
PARTICLE-BASED STOCHASTIC REACTION-DIFFUSION MODELS TO INVESTIGATE 
SPATIOTEMPORAL DYNAMICS IN CELL BIOLOGY 

 
 
 
 
 

Vinal Vinodrai Lakhani 
 
 
 
 
 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum 

of Bioinformatics and Computational Biology 
 
 
 
 
 

Chapel Hill 
2015 

 
 
 
 
 

Approved by:   

David Adalsteinsson  

Henrik Dohlman  

Timothy Elston  

Shawn Gomez   

Daniel Lew  



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2015 
Vinal Vinodrai Lakhani 

ALL RIGHTS RESERVED



iii 

ABSTRACT 

Vinal Vinodrai Lakhani: Particle-Based Stochastic Reaction-Diffusion Models to investigate 
Spatiotemporal Dynamics in Cell Biology 
(Under the direction of Timothy Elston) 

 Many facets of mathematics, science and engineering rely on numerical methods to study 

complex systems, for which analytical methods fail. For example, in particle-based models the 

positions of individual particles under the influence of various forces are monitored over time. 

These models are used to study phenomena ranging from the structure and dynamics of galaxies 

(where particles represent stars) to proteins (where particles represent atoms). In this document, 

we present two applications of particle-based modeling to study microscopic dynamics in cell 

biology, which would otherwise be invisible by current experimental methods. In both models, 

the particles represent protein molecules, and we calculate the stochastic biochemical reactions 

and diffusion of tens of thousands of proteins over time. We utilize Generally Programmable 

Graphics Processing Units (GPGPUs) to achieve the high performance computing necessary to 

simulate these large scale models. 

 Chapter 1 begins with the observation that the mobility of Rac1 molecules, which are 

important regulators of the cell cytoskeleton, is spatially regulated in migrating cells. 

Specifically, Rac1 molecules near the leading edge have less mobility than those in the trailing 

edge. We create a particle-based stochastic reaction-diffusion model to test the hypothesis that 

patches of actin, called ‘actin islands’, are responsible for this observation. We find that these 

islands are capable of producing the spatially-dependent mobility measured by in vivo 

experiments.
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 Chapters 2 and 3 discuss a more complex model built to study cellular gradient sensing, 

which is the ability of singular cells to detect external chemical gradients. This fundamental 

biological process allows cells to move or grow towards favorable environments and away from 

toxic environments. We study this process in the context of yeast mating; wherein, a haploid 

yeast cell senses the pheromone emitted by a mating partner. These cells are capable of sensing 

shallow gradients, in which molecular-level noise from reactions and diffusion is relatively large. 

Chapter 2 describes the particle-based stochastic reaction-diffusion model we built to quantify 

noise-reduction mechanisms proposed elsewhere. Chapter 3 shows neither time-averaging nor 

receptor endocytosis sufficiently reduces noise; however, the pheromone protease Bar1 may 

improve gradient sensing in certain cases.
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CHAPTER 1: SPATIO-TEMPORAL REGULATION OF RAC1 MOBILITY BY ACTIN 
ISLANDS1 

Introduction 

 Rho GTPases play important roles in many aspects of cell migration, including polarity 

establishment and organizing actin cytoskeleton. In particular, the Rho GTPase Rac1 has been 

associated with the generation of protrusions at leading edge of migrating cells. Previously it was 

shown that the mobility of Rac1 molecules is not uniform throughout a migrating cell (Hinde E 

et. al. PNAS 2013). Specifically, the closer a Rac1 molecule is to the leading edge, the slower the 

molecule diffuses. Because actin-bound Rac1 diffuses slower than unbound Rac1, we 

hypothesized that regions of high actin concentration, called “actin islands”, act as diffusive traps 

and are responsible for the non-uniform diffusion observed in vivo. Here, in silico model 

simulations demonstrate that equally spaced actin islands can regulate the time scale for Rac1 

diffusion in a manner consistent with data from live-cell imaging experiments. Additionally, we 

find this mechanism is robust; different patterns of Rac1 mobility can be achieved by changing 

the actin islands’ positions or their affinity for Rac1. 

1.1 Overview 

 Rho GTPases play a critical role in regulating many aspects of cell migration including 

polarity establishment and the actin cytoskeleton. Rac1 is a Rho GTPase associated with 

membrane protrusions at the leading edge of the cell [1]. Recent work demonstrated that Rac1 

activity is closely regulated in space and time during the retraction portion of the protrusion-

                                                           
1 This chapter has been accepted for publication as an article in the PLoS ONE. It is titled “Spatio-temporal 
Regulation of Rac1 Mobility by Actin Islands” and authored by Lakhani V, Hinde E, Gratton E and Elston T. 
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retraction cycle. Specifically, Rac1 activity peaks 40 seconds after and 2 μm away from a 

protrusion event [2]. Previously, fluctuation analysis in polarized cells was used to establish that 

the time scale of Rac1 diffusion varied with its localization within the cell [3]. Using pair 

correlation function (pCF) analysis, the time taken for a Rac1 molecule to move 1μm at each 

position along the axis of the cell was calculated [3]. In particular, a negative correlation between 

Rac1’s mobility and its proximity to the leading cell edge was found; Rac1 molecules took 100 

times longer at the front of the cell than at the back to move 1μm [3]. These observations led to 

the  hypothesize that diffusive barriers, such as those found in neurons for compartmentalizing 

proteins [4], are responsible for the observed spatial variation in diffusion. Here we use a 

computational model to demonstrate that diffusive barriers, in the form of “actin islands”, can 

establish gradients of molecular mobility across the cell similar to those observed for Rac1. 

 We use a new technique called pair correlation function (pCF) analysis [5,6] to determine 

the spatial dependence of Rac1 mobility along the axis of a polarized cell. In vivo data were 

collected using a combination of Forster Resonance Energy Transfer (FRET) and Fluorescence 

Lifetime Imaging Microscopy (FLIM) [3,6]. We performed confocal line scans across the axis of 

a cell expressing a Rac1 dual chain FRET biosensor. The intensity and lifetime data of the donor 

and acceptor chain of this construct were collected by FLIM. This mode of acquisition provides 

us with two important data sets. First, we obtain a time series of the FRET biosensor lifetime in 

each pixel along the line scan, which describes the spatial distribution of Rac1 activity along the 

axis of the cell with millisecond resolution. Second, we obtain intensity fluctuations of Rac1 

localization in each pixel along the line, which is used for pairwise correlation analysis of 

molecular flow along the axis of the cell. That is, we can calculate the time Rac1 molecules take 

to traverse a fixed distance along the line [3,6]. As noted above, using this multiplexed approach 
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it was found that Rac1 mobility decreases near the leading edge of the cell where we also 

observe, by FRET analysis, Rac1 activity to be the highest [3]. We hypothesized that cells 

achieve this spatiotemporal control of Rac1 mobility by using patches of dense actin, we call 

“actin islands”, to which Rac1 reversibly binds. By strategically placing and adjusting the 

density of the actin in these actin islands, the cell can reduce mobility of Rac1 in the desired 

location. For example, to slow diffusion towards the leading edge, the actin islands can be denser 

towards the leading edge. 

 To test this hypothesis, we created a computational model to study Rac1 mobility within 

a cell containing actin-islands. Using a particle-based stochastic simulation algorithm, we 

explicitly simulate the diffusion of individual Rac1 molecules and their binding/unbinding 

reactions with actin-islands. Unbound Rac1 freely diffuses throughout the cell. The actin-islands 

behave as diffusive traps, capable of slowing the diffusion rate and restricting the accessible 

space for an actin-bound Rac1 molecule. During the simulation we tally the number of Rac1 

molecules located in bins along the center axis of the cell. Analogously, in the in vivo 

experiments, we measured the fluorescence intensity of pixels along the axis of the cell. In both 

cases, we tabulate the molecular counts (or fluorescence intensities) for each bin (or pixel) over 

time into an “intensity carpet” (Fig. 1.1D). We use the intensity carpet to calculate a pCF carpet 

(Fig. 1.1H) as described in [3]. Although we model Rac1 diffusion as an unbiased, uniform 

process throughout the cell, we find the presence of actin-islands can create a spatial bias to Rac1 

mobility. Hence, comparing the pCF carpet data, we qualitatively reproduce the in vivo data with 

our in silico model. These results give credence to our hypothesis that a mechanism based on 

strategically arranging actin islands can lead to spatially dependent molecular mobility.



 
 

 

Fig. 1.1: Pair correlation analysis of a fluorescent protein’s diffusive route reveals how the cell’s architecture directs 
intracellular traffic. 
(A) Intensity image of cell expressing 5-EGFP. Fluorescence data along the arrow is summarized in the next panel. (B) Intensity profile of 5-
EGFP across axis of cell shows 5-EGFP exclusion from the nucleus and therefore an obstacle to 5-EGFP free diffusion. Green arrows demonstrate 
the molecules must diffuse around instead of through the obstacle. (C) Model for the simulation of Rac1 diffusion in a triangular shaped cell 
(25.6μm by 5μm) with four, circular traps (2μm wide). Each trap captures, on average, 12.5% of the total Rac1 population. Line scans are taken 
along the center axis of the cell, as shown by the horizontal line. Each pixel is measured in succession, and one line scan is completed when all 
256 pixels have been measured. (D) Many (47000) line scans are combined into an intensity carpet. For this simulation, the intensity carpet shows 
accumulation of Rac1 colocalized with the four traps. A cartoon of two intensity profiles (intensity vs time) in white is overlaid on the intensity 
carpet. (E) A representative line scan (intensity vs pixel). The arrows indicate which two pixels are being pair-correlated, from green to red, for the 
pCF analysis in the next panel. In this case, each pixel is pair-correlated with itself, which is equivalent to an autocorrelation calculation. (F) The 
pCF(0) carpet reveals that pixels within the traps have higher autocorrelation values for short delay times (τ ≈ 0s) than pixels outside the traps. 
These values indicate the traps have a higher concentration of Rac1 than elsewhere in the cell. (G) The same representative line scan (intensity vs 
pixel) as in (E). Here the arrows indicate each pixel (green dot) is pair-correlated with a pixel (red dot) 0.5μm to the right (δr = 5 pixels). (H) The 
pCF(5) carpet reveals diffusion in and around the traps is slower than elsewhere in the cell. We average the data from every 20 pixels (columns) 
and smooth this average profile using a Gaussian filter; lastly, we extract the peak time for every 20 columns. We plot a point at each of these peak 
times. Hence, the yellow highlighted data displays the average time Rac1 takes to diffuse 0.5μm to the right. It takes about 0.3s to diffuse 0.5μm 
inside the islands but less than 0.1s to diffuse the same distance elsewhere in the cell.

4 
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1.2 Intracellular Traffic Observed in in silico simulations by Pair Correlation 
Analysis 

 In live cells the default mechanism of motion for many biological molecules is diffusion. 

Although unregulated diffusion produces a spatially isotropic distribution of molecules, it is has 

been shown that structural features of the cell create intracellular compartments that generate 

spatially heterogeneous molecule distributions. For example, insights into intra-cellular 

trafficking have been derived from measuring the effect of the cell nucleus on the diffusion of 

biologically active and inert molecules [7]. The effect of the nucleus on diffusion is readily 

apparent, if we scan across the axis of an NIH3T3 cell transiently transfected with the 

biologically inert fluorescent protein 5-EGFP (Fig. 1.1A). In this case, the fluorescence intensity 

profile clearly shows the exclusion of 5-EGFP from the nucleus (Fig. 1.1B). From this simple 

experiment we can deduce that the nuclear envelope behaves as an impenetrable barrier, around 

which 5-EGFP must diffuse. Given that intracellular trafficking of biologically active molecules 

is far more complex, the diffusive route traveled by a fluorescently labeled protein is not always 

evident from simple inspection of the fluorescence intensity distribution, and thus a more 

dynamic approach is required. 

 To gain insight into the diffusive motion active proteins, we employ an analysis method 

that is based on pairwise correlation functions. Using pairwise correlation analysis, it is possible 

to discern both diffusion rates and particle fluxes along a confocal line scan. These quantities are 

inferred by measuring temporal cross-correlations in fluorescence intensity between pairs of 

points a distance δr apart as a function of the time delay τ between measurements. To illustrate 

this idea consider the following in silico example. We simulate the diffusion of individual Rac1 

molecules (D = 10μm2/s) inside a cell containing four diffusive traps (Fig. 1.1C). The cell is 

25.6µm long and 5μm wide; the circular traps are 2μm in diameter (see Methods). Rac1 
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molecules that diffuse into a trapping area can reversibly bind to the trap. When bound in a trap, 

Rac1 molecules are (1) spatially restricted to remain inside the trap, and (2) the diffusion 

constant reduces to 1μm2/s. During the simulation we repeatedly take “line scans”, which are 

measurements along a line that traverses the cell (Fig. 1.1C). Whereas the line scans for the in 

vivo experiments measured fluorescence intensity in each pixel (0.1μm)2 along the line, the line 

scans for our in silico simulations measure the number of molecules in square bins (0.1μm)2 

along the line. In both cases, we summarize the resulting data as an intensity carpet (Fig. 1.1D); 

wherein, each row is a single line scan (Figs. 1.1E and 1.1G) and each column gives an intensity 

profile (intensity vs time) for a single pixel (Fig. 1.1D). 

The impact on mobility can be measured by pairwise correlation analysis between an 

intensity profile and a neighboring profile, a distance δr to the right, as a function of the time 

delay τ. We choose δr such that it is large enough to measure mobility around each trap. For 

example, we can calculate the correlation between the intensity profile at pixel 64 and the 

intensity profile at pixel 69 (δr = 5 or 0.5μm) τ seconds later. The characteristic delay time, 

defined as the τ that generates the highest correlation value, is a measure of the time scale for a 

Rac1 molecule at pixel 64 to diffuse to pixel 69. We repeat this process for all pixels to map the 

molecular flow pattern of Rac1 along the simulated cell’s axis. We first set δr = 0 and thus derive 

an autocorrelation profile (pCF(0)) for each pixel (Figs. 1.1E and 1.1F). For τ = 0, the value of 

the autocorrelation is equal to the mean squared number of particles in the pixel. Hence, the high 

value areas in the pCF(0) carpet (Fig. 1.1F) indicate areas of high Rac1 concentration. 

Unsurprisingly, these areas are co-localized with the actin island traps. 

We next introduce a spatial component to the cross correlation function by setting δr = 5 

pixels (pCF(5)) and recalculating the pCF carpet (Figs. 1.1G and 1.1H). Taking δr = 5 pixels, 
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corresponds to a distance of 0.5μm. This distance allows us to cross correlate intensity 

fluctuations located outside the trap with intensity fluctuations located inside the trap, thus 

measuring the time taken to enter or exit this environment. To help interpret the pCF carpet, we 

use the SimFCS software developed at the Laboratory for Fluorescence Dynamics 

(www.lfd.uci.edu); more details can be found in Section 1.7.1 (Fig. 1.6) as well as the literature 

[3,5,7]. Briefly, we combine and average every 20 pixels (columns) of the pair correlation 

values. Each average is smoothed with a Gaussian filter, and we highlight the peak times. Each 

peak time is the delay time with the maximum pair correlation value (Fig. 1.1H). The highlighted 

points, plotted every 20 pixels, are connected by interpolation and indicate the time scale for 

Rac1 to diffuse 0.5μm to the right. We find Rac1 takes longer to diffuse in and around the actin 

islands than elsewhere in the cell. It takes about 0.3s to diffuse 0.5μm to the right inside the 

islands, which is consistent with the diffusional time scale of the islands:  
 

 
 

(     ) 

      ⁄
       . 

Outside the islands, the same trajectory takes much less than 0.1s, which is as expected:  
 

 
 

       . Hence, pCF analysis is capable of revealing that actin islands act as barriers to mobility. 

1.3 Gradient of Molecular Flow Observed in in vivo experiments by Pair 
Correlation Analysis 

 When probing the spatiotemporal dynamics of signaling molecules like Rac1, it is 

necessary to measure changes in both position and activity. These measurements are most often 

achieved by use of a FRET biosensor; wherein, changes in donor emission provide a readout of 

protein activity. Thus to determine the diffusive route Rac1 adopts upon activation, we recently 

combined biosensor FRET detection with pair correlation analysis [3]. Here, we repeat the 

experiment from [3]. We concomitantly measured the fluorescence intensity (Fig. 1.2A) and 

fluorescence lifetime (Fig. 1.2B) of a Rac1 biosensor in the donor channel along a line that 
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extended from the rear to the front of a migrating cell. Lifetime analysis of the Rac1 biosensor 

FRET signal along the line scan revealed that the front of the cell (red time trace) is activated 

before the back of the cell (green time trace) (Fig. 1.2C). In addition to this spatially dependent 

Rac1 activation, we found Rac1 mobility was also spatially dependent. We acquired three 

intensity carpets during the course of the experiment: one before EGF stimulation (Fig. 1.2D), 

one between 0 – 180s after stimulation and one between 180 – 360s after stimulation. From each 

intensity carpet data, we performed pair correlation analysis of intensity fluctuations separated 

by a distance of 800nm (δr = 8 pixels) along the line scan (Figs. 1.2E – G). As in Fig. 1.1H, we 

combined the data of every 20 columns into an average pair correlation vs delay time plot; we 

smooth this plot using a Gaussian filter. The highlighted red data points are the maxima of these 

smoothed curves (Fig. 1.2E). For the data following EGF stimulation (Figs. 1.2F and 1.2G), 

some of the smoothed curves have two maxima (see Section 1.7.1). The highlighted red and 

yellow data points are these maxima (Figs. 1.2F and 1.2G). Before EGF stimulation (Fig. 1.2E), 

Rac1 diffuses 800nm towards the front of the cell with a characteristic time of 0.03s. Note that 

this pCF carpet is qualitatively similar to the pCF carpet calculated from a simulation with 

uniform actin islands (Fig. 1.1H). Three minutes after stimulation (Fig. 1.2F), the time taken to 

travel 800nm is no longer constant across the axis of the cell (red curve Fig. 1.2F); instead, there 

is a gradient of molecular flow with slower speeds near the front of the cell. After six minutes 

(Fig. 1.2G), this gradient of flow is steeper (red curve Fig. 1.2G); the characteristic times range 

from 0.1 to 1s. Additionally, the second set of highlighted data (yellow curve Fig. 1.2G) is 

significantly different than the first, which indicates the presence of a second population of Rac1 

whose mobility is spatially regulated separately from the first population. 



 
 

 

Fig. 1.2: Pair correlation analysis of a Rac1 FRET biosensor reveals Rac1 activity to be spatiotemporally regulated by a 
dynamic gradient of protein mobility.

9 
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Fig. 1.2: Pair correlation analysis of a Rac1 FRET biosensor reveals Rac1 activity to be 
spatiotemporally regulated by a dynamic gradient of protein mobility. 
(A) Intensity image of a NIH3T3 cell expressing the Rac1 dual chain FRET biosensor in the donor 
channel before and after stimulation with epidermal growth factor (EGF). The white traces outline the 
cell’s position(s) from the previous panel(s). (B) Same cell as in (A) pseudo-colored according to donor 
lifetime. The blue to red color range corresponds to a change in lifetime from 2 to 3ns and therefore low 
to high Rac1 activity. The tau phase (in ns) is derived from phasor analysis of the fluorescence decay, as 
in [3]. Shorter tau-phase times correspond to higher FRET activity. (C) Average lifetime analysis of the 
first 10 pixels (back of the cell, green time series) and the last 10 pixels (front of the cell, red time series). 
This comparison reveals that after EGF stimulation Rac1 is activated earlier at the front than the back of 
the cell. (D) The intensity carpet that is derived from line scans acquired across the axis of the cell in (A). 
(E) Pair correlation analysis of the intensity carpet acquired before EGF stimulation. The highlighted data 
shows Rac1 molecular flow is uniform: it takes about 0.03s to traverse 0.8μm (pCF(8)). (F) Pair 
correlation analysis of the intensity carpet acquired 180s after EGF stimulation. The highlighted shows 
Rac1 molecular flow is non-uniform. At the back of the cell, traversing 0.8μm takes about 0.03s; this time 
becomes gradually longer towards the front of the cell. The second set of highlighted data (yellow curve) 
is not significantly different from the first (red curve). (G) Pair correlation analysis of data acquired 360s 
after EGF stimulation. The mobility gradient is steeper (red curve); the delay time ranges from 0.05s at 
the back to 1.2s at the front. A second gradient emerges (yellow curve); the delay times range from 0.03s 
to 0.08s. 

 The simulation in Fig. 1.1 (Fig. 1.1H), wherein each barrier has equivalent affinity for 

Rac1, qualitatively matches the mobility of Rac1 in an unstimulated cell (Fig. 1.2E); that is, 

Rac1 mobility is uniform across the cell. However, in a stimulated cell, Rac1 shows variable 

mobility across the cell (Figs. 1.2F and 1.2G), possibly due to variable density of actin and hence 

variable Rac1 binding affinity. It may be that Rac1 interacts with different substrates with 

varying affinities in the membrane, and therefore, Rac1 mobility depends on cell polarization in 

response to external cues. We next perform simulations guided by this hypothesis. 

1.4 Gradient of Rac1 Molecular Flow Produced by Actin Island Simulations 

 To test our hypothesis that actin-islands can create the spatially dependent mobility 

observed from in vivo experiments, we returned to in silico simulations. Instead of assuming all 

the actin islands bind Rac1 with equal probability, we first tested a scenario in which the affinity 

of the rear island was taken to be three-times higher than the others (Fig. 1.3A). The resulting 

intensity carpet showed four regions with higher intensity than the background, corresponding to 

the islands (Fig. 1.3B). The region with highest intensity corresponds to the island with highest 
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affinity for Rac1. Calculating the pCF carpet (Fig. 1.3C) reveals that Rac1 molecular flow is 

slowest in the island with highest affinity, slightly faster in the other three islands and fastest 

outside the islands. Hence the islands’ affinity inversely correlates with local Rac1 mobility. 

 

Fig. 1.3: Simulations with islands of varying binding affinity. 
(A) A simulation set-up showing the rear (leftmost) island binds on average 18.75% of all Rac1, and each 
of the other three bind 6.25% on average. Unbound Rac1 diffuses with D = 10μm2/s. If bound, Rac1 
diffuses with D = 1μm2/s. (B) The resulting intensity carpet shows the highest accumulation at the rear 
island. (C) The pCF carpet (yellow curve) reveals four arc features, which indicate regions of slow 
molecular flow, across each island. The time needed to flow 0.5μm to the right (pCF(5)) is longer near the 
island with the highest affinity (0.6s) than the other islands (0.2s). (D) A simulation wherein the islands 
form a gradient of binding affinities. The affinities range from 37.5-6.25% from the rear to the front of the 
cell. (E) The resulting intensity carpet shows a gradient of accumulation of Rac1. (F) The pCF carpet 
reveals a gradient of arc features whose position corresponds to the position of the islands and whose 
length correlates with the affinity of the islands. The time scale for molecular flow near the islands ranges 
from 1s, 0.8s, 0.5s and 0.2s (back to front). (G) Simulation of a cell with actin islands forming a gradient 
of binding affinities. The affinities range from 6.25-37.5% from the back to the front of the cell. (H) The 
resulting intensity carpet shows a gradient of accumulation of Rac1. (I) The pCF carpet reveals a gradient 
of arc features whose position corresponds to the position of the islands and whose length correlates with 
the affinity of the islands. The pair correlation pattern is opposite of the previous simulation (F). The time 
scale for molecular flow near the islands ranges from 0.2s, 0.5s, 0.8s and 1s (back to front). This gradient 
is analogous to the gradient calculated for 3 min after EGF stimulation (Fig. 1.2F). 
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 Next, we extend our model by varying the affinity of each actin island. Specifically, 

islands closer to the leading edge have lower affinity than islands near the trailing edge (Fig. 

1.3D). The intensity carpet shows four regions with different intensities (Fig. 1.3E). As before, 

the average intensity in each of the four regions is directly proportional to the binding affinity. 

The pCF carpet (Fig. 1.3F) shows a gradient of molecular flow; wherein, Rac1 mobility is faster 

towards the leading edge. We can reverse this gradient by reversing the island affinities (Fig. 

1.3G). This model produces a pCF carpet (Fig. 1.3I) qualitatively similar to the one observed 

from in vivo data (Fig. 1.2F). That is, there is a diffusive gradient such that Rac1 mobility is 

slower towards the leading edge. Consistent throughout all our simulations, we find the 

characteristic time to diffuse around or through an actin island is proportional to the island’s 

binding affinity. We find that this mechanism to spatially regulate molecular flow is quite robust; 

the affinity of the actin island dictates the mobility at that location. 

 Finally, we aimed to reproduce the molecular flow observed 6 minutes after EGF 

stimulation (Fig. 1.2G), in which there are two populations of Rac1 whose mobility is regulated 

separately. It is known that active Rac1 moves slower than inactive Rac1 [8]. In our model, 

diffusion is regulated by Rac1’s affinity for actin (Rac1’s primary effector). We postulated that 

inactive Rac1 also binds actin, but with a significantly reduced affinity. Therefore, keeping all 

other parameters equal, we consider two populations of Rac1 molecules (inactive and active) that 

possess different affinities for the actin islands (Fig. 1.4F). In particular, we assumed the active 

population binds actin with twice the affinity as the inactive population. For computational 

simplicity, we simulated each population separately (Figs. 1.3G and 1.4D) and combined the 

resulting intensity carpets. This approach does not affect the results of our simulations, because 

the two subpopulations are assumed to diffuse and react independently of one another. After 
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combining the intensity carpets, we perform pCF analysis. The resulting pCF carpet shows two 

gradients of molecular flow: one for each Rac1 population (Fig. 1.4G). Based on our previous 

results, we know the red curve corresponds to the high affinity active Rac1 population, and the 

yellow curve corresponds to the low affinity active Rac1 population. Our results indicate actin 

islands, which reversibly bind Rac1 and slow its diffusion, are sufficient to produce the spatially 

dependent molecular flow observed in vivo. Additionally, we find that if active and inactive Rac1 

have different affinities for actin, then these two subpopulations would show different diffusive 

behaviors, similar to what has been observed experimentally. 

 

Fig. 1.4: Investigating the cellular substructure during three stages of EGF stimulation by 
comparing pCF carpets. 
(A) Three snapshots of FLIM data before, 3 minutes after and 6 minutes after EGF stimulation. We aim to 
replicate features in the pCF carpets from the in vivo data (Figs. 1.2E – G) using our in silico simulations. 
(B – C) Uniform actin islands, as shown in Figs 1.1C and 1.1H. (D) Actin islands across the axis of the 
cell bind Rac1 with different affinities. These affinities range from 3.12% to 12.15% from the back to the 
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front, which is less than the simulation in Fig 1.3G. This arrangement of islands is similar to what we 
expect is present in vivo. (E) pCF analysis reveals four arc features of differing lengths, co-localized with 
the actin islands. Rac1 mobility is slower towards the front of the cell. (F) Modeling two populations of 
Rac1 by the superposition of two actin island gradients: one with twice the affinity (Fig. 1.3G) as the 
other (Fig. 1.4D). We combine the intensity carpets of the two simulations and perform pCF analysis. 
Although the two sets of islands are superimposed, here, we separate them for illustrative purposes. (G) 
The resulting pCF carpet for a cell with two populations of Rac1. We find two distinct gradients as 
highlighted by the curves: one for each population. The red curve corresponds to the Rac1 population 
with the higher actin affinity. 

1.5 Discussion 

 Here, we developed a computational platform for performing stochastic simulations of 

intracellular diffusion to study how actin islands are organized to spatially regulate the mobility 

of signaling molecules. Our simulation platform allows the location, shape, protein binding and 

unbinding rates and diffusion rate for each island to be varied independently. This flexible 

computational model allows us to probe what cellular architectures underlie key features of pCF 

carpets calculated from in vivo experiments using a Rac1 biosensor. 

As proof of this principle, we considered diffusive regulation of Rac1 at three stages 

during EGF stimulation (Fig. 1.4A). First, before stimulation, the molecular flow of Rac1 

(assessed by the time needed for a Rac1 molecule to diffuse 0.5μm) is spatially uniform (Fig. 

1.2E). Second, for the first 3 minutes after stimulation, Rac1 mobility is inversely correlated with 

its proximity to the leading edge (Fig. 1.2F). Third, between 3 and 6 minutes after stimulation, 

this gradient of molecular flow is more pronounced (red curve Fig. 1.2G), and the presence of a 

distinct second set of arc features (yellow curve Fig. 1.2G) indicates a second population of Rac1 

that moves differently than the first. To test if the existence of actin islands can produce arc 

features in the pCF carpet consistent with our experimental observations, we computationally 

simulated the diffusion of Rac1 in a cell with islands of equivalent affinity (Figs. 1.1H and 1.4C). 

The good qualitative agreement between the pCF carpets from in vivo (Fig. 1.2F) and in silico 
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(Fig. 1.4C) experiments suggests actin islands are present before EGF stimulation (Figs. 1.4A – 

C). Next, to test our hypothesis that actin island affinity regulates molecular flow, we performed 

simulations with actin islands of varying affinity (Figs. 1.3G and 1.4D) and compared these with 

the in vivo observed mobility gradient (Fig. 1.2F). The pCF carpets from these simulations (Figs. 

1.3I and 1.4E) show a mobility gradient similar to the one observed in vivo (Fig. 1.2F); wherein, 

the time it takes for Rac1 molecules to flow 0.5μm is based on their proximity to the leading 

edge. Hence, the observed mobility gradient from the in vivo experiment is consistent with the 

presence of actin islands with progressively stronger affinity for Rac1 in moving from the rear to 

the front of the cell. Finally, we aimed to reproduce the in vivo observed dual regulation of Rac1 

indicated by two distinct mobility gradients (Fig. 1.2G). We combine the results of two 

simulations, which are identical in every aspect, except for the actin islands’ affinities (Fig. 

1.4F). The resulting pCF carpet (Fig. 1.4G) shows two sets of arc features, similar to the ones 

observed in vivo (Fig. 1.2G). Hence, the two sets of mobility gradients observed from the in vivo 

experiments (Fig. 1.2G) may indicate the presence of two forms of Rac1 (e.g. inactive and 

active) with different affinities to the actin islands. 

Our results suggest the Rac1flow observed in vivo (Figs. 1.2F and 1.2G) is produced 

when actin islands near the leading edge have a higher affinity than islands near the trailing edge 

(Figs. 1.3G – I). There are many possible explanations for this discrepancy in affinities. Because 

the affinity in an island is proportional to the actin concentration, one possibility is that the actin 

concentration is higher in islands near the leading edge than those near the trailing edge. Another 

possibility is that the conformation of Rac1 near the leading edge is different than Rac1 near the 

trailing edge; moreover, this difference alters the affinity of Rac1 to actin. Another Rac1 binding 
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partner may account for the discrepancy in conformation sampling. We discuss the implications 

of each possible technique for controlling the affinity of actin islands below. 

 Based on the results of our experimental and computational investigations, we propose 

that cells can spatially regulate the molecular flow of certain proteins through the use of actin 

islands. In particular, our results suggest that cells can position the islands in regions where 

slower flow is desired, e.g. to sequester Rac1 at the leading edge. Because an island regulates 

molecular flow only locally, the cell can utilize actin islands only where needed. Additionally, 

the extent to which Rac1 mobility is slowed can be regulated by adjusting the binding affinity. 

Actin is known to reorganize in seconds [9], and this reorganization may play a role in regulating 

the position, size, shape and concentration of the islands. In turn, the concentration of actin in 

each island could affect the affinity for Rac1: denser islands have higher affinity than less dense 

islands. Organizing actin islands allows cells to spatially regulate molecular flow and therefore 

establish internal concentration gradients. 

 Another important feature is molecularly independent regulation; different protein 

species, and/or different forms of the same protein species, can be regulated separately. As long 

as each protein population has a different affinity for actin, each population will effectively 

experience a different set of actin islands (Figs. 1.4F – G). We successfully tested a scenario 

(data not shown), wherein the two populations had opposing molecular flow gradients (i.e. a 

combination of Figs. 1.3F and 1.3I) by combining opposing actin island gradients (i.e. Figs. 1.3D 

and 1.3G). Actin islands can differentially regulate the diffusion of different proteins across the 

cell; furthermore, pCF carpet analysis is capable of distinguishing these different protein 

populations and their unique, spatial regulation of molecular flow. Hence, the two sets of 

features from the in vivo experiment (Fig. 1.2G) indicate there are two populations of Rac1 
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(possibly the inactive and active forms) with different affinities for the actin islands and 

subsequently separately regulated flow. 

1.6 Methods 

 We developed a simulation platform to test our proposed model of Rac1 behavior. Our 

program returns intensity carpets that are directly comparable to experimentally measured 

intensity carpets. As with the in vivo experimental data, we perform pair correlation analysis on 

the in silico intensity carpets to determine any spatial dependence on the diffusion constant. Our 

goal was to determine sufficient conditions for recapitulating the spatial dependence on the 

diffusion constant observed in vivo, by rearranging and varying the binding constant of the actin 

islands. Our program uses a particle-based stochastic simulation algorithm to simulate reactions 

and diffusion. Individual Rac1 molecules are modeled as point particles in continuous space and 

capable of reacting and diffusing discretely in time. This algorithm allows us to closely mimic 

the stochastic diffusion of Rac1 molecules inside the cell. A computational model that captures 

these natural fluctuations in concentration is imperative for pair correlation analysis. 

1.6.1 Simulation Algorithm 

 A cell migrating on a 2D substrate in the xy-plane is modeled as an isosceles triangle 

whose base represents the direction of migration (Fig. 1.5). In this system, diffusion along the z-

axis is largely inconsequential, because the molecular counts used to produce the intensity 

carpets in vivo are projected onto the xy-plane, thereby destroying any information from the third 

dimension. Additionally, the computational complexity is significantly reduced when only 2 

dimensions are considered. Rac1 molecules are modeled as non-colliding point particles; their 

positions are stored in (x,y) Cartesian coordinates. Our hypothesized actin islands, regions of 

dense actin molecules, are capable of binding freely diffusing Rac1 molecules; hence, these actin 
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islands behave like diffusive traps, since actin-bound Rac1 has a smaller diffusion constant. The 

actin islands are modeled as circular patches, which can reversibly bind any Rac1 molecules 

located inside these regions (Fig. 1.5).



 
 

 

Fig. 1.5: Simulation Geometry. 
The cell boundary is shown in green as an isosceles triangle 25.6µm wide and 5µm tall. The actin islands are shown as black circles with 1µm 
radii. As discussed in the text, unbound Rac1 molecules are free to diffuse throughout the cell and reflect off the cell boundary. Bound Rac1 
molecules diffuse slower and are restricted to the inside of the island in which they are bound. We can individually set the KD of each island 
thereby setting, on average, the percent of the total Rac1 population bound to each island. The 256 magenta boxes represent the (0.1μm)2 bins used 
to generate the intensity carpet; these bins do not affect the behavior of the molecules.

19 
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 As suggested by [10], we use the Euler-Maruyama method [11] to perform stochastic 

simulations of diffusing particles. That is, knowing the current position of a Rac1 molecule, (x(t), 

y(t)), we calculate its position at the next time step, (x(t+Δt),y(t+Δt)), using the following 

equations: 

  (    )     ( )    √     (1.1a) 

 
 (    )     ( )    √     (1.1b) 

Here, D is the diffusion constant, Δt is the time step and the Wn’s are random numbers drawn 

from a Gaussian distribution with a mean of 0 and a variance of 1. Unbound Rac1 molecules 

diffuse freely inside the cell with Dunbound = 10μm2/s. The boundaries of the cell are reflective. 

Hence, if a molecule attempts to leave the cell (i.e. the diffusion calculation places the particle 

outside the cell boundaries), then the molecule is elastically reflected back inside the cell. Bound 

Rac1 molecules diffuse freely inside the actin island to which they are bound with Dbound = 

1μm2/s. The boundary of the island is reflective only to bound molecules. Hence, if a bound 

molecule attempts to leave the island (i.e. the diffusion calculation places the particle outside the 

island), then the molecule is elastically reflected back inside the island. Consequently, all bound 

Rac1 molecules are restricted to an island. The converse, however, is not true; not every Rac1 

molecule positioned inside an actin island is bound. Unbound Rac1 molecules, which are 

positioned inside an island, are considered to be diffusing over/under/through that island without 

penalty. It is only in this condition that a binding reaction may occur. 

 In addition to diffusion, binding and unbinding events are also calculated at each time 

step. If a Rac1 molecule is, unbound and positioned inside an island at time t, then the state of 

that molecule can be switched to bound with probability: Pbind calculated for each island by: 
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Here, kon is the rate constant for binding to the island; Δt is the time step; v is the volume of the 

island, and V is the volume of the entire cell (we assume the cell is 1µm thick). 

 Separately, we calculate all unbinding events between time steps. If a Rac1 molecule is 

bound at time t, then its state can switch to unbound with probability Punbind: 

 
                      (1.3) 

Here, koff is the dissociation rate constant. When changing the state of a Rac1 molecule, due to 

either a binding or unbinding reaction, we do not change the position of the molecule. 

 We calculate the reaction rates based on an average fraction of total Rac1 molecules that 

we wish to have bound in each island: 
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Here, f is the average fraction of Rac1 molecules bound in the island, and 1–F is the average 

fraction of Rac1 molecules not bound in any island. Note kon should be expressed in units of 

μm3/s using a conversion factor such as 0.6022/(nM·μm3). Additionally, the fraction of 

molecules bound at each island also relates to the reaction probabilities: 

 

 

 

     

       
   

 

   
 (1.5) 

For example, if we desire each of the four islands to bind, on average, 6.25% of all Rac1 

molecules, then F = 0.25 and for each island f = 0.0625. We know the volumes (v and V) from 

Fig. 1.5. Unfortunately, instead of a value for Pbind or Punbind, we are only left with a ratio between 

these reaction probabilities. We proceed by assigning an off-rate within the biological regime. 
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We choose the off-rate such that the time-scale for unbinding is equal to the time-scale for a 

bound molecule to diffuse the length of the island: 
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 (1.6) 

This rate is substituted into Eq 1.3 to get Punbind, which in turn, is substituted into Eq 1.5 to get 

Pbind. In this case, Punbind = 0.5×10-6 and Pbind = 0.85×10-6 for a time-step Δt = 1μs. The reaction 

probabilities for each simulation are annotated in the Supplemental Methods (Section 1.7.5). 

1.6.2 Pair Correlation Carpet 

 A line-scan technique was used during in vivo experiments [3,5,6], which reports the 

fluorescence intensity of Rac1-GFP molecules. The intensity is sequentially measured from pixel 

1 to, about, pixel 300 to complete one line scan. Many line scans are taken and these scans are 

compiled into an intensity carpet on which pair correlation analysis can be performed. To 

produce an in silico analog to the intensity carpet, we tally the particles by their position as they 

are simulated (see above). To establish the line along which we will scan, we arrange 256 square 

bins sized (0.1μm)2 along the center of the cell (Fig. 1.5). We cumulatively count the number of 

Rac1 molecules positioned inside a bin during a 25µs time window. Each bin is scanned 

sequentially; that is, we tally the counts from the first bin for the first 25µs; then we tally the 

counts from the second bin for the second 25µs etc. After 6.4ms (256*25μs) one full line scan is 

complete, and the next line scan begins immediately. Each intensity carpet has 47000 lines, 

corresponding to a simulation time of just over 5min. The bin size (0.1μm)2 is roughly equivalent 

to the size of the laser used in the in vivo experiments, and the measuring time (25µs) is 

equivalent to the length of time a pixel was monitored in vivo. 



23 
 

 To better understand the flow of particles within the cell, we calculate the pair correlation 

function (pCF) from the intensity carpet. First, we extract the intensity time trace (intensity 

versus time) for each pixel (e.g. cartooned white curves in Fig. 1.1D). Second, we calculate the 

correlation coefficient between two of these traces while sweeping two parameters in space (δr) 

and time (τ). With regards to space, we consider the traces of two pixels a distance δr apart; note 

that when δr = 0, we are computing the autocorrelation value (Figs. 1.1E and 1.1F). With regards 

to time, we shift the trace from the second pixel by τ seconds. Hence the correlation coefficient 

for a pixel given a pair of parameters (δr, τ) describes the likelihood a particle will diffuse from 

that pixel to a pixel δr away in τ time. A value of 0 indicates this diffusive trajectory is 

impossible; while, a value of 1 implies a complete directed flow. Note that there is directionality 

in our pCF. A left to right calculation (e.g. correlating pixel 0 with pixel 5) describes the 

diffusion landscape from the back of the cell to the front (line scans are taken as such). A right to 

left calculation (e.g. correlating pixel 5 with pixel 0) describes the diffusion landscape from the 

front of the cell to the back. 

 Our results are independent of the cell’s shape, because the cell boundary is sufficiently 

far from our region of interest. For example, the sharp, leftmost corner produces a slight force to 

the right; however, this force quickly dissipates and has little effect beyond x = 5μm. All the pCF 

carpets presented here show pCF analysis for x ≥ 6.4μm. 
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1.7 Supplemental Methods 

1.7.1 Analyzing pCF Carpets 

 

Fig. 1.6: Gaussian analysis of pair correlation carpets to extract average delay time(s) Rac1 
takes to diffuse along simulated and in vivo line scans. 
We smoothed every column in the derived pair correlation carpets by use of a Gaussian filter and then 
extracted the average peak time(s) for every 20 columns to obtain a simplified temporal profile of the 
molecular flow occurring at each consecutive location along the line scan. We then plotted the extracted 
peak time(s) as a function of position along the line scan. (A) Pair correlation carpet presented in Fig. 
1.1H and an example of how the Gaussian filter smooths the pair correlation profile at two columns (120 
and 140). (B) Pair correlation carpet presented in Fig. 1.2E and an example of how the Gaussian filter 
smooths the pair correlation profile at two columns (140 and 160). (C) Pair correlation carpet presented in 
Fig. 1.2F and an example of how the Gaussian filter smooths the pair correlation profile at two columns 
(200 and 220). The analysis presented in (A)-(C) enabled us to extract the average time(s) for molecular 
flow every 20 columns from pixel 60-220. 
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1.7.2 Simulation Program Details 

 We simulate 100,000 molecules, which, given the dimension of the cell (Fig. 1.5) and an 

assumed height of 1µm, corresponds to a concentration of 0.94µM. We monitor each molecule’s 

position: (x,y) and state: ‘bound’ or ‘unbound’. All molecules are updated simultaneously during 

each time step. Depending on the state of the particle, we calculate its new position (Diffusion) 

then determine if its state changes (Reaction). Consider the following, short pseudo-code. 

For each time step: 
I. ‘Unbound’ molecules: diffuse with Dunbound = 10 µm2/s  

a. If outside the cell, then reflect position back inside cell 
b. If inside an island, then generate a random number to determine if ‘bound’ 

II. ‘Bound’ molecules: diffuse with Dbound = 1 µm2/s 
a. If outside the island, then reflection position back inside the island 
b. Generate random number to determine if ‘unbound’ 

 
1.7.3 Calculating Diffusion Steps 

 We use Eq 1.1 to calculate the molecules’ new position. That is, for each spatial 

dimension:  (    )   ( )   √    . Here, W is a random number drawn from a Gaussian 

Distribution with mean 0 and variance 1. We calculate this random number using the Box-Muller 

Method, as implemented in the “curand” library of the CUDA 4.0 Toolkit. 

 Molecules are restricted to certain regions: ‘unbound’ molecules must remain inside the 

cell, and ‘bound’ molecules must remain inside the island to which they are bound. These rules 

are enforced by imposing reflective boundaries at the cell wall and the edges of the actin islands 

respectively. In the next two sections, we discuss how the reflections for each boundary are 

calculated. 

Reflections off Cell Boundaries 

 The cell’s boundary can be described as three lines: the ‘top’ boundary traversing from 

(0, 0) to (25.6, 2.5), the ‘bottom’ boundary traversing from (0, 0) to (25.6, –2.5), and the ‘right’ 
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boundary traversing from (25.6, –2.5) to (25.6, 2.5) (Fig. 1.5). We describe each line in the form: 

ax + by + c = 0 (restricting a > 0). Specifically, the ‘top’ boundary is: 

 
                     (1.7) 

The ‘bottom’ boundary is: 

 
                     (1.8) 

The ‘right’ boundary is: 

 
                    (1.9) 

Let (x', y') be the position that lies outside the cell. Accordingly, the distance from the point (x', 

y') to a line can be calculated using the expression: 
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√     
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Hence, the point (x', y') can be reflected off the ‘top’ and ‘bottom’ boundaries using the equation: 
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To reflect the point (x', y') off the ‘right’ boundary, we calculate: 
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| (1.12) 

 During the diffusion of an ‘unbound’ particle, we check if the new position is outside the 

cell. That is, the position is above the ‘upper’ boundary:    (
   

    
)   , below the ‘lower’ 

boundary:    (
    

    
)   , and/or beyond the ‘right’ boundary:        . If the particle is out of 

bounds, then we reflect the proposed position with respect to the appropriate boundary. For 

example, if the position is too high, then we reflect the position about the upper boundary. This 

method of checking and reflecting is repeated until all checks pass (i.e. the position is inside the 

cell) or twenty-five reflections have been made. This latter condition protects against pathogenic 
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cases that lead to an infinite check/reflect loop. These rare cases occur when the position is close 

(within numerical error) to a corner of the cell boundary. These cases are resolved during 

diffusion in the next time step. 

Reflections off Actin Island Boundaries 

 To reflect a particle inside an actin island (which is a circle in our 2D model), we must 

know the particle’s initial position inside the island,  ⃑, the proposed position outside the island,  ⃑, 

and the center position of the island,  ⃑ (Fig. 1.7). 

 

Fig. 1.7: Important Vectors for Reflecting Inside Actin Island. 
Here, we diagram an example of a ‘bound’ particle being reflected back inside an actin island while 
diffusing during a single time step. Initially the particle is at point i; after freely diffusing for one time 
step, the proposed final position is at point p. The particle crosses the circular actin island’s boundary at 
point x. For a reflective boundary, the true final position is at point f. Important vectors between these 
points are indicated. See the text below for details on how to determine the final, reflected position given 
the points i, p, c and the radius r of the island. 

First, we find the intersection point (denoted  ⃑) between the attempted trajectory ( ⃑   ⃑   ⃑) and 

the circle. The attempted trajectory defines a line which can be written  ⃑    ⃑. 
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  ⃑    ⃑     ⃑ (1.13) 

Because  ⃑ lies on the boundary, we know the following constraint: ( ⃑   ⃑)  ( ⃑   ⃑)    , 

where   is the radius of the island. After substituting Eq 1.13 into the constraint, we solve for tx: 

 

     
 ⃑  ( ⃑   ⃑)    √   

‖ ⃑‖ 
 

    ( ⃑  ( ⃑   ⃑))
 
 (‖ ⃑‖ )(   ‖ ⃑   ⃑‖ ) 

(1.14) 

Hence, numerically,  ⃑ is found by substituting known values into Eq 1.14 then Eq 1.13. 

 The vector  ⃑⃑ ( ⃑⃑   ⃑   ⃑) is the erroneous portion of the particle’s trajectory; that is, the 

portion in which the particle traveled outside the actin island. To correct the trajectory and reflect 

the particle back inside the island, we reverse the radial component of  ⃑⃑. The vector  ⃑⃑⃑ is the 

corrected continuation of the trajectory. The magnitudes of  ⃑⃑ and  ⃑⃑⃑ are equivalent. They differ 

by twice the radial component of  ⃑⃑ (Eq 1.15). We denote the direction pointing towards the 

center of the island as ( ⃑   ⃑)̂  
 ⃑  ⃑

‖ ⃑  ⃑‖
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(1.15) 

And, because  ⃑⃑⃑   ⃑⃑   ⃑   ⃑, we can calculate  ⃑ from Eq 1.15 using the expression: 

  ⃑     ⃑  (
 

  
) ( ⃑⃑  ( ⃑   ⃑))( ⃑   ⃑) (1.16) 

 We diffuse a ‘bound’ particle within the circular actin island. The particle is allowed to 

diffuse freely in space. If the particle lands on the edge of or outside the island, then we reflect 

the particle back inside. To catch any pathological cases, arising from numerical error & 

computational limitations, we re-check if the particle is completely inside. In some rare cases, 
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this re-check will fail; that is, even after reflecting the particle, the new position will still be on 

the edge of or outside the island. For those scenarios, we repeat the entire process and calculate a 

different diffusion step. We find these pathological cases occur when the starting position is 

close (within the numerical error) to the island boundary. 

1.7.4 Calculating Reaction Probabilities 

 After calculating the diffusion step, an ‘unbound’ molecule positioned in an island has a 

probability to bind, and a ‘bound’ molecule has a probability to unbind. We calculate these 

probabilities such that the reactions are simulated in a biophysically relevant regime. Our 

proposed model for the diffusion of Rac1 in the cell does not (nor is it necessary to) speculate on 

exact values of the reaction rates for the different actin islands. Instead, our model proposes 

different binding affinities in each island. Below, we derive the relationship between the reaction 

rates of each island and the probabilities of reaction. 

 We write out the Master Equation for the binding reaction on the ith island: let A denote 

the number of ‘unbound’ Rac1 throughout the cell and   
  denote the number of ‘bound’ Rac1 in 

the ith island. 

   
 ̇    (   

  
 

 
)    (    

 )  
  (1.17) 

Here,    
  and     

  are the reaction rates for the ith island, and V is the volume of the cell (we set 

the cell thickness to 1µm). The unbinding term, (    
 )  

 , describes the number of molecules 

which will unbind from the ith island during the infinitesimal time dt. The unbinding term is 

derived from multiplying the off rate by the number of molecules eligible to unbind:   
 . The 

binding term, (   
  

 

 
) , describes the number of molecules that will bind to the ith island 
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during the infinitesimal time dt. The binding term is derived from multiplying the on-rate by the 

“concentration” of the island and by the number of molecules eligible to bind to the island. 

 (   
 ) (

 

  
) (

  

 
 )    (    

 

 
)  (1.18) 

Here, vi is the volume of the ith island; hence,  

  
 is the “concentration” (since the unit for 

concentration is inverse volume) of actin. The number of molecules eligible to bind is the 

number of unbound molecules located inside the island; this value is equal to the total number of 

unbound molecules, A, scaled by the probability of being located in the ith island:   

 
. 

 At equilibrium, the number of binding and unbinding events is balanced; we set Eq 1.17 

equal to 0 and solve for the KD. 

   
    

    
 

   
 

   
 

  
  

 

 
 (1.19) 

We multiply the right-hand-side by     

    
, in order to rewrite the equation in terms of the fraction 

(with respect to the entire population) of bound and unbound molecules. We denote the fraction 

of molecules bound to the ith island as   
 

    
   . We write the fraction of unbound molecules as 

 

    
   ∑      , where   is the total fraction of molecules bound in all islands. 

 
    

 

   
 

 
 

 

 

  
  

    

    
 

   

  
 
 

 
 (1.20) 

 We determine the probability a molecule reacts (both binding and unbinding processes) 

in a time Δt. We choose a sufficiently small time step (1µs) such that we may assume a single 

molecule can perform only one reaction (bind or unbind) during that time step. Hence, we may 

separately solve the differential equations describing each reaction (i.e. each term in Eq 1.17). 

 The probability a molecule unbinds during a time step is equal to: 



31 
 

 

 

          
                             

                           
 

   
  

 ( )    
 (    )

  
 ( )

 

(1.21) 

Where   
 ( ) is the number of molecules bound to the ith island as a function of time. We choose 

a small time step such that only the ith island unbinds. 

 

  
 ̇           

  

  
 ( )                

(1.22) 

Substituting Eq 1.22 into Eq 1.21, we find: 

                        (1.23) 

 The probability any unbound molecule binds to the ith island during a time step is equal 

to: 

 

      
                           

                             
 

   
 ( )   (    )

 ( )
 

(1.24) 

Where A(t) is the number of unbound molecules as a function of time. We choose a small time 

step such that only the ith island binds. 

 

 ̇        
  

 

 
   

 ( )        
    

 
 
     

(1.25) 

Substituting Eq 1.25 into Eq 1.24, we find: 

              
    

 
 
      (1.26) 
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Eq 1.26 describes the probability that any unbound molecule will bind to the ith island. We 

rewrite this overall probability as joint probability of, one, the probability an unbound molecule 

is located inside the ith island and, two, the probability that the same molecule binds: 

                    (
  

 
)      (1.27) 

Hence, the probability that an unbound molecule located inside an actin island binds during a 

time step Δt is given by: 

         (
 

  
) (       

    
 
 
     ) (1.28) 

 The exponentials in Eqs 1.23 and 1.28 can be simplified by using the first two terms of 

their Taylor Expansion. These two expressions for the probability of unbinding and binding can 

then be written as: 

                    (1.29) 

              
 

  
    (1.30) 

We combine Eqs 1.20, 1.29 and 1.30 to get three equal expressions for the KD relating the 

reaction rates, fraction bound in each island and the probabilities of reacting. 

   
    

    
 

   
 

   
   

  
 
 

 
   

       

     
 
 

  
 (1.31) 

In every simulation, we customize the affinities for each island; that is, we choose the set of fi. 

We perform two simulations for each set of affinities: in one, the off-rate is assigned a value and 

kept constant while the on-rate is varied; in the other, the on-rate is assigned a value and kept 

constant while the off-rate is varied. The affinities of the islands and the macro-chemistry are the 

same for both cases; however, the mechanism is slightly different between the two cases. An off-

rate is assigned such that the time scale for unbinding is equal to the time scale for diffusing 
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across an actin island in the ‘bound’ state (Eq 1.6). Table 1.1 summarizes the reaction rates, 

fraction bound and reaction probabilities for each simulation. 

1.7.5 Full Set of Simulation Parameters 

 In all simulations, the volume of the cell (V = 64µm3), the volumes of all islands (v = 

3.14µm3), and the time step (Δt = 1µs), are all kept constant. We vary the fraction bound in each 

island. In Table 1.1, the values for the islands are reported as {A, B, C, D}, where ‘A’, ‘B’, ‘C’ 

& ‘D’ are the labels for each island as shown in Fig 1.5.



 
 

Simulation 
Set-up  ⃑      

⃑⃑ ⃑⃑ ⃑⃑  ⃑ ( 

 
)    

⃑⃑ ⃑⃑ ⃑⃑   (    

   
)        

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑      
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   

Fig 1.1C & 1.4B {0.125, 0.125, 
0.125, 0.125} 

{0.5, 0.5 
0.5, 0.5} 

{4.8, 4.8, 
4.8, 4.8} 

{0.5×10-6, 0.5×10-6, 
0.5×10-6, 0.5×10-6} 

{2.55×10-6, 2.55×10-6, 
2.55×10-6, 2.55×10-6} 

Fig 1.3A {0.1875, 0.0625, 
0.0625, 0.0625} 

{0.5, 0.5 
0.5, 0.5} 

{5.78, 1.927, 
1.927, 1.927} 

{0.5×10-6, 0.5×10-6, 
0.5×10-6, 0.5×10-6} 

{3.056×10-6, 1.019×10-6, 
1.019×10-6, 1.019×10-6} 

Fig 1.3D {0.25, 0.1875, 
0.125, 0.0625} 

{0.5, 0.5 
0.5, 0.5} 

{13, 9.7, 
6.5, 3.36} 

{0.5×10-6, 0.5×10-6, 
0.5×10-6, 0.5×10-6} 

{6.79×10-6, 5.09×10-6, 
3.4×10-6, 1.7×10-6} 

Fig 1.3G {0.0625, 0.125, 
0.1875, 0.25} 

{0.5, 0.5 
0.5, 0.5} 

{3.36, 6.5, 
9.7, 13} 

{0.5×10-6, 0.5×10-6, 
0.5×10-6, 0.5×10-6} 

{1.7×10-6, 3.4×10-6, 
5.09×10-6, 6.79×10-6} 

Fig 1.4D {0.03125, 0.0625, 
0.09375, 0.125} 

{0.5, 0.5 
0.5, 0.5} 

{0.912, 1.75, 
2.6, 3.5} 

{0.5×10-6, 0.5×10-6, 
0.5×10-6, 0.5×10-6} 

{4.63×10-7, 9.26×10-7, 
1.39×10-6, 1.85×10-6} 

 
Table 1.1 Reaction Rates and Probabilities 
The reaction rates and corresponding probabilities are shown for each simulation presented in this chapter. Column 1 indicates a figure, which 
shows a cartoon sketch of a simulation. Column 2 shows the average fraction of molecules bound to each island. Columns 3 and 4 indicate the 
reaction rates for each island, and columns 5 and 6 show the corresponding reaction probabilities.

34 
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1.7.6 Generating an Intensity Carpet 

 To generate an intensity carpet as done in vivo [3,5,6] for our in silico data, we tally the 

number of molecules in each bin sequentially, measuring for 25µs at a time. If we label the 256 

bins from 0 to 255 and let t be the current simulation time (in µs), then the current bin being 

tallied is 

 (     (
 

  
))          (1.32) 

Where ‘floor(x)’ is a function which returns the largest integer that is less than or equal to x. And 

where ‘mod’ indicates the modulo arithmetic operator. The tally is incremented for every particle 

positioned inside the current bin after diffusing and reacting. For example: for t ϵ [0, 24], we 

tally the particles in bin 0; for t ϵ [25, 49], we tally the particles in bin 1; for t ϵ [6375, 6399], we 

tally the particles in bin 255, and for t ϵ [6400, 6424], we tally the particles in bin 0. We store 

these tallies as a matrix with 256 columns (one for each bin), and 47000 rows (one for each line 

scan). 

1.7.7 Hardware Details 

 This program was written in CUDA C using the CUDA 4.0 Toolkit. CUDA is a publicly 

available parallel programming architecture built for Generally Programmable Graphics 

Processing Units (GPGPUs), specifically, those manufactured by the NVIDIA ® Corporation. 

Utilizing GPGPUs, we are able to simultaneously access hundreds of computational processors 

in parallel. Because each particle is independent of all others, we parallelize our algorithm at the 

particle level. That is, we launch one computational thread in the GPU for each particle in our 

simulation. Each thread performs all necessary calculations for reacting and diffusing a single 

particle. All threads and particles are periodically synchronized in time. Every 12.8ms of 

simulation time, we stop the threads’ calculations and have the CPU download the tallies for the 
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Intensity Carpet to the RAM. Additionally, the CPU downloads & prints to a file the position & 

state data of all particles. We run our simulations on the Kill Devil Research Computing Cluster 

at UNC. Specifically, the program is executed on a computing node whose hardware includes a 

12-core 2.67 GHz Intel processor, 48 GB of RAM and an NVIDIA M2070 GPGPU.  
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CHAPTER 2: A MODEL OF GRADIENT SENSING IN THE CONTEXT OF YEAST 
MATING2 

Introduction 

 Sensing an external chemical gradient is a fundamental process in cell biology present in 

areas such as cancer metastasis, wound healing and embryogenesis. This ability, of decoding 

spatial information, allows cells to move or grow towards a favorable environment or away from 

an unfavorable environment. Most eukaryotic cells use a spatial detection mechanism, wherein 

one portion of the cell membrane has more active receptors than the other regions. This skewed 

distribution of active receptors reflects the external chemical gradient. Some cells, like yeast (S. 

Cerevisiae), are capable of detecting extremely shallow gradients, wherein the noise from 

molecular diffusion and stochastic reactions is thought to obscure the desired spatial information. 

Accordingly, various mechanisms have been proposed to explain how yeast cells overcome this 

poor signal to noise ratio. To quantitatively assess these mechanisms, we develop a particle-

based stochastic reaction-diffusion model. This approach monitors the position of individual 

molecules and models the two sources of noise present during gradient sensing: diffusion and 

stochastic binding and unbinding reactions. Here, we first outline the model used to investigate 

the distribution of active receptors by simulating the reversible binding reaction between 

pheromone and receptor. Second, to evaluate two potential noise-reduction mechanisms, we 

discuss adding receptor endocytosis and the pheromone protease Bar1 to our model.

                                                           
2 This chapter is being drafted as part of a publication to be submitted to the journal PLoS Computational Biology. It 
is authored by Lakhani V and Elston T. 
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2.1 Overview 

 We first describe the important biophysical features of gradient sensing that the model 

should capture. The model must be able to resolve individual signaling molecules in a 

continuous 3-dimensional space. It also should faithfully capture the stochastic properties of 

diffusion of both the extracellular signaling molecules and receptors in the cell membrane, and of 

the biochemical reactions involved in ligand binding and release and receptor internalization. For 

these reasons, we choose a Particle-Based Stochastic Reaction-Diffusion model. When 

simulating this model, molecules are modeled as non-colliding point particles which can 

stochastically diffuse and react, discretely in time and continuously in space. 

 We simulate molecules in a cubic volume (10μm by 10μm by 10μm). We model the cell 

as a sphere with a radius of 2.5μm at the center of the volume (Fig. 2.1). The state of the system 

is defined by the position of every pheromone and receptor molecule as well as the state of each 

receptor (occupied or empty). Pheromone molecules cannot be located inside the cell, and 

receptor molecules are restricted to the surface of the cell. Given the current state at time t0, we 

determine the subsequent state at time t0 + Δt, where Δt is a time step of fixed length, by 

calculating all binding reactions, unbinding reactions and diffusion of each molecule. A binding 

event occurs during the time step, Δt, with probability Pbind (Table 2.1), if a pheromone molecule 

is within rbind = 4nm (binding radius) of an unbound receptor (Fig. 2.1A). An unbinding event 

occurs during the time step, Δt, with probability Punbind = 1.1×10-9 (Table 2.1). A bound receptor 

releases a pheromone molecule 4nm (unbinding radius) away at a randomly chosen angle (Fig. 

2.1A). During diffusion, each particle stochastically moves to a new position with appropriate 

conditions enforced at the boundaries of the cubic volume and the cell (Fig. 2.1B – D). The time 

step is chosen such that the length scale of pheromone diffusion (√     ) is similar to the 
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binding radius (4nm). Our model captures the stochasticity due to reactions and diffusion, and 

our model monitors the exact position of all molecules in a 3D space. Below, we explain the 

microscopic rules that each molecule follows. 

 

Fig. 2.1: Simulations on our Particle-Based Stochastic Reaction-Diffusion Model 
Illustration for microscopic rules. (A) Rules for the binding and unbinding reactions. During each time 
step (Δt), an 'unbound' receptor ( ) may capture one, nearby pheromone molecule ( ). The dashed green 
circle indicates the binding radius; only pheromone molecules within this region can bind. A 'bound' 
receptor ( ) may unbind. The new pheromone molecule is released a fixed distance (the unbinding 
radius) away from the receptor, indicated by the dashed red circle. No pheromone molecules are created 
inside the cell. (B) Rules for diffusion near the 'y' and 'z' boundaries. Pheromone diffusion is calculated 
every time step (Δt). Any molecule that diffuses outside the 'y' or 'z' domains are reflected back into the 
volume of interest. (C) Rules for diffusion near the cell surface. Pheromone molecules reflect off the 
surface of the cell. Here, the molecule is shown to have taken many diffusion steps, because a longer time 
has elapsed (Δτ) than in (A) or (B). Receptor diffusion on the cell surface is calculated on this longer time 
scale (Δτ). (D) Rules for diffusion near the 'x' boundaries. At these boundaries, pheromone molecules 
freely diffuse for a time (Δτ), shown by the two wiggly tracks. After Δτ time has elapsed, all pheromone 
molecules outside the 'x' boundaries are removed (fate of top molecule). No consequences are suffered by 
molecules that exit and re-enter the volume (fate of middle molecule). Lastly, new molecules are created 
every Δτ near the 'x' boundaries (new bottom molecule). The new molecule is a placed a random length 
(called the ‘injection distance’) away from the 'x' boundary (shown by the green arrow). 
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Table 2.1: A Typical Parameter Set 
The first portion contains all the parameters necessary to uniquely define a simulation of our model. The 
second portion contains additional, informative values that are calculable from the first portion. 
 

 Parameter Value Description 

Customizable 
Parameters 

XDom 10 µm Length of x-domain 
YDom 10 µm Length of y-domain 
ZDom 10 µm Length of z-domain 

Δt 1 µs Time Step 
Δτ 50 µs Coarse Time Step 
R 2.5 µm Radius of Cell 
Dα 125 µm2/s Pheromone Diffusion Constant [1] 

Grad 0.1 nM/µm Pheromone Concentration Gradient along x-axis 

Conc 6.9 nM Background Pheromone Concentration (equal to 
KD) 

DSte2 0.0025 µm2/s Receptor Diffusion Constant [2] 
N 10000 Number of Receptors on Cell Surface [3–6] 
kon 1.6×105 (M·s)-1 Binding Rate [7] 
koff 0.0011 s-1 Unbinding Rate [7] 
rbind 4 nm Binding Radius 

runbind 4 nm Unbinding Radius 

Additional 
Values 

Pbind 0.002 Binding Probability 
Punbind 1.1×10-9 Unbinding Probability 

KD 6.9 nM Pheromone/Receptor Dissociation Constant [7] 
chigh 7.4 nM Concentration at High Boundary (x = 5µm) 
clow 6.4 nM Concentration at Low Boundary (x = –5µm) 

ninj High 19.88 Average Number of Pheromone to create at High 
Boundary 

ninj Low 17.19 Average Number of Pheromone to create at Low 
Boundary 

dinj 
Random from 

Eq 2.6 
List of injection distances: random numbers from 

Eq 2.6 
 
2.2 Binding Reactions 

 In most particle-based stochastic reaction-diffusion simulations, a binding event is 

executed as follows. When a ligand molecule is close to (within the binding radius of) an 

unbound receptor molecule, the ligand molecule is removed from the system, and the receptor 

molecule is switched to the ‘bound’ state. To match the macroscopic binding kinetics, the 
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binding radius is calculated from the binding rate and the diffusion constants of the two 

molecular species: 

 
      

   

  (        )
 (2.1) 

This expression can be derived from Fick’s Law of diffusion and works well when the reaction is 

diffusion limited; however, α-factor binding to Ste2 is not diffusion limited. Using the rates 

reported in the literature, this approach requires a binding radius on the order of Angstroms, 

which is much smaller than the size of Ste2 (GPCRs protrude about 4nm outside the cell 

membrane [8]). As discussed by Erban and Chapman the unrealistic binding radius results from 

the assumption that the binding probability is 100% [9]. That is, a ligand molecule within the 

binding radius of an unbound receptor binds with certainty. The model put forward by Erban and 

Chapman, removes this assumption and establishes a mathematical framework, in which the 

binding probability is a function of the binding radius [9,10]. That is, a ligand molecule within a 

specified binding radius binds with a probability that produces an average binding rate consistent 

with the macroscopic rate constant kon. We choose the binding radius to be 4nm and calculate the 

binding probability by numerically solving the system: 
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derived by Erban and Chapman [10]. For example, using the values for Δt, kon, Dα, DSte2, rbind and 

runbind shown in Table 2.1, a pheromone molecule has a 0.2% chance of binding. We provide a 

detailed description of how we calculate the probability in Section 2.9. Our customized binding 

radius and binding probability make our method more accurate and physically realistic than other 

methods. 

2.3 Unbinding Reactions 

 A ‘bound’ receptor molecule unbinds its ligand molecule in the following way. A new 

ligand molecule is created a fixed distance away from and in a random direction from the 

receptor (Fig. 2.1A). The fixed distance is called the unbinding radius (runbind). We avoid creating 

the newly released pheromone molecule inside the cell. Lastly, the receptor molecule is switched 

to the ‘unbound’ state. Given an experimentally measured unbinding rate, we can calculate the 

unbinding probability, that is, the probability each ‘bound’ receptor has to unbind, using: 

              [        ] (2.3) 

As with the binding radius, we also set the unbinding radius to be 4nm. 

2.4 Diffusion of Pheromone 

 Each pheromone molecule diffuses freely in our volume of interest. To diffuse a 

pheromone molecule in 3D, let (x(t), y(t), z(t)) be the position at time t,  then the new position 

(x(t + Δt), y(t + Δt), z(t + Δt)) is found from the following equations: 
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  (    )   ( )    √     (2.4a) 

  (    )   ( )    √     (2.4b) 

  (    )   ( )    √     (2.4c) 

The factors W1, W2 and W3 are each random numbers drawn from a Gaussian Distribution with a 

mean of 0 and a variance of 1. The new position is modified if it is located outside the simulation 

volume or inside the cell. Reflecting boundary conditions are imposed at four of the boundaries: 

y = ±5μm and z = ±5μm. Any pheromone molecule that diffuses outside of these boundaries (y < 

–5μm, or y > 5μm, or z < –5μm, or z > 5μm) is reflected back into the volume (Fig. 2.1B). 

Additionally, pheromone molecules reflect off the surface of the cell, because the cell membrane 

is impermeable to pheromone (Fig. 2.1C). This boundary condition prevents pheromone 

molecules from being located inside the cell. Details for calculating the reflection off the cell 

surface are provided in Section 2.10. 

 The last two boundaries, x = ±5μm, are each uniquely defined, because we wish to 

establish a linear pheromone gradient along the x-axis. We describe two different methods for 

treating the x = ±5μm boundaries, each of which can establish a gradient. In method 1, each 

boundary has a fixed concentration. In method 2, one boundary has a fixed concentration while 

the other is partially absorbing. The next two sections describe the physical interpretation and 

algorithmic implementation for each method. 

2.4.1 Pheromone Gradient – Method 1 

 In this method, we model a fixed concentration at each boundary. A gradient is formed 

when we set the concentration at one end of the computational domain higher than at the other. 

This method is consistent with the design of many microfluidic chambers used to study gradient 

sensing [1,11–14]. To maintain a fixed concentration at each boundary, pheromone molecules 
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are added to and removed from the simulation volume in processes called ‘injection’ and 

‘ejection’, respectfully (Fig. 2.1D). 

 For ejection, we remove all pheromone molecules located outside the boundaries (x < –

5μm, or x > 5μm) (Fig. 2.1D). For injection, we create a number of new pheromone molecules 

and position them near either the x = 5μm or x = –5μm boundary. On average, the number to 

inject at each time step is calculated using the equation: 

      
      

      
    √

    

 
 (2.5) 

where c is the desired pheromone concentration at the boundary; a is the area of the boundary 

(100μm2 for most of our simulations); Dα is the diffusion constant for pheromone molecules, and 

Δτ is the elapsed time between two injection processes. The derivation of Eq 2.5 is found in 

Section 2.11. Although Eq 2.5 provides the average number of molecules to be injected, due to 

the stochastic nature of diffusion, the actual number injected can vary for a given time step. 

During an injection step, the number to inject is a random number drawn from a Poisson 

distribution with a mean of ninj. The position of a newly injected molecule is also determined 

randomly. The ‘y’ and ‘z’ positions are determined from a uniform probability distribution 

across their respective domains (e.g between –5μm and 5μm, inclusively). The ‘x’ position is 

calculated as a random distance, called the ‘injection distance’, into the simulation volume from 

the boundary (Fig. 2.1D). The probability distribution function for the injection distance, dinj, is 

given by: 

  (    )  
 

 
[  erf (
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)] (2.6) 

The derivation of Eq 2.6 and further discussion for implementing Eq 2.6 are provided in Section 

2.11. Because it is computationally difficult to generate a random number from the distribution 
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given by Eq 2.6, we select a random value from a pre-calculated long list. This list has more than 

12 million random values whose distribution matches Eq 2.6.  

 For computational efficiency, injection and ejection of particles are implemented on a 

slightly coarser time scale, Δτ, than the time scale for diffusion Δt. It is important to note that 

ejection and injection must be calculated on the same time scale. Details and justification for the 

two time scales are discussed below in Section 2.6: “Algorithm Overview”. 

2.4.2 Pheromone Gradient – Method 2 

 In this method, we model a fixed concentration at one boundary (x = 5μm), while the 

other boundary (x = –5μm) is partially absorbing. We use this method for simulations in which 

pheromone molecules flow toward the cell from one direction (  ̂) (Section 3.5). 

 At the x = 5μm boundary, ejection is the same as method 1. The average number of 

molecules to inject, ninj, at each time step is given by: 

      
      

      
 (   √

    

 
   

 

 
        ) (2.7) 

The derivation of Eq 2.7 is found in Section 2.11. Note that in addition to defining the desired 

concentration at the boundary, c, we also define the desired gradient at the boundary: g. Eq 2.5 is 

a special case of Eq 2.7, in which there is no gradient (g = 0 nM/μm) outside our volume (x > 

5μm). 

 At the x = –5μm boundary, no new molecules are injected, and during ejection, not all 

molecules located outside the boundary (x < –5μm) are removed. Instead, each pheromone 

molecule has a probability of being reflected back inside the volume; otherwise, the molecule is 

removed. To achieve a steady state gradient of g, the probability of reflection is given by: 
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(2.8) 

if and only if,  
 

 
 √       

The derivation of Eq 2.8 is found in Section 2.11. Δτ is the elapsed time between two ejection 

processes. The concentration, c, and gradient, g, are the steady state concentration and gradient at 

the x = –5μm boundary when no cell is present in the computational domain. Because the 

pheromone molecules coming from the opposite boundary must diffuse around the cell, the 

resulting concentration will be less than c, and the gradient will be steeper than g. 

 As in method 1, the injection and ejection processes are implemented on a slightly 

coarser time scale, Δτ, than the primary time scale: Δt. Because these processes are calculated 

less frequently, our program is more computationally efficient. 

2.5 Diffusion of Receptors 

 Each receptor molecule, ‘bound’ or ‘unbound’, diffuses on the cell membrane (Fig. 

2.1C). We approximate diffusion on this surface by first diffusing the receptor in 3-dimensions 

and then projecting the receptor back onto the surface of the cell. This approach is 

computationally efficient and accurate for small time steps. The details of these two steps for 

diffusing a receptor molecule are as follows. First, a new position is calculated using Eqs 2.4 and 

a diffusion constant appropriate for proteins in the plasma membrane (D = 0.0025 μm2/s) [2]. Let 

this new position be ( ̃  ̃  ̃). Second, we project ( ̃  ̃  ̃) onto the surface of the cell, which is 

modeled as a sphere of radius R and centered at the origin (0, 0, 0) using the equations: 

  ̃  √ ̃   ̃   ̃  (2.9a) 
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  (    )   ̃
 

 ̃
 (2.9b) 

  (    )   ̃
 

 ̃
 (2.9c) 

  (    )   ̃
 

 ̃
 (2.9d) 

The derivation of Eq 2.9 is provided in Section 2.12. For computational efficiency, we diffuse 

the receptors on a slightly coarser time scale, Δτ, than the primary time scale: Δt. We do not 

sacrifice much accuracy, because the diffusion constant for membrane-bound receptors is small 

compared to that of extracellular pheromone molecules. 

2.6 Algorithm Overview 

 Our simulation algorithm and order of operations closely follows the general algorithm 

described by [10]. We modify their algorithm, because of the spatial domains (inside, on or 

outside the cell) and non-uniform distribution of molecules (the ligands have a linear 

concentration gradient and the receptors are restricted to the surface of the sphere). Our 

simulation algorithm is broken into the six processes described above: binding reactions, 

unbinding reactions, diffusion of pheromone molecules, ejection of pheromone molecules, 

injection of pheromone molecules and diffusion of receptors. The last three processes are 

simulated over a more coarse time scale (time step = Δτ) than the first three processes (time step 

= Δt). Below, we outline the pseudo-code of our simulation algorithm. 

At each time step 
I. Binding Reactions – Each ‘unbound’ receptor has a chance to bind a single, nearby 

pheromone molecules. 
II. Unbinding Reactions – Each ‘bound’ receptor, including those from step 1), has a chance to 

release its pheromone molecule. 
III. Pheromone Diffusion – Each pheromone molecule diffuses. They reflect off the cell’s 

surface, the y=±5µm and z=±5µm boundaries. 
After every (Δτ/Δt) steps 

IV. Receptor Diffusion – Each receptor molecule diffuses on the surface of the cell. 
V. Ejection – Remove all pheromone molecules outside the x=±5µm boundaries. 
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VI. Injection – Add new pheromone molecules near the x=±5µm boundaries. 

 We choose the coarse time scale, Δτ, based on two criteria. One, receptor diffusion 

should not be many times larger than the binding radius. And two, the average injection distance 

should be much less than 2.5µm, which is the distance from the x = ±5μm boundaries to the cell. 

For Δτ = 50μs, receptors diffuse about 0.5nm, which is much smaller than 4nm. Also for Δτ = 

50μs, the average injection distance is about 0.05µm, which is much smaller than 2.5µm. 

 This model, which we derived from physical processes, falls under the class of 

computational models known as Agent-Based Models. In terms of this class, we simulate many 

molecules (the “agents”), each of which follows a set of rules. Because many of these rules are 

independent of other molecules, we can parallelize the algorithm at each process. For example, 

during pheromone diffusion, process III, a new position is calculated for each pheromone 

molecule. This calculation is independent from all other molecules. Hence, the diffusion of many 

pheromone molecules can be calculated simultaneously. Ideally, we would calculate the new 

position of every pheromone molecule in parallel. To achieve massive parallelization with 

minimal coding effort, we turn to Hardware Acceleration using NVIDIA GPUs. We write the 

program in CUDA C, which is an extension of the C Programming Language, developed by 

NVIDIA to facilitate High Performance Computing on their GPGPUs. Each of the six processes 

is executed on the GPU, one at a time, as arranged above, in order to ensure all reactions are 

complete before the molecules diffuse. That is to say, there is a global synchronization between 

processes. 

2.7 Receptor Cycling Model 

 To determine if receptor cycling can reduce noise, we have developed a simplified model 

of receptor cycling. We compare simulations of the basic model described above, in which 
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receptors bind and unbind pheromone, to simulations of the simplified receptor cycling model, in 

which receptors bind pheromone and are endocytosed. Specifically, an active (pheromone-

bound) receptor, Ste2*, can be endocytosed and replaced with an unbound receptor, Ste2. The 

new Ste2 molecule is added to a random position on the cell surface. This method of endocytosis 

with immediate replacement keeps the total number of receptors constant, and allows us to 

directly compare results from this model to results from the basic model. Although the 

endocytosis rate for Ste2* is 0.0021 s-1 [15,16], we use a rate of 0.0011 s-1, which is the 

unbinding reaction rate from the basic model (See Table 1). In our algorithm, process II 

(Unbinding Reactions) is replaced with the following.  

II. Endocytosis Reactions – Each ‘bound’ receptor, including those from process I), has a 
chance to be endocytosed. 

2.8 Bar1 Model 

 To determine if the pheromone protease Bar1 can reduce noise and improve gradient 

sensing, we have also developed a simplified model of the cell releasing Bar1. In addition to the 

basic model described above, in which receptors bind and unbind pheromone, we include the 

reaction of Bar1 degrading pheromone. In principle this catalytic reaction can be modeled much 

like the binding reaction; that is, individual Bar1 molecules could be simulated and have a 

probability of degrading nearby pheromone molecules. However we choose to avoid the 

computational cost of this method. Instead, we model Bar1 concentration as a static, radial field 

extending from the surface of the cell: 

 [    ]( )  [    ] 
 

 
 (2.10) 

Where r is the distance from the center of the cell; R is the radius of the cell, and [Bar1]0 is the 

Bar1 concentration at the surface of the cell. Similar to previous modeling work, we set [Bar1]0 = 
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0.85nM [1]. Based on their distance from the cell surface, pheromone molecules have a 

probability of being degraded as given by: 

     ( )       [    ]( )     (2.11) 

As modeled previously, we set the catalytic reaction rate, kcat, to be 2.5×108 (M·s)-1 [1]. In our 

algorithm, the process for Bar1-mediated catalytic reaction is inserted between process II 

(Unbinding Reactions) and III (Pheromone Diffusion). Here, we label the Bar1 process as IIB. 

IIB. Catalytic Reactions – Each pheromone molecule has a chance, based on its current position, 
of being degraded. 

2.9 Calculating Binding Probability 

 To simulate the second-order reaction of a pheromone molecule binding to a Ste2 

receptor, we implement the    ̅ method developed by Erban and Chapman [9,10]. The 

equations presented here, and the technique used to numerically solve them, are taken directly 

from their paper. We deviate slightly from their technique, in that we double the binding 

probability calculated from their method (see end of this section). 

 We use the biophysical parameters defined in Table 2.1. In particular, we use the binding 

rate (kon), unbinding rate (koff) and diffusion constants for pheromone (Dα) and the receptor 

(DSte2). Furthermore, we choose a time step (Δt), binding radius (rbind) and unbinding radius 

(runbind). The binding and unbinding parameters are chosen based on the size of the receptor. The 

time step is chosen such that the combined diffusion step size is not much greater than the 

binding radius. That is, the dimensionless parameter γ (Eq 2.12) is not much greater than 1. In 

our simulations, γ ≈ 4. 

    
√ (        )  

     
 (2.12) 
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Ideally, Δt would be much smaller, so that,    . However, this time step is too small for 

practical computation, especially because we aim to simulate the system for one hour. Hence, 

because    , our chosen time step is considered “large”. Nonetheless, according to the    ̅ 

method, we can calculate the binding probability (Pbind) based on the parameters listed above. 

 The dimensionless reaction rate, κ (Eq 2.13), is related to the binding probability by Eq 

2.14, which describes the rate of removing particles in one time step. 

     
     

     
 
 (2.13) 
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     (2.14) 

The function  ( ̂) is defined below (Eq 2.15). 
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(2.15) 

The parameter α is the dimensionless ratio of the binding and unbinding radii (Eq 2.16). The 

Kernel  ( ̂  ̂ ) is derived from Green’s function for diffusion (Eq 2.17). 

     
       

     
 (2.16) 
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]) (2.17) 

To determine Pbind numerically, we use the Secant Root-Finding Method to solve Eq 2.14, which 

also requires numerically evaluating Eq 2.15. We truncate the semi-infinite integral (second term 

in Eq 2.15) and approximate  ( ̂)    for  ̂    (Eq 2.18). We choose S = 5γ ≈ 20. 
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After rearranging Eq 2.18, we get the integral equation: 
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(2.19) 

The Left-Hand Side of Eq 2.19 can be solved analytically to yield the following function of  ̂: 
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(2.20) 

For the Right-Hand Side of Eq 2.19, the integrals are numerically evaluated using the quadrature 

method. That is, the integral is approximated with a polynomial, which can be written as a 

weighted sum (Eq 2.22). We discretize the domains  ̂  [   ] and  ̂  [   ] at the Chebyshev 

nodes with n = 20 (Eq 2.21). By fitting the integrals at the Chebyshev nodes, we minimize the 

numerical error near the bounds of the integral. 
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The coefficients,   , are calculated from fitting the integral with the nth degree polynomial: 
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         ⃑  (2.23) 

where,      ( ̂ 
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for             

Eqs 2.22 & 2.23 solve the first two terms of Eq 2.19. To solve the last integral term (Eq 2.25), 

the domains  ̂  [   ] and  ̂  [   ] are discretized at the Chebyshev nodes with m = 13 (Eq 

2.24). 
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The coefficients,  ⃑ , are calculated by fitting the integral with the mth degree polynomial: 

    ⃑     ⃑  (2.26) 

where,      ( ̂ 
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for               

Using Eqs 2.22, 2.23, 2.25 & 2.26, the Right-Hand Side of Eq 2.19 is reduced to a function of  ̂ 

(Eq 2.27). Because  ̂ is discretized the same as  ̂ , Eq 2.27 produces a system of equations, 

which can be written in matrix form (Eq 2.28). 
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(2.27) 

        (2.28) 

   and    are, respectively, (n + m) × 1 column vectors of  ( ̂) (Eq 2.20) and  ( ̂) evaluated at 

the discrete  ̂ points (Eqs 2.21 & 2.24). M is a (n + m) × (n + m) square matrix, built from 

factoring out  ( ̂) and  ( ̂ ) from Eq 2.27. 

 Hence the technique is to first guess a value for Pbind. Based on this guess, we 

approximate  ( ̂) by solving Eq 2.28. This approximation is sufficient to evaluate Eq 2.14 and 

determine the accuracy of the guess. If Eq 2.14 is incorrect, then we use the Secant Method to 

update the guess for Pbind. This process is repeated until the error falls below a threshold (10-15). 

We find Pbind ≈ 0.001. 

 One important caveat for our system is to double the final value of Pbind as obtained using 

the above technique. The above equations were derived for a system in which both reactant 

species are in solution. Accordingly, ligand molecules can approach a receptor from any 

direction. However, in our system, ligand molecules can only approach a receptor from half as 

many directions (Fig. 2.2). We double the probability and use Pbind = 0.002 in our simulations. 
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 In the language of the    ̅ method, we adjust Eq 2.14, which integrates over spherical 

surface areas, to integrate over hemispherical surface areas: 

          ∫      ( )  
 

 

     (2.29) 

 

Fig. 2.2: Rationale for Doubling Pbind 
In the upper left corner, we show a 2D cartoon of the cell in our simulation: a circle with unbound Ste2 
receptors on the surface. By focusing closely on a single receptor, we see how the scale of the binding 
radius, rbind, compares to the scale of the cell. That is, the membrane appears as a straight line, because the 
cell’s radius (2.5μm) is three orders of magnitude larger than the binding radius (4nm). The membrane 
divides the binding volume (purple circle) exactly in half. Pheromone molecules can only enter this 
volume from one half. 

2.10 Calculating Pheromone Reflection off the Cell Surface 

 The cell membrane is impermeable to pheromone. Our model prevents pheromone from 

diffusing into the cell, by reflecting molecules off the surface of the cell. In our simulations, the 

cell is a sphere with a radius of R and center at (0, 0, 0). Figure 2.3 shows how we calculate these 

reflections. 
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Fig. 2.3: Reflecting Pheromone off Cell Surface 
A diagram of important vectors used to calculate how a pheromone molecule reflects off the surface of 
the cell during a single diffusion step. The molecule is initially at  ⃑, and after freely diffusing for one step, 
is positioned inside the cell at  ⃑. The desired, reflected position is  ⃑. Although the simulation is in 3D and 
the cell is modeled as a sphere, all of these points and vectors lie on a single plane (defined by the three 
points i, p and O). By using vector algebra, we may solve the system on a plane and the resulting 
equations will be valid in 3D. 

Let  ⃑ be the initial position of the pheromone molecule before diffusion. Let  ⃑ be the “proposed” 

position after diffusion, which is undesirably located inside the cell. The vector  ⃑ is the 

attempted trajectory of the pheromone molecule for a single time step. That is,  ⃑   ⃑   ⃑. If the 

molecule reflected off the cell surface, then its final position would be  ⃑. Hence, we wish to find 

a set of equations to calculate  ⃑, given  ⃑,  ⃑ and the dimension of the sphere. 

 First, we calculate the position where the molecule contacts the cell surface:  ⃑. The 

attempted trajectory,  ⃑, defines a line which can be written as  ⃑    ⃑. The intersection,  ⃑, lies on 

this line: 



58 

  ⃑  ⃑     ⃑ (2.30) 

Knowing that  ⃑    ⃑     , we can solve for tx: 

 ( ⃑     ⃑)  ( ⃑     ⃑)     (2.31) 

    
  ⃑   ⃑    √   

‖ ⃑‖ 
 (2.32) 

where,     ( ⃑   ⃑)  (‖ ⃑‖ )(   ‖ ⃑‖ )  

 Second, we calculate the vector  ⃑⃑ (Eq 2.33). This vector is the portion of the molecule’s 

trajectory that incorrectly traveled into the cell. Third, to correct the trajectory, we calculate  ⃑⃑⃑, 

which is equivalent to  ⃑⃑ except that they have opposite radial components. The direction 

pointing away from the cell is calculable from the intersection point:  ̂  
 ⃑

‖ ⃑‖
 

 ⃑

 
. Eq 2.34 shows 

that  ⃑⃑⃑ and  ⃑⃑ differ by twice their radial components. 

  ⃑⃑   ⃑   ⃑ (2.33) 
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(2.34) 

Finally, because  ⃑⃑⃑   ⃑⃑   ⃑   ⃑, we can calculate  ⃑: 

  ⃑   ⃑  (
 

  
) ( ⃑⃑   ⃑)( ⃑) (2.35) 

 Numerically, we calculate  ⃑ from Eqs 2.30 & 2.32 using known values for  ⃑,  ⃑ and R. We 

then calculate  ⃑⃑ from Eq 2.33. Lastly, we find the final reflected position,  ⃑, by solving Eq 2.35. 

2.11 Injection Boundary Condition: Derivation of Eqs 2.5 – 2.8 

 We simulate a linear pheromone gradient along the x-axis, which requires special 

boundary conditions at the x-boundaries defined by the planes:    
 

 
. We must define how 

individual molecules behave at these boundaries. 
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2.11.1 Gradient Method 1 

 One method to create a pheromone gradient is to fix the pheromone concentration at each 

x-boundary. The fixed concentrations are molecular reservoirs in the semi-infinite domains 

(   
 

 
 and   

 

 
) that extend past each planar boundary. A molecular reservoir, analogous to 

a thermal reservoir, is a large enough volume such that adding or removing molecules does not 

appreciably change the concentration. Molecules are exchanged between the simulation volume 

and the reservoir in processes called ‘injection’ (entering the simulation volume) and ‘ejection’ 

(exiting the simulation volume). These two processes are independent. For ejection, the 

molecules which leave the simulation volume are considered part of the reservoir and are no 

longer simulated. For injection, new molecules diffuse into the simulation volume. Here, we 

derive how many molecules to inject and where to inject them. 

 For simplicity, we shift the simulation domain such that   [   ] and consider the x=0 

boundary. Given the molecules’ diffusion constant, D, the concentration of the reservoir, c, the 

time step Δt, and the area of the boundary, a, we derive how many molecules will enter the 

simulation volume from the reservoir. The probability for a molecule to diffuse a distance  ̃ is: 

  ( ̃)  
 

√     
   [ 

 ̃ 

    
] (2.36) 
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Fig. 2.4: Molecular Reservoir 
A cartoon of the molecular reservoir outside one boundary. The simulation volume is colored in blue and 
continues finitely off the page. The molecular reservoir has a white background and extends to –∞. The 
border is indicated by the black, vertical dashed line. Also shown is a slice of the reservoir, with thickness 
Δx, at a distance xi from the boundary. 

Consider a thin slice of the semi-infinite volume, a distance xi from the boundary (Fig. 2.4). The 

probability for a molecule in that slice to be injected (diffuse into the simulation volume) is given 

by Eq 2.37. A molecule must diffuse a distance of at least xi and less than L + xi. 

     (  )  ∫  ( ̃)  ̃

    

  

 
 

 
[     (

  

√    
)] (2.37) 

The integral’s simplification takes advantage of    (     

√    
)   , because   √     for our 

values (Table 2.1). Note that for the slice located at the boundary, x0 = 0, Pinj = ½ as expected; a 

molecule at x = 0 has an equal chance of diffusing right (into the volume) or left (remaining in 

the reservoir). The entire reservoir can be divided into adjacent, thin slices. For the ith slice, the 

number of molecules injected is given by N · Pinj(xi), where N is the number of molecules in this 

slice. Because the reservoir has a fixed concentration of molecules, N = c · a · Δx. We sum the 

contribution from each slice and get a total number of injected molecules: 
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We make the slices infinitely small (Δx → 0), such that Eq 2.38 becomes a solvable integral: 
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 (2.39) 

2.11.2 Injection Distances 

 We define the injection distance, dinj, as the distance from the boundary that a newly 

injected molecule is placed. Here, we derive the probability of a molecule being injected a 

distance dinj. For example, Figure 2.5 shows a molecule can diffuse to the dinj position in many 

ways. That is, the molecule has many starting positions, from x = 0 (at the boundary) to x → –∞. 

Let Δx be the distance the molecule diffuses; therefore,    [      ). 

 

Fig. 2.5: Injection Distance 
A cartoon showing the many ways a molecule could diffuse a fixed distance (dinj) into the simulation 
volume (blue). The red dots show various starting positions; the molecule must travel a distance Δx in 
order to end at dinj. 
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We know, as with Eq 2.36, the probability for diffusing a distance Δx is: 
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] (2.40) 

The probability of diffusing dinj into the simulation volume is the sum of the probabilities from 

each potential starting position (Eq 2.41). We then normalize this distribution to get the 

Probability Density Function (Eq 2.42). 
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 Note that the distribution depends only on the diffusion constant and the time step. We 

empirically verify this distribution (Eq 2.42). We simulate diffusion in a cubic volume and 

record the distance the particles traveled beyond the boundaries in one time step. Figure 2.6 

shows the theoretical and empirical distributions. The recorded list has over 2.5 million values, 

and we draw a dinj for each new molecule during the simulation. 
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Fig. 2.6: Probability Density of Injection Distance 
Here we plot the probability density for an injected molecule to be placed a distance dinj into the 
simulation volume. The dashed red line is the theoretical, normalized probability density function (Eq 
2.42). The blue histogram is from simulated data. In this case,      

   

 
 and Δt = 50μs. 

 Ideally, our injection algorithm would generate a random injection distance from this 

distribution during the simulation (Eq 2.42). However, the corresponding Cumulative 

Distribution Function: 
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(2.43) 

cannot be inverted. Instead, we draw randomly from the previously generated list of injection 

distances. This table-lookup method is more computationally efficient. 
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2.11.3 Gradient Method 2 

 In Section 2.11.1, we describe a method to establish a linear gradient by fixing the 

concentration at the x-boundaries. A second method is to flow molecules from one x-boundary 

and partially absorb molecules at the opposing boundary. As in Section 2.11.1, we shift the 

simulation domain such that   [   ]. New molecules are added to the system at the x = L 

boundary, which has a higher concentration than at x = 0. 

 First, we determine the injection rate at the x = L boundary. We define the desired 

gradient, g, and the concentration at x = L is cL. Eq 2.44 describes the desired concentration 

profile at this boundary:  ̃     . 

  ( ̃)    ̃     (2.44) 

The gradient is positive (g > 0). We calculate the number to inject by changing    ( ̃) in Eq 

2.38. The resulting discrete sum is converted to an integral and solved: 
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 (2.45) 

 Second, we determine the absorption probability at the x = 0 boundary. Eq 2.46 describes 

the desired concentration profile at this boundary; c0 is the desired concentration at x = 0. 

  ( )        (2.46) 

The absorption probability, PAbs, is the probability a molecule, which has diffused outside the 

boundary (x < 0), is removed from the simulation. If the molecule is not removed, then the 

molecule is reflected back into the simulation volume. The two quantities are related: 

             (2.47) 

The reflection probability, PRef, can be calculated from the expected number of molecules 

exchanged between the reservoir and simulation volume: 
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 (2.48) 

The expected number of molecules that exit the simulation volume is nout, given by: 
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Eq 2.49 is valid for   √    , which is the case for our values (Table 2.1). The expected 

number of molecules that enter the simulation is nin. To calculate nin, a slight change in variables 

is helpful: x' = – x. Accordingly, the desired concentration profile (Eq 2.46) changes: 

  (  )          (2.50) 

Because concentration can never be negative (c(x') ≥ 0), the domain of x' is limited:    
  

 
. The 

general solution for nin is: 
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(2.51) 

For our values (Table 2.1),   

 
 √    ; therefore, Eq 2.51 simplifies: 
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Substituting Eqs 2.49 & 2.52 into Eq 2.48, we get the following expression for PRef: 
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(2.53) 
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2.12 Receptor Diffusion on the Cell Surface: Derivation of Eq 2.9 

 To calculate receptor diffusion on the surface of the cell, we first diffuse the receptor 

freely in 3D, and second, we project that new position onto the surface of the cell. Eq 2.9 

describes the latter step. Let ( ̃  ̃  ̃) be the diffused position, which we want to project onto a 

sphere with a radius of R and center at (0, 0, 0). We can write this position in Spherical 

coordinates as ( ̃  ̃  ̃), where  ̃  √ ̃   ̃   ̃ , and  ̃ &  ̃ are spherical angles. To convert 

from Spherical to Cartesian coordinates: 

  ̃   ̃     ̃     ̃ (2.54) 

  ̃   ̃     ̃     ̃ (2.55) 

  ̃   ̃    ̃ (2.56) 

The final projected position, (x, y, z), has the same spherical angles  ̃ and  ̃ but a radius of R. 

Because the angles are the same, we can equate the trigonometric factors as follows. 

  ̃

 ̃
     ̃     ̃  

 

 
 (2.57) 
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 ̃
     ̃     ̃  

 

 
 (2.58) 

  ̃

 ̃
     ̃  

 

 
 (2.59) 

Multiplying Eqs 2.57 – 2.59 by R, yields Eq 2.9. 

2.13 Measuring the Pheromone Distribution 

 To determine the distribution of pheromone molecules, we discretize the simulation 

volume with thick-walled cylinders (Fig. 2.7). The naïve approach is to discretize the space with 

small cubes; however, we recognize that our system is symmetric in the ‘y’ and ‘z’ dimensions. 

Therefore, we reduce these two spatial dimensions into one radial dimension:   √     . We 
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discretize x-axis using bins of width Δx and discretize the radial dimension using bins of width 

Δρ. Each pheromone molecule is tallied according to its x-position and distance from the x-axis 

(√     ). We determine the average number of pheromone molecules in each bin and 

subsequently calculate the concentration by dividing by the volume of each cylinder. The 

pheromone concentration is a function of x and ρ: c = c(x, ρ). Note that for ρ ≤ 2.5µm and 

  [        ]   , the cylindrical bin intersects with, or lies inside the cell. Because pheromone 

is excluded from the cell’s interior, the effective volume of these bins is reduced. The 

concentration profiles presented in the main text are c(x) for ρ ≈ 1.01µm. Hence, for –2.28µm ≤ 

x ≤ 2.28µm, the expected and measured pheromone concentration is 0 nM. 

 

Fig. 2.7: Cylindrical Bins 
This cartoon depicts how a single cylindrical bin is oriented with respect to the simulation volume. The 
cell is shown as a gray sphere in the center of the volume. The height of the cylinder is Δx, and the 
thickness of the wall is Δρ. We count the average number of pheromone molecules between the walls of 
this cylinder and divide by the volume to estimate the concentration. Specifically, we choose    
    

  
           and    

   

  
          . Molecules located near the edges of the simulation 

volume, ρ > 5µm, are not tallied. 
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CHAPTER 3: USING STOCHASTIC SIMULATIONS TO ASSESS NOISE-REDUCTION 
MECHANISMS DURING GRADIENT SENSING IN YEAST3 

Introduction 

 The ability to detect a chemical gradient is fundamental to many cellular processes. To 

survive, unicellular organisms may need to move (chemotaxis) or grow (chemotropism) towards 

a favorable environment. Some cells are capable of detecting extremely shallow gradients, even 

in the presence of significant molecular-level noise. For example, yeast cells find a mating 

partner by detecting a pheromone gradient using a spatial sensing mechanism. Reportedly, yeast 

can detect the direction of gradients as shallow as 0.1 nM/μm. Mechanisms, such as time-

averaging and the removal of pheromone molecules, have been proposed to explain how yeast 

cells filter noise and detect the shallow gradients. Here, we develop a Particle-Based Stochastic 

Reaction-Diffusion model of pheromone receptor dynamics to determine the limits of gradient 

sensing and test the efficacy of noise reduction mechanisms. We develop a novel simulation 

method for establishing chemical gradients that should find applications in other contexts. Our 

results indicate neither time-averaging nor receptor endocytosis significantly improve the cell’s 

accuracy in detecting gradients over relevant time scales. However, we do find that the 

pheromone protease Bar1 can improve the cell’s ability to detect gradients under certain 

conditions. Our results demonstrate the physical barrier of the cell membrane sharpens chemical 

gradients across the cell. This result has implications for interpreting experimental results, 

because neighboring cells can alter local gradients.

                                                           
3 This chapter is being drafted as part of a publication to be submitted to the journal PLoS Computational Biology. It 
is authored by Lakhani V and Elston T. 
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3.1 Background 

 Gradient sensing, which is the ability to detect the direction of a chemical gradient, is a 

fundamental biological process. To survive, single-celled organisms must be able to grow 

(chemotropism) or move (chemotaxis) towards a favorable chemical, such as nutrients or 

hormones, or move away from an unfavorable chemical, such as toxins. An ideal system for 

studying gradient sensing is chemotropism during the mating response in S. Cerevisiae (yeast). 

Yeast cells can exist as one of two haploid types: MATa or MATα. MATa cells seek a mating 

partner by sensing a gradient of the pheromone α-factor secreted by MATα cells (Fig. 3.1). 

Gradient sensing strategies fall into two major categories: temporal sensing mechanisms and 

spatial sensing mechanisms. Temporal sensing mechanisms, in which the organism moves 

around its environment and compares the concentration between its current and previous 

locations, are commonly utilized by small cells such as E. Coli (~1µm). Spatial sensing 

mechanisms, in which the organism compares the concentration difference across the cell body, 

are commonly used by large cells including most eukaryotes, such as D. Discoideum (~15µm). 

The fact yeast cells are not motile suggest they use a spatial sensing mechanism, despite being 

smaller (~4µm in diameter) than most eukaryotic cells. 
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Fig. 3.1: Gradient Sensing during Yeast Mating 
The MATα cell emits the pheromone 'α-factor' ( ) to attract a potential mate. Nearby MATa cells detect 
the pheromone with a G-Protein Coupled Receptor, called Ste2 ( ='unbound' state and ='bound' state). 
The MATa cell determines its initial direction of growth based on the distribution of the active or 'bound' 
receptors. Ideally, many more active receptors are located in one part of the membrane (the portion 
closest to the mate) than another part. However, the stochastic nature of reactions and diffusion act as 
major sources of noise for a cell sensing a shallow gradient. Consider the number of active receptors in 
the front half of the cell; we note three basic, biophysical sources of noise for this value. First is the 
stochastic nature of binding (green arrow) and unbinding (red arrow) reactions. Second, fluctuations in 
the local pheromone concentration, due to diffusion (black arrows), also contributes. Third, receptor 
diffusion (black arrows) contributes spatial noise, because active receptors can bind pheromone at regions 
of high pheromone concentration (i.e. the front half) and diffuse to regions of low pheromone 
concentration (i.e. the back half). In shallow gradients, these fluctuations can prevent the cell from 
accurately sensing the gradient. 

 Experimental studies have reported that yeast cells are capable of sensing linear gradients 

as shallow as 0.1 nM/μm [1,2]. To quantify the challenges faced by a cell in such small 

gradients, we can estimate the average number of active receptors (receptor occupancy) in the 
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front half of the cell (pointing up the gradient) versus the back half of the cell (pointing down the 

gradient) as well as the size of the fluctuations about the mean receptor occupancy (Fig. 3.1). 

The average receptor occupancy in each half of the cell is roughly given by    
  

     
, where 

ci is the average concentration in the front (or back) of the cell. This expression is an 

approximation because it does not correctly take into account the spatial dependence of the 

gradient across the cell. In a linear pheromone gradient of 0.1 nM/µm centered at the KD (about 7 

nM) of the receptor (Table 2.1), the difference in receptor occupancy is Δn = nfront – nback ≈ 45. 

For a cell with 10000 receptors, this calculation estimates a less than 1% difference in receptor 

occupancy between the front and back of the cell. Following the work of Lauffenburger, the 

magnitude of the fluctuations in receptor occupancy is    √ 
   

(    ) 
    [3]. Hence for a 

gradient of 0.1 nM/μm, the signal is masked by the noise: Δn ≈ 45 ± 50. 

 To explain how cells overcome these fluctuations, various noise-reduction mechanisms 

have been proposed: including time-averaging, gradient sharpening via extracellular degradation 

of pheromone by the protease Bar1 [4,5] and removal of active receptors via endocytosis to 

avoid resampling [6,7]. The limits of these mechanisms were estimated from mathematical 

models. Time-averaging, the first mechanism, requires sufficient time for the cell to sample 

multiple binding and unbinding events. This sampling frequency is dictated by the reaction rates. 

In the yeast mating system, the KD of Ste2 binding to α-factor is known to be around 7nM [8–

12]. Reported values for the unbinding rate are extremely slow: on the order of 10-4 – 10-3 s-1 

[12,13]. These values imply a binding rate on the order of 104 – 105 (M·s)-1, which is many 

orders of magnitude slower than the diffusion limit. With a dissociation rate of 0.0011 s-1 [12], 

changes in receptor occupancy occur on the order of 10s of minutes. Given that yeast cells begin 

chemotropic growth within 30 minutes of exposure to pheromone, there seems to be insufficient 
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time for the cell to accurately sense a shallow gradient using the time-averaging mechanism 

alone. In the second mechanism, MATa cells secrete Bar1: a protease that degrades extracellular 

α-factor. This cellular process is known to locally sharpen the pheromone gradients between 

neighboring cells [4,5]. This sharpening effect has been suggested as a mechanism for sensing 

shallow gradients and ensuring that two or more cells avoid competing for the same mate [4,5]. It 

is not known if this sharpening sufficiently reduces the noise to enable the cells to gradient sense. 

In the third mechanism, active receptors are removed from the membrane through endocytosis 

and newly synthesized receptors are brought to the membrane on vesicles. This receptor cycling 

has been suggested as a mechanism to improve gradient sensing [6,7], by removing pheromone 

from the environment thereby preventing re-sampling of the same ligand. Additionally, the 

endocytosis rate of active receptors, 0.0021 s-1 [14,15], is faster than reported unbinding rates. 

Therefore, receptor endocytosis may improve the sampling frequency. 

 Most of the estimates and mechanisms discussed above are based on mathematical 

models in which simplifying assumptions are made to allow analytic tractability. To go beyond 

these models, we build a computational model based on fundamental biophysical processes that 

allows us to evaluate noise-reduction mechanisms and study gradient sensing with minimal 

assumptions. In particular, we develop a Particle-Based Stochastic Reaction-Diffusion Model to 

study receptor dynamics in a gradient. Our simulations reveal: 1) time-averaging and receptor 

cycling, wherein Ste2 exocytosis is isotropic (unpolarized), are insufficient for yeast cells to 

confidently detect the direction of shallow gradients in a realistic time scales, and 2) isotropic 

exocytosis of Bar1 may improve gradient sensing for cells with fast reaction rates. Additionally, 

our modeling method reveals that 1) the physical barrier of the cell membrane sharpens the 

gradient, and 2) diffusion of the receptor reduces the cell’s ability to detect the direction of the 
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gradient. Our approach bridges the theoretical mathematical models and in vivo experimental 

approaches. 

3.2 Overview 

 As outlined in the Introduction, we are motivated by the surprising ability of yeast cells to 

sense shallow gradients even in the presence of significant amounts of noise. Accordingly, we set 

the biophysical parameter values in our simulations to match the yeast mating response system 

(Table 2.1). Although the KD of the Ste2 receptor is known to be around 7nM [8–12], there is no 

consensus for the binding and unbinding rates. The diffusion limit for binding is on the order of 

109 (M·s)-1. However, one experimental study reported rates as slow as kon = 1.6×105 (M·s)-1 and 

koff = 0.0011 s-1 [12], and similar values were measured in [8]. Elsewhere, a computational 

model used rates ten times faster than these values; although, the experimental sources for these 

rates are unclear [11]. To compare how these rates affect gradient sensing, we consider both sets 

of reaction rates. 

 In Section 3.3, we simulate a cell whose receptors are in equilibrium with a uniform 

pheromone concentration. From these simulations, we quantify noise levels and investigate 

noise-reduction through time-averaging. We compare our simulation results to previously 

published theoretical studies. In Section 3.4 we simulate a cell whose receptors are in 

equilibrium with a pheromone gradient. We report on how the cell’s presence in the gradient 

generates non-linear effects on the pheromone concentration and the contribution of receptor 

diffusion to fluctuations in the distribution of active receptors. In Section 3.5 we simulate a cell 

experiencing the formation of a pheromone gradient and report on the role of the protease Bar1 

on the cell’s ability to gradient sense. 
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3.3 Equilibrium Fluctuations in Uniform Pheromone 

3.3.1 Equilibrium Fluctuations in Receptor Occupancy 

 Since the seminal work of Berg & Purcell [16], there have been many theoretical studies 

on the limits with which cells can measure external ligand concentrations [6,17–19] and 

strategies for overcoming these limitations [6]. The two main sources of fluctuations considered 

by these studies are fluctuations in the ligand concentration and stochastic binding and unbinding 

of the ligand from the receptor. Our simulations accurately capture these sources of noise as well 

as fluctuations from receptor diffusion. Our model also allows us to investigate non-equilibrium 

conditions and the effect of the cell in perturbing the ligand concentration profile. We show our 

simulation results agree most closely with the model from Berezhkovskii and Szabo [17]. 

 Most models assume the cell’s receptors are at equilibrium with an external, uniform 

ligand concentration. Therefore, we begin by performing simulations under equilibrium 

conditions. First, we initialize the system to have the expected number of active receptors and 

ligand molecules in the computational domain. Second, we allow the system to equilibrate for 

30-minutes to generate a random state. Lastly, this random state is used as the initial condition 

for a 60-minute simulation, which we then analyze. Figure 3.2 shows the results of sixteen 

simulations using the parameters listed in Table 2.1, with the exceptions that: 1) there is no 

ligand gradient (g = 0 nM/μm) and 2) the reaction rates are taken to be kon = 1.6×106 (M·s)-1 and 

koff = 0.011 s-1. Figure 3.2A shows the receptor occupancy time series, n(t), and Figure 3.2B 

shows a histogram of the data. 
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Fig. 3.2: Receptor Occupancy at Equilibrium 
Here, we summarize the receptor occupancy data from sixteen simulations. The parameters used for these 
simulations are reported in Table 2.1, except that the gradient is 0 nM/µm, the binding rate is 1.6×106 
(M·s)-1, and the unbinding rate is 0.011 s-1. (A) A plot of the instantaneous, total number of active 
receptors against time: n(t). Each simulation is plotted with a different color. The thick, solid, black line is 
the mean from the data (5035 Ste2*). The thin, solid, black lines represent one standard deviation away 
from the mean, as calculated from the data (±52 Ste2*). The thick, dashed, black line is the theoretical 
mean calculated from Eq 3.1a (5027 Ste2*). The thin, dashed, black lines are one theoretical standard 
deviation from the mean as calculated from Eq 3.1b (±50 Ste2*). (B) A histogram of the data in (A). The 
vertical lines are equivalent to those in (A). The red curve shows the theoretical distribution. (C) A plot of 
time-averaged (10 min) receptor occupancy: nT=600s(t). Each time point displays the average occupancy of 
the preceding 10 minutes. No average is available for t < 10min. The simulation mean is 5034 ± 23 Ste2*, 
and the theoretical, expected value is 5027 ± 19 Ste2*. As in (A), these values are indicated by the black 
lines. (D) A histogram of the data in (C), displayed in the same style as (B). The time-averaged 
distribution is much narrower (σ = 23 Ste2*) than the instantaneous distribution (σ = 52 Ste2*). 

For uniform pheromone concentration, the mean and standard deviation can be calculated from 

the following equations: 
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 (3.1a) 
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(    ) 
 (3.1b) 

(derived in [3]). In both equations, N is the total number of receptors; KD is the dissociation 

constant, and c is the concentration. In Eq 3.1a,  ̅ is the average receptor occupancy, and in Eq 

3.1b, σn
2 is the variance of the receptor occupancy. Our simulations match the mean and standard 

deviation of the receptor occupancy with the theoretical values (Fig. 3.2A – B). 

3.3.2 Time Averaging 

 A common noise reduction technique from signal-processing is time-averaging. Assume 

the receptor occupancy is averaged for a length of time, T, then starting with the instantaneous 

occupancy n(t) (Fig. 3.1A), we calculate the time average as   ( )  
 

 
∑  (        )   ⁄

   , 

where Δt is sampling interval. Figure 3.1C shows the time-averaged occupancy for T = 10min. 

The resulting time-averaged standard deviation, which we label as σnT, is 23 Ste2* molecules 

(Fig. 3.1C – D). This time-averaged uncertainty is much smaller than the instantaneous 

uncertainty of 52 Ste2* molecules (Fig. 3.1A – B). Figure 3.1D shows the corresponding 

histogram. The theoretical time-averaged values (dashed lines in Figure 3.1C and red curve in 

Figure 3.1D) are calculated from the theoretical work of Berezhkovskii and Szabo [17]. Below, 

we discuss the empirical rationale for choosing this model out of the many theoretical models. 

 In 1977, Berg & Purcell derive an expression for the lower bound on the accuracy a cell 

can achieve when time-averaging [16]: 

       
  

 

  
   

 

     
(  

    

    
) (3.2) 
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where   
 

   is the time-averaged variance in the concentration estimation divided by the average 

concentration squared; because this ratio is the Coefficient of Variation squared, we label it CV2. 

In Eq 3.2, D is the diffusion constant for the ligand; R is the radius of the cell; c is the 

concentration of ligand, and T is the length of time-averaging. The Berg & Purcell model 

assumes the binding rate is diffusion-limited and the cell has an excessive number of receptors 

(  
  

   
) [16]. Hence, their conclusion shows the cell’s accuracy is limited by the stochastic 

arrival of ligand molecules to the cell [16]. In 2005, Bialek & Setayeshgar derived the CV2 for a 

binding rate slower than the diffusion-limit [18]: 
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 (3.3) 

Eqs 3.2 & 3.3 were reconciled in 2014 by Kaizu et. al. [19]: 
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The second term in Eqs 3.3 & 3.4 is the contribution from fluctuations in the arrival of ligand 

molecules, similar to Eq 3.2. The first term in Eqs 3.3 & 3.4 is the contribution from stochastic 

binding and unbinding reactions. Eqs 3.3 & 3.4 were derived for a single receptor in solution 

[20]. In 2013, Berezhkovskii & Szabo derived an expression for the CV2 that includes both 

major sources of noise and considers an arbitrary number of receptors [17]: 

       
  

 

  
   

 

      
(  

    

    
)  

 

      
(  

    

     
) (3.5) 

N is the total number of receptors on the cell surface. Note for N = 1, Eq 3.5 is equivalent to Eq 

3.4. For comparison, we plot Eqs 3.2 & 3.5 along with the results from our simulations (Fig. 

3.3). In order to compare our simulation data to these theoretical models, we must express our 

simulation data as CV2. From the receptor occupancy data in Figure 3.2A, we calculate time-
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averages of varying lengths (T = {10, 20 … 3600} sec). For example, the case of T = 600s is 

shown in Figures 3.2C & 3.2D. Hence, for each value of T, we obtain a dataset (e.g. Fig. 3.2C) 

and calculate the variance of that dataset: σnT
2, equivalently called the time-averaged variance in 

receptor occupancy. We also can calculate the instantaneous variance in receptor occupancy, σn
2 

from the data presented in Figure 3.2A. Therefore, as described in [17], we can calculate an 

empirical CV2 using the relationship:       
   

 

  
 . By comparing our simulated data to the 

theoretical models, we find noise from stochastic binding and unbinding events is the biggest 

source of error when time-averaging (Fig. 3.3). 

 

Fig. 3.3: Comparing Mathematical Models 
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Fig. 3.3: Comparing Mathematical Models 
We plot the time-averaged accuracy of a cell measuring an external ligand concentration as predicted by 
various theoretical models and measured from our simulated data. The inset graph zooms in, along the y-
axis. The black curve is a plot of Eq 3.4, taken from Berezhkovskii & Szabo [17]; the black, dashed, 
vertical line is the relaxation time, τN. As discussed in their paper, this model fails for T << τN [17]. The 
red curve is a plot of Eq 3.2, taken from Berg & Purcell [16]. The teal curve is a plot of Eq 3.6, taken 
from Endres & Wingreen [6]. The blue curve is calculated from the simulation data shown in Figure 
3.2A. As discussed in the text, Eqs 3.2 & 3.6 (red & teal curves) are derived from models which predict 
the cell’s accuracy is solely limited by the stochastic arrival of pheromone molecules [6,16]. Eq 3.5 (black 
curve) is derived from a model which finds the cell’s accuracy is additionally limited by the stochasticity 
of binding and unbinding reactions [17]. Our simulated data agrees with the latter model. Hence, we show 
the stochastic reaction events play a significant role in limiting the cell’s accuracy for measuring an 
external ligand concentration. We avoid plotting Eqs 3.3 & 3.6, because they were derived for a single 
receptor in solution, and therefore, their CV2 values are 104 (which is the total number of receptors) times 
larger than Eq 3.5. 

 A more intuitive representation of this relationship is to plot the time-averaged standard 

deviation, σnT, as a function of the length of time-averaging, T. We show that our simulations 

agree with the theoretical predictions from Berezhkovskii and Szabo [17] (Fig. 3.4). In addition, 

results from our simulations are complimentary to the theoretical model, in that, our simulations 

can estimate the uncertainty of short time-averaging lengths, for which the theory fails. 

Specifically, the theoretical model is valid only for T >> τN, where, τN is the equilibration time 

scale of the system or ‘relaxation time’ [17]. In the case of slow reaction rates (kon = 1.6×105 

(M·s)-1 and koff = 0.0011 s-1) τN ≈ 7.5min, which is roughly the inverse of the sum of the rates. 

The theoretical predictions diverge from our simulation results for T < 40 min (Fig. 3.4B). This 

time frame is the domain of interest with respect to the yeast mating response, because most 

yeast cells begin chemotropic growth within 30 minutes after pheromone exposure. Hence our 

simulated results estimate the time-averaged uncertainty for biologically relevant time-scales, 

which current theories do not capture. In Figure 3.4, we compare the effectiveness of time-

averaging between the two different sets of reaction rates discussed above. For fast rates, as used 

in [11], there is significant noise-reduction when time-averaging for short lengths of time: 10 

min or less (Fig. 3.4A). Whereas, for slow rates, as measured in [12], time-averaging for as long 
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as 20 min only nominally reduces the noise (Fig. 3.4B). Thus, accurate measurements of the 

reaction rates are critical for determining how effectively time averaging can reduce noise. 

 

Fig. 3.4: Uncertainty as a function of Time-Averaging 
In both panels, the blue line is calculated from simulation data. The solid, black line is the theoretical 
relationship between the length of time-averaging (T) and the standard deviation of time-averaged 
receptor occupancy (σnT) as derived by Berezhkovskii and Szabo [17]. Importantly, their derived 
relationship is only valid for T >> τN; where, τN is the ‘relaxation time’. Hence, the theoretical curve 
deviates from the simulation data near this regime. The relaxation time is indicated by the vertical, 
dashed, black line [17]. (A) This data is calculated from the sixteen simulations used in Figure 3.2A, 
which use the fast reaction rates: kon = 1.6×106 (M·s)-1 and koff = 0.011 s-1. Our simulation data, which 
includes additional sources of noise, has a slightly larger standard deviation than the theoretical model. 
(B) This data is calculated from twenty-six simulations, which use the slow reaction rates: kon = 1.6×105 
(M·s)-1 and koff = 0.0011 s-1. 

3.3.3 The “Perfectly Absorbing” Cell and Receptor Cycling 

 In addition to time-averaging, Endres & Wingreen propose that a cell which “perfectly 

absorbs” ligand molecules, can more accurately measures an external ligand concentration [6]. A 

“perfect absorber” is a cell which, after binding a ligand molecule, does not release that ligand 

molecule back into the environment. Therefore, Endres & Wingreen argue, the cell does not 

count the same ligand molecule more than once. Similar to Berg & Purcell’s work [16], this 

model assumes that the binding rate is diffusion-limited and that there are an infinite number of 

receptors. Endres & Wingreen derive the following expression for the cell’s accuracy [6]: 
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Eq 3.5 is a more general expression for the CV2 and reduces to a form similar to Eq 3.6 under 

certain limiting conditions. If   
 

  
, then the second term in Eq 3.5 simplifies:  
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)       , where  ̅ is the expected 

fractional occupancy, then the first term in Eq 3.5 is much smaller than the second term, and the 

expression reduces to the following expression: 
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The two conditions used to derive the above expression, are closely related to the assumptions 

made for Eqs 3.2 & 3.6. The first condition,   
 

  
, indicates the need for many receptors; for 

typical parameter sets, this condition is easily met. The second condition indicates that every 

ligand molecule which encounters the cell must be captured by an unbound receptor. This 

condition can be met by having a high reaction rate (kon), a large number of receptors (N), or 

both. Hence, if there are enough receptors and the binding rate is fast enough to guarantee the 

capture of every ligand molecule, then the cell’s accuracy is given by Eq 3.7 [17] (see also “The 

Perfect Instrument” in [16]). 

 The parameters in our simulations of the yeast system fail to meet these conditions and 

cannot be considered a “perfect absorber”. The binding rate is 3 – 4 orders of magnitude too 

slow. Nonetheless, we can simulate a partial absorber to determine if removing ligand from the 

environment, rather than releasing the ligand back into the environment, can improve the cell’s 

accuracy. A partial absorber does not absorb every ligand molecule that arrives at the surface. 

Endres & Wingreen suggest receptor cycling is a potential biological mechanism which enables 
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the cell to absorb ligand [6]. Thus, we modify our simulation algorithm to include a simplified 

receptor cycling mechanism. In particular, we make the following changes to our algorithm (see 

Section 2.7 for details). An active receptor, Ste2*, has some rate of endocytosis. Immediately 

upon endocytosis, an unbound receptor is created in a random position on the cell surface. Thus, 

in our simplified model, endocytosis is coupled with immediate replacement, which allows us to 

keep the total number of receptors constant. We also assume, Ste2* cannot unbind a ligand (koff 

= 0 s-1). We find that absorbing ligand molecules does not reduce the fluctuations in time-

averaged receptor occupancy as compared to unbinding and releasing ligand molecules (Fig. 

3.5). 

 

Fig. 3.5: Absorbing Ligand vs Releasing Ligand 
As with Figure 3.4, we plot the standard deviation of the time-averaged receptor occupancy (σnT) against 
the length of time-averaging (T). The solid, black curve represents the theoretical values calculated using 
Eq 3.5 as derived in [17]. The dashed, vertical, black line marks the relaxation time (τN). The blue curve is 
calculated from simulations wherein active receptors, Ste2*, unbind and release their ligand back into the 
environment. The red curve is calculated from simulations wherein ligand molecules are absorbed into the 
cell via Ste2* endocytosis. The panels show two sets of reactions rates. (A) These simulations use the 
measured [12] binding rate of kon = 1.6×105 (M·s)-1 and either an unbinding rate of koff = 0.0011 s-1 (blue 
curve) or endocytosis rate of kEndo = 0.0011s-1 (red curve). The blue curve is identical to Figure 3.4B. The 
red curve is calculated from eight simulations. (B) These simulations have 500 times faster rates than 
those in (A). These simulations use a binding rate of kon = 8×107 (M·s)-1 and either an unbinding rate of 
koff = 0.55 s-1 (blue curve) or endocytosis rate of kEndo = 0.55s-1 (red curve). We calculate the blue and red 
curves from ten simulations each. For both sets of reaction rates, the fluctuations from the ligand 
absorbing model are similar to fluctuations from the ligand releasing model. 
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3.4 Cells at Equilibrium in a Pheromone Gradient 

3.4.1 Gradient Sharpening due to Steric Effects 

 To establish a linear pheromone gradient in our simulations, we fix the pheromone 

concentration at the boundaries located at x = 5µm and x = –5µm (Section 2.11.1). For example, 

to create a 0.5 nM/µm gradient with a concentration of 6.9nM at the midpoint, the concentration 

at x = –5µm is set to 4.4nM, and the concentration at x = 5µm is set to 9.4nM. In addition to 

these two boundaries, we set the boundary of the cell to be reflective, because the cell membrane 

is impermeable to pheromone. This additional boundary produces nonlinear steric effects on the 

pheromone gradient, such that, the resulting gradient is steeper than expected (Fig. 3.6A). Details 

on calculating the pheromone concentration profiles are provided in Section 2.13. 

 

Fig. 3.6: Gradient Sharpening due to Steric Effects 
We calculate the pheromone concentration by counting the average number of molecules located at 
different positions in the simulation space. Specifically, we tally the molecules based on their x-position 
and distance from the x-axis (  √     ). Consequently, the concentration is a function of x and ρ: c 
= c(x, ρ). Here, we plot c(x, ρ = 1µm). This concentration calculated from our simulations is shown as a 
red line. The dashed, black line is the ideal, linear concentration profile. (A) This data is measured from 
simulations in which pheromone reflects off the cell surface. There is no pheromone between x = –
2.28µm and x = 2.28µm, because this region is the interior of the cell. Note that the simulated 
concentration deviates from the ideal linear gradient near the cell boundary. In fact,   

  
   near the cell 

boundary. (B) This data is measured from simulations identical to (A), except that the cell boundary has 
no effect on pheromone diffusion. That is, pheromone molecules can diffuse through the cell membrane 
and exist inside the cell. 
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 This sharpening effect is solely due to the impermeability of the cell membrane to 

pheromone. Simulations in which pheromone are free to diffuse through the cell membrane, 

produce a linear gradient:   

  
   (Fig. 3.6B). However, for an impermeable membrane, there is 

no flux across the cell boundary. Therefore, according to Fick’s Law,      
  

  ̂
   or   

  ̂
  , 

where  ̂ is the vector normal to the cell surface. As predicted by this argument, the measured 

gradient   

  
 near the boundary is close to 0 (Fig. 3.6A). This constraint produces a higher than 

expected concentration at the front of the cell and a lower than expected concentration at the 

back of the cell. We now investigate whether this sharper gradient produces an appreciable 

difference in the distribution of active receptors. 

 We first consider the fast set of reaction rates: kon = 1.6×106 (M·s)-1 and koff = 0.011 s-1. 

As an initial approach to measuring the distribution of Ste2*, we evaluate the receptor occupancy 

in the “front half” (x > 0µm) and the “back half” (x < 0µm). Assuming a true linear gradient, c(x) 

= gx + c0, we can calculate the mean and standard deviation of receptor occupancy using: 
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which are more generalized forms of Eq 3.1. For example, in the front half, a = 0 and b = R, 

which gives the following expression for the mean occupancy:  ̅         
  

  
  (

     

        
). 

Empirically, we know the gradient is sharper and non-linear (Fig. 3.6A). From the simulation 

data, we count the number of occupied receptors located in each half at a given time. The 

distribution of the simulated data is plotted (Fig. 3.7A) along with the distribution expected from 

a true linear gradient (Fig. 3.7B). 



87 

 

Fig. 3.7: Receptor Occupancy in Linear Gradient vs Sharpened Gradient 
The blue and red histograms show the distribution of how many Ste2* are located in the back and front 
half, respectively, at a given time. The solid, vertical lines indicate the mean for their respective 
distributions. The dashed curves indicate the theoretical distribution for a cell in a true linear gradient. 
These theoretical curves are equivalent between the two panels: nback = 2395 ± 35 Ste2* and nfront = 2622 
± 35 Ste2*. In both panels, the binding rate is kon = 1.6×106 (M·s)-1 and the unbinding rate is koff = 0.011 
s-1. (A) These data correspond to eight simulations with the gradient in Figure 3.6A: a gradient formed 
with an impermeable cell membrane. From the simulations, we calculate nback = 2341 ± 42 Ste2* and nfront 
= 2665 ± 44 Ste2*. Note there are fewer Ste2* in the back than expected, and more Ste2* in the front than 
expected. (B) These data correspond to eight simulations with the gradient in Figure 3.6B: a true linear 
gradient. From the simulations, we calculate nback = 2404 ± 45 Ste2* and nfront = 2617 ± 43 Ste2*. The 
simulation data agrees with the theoretical prediction. 

 Based on the distribution of Ste2*, Figure 3.7 shows the cell is measuring the sharper 

gradient. We find steric effects from the cell membrane can locally sharpen the pheromone 

gradient. In turn, this sharpening can significantly improve the asymmetry in the distribution of 

active receptors. For a 0.5 nM/µm gradient, the difference in active receptors between the front 

and back (Δn = nfront – nback) changes from Δn = 212 Ste2* without sharpening to Δn = 324 Ste2* 

with sharpening, a more than 40% improvement. 

3.4.2 Slow Reaction Rates and Receptor Diffusion add Spatial Noise 

 As shown in Figure 3.7, the sharpened gradient increases the difference in receptor 

occupancy between the front and back for a system with fast reaction rates. To evaluate the 

sensitivity of the system with respect to the reaction rates, we repeat the simulations using the 
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slow set of reaction rates: kon = 1.6×105 (M·s)-1 and koff = 0.0011 s-1. We find that, although the 

pheromone gradient is equivalently sharpened (data not shown), the simulations with slow 

reaction rates do not show a larger than expected difference in receptor occupancy between the 

front and back (Fig. 3.8A). Simulations with slow kinetics, show Δn = 238 Ste2* (Fig. 3.8A); 

whereas, fast kinetics yield Δn = 324 (Fig. 3.7A). The cause for this discrepancy is receptor 

diffusion. Simulations with slow kinetics and no Ste2 diffusion (DSte2 = 0 µm2/s) show a larger 

difference in receptor occupancy, Δn = 315, than simulations with receptor diffusion (Fig. 3.8). 

 

Fig. 3.8: Receptor Diffusion adds Spatial Noise 
These curves are similar to those in Figure 3.7. The blue and red histograms show the distribution of the 
number of Ste2* molecules in the back and front halves respectively. The dashed blue and red curves 
respectively show the expected back and front distributions for a cell in a true linear gradient. As in 
Figure 3.7, the expected nback = 2393 ± 35 Ste2*, and nfront = 2620 ± 35 Ste2*. These dashed curves are 
equivalent between the two panels. (A) These data correspond to eight simulations with slow reaction 
rates: kon = 1.6×105 (M·s)-1 and koff = 0.0011 s-1. The difference in receptor occupancy is Δn = 238 Ste2*. 
(B) These data correspond to eight simulations with slow reaction rates and no receptor diffusion; that is, 
DSte2 = 0 µm2/s. The difference in receptor occupancy is Δn = 315 Ste2*. 

 Compared to a system with a fast unbinding rate, a system with a slow unbinding rate 

allows activated receptors to diffuse longer distances before reverting to the inactive state. For 

example, with a slow unbinding rate of koff = 0.0011 s-1, a Ste2* molecule typically diffuses 

√      (
 

    
)       , or      

     
 

    

 
    , away from the position at which it bound a 
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pheromone molecule. Hence, many Ste2* molecules will diffuse from the front half to the back 

half of the cell or vice-versa. Because there are more Ste2* in the front half than back half, there 

is a net flux of Ste2*from the front to the back. This flux reduces Δn: the difference in receptor 

occupancy between the front and back halves. 

 A second interpretation is that the diffusion of active receptors creates spatial noise. The 

current position of a Ste2* molecule is unlikely to be the position where that receptor bound a 

pheromone molecule. The unbinding rate determines how far a Ste2* molecule can diffuse 

before unbinding the pheromone molecule. A fast unbinding rate reduces this distance; therefore, 

the current position of each Ste2* molecule is close to where the binding event happened. 

Although the receptor’s diffusion adds spatial noise to the distribution of active receptors, a 

sufficiently fast unbinding rate minimizes this noise. Alternatively, endocytosis of active 

receptors would also act to minimize this effect. 

3.4.3 Time-averaging and the Angle of Estimation 

 Up to this point, we have limited our discussion to cells in a gradient of 0.5 nM/µm. 

Figures 3.7A & 3.8A show that for this case, there is a clear distinction between the occupancy 

in the front and back halves. However, for a shallow gradient, 0.1 nM/µm, there is significant 

overlap in the occupancy distributions for the two halves (data not shown). Additionally, we 

have thus far limited our analysis of the Ste2* distribution by dividing the cell into two halves. 

This division artificially introduces spatial information, in that, there are only two options for the 

direction of the gradient. In reality, the cell has no such spatial information; the complete, 3-

Dimensional distribution of Ste2* must be considered in order to determine the direction of the 

gradient. Therefore, we use the vector that points from the origin to the center of mass of the 

distribution of active receptors to estimate the direction of the gradient. In Figure 3.9A, we plot 
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the angle between this estimate and the direction of the gradient (taken to be in the   ̂ direction) 

for each time point. We also plot the distribution of this angle (Fig. 3.9B) and calculate the time-

averaged angle (Fig. 3.9C) and the corresponding distribution (Fig. 3.9D). By comparing the 

distributions (Figs. 3.9B & 3.9D), we find time-averaging improves the likelihood that the 

average position, or center of mass, of Ste2* correctly points towards the gradient. 

 

Fig. 3.9: Estimated Angle away from Gradient 
The data presented here is calculated from sixteen simulations of cells in a 0.1 nM/µm gradient, using the 
fast binding and unbinding rates: kon = 1.6×106 (M·s)-1 and koff = 0.011 s-1. The “Angle away from 
Gradient” is the angle between the gradient (pointing to   ̂) and the vector of the average Ste2* position. 
(A) Plot of the instantaneous angle. Each of simulation is plotted in a single color. (B) The distribution of 
the data in panel (A). The average angle is indicated by the vertical, red line; the mean is 59.7°. (C) A plot 
of the time-averaged (10 min) angle. (D) The distribution of the data in (C). The average angle is 
indicated by the vertical, red line; the mean is 47.8°. 
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 From the distributions, we can calculate the probability that the cell’s estimate of the 

gradient is accurate within a given threshold. For example, from the instantaneous distribution 

(Fig. 3.9B), we find there is an 86% probability, the cell’s estimate is within 90° of the gradient’s 

true direction. After time-averaging for 10 minutes (Fig. 3.9D), this probability (that the cell is 

correct within 90°) increases to 97%. Figure 3.10 shows how this accuracy, for selected 

thresholds, improves with time-averaging. In the case of fast reaction rates: kon = 1.6×106 (M·s)-1 

and koff = 0.011 s-1, we find that after about 20 minutes of time-averaging, cells know the 

direction of the gradient within 90° (Fig. 3.10A). In contrast, for the case of slow reaction rates: 

kon = 1.6×105 (M·s)-1 and koff = 0.0011 s-1, if a cell time-averages for 90 minutes, then the 

probability of being correct within 90° is only 88% (Fig. 3.10B). Similarly, we find short lengths 

of time-averaging (e.g. less than 20 min) are more beneficial in the case of fast reaction rates 

than slow rates (Fig. 3.10). That is, for 20 min of time-averaging, a system with fast rates 

improves the probability of being accurate within 60° by 22%; whereas, a system with slow rates 

improves the probability of being accurate within 60° by only 8%. 

 

Fig. 3.10: Estimated Angle Improves with Time-averaging 
For different lengths of time-averaging, we plot the probability that the cell’s estimation of the gradient is 
accurate within three thresholds: 90° (blue curves), 60° (red curves) and 30° (green curves). In all cases, 
we simulate cells in a 0.1 nM/µm gradient. (A) Slow binding kinetics. In these simulations the binding 
and unbinding reaction rates are kon = 1.6×105 (M·s)-1 and koff = 0.0011 s-1 respectively. The curves are 
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calculated from twenty-six simulations, in which, we model the reaction between Ste2 & pheromone. (B) 
Fast binding kinetics. In these simulations the binding and unbinding reaction rates are kon = 1.6×106 
(M·s)-1 and koff = 0.011 s-1 respectively. The curves are calculated from the same sixteen simulations used 
to generate Figure 3.9, in which, we model the reaction between Ste2 & pheromone. 

3.5 Sensing During Gradient Formation 

3.5.1 Formation of the Gradient 

 We have thus far only considered steady state pheromone gradients. We now study the 

Ste2*distribution as the gradient forms across the cell. To simulate a developing pheromone 

gradient, we fix the pheromone concentration at the x = 5µm boundary and enforce a partially 

absorbing boundary at x = –5µm (Section 2.4.2). That is, we do not inject new molecules from 

the x = –5µm boundary. Figure 3.11B shows the steady state pheromone concentration profile in 

the absence of a cell. The inclusion of the cell boundary produces the pheromone concentration 

profile shown in Figure 3.11A. Again, we find the presence of the cell sharpens the gradient 

similar to previous cases (Fig. 3.6). However, unlike previous cases, the concentration is not held 

constant at x = –5µm, and the final concentration at this boundary depends on the presence or 

absence of the cell (Fig. 3.11). 

 

Fig. 3.11: Cell’s Physical Boundary Sharpens an Emerging Gradient 
We simulate diffusion of an emerging gradient by adding pheromone molecules at the x = 5µm boundary 
and partially absorbing molecules at the x = –5µm boundary (Section 2.4.2). Here, we show the steady 
state concentration profiles for two scenarios. These simulations are equivalent (same parameter set) 
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except for one difference. (A) Physical cell boundary present. We model the cell boundary as a sphere, 
which is reflective with respect to pheromone. We do not simulate any reactions. (B) We simulate neither 
the physical cell boundary nor any reactions. Note that the physical presence of the cell sharpens the 
gradient and reduces the overall concentration behind the cell (x < –2.28µm). 

3.5.2 Transient Differences in Receptor Occupancy 

 Recent work that evaluated the binding kinetics of the back and front halves of the cell 

suggested that the largest difference in receptor occupancy occurs transiently, as the receptor 

occupancy approach equilibrium [13]. Furthermore, the previous work concludes this transient 

difference in occupancy is significant enough to improve the gradient sensing ability of yeast 

cells during mating [13]. To investigate these transient effects, we use our method discussed 

above to simulate a cell whose receptors are all initially unoccupied and flow pheromone from 

one side. Again, we study the two sets of rates discussed above. The reaction rates determine 

when the maximum difference in receptor occupancy occurs and the time scale for approaching 

equilibrium (see also [13]). We find, for both sets of reaction rates, that although the presence of 

the cell leads to a larger transient difference in receptor occupancy than expected, the maximum 

difference in receptor occupancy is not significantly larger than at equilibrium (Fig. 3.12). 

 

Fig. 3.12: Initial, Transient Difference in Receptor Occupancy 
We simulate a cell in an emerging pheromone gradient of 0.1 nM/μm (whose midpoint is 6.9nM) and plot 
the difference in receptor occupancy between the back and front halves: Δn. Each colored time trace 
shows the result from a single simulation. The solid black lines are the population average. The dashed 
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black line shows the predicted difference, based on theoretical binding kinetics for an average pheromone 
concentration of 6.775nM in the back half and 7.025nM in the front half. This theoretical calculation is 
discussed in [13]. The thin white line demarcates positive from negative Δn values. (A) Slow binding 
rates. Here, we show the results from twenty simulations, in which, kon = 1.6×105 (M·s)-1 and koff = 
0.0011 s-1. The difference initially peaks around 8 min after pheromone exposure. (B) Fast binding rates. 
Here, we show the results from eight simulations, in which, kon = 1.6×106 (M·s)-1 and koff = 0.011 s-1. The 
difference initially peaks within 2 min of initial pheromone exposure. 

 As discussed in Section 3.4.3, by analyzing the Ste2* distribution as two halves, we 

artificially introduce spatial information about the direction of the gradient in our analysis. A 

more appropriate measure of the Ste2*distribution is to calculate the center of mass of all Ste2* 

molecules, that is, the average position of all active receptors: 〈     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉. We interpret the direction 

of the resulting vector to be the cell’s estimate of the gradient’s direction. We scale the 

magnitude of the vector and interpret the value as the cell’s “confidence”: 

              
 

 

 

 
|〈     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉| (3.9) 

where, R is the radius of the cell; N is the total number of receptors, and n is the number of 

Ste2*. The confidence ranges between 0 and 1. A value near 0 indicates that either there are few 

Ste2* or the Ste2* are close to uniformly distributed. Theoretically, a confidence of 1 indicates 

all the receptors are bound and located in the same position. For comparison, a cell at 

equilibrium in a uniform pheromone concentration of 6.9nM, the confidence is ≈ 6.4×10–3 (data 

not shown). The cell’s confidence is maximum around 8 min for slow rates and 2 min for fast 

rates. The confidence fluctuates around an average: about 6.7×10–3 for slow binding rates (Fig. 

3.13A) and about 7.6×10–3 for fast binding rates (Fig. 3.13B). 
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Fig. 3.13: Accuracy and Confidence during Gradient Formation 
For the simulations of a cell in an emerging gradient of 0.1 nM/μm, we analyze the Ste2* distribution 
over time by calculating the average Ste2* position: 〈     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉. The direction of the vector indicates the 
cell’s best estimate of the gradient’s direction, and the scaled magnitude determines the cell’s 
“confidence” of that estimate (Eq 3.9). The curves labeled “Base” come from simulations, in which we 
model only the binding and unbinding reactions between pheromone and Ste2. The curves labeled “Bar1” 
come from simulations, in which, we additionally include the Bar1-mediated catalysis of pheromone 
(Section 2.8). Panels (A) & (B) plot the population-averaged confidence. Panels (C) & (D) plot the 
population average of the angle between 〈     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  〉 and the gradient. (A) Confidence in a system with slow 
reaction rates (kon = 1.6×105 (M·s)-1 and koff = 0.0011 s-1). The Base data comes from the same twenty 
simulations as in Figure 3.12A, and the Bar1 data comes from sixteen simulations. (B) Confidence in a 
system with fast reaction rates (kon = 1.6×106 (M·s)-1 and koff = 0.011 s-1). The Base model data comes 
from the same eight simulations as in Figure 3.12B, and the Bar1 data comes from sixteen simulations. 
(C) Error in Gradient Sensing estimate for slow reaction rates. (D) Error in Gradient Sensing estimate for 
fast reaction rates. 

 In the case of slow reaction rates, we find that soon after the cell’s confidence is 

maximized: 8 – 20 min (Fig. 3.13A), an average cell can detect the gradient within 60° of 
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accuracy (Fig. 3.13C). In the case of fast reaction rates, an average cell can detect the gradient 

within 90°, between 2 – 20 min after initially binding pheromone (Fig. 3.13D). 

3.5.3 Bar1 Improves Gradient Sensing for Fast Reaction Rates 

 It has been shown that the pheromone protease Bar1 can improve the gradient sensing 

ability of the cell by locally sharpening the gradient [4,5]. We model the Bar1 concentration as a 

static field. That is, the Bar1 concentration is a function of the distance from center of the cell 

(see Section 2.8). Based on previous models, we set the concentration of Bar1 at the cell surface 

to be 0.85nM [5]. Away from the cell surface, this concentration decreases as  
 
. At each time 

step, pheromone molecules have a probability of being catalyzed based on the local 

concentration of Bar1. We use a catalytic rate of kcat = 2.5×108 (M·s)-1, which is based on a 

previous model [5]. 

 In the case of slow reaction rates, neither the cell’s confidence (Fig. 3.13A) nor accuracy 

(Fig. 3.13C) significantly improves. However, in the case of fast reaction rates, the cell’s 

confidence (Fig. 3.13B) and accuracy (Fig. 3.13D) improve during the first 20 min of gradient 

formation. The cell’s confidence improves to ≈ 8.9×10–3 with Bar1, as compared to 6.4×10–3 

without Bar1 (Fig. 3.13B). Furthermore, an average cell can accurately detect the 0.1 nM/µm 

gradient within 90°, but with the inclusion of the Bar1 field, the accuracy improves to within 40° 

(Fig. 3.13D). These results indicate that the true value of the reaction rates may determine how 

effective Bar1 is in improving gradient sensing. That is, if the true binding and unbinding rates 

are slow, as measured [8,12], then Bar1 may not be very effective in helping an isolated cell 

determine the direction of a shallow gradient. 
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3.6 Discussion 

3.6.1 Mechanisms for Noise-Reduction 

 One potential mechanism for detecting chemical gradients is for cells to use the spatial 

distribution of active receptors. However, fluctuations in receptor occupancy and receptor 

diffusion introduce significant uncertainty in receptor occupancy, making this task more 

difficult. For a cell attempting to sense a shallow gradient, this uncertainty can mask the signal. 

For example, a cell with 10000 receptors in a shallow gradient of 0.1 nM/μm centered at the KD 

of the receptor, has a difference in occupancy between the front and back of the cell of ≈ 45 ± 50 

[3]. This estimate does not include the effect of receptor diffusion, which further reduces the 

difference in receptor occupancy. Recent work predicts the extent to which time-averaging can 

improve gradient sensing [17]. Simulations of our particle-based stochastic reaction-diffusion 

model corroborate these predictions (Figs. 3.3 & 3.4). Based on the measured rates, kon = 

1.6×105 (M·s)-1 and koff = 0.0011 s-1 [8,12], we find a yeast cell must wait 40 min or longer to 

appreciably reduce fluctuations in receptor occupancy. Since yeast cells typically polarize and 

initiate growth within 20 – 30 min of exposure to pheromone, it is unlikely a cell can sense a 

gradient as shallow as 0.1 nM/μm by using only time-averaging. Recent estimates of the reaction 

rates are an order of magnitude smaller than the rates above [13], which further reduces the 

likelihood that a yeast cell can sense shallow gradients by time-averaging alone. 

 Receptor endocytosis has also been suggested as a noise-reduction mechanism, because it 

removes ligand from the environment thereby eliminating noise from re-binding the same ligand 

molecule [6]. It may also serve to reduce noise due to receptor diffusion. To investigate the 

effects of endocytosis on gradient sensing, we adapted our model to absorb rather than release 

pheromone molecules. Contrary to expectations, we do not find any advantage to removing the 
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ligand. That is, ligand absorption does not reduce the noise as compared to releasing ligand (Fig. 

3.5). In their proposal of this mechanism, the authors assume every ligand molecule that 

encounters the cell is immediately captured or bound [6]. Whereas, other mathematical models 

account for non-diffusion-limited binding and unbinding dynamics [18,19]. Our results, which 

best match the theory of Berezhkovskii and Szabo, indicate these effects from stochastic binding 

and unbinding are bigger sources of noise than the stochastic arrival of ligand molecules [17]. 

 The pheromone protease, Bar1, has also been suggested as a possible mechanism to 

improve gradient sensing. We implicitly model Bar1 as a concentration field, which radially 

decays away from the cell’s surface (Section 2.8). Our results indicate that Bar1 can improve the 

cell’s ability to sense an emerging gradient (Figs. 3.13B & 3.13D). Specifically, during the first 

20 min that a shallow gradient (0.1 nM/μm) forms around the cell, the presence of Bar1 increases 

the cell’s accuracy and confidence in estimating the direction of the gradient. Curiously, our 

results predict this advantage only occurs if the reaction rates for Ste2 and pheromone are fast 

(kon = 1.6×106 (M·s)-1 and koff = 0.011 s-1). This advantage may also be dependent upon other 

parameters, e.g. the concentration of Bar1 near the cell and the catalytic rate of Bar1 on 

pheromone. Future work will be dedicated to studying how these parameters affect gradient 

sensing. 

3.6.2 Gradient Sharpening due to Steric Effects 

 Because we directly simulate diffusion, our method captures subtle effects in the 

distribution of pheromone, e.g. boundary effects from the cell membrane. Because the cell is 

impermeable to pheromone, it acts to sharpen the gradient (Figs. 3.6 & 3.11). Moreover, this 

sharpening is reflected in the active receptor distribution (Figs. 3.7 & 3.12). Our simulation 

methods are analogous to some in vivo yeast gradient sensing experiments, in which a 
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pheromone gradient is established by flowing two different concentrations of pheromone into a 

microchamber [5,21–24]. In those experiments, it is not uncommon for multiple cells to be 

adjacent, e.g. as mother-daughter pairs or as multi-cell clusters. Our results suggest these 

adjacent cells experience a sharper than expected gradient. The effect is strongest if pheromone 

is flowing into the microchamber from only one side, and the opposite side has no pheromone 

(i.e. a completely absorbing boundary condition). Additional steric effects may also be present 

due to the microfluidic chambers themselves. For example, many microfluidic chambers have a 

height similar to a yeast cell (~5μm). Therefore, the presence of a cell severely impedes the flow 

of pheromone in the chamber and further sharpens the gradient (data not shown). Hence in vivo 

experiments which aim to test the limit of gradient sensing (i.e. the shallowest gradient a cell can 

detect) must carefully consider steric effects from the cell itself, any adjacent neighbors and the 

experimental tools. These effects alter the gradient, such that the true gradient experienced by the 

cells is sharper than expected.  
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