ
2
δl

),

with p(τδ|−) ∼ Ga(a0 + 1
2
r, b0 + 1

2

∑r
l=1 δ

2
l ), where

σ2
δl

=
{
τδ + (εlΘ

Tεl)(uuu
T
l X

TXuuul)
}−1

and YA,l = Y −WΓ− ZΓ−
∑

l′ 6=l δlXuuulε
T
l

Conditionals for U: from equation (4.6) we can write,

p(uuul|−) ∝ etr

(
−1

2
uuuT
l (pIp)uuul + (YA,l − δlXuuulεl)Θ(YA,l − δlXuuulεl)T

)
∝ etr

(
uuuT
l δlX

TYA,l −
1

2
uuuT
l (pIp + δ2

l ε
T
l ΘεlX

TX)uuul

)
.

This implies, p(uuul|−) ∼ Np

(
δlΣuuulX

TYA,lΘεl,Σuuul

)
, where

Σuuul =
{
pIp + δ2

l (ε
T
l Θεl)X

TX
}−1

.

Conditionals for V: from equation (4.6) we can write,

p(εl|−) ∝ etr

(
−1

2
εT
l (dId)εl + (YA,l − δlXuuulεl)Θ(YA,l − δlXuuulεl)T

)
∝ etr

(
εT
l δlΘY

T
A,lXuuul −

1

2
εT
l (pIp + δ2

l uuu
T
l X

TXuuulεlX
TX)εl

)
.
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This gives, p(εl|−) ∼ Nd(δlΣεlΘY
T
A,lXuuul,Σεl), where

Σεl =
{
dId + δ2

l (uuu
T
l X

TXuuul)Θ
}−1

.

Sampling Γ by Columns

One could sample the coefficient matrix one element at a time, which will be time

consuming and less attractive in high-dimensional setting. Another approach will be

to convert the whole mtrix into a vector and sample at once; this requires a covariance

matrix with dimension qd timesqd, which can be quite large an require huge memory

making it infeasible. We choose a middle path motivated by (Khondker et al., 2013) in

covariance estimation setting; this columnwise sampling scheme allows computionally

efficient sampling with a feasible dimension of the conditinal covariance matrix. Let

YΓ = Y − XU∆V − ZΓ, then we can write YΓ = WΓ + E. For k = 1, . . . , d we can

partition YΓ = (yΓ,k YΓ,−k), Γ = (γk Γ−k), and Θ as

Θ =

 θkk θT
k

θk Θ−kk

 .

In the above partition yΓ,k is the kth column of YΓ, YΓ,−k is the matrix after dropping

the kth column of YΓ , θkk is the element at kth row and kth column of Θ, θk is the

kth column of Θ after dropping θkk, Θ−kk is the matrix after dropping kth row and kth

column of Θ. We can write

p(γk|−) ∝ etr

(
−1

2

[
(YΓ −WΓ)T(YΓ −WΓ)Θ + γT

k (τγIq)γk
])

∝ etr

(
−1

2
(yΓ,k −Wγk)

T(yΓ,k −Wγk)θkk

)
× etr

(
(yΓ,k −Wγk)

T(YΓ,−k −WΓ−k)θk −
1

2
γT
k (τγIq)γk

)
∝ etr

(
γT
kW

T{yΓ,k − (YΓ,−k −WΓ−k)θk} −
1

2
γT
k (θkkW

TW + (τγIq))γk

)
.
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This gives us p(γk|−) ∼ Nd(W
T{yΓ,k − (YΓ,−k −WΓ−k)θk,Σγk),

where Σγk =
{
θkkW

TW + (τγIq)
}−1

. The conditionals for b can be derived in a similar

fashion. Conditionals for all other parameters are straightforward.
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