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ABSTRACT

KENNETH D. REDDIX II: Powering Demand: Solar Photovoltaic Subsidies in California.
(Under the direction of Brian McManus)

Households’ decisions to purchase solar photovoltaic systems are characterized by large up-

front costs, differentiated products, and uncertainties about future government subsidies. This

study analyzes the interplay of these factors using a dynamic discrete choice model. I use a newly

assembled dataset, that covers all installations from 2002 through 2006 in California at the house-

hold level, to estimate demand for solar panel installations. I find that across the distribution of

housing values, households are price elastic with respect to both temporary and permanent changes

in price. Also, I find that elasticities vary across the distribution of housing values. The marginal

effect of technological innovation is significant and positive with respect to the probability of pur-

chase. I find that a 1% increase in the efficiency rate increases the probability of purchase by 6.4%.

This is result is compounded by the fact that efficiency rates increase 30% over the sample period.

Through counterfactual simulations, I show that in the absence of government subsidies 49.5% of

all purchases would not have occurred. Additionally, over 70% of the total reduction in market

capacity when subsidies are removed is directly attributable to larger capacity installations. Lastly,

I find no evidence that household behavior is affected by the uncertainty associated with future

subsidy regimes.
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CHAPTER 1

INTRODUCTION

In 2013, the market for solar panel systems reached a value of $12 billion dollars with an

average annual growth rate of 50%. High growth rates in the solar market are attributed to the

widespread use of subsidies and tax credits by federal and state governments, and sharp reduc-

tions in the cost of solar panels. The U.S. Energy Information Administration reports that federal

funding for solar power increased 530%, from $179 million to $1.13 billion dollars, between the

years of 2007 to 2010.1 Since 2001, California has provided over $2 billion dollars in demand-

side subsidies for solar panel systems, and consequently leads the United States in residential solar

electricity generation.

For a household participating in a durable good market, the decisions of when to purchase

and what to purchase are both important. Particularly in markets that are characterized by rapid

technological innovation and declining market prices, a household might delay the decision to

purchase for the option value of waiting. The California residential market for solar panel systems

is similarly characterized by steady technological innovation and falling market prices, but is also

subjected to multiple short-lived subsidy regimes. Short-lived subsidy regimes, lasting 2 to 3

years, are used to temporarily reduce prices and stimulate households’ demand for solar panel

systems. For these reasons, it is important to model the demand for solar panel systems in a

dynamic framework. I introduce a structural model of dynamic demand for solar panel systems

that includes uncertainty about future prices and future subsidies, and I estimate the model using a

newly assembled data set at the household level. The model is used to investigate the implications

of multiple short-lived subsidy regimes, evaluate price elasticities, and measure the effectiveness

1http://www.eia.gov/analysis/requests/subsidy/pdf/subsidy.pdf



of demand-side subsidies.

In a dynamic setting, households make decisions considering both the expectation regarding

the change in prices over time and the level of prices within a period. In the solar panel market,

forming expectations about the change in prices requires households to consider the change in

market prices for solar panel systems and the existence of future subsidy regimes. Market prices for

solar panel systems decline throughout the sample period with the price of an average solar panel

system falling more than 20%. To account for market price uncertainty, households are not fully

informed about the pricing process for solar panel systems, but instead expect future market prices

to follow a Markovian process. This assumption, while simple, allows for households to be correct

on average about the evolution of prices while still accounting for price uncertainty. Households are

fully informed about the schedule of subsidy rates within a particular regime, but lack information

about future regimes. To account for this uncertainty, households are assumed to have beliefs

regarding the existence of future regimes. Three separate deterministic belief structures are tested

in the paper. The estimation results show that demand is fairly robust to assumptions regarding

households beliefs about future subsidy regimes. The findings indicate that during the sample

period there does not seem to be an advantage of multiple regimes versus one long regime with

respect to the total number of purchases in the market.

I evaluate both the short-run and long-run price elasticities for households in the market for

solar panel systems. I consider the short-run case where all prices temporarily increase in one

period and return to previous levels. Households are fully informed about the change in prices and

results indicate that households are price elastic in the short run, due to the ability to substitute

purchases intertemporally. I also consider the long-run case where all prices receive a permanent

increase and do not return to previous levels. Results indicate that households are price elastic in

the long run but are less elastic relative to short run price elasticities. Estimates suggest that price

elasticities vary with respect to housing value.

To consider these factors, I use a California Energy Commission’s dataset that tracks all resi-

dential solar panel system purchases from 2002 through 2006. The data include an approval date,

total purchase price, total subsidy, capacity of the system installed, brand and model number of the
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system, and physical address of the household. I collect household-specific data on housing char-

acteristics, solar irradiation, and electricity prices for all households in California. Additional data

on household characteristics allow for the estimation of price responsiveness by housing value, and

the role of housing characteristics on the decision to purchase. To complement household data, I

collect detailed product characteristics for over 1,000 solar panel systems. Product-specific char-

acteristics allow for the inclusion of technological innovations and extension to a multi-product

choice set.

I estimate a household-level dynamic demand model for solar panel systems. In the model,

a household decides between purchasing one of the available systems in the market and postpon-

ing purchase. If the household decides to purchase a system, it receives the expected discounted

lifetime utility from the system and leaves the market indefinitely. If the household decides to

postpone purchase, it continues to participate in the market the following period and the choice

problem repeats. Before deciding, the household is fully informed of the prices, subsidies, product

characteristics, and tax credits for the current period. The household has limited information about

future prices of solar panel systems and holds beliefs about subsidy rates offered in the future.

Using this information, the household forms an expected value of continuing in the market consid-

ering uncertainty, beliefs, and making a purchasing decision. The model is estimated using a two

stage procedure similar to Rust (1994).

I contribute to the literature on solar panel adoption and policy in several ways. I improve upon

current research by introducing a model that accounts for household and product-level observed

heterogeneity and the uncertainty that consumers face regarding future prices and subsidies. The

results show that the impact of uncertainty regarding future subsidies is minimal in the case of the

solar market. Households are found to be price elastic with average short-run price elasticities of

-1.6, and average long-run price elasticities are found to be lower relative to short-run price elas-

ticities by 8%, suggesting that households are substituting demand intertemporally. The California

Emerging Renewable Energy program was effective at incentivizing over 54% of all purchases

during the two regimes.

This paper contributes to the growing literature exploring the impact of subsidies for solar

3



panel systems. Bollinger and Gillingham (2010) explore a clustering pattern in the data on solar

panel purchases and exploit exogenous variation in subsidies across utility regions to estimate peer

effects. They find evidence of peer effects and estimate the impact of a purchases on the duration

of time until the next purchase within a zip code. Hughes and Podlesky (2013) regress the number

of installations on fixed effects and rebate levels to analyze the effectiveness of subsidies on solar

installations and find that subsidies account for over 58% of purchases during their sample period.

Burr (2014) compares the effectiveness and efficiency of different types of subsidies in a structural

dynamic framework. She experiments with discount rates and finds interesting results with respect

to public versus private discount rates. Her results suggest that subsidies account for over 85% of

purchases in her dataset and finds the welfare neutral social cost of carbon to be $100 per metric

ton. I contribute to the literature by investigating the effects of multiple subsidy regimes on the

purchase of solar panel systems and discussing the impact of subsidies on both the total number of

market purchases and the total market capacity. I find 49.5% of purchases would not have occurred

in the absence of subsidies, and of the total loss in market capacity from the absence of subsidies,

70% is directly attributable to the reduction in the purchase of larger capacity systems.

In addition, this paper also contributes to the recent literature that uses structural models of

dynamic consumer behavior. There are two prominent lines of research in this literature. The

first line explores the purchasing decision for high tech products in markets where both prices

and technology are changing rapidly (Melnikov 2001, Carranza 2007, Nair 2007, Prince 2008,

Gowrisankaran and Rysman 2012). The research in this area focuses on either the introduction

of a new product into the market or the decision to replace an existing product. Gowrisankaran

and Rysman (2012) investigate the purchase and replacement decision for consumers in the digital

camcorder market, and include unobserved heterogeneity in both the marginal utility of quality

and the marginal utility for money. Accounting for this heterogeneity allows for the model to

capture the trade-off between quality and timing of replacement for consumers. I use a model

similar to Gowrisankaran and Rysman’s (2012) but without the decision to replace. I segment the

marginal utility of quality and money by household-level observable characteristics to allow for

heterogeneity in preferences for different segments of the solar market. Additionally, I explicitly

4



model the impact of price uncertainty on the decision to purchase.

The rest of the paper is organized as follows: Chapter 2 discusses the solar market, Chapter

3 discusses the model, and utility specifications, Chapter 4 discusses data, Chapter 5 details the

estimation procedure, Chapter 6 reports demand estimates and discusses fit, price elasticities and

marginal effects, Chapter 7 reports results from counterfactual simulations, and Chapter 8 con-

cludes.

5



CHAPTER 2

INSTITUTIONAL BACKGROUND

2.1 Solar Panels

Solar panel systems generate electricity from sunlight. The electricity production capability of

a solar panel system is a function of the system’s capacity rating and the hours of usable sunlight

at the installation site. Capacity ratings are a measure, in kilowatts (kW), of the maximum power a

system can produce under controlled test conditions1. Over the course of a day, a solar panel system

receives sunlight and generates electricity in units of kilowatt hours (kWh). Total generation of

electricity for the day is the product of the total hours of sunlight and the capacity rating of the

system.

How well a solar panel system converts sunlight into electricity is measured by the efficiency

rate of the system. Efficiency rates are a function of capacity rating, Photovoltaics for Utility

Systems Applications test conditions (PTC), and the physical size of a system expressed as:

Eff =
Capacity

Size ∗ PTC
(2.1)

Equation 2.1 shows the inverse relationship between the efficiency rate and the physical size of

a solar panel system, when capacity is held constant. For two solar panel systems with identical

capacity ratings, if one system has a higher efficiency rate relative to the other, the system with the

higher efficiency rate will have a smaller physical footprint. Given equivalent hours of sunlight, the

1There are two test conditions used for solar panel systems in the state of California. The first, standard test
conditions (STC), reflect the solar panel’s production under ideal conditions. All panel characteristics are tested
including capacity rating, voltage, amps, and temperature. The state of California uses an additional measure known
as Photovoltaics for Utility Systems Applications test conditions (PTC) that test the panel in a controlled environment
that mimics real world conditions. These measures are performed by an independent third-party testing facility. The
subsidy program uses PTC capacity ratings to determine the amount of subsidy an installation site receives



two systems will produce the same amount of electricity, but the system with the higher efficiency

rate uses less physical area.

At the time of generation, electricity produced by the solar panel system is available for either

immediate consumption by the household or the electricity is sold on to the grid. To manage

the direction of the generated electricity, net meters are required to be installed for all solar panel

systems approved by the subsidy program. A net meter directs the flow of generated electricity and

tracks the quantity demanded and quantity supplied of electricity for the household.2 This enables

households that install a solar panel system to be both a consumer and producer of electricity.

A solar panel system is a durable good and by definition produces a multi-period stream of

benefits for the household. The duration of the benefits, generation of electricity for solar panel

systems, is conditional on the characteristics of the system purchased, weather at the installation

site, maintenance, and other factors at both the manufacturing and installation levels. Since the

solar panel systems in the sample period are in their infancy, the lifespan of the solar panel system

is approximated using warranty information provided by the manufacturer. The average solar panel

system comes with a warranty that covers the first 25 years of use, split between the first 10 years

and the subsequent 15. For the first 10 years, the warranty guarantees that the power output will

not go below 90% of the installed capacity rating. For the next 15 years, the warranty guarantees at

least 80% of the installed capacity rating. Assuming constant degradation, the average solar panel

system degrades at a rate of 0.9% per year, and continues to generate electricity well beyond the

warranty period. 3

2Generally speaking, a net meter prioritizes the flow of electricity from the solar panels for consumption first and
supplying to the grid as a secondary objective. During solar electricity production periods, the net meter will direct
solar generated electricity to the household until quantity demanded is satisfied or all solar generated electricity is
being consumed by the household. In the first case of quantity demanded being satisfied, the remaining solar generated
electricity will be sold onto the grid. In the second case of all solar generated electricity being consumed, the net meter
will buy from the grid to satisfy the household’s demand for electricity.

3The assumption of a constant degradation rate is for simplicity. There does not exist data on the rate in which
solar panel production will degrade over time.
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2.2 Subsidies and Tax Credits

The California Emerging Renewables Energy program was established by the California En-

ergy Commission (CEC) in 1998 following Assembly Bill 1890 and Senate Bill 90 for distributing

funds collected to support renewable electricity generation technologies (Guidebook 2001). The

intent of the fund is to subsidize the purchase of renewable energy technologies through interven-

tion on the demand side of the market. To subsidize the residential market, the CEC introduced

capacity-based subsidies, an instrument that provides one-time monetary transfers based on the

capacity rating of the system installed.4 The subsidy a household receives is a function of the

capacity rating of the system and the subsidy rate available on the date of approval. The regimes

during the sample period differ concerning the subsidy rates offered, but all regimes use capacity-

based subsidies.

The CEC rebate program consists of three consecutive subsidy regimes lasting 2 to 3 years

each from 1998 until 2007. At the beginning of a subsidy regime, the CEC published a public

guidebook that provides households with information about the rebate program. The guidebook

includes information about the degree and timing of subsidy rates, eligibility requirements, and

eligible costs by a particular regime. The guidebook does not provide information about a future

subsidy regime, and this lack of information introduces uncertainty into the household’s choice

problem.

Figure 2.1 illustrates the three subsidy regimes that occur during the sample period. The vertical

axis represents the subsidy rate in dollars per watt installed. The horizontal axis is the years

covered during the sample period and are represented in 6-month intervals. The vertical dashed

lines represent a change in the subsidy regime. The first vertical dashed line on January of 2003

represents the beginning of the first 6-month period of the second subsidy regime. The second

dashed line at July of 2005 represents an unscheduled change in the subsidy rate during the second

subsidy regime. The third dashed line at January of 2007 represents the beginning of the first

6-month period of the third subsidy regime. The step function represents the subsidy rate for a

4The CEC uses a production based subsidy for commercial grade installations.
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Figure 2.1: Subsidy Rates over Time

6-month period. The solid circles identify the beginning period of the rate and hollow circles

identify the expiration of the rate. For example in Figure 2.1 the second step begins on January 1,

2003, with a solid circle, at a rate of $4.00 per watt and the rate ends on June 30, 2003 shown by

the hollow circle. The next subsidy rate of $3.80 per watt begins on July 1, 2003 and expires on

December 31, 2003. The black circles identify subsidy rates that actually occurred during the time

period specified and the gray dots identify subsidy rates that were scheduled but never realized.

The first subsidy regime begins in 2001 with a fixed subsidy rate of $4.50 per watt. This rate

remains unchanged until the end of 2002 when the regime expires. During the regime, subsidies

reduce the price of an average solar panel system by 46%, decreasing the price by $19,000. The

second subsidy regime begins in 2003 and continues through the end of 2006. The regime begins

with an initial rate of $4.00 per watt, and decreases $0.20 semi-annually with an additional $0.40

decrease in January of 2004.5 In spring 2005, the CEC released a revision to the 2003 public

5In Figure 2.1 and 2.2, subsidy rates after 2005 in gray illustrate the proposed schedule from the 2003 public
guidebook.
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guidebook that suspended the scheduled subsidy decrease and held the January 2005 subsidy rate

of $2.80 fixed for an additional year. In July of 2006, the subsidy rate incurred the scheduled

$0.20 decrease before the regime ended in December. The suspension of the scheduled decrease

generated a $0.40 per watt difference in the subsidy rate relative to the original schedule. This

difference reduced the price of an average solar panel system by an additional 5% or $1,500. After

the second subsidy regime, the distribution of funds specific to solar panel installations was handed

over to the new California Solar Initiative (CSI).

The California Solar Initiative is the third subsidy regime in the sample. The CSI begins in

2007 with a $2.01 subsidy rate6 and is scheduled to actively provide subsidies until 2016. The

CSI program introduced a new system for the timing of subsidy rate changes and the conditions

under which they transition. Subsidy rates are set at the state level following a rate schedule, but

the transition between rates occurs at the utility region level. In 2007, all utility regions start at

the same rate in the subsidy schedule.7 The transition between subsidy rates is a function of the

total amount of solar electricity generated in the utility region and a region-specific level of total

generation to trigger the transition.

In Figure 2.2 the subsidy rate step function is overlaid by the number of installations in the

sample period. The right-most vertical axis represents the number of installations and the height

of the vertical gray bars correspond to the number of installations in each 6-month period.

I hesitate to make causal claims about purchasing patterns by focusing solely on the subsidy

rates, and instead I discuss interesting patterns that emerge from the data. In general, the subsidies

seem to be generating a response from households in the population. For the first half of the second

regime, quantity demand is decreasing as subsidy rates fall. As a naive observation, quantity

demanded is expected to fall as subsidies decrease and prices remain the same. During this period,

the market price of a solar panel system is decreasing but at a rate slower relative to the decrease

in subsidies. This results in the net price per watt for a solar panel system increasing from 2002

6Inflation-adjusted subsidy rate.

7The CSI rate scheduled is provided in the Appendix.
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Figure 2.2: Subsidy Rate and Number of Installations Per Period

through 2005. Additionally, households know the schedule of subsidy rates within the regime and

given their expectation about future prices the expected change in the net price per watt of a solar

panel system is positive and increasing. Both the increase in the level of the net price per watt

and the expected positive change in net prices between periods lowers the probability of purchase

for households in the market. It is not surprising to see quantity demanded decreasing during this

period.

A second feature of Figure 2.2 is the increase, for the remainder of the regime, in quantity

demanded following an unscheduled change in the subsidy rate in 2005. At the onset of the delay,

quantity demanded almost doubles.8 The delay in the scheduled decrease of the subsidy impacts

per period net prices as well as households expectations about the change in net prices. Also, the

increase in quantity demanded occurs three periods from the end of the second subsidy regime. In

the data, there is evidence of a positive correlation between the number of periods left in a regime

8In Figure 2.2, quantity demanded doubles after the second vertical dashed line. During the first 6-month period
of 2005, 900 installations occur and in second half of 2005 installations go beyond 1800.
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Figure 2.3: Average Tax Credit Per Watt

and quantity demanded, likely due to the uncertainty regarding future subsidies. Both features of

the market would contribute to the increase in quantity demanded during this time period.

Tax credits are offered during the sample period in addition to the CEC subsidy program. Tax

credits are intended as a secondary source of subsidy. The amount of credit a household receives

is calculated from the net price of a system after accounting for the CEC subsidy. There are three

tax credit regimes that overlap with the sample period. The regimes differ by rate schedule and the

maximum allowable credit.

From 2001 through 2003, California offered a tax credit equal to the minimum of 15% of the

net price up to a maximum amount of $4.50 per watt. In all instances, households received a tax

credit equal to 15% of the net price paid. In 2004 and 2005, the state offered a similar tax credit,

but reduced the percentage to 7.5% of the net price and kept the maximum at $4.50 per watt. A

similar result occurred; all purchases qualified for the tax credit of 7.5% of net price paid with no

households receiving the maximum per watt amount offered. At the beginning of 2006, the state

did not renew the solar tax credit, but the federal government offered a nationwide tax credit. The
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federal tax credit increased the rate to 20% of the net price but capped the maximum total tax credit

at $2000. In all instances, households were provided with $2000 in federal tax credits.

Due to the structure of the tax credits, the credit per watt varies across capacities and Metropoli-

tan Statistical Areas (MSA). The variation across capacity occurs as a result of net price varying

across capacity. Similarly, variation in net prices across MSAs generate variation in the credit

per watt received by a household. In Figure 2.3, I show the average tax credit received for each

6-month period during the sample. The vertical axis represents the tax credit per watt and the hor-

izontal axis is the sample period discretized into 6-month bins. The step function represents the

average tax credit for each period.

During the first regime, average credits range from $0.91 per watt to $0.81 per watt. The

decrease in the credit per watt over the period reflects the decrease in the net price of a system

occurring at the same time. In the second regime, the tax credit is reduced by 50% with the credit

per watt starting at $0.43 per watt and increasing to $0.47 per watt. In the third regime, the credit

per watt increases to $0.67 per watt. The standard deviation of the average tax credit per watt varies

over the sample period. The largest variation occurs during the third regime because all households

receive a fixed tax credit regardless of the capacity of the solar panel system installed. This results

in larger capacity systems receiving a lower per watt tax credit.

In Figure 2.4, I show the evolution of prices for a medium size (2.72kW) solar panel installation

in the San Francisco area during the sample period. The vertical axis represents the price per watt

for a solar panel system, and the horizontal axis represents time in 6-month periods starting in

2002 and ending in 2007. Each time period has three prices represented on the graph. The black

dot represents the market price for the solar panel system during the 6-month time period. The

dark gray dot represents the net price of the system after accounting for the subsidy. The red dot

represents the net price of the system after accounting for the subsidy and tax credit.

There are two important trends to focus on in Figure 2.4. First, the CEC subsidies are the main

component in the reduction of solar panel system prices compared to tax credits. During the first

6-month period of 2002 the government reduced the price of a solar panel system by over 55%. Of

the total reduction, CEC subsidies account for 78.2% of the total price reduction for medium sized
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installations while the tax credit accounts for 21.8% of the price reduction. Throughout the sample

period the overall percentage reduction in the price decreases, but the subsidy continues to be the

largest contributor to the overall reduction in price. This does not discount the importance of the

tax credit but it provides support for the investigation into the effects of the subsidy program on

the household’s decision to purchase a solar panel system. Second, it is important to note that the

net price of purchasing a solar panel system is increasing after 2004. This is a direct result of the

subsidies and tax credits decreasing at a higher rate relative to the reduction in the market price for

a solar panel system. A similar trend occurs for solar panel installations across capacity level and

MSA.
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Figure 2.4: Medium Capacity Solar Panel System Prices in San Francisco
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CHAPTER 3

MODEL

3.1 Households’ Problem

At the beginning of the sample, no households in the market own a solar panel system. During

each period, households face the decision to purchase a solar panel system or postpone purchase.

Households that postpone purchase continue to be active in the market during the following pe-

riod. Households that purchase are removed from the market permanently and receive a stream of

benefits for the lifetime of the system. Households are constrained to purchase at most one system

per period and at most one system during their lifetime. Households do not have access to a resale

market, and are unable to upgrade the system after installation.1

The market is populated by a set of households i ∈ {1, 2, . . . , N}making purchasing decisions

in an infinite-horizon discrete-time framework. A household evaluates the alternatives, sit, from

the set of capacities available in the market. The full choice set of products and capacities is large

and as a simplification the choice set is aggregated to five options. The choice set includes the

outside option of not purchasing and four solar panel systems differentiated by capacity rating and

1The decision to constrain households to one purchase per lifetime is backed by the combination of empirical
evidence, high prices, and the durability of solar panels.



represented by the set S, where

S =



0 Outside Option

1 Small

2 Medium

3 Large

4 Extra Large

In the choice set, zero represents the outside option of not purchasing and options one through

four represent small (1.80kW), medium (2.72kW), large (4.14kW), and extra large (6.51kW)

capacities. Capacities are time invariant, I discretize the distribution of capacities over the sample

period into quartiles with support of zero to 10kW, the maximum allowable system capacity. I set

the mean of each quartile to represent the capacity rating for each option in the choice set.

At the beginning of each period, households have full information about the current period’s

state space Ωt = {P e
t , P

sp
t , Zt, S, εt, τt}. The state space includes the vector of electricity prices,

P e
t ; the vector of solar panel system prices, P sp

t ; the vector of product characteristics, Zt; the

set of capacities, S; the vector of taste shocks, εt; and the vector of tax subsidies and credits, τt.

Households are assumed to know the distribution of the state variables G (Ωt+1|Ωt). Households

select an alternative each period from the choice set to maximize their expected lifetime utility.

Initially, the market contains all households and is defined as M1 = N . At the end of each

period, the market is adjusted to account for households that purchase. The next period’s market

size is equal to, Mt+1 = Mt −
∑

i∈Mt
1 (sit 6= 0), the market size at the beginning of the period

minus the number of households that purchase in the same period. Including the endogenous

change in the size of the market eliminates the potential bias discussed below.

As households purchase and leave the market, the demand for solar panel systems shifts to

reflect the change in the distribution of households participating in the market. It is important to

adjust the market for changes in the distribution of household types and the number of market
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participants to reduce potential bias on the price coefficients. The bias enters by leaving a growing

set of households in the market that are perfectly price inelastic and due to their non-responsiveness

to price changes put downward pressure on the parameter estimates for price. To remove the bias,

I track the number of households that purchase and leave the market and adjust the market size

after each period.

3.2 Utility From Purchase

Let ωt = {P e
t , P

sp
t , Zt, S, τt} represent the state variables without the household-level taste

shocks, εt. The indirect lifetime utility from purchasing a solar panel system of size s at time t is:

Uist (ωt, εt; θ, α) = θ1 + θ2ln [PVist (peit; δ)] + θ3izt − αiln ((pspist − τst) qs) + θ4MSAi
+ εist (3.1)

The indirect utility function is comprised of the present value from purchase, non-price product

characteristics, the net price after receiving subsidies and tax credits, a MSA level fixed effect at

the time of purchase, and a purchase shock that is assumed to be distributed iid Type I extreme

value. The details of each part of the utility function are discussed below.

The second term in the utility specification, PVist, represents the present value of electricity

generated over the lifetime of the solar panel system for household i purchasing product s during

period t. I define the present value as:

PVist (peit; δ) =
∞∑
k=t

[
βk−t (1− δsp)k−t (1 + δe)k−t peitqsh

sun
i

]
(3.2)

where the bracketed term is summed over the lifetime of the system, and includes the following

components:

• peit the price of electricity for household i

• qs the capacity of solar panel system s

• hsuni the hours of sunlight for household i

• δe escalation rate for electricity prices

• δsp capacity rating degradation rate

• β discount rate
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On the right hand side of Equation 3.2, the term peitqsh
sun
i is the flow of revenue received each

period for the generation of solar electricity. The revenue term consists of the product of the price

of electricity for household i at time t, peit, and the total amount of solar generated electricity during

period t. The amount of solar generated electricity is calculated as the product of the capacity of

system s, qs, and the average hours of sunlight household i receives, hsuni , over a 6-month period.

The present value is calculated by adjusting the revenue stream each period to account for the

decrease in electricity generation due to the degradation of the system, changes in future electricity

prices, and discounting future income.

I calculate a constant degradation rate for solar panel systems during the sample based on data

from manufacturer-provided warranties. I assume the calculated rate to be a constant percentage

decrease in the production capabilities of the system and is consistent with the guaranteed produc-

tion listed in the warranty. In the present value equation, the degradation rate is represented as

δsp ∈ (0, 1) and reduces solar electricity generation by δsp% each period. Including the degrada-

tion rate helps improve the approximation of the present value of owning a solar panel system by

accounting for the eventual reduction in the generation of electricity. The reduction in capacity

decreases the quantity of electricity produced and leads to a reduction in revenue. Similarly, the

evolution of electricity prices must be accounted for in the revenue equation.

The price of electricity is a key variable for calculating the present value of purchasing a solar

panel system. In the dynamic framework it is reasonable to believe that households form expec-

tations about future electricity prices when making their purchasing decision. A simple way to

account for future changes in the price of electricity is to assume a constant escalation rate for

electricity prices. A more complex way is to model the process as Markovian and have consumers

form expectations over future prices. The latter option of implementing the price of electricity as

a stochastic state variable can be added to the present value computation albeit with a high com-

putational cost. To reduce the computational complexity, I assume a constant escalation rate to
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calculate the present value of purchasing a solar panel system, and use an inflation-adjusted aver-

age escalation rate calculated by the U.S. Energy Information Administration (EIA).2 Lastly, all

households in the sample are assumed to discount future income by a rate of β.

In Equation 3.1, the third term, θ3izt, captures the effect of non-price product characteristics

on the households decision problem, specifically the efficiency rate of a solar panel system. The

parameter enters the utility specification linearly and expands to include rooftop space as a di-

mension of observable consumer-level heterogeneity. I discretize the distribution of rooftop space

in the sample into three bins that represent small, medium, and large rooftop space households.3

I normalize the parameters relative to large rooftop space households. I interact the non-price

product characteristic covariate with the additional parameters designating both small and medium

rooftop space households.

θ3i = θ31 + θ321
(
xroofi = small

)
+ θ331

(
xroofi = medium

)
(3.3)

The first term in the Equation 3.3 captures the mean preference for efficiency rates in the sample

population of large rooftop space households. The second and third term capture the additional

utility received by households with either small or medium roof space. The decision to interact

efficiency rates and roof space is best understood when considering the importance of physical

area at an installation site.

Consider a household with roof space of 50 square meters. Given rooftop space and efficiency

rates at the beginning of the sample, the household is constrained physically to installing a solar

panel system no larger than 5kW. By the end of the sample period, the average efficiency rate

increases by 30%, and the largest capacity rating for the same installation site increases to 6.5kW.

The innovation in the efficiency rate over the sample period increases the semi-annual flow benefit

from purchase by $200 leading to a total increase of $4000 in the present value of purchase. The

2In Figure 4.1 the electricity rates are shown for each major utility company over the sample period. Additionally,
a trend line is added that represents the escalation rate for electricity prices.

3The measure for rooftop space is an approximation using the square footage of the home and the number of stories
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improvement in the present value of purchase from the larger capacity system may incentivize the

household to delay purchase until efficiency rates are sufficiently high.

In Equation 3.1, the fourth term is the natural log of the net price of a solar panel system. The

total net price per watt is comprised of the market price per watt, pSPist , subtracted by the approved

subsidy per watt and tax credit per watt, τst for household i and capacity size s at time t. The total

net price of a solar panel system is calculated as the product of the total net price per watt and the

capacity, qs, for choice s.4 The coefficient αi on the net price captures the disutility from the net

price of a solar panel system.

As a starting point, I discretize the distribution of housing values, at the state level, into terciles

and assign each household in the sample population to a housing value bin. The bins represent

low, medium, and high value homes, and serve as a proxy for wealth in the utility specification.

The price coefficient αi in Equation 3.4 includes additional parameters interacted with an indicator

function identifying a household’s housing value. By including αi, I introduce an observable

measure of household-level heterogeneity in the estimation of price responsiveness.

αi = α1 + α21(xvaluei = medium) + α31
(
xvaluei = high

)
(3.4)

I estimate the disutility from log prices in the sample population for households in the low housing

value category with the α1 coefficient. I estimate the differences in disutility that households of

medium and high value receive from the net price with the parameters α2 and α3.

The next term, θ4MSAi
, is a Metropolitan Statistical Area (MSA) level fixed effect received at

the time of purchase. I include an MSA-level fixed effect in the model to reduce the presence

of endogeneity from omitted variables that are correlated with covariates in the model. Some

examples of this might be the average environmental preferences within a MSA, advertising or

marketing for solar panel subsidies, or pollution levels within a MSA.

In areas that are more ”green” or environmentally friendly households might receive additional

4It is important to note that while capacity is time invariant, the total net price per watt varies over time by the
market price, subsidy, and tax credit
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social utility from installing a solar panel system that is not accounted for in the current specifi-

cation. The unobserved social benefit from installing solar panels could be correlated with prices

making price endogenous in the model. The MSA fixed effect is included to capture variation from

a time invariant MSA level preference for green products and the social utility associated with it.

Another potential source of variation is advertising or marketing for either the solar panel subsidies

or solar panel installations in general. Lastly, MSA level characteristics that are correlated with

clean energy, level of pollution in the MSA, could generate endogeneity issues in the model. For

example, a household in L.A., where pollution is persistently high, might purchase a solar panel

system and receive unobserved utility from the belief that the system will help reduce pollution in

the local area and provide positive externalities to the community.

3.3 Utility From Waiting

In markets with durable goods, capturing the option value of waiting is important in explain-

ing the choice behaviors observed by households (Melnikov 2001, Gowrisankaran and Rysman

(2012)). The option value of waiting is the expected utility from participating in a future market.

The household choice-specific value function for choosing not to purchase is represented by Vi.

Vi (ωt, εt; θ, α) = δfi0t + εi0t + β

ˆ
ωt+1

ˆ
εt+1

Vi (ωt+1, εt+1; θ, α)G (ωt+1, εt+1|ωt, εt) dωt+1dεt+1

(3.5)

The contemporaneous indirect utility from not purchasing is characterized by a flow utility, δfi0t,

that is normalized to zero and an additive preference shock, εi0t. The last term on the right hand

side of Equation 3.5 represents the option value of waiting, and is integrated over the conditional

joint distribution of the state variables, G (ωt+1, εt+1|ωt, εt). Intuitively, the term captures the mean

utility a household expects to receive by waiting to purchase considering future prices, technology,

subsidies, tax credits, and preference shocks.

Information about the evolution of the state variables is necessary for households to form an

expectation about their future value of staying in the market. Two state variables are assumed to

be stochastic: the price of solar panel systems and preference shocks. Households are assumed to
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know the distribution of their future preference shocks and are able to integrate over them. House-

holds are assumed to believe that the price per watt for solar panel systems follow a Markovian

process. Specifically, households expect that the price per watt for a solar panel system follows a

first order autoregressive specification,

P SP
it+1 = δi1 + δi2P

SP
it + µit+1 (3.6)

where µit+1 is normally distributed iid shock with mean zero and variance σ2
sp. The autoregressive

parameter δi2 satisfies the condition for stationarity 0 < δi2 < 1,∀i.

In Equation 3.6, I allow for the pricing process to differ across MSAs and allow local market

conditions to influence households expectations about future prices. A vast majority of installations

occur by local installers within the MSA and as such markets can be treated separately. Changes in

local market demand and supply conditions should generate differences across MSAs in the pricing

process to the extent that markets are independent. I compare the results of the per MSA estimation

of Equation 3.6 to a state-level pricing process, in which I assume that households believe that solar

panel system prices evolve similarly across capacity and MSA.

3.4 Tax Policies

Over the three subsidy regimes, information regarding policy changes becomes publicly avail-

able only at the time of the change. The uncertainty households have regarding future subsidy

regimes and changes to rate schedules creates uncertainty that enters into the dynamic choice

problem. Household beliefs regarding future regime changes can generate anticipatory behavior.

Anticipatory behavior has been shown to impact the effectiveness of a regime change (Mertens

and Ravn, 2010; Crepon et al, 2010, Blundell et al. 2014). To examine this, I specify deterministic

cases that vary by household beliefs regarding the existence and rate schedule of a future regime.

The deterministic cases are a simplistic way to capture anticipation effects that might arise from

beliefs about future regimes and control for them in estimation.

I investigate three cases of deterministic beliefs: perfect foresight, pessimism, and auto-renewal.

I use these cases as an initial investigation into anticipatory behavior in the solar market. To help
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Figure 3.1: Case 1: Perfect Foresight

describe the cases, let Pr(τ ′|τ) be defined as the probability that future regime τ ′ occurs condi-

tional on the household being in subsidy regime τ . Note that all households in the population are

assumed to share the same beliefs regarding future regimes.

In the first case, I assume that households have full information about all regimes, and can

predict the future perfectly. Perfect foresight implies that households have the following beliefs

Pr(τ ′|τ) =


1 if τ ′ = τtrue

0 Otherwise
(3.7)

where τtrue represents the true future subsidy regime. Figure 3.1 illustrates the information house-

holds have under perfect foresight during the sample period. The vertical axis represents the sub-

sidy rate per watt and the horizontal axis is the sample period discretized into 6-month bins. Note,

under perfect foresight households are not subject to the scheduled subsidy rates that were not

actualized represented in gray in Figure 2.1.
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In the second case, I assume that all households are pessimistic and believe that no additional

subsidies are offered after the expiration of the current regime. Pessimism implies that the discrete

probability density function takes the following form

Pr(τ ′|τ) =


1 if τ ′ = 0

0 Otherwise
(3.8)

where households believe with probability one that no future subsidy regimes will exist. In Figure

3.2a, I show a household’s belief regarding the existence of a future regime conditional on being in

the first regime of the sample period. When a new subsidy regime is reached the household updates

their information about the new policy but retains the same beliefs about the existence of a future

subsidy. In Figure 3.2b, I illustrate the transition to the second subsidy regime and how the belief

regarding a future regime does not change. The beliefs enter the households’ problem through the

expectation of future prices, and is expected to decrease the option value of waiting relative to the

perfect-foresight case.

In the third case, auto-renewal, households believe that the final subsidy rate in the present

regime will continue after the regime expires. Auto-renewal implies that the discrete probability

density function takes the following form

Pr(τ ′|τ) =


1 if τ ′ = τ f

0 Otherwise
(3.9)

where τ f represents the final rate in the current subsidy regime τ . In Figure 3.3a, I illustrate a

household’s belief about future subsidies conditional on being in the first subsidy regime. I show

in Figure 3.3b how the belief about a future regime does not change when a new regime is enacted

but the future subsidy rate is updated.5

5In Figure 3.3b I use two gray arrows to illustrate beliefs about a future subsidy regime. The top gray arrow repre-
sents household beliefs after the subsidy rate change is announced in July of 2005. The lower gray arrow represents
household beliefs before the rate change is announced.
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Figure 3.2: Case 2: Pessimistic Beliefs
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Figure 3.3: Case 3: Auto-Renewal Beliefs
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3.5 Identification

The identification strategy presented is fairly standard and follows the dynamic consumer de-

mand literature closely. Generally, changes in the market share of a product s associated with

a change in a product characteristic of good s helps identify the mean utility from a character-

istic. The identification of the parameter on price, present value of purchase, and technological

innovation are discussed below in detail.

The coefficients on the net price of a solar panel system are identified by variation in uptake that

are associated with variation in the net price. Specifically, identification of the vector of parameters

αi comes from variation in purchasing behavior within each tercile of the housing value distribution

that is associated with variation in the net price. Variation in the net price over time of solar panel

systems occur through three channels that are exogenous to the households choice problem. First,

the price of solar panels depends on a global market and price variation comes from exogenous

market forces: inputs for production (e.g. variation in the price of silicon), technological shocks

to the production process, and global demand for solar panels. Second, the price of installing a

solar panel system varies due to changes in installation costs for the installer such as: learning by

doing (e.g. returns to experience), technological innovation with respect to mounting equipment,

and economies of scale. Third, subsidy rates and tax credits vary over the sample period supplying

an additional layer of exogenous price variation.

Variation in purchase related to variation in the present value of purchase over time identifies

the parameter θ2. The present value of purchase varies over time through changes in the average

price of electricity. The price of electricity varies over time based on regulatory agencies’ decisions

at the utility level, regional demand for electricity, and input costs.

The vector of parameters θ3i on the non-price product characteristic, efficiency rate, is identified

by changes in purchasing patterns within each tercile of the distribution over roof space associated

with variation in efficiency rates. Efficiency rates exogenously vary over time through technologi-

cal innovations that occur on the supply side of the market (e.g. research and development of new

products).
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CHAPTER 4

DATA

I assemble a new dataset from a variety of sources to estimate the model in Chapter 3. I use

choice data from the California Energy Commission’s (CEC) Emerging Renewable Program that

covers eight years of residential solar panel installations in the state of California. I expand the

choice data by collecting detailed housing and solar panel characteristic data for each observation

in the CEC dataset. I pair these with relevant datasets that include measures of usable sunlight

hours and electricity prices during the sample period. To complete the panel, I simulate households

that are active in the solar panel market but do not purchase during the sample. The following

section discusses each of the above points in detail.

The CEC data track all households who purchase a solar panel system and receive a tax subsidy

from 1998 through 2006. These data include the address of the residence, capacity of the system

installed, total price paid, subsidy received, make and model of the installed solar panel system,

subsidy approval date, installation completion date, and the utility region in which the household is

located. I drop the first three years of data due to missing information and low numbers of purchase

during that time period. Additionally, I drop both commercial and utility-scaled installations and

keep purchases made by residential households. Lastly, I drop observations where the price per

watt is below $4.00 or greater than $30.00.1 This results in a dataset that consists of 12,736

observations of purchase for the sample period of 2002 through 2006.

I expand the data from the CEC by adding housing characteristics for each purchaser. I collect

the housing characteristics by matching the physical address of the purchaser with the real estate

website Zillow.com and scrape the relevant information. For each purchaser, I retrieve information

1A report by the CEC, Wiser, Bolinger, Cappers, and Margolis (2006), discusses how these are most likely input
errors and should not be used as valid prices.



on the value of the home, number of stories, square footage, number of bedrooms, and year built.2

As a redundancy check, I perform a similar task but with an alternative data source, Trulia.com,

and match housing characteristics with address information.

In Table 4.1, I present descriptive statistics specific to households that purchase during the

sample. The columns of the table are separated by geographic region. The first column shows de-

scriptive statistics for all purchasers at the statewide level. The second through the fifth column are

separated by MSA: 1) Los Angeles-Long Beach-Riverside, 2) San Francisco-San Jose-Oakland,

3) San Diego-Carlsbad-San Marcos, and 4) Fresno-Madera-Sacramento.3 The San Francisco-San

Jose area has the highest average home values at $841,070 with the coastal MSAs, Los Angeles

and San Diego, following with an average home value of $560,000. The more in-land region,

Fresno and Sacramento, have the lowest average housing value at $373,066.

The San Francisco metropolitan statistical area makes up 47% of the total number of purchases

in the data with 5986 solar panel system installations. Purchasers in San Francisco have the small-

est average roof space at 183.49 m2 and install smaller than average capacity systems, 3.54kW,

relative to the rest of the state. Also, purchasers in San Francisco buy slightly earlier in the sample,

on average, and pay higher prices per watt for the systems. The descriptive statistics suggest that a

higher share of early adopters of solar panel systems live in the San Francisco area.

I simulate the population of households for each zip code in the CEC dataset. The simulated

households are generated using a dataset from Dataquick. The data include marginal distribution

information at the zip-code level that describes housing characteristics of potential market partic-

ipants.4 The data characterizes households within each zip code by five housing characteristics:

housing value, the number of stories, square footage, the number of bedrooms, and the year the

house was built. For each characteristic, the dataset includes the first two moments of the marginal

2Zillow.com uses an algorithm for housing value named Zestimate that considers recent sales of similar homes and
neighborhood characteristics when estimating the housing value.

3It is important to note that not all zip codes within the MSAs are represented in Table 4.1. I drop all zip codes
with less than 5 purchases during the sample period. The result is a total of 345 zip codes used in estimation.

4This includes single family homes, both detached and attached. Multi-family homes such as condominiums and
apartment buildings are excluded from the data.
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distribution, number of observations, correlations between the housing characteristics, and the

quartiles of the marginal distribution. The matrix of correlations between housing characteristics

provides useful information by improving the accuracy of the simulated populations.

I use a copula function to create a joint distribution of housing characteristics and simulate the

entire population of households in each zip code. The copula function is assumed to be multivariate

normally distributed (Gaussian Copula) with mean zero and a covariance-variance matrix Σ. The

matrix Σ is calculated using the correlation measures between characteristics and the variance of

each characteristic. Zip codes are independently simulated using a multivariate normal copula with

each zip code having a unique Σ matrix.

The copula function creates a joint distribution of household characteristics from a set of

marginal distributions. The Gaussian copula provides structure by enforcing the correlations that

exist between the housing characteristics when simulating households.5 The result is a simulated

population of households characterized by a vector of discrete housing characteristics from a nor-

mal distribution.

I merge the simulated dataset and the set of purchasers by matching housing characteristics.

For each zip code, I search the simulated dataset for a vector of housing characteristics that match

identically with the vector of housing characteristics for each purchaser. Once a match is found,

I replace the simulated household with the matched purchaser. The process is performed for all

purchasers and across all zip codes represented in the sample. This results in a dataset of 2,272,841

households in the market for residential solar panel installations that includes both households

that purchase and do not purchase during the sample period. With over 2 million households

participating in the market for solar panel systems and only 12,736 purchases during the sample,

the size of the choice probabilities are a potential concern in estimation. To improve the choice

probabilities, I reduce the market size for each MSA informed by a survey conducted in California

about attitudes toward renewable energy.

5The details of the simulation process are provided in the appendix.
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In 2001, an independent study was contracted by the California Energy Commission, con-

ducted by Marylander Marketing Research, with the stated purpose of determining awareness and

attitude toward renewable energy sources among households and businesses in California. In the

survey households were asked several questions regarding their history with renewable energy

sources, knowledge of renewable energy, and their desire to have a renewable energy source at

their residence.

The question of interest for reducing the market size asked households the following question:

What is the likelihood of installing a solar, wind, or fuel cell renewable energy system at your

home?

1. Definitely Would Install

2. Probably Would Install

3. Might or Might Not Install

4. Probably Would Not Install

5. Definitely Would Not Install

The survey finds that, conditional on not ever owning a renewable energy system, 15% of the

population answered either definitely or probably would install, 23% said they might or might not

install, and 62% answered that they either probably or definitely would not install. The large share

of households answering negatively suggest a reduction in the population of market participants is

appropriate during the sample period.

The survey includes an additional table that breaks down the household response to the question

above by MSA. The survey finds that 31% of households in San Jose, 10% of households in Los

Angeles, 26% of households in San Diego, and 10% of households in Fresno definitely or probably

would install a renewable energy home at their residence. I reduce the market size by resizing

the population in each zip code with respect to the MSA percentages above. First, I include all

purchasers in the reduced market data. Next, I randomly select a sample population of households

from each zip code to be market participants. The process results in a dataset that consists of

505,557 total households participating in the solar market for the sample period. Table 4.3 details

the distribution of household characteristics at the state level and by MSA of the reduced sample
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used in estimation.

Outside of housing characteristics, households face location-specific exogenous characteristics

in the form of electricity prices by utility region and the number of hours of sunlight at their

residence. The data on electricity prices originates from the websites of the three largest utility

companies in California: Pacific Gas and Electric (PGE), Southern California Edison (SCE), and

San Diego Gas and Electric (SDGE). These three utility companies supply electricity to over 85%

of all households in California and more importantly provide electricity to the zip codes in the

sample. Within all three utility companies, there is a menu of electricity rate plans that households

can choose from. The plans are based on either baseline quantity-tiered pricing or time-of-use

pricing. I am not able to take advantage of the detailed pricing data without information on the

type of plan a household chooses and their consumption of electricity. Instead, I use a dataset from

the California Public Utility Commission (CPUC) that calculates average prices for residential

electricity consumption for each utility region over time.6

In Figure 4.1 the electricity price per kilowatt hour is represented on the vertical axis and the

horizontal axis represents time, beginning in 2002 and ending in 2010. The electricity prices are

deflated to 2006 price levels with rate changes only occurring annually.7 Average electricity prices

are generally increasing over the time period. The relatively high prices in 2002 are a residual

effect from the deregulation of electricity markets that occurred in the late 1990s and early 2000.

San Diego Gas and Electric have the highest electricity prices throughout the time period shown.

Average electricity prices are similar between Pacific Gas and Electric and Southern California

Edison, but PGE prices tend to be slightly higher.

I gather data for the number of hours of sunlight a household receives from the National Re-

newable Energy Laboratory’s (NREL) Typical Meteorological Year (TMY3) dataset. The data are

collected by 74 weather stations located across California that record a variety of meteorological

measures. Using the data, I aggregate from a hourly measure of sunlight to a 6-month measure.

6The restrictions that arise from using average electricity rate data are discussed in the appendix.

7For clarity, the electricity prices are fixed for the year and do not transition as the figure suggests.
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Time

Cents Per kWh

2002 2003 2004 2005 2006 2007 2008 2009 2010

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

Cents Per kWh PGE
Cents Per kWh SDGE
Cents Per kWh SCE
End of sample period

Figure 4.1: Electricity Prices by Utility Company
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I average the semi-annual hours of sunlight over the years during the sample to create a time in-

variant measure of the average number of hours of sunlight a location receives. The geographical

longitude and latitude of each station is differenced with the latitude and longitude of the center

of each zip code, and the station closest to the zip code is used to measure sunlight hours.8 An-

nual average sunlight hours are presented in Table 4.1 across the state and for each MSA. There is

substantial variation in annual sunlight across the MSA regions with an average of 1820.29 hours

of sunlight and a standard deviation of 93.83 hours. The least amount of sunlight occurs in the

San Francisco region where the average is 1757.18 hours of sunlight. The largest amount of sun-

light occurs in the Los Angeles region where the households receive an average of 1920.55 hours

of sunlight annually. On average households in California receive 5 hours of usable sunlight per

day. The difference between the hours of sunlight received in San Francisco and Los Angeles is

approximately 32 days of average sunlight.

Households choose over a set of solar panel systems that vary by capacity, price, and technol-

ogy. The data on solar panel system capacity and price are included in the CEC dataset and are

shown in Table 4.1 above. While the average total price of a solar panel system is similar across

MSAs there is variation in both the capacity of the system installed and the price per watt. In

Figure 4.2 the average price per watt of a solar panel system is shown by MSA over the sample

period. At the beginning of the sample prices are closely matching but after 2003 the gap between

the average prices increases. The largest gap shows up between San Francisco and San Diego

where at one point they differ by $1 per watt installed.

The aggregation of price per watt into an average for all installations is a bit misleading. Figure

4.3 displays the price per watt within the Los Angeles MSA by capacity bin and over the sample

period. The figure shows evidence of size discounting occurring in the solar market. I find that

extra-large capacity systems have significantly lower prices per watt relative to small capacity

solar panel systems. There is almost a $2.00 price per watt difference between the small capacity

installations and extra large capacity installations during 2005. Note that prices seem to trend

8The distance is taken using using the haversine formula. The haversine formula is an equation that finds the
distance between any two points on the surface of a sphere. Simply put, it measures the distance as the crow flies.
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Time

$/Watt

2002 2003 2004 2005 2006 2007

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Price Per Watt MSA 1 (LA)
Price Per Watt MSA 2 (SF)
Price Per Watt MSA 3 (SD)

Price Per Watt MSA 4 (Fresno)
Subsidy Regime Change

Figure 4.2: Price Per Watt by MSA

similarly over time both across capacity bins and across MSAs. Also, there is a growing difference

in the price level of solar panels systems over time.

A solar panel system is a collection of solar panels joined together to generate an output of

electricity. The characteristics of a solar panel system depends directly on the characteristics of the

solar panels in the group. In the CEC dataset all households purchase a solar panel system that is

a collection of one unique solar panel. Solar panel system characteristics are created by collecting

non-price product characteristics for each brand and model combination of solar panels observed

in the CEC dataset.

I gather solar panel product characteristics from manufacturers’ specification sheets for each of

the unique solar panels. The specification sheets provide information about the STC/PTC capacity
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Time

$/Watt

2002 2003 2004 2005 2006 2007

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

12.00

Capacity Bin 1 (Small)
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Figure 4.3: Price Per Watt by Capacity Bin in Los Angeles
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rating, efficiency rate, physical size, type of panel, warranty information, and additional technical

details for a specific solar panel.9 Two tables are included to show the distribution of characteristics

in the full sample of solar panels and the more restricted sample used in estimation. The full set of

unique solar panels is shown in Table 4.4 and the set of panels that result from constraints imposed

on the purchase data are represented in Table 4.5.

The two tables show the narrowing of the solar panel market after imposing restrictions on

geographic location, total capacity of the system, and measurement error in reporting of prices.

The market for residential solar panels is different relative to the entire market. First, average PTC

capacity rating per panel is 40kW less in the residential market relative to the entire market.10

Also, the maximum capacity rating of a solar panel in the residential market is 297kW where in

the broader market the maximum capacity rating of a solar panel is 779.8kW. The physical size of

an average solar panel in the residential market is smaller both in physical area, 1.22 m2 versus

1.49 m2 in the larger market, and weight, 15.44 kg versus 18.12 kg in the broader market. Lastly,

average efficiency rates in the residential market are less relative to the broader market with close

to a 9% difference in the efficiency rate. The findings suggests that the broader market for solar

panels is not the appropriate choice set for residential households. Instead, the characteristics of

solar panel systems used in estimation are constrained to the restricted sample.

I capture innovation in solar panel technology through the improvement in efficiency ratings

of solar panels over the sample period. In Figure 4.4 average efficiency rates are shown over time.

The vertical axis represents efficiency rates in percentage terms with an average efficiency rate

of 10.46% at the beginning of the sample period. Over the sample, efficiency rates are trending

upwards and increase a total of 29% from 2002 to 2007.

9A sample of a specification sheet is included in appendix.

10The first measure of capacity is the standard test condition (STC) ratings. STC ratings are provided by the
manufacturer and are the result of an in-lab test of the panel. The second measure of capacity is PVUSA test condition
(PTC) ratings. PTC ratings are more realistic and result from controlled testing in an outdoor setting. With respect to
the subsidies, PTC ratings are used to measure the overall capacity of a system when calculating the amount of subsidy
an installation receives.
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Figure 4.4: Efficiency Rates over Time

42



Variable Obs Mean Std. Dev. Min Max
STC Capacity Rating 1016 189.56 69.36 14 864
PTC Capacity Rating 1016 169.69 63.24 11.8 779.8
Efficiency Rates 1016 11.67 2.19 2.35 18.48
Panel Area (m2) 1016 1.49 1.09 .12 18.59
Panel Depth (mm) 972 43.89 13.18 2.5 213
Weight (Kg) 967 18.12 6.99 1.9 67

Table 4.4: Full Set of Solar Panels

Variable Obs Mean Std. Dev. Min Max
STC Capacity Rating 271 147.61 53.21 17 330
PTC Capacity Rating 271 131.88 47.84 15.7 297
Efficiency Rates 271 10.82 2.4 2.35 16.48
Panel Area (m2) 271 1.22 .37 .35 2.43
Panel Depth (mm) 266 45.12 10.32 2.5 60
Weight (Kg) 265 15.44 6.98 2.2 48.5

Table 4.5: Set of Purchased Solar Panels
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CHAPTER 5

ESTIMATION

To estimate the model discussed in Chapter 3, I impose several assumptions to reduce computa-

tion time and provide tractability in estimation. Given the assumptions, estimation of the dynamic

discrete choice problem is accomplished using three-stage maximum likelihood estimation with a

combination of Rust’s (1987,1994) nested fixed point algorithm (NFXP) and backwards induction

to estimate the continuation value of staying in the market. The first stage of the estimation routine

recovers parameters that govern the transition of solar panel system prices. Using the estimated

parameters for solar panel system prices, the second stage of the estimation iterates over a nested

loop. The inner loop estimates the continuation value of staying in the market and the outer loop

estimates parameters through maximum likelihood estimation. The third stage corrects consistency

issues with the covariance matrix of second-stage parameter estimates by using the consistent esti-

mate of the parameter vector from the first two stages to maximize the full log-likelihood equation.

Altogether the three stage algorithm is able to estimate the dynamic discrete choice problem and

generate consistent parameter estimates. The details of the assumptions, algorithm, and calculation

of standard errors are discussed in what follows.

The Bellman equation representing the household’s per period maximization problem is framed

as a decision between purchasing one of four available products in the market or choosing to forgo

purchase and take the continuation value of staying in the market for an additional period. From

chapter 3, the household’s maximization problem is modeled as:

Vit (ωt, εt; θ) = max{εi0t + β

ˆ
ωt+1

ˆ
εt+1

Vit+1 (ωt+1, εt+1; θ)G (ωt+1, εt+1|ωt, εt) dωt+1dεt+1,

maxs∈{1,2,3,4}Uist (ωt, εt; θ)} (5.1)



The first term on the right hand side of equation 5.1 represents the utility a household receives when

deciding to forgo purchase and stay in the market the next period. The second term on the right

hand side of the equation, Uist (ω, ε; θ), represents the utility a household receives by choosing

optimally from the set of available products in the market.

In equation 5.1 the state variable ω and ε are jointly determined from a conditional joint density

function G (ωt+1, εt+1|ωt, εt). By assuming conditional independence, the Bellman equation can

be rewritten to simplify the problem:1

Vit (ωt, εt) = max{εi0t + β

ˆ
ωt+1

ˆ
εt+1

Vit+1 (ωt+1, εt+1) f (εt+1|ωt+1) dεt+1h (ωt+1|ωt) dωt+1,

maxs∈{1,2,3,4}Uist (ωt, εt; θ)} (5.2)

The joint densityG (ωt+1, εt+1|ωt, εt) from equation 5.1 is separated into two conditional densities.

The simplification implies that: (i) given today’s state, ωt, the ε’s are independent over time, (ii)

conditional on today’s state, ωt, the next periods state ωt+1 is independent of εt.

Since the utility from purchase does not include a continuation value it is helpful at this point

to focus on the utility from foregoing purchase. First, the inner-most integral is defined as:

EεVit+1 (ωt+1) =

ˆ
εt+1

Vit+1 (ωt+1, εt+1; θ) f (εt+1|ωt) dεt+1 (5.3)

The type I extreme value distributional assumption for the ε taste shocks simplifies the integral in

equation 5.3 to the familiar closed form solution:

EεVit+1 (ωt+1) = log

[
S∑
s=1

e(Vit+1(ωt+1,s;θ)) + e(Vit+1(ωt+1,0;θ))

]
(5.4)

The expected future utility from choosing to postpone purchase is simplified as the integration

1Rust (1994) discusses complications when estimating the model specified above, and introduces several stan-
dard assumptions to reduce computational complexity and ensure consistency. The only one discussed here is
the conditional independence assumption. Conditional independence is satisfied if and only if the joint density
p (ωt+1, εt+1|ωt, εt) can be factored as f (εt+1|ωt+1) g (ωt+1|ωt).
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of equation 5.4 over the stochastic state variables. The expected future utility from choosing to

postpone purchase is defined as the function:

EVit (ωt, εt; θ) =

ˆ
ωt+1

EεVit+1 (ωt+1)h (ωt+1|ωt) (5.5)

The revised maximization problem is rewritten using the notation above as:

Vit (ωt, εt; θ) = max
{
εi0t + βEVit (ωt, εt; θ) , maxs∈{1,2,3,4}Uist (ωt, εt, s; θ)

}
(5.6)

The estimation strategy relies on maximum likelihood estimation to recover the parameters

of the model. The likelihood function for the market is the product of the conditional choice

probability and the conditional density for the state variables over the households in the market,

sample period, and the choice set.

L (θ) =
∏
i∈Mt

T∏
t=1

∏
k∈S

[Pr (sit|ωt; θ)Pr (ωt|ωt−1)]1(sit=k) (5.7)

The full log-likelihood for the dynamic discrete choice model is:

LL (θ) =
∑
i∈Mt

T∑
t=1

∑
k∈S

1 (sit = k) [log (Pr (sit|ωt; θ)) + log (Pr (ωt|ωt−1; θ))] (5.8)

Maximizing the log-likelihood function in equation 5.8 is complicated and computationally

burdensome to solve. Rust (1994) proposes a three-stage estimation routine to reduce the com-

putation time, but allow for the estimation of consistent parameters. To reduce computation, the

full vector of parameters is split into two vectors, θ = {θf , θω} where the parameters in θω can be

estimated independently of the conditional choice probabilities and the parameters in θf are inde-

pendent of the state transitions. The full maximum likelihood estimation is split into two partial

likelihood equations. The log-likelihood is rewritten below to reflect the two-stage nature of the
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estimation strategy.

LL (θ) =
∑
i∈Mt

T∑
t=1

∑
k∈S

1 (sit = k) log (Pr (sit|ωt; θf , θω)) +
∑
i∈Mt

T∑
t=1

log (Pr (ωt|ωt−1; θω)) (5.9)

The first stage estimates the first order autoregressive process that governs household beliefs

regarding the transition of solar panel system prices. The parameters of the pricing process are

estimated using partial maximum likelihood estimation of the second term in equation 5.9, which

does not require the nested fixed point algorithm.2 Formally, solar panels system prices are as-

sumed to follow an AR(1) process with normally distributed iid errors of mean zero and variance

σ2
P .

P SP
t = θω1 + θω2P

SP
t−1 + νt (5.10)

Estimation of the pricing process assumes the first period price to be deterministic, fPSP
1

(pSP1 ) =

1 and maximizes the partial likelihood conditional on the solar panel system price in the first pe-

riod. The partial conditional likelihood function is defined as:

Lω1 =
T∏
k=2

fPSP
k |PSP

k−1

(
pSPk |pSPk−1, θω

)
(5.11)

The partial conditional log likelihood is:

LLω1 =
T∑
k=2

log

[
1√

2Πσ2
P

exp
(
−1

2

(pSPk − θω1 − θω2p
SP
k−1)2

σ2
P

)]
(5.12)

Maximizing the equation 5.12 results in consistent estimates of the parameters θω1, θω2, and σP .

The vector of parameter estimates, θ̂ω, enter the second stage as consistent estimates. The

goal during the second stage of estimation is to recover the utility parameters and the continuation

value of staying in the market. As previously stated, within the sample period of the model the

value function is non-stationary and the inner-loop of the fixed point algorithm is not guaranteed to

2In the case of separate markets the parameter vector γ will be estimated for each MSA in the market.
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converge.3 To work around this problem, I assume the periods outside of the sample are stationary

and use the nested fixed point algorithm to solve for the vector of continuation values in the last

period.4 The final period in the sample is denoted by T and the vector of parameters θ = {θ̂ω, θf}

is compressed for space.

ViT (ωT , εT ; θ) = max
{
εi0T + βEViT (ωT , εT ; θ) , maxs∈{1,2,3,4}UisT (ωT , εT , s; θ)

}
(5.13)

In equation 5.13, the utility from choosing to purchase a solar panel system is modeled as a dis-

counted lifetime utility value, UisT (ωT , εT , s; θ). The assumptions that households only purchase

one system in their lifetime and are assumed to not repeat purchase allows for modeling utility as

a one time transfer to the household. Also, the econometrician is able to ignore the current holding

of a solar panel system for each household and the state space is reduced which simplifies estima-

tion. Calculating the continuation value of waiting to purchase requires a more computationally

intensive approach and is the focus of the following discussion.

First, the continuation value for household i in the final period T is calculated and is represented

as:

EViT (ωT , εT ; θ) =

ˆ
ωT+1

log

[
S∑
s=1

e(ViT+1(ωT+1,s;θ)) + e(ViT+1(ωT+1,0;θ))

]
h (ωT+1|ωT ) (5.14)

Equation 5.14 is estimated using an iterative approach that is a variant of the nested fixed point

algorithm described in Rust (1987, 1994). The time subscripts are dropped because of the sta-

tionarity assumption. From Rust (1994), the equation defining the fixed point EVθ is written as

Tθ(EVθ), where the nonlinear operator Tθ is a mapping from the Banach Space B back onto itself,

3One only needs to look as far as the effect of time until the end of a subsidy regime to find non-stationarity of the
value function. The non-stationarity breaks one of the main requirements for convergence of the nested fixed point
algorithm and we are no longer assured that the fixed point exists or is unique.

4Stationarity implies that the continuation value is Markovian, depends on the current state, and the continuation
value is time invariant. Given two periods, period t and t + k, where the state space is equivalent in both periods
ωt = ωt+k then the continuation value will be equivalent in each period. The time subscript can be dropped for
periods outside of the sample period and a fixed point can be reached.
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Tθ : B → B, and is defined by:

Tθ(W )(ω) =

ˆ
ω′
log

[
S∑
s=1

eW (ω′,s;θ) + eW (ω′,0;θ)

]
h(ω′|ω) (5.15)

=

ˆ
ω′
log

[
S∑
s=1

eUis(ω′;θ) + eW (ω′,0;θ)

]
h(ω′|ω) (5.16)

The algorithm begins with an initial guess for the vector of continuation values, EV 0
i , and

an initial guess for the vector of utility parameters θ0
f along with the estimated parameters θ̂ω

from the first stage. Given these initial values, the vector of continuation values is calculated as

EV 1
i = Tθ(EV

0
i ).

EV 1
i ≡ Tθ(EV

0
i )(ω) =

ˆ
ω′
log

[
S∑
s=1

eUis(ω′;θ) + eEV
0
i

]
h (ω′|ω) (5.17)

A second vector of continuation values is calculated using the same vector of parameters θ0
f

and θ̂ω, but the newly calculated vector of continuation values EV 1
i is used in place of the initial

guess EV 0
i . The second vector of continuation values is calculated as EV 2

i = Tθ(EV
1
i ) using

equation 5.15.

EV 2
i ≡ Tθ(EV

1
i )(ω) =

ˆ
ω′
log

[
S∑
s=1

eUis(ω′;θ) + eEV
1
i

]
h (ω′|ω) (5.18)

The calculated vectors of continuation values {EV 2
i , EV

1
i } are differenced for all individuals

and checked for convergence against a tolerance level of 1.0 × 10−13. If the differenced values

are within the tolerance level for all individuals then the iteration ends and convergence is accom-

plished. Otherwise, the algorithm repeats using the second calculated vector of continuation values

as the initial guess for the next iteration. This process continues until convergence is accomplished.

At convergence the final vector of continuation values is set as the calculated vector of con-

tinuation values ÊVi = EV f
i ,∀i. From the calculated vector of continuation values, backwards

induction is used to calculate continuation values for all periods within the sample. Backwards in-

duction begins at period T-1 with the vector of continuation values as a function of the state space,
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the vector of parameters, and the period T ’s calculated continuation value.

ÊV iT−1

(
ωT−1, εT−1; θ, ÊVi

)
=

ˆ
ωT

log

[
S∑
s=1

eUisT (ωT ;θ) + eÊV i

]
h (ωT |ωT−1) (5.19)

The backwards induction algorithm continues by iterating the process backwards through the sam-

ple period. The algorithm ends once the continuation value for the first period in the sample is

calculated.

ÊV i1 (ω1, ε1; θ) =

ˆ
ω2

log

[
S∑
s=1

eUis2(ω2;θ) + eÊV i2(ω2;θ)

]
h (ω2|ω1) (5.20)

Given the calculated matrix of continuation values, the inner loop terminates and passes the

calculated values to the outer loop. The outer loop uses the estimated vector of parameters for

the solar panel price evolution and the calculated matrix of continuation values to estimate the

remaining utility parameters, θf , via maximum likelihood estimation by solving the following

maximization problem.

θ̂f = argmax
∑
i∈Mt

T∑
t=1

∑
k∈S

1 (sit = k) log
[
Pr
(
sit | ωt; θf , θ̂ω

)]
(5.21)

The conditional choice probabilities Pr
(
sit | ωt; θf , θ̂ω

)
take on the familiar closed form solution

from the Type I Extreme Value distributional assumption for the ε’s.

Pr (sit|ωt; θ) =
exp (Vit (ωt, sit; θ))∑
k∈S exp (Vit (ωt, k; θ))

(5.22)

After recovering estimates for θ̂f , the outer loop terminates and the algorithm repeats. The

newly estimated parameters θ̂f are passed to the inner loop and the process of calculating the

matrix of continuation values repeats. The algorithm continues to iterate the nested loops until the

difference in the likelihood values of two iterations is below the tolerance level.

The parameter estimates from the first stage are consistent, but the process of maximizing

the likelihood in two stages introduces estimation error into the second stage. The covariance
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variance matrix formed by inverting the fisher information matrix from the partial likelihood in

equation 5.21 will be inconsistent. The inconsistency is due to the presence of estimation error

from the first stage estimate of θ̂ω that is brought into the second stage estimation routine. A third

stage is introduced to correct the inconsistency in the covariance matrix by maximizing the full

log-likelihood function using the consistent estimated parameters from the first and second stage

θ̂ = {θ̂f , θ̂ω} as initial values for maximizing the full log likelihood equation.

The third stage uses the Newton-step estimator to maximize the full log-likelihood. The

Newton-steps are calculated as the difference between the current vector of parameters, θ̂c, and

a step size parameter γ multiplied by the search direction term.

θ̂n = θ̂c − γŜ(θ̂c) (5.23)

The search direction, Ŝ, is calculated using the negative of the information matrix for the

full log-likelihood.5 The Newton step estimator is shown to produce parameter estimates that

are asymptotically equivalent to full information maximum likelihood and will produce consistent

estimates of the covariance matrix.

From the estimated parameters in the third stage, standard errors are calculated using the in-

verse of the Fisher Information matrix. The Fisher Information matrix is estimated by taking the

expectation of outer product of the score of the log-likelihood equation.

Î(θ̂)i,j = E

[
∂

∂θ̂i
LL(θ̂)× ∂

∂θ̂j
LL(θ̂)

∣∣∣∣∣θ̂
]

(5.24)

Equation 5.24 is equivalent to the covariance variance matrix of the score of the log-likelihood

function with respect to the estimated parameters θ̂. The standard error for the estimated vector of

parameters is calculated as the square root of the quotient of the inverse of the Fisher Information

5The search direction is typically calculated using the Hessian matrix for the Newton steps. From the information
matrix equality for maximum likelihood estimation, we know that the expected value of the Hessian of the log-
likelihood function equals the negative of the expected value of the outer product of its gradient.
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Matrix and the number of observations for each parameter k.6

ŝ(θ̂k) =

(
Î−1(θ̂)k,k∑T

t=1Nt

) 1
2

(5.25)

6The Cramer-Rao bound states that the inverse of the Fisher Information matrix is a lower bound on the variance
of any unbiased estimator.
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CHAPTER 6

RESULTS

In this chapter, I present demand estimates for both static and dynamic models and compare

the results. First, I discuss two static models: 1) reduced form and 2) structural static model of

consumer demand. Next, I discuss the first stage of the dynamic model and assumptions regarding

the evolution of solar panel prices. Then, I present second stage estimates for the three specifica-

tions of the dynamic demand model. Next, I present evidence with respect to the models ability to

fit the data. Lastly, I end the chapter with an analysis of demand estimates using price elasticities

and marginal effects.

6.1 Static Models

I specify two static models of solar panel system purchase as a baseline comparison for the

dynamic specifications. The first model follows Hughes and Podolefksy (2013) and investigates

the relationship between the number of installations and subsidy rates. Second, I present a static

structural model of solar panel purchase under the assumption that households are myopic. In the

following section, I briefly discuss the specifications and present the parameter estimates.

First, I model the relationship between the number of solar panel installations per day and the

available subsidy rate. In Equation 6.1 the number of installations in period t, Qt, is regressed on

the per watt subsidy rate τt, semi-annual fixed effects θ3,y, and an iid error term εt.

Qt = θ1 + θ2τt + θ3,y + εt (6.1)

I present the descriptive statistics for the number of installations per day and the subsidy rate in

Table 6.1. The unconditional mean of the number of installations per day is 6.97 with a variance of

359.43 that is over 51 times the mean. In Table 6.2 the conditional mean and variance is presented



Variable Obs Mean Var Min Max
# Installations 1826 6.97 359.43 0 438
Subsidy Rate 1826 3.68 0.83 2.60 5.14

Table 6.1: Number of Installations Per Day (Unconditional)

Semi-Annual Obs Mean Var Min Max
Jan-Jun 2002 181 2.70 16.23 0 20
Jul-Dec 2002 184 2.48 26.02 0 29
Jan-Jun 2003 181 8.38 1133.25 0 438
Jul-Dec 2003 184 8.50 447.08 0 160
Jan-Jun 2004 182 6.44 115.79 0 78
Jul-Dec 2004 184 4.90 87.72 0 67
Jan-Jun 2005 181 3.77 53.58 0 61
Jul-Dec 2005 184 8.23 56.47 0 37
Jan-Jun 2006 181 11.64 1017.46 0 336
Jul-Dec 2006 184 12.65 555.60 0 209

Table 6.2: Number of Installations Per Day Conditional on 6-Month Bins

for the number of installations per 6-month period. In all 6-month periods, the conditional variance

is greater than the conditional mean. These findings suggest that the count data is overdispersed

and that a Poisson model may not be appropriate. I estimate Equation 6.1 using both Poisson and

Negative Binomial regressions and test for overdispersion.

I show the results of estimation of Equation 6.1 in Table 6.3. The Poisson and Negative Bino-

mial regressions are estimated with annual fixed effects and semi-annual fixed effects. In Table 6.3

the first two columns of results are estimated with annual fixed effects. The parameter estimates

for the subsidy rate are not significant in either the Poisson and Negative Binomial regression re-

sults. The third and fourth column of results are estimated with semi-annual fixed effects and are

the preferred estimates.1 The parameter on the subsidy rate is negative with a coefficient of -0.607

that is significant at the 1% level for both specifications. This implies that a 1 unit change in the

subsidy rate will decrease the log count of the number of installations by 0.607. I find that a $0.10

1I perform a Likelihood Ratio test comparing the Poisson model to the Negative Binomial model. The Likelihood
Ratio test rejects the null hypothesis that the overdispersion parameter is zero with a chi-squared value of 2134.2 with
one degree of freedom in favor of the Negative Binomial model.
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Poisson Neg. Binomial Poisson Neg. Binomial
Subsidy Rate -0.085 0.322 -0.607*** -0.607***

(0.089) (0.437) (0.019) (0.070)
% Change in Installations -0.83% 0.3% -4.6% -4.6%
Constant 1.392 0.787 4.118*** 4.118***

(0.456) (2.239) (0.062) (0.281)
6-month Effects N N Y Y
Year Effects Y Y N N
LL -15738.417 -4946.49 -15560.34 -4935.736
Wald Chi2 2725.80 143.28 3081.95 164.79
Prob > chi2 0.00 0.00 0.00 0.00
Observations 1826 1826 1826 1826

Table 6.3: Models for Daily Installations

increase in the subsidy rate will decrease the number of installations by 4.6%. This result is counter

to theory and suggests that a different model is needed to capture the complexity of the decision to

purchase.2

The second model is a myopic specification of the structural model discussed in Chapter 3.

I specify two versions of the model. First, I estimate the model without a present value term.

Second, I include capacity and capacity squared to capture utility from having a larger capacity

system installed.

The utility specification for the first case of the static model for household i choosing system s

is:

Uist (ωt, εt; θ, α) =


θ1 + θ2izt − αiln

((
pSPist − τst

)
qsps
)

+ θ3MSAi
+ εist s ∈ {1, 2, 3, 4}

εi0t s = 0

I present the estimates for the static model in Table 6.4. The first column describes the estimates

from the first specification of the static model. The parameter estimates are of the expected sign.

Households receive disutility, albeit close to zero, from higher net prices with both medium and

high value homes receiving less disutility relative to the low value homes. In the second column,

2Additional models are estimated using the number of semi-annual purchases. I present the results of estimation
in Table C.1 located in the Appendix.
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I show estimates from the second specification of the static model that includes a capacity and

capacity squared term. Similarly, I find that the parameter estimates are of the expected sign. The

capacity terms help soak up variation in purchase related to changes in the present value due to

the correlation between capacity and the present value of purchase. Parameter estimates show that

households get positive utility from larger capacity systems with diminishing returns starting at

7.3 kW. The estimated coefficient on the net price is much larger in magnitude relative to the first

specification with a value of -1.791 indicating that households are more responsive to prices than

in the first model. The larger magnitude price coefficient is consistent with findings in the literature

regarding price sensitivity in durable good markets with highly priced goods.

The second specification estimates are the preferred results from the structural static model. I

perform a likelihood ratio test and reject the null model, specification 1, in favor of specification 2

with a LR test statistic of 399.24 from a chi-square distribution with 2 degrees of freedom.

In the reduced form model, I find a negative relationship between the number of installations

and the subsidy rate. The result implies that demand slopes upward, and the current policy over-

subsidizes the solar panel market. The static structural model corrects the under-predicting of price

elasticities by explicitly modeling the households decision problem. From the static structural

model, I find that households are price elastic and that the number of purchases would be increased

by more aggressive subsidies. The concern with the static structural model is how the estimated

parameters are impacted by non-purchase. The model will have a tendency to over-predict the

parameter on price to rationalize households delaying purchase.

6.2 Dynamic Models

I describe the results of the dynamic consumer demand model presented in Chapter 3. The

estimates are presented for each of the deterministic belief structures regarding future subsidy

regimes. I begin with a discussion about the first stage estimates for the pricing process and present

the results of estimation. Next, I discuss the second stage of estimation and present results for each

of the three belief cases. Lastly, I simulate and discuss price elasticities and the marginal effects of

technological innovation.

In the first stage of the dynamic model, I estimate the first-order autoregressive process for the
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(1) (2)
Efficiency (%) 0.446*** 0.645*

(0.010) (0.016)
Eff*Small Roof 0.150*** 0.150*

(0.002) (0.002)
Eff*Medium Roof 0.064*** 0.064*

(0.001) (0.001)
ln Net Price ($) -0.118** -1.791*

(0.02) (0.095)
ln Net Price*Med Value 0.037*** 0.037*

(0.002) (0.002)
ln Net Price*High Value 0.016*** 0.016*

(0.002) (0.002)
Capacity (kW) 0.993*

(0.053)
Capacity2 -0.068*

(0.004)
Constant -9.523*** 1.95

(0.199) ()
MSA FE Y Y

LL -100487.68 -100288.06
Number Of Observations 505558 505558

Table 6.4: Static Model Estimation Results
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Statewide L.A. S.F. S.D. Fresno
Lagged Price 0.932*** 0.940*** 0.927*** 0.893*** 0.970***

(0.048) (0.091) (0.039) (0.070) (0.055)
Constant 0.297 0.244 0.364 0.579 -0.097

(0.426) (0.815) (0.331) (0.599) (0.404)
σµ 0.338 0.509 0.359 0.476 0.469

Observations 21 21 21 21 21

Table 6.5: First Stage Estimation Results from 2001-2010

evolution of solar panel system prices. I estimate two specifications of the pricing process. First,

I estimate Equation 6.2 for each MSA i. Second, I estimate an alternative specification using the

same equation but that is aggregated to the state level. To aggregate the values, I use a weighted

average of solar panel prices across capacities and MSA to create a statewide average price per

watt.

P SP
it+1 = δi1 + δi2P

SP
it + µit+1 (6.2)

The estimated parameters for both specifications of the AR(1) process are presented in Table

6.5. In the first column I present the estimated coefficients for the second specification. I find the

estimated parameter on lagged price positive and significant with a magnitude of 0.932. In the

second through fifth column, I present the estimated coefficients from the first specification. I find

that all parameter estimates on lagged price are significant and of magnitudes that vary from 0.970

in Fresno to 0.893 in San Diego. I use the statewide estimated coefficients for the second stage of

the dynamic model given the similarities between the estimates.

The second stage of estimation maximizes the log likelihood of the conditional choice prob-

abilities given the estimates from the first stage. I estimate three specifications of the model that

correspond to the deterministic belief structures discussed in Chapter 3: Perfect Foresight (PF),

Pessimism (Pes), and Auto-renewal (AR). In Table 6.6, I present the estimates for each specifica-

tion. The columns vary by the belief structure imposed on households. In the three specifications

I assume a 2.2% escalation for the price of electricity, a 0.9% per-period solar panel degradation

rate, and a discount rate of β = 0.95 for both future utility and income. I use 50 Halton draws to

58



approximate the integral for the price distribution for the pessimism and auto-renewal specifica-

tions.

The parameter estimates for both the natural log of the present value of purchase and the natural

log of the net price are significant and of the correct sign across all specifications. I find that

households, on average, prefer larger present value benefits from purchase. Also, households gain

disutility from higher net prices, and consumers in medium and high value homes receive less

disutility from net prices relative to the low housing value population. The results suggest that

price responsiveness and subsidy responsiveness in the California solar panel system market varies

by housing value.

The difference across dynamic specifications in the present value and net price parameters are

a result of the differences in the household beliefs regarding future subsidy regimes. The dynamic

model allows households to make purchasing decisions on both the level of prices within the period

and the expected change in the price between periods.

If prices are falling rapidly households may wait to purchase until the expected change in prices

is closer to zero. In this sense, a household’s belief about a future subsidy directly affects the

household’s expectation about future prices and impacts, in the dynamic sense, their expectation

about the change in price over time.

In the case of pessimism, the estimated parameter on the net price is less in magnitude than the

estimated parameter in the auto-renewal case. This accords with expectations regarding the effect

of pessimistic beliefs on the estimated parameters. The total number of purchase increases from

630, in 2002, to over 1800, in 2003 after the second subsidy regime. Under the assumption that

households believe that no future subsidies exist, a household in the first subsidy regime expects the

change in future prices to be large and positive. Given the belief, the model rationalizes household

behavior by reducing the magnitude of the parameter on net price. The reduction is due to the

combination of the expected change in price being large and positive, and the increase in quantity

demanded occurring after the subsidy change.

A similar logic holds for the auto-renewal case, households believe that the next subsidy regime

will offer a subsidy rate equal to the current regime’s final rate. Additional to the subsidy belief,
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Sub Belief PF Pes AR
Solar Price - State State
ln PV ($) 1.180*** 1.139*** 1.198***

(0.048) (0.073) (0.074)
Efficiency (%) 0.659*** 0.646*** 0.659***

(0.011) (0.014) (0.015)
Eff*Small Roof 0.163*** 0.162*** 0.164***

(0.002) (0.002) (0.002)
Eff*Med Roof 0.074*** 0.073*** 0.075***

(0.001) (0.001) (0.002)
ln Net Price ($) -1.359*** -1.314*** -1.380***

(0.052) (0.079) (0.08)
Price*Med Value 0.041*** 0.0414*** 0.0419***

(0.002) (0.002) (0.002)
Price*High Value 0.019** 0.0190*** 0.0195***

(0.002) (0.002) (0.002)
Constant -11.346 -11.262 -11.312
MSA FE Y Y Y

LL -100041.87 -100042.53 -100036.21
# Of Obs 505558 505558 505558

Escalation Rate 2.2% 2.2% 2.2%
Halton Draws - 50 50

Table 6.6: Second Stage Estimation Results
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households expect prices to decline. The combination of expectations about prices and beliefs

about subsidies generates the expectation that net prices are falling. The expectation of lower

prices in the future increases the household’s value of waiting to purchase. Using the same example

as above, the model rationalizes household behavior as price responsiveness and increases the

magnitude of the coefficient on the net price.

I find consistency in the estimated parameter on efficiency rate and the interaction between

efficiency rate and roof size across the three specifications. The estimated parameter on efficiency

rate is positive and significant indicating that, on average, households prefer a higher efficiency

rate. Also, I find that households with the smallest rooftop space prefer higher efficiency rates

relative to both medium and large rooftop homes. This accords with the argument suggested in

Chapter 2 regrading smaller rooftop space households preferring a higher efficiency rate due to the

constraints or extra costs of installing a physically larger size system. Interestingly, the estimated

parameters on efficiency rates do not vary over the static and dynamic specifications. This pattern

can be explained by the small changes in efficiency rates between periods or that the expected

change in technology might not have been a significant factor in the households dynamic decision

to purchase.

6.3 Model Fit

I check the appropriateness of additional variables for observable heterogeneity by running the

following likelihood ratio tests for each specification.

1. Heterogeneity by Housing Value: H0 : α2 = α3 = 0, Ha : α2 6= α3 6= 0

2. Heterogeneity by Rooftop Space: H0 : θ32 = θ33 = 0, Ha : θ32 6= θ33 6= 0

3. Medium and High Housing Values: H0 : α2 = α3, Ha : α2 6= α3

4. Small and Medium Rooftop Space: H0 : θ32 = θ33, Ha : θ32 6= θ33

The first likelihood ratio test compares the fit of a null model in which there is no heterogeneity in

preferences across the distribution of housing values to the fit of the full model. I reject the null
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hypothesis in favor of the full model for all specifications.3 The second likelihood ratio test com-

pares the fit of a null model where there is no heterogeneity in preferences across the distribution

of rooftop space to the fit of the full model. I reject the null hypothesis in favor of the full model

for all specifications.4 The third likelihood ratio test compares the fit of a null model in which

preferences for prices are the same across households in the top two terciles of the housing value

distribution to the fit of the full model. I reject the null model in favor of the full model for all

specifications.5 The fourth likelihood ratio test compares the fit of a null model where household

preferences for efficiency rates are the same across the bottom two terciles of the rooftop space

distribution to the fit of the full model above. In all specifications, I reject the null model in favor

of the full model.

I report choice probabilities in Table 6.7 by specification and time period. The first column of

the table identifies the specification of the model that corresponds with the choice probabilities.

The first row of probabilities are the empirical choice probabilities from the CEC dataset. The

next three rows are the simulated choice probabilities for each specification of the model. The

choice probabilities are small with the largest, in the last period, equaling a half of one percent

probability of purchase. This is a result of the low number of purchases during the sample period

relative to the market size. I find that all three dynamic specifications fit the empirical choice

probabilities closely. The model over-predicts the choice probabilities during the first two periods

where the least amount of purchases occur, but as the number of purchases increase the simulated

probabilities match the empirical probabilities closer. Also, I find small differences in the simulated

choice probabilities between the specifications of the dynamic model.

3The perfect foresight model rejects the null hypothesis with a likelihood ratio statistic of 251.16, the pessimism
model rejects the null with a likelihood ratio statistic of 250.33, and the auto-renewal case rejects the null with a
likelihood ratio statistics of 245.82 with 2 degrees of freedom.

4The perfect foresight model rejects the null hypothesis with a likelihood ratio statistic of 4892.92, the pessimism
model rejects the null with a likelihood ratio statistic of 4880.48, and the auto-renewal case rejects the null with a
likelihood ratio statistics of 4886.10 with 2 degrees of freedom.

5The perfect foresight model rejects the null hypothesis with a likelihood ratio statistic of 76.21, the pessimism
model rejects the null with a likelihood ratio statistic of 77.95, and the auto-renewal case rejects the null with a
likelihood ratio statistics of 76.26 and 1 degree of freedom.
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In Table 6.8, I present choice probabilities by specification, time, and capacity bin. The first

column of the table identifies the specification associated with the choice probabilities, and the

second column identifies the capacity bin. The simulated choice probabilities in general fit closely

with the empirical probabilities across capacity bins. In capacity bin 1, the model under-predicts in

2003 and 2003.5 following the subsidy regime change, and over-predicts in the last period before

the regime change. Similarly, the model over-predicts the simulated choice probabilities in capacity

bin 4 in the first two periods prior to the regime change, and under-predicts in the final period.

The instances of larger differences between the empirical and simulated choice probabilities are

correlated with time periods close to the regime changes.

6.4 Elasticities

I present short-run and long-run price elasticities in Table 6.9.6 The short-run price elasticities

are calculated as a 1% temporary price increase across all products for one period. Households

have full information about the duration of the price increase and form expectations about future

prices knowing that the price change is not persistent. The price increase is unknown to the house-

holds until the beginning of the period it occurs. I find that simulated price elasticities, on average,

are elastic in the short run. The average short-run price elasticity is -1.387 in the perfect foresight

case, -1.310 in the pessimism case, and the average price elasticity is -1.390 in the auto-renewal

case.

In the perfect foresight case, I find that medium housing value households are the most price

elastic with an average elasticity of -1.447 followed by the high housing value households at -

1.379, and the low housing value households with an elasticity of -1.354. In the pessimism case,

I find that low housing value households are the most price elastic with an elasticity measure of

-1.350 followed by the high housing value households at -1.296, and medium value homes being

the least price elastic with -1.276. In the autorenewal case, I find that low housing value households

are least price elastic at -1.231 followed by medium value homes at -1.415, and high value homes

being the most price elastic with an elasticity of -1.515.

6The price elasticities presented in Table 6.9 are taken from middle of the sample period, the first six-month period
of 2004, and averaged over 50 simulations.
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Specification Housing Value Short Run Long Run
Static All -1.854 -

Perfect Foresight All -1.387 -1.290
High -1.379 -1.291
Med -1.447 -1.373
Low -1.354 -1.229

Pessimism All -1.310 -1.198
High -1.296 -1.213
Med -1.276 -1.164
Low -1.350 -1.205

Autorenewal All -1.390 -1.128
High -1.515 -1.417
Med -1.415 -1.333
Low -1.231 -1.089

Table 6.9: Price Elasticity Given a 1% Increase in Price

I present simulated long-run price elasticities in Table 6.9 by permanently increasing prices

across capacity by 1%. The price increase is persistent from the period it is initialized onwards.

Households in the market have full information regarding the persistence of the price increase, but

are not aware of the price increase until the period it begins. Simulated price elasticities indicate

that households are price elastic, with an average long-run price elasticity of -1.198 in the pes-

simism case and -1.128 in the autorenewal case. The difference between short-run and long-run

price elasticities suggest that households are price elastic in the solar panel system market and are

willing to substitute demand intertemporally in the presence of higher prices.

The marginal effect of a change in efficiency rates on the probability of purchase are presented

in Table 6.10. The table consists of three columns representing the model specification, house-

holds, and long-run marginal effect. The results indicate that a permanent 1% increase in efficiency

rates increases the probability of purchase by an average of 6.46% across all specifications. The

consistency across specifications is not surprising given the estimates from the model.
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Specification Roof Size Long Run
PF Market 6.46

No Future Market 6.45

Auto-renewal Market 6.48

Table 6.10: Marginal Effect of a 1% Increase in Efficiency Rates
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CHAPTER 7

COUNTERFACTUALS

In the first counterfactual, I simulate the solar panel system market without subsidies. I report

the results for each specification of the dynamic model below. For each specification, I present

two tables of results. In the first table I present the simulated number of purchases from the full

model, simulated purchases without government intervention, and the percent change in purchase

attributed to removing the subsidies. In the second table, I report the percent change of purchase

due to the removal of subsidies by capacity bin over the sample period. For the counterfactuals,

I assume that suppliers are perfectly price elastic so prices do not vary with respect to changes in

subsidies.

I present the results from the counterfactual simulation for the pessimism case in Table 7.1

and Table 7.2.1 In the first row of Table 7.1, I report the simulated number of purchases with

subsidies. In the second row, I present the number of simulated purchases without subsidies, and

in the third row I report the percentage change in purchase. I find the largest percentage loss of

purchase, -68.04%, occurs during the early periods of the sample. Also, I find that over the sample

period the percentage loss of purchase decreases reaching a minimum level of 38.73% in 2006.

There are two main factors driving the decrease in percentage loss over time. First, households can

intertemporally substitute demand and forgo purchase until a later period. Second, the removal of

subsidies increases the price households face in earlier periods of the model. This occurs for two

reasons. First, prices are higher in earlier periods relative to later in the sample. Second, subsidies

are larger in earlier periods of the sample. Lastly, I find that in the absence of subsidies the total
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number of solar panel system purchases decrease by 49.22% from 12,687.42 to 6442.57.

In Table 7.2, I simulate the number of purchases by capacity bin and report the percent change

in purchase after the removal of government subsidies. The first column identifies the capacity

of the solar panel system. For each capacity, I report the percentage change in purchase for each

period in the sample. I find a pattern of decreasing percentage loss of purchase over time similar

to Table 7.1. Additionally, I find the largest percentage loss of purchase for most periods in the

sample occurring for large and extra-large capacity solar panel systems. Part of the result could be

driven by reasons discussed in the previous paragraph: intertemporal demand substitution and the

percentage reduction in price over time. Additionally, the higher percentage of loss of purchase

could be a result of households substituting between capacity levels. Policy makers are interested

in the impact of subsidies on the number of residential installations of solar panel systems. Also,

policy makers are interested in the total amount of capacity (kW) of solar generation installed from

policy intervention.

I find that 49.57% of the total capacity installed during the sample period is directly attributable

to the subsidy program.2 In Table 7.3, I present the additional amount of capacity installed for each

system size and over the sample period with the subsidy. In all periods, I find that the large and

extra-large solar panel systems makeup the majority share of capacity installed. Overall, large and

extra-large solar panel systems contribute 69.73% of the total solar capacity installed for purchases

directly attributable to the subsidy program. The total capacity installed by households that only

purchase with subsidies is shown in Figure 7.1. Of the total capacity installed, I find that 41.23%

is due to extra-large capacity installations, 28.5% is due to large capacity installations, 18.69% is

due to medium capacity installations, and 11.58% come from small capacity installations. The

finding suggests that the subsidy program is both incentivizing households to purchase solar panel

installations and importantly larger capacity installations.

I extend the analysis beyond the removal of subsidies and simulate purchases for different

1I present results from the counterfactual simulations for the perfect foresight case in Tables C.4 and C.5 and the
auto-renewal case in Tables C.7 and C.8. The results are similar across all three specifications.

2In the case where subsidies are removed that total capacity in the market reduces by 23,545.44 kW.
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Figure 7.1: Additional Capacity Installed with Subsidy by Capacity Bin
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percentage levels of the subsidy. In Figure 7.2, I represent the number of installations as a function

of the percentage of subsidy rates offered during the sample. The vertical axis represents the

number of installations aggregated over the sample period, and the horizontal axis represents the

percentage of the subsidy rate. The horizontal axis is discretized into 10% bins ranging from 0%

to 120%. I simulate purchases by setting the subsidy rates to the chosen percentage of the original

subsidy rate and run the counterfactual. Then, I aggregate the number of purchases across capacity

bin and time and report it as a black dot on the figure. The vertical dashed line represents 100% of

the subsidy and the horizontal dashed line represents the number of simulated purchases with the

actual subsidy rates. I find that at any percentage below 100% of the subsidy rate the number of

purchases is below the horizontal line.

In Table 7.4, I calculate the marginal increase in the number of installations per 10% increase.

The columns are separated into bins that match the horizontal axis in Figure 7.2. The first row in

each column represents the total number of installations given the percentage of the subsidy rate. In

the second row, I calculate the percentage change in the number of installations with respect to the

10% increase in the subsidy rate. In the third row, I calculate the change in the level of installations

given the 10% increase in the subsidy rate. For example in the 30% column, I report a percentage

change of 5.87% in the number of installations and a level increase of 420.49 installations. The

values are calculated using the difference in the number of installations from 20% to 30% subsidy

rates.

I find that there are increasing returns to the subsidy rate. In Table 7.4, I show that the percent-

age increase in purchases becomes larger with each additional 10% of the subsidy added. At the

point where the subsidy is increased beyond the rate offered in the sample the percentage increase

in purchase is greater than the percentage increase in the subsidy.
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CHAPTER 8

CONCLUSION

In this dissertation, I analyze households’ decisions to purchase a residential-level solar panel

system. The solar panel system market is characterized by large upfront costs, differentiated prod-

ucts, technological innovation, decreasing prices, and uncertainty regarding future government

subsidies. I use a newly assembled dataset to estimate demand for solar panel installations that

cover a sample period from 2002 through 2006.

The first result is directly related to the uncertainty inherent in the use of short-lived subsidy

regimes. I find no evidence that household behavior is affected by the uncertainty regarding future

subsidy regimes. Further, I do not observe evidence of anticipatory behavior occurring in the solar

panel market during the sample period. These findings suggest that short term solar policies can

be used with minimal loss to the number of purchases or the total capacity installed.

Second, I find that households in the solar panel market are price elastic with short-run elastic-

ities greater in magnitude relative to long-run elasticities. I find that price elasticities vary across

the distribution of housing values. This suggests that there are potential efficiency gains through

income-based subsidy targeting. Also, I find that technological innovation in the form of increas-

ing efficiency rates is significant. The marginal effect of a 1% increase in efficiency rates increases

the probability of purchase by 6.4%. This value is large given that efficiency rates increase by 30%

during the sample period.

Third, I find that the subsidy regimes during the sample period incentivize household purchase

of solar panel systems. I find that 49.5% of solar panel system installations from 2002 through

2006 are directly attributable to subsidies. Also, I find that within the set of purchases related to

subsidies that larger capacity systems provide 70% of the total capacity installed.



APPENDIX A

ASSUMPTIONS AND COPULAS

A.1 Assumptions

In the full model, households simultaneously choose their consumption of electricity and pur-

chasing decision during each period. The electricity consumption decision is not modeled due to

constraints on data availability for electricity use and plan information at the household level. In-

stead, two assumptions separate the decision of electricity consumption and purchase.

Assumption 1: Electricity is a homogeneous good.

Assumption 1 suggests that households are indifferent about the source of electricity. Specifi-

cally, utility from consuming electricity is not differentiated between solar and traditional sources,

(i.e., the grid).

Assumption 2: Households face average electricity prices, peit (q) = p̄it
e.

Assumption 2 restricts the model’s ability to capture the effect of the purchasing decision on

the marginal price of electricity for households. In a tiered-pricing environment, the decision to

generate solar electricity potentially decreases the marginal price of traditional electricity from the

grid. The reduction in marginal price of electricity, holding everything else constant, would in-

crease the quantity demanded of total electricity consumption.1 Without data on household pricing

plans and use information, considering this effect is difficult. Instead, the average price of elec-

tricity within each region is assumed to be the price that households care about when making an

electricity consumption decision.

These assumptions reduce the explanatory power of the model in two ways. First, an electricity

consumption decision is independent of the purchasing decision. This is potentially restrictive

when thinking about the change in total electricity consumption after purchasing solar panels due to

a change in the marginal price of electricity. Second, estimating the effect electricity consumption

at the household level has on the decision to purchase is impossible. These assumptions allow

1In the baseline tiered pricing scheme households are charged higher prices as consumption increases.

    
    79



estimation of the model without access to electricity use data while accounting for the monetary

benefit of installing solar panels.

A.2 Brief Summary of Copula Functions

The purpose of this appendix is to provide the reader with a detailed description of the process

used to simulate households that were not included in the CEC dataset. These households are

needed to fill the population of nonpurchasers during the sample period and to be used for counter-

factual simulations. The goal is to simulate a dataset of households for each zip code in the state

of California.

To simulate the population of households, marginal distribution data was obtained from Dataquick.

The data includes marginal distribution measures for housing value, number of bedrooms, number

of stories, square footage, and year built for single family dwellings at the zip code level. For each

characteristic the data includes the following information about the marginal distribution:

• Count

• Mean

• Median

• Standard Deviation

• Quintiles

Theses measures provide information about the first two moments of the distribution and a coarse

look at the shape of the distribution using the quintiles. Additional to the data regarding the indi-

vidual marginal distributions, the data include correlation measures between each of the housing

characteristics. This allows for a covariance-variance matrix to be constructed for houses in each

zip code.

1. Copulas

• Let a function C :[0, 1]d → [0, 1] be a copula if there is a probability space (Ω, F, P )

supporting a random vector (U1, . . . , Ud) such that Uk ∼ U [0, 1] for all k = 1, . . . , d
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and

C (u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud), u1, . . . , ud ∈ [0, 1]

• Let F1(x1), . . . , Fd(xd) be the marginal distributions for the random variables

• The copulas are functions that connect multivariate distributions to their one-dimensional

margins with a dependence parameter θ.

H (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd) ; θ)

2. Gaussian Copula

• Let (X1, . . . , Xd) be a normally distributed random with joint distribution function

F (x1, . . . , xd) =ˆ
×d

i=1(−∞,xi]
(2π)−

d
2 det (Σ)−

1
2 exp

(
−1

2
(s− µ) Σ−1 (s− µ)′

)
ds

• Σ is a symmetric positive definite matrix with the diagonal entires representing the

variances

• µ is a mean vector

• The copula of (X1, . . . , Xd) is called the Gaussian copula and is given by

CGauss
Σ (u1, . . . , ud) = H

(
F−1

1 (u1) , . . . , F−1
d (ud)

)

3. Algorithm to Simulate Observations

(a) Pull observations from a multivariate normal distribution (y1, . . . , yd) ∼ MN(0,Σ)

where Σ is a matrix consisting of variance equal to one on the diagonal and the corre-

lation coefficients off diagonal.

(b) Retrieve the probabilities associated with the observations from step 1 by running
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them through a univariate normal CDF with mean 0 and variance 1: (u1, . . . , ud) =

G (y1) , . . . G (yd) ∼ N(0, 1)

(c) Generate observations by taking the inverse of the marginal distributions with the prob-

abilities as inputs:
(
F−1

1 (u1), . . . F−1
d (ud)

)
= (x1, . . . xd)
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APPENDIX B

ADDITIONAL DATA CONSIDERATIONS

The purpose of the appendix is to provide the reader with additional information regarding

the dataset used in estimation. The appendix includes summary statistics, a figure that represents

monthly installations over the sample period, the California Solar Initiative subsidy schedule, an

example of a solar panel specification sheet, and two examples of a CEC public guidebook. The

first public guidebook discusses the details of the first subsidy regime during the sample period.

The second public guidebook details the second subsidy regime in the sample period. I include the

table of contents from each guidebook to provide the reader with a summary of the information

available to households at the beginning of a regime. Also, I provide the summary portion of the

guidebook that gives an overview of the program and the subsidy rates available.

Variable Mean Std. Dev Min Max
Capacity 3.78 1.94 0.095 9.99
System Price 36,794 18,437 1,073 158,012
Capacity-based Subsidy 12,718 7,161 213 52,043
Tax Credits 2,313 1,302 79 16,658
Electricity Rate 14.01 0.43 11.02 14.86
Solar Irradiation 4.99 0.26 3.87 5.83
Price per Watt 9.97 1.79 4.52 28.90
# of Installations 1386.17 901.64 7 2951

Table B.1: Summary Statistics
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Figure B.1: Number of Installations Per Month and Subsidy Rate

84



C
S

I
 S

te
p

 t
a
b

le
: 

C
S

I
 R

e
b

a
te

 L
e
v
e
ls

 b
y
 I

n
c
e
n

ti
v
e
 S

te
p

 a
n

d
 R

e
b

a
te

 T
y
p

e
 

 
E

P
B

B
 P

a
y
m

e
n

ts
 (

p
e
r
 W

a
tt

)
 

P
B

I
 P

a
y
m

e
n

ts
 (

p
e
r
 k

W
h

)
 

S
te

p
 

S
ta

te
w

id
e
 

M
W

 i
n

 S
te

p
 

R
e
s
id

e
n

ti
a
l 

N
o

n
-R

e
s
id

e
n

ti
a
l 

R
e
s
id

e
n

ti
a
l 

N
o

n
-R

e
s
id

e
n

ti
a
l 

C
o

m
m

e
r
c
ia

l 
G

o
v
e
r
n

m
e
n

t/
 

N
o

n
-P

r
o

fi
t 

C
o

m
m

e
r
c
ia

l 
G

o
v
e
r
n

m
e
n

t/
 

N
o

n
-P

r
o

fi
t 

1
 

5
0
 

n
/a

 
n
/a

 
n
/a

 
n
/a

 
n
/a

 
n
/a

 

2
 

7
0
 

$
2
.5

0
 

$
2
.5

0
 

$
3
.2

5
 

$
0
.3

9
 

$
0
.3

9
 

$
0
.5

0
 

3
 

1
0
0
 

$
2
.2

0
 

$
2
.2

0
 

$
2
.9

5
 

$
0
.3

4
 

$
0
.3

4
 

$
0
.4

6
 

4
 

1
3
0
 

$
1
.9

0
 

$
1
.9

0
 

$
2
.6

5
 

$
0
.2

6
 

$
0
.2

6
 

$
0
.3

7
 

5
 

1
6
0
 

$
1
.5

5
 

$
1
.5

5
 

$
2
.3

0
 

$
0
.2

2
 

$
0
.2

2
 

$
0
.3

2
 

6
 

1
9
0
 

$
1
.1

0
 

$
1
.1

0
 

$
1
.8

5
 

$
0
.1

5
 

$
0
.1

5
 

$
0
.2

6
 

7
 

2
1
5
 

$
0
.6

5
 

$
0
.6

5
 

$
1
.4

0
 

$
0
.0

9
 

$
0
.0

9
 

$
0
.1

9
 

8
*
*
 

2
5
0
 

$
0
.3

5
 

$
0
.3

5
 

$
1
.1

0
 

$
0
.0

5
 (

a
)/

$
0
.0

4
4
 (

b
) 

$
0
.0

5
 (

a
)/

$
0
.0

4
4
 (

b
) 

$
0
.1

5
 (

a
)/

$
0
.1

3
9
 (

b
) 

9
*
*
 

2
8
5
 

$
0
.2

5
 

$
0
.2

5
 

$
0
.9

0
 

$
0
.0

3
 (

a
)/

$
0
.0

3
2
 (

b
) 

$
0
.0

3
 (

a
)/

$
0
.0

3
2
 (

b
) 

$
0
.1

2
 (

a
)/

$
0
.1

1
4
 (

b
) 

1
0
*
*
 

3
5
0
 

$
0
.2

0
 

$
0
.2

0
 

$
0
.7

0
 

$
0
.0

2
5
 

$
0
.0

2
5
 

$
0
.0

8
8
 

 

85



175 Watt Photovoltaic Module 
BP 175B

6802.0006-v1   09/09

High-efficiency photovoltaic module using polycrystalline silicon cells

Mechanical Characteristics 

Dimensions  Length: 1593mm (62.8”) Width: 790mm (31.1”) Depth: 50mm (1.97”)

Weight 15.4 kg (34 pounds)

Solar Cells 72 cells (125mm x 125mm) in a 6x12 matrix connected in series

Output Cables  RHW-2 AWG# 12 (4mm
2
), cable with polarized weatherproof DC rated 

Multicontact connectors; asymmetrical lengths — 1250mm(-) and 800mm(+) 

Diodes IntegraBus™ technology includes Schottky by-pass diodes integrated into the printed 
circuit board bus

Construction Front: High-transmission and anti-reflective 3mm (1/8th in) tempered glass; 
Back: Black Polyester; Encapsulant: EVA

Frame  Anodized aluminum Universal frame; Color: Black

Electrical Characteristics2 BP 175B
Maximum power (Pmax)3 175W

Voltage at Pmax (Vmp) 35.8V

Current at Pmax (Imp) 4.9A

Warranted minimum Pmax 166.3W

Short-circuit current (Isc) 5.47A 

Open-circuit voltage (Voc) 43.6V

Temperature coefficient of Isc (0.065±0.015)%/ °C

Temperature coefficient of Voc -(160±20)mV/°C

Temperature coefficient of power  -(0.5±0.05)%/°C 

NOCT (Air 20°C; Sun 0.8kW/m2; wind 1m/s) 47±2°C

Maximum series fuse rating 15A 

Maximum system voltage 600V (U.S. NEC rating)

Performance
Rated power (Pmax) 175W
Power Tolerance ±5%
Nominal voltage 24V
Limited Warranty1 25 years

Configuration
B Bronze frame with output cables and polarized 

Multicontact (MC) connectors

1. Warranty: Power output for 25 years. Freedom from defects in materials and workmanship for 5 years. See our website for full terms 
of these warranties.

2. This data represents the performance of typical BP Solar products, and are based on measurements made in accordance with 
ASTM E1036 corrected to SRC (STC.)

3. During the stabilization process that occurs during the first few months of deployment, module power may decrease by approximately 
1% from typical Pmax. 

©BP Solar 2009
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Quality and Safety 
Module power measurements calibrated to World Radiometric Reference through
ESTI (European Solar Test Installation at Ispra, Italy)

Listed by Underwriter’s Laboratories for electrical and fire safety 
(Class C fire rating)

Included with each module: self-tapping grounding screw, instruction sheet and warranty documents.

6802.0006-v1   09/09©BP Solar 2009

Module Diagram
Dimensions in brackets are in inches. Un-bracketed dimensions are in millimeters. Overall tolerances ±3mm (1/8”).

(+)

(-)

Max screw 
head projections

8 places

27 [1.06]

ESTI

Note: This publication summarizes product warranty and specifications, which are subject to change without notice.     
Additional information may be found on our web site: www.bpsolar.us

Qualification Test Parameters
Temperature cycling range -40°C to +85°C  (-40°F to 185°F)
Humidity freeze, damp heat 85% RH
Static load front and back (e.g. wind) 45psf (2160Pa) 
Hailstone impact 25mm (1 inch) at 23 m/s (52 mph)

0.0
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3

technologies that utilize renewable fuels, and wind turbines of not more than ten
kilowatts (kW) rated electrical capacity per customer site. The law further states
that these four technologies are only eligible to participate in the program if they
meet the emerging technology eligibility criteria contained in the Commission's
March 1997 Policy Report on AB 1890 Renewables Funding.

Based on Commission staff research (e.g., Energy Technology Status Report,
Targeted RD&D studies), docketed information, and testimonials by various
interested parties and stakeholders at public workshops and hearings held during
the AB 1890/SB 90 process, the Commission finds that photovoltaic, small wind
systems (not more than 10 kW), fuel cells using renewable fuel and solar-thermal
technology all meet the qualifying criteria for eligibility contained in the
Commission’s Policy Report. These eligibility criteria were applied to individual
systems representing each of the four technology categories. At least one or more
systems in each of the four technology categories was found to satisfy the
eligibility criteria. Therefore, technologies from all four categories are eligible to
receive funding from the Emerging Renewables Resources Account.

To qualify for funding, however, individual systems in the four eligible technology
categories must meet the requirements contained in this guidebook.  The
Commission recognizes that there may be individual systems employing each of the
four technologies that may not be able to meet these requirements because of the
system’s stage in its research, development and demonstration, and therefore will not
qualify for funding despite the eligibility of their underlying technology.

Those who wish to receive funding from the Emerging Renewable Resources
Account under the Buydown Program must purchase an electrical generating
system that employs an emerging renewable technology and meets certain
eligibility requirements, and follow the reservation and claim procedures outlined in
this guidebook. If after reading this guidebook, you require additional information
about the Buydown Program please contact the Commission Call Center at (800)
555-7794 or send e-mail to renewable@energy.state.ca.us.

Summary of Buydown Program

The Buydown Program is a multi-year program that provides funding in the form of
rebates (also referred to herein as “buydown payments”)  for eligible electricity
generating systems that are powered by emerging renewable resources. Funding
from the Buydown Program is intended to substantially reduce the current costs of
generating equipment using emerging renewable technologies. The intent is to
reduce the net cost to the end user of such generating systems and, thereby,
stimulate substantial sales of such systems during a period of at least four years
beginning in 1998. These increased sales of generating equipment are expected
to encourage manufacturers, sellers and installers to expand their operations and
reduce their costs.  In addition, the Buydown Program is intended to foster the
siting of small, reliable generating systems throughout California at locations
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where the electricity produced is needed and consumed. This is known as
“distributed generation.”

Under the program, buydown payments may be made either directly to the retailer
of a generating system, to the purchaser, or to the lessor in a leasing
arrangement. It is expected that most purchasers of these systems will find it
preferable to have the buydown payment paid directly to the retailer, and thereby
deducted from the price the purchaser will pay. Purchasers of these systems can
be any class of utility customer, including residential, commercial, agricultural or
industrial customers. This program, however, is open only to customers of the
California electrical corporations contributing to this fund and to customers of local
publicly owned electric utilities pursuant to Assembly Bill 29x (AB 29x).  (See “Who
Can Receive the Buydown Payment?” below.)  The electrical load served by the
generating systems must be connected to the electrical grid of such utilities.

Additionally, the generating system must be installed on the premises of eligible
customers  and be sized so that the electricity produced is expected to primarily
offset part or all of the customer's electrical needs at these premises. All electricity
generating system components must be new and unused, and must not have
been previously placed in service in any other location or for any other application,
and major system components must be approved by the Commission.  It is
expected that systems receiving rebates from this program will remain at the
original service location during their useful life.  If a system is removed for any
reason, you must notify the Commission in writing. To help maintain minimum
standards of quality, the program also requires:

1) a minimum of a full five year warranty on the entire generating system if
installed by a licensed contractor, or a limited five year warranty if installed by
the owner;

2) installation by an appropriately licensed contractor, or the system owner, and in
compliance with appropriate electrical codes; and

3) certain key system components, or the entire generating system, certified to
meet certain established standards as described herein.

The amount of the buydown payment an eligible system will receive is dependent
on:

1) the $/watt rebate level available to pay buydowns at the time an eligible system
is purchased and a buydown is reserved;

2) the size or rated electrical output of the system in comparison to the customer’s
estimated annual electrical load or usage; and

3) the total eligible costs of the system.

Table 2 provides the rebate levels available. These rebate levels will be reviewed
on an annual basis and may be decreased if reasonable, consistent with the intent
of SB 90 that rebate levels decline over the term of the program. Sellers and
purchasers of generating systems may want certainty at the time their system is
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ordered of the rebate amount they are eligible to receive once their system is
installed. To provide this certainty, purchasers or retailers can reserve a rebate
amount using the Reservation Request Form (CEC-1890C-1). Submitting this form
to the Commission along with the supporting documentation (see "How Do I
Reserve a Buydown") will allow purchasers or retailers to reserve a specified
rebate amount for a period of 9 months for generating systems of 10 kW or smaller
and for 18 months for all systems larger than 10 kW. A group of reservations in
one location, such as for multiple homes in a new residential development, or for
one customer at several locations, such as for multiple retail store in one retail
chain, which totals 30 kW or greater in aggregate capacity, will receive an 18
month reservation period and may request an extended reservation period, which
may be granted at the Commission’s discretion.

When the system is installed and in service the purchaser or retailer may request
a buydown payment by submitting the Reservation Confirmation and Claim Form
(CEC 1890C-2) along with the other required documentation.  (See “How Do I
Request a Buydown Payment?” below.)  If the Reservation Confirmation and
Claim Form is complete and submitted with the required documentation, the
Commission will then issue a check for the buydown, typically within 30 days of
receiving the claim form.

Table 2
Buydown Program Parameters

BUYDOWN PROGRAM FUNDS Rebate
All systems The lesser of $4.50 /watt or 50% of total

installed costs

To be eligible for this increased rebate level, the funding must be reserved and the
system must be installed on or after February 8, 2001.7 In this context, “reserved”
means the date the Commission’s Accounting Office receives an application for
funding for a proposed system. 

The Buydown Program is open to generating systems of all sizes, subject to
certain conditions and restrictions. The program, however, is intended to favor
small generating systems, such as those typically used by residential or small
commercial and agricultural customers. Pursuant to SB 90, at least 60 percent of
the program funds must be awarded to systems of 10 kW or smaller in rated
output, and at least 15 percent of the program funds must be awarded for systems
rated at 100 kW or less. The Commission applied this awarding requirement to the
initial $54 million allocated to the program. It also applied this requirement to the
$16.2 million (September 2001) and the $13 million (September 2002) in rollover

                                           
7 Systems not meeting the date criteria but otherwise meeting all other eligibility criteria contained
in this Guidebook were eligible to receive 1) the lesser of $3/watt or 50% of total costs for 10kw or
less systems or 2) the lesser of $2.50/watt or 40% of total costs for systems larger than 10kw.
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funds reallocated to this program from other accounts within the Renewable
Resource Trust Fund.

In September 2001, the Commission created two subcategories of medium
systems: those systems larger than 10kW but smaller than 30 kW, and those
systems that are 30 kW or larger, up to 100 kW. The rollover funds reallocated to
this program for medium systems in September 2001 were distributed 75 percent
to the 10 to 30 kW subcategory and 25 percent to the 30 to 100 kW subcategory.8
All of the funds reallocated to this program for medium systems in September
2002 were distributed to the 10 to 30 kW subcategory.6 These subcategories and
allocations are intended to ensure that systems in the 10 to 30 kW subcategory
have sufficient funds available for the remainder of 2002.   These systems do not
have the option of applying for funding under the CPUC-approved Self Generation
program, which is limited to systems 30kW and larger in size.

Pursuant to AB 29x, an additional $30 million in program funds was allocated to
systems 10 kW or smaller in size.  These funds may not be distributed to medium
or large systems. Under AB 29x, $8 million of the $30 million in new program
funding must be used to fund eligible systems 10 kW and smaller located in the
service territories of local publicly owned electric utilities.  Customers of local
publicly owned electric utilities are eligible for funding under the Buydown Program
for systems purchased and installed after December 19, 2001, provided the
systems meet the requirements specified herein.

Pursuant to Interagency Agreement No. R500-02-006 between the Commission
and the California Power Authority, an additional $1.25 million from the Attorney
General's Alternative Energy Retrofit Account (AGAERA) was provided to the
Buydown Program to fund photovoltaic electricity generating systems for eligible 
K -12 public schools.  This initial contribution from the AGAERA may be increased
up to $ 25 million under the Interagency Agreement.  To qualify for these funds
schools must satisfy special requirement discussed herein as part of the Solar
Schools Program.

For generating systems placed in service (i.e., installed and generating) that are
eligible for this program, there is a maximum payment amount of $2,500,000 
overall for any single project as defined herein.

The Energy Commission will conduct random audits of systems which have
received buydown payments to ensure that the systems were properly installed,
are properly functioning and are in accordance with the information provided in the
reservation request and buydown claim forms. The Energy Commission will also

                                           
8 Of the $2.43 million in rollover funds reallocated in September 2001 to the program for medium
systems ($16.2 million x 15 percent), $1.82 million will be distributed for systems in the 10 to 30 kW
subcategory and the $0.61 million will be distributed for systems in the 30 to 100 kW subcategory.
6 $3 million of the $13 million in rollover funds reallocated to the Emerging Renewable Resources
Account in September 2002 will be distributed for systems in the 10 to 30 kW subcategory. $10
million will go to systems 10kW and smaller in size.
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III - Incentives Offered Through This Program 
 

A. Rebates Offered 
 
The rebates offered through this program vary by system size, technology, and type of 
installation.  The rebates offered for professionally installed new systems are identified 
below in Table 1.  Lower rebates, 15 percent less, are also available for owner or self 
installed systems.  Additionally, special rebates are available for systems installed for 
“affordable housing,” and may be available at a later date for public schools.  Because 
these special rebates target specific groups or classes of customers, they are discussed 
separately in Chapter VII of this guidebook.   
 
Table 1 lists the rebate levels available by size category and technology type at the 
beginning of the ERP; these rebate levels are expected to decline over time as 
described below. 
 
 

Table 1:  Rebates Available for Emerging Renewable Systems 
 

Technology Type Size Category Rebate Offered* 

<30 kW $4.00 per Watt Photovoltaic, 
Solar Thermal Electric 
Fuel Cells using a renewable fuel** =>30 kW Future Performance 

Incentive 

First 7.5 kW $2.50 per Watt 

Increments above 7.5 
kW up to 30 kW 

$1.50 per Watt 
Wind 

=> 30 up to 50 kW Future Performance 
Incentive 

*  Rebates for owner installed systems are discounted by 15 percent. 
** Fuel cells that operate on non-renewable fuels and are used in combined heat and power 
applications may be eligible for rebates at a later date when funds from other sources are no longer 
available. 

 
 
 

95



9 

B. Other Incentives May Affect Your Rebate Amount 
 
Incentives received from sources other than the ERP that lower the cost of a generating 
system may affect the rebate amount you receive from the Energy Commission.  No 
system may be issued a reservation or receive payment from the ERP if the system is 
also participating in the California Public Utilities Commission approved Self Generation 
Incentive Program.  Fifty percent (50%) of incentives received or expected must be 
subtracted from the rebate amounts listed in Table1 if the incentives are from a utility 
incentive program, a State of California sponsored incentive program, or a federal 
government sponsored incentive program, other than tax credits.  For example, under 
no circumstance will the incentive from the ERP exceed the net purchase price of the 
system (before ERP incentives).   
 
See Chapter VII of this guidebook for information regarding rebate levels for affordable 
housing. 
 

C. Performance-Based Incentives for Photovoltaic Systems 30 kW or Greater 
 
This portion of the program will be developed at a later date. 

D. Available Funds 
 
As discussed in the Overall Program Guidebook, at least $118,125,000 in funding is 
available for the ERP.  Of this amount, $10 million is allocated to performance-based 
incentives for systems 30 kW or larger.  

E. Adjustment of Rebate Levels 
 
The rebate levels for all technology types will be reduced by 20 cents per watt every six 
months beginning July 1, 2003 (and every January 1st and July 1st thereafter). In 
addition, the rebate level for photovoltaic systems will be reduced an additional 40 cents 
per watt beginning January 1, 2004. 
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APPENDIX C

ADDITIONAL RESULTS AND COUNTERFACTUAL SIMULATIONS

C.1 Additional Count Regression Results

This section describes additional count regression results using the number of purchases every

six-months as the dependent variable in Table C.1. I find similar estimation results to the estimates

shown in Table 6.3. I find that the number of purchases are negatively correlated with the sub-

sidy rate and a 10% increase in the subsidy rate results in a reduction of 4.6% in the number of

purchases.

Poisson Neg. Binomial Poisson Neg. Binomial
Subsidy Rate -0.157 -0.366 -0.614*** -0.614***

(0.089) (0.437) (0.019) (0.070)
% Change in Installations -1.5% -0.4% -4.6% -4.6%
Constant 6.962*** 6.346** 9.350*** 9.350***

(0.456) (2.239) (0.062) (0.281)
6-month Effects N N Y Y
Year Effects Y Y N N
LL -228.142 -67.604 -44.252 -44.252
Observations 10 10 10 10

Table C.1: Models for Semi-Annual Installations

C.2 Estimation Results

In Table C.2, I present the estimates from the three specifications of the dynamic model in

a market that is reduced to 20% of the full model’s market size. The difference in the estimated

parameters across the specifications are larger relative to the full model. This shows the importance

of choosing the correct market size for the model.

In Table C.3, I present the estimates for the three specifications of the dynamic model that

includes an additional regime change. An additional regime change is included for the second six

month period in 2005. This coincides with the unscheduled change in the subsidy rate. There is a

small change in the magnitude of the estimates on the present value and net price variables from

the estimates in Table 6.6.
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Sub Belief PF Pes AR
Solar Price - State State
ln PV ($) 0.876*** 0.677*** 0.926***

(0.065) (0.068) (0.074)
Efficiency (%) 0.798*** 0.750*** 0.793***

(0.016) (0.015) (0.017)
Eff*Small Roof 0.193*** 0.187*** 0.194***

(0.002) (0.003) (0.003)
Eff*Med Roof 0.093*** 0.089*** 0.093***

(0.002) (0.001) (0.002)
ln Net Price ($) -1.018*** -0.795*** -1.074***

(0.0.071) (0.074) (0.081)
Price*Med Value 0.042*** 0.0415*** 0.042***

(0.003) (0.003) (0.003)
Price*High Value 0.019** 0.018** 0.019**

(0.003) (0.003) (0.003)
Constant -10.270 -10.065 -10.121
MSA FE Y Y Y

LL -79025.87 -79044.49 -79013.56
# Of Obs 101110 101110 101110

Escalation Rate 2.2% 2.2% 2.2%
Halton Draws - 50 50

Table C.2: Second Stage Estimation Results (Reduced Sample)
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Sub Belief PF Pes AR
Solar Price - State State
ln PV ($) 1.180*** 1.117*** 1.203***

(0.048) (0.074) (0.074)
Efficiency (%) 0.659*** 0.643*** 0.659***

(0.011) (0.015) (0.015)
Eff*Small Roof 0.163*** 0.162*** 0.164***

(0.002) (0.002) (0.002)
Eff*Med Roof 0.074*** 0.073*** 0.075***

(0.001) (0.001) (0.002)
ln Net Price ($) -1.359*** -1.288*** -1.386***

(0.052) (0.080) (0.08)
Price*Med Value 0.041*** 0.0413*** 0.0419***

(0.002) (0.002) (0.002)
Price*High Value 0.019** 0.0190*** 0.0195***

(0.002) (0.002) (0.002)
Constant -11.346 -11.272 -11.311
MSA FE Y Y Y

LL -100041.87 -100062.95 -100033.75
# Of Obs 505558 505558 505558

Escalation Rate 2.2% 2.2% 2.2%
Halton Draws - 50 50

Table C.3: Second Stage Estimation Results with an Additional Regime Change
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C.3 Counterfactual Simulations

I present the results of counterfactual simulations for the perfect foresight case and the auto-

renewal case in the tables below. I find the results of the counterfactuals are similar across the three

specifications.
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DUBÉ, J.-P., J. T. FOX, AND C.-L. SU (2012): “Improving the numerical performance of static
and dynamic aggregate discrete choice random coefficients demand estimation,” Econometrica,
80, 2231–2267.

DUBIN, J. A. AND D. L. MCFADDEN (1984): “An econometric analysis of residential electric
appliance holdings and consumption,” Econometrica: Journal of the Econometric Society, 345–
362.

DUKE, R., R. WILLIAMS, AND A. PAYNE (2005): “Accelerating residential PV expansion: de-
mand analysis for competitive electricity markets,” Energy Policy, 33, 1912–1929.

ESTEBAN, S. AND M. SHUM (2007): “Durable-goods oligopoly with secondary markets: the case
of automobiles,” The RAND Journal of Economics, 38, 332–354.

FAIERS, A., M. COOK, AND C. NEAME (2007): “Towards a contemporary approach for un-
derstanding consumer behaviour in the context of domestic energy use,” Energy Policy, 35,
4381–4390.

FERNANDEZ, V. P. (2001): “Observable and unobservable determinants of replacement of home
appliances,” Energy Economics, 23, 305–323.
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