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ABSTRACT 
 

LINDSAY FAIRCLOTH RIZZARDI: Epigenetic Factors Are Dynamically 
Regulated Throughout The Cell Cycle And Are Required For Efficient DNA 

Replication 
(Under the direction of Dr. Jeanette Gowen Cook) 

 
 Chromatin consists of DNA wrapped around a core of histone proteins that 

can be modified to elicit distinct cellular responses. All DNA-templated processes 

including DNA replication must function within the context of chromatin. The 

focus of this study is the interaction between the replication machinery and the 

chromatin structure it must traverse to faithfully replicate the genome. Individual 

histone modifications can promote recruitment of replication proteins directly or 

recruit chromatin remodelers that increase the accessibility of the underlying 

DNA. Our studies in budding yeast, Saccharomyces cerevisiae, have identified a 

specific histone modification, H3K4me2, that promotes efficient DNA replication; 

although, the mechanism of this regulation remains unclear. Additionally, we 

found that the enzyme responsible for depositing H3K4me2 is cell cycle 

regulated, being most abundant during G1 when cells prepare the genome for 

DNA replication.  

Another histone modification required during G1 for proper DNA 

replication is H4K20me1. As this modification is not found in budding yeast, our 

studies were undertaken in a mammalian cell culture system. The enzyme 

responsible for this modification had previously been identified as Set8 (a.k.a. 

PR-Set7) and we have begun investigating the regulation of this enzyme 
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throughout the cell cycle and during a cellular stress response. This enzyme is 

degraded both during S phase and after UV-induced DNA damage by the 

CRL4Cdt2 E3 ubiquitin ligase complex. We discovered that this degradation after 

DNA damage is abrogated during mitosis and after osmotic stress. This 

mechanism is conserved for at least one other CRL4Cdt2 substrate, Cdt1, that is 

an essential replication factor. Protection from UV-induced degradation requires 

active Cdk1 during mitosis as inhibition of this kinase leads to degradation of 

both Set8 and Cdt1. We are currently investigating whether this is a direct or 

indirect effect. During osmotic stress in asynchronous cells, the stress MAPKs 

p38 and JNK may play a more important role than Cdk1. It is clear that the 

histone modifications and the enzymes responsible for their deposition are critical 

components ensuring proper DNA replication and as such are tightly regulated. 

Future work will elucidate the exact mechanisms by which these chromatin 

factors influence DNA replication. 
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CHAPTER 1 

 

Introduction 

The cell cycle is a tightly regulated process that directs cell growth, 

ensures accurate duplication of the genome, and produces two identical 

daughter cells. Maintaining genome integrity is a top priority throughout this 

process. To accomplish this feat, every facet of DNA replication is under multiple 

layers of regulatory surveillance ensuring that the genome is prepared for 

replication in G1, that replication is completed error-free during S phase, and that 

the chromosomes segregate properly during mitosis. When any aspect of this 

process goes awry, DNA can become damaged resulting in gene mutation, 

chromosome rearrangements, and aneuploidy, all of which are hallmarks of 

cancer (1). Replicating the genome, like all DNA-templated processes, involves 

navigating the three-dimensional nuclear space to gain access to the DNA; this 

access is often restricted by the compaction of DNA into chromatin. 

Chromatin consists of 147 bp of DNA wrapped around an octamer of 

histone proteins (2 each of histones H2A, H2B, H3, and H4) that form 

nucleosomes. Histone proteins possess unstructured N-terminal tail regions that 
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can be post-translationally modified by phosphorylation, acetylation, methylation, 

ubiquitination, etc. (2). In the case of methylation, up to three methyl groups can 

be added to a single lysine residue, and there is evidence that these methylation 

states are functionally distinct (3). These post-translational modifications (PTMs) 

can alter DNA accessibility, serve as recognition sites for other proteins, and 

stabilize protein complexes (reviewed in reference 4). High levels of histone 

acetylation exist in easily accessible, highly transcribed euchromatin, while the 

much more compact heterochromatin tends to be hypoacetylated. It has been 

proposed that various combinations of histone modifications act as a “histone 

code” that provides epigenetic information to regulate DNA processes (5). It is 

likely that some aspect of this histone code is involved in the regulation of DNA 

replication. 

Origins of replication 
  
Sequence determinants 

 
DNA replication is initiated at sites in the genome known as origins of 

replication. These sites were first identified in budding yeast, Saccharomyces 

cerevisiae, by isolating DNA sequences that were capable of directing plasmid 

replication. This work led to the identification of a conserved sequence element 

termed the autonomously replicating sequence (ARS). The ARS contains a 

highly conserved but degenerate 11-bp ARS consensus sequence [ACS; 

(T/A)TTTAT(A/G)TTT(T/A)] along with three poorly defined B elements (B1, B2, 

and B3) that are nonetheless important for origin function (reviewed in reference 
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6). These B elements, while not conserved, can serve as binding sites for 

transcription factors or DNA unwinding elements (DUE) (7). 

Identifying replication origins in eukaryotic systems other than yeast has 

been much more difficult for two main reasons. The first is that there is no 

conserved sequence element common to replication origins in other eukaryotes. 

While these regions tend to be AT-rich there is no defined sequence that confers 

origin activity (8). The second is the lack of sensitive and stringent methods for 

isolating mammalian origins on a genome-wide scale. Origin identification can 

become complicated by the fact that origins are not uniformly active or efficient 

making it difficult to confidently confirm any but the most robust origins. Until 

recently, S. cerevisiae was the only organism in which all of the origins had been 

functionally identified. There have since been many technological advances that 

have successfully identified origins in more complex eukaryotes; however, these 

data sets often show very little overlap (<40%) (reviewed in reference 9). The 

techniques utilized include short nascent strand sequencing, ChIP-seq, Repli-

Seq, or combinations of these, and have allowed identification of origins even in 

human cells (10-12). Massive deep sequencing of short nascent strands from 

four different human cells lines has recently yielded what is now regarded as a 

complete map of replication origins in human cells. Approximately 250,000 

origins of replication were mapped nearly ten times the number of origins that 

had previously been predicted to exist (13). Despite this new information, the 

underlying factors regulating origin position in the genome are still unclear. Even 

in S. cerevisiae the ACS element is not the sole determinant of origin activity 
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because this sequence occurs in excess of 12,000 times throughout the genome 

and only ~ 400 functional origins exist (14). In addition, the aptly named origin 

recognition complex (ORC) binds specifically to the ACS, but is still unable to 

define active origins as it binds to more than 400 loci (15). In metazoans where 

no sequence element has been identified, ORC prefers to bind AT-rich 

sequences and metazoan origins tend to be 70-80% AT-rich (8). It is clear that 

neither DNA sequence nor ORC binding are sufficient to define origins of 

replication. This fact has lead researchers to investigate epigenetic determinants 

of origin identity, specifically the role of chromatin in origin determination. Recent 

studies have shown the importance of the chromatin environment in regulating 

many cellular processes including DNA replication (16-18).  

Chromatin structure 
 

Genome-wide analysis of nucleosome positioning in yeast and 

mammalian cells have shown that early replicating origins exist in nucleosome-

free regions (NFRs) that are easily accessed by the replication machinery (19-

21). Origins in all organisms tend to be AT-rich and these poly-A stretches resist 

bending, thus excluding nucleosomes (8,22). Interestingly, ORC helps to 

maintain NFRs and promotes the proper phasing of nearby nucleosomes that is 

needed for efficient DNA replication (23). Proper nucleosome phasing and 

nucleosome position relative to the origin of replication is important for optimal 

origin function. Shifting nucleosomes either towards or away from the origin NFR 

negatively impacts origin activity. Origins are frequently found near transcription 

start sites (TSS) that are also nucleosome free and are flanked by nucleosomes 
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rich in “activating” histone modifications (such as H3K4me2, 3 and H3 and H4 

acetylation). Additionally, origin firing time is correlated with transcription (24-26). 

In transcriptionally inactive regions, histone-modifying enzymes are recruited to 

origins to facilitate binding of the replication machinery. In Drosophila S2 cells for 

example, the histone acetyltransferase complex SAGA (Spt-Ada-Gcn5 

acetyltranferase) and the chromatin remodeler Brahma were found to promote 

ORC recruitment to these heterochromatic regions (27). 

When our work began, little was known about how the chromatin 

environment influenced origin activity or position in the genome. However, it was 

demonstrated by many groups (predominately in yeast and Drosophila 

melanogaster) that manipulating histone acetylation could alter the timing of 

replication initiation from origins, or origin “firing”, in S phase. Origins located in 

compact, hypoacetylated heterochromatin tended to fire late in S phase, but 

moving these origins to more “open”, euchromatic regions allowed them to fire 

early in S phase (28). Similarly, increasing global histone acetylation by deleting 

a histone deacetylase (Rpd3) resulted in a shorter S phase due to earlier origin 

firing genome-wide (29). Conversely, tethering a histone acetyltransferase 

(Gcn5) to a normally late-firing origin caused it to fire much earlier in S phase. In 

budding yeast, examination of the dynamics of histone acetylation at an 

individual origin of replication (ARS1) revealed that H3 and H4 tail acetylation 

was lowest during G1 and increased dramatically during S phase, consistent with 

a role for histone acetylation in origin firing (30). However, this could be a 

consequence of histone turnover as newly synthesized histones in all eukaryotic 
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cells are acetylated at H4K5 and K12; although, why these acetyl marks are 

important for new histone incorporation is unclear since unmodified H3-H4 

dimers are readily incorporated into new nucleosomes in vitro (31-33). Work from 

many groups has extended these findings and revealed that high levels of 

histone acetylation are correlated with origin activity even in human cells 

(25,30,34-36).  

Histone PTMs 
 
Researchers have struggled to identify a distinct set of histone 

modifications (or a chromatin signature) that determines the location of 

replication origins in the genome. While this identification has proven to be quite 

difficult, histone modifications that are enriched at origins have been identified, 

and functional studies have shown that individual histone modifications can 

regulate origin activity (Table 1.1). Through these efforts, a picture is emerging of 

the chromatin structure surrounding origins. Mass spectrometry analysis of an 

isolated yeast origin identified several previously unknown histone modifications 

that were specific to origins: H4K79ac, H3K23ac, H3K37me1, and H2AS15 

phosphorylation (30). This study also identified a novel histone modification that 

was specifically absent from origins, H2BK111me. Interestingly, H3K37me1 was 

entirely absent during S phase and was always found in conjunction with 

H3K36me1 on the same histone tail. However, another modification enriched at 

origins, H3K27ac, was never found on the same tail as H3K36me1, or me2. 

H3K36me1 was previously shown to promote association of the replication 
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initiation factor Cdc45 with origins (37). Work to define the role of H3K37me1 in 

replication is currently underway in the Kouzarides lab.  

Many other histone modifications are also enriched at origins and 

influence DNA replication. In S.cerevisiae, H3T45 is phosphorylated by the Cdc7-

Dbf4-dependent kinase (DDK) during S phase, and mutation of T45 to alanine 

results in reduced H3K36me3 levels and sensitivity to replication stress caused 

by hydroxyurea (HU) and camptothecin (CPT) (38,39). In human cells 

proliferating cell nuclear antigen (PCNA) specifically recognizes and binds to 

monomethylated H3K56 (methylated by G9a) during G1 (40). In Tetrahymena, 

H3K27me1, but not di- or tri-methylated H3K27, was found to play an important 

role in replication fork progression, and the methyltransferase responsible, TRX1, 

was also shown to interact with PCNA (41). Another histone modification, 

H3K79me2 is highly enriched at origins in human cells and spreads during S 

phase, possibly acting as a marker of replicated regions (42-45). Interestingly, 

depletion of the H3K79 methyltransferase DOT1L leads to low levels of 

rereplication suggesting that H3K79me2 could play a role in preventing aberrant 

replication. A new computational analysis of histone modifications in S. 

cerevisiae has synthesized an “alphabet” of nucleosome characteristics 

associated with different functional elements (46). Origins of replication were 

characterized by low nucleosome occupancy with minimal histone modifications 

(low levels of asymmetric H3R2me2), near non-expressed or lowly expressed 

genes, as had been noted by previous researchers. It is important to note that 
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this work was done on data collected from asynchronous cell populations and 

that many histone modifications at origins are dynamic and cell cycle regulated. 

Many replication proteins influence, and are influenced by, chromatin 

modifying enzymes that are active at origins of replication. These interactions 

can serve to regulate origin activity during all stages of the cell cycle. As 

described in detail below, origins become licensed in G1 phase, fire in S phase 

while origin licensing is inhibited, and are “reset” as cells exit mitosis into the 

subsequent G1 phase. The chromatin structure influences each aspect of this 

process and will be discussed further in the following sections.  

Origin licensing and firing 
 
For DNA replication to successfully duplicate the entire genome, a 

sufficient number of replication origins must initiate replication in S phase. If too 

few origins fire, individual replication forks must travel longer distances making 

them susceptible to fork collapse and subsequent DNA damage. Conversely, if 

origins fire more than once during the cell cycle (a process termed rereplication) 

then replication forks can collide leading to DNA damage (Figure 1.1A). To 

prevent these destructive events, origins of replication are tightly regulated.  

During G1, origins are prepared, or “licensed”, for DNA replication by the 

assembly of pre-replication complexes (preRCs). Origin licensing is complete 

once the replicative helicase of mini-chromosome maintenance (MCM) 

complexes has been loaded onto chromatin at origins through the activity of the 

canonical preRC components (Figure 1.1B). Replication origins are recognized 

and bound by ORC (the first preRC component recruited) that remains 
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associated with origins throughout the cell cycle. The next component, cell 

division cycle 6 (Cdc6), is recruited to origins through direct interaction with ORC. 

In the cytoplasm, Cdc10 protein-dependent transcript 1 (Cdt1) interacts with 

MCM complexes by binding to the Mcm2 and Mcm6 subunits to facilitate their 

import into the nucleus (47-50) At least two Cdt1-MCM complexes are then 

recruited to origins in a step-wise manner through Cdt1 interaction with both 

Cdc6 (49) and Orc6 (51-53). In contrast to ORC and Cdc6, Cdt1 lacks any 

enzymatic activity but is absolutely required for MCM recruitment to origins. It is 

through the ATPase activity of ORC and Cdc6 that the MCM helicase ring is 

opened and loaded onto chromatin while also promoting release of Cdt1 (54). 

While ATP hydrolysis occurs rapidly upon association of the Cdt1-MCM complex, 

actual loading of the MCM double-hexamer onto the DNA occurs some time later 

(55). In human cells, an origin licensing checkpoint exists so that cells will not 

enter S phase or initiate replication unless a sufficient number of origins have 

been licensed in G1 (56,57). While this checkpoint relies on p53 activity and 

hyperphosphorylation of Rb, the exact mechanism by which cells sense how 

many origins have been licensed is still undefined. 

Once MCM complexes have been loaded, the origins are licensed for 

replication and ORC, Cdc6, and Cdt1 are no longer required in order for 

replication to commence in S phase (58,59) However, the loaded MCM 

complexes are not yet active as DNA helicases. As cells reach the G1/S 

transition, a host of replication initiation factors are recruited and form the pre-

initiation complex (PIC) (Figure 1.1C) (60,61). Prior to S-phase cyclin-dependent 
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Figure 1.1 DNA replication is initiated at origins of replication and is tightly 
regulated to prevent spurious replication initiation. A) Normal replication 
requires a sufficient number of origins to fire in S phase. If too few origins fire, the 
DNA may not be fully replicated leading to increased DNA damage and genome 
instability. DNA damage can also occur if replication origins fire multiple times 
during a single cell cycle (rereplication). B) PreRC assembly is restricted to the 
G1 phase of the cell cycle. ORC is the first complex member recruited to origins 
and directly interacts with Cdc6 and Cdt1. Cdt1 recruits the MCM DNA helicases 
and through the ATPase activity of ORC and Cdc6 the MCM complexes are 
loaded onto the DNA. After MCM loading origins are considered to be licensed 
for replication and the other preRC components are not required for subsequent 
DNA replication in S phase. C) As cells transition from G1 to S phase, replication 
initiation factors are recruited and form the PIC. This complex functions to 
activate the MCM DNA helicase and commence replication. During late G1, the 
Dbf4-dependent kinase (DDK) phosphorylates Mcm4 and Mcm6 to promote 
recruitment of Cdc45 and Sld3. As cells enter S phase, CDK activity increases 
and promotes the recruitment of GINS that stabilizes the Cdc45-MCM complex 
(often referred to as the CMG complex). This complex in addition to CDK 
phosphorylation of Sld2 and Sld3 helps to stably recruit Mcm10, Sld2, and Dpb11 
to form the complete PIC. 

  



	   13	  

kinase (CDK) activation, DDK phosphorylates Mcm4 and Mcm6 to promote the 

recruitment of Cdc45 and Sld3 during G1 (62). As CDK activity increases at the 

G1/S transition, the Go-Ichi-Ni-San (GINS) complex is recruited and stabilizes 

the Cdc45-MCM interaction. In S. cerevisiae this complex forms the basis for 

recruiting Sld2, Dpb11, and Mcm10 that are then able to activate the MCM 

helicase. In metazoans, TopBP1 and RecQ4 are the homologs of Dpb11 and 

Sld2, respectively. Once the MCM helicase becomes active, the replicative DNA 

polymerases and other DNA processing factors are recruited resulting in 

formation of the complete replisome and commencement of DNA replication in S 

phase (62). 

Origin licensing is tightly regulated to restrict DNA replication to once and 

only once per cell cycle. MCM loading outside of G1 phase must be inhibited 

because new licensing during S and G2 phases can lead to rereplication. The 

consequences of rereplication include gene amplification, chromosomal 

translocation, and aneuploidy that are drivers of oncogenesis (1). Origin licensing 

is restricted to G1 through many non-redundant mechanisms including 

transcriptional regulation, protein re-localization, expression of protein inhibitors, 

and ubiquitin-mediated proteolysis of both licensing components and cell cycle 

regulators. These mechanisms are discussed in detail as they pertain to each 

replication factor in the following sections. 

ORC and ORCA 
 

ORC is currently recognized as the first critical determinant of origin 

identity and is recruited to origins during late M phase. ORC consists of the core 
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complex of Orc2-5 with Orc1 and Orc6 more weakly associated. Orc1 is the 

largest ORC subunit and is essential for preRC formation while Orc6 is 

dispensable for preRC formation in vitro (63,64). ATP hydrolysis by Orc1 

releases the MCM complex from ORC to complete MCM loading onto chromatin 

(54,65). While in yeast all ORC subunits are stably bound throughout the cell 

cycle, in metazoans Orc1 is cell cycle regulated. Orc1 is bound to origins during 

G1, but is largely degraded by the SCFSkp2 ubiquitin ligase complex during S 

phase and reaccumulates as cells transition from mitosis to G1 (66). Studies in 

multiple organisms revealed that ORC is regulated through phosphorylation by 

CDKs (reviewed in reference 8). In budding yeast, Cyclin B-CDK binds to the 

RXL motif of Orc6 and phosphorylates both Orc6 and Orc2 at the G1/S transition 

preventing association of other preRC components (67,68). In mammalian 

systems, Orc1 is phosphorylated by mitotic cyclin-CDKs also resulting in 

inactivation of the complex to prevent rereplication. 

ORC recruitment is relatively straightforward in S. cerevisiae, as it is the 

only organism in which ORC recognizes and binds a conserved sequence 

element, the ACS. However, as previously mentioned, ORC binding sites and 

ACS elements are much more abundant than origins suggesting that other 

factors must be involved in defining origins. Several histone modifications 

influence the recruitment of ORC. The Orc1 subunit contains a conserved bromo-

adjacent homology (BAH) domain that has been shown to promote nucleosome 

binding in eukaryotic cells (23). In metazoans, this domain is able to recognize 

both mono- and di-methylated H4K20 (69). H4K20 is first mono-methylated by 
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Set8 then subsequently di- and tri-methylated by Suv4-20h1 or Suv4-20h2 (70). 

If recognition of H4K20me2 by Orc1 is required for ORC recruitment, then mono-

methylation of H4K20 by Set8 is an essential first step in determining origin 

identity (discussed further below). ORC can also influence deposition of histone 

modifications. In Drosophila, H4K12 and H3K56 acetylation are dependent on 

ORC binding at origins (34,71). Consistent with this fact, Orc1 (as well as Mcm2, 

Cdt1, and geminin) physically interacts with the HAT responsible for H4K12 (and 

H4K5) acetylation in human cells, HBO1 (discussed further below) (35,72-74).  

Another factor involved in origin licensing is the WD40 repeat domain-

containing protein ORC-associated (ORCA; also known as LRWD1) (75). ORCA 

is required at many origins to stabilize the chromatin association of ORC. ORCA 

binds to Orc1 and Cdt1 during G1 phase and Orc2 throughout the cell cycle 

(75,76). Similar to Orc1, ORCA recognizes and binds methylated H4K20, 

specifically H4K20me3 (77). ORCA is most abundant during G1 and levels 

decrease as cells transition into S phase helping to prevent origin licensing 

outside of G1 (76). While ORCA interacts with the ubiquitin ligase CRL4DDB1, 

recent studies suggest that multiple ubiquitin ligases likely target ORCA for 

degradation in S phase (78). Polyubiquitinated ORCA was detected at the G1/S 

transition, and only non-ubiquitinated ORCA associates specifically with Orc2 

suggesting that this interaction may protect ORCA from ubiquitination (75). 

Cdc6 
 

Cdc6 is another preRC component recruited to origins and is a member of 

the AAA+ ATPase family. Cdc6 is dependent on ORC for its chromatin 



	   16	  

association. Recent structural data on the S. cerevisiae proteins suggests that 

Cdc6 binding actually alters the structure of ORC such that the BAH domain of 

Orc1 is properly positioned (79). The ATPase activity of both ORC and Cdc6 

likely cause destabilization of the MCM ring to allow its loading onto the DNA 

(80,81). During early G1, Cdc6 is targeted for degradation by APCCdh1 (82). 

APCCdh1 prevents Cdc6 accumulation until late in G1 when Cdc6 is 

phosphorylated at serine 54 by Cyclin E-Cdk2 disrupting the interaction between 

Cdc6 and Cdh1 (83). During S phase APCCdh1 is inactivated and Cdc6 is 

exported from the nucleus through a two-step mechanism. First, Gcn5 acetylates 

Cdc6 at three lysine residues (lysines 92, 105, and 109) (84). Cdc6 acetylation is 

required for subsequent phosphorylation at serine 106 by Cyclin A-Cdk2 that 

promotes the nuclear export of Cdc6, preventing its participation in origin 

licensing (85,86). Cdc6 persists in the cytoplasm and is degraded by APCCdh1 in 

the next G1 phase. A recent report suggests that in cycling cells Cdc6 is present 

in late mitosis after anaphase and the bulk of origin licensing occurs during this 

window; in contrast, cells coming out of quiescence must wait until Cdc6 

accumulates during G1 before licensing can occur (87). This tight regulation of 

Cdc6 ensures that preRC formation is restricted to the very narrow windows in 

late mitosis and G1 when Cdc6 is present in the nucleus. 

Cdt1 
 

Cdt1 is the only preRC component that lacks enzymatic activity, but it is 

critical for origin licensing, as it is responsible for the recruitment of the MCM 

helicase at origins of replication. An auto-inhibitory domain in Mcm6 prevents 
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recruitment of the MCM complex to ORC-Cdc6, but through interaction with Cdt1, 

this inhibition is relieved. Deleting this auto-inhibitory region allows Cdt1-

independent MCM recruitment to ORC-Cdc6 in vitro, but not helicase loading 

(55,88). Cdt1 has also been suggested to facilitate origin licensing by enhancing 

chromatin accessibility (72). Cdt1 directly interacts with HBO1 (89) and histone 

acetylation by HBO1 is critical for origin licensing (35,73). During G1, histone H4 

acetylation by HBO1 positively influences origin licensing by promoting large-

scale chromatin decompaction as evidenced by an elegant immunofluorescence 

assay (72). During S phase this process is reversed through binding of HDAC11 

to Cdt1-geminin complexes resulting in decreased histone acetylation. This 

“chromatin reset” provides an additional mechanism to restrict origin licensing to 

the G1 phase of the cell cycle. Clearly, Cdt1 is at the center of many regulatory 

mechanisms that ensure DNA replication takes place once and only once during 

the cell cycle. 

Degradation of Cdt1 can be prevented by acetylation at lysines 24 and 29 

by p300 and PCAF in asynchronously dividing 293T cells (90). These acetylated 

lysines were detected during early G1. During S phase however, HDAC11 

associated with and deacetylated Cdt1 promoting Cdt1 degradation (90). It is 

unclear which E3 ubiquitin ligase Cdt1 is protected from by acetylation, but the 

proximity of K24 to T29 suggests that it could interfere with Skp2 binding, 

although this has not yet been tested. Further work is needed to fully understand 

the importance of Cdt1 acetylation/deacetylation during G1 and S phases.  

MCM DNA helicase 
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The MCM complex is a heterohexamer that functions as the replicative 

helicase. Recent data has demonstrated that two MCM complexes are loaded at 

origins in a head-to-head conformation (51). While these two are sufficient to 

commence replication, it has been shown that between 10-20 MCM complexes 

can be loaded at origins in vertebrates (91). Mcm3 stimulates the ATPase activity 

of ORC and Cdc6 to promote multiple rounds of ATP hydrolysis allowing the 

sequential loading of multiple MCM complexes onto origin DNA (88). The 

chromatin decompaction that occurs during preRC formation could “make room” 

for loading additional MCM complexes (72). These extra MCM complexes can 

initiate replication from dormant origins when cells experience replication stress, 

thus protecting the DNA from becoming damaged (92,93). On its own, the MCM 

complex is a poor helicase but as cells transition from G1 to S phase, replication 

initiation factors (Cdc45 and GINS) are recruited and, after phosphorylation by 

Cyclin B-CDKs and DDK, activate the MCM helicase (60).  

Localization of MCM complexes is tightly regulated in S. cerevisiae, but 

not in other eukaryotes, such that they are only present in the nucleus during G1 

and S phase (reviewed in reference 6). After translation in the cytoplasm, only 

intact MCM heterohexamers can enter the nucleus due to the nuclear localization 

sequences (NLS) being present only in Mcm2 and Mcm3. During S phase as 

MCMs are displaced from the DNA, Cyclin B-CDK activity promotes nuclear 

export of Mcm4 (94). Levels of MCMs in the nucleus of other eukaryotes remains 

unchanged throughout the cell cycle (reviewed in reference 95).  

The preRC components discussed above represent the well-established 
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complex that is sufficient for in vitro origin licensing. However, two other factors 

were recently found to be both necessary for origin licensing and sufficient to 

promote recruitment of the canonical preRC components. These two factors are 

both involved in the post-translational modification of histone proteins. They are 

histone acetyltransferase binding to ORC (HBO1) and the histone 

methyltransferase Set8 (a.k.a. PR-Set7). 

HBO1 

HBO1 is a member of the MYST domain family of histone 

acetyltransferases (HATs) that acetylates histone H4 primarily at K5 and K12. It 

is the catalytic subunit of a HAT complex consisting of JADE1 (scaffold protein), 

hEaf6, and ING4 or ING5 (96-98). The two plant homeo domain (PHD) fingers of 

JADE1 are required for chromatin binding while the PHD finger of ING5 can 

direct binding specifically to regions with H3K4me2, 3 (96,97). A recent study of 

the lamin B2 origin in human cells revealed that H3K4me3 peaks during mid-G1 

at this origin and is required for HBO1 recruitment and subsequent tetra-

acetylation of H4 (at K5, 8, 12, and 16) (99). 

HBO1 interacts with Orc1, Mcm2, and Cdt1 (73,74,89). When HBO1 was 

depleted in human cells, MCMs failed to load even though the chromatin 

association of ORC, Cdc6, and Cdt1 was unaffected (89,100). Histone H4 

acetylation by HBO1 is not required for ORC binding but is critical for MCM 

loading (35). While HBO1 is not present in S. cerevisiae, a related MYST domain 

family member, Sas2, has been shown to genetically interact with ORC 

suggesting that the HAT-ORC interaction is conserved (101). The interaction of 
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HBO1 with Cdt1 seems to stimulate Cdt1-dependent rereplication suggesting it 

functions as a coactivator of Cdt1 (89). HBO1 interacts with Cdt1 during G1, but 

in S phase two mechanisms counteract HBO1 activity. First, HDAC11 associates 

with Cdt1 resulting in deacetylation of H4, which prevents re-loading of MCMs 

(72). Second, HBO1 HAT activity is inhibited when Cdt1 is bound by its inhibitor 

geminin. Geminin actually strengthens the interaction of HDAC11 with Cdt1 

(35,72).  

During mitosis HBO1 is bound and phosphorylated at serine 57 by Polo-

like kinase 1 (Plk1). This phosphorylation seems to be required for its role in 

promoting MCM loading in G1 such that when this site is mutated cells arrest in 

G1 and fail to load MCMs (102). In fact, tethering the Drosophila HBO1 homolog, 

Chameau, to an artificial origin resulted in increased origin activity (36). 

Additionally, tethering HBO1 to an inactivated c-myc origin in human cells was 

sufficient to activate the origin, as was tethering of Cdt1, Orc2, or E2F1 (103). 

During cellular stress, the interaction between HBO1 and Cdt1 seems to be 

disrupted due to Jun N-terminal kinase (JNK)-dependent phosphorylation 

(discussed in Chapter 3) (104). HBO1 is clearly an important chromatin modifier 

that regulates origin function and whose recruitment to origins could be attributed 

to interactions with both preRC components and methylated H3K4.  

Set8 
 

Set8 (a.k.a. PR-Set7) is the sole methyltransferase responsible for the 

monomethylation of histone H4 at lysine 20 (H4K20me1) and has emerged as a 

critical player in origin licensing (105-107). This protein is highly conserved in 
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eukaryotes, but is not found in S. cerevisiae. Interestingly, in 

Schizosaccharomyces pombe the Set8 homolog, Set9, is responsible for the 

deposition of all three H4K20 methyl states. Set8 methylation of H4K20 is 

impaired when H4K16 is acetylated (108-110). This obstruction is overcome 

through the association of the HDAC SirT2 with Set8. SirT2 not only deacetylates 

H4K16 to allow H4K20 methylation by Set8, but it also deacetylates Set8 at 

lysine 90 resulting in the spread of H4K20me1 (110). The HAT responsible for 

Set8 K90 acetylation has not yet been identified.  

Set8 plays a critical role in origin licensing and its regulation is as 

important as that of Cdt1 for preventing licensing outside of G1 phase. 

H4K20me1 is enriched at origins of replication in Drosophila (111). Knockdown of 

Set8 in human cells results in decreased chromatin association of ORC, Cdc6, 

and MCM complexes (112). Conversely, tethering human Set8 to a non-origin 

genomic locus is sufficient to promote the chromatin-association of ORC and 

MCM complexes (112). A recent mass spectrometry study identified Orc3 as a 

potential interacting partner of Set8 (113). In addition, loss of SetD8 in mice 

results in embryonic lethality and indicates the essential requirement for Set8 

during development (112). The role of H4K20me1 in DNA replication is likely 

exerted through effector proteins that specifically bind this modification. One such 

protein is L3MBTL1, a human homolog of the Drosophila polycomb tumor 

suppressor that may facilitate replication protein recruitment to chromatin through 

its interaction with components of the replication machinery (Cdc45, PCNA, and 

MCM) (114,115). Alternatively, H4K20me1 could promote origin licensing in G1 
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by serving as the template for di- and tri-methylation by both Suv4-20h1 and 

Suv4-20h2 methyltransferases at origins of replication (70,116,117). The BAH 

domain of Orc1 was recently shown to bind H4K20me2 while the preRC-

associated protein, ORCA, specifically binds to H4K20me3 (76,77). The 

decrease in H4K20me1 during S phase could thus be due in part to the transition 

to these higher methylation states, although these marks have not yet been 

specifically examined at replication origins genome-wide. Loss of both Suv4-

20h1 and Suv4-20h2 causes defects in S phase entry, but the effects are less 

severe than loss of Set8 suggesting additional roles for Set8 (and H4K20me1) in 

the G1/S transition (106,117).  

As with many origin licensing factors, Set8 abundance is regulated both 

transcriptionally and post-translationally. SETD8 gene expression fluctuates 

throughout the cell cycle, peaking in mitosis while Set8 protein levels drop during 

S phase even when SETD8 is expressed from a constitutive promoter (118,119).  

Recently, the 3’UTR of Set8 was identified as a target of microRNA-7 in breast 

cancer cells (120). Ubiquitin-mediated proteolysis by SCFSkp2, CRL4Cdt2 and 

APCCdh1 is largely responsible for regulating Set8 protein abundance (109). Both 

SCFSkp2 and CRL4Cdt2 target Set8 for degradation during S phase (118,121). 

Aberrant Set8 accumulation during this cell cycle phase results in rereplication 

that is dependent on the catalytic activity of Set8 (112,122). The ability of a 

stabilized Set8 to induce rereplication further highlights its role in promoting origin 

licensing and the importance of its proper regulation. As cells enter mitosis, Set8 

is phosphorylated at serine 29 by Cyclin B-Cdk1 preventing ubiquitination of Set8 
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by APCCdh1. During early anaphase however, Set8 is dephosphorylated by the 

Cdc14 phosphatases resulting in APCCdh1-mediated proteolysis and reduced 

protein levels during early G1 (123). As a result, Set8 and H4K20me1 levels 

peak in G2/M, are dramatically reduced during mid to late G1, and remain low 

during S phase.  

The absence of the Set8 methyltransferase can only result in 

corresponding changes in histone methylation if histone H4K20me1 is 

simultaneously converted either to unmethylated H4K20 by a demethylase 

(PHF8) or to H4K20me2, 3. PHF8 plays an important role in the G1/S transition 

by demethylating H4K20me1 at promoters of E2F-dependent genes during G1 

(124). PHF8 is recruited to these sites through the interaction of its PHD domain 

with H3K4me2 and me3. Just as PHF8 is recruited to promoters through 

interaction with H3K4me2, 3, it could also be targeted to origins of replication by 

the same mechanism since H3K4me2 and me3 are also present at those loci 

(25).  

An alternative mechanism for Set8’s role in DNA replication could be the 

methylation of an as yet unidentified non-histone protein required for progression 

from G1 to S phase. Currently the only non-histone substrates of Set8 that have 

been identified are p53 and Numb (125,126). These three proteins form a 

complex and when p53 and Numb are methylated, target gene expression is 

reduced and Numb dissociates from p53 resulting in increased p53 degradation 

(125,126). However, it is unlikely that p53/Numb methylation is responsible for 

the replication defects caused by Set8 depletion because the replication 
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phenotypes upon depletion of Set8 are not entirely p53 dependent, and p53 null 

cells are viable (111,127,128). The precise mechanism by which Set8 promotes 

cell cycle progression is therefore still unclear.  

Preventing rereplication 
 
 In summary, origin licensing is a highly orchestrated event and there are 

many mechanisms in place to prevent spurious origin activation and subsequent 

rereplication that ultimately results in genome instability. PreRC formation is 

restricted to the G1 phase of the cell cycle by many non-redundant mechanisms. 

The first is inactivation of the ORC complex by S-phase CDK phosphorylation of 

Orc2 and Orc6. The second involves regulation of Cdc6 levels. In S. cerevisiae, 

Cdc6 is degraded by the SCF Ccd4 E3 ubiquitin ligase complex when it becomes 

active during S phase. However, in metazoans a fraction of Cdc6 is exported to 

the cytoplasm after phosphorylation by Cyclin A-Cdk2. The third mechanism 

involves inhibition of Cdt1 by geminin and Cdt1 degradation by SCFSkp2 and 

CRL4Cdt2. In S. cerevisiae, both Cdt1 and the MCM complex are exported from 

the nucleus in response to CDK-dependent phosphorylation (68,94,129). A fourth 

mechanism is degradation of Set8 by CRL4Cdt2. Fifth, HBO1 acetylation of H4 at 

origins is prevented outside of G1 through disruption of the HBO1-Cdt1 

interaction upon geminin binding, and the association of HDAC11 which 

deacetylates H4 preventing MCM loading. 

Unanswered questions 
  
 At the time this study was undertaken, many of the histone modifications 

discussed above were not known to be involved in DNA replication. Our goal was 
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to identify individual histone modifications that promote or hinder origin licensing 

to determine a chromatin signature denoting origin locations in the genome. 

What has become apparent throughout this work is that origins are not all 

regulated in the same way. Some S. cerevisiae origins are highly dependent on 

the BAH domain of Orc1 interacting with a nearby nucleosome while others 

function normally when this domain is deleted (23). There is also a small subset 

of origins that are negatively regulated by the HDAC Sir2 and have a stably 

positioned nucleosome near or overlapping the B2 element (130-132). A recent 

study in a near-normal EBV-transformed lymphoblastoid cell line found that early 

and late firing origins are regulated by very different mechanisms driven primarily 

by epigenetic factors and influenced only slightly by DNA sequence or 

transcriptional activity (133). While these findings were not unexpected, they do 

reveal the importance of chromatin in origin regulation. Further, this high level of 

complexity and the dynamic nature of these modifications create difficulty in 

pinpointing the factors that confer origin identity.  

The discovery in mammalian cells that H4K20 mono-methylation by Set8 

is a likely first step in origin licensing has led us, and others, to ask how this 

enzyme is recruited to origins. Is it really the first factor recruited to origins, or 

does it interact with other preRC components (e.g. ORC) such that they are 

recruited together? Current work in our lab is attempting to answer this question. 

Additionally, we are interested in how Set8 is regulated during the cell cycle and 

in response to various cellular insults to maintain genome integrity. 

 



 

 

 

 

 

 

CHAPTER 2 

 

H3K4 di-methylation promotes DNA replication origin function 

in Saccharomyces cerevisiae1 

INTRODUCTION 

DNA replication initiates at discrete genomic loci termed origins of 

replication.  Each eukaryotic chromosome is replicated from many individual 

origins to ensure complete and precise genome duplication during each cell 

division cycle. Individual origins vary both in the likelihood that they will initiate 

replication, or “fire”, in any given S phase and in the firing time within S phase 

(16,134). Highly efficient origins fire in most cell cycles, whereas inefficient 

origins fire in only some cycles and are usually passively replicated by forks 

emanating from neighboring efficient origins. Though highly efficient origins that 

support initiation in most cell cycles have been identified in many genomes, the 

chromosomal determinants of origin location and function are still incompletely 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1Modified from Rizzardi LF, Dorn ES, Strahl BD, and Cook JG. Genetics. October 
2012, Volume 192, pages 371-384. 
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understood. Strikingly, while DNA sequence elements can be necessary, it is 

clear that sequence alone is insufficient to fully specify eukaryotic origin location 

and activity (135,136).  

Like all DNA-templated processes, replication occurs on chromatin. 

Recent progress in the field has demonstrated that the chromatin structure 

surrounding origins plays an essential role in controlling origin activity. For 

instance, the positioning of nucleosomes near origins can either stimulate or 

inhibit origin function (6,19,20,131,137,138). The major protein components of 

chromatin, the histone proteins, can also be post-translationally modified by 

acetylation, methylation, phosphorylation, ubiquitination, and sumoylation (2,139). 

These modifications can alter DNA accessibility and serve as recognition sites for 

other proteins. Importantly, several individual histone modifications affect aspects 

of origin function. For example, acetylation of histones H3 and H4 accelerate the 

timing of origin firing within S phase and can increase origin efficiency 

(30,36,139,140). In addition, histone H3 lysine 36 mono-methylation (H3K36me1) 

by the Set2 methyltransferase has been implicated in the recruitment of the 

replication initiation protein, Cdc45 (37,141). In metazoan genomes, Set8-

catalyzed histone H4 lysine 20 mono-methylation (H4K20me1) stimulates the 

loading of the core replicative helicase (112,127,140).  

It is clear that no single histone modification is absolutely required for 

origin function since loss of individual histone modifying enzymes does not 

impact cell viability. This observation suggests that a combination of histone 

modifications facilitate efficient DNA replication in the form of a “histone code” 
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similar to the combinations known to regulate transcription (5,142). While some 

elements of this code have been identified (e.g. H3 and H4 acetylation, H4K20 

monomethylation and H3K36 monomethylation), the complexity of DNA 

replication led us to hypothesize that additional histone modifications that impact 

origin activity remain to be discovered. We therefore sought to identify those 

histone modifications and chromatin modifiers that are integral to this process. 

We conducted a genetic screen to identify histone modifications that are required 

for the fitness of a hypomorphic replication yeast mutant, cdc6-1. This screen 

revealed a previously unidentified positive role for histone H3 lysine 4 (H3K4) 

methylation in DNA replication, and our subsequent analysis indicates that H3K4 

di-methylation is the relevant modification for this activity. These findings 

contribute to elucidating the pattern of chromatin features that determine origin 

activity in eukaryotic genomes. 

MATERIALS AND METHODS 

Yeast strains and growth conditions 

The Saccharomyces cerevisiae strains used in this study are listed in 

Table 2.1 and any additional genotype information is available upon request. 

Construction of de novo gene deletion strains was performed by PCR-mediated 

disruption, and some double mutant construction was performed by mating as 

indicated in Table 2.1. 

Plasmids 

All plasmids used in this study are listed in Table 2.2.  

Synthetic genetic array (SGA) screen 
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SGA analysis was carried out as previously described (141,143,144). Briefly, 63 

deletion strains (Table 2.3) were mated to the temperature-sensitive cdc6-1 

strain (JCY332) and haploids carrying both mutations were isolated by growth on 

selective media. All of the deletion strains originated from the Yeast Knock Out 

library (Open Biosystems) except strains lacking SET1 or DOT1; the set1Δ 

strains were created de novo while the dot1Δ strain had been previously 

published (134,145). Additionally, SET1 and BRE1 deletions were recreated de 

novo in the cdc6-1 mutant in the BY4741 background (yLF058). All of the 

resulting double mutants were spotted in 5-fold serial dilutions with an initial 

OD600 of 0.5 onto YPD, grown for 3 days at 32°C, and growth was compared to 

that of the cdc6-1 single mutant. Double mutants displaying a synthetic growth 

phenotype were confirmed by analyzing three independent isolates. The fold 

change in growth is denoted by a score from 1 to 3 indicating an approximate 5-

fold to 125-fold change compared to cdc6-1 alone. Negative values indicate 

growth defects, while positive values indicate enhanced growth or rescue. No 

genetic rescue was observed in any double mutant strain. 

Minichromosome maintenance assays 

Minichromosome (or plasmid) maintenance assays were performed as 

described previously (135,146,147). Briefly, yeast strains containing YCplac33, 

YCplac111, or YCplac33+2XARS209 were grown to log phase in the appropriate 

selective media and 100-200 cells were plated on both selective and non-

selective media to establish an initial percentage of plasmid-bearing cells. These 

cultures were also diluted to a concentration of 1 X 105 cells/ mL in 5 mL of non-
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selective media and grown for 8-10 generations before once again plating on 

both selective and non-selective media. Precise generation numbers were 

calculated using the following formula: n = log(CF/CI) / log(2), where CF 

represents the final number of cells as measured by OD600 and CI represents the 

starting cell number of 105 cells/mL. After 2 days of growth, colonies were 

counted and the plasmid loss rate (L) per generation (n) was calculated using the 

following formula:  L = 1-(%F / %I)(1/n), where %F is the final percentage of cells 

that retained the plasmid and %I is the initial percentage of cells that contain the 

plasmid. 

Immunoblotting 

Whole cell extracts were prepared by extraction with trichloroacetic acid 

(TCA). Cell growth was halted by the addition of TCA to a final concentration of 

5% and the cell pellets were frozen at -80°C. Pellets were resuspended in 200 µL 

TCA buffer (10 mM Tris-HCl, pH 8.0, 10% TCA, 25 mM NH4OAc, 1 mM EDTA) 

and broken by glass bead lysis. Proteins were precipitated by centrifugation, 

resuspended in 100 µL resuspension buffer (0.1 M Tris-HCl, pH 11.0, 3% SDS), 

and boiled for 5 min. Samples were centrifuged, and the supernatant was 

quantified using the Dc Assay (BioRad). Equal concentrations of lysates were 

loaded onto 15% SDS-PAGE gels and transferred onto PVDF. The following 

antibodies were used: anti-H3 (1:10,000; ActiveMotif 39163), anti-H3K4me1 

(1:2000; Millipore 07-436), anti-H3K4me2 (1:2000; abcam 32356), anti-H3K4me3 

(1:10,000; gift from M. Bedford), anti-H2B (1:5000; ActiveMotif 39237), anti-Myc 

(9E10; 1:1000; Santa cruz sc-40), and anti-LexA (1:5000; Millipore 06-719). 
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Chromatin immunoprecipitation 

Yeast strains were crosslinked with 1% formaldehyde for 15 min at RT 

and quenched with 250 mM glycine for 5 min at RT. Forty OD600 units of 

crosslinked cells were harvested by centrifugation, washed thoroughly, and the 

pellets were stored at -80°C. The cell pellets were resuspended in 300 mM FA-

lysis buffer (50 mM HEPES-KOH, pH 7.5, 300 mM NaCl, 1 mM EDTA, 1% 

TritonX-100, 0.1% Na-deoxycholate) with protease inhibitors, broken by glass 

bead lysis, and fixed chromatin was sheared by sonication using a Branson 

sonifier 250. Average DNA fragment lengths were 100-300 bp determined by gel 

analysis. After centrifugation and quantification via Bradford Assay (BioRad), 0.5 

mg of soluble chromatin was incubated with 2 µL of antibody (anti-H3 

(ActiveMotif), anti-H3K4me2 (Abcam) or anti-H3K4me3 (Millipore)) in 1.5 mL 

tubes overnight at 4°C and immunoprecipitated with 10 µL Protein A Dynabeads 

(Invitrogen) for 1 h at 4°C. The beads were washed sequentially with 300 mM 

FA-lysis buffer, twice with 500 mM FA-lysis buffer (50 mM HEPES-KOH, pH 7.5, 

500 mM NaCl, 1 mM EDTA, 1% TritonX-100, 0.1% Na-deoxycholate), once with 

LiCl solution (10 mM Tris-HCl, pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.5% Na-

deoxycholate, 1 mM EDTA), and once with TE, pH 8.0. After washing, the 

chromatin was eluted from the beads in 200 µL elution buffer (0.1 M NaHCO3, 

1% SDS) for 30 min at RT. The eluted material was treated with RNAse A and 

Proteinase K before de-crosslinking at 65°C overnight. The DNA was purified 

using Genesee UPrep spin columns and eluted in 100 µL water. IP samples and 

IP controls (set1Δ) were used undiluted while input samples were diluted 1:10. 
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Samples were analyzed by qPCR on the ABI 7900 HT (AppliedBiosystems) 

using SYBR Green master mix with Rox (Fermentas). Primer sequences are 

available upon request. Signals from the immunoprecipitates are reported as a 

percentage of the input and normalized to H3. Error bars represent the standard 

deviations of the average signals between experiments (n ≥ 3).   

RESULTS 

Identification of histone modifiers that promote DNA replication  

DNA replication origins in the budding yeast Saccharomyces cerevisiae 

are defined by both sequence elements and local chromatin structure. Although 

DNA replication is essential for cell proliferation, the majority of histone 

modifications and chromatin-modifying enzymes are not individually required for 

yeast cell viability. This observation supports the model that a combination of 

histone modifications supports replication origin function. To identify new histone 

modifications that contribute to this combination, we conducted a genetic screen. 

We reasoned that individual chromatin elements that influence replication activity 

would be revealed as genetic suppressors or enhancers of cell growth in a strain 

bearing a hypomorphic mutation in an essential replication gene, CDC6.  

 The Cdc6 ATPase plays an essential role at origins in loading the 

replicative helicase complex composed of MCM2-7 (6,137,148). The cdc6-1 

mutant harbors a G260D mutation in the catalytic domain resulting in failure to 

load MCMs at restrictive temperatures (139,147). Yeast cells harboring the cdc6-

1 mutation produce a Cdc6 protein that functions normally at 29°C, is 

nonfunctional at temperatures above 34°C, but retains partial function at 
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intermediate temperatures between 30°C and 33°C (139,149). To identify 

suppressors or enhancers of cdc6-1, we deleted most of the known histone 

modifiers, chromatin remodelers, and histone chaperones (63 total; see Table 

2.3) in the cdc6-1 temperature-sensitive replication mutant strain. Double mutant 

strains were tested for fitness at semi-permissive temperatures and compared to 

the parent single mutant strains (141,150). The majority of double mutant strains 

grew neither better nor worse than their respective parents under any of the 

tested growth conditions, and no null alleles improved the growth of the cdc6-1 

mutant (Table 2.3). Although a role for the HAT Gcn5 in DNA replication has 

been shown (37,140,151,152), it was not included in this screen because the null 

mutant strain has a slow growth phenotype that would complicate interpretation 

of the double mutant phenotype. In contrast, 21 of the null alleles (including a 

positive control tom1Δ) impaired growth in the cdc6-1 strain but had little effect in 

otherwise wild-type backgrounds. These genes represent a wide array of 

chromatin factors including histone acetyltransferases (HATs), histone 

deacetylases (HDACs) and histone methyltransferases (HMTs) (Table 2.3). 

Interestingly, many of these factors contributed either directly or indirectly to a 

single histone modification, H3K4 methylation, which is deposited by Set1, the 

catalytic subunit of the COMPASS complex (Figure 2.1A).  

COMPASS activity and H3K4 methylation promote DNA replication 

We confirmed the enhancer phenotype of the SET1 deletion strain by 

constructing a set1Δ allele de novo in the cdc6-1 parent strain. Growth of the 

cdc6-1 strain was only slightly impaired at 31°C compared to wild-type or the 
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Table 2.3 Results from SGA screen for genetic interaction with cdc6-1 

DELETION SCOREa FUNCTION/COMPLEX 
bre1b,c -3 E3 ubiquitin ligase 
chd1b -3 Remodeler/SAGA 
rad6b,c -3 E2 ubiquitin-conjugating enzyme 
spt8b -3 SAGA HAT 
bre2b,c -2 COMPASS 
cdc73b -2 Paf1C 
hst1b -2 HDAC 
hst3b -2 HDAC 
isw1b -2 Remodeler 
rph1b -2 H3K36 DMT 
rtf1b -2 Paf1C 
sap30b -2 HDAC 
set1b,c -2 H3K4 HMT 
swd1b,c -2 COMPASS 
swd3b,c -2 COMPASS 
tom1 -2 E3 ubiquitin ligase/Positive Control 
ctk1 -1 Kinase  
hat1 -1 HAT 
hda1 -1 HDAC 
sdc1b,c -1 COMPASS 
snf5 -1 Remodeler 
asf1  0 Histone Chaperone 
dot1b,c  0 H3K79 HMT 
eaf1  0 NuA4 HAT 
eaf3  0 NuA4 HAT 
eaf6  0 NuA3/4 HAT 
ecm5  0 JmjC DMT 
gis1  0 JmjC DMT 
hap2  0 Elongator HAT 
hir1  0 Remodeler 
hir2  0 Remodeler 
hir3  0 Remodeler 
HO  0 Endonuclease/Negative Control 
hos1  0 HDAC 
hos2  0 HDAC 
jhd1  0 H3K36 DMT 
jhd2  0 H3K4 DMT 
nto1  0 NuA3 HAT 
rco1  0 Rpd3(S) HDAC 
rpd3  0 Rpd3(S)/(L) HDAC 
rtt102  0 Remodeler 
rtt109  0 H3K56 HAT 
rub1  0 Ubiquitin-like 
sas2  0 SAS HAT 
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Table 2.3 Results from SGA screen for genetic interaction with cdc6-1 
(continued) 

 
DELETION SCOREa FUNCTION/COMPLEX 
sas3 0 NuA3 HAT 
sds3 0 Rpd3(L) HDAC 
set2 0 H3K36 HMT 
sgf73 0 SAGA HAT 
shg1b,c 0 COMPASS 
snf1 0 Kinase  
snf6 0 Remodeler 
spp1b,c 0 COMPASS 
sps1 0 Kinase  
spt5 0 PolII Associated 
spt7 0 SAGA HAT 
ste20 0 Kinase  
swi2/snf2 0 Remodeler 
swr1 0 Remodeler 
tel1 0 Repair 

a
Score represents change in growth corresponding to approximate 5-fold 

differences (1=5-fold, 2=25-fold, etc.) 
bStrains in a YMS196 cdc6-1 background confirmed in three independent isolates

 

c
Strains created de novo 
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cdc6-1 strain harboring wild-type CDC6 on a plasmid, but growth was 

substantially impaired when SET1 was deleted in this strain (Figure 2.1B). 

Expression of wild-type SET1, but not the catalytically dead mutant set1-H1017K, 

rescued the synthetic growth defect of the set1Δ cdc6-1 strain (Figure 2.1B). 

Importantly, the synthetic growth defect of the set1Δ cdc6-1 strain was 

recapitulated in a cdc6-1 strain in which the only copy of histone H3 bears the 

K4R (unmethylatable) mutation (Figure 2.1C). These findings indicate that the 

catalytic activity of Set1 is important for robust growth of the cdc6-1 replication 

mutant.  

Set1 functions as the catalytic subunit of the COMPASS complex. We 

hypothesized that other members of this complex would display similar 

phenotypes when deleted in the cdc6-1 strain. Deletion of BRE2, SDC1, SWD1, 

and SWD3 each impaired the growth of the cdc6-1 mutant at semi-permissive 

temperatures, but not deletion of SPP1 or SHG1 (Figure 2.1D and Table 2.3). 

Bre2, Sdc1, Swd1, Swd2, and Swd3 (along with Set1) are the core structural 

components of the COMPASS complex required for full activity (142,153,154). 

These results further support the conclusion that COMPASS enzymatic activity 

and H3K4 methylation are important for proliferation when Cdc6 is crippled.  

The poor growth of these double mutant strains could be due to a general 

exacerbation of the replication defect caused by Cdc6 perturbation, or it could 

reflect a specific interaction between Cdc6 and H3K4 methylation. If Set1 and 

H3K4 methylation are generally important for efficient DNA replication, then we 

expect similar proliferation defects from deleting SET1 in other replication mutant 
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FIGURE 2.1.  COMPASS and H3K4 are required for robust growth of the 
temperature-sensitive cdc6-1 replication mutant. A) COMPASS complex 
model adapted from (142). (* denotes complex member that genetically interacts 
with cdc6-1) B) Wild-type (BY4741), cdc6-1 (yLF058), set1Δ (yLF062), and cdc6-
1 set1Δ (yLF063) were transformed with an empty vector [pGLx2], a vector 
producing LexA-tagged wild-type Set1 [pGLx2-SET1], or catalytically dead Set1 
[pGLx2-set1-H1017K], from a GAL1 promoter construct, or a vector producing 
normal Cdc6 [pRS316-CDC6], from the CDC6 promoter as indicated. Five-fold 
serial dilutions were spotted onto SC-URA containing 1% galactose/2% raffinose 
and grown at the indicated temperatures for 4 days. C) The cdc6-1 mutation was 
introduced into the H3-H4 “shuffle” strain (DY7803) transformed with HHT2 or 
hht2-K4R plasmids. Five-fold serial dilutions were spotted onto YPD and grown 
at the indicated temperatures for 3 days. D) Five-fold serial dilutions of wild-type 
(YMS196), cdc6-1 (JCY332), cdc6-1 swd1Δ (yLF036), cdc6-1 bre2Δ (yLF037), 
bre2Δ (yLF060), or swd1Δ (yLF061) were spotted onto YPD and grown at the 
indicated temperatures for 3 days. 
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strains. To test this prediction, SET1 was deleted in two temperature-sensitive 

cdc7 mutants and one temperature-sensitive cdc45 mutant. These replication 

factors function at the origin firing step at the G1/S transition, downstream of 

Cdc6 activity (142-144). Similar to the effect of deleting SET1 in the cdc6-1 strain, 

loss of SET1 in the cdc7-1, cdc7-4, and cdc45-27 mutants impaired growth at 

semi-permissive temperatures (Figure 2.2A). In addition, cells lacking SET1 were 

also sensitive to pharmacological replication stress induced by hydroxyurea (HU) 

(Figure 2.2C). 

The poor growth of cdc6-1 set1Δ cells suggests that Set1 promotes 

replication; we thus predicted that loss of H3K4 methylation in a hypermorphic 

replication mutant would at least partially rescue the adverse phenotypes of that 

mutant. To test this hypothesis, we introduced the set1 null allele into the 

hypermorphic replication mutant, RUY028. This yeast strain harbors two 

mutations that de-regulate replication origin licensing resulting in re-replication, 

an aberrant phenomenon in which some origins fire more than once per cell 

cycle leading to DNA damage and poor cell growth. The ORC6-rxl mutation 

prevents inhibitory phosphorylation of the Orc6 subunit of the Origin Recognition 

Complex (ORC) by CDK, and the GAL1 pr-CDC6-ΔNT allele produces a 

hyperstable Cdc6 protein (145,155). In this strain, re-replication is induced during 

growth on galactose, which induces transcription of the CDC6-ΔNT allele. As 

expected, loss of H3K4 methylation upon deletion of SWD1 or BRE1 partially 

rescues the poor growth of the re-replicating strain on galactose (Figure 2.2B).  
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FIGURE 2.2. H3K4 methylation is required for robust growth of multiple 
replication mutants. A) Five-fold serial dilutions of the meiotic progeny from the 
cross of cdc7-1 (TSQ880), cdc7-4 (TSQ131), or cdc45-27 (TSQ694) with set1Δ 
(yLF062) were spotted onto YPD and grown at the indicated temperatures for 3 
days. B) Five-fold serial dilutions of wild-type (RUY121), ORC6-rxl CDC6-ΔNT 
(RUY028), swd1Δ (yLF051), and ORC6-rxl CDC6-ΔNT swd1Δ (yLF049) were 
spotted onto YP containing 2% dextrose (no re-replication) or galactose (re-
replication induced) and grown for 2 days at 30°C. C) Five-fold serial dilutions of 
wild-type (BY4741) or set1Δ (yLF062) were spotted on YPD containing the 
indicated concentrations of HU and grown for 2 days at 30°C. 
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Together, these data provide strong evidence that H3K4 methylation promotes 

efficient DNA replication, most likely through regulation of origin activity.  

A positive role for H3K4 methylation in replication suggests that this 

histone modification is enriched near origins of replication. To test this idea 

directly, we performed chromatin immunoprecipitation (ChIP) assays for both di- 

and tri-methylated H3K4 in asynchronous wild-type yeast cultures. Analysis of 

several genomic loci revealed that both H3K4 methylation states are enriched at 

both an early-and late-firing origin of replication (ARS315 and ARS822, 

respectively) relative to a non-origin, telomere-proximal region (Figure 2.3A and 

B). In addition, if Set1 activity were important for origin licensing during G1, we 

would expect Set1 protein levels to be high during this cell cycle phase. Cells 

expressing a 3XMyc-tagged Set1 were arrested in G1 using alpha factor and 

samples were taken at the indicated times after release (Figure 2.3C). 

Surprisingly, Set1 was only detectable during G1 supporting a role for this HMT 

in promoting origin licensing. 

The Rad6/Bre1 ubiquitin ligase complex promotes DNA replication  

Methylation of histone H3K4 by the COMPASS complex requires prior 

monoubiquitination of histone H2B at lysine 123 (H2BK123) by the Rad6/Bre1 

ubiquitin E3 ligase (146,147,153). Our original screen detected a strong synthetic 

growth defect when the bre1Δ library mutant was crossed with the cdc6-1 parent 

strain. De novo deletion of either BRE1 or RAD6 in the cdc6-1 mutant resulted in 

an approximate 125-fold decrease in growth at semi-permissive temperatures, 

validating this genetic interaction (Figures 2.4A and B). Ectopic expression of 
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FIGURE 2.3. H3K4 methylation is present at replication origins and Set1 is 
most abundant during G1. Chromatin immunoprecipitation (ChIP) experiments 
were performed on asynchronous wild-type (BY4741) or set1Δ (yLF062) strains 
grown at 30°C. Immunoprecipitates using antibodies to total histone H3, di-
methylated H3K4 (H3K4me2) in A and tri-methylated H3K4 (H3K4me3) in B were 
analyzed by quantitative PCR for chromosomal DNA fragments from a region 
near telomere VI-R and two replication origins, ARS315 and ARS822. Error bars 
represent the standard deviations of n > 3 biological replicates. Significant 
enrichment of H3K4 methylation at origins compared to telomere VI-R was 
determined by Student’s unpaired t-test. (*p<0.05) C) Wild-type (BY4741) yeast 
strains expressing 3XMyc-tagged Set1 were synchronized in G1 and cells were 
harvested at the indicated times after alpha factor release. 
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wild-type BRE1 under control of its own transcriptional promoter fully rescued the 

exacerbated growth phenotype, but expression of a catalytically dead Bre1 (bre1-

H665A) did not (Figure 2.4A). Moreover, BRE1 deletion also partially rescued the 

growth impairment of the re-replicating RUY028 strain similar to what was 

observed after SET1 deletion (Figure 2.4C). These data suggest that the 

Rad6/Bre1 ubiquitin ligase complex is also required for efficient DNA replication, 

likely through its involvement in promoting H3K4 methylation.  

H3K4 methylation is required for efficient minichromosome maintenance  

To assess DNA replication more specifically than general cell proliferation, 

we used a plasmid loss assay that measures the ability of cells to maintain a 

minichromosome bearing a centromere and a single replication origin (148,153). 

Growth in non-selective medium for several cell divisions allows cells that failed 

to initiate replication of the minichromosome to survive, and these cells are then 

counted as colonies on non-selective medium. Strains lacking either SET1 or 

BRE1 displayed significantly higher plasmid loss rates per cell division than wild-

type strains did (Figure 2.5A, p<0.05). Similar to the phenotype resulting from 

SET1 deletion, cells expressing the mutant histone H3K4R displayed a 

significant increase in plasmid loss rate (Figure 2.5B).  

 Of note, H2B monoubiquitination by Rad6/Bre1 is not only a pre-requisite 

for H3K4 methylation, but also for H3K79 methylation (147,153). Neither deletion 

of DOT1, the histone H3K79 methyltransferase, nor mutation of H3K79 to 

arginine had any effect on plasmid maintenance (Figure 2.5A and B). Moreover,  
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FIGURE 2.4. H2BK123 mono-ubiquitination promotes robust growth of the 
temperature-sensitive cdc6-1 replication mutant. A) Wild-type (BY4741), 
bre1Δ (yLF151), cdc6-1 (yLF058), and cdc6-1 bre1Δ (yLF150) were transformed 
with either an empty vector [pRS315], a vector expressing BRE1 (pRS315-
9xMyc-BRE1), or bre1-H665A (pRS315-9xMyc-bre1-H665A) from the native 
BRE1 promoter. Five-fold serial dilutions were spotted onto SCD-LEU and grown 
for 4 days at the indicated temperatures. B) Five-fold serial dilutions of wild-type 
(YMS196), cdc6-1 (JCY332), rad6Δ (yLF154), and cdc6-1 rad6Δ (yLF117) were 
spotted onto YPD and grown for 3 days at the indicated temperatures. 
C) Wild-type (RUY121), ORC6-rxl CDC6-ΔNT (RUY028), bre1Δ (yLF052), and 
ORC6-rxl CDC6-ΔNT bre1Δ (yLF050) were spotted onto YP containing 2% 
dextrose or 1% galactose (re-replication induced) and grown for 3 days at 30°C.  
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loss of Dot1 did not impair the growth of the cdc6-1 strain (Table 2.3). Efficient 

growth and plasmid maintenance by these strains indicate that the elevated 

plasmid loss rate of the BRE1 null strain is likely due to the subsequent loss of 

H3K4 methylation rather than loss of H3K79 methylation. Further, these results 

demonstrate that inefficient minichromosome maintenance is not a universal 

phenotype of strains lacking histone-modifying enzymes or expressing mutant 

histones.  

If these minichromosome maintenance defects are specific to 

perturbations of origin function and not chromosome segregation or expression 

of the selectable marker, then adding multiple origins to the test plasmid should 

rescue the elevated loss rates of the set1Δ and bre1Δ strains. Additional origins 

multiply the chances for a successful origin initiation event on the plasmid, and 

success at any one origin allows replication and transmission to both daughter 

cells. This property has been used by others to validate origin-specific 

phenotypes (149,156). We modified the single ARS1-containing plasmid by 

adding two copies of ARS209. As before, the plasmid harboring only one origin 

was lost more frequently from set1Δ and bre1Δ strains than from wild-type strains, 

but this effect was reversed with the addition of multiple origins (Figure 2.5C). 

This result supports the conclusion that H2BK123 monoubiquitination by Bre1 

and the consequent H3K4 methylation by Set1 promote DNA replication origin 

function in yeast.  
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FIGURE 2.5. H3K4 methylation is required for efficient origin-dependent 
minichromosome maintenance. A) Plasmid loss rates of a single origin bearing 
plasmid  [YCpLac33] were measured in a wild-type strain (BY4741) and strains 
lacking SET1 (yLF089), BRE1 (yLF151), or DOT1 (YNL037). Loss rates are 
reported per cell division. B) Plasmid loss rates of a single origin bearing plasmid 
[YCpLac111] were measured in the histone “shuffle” strain (DY7803) transformed 
with plasmids expressing wild-type HHT2, hht2-K4R, or hht2-K79R. C) Plasmid 
loss rates of plasmids bearing either a single origin [YCpLac33] or three origins 
[YCpLac33 + 2X ARS209] were measured. For all experiments, the average loss 
rates were obtained from at least three independent transformants, and the error 
bars indicate standard deviations. Statistics were performed using the Student’s 
unpaired t-test. (*p<0.05) 
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H3K4 di-methylation is required for efficient origin function 

The Set1/COMPASS complex is responsible for mono-, di-, and tri-

methylation of H3K4. These methylation states are differentially distributed over 

gene bodies (150,157,158) and several studies have shown that different  

methylation states of H3K4 and H3K36 can have different functions 

(37,151,152,159). The individual H3K4 methylation states depend on other 

histone residues and are influenced by the presence or absence of individual 

COMPASS subunits (153,154,160). To gain insight into which H3K4 methylation 

states were required for efficient DNA replication, we measured plasmid loss 

rates in strains lacking different COMPASS complex members. Like the set1Δ 

strain (Figure 2.5A) both swd1Δ and bre2Δ strains displayed significantly 

elevated plasmid loss compared to their isogenic wild-type counterparts (Figure 

2.6A). These two proteins are both required for Set1 stability (142,161), and in 

their absence no H3K4 methylation is detectable (Figure 2.6B). Unlike Swd1 and 

Bre2, Spp1 is a COMPASS subunit that is required for H3K4 tri-methylation, but 

not mono- or di-methylation (Figure 2.6B) (5,155,162); loss of SPP1 had no 

effect on plasmid maintenance (Figure 2.6A). This result is consistent with our 

earlier observation that Spp1 loss did not affect proliferation of the cdc6-1 strain 

(Table 2.3). Taken together, these data suggest that H3K4 di-methylation is 

sufficient for proper origin function and that H3K4 tri-methylation is dispensable.  

 To examine the role of H3K4 di-methylation without perturbing the 

COMPASS complex, we took advantage of H2B mutants that were previously 

shown to differentially affect H3K4 methylation (92,153,163,164). Mutation of 
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H2BK123 to arginine abolished monoubiquitination of this residue and 

consequently eliminated both H3K4 di- and tri-methylation (Figure 2.6D). 

Importantly, similar to loss of BRE1, this mutation induced a significantly higher 

plasmid loss rate than wild-type (Figure 2.6C). This result, in combination with 

the failure of the Bre1 catalytically dead mutant to complement the growth defect 

of the bre1Δ cdc6-1 mutant, strongly argues that the H2BK123 ubiquitination 

function of Bre1 is required for full origin function. Additionally, it supports the 

importance of H3K4 di-methylation in this process. 

A previous study reported that mutational alteration of H2BR119 to alanine 

does not prevent H2BK123 monoubiquitination, but does affect the degree of 

H3K4 methylation (37,153). As previously reported, changing H2BR119 to 

alanine (H2BR119A) reduces the chromatin association of Spp1 and therefore 

H3K4 tri-methylation, whereas changing H2BR119 to aspartic acid (H2BR119D) 

results in loss of H3K4 di- and tri-methylation to the same extent as eliminating 

H2BK123 monoubiquitination (23,153). Our analysis of these histone H2B 

mutants revealed that strains expressing htb1-R119D displayed elevated plasmid 

loss rates similar to those of the htb1-K123R strain (Figure 2.6C). Mutation of 

R119 to alanine abolished H3K4 tri-methylation as expected, while having only a 

moderate effect on H3K4 di-methylation (Figure 2.6D). This H2B mutant showed 

a plasmid loss rate similar to the wild-type HTB1 strain. The strict correlation 

between the ability to produce H3K4 di-methylation and normal plasmid 

maintenance underscores the importance of H3K4 di-methylation, but not 

necessarily H3K4 tri-methylation, for origin function (Figure 2.6C).  
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FIGURE 2.6. H3K4 di-methylation promotes efficient minichromosome 
maintenance. A) Plasmid loss rates of the single origin bearing plasmid 
[YCpLac33] were measured for wild-type (BY4741), swd1Δ (yLF061), bre2Δ 
(yLF060), and spp1Δ (yLF153). B) Immunoblot analysis of whole cell extracts 
(from strains shown in A) using antibodies to total H3, H3K4me1, H3K4me2, and 
H3K4me3. C) Plasmid loss rates of the single origin bearing plasmid 
[YCpLac111] were measured for the H2B” shuffle” strain (FY406) transformed 
with plasmids expressing HTB1 [pZS145], htb1-K123R [pZS146], htb1-R119D 
[pZS473], or htb1-R119A [pZS145-R119A]. D) Immunoblot analysis of whole cell 
extracts (from strains shown in C) using antibodies specific for total H2B, H3, and 
H3K4 methylation as in B. All plasmid loss data represent the mean and standard 
deviation of at least three independent transformants. Statistics were performed 
using the Student’s unpaired t-test. (*p<0.05) 
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 Our initial observation that loss of SET1 in a cdc6-1 mutant strain resulted 

in a proliferation defect, coupled with the requirement for Set1 for proper 

minichromosome maintenance, clearly indicates that H3K4 methylation is 

necessary for robust DNA replication. To determine if H3K4 di-methylation is 

sufficient for DNA replication, we transformed the cdc6-1 set1Δ strain with 

plasmids directing the production of wild-type Set1, catalytically dead Set1 

(Set1H1017K), or a Set1 protein lacking the RRM domain. The latter mutant can 

only di-methylate H3K4 (29,156,165). Each of these Set1 proteins was fused to a 

LexA tag for detection on immunoblots (Figure 2.7B) and expressed from the 

GAL1 promoter on galactose-containing medium. Immunoblot analysis of the 

three H3K4 methylation states confirmed that the fusions generated the expected 

methylation states (Figure 2.7B). As before, production of active Set1 

suppressed the growth phenotype caused by deleting SET1 in the cdc6-1 strain 

(Figure 2.7A). Importantly, production of Set1ΔRRM also fully rescued this 

proliferation defect without the ability to produce H3K4 tri-methylation (Figure 

2.7B). These data demonstrate that H3K4 di-methylation is both necessary and 

sufficient for robust growth of the cdc6-1 mutant and suggest that this histone 

modification plays an important positive role in origin function. 

DISCUSSION 

This study documents a novel role for H3K4 di-methylation in DNA 

replication origin function. Yeast strains with hypomorphic mutations in multiple 

replication genes are highly dependent on H3K4 di-methylation for robust growth. 

In these replication mutants (cdc6-1, cdc7-1, cdc7-4, cdc45-27) under semi-  
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FIGURE 2.7. H3K4 di-methylation is sufficient for robust growth of the 
cdc6-1 mutant. A) Wild-type (BY4741), cdc6-1 (yLF058), set1Δ (yLF062), and 
cdc6-1 set1Δ (yLF063) were transformed with an empty vector [pGLx2], a vector 
producing LexA-tagged wild-type Set1 [pGLx2-SET1], or Set1 lacking the RRM 
domain [pGLx2-set1-ΔRRM] from the GAL1 promoter. Five-fold serial dilutions 
were spotted onto SC-URA containing 1% galactose and grown at the indicated 
temperatures for 5 days. B) Immunoblot analysis of whole cell extracts from 
either wild-type (BY4741) or set1Δ (yLF062) strains transformed with empty 
vector [pGLx2] or vectors producing LexA-tagged normal (“WT”) Set1 [pGLx2-
SET1], catalytically dead (“CD”) Set1 [pGLx2-set1-H1017K], or Set1 lacking the 
RRM domain (“RRM”) [pGLx2-set1-ΔRRM] from the GAL1 promoter. Blots were 
probed with antibodies specific for LexA, total H3, H3K4me3, H3K4me2, and 
H3K4me1 (* represents a likely degradation product unique to the positive control 
construct; ** represents a non-specific band detected by the H3K4me1 antibody).  
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permissive conditions, replication activity is reduced to the minimum needed for 

normal growth, and any further reduction in active origins caused by loss of H3K4 

di-methylation results in severely impaired proliferation. Additionally, normal 

propagation of a minichromosome containing a single origin requires H3K4 di-

methylation even in an otherwise wild-type strain. Every mutation that prevents 

H3K4 di-methylation, including loss of the pre-requisite histone H2BK123 

monoubiquitination, causes a similar replication phenotype. These data provide 

clear evidence that H3K4 di-methylation is important for full origin function.  

The Set1 histone methyltransferase and the Bre1 ubiquitin E3 ligase have 

well-established roles in regulating gene expression (157,158,166). Nonetheless, 

several lines of evidence suggest that the phenotypes we have detected are due 

to faulty replication as opposed to altered gene expression. First, many 

chromatin-modifying enzymes showed no synthetic growth phenotype when 

combined with the cdc6-1 mutation. Some of these non-interacting genes include 

those with much more profound effects on patterns of gene expression than Set1, 

suggesting that replication phenotypes are not a general outcome of perturbed 

gene expression control. Interestingly, even the Rpd3 histone deacetylase that 

regulates origin firing time within S phase (159,167) did not genetically interact 

with cdc6-1 (Table 2.3), implying that the synthetic growth phenotypes observed 

here are relatively specific for origin function and not origin timing.  Second, a 

genome-wide analysis identified only 55 transcripts that changed significantly in a 

set1Δ strain compared to a wild-type strain, and none of those genes are 

predicted to directly affect origin activity (160,168). Third, the mini-chromosome 
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maintenance phenotypes associated with loss of H3K4 di-methylation were 

largely suppressed by the addition of extra origins to the test plasmid, indicating 

that the phenotypes are closely tied to origin function and not other biological 

parameters. Fourth, we directly detected H3K4 di- and tri-methylation at two 

yeast origins. Moreover, our analysis of a published genome-wide H3K4 tri-

methylation dataset identified peaks of methylation distinct from nearby 

transcription-associated peaks (161,169, and our unpublished observations). 

Finally, our observation that loss of H3K4 methylation exacerbates poor growth 

of a replication hypomorphic strain but suppresses the poor growth of an origin 

firing hypermorphic strain indicates that the replication phenotypes reported here 

are most likely direct positive effects of H3K4 di-methylation at origins. Taken 

together, these data provide strong evidence that the role of H3K4 di-methylation 

in origin function is direct and separate from any indirect transcriptional effects.  

 DNA replication is an essential process for proliferation, yet neither Set1 

nor Bre1 are essential gene products. Interestingly, very few null mutations in 

yeast chromatin-modifying enzymes show significant growth defects despite their 

importance for several essential processes, such as transcription, replication, 

and repair. The function of histone modifications in transcriptional control has 

been described as a “histone code” in which combinations of post-translational 

modifications promote or repress transcription at a given locus (5,151,162,170-

172). In this model, no single histone modification generates an active or inactive 

promoter, and thus the effects of mutations that alter local chromatin structure 

are cumulative. We propose that the same concept applies to chromatin structure 
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at DNA replication origins. Consistent with the idea that, like promoters, origins 

can accommodate elimination of a single positive element of chromatin structure, 

the kinetics of S phase progression are normal in a set1Δ strain grown in 

standard conditions (data not shown). Also analogous to transcriptional control at 

promoters, we propose that histone H3K4 di-methylation is an important element 

of origin chromatin structure, but its absence alone does not severely inhibit 

origin function. In fact, origin activity is robust enough that even substantial 

reductions in expression of MCM proteins or deletion of many origins from a 

yeast chromosome causes no growth defects (37,92,163,164). Nevertheless, the 

effect of H3K4 di-methylation loss over several cell cycles or in combination with 

other replication perturbations causes a significant loss of replication fitness.  

 How does H3K4 di-methylation promote DNA replication? We propose two 

models by which H3K4 di-methylation could facilitate DNA replication (Figure 2.8). 

The first is a recruitment model whereby a replication factor directly interacts with 

di-methylated H3K4 to associate with replication origins. This possibility is 

supported by precedent since it has previously been suggested that mono-

methylation of H3K36 can recruit the replication initiation factor, Cdc45 (37,173). 

In addition, a member of the origin recognition complex, Orc1, contains a bromo-

adjacent homology (BAH) domain that mediates nucleosome binding; this 

domain is known to be important for the association of ORC with origins (23,30). 

Therefore, domains in other replication factors may bind to nucleosomes or 

specific histone modifications, or as yet unidentified bridging proteins could link 

H3K4 di-methylation to recruitment of the core replication machinery at origins. 
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Illuminating the molecular mechanism(s) by which H3K4 di-methylation is 

connected to replication proteins at origins will require additional studies.  

 The second model suggests that H3K4 di-methylation near the origin 

recruits another chromatin modifier such as a histone acetyltransferase (HAT). 

The HAT could then acetylate nearby nucleosomes, resulting in increased 

accessibility to the origin to allow more efficient association of replication factors 

(Figure 8).  Acetylation is already known to affect the efficiency and timing of 

origin firing (29,165). Additionally, several HAT complexes contain subunits that 

specifically recognize H3K4 methylation. The HAT complex SAGA contains the 

catalytic subunit Gcn5 as well as two proteins, Chd1 and Spt8, that genetically 

interact with cdc6-1 (Table 2.3). Chd1 is a chromatin remodeler whose 

mammalian counterpart is capable of binding H3K4 methylation (166) while Spt8 

impacts transcription by directly recruiting TBP (167). SAGA also contains the 

Sgf29 subunit that has recently been reported to bind di- and tri-methylated H3K4 

to facilitate SAGA recruitment to some promoters (168). SAGA is responsible for 

acetylation of multiple H3 residues as well as H4K8 and H2BK11 and K16 (169). 

Two other HAT complexes were also identified in our screen, NuA3 and NuA4; 

both contain subunits that bind H3K4 methylation, Yng1 and Yng2, respectively 

(151,170-172). Further examination of these and other H3K4 methylation readers 

will shed light on the role of H3K4 methylation in the context of origin-specific 

chromatin. 

Prior research has identified other histone modifications that impact origin 

function. Mono-methylation of H3K36 by Set2 facilitates recruitment of the  
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FIGURE 2.8. Two models by which H3K4 di-methylation could promote 
efficient DNA replication. The recruitment model suggests either direct or 
indirect recruitment of replication factors by H3K4 di-methylation, while the 
accessibility model suggests recruitment of a HAT that acetylates nucleosomes 
near the origin resulting in an open chromatin state that allows replication factors 
to access and bind the origin.  
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replication initiation factor, Cdc45 in yeast (37). In addition to methylation, H3K4 

can also be acetylated by both Gcn5 and Rtt109 (173). At promoters, this 

acetylation is typically found just upstream from the peak of H3K4 tri-methylation. 

Whether this modification is also found at origins is currently unknown. Multi-

acetylated histones H3 and H4 have been shown by several groups to impact the 

ability of origins to fire (30) and the timing of origin firing in yeast, Drosophila, and 

mammalian cells (16,24,29,174). Additionally, the HATs Hat1 and Gcn5 

physically interact with the replication machinery (136,140,175). In mammalian 

cells, Gcn5 acetylates Cdc6 at several lysine residues and this acetylation is 

required for subsequent phosphorylation by cyclin/CDKs (19,20,84,131,138). In 

vertebrates, the H4-specific HAT, HBO1, physically interacts with the replication 

machinery (2,73,74,100), and the acetylation of histones by HBO1 is essential for 

origin licensing (30,35,36,140). In metazoans, methylation of H4K20 by Set8 

(a.k.a. PR-Set7) is cell cycle regulated (37,112,176) and is required for proper S 

phase initiation and prevention of re-replication (112,127,177).  In S. cerevisiae 

histone H3 is phosphorylated at threonine 45 in a cell cycle-dependent manner 

by the Cdc7-Dbf4 kinase. Mutating this residue to alanine causes sensitivity to 

hydroxyurea and camptothecin indicating its importance in proper DNA 

replication (5,38). Because all organisms except S. cerevisiae lack common 

nucleotide sequence motifs at origins, discovering a chromatin signature that 

promotes origin function is essential to understand the location and activity of 

replication zones in higher eukaryotes. Given the complexity of metazoan 

genomes, it may be that several different chromatin signatures specify origins in 
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different chromosomal domains. Our discovery that H3K4 di-methylation is able 

to promote DNA replication adds to growing number of histone modifications that 

could function together to confer origin function at discrete genomic loci. Further 

work will determine which suite of histone modifications are common to all origins 

or are required only at specific genomic loci to successfully promote DNA 

replication.



 

 

 

 

  

 

CHAPTER 3 

 

Regulation of Set8 and Cdt1 by phosphorylation throughout the cell cycle 

 

INTRODUCTION 

 DNA replication is an essential cellular process that is highly regulated to 

maintain genome integrity. During G1, sites in the genome where replication 

initiates (origins of replication) are prepared or “licensed” for replication through 

formation of the preRC complex. The preRC complex consists of ORC, Cdc6, 

and Cdt1 that together recruit and load the replicative helicase of MCM proteins. 

Recently, the lysine methyltransferase Set8 was found to be a key factor 

promoting preRC formation (reviewed in reference 176). To prevent re-firing of 

origins, or rereplication, preRC formation must not occur outside of G1 phase. 

There are many mechanisms in place to restrict the activity of these proteins 

outside of G1; the most significant is the proteolytic degradation of the replication 

proteins Cdc6, Cdt1, and Set8.  

Both Cdt1 and Set8 are targeted for proteasomal degradation in S phase 

by the E3 ubiquitin ligase complexes, SCFSkp2 and CRL4Cdt2 (178). SCFSkp2 
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functions in S phase to inhibit spurious origin licensing through polyubiquitination 

of Cdt1 and Set8. SCFSkp2-dependent Cdt1 degradation requires prior 

phosphorylation of Cdt1 at T29 by Cyclin E/A-Cdk2 that facilitates association 

with Skp2 (178,179). A Cy-motif present in Cdt1 mediates its interaction with and 

phosphorylation by these Cyclin-CDK complexes (178). No similar mechanism 

regulating Set8 degradation by SCFSkp2 has been reported. 

CRL4Cdt2-mediated degradation of cell cycle regulators also ensures that 

replication occurs once and only once per cell cycle. The Cdt2 (Cdc10-

dependent transcript 2) substrate receptor is unique in that its interaction with 

substrates is dependent on the substrate first interacting with DNA-loaded PCNA. 

PCNA becomes loaded at replication forks during S phase and during the DNA 

synthesis steps of DNA repair (180-183). Proteins that interact with PCNA 

contain a motif known as a PCNA-interacting protein box (PIP box). CRL4Cdt2 

substrates contain a specialized PIP box known as the PIP degron. The PIP 

degron differs from the canonical PIP box in two ways. First, a TD motif is 

present within the PIP box that strengthens the interaction with PCNA (184-187). 

Second, the PIP degron contains a conserved basic residue located four amino 

acids downstream from the PIP box that is required for interaction with Cdt2 

(184,187,188). All bona fide substrates of CRL4Cdt2 contain this PIP degron. 

Interestingly, PCNA must be loaded onto chromatin to promote interaction 

between the substrate and Cdt2, though the basis for substrates to distinguish 

soluble PCNA from chromatin-loaded PCNA is not yet clear (187,189). Through 

the requirement for substrate interaction with PCNA, CRL4Cdt2-mediated 
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proteolysis is coupled to DNA replication during S phase and after DNA damage. 

Cdt1 harbors a PIP degron at its N-terminus through which it interacts with both 

Cdt2 and PCNA, while Set8’s PIP box is more centrally located. Failure to 

degrade either Cdt1 or Set8 at the onset of S phase results in multiple rounds of 

origin firing, or rereplication, that causes DNA damage and genome instability 

(112,122,179,190-195).  

Recently we have suggested that Cdt1 is phosphorylated by stress-

induced mitogen-activated protein kinases (MAPK) (104,196). Addition of cellular 

stressors, such as salt, lipopolysaccharide (LPS), or tumor necrosis factor alpha 

(TNF-α), activate the stress MAP kinases Jun N-terminal kinase (JNK) and p38 

(197). Our lab mapped five residues in the C-terminal third of Cdt1 that are 

phosphorylated by both JNK and p38 (196). Both the JNK and p38 stress MAP 

kinases phosphorylate these amino acids not only in response to exogenous 

stress, but also during unperturbed G2 and M phases when JNK and p38 are 

normally active. Phosphorylated Cdt1 is often detected as a slower-migrating 

isoform that is present during G2/M, cellular quiescence, or upon activation of 

stress MAPKs. However, phosphomimetic mutation of the five C-terminal 

phosphorylated residues of Cdt1 (Cdt12E3D) cannot complement knockdown of 

endogenous Cdt1 due to impaired MCM loading (196).  

Cdt1 is phosphorylated during mitosis and our lab has shown that Cdt1 is 

required at kinetochores for proper microtubule attachment (198). Cdt1 must be 

dephosphorylated upon mitotic exit to promote origin licensing during G1 

because C-terminal phosphorylation of Cdt1 impairs MCM loading (196). Another 
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phosphorylated residue also negatively impacts origin licensing. Cdt1 

phosphorylation at T29 by JNK impairs HBO1 association with replication origins 

(104). In contrast to T29 phosphorylation by Cdk2 (199), JNK-mediated 

phosphorylation of this site has no effect on Skp2 binding or Cdt1 stability (104). 

Our lab has shown that JNK phosphorylates at least five C-terminal residues, so 

perhaps these additional sites prevent association of Cdt1 with Skp2 leading to 

what appears to be two different effects of T29 phosphorylation. 

Set8 degradation is also influenced by phosphorylation. Set8 is 

phosphorylated by Cdk1 at S29 during mitosis, and phosphorylation at this site 

protects Set8 from APCCdh1-mediated proteolysis (123). This modification must 

be removed by the Cdc14 phosphatase to degrade Set8 and allow timely 

progression through mitosis (123). Whether this phosphorylation or novel 

phosphorylation sites also protect Set8 from CRL4Cdt2-mediated degradation is 

the focus of this study. 

Here, we investigate how CRL4Cdt2-mediated degradation of Cdt1 and 

Set8 is regulated in response to cellular stress and cell cycle position. We have 

observed that both Set8 and Cdt1 are protected from UV-induced degradation 

during a cellular stress response and distinct cell cycle phases. We will 

determine if phosphorylation of these substrates under these conditions is the 

mechanism preventing their degradation and identify the kinase(s) responsible. If 

phosphorylation is protective, does it prevent association of these substrates with 

the E3 ligase? If so, does this regulatory mechanism extend to all known 

CRL4Cdt2 substrates? Additionally, what are the biological consequences if this 
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protection is disrupted? We provide evidence that Cdt1 is protected from UV-

induced, Cdt2-dependent degradation during mitosis and cellular quiescence 

while Set8 is only protected during mitosis. Further, we show that protection 

during mitosis can be reversed upon inhibition of Cdk1. We continue to 

investigate the mechanism(s) and significance of this protection for maintaining 

genome integrity. 

MATERIALS AND METHODS 
 
Cell culture and manipulations 
 

HCT116, HeLa, T98G, and NHF-hTERT cells were cultured in Dulbecco 

modified Eagle medium (DMEM) (Difco) supplemented with 10% fetal calf serum 

(Sigma). Cells were synchronized in prometaphase by treatment with 2 mM 

thymidine for 18 h followed by release into 100 nM nocodazole for 10 h (or 12 h 

for T98G cells). T98G human glioblastoma cells were serum starved (DMEM 

only) for 48 h to promote cell cycle exit into quiescence (or G0). NHF cells were 

grown in DMEM supplemented with 0.05% serum for 72 h to promote cell cycle 

exit. Cellular stress was induced by the addition of 250 mM NaCl 15 min prior to 

induction of DNA damage either by UV irradiation (20 J/m2) or addition of 100 µM 

H2O2. MAP kinase inhibitors were used at the following concentrations: c-Jun N-

terminal kinase (JNK) inhibitor II (SP600125; 100 µM), JNK inhibitor VIII (10 µM), 

and p38 (SB203580; 30 µM). The Cdk1 inhibitor, RO-3306 (Sigma), was used at 

10 µM and the CDK inhibitor roscovitine was used at 25 µM. Cells were 

transfected with plasmids using 0.05% polyethylenimine (Sigma). Small 

interfering RNA (siRNA) transfections were performed with 100 nM each of 
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siRNA duplex using Dharmafect 1 reagent (Dharmacon) according to the 

manufacturer’s guidelines for depletion of luciferase (control) and p38α/β. JNK1/2 

siRNA was used at 250 nM. Synthetic duplexed RNA oligonucleotides were 

synthesized by Invitrogen; their sequences are provided in Table 3.1.  

Antibodies 
 

Antibodies were purchased from the following sources: p38, phospho-p38, 

Jun N-terminal kinase (JNK), phospho-JNK, MAPKAP kinase 2, phospho-

MAPKAP kinase 2, and Set8 from Cell Signaling Technologies; hemagglutinin  

(HA) from Roche; green fluorescence protein (GFP) (JL-8) from Clonetech; alpha 

tubulin (DM1A) from Sigma; Cdt2 antibody was a gift from A. Dutta. Antibodies to 

human Cdt1 have been previously described (49). 

Plasmids and protein lysate preparation 

Plasmids for transient transfection were generated by recombination (Gateway 

LR clonase; Invitrogen) of pENTR-Set8 derivatives with a Gateway-compatible 

pLX302 lentiviral vector. Whole-cell lysates were prepared in CSK buffer (200) 

(supplemented with protease and phosphatase inhibitors) and containing S7 

micrococcal nuclease and CaCl2 to release chromatin-bound material into the 

soluble pool and clarified by centrifugation. Whole-cell lysates were alternatively 

prepared by direct lysis of equal cell numbers in 2X Laemmli sample buffer with 

10% β-mercaptoethanol. 
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Table 3.1 siRNA sequences used in this study 
   
Target Sequence  Reference 
Luciferase 5'-UCGAAGUACUCAGCGUAAG-3' This study 
p38α 5 '-GCAUUACAACCAGACAGUUGAUAUU-3' (196) 
p38β 5'-CAACCACCAGGUGUCAAAUGAGAAA-3' (196) 
JNK1/2 5′-TGAAAGAATGTCCTACCTT-3′ (224) 
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RESULTS 
 
Set8 and Cdt1 are protected from CRL4Cdt2-dependent degradation in the 

presence of cellular stress.  

Degradation of Cdt1 and Set8 after DNA damage is dependent on the E3 

ubiquitin ligase CRL4Cdt2. We have previously shown that these proteins can be 

protected from CRL4Cdt2-mediated degradation under conditions of cellular stress 

and recapitulated those results here (Figure 3.1) (196). Addition of an 

osmoticstressor, in this case NaCl, results in stabilization of both Cdt1 and Set8 

after UV irradiation or H2O2 treatment (Figure 3.1A and B). Our lab previously 

reported that this stabilization of Cdt1 was due to phosphorylation by JNK and 

p38 stress-activated MAPKs; inhibition of both kinases restored Cdt1 (and Set8) 

degradation after UV irradiation (196). Treatment with these inhibitors also 

reversed the mobility shift representative of phosphorylated Cdt1. To explore the 

relationship between stress MAPK activity and degradation of Set8 and Cdt1, 

HCT116 cells were treated with siRNAs against p38α/β and JNK1/2 both 

separately and in combination (Figure 3.1C). After inducing osmotic stress, we 

irradiated cells with UV to induce the degradation of CRL4Cdt2 substrates. When 

cells were treated with a control siRNA (Figure 3.1C; lanes 1 and 2), both Cdt1 

and Set8 were degraded after UV irradiation. Prior osmotic stress (Figure 3.1C; 

lane 3) prevented this degradation as was previously seen with sorbitol 

pretreatment. This protection is reversed upon addition of both p38α/β and 

JNK1/2 siRNAs (Figure 3.1C; lane 4), but not with either siRNA alone (Figure 

3.1C; lanes 5 and 6). Although difficult to discern, Set8 is still present in lanes 5 
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Figure 3.1. Cellular stress prevents the DNA damage-induced degradation 
of Set8 and Cdt1. A) Both Set8 and Cdt1 are degraded after UV treatment, but 
this degradation is prevented when 250 mM NaCl is added to HCT116 cells. B) 
They are also degraded when DNA damage is induced by 100 nM H2O2. This is 
again reversed by the addition of 250 mM NaCl. C) HCT116 cells were 
transfected with control small interfering RNA (siRNA) targeting Luciferase (lanes 
1-3), siRNA molecules targeting p38α and p38β (lane 6), JNK1/2 (lane 5), or all 
four stress-activated MAPK isoforms (lanes 4 and 7) for 52 h and then treated 
with 250 mM NaCl 15 min prior to UV irradiation as indicated. Endogenous Set8, 
Cdt1, phoshpo-cJun, phospho-MAPKAPK2, p38α/β, JNK1/2 were detected by 
immunoblotting. The p38α and p38β isoforms are recognized by the same 
antibody and migrate together by SDS-PAGE. The * denotes non-specific 
background bands. 
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and 6 while completely absent in lane 4. However, treatment with siRNAs to both 

MAP kinases caused a reduction in the Set8 and Cdt1 levels in the absence of 

UV irradiation (Figure 3.1C; lane 7), but not to the same degree as treatment with 

both siRNAs with UV (Figure 3.1C; lane 4) or the absence of osmotic stress 

(Figure 3.1C; lane 2). Further experiments using different siRNA conditions 

should resolve this ambiguity as these siRNAs have been utilized previously 

without affecting Cdt1 protein levels (196). These data suggest that, in 

asynchronous cells, both p38α/β and JNK1/2 can contribute to the stabilization of 

Cdt1 and Set8. 

Set8 and Cdt1 are protected from CRL4Cdt2-mediated degradation in 

nocodazole-arrested cells.  

Given that Set8 and Cdt1 are both phosphorylated during mitosis and that 

phosphorylation can prevent ubiquitin-mediated degradation of Cdt1 and Set8, 

we investigated whether Cdt1 and Set8 were protected from CRL4Cdt2-mediated 

degradation during mitosis (Figure 3.2) (123,196). JNK, p38, and Cdk1 are all  

active during mitosis. In asynchronous cells, Cdt1 and Set8 are degraded after 

UV irradiation as expected (Figure 3.2A; compare lanes 1 and 2), but surprisingly 

both were protected from degradation in nocodazole-arrested cells (Figure 3.2A; 

compare lanes 3 and 4). This observation was initially made by J. Hall and K. 

Coleman (unpublished observations). As previously reported, phosphorylated 

Cdt1 migrates slower on the gel and this isoform is present during the 

nocodazole arrest (Figure 3.2A; compare lanes 1 and 3). Two hours after release  
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Figure 3.2. Set8 and Cdt1 are protected from UV-induced degradation in 
G2/M. A) HeLa cells were arrested in nocodazole, released into fresh media, and 
irradiated with UV at the indicated times. Cells were harvested 1 h after UV 
irradiation. B) Asynchronous and nocodazole arrested T98G cells carrying HA-
tagged wild-type Cdt1 or Cdt15A were UV irradiated and harvested after 2 h. C) 
HCT116 cells were arrested in nocodazole. Cycloheximide and MAPK inhibitors 
were added 15 min before UV irradiation. (The p38 inhibitor was SB203580, and 
the JNK inhibitor was SP600125.) Cells were harvested 90 min after UV 
irradiation. 
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from nocodazole, the majority of Cdt1 detected is in the unphosphorylated form 

(Figure 3.2A; lane 5, lower band) and is degraded after UV irradiation (Figure 

3.2A; lane 6) while the phosphorylated upper band can still be detected until 3-4 

h after release from nocodazole even after treatment with UV (Figure 3.2A; lanes 

7 – 9). Similarly, Set8 also becomes susceptible to degradation 2 h after release 

from nocodazole (Figure 3.2A; compare lanes 9 and 10). These results 

demonstrate that both Set8 and Cdt1 are again subject to UV-induced 

degradation upon exiting mitosis. Further experiments comparing the timing of 

degradation with activation of JNK, p38, and CDK are ongoing.  

 We previously mapped five phosphorylation sites on Cdt1 that were 

required for MAPK-mediated protection from UV-induced degradation (196). To 

confirm that the E3 ligase CRL4Cdt2 was still present and active in nocodazole-

arrested cells, we mutated all five of these residues to alanine (Cdt15A) rendering 

Cdt1 susceptible to degradation. We compared the degradation of this HA-

tagged Cdt15A with HA-tagged Cdt1WT (Figure 3.2B). Both constructs are 

degraded in asynchronous cells after UV irradiation (Figure 3.2B; lanes 4 and 6). 

In nocodazole-arrested cells, Cdt15A is degraded while Cdt1WT is protected from 

degradation (Figure 3.2B; compare lanes 8 and 10). This result indicates that the 

CRL4Cdt2 E3 ligase is still functional in nocodazole-arrested cells and that these 

substrates are protected during this cell cycle stage. This data indicates that 

phosphorylation at these five sites is sufficient to protect Cdt1 from CRL4Cdt2-

mediated degradation. Set8 is known to be phosphorylated at serine 29 during 

mitosis (123,201), but we have yet to determine if this phosphorylation is 
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sufficient to protect Set8 from UV-induced degradation. We hypothesize that 

there could be additional phosphorylated residues that are required for Set8 

stabilization. One potential MAPK and/or CDK phosphorylation site is T110; we 

have mutated both T110 and S29 to either alanine or aspartic acid and 

experiments with these mutants are ongoing. If our hypothesis is correct, then 

mutating these sites to alanine to prevent phosphorylation should result in UV-

induced degradation of Set8 during mitosis. 

 Given that phosphorylation of Cdt1 by stress MAPKs protects it from UV-

induced, CRL4Cdt2-mediated degradation (196), we hypothesized that 

phosphorylation by MAPKs also occurs during mitosis to protect Cdt1 from 

degradation. Set8 is phosphorylated during mitosis as well, but Cyclin B-Cdk1 is 

the only kinase currently known to phosphorylate Set8. Because JNK and p38 

are both active during mitosis, we hypothesize that Cdt1 and Set8 are both 

regulated by MAPKs during this cell cycle phase. Not surprisingly, the protection 

of both Cdt1 and Set8 observed in nocodazole-arrested cells can be reversed 

upon pharmacological inhibition of MAPK activity (Figure 3.2C). Inhibiting both 

p38 and JNK activity (Figure 3.2C; lane 5) as well as inhibiting JNK alone (Figure 

3.2C; lane 6) is sufficient to render Cdt1 and Set8 susceptible to UV-mediated 

degradation. This result is in contrast to what we observed in asynchronous cells 

treated with osmotic stress in which p38 and JNK were both required for full 

protection following UV irradiation (Figure 3.1C). These data suggest that during 

mitosis, only JNK is responsible for regulating the stability of Set8 and Cdt1. One 
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caveat to this interpretation is that the findings may be a consequence of off-

target effects caused by treatment with JNK inhibitor II (a.k.a. SP600125).  

In addition to inhibiting JNK activity, JNK inhibitor II acts upstream of Aurora-A 

kinase and polo-like kinase 1 (Plk1) to prevent Cdk1 activation (202). When CDK 

activity is inhibited in mitosis, APCCdh1 becomes active and degrades Cyclin B. 

When we treat our cells with JNK inhibitor II, Cyclin B is lost suggesting this off-

target effect occurs in our hands as well (Figure 3.2C; lanes 5, 6, 8, and 9). To 

address the issues with JNK inhibitor II, we are currently performing siRNA 

treatments in nocodazole-arrested cells to determine if there is a role for JNK in 

protecting Cdt1 and Set8 from UV-induced degradation. Additionally, we are 

conducting experiments using another more specific JNK inhibitor, JNK inhibitor 

VIII. Due to the off-target effects of JNK inhibitor II, our current data suggest that 

during mitosis, either JNK or CDKs are acting upon Cdt1 and Set8 (either directly 

or indirectly) to protect them from UV-induced degradation. 

Inhibition of Cdk1 activity, rather than JNK, reverses Cdt1 and Set8 

protection from UV-induced degradation in nocodazole-arrested cells. 

Given the off-target effects of the JNK inhibitor II, we utilized the CDK 

inhibitor roscovitine to determine if the effects on Cdt1 and Set8 degradation 

were due to Cdk1 inactivation. We can phenocopy both loss of Cyclin B and 

degradation of CRL4Cdt2 substrates by treating nocodazole-arrested cells with 

roscovitine (known to cause mitotic exit) (Figure 3.3A; compare lanes 6 and 8). 

These data indicate that inhibition of CDK activity, rather than JNK activity, is 

sufficient to render Cdt1 and Set8 sensitive to UV-mediated degradation. 
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Figure 3.3. Cdk1, not JNK, is required for protection of Set8 and Cdt1 after 
UV irradiation in nocodazole-arrested cells. A) HCT116 cells were arrested in 
nocodazole and treated with roscovitine, JNK inhibitor II, or p38 inhibitor 
(SB203580) for 15 min prior to UV irradiation. Cells were harvested 2 h after 
irradiation. The * denotes a non-specific background band in both A and B. B) 
HCT116 cells were arrested in nocodazole and treated with Cdk1 inhibitor (RO-
3306), JNK inhibitor VIII, or p38 inhibitor (SB203580) for 30 min prior to UV 
irradiation. Cells were harvested 2 h after irradiation. The arrow indicates the 
phosphorylated cJun band. C) HCT116 cells were arrested in nocodazole and 
harvested 2 h after UV irradiation.  
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Recently, Cyclin B-Cdk1 and Cyclin A-Cdk2 were shown to phosphorylate Cdt2  

at T464 during mitosis and protect it from SCFFBXO11-mediated degradation 

(203,204). When cells were treated with roscovitine or a Cdk1-specific inhibitor 

 (RO-3306), the half-life of Cdt2 was greatly reduced. In contrast to these other 

reports, Cdt2 levels were at best modestly and inconsistently reduced in our cells 

upon addition of JNK inhibitor II (Figure 3.2C; lanes 5 and 9). However, this 

reduction in Cdt2 abundance was not sufficient to impede the degradation of 

Set8 or Cdt1.  

To determine if the protection of Set8 and Cdt1 in nocodazole-arrested 

cells was due solely to Cdk1 activity, we treated nocodazole-arrested cells with 

the Cdk1 inhibitor, RO-3306, 30 min prior to UV irradiation (Figure 3.3B). 

Treatment with this drug sensitized Cdt1 and Set8 to degradation in mitosis to 

the same extent as treatment with either JNK inhibitor II or roscovitine (Figure 

3.3B; lane 5). To confirm that JNK activity was not involved, we treated with a 

more specific JNK inhibitor, JNK inhibitor VIII, and did not see any degradation of 

Cdt1 or Set8 after UV (Figure 3.3B; lane 6). However, upon examination of 

phosphorylated cJun levels, JNK inhibitor VIII failed to inhibit JNK activity in this 

experiment (Figure 3.3B; lanes 5 and 8). As the inhibitor was initially validated in 

our lab using cells treated with osmotic stress, adjustments to the timing of 

inhibitor addition may need to be made in nocodazole-arrested cells. Further 

experiments are currently underway to determine the importance Cdk1 activity, 

either directly or indirectly, for CRL4Cdt2 substrate stability during mitosis. 
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Additionally, we will repeat our experiments in nocodazole-arrested cells and 

asynchronous cells plus osmotic stress using JNK inhibitor VIII to determine if 

JNK activity is important for Cdt1 and Set8 stabilization under those 

circumstances. Pending these additional results, it remains clear that Cdk1 

activity is either directly or indirectly involved in regulating the stability of CRL4Cdt2 

substrates. 

The most obvious possibility for why Set8 and Cdt1 fail to be degraded 

after UV during mitosis is failure to interact with the CRL4Cdt2 E3 ligase. We have 

already demonstrated that Cdt2 is present in nocodazole-arrested cells (Figures 

3.3C and 3.3B); however, we wanted to confirm that Cdt2 could be recruited to 

chromatin in response to DNA damage during this cell cycle phase. Cells 

arrested in mitosis were irradiated with UV, harvested 2 h later, and the 

chromatin was isolated. Cdt2 and PCNA are clearly present in both 

asynchronous and mitotic cells (Figure 3.3C; lanes 1-4). Additionally, PCNA is 

loaded onto chromatin in both asynchronous and mitotic cells after UV irradiation 

(Figure 3.3C; lanes 5-8). Surprisingly, Cdt2 is not properly recruited to chromatin 

in nocodazole-arrested cells following UV irradiation. This result could be 

indicative of a failure to interact with its substrates during this cell cycle phase. 

We are currently conducting immunoprecipitation experiments to test this 

possibility. We hypothesize that mitotic kinases, likely Cdk1, phosphorylates 

either Cdt2 to inhibit its activity, or the CRL4Cdt2 substrates to prevent their 

interaction with Cdt1. These possibilities are not mutually exclusive and could 

both be in effect simultaneously. 
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Differential regulation of Cdt1 and Set8 during quiescence. 

Clearly phosphorylation of at least one CRL4Cdt2 substrate influences its 

degradation and it is likely that this regulatory mechanism is conserved for many 

if not all CRL4Cdt2 substrates. While our work has focused predominately on 

mitosis, Cdt1 is also phosphorylated during quiescence as evidenced by the 

slower migrating phospho-Cdt1 band (196). Interestingly, quiescence is another 

cell cycle phase that has high levels of p38, but unlike mitosis, JNK and Cdk1 

activities are low (Figure 3.3; p-cJun levels indicative of JNK activity) (205,206). 

We have utilized two cell lines in this investigation, T98G cells (glioblastoma line) 

and NHF-hTERT cells (normal human fibroblasts). T98G cells lack detectable 

levels of endogenous Cdt1 in quiescence so we created a T98G cell line stably 

expressing Cdt1. Previous work in the lab has shown that in these T98G cells, 

Cdt1 is protected from UV-induced degradation (K. Coleman; unpublished 

observation). To further investigate this phenomenon, we examined Cdt1 and 

Set8 stability after UV irradiation in NHF-hTERT cells arrested in quiescence by 

serum starvation (Figure 3.4). This cell line does express detectable levels of 

Cdt1 during quiescence. Interestingly, Cdt1 is protected from degradation as 

previously reported, but Set8 is not. Previous reports utilizing serum-starved 

HaCaT and RPE1-hTERT cells indicate that Cdt2 is degraded shortly after serum 

removal by SCFFBXO11 (203). However, this is likely not the case in our quiescent 

NHF cells (Figure 3.4) because Set8 is degraded after UV irradiation. It is 

possible that another E3 ubiquitin ligase complex is responsible for Set8 

degradation, and we are currently conducting experiments to assess if Cdt2 is 

functional during quiescence. The mechanism by which Cdt1 is protected from  



	   90	  

 

 
 
 
        
 
 

                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Asyn 

Tubulin 

Set8 

 G0 

p-cJun 

Cdt1 

UV 
Inh. 

p-MAPKAPK2 

Cdc6 

Figure 3.4 



	   91	  

 
 
 
 
 
 
 
 
 
 
 
Figure 3.4. Cdt1 is protected from UV-induced degradation during G0, but 
Set8 is not. NHF cells were serum deprived in DMEM plus 0.05% FBS for 72 h. 
JNK (SP600125) and p38 (SB203580) inhibitors were added 15 min prior to UV 
irradiation, and cells were harvested 2 h after irradiation. The arrow indicates the 
phosphorylated form of MAPKAPK2. 
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degradation is unclear. P38 is active during this phase (as indicated by p-

MAPKAPK2); however, treatment with p38 and JNK inhibitors did not result in 

Cdt1 degradation after UV (Figure 3.4). This finding raises the possibility that 

another mechanism functions specifically during this cell cycle phase to stabilize 

Cdt1 but not Set8. Experiments are currently underway to determine the 

mechanism of this highly specific stabilization. 

DISCUSSION 
 
 The data described above clearly demonstrate that phosphorylation 

mediates stability of the CRL4Cdt2 substrate Cdt1, and likely Set8, during specific 

cell cycle stages and in response to cellular stress. The work presented here 

raises some very interesting questions regarding the regulation of preRC 

components outside of G1 and S phases. Why it is beneficial for the cell to 

protect these proteins from degradation when their presence outside of G1 could 

allow rereplication to occur? Clearly rereplication does not occur in an 

unperturbed cell cycle so there must be safeguards in place to restrict the origin 

licensing capabilities of these substrates. We know this is the case for Cdt1 

because the Cdt12E3D phosphomimetic mutant cannot fully complement preRC 

formation when endogenous Cdt1 is knocked down yet, this mutant is protected 

from UV-dependent degradation (196). However, it is unclear at this time if Set8 

is able to perform its origin licensing function when phosphorylated. 

Phosphorylation of Set8 at serine 29 by Cdk1 has no effect on the ability of Set8 

to methylate H4 (123). While we have not definitively shown that phosphorylation 
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at this site is protecting Set8 from CRL4Cdt2-mediated degradation, those 

experiments are underway. 

Cdt1 and Set8 are protected from UV-induced degradation during mitosis, 

but for Set8, it is unclear why this protection at this cell cycle phase is necessary 

or favorable for the cell. In the case of Cdt1, we know it has an important role 

during mitosis to promote stable microtubule-kinetochore attachments (198). Our 

lab has shown that depletion of Cdt1 during prometaphase results in an arrest at 

this phase of mitosis. The importance of Set8 stability during mitosis is not quite 

as clear. Set8 and H4K20me1 are required for chromosome condensation during 

G2/M (111). H4K20me1 is recognized and bound by condensin II, which is 

required for chromatin condensation during mitosis (124). Additionally, L3MBTL1 

specifically recognizes H4K20me1 and is also important for chromatin 

compaction (114). However, it is unclear if de novo H4K20 methylation by Set8 is 

required or if Set8 plays another as yet uncharacterized role in mitosis. 

There are several possibilities regarding the requirement for Set8 and/or 

H4K20me1 in mitosis. First, if we consider the need for H4K20me1 for chromatin 

compaction during G2/M, there are two ways to obtain this modification. The first 

mechanism, of course, is through de novo methylation by Set8 that has 

accumulated during G2. The second is through demethylation of the higher 

methylation states, H4K20me2/3, that were deposited as cells transitioned from 

G1 to S phase. In 2012, PHF2 was identified as the demethylase for H4K20me3; 

it was previously shown to demethylate H3K9me2 (207). PHF2 activity is 

dependent on phosphorylation; protein kinase A is the only kinase to date known 
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to phosphorylate PHF2 and it does so at four C-terminal sites (S757, 899, 954, 

and 1056) with S1056 being the major site of phosphorylation (208). While PKA 

is not cell cycle regulated, there could be other as yet unidentified mechanisms 

regulating PHF2 activity. Interestingly, PHF2 was identified in a global mass 

spectrometry study as being phosphorylated during mitosis at S37/39 and T41 

(motif: SASPTIP) (201). Cdk1 could be phosphorylating these sites during 

mitosis since the phosphopeptide most frequently detected was the S39/P site. A 

potential model for restoring H4K20me1 after S phase could involve both 

increased Set8 levels to promote de novo methylation as well as activation of the 

PHF2 demethylase to remove the H4K20me3 (and perhaps me2) that was 

deposited at the G1/S transition. It would be interesting to determine if PHF2 

protein and/or activity levels are cell cycle regulated and to determine which 

kinase is responsible for PHF2 activation during mitosis. We are currently 

conducting experiments to prevent Set8 accumulation only during G2/M and 

assess the impact on both mitosis and the subsequent G1 phase. It is also 

possible that Set8 methylates some as yet unidentified protein important for 

mitotic exit and/or origin licensing in the subsequent G1 phase.  

Despite our previous data demonstrating that p38 and JNK phosphorylate 

Cdt1 in response to osmotic stress, it is still unclear which kinases actually 

protect Cdt1 and Set8 from proteolytic degradation. The data presented here 

indicated that JNK rather than p38 is a likely candidate. However, due to the 

inhibition of Cdk1 activity with JNK inhibitor II, our previously published results 

about he role of JNK and p38 in regulating Cdt1 during G2/M must be 
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reinterpreted (196). Current efforts have been unsuccessful in reversing the Cdt1 

mobility shift with p38 and the more specific JNK inhibitor VIII, but treatment with 

the Cdk1 inhibitor RO-3306 is sufficient to reverse the Cdt1 mobility shift (Figure 

3.3B; lane 8). These data suggest that both during nocodazole-arrest and after 

osmotic stress, Cdt1 is phosphorylated in a Cdk1-dependent manner with no 

direct contribution from JNK or p38 kinases. However, it must be noted that our 

previous publication reported that upon treatment with siRNAs against JNK and 

p38, the Cdt1 mobility shift was reversed; although, this result was found in 

asynchronous cell treated with sorbitol and not mitotic cells (196). Efforts to 

perform this experiment in synchronized cells are underway.  

Interestingly, treatment with p38 and JNK inhibitor VIII either singly or in 

combination failed to restore Cdt1 (or Set8) degradation after UV irradiation (data 

not shown). In contrast, treatment with the Cdk1 inhibitor is sufficient to render 

both Set8 and Cdt1 susceptible to UV-induced degradation (Figure 3.3B). 

Therefore, while it is clear that Cdk1 is important for protecting Cdt1 and Set8 

from degradation during mitosis, we still need to determine if this is a direct 

consequence of Cdk1 phosphorylation or an indirect effect. Interestingly, Cdt2 

levels are slightly reduced upon treatment with the Cdk1 inhibitor (Figure 3.3B; 

lanes 8 and 5). However, Set8 and Cdt1 are still degraded suggesting that this 

level of Cdt2 is sufficient for their degradation, or that some other degradation 

mechanism is involved. Performing this experiment with the Cdk1 inhibitor in the 

presence of Cdt2 siRNA would resolve this matter; if another mechanism were 

involved, knock down of Cdt2 would have no effect on the degradation of Cdt1   
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and Set8. 

Cdk1 is known to phosphorylate both Cdt1 and Set8 (123,209). Cdt1 can 

be phosphorylated by Cdk1 or Cdk2 in conjunction with Cyclin A, primarily in S 

and G2 phases; this phosphorylation promotes Cdt1 degradation by SCFSkp2. 

Phosphorylation by Cyclin B-Cdk1 is restricted to mitosis and while ablation of 

Cyclin A in Drosophila leads to rereplication, loss of Cyclin B does not (210). 

Set8 is also phosphorylated at serine 29 by Cyclin B-Cdk1, and this modification 

protects Set8 from degradation by APCCdh1. As cells enter G1 phase, Cdc14 

phosphatase removes S29 phosphorylation to allow Set8 degradation (123). We 

hypothesize that phosphorylation at this site also protects Set8 from CRL4Cdt2-

mediated degradation and experiments are underway to test this hypothesis.  

Perhaps the most interesting finding of this study is that Set8 and Cdt1 are 

regulated differently during quiescence. Cells enter quiescence after failing to 

pass the restriction point during G1. During this cell cycle stage, CDK activity is 

low and APCCdh1 is active. We have found that Cdt1, but not Set8, is protected 

from degradation after UV irradiation in quiescent cells. This result raises two 

main questions. The first question is why Set8 is present during quiescence. 

Presumably, if phosphorylation at S29 protects Set8 from APCCdh1-mediated 

degradation then, when Cdc14 dephosphorylates this site as cells exit mitosis, 

Set8 should be degraded and therefore absent during quiescence. Yet, Set8 is 

clearly present. This could be the result of Cdc14-resistant mitotic Set8 

phosphorylation by a kinase other than Cdk1. Set8 would then be protected from 

APCCdh1, but not from CRL4Cdt2 as cells entered quiescence. The second 
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question is why Set8 is protected from DNA damage-induced degradation during 

mitosis, but not during quiescence. Several hypotheses have been put forth as to 

why Set8 is degraded after DNA damage in any cell cycle stage (reviewed in 

reference 211). Since Set8 is known to be involved in chromatin compaction, it 

could restrict access to the damaged DNA if not degraded. Alternatively, it is 

known to methylate p53 and prevent transcription of p53 target genes such as 

p21 that are needed for halting the cell cycle after DNA damage. It is possible 

that Set8 is required during quiescence to prepare for G1 phase; yet in the 

presence of DNA damage it needs to be degraded so as not to inappropriately 

initiate DNA replication. It is clear that further investigations are required to gain a 

better understanding of the regulation of Set8 and Cdt1 in this cell cycle phase. 
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CHAPTER 4 
 

Conclusions and Unanswered Questions 
 

Based on our work in S. cerevisiae, it is clear that di-methylation of H3K4 

by Set1 (as part of the COMPASS complex) is required for efficient origin activity. 

Loss of this modification results in decreased origin firing and sensitivity to 

replication stress. Although the mechanism by which H3K4me2 promotes origin 

function is unclear, there are two likely possibilities that are not mutually 

exclusive. The first is that H3K4me2 is recognized and bound by a replication 

factor (such as a preRC component or PIC member). Another possibility is that 

H3K4me2 recruits another histone modifying enzyme that helps to create a 

chromatin structure favorable to origin activation. Interestingly, in human cells tri-

methylation of H3K4 by MLL1 is essential for HBO1 binding and subsequent H4 

hyperacetylation at the lamin B2 origin during G1 (99). We have hypothesized 

that in budding yeast, the HAT complex SAGA could be recruited by H3K4me2 

as a complex member, Sgf29, specifically binds this chromatin modification (168). 

Illustrating the requirement for dynamic histone modification, H3K4 methylation 

by MLL1, while favorable for origin licensing in G1, actually prevents association 

of the PIC member Cdc45 (212). MLL1 is dynamically regulated during the cell 

cycle, in part to restrict DNA replication to once per cell cycle and to prevent 

aberrant replication in the presence of DNA damage (212,213). We, too, have 
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seen that Set1 is dynamically regulated throughout the cell cycle and is 

detectable only during G1.  

What is the mechanism by which H3K4me2 promotes origin function in S. 

cerevisiae?  

 To address this question, we have begun to analyze the replication 

phenotypes upon deletion of the Sgf29 subunit of SAGA. Preliminary data 

suggest that this protein has only a small impact on DNA replication, as sgf29Δ 

cells do not quite phenocopy loss of SET1, though replication is slightly impaired 

(data not shown). We have previously attempted to determine if the recruitment 

of various replication factors to origins was disrupted in cells lacking SET1, but 

were unsuccessful due to technical difficulties; we should revisit these 

experiments since new information in mammalian cells suggests that the 

recruitment of these factors is likely affected by H3K4 methylation. We 

hypothesize that both mechanisms contribute to the positive effect H3K4me2 has 

on DNA replication. 

How is Set1 recruited to origins of replication? 
  
 Set1 and COMPASS recruitment to chromatin outside of transcription has 

been largely unexplored. During transcription, Set1 is recruited to promoters 

through direct interaction with the C-terminal domain (CTD) of RNA polymerase II 

(Pol II) that is phosphorylated at serine 5 (214). Additionally, the interaction 

between Set1 and the Paf1 complex also facilitates COMPASS recruitment to 

chromatin as Paf1 also interacts with elongating Pol II (215). However, less is 

known about how Set1 is recruited to chromatin outside of transcription. Given 
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the proximity of many replication origins to promoter regions it is likely that this 

mechanism of Set1 recruitment could also function at origins. Interestingly, a 

recent report observed reduced ORC binding at rDNA origins when Pol II was 

absent (216). Transcription was not required to promote replication, as sites of 

stalled Pol II were replication-competent. It would be interesting to determine if 

Pol II CTD S5 phosphorylation is required for H3K4me2 at origins. 

In contrast to H3K4 methylation, there is much more data indicating that 

H4K20me1 (and Set8) is a key regulator of origin licensing. We have shown here 

that Set8 protein levels are tightly regulated throughout the cell cycle and in 

response to cell stress and DNA damage. While previous reports have 

demonstrated that Set8 is degraded after DNA damage by the CRL4Cdt2 E3 

ubiquitin ligase, we have discovered that events (likely phosphorylation) during 

G2/M and upon osmotic stress can prevent this degradation. Our lab previously 

reported similar regulation of the preRC member Cdt1. Data presented here 

suggest that Cdk1 mediates these events either directly, or indirectly, as 

protection from UV-induced degradation is reversed upon addition of Cdk1 

inhibitors. While there are striking similarities in the regulation of Cdt1 and Set8, 

during cellular quiescence Set8, but not Cdt1, is susceptible to CRL4Cdt2-

mediated degradation after DNA damage. These findings raise two very 

important questions, which are addressed below. 
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Which kinase(s) phosphorylate Cdt1 and Set8 to protect them from UV-

induced degradation during mitosis? 

Many kinases are active during mitosis and we have begun to consider 

which of these might be involved in regulating Cdt1 and Set8 stability if the Cdk1 

effect we have observed is indirect. A recent paper elucidated a role for Aurora-A 

kinase in regulating Cdt1 stability in mitosis (217). During mitosis, Aurora-A 

phosphorylates the Cdt1 inhibitor, geminin, protecting it from APCCdc20-mediated 

degradation. This protection allows geminin to interact with soluble Cdt1 

protecting it from degradation by SCFSkp2. This finding is in contrast to interphase 

cells where geminin depletion causes DNA damage resulting in Cdt1 degradation 

through CRL4Cdt2 (218). As cells finish metaphase both Cyclin B1 and geminin 

get degraded, and Cdt1 is dephosphorylated and binds chromatin to promote 

MCM loading. Aurora-A, Plk1, and Cdk1 activity are highly intertwined such that 

inhibition of one causes inactivation of the others through a variety of 

mechanisms. Experiments are underway to determine which of these kinases 

might be directly regulating CRL4Cdt2 substrate stability during mitosis. 

Interestingly, several kinases were recently found to associate with Set8 

including Akt and casein kinase II (CK2) (113). Both of these kinases play 

important roles in mitotic progression. Akt was recently shown to regulate 

centrosome composition (219) while CK2 is important for spindle integrity 

through its phosphorylation of kinetochore components (220). The minimal 

consensus sequence for CK2 phosphorylation is S/T-X1-X2-D/E (where X1 is not 

a proline) and there are four such motifs present in Set8 (221). In addition, a 
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study of the phosphoproteome of Jurkat T cells identified phosphorylated 

residues at tyrosine 304 and serine 310 in the SET domain of Set8 (222). It is 

currently unknown which kinase is responsible or what effect these 

phosphorylations have on Set8 activity or regulation. 

Why are Cdt1 and Set8 regulated differently in quiescent cells and what is 

the mechanism of this regulation?  

 While Cdt1 and Set8 are regulated similarly after UV irradiation in all other 

cell cycle stages, during quiescence they are quite different. Cdt1 remains 

protected while Set8 is degraded (Figure 3.4). There is at least one possible 

reason for this differential regulation. It is possible that there is no difference with 

regard to protection from CRL4Cdt2-mediated degradation, but that another E3 

ligase specifically targets Set8, but not Cdt1, for proteolytic degradation. The 

obvious candidate would be APCCdh1. Set8 is a known target of APCCdh1 but can 

be protected from APC-mediated degradation through phosphorylation at S29 

(123). We are currently investigating whether Set8 is indeed phosphorylated at 

this residue during quiescence. Set8 could be dephosphorylated upon UV 

irradiation rendering it susceptible to APC-mediated degradation, but still 

protected from CRL4Cdt2-mediated degradation. While Cdt1 has also been 

reported to be a substrate of APCCdh1, APC-mediated proteolysis of Cdt1 is not 

highly robust, and its contribution to Cdt1 regulation may vary depending on cell 

type (223). For example, quiescent T98G cells have almost undetectable 

amounts of Cdt1 while Cdt1 in NHF cells is readily detectable (Figure 3.4).  
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The first question to be answered is whether CRL4Cdt2 is functional during 

quiescence. It was recently reported that Cdt2 is degraded during quiescence by 

SCFFbxo11 (203). We are currently examining total and chromatin-bound Cdt2 

levels before and after UV irradiation in quiescent NHF cells. We could also 

determine if Cdt1 and Set8 can interact with Cdt2 during quiescence. Assuming 

Cdt2 is present during quiescence, the next question would be does APCCdh1 

promote Set8 degradation in quiescence. We could mutate the S29 residue to 

alanine or aspartic acid and ask if the phosphomimetic mutant was resistant to 

UV-induced degradation while the S29A mutant gets degraded. Another 

possibility is that a separate mechanism functions during quiescence to protect 

Cdt1, but not Set8 from UV-induced, CRL4Cdt2-mediated degradation. There 

could be a distinct kinase that only phosphorylates Cdt1 protecting it from 

degradation. Answering these questions could lead us in the right direction to 

gain a better understanding of this differential regulation in quiescence. 

Do cells need de novo H4K20me1 during G2/M for proper origin licensing in 

the subsequent G1 phase? 

The literature to date has focused predominately on the importance of 

Set8 methylation of H4K20 during G2/M. Yet, no one has closely examined the 

consequences of Set8 depletion during this cell cycle phase for the subsequent 

G1 and origin licensing. It is still possible that Set8 methylates some as yet 

unidentified non-histone substrate that is important for mitosis, origin licensing in 

G1, or both. Is de novo H4K20me1 deposited at origins during G2/M so that 

origin licensing can commence upon mitotic exit? Or, are the higher H4K20 
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methylation states demethylated to generate the H4K20me1 that seems to be 

required for origin licensing? To begin to answer these questions we will 

synchronize cells in early S phase when Set8 is degraded and treat with Set8 

siRNA to prevent accumulation in G2/M. We will then examine H4K20me1 levels 

to determine how much demethylation of H4K20me2,3 contributes to H4K20me1 

levels in G2/M and the subsequent G1 phase. We will also look for any mitotic 

phenotypes resulting from loss of Set8. Since Set8 is known to be important for 

chromatin compaction we will use immunofluorescence to examine DNA 

compaction in metaphase and chromosome segregation in anaphase. We will 

also look for any delay in entry or exit from mitosis and G1 using flow cytometry. 

Using these methods we will begin to determine how H4K20me1 is established 

at origins and if H4K20 is the only relevant Set8 target for DNA replication.  

Concluding remarks 
 
 When this study was initiated, little was known about how individual 

histone modifications impacted DNA replication. Our efforts have characterized a 

role for H3K4me2 in promoting DNA replication and raised some important 

questions regarding the mechanism of this effect. Other histone modifications 

have been found that also promote origin activity (see Chapter 1). Additionally, 

we have shown that Set1 is cell cycle regulated in S. cerevisiae with peak 

expression during G1. This finding corroborates recent data in human cells 

demonstrating that both SCFSkp2 and APCCdc20 regulate MLL (one of six H3K4 

HMTs) protein levels to orchestrate proper gene expression and cell cycle 

transitions (213). The regulation of histone modifying enzymes is an important 
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area of research that is only now becoming appreciated. It is important to 

consider not only the regulation of histone modifications themselves, but also of 

the writers, erasers, and readers of these marks. Future work will highlight the 

dynamic nature of these enzymes and add yet another layer of complexity to the 

histone code. 

 During our studies in yeast, a novel histone modification (H4K20me1) was 

found to play a key role in origin licensing in metazoans. The breadth of 

knowledge regarding the role of the H4K20 HMT Set8 in licensing has since 

expanded rapidly. We became interested in the regulation of this 

methyltransferase and its function, not just in G1, but throughout the cell cycle. 

Our current focus is on the degradation of Set8 after DNA damage during 

different cell cycle stages and during a cellular stress response. We have found 

that Set8, and other CRL4Cdt2 targets, are protected from UV-induced 

degradation during mitosis and during an osmotic stress response. This 

protection is mediated through phosphorylation events that we are currently 

investigating. The kinases responsible for phosphorylating Set8, and other 

CRL4Cdt2 targets, are potentially different between different cell cycle stages and 

during a stress response. Overall, our efforts in both yeast and mammalian cells 

have provided further support for the importance of chromatin in regulating DNA 

replication.  
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