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ABSTRACT

ZHISHAN GUO : Real-Time Scheduling of Mixed-Critical Workloads upon Platforms with
Uncertainties

(Under the direction of Sanjoy K. Baruah)

In designing safety-critical real-time systems, there is an emerging trend in moving towards

mixed-criticality (MC), where functionalities with different degrees of importance (i.e., criticality)

are implemented upon a shared platform. Since 2007, there has been a large amount of research in

MC scheduling, most of which considers the Vestal Model. In this model, all kinds of uncertainties

in the system are characterized into the workloads by assuming multiple worst-case execution time

(WCET) estimations for each execution (of a piece of code).

However, uncertainties of estimations may arise from different aspects (instead of WCET

only), especially upon more widely used commercial-off-the-shelf (COTS) hardware that typically

provides good average-case performance rather than worst-case guarantees. This dissertation

addresses two questions fundamental to the modeling and analyzing of such MC real-time systems:

(i) Can Vestal model be used to describe all kinds of uncertainties at no significant analytical

capacity loss? (ii) If not, can new mechanisms be developed with better performances over existing

ones (in MC scheduling theory), under certain assumptions?

To answer these questions, we first investigate the Vestal model carefully. We propose a new

algorithm (named LE-EDF) which dominates state-of-the-art schedulers for MC job scheduling.

We also improve the understanding of certain existing algorithms by proving a better (and even

optimal) speedup bound. We have found that by introducing the probabilistic WCET workload

model into MC scheduling, the uncertain behaviors can be better characterized comparing to Vestal

model in the sense of schedulability ratio via experiments.
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We then present a new MC system model to describe the uncertainties arising from the platform’s

performance. We show that under this model, where uncertainties of execution speed are separately

captured, better schedulability results can be achieved compared to using the Vestal model instead.

We propose a linear programming (LP) based algorithm for scheduling MC job set on uniprocessor

platforms, and show its optimality (i.e., with zero analytical capacity loss), in the sense that it

dominates any existing MC scheduler. Under the fluid (processor sharing) scheme, we further

show that the optimality result can be retained even when the work is extended to multiprocessor

scheduling and MC task scheduling.

This thesis further addresses the two questions by studying cases where uncertainties arise from

more than one aspect, by integrating both dimensions of uncertainties (i.e., WCET estimation and

system performance) within a single integrated framework and designing scheduling algorithms

with associated schedulability tests. The proposed LE-EDF algorithm is shown to be well applicable

for MC job scheduling. While For MC task scheduling, we adapt an existing algorithm named

EDF-VD, and show that it has the same worst-case analytical capacity loss; i.e., the framework

generalization is available “for free” at least from the perspective of speedup factor.

Under many cases, experimental studies upon randomly generated workloads are conducted

to verify and quantify the theoretically proven domination relationships for both uniprocessor and

multiprocessor scenarios.
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CHAPTER 1: INTRODUCTION

Real-time systems are ubiquitous, ranging from portable devices like heart monitor watches

and smartphones to large pieces of equipment such as nuclear power plant controllers and Mars

exploration rovers. Computations in such systems need to be logically correct (as in general

computing systems) and temporally correct; i.e., not only the result need to be mathematically

sound, computations must also complete within their given time frames. The lack of temporal

correctness in many real-time systems may lead to catastrophic results. For example, the response

time of the throttle control in an avionic system must be small enough (e.g., within tens or hundreds

of milliseconds) to guarantee that all required temporal constraints are satisfied at run-time in a

predictable manner1.

As a result, the temporal correctness of a real-time system needs to be demonstrated and

verified prior to runtime; i.e., during the design and implementation process. Under any possible

execution of the system, the designer must guarantee the temporal correctness of the computations.

Unfortunately, it is too costly or even impossible to verify the temporal correctness of a hard

real-time system via exhaustive simulation or testing, as the number of possible execution scenarios

is prohibitively large even for very simple systems. Therefore, formal analysis techniques are

necessary to ensure that the designed real-time systems are provably correct and predictable, which

typically include three steps:

(i) Formally modeling the system;

1During typical landing processes, right after confirming the aircraft is on the ground, the throttle is set to full reverse
to reduce the speed of the airplane at highest deceleration rate. Throttle levers are then set to idle when the plane is
decelerating through a certain speed range since reverse thrust at a low speed will permanently damage the engines. In
such safety-critical real-time systems, any failure of meeting the timing constraints may be crucial.
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(ii) Choosing or designing a proper scheduling strategy; and

(iii) Deriving schedulability tests to validate temporal correctness at design time.

These three basic steps are fundamentally connected to each other. In short, every scheduling

algorithm should have an associated schedulability test, and their analytical capacity losses are often

greatly affected by how system behaviors are being modeled.

In this dissertation, we study how various kinds of models of uncertainties in mixed-criticality

real-time systems affect the scheduling problem (in the sense of intractableness), and lead to

strategies with different analytical capacity losses. This chapter gives a brief introduction to the

whole document. The motivation will be described in the next section, followed by the thesis

statement, and finally the contribution and organization.

1.1 Motivation

Safety critical systems, such as avionic and automotive systems, need to meet certain certifi-

cation requirements before being qualified for implementation and application. For example, the

Federal Aviation Administration (FAA) will verify the safety standards within a newly developed

aircraft system, including the guaranteed temporal correctness of executions to the safety-critical

functionalities. These authorities tend to be very conservative in the certification process, such

that the correctness often needs to be demonstrated under extremely rigorous and pessimistic

assumptions.

Certifications are based on the analysis of models of systems, rather than to the physical

systems themselves. In order to have confidence that the conclusions drawn on the basis of the

scheduling theories will hold for the actual systems (being modeled), the modeling process typically

incorporates considerable pessimism. Such pessimism is unavoidable due to the uncertainties of

system behaviors during run-time, such as WCET estimations and release patterns of workloads, as

well as the run-time performances of the processor.
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1.1.1 Limitation of Traditional Models

Traditionally, safety-critical real-time systems are rather simple and behave deterministically, in

the sense that there are only basic functionalities to be implemented upon special-purpose hardware

platforms that are often built to behave highly reliable. Due to such design-time predictability,

the actual “cost” for making pessimistic assumptions remains low, such that classic real-time

scheduling theory is developed upon very simple workload and platform models. We assume a

single worst-case execution time (WCET) for each function and a constant speed for the platform.

As the modeling step of formal real-time analysis is not a big issue, people focus more on answering

the remaining two types of questions: (i) Which scheduling algorithm should one choose to run the

given workload upon a computing platform? (ii) Can all timing constraints be met under a given

scheduling strategy?

The limitation of choosing simple workload and platform models has become significant in the

21st century due to several facts. First of all, most chip manufacturers are shifting towards multi-

core architectures to address the need to achieve higher performance without driving more power.

Real-time applications often exhibit rather complex run-time behaviors on multi-core platforms as

they often need to share memory and caches with other workload running in parallel. Also, due to

size, weight, and power (SWaP) constraints, there is an emerging trend in building such systems

on commercial-off-the-shelf (COTS) platforms, upon which various kinds of uncertainties arise,

leading to a huge gap between the average-case and the worst-case execution behaviors. Finally,

there is an emerging embedded system design trend towards building complex cyber-physical

systems (CPS), e.g., self-driving vehicles, intelligent health-care devices, and smart power grids.

Many computations on CPS interact with and depend upon the integrated physical elements, which

often results in complex run-time behaviors. All these facts are leading to a tremendous growth in

the gap between average-case and worst-case run-time behaviors for modern real-time systems. As

the worst cases are highly unlikely to be revealed during actual runs, a huge portion of computational

resource is being wasted during under the traditional over-provisioning design mechanism.
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1.1.2 Mixed-Criticality Design and Its Current Narrative

Knowing the shortcomings of the traditional design, there is an emerging trend in the move

towards mixed-criticality (MC) implementations of real-time systems, where functionalities with

different degrees of importance are implemented upon a shared platform. Such an approach

recognizes that the over-provisioned resource of the critical functionalities is highly unlikely to be

used during run-time (due to very conservative assumptions made), and can be used to execute the

less-critical functionalities instead. The routine has been to validate the correctness of highly critical

functionalities under more pessimistic assumptions than the assumptions used in validating the

correctness of less critical functionalities. All the functionalities are expected to be demonstrated

correct under the normal analysis, whereas the analysis under the more pessimistic assumptions

needs only demonstrate the correctness of the more critical functionalities.

Mixed-Criticality arises naturally in many real-time systems, with different numbers of critical-

ity levels in different applications. For example, in the RTCA DO-178B avionics software standard,

the tasks are classified into five assurance levels, from level A to level E. In the standard, a failure of

a level-A task will have catastrophic results (e.g. causing a crash), while a failure of a level-E task

will have no influence on flight safety.

Those MC real-time systems, like per-criticality-level isolated (i.e., single criticality) ones, need

to pass safety certification as well, yet the deadlines of workloads with less importance may be

missed occasionally. Such integration results in a risk of having non-critical components affecting

the behavior of critical ones during run-time — new tools, techniques, and methodologies must

be derived to prevent such failures. In 2007, Steve Vestal (Vestal, 2007) proposed a multi-WCET

workload model and formally defined the correctness of an MC system as per-mode basis: actual

executions of functionalities may trigger a mode switch to the whole system (as their executions

exceed certain WCET thresholds), leading to correctness guarantees to different sets of workloads.

Under such design, less important deadlines are guaranteed to be met when all executions signal

their finishing upon less pessimistic WCET estimations2.

2Please refer to Chapter 2 for the formal definition and detailed description of MC correctness.
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Apparently, Vestal’s attempt belongs to the modeling step among the aforementioned three

steps in formal real-time analysis. A large amount of research has been done in the past 8 years

on MC scheduling under the Vestal Model (see (Burns and Davis, 2016) for an up-to-date review,

or Section 2.4.3 for the description of some related work). Unfortunately, most of the work only

focuses on the latter two steps; i.e., developing and analyzing new schedulers for MC systems —

the real-time system community rarely reviews the first step: modeling.

In this dissertation, we revisit the modeling step as well, and proposed new MC model based

on the varying-speed platform. Uncertainties arise not only from WCET estimations, but also from

estimations of platform’s execution speeds. Conditions during run-time, such as changes in the

ambient temperature, the supply voltage, etc., may result in variations in the clock speed — for

instance, a system programmer may use the userspace Linux command cpuspeed to configure

a system to reduce the clock speed of the central processing unit (CPU) if the core temperature

becomes too high. At the hardware level, too, innovations in computer architecture for increasing

clock frequency can lead to variable-speed clocks during run-time: e.g., (Bull et al., 2010) describes

a novel technique for detecting whether signals are late at the circuit level within a CPU micro-

architecture, and if so to recover by delaying the next clock tick so that logical faults do not

propagate to higher (i.e., the software) levels.

Similar to the case for uncertainties in WCET estimation, uncertainties in processing speed may

lead to significant under-utilization of the CPUs computing capacity: in order to guarantee temporal

correctness to all functionalities under all circumstances, one must make the most pessimistic

assumptions regarding clock speed: during run-time the clock speed takes on the lowest possible

value, which could be highly unlikely to be reached in practice. A natural question arises, is Vestal

model still representative enough to cover other kinds of uncertainties in MC real-time system?

1.2 Thesis Statement

As stated above, the modeling step is tightly related to the developing and analyzing schedulers

for real-time systems. Thus, to answer the important question of whether we have paid enough
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attention to the modeling step of analyzing MC real-time systems, one needs to examine cases

where uncertainty of estimations arise from different aspects and compare schedulers and their

associated tests with existing ones based on Vestal Model. This leads to my thesis statement as

follows:

In extending mixed-criticality real-time system design and analysis to systems where

uncertainty of estimations arise from different aspects, existing scheduling methods

may be adapted at no significant capacity loss in some cases, while in some other cases

new mechanisms can be developed, with better performance (over existing scheduling

algorithms) shown theoretically, in the sense of proven domination relationship or

better speedup bounds, and/or experimentally via simulations.

1.3 Contributions and Organization

The above thesis is supported by the following contributions made in this dissertation:

• Chapter 2 presents the real-time workload and platform models considered in this dissertation,

and provides necessary background information on real-time scheduling theory as well as

MC systems.

• Chapter 3 studies the MC scheduling problem under Vestal Model, where uncertainties arise

from the WCET estimations. We are able to improve the current state of the art by (i) deriving

new scheduling algorithms that either dominate or outperform existing schedulers both theo-

retically and experimentally; (ii) adding a parameter to the MC workload model and deriving

more efficient scheduling strategy under probabilistic analysis; and (iii) Mathematically

proving better speedup result for existing algorithms.

• Chapter 4 proposes a new model dealing with uncertainties that arise from execution speed of

the platform. New optimal scheduling strategies are identified with associated schedulability

tests. Experimental comparisons against existing methods with Vestal Model suggest that
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such kind of uncertainty is worth being separately modeled, at least from the scheduling

theory point of view.

• Chapter 5 further integrated both dimensions of uncertainties within a generalized framework.

For MC job scheduling, we show the proposed LE-EDF algorithm retains online optimal

property, while for MC task scheduling, existing scheduler (EDF-VD) can be adapted with

reasonable schedulability lost according to speedup bound analysis.

• Chapter 6 summarizes the work, lists some other contributions, and discusses about future

research directions motivated by this dissertation.
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CHAPTER 2: BACKGROUND

In real-time systems, one needs to ensure all timing constraints be met under a given scheduling

algorithm. However, we rarely analyze an actual system directly — it is the model of the system

that we are scheduling, which includes characteristics of the workload, the computational platform,

the scheduling algorithm, etc. Good models characterize a system at the proper abstraction level,

such that unnecessary (or non-relevant) details of system behaviors are blocked from the scheduler,

while important information remain revealed, such as timing constraints for validating the temporal

correctness of the system.

Other than the scheduler itself, there are two important elements in real-time systems: work-

loads, which are pieces of codes to be executed; and platforms, upon which the codes are being

executed. This chapter mainly introduces some workload and platform models in real-time schedul-

ing theory. Some common definitions, notations, and prior work will be provided as well.

Real-time systems are becoming more and more complicated in their workloads (advanced

features or functionalities are being implemented) as well as their computational platform structures

(as evidenced by, e.g., the shift to multi-core systems in early 2000’s). As a result, the models (and

associated schedulers) people use to study real-time schedulability is evolving as well. Various

kinds of workload models have been proposed in the past few decades — one may find (Buttazzo

et al., 2014) a useful resource for tracking other real-time system workload models.

Regarding prior work on schedulers, we will only give brief introductions to them in Sec. 2.4.3

— more detailed descriptions of some closely-related algorithms will be elucidated in each of the

following chapters or sections separately. The main reason to organize the dissertation in such a

way is that one scheduling algorithm may be used for various kinds of workload with different

performances. As our attention may shift for each chapter, we believe it is reasonable to give a fresh
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and focused review for related prior work within each chapter, and hope such organization makes

each chapter more self-contained and the reading experience less boring.

2.1 Workload Model

Real-time workload models are designed to describe real-time applications and their associated

temporal constraints mathematically. As discussed in the previous chapter, designers have to make

conservative assumptions in the modeling process in order to provide guarantees to the temporal

correctness of real-time systems. Predictability of the uncertainties is essential for real-time systems

and is often achieved by necessary a priori knowledge of applications running in the system.

Workload models reveal such knowledge.

This section describes two classic real-time workload models: the one-shot job model and the

sporadic task model. Both models are based on one key concept: the WCET abstraction, which is

introduced in the first subsection.

2.1.1 The WCET Abstraction

The WCET abstraction plays a central role in the analysis of real-time systems. For a specific

piece of code and a particular platform upon which this code is to execute, the WCET of the

code denotes an upper bound on the amount of time the code takes to execute upon the platform.

Determining the exact WCET of an arbitrary piece of code is provably an undecidable problem.

Devising analytical techniques for obtaining tight upper bounds on WCET is currently a very active

area of research, and sophisticated tools incorporating the latest results of such research have been

developed (see (Wilhelm et al., 2008) for an excellent survey).

As WCET tools are more or less conservative than each other, multiple WCET bounds can be

provided for a single piece of code. It is often the case that different WCET values reflect different

confidence or certification levels, and WCET bounds with higher confidence may be achieved by

multiplying (the provided WCET) by a fudge factor which is greater than 1.
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2.1.2 One-Shot Job Model

The basic unit of computation in real-time scheduling is called a job. A job is an abstraction of

one execution of a piece of work. Some codes are executed repetitively in a system — those are

described in the following section.

We denote a real-time job as Ji, where i is its identity index. A job can be characterized by a

3-tuple of parameters: {ai,ci,di}, where

• ai ≥ 0 denotes its release time (the first moment that the piece of code can start to execute),

• ci ∈ R+ is the WCET estimation, and

• di ≥ ai indicates the deadline (upon which the job should be finished).

From the system scheduler’s point of view, a job becomes ready to execute only when it signals

its arrival. It is the scheduler’s responsibility to guarantee its temporal correctness; i.e., to receive

up to ci time units of execution within the interval [ai,di), known as its scheduling window.

The scheduler makes the decision of when to allocate a processor (or any computing unit) to

the job, upon which the job starts to execute. The job will signal its completion when it finishes its

execution. It is assumed that a job Ji may receive as long as ci time units to complete its execution,

but should not exceed that. Techniques like watchdog timer (Stajano and Anderson, 2000) can be

used to suspend or terminate a job’s execution when necessary, in order to guarantee ci being an

absolute upper bound.

Figure 2.1 shows one possible schedule of a set of two jobs, where J1 is scheduled correctly

while J2 is not, with a missed deadline shown in red. We use up-arrows to denote release times, and

down-arrows for deadlines for all figures of execution patterns in this dissertation. Different colors

will be used for executions of different jobs, and thus, it is recommended that the reader views these

figures upon a color monitor/printout.
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Ji ai ci di
J1 0 6 10
J2 4 2 7

-

0 1 2 3 4 5 6 7 8 9 10

6 6

6

Release time

?
Deadline

? ?
J1 J2

a1 a2 d1d2

Figure 2.1: An execution pattern example of one-shot job set.

2.1.3 Sporadic Task Model

Many works in real-time systems are being executed repetitively, such as decoding a MPEG

(Moving Picture Experts Group) video frame in multi-media applications, or converting an analog

sensor signal into a digital one in an avionic control software. The implicit-deadline sporadic task

(Liu and Layland, 1973), also known as Liu and Layland task, or task in short, describes such kind

of workload.

An implicit-deadline sporadic task τi is characterized by two parameters: its WCET Ci and a

minimum inter-arrival separation Ti (also know as its period). Such a task may potentially generate

an unbounded number of jobs, with the first among the series arrive at any time and subsequent

releases being at least Ti time units apart. Each job has an execution requirement of as much as Ci

time units, and its deadline is Ti time units after its release.

A relative deadline Di (which is no greater than Ti) can be specified under the constrained-

deadline sporadic task model (Mok, 1983) with three parameters: {Ci,Di,Ti}(Di≤ Ti). To guarantee

correctness, each job should receive enough execution by Di time units after its arrival (which is

more “constrained” than the implicit-deadline case)1.

Figure 2.2 shows one possible release pattern of a constrained-deadline sporadic task τ1 =

{1.5,2,3}, where the releases of the first two jobs (τ1,1 and τ1,2) are exactly Ti = 3 time units apart,

while the third job τ1,3 does not arrive until t = 8, although it is “legal” for it to be released at t = 6

1We do not consider the arbitrary deadline task set, where Di can be greater than Ti.
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(indicated by the dashed arrow). Note that although there is flexibility in the release time of each

job, the deadline always comes Di = 2 time units after its arrival.

τi Ci Di Ti
τ1 1.5 2 3

-

0 1 2 3 4 5 6 7 8 9 10

6 6 66

6

Release time

?
Deadline

? ? ?
τ1,1 τ1,2 τ1,3

Figure 2.2: A release pattern example of a constrained-deadline sporadic task.

Two widely used concepts for sporadic tasks are utilization and density. Utilization of a task is

defined as the ratio of the WCET parameter to its period; i.e.,

ui =
ci

Ti
. (2.1)

Density is defined as the ratio of the WCET parameter of a task to its relative deadline; i.e.,

δi =
ci

Di
. (2.2)

If a task set τ contains n number of tasks τ1, ...,τn, its total utilization is defined as the sum of

the utilizations of each task; i.e.,

U =
n

∑
i=1

ui =
n

∑
i=1

ci

Ti
. (2.3)

Note that the sporadic task model can be specified into more basic workload models, such as

the periodic task model. The release pattern of consecutive jobs of a periodic task τi is fixed as Ti

time units apart.
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2.2 Computing Platform Model

The computing platform is always an essential part for modeling a real-time system. Any

WCET estimation is associated with a certain platform, i.e., the WCET of a given piece of code

may vary dramatically upon different platforms.

It is commonly assumed in real-time systems research that a processor runs at a fixed speed

of 1. Such assumption simplifies the execution pattern of each job, where its WCET parameter is

reflecting the number of time units it may take (in the worst case) to finish a job.

However, as discussed in Section 1.1.2, conditions during run-time, such as changes in the

ambient temperature, the supply voltage, etc., may lead to variations in the clock speed. A WCET

tool must make the most pessimistic assumptions regarding the clock speed, leading to a significant

under-utilization of the CPU’s computing capacity during run-time. As a result, we adopt a

more generalized computing platform model in this dissertation. The WCET tool still makes the

assumption that clock speed remains at 1 for its estimation, but the actual run-time length depends

(and could be larger than the WCET). It is assumed that a processor’s main frequency may vary

during run-time, and a job executing on a processor of speed s for t time units completes s× t units

of execution.

Figure 2.3 shows the execution pattern of a periodic task τ1 = {2,3}, where the processor

initially runs at the speed of 1 and suffers from a performance degradation (to speed 0.5) at time

t = 5. The height of jobs indicates the execution speed at the moment. Under this case, the first job

τ1,1 finishes its execution within 2 time units, while the second one takes 3 (which is longer than its

WCET, C1 = 2), and the third one takes 4 (which results in a deadline miss at t = 11, denoted in red

in the figure).

A multiprocessor is a combination of multiple uniprocessors, and can be classified into one of

the following platform models depending upon the relationship between the computing capacities

of those processors:

• Identical: all processors run at the same speed, which is usually normalized to 1.
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τi Ci Di Ti
τ1 2 3 4

-
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6 6 6
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Figure 2.3: Varying execution lengths of the same task under different platform speeds.

• Uniform: each processor is characterized by its own execution speed, which may be different

from the speed of other processors on the same platform.

• Unrelated: the length of an execution depends on both the processor and the task itself; i.e., a

given processor may execute different tasks at different speeds.

In this dissertation, three types of (models of) platforms will be considered: uniprocessor,

identical multiprocessor, and uniform multiprocessors.

2.3 Schedulers and Schedulability Tests

In general, given a set of tasks or jobs and a platform, we want to know what scheduling strategy

guarantees its correctness. From the scheduling theory point of view, the goal becomes twofold: (i)

proposing good scheduling algorithms (schedulers), and (ii) deriving the schedulability tests, which

are the conditions to be satisfied in order to guarantee correctness of functionalities under a given

strategy.

The analytical schedulability cost comes in twofold as schedulers and schedulability tests are

tightly connected to each other. On one hand, it is the scheduler that decides which job(s) to be

executed on which processor at any time instant, and a good decision may not be always easy

to achieve. On the other hand, the best decision may result in complicated schedulers, where it

becomes computationally infeasible to derive a straightforward schedulability test.
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In this section, we first introduce the general classifications of scheduling algorithms, and then

highlight the typical schedulers for each category. Schedulability tests and some useful definition

will be described in the final part.

2.3.1 Classification of Schedulers

The broad classification of scheduling algorithms is based on when the schedule is generated.

Under static (or offline) scheduling, the schedule is generated prior to run-time, which often requires

the precise knowledge of arrival time and deadlines of all jobs. While under dynamic (or online)

scheduling, the scheduling decision of a job is made after the job has arrives.

As shown in Figure 2.4, online schedulers can be further categorized into fixed-priority ones

and dynamic-priority ones. Note that here the term “dynamic” refers to the priority assignment,

not the time when scheduling decision is made. Both fixed- and dynamic- priority schedulers are

dynamic scheduling strategies that make scheduling decisions during run-time, where the temporal

behaviors of all released jobs need to be taken into account in order to determine which job should

be prioritized over others.

�
�����

HHHHHj

���
���

HHH
HHj

Scheduling Strategies

Offline (Static) Online (Dynamic)

Fixed-Priority Dynamic-Priority

Figure 2.4: Classification of scheduling algorithms.

Under fixed-priority, priorities are assigned to tasks that all jobs of task τi will be prioritized

over any job of another lower-prioritized task. In contrast, under dynamic priority, those jobs

may have different priorities depending on their arrival time and the absolute deadlines. There

are pros and cons for both dynamic- and static- priority schedulers. Dynamic-priority scheduling

provides more flexibility, and thus can often better utilize the computing capacity of a resource.
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However, study has shown that dynamic-priority often results in larger overheads as the number

of preemptions and migrations tend to be larger. Also, under fixed-priority scheduling, a deadline

miss of a task with priority level L can only be caused by tasks with higher priority, leading to much

easier maintaining and debugging; while such nice properties are not shared by dynamic-priority

systems.

2.3.2 Common Uniprocessor Schedulers

Cyclic Executive (CE) is an important way to sequence tasks or jobs offline in a real-time

system. It is also known as table-driven scheduling, since a “look up table” Γ is calculated prior to

run-time, defined as follows:

Γ(tk) =


Ji, if Ji is to be starting its execution at time tk;

I, if no task to be scheduled at time tk.
(2.4)

It is obvious that such table reveals all scheduling decisions during run-time. For example, the

job set J mentioned in Figure 2.1 can be correctly scheduled under the table {(0,J1),(5,J2),(7,J1),

(8, I)}. Under such schedule2, all deadlines could be met, whereas the second job fails to meet its

deadline in the original schedule shown in Figure 2.1.

Such table driven manner makes the system very predictable while being extremely efficient

in task dispatch, and thus dominates safety-critical systems historically. People have realized the

significant drawbacks, such as (i) they are very brittle that any change of the set requires a new table

to be computed, (ii) it is required that release patterns and deadlines must be a priori known, and

(iii) the frame size could be huge, etc.

Rate Monotonic (RM) is a well-known fixed-priority algorithm, which assigns priorities to

tasks based upon their periods: a shorter period leads to a higher priority. Under such a mechanism,

a job released by a higher priority task will preempt any job with a lower priority.

2Note that job J1 is “suspended” by J2 at time t = 5, although J1 remains unfinished. Such behavior is called a
“preemption”, which is allowed and assumed at zero cost in this dissertation.
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Earliest Deadline First (EDF) scheduling maintains a priority queue of jobs, ordered by

shortest time remaining to absolute deadlines. During run-time, the job at the front of the queue is

chosen for execution and removed from the priority queue. At each time a new job is released, the

queue will be updated, and a job that is preempted will be re-queued. Again, preemption is allowed

and assumed at zero cost in this dissertation.

Virtual Deadline is a scheduling technique to provide more flexibility in decisions with deadline

based schedulers like EDF. The virtual deadlines are provided for assigning priority and making

scheduling decisions only. They may be different from actual deadlines to either increase or decrease

the priority of a job (or task) dynamically.

2.3.3 Multiprocessor Schedulers

Embedded systems, especially safety-critical ones are increasingly implemented on multicore

platforms. On such platforms, there are three main scheduling approaches: partitioned, global, and

clustered scheduling.

Partitioned scheduling statically assigns each task to a dedicated processor. The processor

assignment is fixed for all jobs released by the same task. The good thing about partitioned

scheduling is that, once such assignment is provided, the multiprocessor scheduling problem

becomes multiple uniprocessor scheduling problems that have been well studied. However, the

partitioning step itself is computationally intractable — optimally assigning all tasks on processors

is NP-hard in the strong sense (reduction from the Bin-Packing problem (Kellerer et al., 2004))

Global scheduling allows a job of a task to execute on any processor. A job may also migrate

before it completes execution and executes on a different processor, which is called intra-job

migration.

Fluid scheduling (Holman and Anderson, 2005) allows more than one job to be “executed”

on a processing core simultaneously; i.e., each job can be regarded as executing on a dedicated

“fractional” processor with executing speed no greater than 1. The execution rate of a task τi matches

the definition of processor speed in Sec. 2.2. Fluid scheduling can provide the ideal allocation
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of computing resources, but creates an unbounded number of preemptions which is not practical.

Fortunately, techniques (e.g., (Baruah et al., 1996), (Cho et al., 2006), (Funk et al., 2011)) have been

introduced to equivalently transform a fluid schedule into a unit-based non-fluid one with limited

number of preemptions and migrations, which makes it applicable to real hardware platforms.

2.3.4 Optimality and Speedup

A feasible schedule indicates that every job completes by its deadline. A set of tasks is

schedulable according to a scheduling algorithm if the scheduler always produces a feasible

schedule.

An optimal scheduler would guarantee schedulability of any feasible task/job set; i.e., whenever

a feasible schedule exists, it is schedulable by the optimal scheduler. For example, the following

theorem suggests that EDF (described in Sec. 2.3.2) is optimal for uniprocessor job set and sporadic

task set scheduling.

Theorem 2.1. (Liu and Layland, 1973) If a real-time job set (or sporadic task set) is schedulable

on a uniprocessor by any scheduling policy, it is also schedulable by EDF.

As optimal is hard to achieve for many other cases, e.g., for multiprocessor and/or mixed-

criticality we introduce a commonly used metric for comparing schedulability tests: speedup

(Kalyanasundaram and Pruhs, 2000).

Definition 2.2. A speedup factor of s(s ≥ 1) for a scheduler S implies that any task set that is

schedulable on a platform of speed-1 processor(s) will be deemed schedulable by S on a platform

with speed(s) increased to s.

In short, speedup measures how “far away” is a given scheduler from an optimal one — it

reflects the effectiveness of a scheduling policy. It is obvious that a speedup factor of 1 indicates

optimal. While if optimal cannot be achieved (which is often due to computational intractability),

we would want to propose schedulers and schedulability tests with smaller speedup (i.e., closer-to-1).

Speedup factor will be used to measure many schedulers in this dissertation.
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2.3.5 Schedulability Test

Given a real-time scheduling algorithm and a task set τ , we should be able to determine

whether it is schedulable prior to run-time, which is the general purpose of a schedulability test. A

schedulability test (which is often in the form of computational conditions) indicates whether all

deadlines of a given task set can be met (i.e., correctness) under a specific scheduling algorithm.

Schedulability tests should be computationally tractable, but not necessarily efficient as they are

performed during the system design and analysis process instead of run-time.

Necessary schedulability test only provides necessary conditions for a task set to be schedulable

by its associated algorithm; i.e., a task set will not be schedulable if it fails to satisfy any necessary

schedulability test. Passing a sufficient schedulability test guarantees the correctness of a task set

over certain strategy. Failing to pass a necessary schedulability test mean the set is not schedulable

by the associated algorithm; while failing to pass a sufficient one means it may or may not be

schedulable (one needs a better test).

Exact schedulability test is both necessary and sufficient. The following theorem presents

such kind of a test for EDF schedulability to implicit-deadline sporadic task set on a uniprocessor

platform.

Theorem 2.3. (Liu and Layland, 1973) A real-time implicit-deadline sporadic task set is schedulable

by EDF on a uniprocessor platform if and only if its utilization (defined in (2.3)) is no greater than

1.

From Theorem 2.3, we can easily derive the following schedulability test for constrained-

deadline sporadic task set τ , by transforming each task τi = {Ci,Di,Ti} into an implicit-deadline

sporadic task τ ′i =Ci,Di, and perform the same test. Note that Corollary 2.4 provides a sufficient

schedulability test only, as such transformation includes pessimism — the newly constructed tasks

(for easy analysis purposes) may release consecutive jobs in a period of Di, which is shorter than

the actual allowed minimum separation under original description (Ti).
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Corollary 2.4. A real-time constrained-deadline sporadic task set is schedulable by EDF on a

uniprocessor platform if its density (defined in (2.2)) is no greater than 1.

2.4 Mixed-Criticality Systems

Mixed-Criticality arises naturally in many real-time systems, with a different number of

criticality levels in different applications. In the functional safety standard for both automotive

systems (i.e., ISO 26262) and railway systems (i.e., CENELEC 50126/128/129), four Safety

Integrity Levels (SILs) are defined. Table 2.1 illustrate the relationship between different criticality

levels in typical system standards.

Standards ASIL, ISO 26262 Class, IEC 62304 SIL, IEC 61508 SSIL, EN 50128
- - - 0
A A 1 1

Safety B -
2 2

Levels C B
D C 3 3
- - 4 4

Table 2.1: Safety levels defined by different standards.

In an MC system, it is assumed that each job or task is assigned a criticality level χi ∈

{1,2, ...,L} (where L ∈ Z+ is the total number of criticality levels), expressing its degree of

importance, with a larger value denoting a greater level of importance. For the dual-criticality

special case, the two criticality levels are commonly denoted as LO and HI instead of 1 and 2.

2.4.1 MC Correctness and Modes

Those MC real-time systems, like per-criticality-level isolated (i.e., single criticality) ones, need

to pass safety certification as well, though the less important deadlines may be missed occasionally.

To formally define the correctness of such systems, Vestal (Vestal, 2007) proposed an MC model

where a set of system behaviors are identified and linked to system execution modes. Such system

behaviors may include a certain job exceeding its less pessimistic WCET estimation, or the speed
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of a computing platform dropping below a certain threshold, etc. During run-time, different levels

of correctness are guaranteed under different execution mode, though the precise manners such as

mode switch time are not a priori known.

Definition 2.5. An MC system is scheduled correctly if workloads with criticality level l meet their

deadlines whenever the system is experiencing level-L behaviors, for any 1≤ l ≤ L, and L ≤ l.

Under this definition, the assumptions we made to the system uncertainties during the modeling

process are scaled to L modes, and the correctness of the whole MC system includes separate

correctnesses under each of the L modes; i.e., only deadlines with criticality level no lower than l

are guaranteed to be met when the system exhibits level l behavior. It is the system designer and

analyzer’s responsibility to define the relationship between system behaviors and executing modes;

e.g., when to trigger a mode switch.

2.4.2 Vestal’s Interpretation

Under Vestal model (Vestal, 2007), the mode switch is solely triggered by executions of

workload exceeding a certain threshold. Please note that the MC system model is not restricted to

that, although Vestal’s interpretation receives most attentions in existing work. The Vestal model is

based on the fact that WCET tools are more or less conservative than each other, providing multiple

WCET bounds (Wilhelm et al., 2008). In some cases, WCET bounds with higher confidence

may also be achieved by multiplying a fudge factor (which is greater than 1). In general, when

considering a piece of code with criticality level l, up to l WCET bounds are provided, forming a

WCET vector with non-decreasing elements: ci = {c1
i ,c

2
i , ...,c

l
i, ...,c

L
i }, where cl

i = cl+1
i = ...= cL

i .

MC Job Model. An independent job characterizes a single piece of code, to be executed once upon

a real-time platform. An MC job Ji can be represented by a 4-tuple of parameters (ai,ci,di,χi),

where

• ai ≥ 0 denotes its release time (after which the piece of code can start to execute),

• ci ∈ RL
+ is the WCET vector, with L non-decreasing elements
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• di ≥ ai indicates the deadline (upon which the job should be finished), and

• χi represents the criticality level.

In classic real-time scheduling theory (see, e.g.,(Liu, 2000, page 81)), the load of an instance

of jobs denotes the maximum cumulative execution requirement by jobs of the instance over the

interval, normalized by the interval length, over all time intervals. Informally, the load of an instance

can be thought of as representing a lower bound on the speed of any processor upon which the

instance can meet all deadlines. Analogous to this concept, we find it convenient to define two

loads, `LO(J) and `HI(J), for any MC collection J of jobs.

Definition 2.6. The LO-criticality load `LO(J) and the HI-criticality load `HI(J) of an MC collection

J of jobs are defined according to the following two formulas:

`LO(J) = max
0≤t1<t2

∑
Ji: t1≤ai∧di≤t2

cL
i

t2− t1
; (2.5)

`HI(J) = max
0≤t1<t2

∑
Ji: χi=HI∧t1≤ai∧di≤t2

cH
i

t2− t1
. (2.6)

MC Sporadic Task Model. A task τi characterizes a single piece of code, to be executed repeatedly

for an indefinite length of time. That is, a sporadic task gives rise to a potentially unbounded

sequence of jobs — a release is triggered when the corresponding piece of code becomes ready

for execution. The period parameter Ti represents the minimum inter-arrival time between any two

consecutive job releases (by the same task). Another parameter Di, denoting the relative deadline,

is specified for the whole task, that the deadline for each job is its own release plus the Di value. As

a result, the kth job released by task τi = {Ci,Ti,Di,χi} can be represented with the aforementioned

4-tuple model as Ji,k = {ai,k,Ci,ai,k +Di,χi}, where its release ai,k must be at least Ti time units

after the release time of its predecessor Ji,k−1. We sometimes consider a special set of tasks, with

implicit deadlines that Di = Ti for all i.
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The utilization of a regular (i.e., non-MC) implicit-deadline sporadic task system denotes the

sum of the ratios of the WCETs to periods of all the tasks in the system. We may define analogous

concepts for MC sporadic task systems. Let τ denote an MC implicit deadline sporadic task system.

Under a dual-criticality system, let uL
i = (CL

i /Ti) and uH
i = (CH

i /Ti) denote the per-criticality

utilizations of task τi..

For each of x and y in {L,H}, we define the system-wide utilization parameters as follows:

Uy
x = ∑

τi∈τ
∧

χi=x
uy

i = ∑
τi∈τ

∧
χi=x

Cy
i

Ti
. (2.7)

Hence the LO-criticality total system utilization of task-system τ is
(
UL

L +UL
H), and its HI-

criticality total system utilization is UH
H .

Under Vestal’s interpretation, system behavior solely depends on the execution time of each job.

As one may tell, the main differences between Vestal Models and traditional real-time workload

models (see Sec. 2.1) are: (i) each piece of work has an associated criticality level χi, and (ii) a

WCET vector is provided instead of a single threshold. During runtime, a level-l task τi (or job)

may trigger a system-wide mode switch to level L if its execution exceeds CL
i and does not signal

finishing, where L ≤ l.

2.4.3 Related MC Schedulers

The pioneering work on the verification of an MC system was done by Vestal (Vestal, 2007) in

2007, which targets the MC task scheduling problem on a single processor platform with constant

speed. It shows that neither rate monotonic (Liu and Layland, 1973) nor deadline monotonic (Leung,

2004) priority assignment is optimal for MC system; however Audsley’s algorithm (Audsley, 2001)

is found to be applicable.

MC Job Scheduling. Baruah et al. (Baruah et al., 2010a) (Baruah et al., 2012a) show that even

scheduling MC job is NP-hard in the strong sense, and an efficient approximation algorithm

named Own-Criticality-Based-Priority (OCBP) is proposed, with a speedup factor of (
√

5+1)/2

(the golden ratio) and Θ(L/ lnL), for the two-criticality-level subcase and L-criticality-level cases
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(L > 2), respectively. It is also shown (by an example) that no non-clairvoyant algorithm can achieve

a better speedup bound in the dual-criticality case.

MC Task Scheduling on a Uniprocessor. In the sporadic task model, jobs are released recurrently

with minimum time gaps (i.e., period). The OCBP algorithm is enhanced to support sporadic

systems (Li and Baruah, 2010), with pseudo-polynomial time complexity of offline schedulability

test and run-time updating. Guan et al. (Guan et al., 2011) improve this algorithm to a new

version named PLRS (Priority-List-Reuse-Scheduling), which updates the priority list in Θ(n2)

time. Baruah et al. (Baruah et al., 2011a) specialize the classic EDF algorithm to support MC

systems, by introducing Virtual Deadlines (VD) — the EDF-VD algorithm shrinks deadlines of

more important tasks by a common factor, in order for them to preserve enough capacity. The

speedup factor of EDF-VD is improved from the original (
√

5+1)/2 to 4/3 (Baruah et al., 2012b)

for the dual-criticality MC task scheduling problem. This speedup result is shown to be optimal

(Baruah et al., 2012b) in the sense that no non-clairvoyant algorithm can achieve a smaller speedup

bound.

MC Task Scheduling on Multiprocessor. The EDF-VD algorithm is extended to cope with multi-

processor platforms in (Li and Baruah, 2012), by applying a previously-proposed multiprocessor

global scheduling algorithm called fpEDF (Baruah, 2004). For implicit-deadline systems, the

speedup factor of the global EDF-VD scheduling algorithm is shown to be no larger than
√

5+1,

while the partitioned version (that assigns each task to a dedicated processor) has a speedup factor

of (8m− 4)/(3m) for m processors, according to (Li and Baruah, 2012). A fluid-based schedul-

ing mechanism named MC-Fluid is recently proposed (Lee et al., 2014) also for scheduling MC

implicit-deadline sporadic task systems upon identical multiprocessor platforms. It is shown to

have a speedup bound no worse than (
√

5+1)/2 for scheduling dual-criticality systems, which is

the best known speedup bound result for multiprocessor MC scheduling (prior to our work).

Here we only mentioned work that is closely related to our thesis, while much other prior work

on MC scheduling can be found in the review (Burns and Davis, 2016), which has been updated

every six months since its first release in 2013. Most existing work only considers uncertainty that
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arises from the WCET estimations, while some (e.g., (Baruah, 2012), (Burns and Davis, 2013),

(Baruah and Chattopadhyay, 2013)) have considered uncertainty in specifying minimum inter-arrival

durations for sporadic tasks. As mentioned at the beginning of this chapter, detailed descriptions of

some closely related scheduling strategies will appear in later chapters/sections.
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CHAPTER 3: WHEN MC ARISES FROM WCET ESTIMATIONS

Part of the central thesis of this dissertation is to examine the effectivenesses of existing

scheduling methods for systems where MC arises from estimations of different aspects. First of all,

in this chapter, we will focus on Vestal’s interpretation (see Sec2.4.2) of MC schedulability, where

the mode switch is solely triggered by the executions of workloads exceeding certain thresholds

(i.e., their WCET estimations).

The idea behind Vestal’s mixed-criticality model is that the true execution time of each piece

of code cannot be known precisely prior to run-time, and must therefore be estimated for system

analysis prior to run-time. For MC systems, it may make sense to construct multiple WCET

estimations under more or less conservative assumptions (so that we can have greater or lesser

levels of assurance that the models do indeed bound the actual run-time behavior of the system).

The correctness of the entire system will be validated under the less conservative assumptions;

while the correctness of only the more critical parts will be guaranteed under the more conservative

estimations. A large body of prior work on MC scheduling focuses on the Vestal model (see, (Burns

and Davis, 2016) for an up-to-date review).

In this chapter, we will provide improved results over some state-of-the-art schedulers under

various kinds of settings:

• For uniprocessor job scheduling, Sec. 3.1 proposes an algorithm named LE-EDF and shows

that it dominates the OCBP algorithm (Baruah et al., 2010b) while out-performs the MC-EDF

algorithm (Socci et al., 2013).

• For uniprocessor task scheduling, Sec. 3.2 adds a new parameter to the existing MC task

model to better capture the uncertain behaviors. Experimental studies are conducted, showing
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that the proposed algorithm under new model results in higher schedulability ratio in most

scenarios.

• For multiprocessor task scheduling, the open problem of “What is the best possible speedup?”

is answered in Sec. 3.3. We propose an algorithm named MCF, prove its speedup of 4/3. It

has shown that 4/3 is the best possible speedup for any uniprocessor MC task scheduler. This

directly implies our result cannot be further improved for the more general (multiprocessor)

case, and thus closes the problem.

We (in this chapter) limit the total number of criticality levels as two, and use HI and LO instead

of numbers to denote the criticality levels (with HI being more important).

3.1 MC Job Scheduling on a Uni-Processor

Most of the contributions made in this section can be found at (Guo and Baruah, 2015a).

3.1.1 System Model

We assume a uniprocessor platform with a constant execution speed of 1, upon which a set

of Vestal jobs J = {J1,J2, ...,Jn} is to be scheduled. Each job Ji can be represented by 4-tuple of

parameters: {ai, [cL
i ,c

H
i ],di,χi}, where ai denotes the release time of the job Ji, di represents its

absolute deadline, ci = [cL
i ,c

H
i ] is the WCET vector (cL

i ≤ cH
i ), and χi ∈ {LO,HI} gives its criticality

level. According to Sec. 2.4.2, cL
i = cH

i if χi = LO.

The interpretation is that the jobs in J are to be executed on a single preemptive processor that

has two execution modes: a HI-criticality mode and a LO-criticality (or normal) mode. The system

starts out executing at the normal mode, while can switch to the HI-criticality mode any time if a

job Ji with χi = HI has been executed for cL
i time units, but does not signal its finishing.

A clairvoyant scheduling algorithm is one that knows, prior to scheduling an instance, precisely

how much execution time each job in the instance will require in order to complete. Here we
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assume that a scheduler cannot be clairvoyant; i.e., it is not a priori known how much time will

each HI-criticality need.

Definition 3.1. A scheduling strategy for MC job set is correct if it satisfies the following two

properties:

1. Each job Ji meets its deadline if all jobs complete execution upon having executed for no

more than their LO-criticality WCETs; and

2. Each HI-criticality job Ji meets its deadline if all HI-criticality jobs complete execution upon

having executed for no more than their HI-criticality WCETs.

A scheduling strategy for MC instances is partially correct if it satisfies the second item above, but

not necessarily the first.

That is, a correct scheduling strategy ensures the correct execution of HI-criticality jobs provided

each HI-criticality job completes upon executing for no more than its HI-criticality WCET. It

additionally ensures the correct execution of LO-criticality jobs if each job completes upon executing

for no more than its LO-criticality WCET.

Notations. Without loss of generality, we will assume that the HI-criticality jobs in the given MC

job set J are indexed 1,2, ...,nh and the LO-criticality jobs are indexed nh+1, ...,n, where nh is the

number of HI-criticality jobs. Let t1, t2, ..., tk+1 denote the at most 2n distinct values for the release

time and deadline parameters of the n jobs, in strictly increasing order (redundancy is eliminated,

so ∀ j, t j < t j+1). These release time and deadlines partition the whole time duration of interest

[mini{ai},maxi{di}) into k intervals, which will be denoted as I1, I2, ..., Ik, with I j denoting the

interval [t j, t j+1).
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3.1.2 Algorithm LE-EDF

In this subsection, we describe Algorithm LE-EDF1 for scheduling MC instances that are

represented using the model discussed in Sec 3.1.1 above. We will also illustrate, via a running

example, the behavior of LE-EDF when scheduling such an MC instance.

The high-level description of our algorithm is as follows. Given an MC job set J, we first

construct, prior to run-time, a scheduling table that reserves a certain amount of execution time

for each HI-criticality job within each time interval I j = [t j, t j+1), for 1≤ j ≤ k, in order to ensure

that no HI-criticality deadline will be missed even under the most conservative case. To this

end, LE-EDF is in some sense similar to the zero-slack technique developed by Niz et al. (Niz

et al., 2009), which mainly focused on fixed priority schemes such as rate-monotonic instead of

EDF-based ones (which is our focus). To comply with this scheduling table, HI-criticality jobs are

divided into sub-jobs with different deadlines. Dispatch decisions at run-time are taken in a manner

that HI-criticality jobs being executed for at least the amounts mandated in the scheduling table (by

having sub-jobs meeting their assigned deadlines), while using the remaining computing capacity to

execute LO-criticality jobs. The latest execution (LE) manner in which the sub-job set is constructed

is described in Sec 3.1.2.1; run-time dispatching (under EDF) is detailed in Sec 3.1.2.2.

3.1.2.1 Sub-Job Construction (LE)

To construct the scheduling table, we first identify (Step 1 below) the latest time intervals

during which the HI-criticality jobs must execute if each were to execute for its HI-criticality WCET;

having identified these intervals, we construct (in Step 2) an EDF schedule for the HI-criticality jobs

in these intervals.

Step 1. Considering only the HI-criticality jobs in the instance, determine the intervals during

which the jobs would execute upon a speed-1 processor, if

1. each job executes for its HI-criticality WCET,

1The two steps, shown in Sec. 3.1.2.1, in the construction of the scheduling table, explain the name given to
our algorithm: Latest Execution times, with EDF scheduling
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2. each job completes by its deadline, and

3. execution occurs as late as possible.

It is evident that these intervals may be determined by filling in the schedule “backward”;

i.e., considering the jobs in non-increasing order of their deadlines, and allocating the cumulative

execution requirements of these jobs. They can therefore be determined in Θ(nh lognh) time (which

is the complexity of sorting), where nh denotes the number of HI-criticality jobs. We illustrate this

step in Example 3.2 below.

Example 3.2. Consider the instance consisting of the six jobs J1—J6 shown in tabular form in

Table 3.1, that is to be implemented upon a preemptive uniprocessor (of speed 1).

Ji ai cL
i cH

i di χi
J1 1 2 4 14 HI

J2 9 1 2 12 HI

J3 10 1 2 16 HI

J4 0 8 8 10 LO

J5 1 1 1 12 LO

J6 12 3 3 16 LO

Table 3.1: An example MC collection of jobs.

Considering only the HI-criticality jobs J1–J3 executing for their HI-criticality WCETs on a

speed-1 processor, the intervals identified in Step 1 are as follows:

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

6 6 6

? ? ?
J3J1J2

a1 a2 a3 d2 d1 d3

The interval(s) determined in Step 1 are therefore [8,16). (Observe that in this schedule we are

only determining execution intervals, not seeking to determine an actual schedule. Hence the fact

that job J2 seems to be “assigned” execution prior to its release time is irrelevant.)
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Step 2. Construct an EDF schedule for the HI-criticality jobs upon a preemptive processor that has

speed 1 during the intervals determined in Step 1 above, and speed zero elsewhere.

It follows from the optimality property (Dertouzos, 1974; Liu and Layland, 1973) of EDF that

if this step fails to ensure that each HI-criticality job receives an execution amount equal to its

HI-criticality WCET prior to its deadline, then no scheduling algorithm can guarantee correctness for

this instance. We would therefore report failure: this MC instance is not feasible. The remainder

of this section, and Sec 3.1.2.2, assumes that Step 2 above was successful in completing each

HI-criticality job prior to its deadline.

Example 3.3. Consider again the instance of Example 3.2 that is depicted in Table 3.1. In Step 2,

the EDF schedule for the HI-criticality jobs is constructed only within the intervals identified in

Step 1; i.e., [8,16)2:

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

6 6 6

? ? ?
J3J1J1 J2

a1 a2 a3 d2 d1 d3

• J1 executes during the interval [8,9) as the only active job.

• Upon release, J2 becomes the earliest-deadline job and is hence allocated execution over the

interval [9,11), which preempts J1 at t = 9.

• Upon J2’s completion, J1 executes during the interval [11,14) as its deadline is earlier than

the only other active job J3.

• J3 executes in the interval [14,16) as the only remaining active job.

Step 3. Partition the timeline over [mini{ai},maxi{di}] (and thus the scheduling table) into the k

intervals I1, I2, . . . , Ik. (Recall, from Sec. 3.1.1, that these are the intervals defined by the release

2Note that Step 1 may result in new breakpoints to the timeline and intervals other than release time and deadlines; e.g.,
t = 8.
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time and deadlines of all the jobs — LO-criticality and HI-criticality.) For each HI-criticality job

Ji and each interval I` in which it is scheduled in the EDF schedule constructed in Step 2 above,

define a sub-job of Ji with the same release time ai, a WCET equal to the amount of execution that

Ji is allocated during Interval I`, and a deadline equal to t`+1, the right end-point of Interval I`.

By dividing HI-criticality jobs into sub-jobs, and setting proper deadlines for them, they will

not be suppressed by LO-criticality jobs in the sense of correctness.

Example 3.4. For our example instance of Table 3.1, Step 3 partitions the timeline into six intervals

[0,1), [1,9), [9,10), [10,12), [12,14), and [14,16).

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

66 6 66

? ? ?

I1 I2 I3 I4 I5 I6

a4 a1,a5 a2 a3 d2,a6 d1 d6,d3

Each of the HI-criticality jobs is decomposed into the sub-jobs shown in Table 3.2; these are

obtained by super-imposing the partitions shown above upon the EDF schedule constructed in

Example 3.3.

Ji ai cH
i di χi

J12 1 1 9 HI

J14 1 1 12 HI

J15 1 2 14 HI

J23 9 1 10 HI

J24 9 1 12 HI

J36 10 2 16 HI

Table 3.2: HI-criticality sub-jobs generated by Step 3 of LE-EDF in Example 3.2.

Counting the number of sub-jobs. Although an individual job in an EDF schedule for an instance

of n jobs may be preempted as many as (n− 1) times, it is known (see, e.g., (Buttazzo, 2005))

that the total number of preemptions in any EDF schedule for an n-job instance cannot exceed

(n−1). From this, it follows that the schedule constructed in Step 2 above will contain no more
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than 3nh−1 contiguous chunks of execution (here, a 2nh−1 comes from the fact that nh jobs are

being scheduled using EDF, and an additional nh from the fact that there may be as many as nh

non-contiguous intervals upon which this EDF schedule is executing). Since Step 3 partitions the

timeline into no more than 2n−1 intervals, it follows that the total number of jobs is bounded from

above by 3nh−1+2n−1, which is Θ(n).

3.1.2.2 Run-Time Scheduling (EDF)

We maintain an EDF (priority) queue during run-time for a combination of the LO-criticality

jobs and the HI-criticality sub-jobs (that were constructed during Step 3 above).

We now describe how run-time scheduling decisions are made during the `’th interval I`, for

`= 1,2, . . . ,k:

1. We first insert all LO-criticality jobs and HI-criticality sub-jobs that have their release time

equal to the start of this interval into the EDF queue.

2. We execute jobs (including sub-jobs) in EDF order, giving HI-criticality sub-jobs higher

priority only when tie-breaking jobs with same deadlines. (Note that from the manner in

which the sub-jobs are defined, it is guaranteed that all HI-criticality sub-jobs with deadline at

the end of this interval complete execution by the end of the interval.)

3. At the end of the interval, all jobs in the LO-criticality EDF queue with deadlines at the end

of the interval are dropped.

Example 3.5. We continue scheduling the MC instance considered in Example 3.2 (jobs detailed

in Figure 3.1; the HI-criticality sub-jobs constructed during Step 3 listed in Figure 3.2). To better

illustrate how our algorithm works, we will separately simulate its operation under two different

run-time behaviors of the processor.

§1. We first consider the case where all HI-criticality jobs execute at their LO-criticality WCETs.

The schedule is depicted in the following figure. (Since sub-job numbers align with interval number,

we only label the job numbers.)
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J4 J1 J4 J2 J1 J5 J3 J6
-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

66 6 66

? ? ?

a4 a1,a5 a2 a3 d2,a6 d1 d6,d3

• For Interval I1 = [0,1), since no HI-criticality sub-job is allocated here, J4 will be executed

as the earliest deadline LO-criticality job.

• Sub-job J12 executes for 1 time units at the beginning of Interval I2 = [1,9). The remaining

capacity will be used for jobs with deadline greater than 9. As the earliest deadline LO-

criticality job, J4 executes first and completes at t = 9, after which J14 executes over the

interval [8,9) (and also completes).

• Sub-job J23 is executed in Interval I3 = [9,10), and completes at time t = 10.

• Since all HI-criticality jobs execute at their LO-criticality WCETs, both J1 and J2 are already

finished at t = 10, and sub-jobs J15 and J24 require no execution. As a result, the earliest

deadline active job (which is J5) executes over the interval [10,11); following by the execution

of the only active sub-job J36 until t = 12.

• J36 continues its execution in Interval I5 = [12,14) and finishes by t = 13, while the remaining

capacity should be used for the only active job J6.

• The only active LO-criticality job J6 executes until it completes at t = 16.

§2. Now we consider the case where HI-criticality jobs J1 and J2 execute at their HI-criticality

WCETs. The schedule is depicted in the following figure.

J4 J1 J4 J2 J1 J2 J1 J3 J6
-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

66 6 66

? ? ?

a4 a1,a5 a2 a3 d2,a6 d1 d6,d3
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• Execution in Intervals I1 = [0,1), I2 = [1,9), and I3 = [9,10) remains the same as in the

previous case. (Note that although HI-criticality job J1 requires more execution now, we do

not consider such “upgrade” until all its pre-allocated amounts are finished, which is in

Interval I4.)

• Both J14 and J24 need to complete within interval I4 = [10,12). No capacity remains and the

LO-criticality job J5 is dropped at its deadline t = 12.

• The interval [12,13) is consumed by J15. At time t = 13, there are two active jobs J36 and J6

with the same deadline, and according to the algorithm, we favor HI-criticality jobs in such

case, which results in execution of J3 within [13,14), and then J6 afterwards.

Computational complexity. We have seen in Sec. 3.1.2.1 above that Algorithm LE-EDF generates

no more than Θ(n) HI-criticality sub-jobs during the preprocessing phase; during run-time, these

sub-jobs are scheduled for execution along with the LO-criticality jobs. We note that standard

techniques (see, e.g., (Mok, 1988)) for implementing EDF are known, that allow an EDF schedule

for n jobs to be constructed in Θ(n logn) time. Consequently, we conclude that the EDF-schedule

of Step 2 can be constructed in Θ(nh lognh) time, and the total scheduler overhead during run-time

is also bounded from above by Θ(n logn).

Remark. LE-EDF applies for tasks with real number parameters — we restrict the examples with

integer time only for easier demonstration and understanding.

3.1.3 Comparison over OCBP

An algorithm named OCBP (for Own Criticality Based Priorities) was proposed in (Baruah

et al., 2010b) for scheduling MC job set, and shown to have a speedup bound of (
√

5+1)/2 (i.e.,

≈ 1.618). To date, this is the best speedup bound known for any algorithm for scheduling such MC

instances.

We start out briefly describing OCBP. Given an MC instance J, OCBP derives offline a priority

ordering for all jobs in the instance, using a variant of the Audsley Optimal Priority Assignment
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scheme (Audsley, 2001), in the following manner (here, “scheduling according to priority” means

that at each moment in time the highest-priority available job is executed). It determines, as

described below, the job that may be assigned lowest priority, and assigns it the lowest priority. This

procedure is repeated for the set of jobs excluding the lowest priority one until all jobs are ordered,

or at certain iteration a lowest priority job cannot be found.

1. We assign the lowest priority to the LO-criticality job with latest deadline if it would complete

by its deadline when every other job were assigned higher priority and execute in their

LO-criticality level WCETs.

2. Else, we assign lowest priority to the latest-deadline HI-criticality job if it would complete

by its deadline when every other job were assigned higher priority and execute in their

HI-criticality level WCETs. Here LO-criticality jobs’ HI-criticality level WCETs remains the

same as their LO-criticality level WCETs.

3. Else, we declare failure.

The following theorem asserts that any instance that can be scheduled by OCBP is also

scheduled by LE-EDF.

Theorem 3.6. Given any set of MC jobs K, if Algorithm LE-EDF fails to complete job(s) at some

criticality level on time (either by missing a deadline, or dropping a job), then so will OCBP.

Proof: There are only two steps during execution at which Algorithm LE-EDF may report a failure

to correctly schedule an instance.

If Algorithm LE-EDF fails at Step 1 when constructing schedule table for HI-criticality jobs,

it directly follows that there is no correct schedule scheme for HI-criticality jobs when they all

execute at their HI-criticality WCETs. Thus, OCBP algorithm will also fail to correctly schedule

this instance.

Now we consider the case that Algorithm LE-EDF fails during run-time, which indicates that

some LO-criticality job Ji missed its deadline and will be dropped at time t = di. We will show that
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OCBP algorithm must also drop a LO-criticality job at or before this time in order to guarantee the

correctness of HI-criticality job execution.

One sub-case is that a HI-criticality job has executed longer than its LO-criticality WCET before

time t = di. OCBP algorithm will immediately drop remaining LO-criticality jobs when it occurs,

which is at or before time t = di.

The other sub-case is that all HI-criticality jobs have executed no longer than their LO-criticality

WCETs (so far). We will prove by contradiction that OCBP algorithm will also drop some job at or

before time t = di.

Assume OCBP algorithm has not dropped any job at or before time t = di, which means that

it makes so far all jobs meet their deadlines at time t = di. Consider only the LO-criticality jobs,

from the description we can easily tell that both algorithms execute them at an EDF order: OCBP

generates the priority list by considering jobs in each criticality level in non-increasing order of

deadlines, while LE-EDF uses the remaining capacity for all LO-criticality jobs in the EDF order

(after pre-allocating and slicing HI-criticality jobs). Since LE-EDF fails to meet some LO-criticality

job’s deadline at di while OCBP does not, it must be the case that OCBP executes LO-criticality jobs

(totally) between time t = 0 and t = di for a longer time than LE-EDF. Thus OCBP has executed

less amounts of HI-criticality jobs until time t = di than LE-EDF 3. However, LE-EDF guarantees

that at this deadline di, all HI-criticality sub-jobs with deadlines on or before di are “must to be

finished”, which means that a shorter accumulated execution time to HI-criticality jobs will cause

a deadline miss in the future. This contradicts the correctness guarantee to HI-criticality jobs of

OCBP, and indicates that our assumption that OCBP algorithm has not dropped any job at or before

time t = di is incorrect. The theorem results from this contradiction.

Lemma 3.7. There exists a job set that LE-EDF can provide a correct schedule, while OCBP fails

to do so.

3Both algorithms have exactly the same idleness periods since (by definition) both will idle the processor
only when there is no active job.
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Proof: Consider the job set in Table 3.1. It has been shown in previous subsections that LE-EDF

can correctly schedule this set. However, this instance is not OCBP-schedulable: after assigning J6

the lowest priority, no job can be further assigned the second lowest priority.

Lemma 3.7 in conjunction with Theorem 3.6, allows us to conclude that LE-EDF dominates

OCBP.

3.1.4 Comparison over MCEDF

An algorithm named MCEDF was recently (Socci et al., 2013) presented for scheduling MC

instances upon processors that are speed bounded by a constant during run-time – i.e., the same

kind of workload scheduled by OCBP – and shown to strictly dominate OCBP (to the best of our

knowledge, MCEDF is the only algorithm proven to dominate OCBP). We do not yet know whether

our algorithm LE-EDF dominates MCEDF or not; we do, however, show below that the converse

cannot be the case.

Theorem 3.8. There are MC instances correctly scheduled by Algorithm LE-EDF that MCEDF

does not schedule in a correct manner.

Proof: We present one such instance:

Ji ai cL
i cH

i di χi

J1 0 2 3 5 HI

J2 1 1 2 3 HI

J3 0 1 1 3 LO

It was shown in (Socci et al., 2013) that this instance is not MCEDF schedulable. The following

schedule shows how LE-EDF schedules this instance, and correctness is thus verified from this

schedule.
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J1 J2 J3 J1
-

0 1 2 3 4 5

6 6

? ?

a1,a3 a2 d2,d3 d1

3.1.5 Experimental Comparisons

We also performed some simulation experiments to complement the theoretical conclusions

of the theory results. The experimental setup is as described in (Socci et al., 2013, Sec. IV). We

generate a large number of MC instances of 20 jobs each according to the following steps.

3.1.5.1 MC Job Generator

Each randomly-generated MC instance is characterized by four parameters:

1. n, the total number of jobs in the instance.

2. uall, a measure of the computational load of the instance. This is equal to the sum of the

WCETs of all the jobs in the instance, normalized by the duration of time spanned by their

scheduling windows4.

3. γ , the expected fraction of jobs that are of HI criticality.

4. ζ , the expected number of jobs with scheduling windows that overlap (cover) each time

instant. A value ζ = 1 suggests that there are no overlaps between the scheduling windows of

any pair of jobs, while ζ = n means that all jobs have the same release date and deadline).

With values specified for these four parameters, the individual jobs composing the instance are

generated randomly according to the following steps.

§1: Release dates. We model job arrivals by a (memoryless) Poisson process. I.e., we generate

(n−1) independent and identically distributed random variables xi according to the exponential

4The scheduling window of a job is the duration between the job’s release time and its deadline.
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distribution with λ = 1. The first job is assigned release date zero (a1 := 0); subsequent release

dates are assigned values as ai+1 := ai + xi.

§2: Deadlines. We follow the procedure suggested in (Baruah et al., 2011b) and model relative

deadlines (the duration between release date and deadline) as independent and identically distributed

random variables drawn from the log-uniform distribution (exponential of uniform distribution

U [bl,bu]).

To obtain the desired values we chose bl ← 0 and bu to be the solution to the equation

eb
u− ζ bu− 1 = 0 (the equation is solved numerically using the Newton-Raphson method), so

that expectation for the log-uniform distribution is E(c) = (ebu − ebl)/(bu− bl) = ζ . Since in

expectation, a job is released every (λ = 1) time unit[s], and will have a scheduling window of

duration ζ time units, the expected number of jobs with scheduling windows covering each time

instant approaches ζ with increasing n.

§3: Criticality Level. Each job is assigned criticality HI with probability γ (and hence, criticality

LO with probability (1− γ)).

§4: Worst Case Execution Time (WCET). Once all the release dates and deadlines have been

assigned, we can determine the total duration of time covered by all the jobs’ scheduling windows

— this is equal to the latest deadline minus the duration of those intervals that do not lie within any

scheduling window. Let Lact denote this duration. The parameter uall characterizing this workload

now determines the cumulative WCETs of all the jobs: ∑i ci = σ := uallLact.

An additional straightforward restriction on the WCET of each job is that it cannot exceed the

relative deadline of the job. Let d′i denote the relative deadline of the i’th job. Our method generates

WCET one by one in increasing order of relative deadline: In the generation of the i’th WCET ci,

given c1, ...,ci−1, the following two inequalities may provide a tighter bound:

ci ≥ σ −
i−1

∑
j=1

c j−
n

∑
j=i+1

d′j

ci ≤ σ −
i−1

∑
j=1

c j.
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It is evident that if either of these equations is violated, the sum of all the WCETs will not equal σ

no matter what values the remaining c j take in their respective ranges [0,d′j], j = i+1, ...,n.

Thus for each of i = 2, ...,n−1, the bound for generating the WCET should be

ci ≥ lb(ci) := max{0,σ −
i−1

∑
j=1

c j−
n

∑
j=i+1

d′j}

ci ≤ ub(ci) := min{d′i ,σ −
i−1

∑
j=1

c j}

The bound of c1 is simpler, with lb(c1) = max{0,σ −∑
n
j=2 d′j} and ub(c1) = d′1; and cn is set

equal to σ −∑
n−1
j=1 c j. Note that we will only discuss how to randomly generate c1, ...,cn−1 properly

in the following, thus i will only take values from 1 to n−1.

Although we have determined upper and lower bounds on each ci value, we cannot simply

choose the ci’s uniformly in the calculated range [lb(ci),ub(ci)]. In order to ensure an unbiased

random generation, the expectation (i.e., the mean value) of each WCET needs to be fixed, and

may not be (lb(ci)+ub(ci))/2. Here we assume the sum of the WCETs, which equals σ , is to be

shared “fairly” according to relative deadlines. In this context, fairness would dictate that the jobs

with longer relative deadline d′i gets a relatively larger expectation of WECT ci. More precisely, we

desire that the expected values E(Ci) of the WCET’s – the ci values – satisfy

E(ci) = σ ×
(

d′i/
( n

∑
i=1

d′i
))

We have chosen the beta distribution to generate these random values ci within the computed ranges

[lb(ci),ub(ci)] and the desired expected value E(ci). One the parameters of beta distribution is fixed

to be α(ci) = 2, and the other is given by

β (ci) = 2×
(ub(ci)−E(ci)

E(ci)− lb(ci)

)
Since the beta distribution generates random values over [0,1] with expectation value of α/(α +

β ) = (E(ci)− lb(ci))/(ub(ci)− lb(ci)), we need to scale the values into the ranges [lb(ci),ub(ci)]
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by multiplying by (ub(ci)− lb(ci)) and adding lb(ci). This ensures that the expectation of ci is

(E(ci)− lb(ci))/(ub(ci)− lb(ci))× (ub(ci)− lb(ci))+ lb(ci) which is equal to E(ci) as desired.

The Matlab code of the generator is available at:

http://www.cs.unc.edu/~zsguo/files/MC_job_creator_R.zip.

3.1.5.2 Schedulability Comparison.

In the experiments of this section, the parameters `LO(·) and `HI(·) (see Def 2.6) of the generated

instances range from 0 to 1, with step 0.01. Only “overloaded” instances – those satisfying

`2
LO(J)+ `HI(J) > 1 – are considered since all three algorithms are successful in scheduling the

non-overloaded ones.

Among the 33511 successfully generated instances, OCBP fails to schedule 5076 (≈ 15.1%).

From amongst these5, MCEDF reports failure as well for 1986 (≈ 5.9%), only 109 (≈ 0.3%) of

which are also unschedulable by LE-EDF. Further, all the instances scheduled by MCEDF (and

OCBP) were also scheduled by LE-EDF.

Figure 3.1 depicts the schedulability results for the three algorithms. Instances with similar `LO

and `HI values are put into a same small block (with a typical size of 10 to 15 instances). The color

of each small block represents the percentage of schedulable sets.

In all these and several other experiments not discussed here, we have not been able to identify

any instance that can be scheduled by MCEDF but not by LE-EDF. Although this certainly does

not constitute formal proof that LE-EDF dominates MCEDF, it seems clear that generally speaking,

LE-EDF is superior to the other two existing algorithms, both in terms of schedulability (as shown

in the experiments), and run-time complexity (theoretically shown to be Θ(n logn), where n = |J|,

which is asymptotically much better than OCBP and MCEDF’s Θ(n2 logn)).

5There are no instances scheduled by OCBP but not MCEDF — this is as expected since MCEDF was
shown (Socci et al., 2013) to dominate OCBP.
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3.2 MC Task Scheduling on Uni-Processor

Much work has been done on scheduling MC sporadic task set (with implicit deadlines) upon

a uniprocessor platform, and algorithms like EDF-VD (Baruah et al., 2012b) has shown to have

an optimal speedup of 4/3 (i.e., the speedup cannot be further improved for any non-clairvoyant6

algorithm). Nevertheless, in this section, we show that by extending the current Vestal model, a new

algorithm can be derived with better experimental performance comparing to EDF-VD.

More precisely, this section introduces a new parameter to each dual-criticality MC task that

represents the distribution information about its WCET and provides schedulability analysis with

respect to the given safety certification requirement of the whole system, which is the permitted

system failure probability per hour (FPH). As stated above, dual-criticality tasks are traditionally

characterized with two WCET estimations — a LO-WCET and a larger HI-WCET. Our contributions

are as follows:

• We propose a supplement to current MC task models: an additional parameter for each

HI-criticality task, denoting the probability of no job of this task exceeding its LO-WCET

within an hour of execution.

• We further generalize our notion of system behavior by allowing for the specification of

FPH, denoting an upper bound on the probability that the system may fail to meet its timing

constraints during any hour of running.

• We derive a novel scheduling algorithm (and an associated sufficient schedulability test) for a

given MC task set and an allowed system FPH. We seek to schedule the system such that the

probability of failing to meet timing constraints during run-time is guaranteed to be no larger

than the specified allowed system FPH.

We emphasize that our algorithm, in the two criticality level case, requires just one probabilistic

parameter per task — the probability that the actual execution requirement will exceed the specified

6A clairvoyant scheduler has the privilege of knowing the system execution behavior, e.g., whether a task τi would
signal its finishing when being executed for cl

i time units, for any l, prior to run-time.
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LO-WCET in an hour. We believe our scheduling algorithm is novel in that it is, to our knowledge,

the first MC scheduling algorithm that makes scheduling decisions (e.g., when to trigger a mode

switch) based not only on release dates, deadlines, and WCETs, but also on the probabilities drawn

from probabilistic timing analysis tools (see (Cazorla et al., 2013) (Hansen et al., 2009) (Cucu-

Grosjean et al., 2012) for examples of such tools). Most of the contributions made in this section

can be found at (Guo et al., 2015).

3.2.1 Motivation and Prior Work

Safety-critical systems are failure prone as any other system, and today’s system certification

approaches recognize this and specify permitted system FPHs. The underlying idea is to certify

considering more realistic system models which account for any possible behavior, included faulty

conditions, and the probability of these behaviors occurring. The gap that still exists is between such

enhanced models and the current conservative deterministic analyses which tend to be pessimistic.

The worst-case execution time (WCET) abstraction plays a central role in the analysis of

real-time systems. The WCET of a given piece of code upon a specified platform represents an

upper bound to the duration of time needed to finish execution. Unfortunately, even when severe

restrictions are placed upon the structure of the code (e.g., known loop bounds), it is still extremely

difficult to determine the absolute WCET. An illustrative example is provided in (Souyris et al.,

2005), which demonstrates how the simple operation “a = b + c” on integer variables could take

anywhere between 3 and 321 cycles upon a widely-used modern CPU. The number of execution

cycles highly depends on factors such as the state of the cache when the operation occurs. WCET

analysis has always been a very active and thriving area of research, and sophisticated timing

analysis tools have been developed (Wilhelm et al., 2008).

Traditional rigorous WCET analysis may lead to a result of much pessimism, and the occurrence

of such WCET is extremely unlikely, unless under highly pathological circumstances. For instance,

although a conservative tool would assign the “a = b + c” operation a WCET bound of 321 cycles,

a less conservative tool may assign it a much smaller WCET (e.g., 30) with the understanding that
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the bound may be violated on rare occasions under certain (presumably highly unlikely to occur)

pathological conditions.

Under the current mixed-criticality model, it is assumed that all HI-criticality jobs may require

executions up to their HI-WCETs in HI mode simultaneously. EDF-VD is a well-known MC

scheduler with optimal speedup bound under such an assumption.

Overview of EDF-VD (Baruah et al., 2011a)(Baruah et al., 2012b). Given a set of dual-criticality

tasks τ = {τ1, ...,τn} to be scheduled on a unit-speed processor, EDF-VD computes the shrinking

factor x as x←UL
H/(1−UL

L ), and checks whether xUL
L +UH

H ≤ 1. If so, it sets virtual deadlines T̂i

for each HI-criticality task τi as T̂i← xTi; and if not, it declares failure. Run-time scheduling is done

according to EDF order with virtual deadlines under normal mode. If some job does execute beyond

its LO-criticality WCET without signaling that it has completed execution, then all LO-criticality

jobs are immediately discarded, and HI-criticality tasks continue execution according to EDF with

their actual job deadlines (instead of virtual ones).

However, since WCET tools are normally quite pessimistic, LO-WCET are not very likely to

be exceeded during runtime.

Example 3.9. Consider a system composed of two independent7 HI-criticality tasks τ1 and τ2,

where each task is denoted by two utilization estimations uL ≤ uH . The two tasks τ1 = {0.4,0.6},

τ2 = {0.3,0.5}, represented by utilizations in different modes, are to be scheduled on a preemptive

unit-speed uniprocessor. It is evident that this system cannot be scheduled correctly under the

traditional model, since the HI-criticality utilization, at (0.6+0.5), is greater than the processor

capacity which is 1.

However, suppose that: (i) absolute certainty of correctness is not required; instead it is

specified that the system FPH should not exceed 10−6; and (ii) it is known that the timing analysis

tools used to determine LO-criticality WCETs ensure that the likelihood of any job of a task exceeding

its LO-WCET is no larger than 10−4 per hour. Based on the task independence assumption, the

probability of jobs from both tasks exceeding their LO-WCETs is 10−4× 10−4 = 10−8 per hour.

7Two events are independent if the occurrence of one event does not have any impact on the other.
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Thus, we know that it is safe to ignore the case that both tasks simultaneously exceed their LO-

WCETs. Hence, the system is probabilistically feasible, since the total remaining utilization will not

exceed: max{0.4+0.3,0.4+0.5,0.6+0.3} = 0.9 ≤ 1.

Example 3.9 gives us an intuition that with the help of probabilistic analysis, we may be able

to ignore some extremely unlikely cases, and come up with some less pessimistic schedulability

analysis — if we have the prior knowledge that there will be at most a fixed number of HI-criticality

tasks with execution exceptions per hour, dropping of less important jobs may not be necessary at

all.

Schedulability with Probabilities. In order to formally describe the uncertainty of the WCET

estimations and overcome the over-pessimism, many attempts in introducing probability to real-time

system model and analysis have been made.

Edgar and Burns (Edgar and Burns, 2001) made a major step forward in introducing the concept

of probabilistic confidence to the task and the system model. Their work targets the estimation of

probabilistic WCETs (pWCETs) from test data for individual tasks, while providing a suitable lower

bound for the overall confidence level of a system. Since then, on one hand much work has been

done to provide better WCET estimations and a predicted probability of any execution exceeding

such estimation alongside the usage of extreme value theory, e.g., (Hansen et al., 2009) (Griffin

and Burns, 2010) (Cucu-Grosjean et al., 2012). In static probabilistic timing analysis, random

replacement caches are applied to compute exact probabilistic WCETs, and probabilistic WCET

estimations with preemptions, (Davis et al., 2013). More recently, researchers have initiated some

pWCET estimation studies (Slijepcevic et al., 2013) (Hardy and Puaut, 2013) in the presence of

permanent faults and disabling of hardware elements. On the other hand, there is only one piece

of work which proposes probabilistic Execution Time (pET) estimation (David and Puaut, 2004)

based upon a tree-based technique. The pET of a task describes the probability that the execution

time of the job is equal to a given value, while the pWCET of a task describes the probability that

the worst-case execution time of that task does not exceed a given value.
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Based upon the estimated pWCET and pET parameters (often as distributions with multiple

values and associated probabilities), studies aim to provide estimations that the probability of missing

a deadline of the given system is small enough for safety requirements; e.g, of the same order of

magnitude as other dependability estimations. Tia et al. (Tia et al., 1995) focus on an unbalanced

heavy loaded system (with maximum utilization larger than 1 and much smaller average utilization)

and provide two methods for probabilistic schedulability guarantees. Lehoczky (Lehoczky, 1996)

proposes the first schedulability analysis of task systems with probabilistic execution times. This

work is further extended to specific schedulers, such as earliest deadline first (EDF, (Liu and Layland,

1973)) in (Zhu et al., 2002) and under fixed priority policy in (Gardner and Liu, 1999). (Dı́az et al.,

2002) provides a very general analysis for probabilistic systems with pWCET estimations for

tasks. In addition to WCET estimations, statistical guarantees are performed upon the minimum

inter-arrival time (MIT) estimation as well (Abeni and Buttazzo, 1999) (Maxim and Cucu-Grosjean,

2013). Schedulability analysis based on pETs (instead of pWCETs) is also done in (Hansen et al.,

2002) for limited priority level case (quantized EDF), and in (Manolache et al., 2004) where

an associated schedulability analysis on multiprocessors is presented. Statistical response-time

analysis, e.g., (Lu et al., 2012), can be further done to real-time embedded systems based upon the

probabilistic schedulability analysis.

Unfortunately, most existing studies have only shown probabilistic schedulability analysis

(e.g., estimating the likelihood for a system to miss any deadline) or probabilistic response time

analysis to existing algorithms such as EDF and fixed priority scheduling, instead of incorporating

probabilistic information into the scheduling strategy. In other words, current research has not

addressed the possibility of making smarter scheduling decisions with probabilistic models from

existing powerful probabilistic timing analysis tools (e.g., (Bernat et al., 2003)) that provide WCET

bounds and specified confidences. To our best knowledge, there is only one piece of work presenting

scheduling algorithms for probabilistic WCETs of tasks described by random variables (Maxim

et al., 2011), which extends the optimality of Audsley’s approach (Audsley, 2001) in fixed-priority

scheduling to the case WCETs are described by distribution functions.
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Finally, none of the existing schedulability analysis work regarding mixed-criticality considered

pWCET. Since the major goal of both mixed-criticality and introducing probability are the same,

which is to better deal with the over-pessimism of running time estimations, we believe a model that

considers both aspects would lead us to much more promising results in real-time system design

and verification.

3.2.2 Model

We start out considering a workload model consisting of independent implicit-deadline sporadic

tasks, where the deadline and the period of a task share the same value (in contrast to constrained-

deadline ones). Throughout this section, an integer model of time is assumed — all task periods are

assumed to be non-negative integers, and all job arrivals are assumed to occur at integer instants in

time.

In traditional MC models, each HI-criticality task is characterized by two WCETs, CL and

CH , which could be derived with different timing analysis tools. By the level of pessimism and/or

other properties in the timing analysis, such a tool usually provides a confidence for its resulting

WCET estimates. However, no prior work on MC analysis has leveraged any information from the

confidence of the provisioned WCET.

Existing MC analysis usually makes the most pessimistic assumption that every HI-criticality

task may execute beyond its LO-WCET and reach its HI-WCET simultaneously.

In real applications, the industry standards usually only require the expected probability of

missing deadlines within a specified duration to be below some specified small value, as the deadline

miss can be seen as a faulty condition. Instead, our work aims at leveraging probabilistic information

from the timing analysis tools (i.e. confidence) to rule out the too pessimistic scenarios and to

improve schedulability of the whole system under a probabilistic standard.

Our work also differs from most prior work on WCET analysis as follows. Existing timing

analysis work usually analyzes the WCET for a task on a per-job basis; i.e., by focusing on the

distribution of WCETs of jobs of a certain task. When it comes to analyzing a series of consecutive
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jobs generated from the same task, the distribution is directly applied. It is usually assumed that

i) all jobs WCET of a certain task obey the same distribution (identically distributed), and ii) the

WCET of a job is probabilistically drawn from the distribution with no dependence on other jobs of

the same task (independence).

While the independence assumption holds for the worst-case execution time, as we will see

in Sec. 3.2.3, it may not hold for the task execution time. For example, in many applications

such as video frames processing, the execution times of processing consecutive frames of a certain

video are usually dependent. However, the event that a certain task has ever overrun its provisioned

execution time in time intervals of a certain adequate large length (e.g., an hour) is independent

from the scenario in other such intervals, and the probability of such event should be derived from

the confidence of corresponding timing analysis tools only.

Before detailing our task model, few statistical notions need to be introduced in order to

clarify previous and next observations. Given a task τi, its pWCET estimate comes from a random

variable (the worst-case execution time distribution), notably continuous distributions8 denoted by

Ci. Equivalent representations for distributions are the probabilistic density functions (pdfs), fCi , the

Cumulative Distribution Functions (CDFs) FCi , and the Complementary Cumulative Distribution

Functions (CCDFs), F ′Ci
. In the following, calligraphic uppercase letters are used to refer to

probabilistic distributions, while non-calligraphic letters are used for single value parameters.

The CCDF representation relates confidence to probabilities; indeed, from F ′Ci
(CL) we have the

probability of exceeding CL. The confidence is then for CL being an upper-bound to task execution

time. The WCET threshold, simply named pWCET or WCET in the rest of the section, is a tuple

〈CL, p(LO)〉, where the probability p(LO) sets the confidence (at the job level) of exceeding CL,

p(LO) = F ′C (C
L) = P(C >CL). By decreasing the probability threshold p(LO), thus, the confidence

on the upper-bounding worst-case, CL increases.

8The timing analysis that makes use of the extreme value theory, by definition provides continuous distributions as
pWCET estimates,(Cazorla et al., 2013); they are then discretized, to ease their representation, by assigning them a
discrete support.
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Given A the event that a job exceeds its threshold and pA = P(Ci > CL) its probability of

happening; given B the event that another job exceeds its threshold (in a different execution interval)

with pB = P(Ci >CL) its probability of happening. With separate jobs as well as separate execution

intervals, and considering WCETs, the conditional probability P(A|B) is equal to P(A), thus, the

joint probability is

P(A,B) = P(A|B)×P(B) = P(A)×P(B), (3.1)

due to the independence between WCETs. Projecting the per job probability threshold p(LO) =

F ′Ci
(CL) to one-hour task execution interval, we make use of the joint probability of all the exceeding

threshold events within the one-hour interval. The joint probability is

P(Ci >CL,Ci ≤CL,Ci ≤CL, . . . ,Ci ≤CL), (3.2)

as the probability of just a task job exceeding its thresholds CL, and all the others not exceeding CL.

With full independence, the probability of exceeding the threshold in one hour would be at most

1−FCi(C
L)×bTi/3,600,000c, with the task τi period Ti expressed in msec.

3.2.3 Probabilistic Schedulability

In our model, an allowed system FPH FS is specified. It describes the permitted probability of

the system failing to meet timing constraints during one hour of execution FS may be very close to

zero (e.g., 10−12 for some safety critical avionics functionalities).

A failure probability parameter fi can be added to the HI-criticality tasks. fi denotes the

probability that the actual execution requirement of any job of a HI-criticality task τi exceeds CL
i

(but still below CH
i ) in one hour (i.e., the adequate long time interval we assumed in this section). fi

depends on a failure distribution Fi(t) that describes the task τi probability of failure (at least) up to

and including time t. Since Fi(t) would refer to time (interval) and to task execution, it is going to

51



be the one we computed for one-hour interval or any another interval, Equation ((3.2)). Thus, fi is

directly derived from FCi .

Thus, a HI-criticality task is represented in our model by four parameters: τi = ([CL
i , CH

i ],

fi,Ti,χi); LO-criticality tasks continue to be represented by three parameters as before. This

enhanced model is essentially asserting, for each HI-criticality task τi, within a time interval of

one hour, no job of τi has an execution greater than CH
i and the probability of any job of τi has an

execution greater than CL
i is fi > 0 — we would expect fi to be a very small value. In our work

we assume CH
i the deterministic WCET, 〈CH

i ,0〉, while 〈CL
i , fi > 0〉 the probabilistic WCET with

CL
i ≤CH

i . Normally we do not guarantee higher assurance for LO-criticality tasks (than HI-criticality

ones), and thus only CL
i are adopted for them.

Definition 3.10 (MC Task Instance). An MC task instance I is composed of an MC task set

τ = {τ1,τ2, . . . ,τn} and a system failure requirement FS ∈ (0,1). (Although FS may be arbitrarily

close to 0, FS = 0 is not an acceptable value — “nothing is impossible.”)

Let nHI ≤ n denote the number of HI-criticality tasks in τ . We assume that the tasks are

indexed such that the HI-criticality ones have lower indices; i.e., the HI-criticality tasks are indexed

1,2, . . . ,nHI.

We seek to determine the probabilistic schedulability of any given MC task instance:

Definition 3.11 (probabilistic schedulability). An MC task set is strongly probabilistic schedulable

by a scheduling strategy if it possesses the property that upon execution, the probability of missing

any deadline is less than FS. It is weakly probabilistic schedulable if the probability of missing any

HI-criticality deadline is less than FS. (In either case, all deadlines are met during system runs

where no job exceeds its LO-WCET.)

That is, if a schedulability test returns strongly schedulable, then all jobs meet their deadlines

with a probability of no less than 1−FS, while weakly schedulable only guarantees (with probability

no less than 1−FS that) HI-criticality jobs meet their deadlines. Moreover, similar to all MC

works, for either strongly or weakly probabilistic schedulable, all deadlines are met when all jobs
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finish upon executing their LO-WCETs. Again, FS comes from the natural need of some system

certifications, while fi is the additional information for each task that we need to derive from WCET

estimations to achieve such probabilistic certification levels.

3.2.3.1 On the WCET Dependencies

In our model, the FPH of each task fi represents the probability of any job of the task τi

exceeding its LO-WCET. Thus, dependences between tasks and task executions could have a strong

impact on fi. We hereby detail how we intend to cope with statistical dependence.

In (Cucu-Grosjean, 2013) it has been shown that neither probabilistic dependence among

random variables nor statistical dependence of data implies the loss of independence between tasks’

pWCETs or WCET estimates. The WCET is an upper-bound to any execution time, and it embeds

all the dependence effects. This makes the important consequence of the independence between

WCETs: jobs and tasks modeled with WCETs are independent because WCETs already embed

dependence effects.

In our MC study, the LO-WCET may come from consideration of the execution time rather than

of the WCET. Although both execution bounds (LO-WCET and HI-WCET) are so far called worst-

case execution time estimations, the LO-WCET may also serve as an execution time upper-bound,

where dependence between tasks and within tasks needs to be more carefully accounted for.

Each MC task may generate an unbounded number of jobs. Since jobs generated from the same

task set typically represent the execution of the same piece of code, the failure probability fi of a

task τi represents the likelihood that the required execution time of any job generated within an

hour by τi will exceed CL
i . In (Santinelli et al., 2014; Melani et al., 2013) it has been showed that

real safety-critical embedded systems have natural variability on the task execution time, thus it is

reasonable to assume independence or extremal independence between jobs.

Concerning task dependencies, we can cope with the dependence by specifying the task

pairwise dependence model. Assuming we are given a list of pairs (τi,τ j) indicating that (WC)ETs

of these two tasks may be dependent on each other. It means that the probability of them both
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exceeding their LO-WCET is no longer the product of their individual probabilities. By knowing

P(Ci > CL
i ,C j > CL

i ) we are able to model (τi,τ j) dependence including execution time task

dependencies in our framework, Sec. 3.2.4. However, it is reasonable to assume that many (or most)

task pairs do not have such dependencies to each other (although at the execution time level), since

the limited impact of one task to another in a mixed-critical partitioned system. Furthermore, it is

worthy to note that execution times are observed with other tasks executing in parallel, thus, the

execution time measuring embeds already dependence effects from other tasks. In future work, we

will explain better task dependence modeling at run-time.

To resume, the dependence between jobs of the same task and between tasks are covered by

our model.

3.2.3.2 Utilization Costs

The notion of additional utilization cost, defined below, helps quantify the capacity that must

be provisioned under HI-criticality mode.

Definition 3.12 (additional utilization cost). The additional utilization cost of HI-criticality task τi

is given by

δi = (CH
i −CL

i )/Ti. (3.3)

Since we consider EDF schedulability instead of fixed priority, we would like to know whether,

and how likely system utilization may exceed 1: (i) if it is extremely unlikely that the total HI-

criticality utilization exceeds 1 (weakly probabilistic schedulable), we could assert a system that is

infeasible in traditional MC model to be probabilistic feasible; (ii) if it is extremely unlikely that

total system utilization exceeds 1 (strongly probabilistic schedulable), we could decide not to drop

any LO-criticality task even if some HI-criticality tasks accidentally suffer from failures (that they

require more execution time than expected).

Example 3.9 has shown an infeasible task set (under traditional MC scheduling) being weakly

probabilistic schedulable under our model. As seen from the definitions, existing mixed-criticality

systems are often analyzed under two modes — the HI mode and the LO mode, and mode switch is
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triggered when any HI-criticality job exceeds its LO-WCET without signaling finishing. Upon such

a mode switch, deadlines of all LO-criticality jobs will no longer be guaranteed. A natural question

arises — is such sacrifice (dropping all LO-criticality jobs) necessary whenever a HI-criticality job

requires execution for more than its LO-WCET? The following example illustrates the potential

benefits in terms of enhanced schedulability of the proposed probabilistic MC model.

Example 3.13. Consider a system composed of the three independent MC implicit-deadline tasks

that τ1 = {[2,3],0.1,5,HI}, τ2 = {[3,4],0.05,10,HI}, and τ3 = {[1,1],10,LO}, to be scheduled on

a preemptive uniprocessor, with desired system FPH threshold of FS = 0.01.

Since HI-utilization of the system is uH = 2/5+4/10 = 1, any deterministic MC scheduling

algorithm will prioritize τ1 and τ2 over the LO-criticality task τ3, and drop τ3 if any HI-criticality

job exceeds its LO-WCET.

With the additional probability information provided in our richer model, however, more

sophisticated scheduling and analysis can be done. Recall from the definition of fi, τ1 has a

probability of no larger than 0.1 to exceed a 2-unit execution within an hour, while the probability of

any job in τ2 exceeding a 3-unit execution within an hour is 0.05. Under the task-level independence

assumption, the probability of jobs from both HI-criticality tasks requiring more than their LO-

WCETs in an hour (P(x1 = x2 = 1) = P(x1 = 1)×P(x2 = 1) = 0.1×0.05 = 0.005) is smaller than

FS
9. Hence, in the schedulability test of such system, we do not need to consider the case that both

HI-criticality tasks exceed their LO-WCETs simultaneously.

Moreover, either one of them exceeding its LO-WCET will not result in an over-utilized system

— a “server” τs = {0.2,1,HI} can be added to provide the additional capacity (over and above

the LO-WCET amount). This server will be scheduled and executed as a virtual task, and both

HI-criticality tasks may run on the server.

The total system utilization thus provisioned for the HI-criticality tasks is 2/5+3/10+0.2/1 =

0.9; upon provisioning an additional utilization of 1/10 = 0.1 for the LO-criticality task τ3, the

9In general, we cannot simply ignore an event when its failure probability is below FS. Instead, we do not need to
consider a set of events only when the sum of their failure probability is below FS. More details on this can be found in
Sec. 3.2.4.
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total utilization becomes 1. Thus under any optimal uniprocessor scheduling strategy, e.g., EDF,

the failure (any deadline miss) rate of the system in any hour will be no greater than FS, and the

MC instance is strongly probabilistic schedulable under this scheduling strategy (EDF plus the

HI-criticality server) for the specified threshold FS.

3.2.4 Scheduling Strategy

3.2.4.1 The LFF-Clustering Algorithm

In this subsection, we present our strategy for scheduling independent preemptive MC task

instances, by combining HI-criticality tasks into clusters intelligently, and provide a sufficient

schedulability test for it. Consider what we have done in Example 3.13 above. We essentially:

(i) conceptually combined the HI-criticality tasks τ1 and τ2 into a single cluster, provisioning an

additional server into the system to accommodate their possible occasional HI-mode behaviors

(execution beyond their LO-WCETs); and (ii) performed two EDF schedulability tests: one con-

sidering only HI-criticality tasks (with LO-WCETs) and the server, and the other also considering

the LO-criticality task (τ3). Since both tests succeed, we declare strongly probabilistic schedulable

for the given instance; we would have declared weakly probabilistic schedulable if the second

schedulability test had failed while the first one succeeded.

The technique that was illustrated in Example 3.13 forms the basis of the scheduling strategy

that we derive in this section. To obtain a good upper bound to HI-criticality utilization of the system,

we combine tasks into clusters — suppose that the nHI HI-criticality tasks have been partitioned

into M clusters G1,G2, ...,GM, and let yi ∈ {1,2, ...,M} denote to which cluster (number) task τi is

assigned.

Definition 3.14 (Failure probability of a cluster). Failure of a cluster Gm is defined as job generated

by more than one task in a single cluster exceeding their LO-WCETs within an hour. The probability
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of a failure occurring in cluster m is denoted as gm and is given by

gm
def
= 1− ∏

i|yi=m
(1− fi)− ∑

j|y j=m
f j

∏i|yi=m(1− fi)

1− f j
, (3.4)

where the second term of right-hand side is the probability of no task (in the cluster) exceeding

its LO-WCET, and the last term represents the probability of exact one of the tasks exceeding its

LO-WCET in an hour.

Lemma 3.15. If gm < FS/M holds for any cluster Gm, then the probability of having no failure in

any cluster is greater than (1−FS).

Proof: Since clusters do not overlap with each other (each HI-criticality task belongs to a single

cluster) and thus are independent to each other, the probability of having no failure in any cluster

is given by the product of each cluster being failure-free, which is: ∏
M
m=1(1− gm) > ∏

M
m=1(1−

FS/M) = (1−FS/M)M ≥ 1−FS (From Binomial Theorem).

Lemma 3.15 provides a safe failure threshold FS/M for each cluster; i.e., the rule for forming

clusters is gm < FS/M, where M is the current number of clusters.

The additional utilization cost of a cluster Gm is defined to be equal to the additional utilization

cost (δi) of the task within the cluster with the largest δi value; i.e.,

∆m
def
= max

i|τi∈Gm
δi. (3.5)

The total system additional utilization cost is given by the sum of additional utilization cost of

all M clusters;

∆
def
=

M

∑
m=1

∆m. (3.6)

A critical observation is that, if a task τi with additional utilization cost δi has been assigned

to a cluster, assigning any other task τ j with δ j ≤ δi to the cluster will not increase the additional

utilization cost. To minimize the total additional utilization cost of the entire task set, we therefore

greedily expand existing clusters with tasks of larger additional utilization cost while ensuring that
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the relationship gm < FS/M continues to hold, leading to the Largest Fit First (LFF)-Clustering

algorithm.

Algorithm 1: Algorithm LFF-Clustering
Input: FS, { fi}nHI

i=1, {δi}nHI
i=1

Output: maximum total additional utilization cost ∆

begin
Sort the tasks in non-increasing order of δi;
m← 1, M← nHI, yi← 0 for i = 1, ...,n;
while ∏

nHI
i=1 yi = 0 (an unassigned task exists) do

∆m← 0 (additional utilization of each cluster);
for i← 1 to nHI do

if yi > 0: continue;
yi← m, M←M−1;
if gm ≥ FS/M: yi← 0, M←M+1;

∆m←maxi|yi=m δi;
m← m+1;

return ∑
M
m=1 ∆M;

This algorithm greedily expands each existing cluster with unassigned tasks while the condition

gm < FS/M holds; while a new cluster is created only if it is not possible to assign a task to any

current cluster without violating the condition (gm < FS/M).

Remark 1. Similar to what has been done in (Dı́az et al., 2002) and (Maxim and Cucu-Grosjean,

2013), we may achieve a precise distribution to the total utilization of all tasks by applying the

convolution operation ‘⊗’, which results in an exponential (O(2nHI), to be precise) running time

(see Sec. 3.2.4.2). The sufficient schedulability test based on the LFF-Clustering algorithm runs in

O(n2
HI) time, where nHI is the number of HI-criticality tasks.

Remark 2. In the case that all tasks share the same fi value, the schedulability test based on

LFF-Clustering becomes necessary and sufficient.

Run-Time Strategy. During execution, a HI-criticality server τs with utilization ∆ and a period

of 1 tick is added to the task system. We need the server period as 1 tick because the mechanism
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and the analysis will not work if there is release or deadline within a server period. At any time

instant that the server is executing, the active10 HI-criticality job, if any, with the earliest deadline,

is executed; if there is no such job, the current job of the server is dropped11. All jobs including

the server are scheduled and executed in EDF order, and a job is dropped at its deadline if it is not

completed by then.

Note that although we introduce a server task with a period of 1, preemption does not necessarily

happen that often. The goal of the sever task with utilization ∆ is to preserve a “bandwidth” of at

least ∆ for HI- criticality jobs if the HI-criticality ready queue is not empty. There are three situations

to be considered:

Situation 1: The job with the earliest deadline is a HI-criticality job. In this situation, we execute

the HI-criticality job with 100% processor share, and no more preemption is incurred by the server.

Situation 2: The job with the earliest deadline is a LO-criticality job and the HI-criticality ready

queue is empty. In this situation, we execute the LO-criticality job with 100% processor share, and

hence, there is no additional preemption in this situation either.

Situation 3: The job with the earliest deadline is a LO-criticality job and the HI-criticality ready

queue is not empty. In this situation, we want to preserve a processor share of ∆ for HI- criticality

jobs and to execute the LO-criticality ones with the rest 1−∆ of the processor capacity. Therefore,

the server creates preemptions every time unit.

That is, only in Situation 3, our algorithm “introduces” extra preemptions due to the server

scheme, and normal EDF scheduling is applied in other cases. One may claim that such server

allocation scheme may results in more preemptions than the approaches where the server capacity is

only used for overruns. Actually, this is because that the goal here is trying not to drop LO-criticality

tasks even when a few HI-criticality ones exceed their LO-WCETs. Thus, in order to guarantee

HI-deadline being met always, we have to make certain use of the server even when no HI-criticality

10A job is active if it is released and incomplete at that time instant.
11Since an integer model of time is assumed (i.e., all task periods are integers and all job arrivals occur at integer

instants in time), and the server has a period of 1, it is safe to drop the current job of the server if there is no active
HI-criticality job since there can be no HI-criticality job releases in the current period of the server.
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behavior is detected — simply taking “precautions”. The alternative way such as assigning HI-

criticality jobs virtual deadlines may lead to fewer preemptions, at a cost of losing the performance

of schedulability ratio (see experimental comparisons).

In this work, we make use of servers to implement our algorithms and prove the possibility of

proficiently apply failure probability to both MC modeling and MC scheduling. In future work,

we will release the server period assumption of 1 unit of time by applying adaptivity to resource

reservation (Santinelli et al., 2011; Stoimenov et al., 2010). With the analysis of the deadline and

task periods, we will be able to implement realistic servers which adapt their period and budget to

the MC-scheduler needs, while leaving the system predictable at any time interval. Such adaptive

behavior will not introduce any overhead, and mostly will allow not to miss task deadline.

3.2.4.2 The Convolution Based Approach

There are two HI-criticality tasks in Example 3.13. As a result, only one combinatorial event

needs to be eliminated, which is x1 = x2 = 1; i.e., jobs of both tasks exceed their WCETs in an

hour of execution. When the number of HI-criticality tasks (nHI) becomes larger, there will be more

indicator variables (xi), and we need to calculate the probability of all 2nHI combinations in order

to achieve an exact analysis. Similar to what’s been done in (Dı́az et al., 2002) and (Maxim and

Cucu-Grosjean, 2013), the sum of two random variables X and Y is defined as the convolution

X ⊗Y where P(Z = z) = ∑k P(X = k)P(Y = z− k), in case of discrete random variables.

We associate the probabilities with the possible utilization values using the following notation

for the utilization pdf:

fUi =

 uL
i =

CL
i

Ti
uH

i =
CH

i
Ti

= uL
i +δi

fi 1− fi

 , (3.7)
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and calculate the exact total utilization of multiple tasks by applying the convolution operation. For

example, the convolution for the utilizations of two HI-criticality tasks in Example 3.13 is:

 0.4 0.6

0.9 0.1

⊗
 0.3 0.4

0.95 0.05

=

 0.7 0.8 0.9 1.0

0.855 0.045 0.095 0.005

 .

By applying the ⊗ operation (for (nHI−1) times) to all HI-criticality tasks, we will end up with

a capacity requirement distribution, consisting of as many as 2nHI rows. According to the system

failure threshold FS, we could easily determine the maximum HI-criticality capacity needed to be

considered from such capacity distribution by the definition of probabilistic schedulability, and

ignore the rest highly unlikely executions.

Considering the instance in Example 3.13, we can only ignore the 1.0-HI-utilization case if

FS = 0.01. However, if we require weaker confidence level to the system failure probability, e.g.,

FS = 0.1, both the 0.9- and the 1.0-HI-utilization cases can be ignored since the probability of τ1

and τ2 requiring a total utilization of more than 0.8 is 0.095+0.005≤ FS. As a result, the system

will pass probabilistic schedulability test even LO-criticality utilization is up to 0.2.

Such precise calculation by a chain of ⊗ operations requires exponential time (O(2nHI), to be

precise). Some work on distribution re-sampling; i.e., (Maxim et al., 2012), makes the distribution

of convolution less complex by using pessimistic distributions with fewer values (keeping the worst

values for safety issues). The trade-off is between complexity and accuracy.

3.2.4.3 Schedulability Test

It is evident that for strongly probabilistic schedulable (i.e., to ensure that the probability of

missing any deadline is no larger than the specified system FPH FS — see Definition 3.11), it is

(necessary and) sufficient that
(
∑

n
i=1CL

i /Ti+∆
)

must be no larger than the capacity of the processor

(which is 1).
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For weakly probabilistic schedulable (i.e., to ensure that the probability of missing any HI-

criticality deadline is no larger than FS — see Def. 3.11), it is necessary that
(
∑i|χi=HI CL

i /Ti +∆
)

must be no larger than 1 as well. The following theorem helps establish a sufficient condition for

ensuring weakly probabilistic schedulable:

Theorem 3.16. If no job exceeds its LO-WCET, then no deadline is missed if

∆ · (1− ∑
i|χi=HI

CL
i

Ti
)+

n

∑
i=1

CL
i

Ti
≤ 1. (3.8)

Proof: As assumed, the task set is feasible when no job exceeds its LO-WCET; i.e., ∑
n
i=1CL

i /Ti ≤ 1.

Therefore, if the server does not exist, all task will meet their deadlines under EDF scheduling.

Since the server task is not a real task but only executes the earliest-deadline HI-criticality job if

exists, introducing this server will never delay any HI-criticality task’s execution (comparing to

no-server circumstance). Thus, the deadlines of all HI-criticality jobs will still be met.

Next, by contradiction, we show if (3.8) holds, all deadlines of LO-criticality jobs will also met.

Suppose td is the first time instant when a deadline of a LO-criticality job is missed. Let t0 denote

the last idle instant for jobs with deadlines at or before td12, then [t0, td) is a busy interval. Let Ψ

denote the set of the HI-criticality jobs that are released at or after t0 and with deadlines at or before

td , and Ψ′ denote the complement (i.e., HI-criticality jobs with deadlines after td).

Let W denote the total demand created by jobs in Ψ within [t0, td), then

W ≤ ∑
i|χi=HI

⌊
td− t0

Ti

⌋
·CL

i . (3.9)

We have shown that all HI-criticality jobs will meet their deadlines (in the first paragraph of this

proof), which implies that there must be a processor supply of W allocated to those jobs in Ψ. Since

the server has a period of 1, no job will be released during each server period. Moreover, the server

has the highest scheduling priority, and will execute the earliest-deadline HI-criticality job (when

12If at an instant there is no active job with a deadline at or before td , it is considered idle in this proof.
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exists). Thus for any unit-length period, if jobs in Ψ are executed for a cumulative length of w, at

least a server budget of ∆ ·w will be consumed by those jobs. Thus, within [t0, td), at least ∆ ·W

server budget must execute jobs in Ψ. On the other hand, the server (by its definition) could have at

most ∆ · (td− t0) budget in [t0, td). Thus, within the period [t0, td), jobs in Ψ′ will consume server

budget of at most ∆ · (td− t0)−∆ ·W . Moreover, since there will always be active jobs with deadline

at or before t0 throughout the interval, and we are using pure EDF “outside” the server, jobs in Ψ′

(with later deadlines) can only execute within [t0, td) by consuming server budget.

Also, within the busy interval [t0, td), a LO-criticality task τi can only release b(td− t0)/Tic jobs

with deadlines at or before td . Thus, and by the definition of td and t0, we have

(
∆ · (td− t0)−∆ ·W

)
+W + ∑

i|χi=LO

⌊
td− t0

Ti

⌋
·CL

i > td− t0. (3.10)

Moreover,

(
∆ · (td− t0)−∆ ·W

)
+W + ∑

i|χi=LO

⌊
td− t0

Ti

⌋
·CL

i

= ∆ · (td− t0)+(1−∆) ·W + ∑
i|χi=LO

⌊
td− t0

Ti

⌋
·CL

i

≤ {by (3.9) and ∆≤ 1}

∆ · (td− t0)+(1−∆) · ∑
i|χi=HI

⌊
td− t0

Ti

⌋
·CL

i + ∑
i|χi=LO

⌊
td− t0

Ti

⌋
·CL

i

≤ {by b(td− t0)/Tic ≤ (td− t0)/Ti for all i and ∆≤ 1}

∆ · (td− t0)+(1−∆) · ∑
i|χi=HI

td− t0
Ti
·CL

i + ∑
i|χi=LO

td− t0
Ti
·CL

i

= ∆ · (td− t0)−∆ · (td− t0) · ∑
i|χi=HI

CL
i

Ti
+

(td− t0) · ∑
i|χi=HI

CL
i

Ti
+(td− t0) · ∑

i|χi=LO

CL
i

Ti

= ∆ · (td− t0) ·
(

1− ∑
i|χi=HI

CL
i

Ti

)
+(td− t0) ·

n

∑
i=1

CL
i

Ti
.

(3.11)
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By (3.10) and (3.11),

∆ · (td− t0) ·
(

1− ∑
i|χi=HI

CL
i

Ti

)
+(td− t0) ·

n

∑
i=1

CL
i

Ti
> td− t0, (3.12)

Canceling (td− t0) on both sides contradicts our theorem assumption, (3.8).

Thus, such td does not exist and therefore no LO-criticality job will miss its deadline.

Theorem 3.16 yields the schedulability test pMC (Algorithm 2), while Theorem 3.17 below

establishes its correctness.

Theorem 3.17. The schedulability test pMC is sufficient in the following sense:

• If it returns strongly probabilistic schedulable, the probability of any task missing its deadline

is no greater than FS; and

• if it returns weakly probabilistic schedulable, the probability of any HI-criticality task missing

its deadline is no greater than FS, and no deadline is missed when all jobs finish upon execution

of their LO-WCETs.

Proof: From Lemma 3.15 and Theorem 3.16, we may conclude that the possibility of HI-criticality

tasks altogether requiring an additional utilization of no more than ∆ is less than FS, and thus they

can still meet their deadlines with probability no less than 1−FS upon the assigned server task.

The utilization-based test of EDF is run twice. If the first test succeeds; i.e., total utilization

(including the server) is less than 1, then all tasks will meet their deadlines with a probability no less

than (1−FS) — this ensures strongly probabilistic schedulable. If not, we need to check two other

conditions which together ensure weakly probabilistic schedulable: (i) a utilization test involving

HI-criticality tasks and the server, which guarantees that the probability of all HI-criticality tasks

meeting their deadlines is no less than (1−FS) should some jobs exceed their LO-WCETs; and (ii)

a utilization based condition involving all tasks and the server, which guarantees correctness for all

tasks when no HI-criticality one exceeds its LO-WCET (Theorem 3.16).
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The schedulability test pMC returns strongly probabilistic schedulable if we are able to schedule

the system such that the probability of missing any deadline is at most the specified threshold FS, or

weakly probabilistic schedulable if we are able to schedule the system such that the probability of

missing any HI-criticality deadline is at most FS. We will then use EDF to schedule and execute the

task set with LO-WCETs and the additional server task τs = {∆,1,HI}.

In the case that the schedulability test pMC returns unknown, we are not able to schedule the

system using the proposed probabilistic analysis technique. Normally it is either we have set a too

high safety requirement to the system; i.e., the threshold FS is too small, or the WCET estimations

are not precise enough for HI-criticality tasks; i.e., the fi’s are not small enough comparing to FS

(and nHI), and/ or the CL
i ’s are still not differentiable enough with respect to CH

i ’s.

We show how our algorithm works by applying it to an example.

Example 3.18. Consider the MC task system consisting of six tasks shown in Table 3.3, and a

specified allowed system FPH of FS = 3.2×10−4. For simplicity, tasks are ordered decreasingly by

δi values. (The δi’s for each task are calculated according to (3.3).)

Table 3.3: A set of MC tasks.

- τ1 τ2 τ3 τ4 τ5 τ6

[CL
i ,C

H
i ] [0.5,0.5] [1,3] [1,2] [3,5] [3,6] [1,2]

Ti 5 10 25 50 20 4

δi 0.2 0.2 0.08 0.06 0.05 -

fi 0.0001 0.0001 0.01 0.01 0.001 -

χi HI HI HI HI HI LO

The LFF-Clustering algorithm initially assigns each task a single cluster, and try to expand

the one (of the largest ∆i value) with task τ1. τ2 can be combined into Cluster G1 since g1 < FS/M

holds (g1 = 1− (1− f1)(1− f2)− f1(1− f2)− f2(1− f1) = f1 f2 < FS/4). Similarly, combining

τ3 will result in a smaller number of total remaining clusters (M = 3), and Inequality g1 < FS/M

continues to hold.
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However, this inequality no longer holds as we further expand G1 for τ4 (g1 becomes greater

than FS/2). Thus, we assign Task τ4 a second cluster G2. Similar to the situation of τ4, τ5

cannot be combined into cluster G1. However, combining τ5 with τ4 is allowed since M = 2 and

g2 = f4 f5 < FS/2.

Finally, we have visited all HI-criticality tasks, and the value to be returned by the LFF-

Clustering algorithm is ∆1 +∆2 = u1 +u4 = 0.26.

Since the total system utilization (including the LO-criticality task τ6) remains less than 1 with

a server of utilization 0.26. The schedulability test pMC returns strongly probabilistic schedulable.

During run-time, an additional server τs = {0.26,1,HI} will be added to the task system, on which

active HI-criticality jobs will execute (also in EDF order). When there is no active HI-criticality job,

the current job of the server will be dropped.

Algorithm 2: Schedulability Test pMC
Input: τ,FS
Output: schedulability

begin
Calculate the δi values for all HI-criticality tasks in τ;
uL← ∑

n
i=1CL

i /Ti;
uL

H ← ∑i|χi=HI CL
i /Ti;

∆← LFF-Clustering(FS, { fi}nHI
i=1, {δi}nHI

i=1);
if uL +∆≤ 1 then

return strongly probabilistic schedulable;

else
if uL

H +∆≤ 1, ∆ · (1−uL
H)+uL ≤ 1 then

return weakly probabilistic schedulable;

return unknown;
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3.2.5 Schedulability Experiments

We have conducted schedulability tests on randomly-generated task systems, comparing our

proposed method with existing one. The objective was to demonstrate the benefits of our model: by

adding a probability estimation fi to each task, our algorithm may successfully schedule (return

probabilistically correct or partial probabilistically correct) many task sets that are unschedulable

according to existing MC-scheduling algorithms; e.g., the EDF-VD algorithm (Baruah et al., 2012b).

Since this is the first work that combines pWCET and schedulability with mixed-criticality,

it’s hard to find a proper baseline to compare with. The reason EDF-VD is selected here since (i)

it is a widely accepted MC scheduling strategy, (ii) it is the most general algorithm in the whole

VD family, and (iii) HI-criticality tasks are treated as a whole in both algorithms — EDF-VD sets

virtual deadline according to a common factor, while we make use of a HI-criticality server.

3.2.5.1 MC Task Generator

Our MC task generator results from a minor modification of the workload-generation algorithm

introduced by Guan et al. (Guan et al., 2013). The input parameters for our workload generation

algorithm are as follows:

1. Ubound: The desired value of the larger of LO-criticality and HI-criticality utilization of the

task system: max
(
UL

L (τ)+UL
H(τ),U

H
H (τ)

)
.

2. [UL,UU ]: Utilizations are uniformly drawn from this range; 0 ≤ UL ≤ UU ≤ 1 ([0,1] as

default).

3. [TL,TU ]: Task periods are uniformly drawn from this range; 0 < TL ≤ TU . Note that many

proposed schedulability tests are utilization based, and thus periods play no role in the

experiments.

4. [ZL,ZU ]: The ratio (or fudge factor) of the HI-criticality utilization of a task to its LO-criticality

utilization is uniformly drawn from this range; 1≤ ZL ≤ ZU .
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5. P: The probability that a task is a HI-criticality task; 0≤ P≤ 1 (0.5 as default).

To generate a task system for a given combination of parameter values, the task-generation

algorithm repeatedly adds tasks to an initially empty system until the utilization bound is met

(see (Guan et al., 2013)).

This workload generator has passed an Artifact Evaluation13 process. The Matlab code of the

generator is available at:

http://www.cs.unc.edu/~zsguo/files/MC_task_creator.zip.

3.2.5.2 Schedulability Comparison

For the experiments in this section, the parameter uL is ranged from 0 to 1, while uH is ranged

from 0 to 1.5, each with step 0.01. Each task set contains 20 tasks, each of which is assigned LO or

HI criticality with equal probability. LO-criticality utilizations are assigned according to UUniFast;

given an expected HI utilization uH , we inflate the LO-criticality utilizations of the HI-criticality

tasks using random factors chosen to ensure that the cumulative HI utilization of the task-set equals

the desired value with high probability.

Among the 626,200 valid task sets that we generated, EDF-VD succeeds to schedule 306,299

(48.9%) of them, and the proposed pMC reports probabilistic schedulable for a total of 438787

sets (70.1%), and only 121,426 sets (19.4%) are reported unknown. Even when focused only upon

systems for which HI-criticality utilization is less than 1, EDF-VD fails to schedule 18.0%, while

pMC returns unknown for only 8.4% of the sets. Figure 3.2 depicts the schedulability results for the

two algorithms, where fi = 10−3 of all tasks τi and Fs = 10−6. Instances with similar uL and uH

values are put into a same small block. The color of each small block represents the percentage

of schedulable sets14. As shown in Figure 3.2, although EDF-VD and pMC do not dominate each

other, pMC generally significantly outperforms EDF-VD, particularly upon task-sets with large

HI-utilization.

13For additional details, please refer to http://ecrts.org/artifactevaluation.
14Since we randomly assign criticality levels to all tasks, the LO utilization of HI-criticality tasks is expected to be uL/2.

It is unlikely to generate tasks with uH < uL/2, and thus the right lower triangle regions are left blank in Figure 3.2.
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To show the robustness of our algorithm with respect to different fi distributions, we focus

on task sets with HI utilization between 0.9 and 1. Figure 3.3 reports the ratios of schedulable

(i.e., weakly probabilistic schedulable) sets over different LO utilizations. With the additional

probability information, the schedulable ratio is significantly improved for heavy tasks comparing

to EDF-VD (Baruah et al., 2012b).

The introduced parameter fi is assigned to tasks in different ways; i.e., all sharing the same

value, following the uniform distribution, or following the log-uniform distribution ( fi = 10x, where

x is uniformly chosen). Generally speaking, smaller average f leads to a higher ratio of acceptance,

and there is no significant difference between different distributions of fi with the same average,

which indicates that our algorithm is robust to different combinations of output measurement

probabilities from probabilistic timing analysis tools.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LO utilization

R
a

ti
o

 o
f 

s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 

 

EDF−VD

pMC, f
i
=10

−4

pMC, f
i
=10

−3

pMC, f
i
=10

−2

pMC, f
i
~10

U[−1,−5]

pMC, f
i
~10

U[−2,−4]

pMC, f
i
~U[0.5,1.5]*10

−3

Figure 3.3: Schedulability ratio comparison of EDF-VD and pMC, where HI utilization varies from
0.9 to 1 in a uniform manner.
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3.3 MC Task Scheduling on Multi-Processor

It has been shown that optimal speedup of 4/3 can be achieved by EDF-VD when scheduling

MC tasks on a uniprocessor (Li and Baruah, 2010). However, when facing multiprocessors, the

best-known speedup factor among all schedulers has been
√

5+1≈ 3.24 until late 2014, by Global-

EDF-VD (Li and Baruah, 2012). Very recently, the speedup cost is improved to (1+
√

5)/2≈ 1.618

by a fluid based algorithm named MC-Fluid (Lee et al., 2014). Since fluid schedules are not always

implementable upon actual computing platforms, another algorithm, named MC-DP-Fair, was also

derived in (Lee et al., 2014) that transforms such a fluid schedule into a schedule in which each task

is assigned either zero or one processor at each instant in time.

In this section, for scheduling implicit-deadline dual-criticality task sets, we further prove that

the speedup of MC-Fluid is 4/3, and show its optimality such that no algorithm can achieve a

smaller speedup bound. We propose a much simpler scheduler named MCF , with only utilization

based schedulability test and the same speedup factor as MC-Fluid. Note that MC-DP-Fair continues

to be valid for use in conjunction with Algorithm MCF; hence, we will not address the issue of

constructing non-fluid schedules any further. Instead, we will assume that the schedule constructed

by Algorithm MCF is passed on to MC-DP-Fair to be converted into a non-fluid schedule, just as

the schedules constructed by MC-Fluid were in (Lee et al., 2014). Most of the contributions made

in this section can be found at (Baruah et al., 2015).

3.3.1 System Model and Prior Work

The MC-Fluid scheduling algorithm (Lee et al., 2014) was designed for scheduling mixed-

criticality implicit-deadline sporadic task systems upon identical multiprocessor platforms. Given

such a task system, MC-Fluid determines a scheduling strategy under the fluid scheduling model

(see Sec. 2.3.3). This allows for schedules in which individual tasks may be assigned a fraction

≤ 1 of a processor (rather than an entire processor, or none) at each instant in time, subject to the
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constraint that the sum of the fractions assigned to all the tasks does not exceed the sum of the

computing capacities of all the processors at any instant.

System Model. Let τ denote a collection of n dual-criticality implicit-deadline sporadic tasks that

are to be scheduled upon m unit-speed processors. A task τi is characterized by the parameters

(CL
i ,C

H
i ,Ti,χi), where χi ∈ {LO,HI} denotes its criticality, CL

i and CH
i its LO and HI criticality

WCETs (CL
i ≤CH

i ), and Ti its period. As a general rule, τH ⊆ τ (τL ⊆ τ) denotes all the HI-criticality

tasks (LO-criticality tasks, respectively) in τ . We adapt the utilization notations described in (2.7).

System behavior. Similar to the cases considered in previous sections of this chapter, the system

may execute at two different modes: it runs at the LO-criticality mode until some HI-criticality job

(of a task) has been executed for CL
i time units and does not signal its finishing.

Objective. The objective is to schedule the task set τ upon m unit-speed processors in an MC

correct manner (which is similar to the correctness definition for MC jobs, yet is described formally

in detail here for the sake of completeness):

Definition 3.19 (MC-correct for tasks). A scheduling strategy is MC-correct if it ensures that

• During any execution of the system in which each job of each task completes upon executing

for no more than the task’s LO-criticality WCET, all jobs complete by their deadlines; and

• during any execution of the system in which each job of each task completes upon executing

for no more than the task’s HI-criticality WCET, all jobs of all the HI-criticality tasks complete

by their deadlines (while jobs of LO-criticality tasks may fail to do so).

MC-Fluid. To do so, MC-Fluid seeks to determine per-mode execution rates θ L
i and θ H

i for

each task τi such that the scheduling algorithm depicted in Figure 3.4 constitutes an MC-correct

scheduling strategy for τ .

3.3.2 Algorithm MCF

In this section, we describe Algorithm MCF for scheduling dual-criticality implicit-deadline

sporadic task set τ upon m identical processors. MCF follows the fluid schedule framework (like
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• Each τi initially executes at a constant rate θ L
i . That is, at each time instant it is executing

upon θ L
i fraction of a processor (here, θ L

i is required to be ≤ 1).

• If a job of any task τi does not complete despite having received CL
i units of execution

(equivalently, having executed for a duration (CL
i /θ L

i )), then

– All LO-criticality tasks are immediately discarded, and

– Each HI-criticality task henceforth executes at a constant rate θ H
i (θ H

i , too, must be
≤ 1).

Figure 3.4: The run-time scheduling strategy used by Algorithm MC-Fluid

MC-Fluid) and seeks to find the proper execution rates θ L
i and θ H

i such that MC correctness is

guaranteed by the run-time algorithm depicted in Figure 3.4. The manners in which Algorithm MCF

computes these θ L
i ,θ

H
i values are depicted in Figure 3.5; the steps are explained below.

Observe that (UL
L +UL

H) denotes the total system utilization in LO-criticality behaviors, and UH
H

the total system utilization in HI-criticality behaviors. Hence, for τ to be feasible on a platform

of m unit-speed processors, it is necessary that
(
UL

L +UL
H
)
≤ m, UH

H ≤ m and uH
i ≤ 1 for each

τi ∈ τH . The value assigned to ρ (Expression (3.13)) should therefore be ≤ 1 for any feasible

system. Informally speaking, the quantity (1−ρ) can be thought of as representing the “slack” or

excess capacity in the system; we seek to exploit this slack by setting the execution rates (the θ L
i ’s

and θ H
i ’s) to be greater than the utilizations (the ui’s).

If ρ is indeed ≤ 1, then the execution rates at HI-criticality (the θ H
i ’s) for the HI-criticality

tasks are set equal to their HI-criticality utilizations uH
i scaled by a factor 1/ρ (Expression (3.14)).

The execution rates at LO-criticality (the θ L
i ’s) for each LO-criticality task is set equal to the task

utilization (uL
i ), while the θ L

i for each HI-criticality task is set according to the formula given in

Expression (3.15). The correctness of these assignments will be formally proved in Sec. 3.3.3

below.

Finally, the assignment of execution rates is declared a success if the θ L
i values that are assigned

sum to no more than the cumulative computing capacity of the platform.
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1. Define ρ as follows:

ρ ←max
{(UL

L +UL
H

m

)
,
(UH

H
m

)
,max

τi∈τH

{
uH

i
}}

(3.13)

2. If ρ > 1 then declare failure; else assign values to the execution rate variables as follows:

θ
H
i ← uH

i /ρ for all τi ∈ τH (3.14)

θ
L
i ←


uL

i θ H
i

θ H
i −
(

uH
i −uL

i

) , if τi ∈ τH

uL
i , else (i.e., if τi ∈ τL)

(3.15)

3. If
∑

τi∈τ

θ
L
i ≤ m (3.16)

then declare success else declare failure

Figure 3.5: Algorithm MCF

We now illustrate the manner in which Algorithm MCF computes the θ L
i and θ H

i parameters

via a simple example.

Example 3.20. Consider the dual-criticality implicit-deadline sporadic task system that in Table 3.4,

which is to be scheduled upon a 2-processor platform.

Ti CL
i CH

i χi uL
i uH

i

τ1 10 3 8 HI 0.3 0.8
τ2 20 8 14 HI 0.4 0.7
τ3 30 3 3 HI 0.1 0.1
τ4 40 20 20 LO 0.5 0.5

Table 3.4: Example task system
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For this task system,

ρ = max
{ .3+ .4+ .1+ .5

2
,
.8+ .7+ .1

2
,max{.8, .7, .1}

}
= max

{
1.3/2,1.6/2, .8

}
= 0.8

Therefore tasks τ1,τ2 and τ3, get θ H
i values assigned as follows:

θ
H
1 =

0.8
0.8

= 1.0

θ
H
2 =

0.7
0.8

= 0.875

and θ
H
3 =

0.1
0.8

= 0.125

The assigned θ L
i values are as follows:

θ
L
1 =

1.0×0.3
1.0− (0.8−0.3)

= 0.6

θ
L
2 =

0.875×0.4
0.875− (0.7−0.4)

=
14
23

< 0.61

θ
L
3 =

0.125×0.1
0.125− (0.1−0.1)

= 0.1

and θ
L
4 = 0.5

Since
4

∑
i=1

θ
L
i <

(
0.6+0.61+0.1+0.5

)
= 1.81,

we conclude that the task system is indeed schedulable by Algorithm MCF.

Run-time complexity. Algorithm MCF has run-time that is linear in the number of tasks in τ (i.e.,

Θ(n)): the scaling factor ρ can be computed in one pass through the task system; the θ H
i and θ L

i

values in a second pass; and checking the sum of θ L
i values does not exceed m in a third pass.
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3.3.3 Correctness of MCF

We now prove that the proposed MCF is correct: if Algorithm MCF computes the execution

rates without declaring failure for a given task system τ , then the schedule resulting from using

these execution rates in the manner described in Figure 3.4 does indeed constitute an MC-correct

scheduling strategy.

Lemma 3.21. Assigned execution rates (θ H
i and θ L

i ) are all ≤ 1.

Proof: Observe that ρ ≥ uH
i for all τi ∈ τ . It follows that θ H

i = (uH
i /ρ) is always ≤ 1, as required.

With regards to the θ L
i ’s, the value assigned to θ L

i for each LO-criticality task is equal to uL
i

(and hence ≤ 1). For high criticality tasks, by Equation (3.15), θ L
i for each τi ∈ τH is assigned a

value uL
i θ H

i

θ H
i −
(

uH
i −uL

i

) . This is ≤ θ H
i if

uL
i

θ H
i −

(
uH

i −uL
i
) ≤ 1

⇔ uL
i ≤ θ

H
i −

(
uH

i −uL
i
)

⇔ uH
i ≤ θ

H
i

which follows from the requirement that ρ be ≤ 1 (else, we would have declared failure).

As a result, for each HI-criticality task, we have

θ
H
i ≥ θ

L
i . (3.17)

I.e., the execution rate guaranteed to each HI-criticality task does not decrease upon identifica-

tion of HI-criticality behavior), and thus, θ L
i variables are also assigned values ≤ 1.

Condition (3.16) ensures that the assignment of values to the θ L
i variables does not exceed the

capacity of the m-processor platform; Lemma 3.22 below shows that neither does the assignment of

values to the θ H
i variables.
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Lemma 3.22.

∑
τi∈τH

θ
H
i ≤ m (3.18)

Proof: It follows from Equation (3.13) that

ρ ≥ UH
H

m

⇔ UH
H

ρ
≤ m (3.19)

We use this inequality to conclude that

(
∑

τi∈τH

θ
H
i

)
=
(

∑
τi∈τH

uH
i
ρ

)
=
( 1

ρ
∑

τi∈τH

uH
i

)
=
(UH

H
ρ

)
≤ m

and Condition (3.18) is shown to hold.

Lemma 3.23 below asserts that the execution rate assigned to each task in a steady LO-criticality

or HI-criticality behavior is adequate. Mode transition part will be considered later.

Lemma 3.23. For each τi ∈ τ

θ L
i ≥ uL

i ; (3.20)

θ H
i =

(
uH

i
ρ

)
≥ uH

i . (3.21)

Proof: This is clearly true for each τi ∈ τL, since θ L
i = uL

i for all such τi. To see that it is also true

for each τi ∈ τH , observe that for each such τi,

θ
L
i = uL

i ×
θ H

i

θ H
i −

(
uH

i −uL
i
)

≥ uL
i (Since (uH

i −uL
i )≥ 0)

Since ρ ≤ 1, it is obvious that θ H
i ≥ uH

i .
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Finally, we show that the θ -values computed by Algorithm MCF ensure MC-correctness in

HI-criticality behaviors during a mode transition, by analyzing the point in time during run-time at

which it is detected that some job has executed beyond its LO-criticality WCET.

Lemma 3.24. Let to denote the first time instant at which some job does not signal completion

despite having executed for its LO-criticality WCET. Any HI-criticality job that is active (i.e., that

has been released but has not completed execution) at time instant to receives an amount of execution

no smaller than its HI-criticality WCET prior to its deadline.

Proof: Suppose that a job of HI-criticality task τi is active at time instant to. Let us suppose that

it had arrived at time instant (to−w), where w is a positive number ≤ Ti; its deadline is then at

time instant (to−w+Ti). Over the interval [to−w, to), this job will have received an amount of

execution equal to θ L
i ×w; since the job is still active, it must be the case that

θ
L
i ×w≤CL

i

⇔ w≤ CL
i

θ L
i

(3.22)

From the instant to to its deadline — i.e., over the interval [to, to−w+Ti), of duration (Ti−w)

— the job of τi will execute at a rate θ H
i . Hence for this job to meet its deadline, it is sufficient that

wθ
L
i +(Ti−w)θ H

i ≥CH
i

⇔ Tiθ
H
i −w(θ H

i −θ
L
i )≥CH

i

⇐ Tiθ
H
i −

CL
i

θ L
i
(θ H

i −θ
L
i )≥CH

i (By Inequality (3.22))

⇔ θ
H
i −

uL
i

θ L
i
(θ H

i −θ
L
i )≥ uH

i

⇔ θ
H
i −

uL
i θ H

i
θ L

i
+uL

i ≥ uH
i

⇔ θ
H
i ≥ (uH

i −uL
i )+

uL
i θ H

i
θ L

i

⇔ 1≥ uH
i −uL

i
θ H

i
+

uL
i

θ L
i

(3.23)
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By Equation (3.15), for each τi ∈ τH we have

θ
L
i =

uL
i θ H

i

θ H
i −

(
uH

i −uL
i
)

⇔ θ H
i −

(
uH

i −uL
i
)

θ H
i

=
uL

i
θ L

i

⇔ 1−
((uH

i −uL
i
)

θ H
i

)
=

uL
i

θ L
i

⇔ uL
i

θ L
i
+

uH
i −uL

i
θ H

i
= 1

thereby establishing Condition (3.23) and completing the proof of the lemma.

Theorem 3.25. Values assigned to the θ H
i and θ L

i variables according to Equations (3.14)-(3.15)

that satisfy Condition (3.16) constitute an MC-correct schedule.

Proof: Lemma 3.23 and Condition (3.16) together suffice to establish correctness in any LO-

criticality behavior. Similarly, Lemmas 3.21 and 3.22 establishes correctness in “steady state”

following the transition to HI-criticality behavior. And finally, Lemma 3.24 establishes that MC-

correctness is also preserved upon a transition from LO-criticality to HI-criticality behavior.

3.3.4 Speedup of MCF and MC-Fluid

Prior to our work, the best-known speedup for multiprocessor MC scheduler is (1+
√

5)/2

or approximately 1.618 for MC-Fluid, shown in (Lee et al., 2014). We prove a better (i.e., lower)

speedup bound of 4/3 for Algorithm MCF in this subsection.

Lemma 3.26. Let c denote any positive constant. The function

f (x) =
x(c− x)

c
3 + x

is ≤ c
3 for all values of x ∈ [0,c].
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Figure 3.6: Plot of f (x) for c = 1 (made with the WolframAlpha ® computational knowledge engine:
https://www.wolframalpha.com/)

Proof: This lemma is easily proved rigorously using standard techniques from the calculus: taking

the derivative of f (x) with respect to x, we see that the only value of x ∈ [0,c] where this derivative

equals zero is x← c/3. We therefore conclude that f (x) takes on its maximum value over [0,c] for

some x ∈ {0,c/3,c}. Explicit computation of f (x) at each of these values reveals that the value is

maximized at x = c/3, where it takes on the value c/3. (We skip the details of the derivation here;

for a visual depiction of f (x), it is plotted as a function of x in Figure 3.6.)

Theorem 3.27. Algorithm MCF is speedup-optimal for scheduling dual-criticality implicit-deadline

task systems: it has a speedup factor of 4/3, and no non-clairvoyant algorithm may have a speedup

factor lower than 4/3.
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Proof: We first show the speedup factor of 4/3; i.e., under condition ρ ≤ 3/4, the θ H
i ,θ L

i values

computed by Algorithm MCF (in the manner specified in Expressions (3.14)–(3.15) of Figure 3.5)

satisfy Condition (3.16).

Let us first rewrite Condition (3.16) to an equivalent form expressed in Condition (3.24) below.

∑
τi∈τ

θ
L
i ≤ m

⇔ ∑
τi∈τL

θ
L
i + ∑

τi∈τH

θ
L
i ≤ m

⇔ UL
L + ∑

τi∈τH

uL
i θ H

i

θ H
i −

(
uH

i −uL
i
) ≤ m

⇔ UL
L + ∑

τi∈τH

uL
i

(
1+

uH
i −uL

i

θ H
i −

(
uH

i −uL
i
))≤ m

⇔ UL
L + ∑

τi∈τH

uL
i + ∑

τi∈τH

uL
i (u

H
i −uL

i )

θ H
i −

(
uH

i −uL
i
) ≤ m

⇔ UL
L +UL

H + ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

θ H
i −

(
uH

i −uL
i
) ≤ m (3.24)

We will show, in the remainder of this proof, that if ρ ≤ 3/4 then Condition (3.24) is satisfied; this

will serve to establish the correctness of Lemma 3.27.

Let us assume henceforth that ρ ≤ 3/4. From the definition of ρ (Expression (3.13)), it follows

that

UL
L +UL

H ≤ 3
4

m (3.25)

UH
H ≤ 3

4
m (3.26)

∀τi ∈ τH uH
i ≤ 3

4
(3.27)

Additionally, since θ H
i ← uH

i /ρ , it must hold that

∀τi ∈ τH θ
H
i ≥

4
3

uH
i (3.28)
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Let us use Inequalities (3.25)–(3.28) to further simplify Condition (3.24).

UL
L +UL

H + ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

θ H
i −

(
uH

i −uL
i
) ≤ m

⇐ 3
4

m+ ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

θ H
i −

(
uH

i −uL
i
) ≤ m (By Ineq. (3.25))

⇐ 3
4

m+ ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

4
3uH

i −
(
uH

i −uL
i
) ≤ m (By Ineq. (3.28))

⇔ 3
4

m+ ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

uH
i
3 +uL

i

≤ m

⇔ ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

uH
i
3 +uL

i

≤ m
4

⇐ ∑
τi∈τH

uH
i
3
≤ m

4
(By Lemma 3.26)

⇔ 1
3

UH
H ≤

m
4

⇐ 1
3
× 3

4
m≤ m

4
(By Inequality (3.26))

⇔ m
4
≤ m

4

It has previously been shown (Baruah et al., 2012b, Theorem 5) that no non-clairvoyant algo-

rithm for scheduling dual-criticality implicit-deadline sporadic task systems can have a speedup

factor smaller than 4/3 even on uniprocessors (i.e., for m = 1), which is a special case for multi-

processor. Thus, a smaller speedup is not possible for any non-clairvoyant algorithm, and the 4/3

speedup is optimal.

It was shown in (Lee et al., 2014) that Algorithm MC-Fluid has a speedup bound no worse than

(1+
√

5)/2 (≈ 1.618) for dual-criticality implicit-deadline sporadic task systems. We will now

improve this result and show that MC-Fluid, like MCF, has a speedup bound no worse than 4/3.

Corollary 3.28. The speedup factor of MC-Fluid is 4/3.

Proof. The result comes from the domination relationship between MC-Fluid and MCF: If Algo-

rithm MCF (Figure 3.5) computes θ H
i and θ L

i values for a given dual-criticality implicit-deadline
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sporadic task system τ without declaring failure, then the θ H
i values so computed satisfy Inequali-

ties (3.29)–(3.31) (and τ is therefore successfully scheduled by MC-Fluid as well).

Let us suppose that Algorithm MCF (Figure 3.5) computes θ H
i and θ L

i values for a given

dual-criticality implicit-deadline sporadic task system τ without declaring failure. Since ρ , as

computed by Expression (3.13) of Figure 3.5, must be ≤ 1, it follows that θ H
i = uH

i /ρ is ≤ uH
i and

Inequality (3.29) is satisfied for all τi ∈ τH .

It is shown (Lee et al., 2014, Theorem 2) that the convex optimization problem solved by

MC-Fluid essentially computes θ H
i values to satisfy the following inequalities:

∀i : τi ∈ τH : uH
i ≤ θ

H
i (3.29)

UL
L +UL

H + ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

θ H
i −

(
uH

i −uL
i
) ≤ m (3.30)

∑
τi∈τH

θ
H
i ≤ m (3.31)

Since ρ ≥UH
H /m, it follows that

ρ ≥ UH
H

m

⇔ ρ ≥ ∑τi∈τH uH
i

m

⇔ m≥ ∑τi∈τH uH
i

ρ

⇔ m≥ ∑
τi∈τH

uH
i
ρ

⇔ m≥ ∑
τi∈τH

θ
H
i

and Inequality (3.31) is also satisfied.

It remains to show that Inequality (3.30) is satisfied as well. Observe that

UL
L +UL

H + ∑
τi∈τH

uL
i
(
uH

i −uL
i
)

θ H
i −

(
uH

i −uL
i
)
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= UL
L + ∑

τi∈τH

(
uL

i +
uL

i
(
uH

i −uL
i
)

θ H
i −

(
uH

i −uL
i
))

= UL
L + ∑

τi∈τH

(uL
i θ H

i −uL
i
(
uH

i −uL
i
)
+uL

i
(
uH

i −uL
i
)

θ H
i −

(
uH

i −uL
i
) )

= UL
L + ∑

τi∈τH

( uL
i θ H

i

θ H
i −

(
uH

i −uL
i
))

= UL
L + ∑

τi∈τH

θ
L
i

= ∑
τi∈τL

θ
L
i + ∑

τi∈τH

θ
L
i

= ∑
τi∈τ

θ
L
i

which is indeed ≤ m, according to Inequality (3.16).

Thus, we show that any task system that is successfully scheduled by Algorithm MCF is

also successfully scheduled by MC-Fluid, and the 4/3 speedup immediately yields from Theorem

3.27.

Remark. It has been shown in (Lee et al., 2014) that MC-Fluid is an optimal execution rate

assignment algorithm; i.e., if a set of θ L
i ’s and θ H

i ’s exist for a specified dual-criticality implicit-

deadline sporadic task system that constitutes an MC-correct fluid scheduling strategy, then MC-

Fluid is guaranteed to find at least one such assignment. The above lemma directly follows from

this result as well.

Note. Experimental comparisons on MCF, MC-Fluid, and existing MC schedulers were con-

ducted by our collaborators. From the experimental study, it is shown that MCF outperforms

global fpEDF (Bini and Buttazzo, 2005), global fixed-priority (Audsley, 2001), and partitioned

EDF (Baruah et al., 2012b) by a considerable margin, for all the task set parameter combinations.

The performance gap continues to widen for increasing number of processors. The performance of

MCF and MC-Fluid is relatively similar, and primarily depends on the normalized utilization bound

UB = max{(UL
L +UL

H)/m,UH
H /m}. For more details on those experiments, please refer to (Baruah

et al., 2015).
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3.4 Summary

In this chapter, we focus on Vestal’s interpretation of MC scheduling, where MC solely arises

from WCET estimations. Under this model, multiple WCET thresholds will be assigned to a

single piece of code, and its run-time behavior remains unknown. In a dual-criticality system,

any HI-criticality job may trigger a mode switch of the whole system when it exhausted its LO-

criticality WCET (which is less pessimistic) and does not signal finishing. The correctness of the

system consists of separate validations under each running mode. More precisely, deadline meeting

guarantees are made to all tasks under LO-criticality mode, while only to more important ones

under HI-criticality mode.

Although many nice scheduling theory results exist since Vestal’s pioneering work (Vestal,

2007), we have shown that improvements to existing schedulers can be made, e.g.,

• Via proposing new schedulers. Sec. 3.1 proposes Algorithm LE-EDF for scheduling MC job

set. It is shown that it is computationally more efficient than OCBP, while strictly dominate it

(i.e., any job set that is schedulable by OCBP is schedulable by LE-EDF, but not the other way

around). The experimental study also suggests LE-EDF out-performs a more complicated

and recently proposed algorithm named MCEDF.

• Via proposing new MC workload models. Sec. 3.2 adds one more parameter into the Vestal

model, which captures the probability information about the uncertainties. By assuming

independences, we remove Vestal’s assumption about all tasks simultaneously violating their

LO-criticality WCETs. Experiments on randomly generated task sets suggest that some

simple uniprocessor MC algorithms may outperform state-of-the-art ones and use computing

resources much more efficiently.

• Via providing better analytical results to existing schedulers. Sec. 3.3 provides an improved

speedup result (from (
√

5+1)/2 to 4/3) for an existing algorithm named MC-Fluid for MC

task scheduling upon multiprocessor platform. This result is optimal in the sense that no
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lower speedup is possible for the problem (due to its NP-hardness under non-clairvoyance).

This closes a 5-year long open problem and helps us understand how efficient MC-Fluid is.
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CHAPTER 4: WHEN MC ARISES FROM VARYING-SPEED PLATFORMS

As MC systems increasingly come to be implemented on commodity processors, we believe

that it is imperative that real-time scheduling theory understands how to implement these systems

to meet the twin goals of providing correctness guarantees at high levels of assurance to the more

critical functionalities while simultaneously making efficient use of platform resources.

In this chapter, we seek to study the scheduling of MC systems upon CPUs which may be

modeled as varying-speed processors. As pointed out in Sec. 1.1.2, the uncertainty of estimations

arises from the executing speed of the platform as well. In order to make correctness guarantees at

very high levels of assurance, it may be necessary to consider the possibility that the processor is

executing at a very low speed.

A natural question arises regarding the usefulness of bringing in new models: “Why not use

longer WCETs to model slower executing platforms?” The central thesis (see Sec. 1.2) gives a direct

answer to this: existing scheduling methods may be adapted at no significant capacity loss in some

cases, while in some other cases new mechanisms can be developed, with better performance. This

answer will be supported by the results described in Secs. 4.2 – 4.5 as we consider various kinds of

combinations of workload and platforms. To begin with, we formally describe our interpretation of

the MC system where MC arises from the variations of executing speeds in Sec. 4.1.

4.1 Our MC Interpretation: The Varying-Speed Platform MC Model

In this chapter, we take a novel perspective on mixed-criticality scheduling: the mixed-criticality

nature of the system arises in the fact that while we would like all functionalities to execute correctly

87



under normal circumstances of the platform, it is essential that the more critical functionalities

execute correctly even under (unlikely) pathological conditions of the processor(s).

To express this formally, we model the workload of an MC system as normal real-time work-

loads with a criticality level χi ∈ {1,2, . . . ,m} expressing its degree of importance (where larger

values indicate greater importance). We desire to schedule the system upon a platform with varying-

speed processor(s). Each processor is characterized by a sequence of m speeds 1= s1 > s2 > .. . > sm:

under normal circumstances it completes at least one unit of execution during each time unit (equiv-

alently, it executes as a speed-1, or faster, processor), it may at any instant fall into “degraded”

modes. Under degraded mode at level l ∈ 2, ...,m, the processor can complete fewer than one, but

at least sl , units of execution during each time unit. Similar to the settings in Sec 3.1.1, it is not a

priori known when, or whether, such degradation will occur (non-clairvoyant).

Objective. In general, we seek a scheduling strategy that for each criticality level l,1 ≤ l ≤ m

guarantees to correctly execute all those jobs that have criticality ≥ l, provided the processor

speed(s) never falls below sl during run-time.

Remark. Some systems are capable of self-monitoring: it immediately knows if and when such

degradation occurs; i.e., it has access to some facility similar to the capabilities offered by the Linux

cpufreq-info command, while some may not. Both self-awareness properties will be considered

in this chapter.

The following example illustrates this model.

Example 4.1. Consider the following collection of two jobs, to be scheduled on a preemptive

processor with specified speeds s1 = 1 and s2 =
1
2 :

Job Criticality Release date WCET Deadline

J1 LO 0 3 5

J2 HI 1 4 10

An Earliest Deadline First (EDF) (Liu and Layland, 1973) schedule for this system prioritizes

J1 over J2. This is fine if the processor does not degrade: J1 executes over the interval [0,3) and J2

over [3,7), thereby resulting in both deadlines being met.
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Now suppose that the processor was to degrade at some instant within the time-interval [0,10]:

a correct scheduling strategy should execute the HI-criticality job J2 to complete by its deadline

(although it may fail to execute J1 correctly). But consider the scenario where the processor

degrades to some speed s′ < 4
7 , or ≈ 0.55) starting at time instant 3: in the EDF schedule, J2

would obtain merely (10−3)× s′ < 4 units of execution prior to its deadline at time instant 10. We

therefore conclude that EDF does not schedule this system correctly.

An alternative scheduling strategy could instead execute jobs as follows on a normal (speed-1)

processor: J1 over the interval [0,1); J2 over [1,3); J1 again, over [3,5); and finally J2 over [5,7):

-

0 1 2 3 4 5 6 7 8 9 10

d1

?

d2

?

a1

6

a2

6

J1 J2 J1 J2

If the processor degrades to a speed < 1 at any instant during this execution then J1 is immediately

discarded and the processor executes J2 exclusively.

It may be verified that this scheduling strategy will result in J2 completing by its deadline

regardless of when (if at all) the processor degrades to any speed ≥ 0.5, and in both deadlines

being met if the processor remains normal (or degrades at any instant ≥ 5).

Note. Although in this chapter we have chosen to model the problem in terms of real-time

jobs executing on varying-speed processors, the model (and our results) are also applicable to

the transmission of time-sensitive data on potentially bandwidth-varying communication media.

Specifically, they are particularly relevant to data communication problems in which time-sensitive

data and data streams must be transmitted over communications media which can provide a high

bandwidth under most circumstances but can only guarantee some lower bandwidths: the high

bandwidth would correspond to the normal processor speed and the lower bandwidths to the

degraded speeds. We therefore believe that the work described in this chapter is relevant to problems

of factory communication, communication within automobiles or aircraft, wireless sensor networks,

etc., in addition to processor scheduling of mixed-criticality workloads.
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4.2 MC Job Scheduling on Self-Monitored Uniprocessor

A Self-Monitored Uniprocessor a processor is characterized by several execution speeds: a

normal speed and several levels of degraded speeds. Under normal circumstances it will execute at

or above its normal speed; conditions during run-time may cause it to execute slower. It is desired

that all components of the MC workload execute correctly under normal circumstances. If the

processor speed degrades, it should nevertheless remain the case that the more critical components

execute correctly (although the less critical ones need not do so).

In this section, we derive a linear program (LP) based optimal algorithm for scheduling MC

workloads upon such platforms. We do not restrict the total number of criticality levels in the

system. However, we do assume that the system is capable of self-monitoring: it immediately

knows if and when a degradation occurs. The optimality result shows the privilege of our MC model

(separately characterizing uncertainties in platform execution speed), as achieving optimality in

schedulability under the Vestal model has shown (Baruah, 2016)(Baruah et al., 2012a) to be highly

computationally intractable (NP-hard in the strong sense).

We first formally describe the system model and discuss the relationship to prior work based on

Vestal’s interpretation in Sec. 4.2.1, then give our algorithm (TDMC-LP) in Sec. 4.2.2, and show its

properties in Sec. 4.2.3. Finally, for the only time in this dissertation, 4.2.5 studies non-preemptive

scheduling by showing the NP-hardness for MC job scheduling even under the varying-speed

platform model. Most of the contributions made in this section can be found at (Baruah and Guo,

2013) and (Guo and Baruah, 2014a).

4.2.1 Model and Relationship to Prior Work

We start out considering MC systems that can be modeled as collections of independent jobs.

Each mixed-criticality (MC) job Ji is characterized by a 4-tuple of parameters: a release date ai,

a WCET ci, a deadline di, and a criticality level χi ∈ {1,2, . . . ,m}. Note that this WCET ci is
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measured based upon some constant unit-speed processor — a job with WCET of ci may require a

period of length ci/s when executing on a speed-s processor, for some s < 1.

Let t1, t2, . . . , tk+1 denote the at most 2n distinct values for the release date and deadline pa-

rameters of the n jobs, in increasing order (i.e., t j < t j+1 for all j). These release dates and

deadlines partition the time-interval
[
mini{ai},maxi{di}

)
into k intervals, which we will denote as

I1, I2, . . . , Ik, with I j denoting the interval [t j, t j+1).

A mixed-criticality instance I is specified by specifying

• a finite collection of MC jobs J = {J1,J2, . . . ,Jn}, and

• a varying-speed processor that is characterized by a normal speed s1 (without loss of gener-

ality, assumed to be 1) and some specified degraded processor speeds s2, . . . ,sm in strictly

decreasing order; i.e., sm < sm−1 < .. . < s2 < 1.

The interpretation is that the jobs in J are to execute on a single shared processor that has m modes:

a normal mode and (m− 1) degraded modes. In the normal mode, the processor executes as a

unit-speed processor and hence completes one unit of execution per unit time, whereas in degraded

mode l it completes fewer than sl−1, but at least sl , units of execution per unit time, for l = 2, . . . ,m.

The processor starts out executing at its normal speed. It is not a priori known when, if at

all, the processor will degrade: this information only becomes revealed during run-time when the

processor actually begins executing at a slower speed. We seek to determine a correct scheduling

strategy which is formally defined as follows:

Definition 4.2 (correct scheduling strategy). A scheduling strategy for MC instances is correct if it

possesses the property that upon scheduling any MC instance I = (J = {J1,J2, . . . ,Jn},s1, . . . ,sm),

each job Ji completes by its deadline if the processor executes at a speed ≥ sχi throughout its

scheduling window [ai,di).

Much of prior research considers a model in which each job is characterized by multiple

WCETs — the results can indeed be directly applied to our problem: Consider a job in our setting

that has WCET C and is being scheduled on a varying-speed processor with normal speed s1 = 1
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and degraded speeds s2, . . . ,sm. This job may be represented in the multiple-WCET model as a job

with a WCET vector of C,C/s2, . . . ,C/sm. If all jobs execute for no more than their normal WCETs,

then all jobs should execute correctly; while if some jobs execute beyond their normal WCETs,

then only some of the jobs (those with criticality levels exceeding a particular value) are required to

execute correctly.

It is not difficult to show that the algorithms proposed in prior work for scheduling Vestal’s MC

systems (with multiple WCET specifications) can be used to schedule this transformed system, and

that the resulting scheduling strategy correctly schedules the MC system under our interpretation

(upon the varying-speed processor). Hence, all the problems considered in this section could in

principle be solved by simply transforming to the earlier, multiple-WCET, model, and applying the

previously-proposed solution techniques.

However, in a latter part of this section, we show that one can sometimes do better than such an

approach. It was observed to be so because the problem we are considering here, of MC scheduling

on varying-speed processors, is simpler (from a computational complexity perspective) than the

previously-considered problem of MC scheduling with multiple-WCETs specified. For instance,

whereas determining preemptive uniprocessor feasibility for a collection of independent MC jobs

specified according to the multiple-WCET model is known (Baruah et al., 2012a) to be NP-hard in

the strong sense, in Sec. 4.2.2 we will present an optimal polynomial-time algorithm for solving the

same problem in our model. For the case of dual-criticality systems of implicit-deadline sporadic

tasks on preemptive uniprocessors, a speedup lower bound of 4/3 had been established (Baruah

et al., 2012b) for the multiple-WCETs model, whereas we will also provide an optimal (speedup-1)

algorithm.

4.2.2 Algorithm TDMC-LP

In this subsection, we present an efficient strategy for scheduling preemptable mixed-criticality

job set. We start out with a general overview of our strategy. Given an instance I, prior to run-

time we will construct a scheduling table S(I), which prescribes the amounts of execution for the
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specified intervals. During run-time, scheduling decisions are made according to this scheduling

table. Amounts within each interval are executed in the priority order of their criticality levels (more

important first), and we just perform the best-effort execution over all assigned amounts. A job is

dropped at its deadline if it is not finished. Note that we do not discard a job with criticality level

lower than ` even when the processing speed has (been detected) fallen to some value in the range

(s`+1,s`] — such mechanism improves the chances of lower criticality jobs meeting their deadlines

even when the processor degrades severely1.

In the remainder of this subsection, we present a simple linear-programming based algorithm

for constructing the scheduling table S(I) optimally. By optimal, we mean that if there is a correct

scheduling strategy (Definition 4.2 above) for an instance I, then the scheduling strategy described

above is a correct with the scheduling table we will construct. Its properties including correctness

and optimality will be provided in Sec. 4.2.3.

We start out identifying the following (obvious) necessary condition for MC-schedulability:

Lemma 4.3. In order that a correct scheduling strategy exists for MC instance I = (J,s1, . . . ,sm),

it is necessary that for each criticality level l = 1, . . . ,m, EDF correctly schedules all the jobs in I

with criticality level ≥ l upon a speed-sl uniprocessor.

Given any instance I, it can be efficiently determined whether I satisfies the necessary conditions

of Lemma 4.3: for each l, simply simulate the EDF scheduling of all the jobs in I with criticality-

level ≥ l upon a speed-sl processor. In the remainder of this section, let us therefore assume that

any instance under consideration satisfies these necessary conditions. (I.e., any instance that fails

these conditions can obviously not have a correct scheduling strategy, and is therefore flagged as

being unschedulable.)

Given an MC instance I =({J1,J2, . . . ,Jn},s1, . . . ,sm) that satisfies the conditions of Lemma 4.3,

we now describe how to construct a linear program (LP) such that a feasible solution for this linear

program can be used to construct scheduling table S(I).

1An example of such benefit will be shown in the execution analysis (Item 2) of Example 4.4, where J2 with criticality
level of 2 may meet its deadline in the case that the processer falls into a slowest functional speed of s3 since t = 1.
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To construct our linear program we define n× k variables xi, j, 1≤ i≤ n;1≤ j ≤ k. Variable

xi, j denotes the amount of execution we will assign to job Ji in the interval I j, in the scheduling

table that we are seeking to build.

The following n constraints specify that each job receives adequate execution in the normal

schedule: (
∑

j|t j≥ai∧di≥t j+1

xi, j

)
≥ ci, for each i,1≤ i≤ n; (4.1)

while the following k constraints specify the capacity constraints of the intervals:

( n

∑
i=1

xi, j
)
≤ s1(t j+1− t j), for each j,1≤ j ≤ k. (4.2)

Within each interval, the scheduling table will execute jobs in the priority order of their criticality

levels; i.e., amounts from higher criticality level jobs get executed first. (That is, the interval I j

will have a block of level-m criticality execution of duration ∑i:χi=m xi, j, followed by blocks of

l-criticality execution of duration ∑i:χi=l xi, j with l from m−1 down to 1, in order.) It should be

evident that any scheduling table generated in this manner from xi, j values satisfying the above

(n+ k) constraints will execute all jobs to completion upon a normal (non-degraded) processor. It

now remains to write constraints for specifying the requirements with respect to degraded conditions

— that the higher criticality jobs complete execution even in the event of the processor degrading

into corresponding modes.

Since within each interval, amounts are executed according to the priority of criticality level, we

observe that the worst-case scenarios occur when the processing speed drops at the very beginning

of a time interval, since that would leave the minimum computing capacity. All amounts will be

executed at the best effort, and a job can only be dropped at its deadline when unfinished by then.

For each {p, l}, 1≤ p≤ k,2≤ l ≤ m, we represent the possibility that the processor degrades into

speed-sl mode at the start of the interval Ip in the following manner:
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1. Suppose that the processor degrades into speed-sl mode at time instant tp; i.e., the start of the

interval Ip. Henceforth, only jobs of criticality ≥ l must be fully executed in order to meet

their deadlines.

2. Hence, for each tq ∈ {tp+1, tp+2, · · · , tk+1}, constraints must be introduced to ensure that the

cumulative remaining execution requirement of all jobs of criticality ≥ l with deadline at or

prior to tq can complete execution by tq on a speed-sl processor.

3. This is ensured by writing a constraint

(
∑

i|(χi≥l)∧(di≤tq)

(q−1

∑
j=p

xi, j
))
≤ sl(tq− tp). (4.3)

Note that for any job Ji with di ≤ tq,
(
∑

q−1
j=p xi, j

)
represents the remaining execution require-

ment of job Ji at time instant tp. The outer summation on the left-hand side is simply summing

this remaining execution requirement over all the jobs of criticality ≥ l that have deadlines at

or prior to tq.

4. A moment’s thought should convince the reader that rather than considering all tq’s in

{tp+1, tp+2, · · · , tk+1} as stated in (2) above, it suffices to only consider those that are deadlines

for some job of criticality ≥ l.

5. The Constraints (4.3) above only prevent missing deadlines after tp when the (degraded)

processor is continually busy over the interval between tp and the missed deadline; what

about deadline misses when the processor is not continually busy over this interval (and the

right-hand side of the inequality of Constraints (4.3) therefore does not reflect the actual

amount of execution received)? We point out that for such a deadline miss to occur, it must be

the case that there is a subset of jobs of criticality ≥ l – those with release dates and deadlines

between the last idle instant prior to the deadline miss and the deadline miss itself – that

miss their deadlines on a speed-sl processor. But this would contradict our assumption that

the instance passes the necessary conditions of Lemma 4.3, i.e., all the jobs of criticality
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Given MC instance ({J1,J2, . . . ,Jn},s1, ...,sm), with job release dates and deadlines partitioning the timeline
over [mini{ai},maxi{di}) into the k intervals I1, I2, . . . , Ik
Determine values for the xi j variables, i = 1, . . . ,n, j = 1, . . . ,k satisfying the following constraints:

• For each i, 1≤ i≤ n,
(

∑ j|t j≥ai∧di≥t j+1 xi, j

)
≥ ci. (4.1)

• For each j, 1≤ j ≤ k,
(
∑

n
i=1 xi, j

)
≤ s1(t j+1− t j). (4.2)

• For each p, 1≤ p≤ k, for each l, 2≤ l ≤ m, and for each q, p < q≤ (k+1)

(
∑

i|(χi≥l)∧(di≤tq)

(q−1

∑
j=p

xi, j
))
≤ sl(tq− tp). (4.3)

Figure 4.1: Linear program for constructing the scheduling table.

≥ l together (and therefore, every subset of these jobs) execute successfully on a speed-sl

processor.

The entire linear program is listed in Figure 4.1, and the following steps of our linear program-

ming based table-driven mixed-criticality scheduling approach TDMC-LP is described in Figure 4.2.

Before proving its correctness and optimality, we first illustrate the proposed algorithm TDMC-LP

by means of a simple example.

We can see that the run-time phase of TDMC-LP is performing a typical interval by interval

execution – during run-time, unless an idleness is detected, no amount assigned in later intervals

can be “promoted” – executed in the current interval. Moreover, according to Step 2a, we do not

dismiss any amount when a processor degradation is detected.

Note that it is possible that after execution of some interval, some assigned amounts are not

yet finished due to degradation. In such case, we cannot simply drop these amounts, but have to

pass it over into the next interval. The reason for such additional modification during runtime is that

Constraints (4.3) only provide guarantees to the total amount of required execution for each job until

its deadline. This can be done by adding the unfinished part of the amounts into the corresponding
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Given J = ∪n
i=1{Ji} to be scheduled on a varying-speed processor with speed thresholds s1, ...,sm:

• Construct the scheduling table S according to Figure 4.1, with xi, j denoting the assigned
amount of execution to job Ji during the interval I j, for each pair (i, j).

• For each interval I j, j = 1 up to k:

1. Higher-criticality execution is performed before lower-criticality ones within each
interval, while amounts with the same criticality level may be executed in any order
(e.g., in EDF order).

2. At the end of the interval; i.e., t = t j:

(a) If t j is some unfinished job’s deadline, then the job is dropped; i.e., ∀i that di =
t j, xi, j =−1.

(b) Other unfinished amounts (if exist) need to be passed over into the next interval; i.e.,
∀i that di > t j, xi, j+1 = xi, j+1 + xi, j−Ex(i, j), where Ex(i, j) denotes the executed
amounts of job Ji within Interval I j.

3. Whenever an idleness is detected, we may execute the (released) jobs with amounts
assigned to later interval(s) in the same priority order described in Step 1. 1.

Figure 4.2: Basic steps of the proposed scheduling algorithm TDMC-LP.

rows in the column of the scheduling table at the end of each interval (as described in Step 2b2. The

necessity of such maintenance during run-time will also be shown in Example 4.4.

The execution order when an idleness is detected described in Step 3 has nothing to do with

correctness — the proof of Theorem 1 will go through even the processor is left idled until the end

of such interval.

Example 4.4. We consider an MC instance I consisting of three jobs with parameters as depicted in

Figure 4.3, with c3’s value left unspecified for now, and d3 assumed to be larger than 5. The release

dates and deadlines of these three jobs define three intervals: I1 = [0,3); I2 = [3,5); I3 = [5,d3), as

illustrated in Figure 4.3.

Since there are three jobs in I (n = 3), Constraints (4.1) of the LP will be instantiated to

the following three inequalities, specifying that all three jobs receive adequate execution in the

2Here Ex(i, j) is not the total execution time of job Ji within Interval I j — the processing speed during run-time needs
to be considered (divided).
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Ji ai ci di χi
J1 0 3 5 1
J2 2 1 5 2
J3 0 c3 d3 3

-

-

-

0 1 2 3 4 5 d3

J1

J2

J3

6 ?

6 ?

6 ?

Figure 4.3: The MC job set considered in Example 4.4, with the graphical depictions.

scheduling table S(I) to execute correctly on a normal (non-degraded) processor:

x11 + x12 ≥ 3;

x22 ≥ 1;

x31 + x32 + x33 ≥ c3.

There are also three intervals I1, I2, and I3. Constraints 4.2 of the LP will therefore yield the

following three inequalities, specifying that the capacity constraints of the intervals are met:

x11 + x21 + x31 ≤ 2;

x12 + x22 + x32 ≤ 3;

x13 + x23 + x33 ≤ d3−5.

It remains to instantiate the Constraints (4.3), that were introduced to ensure correct behavior in

the event of processor degradation. In this example there are three criticality levels, and thus a need

to consider degradation cases of both speed-s2 and speed-s3. These must be separately instantiated
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to model the possibility of the processor degrading at the start of each of the three intervals I1, I2

and I3. We consider these separately:

• Degradation at the start of I1. In this case, Constraints (4.3) is instantiated three times:

speed-s2 for tm = 5, and both speed-s2 and speed-s3 for tm = d3:

x21 + x22 ≤ (5−0)s2;(
x21 + x22 + x23

)
+
(
x31 + x32 + x33

)
≤ (d3−0)s2;

x31 + x32 + x33 ≤ (d3−0)s3.

• Degradation at the start of I2. This case is similar as the above one that Constraints (4.3)

is instantiated once for tm = 5 and twice for tm = d3:

x22 ≤ (5−2)s2;(
x22 + x23

)
+
(
x32 + x33

)
≤ (d3−2)s2;

x32 + x33 ≤ (d3−2)s3.

• Degradation at the start of I3. In this case, Constraints (4.3) is instantiated twice, for

tm = d3 with speeds s2 and s3:

x33 ≤ (d3−5)s2;

x33 ≤ (d3−5)s3.

(Note that there are nine variables and fourteen constraints in this particular example.)
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Continuing with this example, suppose that c3 and d3 are 3 and 11 respectively, with degraded

speeds s2 = 1/2 and s3 = 1/3. A possible solution to the LP would assign the xi j variables the

following values: 
x11 x12 x13

x21 x22 x23

x31 x32 x33

=


1 2 0

0 1 0

1 0 2

 .
As a consequence, the scheduling table would be as depicted in Figure 4.4.

-

0 1 2 3 4 5 6 7 8 9 10 11

I1 I2 I3

J3 J1 J2 J1 J3

Figure 4.4: The constructed scheduling table of Example 4.4.

We can see that this scheduling table yields a correct scheduling strategy: observe that there

are three contiguous blocks of execution of criticality-level 2 or greater: [0,1), [2,3), and [5,7),

and consider the possibility of the processor degrading during each:

• If the processor degrades to speed-s2 during [0,2), then J3 will execute over [0,2) and [5,9),

while J2 can execute over [2,4). Both jobs of criticality ≥ 2 would thus meet their deadlines

on the speed-1/2 processor. J1 is executed over [4,5) and dropped at t = 5.

• If the processor degrades to speed-s3 during [0,2), then for the first interval [0,2), J3 will be

executed. However the assigned amount x31 = 1 may not be finished in the case processor

degrades early, say at t = 0. As a result, the scheduling table needs to be updated at time

t = 2 according to Step 2b in Figure 4.2: x32 = 1/3. Thus, J3 will continuously execute over

[2,3) and [5,11) and meet its deadline on the speed-1/3 processor. Time period [3,5) will be

used to execute J2, and both J1 and J2 will be dropped at time t = 5 in the worst case, leaving

x12 and x22 the value of −1 for reference. In the case processor degrades to speed-s3 late, say

at t = 0.5 (while remaining at unit-speed beforehand), the assigned amount x31 = 1 can be
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finished upon t = 2, and thus although under the slowest speed condition, J2 may finish on

time be executing over [2,5).

• If the processor degrades to a speed of either s2 (or s3) during [2,5), then J2 would execute

prior to J1 within this interval and gets finished on time. Job J3 will not continue its execution

until t = 5 since x32 = 0 — it only needs two additional units of execution which will be

obtained by executing over the third interval [5,9).

• If the processor degrades to speed-s2 (or s3) during [5,7), J3 will still meet its deadline since

it has completed one unit of execution prior to the processor degradation — it needs two more

units, which will be obtained by executing over [5,9) (or [5,11)) on the speed-1/2 (or 1/3)

processor.

We thus see that the solution of the LP does indeed yield a feasible scheduling strategy according to

the proposed runtime strategies in TDMC-LP.

4.2.3 Properties of TDMC-LP

It is shown that Algorithm TDMC-LP is performing the “best-effort execution”, and do not

dismiss any amount when a processor degradation is detected. We now formally show that it is

guaranteed the amounts with criticality level no lower than ` will be executed when processing

speed remains no smaller than s` (which exactly maps to the correctness definition).

Theorem 4.5. Algorithm TDMC-LP is correct.

Proof: We prove by contradictory.

Assume some job Ji with criticality level χi is not finished by its deadline di = tq (at the end of

Interval Iq−1), while the processor remains at (or above) a speed of sχi over the period [ai,di).

From Constraint (4.3), we know that total assigned amounts with criticality level no lower than

χi within Intervals [ai,di) can not exceed sχi(di− ai). Given the fact that no amount with lower

criticality level(s) can be executed within period [ai,di) (or else Ji should be assigned and executed
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during the period of such execution of lower criticality amounts), there must be some “carry-in”

amounts with criticality level no lower than χi due to Step 2b.

Denote tp as the end of the last interval (before ai) with either idleness or some execution of

amounts with criticality level lower than χi (so that no amount assigned before tp with criticality

level ≥ χi can be “carried-in”). It is now evident that Constraint (4.3) must be violated for Interval

[tp, tq) under speed sχi .

Theorem 4.6. Algorithm TDMC-LP is optimal — whenever it fails to maintain correctness, no

other non-clairvoyant algorithm can.

Proof: From Theorem 4.5, Algorithm TDMC-LP fails only when there is no feasible solution to

the LP described in Figure 4.1. Since the three set of constraints are all necessary ones according

to Lemma 4.3, violations of any of them indicates that the given instance is not schedulable under

some circumstances (e.g., speed performances during run-time). Thus, no other algorithm can

maintain correctness as well.

Bounding the size of this LP. It is not difficult to show that the LP of Figure 4.1 is of size

polynomial in the number of jobs n in MC instance I as well as the number of criticality levels m:

• The number of intervals k is at most 2n−1. Hence the number of xi, j variables is O(n2).

• There are n constraints of the form (4.1), and k constraints of the form (4.2). The number

of constraints of the form (4.22) can be bounded from above by (nkm), since for each

p ∈ {1, . . . ,k}, there can be no more than n tq’s corresponding to deadlines of jobs. Since

k ≤ (2n− 1), it follows that the number of constraints is O(n)+O(n)+O(n2m), which is

O(n2m).

Since it is known (Khachiyan, 1979; Karmakar, 1984) that a linear program can be solved in time

polynomial in its representation, it follows that our algorithm for generating the scheduling tables

for a given MC instance I takes time polynomial in the representation of I.
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4.2.4 The Dual-Criticality Sub-Case

In this subsection, we consider a sub-case of the problem where only two criticality levels exist

and derive a (computationally) more efficient algorithm (than the aforementioned linear program

based one) for solving it. That is, we consider dual-criticality systems executing on a variable-speed

processor characterized by just two speeds: a normal speed (assumed equal to 1) and a degraded

speed (designated as s, with s < 1). We use the standard designations of LO and HI to denote the

lower and higher criticality levels respectively.

4.2.4.1 A More Efficient Algorithm

At a high level, our algorithm is similar to LE-EDF described in Sec. 3.1.2: Given a dual-

criticality MC instance I, we will first construct a scheduling table S(I) (which can be viewed as a

set of sub-jobs), and then make run-time job-dispatch decisions in a manner that is compliant with

this scheduling table.

To construct the scheduling table, we first identify (Step 1 below) the latest time intervals during

which the HI-criticality jobs must execute if they are to complete execution on a degraded processor;

having identified these intervals, we construct (in Step 2) an EDF schedule for the HI-criticality jobs

in these intervals.

Step 1. Considering only the HI-criticality jobs in the instance, determine the intervals during

which the jobs would execute upon a speed-s processor, if (i) each job executes for its HI-criticality

WCET, and (ii) execution occurs as late as possible.

It is evident that these intervals may be determined by considering the jobs in non-increasing

order of their deadlines (i.e., latest deadline first), and taking the cumulative execution requirements

of these jobs. These intervals may therefore be determined in Θ(nHI lognHI) time (which comes

from the time complexity of EDF), where nHI denotes the number of HI-criticality jobs.

Step 2. Construct an EDF schedule for the HI-criticality jobs upon a preemptive processor that has

speed s during the intervals determined in Step 1 above, and speed zero elsewhere.
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It follows from the optimality property3 of EDF that if this step fails to ensure that each HI-

criticality job receives adequate execution prior to its deadline, then no scheduling algorithm can

guarantee correctness (see Definition 4.2) for this instance. We would therefore report failure: this

MC instance is not feasible. The remainder of this section assumes that Step 2 above was successful

in completing each HI-criticality job prior to its deadline.

We now describe how to use this EDF schedule to construct the scheduling table — recall

that this scheduling table is used for job dispatch decisions upon both the normal and degraded

processor, and is therefore constructed assuming a normal-speed (i.e., speed-1) processor.

Step 3. To construct the scheduling table, partition the timeline over [mini{ai},maxi{di}] into the

k intervals I1, I2, . . . , Ik. (Recall, from Sec. 3.2.2, that these are the intervals defined by the release

dates and deadlines of all the jobs — LO-criticality and HI-criticality.)

• For each HI-criticality job Ji and each interval I` in which it is scheduled in the EDF schedule

constructed in Step 2 above, execute Ji within this interval for an amount xi` which equals

to the amount of execution that Ji is allocated during Interval I` in the EDF scheduled

constructed in Step 2 above.

• Assign LO-criticality jobs by simulating the EDF-scheduling of the LO-criticality jobs in

the remaining capacity of the scheduling table — i.e., in the durations that are not already

allocated to the HI-criticality jobs during Step 3.1 above.

• If during this EDF simulation there is any capacity left over within an interval (because

the supply of currently-active LO-criticality jobs has been exhausted), then move over HI-

criticality jobs, that had been assigned to the later intervals in the scheduling table during Step

3.1 above, into the current interval. In so doing favor earlier-deadline jobs over later-deadline

ones.

3Although the optimality proof of EDF in (Liu and Layland, 1973), which is based on a swapping argument, assumes
that the processor speed remains constant, it is trivial to extend the proof to apply to processors that are only available
during limited intervals, or indeed to arbitrary varying-speed processors.
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Ji ai ci di χi
J1 1 2 10 HI

J2 5 1 8 HI

J3 6 2 15 HI

J4 0 4 6 LO

J5 1 2 10 LO

J6 10 3 13 LO

Figure 4.5: All MC jobs considered in Example 4.7, where ai,ci, and di stands for release date,
WCET, and deadline respectively.

Note that Step 3.3 is not necessary for maintaining correctness. It is just one of the common

choices when dealing idleness and/or pessimism in WCET estimations.

We illustrate this table construction process by means of the following example.

Example 4.7. Consider the instance consisting of the six jobs J1–J6 shown in tabular form in

Figure 4.5, to be implemented upon a processor of minimum degraded speed s = 1/2.

In Step 1, we determine the intervals upon which the HI-criticality jobs J1–J3 would need to

execute if they were to complete as late as possible, upon a degraded processor (one of speed-1/2);

this is represented in the following diagram:

-
0 5 10 15

a1
6

a2
6

a3
6

d2

?

d1

?

d3

?
J1J2 J3

In Step 2, we construct an EDF schedule of thel HI-criticality jobs J1–J3 upon a speed-1/2

processor. Lettting xi, j denote the amount of execution accorded to job Ji in interval I j, the

scheduling table S(I) looks like this:

I j I1 = [0,1) I2 = [1,5) I3 = [5,6) I4 = [6,8) I5 = [8,10) I6 = [10,13) I7 = [13,15)

J1 0 0.5 0 0.5 1 0 0

J2 0 0 0.5 0.5 0 0 0

J3 0 0 0 0 0 1 1
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In Step 3, we now try to fill in this scheduling table with LO-criticality jobs, interval by interval.

• Interval I1 will be filled with the job J4.

• Both J4 and J5 are in Interval I2; J4 has the earlier deadline. As a result, J4 receives 3

time units and J5 takes the remaining 0.5 unit. Here we check that J4 has received enough

execution and meets its deadline.

• Interval I3 has 0.5 units of execution remaining for job J5.

• The remaining one time unit capacity in I4 will be used by J5. Until now the scheduling table

for HI-criticality jobs has remained unchanged from the one constructed in Step 2 (and shown

in the above table).

• For the Interval I5, there is no active LO-criticality job, and the pre-allocated HI-criticality

amount x1,5 = 1 can not fill this up. In this case, we try to move later-assigned HI-criticality

amounts into this interval. Specifically, we consider the next interval I6, where x36 should be

“promoted” as x35; i.e., the one time unit that originally belongs to Interval [10,13) will be

executed now. Note that after this step, the scheduling table for HI-criticality jobs is changed

into the following one (with bold numbers highlighting changes).

• Interval I6 is now empty and can be fully assigned to job J6. Here we check that J6 has

received enough execution and meets its deadline.

• Nothing happens to Interval [13,15).

At the end of Step 3, the scheduling table for all jobs looks like this:
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I j [0,1) [1,5) [5,6) [6,8) [8,10) [10,13) [13,15)

J1 0 0.5 0 0.5 1 0 0

J2 0 0 0.5 0.5 0 0 0

J3 0 0 0 0 1 0 1

J4 1 3 0 0 0 0 0

J5 0 0.5 0.5 1 0 0 0

J6 0 0 0 0 0 3 0

Computational complexity. Although an individual job in an EDF schedule for an instance of

n jobs may be preempted as many as (n−1) times, it is known (see, e.g., (Buttazzo, 2005)) that

the total number of preemptions in any EDF schedule for an n-job instance cannot exceed (n−1).

In each column of the scheduling table, there should be at least one non-zero element unless all

released jobs are finished beforehand. Each more non-zero element denotes that either a job is

preempted, or a job finishes its execution within the corresponding interval. Since the number of

total finishing points is fixed as nHI +nLO, the total preemption number cannot exceed (nHI +nLO−1),

and number of total intervals is no greater than (2nHI + 2nLO), we know that the total number of

non-zero entries in the table of Step 3 cannot exceed (4nHI +4nLO−1), where nHI (nLO, respectively)

denotes the number of HI-criticality (LO-criticality, resp.) jobs in the instance.

We note that standard techniques (see, e.g., (Mok, 1988)) for implementing EDF are known,

that allow an EDF schedule for n jobs to be constructed in Θ(n logn) time. Consequently, we

conclude that the EDF-schedule of Step 2 can be constructed in Θ(nHI lognHI) time, and the total

scheduler overhead during run-time is also bounded from above by Θ(n logn) where n = nHI +nLO

denotes the total number of jobs.

4.2.4.2 An Optimization Version

Given a collection J of MC jobs and a degraded processor speed s, we have described how to

obtain a correct scheduling strategy for the MC instance (J,s). We now consider an optimization
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version of this problem: given the collection of MC jobs J, what is the smallest s such that there is a

correct scheduling strategy for the instance (J,s)?

Lemma 4.3 gives us a lower bound: s can be no smaller than the speed of the slowest processor

upon which the HI-criticality jobs in J would be correctly scheduled by EDF. But is this lower

bound tight? The following example illustrates that it is not:

Example 4.8. Consider the following three MC jobs:

Ji ai ci di χi

J1 0 2 2 LO

J2 0 1 4 HI

J3 2 1 4 HI

It is evident that (i) all three jobs are schedulable on a unit-speed processor (execute J1 over [0,2),

J2 over [2,3), and J3 over [3,4)), and (ii) J2 and J3 are schedulable on a speed-1
2 processor (execute

J2 over [0,2), and J3 over [2,4)). Hence, MC instance ({J1,J2,J3}, 1
2) satisfies the necessary

conditions of Lemma 4.3. However, there is no (non-clairvoyant) scheduling strategy that can

execute this instance correctly: consider the run-time behavior in which the processor operates in

normal mode over [0,2).

• If J1 did not execute exclusively over the interval [0,2), then it misses its deadline at time

instant 2. The processor remains in normal mode.

• If J1 did execute exclusively over [0,2), then the processor enters degraded mode at time

instant 2.

In either case, the instance was not correctly scheduled despite satisfying the necessary conditions

of Lemma 4.3.

It turns out that a slight modification to the linear program of Figure 4.1 can be used to determine

the smallest speed s: we simply add the objective function

minimize s
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to our linear program of Figure 4.1. That is, our modified linear program computes those values of

the xi, j parameters that yield a scheduling strategy guaranteeing to meet all deadlines on a unit-speed

processor, and HI-criticality jobs’ deadlines when the degraded speed is the smallest possible; this

smallest speed is the desired solution to the optimization version of our MC scheduling problem.

We have implemented this optimization algorithm and have conducted simulation experiments

on randomly-generated MC instances to try and gain some insight into the trade-offs involved in

MC scheduling upon varying-speed processors. We now describe these empirical investigations.

We generated a total of 30,000 MC workload instances4, for various different combinations of

the four parameters described above. For each instance that we generated, we also computed two

load 5 parameters — its HI-criticality load (loadHI) and its total load (loadALL). Our observations

are depicted in graphical form in Figures 4.6 and 4.7.

In Figure 4.6, the x-axes represent the HI-criticality load of the MC instance under consideration.

The y-axis of the left graph represents the degraded speed s that the instance can tolerate, as computed

by our optimization algorithm. By Lemma 4.3 the loading factor of the HI-criticality jobs is a lower

bound on the degraded speed for which a correct scheduling strategy may exist — this lower bound

is depicted as a dotted line in this graph, while the y-axis of the right graph represents the amount by

which the computed degraded speed s exceeds this lower bound. Although we do not claim that our

simulations are extensive or comprehensive enough to draw conclusions with absolute certainty, the

evidence presented in these graphs does indicate that the actual minimum speed (as computed by

our linear program) for which the typical randomly-generated MC instance is correctly schedulable,

is very close to the lower bound implied by Lemma 4.3.

Figure 4.7 depicts the relationship between the total load of the instance, and the amount by

which the computed degraded speed s exceeds the lower bound of Lemma 4.3. It is not surprising

that s tends to diverge from the lower bound with increasing loadALL: the intuition behind this is

4More details about our MC job generator can be found at Sec ??.
5See, e.g. (Liu, 2000, p. 81) for the definition of the load, or loading factor, of a collection of jobs; it is known that the
load is equal to the speed of the smallest processor upon which such a collection can be scheduled using preemptive
EDF. For our instances, the HI-criticality load is the load of only the HI-criticality jobs in the instance, whereas the
total load is the load of all the jobs in the instance.
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Figure 4.6: Degraded speed as a function of HI-criticality load and total load, where ave stands for
average value and std stands for standard deviation
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that since the contribution of the LO-criticality jobs to loadALL also increases, LO-criticality jobs

leave fewer time demands for the HI-criticality jobs to “extend” in degraded mode.

4.2.5 NP-Hardness for Non-Preemptive Scheduling

Recall that the TDMC-LP scheduling strategy we proposed in Sec. 4.2.2 works as follows.

Given an instance I, we construct a scheduling table S(I). During run-time scheduling decisions are

initially made according to this table. If at any instant it is detected that the processor has transited

to degraded mode, the scheduling strategy is immediately switched: henceforth, only HI-criticality

jobs are executed, and these are executed according to EDF. Such a scheduling strategy requires that

the job that is executing at the instant of transition can be preempted, and hence is not applicable for

non-preemptive systems. In this subsection, we consider the problem of scheduling non-preemptive

mixed-criticality instances.
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Non-preemptive mandates that each job receives its execution during one contiguous interval

of time. Let us suppose that a LO-criticality job is executing when the processor experiences a

degradation in speed. We can specify two different kinds of non-preemptive requirements:

1. This LO-criticality job does not need to complete — it may immediately be dropped.

2. This LO-criticality job cannot be preempted and discarded — it must complete execution

despite that fact that the processor has degraded and this job’s completion is not required for

correctness.

Although the first requirement – that the LO-criticality job may be dropped – may at first glance seem

to be the more reasonable one, implementation considerations may favor the second requirement.

For instance, it is possible that the LO-criticality job had been accessing some shared resource

within a critical section, and preempting and discarding it would leave the shared resource in an

unsafe state.

It has long been known (Lenstra et al., 1977) that the problem of scheduling a given collection

of independent jobs on a single non-preemptive processor (that does not have a degraded mode) is

already NP-hard in the strong sense (Lenstra et al., 1977)6. Since our mixed-criticality problem,

under either interpretation of the non-preemptive requirements, is easily seen to be a generalization,

it is also NP-hard. In fact, although determining whether an instance of (regular, not MC) jobs that

all share a common release time can be non-preemptively scheduled on a fixed-speed processor is

easily solved in polynomial time by EDF, it turns out that even this restricted problem is NP-hard

for MC scheduling.

Theorem 4.9. It is NP-hard to determine whether there is a correct scheduling strategy for schedul-

ing non-preemptive mixed-criticality instances in which all jobs share a common release date.

Proof Sketch: We prove this first for the second interpretation of non-preemptivity requirements

(LO-criticality jobs that have begun execution must be executed to completion), and indicate how to

modify the proof for the first interpretation.

6Indeed, it seems that it is difficult to even obtain approximate solutions to this problem, to our knowledge, the best
polynomial-time algorithm known (Bansal et al., 2007) requires a processor speedup by a factor of 12.
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This proof consists of a reduction of the partitioning problem (Garey and Johnson, 1979),

which is known to be NP-complete, to the problem of determining whether a given non-preemptive

mixed-criticality instance I can be scheduled correctly. The partitioning problem is defined as

follows. Given a set S of n positive integers y1,y2, . . . ,yn summing to 2B, determine whether there

is a subset of S with elements summing to exactly B.

Given an instance S of the partitioning problem, we construct an instance of the mixed-criticality

scheduling problem I composed of (n+1) jobs J1,J2, . . . ,Jn+1. The parameters of the jobs are

Ji =

 (0,yi,5B,HI), 1≤ i≤ n;

(0,B,2B,LO), i = n+1.

The normal processor speed is one; the degraded processor speed s is assigned a value equal to half:

s← 1/2.

We will show that there is a partitioning for instance S if and only if there is a correct scheduling

strategy for I.

There is a partitioning for S. Let S′ ⊆ S denote the subset summing to exactly B. We construct

our scheduling table as follows. Jobs corresponding to the elements in S′ are scheduled over the

interval [0,B), after which Jn+1 is scheduled over [B,2B), followed by the scheduling of the jobs

corresponding to the elements in (S\S′) over [2B,3B).

• If the processor enters degraded mode prior to time instant B, then only the HI-criticality jobs

need to complete execution; it may be verified that they will do so by their common deadline.

• If the processor enters degraded mode over [B,2B), then Jn+1 may execute for no more than

the interval [B,3B). That still leaves adequate capacity for the jobs corresponding to elements

in (S\S′) to complete execution by their deadline at 5B, on the speed-0.5 processor.

• Otherwise, Jn+1 completes by time instant 2B. That leaves adequate capacity for the jobs

corresponding to elements in (S\S′) to complete execution by their deadline at 5B, regardless

of whether the processor enters degraded mode or not.
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There is no partitioning for S. In this case, consider the time instant to at which the LO-criticality

job Jn+1 begins execution. We consider three possibilities:

• If to > B, the processor remains in normal mode but Jn+1 misses its deadline at t = 2B.

• If to = B, then the processor must have been idled for some time during [0,B). If the processor

were to now enter degraded mode at this time instant to, job Jn+1 will execute over [B,3B),

after which the strictly more than B units of remaining HI-criticality execution would execute

— this cannot complete by the deadline of 5B on the speed-1/2 processor.

• Now suppose that to < B, and the processor enters degraded mode at this time instant to.

It must be the case that ≤ to units of execution of the HI-criticality jobs has occurred prior

to time instant to. Job Jn+1 will execute over [to, to +2B), after which the at least (2B− to)

remaining units of HI-criticality work must complete. But on the speed-1/2 processor this

would not happen prior to the time instant to +2B+2(2B− to) = 6B− to > 5B, which means

that some HI-criticality job misses its deadline.

We have thus shown that there is a correct scheduling strategy for the non-preemptive mixed-

criticality instance I if and only if S can be partitioned into two equal subsets.

The proof above assumed the second interpretation of non-preemptive requirements, in which

LO-criticality jobs that begin execution need to complete even if the processor degrades. For the

first interpretation of non-preemptive requirements (LO-criticality jobs do not need to complete if

the processor degrades while they are executing), we would modify the proof by assigning the jobs

J1,J2, . . . ,Jn a deadline of 4B (rather than 5B as above). It may be verified that this modified MC

instance can be scheduled correctly if and only if the S can be partitioned into two equal subsets.

The intractability result of Theorem 4.9 implies that in contrast to the preemptive case, we are

unlikely to obtain efficient (polynomial-time) optimal scheduling strategies for non-preemptive

MC scheduling. In the future, we plan to work on devising, and evaluating, polynomial-time

approximation algorithms for the non-preemptive and limited-preemptive scheduling of MC systems.
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4.3 MC Job Scheduling on Non-Monitored Uniprocessor

We have considered in Sec. 4.2 the scheduling of MC job sets under the assumption that the

platform upon which the workload is being executed is self-monitoring during run-time, in the sense

that it immediately knows whether it transits from normal to degraded mode (i.e., if its speed falls

from ≥ 1 to below s). In this section, we remove this assumption and consider platforms that lack

the ability to self-monitor. We restrict our attention to the dual-criticality case in this section.

We first give the motivation in Sec. 4.3.1, then adapt the existing OCBP algorithm (see 3.1.3

for a detailed description) in Sec. 4.3.2, and finally quantifies the disadvantages of non-monitoring

via speedup analysis Sec. 4.3.4. The work reported in this section shows one of the cases where

existing algorithms can be adapted at no significant schedulability loss, as mentioned in our central

thesis. Most of the contributions made in this section can be found at (Guo and Baruah, 2013).

4.3.1 Motivation

A natural question arises: does the lack of such self-monitoring ability even matter? We

construct a simple example mixed-criticality instance below that shows that it does. This example

instance consists of one LO-criticality job J1 and one HI-criticality job J2, that are to be preemptively

scheduled on a processor with normal speed sn = 1 and degraded speed sd = 0.5. Both jobs arrive

at time instant zero; J1’s WCET is 1 and its deadline is at time instant 2, while J2’s WCET is 2 and

its deadline is at time instant 4. Upon a self-monitoring processor, we could start out scheduling the

system according to the following scheduling table:

-
time

0 1 2 3 4

J1’s deadline

?

J2’s deadline

?
J2 J1 J2
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If at any instant during this execution the processor determines that its execution speed has

degraded below 1, then J1 is immediately discarded and the processor executes J2 exclusively. It

may be verified, by exhaustive consideration of all possible instants at which such degradation

occurs, that this scheduling strategy will result in J2 completing by its deadline regardless of when

(if at all) the processor degrades, and in both deadlines being met if the processor remains normal

(or degrades at any instant ≥ 2).

Suppose, however, that the processor cannot self-monitor: it does not know what its speed is

at each instant during run-time. The schedule above is no longer correct: it is possible that the

processor had degraded at the very beginning and was already operating at a reduced speed of 0.5

throughout the interval [0,4), in which case neither job J1 nor job J2 would complete on time. This

remains true even if J2 were allocated for execution over [3,4) upon it being discovered that it

had not completed execution at time instant 3. Indeed, there will not be any scheduling strategy

for this example instance that meets all our requirements (i.e., guarantees MC correctness) upon a

non-monitoring processor, since the only scheduling strategy that can ensure that J2 completes on

a degraded processor would first execute J2 to completion, but such a schedule would necessarily

miss J1’s deadline even when the processor does not degrade.

Generally speaking, a self-monitoring processor knows it’s degradation as soon as it occurs, and

can make the best choice such as drop LO-criticality jobs to save enough capacity for HI-criticality

jobs. However if the processor cannot self-monitor, it won’t realize such degradation until a job

received enough execution time and hasn’t got finished — LO-criticality jobs will continue to get

executed even when the processor is running at a degraded speed. Other than the monitoring of

execution speed, the system model set up is exactly the same as described in Sec 4.2.1.

4.3.2 An OCBP Based Algorithm

We adapt the OCBP algorithm (Baruah et al., 2010b), which is described in Sec. 3.1.3, for

scheduling such sets. As we take a different perspective of MC (which arises from execution speed),
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here in this subsection we still describe our algorithm in full detail for the sake of completeness and

clearness.

The high-level description of our algorithm is as follows. Given an MC instance I = (J,s),

we aim to derive offline (i.e., prior to run-time) a total priority ordering of the jobs of J such that

scheduling the jobs according to this priority ordering constitutes a correct scheduling strategy,

where scheduling according to priority means that at each moment in time the highest-priority

available job is executed.

The priority list is constructed recursively using the approach commonly referred to in the

scheduling literature as “Lawler’s algorithm” (Lawler, 1973) or the “Audsley approach” (Audsley,

1991, 1993). We first determine (as described below) some job that may be assigned lowest priority,

and assign it the lowest priority. Then the procedure is repeated to the set of jobs excluding the

lowest priority job, until all jobs are ordered, or at some iteration a lowest priority job cannot be

found.

Determining a lowest-priority job. It can be shown, using techniques very similar to those used

in, e.g. (Baruah et al., 2010b), that if any LO-criticality job may be assigned lowest priority then so

may the LO-criticality job with the latest deadline, and that if any HI-criticality job may be assigned

lowest priority then so may the HI-criticality job with the latest deadline. Hence, we only need to

determine whether one of the two jobs, the latest-deadline LO-criticality job or the latest-deadline

HI-criticality job, may be assigned lowest priority.

• We assign the lowest priority to the latest deadline LO-criticality job if it would complete by

its deadline on a speed-1 processor if every other job were assigned higher priority.

• Else, we assign the lowest priority to the latest deadline HI-criticality job if it would complete

by its deadline on a speed-s processor if every other job were assigned higher priority.

• Else, we declare failure
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Ji ai ci di χi
J1 0 2 5 LO

J2 0 3 10 HI

J3 3 1 5 HI

J4 2 4 10 LO

Figure 4.8: Mixed-criticality instance considered in Example 4.10.

(Note that at this point in time we do not check to determine whether the jobs assigned higher

priority would meet their own deadlines or not — we are simply assuming that they each execute to

completion in a work-conserving manner.)

We illustrate the priority assignment process by means of a simple example.

Example 4.10. Consider the instance consisting of the four jobs J1–J4 shown in tabular form in

Figure 4.8, to be implemented upon a processor of normal speed 1 and a degraded speed s = 0.75.

• It may be verified that J4 would meet its deadline on a unit-speed processor if it were assigned

lowest priority. We therefore assign J4 the lowest priority.

• Next, we must determine which of the remaining three jobs may be assigned lowest priority

amongst them.

– If J1 were assigned lower priority than both J2 and J3, then upon a unit-speed processor

J2 would execute over [0,2), and J2 and J3 together would execute over [2,4). That

leaves J1 just one unit of execution by its deadline, which is not enough to allow it to

meet its deadline.

– If J2 were assigned lower priority than both J1 and J3, then on a speed-0.75 processor

J1 and J3 would together execute for (2+ 1)/0.75 or 4 time units, over the interval

[0,4). That would allow J2 to execute over the interval [4,8) and consequently receive

the required units of execution (3/0.75 = 4). We therefore assign J2 the second-lowest

priority from amongst the four jobs

118



• That leaves us with J1 and J3. Suppose J1 is assigned lower priority than J3. Then on a

unit-speed processor J1 would execute over [0,2), and complete by its deadline. It may

therefore be assigned the third-lowest priority.

• The remaining job J3 is therefore assigned lowest priority.

The final priority ordering is thus as follows (letting Ji � J j denote that Ji has greater priority than

J j):

J3 � J1 � J2 � J4

It is evident that this algorithm for assigning priorities is very efficient — it has a run-time

that is a low-order polynomial in the number of jobs — and it is guaranteed to find a total priority

ordering of the jobs, if one exists, such that scheduling according to this priority ordering is a correct

online scheduling strategy.

Lemma 4.11. Priority-based scheduling according to the priorities derived as described above

constitutes a correct scheduling strategy.

Proof: Suppose for a contradiction that our priority-assignment procedure was successful in

assigning priorities to all the jobs in the instance I = (J,s), but that job Ji ∈ J misses its deadline

during run-time.

• Suppose first that Ji is a LO-criticality job (χi = LO). It follows from the manner in which

priorities were assigned and the sustainability (Baruah and Burns, 2006) of preemptive fixed-

priority scheduling with respect to processor speed, that Ji would have met its deadline despite

the interference of jobs assigned greater priority, if the processor had executed throughout at a

speed of 1 or greater. For the deadline miss to occur, hence, the processor must have executed

at some speed strictly less than 1 at some instant prior to Ji’s deadline. By the definition of

correct scheduling strategy (Definition 4.2), Ji does not need to meet its deadline.

• Suppose now that Ji is a HI-criticality job (χi = HI). It once again follows from the manner

in which priorities are assigned, and the sustainability property, that Ji would have met

119



its deadline despite the interference of jobs assigned greater priority, if the processor had

executed throughout at a speed of s or greater. For the deadline miss to occur, the processor

must therefore have executed at some speed strictly less than s at some instant prior to Ji’s

deadline. By the definition of correct scheduling strategy (Definition 4.2), Ji does not need to

meet its deadline.

We thus see that deadlines are missed only when doing so does not violate the requirements of

correct scheduling.

4.3.3 An Optimization Version of the Problem

Given an MC instance I = (J,s), we derived above an algorithm for determining a correct

scheduling strategy for instance I. An optimization version of the MC scheduling problem can also

be defined:

• Given a collection of MC jobs J and a normal processor speed 1, what is the smallest degraded

processor speed s such that we can determine a correct scheduling strategy for the MC instance

I = (J,s)?

It is evident that both the optimization problem can be approximately solved to any desired degree

of accuracy by applying the technique of “binary search” in conjunction with the algorithm for

determining a correct scheduling strategy for a given instance (in which all parameters – J and s

– are specified). Consider the optimization problem listed above, in which J is specified and the

objective is to determine the smallest s. An upper bound on the value of s is 1; a lower bound is

zero. We could therefore repeatedly guess a value for s within this interval, seeking the smallest

value for which we are able to construct a correct scheduling strategy for I = (J,s).

However, it turns out that we can in fact solve the problem directly, without needing to do a

binary search. For the optimization problem listed above, the pseudo-code for doing so is given in

Figure 4.9.

We start out “guessing” that the value of s is zero (line 2 of the pseudo-code), and repeatedly

seeking to determine whether some job can be assigned lowest priority for this value of s. If so,
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OPTI-1(J)
1 J′← J
2 s← 0
3 repeat
4 Let JL be the latest deadline LO-criticality job in J′

5 Let JH be the latest deadline HI-criticality job in J′

6 if JL meets its deadline as the lowest-priority job on a speed-1 processor
7 then JL gets the lowest priority
8 J′← J′ \{JL}
9 else

Determine s′, the smallest speed such that JH meets its deadline as the
lowest-priority job on a speed-s′ processor

10 s←max{s,s′}
11 JH gets the lowest priority
12 J′← J′ \{JH}
13 s←max{s,s′}
14 until J′ is empty
15 return s

Figure 4.9: Determining the smallest degraded processor speed.

we continue; if not, we increase the guessed value of s to the smallest value needed to be able to

assign some job the lowest priority and then continue. (If follows from the sustainability property

of fixed-priority scheduling with respect to processor speed that if lower-priority jobs met their

deadlines with the smaller values of s, they will continue to do so when s’s value is increased.)

4.3.4 Quantifying the Benefits of Self-Monitoring

We now provide quantitative evaluations of the benefits of providing self-monitoring facilities

to processors.

If an MC instance I = (J,s) can be scheduled by a correct scheduling strategy upon a self-

monitoring processor, then it is evident that the jobs in J can be scheduled by a correct scheduling

strategy upon an unmonitored processor in which the normal and the degraded speeds are both

equal to 1 (equivalently, the processor does not have a non-trivial degraded mode). The following

lemma shows that this is the best general result we can come up with:
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Lemma 4.12. There are MC instances I = (J,s) that can be scheduled by a correct scheduling

strategy upon a self-monitoring processor, but for which (J,s′) cannot be scheduled by a correct

scheduling strategy upon an unmonitored processor for all s′ < 1.

In other words, such instances can only be scheduled upon an unmonitored processor if the

processor does not have a non-trivial degraded mode.

Proof: We prove this lemma by demonstrating the existence of such an instance I. Let s be any

constant less than one and k denote some large positive constant. Consider the collection of MC

jobs listed in Table 4.1. For instance, if s were 1/2 and k is chosen equal to 9, J1 would have a

WCET of 10 and a deadline at 20, while J2 would have a WCET of 9 and a deadline at 18.

Ji ai ci di χi
J1 0 (k+1) (k+1)/s HI

J2 0 k(1− s)/s k/s LO

Table 4.1: An example of MC job set that is feasible upon a self-monitoring processor, while not
schedulable upon an unmonitored one.

Upon a self-monitoring processor, we could construct a scheduling table that executes the

HI-criticality job J1 over [0,k), J2 over [k,k/s), and J1 again over [k/s,k/s+1). For the example

parameters of s = 1/2 and k = 9, this would correspond to scheduling J1 over [0,9) and [18,20),

and J2 over [9,18).

It is evident that a self-monitoring processor would complete both jobs on a processor that

executes throughout in normal mode. If the speed of the processor falls to below 1 at any instant,

the LO-criticality job J2 is immediately discarded and J1 executed — it may be validated that this

strategy results in J1 always meeting its deadline as long as the processor speed remains at least s

(for our example,1/2).

Upon a non-monitored processor with normal speed also equal to 1 and degraded speed s′,

we must execute J2 for its WCET prior to its deadline (since we cannot determine, prior to J2’s

deadline, whether the processor is in normal or degraded mode). Since J1’s deadline is after J2’s,
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the duration for which J1 will execute is hence bounded by

(d1−a1)− c2

=
k+1

s
− k(1− s)

s

=
1+ ks

s

Suppose that the processor was to be degraded mode throughout; i.e., starting at time instant zero.

For J1 to execute to completion by its deadline, we need that

s′×
(

1+ ks
s

)
≥ c1

⇔ s′×
(

1+ ks
s

)
≥ (1+ k)

⇔ s′ ≥ s+ ks
1+ ks

from which it follows that s′ approaches one as k→ ∞. The lemma is thus proved.

4.3.5 The Speedup Cost of Not Monitoring

As discussed in Sec. 2.4.3, much previous work on MC scheduling has focused on a model

in which the processor speed is assumed to remain constant throughout run-time but each job is

characterized by two different WCET values: a LO-criticality value and a larger HI-criticality value.

An algorithm titled OCBP for Own Criticality-Based Priorities was proposed in (Baruah et al.,

2010b, 2012a) for scheduling such MC systems, and the following speedup bound proved (as,

e.g., (Baruah et al., 2010b, Lemma 5)): If an MC instance is schedulable on a given processor, then

it is OCBP-schedulable on a processor that is (1+
√

5)/2 (or approximately 1.618) times as fast.

Consider a single job with WCET of c upon unit speed processor. Upon an unreliable processor

where s(t) varies from s̄ to 1, it may need up to c/s′ units of time to finish execution. Under the

assumptions of our model, a slower non-monitor processor can be transformed into longer WCET,

and thus we can re-formulate the MC model that is described in Sec. 3.2.2 above into the Vestal
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(2-WCET) model assumed by OCBP algorithm, in the following manner. Given an MC instance

I = (J,s) in the model described in Sec. 3.2.2, each job Ji = (ai,ci,di,χi) in J is modeled as a job J′i

with the same criticality, release date, and deadline, and with LO-criticality WCET equal to ci and

HI-criticality WCET equal to ci/s. Hence for instance if s = 1/2, J′i ’s LO-criticality WCET would

equal ci and its HI-criticality WCET would be equal to 2ci.

Upon such transformation, the algorithm that we described in Sec. 4.3.2 behaves in essentially

the same manner as OCBP, and as a consequence similar speedup bounds can be derived: If an

instance can be scheduled on a self-monitoring processor, then it can be scheduled on a non-

monitoring processor that is (1+
√

5)/2 times as fast in both the normal and the degraded mode.

Moreover, under the worst case that processor degraded to speed s̄ and remains, all HI-criticality

jobs will execute longer by a factor of 1/s̄. As a result, there becomes a fixed ratio between the 2

WCETs, and the following theorem shows a tighter bound comparing to previous work based on

that.

Theorem 4.13. Let I = (J,s) denote an MC instance that can be correctly scheduled by an optimal

scheduling strategy upon a self-monitoring processor. If the same job set J is not correctly scheduled

by the algorithm described in Sec. 4.3.2 upon a platform with speedup φ , (i.e., a minimum LO-mode

speed φ and degraded speed φ × s), then φ < min{2− s,
√

s+1}.

Proof: For a given s, let I = (J,s) denote some minimal instance that can be scheduled correctly

by an optimal algorithm on a self-monitoring processor, but J is not correctly scheduled on a

non-monitoring processor with LO-mode speed φ and degraded speed φ × s using the algorithm of

Sec. 4.3.2.

Let dL denote the latest deadline of any LO-criticality job, and dH the latest deadline of any

HI-criticality job; let cL and cH denote the cumulative WCET’s of the LO- and HI-criticality jobs

respectively:

dL = max
j|χ j=LO

d j,
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dH = max
j|χ j=HI

d j,

cL = ∑
j|χ j=LO

c j,

cH = ∑
j|χ j=HI

c j.

Consider now any work-conserving schedule of J upon a speed-φ processor, when each job Ji

requests exactly ci units of execution7. Let Λ1,Λ2, . . . denote the intervals, of cumulative length λ ,

during which the processor is idle in this schedule.

Observation 4.14. No LO-criticality job has a scheduling window that overlaps with Λ`, for any `.

Proof: Suppose that some LO-criticality job Ji were to overlap withΛ` for some `. This means that

all the jobs which arrive prior to Λ` complete by the beginning of Λ`. Hence, Ji would complete by

its deadline upon a speed-φ processor, if it were assigned lowest priority. But this contradicts the

assumption that J is a minimal set that is not correctly scheduled on a non-monitoring processor

using the algorithm of Sec. 4.3.2.

Since J is assumed to be schedulable on a self-monitoring processor, all LO-criticality jobs

would complete by dL, the latest deadline of any LO-criticality job, on a speed-1 processor. It

therefore follows from Observation 4.14 that the cumulative WCET’s of all LO-criticality jobs

cannot exceed (dL−λ ):

cL ≤ dL−λ (4.4)

Since we are assuming that the instance J is not correctly scheduled by the algorithm described in

Sec. 4.3.2 upon a platform with speedup φ , it must be the case that the LO-criticality job with the

latest deadline cannot be the lowest-priority job on a speed-φ processor. Hence, it is necessary that

cL + cH > (dL−λ )φ (4.5)

7We are not attempting to meet deadlines in this schedule, simply keeping the processor active whenever there are jobs
remaining that have arrived but not completed execution, regardless of whether their deadlines are met or not.
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We now argue from the schedulability of I = (J,s) on a self-monitoring processor that

• All the jobs would complete by dH , the latest deadline of any job, upon a speed-1 processor.

Inequality 4.6 below, immediately follows.

cL + cH ≤ dH (4.6)

• All HI-criticality jobs would complete by dH upon a speed-s processor. Inequality 4.7 follows:

cH

s
≤ dH (4.7)

Observation 4.15. Consider now any work-conserving schedule of J upon a speed-φ processor,

when each LO-criticality job Ji executes for exactly ci time-units, and each HI-criticality job Ji

executes for exactly (ci/s) time-units8. There are no idle intervals in this schedule.

Proof: If there were an idle interval, any job whose scheduling window spans the idle interval would

meet its deadline upon the speed-φ processor if it were assigned lowest priority. But this contradicts

the assumption that J is a minimal instance that is not correctly scheduled on a non-monitoring

processor with speedup φ using the algorithm of Sec. 4.3.2.

Since we are assuming that J is not correctly scheduled on a non-monitoring processor with

speedup φ using the algorithm of Sec. 4.3.2, it must be the case that the latest-deadline HI-criticality

job will not meet its deadline if it were assigned the lowest-priority. Given Observation 4.15 above,

it must then be the case that

cL +
cH

s
> dH

φ (4.8)

Suppose that the value of s is known, by multiplying both sides of Inequality (4.4) by a factor φ

and combining with Inequality (4.5), we have

cL + cH > cL
φ . (4.9)

8As in Observation 4.14, we are not attempting to meet deadlines in this schedule.
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By chaining Inequalities (4.8) and (4.6), we get

cL +
cH

s
> (cL + cH)φ (4.10)

while by chaining Inequalities (4.8) and (4.7), we get

cL +
cH

s
>

cH

s
φ (4.11)

Let y denote the ratio of cumulative WCET length of different criticality jobs; i.e., y := cH/cL.

From Inequalities (4.9)-(4.11), we conclude that

φ < 1+min{y,(1− s)/(y+ s),s/y}. (4.12)

It is evident that (1− s)/(y+ s) and s/y decreases, with increasing y ∈ R+ and any fixed

s∈ (0,1). Let (1−s)/(y+s) = s/y, and we have y= s2/(1−2s) which helps break Inequality (4.12)

above into the following two inequalities:

φ < 1+min{y,(1− s)/(y+ s)}, if x <
s2

1−2s
(4.13)

φ < 1+min{y,φ/s}, otherwise (4.14)

By solving the two equations y = (1− s)/(y+ s) and y = s/y, noticing that y > 0, we get

solutions y∗1 = (1− s) and y∗2 =
√

s. As a result, by substituting the min functions over y in

Inequalities (4.13) and (4.14) and combining them together, we obtain the following relationship

between φ and s:

φ < 1+min{1− s,
√

s}= min{2− s,
√

s+1}. (4.15)

Figure 4.10 shows the bound on the speedup factor φ as a function of the degraded speed s

(assuming normal speed of 1).
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Figure 4.10: Lower bound on the speedup factor φ as a function of s - the degraded processor speed.

By solving the equation 2−s =
√

s+1, we get s∗ = (3−
√

5)/2 and φ ← (2−s) = (1+
√

5)/2.

Figure 4.10 shows the (
√

5+ 1)/2 speed-up factor upper bound, which matches the results in

previous works.

Corollary 4.16. Let I = (J,s) denote an MC instance that can be correctly scheduled by an optimal

scheduling strategy upon a self-monitoring processor. If the set J is not correctly scheduled by the

algorithm described in Sec. 4.3.2 upon a platform with speedup φ , then φ < (1+
√

5)/2.

From Figure 4.10, we can see that comparing to existing results, we can achieve a lower

speed-up factor when the given s varies according to Theorem 4.13 for the non-self-monitoring case.

The red slashed line shows how s×φ is related to s. As the benefit of bringing in the algorithm,

we would like to have it as low as possible - consider the case when s×φ = 1, it means that for a

degraded speed s, we need exactly a processor that runs 1/s times faster.
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How tight is this relationship between speedup and s? To answer this question, consider the

MC instance I = (J,s); let σ denote 1/(1− s), and let J consist of the two jobs described in Table

4.2.

Ji ai ci di χi
J1 0 1 1 LO

J2 0 σ (σ −1) HI

Table 4.2: An MC job set that demonstrates the tightness of the speedup bound φ shown in (4.15).

It has been shown (Baruah et al., 2012a, Proposition 2) that by taking σ = (1+
√

5)/2, this

instance reaches its schedulability bound. Noticing that for such σ , s = (σ −1)/σ = (3−
√

5)/2

takes exactly the value of s∗ that is calculated above. This implies that Inequality (4.15) provides

a tight bound for the speedup factor φ , and the upper bound of φ can be calculated by max(φ) =

2− s∗ = 1+
√

s∗ = (1+
√

5)/2. We can also tell from Figure 4.10 that for a given φ ∈ (0,1), the

upper bound of speedup factor varies from 1 when the ratio of normal to degraded speed is either

zero or one, to (1+
√

5)/2 when this ratio is equal to (3−
√

5)/2 (or ≈ 0.382).

Note. Under the case that uncertainty arises solely from varying-speed platforms, the key difference

between the non-monitored varying-speed processor model and the Vestal one is that all jobs

will have the same ratio s between its optimistic execution bound (cL) and the pessimistic one

(cH = cL/s). This is the key reason why a tighter speedup result can be shown in this section.

However, unlike the LP-based scheduler for the self-monitored case show in the previous section,

here we are unable to achieve an optimal (i.e., speedup-1) scheduler for the non-monitored case

— what we did in this section is adapted an existing algorithm (for scheduling Vestal job sets) and

analyzed a tighter speedup bound for it under our model.
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4.4 MC Job Scheduling on Multiprocessor

Embedded systems, especially safety-critical ones are increasingly implemented on multi-core

platforms. Furthermore, as these multiprocessor platforms become more complex and sophisticated,

their behaviors become less predictable. Larger variations will cause an increase of the pessimism

to any conservative WCET-analysis tools.

Generally speaking, uniprocessor MC scheduling algorithms perform poorly on multiprocessor

platforms. In this section, we seek to extend the LP based uniprocessor scheduler in Sec. 4.2 into

(uniform) multiprocessor platform, while maintaining its optimality property. To the best of our

knowledge, this is the only existing optimal MC multiprocessor scheduler. Most of the contributions

made in this section can be found at (Guo and Baruah, 2014b).

4.4.1 Model and Preliminary Results

In this section, we study the scheduling of real-time jobs on m identical varying-speed processors

that are characterized by a normal speed (without loss of generality, assumed to be 1) and a specified

degraded processor speed threshold s < 1, under the following assumptions:

• Job preemption is permitted, with zero cost.

• Job migration is permitted, also with no penalty associated.

• Job parallelism is forbidden; i.e., each job may execute on at most one processor at any given

instant.

Each MC job Ji is still characterized by a 4-tuple of parameters: a release date ai, a WCET ci, a

deadline di, and a criticality level χi ∈ {LO,HI}.

Let si(t) denote the processing speed of processor i at time t, i = 1, ...,m. The interpretation is

that the jobs in J are to execute on a multiprocessor system that has two modes: a normal mode and

a degraded mode.
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Although we have defined degraded mode (or HI-criticality mode) for varying-speed unipro-

cessor platform, it does not directly apply to multiprocessor platforms. Here we list two most

reasonable definitions of degraded mode for multiprocessor platform:

Definition 4.17 (degraded mode). A system with m processors is in degraded mode at a given

instant t if there exists at least one processor executing at a speed less than one; i.e., ∃i,si(t)< 1;

and moreover, all processors execute at a minimum speed of s; i.e., ∀i,si(t)≥ s.

Definition 4.18 (weak degraded mode). A system with m processors is said to be in weak degraded

mode at a given instant if the processing speeds {si} of all processors satisfy:

m

∑
j=1

si ≥ s ·m. (4.16)

Under normal mode, m processors execute at unit-speed and hence each completes one unit

of execution per unit time, whereas in degraded mode, according to the definition, each processor

completes at least s units of execution per unit time. The weak degraded mode is called weak as

it only requires the m processors are executing with an average speed no slower than s. It is not

a priori known when, if at all, any of the processors will degrade: this information only becomes

revealed during run-time when some processors actually begin executing at a slower speed.

Definition 4.19 (correct scheduling strategy). A scheduling strategy for MC instances is correct if it

possesses the properties that upon scheduling any MC instance I = (J,m,s),

• if the system remains in normal mode throughout the interval [mini{ai},maxi{di}), then all

jobs complete by their deadlines; and

• if the system remains in normal mode or (weakly) degraded mode, then HI-criticality jobs (Ji

with χi = HI) complete by their deadlines.

That is, a correct scheduling strategy ensures that HI-criticality jobs execute correctly regardless

of whether the system runs in normal or (weakly) degraded mode; LO-criticality jobs are required

to execute correctly only if all processors execute throughout in normal mode.
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In this section, we will consider both definitions of degraded mode (in Secs. 4.4.3 and 4.4.4

respectively), and seek to determine optimal scheduling strategy:

Definition 4.20 (optimal scheduling strategy). An optimal scheduling strategy for MC instances

possesses the property that if it fails to maintain correctness for a given MC instance I , then no

non-clairvoyant algorithm can ensure correctness for the instance I .

4.4.2 Step 1 — A Linear Program

The first step of our algorithms under either definition of the degraded mode is the same, which

is constructing a linear program to determine the amount of execution to be completed for each job

within each interval. Such assignment will possess the property that each job Ji receives ci units

of execution over its scheduling window [ai,di). The solution of the LP will be further used to

construct schedules (in the following two subsections) under either definition of the degraded mode.

Note that the linear program construction is very similar to the one described in Sec. 4.2.2 (which is

for uniprocessor case). For the sake of completeness and clearness, in this subsection, we present

the LP for multiprocessor in full detail.

Without loss of generality, assume that the HI-criticality jobs in I are indexed 1,2, . . . ,nh and the

LO-criticality jobs are indexed nh+1, . . . ,n. Let t1, t2, . . . , tk+1 denote the at most 2n distinct values

for the release date and deadline parameters of the n jobs, in increasing order (t j < t j+1 for all j).

These release dates and deadlines partition the time-interval
[
mini{ai},maxi{di}

)
into k intervals,

which will be denoted as I1, I2, . . . , Ik, with I j denoting the interval [t j, t j+1).

To construct our linear program we define n · k variables xi, j, 1≤ i≤ n;1≤ j ≤ k. Variable xi, j

denotes the amount of execution we will assign to job Ji in the interval I j, in the scheduling table

that we are seeking to build.

First of all, since no job can be executed on more than one processor in parallel, the following

two sets of inequalities need to be introduced for ensuring no capacity constraint is violated:
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0≤ xi, j ≤ s(t j+1− t j),∀(i, j),1≤ i≤ nh,1≤ j ≤ k; (4.17)

0≤ xi, j ≤ t j+1− t j,∀(i, j),nh < i≤ n,1≤ j ≤ k. (4.18)

The following n constraints specify that each job receives adequate execution when system

remains in normal mode:

(
∑

j|t j≥ai ∧ di≥t j+1

xi, j

)
≥ ci,∀i,1≤ i≤ n. (4.19)

The following k inequalities specify the capacity constraints of each interval:

( n

∑
i=1

xi, j
)
≤ m(t j+1− t j),∀ j,1≤ j ≤ k. (4.20)

It should be evident that any scheduling table generated in this manner from xi, j values satisfying

the above constraints will execute all jobs to completion upon a normal-mode (non-degraded) system.

It now remains to add constraints for specifying the requirements that the HI-criticality jobs complete

execution even in the event of the system degrading into the faulty mode. It is evident that we only

need to specify constraints for the most pessimistic degradation case — weakly degradation, where

all processors run in total at the speed s×m (which holds true for “normal” degradation trivially,

see Definitions 4.17 and 4.18).

Considering the case when weakly degradation occurs at the beginning of each interval, capacity

constraints of each interval need to be specified for all HI-criticality amounts:

( nh

∑
i=1

xi, j
)
≤ s ·m(t j+1− t j),∀ j,1≤ j ≤ k. (4.21)

It is not hard to observe that the worst-case scenarios occur when the system transits to weakly

degraded mode at the very beginning of an interval — that would leave the maximum load of

HI-criticality execution remaining to be done on the degraded system. For each `, 1 ≤ ` ≤ k,
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suppose that the degradation of the system occurs at time instant t`; i.e., the start of the interval I`.

Henceforth, only HI-criticality jobs need to be guaranteed meeting deadlines. Thus for each possible

deadline tm ∈ {t`+1, t`+2, · · · , tk+1}, constraints must be introduced to ensure that the cumulative

remaining execution requirement of all HI-criticality jobs with deadlines at or prior to tm can

complete execution by tm on a system with m processors each of minimum speed s. This is ensured

by the following constraint:

(
∑

i:(χi=HI)∧(di≤tm)

(m−1

∑
j=`

xi, j
))
≤ s ·m(tm− t`). (4.22)

To see why this represents the requirement stated above, note that for any job Ji with di ≤ tm,(
∑

m−1
j=` xi, j

)
represents the remaining execution requirement of job Ji at time instant t`. The outer

summation on the left-hand side of Equation (4.22) is simply summing this remaining execution

requirement over all the HI-criticality jobs that have deadlines at or prior to tm.

A moment’s thought should convince the reader that rather than considering all tm’s in {t`+1,

t`+2, · · · , tk+1} as stated above, it suffices to only consider those that are deadlines for HI-criticality

jobs.

The entire linear program is listed in Figure 4.11. It is trivial that violating any of the constraints

will result in incorrectness of the scheduling. Thus, we conclude that these conditions are necessary.

If it could be further shown that they are also sufficient, we may conclude the optimality of our

algorithm.

Note. Unlike the uniprocessor case studied in previous work (Sec. 4.2), to make these conditions

sufficient here, we need to mimic a processor-sharing scheduling strategy. Discussions on converting

the solution of LP into a correct schedule with processor-sharing will be provided in later parts

of this section, and optimality will be shown based on the assumption that we can partition each

interval into small enough quanta so that processor speed does not change inside each quantum.

Bounding the size of this LP. It is not difficult to show that the LP with linear constraints (4.17) -

(4.22) is of size polynomial in the number of jobs n:
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Given MC instance I = (J,m,s), with job release dates and deadlines partitioning the timeline over
[mini{ai},maxi{di}) into the k intervals I1, I2, . . . , Ik.
Determine values for the xi j variables, i = 1, . . . ,n, j = 1, . . . ,k satisfying the following constraints:

• For each pair (i, j), 1≤ i≤ nh,1≤ j ≤ k,

0≤ xi, j ≤ s(t j+1− t j).

• For each pair (i, j), 1≤ i≤ n,1≤ j ≤ k,

0≤ xi, j ≤ t j+1− t j.

• For each i, 1≤ i≤ n, (
∑

j|t j≥ai ∧ di≥t j+1

xi, j

)
≥ ci.

• For each j, 1≤ j ≤ k, ( n

∑
i=1

xi, j
)
≤ m(t j+1− t j);

( nh

∑
i=1

xi, j
)
≤ s ·m(t j+1− t j).

• For each pair (`,m), 1≤ `≤ k, ` < m≤ (k+1)

(
∑

i:(χi=HI)∧(di≤tm)

(m−1

∑
j=`

xi, j
))
≤ s ·m(tm− t`).

Figure 4.11: Linear program for determining the amounts to be finished for each job within each
interval.
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• The number of intervals k is at most 2n−1. Hence the number of xi, j variables is O(n2).

• There are n constraints of the forms (4.17) or (4.18), n constraints of the form (4.19), and

2k constraints of the forms (4.20) and (4.21). The number of constraints of the form (4.22)

can be bounded by (k ·nh), since for each ` ∈ {1, . . . ,k}, there can be no more than nh of tm’s

corresponding to the deadlines of HI-criticality jobs. Since nh ≤ n and k≤ (2n−1), it follows

that the number of constraints is O(n)+O(n)+O(n)+O(n2), which is O(n2).

Since it is known that a linear program can be solved in time polynomial of its representa-

tion (Khachiyan, 1979) (Karmakar, 1984), our algorithm for generating the scheduling tables for a

given MC job set J takes time polynomial in the representation of |J|.

4.4.3 Optimal Run-Time Strategy for Degraded Mode

In this subsection, we make the stronger restrictions about degraded mode, where no processor

is allowed to execute at a speed slower than s (see Def. 4.17). One may argue that this is a rather

restrictive definition, since we do not allow the case that a few processors to being nonfunctional,

even when others execute at full speed. Sec. 4.4.4 discusses the case based on the alternative, less

restrictive, definition to degraded mode.

Given a solution to the linear program constructed in the previous subsection, we now need

to derive a run-time scheduling strategy that assigns an amount of execution xi,` to processors

during the interval I`, for each pair (i, `). According to the design of the linear program, run-time

scheduling is now an interval-by-interval business — arrangements need to be made according to

the table (calculated by the LP). We will show in this subsection how to mimic a processor-sharing

schedule to execute mixed-criticality amounts within each interval in this possibly heterogeneous

system (some processors may degrade while others may not at certain instants in time).

Within a given interval I`, we denote fi,` = xi,`/(t− t`) as the allocated fraction for a given

amount xi,`. According to Inequalities (4.20) and (4.21), we can derive the following bounds of

these fractions:

fi,` ≤ s,∀1≤ i≤ nh; (4.23)
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fi,` ≤ 1,∀nh < i≤ n. (4.24)

Definition 4.21 (lag). For any interval I` and an assigned amount xi,`, its lag at any instant

t ∈ [t`, t`+1) (within the interval) is given by:

lag(xi,`, t) = t · fi,`− executed(Ji, t). (4.25)

Equation 4.21 defines a measurement to the difference between an ideal schedule and the actual

execution of a given job. Under such a definition, we know that at any instant, non-negative lag for

a job indicates that the schedule is correct so far with respect to this job. We will provide a strategy

that guarantees zero lag at the end of each interval for all jobs while the system remains normal,

and only for HI-criticality ones otherwise.

It should not be surprising that with (sufficient) preemption and migration, we can mimic a

processor-sharing scheduling strategy that deals with this problem correctly. To mimic a processor-

sharing scheduling strategy, jobs are simultaneously assigned fractional amounts of execution

according to the solution of the LP. This can be done by partitioning the timeline into quanta of

length ∆, where ∆ is an arbitrarily small positive number. For each quantum, each job is executed

for a duration of fi,` ·∆, where fi,` has been defined to be the fraction of the job within Interval I`.

In this way, by the end (and also at the beginning) of each quantum, lag for any job is zero, which

leads to the correctness of the scheduling (thus far).

Now we have further reduced the original scheduling problem into the following: given a

quantum of length ∆, m ordered processing speeds {s1≥ s2≥ ...≥ sm≥ s}, and assigned fractions of

mixed-criticality amounts { f1, f2, ..., fn}, how to construct a feasible schedule on this heterogeneous

system 9? We can use the following algorithm to schedule the amounts for each quantum (with

9An important assumption is that changes to the speed of any processor only occur at quantum boundaries. In some
sense this assumption is impractical. However, we may assume any processor’s execution speed will not change
dramatically within a short period (with length ∆). In this way, one can always “predict” how slow the processor can
be in the near future. This pessimistic prediction will give us a lower bound on the execution speed of the following
short period, and can serve as the “current” processor speed in our model.
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length ∆), which is, in a larger picture, mimicking a processor-sharing schedule over the whole

interval I`.

Without loss of generality, we assume that all fractions are sorted into decreasing order, and job

IDs change accordingly for each quantum; i.e., s≥ f1 ≥ ...≥ fnh , and 1≥ fnh+1 ≥ ...≥ fn

Algorithm Wrap-Around-MC(∆, f)

• At the beginning of each quantum (with length ∆), sort both processor speeds s1, ...,sn and

assigned fractions f1, ..., fn in decreasing order.

• Use slower processors to execute HI-criticality jobs. Consider HI-criticality fractions one by

one in increasing order (smallest fit first), where a processor will not be used until all slower

processors have been fully utilized (wrap-around).

• If the system is in the normal node; i.e., si ≥ 1,∀i, continue the “wrap-around” process for

LO-criticality jobs on remaining faster processors.

• During execution, execute jobs on each processor following the same (priority) order of

assignments in previous steps.

The following example shows how Wrap-Around-MC algorithm works.

Example 4.22. Consider five jobs J1 = J2 = {0,0.4,1,HI},J3 = {0,0.5,1,HI},J4 = {0,0.3,1,LO},

J5 = {0,0.7,1,LO}, to be scheduled on a platform of three varying-speed processors with degraded

speed 0.5. Since all jobs share the same scheduling window, there is only one interval Ii = [0,1),

and the LP has the solution x11 = x21 = 0.4,x31 = 0.5,x41 = 0.3,x51 = 0.7. Figures 4.12 and 4.13

show how Wrap-Around-MC would schedule these jobs under normal and a possible degraded

mode respectively. For easier representation and understanding, we assume ∆ = 1 in the example

without loss of generality — a smaller ∆ would result in repeating of a shrinking version of the

same schedule.
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Figure 4.12: The schedule constructed by Wrap-Around-MC under normal mode in Example 4.22.

Theorem 4.23. Algorithm Wrap-Around-MC (in addition to the linear program construction) is an

optimal correct scheduling strategy for the preemptive multiprocessor scheduling of a collection of

independent MC jobs.

Proof: By optimal, we mean that if there exists a correct scheduling strategy (Definition 4.19 above)

for an instance I , then our scheduling strategy will succeed. From the definition, the obligation

is to show that Wrap-Around-MC is able to correctly schedule any instance that can be correctly

scheduled by any non-clairvoyant algorithm.

All inequalities defined in the linear program (4.17) – (4.3) have been shown to be necessary

conditions. The optimality will come from the necessity of them — whenever Wrap-Around-MC

returns fail, there must be some violations to the conditions, and thus no other non-clairvoyant

algorithm can schedule this instance correctly.

What remains to be proved is this: given any solution to the LP, Algorithm Wrap-Around-MC

will construct a correct scheduling strategy, so that these conditions are also sufficient.

We now show that parallel execution does not occur. In degraded mode, each processor remains

a minimum execution speed of at least s. Since HI-criticality fractions are upper bounded by the
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Figure 4.13: The schedule constructed by Wrap-Around-MC under a given degraded mode in
Example 4.22.

same value (s), it is guaranteed that any HI-criticality job will not require a total execution time

exceeding ∆. Thus with “wrap-around”, the migrating jobs will not have any overlapping execution

upon two different processors. A similar argument can be made regarding the LO-criticality jobs

according to constraints (4.24) and normal mode processing speeds.

As far as each quantum follows Algorithm Wrap-Around-MC, the lag of all jobs remains zero

under normal mode, while the lag of HI-criticality ones remains zero under degraded mode as well.

From the definition of lag, we have shown that the conditions in LP are sufficient for the given

algorithm to construct a correct schedule, and thus can conclude optimality of our algorithm.

The optimality of the algorithm tells us: (i) if all processors run in normal speed, all jobs will

meet their deadlines; and (ii) if some (maybe all) processors run no slower than degraded speed s,

HI-criticality jobs will meet their deadlines. We have not talked about how do deal with possible

idleness during execution. Idleness is a critical issue in multiprocessor platforms, and is difficult

to treat optimally in varying-speed systems. The following item may be added into Algorithm

Wrap-Around-MC:

140



• Whenever some processor idles (which indicates this processor will remain idle for the rest

of this quantum), execute the LO-criticality job with the earliest deadline that is assigned to

next interval. If there is no LO-criticality job active, execute HI-criticality ones with similar

attributes. Update the assigned value to further intervals by reducing the finished amount at

the end of each interval.

Note that this item has nothing to do about the optimality of the algorithm; i.e., leaving any

processor idle as it is according to Algorithm Wrap-Around-MC will still result in correctness.

4.4.4 Optimal Run-Time Strategy for Weakly Degraded Mode

So far we have focused on a rather restrictive model that places a relatively strong requirement

on system behavior during degraded mode: all processors must execute at a minimum speed of s.

The requirement is strong since we eliminate the case when only a few among m processors are not

functional, while most ones execute at full speed — the whole system may still be able to ensure a

cumulative speed of s ·m.

We now take the weaker definition of system degradation described in Def. 4.4.4. The

requirement is considered weak because if the m processors are executing with an average speed no

slower than s, correctness must be guaranteed for HI-criticality jobs. Now it includes the annoying

case that several processors may run at a very low (but not zero) speed, and they need to be well

utilized for some heavy load instances.

The following simple example shows how Algorithm Wrap-Around-MC will fail in weak

degraded mode for a feasible job set.

Example 4.24. Consider two jobs J1 = J2 = {0,0.5,1,HI}, to be scheduled on a varying-speed

platform of two processors with degraded speed 0.5. Since both jobs share the same scheduling

window, solution x11 = x12 = 0.5 to the LP is trivial.

Now consider the case if at the very beginning Processor 1 degrades into speed 0.75, while

Processor 2 degrades into speed 0.25. Although the system is no longer in degraded mode; it
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still satisfies the weak degradation definition. Figure 4.14 compares the incorrect result by Wrap-

Around-MC (where the dotted box marks the parallel execution period) and a possible correct

scheduling strategy.

Figure 4.14: The incorrect schedule constructed by Wrap-Around-MC (left), and a feasible one
(right) under weak degraded mode in Example 4.24.

This example shows that wrap-around is no longer optimal under weak degraded mode. Addi-

tional “slices” inside each quantum need to be made, so that jobs will migrate and get rid of parallel

execution. In general, for optimal scheduling on this kind of heterogeneous system, studies have

been made, and the current state of art suggests the adaptation of the Level Algorithm (Horvath

et al., 1977).

The Level Algorithm creates a significantly large number (O(m2)) of preemptions and migra-

tions for each short period (quantum), in order to fully utilize all slow processors with jobs that

need to execute for a considerable duration during this quantum without running into the parallel

execution problem. With the help of (the optimal) Level Algorithm, we can extend Algorithm

Wrap-Around-MC as follows to correctly deal with systems in weak degraded mode.

Algorithm Level-MC(∆, f)

• At the beginning of each quantum (with length ∆), order both the processor speeds s1, ...,sn

and the assigned fractions f1, ..., fn in decreasing order.

• If the system is in normal mode, “wrap-around” all jobs.

• Elseif the system is in degraded mode, “wrap-around” HI-criticality jobs.
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• Elseif the system is in weak degraded mode, apply the Level Algorithm to HI-criticality jobs.

• During run-time, in both the normal and the degraded modes, jobs are assigned the priority

order same as the assignment order in the steps above, and are executed on their allocated

processors. In the weak degraded mode, priorities of jobs are not fixed, and the detailed

schedule is given by the Level Algorithm.

The following example illustrates how Level-MC works under weak degraded mode.

Example 4.25. Consider four HI-criticality jobs J1 = {0,0.2,1,HI},J2 = {0,0.25,1,HI},J3 =

{0,0.4,1,HI},J4 = {0,0.5,1,LO}, to be scheduled on a platform of three varying-speed processors

with a minimum weak degraded speed threshold of 0.5. Consider the weak degraded case where

three processors run at speeds of 0.3,0.4, and 0.8, respectively (the average speed of the system is

0.5).

Since all jobs share the same scheduling window, there is only one interval Ii = [0,2), and

the LP has the solution x11 = 0.2,x21 = 0.25,x31 = 0.4, and x41 = 0.5. Figure 4.15 shows how

Level-MC would schedule these jobs under such weak degraded mode for the next quantum. Without

loss of generality, we assume unit length for each quantum; i.e., ∆ = 1. A shorter quantum length

would result in repeating of a shrunk version of the same schedule pattern.

Figure 4.15: The schedule constructed by Level-MC under weak degraded mode in Example 4.25.
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In the schedule shown in Figure 4.15, jobs are jointly executing on more than one processor

during some intervals; e.g., jobs J1 and J2 during interval [0.133,0.5), jobs J3 and J4 during interval

[0.25,0.5), and all jobs during interval [0.5,0.9). The Level Algorithm designs the schedule in a

way that capacity, as well as execution speeds, are evenly divided (shared) by combined jobs. The

intuition is that since a heavy job executes on a high-speed processor, there may be an instant that

two (or more) jobs have the same amount left (to be executed). For example, in the schedule given

by Figure 4.15, both J1 and J2 require 0.2 time units of further execution at time t = 0.133. From

then on, they should execute at the same speed, and thus are joined by the Level Algorithm.

To jointly execute n jobs on m processors, where n ≥ m, the Level Algorithm divides the

period into n equal sub-periods, and makes the assignment that each processor executes (and only

executes) each job for one subperiod. Figure 4.16 expresses the schedule for all the jobs by this

divide-and-assign scheme.

Figure 4.16: Joint execution of all jobs on the system by Level Algorithm during [0.5,0.9) of
Example 4.25.

Theorem 4.26. Algorithm Level-MC (in addition to the linear program construction) is an op-

timal correct scheduling strategy for the preemptive multiprocessor scheduling of collections of

independent MC jobs.

Proof: Similar to the proof of Theorem 4.23, we only need to show that the weak degraded condition

is also sufficient for Level-MC to construct a correct schedule.
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According to (Horvath et al., 1977), the Level Algorithm will always return a feasible schedule

if the following m constraints hold (assume both { fi} and {s j} are in decreasing order):

i

∑
j=1

f j ≤
i

∑
j=1

s j,∀i,1≤ i≤ m−1; (4.26)

nh

∑
j=1

f j ≤
m

∑
j=1

s j. (4.27)

From Inequality (4.23), we have f j ≤ s, for any j. Since {s j} are ordered in decreasing order,

from the property of “average”, we know that s · i ≤ ∑
i
j=1 s j holds true for any i. Putting these

together, we have Inequality (4.26). Inequality (4.27) follows directly from the capacity constraint

(4.21).

As a consequence, under such a processor-sharing protocol, the Level Algorithm returns a

feasible schedule within each quantum (a small enough interval of length ∆). Here feasibility

indicates that no job gets executed simultaneously on more than one processor, and all jobs receive

their designated amounts by the end of the quantum. As the system continues to run quantum by

quantum, the HI-criticality amounts are guaranteed to be finished by their assigned fractions (with

zero lag). This indicates all HI-criticality jobs will meet their deadlines when the system is in weak

degraded mode.

Correctness in both normal mode and degraded mode (each with a processing speed no less than

s) follows from Theorem 4.23 since no change has been made from Algorithm Wrap-Around-MC

for these cases.

We have shown that Inequalities (4.17) — (4.3) are sufficient for Algorithm Level-MC to

construct a correct schedule. Since it has been shown that these conditions are also necessary, we

can conclude the optimality of the algorithm.

Dropping LO-criticality jobs. Under the definition of correctness, the two algorithms proposed

so far drop all LO-criticality jobs whenever degradation occurs (even to only one of the processors).

One can certainly argue that such sacrifice may not be necessary.
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Inequalities (4.26) and (4.27) can also be applied to all jobs (instead of only HI-criticality ones)

to check the feasibility of the current system (described by processing speeds). The following item

can be added into Algorithms Wrap-Around-MC and Level-MC to further improve them by not

dropping the LO-criticality jobs in some of the degraded cases:

• If the system is in (weak) degraded mode, check feasibility conditions for all jobs; i.e.,

Inequalities (4.26) and (4.27). If they hold, apply the Level Algorithm to all jobs; else follow

the previous protocols for the HI-criticality jobs only, and suspend the LO-criticality ones.

However, whether optimality can be proved under such protocol remains unknown; i.e., if our

algorithm drops any LO-criticality job under certain degradation condition(s), is it necessarily the

case that other algorithm(s) must drop some LO-criticality job(s) to guarantee correctness?

4.4.5 Necessity of Processor-Sharing

We show that processor-sharing (a technique used in our algorithms described in above subsec-

tions) is necessary in order to ensure that any instance for which the LP generates a solution can be

scheduled during run-time.

In the following example, the mixed-criticality instance is composed of three jobs and two

processors. We will show that although the Linear Program has a feasible solution for this instance,

there does not exist a feasible schedule for this job set without processor-sharing. Note that it

suffices to show the case under stronger restrictions of degraded mode, as it can be viewed as a

special case for the weakly degraded mode.

Example 4.27. Consider three independent jobs J1 = J2 = {0,1,2,HI},J3 = {0,2,2,LO}, to be

scheduled on a platform of two varying-speed processors with degraded speed 0.5. Since all jobs

share the same scheduling window, there is only one interval Ii = [0,2), and the LP has the solution

x11 = x21 = 1 and x31 = 2.

Wrap-Around-MC will execute this set of jobs easily by combining the HI-criticality ones

together and executing them on one processor while the system remains normal. Job J3 can be
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dropped whenever the system begins to suffer from degradation. Here processor-sharing gives us

the ability to execute any fraction of a job within a short enough quantum (with length ∆).

Under the case where processor-sharing is forbidden, we can still assume processors do not

change their speeds during each quantum. The only difference is that we can no longer assign a

fraction of capacity to each quantum; one certain job needs to be assigned to a given processor

within each quantum. We will show that no matter how small ∆ is, there does not exist a feasible

schedule for this job set (without processor-sharing).

Consider two possible decisions at time t = 0 (for the next quantum) — we may either assign

both two processors the HI-criticality jobs, or allocate the LO-criticality job to one of them.

The first choice is certainly not correct in the case both processors never degrades. To make

sure the LO-criticality job with a utilization of 1 meets its deadline, it needs to be executing for

the whole interval. However, the LO-criticality job will not start to execute until t = ∆ under this

decision. Since a job cannot be executed on both processors in parallel, remaining capacity 2−∆

on either processor is not enough for the LO-criticality job to meet its deadline.

For the second choice, consider the case that both processors degrade into 0.5-speed at instant

t = ∆. There remains a HI-criticality job (assumed to be J2, without loss of generality) which

requires an execution of 1 time unit within the interval. However, each processor has a remaining

capacity of (2−∆) ·0.5, which is smaller than 1. Since a job cannot be executed on both processors

in parallel, the remaining capacity on either processor is not enough for J2 to be finished on time.

The wasted ∆ capacity (used for executing the LO-criticality job) of the system is crucial (and

unavoidable).

The problem without processor-sharing is that we can no longer guarantee that upon any instant

that the system may degrade, we will execute a fraction of 0.5 to both HI-criticality jobs on one

processor. The lag of some HI-criticality job may be negative, which means the constructed schedule

is “left behind” when compared to the ideal case. The key assumption in processor-sharing is that

processor speed will not change throughout each quantum. This gives us the ability to execute each

job a proper length which leaves a zero lag after each period of length ∆.
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4.5 MC Task Scheduling on Uniprocessor

In Secs. 4.2-4.4 above, we have considered mixed-criticality (MC) systems that can be modeled

as finite collections of jobs. However, many real-time systems are better modeled as collections

of recurrent processes that are specified using, e.g., the sporadic tasks model described in Sec.

2.1.3. In this section, we briefly consider this more difficult problem of scheduling mixed-criticality

systems modeled as collections of sporadic tasks under the varying-speed interpretation of MC

systems. As some initial efforts, we choose to target the uniprocessor case in this section, and left

multiprocessor for future work. Most of the contributions made in this section can be found at

(Baruah and Guo, 2013) and (Guo and Baruah, 2014a).

As with traditional (i.e., non MC) real-time systems, we model an MC real-time system τ as

being composed of a finite specified collection of MC recurrent tasks, each of which will generate

an unbounded number of MC jobs. We restrict our attention here to dual-criticality systems of

implicit-deadline MC sporadic tasks, where each task is characterized by a 3-tuple of parameters: τi

= (Ci,Ti,χi). The quantity Ui =Ci/Ti is referred to as the utilization of τi.

An implicit-deadline MC sporadic task system is specified by specifying a finite number

τ = {τ1,τ2, . . . ,τn} of such sporadic tasks, and the degraded processor speed s < 1 (it is assumed

that the normal processor speed is one without loss of generality). Such an MC sporadic task system

can potentially generate unbounded number of different MC instances (collections of jobs), each

instance being obtained by taking the union of one sequence of jobs generated by each sporadic

task.

If unbounded preemption is permitted, then the scheduling problem for implicit-deadline MC

sporadic task systems on uniprocessors is easily and efficiently solved in an optimal manner. We

first derive (Theorem 4.28) a necessary condition for the existence of a correct scheduling strategy.

We then present a scheduling strategy, Algorithm preemptive-MC, and prove (Theorem 4.29) that it

is optimal.
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Theorem 4.28. A necessary condition for MC sporadic task system (τ,s) to be schedulable by a

non-clairvoyant correct scheduling strategy is that

1. the sum of the utilizations of all the tasks in τ is no larger than 1, and

2. the sum of the utilizations of the HI-criticality tasks in τ is no larger than s.

Proof: It is evident that the first condition is necessary in order that all jobs of all tasks in τ complete

execution by their deadlines upon a normal processor, and that the second condition is necessary in

order that all jobs of all the HI-criticality tasks in τ complete execution by their deadlines upon a

degraded (speed-s) processor.

In order to derive a correct scheduling strategy, we first observe that using preemption we can

mimic a processor-sharing scheduling strategy, in which several jobs are simultaneously assigned

fractional amounts of execution with the constraint that the sum of the fractional allocations should

not exceed the capacity of the processor. This can be done by partitioning the timeline into intervals

of length ∆ where ∆ is an arbitrarily small positive number, and using preemption within each such

interval to ensure that each job that is assigned a fraction f of the processor capacity gets executed

for a duration f ×∆ within this interval.)

Consider now the following processor-sharing scheduling strategy:

Algorithm Preemptive-MC.

1. Initially (i.e., on the normal –non-degradation– processor), assign a share Ui of the processor

to each task τi during each instant that is active10.

2. If the processor transits to degraded mode at any instant during run-time, immediately discard

all LO-criticality tasks and execute the HI-criticality tasks according to EDF.

Theorem 4.29. Algorithm preemptive-MC is an optimal correct scheduling strategy for the preemp-

tive uniprocessor scheduling of MC sporadic task systems.

10A task is defined to be active at a time instant t if it has released a job prior to t and this job has not yet completed
execution by time t.
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Proof: Let τ denote an MC implicit-deadline sporadic task system satisfying the necessary condi-

tions for schedulability that have been identified in Theorem 4.28.

It is evident that Algorithm preemptive-MC meets all deadlines if the processor operates at its

normal speed, since the processor-sharing schedule ensures that each job of each task τi receives

exactly Ci units of execution between its release date and its deadline.

Suppose that the processor degrades at some time instant to. If we were to immediately discard

all LO-criticality tasks, the second necessary schedulability condition of Theorem 4.28 ensures that

there is sufficient computing capacity on the degraded processor to continue a processor-sharing

schedule in which each HI-criticality task τi with an active job receives a share Ui of the processor.

The correctness of Algorithm preemptive-MC now follows from the existence of this processor-

sharing schedule, and the optimality property of preemptive uniprocessor EDF.

If preemption is forbidden, then scheduling of MC sporadic task systems becomes a lot more

challenging. As with the collections of independent jobs (Theorem 4.9), this problem, too, can be

shown to be highly intractable.

4.6 Summary

In this chapter, we propose a new interpretation of MC scheduling, where MC arises (solely)

from varying-speed platforms. Under this model, a single WCET threshold will be assigned to a

single piece of code, yet its actual run-time is related to the performance of the platform, which

remains unknown a priori. The mode switch of the system is triggered by certain changes of

the processor speed(s). The correctness of the system consists of separate validations under each

running mode. E.g., under the dual-criticality case, deadline meeting guarantees are made to all

tasks or jobs under LO-criticality mode, while only to more important ones under HI-criticality

mode.

The drop of platform performance may be observed by executions of workloads exceeding

certain thresholds, hence existing work for scheduling Vestal’s MC systems (with multiple WCET
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specifications) can be used to schedule this transformed system, and that the resulting scheduling

strategy correctly schedules the MC system under our interpretation (upon the varying-speed

processor). However, in this section, we have successfully show that one can sometimes do better if

using our MC model:

• For scheduling MC job set on uniprocessor platforms, (Baruah et al., 2012a) have shown its

NP-hardness in the strong sense under the multiple-WCET model, whereas Sec 4.2 provides

an optimal (linear programming based) polynomial-time algorithm for solving the same

problem in our model, under the assumption that processor is aware of their execution speeds

(self-monitoring). Note that this work does not restrict the number of criticality levels to be 2.

• The work described in Sec 4.2 is extended for multiprocessor platforms in Sec 4.4. To retain

the optimality result, we show that one has to mimic a processor sharing scheme, and provided

two optimal online strategies to transform the solution of the linear program. As described

in Chapter 3, the best-known speedup for MC scheduling on multiprocessors is (
√

5+1)/2

before our work, and 4/3 in Sec. 3.3. While here we provide an optimal scheduler (at a cost

of numerous preemptions), which means the speedup is 1.

• We also extend the LP-based algorithm for scheduling MC task set on uniprocessor platforms.

The optimality property can be retained with the proposed Preemptive-MC algorithm, under

the assumption that fluid schedule (i.e., processor-sharing with an unlimited number of

preemptions) is allowed.

• We further investigate the privilege of self-monitoring, by removing such self-awareness

assumption in Sec. 4.3. For the non-monitored case, we are not able to propose an optimal

scheduler like the LP based one in the self-monitored case. However, we found that an

existing algorithm named OCBP (see 3.1.3 for a detailed description) can be adapted at no

significant schedulability loss, in the sense that the speedup (over any clairvoyant algorithm)

can be upper bounded by (
√

5+1)/2, and stays even lower when degraded speed varies.
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CHAPTER 5: WHEN MC ARISES FROM MORE THAN ONE DIMENSION OF UNCER-
TAINTIES

Similar to the model settings described in Chapter 3, most prior work on mixed-criticality (MC)

scheduling has focused on the model in which multiple WCET parameters are specified for each

job. The interpretation is that the larger WCET values represent “safer” estimates of the job’s true

execution pattern. A different MC model has been studied in Chapter 4, where it is assumed that the

precise speed of the processor upon which the system is implemented varies in an a priori unknown

manner during runtime, and estimates must be made about how low the actual speed may fall.

In both models, the objective is to devise a scheduling strategy which ensures that (i) all jobs

complete by their deadlines if the less pessimistic estimates are correct, and (ii) the more critical

jobs complete correctly even if the less pessimistic estimates turn out to be incorrect (but the more

pessimistic estimates remain true). More precise definitions will be given in each section separately.

The work described in this chapter seeks to integrate the varying-speed MC model and the

multi-WCET one into a unified framework. To address the scheduling problem where MC arises

from two dimensions, a general model is proposed in which each job may have multiple WCETs

specified, and the precise speed of the processor upon which the system is implemented may vary

during run-time. Sec. 5.1 considers workloads modeled as finite collections of jobs, while Sec. 5.2

studies the MC task scheduling problem. Throughout this chapter, we restrict the total number of

criticality levels to be two: HI and LO.

5.1 Scheduling MC Job Set upon Varying-Speed Platforms

In this section, we model a mixed-criticality real-time workload as being composed of basic

units of work known as mixed-criticality jobs. Each MC job Ji is characterized by a 4-tuple of
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parameters: a release time ai, a vector 〈cL
i ,c

H
i 〉 of two WCET values where cL

i ≤ cH
i for HI-criticality

jobs and cL
i = cH

i for LO-criticality ones, a deadline di, and a criticality level χi ∈ {LO,HI}.

A mixed-criticality instance I is specified by

• a collection of MC jobs: J = {J1,J2, . . . ,Jn}, and

• a processor that is characterized by two thresholds: a normal speed sn and a degraded speed

sd(≤ sn).

The interpretation is that the jobs in J are to execute on a single shared preemptive processor that

has two modes: a normal mode and a degraded (or faulty) mode. In normal mode, the processor

executes as a speed-sn (or faster) processor and hence completes at least sn units of execution per

time unit, whereas in degraded mode it completes less than sn, but at least sd units of execution per

time unit. The processor starts out executing at or above its normal speed, and it is not a priori

known how the processor speed will vary during run-time.

Definition 5.1. A scheduling strategy for MC instances is correct if upon scheduling any MC

instance I = ({J1,J2, . . . ,Jn},sd,sn), it satisfies the following two properties P1 and P2.

1. Each job Ji meets its deadline if all jobs complete execution upon having executed for no more

than their LO-criticality WCETs, and the processor speed remains ≥ sn throughout Interval

[ai,di); and

2. Each HI-criticality job Ji meets its deadline if all HI-criticality jobs complete execution upon

having executed for no more than their HI-criticality WCETs, and the processor speed remains

≥ sd throughout Interval [ai,di);

A scheduling strategy for MC instances is partially correct if it satisfies the second property above,

but not necessarily the first.

That is, a partially correct scheduling strategy ensures the correct execution of HI-criticality

jobs provided the processor executes at or above its degraded speed and each HI-criticality job
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completes upon executing for no more than its HI-criticality WCET. A correct scheduling strategy

additionally ensures the correct execution of LO-criticality jobs if the processor executes at or above

its normal speed and each job completes upon executing for no more than its LO-criticality WCET.

A clairvoyant scheduling algorithm is one that knows, prior to scheduling an instance, (i) pre-

cisely how much execution time each job in the instance will require in order to complete, and

(ii) the precise manner in which the processor speed will vary during run-time.

Definition 5.2 (optimal scheduling strategy). An optimal scheduling strategy for MC instances

possesses the property that if it fails to maintain correctness (partial correctness, respectively)

for a given MC instance I , then no non-clairvoyant algorithm can ensure correctness (partial

correctness, resp.) for the instance I .

Without loss of generality, we will assume that the HI-criticality jobs in given MC instance I

are indexed 1,2, ...,nh and the LO-criticality jobs are indexed nh+1, ...,n. Let t1, t2, ..., tk+1 denote

the at most 2n distinct values for the release time and deadline parameters of the n jobs, in strictly

increasing order (redundancy is eliminated, i.e., ∀ j, t j < t j+1). These release time and deadlines

partition the time duration [mini{ai},maxi{di}) into k intervals, which will be denoted as I1, I2, ..., Ik,

with I j denoting the interval [t j, t j+1).

Most of the contributions made in this section can be found at (Guo and Baruah, 2015a).

5.1.1 LE-EDF’ — Enhanced LE-EDF

We adapt Algorithm LE-EDF proposed in Sec. 3.1.2 to schedule the MC instance in this

section. Originally LE-EDF targets MC instances with multi-WCET estimations, but a constant-

speed platform. Some slight modifications are necessary to address the additional dimension of

uncertainty considered here. In general, to guarantee the correctness of HI-criticality jobs, we now

need to be pessimistic about all possible HI-criticality behaviors including the performance drop as

well.

As the modifications are rather minor, we choose not to repeat the whole algorithm here in this

section. Instead, we only highlight the potential differences or changes:
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• In Steps 1 and 2, the intervals and HI-criticality sub-jobs are determined by considering the

jobs executing upon a speed-sd processor, instead of speed-1.

• During run-time, the trigger for mode switch may still be certain execution (of HI-criticality

job) exceeds the less pessimistic assumption, and (in addition) may also be a detection of

performance drop below sn. Note that the correctness of HI-criticality jobs can be guaranteed

(from the manner in which they are defined) regardless of whether or when the processor

degrades into slower speeds.

• Time complexity remains the same as Θ(n logn), where n is the total number of jobs.

We illustrate the modified LE-EDF (named LE-EDF’) in Example 5.3 below.

Example 5.3. Throughout this section, we will consider the instance consisting of the six jobs J1–J6

shown in tabular form in Figure 5.1, that is to be implemented upon a preemptive processor of

normal speed sn = 1 and degraded speed sd = 0.5.

Ji ai cL
i cH

i di χi
J1 1 2 3 14 HI

J2 9 0.5 1 12 HI

J3 10 0.5 1 17 HI

J4 0 7 7 10 LO

J5 1 0.5 0.5 12 LO

J6 12 3 3 16 LO

Figure 5.1: An example MC collection of jobs.

Step 1. Consider only the HI-criticality jobs J1–J3 executing for their HI-criticality WCETs on a

speed-sd processor, the intervals identified in Step 1 are as follows:

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

6 6 6

? ? ?

J3J1J2

a1 a2 a3 d2 d1 d3
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The intervals determined in Step 1 are therefore [6,14) and [15,17). (Observe that in this

schedule we are only determining execution intervals, not seeking to determine an actual schedule.

Hence the fact that job J2 seems to be “assigned” execution prior to its release time is irrelevant.)

Step 2. The EDF schedule for the HI-criticality jobs upon a speed-0.5 processor is then constructed

only within the intervals identified in Step 1; i.e., [6,14), [15,17)1:

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

6 6 6

? ? ?

J1 J2 J1 J3

a1 a2 a3 d2 d1 d3

• J1 executes during the interval [6,9) as the only active job.

• Upon release, J2 becomes the earliest-deadline job and is hence allocated execution over the

interval [9,11).

• Upon J2’s completion, J1 executes during the interval [11,14) as the only active job.

• J3 executes in the interval [15,17) as the only active job.

Step 3. The timeline is partitioned into seven intervals [0,1), [1,9), [9,10), [10,12), [12,14),

[14,16), and [16,17).

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

66 6 66

? ? ? ?

I1 I2 I3 I4 I5 I6 I7

a4 a1,a5 a2 a3 d2,a6 d1 d6 d3

Each of the HI-criticality jobs is decomposed into the sub-jobs shown in Figure 5.2; these are

obtained by super-imposing the partitions shown above upon the constructed EDF schedule.

1Note that Step 1 may result in new breakpoints to the timeline and intervals other than release time and deadlines; e.g.,
t = 6.
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Ji ai cH
i di χi

J12 1 1.5 9 HI

J14 1 0.5 12 HI

J15 1 1 14 HI

J23 9 0.5 10 HI

J24 9 0.5 12 HI

J36 10 0.5 16 HI

J37 10 0.5 17 HI

Figure 5.2: HI-criticality sub-jobs generated by Step 3 of LE-EDF’ in Example 5.3.

Run-Time Scheduling. The processor speed may fall below its nominal value at any instant during

execution. To better illustrate how our algorithm works, we separately demonstrate its operation

under three different run-time behaviors of the system.

§1. We first consider the case where no degradation in processor speed occurs, and all HI-criticality

jobs execute at their LO-criticality WCETs. The schedule is depicted in the following figure. (Since

sub-job numbers align with interval number, we only label the job numbers.)

J4 J1 J4 J1 J2 J5 J6J3 J6
-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

6 6 6

? ? ?

a1 a2 a3 d2 d1 d3

• For Interval I1 = [0,1), since no HI-criticality sub-job is allocated here, J4 will be executed

as the earliest deadline LO-criticality job.

• Sub-job J12 executes for 1.5 time units at the beginning of Interval I2 = [1,9). The remaining

capacity will be used for jobs with deadline greater than 9. As the earliest deadline LO-

criticality job, J4 executes first and completes at t = 8.5, after which J14 executes over the

interval [8.5,9) (and also completes).

• Sub-job J23 is executed first in Interval I3 = [9,10), and completes at time t = 9.5. The earliest

deadline active job (which is J5) executes over the interval [9.5,10).
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• Since all HI-criticality jobs execute at their LO-criticality WCETs, both J1 and J2 are already

finished at t = 10, and sub-jobs J15 and J24 require no execution. As a result, HI-criticality

sub-job J36 (as the only active sub-job) will be executed in Interval I6 = [10,10.5). We detect

idleness throughout the rest of the interval; i.e., [10.5,12),

• Interval I5 = [12,14) is empty and should be used for the only active job J6.

• The only active LO-criticality job J6 executes until it completes at t = 15. Now the processor

becomes idle since J37 is an inactive sub-job, J3 having already completed upon completing

sub-job J36.

• The processor idles during Interval I7 = [16,17).

§2. Next, we consider another case where the processor speed degrades to 0.5 over the time-interval

[8,12). We assume that all HI-criticality jobs execute at their LO-criticality WCETs (and thus

sub-jobs J15, J24, and J37 can be ignored2).

J4 J1 J4 J2 J1 J5
J6J3 J6

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

6 6 6

? ? ?

a1 a2 a3 d2 d1 d3

• Execution in Interval I1 = [0,1) is the same as in the previous case.

• Compared to the previous scenario, the amount of computing capacity available in Interval

I2 = [1,9) is less now due to the degradation of processor speed. After completing sub-job

J12, I2 is only able to execute J4, which completes at time instant 9.

• Interval I3 = [9,10) also suffers from the degradation, and is fully consumed by the sub-job

J23.

2Of course these sub-jobs will not actually be ignored during run-time; rather, they will be determined to
be inactive (as it is explained in the case above). Here we simply ignore them in order to simplify the
explanation.
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• The processor remains in degraded mode for Interval I4 = [10,12), where HI-criticality sub-

job J14 executes and completes at time instant 11. The remaining one time unit is used for

executing LO-criticality job(s): J5 executes from t = 11 to t = 12 and meets its deadline.

• The processor recovers to normal speed at time t = 12, and the executions in the remaining

three intervals are the same as in the previous case.

Note that although the processor operated in degraded mode for four time units, LE-EDF’ neverthe-

less completed all the jobs by their deadlines.

§3. As a final part, we consider the case where the processor suffers from a degradation between

t = 8 and t = 12, and HI-criticality jobs J1 and J2 execute at their HI-criticality WCETs (for those

reading this on a color monitor, execution beyond the LO-criticality WCET is depicted with darker

colors).

J4 J1 J4 J2 J1 J2
J1 J6J3 J6 J3

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

6 6 6

? ? ?

a1 a2 a3 d2 d1 d3

• Execution in Intervals I1 = [0,1), I2 = [1,9), and I3 = [9,10) remains the same as in the

previous case.

• Both J14 and J24 need to complete within interval I4 = [10,12). No capacity remains due to

the processor degradation, and the unfinished LO-criticality job J5 is dropped at its deadline

t = 12.

• At the beginning of Interval I5 = [12,14), the processor recovers to normal speed. The interval

[12,13) is consumed by J15. At time t = 13, there are two active jobs J36 and J6 with the same

deadline, and according to the algorithm, we favor HI-criticality jobs in such case, which

results in the execution of J3 within [13,13.5), and then J6 afterward.
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• There are two active jobs (J37 and J6) within Interval I6 = [14,16). J6 executes first since it

has got an earlier deadline (although with lower criticality level). Unfortunately, J6 may be

dropped at its deadline t = 16 since it has only received 21
2 units of execution (which is fewer

than the required three units).

• Sub-job J37 executes in Interval I7 = [16,17), completing at time instant 16.5. The processor

is idled for the remainder of the interval.

It is instructive to review the last scenario considered in the example above, where two LO-

criticality jobs J5 and J6 miss their deadlines.

The situation for J5 within Interval I4 = [10,12) is straightforward — the processor is suffering

from a degradation within this interval, and since J1 and J2 are both HI-criticality jobs, the sub-jobs

J14 and J24 certainly need to be prioritized over the LO-criticality job J5.

The argument for J6 to miss its deadline is not quite as unequivocal: a scheduling algorithm

that postponed the execution of sub-job J36 to interval I7 (where, as we saw, there is adequate excess

capacity to accommodate this sub-job) and instead executed J6 for an additional one-half unit

during interval I6 would have seen both J6 and J3 complete by their deadlines. However, such a

scheduling algorithm would need to know beforehand (i.e., during executing in Interval I6) that the

processor speed would not degrade during interval I7. That is, such an algorithm would need to be

clairvoyant.

5.1.2 Online Optimality Under Single WCET Case

The failure of LE-EDF’ to correctly schedule an instance that would be scheduled correctly

by a clairvoyant algorithm does not rule out the possibility that LE-EDF’ is an optimal algorithm:

according to Definition 4.20, an optimal scheduling strategy should be able to correctly schedule

any instance that can be correctly scheduled by a non-clairvoyant scheduling strategy.

In this subsection, we show the optimality of LE-EDF’ under single WCET case, i.e., for

each job Ji it is the case that cL
i = cH

i . Note that for this case, an LP based optimal scheduler has
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already been proposed in Sec 4.2. Since (as we saw above) LE-EDF’ can be implemented to have a

run-time that is Θ(n logn) for an instance composed of n jobs while LP-solvers have significantly

poorer (although still polynomial) run-times, we argue that LE-EDF’ is a preferred algorithm for

scheduling such instances.

Lemma 5.4. If a LO-criticality job Ji with release time ai and deadline di is dropped by LE-EDF’

during run-time, the processor remains busy in the interval [ai,di). Furthermore, no HI-criticality

execution that had been allocated to later intervals (than di) in the pre-computed scheduling table

gets executed within this interval.

Proof: It is easy to see that job Ji remains active (released and unfinished) throughout this whole

interval. Thus, there must be no idleness. Since our algorithm only “promotes” pre-allocated

HI-criticality amounts when the processor idles, we know that no HI-criticality amount can be

transferred from later intervals into [ai,di).

Theorem 5.5. LE-EDF’ is an optimal scheduling strategy for MC instances in which cL
i = cH

i for

all jobs Ji.

Proof: From the definition of an optimal scheduling strategy (Definition 5.2), it follows that we

have two proof obligations here.

First, we must show that LE-EDF’ is able to schedule in a partially correct manner any instance

that can be scheduled in a partially correct manner by any non-clairvoyant algorithm. Partial

correctness trivially follows from the optimality of EDF: if any non-clairvoyant algorithm is able to

satisfy the second property of Definition 5.1, it follows from the manner in which we construct the

scheduling table in Steps 1 and 2 of Sec. 3.1.2.1 that LE-EDF’ will also satisfy the second property.

Second, we must show that LE-EDF’ is able to correctly schedule any instance that can be

correctly scheduled by any non-clairvoyant algorithm. Suppose that both LE-EDF’ and some

other (non-clairvoyant) algorithm are both able to schedule a given MC instance I in a partially

correct manner, but LE-EDF’ is unable to correctly schedule I — it drops a LO-criticality job J∗

during run-time. Let a∗ denote the release time, and d∗ the deadline, of this job J∗. We argue that
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any non-clairvoyant scheduler that completes all HI-criticality jobs (and thereby satisfies partial

correctness) must also fail to meet the deadline of J∗ or some other LO-criticality job with a deadline

at or prior to time instant d∗. This is because, in order to ensure partial correctness in the event

of the processor speed degrading to sd at some future point in time, a non-clairvoyant scheduler

must make the most conservative assumptions regarding the future speed of the processor and

assume that the speed will, indeed, fall to sd . But LE-EDF’ also makes this assumption, and ensures

that under this assumption, the minimum possible amount of execution of HI-criticality jobs with

deadline greater than d∗ has occurred within the interval of interest. According to Lemma 5.4, no

HI-criticality sub-job with deadline greater than d∗ will be executed within [a∗,d∗), since J∗, with

an earlier deadline, is prioritized by LE-EDF’. This implies that the maximum possible amount of

execution to LO-criticality jobs have occurred in the LE-EDF’ schedule prior to d∗; the fact that

LE-EDF’ is forced to nevertheless drop a job at d∗ implies that the processor is overloaded prior to

d∗ (and hence no other algorithm can complete all LO-criticality jobs prior to d∗).

5.1.3 The Speedup of Non-Clairvoyance

In addition to proving the optimality of Algorithm LE-EDF’ for scheduling such MC instances,

we use the speedup factor metric to quantify the cost of non-clairvoyance. Speedup here is the

smallest multiplicative factor (to the execution speed) LE-EDF’ would need to schedule any instance

that can be scheduled by a (hypothetical) clairvoyant algorithm.

Theorem 5.5 above shows that LE-EDF’ is an optimal algorithm for scheduling MC instances

in which each job’s LO-criticality WCET is equal to its HI-criticality WCET,in the sense that no

non-clairvoyant scheduler can guarantee correctness (partial correctness, respectively) if LE-EDF’

is unable to do so. Note that the proof of Theorem 5.5 fundamentally depends on the fact that

the algorithm being compared to is non-clairvoyant: a non-clairvoyant algorithm must necessarily

assume at each instant during run-time that in the future the processor will execute throughout at its

minimum (degraded) speed of sd . In contrast, a clairvoyant algorithm may know how the processor

speed will vary in the future; such an algorithm will generally outperform LE-EDF’ since LE-EDF’
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sometimes drops LO-criticality job to prevent future deadline misses by HI-criticality jobs due to

possible processor degradation that may not happen. The third scenario considered in Example 5.3

had illustrated that a clairvoyant algorithm may ensure correctness while LE-EDF’ is only partially

correct.

In this section, we will quantify the gap between LE-EDF’ and any optimal clairvoyant algo-

rithm using the metric of speedup factor (Kalyanasundaram and Pruhs, 2000). The use of this

metric for the purposes of quantifying the cost of non-clairvoyance seems particularly appropriate:

the seminal paper (Kalyanasundaram and Pruhs, 2000) on speed factors was titled “Speed is as

powerful as clairvoyance,” which is what we, too, establish in this section (albeit for a completely

different problem than the one considered in (Kalyanasundaram and Pruhs, 2000)).

According to the load definition in Def. ??, it is easily seen that a necessary and sufficient

condition for an optimal clairvoyant algorithm to successfully schedule MC instance I = (J,sn,sd)

is that `LO(J) ≤ sn, and `HI(J) ≤ sd . A natural question arises: can we determine a speedup

factor s(> 1) for Algorithm LE-EDF’ such that a sufficient condition for LE-EDF’ to schedule

MC instance I = (J,sn,sd) in a correct manner (see Definition 3.1) is that `LO(J) ≤ s× sn, and

`HI(J)≤ s× sd? The following theorem leads us to an answer:

Theorem 5.6. If an MC instance I = (J,s`LO(J),s`HI(J)) that is schedulable by an optimal clair-

voyant algorithm is not correctly scheduled by LE-EDF’, then

s <
1

1− `HI(J)+ `2
HI(J)/`LO(J)

. (5.1)

Proof: (of Theorem 5.6). It is evident from the manner in which the scheduling table is constructed

by Algorithm LE-EDF’ (in Steps 1–3) that a degraded speed of `HI(J) is already sufficient to

have HI-criticality jobs meet their deadlines. It is straightforward to observe that LE-EDF’ is

sustainable (Baruah and Burns, 2006) with respect to processor speed (i.e., a faster processor would

only reduce the execution time cost, and contribute positively its schedulability). Hence, LE-EDF’

remains correct if provided a faster processor which executes at degraded-speed of s`HI(J). As a
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result, if LE-EDF’ fails to maintain correctness for a given MC instance I = (J,s`LO(J),s`HI(J)),

for any s≥ 1, the only possibility is that a LO-criticality job Ji is dropped at its deadline di — we

study this only possible scenario in the following to derive a bound on the speedup factor s.

Based on Lemma 5.4, consider any interval [a,d) which contains [ai,di); i.e., a≤ ai and di ≤ d.

Since we dropped a LO-criticality job at time t = di, the most pessimistic assumption is that our

processor runs at degraded speed s`HI(JHI) thereafter, and moreover we fully utilize interval [di,d)

with HI-criticality jobs. When compared to the clairvoyant execution of such a job set, the only

difference for the interval [a,di) is that the additional capacity from the speedup s(di− ai) may

be used to execute HI-criticality jobs with further deadlines. However, those HI-criticality jobs at

the same time suffer from the degradation after time t = di, such that the provided capacity is not

enough to guarantee them meeting deadlines. This is exactly the reason why our algorithm will

pre-allocate more HI-criticality amounts into the interval [a,di), and thus cause the job Ji miss its

deadline. Intuitively speaking, the additional capacity provided within the interval [a,di) is not

enough to cover the “needs” from HI-criticality jobs that are executed later in the interval [di,d)

by the clairvoyant algorithm. Thus, the following inequality must hold for any a≤ ai, in order for

LE-EDF’ to drop LO-criticality job Ji at its deadline.

(
s`LO(J)− `LO(J)

)
(di−a)<

(
`LO(J)− s`HI(J)

)
(d−di) (5.2)

The worst case is obtained by setting a = ai, and this yields an upper bound on s. Without loss

of generality, we assume d−ai = 1, and denote x := d−di ∈ [0, `HI(J)]. Since we only consider

active HI-criticality jobs within the interval, x cannot exceed `HI(J) or else not even a clairvoyant

algorithm would finish them on time. Inequality (5.2) can be re-written in the following manner

with respect to the speedup factor s:

∀x ∈ [0, `HI(J)],s <
1

1− x+ x `HI(J)
`LO(J)

(5.3)
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When `HI(J)≥ `LO(J), we simply have s < 1 which is not the case of interest. When `HI(J)<

`LO(J), the right-hand side of 5.3 is monotonically increasing with respect to x, the upper bound of

the speedup factor becomes tight when x takes its largest possible value `HI(J), which will lead us

to:

s <
1

1− `HI(J)+ `2
HI(J)/`LO(J)

. (5.4)

and the theorem follows.

Analysis of Inequality (5.1) yields the following corollary.

Corollary 5.7. The upper bound of the speedup factor is smax = 4/3, which occurs when `LO(J) = 1

and `HI(J) = 0.5.

Proof: The result comes from two simple facts: (i) the right hand side of Inequality (5.4) monotoni-

cally increases as `LO(J) increases; (ii) 1− x+ x2 ≥ 3/4, and = 3/4 only when x = 1/2.

5.2 Scheduling MC Task Set upon Varying-Speed Platforms

In this section, we seek to integrate both these dimensions of uncertainties for MC systems

composed of recurrent tasks. The techniques that need to be developed, and the results obtained,

are strikingly different than the independent job case studied in the previous section. Most of the

contributions made in this section can be found at (Baruah and Guo, 2014).

5.2.1 Model and Definitions

An MC instance I is specified as a finite collection of MC tasks τ and a varying-speed

processor characterized by a degraded speed s (and normal speed of 1). 3

3Assuming the readers are now quite familiar with MC task set models, we directly introduce the system behavior and
correctness criterion.
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System behavior. During execution, the system exhibits LO-criticality behavior if (i) each job τi, j

(released by task τi) signals completion without exceeding CL
i time units of execution, and (ii) the

execution speed of the processor never falls below 1. The system is in HI-criticality behavior if

platform execution speed falls below 1 but no lower than s, or some job τi, j did not signal finishing

when exhausted its CL
i , but no greater than CH

i /s. Otherwise, it exhibits erroneous conditions, which

is not of our interest.

Correctness criterion. We define an algorithm for scheduling MC instances to be correct if it is

able to schedule any system such that

• During all LO-criticality behaviors of the system in which the processor speed remains at or

above 1, all jobs receive enough execution between their release time and deadline to signal

completion; and

• During all HI-criticality behaviors of the system, all HI-criticality jobs receive enough execu-

tion between their release time and deadlines to signal completion provided the processor

speed remains at or above s.

The correctness definition is quite similar to Def. 5.1. That is, if the system exhibits LO-

criticality behavior and the processor exhibits normal behavior, then all deadlines should be met;

else, all HI-deadlines should be met (provided neither the system nor the processor exhibits

erroneous behavior).

Note that if any job executes for more than its LO-criticality WCET or the processor speed falls

below 1, we do not require any LO-criticality jobs (including those that may have arrived before this

happened) to complete by their deadlines. This is a consequence of the nature of system validation:

informally speaking, the system designer fully expects that the system will exhibit LO-criticality

behavior and the processor always execute at or above its normal speed, and hence is only concerned

that they behave as desired under these circumstances. The validation process for the more critical

functionalities, on the other hand, allows for the possibility that some jobs may exhibit HI-criticality

behavior and/ or the processor executes at a speed slower than 1 (but ≥ s), and requires that all
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HI-criticality jobs nevertheless meet their deadlines; however, such validation is not concerned with

the fate of the LO-criticality jobs.

A clairvoyant scheduling algorithm is one that knows, prior to scheduling an instance, (i)

precisely how much execution each job in the instance will require in order to complete, and (ii) the

precise manner in which the processor speed will vary during run-time.

5.2.2 Non-Monitoring Processors

We propose an algorithm VDF-NM (for Virtual-Deadline First Non-Monitoring) for scheduling

systems that do not possess the capability of knowing its speed at each instant in time. VDF-NM is

motivated by, and hence quite similar to, the EDF-VD algorithm that was proposed in (Baruah et al.,

2012b).

Overview. Prior to run-time, VDF-NM performs a schedulability test to determine whether the

given set τ can be successfully scheduled by it or not. If τ is deemed schedulable, then an additional

parameter, which we call a modified period denoted T̂i, is computed for each HI-criticality task

τi ∈ τ . The algorithm for computing these parameters is described in the pseudo-code form in Figure

5.3, with correctness proved in Theorems 5.8 and 5.9. Run-time scheduling is done according to the

EDF order of modified deadlines.

During run-time, if some job executes for a duration exceeding its LO-criticality WCET without

signaling that it has completed execution, we know that the system is no longer exhibiting LO-

criticality behavior. In response, the run-time scheduler immediately discards all LO-criticality

jobs; subsequently, only HI-criticality jobs will receive further execution. Subsequent execution of

HI-criticality tasks (including the jobs that are currently active) continue to be done according to

EDF. But the actual job deadlines (arrival time plus period) are used.

Theorem 5.8. The following condition is sufficient for ensuring that VDF-NM successfully schedules

all LO-criticality behaviors of τ:

x≥ UL
H

1−UL
L
. (5.6)
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Given MC instance (τ,s)

1) Compute x as follows: x← UL
H(τ)

1−UL
L

;

2) If UH
H /(1− x)≤ s, then

For each HI-criticality task τi;

T̂i← xTi; (5.5)

Return success;
Else Return failure;

Figure 5.3: VDF-NM: The preprocessing phase.

Proof: If EDF is able to schedule, upon a unit-speed processor, all LO-criticality behaviors of the

task system obtained from τ by replacing each HI-criticality task τi by one with a reduced period,

then it follows from the sustainability (Baruah and Burns, 2006) of uniprocessor EDF that EDF

is able to schedule all LO-criticality behaviors of τ upon a unit-speed processor as well. Note

that scaling down the period of each HI-criticality task by a factor x is equivalent to inflating its

utilization by a factor 1/x. Since the utilization bound of EDF for implicit-deadline tasks is known

to be equal to the processor capacity (see Theorem 2.3), we therefore conclude that

(
UL

L +
UL

H
x
≤ 1
)
⇔
(

x≥ UL
H

1−UL
L

)
.

is sufficient for ensuring that VDF-NM successfully schedules all LO-criticality behaviors of τ .

Theorem 5.9. The following condition is sufficient for ensuring that VDF-NM successfully schedules

all HI-criticality behaviors of τ:

s≥ UH
H

1− x
. (5.7)

Proof: Suppose that at some instant t∗ during run-time, the scheduler detects that some job

has executed for a duration exceeding its LO-criticality WCET without signaling completion. It

168



immediately discards all LO-criticality jobs, re-assigns each active HI-criticality job a deadline

equal to its release time plus the original period of the task that generated it, and assigns each

future-arriving HI-criticality job a deadline equal to its release time plus the period of the task that

generates it.

Since the modified relative deadline of a job of HI-criticality task τi is equal to xTi, if this job is

active at time instant t∗ its actual deadline must be at least (Ti− xTi) time units in the future. The

utilization of task τi beyond time instant t∗ is therefore no greater than that of an implicit-deadline

sporadic task with execution requirement CH
i and period (Ti− xTi). Summing over all HI-criticality

tasks and using once again the fact that EDF has a utilization bound equal to the processor capacity,

we conclude that

∑
χi=HI

CH
i

Ti− xTi
⇔ UH

H
1− x

.

is a sufficient condition for VDF-NM to meet all HI-criticality job deadlines upon the degraded

processor of speed ≥ s.

The top-level idea behind Algorithm VDF-NM is essentially this: determine the smallest

scaling factor x < 1 such that the system with HI-criticality deadlines scaled by a factor x remains

EDF-schedulable in LO-criticality behaviors, and then determine whether shrinking HI-criticality

deadlines in this manner will allow all HI-criticality deadlines to be guaranteed meet in the event

of a HI-criticality behavior being identified (see Figure 2 above). Both the LO-criticality and the

HI-criticality schedulability testing is done via the utilization-based EDF schedulability test. For the

LO-criticality schedulability testing, each HI-criticality task τi is modeled as a task with WCET CL
i

and period xTi; for HI-criticality schedulability testing, it is modeled as a task with WCET CH
i and

period (1x)Ti.

Although this approach is correct (according to Theorems 5.8 and 5.9), it can be pessimistic as

the conditions are sufficient only.

A pragmatic improvement. The algorithm we advocate in the remainder of this subsection, VDF-

NM+, takes the following approach to reduce pessimism: for the purposes of doing the schedulability
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analyses, model each HI-criticality task τi as constrained-deadline (rather than implicit-deadline)

tasks by:

• For LO-criticality schedulability analysis, model it as a constrained-deadline task with WCET

CL
i , relative deadline xTi, and period Ti;

• For HI-criticality schedulability analysis, model it as a constrained-deadline task with the

parameters WCET CL
i , relative deadline (1x)Ti, and period Ti.

Although EDF-schedulability analysis of constrained deadline sporadic task systems is NP-hard

(F. Eisenbrand and T. Rothvoß, 2010), polynomial time approximation schemes (PTASs) are known

(see, e.g., (Albers and Slomka, 2004)) that can solve this problem in efficient polynomial time to any

desired degree of accuracy. We have therefore implemented the following method for computing

the scaling factor x that is used by VDF-NM:

• Use binary search over the range (0,1) to determine, to any desired degree of accuracy, the

smallest value of x for which the constrained-deadline task system:

∪χi=LO{(CL
i ,Ti,Ti)}

⋃∪χi=HI{(CL
i ,xTi,Ti)}

is EDF-schedulable.

• For the value of x determined above, check whether the constrained-deadline task system

∪χi=LO{(CH
i ,(1−x)Ti,Ti)} is EDF-schedulable. If so, use this value of x as the scaling factor

in Step 2 of Fig. 5.3; else, declare failure.

This is clearly a strict improvement over the method for computing the scaling factor used

in Step 1 of Fig. 5.3, in the sense that the value of x computed can only be smaller, and hence

failure will be declared for fewer systems. Experimental study will be reported in Sec. 5.2.4, which

validates our theoretical analysis.

5.2.3 Self-Monitoring Processors

We now consider the case where the processor is aware of its execution speed at any instant

during run-time. We define an algorithm, VDF-WM (for Virtual-Deadline First - With Monitoring),
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that may trigger a mode switch when some job executes for a duration exceeding its LO-criticality

WCET without signaling that it has completed execution (as with VDF-NM), or the processor speed

is observed to fall below its normal value of 1.

The pre-runtime processing phase (Step 1 in Figure 5.3) for VDF-WM is identical to VDF-NM

— the same scaling factor x =UL
H(τ)/(1−UL

L (τ)) is computed. However, the acceptance test (i.e.,

Step 2 of the pseudo-code) is different: VDF-WM checks to determine whether the value of x

computed in Step 1 satisfies:

xUL
L +UH

H ≤ s. (5.8)

Since the scaling factor x used by VDF-WM is the same as the one used by VDF-NM, Theorem

5.8 continues to hold and VDF-WM is therefore seen to schedule all LO-criticality behaviors

correctly. In Theorem 5.10 below, we prove that all HI-criticality behaviors are also scheduled

correctly:

Theorem 5.10. The condition listed in (5.8) is sufficient for ensuring that VDF-WM successfully

schedules all HI-criticality behaviors of τ .

Proof: Suppose that VDF-WM cannot meet all deadlines in all HI-criticality behaviors of τ . Let I

denote a minimal instance of jobs released by τ , on which a deadline is missed. Without loss of

generality, assume that the earliest job-release in I occurs at time zero, and let t f denote the instant

of the (first) deadline miss since (as argued above) Theorem 5.8 holds for VDF-WM, this must

be the deadline of a HI-criticality job, in a HI-criticality behavior. Let t∗ denote the time instant

at which HI-criticality behavior is first flagged (i.e., the first instant at which some job executes

for more than its LO-criticality worst-case execution time without signaling that it has completed

execution).

Some notations:

• For each i,1 ≤ i ≤ n, let ηi denote the amount of execution over the interval [0, t f ] that is

needed by jobs in I that are generated by task τi.

171



• For each i,1≤ i≤ n, let ui(χ) denote the per criticality level utilization Cχ

i /Ti.

• Let J1 denote the job with the earliest release time amongst all those that execute in [t∗, t f ).

Let a1 denote its release time, and d1 its deadline. (Note that a1 ≤ t∗.)

Lemma 5.11. All jobs that execute in [t∗, t f ) have deadline ≤ t f .

Proof: Suppose not. Consider the latest instant t ′ in [t∗, t f ) when a job with deadline > t f executes.

Only those jobs in I that have release time ≥ t ′ and deadline ≤ t f are sufficient to cause a deadline

miss; this contradicts the assumed minimality of I.

It immediately follows that d1 ≤ t f .

Lemma 5.12.

∀i,χi = LO,ηi ≤ uL
i (a1 + x(t f −a1)). (5.9)

Proof: No LO-criticality job will execute after t∗. For it to execute after a1, it must have a deadline

no larger than J1’s virtual deadline, which is a1 + x(d1a1). Therefore, no LO-criticality job with

deadline > a1 + x(d1a1) will execute after a1.

Suppose that some LO-criticality job with deadline > a1 + x(d1a1) were to execute, at some

time < a1. Let t ′ denote the latest instant at which any such job executes. This means that at this

instant, there were no jobs with effective deadline ≤ a1 + x(t f a1) awaiting execution. Hence by

considering only those jobs in I that have release times ≥ t ′, the instance (with this LO-criticality

task removed) also misses a deadline; this contradicts the assumed minimality of I.

Lemma 5.13.

∀i,χi = HI,ηi ≤
uL

i
x

a1 +(t f −a1)uH
i . (5.10)

Proof: We consider separately the cases when τi does not have a job with release time ≥ a1, and

when it does.

Case A: If τi does not release a job at or after a1. We claim that each job of τi has a virtual deadline

≤ a1+x(t f −a1). To see why this is so, consider some job with a virtual deadline > a1+x(t f −a1),
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and let t ′ denote the latest instant at which this job executes. All jobs in I that have release times

≥ t ′ also miss a deadline; this contradicts the assumed minimality of I.

Since each job has a virtual deadline ≤ a1 + x(t f −a1), their actual deadlines are all ≤ a1/x+

(t f −a1). Therefore, their cumulative execution requirement is at most

a1

x
uL

i +(t f −a1)uL
i ≤

a1

x
uL

i +(t f −a1)uH
i .

Case B: If τi releases a job after a1. Let ai denote the first release ≥ a1. The cumulative execution

requirement of all jobs of i is at most (since a1 ≤ ai,uL
i ≤ uH

i , and x < 1)

aiuL
i +(t f −ai)uH

i ≤
a1

x
uL

i +(t f −a1)uH
i .

Summing the cumulative demand of all the tasks over [0, t f ) gives us:

∑
χi=LO

ηi + ∑
χi=HI

ηi

≤ ∑
χi=LO

uL
i (a1 + x(t f −a1))+ ∑

χi=HI

a1

x
uL

i +(t f −a1)uH
i )

= a1(UL
L (τ)+

UL
H(τ)

x
)+(t f −a1)(xUL

L (τ)+UH
H (τ))

≤ a1 +(t f −a1)(xUL
L (τ)+UH

H (τ)) (By(5.6))

Since the amount of computation available on the processor is t∗+ s(t f − t∗) and a1 ≤ t∗, it

follows from the infeasibility of this instance that

a1 +(t f −a1)(xUL
L (τ)+UH

H (τ))> a1 + s(t f −a1)

⇔ (t f −a1)(xUL
L (τ)+UH

H (τ))> s(t f −a1)

⇔ xUL
L (τ)+UH

H (τ)> s.
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Taking the contrapositive, it follows that xUL
L (τ)+UH

H (τ)≤ s is sufficient to ensure HI-criticality

schedulability by VDF-NM, as is claimed in this theorem.

5.2.4 Experimental Evaluation

We have conducted a series of schedulability experiments to evaluate the relative effectiveness

of the three scheduling strategies VDF-NM, VDF-NM with the pragmatic improvement (henceforth

referred to as VDF-NM+), and VDF-WM in guaranteeing to correctly schedule MC implicit-

deadline sporadic task systems. Our experiments were conducted upon randomly-generated task

systems with generator described in Sec. 3.2.5.1.

Figure 5.4 depicts the outcome when setting parameters as follows (see Sec. 3.2.5.1 for

detailed descriptions): [UL,UU ] = [0.02,0.2]; [TL,TU ] = [5,50]; [ZL,ZU ] = [1,4];P = 0.5,s = 0.8.

The fraction of systems that were determined to be schedulable is depicted on the y-axis as a

percentage, and the system utilization Ubound on the x-axis. Each data-point was obtained by

randomly generating 1000 task systems, testing each for schedulability according to all three

algorithms, and calculating the percentage of systems deemed schedulable by each algorithm.

Although we do not claim that our experiments are comprehensive enough in coverage to

enable us to draw authoritative conclusions, they do point to some pretty convincing trends. It

was very evident in all our experiments that VDF-NM+ consistently exhibits noticeably superior

performance over VDF-NM; i.e., the pragmatic improvement to the EDF-schedulability test of

VDF-NM that was described in Sec. 5.2.2 seems to provide significant benefit. Also, VDF-WM

consistently exhibits noticeable improvement over VDF-NM+, indicating that self-monitoring in

processors, if available, can be exploited to ensure considerable enhancement of schedulability. We

do not feel comfortable making quantitative claims about the degree of such improvement based on

our experiments since this is necessarily influenced by the nature of our random workload generator,

but instead simply report our observations.

The percentage of schedulable systems falls off sooner, and more rapidly, for VDF-NM

than for VDF-NM+, which in turn falls off more rapidly than for VDF-WM. Across all the
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Figure 5.4: Example outcome of schedulability experiments, for parameters [UL,UU ] =
[0.02,0.2]; [TL,TU ] = [5,50]; [ZL,ZU ] = [1,4];P = 0.5,s = 0.8. The lowest line represents VDF-
NM, the middle line represents VDF-NM+, and the top line represents VDF-WM.

simulation experiments that we conducted across a wide range of parameters, it appears that the

simple pragmatic improvement to VDF-NM’s schedulability testing that was implemented in VDF-

NM+ provides between one-half to two-thirds the improvement that the more powerful platform

capabilities of self-monitoring exploited in VDF-WM provides, with larger improvement ratios

occurring at smaller system utilizations.

5.3 Summary

This chapter generalizes the situations and interpretations considered in previous sections.

Integrated models are proposed for representing MC systems that uncertainties arises from both the

WCET estimations and the platform’s execution speed. The work presented in this chapter do apply

to the sub-cases considered in previous parts of the dissertation. We considered both MC job set
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and MC task set under the dual-criticality case, and made the following observations that support

our central thesis:

• For MC job set scheduling, our newly developed LE-EDF retains the online-optimality

result as the LP-based method proposed in Sec. 4.2 for single WCET case, while being

computationally more efficient due to its asymptotically optimal complexity.

• Speedup study further suggests that a processor with LE-EDF scheduler is no worse than

a clairvoyant processor that is 3/4 as fast. That is, one loses no more than 25 percent of

computing resource for being non-clairvoyant with LE-EDF. This is so far the best speedup

result for MC job scheduling.

• We adapted the existing virtual-deadline based EDF algorithm for MC task set scheduling.

We separately considered the situations where the processor is self-monitoring or not, and

proposed three algorithms (that are similar to EDF-VD), which are evaluated both theoretically

and experimentally via randomly generated workloads.
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CHAPTER 6: CONCLUSION

Scheduling theory is applied to the analysis of models of systems, rather than to the physical

systems themselves. In order to have confidence that the conclusions drawn on the basis of the

analysis of such models will hold for the actual systems being modeled, the modeling process

typically incorporates considerable pessimism into the model; such pessimism gets reflected during

run-time in the form of under-utilization of platform resources that were provisioned on the basis of

the pessimistic models.

Mixed-criticality (MC) scheduling theory seeks to deal with such pessimism by constructing

multiple different models of a single system, and using more pessimistic models for validating the

correctness of more critical functionalities whose correctness must be validated to a higher level

of assurance. Prior work in MC scheduling has mostly focused on dealing with uncertainties in

estimating the upper bounds on the WCET of pieces of code. In this dissertation, we start to study

the MC scheduling problem along the dimension of varying processor speed. We have considered

these two dimensions each separately, and both within a single integrated framework.

In this chapter, we first summarize the main technical contributions made in the dissertation,

and then briefly introduce some other contributions made during my Ph.D. study, and point out

some future research directions in the end.

6.1 Summary of Results

When MC arises solely from WCET estimations (which is Vestal’s interpretation), we show

that improvements to existing theories can be made via proposing new scheduler, new models, and

proving better analytical results for existing schedulers. Specifically, an algorithm named LE-EDF
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is proposed for scheduling MC job set, which is computationally more efficient than the well-known

OCBP algorithm. We further prove that LE-EDF strictly dominates OCBP, verify such relationship

by experimental study. We added one more parameter to the Vestal model, capturing the probability

information about the uncertainties in system behaviors, and proposed outperforming schedulers

under this more rich workload model. We also improve the speedup bound from (
√

5+1)/2 to

4/3 for an existing algorithm named MC-Fluid for MC task scheduling upon the multiprocessor

platform, and show that the problem is closed in the sense that no better speedup can be achieved

(due to the NP-hardness nature of the problem under non-clairvoyance).

When MC arises solely from varying-speed platforms, we proposed a new model where a single

WCET threshold will be assigned to each single piece of code, yet its actual run-time is related to

the performance of the platform. Although a slower speed can be modeled as longer WCET, and

thus existing work for scheduling Vestal’s MC systems (with multiple WCET specifications) can

be used to schedule this transformed system, we show that one can sometimes do better if using

our varying-speed MC model. This is in general due to the non-NP-hardness nature under the new

interpretation. Specifically, we proposed a (LP based) polynomial-time algorithm for scheduling

MC jobs upon a self-monitoring uniprocessor. By mimicking processor sharing scheme (with a

large number of preemptions), this work is further extended to scheduling (i) MC job set upon

multiprocessor platforms and (ii) MC task set upon uniprocessor platform. When self-monitoring is

not allowed, we find that the existing OCBP algorithm can be adapted at no significant schedulability

loss, in the sense that the speedup can be upper bounded by (
√

5+1)/2, and stays even lower when

degraded speed threshold varies.

We then propose integrated system models for representing MC systems that uncertainties

arises from both the WCET estimations and the platform’s execution speed. With a generalized

interpretation, we find that our proposed LE-EDF remains online optimal for scheduling MC job

set, and is asymptotically optimal in its computational complexity (more efficient than the LP-based

method). Even comparing to an optimal clairvoyant scheduler, we show that LE-EDF has a speedup

of 3/4, which is the best-known speedup result for MC job scheduling. For scheduling MC task sets,
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existing scheduler named EDF-VD can be adapted regardless of the capability of self-monitoring

or not. Some improvements can be made during the computing process, with better schedulability

results shown experimentally via randomly generated sets.

In general, this dissertation extends the existing MC scheduling theory in several directions by

proposing new schedulers, analyzing their properties thoroughly, and comparing to existing work.

It has the potential to lead to more efficient design, analysis, and implementation of future real-time

systems.

6.2 Other Contributions

In this section, some of the other major contributions made during my Ph.D. study will be

highlighted. As they may not directly support our thesis, the introductions are kept in very light

form — please refer to the publications for details.

6.2.1 A Comparison of MC Job Models

The Vestal model is widely used in the real-time scheduling community for representing mixed-

criticality real-time workloads. When the total number of criticality levels exceed 2, Vestal model

requires that multiple WCET estimates are obtained for each task.

Burns suggests (Burns, 2015) that being required to obtain too many WCET estimates may

place an undue burden on system developers, and proposes a simplification of the Vestal model that

makes do with just two WCET estimates per task. From a pragmatic perspective and in terms of

ease of use, there are undoubted benefits in using the Burns model in preference to the Vestal model.

We reported on our attempts in (S. Baruah and Z. Guo, 2015) at comparing the two models

– Vestals original model and Burns simplification – with regards to expressiveness, as well as

schedulability and the tractability of determining schedulability. In our research, we are seeking to

better understand whether the reduced expressiveness in Burn’s model yields any analytical benefits

in terms of reduced complexity of feasibility analysis, less schedulability loss, etc. Thus far, our
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results have been negative we have not identified any such benefits when restricting our attention to

MC instances that are characterized as collections of independent jobs.

6.2.2 Another Extension of the Vestal Model

The original Vestal model was proved very successful in identifying some of the core challenges

that arise in resource-efficient scheduling of MC systems, and spawned a large body of research that

proposed solutions to some of these challenges. However, this model has met with some criticism

from systems engineers that it does not match their expectations in some important aspects.

In (Baruah et al., 2016), we focus upon one such aspect: in the event of some jobs executing

beyond their LO-criticality WCET estimates, LO-criticality jobs should nevertheless be guaranteed

some amount of execution prior to their deadlines. Followed by the initiative idea reported in (S.

Baruah and A. Burns, 2014), we modified the specification and semantics of the Vestal model in

two ways:

§1. While each task τi continues to be characterized by the two WCET parameters CL
i and CH

i , it is

required that

1. If χi = HI then CH
i ≥CL

i (this is as in the original Vestal model);

2. If χi = LO, then CH
i ≤CL

i (this is different).

§2. The run-time scheduling objectives are extended in the following manner to ensure a degraded

(but non-zero) level of service for LO-criticality tasks in the event of HI-criticality tasks executing

beyond their LO-crtiticality WCETs:

1. if each job of each task τi completes within CL
i units of execution then all jobs complete by

their deadlines; and

2. if a job of some HI-criticality task τi fails to complete despite being allowed to execute for CL
i

time units, then all jobs of all HI-criticality tasks τi should be allowed to execute for up to CH
i

units by their deadlines; additionally all jobs of all LO-criticality tasks τi are guaranteed to

receive at least CH
i units of execution by their deadlines.
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Intuitively speaking, the WCET parameters of HI-criticality tasks are assumptions or rely

conditions (Jones, 1981), and the WCET parameters of LO-criticality tasks are corresponding

guarantees or budgets.

In (Baruah et al., 2016), we obtain a fluid model (see Sec. 3.3) based algorithm for the

preemptive uniprocessor scheduling of dual-criticality task systems represented in this more general

model, and prove that our algorithm has a speedup factor of 4/3. Since this model is a generalization

of the one for which the lower bound of 4/3 on speedup was proved in (Baruah et al., 2012b,

Theorem 5), it follows that no algorithm for scheduling the more general model may have a speedup

bound smaller than 4/3 and our algorithm is thus speedup-optimal. The MC task generator we used

in this work is exactly the same as the one reported in Sec. 3.2.5.1, which has passed an Artifact

Evaluation1 process.

The contribution made in (Baruah et al., 2016) supports the central thesis in the sense that

improvements could be made by refining existing models. It could be a good supplement for Chapter

3 — we choose to list it here since this work is done in parallel with the writing of this dissertation,

and I am not the main contributor of (Baruah et al., 2016).

6.2.3 A CPS Case Study on EDF Schedulability of AVR tasks

Modern embedded systems broadly interact with physical environments. CPS are the inter-

section (not the union) of the physical and the cyber systems, where physical processes are often

affected by computations and vice versa. CPS conjoins distinct disciplines, however, models that

prevail in these distinct disciplines do not combine well (Lee, 2015). One of the most advanced and

sophisticated models, the Adaptive Varying-Rate (AVR) task (Buttle, 2012), deals with the modeling

of recurrent processes in CPS for which each activation of the recurrent process is triggered by

the state of the physical system. Such processes abound in CPS: for example, height detection in

avionic systems is activated more frequently at lower altitudes; sensor acquisition in mobile robots

often depends on the robot location; and fuel injection in the Engine Control Unit (ECU) of an

1For additional details, please refer to http://ecrts.org/artifactevaluation.
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automobile is dependent upon the position of each piston. We are among the first few researchers

that started to investigate this model, and our ICCPS publication (Guo and Baruah, 2015b) is the

first piece of work that thoroughly studies Earliest Deadline First (EDF) schedulability of AVR

tasks.

A sufficient and fast schedulability test is shown for implicit systems, and its speedup factor

(as a function of engine rotation speed) is derived. Under some practical assumptions, this result is

further improved to be necessary and sufficient. For constrained systems (with relative deadlines

smaller than periods), an attempt for demand based function analysis has been made by trans-

forming into the digraph based task model. Schedulability experiments confirm that the proposed

methods outperform the current state of the art from the perspective of schedulability ratio. Overall

performance is further compared in these schedulability experiments with respect to changes in

specific parameters, one at a time. Part of our theory results have been validated by a well-known

research group in Europe via simulation (Biondi et al., 2015), and is being evaluated for adoption

by the automotive industry (e.g., Volkswagen).

6.2.4 Solving MC Scheduling via a Neurodynamic Approach

Many novel recurrent neural network (RNN) models have recently been proposed for solving

optimization problems with linear inequality constraints. These RNN models are often with very

simple structures, and converge to the global optima rapidly. Due to the parallel nature structure

of the RNNs, these models may be applied to parallel computing devices. Moreover, RNN based

approaches have the potential of being implemented on hardware. As a result, the converging

periods (into a stable state) of such systems can be extremely short comparing to the execution

length of real-time jobs.

To investigate the potential of applying RNNs in real-time scheduling, in (Guo and Baruah,

2016), we apply one of the RNN models on a series of real-time job scheduling problems upon

uniprocessors. We have presented rules for transformation and approximation from some typical NP-

hard real-time scheduling problems into RNN solvable problems, and shown how they work out by
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examples. Experimental studies suggest that the convergence time of the introduced neurodynamic

system is likely to stay in a constant range when the size of job set grows, which indicates that our

method may serve as the scheduler for large scale platforms, e.g., supercomputers, computing grids,

and cloud centers. Based on the randomly generated 10000 job sets, comparison studies have been

reported. It is evident that the proposed RNN based method outperforms EDF and Fixed Priority

under overloaded conditions, while remains optimal (same as EDF) in non-overloaded conditions.

6.2.5 Other Publications During Ph.D. Study

I have been very fortunate to have had opportunities to work with truly outstanding researchers

on various areas in the past 5 years, other than real-time systems (French et al., 2012) (Guo, 2015)

(Guo, 2016), e.g., Big Data and Bioinformatics (Cheng et al., 2014) (Chen et al., 2014) (Cheng et al.,

2013) (Liu et al., 2012a) (Crowley et al., 2015), Neural Network and Computational Intelligence

(Guo et al., 2011b) (Guo et al., 2011a) (Liu et al., 2012b).

6.3 Future Directions

Mixed-criticality scheduling theory is so fundamental that it will remain attractive in the

foreseeable future. Although this dissertation has answered several fundamental questions in mixed-

criticality scheduling theory, many vast blanks in this area need to be filled. In this section, we

try to list some limitations of our work, and point out some related and important future research

directions.

More than two criticality levels. Although for some cases like MC job scheduling, we have

provided nice schedulers for systems with an arbitrary number of criticality levels, most of our (and

existing) work only apply to dual-criticality systems. In many cases, it is a huge step to improve

from 2 to 3 — new techniques in both scheduling and analyzing may need to be introduced.

Restricted preemption. We only consider fully-preemptive systems in this dissertation. In some

cases, in order to achieve the best theoretical result, we mimic a processor sharing scheme where

the number of preemptions is potentially unlimited, which is impractical — each time a job gets
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preempted and resumes execution, runtime overheads are incurred for managing scheduling queues

and reloading cache lines. Too many preemptions often result in less predictable WCETs of tasks

and more capacity waste due to the conservative assumptions made during the certification process.

It is important to come up with schedulers with limited/restricted preemptions and studied via

system level experiments.

Modeling the uncertainties. The pessimism during modeling process is unavoidable due to the

uncertainty of system behaviors during run-time. We have tried to introduce probabilistic analysis

into MC scheduling, yet with a lack of fundamental understanding of such uncertainties, which could

be both epistemic (uncertainty in what we know, or do not know, about the system) and aleatory

(uncertainty in the system itself). Probability theories cannot be directly applied to epistemic

uncertainties — one potential way may be introducing uncertainties in our decisions (e.g., fuzzy

theory, randomized cache), and is left as future work.

Dealing with heterogeneous platforms. Our varying-speed platform model does not easily extend

to multiprocessor platforms. When some processors experiencing performance drop while some may

not, we are actually facing a heterogeneous platform, and the schedulability upon such platforms is

hard to achieve. We have reported some easy solution via existing techniques, while much remains

to be done along this direction to make the results practical.

CPS based study. Advanced CPS will shape the interaction between human beings and the physical

world — just as the world-wide-web shaped the interaction between human beings. However, CPS

conjoins distinct disciplines, and models that prevail in these distinct disciplines do not combine

well (Lee, 2015). As a result, new CPS models must be proposed as CPS evolves. It is our ability

of understanding and analyzing the new model, as well as its fidelity (i.e., the degree to which

the model imitates the system being modeled), that decides the value of the model. The models

studied in this dissertation are quite general, which may not fit the need of designing specific CPS

systems, and efforts could be spent on investigating more sophisticated models, e.g., the AVR task

model (Buttle, 2012), the DAG based task model (Baruah et al., 2012c), etc.
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