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ABSTRACT

Byeongyeob Choi: Statistical contributions to non-experimental studies
(Under the direction of Jason P. Fine and M. Alan Brookhart)

The objective of this research is to develop the methods of statistical inference for a causal

effect of an exposure on an outcome in the presence of unmeasured confounders. Instrumental

variable (IV) analysis is frequently used to estimate exposure effect for the data with unmeasured

confounding. For example, in a randomized clinical trial, subjects often fail to comply with their

own treatment protocols and such a non-compliance may depend on unmeasured confounders.

In this case, it is challenging to obtain the true treatment effect, which can be observed when all

subjects comply their assigned regime. To obtain the true treatment effect, we may conduct

IV analysis with a randomization indicator as an IV. In many randomized clinical trials or

observational studies, incomplete outcomes such as survival times with censoring are obtained.

There is a lack of IV methods for incomplete data such as survival data. Another tool to overcome

unmeasured confounding is to use negative control outcomes. Negative control outcomes should

satisfy specific conditions in casual relationships with the exposure, outcomes and confounders.

Several studies have used negative control outcomes to determine the presence of unmeasured

confounders. Especially, the approach to use negative control outcomes has been elegantly

used by epidemiologists to identify unmeasured confounding in the studies of effectiveness of

influenza vaccine on the elderly. However, statistical methods using negative control outcomes

to obtain the estimator for causal effect of the exposure have not been investigated well. Another

goal of this research is to develop improved confidence intervals for current status data. Confidence

intervals for current status data have been well studied theoretically, their practical application

has been limited, in part because of poor performance in small samples and in part because of
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computational difficulties. The subsampling-based method and likelihood-ratio test (LRT)-based

method have been shown to have better coverage probabilities than a simple Wald-based method

which may perform poorly in realistic sample sizes. However, those methods are complicated

and require much more computational demands compared to Wald-based method. Therefore,

we propose (1) Two-stage estimation of structural instrumental variable models with incomplete

data, (2) Sensitivity analysis of regression results to unobserved confounding using a negative

control outcome, (3) A new instrumental variable estimator using a negative control outcome

and (4) Improved confidence intervals for current status data.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Researchers in epidemiology often have an interest in making a causal inference for an

exposure effect on an outcome. In many cases, observation studies are employed to do such

an inference. However, observation studies are easily affected by unmeasured confounders,

which may result in a biased estimate of the exposure effect due to residual confounding. In

economic terminology, we say the exposure variable is endogenous in this case and classical

statistical methods adjusting measured confounders fail to give correct inference results for the

the exposure effect.

An instrumental variable (IV) analysis is designed to overcome the unmeasured confounding

problem (Brookhart et al. 2006, McClellan et al. 1994, Schneeweiss et al. 2006, Stukel et al.

2007). Although the requirements of an IV depend on a particular analytic method one chooses,

we can say that a variable is an IV if it satisfies the following three conditions (Brookhart et al.

2010): (i) it has a causal effect on the exposure; (ii) it has effects on the outcome only through

the exposure; (iii) it is unrelated to an unmeasured confounder. A typical example of an IV is

a randomized indicator, which is usually available, to estimate a drug effect in randomized trial

with non-compliance.

There has been considerable work for IV methods with complete data, where both outcome

and exposure are fully observed and assumed to satisfy semiparametric linear or nonlinear structural

equation models with unspecified error distributions. The most popular method is the two-stage

least squares (2SLS) for linear models, which is obtained by applying least squares to the model

where the endogenous variables are replaced by their predicted values (Theil 1953). Amemiya
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(1974) proposed nonlinear two-stage least squares (NL2SLS), which generalizes 2SLS for nonlinear

models. Newey (1990) pointed out the asymptotic efficiency of IV estimators of nonlinear model

depends on the form of instruments. He proposed efficient instrumental variables estimation of

nonlinear models, which employs nonparametric estimation of the optimal instruments. Abadie

(2003) introduced a new class of IV estimators for linear and nonlinear treatment response

models. Terza et al. (2008) introduced two-stage predictor substitution (2SPS) estimation and

two-stage residual inclusion estimation (2SRI) for nonlinear models. 2SPS is the extension to

nonlinear models of 2SLS. 2SRI is similar to 2SPS except that first stage residuals are included

as additional regressors instead of replacing the endogenous variables by their predicted values.

They showed that in a generic parametric framework, 2SRI is consistent and 2SPS is not. In

case where either response or exposure is incompletely observed, however, such semiparametric

methods are not applicable. An important special case of coarsened data occurs with time to

event outcomes and exposures, which may be subject to both censoring and truncation.

In the case where we do not have a tool such a valid IV, thus it is hard do find a reliable way to

consistently estimate the parameters, it is desirable to evaluate the sensitivity of regression results

to unmeasured confounders. There have been several developed sensitivity analysis techniques

(Rosenbaum and Rubin 1983, Lin et al. 1998, Brumback et al. 2004, Gustafson et al. 2010,

VanderWeele et al. 2012). Among those, the methods of Lin et al. (1998) are applicable to general

regression models and can be easily performed (VanderWeele 2008). Lin et al. (1998) assumed

that the distribution of the unmeasured confounder conditional on the measured confounders and

the exposure is normal or binomial, and they identified simple algebraic relationships between

a true exposure effect in the full model and an apparent exposure effect in the reduced model

which does not control for unmeasured confounders. One can make an inference on the true

exposure effect by making a simple adjustment to the estimate and the confidence interval of the

apparent exposure effect. Lin et al. (1998) developed their method for linear, log-linear, logistic

and proportional hazard models.

Negative controls technique has been emerging as a tool to detect unmeasured confounding.

2



(Flanders et al. 2011, Lipsitch et al. 2010, Lumley and Sheppard 2000, Jackson et al. 2006, Smith

2008; 2012). An outcome is said to be a valid negative control outcome (N) if it is influenced by

measured confounders (W ) and an unmeasured confounder (U) in the association between the

exposure (Z) and the main outcome (Y ), but not directly influenced by the exposure (Lipsitch

et al. 2010). Those conditions are sufficient to detect unmeasured confounding, but insufficient to

estimate the causal effect. Tchetgen Tchetgen (2014) made a more progress to estimate the causal

effect by imposing an additional assumption that the negative control outcome is independent

of a treatment received conditional on the measured confounders and counterfactual outcomes.

This assumption implies that the counterfactual outcomes are ideal proxies of the unmeasured

confounders. Under this assumption, an additive causal effect on a continuous outcome can be

estimated by regressing N onto (W,Y,Z).

Herein, we develop IV methods to estimate the causal effect of the exposure in coarsened

data. The developed methods are focused on right-censored outcome data. Further, we develop a

new IV estimator with a negative control outcome, which is consistent even if the IV assumption

that the IV should be independent of an unmeasured confounder is violated. For the case where

the IV is not available, we develop the method for sensitivity analysis with a negative control

outcome under unmeasured confounding. Finally, we introduce improved confidence intervals

for current status data. The remainder of this chapter provides the review of the IV methods for

linear and nonlinear models with complete and incomplete data and that of the methods with a

negative control outcome.

In Chapter 2, a general class of two-stage minimum distance estimators for coarsened data

is proposed that separately fits the linear models for the outcome and the exposure and then

estimates the true exposure effect on the outcome using a reduced form model. An optimal

minimum distance estimator is identified and shown to be theoretically superior to the usual

two- stage least squares estimator with fully observed data. Simulation studies demonstrate

that the methods perform well with realistic sample sizes. The practical utility of the methods is

illustrated in a study of the comparative effectiveness of colon cancer treatments, where the effect

3



of chemotherapy on censored survival times is confounded by patient status. In Chapter 3, we

propose a new IV estimator using a negative control outcome. The new IV estimator has been

shown to be theoretically valid even if the IV independence assumption that the IV should be

independent of the unmeasured confounder, is violated. Structural equation models are used to

define the IV and the negative control outcome. For the case of multiple IVs, the new IV method

depends on weights and the optimal weight is identified. In addition, a Wald test is proposed

to test the IV independence assumption. An IV estimator combining the new IV estimator

and an usual IV estimator is proposed under the IV independence assumption and shown to be

superior to both individual IV estimators. In Chapter 4, we develop new methods of sensitivity

analysis in a regression model with potential unmeasured confounding using a negative control

outcome. As in Lin et al. (1998), we assume that the causal exposure effect is represented by a

regression model. We use outcome models which follow the definition of the negative control

outcome presented in Lipsitch et al. (2010) and definition 1 of Tchetgen Tchetgen (2014), but

the outcomes in our models are not ideal proxies because of error terms and thus the methods of

Tchetgen Tchetgen (2014) are not applicable. First, we extended the control outcome calibration

approach of Tchetgen Tchetgen (2014) to conduct sensitivity analysis. Second, we extended

Lin’s methods to use a negative control outcome with fewer sensitivity parameters. Furthermore,

we developed Lin’s methods for probit model and additive hazard model and extended those to

use a negative control outcome. Third, we applied Lin’s methods to a conditional likelihood with

a negative control outcome for binary and right-censored outcome data. The proposed methods

are shown to perform well and better than Lin’s method in logistic and proportional hazard

regression models, and the conditional likelihood method is superior than both the marginal

model method and the Lin’s method when the unmeasured confounding is huge. In Chapter 5,

we discuss the confidence intervals for current status data and show that by using transformations,

simple Wald-based CIs can be improved with small and moderate sample sizes to have competitive

performance with likelihood ratio test (LRT)-based method. Our simulations further show that a

simple nonparametric bootstrap gives approximately correct CIs for the data generating mechanisms
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that we consider.

1.2 Instrumental variable methods

1.2.1 Complete data

First, we discuss linear models. For i = 1, ..., n, let yi be the response, let zi be the exposure

which is endogenous, let vi be the p × 1 vector of the instrumental variables (IVs) and let wi be

the q × 1 vector of the confounders. The linear model for the response is given by

yi = αo + αyzzi +αααTywwi + εi. (1.1)

In this model, αyz represents the average causal effect of z on y. The usual estimation methods

do not give consistent estimators for the regression parameters in (1.1) because z and ε are

correlated. The linear model for the exposure is given by

zi = βo +βββTzvvi +βββTzwwi + ηi.

In matrix notation, we can write

y =Xααα0 + εεε,

z =Dβββ0 + ηηη,

where ααα0 = (αo, αyz,αααyw)T , βββ0 = (βo,βββzv,βββzw)T , and y, z, εεε and ηηη are n-vectors with typical

element yi, zi, εi and ηi, and X and D are n×(2+q) , n×(1+p+q) matrices with row (1, zi,wi)

and (1,vi,wi).

We assume that E(ε∣v) = E(η∣v) = 0, var(ε∣v) = σ2
ε , var(η∣v) = σ2

η and E(εη∣v) = σεη.

We also assume that the probability limit of DTD/n and XTX/n are given by ΣD and ΣX

respectively.
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The two-stage least squares (2SLS) estimator for ααα0 is

α̂αα2sls = (XTD(DTD)−1DTX)−1(XTD(DTD)−1DTy).

The 2SLS can be also obtained by applying least squares to (1.1), where zi is replaced by its

predicted value. The 2SLS is the value of ααα to minimize

(y −Xααα)TD(DTD)−1DT (y −Xααα),

The 2SLS is consistent and the limiting distribution of
√
n(α̂αα2sls −ααα0) is normal with mean

zero and variance (βββTΣDβββ)−1σ2
ε . If we have one IV and no confounders, then the 2SLS for the

parameter of the exposure effect, αyz, is the ratio of the sample covariances, ĉov(y, v)/ĉov(z, v).

Next, we discuss non-linear models. Let consider the following nonlinear regression model,

yi = f(zi,wi,ααα) + εi,

where f is a possibly nonlinear function in z, w and ααα. Endogeneity occurs because of the

correlation of z and ε. For Amemiya’s nonlinear two-stage least squares (NL2SLS) Amemiya

(1974), f is assumed to have continuous first and second derivatives with respect to ααα. The

NL2SLS estimator (Amemiya 1974) of ααα is the value of ααα that minimizes

Φ(ααα) = (y − f)TH(HTH)−1HT (y − f),

where y and f are n-component vectors whose ith elements are yi and f(zi,wi,ααα) respectively,

and H is a n ×K matrix of certain constants with rank K ≤ (1 + p + q). If H =D, then NL2SLS

reduces to 2SLS. The NL2SLS is consistent for the true value ααα0 and under certain conditions
√
n(α̂ααnl2sls −ααα0) is normal with mean zero and variance

σ2
ε {plimn→∞

1

n
ḟ(ααα0)TH(HTH)−1HT ḟ(ααα0)}

−1

,
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where ḟ(ααα) is the first derivative of f(ααα) with respect to ααα.

Terza et al. (2008) assume the regression model of the response y is of the form

yi =M(αyzzi +αααTywwi + αyuui) + ei, (1.2)

where M(⋅) is a known nonlinear function, u is an unmeasured confounder and e is a random

error tautologically defined as e = y −M(αyzzi + αααywwi + αyuui) so that E(e∣z,w, u) = 0.

Endogeneity occurs because of the correlation between z and u. They assume the regression

model of the z is of the form

zi = r(βββTzvvi +βββTzwwi) + ui, (1.3)

where r is a known nonlinear function.

The 2SPS method is straightforward to implement. In the first stage, we obtain consistent

estimates of (βββzv,βββzw), (β̂zvβ̂zvβ̂zv, β̂zwβ̂zwβ̂zw), by applying the nonlinear least squares (NLS) method to the

model (1.3). Then, compute the predicted values of zi, ẑi = r(β̂ββ
T

zvvi + β̂ββ
T

zwwi), for i = 1, ..., n.

Correspondingly, define the residuals ûi = zi − ẑi. In the second stage, estimate the parameters

(γyz,γγγyw) by applying NLS to the model

yi =M(γyz ẑi + γγγTywwi) + e2SPS
i , (1.4)

where e2SPS
i is the regression error term. The resultant estimate, (γ̂yz, γ̂̂γ̂γyw), is the estimate of

(αyz,αααyw).

The 2SRI estimation is performed by including the residual, û, in the second stage model.

We apply NLS to the following model,

yi =M(αyzzi +αααTywwi + αyuûi) + e2SRI
i , (1.5)

where e2SRI
i is the regression error term. The consistency of 2SRI estimator can be proven by
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in the context of two-stage optimization estimator (Newey and McFadden 1994, White 1994,

Wooldridge 2002). For linear models, 2SPS and 2SRI are equivalent to 2SLS.

1.2.2 Right-censored outcome data

Several IV methods for right-censored outcome data have been proposed. Robins and Tsiatis

(1991) developed IV estimators to correct for non-compliance in randomized trials by estimating

the parameters of a class of semiparametric failure time models, the rank preserving structural

failure time models (RPSFTM), using a class of rank estimators. In a randomized clinical trial

designed to study the effect of a drug on survival, subjects are assigned to treatment protocols.

Unfortunately, some subjects often fail to comply with their assigned regimes. The method of

Robins and Tsiatis (1991) allows one to estimate the true treatment effect, i.e., the effect that

would be observed if all subjects complied with their assigned protocols, in the presence of such

non-compliance.

For i = 1, ..., n, suppose zi is a treatment indicator, hi(t) = {zi(u); 0 ≤ u ≤ t} is a treatment

history, vi is a randomization group indicator and ui is the survival time if the ith subject was

never to receive treatment, i.e., zi(t) = 0 for all t. Robins and Tsiatis (1991) assumed U is

independent of the treatment arm to which the subject is assigned. In the absence of censoring,

we observe the random variables (Ti,Hi(Ti), Vi), where Ti is the observed failure time of the ith

subject.

A RPSFTM relates Ui to {Ti,H(Ti)} by assuming

Ui = ψ(Ti,Hi(Ti),ααα0),

where ααα0 ∈ Rp is an unknown parameter and ψ(⋅) is a known smooth function. A simple

form of ψ(Ti,Hi(Ti),ααα0) is
´ Ti

0
exp(α0Zi(x))dx. The ψ(⋅) is assumed to satisfy the following

conditions.

Smoothness: ψt(t, h(t),ααα), ψαj(t, h(t),ααα) and ψt,αj(t, h(t),ααα) are continuous for all αj(j =
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1, ..., p) and almost all twith respect to Lesbesque measure whereψt(t, h(t),ααα) = ∂ψ(t, h(t),ααα)/∂t,

ψαj(t, h(t),ααα) = ∂ψ(t, h(t),ααα)/∂αj and ψt,αj(t, h(t),ααα) = ∂ψt(t, h(t),ααα)/∂αj .

Monotonicity: ψ(t, h(t), α) > ψ(u,h(u), α) if t > u.

Identity: ψ(t, h(t),0) = t

Independence and Indentification: There exists a unique α0 such that

U(α0) ⊥⊥ V,

where U(α) = ψ(T,H(T ), α) and A ⊥⊥ B means A and B are independent.

DefineNi(u,ααα) = I(Ui(ααα) ≤ u) and Yi(u,ααα) = I(Ui(ααα) ≥ u), where I(A) = 1 if statementA

is true and I(A) = 0 otherwise. Given a known p-vector g(v, u,ααα) = {g1(v, u,ααα), ..., gp(v, u,ααα)}T ,

Sn(ααα,g) is defined to be the p-vector with components

Sn,j(ααα,g) =
n

∑
i=1

ˆ
dNi(u,ααα){gj(Vi, u,ααα) − ḡj(u,ααα)}, j = 1, ...., p,

where

ḡj(u,ααα) =
n

∑
i=1

gj(Vi, u,ααα)Yi(u,ααα)/
n

∑
i=1

Yi(u,ααα).

Let α̂αα(g) be a value of ααα that solves Sn(ααα,g) = 0. Since Sn(ααα,g) is a step function in ααα, we

obtain α̂αα(g) by minimizing α̂αα(g)T α̂αα(g). The consistency and asymptotic normality of α̂αα(g) can

be proven by the asymptotic theory of rank estimators of a linear regression (Tsiatis 1990).

Robins and Tsiatis (1991) considered the restrictive type of censoring. They assumed the

censoring time C is known for all subjects. The observable variables (Ti,H(Ti), Vi,Ci) are

assumed to be i.i.d. and (U(ααα0),C) ⊥⊥ V . For a valid inference on ααα, a new censoring time

needs to be defined and this complicates the inference.

Bijwaard (2008) extended the method of Robins and Tsiatis (1991) to generalized accelerated

failure time (GAFT) models, which is based on transforming the failure times and assuming
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a distribution for these transformed failure times. Instrumental variable linear rank estimator

(IVLR) is proposed, which exploits the fact that for the true GAFT, the IV does not influence the

hazard of the transformed failure times. However, like the method of Robins and Tsiatis (1991),

censoring times should be known for all subjects and a new censoring time needs to be defined.

Brannas (2000) assumed accelerated failure time (AFT) models. The estimators proposed

are IV adaptations to the Powell symmetrically trimmed least squares and the Buckley-James

estimators for right-censored data. That is, he applied those two estimation methods to the AFT

models where the endogenous variable is replaced by its predicted values. Simulation studies

showed that they perform well, however, the theoretical properties of these procedures were not

investigated.

Loeys and Goetghebeur (2003) proposed a causal proportional hazards estimator for the

effect of treatment actually received in a randomized trial with all-or-nothing compliance. Suppose

that n independent subjects were randomized over experimental treatment (Vi = 1) or control

(Vi = 0). For subject i on treatment (respectively control), all-or-nothing exposure to treatment

Z1i (Z0i) is observed, along with its possibly right-censored survival time T1i (T0i). They make

the following assumptions.

(A1) (Z1i, T1i, Z0i, T0i, Vi) are i.i.d. random variables, implying potential outcomes for each

person are unrelated to the treatment or outcome of other individuals.

(A2) The randomization assumption: (Z1i, T1i, Z0i, T0i) ⊥⊥ Vi.

(A3) No access to experimental therapy on the control arm. Hence, Z0i equals to 0 for all

subjects, and T0i represents the treatment-free outcome, when randomized to control.

(A4) Following (A3), we also require that P (T1i > t∣Z1i = 0) = P (T0i > t∣Z1i = 0). This

assumption is called the “absence of indirect effect" by Pearl (2002) and “the exclusion restriction"

by Angrist et al. (1996).

They use the following causal proportional hazard model,

λ(t∣Vi = 1, Z1i = 1) = λ(t∣Vi = 0, Z1i = 1) exp(α0). (1.6)
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In (1.6), exp(α0) captures the causal proportional hazards effect within the treatable subpopulation.

The interest here is to estimate exp(α0).

Let Ci be a censoring time for the ith subject, T̃i = min(Ti,Ci), δi = I(Ti ≤ Ci), Ni(t) =

I(T̃i ≤ t, δi = 1), Yi(t) = I(T̃i ≥ t) and filtration

mathbbFt = σ{Ni(s), Yi(s+), Vi, Zi, i = 1, ..., n; 0 ≥ s ≥ t}. They model intensity process as

follows.

E{dNi(t)∣Vi(1 −Zi) = 1, Yi(t)} = λ00(t)Yi(t)dt

E{dNi(t)∣Vi = 0, Yi(t)} = {(1 − π(t))λ00(t) + π(t)λ01(t)}Yi(t)dt

E{dNi(t)∣ViZi = 1, Yi(t)} = λ01(t)eαYi(t)dt,

where π(t) = P (Z1i = 1∣T̃i ≥ t, Vi = 0). For known π(t), we could then define

dΛ̂01(t) =
1

π(t) {∑
i

(1 − Vi)dNi(t)
∑j Yj(t)(1 − Vj)

− (1 − π(t))∑
i

Vi(1 −Zi)dNi(t)
Yj(t)Vj(1 −Zj)

} (1.7)

If we substitute (1.7) into (1.6), then we obtain the following score equation,

∑
i

ˆ
dNi(t) [ViZi − {∑

j

ViZie
αYj(t)}

1

π(t) × { 1 − Vi
∑j Yj(t)(1 − Vi)

− (1 − π(t))Vi(1 −Zi)
∑j Yj(t)(1 −Zi)Vi

}] = 0

(1.8)

For given π(t), the process (1.8) has compensator 0, and the martingale central limit theorem

can be used to obtain asymptotic normality of the resultant estimator. However, π(t) is unknown

by (A3). Therefore, (1.8) should be estimated. The authors estimate S01(t) with monotonic

decreasing assumption and its jump is used for dΛ̂01(t).

Loeys et al. (2005) extended the methods of Loeys and Goetghebeur (2003) to allow more

general exposure level and covariates in the model. The model they considered is

λ(t∣Vi = 1, Ui = u,Xi = x) = λ(t∣Vi = 0, Ui = u,Xi = x) exp(α0u). (1.9)
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whereUi is a subject i’s potential exposure to the experimental treatment if he/she were randomized

to treatment and Xi is a covariate vector for the ith subject. The challenging here is that Ui is

unobserved for all subjects in the control group ({Vi = 0}). The estimation procedures relies

heavily on randomization.

We rewrite the model (1.9) in terms of survival distribution,

S(t∣Vi = 1, Ui = u,Xi = x) = S(t∣Vi = 0, Ui = u,Xi = x)exp(α0u). (1.10)

Now, survival probability in the control group are a mixture of unobserved compliance-specific

probabilities, i.e. S(t∣Vi = 0,Xi = x) equals

∑
u

S(t∣Vi = 0, Ui = u,Xi = x)P (Ui = u∣Vi = 0,Xi = x), (1.11)

when Ui is discrete. If the model (1.10) holds, the model (1.11) also equals

∑
u

S(t∣Vi = 1, Ui = u,Xi = x)exp(−α0u)P (Ui = u∣Vi = 1,Xi = x),

since P (Ui = u∣Vi = 0,Xi = x) = P (Ui = u∣Vi = 1,Xi = x) by definition of Ui and randomization.

We define Ŝ1→0(t∣x;α) as

Ŝ(t∣Vi = 1, Ui = u,Xi = x)exp(−α0u)P̂ (Ui = u∣Vi = 1,Xi = x).

The unknown parameter α is estimated by the value of α that minimizes the distance between the

Ŝ1→0(t∣x;α) and the fitted treatment-free survival distribution in the control group conditional

on X. To this end, they propose a logrank test which is built as a sum of x-specific pseudo

martingales in the control group:

∑
Vi=0

{δi − Λ̂1→0(T̃i∣xi;α)} (1.12)
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where Λ̂1→0(T̃i∣xi;α) = − log Ŝ1→0(T̃i∣xi;α). The variance of (1.12) can be estimated by 2∑Vi=0 Λ̂1→0(T̃i∣xi;α).

The point estimator for α0 can be found as the α-value that minimizes the χ2 value of the test

statistic

(∑
Vi=0

{δi − Λ̂1→0(T̃i∣xi;α)})
2

/ (2 ∑
Vi=0

Λ̂1→0(T̃i∣xi;α)) .

The proposed methods in Chapter 2 is based on AFT model like Robins and Tsiatis (1991),

Bijwaard (2008) and Brannas (2000). Unlike Brannas (2000), our methods are theoretically well

justified with consistency and asymptotic normality. Furthermore, our methods do not need the

condition that the consorting times are known for all subjects as in Robins and Tsiatis (1991) and

Bijwaard (2008).

1.3 Negative control outcomes

1.3.1 Detection of unmeasured confounding

Lipsitch et al. (2010) provides a comprehensive review of the use of negative controls to

identify confounding in observations studies. They establish the conditions under which negative

control outcomes and negative control exposures can be used to detect unmeasured confounders.

Here we focus on the negative control outcomes.

A negative control outcome (N) should be an outcome that are affected by the set of measured

(W) and unmeasured (U) confounders of the association between the exposure (Z) and the

outcome (Y). We say such N is an “U-comparable" outcome. If N is not caused by Z, then

any association of N and Z observed by the same analysis method which is used to determine the

association of Y and Z would indicate the bias in that of Y and Z.

As we mentioned earlier, negative controls have been elegantly used by epidemiologists to

identify unmeasured confounding in studies of influenza vaccination effectiveness by Jackson

et al. (2006). The negative control outcome used in that study was the mortality or pneumonia/influenza

hospitalization in the period before and after influenza season. That negative control outcome
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Figure 1.1: Causal diagram showing an ideal negative control outcome N for use in identifying
potential unmeasured confounding. N should have the same incoming arrow as outcome Y,
except that N is not caused by Z.
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may satisfy “U-comparable" because protective effect of vaccination should be specific to influenza

season and it may share the common confounders with mortality or pneumonia/influenza hospitalization

during influenza season.

Jackson et al. (2006) also used irrelevant outcomes to influenza vaccination such as hospitalization

for injury or trauma as negative control outcomes. They postulated that the effect of influenza

vaccination is specific to the outcome related to influenza. They found that there was also

protective effects on injury or trauma hospitalization. This indicates that the observed effectiveness

of vaccination is biased due to uncontrolled confounders.

1.3.2 Control outcome calibration

Tchetgen Tchetgen (2014) developed control outcome calibration approach to estimate an

exposure effect on an outcome under unmeasured confounding. His key assumption is that a

negative control outcome is independent of treatment selection conditional on measured confounders

and counterfactual outcomes. This assumption implies that counterfactual outcomes are ideal

proxy measures for an unmeasured confounder.

Let Yz denote a main outcome for the subject who received the treatment z. Also, let Nz

denote a negative control outcome for the subject who received the treatment z. Definition 1 of

Tchetgen Tchetgen (2014) says that N is a negative control outcome if Nz = N (z = 0,1) for all

individuals and the confounding variables for the exposure-negative control outcome association

are the same as those for the exposure-main outcome association.

Let YZ = {Yz ∶ z ∈ Z} denote the set of all counterfactuals for the main outcome under all

possible values of the exposure in the set Z. Then, Assumption 1 of Tchetgen Tchetgen (2014)

says that the exposure is independent of Nz conditional on {W,YZ}, or

N = Nz ⊥⊥ Z ∣ {W,YZ}.

Let Ψ0 = Y 1 − Y 0 be the parameter of interest and Y (Ψ) = Y − ΨZ. Under Assumption 1 of
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Tchetgen Tchetgen (2014),

N ⊥⊥ Z ∣ {W,Y (Ψ)},

if and only if Ψ = Ψ0. Using a linear regression model, we can set

E(N ∣ Z,W,Y (Ψ0) = E(N ∣W,Y (Ψ0))

= β1 + βT2 W + β3Y (Ψ0),

= β1 + βT2 W + β3Y + β4Z,

where β4 = −β3Ψ0, assuming that β3 ≠ 0. Thus the estimator of Tchetgen Tchetgen (2014) is

give by

Ψ̂ = −β̂4/β̂3.
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CHAPTER 2: TWO-STAGE ESTIMATION OF STRUCTURAL INSTRUMENTAL
VARIABLE MODELS WITH COARSENED DATA

2.1 Introduction

Observational studies are subject to confounding by variables which affect an exposure and

an outcome. Confounding is one of major reason to yield biased estimates in observational

studies. Regression adjustment or propensity score methods are usually used to overcome this

problem. However, those methods require that all of the confounders are observed and this

may not be the case in many cases. In economic terminology, we say the exposure variable is

endogenous when the exposure is correlated with an error term by sharing unmeasured confounders.

Endogeneity often occurs in randomized trials as well when there is non-compliance, which

becomes problematic if it is caused by unobserved variables that are risk factors for the outcome.

In that case, the usual regression estimators may not be consistent.

Instrumental variable method is an approach to yield unbiased estimate of the endogenous

exposure. Although, the requirements of an IV depend on a particular analytic method one

uses, the following three conditions are sufficient to define the IV (Brookhart et al. 2010): (i)

an IV V has a causal effect on the exposure Z, (ii) V affects the outcome Y only through Z,

(iii) V is unrelated to an unmeasured confounder U . In randomized trials, a randomization

assignment indicator is often used as an IV to construct IV estimators for meaningful casual

effects of treatment on the outcome (Robins and Tsiatis 1991, Loeys and Goetghebeur 2003,

Loeys et al. 2005, Nie et al. 2011).

Structural linear equation models, which is one of the methods to represent causal effects,

are considered to develop our IV method (Hernan and Robins 2006). The equation of interest

(response model) relates Y to Z and a measured confounder W via a linear model. The other
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equation (exposure model) relates Z to V and W linearly. The regression parameters in the

outcome model are identified using the instrument. For the case of no confounders, an IV

estimator is given as the ratio of two covariance estimators, ĉov(Y,V )/ĉov(Z,V ). For the case

where there are confounders, generalized method of moments (Hansen 1982) or two-stage least

squares (Theil 1953) are used.

There has been considerable work with complete data, where both outcome and exposure

are fully observed and assumed to satisfy semiparametric linear or nonlinear or nonparametric

structural equation models with unspecified error distributions (Theil 1953, Amemiya 1974;

1982, Newey 1990, Chen and Portnoy 1996, Newey et al. 1999, Newey and Powell 2003).

The popular two-stage least squares estimator has an explicit form, with a well-characterized

sampling distribution and plug-in variance estimation, making inference straightforward (Bollen

1996, Bollen et al. 2007). However, if either response or exposure are incompletely observed,

such semiparametric methods are not applicable. There has been limited work addressing two-stage

IV estimation with such coarsening.

If we observe only a subset of the complete-data sample space where true data lie, then we

refer to this kind of data as coarsened data (Heitjan and Rubin 1991). The various ways of

coarseness include missing, rounding, heaping, right-censoring and so on. In this article, we

focus on right-censored data, however, other types of coarsened data such as truncated data can

be analyzed with our methods. Our methods do not cover coarsened data such as age heaping,

whose valid inference is achieved by multiple imputation (Heitjan and Rubin 1990).

An important special case of coarsened data occurs with time to event outcomes and exposures,

which may be subject to both censoring and truncation. For right censored data, there have been

attempts to extend classical two-stage IV estimators. Robins and Tsiatis (1991) developed the IV

estimators for correcting non-compliance in randomized trials using rank preserving structural

failure time models. These models are an alternative to the usual two-stage models which

are specially tailored to failure time data. A limitation is that the semiparametric estimation

methods require that the censoring time is always known, as with fixed follow-up, and hence
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censoring due to dropout and other coarsening are not permitted. Bijwaard (2008) extended

Robins and Tsiatis (1991) to generalized accelerated failure time models under similar censoring

assumptions. Loeys and Goetghebeur (2003) proposed the IV estimators for the effect of treatment

actually received in a randomized trial with all-or-nothing compliance based on the proportional

hazard models. These methods were extended to allow more general exposure level and covariates

to be included in the causal proportional hazard model (Loeys et al. 2005). Nie et al. (2011)

proposed the IV estimators for the effect of treatment on survival probability in randomized

trials with noncompliance and administrative censoring, which are extensions of the methods of

Baker (1998). Brännäs (2000) considered ad hoc two-stage estimators for the standard linear

structural equation models which are IV adaptations of the symmetric trimmed least squares

(Powell 1986a) and the Buckley-James (Buckley and James 1979) estimators for right censored

data. However, the theoretical properties of these procedures were not investigated and a rigorous

investigation of two stage IV estimation in linear models with right censoring is not apparent in

the literature.

In Section 2, we propose a general framework for two-stage IV estimation of semiparametric

linear structural equation models for outcome and exposure which accommodates coarsened

data. The main requirement is that there exist semiparametric methods for fitting linear models

to the outcome and exposure: this condition is satisfied under a wide range of censoring and

truncation schemes commonly encountered in longitudinal studies. At stage 1, we construct and

fit the reduced response and exposure models. At stage 2, we estimate the regression parameters

in the true response model using a weighted minimum distance method based on the stage

1 results. This yields a closed form estimator, with a particular choice of weight leading to

the standard two-stage least squares estimator with fully observed data. For the case of right

censoring, the procedure does not require that the censoring time is always observed. We prove

that our estimators are consistent and asymptotically normal, and provide a theoretically justified

resampling technique for making inferences. The optimal weight is identified resulting in the

minimum variance estimator, which may be superior to an usual two-stage estimator.
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In Section 3, we discuss details related to the implementation of our semiparametric estimator

when either response or exposure may be censored, employing existing estimators for accelerated

failure time models under censoring. These methods are shown to perform well in simulations

reported in Section 4, where naive estimation which ignores the unmeasured confounded may

produce severely biased estimates of exposure effects. The practical utility of the methods is

illustrated in a study of the comparative effectiveness of colon cancer treatments, where the

effect of treatment on survival is confounded by patient health status.

2.2 General Framework for Coarsened Data

2.2.1 Model and estimation

For i = 1, ..., n, suppose that Yi is the response variable, Zi is the exposure variable, Vi =

(Vi1, ..., Vip)T is the p × 1 vector of the IVs, Wi = (Wi1, ...,Wiq)T is the q × 1 vector of the

measured confounders, and Ui is the unmeasured confounder.

We consider the following linear response model,

Yi = αyo + αyzZi + αTywWi + αyuUi + εi

= αyo + αT0Xi + ε∗i , (2.1)

where ε∗i = αyuUi + εi, αyw = (αyw,1, ..., αyw,q)T , αT0 = (αyz, αTyw), XT
i = (Zi,W T

i ) and E(εi ∣

Xi, Ui) = 0 by construction.

The linear model for the exposure is given by,

Zi = βzo + βTzvVi + βTzwWi + βzuUi + δi, (2.2)

where βzv = (βzv,1, ..., βzv,p)T , βzw = (βzw,1, ..., βzw,q)T andE(δi ∣ Vi,Wi, Ui) = 0 by construction.

One may rewrite model (2.2) as

Zi = βzo + βT0 Di + δ∗i , (2.3)
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where δ∗i = βzuUi + δi, βT0 = (βTzv, βTzw), and DT
i = (V T

i ,W
T
i ). We will call (3.27) the reduced

exposure model.

The implied model for Xi is

Xi =
⎛
⎜⎜
⎝

Zi

Wi

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

βzo

0q×1

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

βTzv βTzw

0q×p Iq

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

Vi

Wi

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

δ∗i

0q×p

⎞
⎟⎟
⎠

= β∗zo +BT
0 Di + δ∗∗i , (2.4)

where B0 is the (p + q) × (1 + q) parameter matrix, 0q×p is a q × p zero matrix and Iq is a q × q

identity matrix.

Substituting (3.28) into (3.26) gives

Yi = γyo + γT0 Di + τi, (2.5)

where γyo = αyo+αT0 β∗zo is an intercept, γ0 = (γTyv, γTyw)T = B0α0 is a (p+ q)×1 parameter vector

and τi = ε∗i + αT0 δ∗∗i . We will call (3.29) the reduced response model.

Two-stage IV estimation will be discussed based on the assumption that conditional on Di,

(τi, δ∗i ) is an independent and identically distributed sequence with mean zero and covariance

matrix Σe. The simple sufficient condition to make the assumption of E(τi ∣ Di) = E(δ∗i ∣ Di) =

0 hold is E(εi ∣Di) = E(δi ∣Di) = E(Ui ∣Di) = 0.

Remark 1. From the assumption of exclusion restriction (Angrist et al. 1996) and the assumption

of E(εi ∣ Zi,Wi, Ui) = 0 in the response model (3.26), if follows that E(εi ∣ Zi, Vi,Wi, Ui) = 0.

Clearly, E(εi ∣ Zi, Vi,Wi, Ui) = 0 implies E(εi ∣ Di) = 0. From the assumption of E(δi ∣

Di, Ui) = 0 in the exposure model (2.2), it follows thatE(δi ∣Di) = 0. Thus we needE(Ui ∣Di) =

0, which will be called IV independence assumption, to have E(τi ∣ Di) = E(δ∗i ∣ Di) = 0. The

IV independence assumption implies that the unmeasured confounder is balanced well between

the strata generated by the instrument and the confounders.
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In coarsened data, rather than observing Yi, we observe Ỹi = ψ(Yi), where ψ(⋅) is some

known function of Yi. For example, in the setting of the accelerated failure time model, ψ(Yi) =

min(Yi,CY
i ), where Yi is a log of failure time and CY

i is the corresponding log of censoring time.

The usual estimator for α0 in (3.26) does not give a consistent estimator because Xi and ε∗i

are correlated with shared Ui, hence E(ε∗ ∣ Xi) is not equal to zero in general unless E(Ui ∣

Xi) = E(Ui ∣ Zi,W T
i ) = 0 for all i = 1, ..., n. However, since E(τi ∣ Di) = 0 in the model

(3.29), γ0 can be consistently estimated using the data {(Ỹ1,DT
1 ), ..., (Ỹn,DT

n )}. The proposed

IV estimation method is developed under the condition that the estimators of θT0 = (γT0 , βT0 )

satisfying the below two assumptions exist.

Assumption 1. The estimator θ̂T = (γ̂T , β̂T ) converges in probability to θT0 = (γT0 , βT0 ).

Assumption 2. The random quantity n1/2(θ̂−θ0) converges in distribution to a mean 0 multivariate

normal distribution with the covariance matrix Σθ0 .

The covariance matrix Σθ0 consists of four block matrices,

Σθ0 =
⎛
⎜⎜
⎝

Σγ0 Σγ0,β0

Σβ0,γ0 Σβ0

⎞
⎟⎟
⎠
.

The estimator for BT
0 , B̂T , is defined as

⎛
⎜⎜
⎝

β̂Tzv β̂Tzw

0q×p Iq

⎞
⎟⎟
⎠
.

Consistent and asymptotic normal estimators are obtained by the least squares for fully

observed data and by the Buckley-James (Buckley and James 1979) and the rank (Prentice

1978) estimators for right-censored data. Asymptotical properties of the Buckley-James and

rank estimators were studied by Ritov (1990), Tsiatis (1990), Lai and Ying (1991aa;a), Ying

(1993) and Jin et al. (2006b).
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Given the consistent estimators γ̂ and B̂, a consistent estimator for α0 can be obtained by

minimizing the weighted quadratic distance criterion

(γ̂ − B̂α0)TAn(γ̂ − B̂α0),

where An is a non-negative definite weighting (symmetric) matrix which may depend on the

data, and An/n = A + op(1). The minimum distance estimator (MDE) is given by

α̂ = (B̂TAnB̂)−1B̂TAnγ̂.

For complete data, the two-stage least squares (2SLS) estimator is obtained by replacing the

exposure by its predicted value calculated from fitting the reduced exposure model with the

usual least squares. Define centered vectors as Xi(c) = Xi − X̄ and Di(c) = Di − D̄, where

X̄ = n−1∑ni=1Xi and D̄ = n−1∑ni=1Di. Let X(c) and D(c) be the matrices with the ith rows of

Xi(c) and Di(c). Then, the two-stage least squares estimator for α0 can be written as

α̂2sls = (X̂T
(c)X̂(c))−1X̂T

(c)Y,

where Y = (Y1, ..., Yn)T and X̂(c) =D(c)B̂. From X̂(c) =D(c)B̂, it follows that

α̂2sls = {B̂T (DT
(c)D(c))B̂}

−1
B̂TDT

(c)Y.

We can see that this is equivalent to α̂withAn =DT
(c)D(c) and γ̂ = (DT

(c)D(c))−1DT
(c)Y . Therefore,

α̂ contains the two-stage least squares estimator as a special case.

Next, we present the major theoretical results for the proposed IV estimator.

Theorem 1. Under Assumption 1, α̂ converges in probability to α0.

Proof. α̂ = (B̂T (An/n)B̂)−1
B̂T (An/n)γ̂ = (BT

0 AB0)−1BT
0 Aγ0 + op(1) = α0 + op(1). ◻
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Theorem 2. Under Assumptions 1 and 2, n1/2(α̂ − α0) converges in distribution to a mean 0

multivariate normal distribution with the covariance matrix

(BT
0 AB0)−1BT

0 AΩ(α0)AB0(BT
0 AB0)−1, where Ω(α0) = var{n1/2(γ̂ − B̂α0)}.

Proof.

n
1
2 (α̂ − α0) = n

1
2 {(B̂TAnB̂)−1B̂TAnγ̂ − (B̂TAnB̂)−1B̂TAnB̂α0}

= (B̂TAnB̂)−1B̂TAnn
1
2 (γ̂ − B̂α0).

By multivariate Slutsky theorem, Theorem 2 holds due to the facts that (B̂TAnB̂)−1B̂TAn =

(BT
0 AB0)−1BT

0 A + op(1) and that n1/2(γ̂ − B̂α0) converges to a mean 0 multivariate normal

distribution with the covariance matrix Ω(α0). ◻

Remark 2. Although Theorems 1 and 2 look straightforward, those theorems are very useful

because they convert the problem of finding consistent and asymptotically normal IV estimators

to that of finding well established estimators such as rank estimators for right-censored data and

Powell’s estimators (Powell 1984; 1986b) for truncated data. We will present four Corollaries

to state the asymptotic properties of the proposed IV estimators for four types of data and those

Corollaries are directly followed by Theorems 1 and 2.

The lower bound of the above covariance matrix of n1/2(α̂ − α0) is (BT
0 Ω(α0)−1B0)−1. This

is obtained by taking A = Ω(α0)−1. The corresponding α̂ is obtained by using the weight An =

Ω̂(α̂)−1, which is a consistent estimator for Ω(α0)−1 if α̂ is consistent for α0. In order to compute

An = Ω̂(α̂)−1, we need a consistent estimator for α0. In practice, we may use the following initial

estimator, α̂I = (B̂T B̂)−1B̂T γ̂, with with identity weight matrix An = I .

The matrix Ω(α0) depends on the asymptotic covariance matrix of (γ̂T , β̂T ). Note that

γ̂ − B̂α0 = g(γ̂, β̂) =
⎛
⎜⎜
⎝

γ̂yv − αyzβ̂zv

γ̂yw − αyzβ̂zw − αyw

⎞
⎟⎟
⎠
, ġ(γ̂, β̂) =

⎛
⎜⎜
⎝

Ip+q

−αyzIp+q

⎞
⎟⎟
⎠
,
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where ġ(θ) is the first derivative of g(θ) with respect to θ. Thus Ω(α0) = Σγ0 − αyz(Σγ0,β0 +

Σβ0,γ0) +α2
yzΣβ0 . For the 2SLS estimator in complete data, Ω(α0) = var(ε∗i −αyzδ∗i )M̄−1, where

M̄ = limn→∞DT
(c)D(c)/n.

If we have one IV (p = 1) and B0 is nonsingular, then α0 = B−1
0 γ0 and α̂ = B̂−1γ̂. In this

set-up, α̂ does not dependent on the weight matrix An. The covariance matrix of n1/2(α̂ − α0)

with one IV is given by (BT
0 Ω(α0)−1B0)−1 which is the lower bound of the covariance matrix

of n1/2(α̂ − α0). If there are no confounders, then α̂ = γ̂yv/β̂zv, which is just the ratio of the two

regression parameter estimators.

2.2.2 A resampling method for variance estimation

In our setting, we are interested in drawing inferences for parameters, say β, under semiparametric

models. One may use the estimating equation because the resulting solution is consistent and

asymptotically normal under mild conditions. The estimator β̂ for β0 can be easily computed

by solving the corresponding estimating function. However, the variance of β̂ can involve

complicated nonparametric function estimation if the estimating equation is not smooth enough

in β. For example, the variance of rank-based estimator for the accelerated failure time model

contains the derivative of hazard function of the error terms. Thus direct computation of the

variance would require nonparametric density estimation. To avoid this difficulty, resampling

methods can be used.

Jin et al. (2001) proposed a resampling method by perturbing an objective function. If the

objective function has its first derivative, i.e. an estimating equation, then it is equivalent to

perturb the estimating equation. The method of Jin et al. (2001) provides a valid inference

procedure under the assumption that both the estimating equation and its perturbed one have

’good’ quadratic equations around the true value of the parameter. That assumption holds in a

wide range of regression problems including the estimations based on Lp norm and Wilcoxon

statistic, and truncated median regression under mild conditions. Thus, dealing with data coarsening

such as censoring and truncation, the resampling method of Jin et al. (2001) can be effectively
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used to perform variance estimation of the proposed IV estimators. For right-censored data,

the method of Jin et al. (2001) has been extended to rank estimation (Jin et al. 2003; 2006a),

Buckley-James estimation (Jin et al. 2006b) and local Buckley-James estimation (Pang et al.

2014) of the accelerated failure time model. Details about the inference using the resampling are

provided in the next section.

2.3 Inference

We start with sketching our two-stage IV method which involves solving two separate estimating

equations. To obtain γ̂ and β̂, we find the roots of the estimating functions,

U1(γ) =
n

∑
i=1

U1i(γ), U2(β) =
n

∑
i=1

U2i(β), (2.6)

where U1(γ) and U2(β) are the estimating equations for the response and exposure reduced

models, (3.29) and (3.27), respectively.

Throughout the rest of the paper, we assume that the response is right-censored. Then, we

mainly consider two cases: Case 1, the observed exposure is continuous; Case 2, the observed

exposure is binary. We further divide each case into the two sub-cases: Case 1-1, the exposure

is fully observed; Case 1-2, the exposure is right or left-censored; Case 2-1, the binary exposure

is observed via coarsening of the latent exposure; Case 2-2, the binary exposure is directly

observed.

For all of the cases except for Case 2-2, the equation U1(γ) is the Gehan estimating equation

for the accelerated failure time model (Fygenson and Ritov 1994, Jin et al. 2003). The equation

U2(β) is the normal equation for the linear model for Case 1-1, the Gehan estimating equation

for Case 1-2 and the probit score equation for Case 2-1. For Case 2-2, the equation U1(γ) is

the normal equation for the local Buckley-James estimator of heteroscedastic accelerated failure

time model (Pang et al. 2014) and U2(γ) is the normal equation for the linear probability model.

The estimators, γ̂ and β̂, are solutions of those estimating equations. They are consistent for
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γ0 and β0 and asymptotically joint normal under certain conditions (see regularity conditions

in the Appendix). These asymptotic properties of rank estimators follow from Tsiatis (1990)

and Ying (1993) and those of local Buckley-James estimator follow from Pang et al. (2014),

while for the least squares and maximum likelihood estimators in Case 1-1, 2-1 and 2-2, the

results are standard. By Theorems 1 and 2, the two-stage IV estimator, α̂, is consistent for ααα and

asymptotically normal.

To estimate the variance of the two-stage IV estimator, we generate the joint distribution of γ̂

and β̂ by perturbing the two estimating equations with the same positive random variables whose

mean and variance are one and which are independent of the data (Ỹi, Zi,Di)(i = 1, ..., n).

Let R = (R1, ...,Rn) be the vector of random variables used for perturbation. The perturbed

estimating equations are given by

U∗
1 (γ) =

n

∑
i=1

U∗
1i(γ) =

n

∑
i=1

U1i(γ)Ri, U
∗
2 (β) =

n

∑
i=1

U∗
2i(β) =

n

∑
i=1

U2i(β)Ri. (2.7)

We perturbed the two estimating equations by multiplying the original estimating equations

by the same Ri(i = 1, ..., n), which ensures that the covariance of the estimating equations is

correctly accounted for in the resampling. For l = 1,2, under mild conditions, n−1/2U∗
l (⋅) has

mean 0 and approximately the same variance as n−1/2Ul(⋅) conditionally on the data (Jin et al.

2003). In addition, the conditional covariance matrix of n−1/2U∗
1 (γ) and n−1/2U∗

2 (β) given the

data converges to the asymptotic covariance matrix of n−1/2U1(γ) and n−1/2U2(β). Based on

those arguments, we can obtain the joint distribution of γ̂ and β̂. For accelerated failure time

model, the resampling method used in (2.7) is sufficient to generate marginal distribution of γ̂

or β̂ (Jin et al. 2003). However, to generate the joint distribution of the estimators, we need to

modify (2.7), as discussed below. The resampling of local Buckley-James estimator is similar

to that of rank estimator, but is more complex because perturbing the Kaplan-Meier estimator of

the error distribution is required.

Suppose we repeatedly perturb the estimating equations a large number of times, say K,
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while fixing the data, with the kth resampled perturbing random variables denoted as Rk =

(Rk
1 , ...,R

k
n). Denote by tr(γ̂k) = {tr(γ̂kyv), tr(γ̂kyw)} and tr(β̂k) = {tr(β̂kzv), tr(β̂kzw)} the solutions

of the kth perturbed estimating equations. Then we can construct the kth resampled α̂, α̂k, from

γ̂k and β̂k,

α̂k = {tr(B̂k)A∗
nB̂

k}−1tr(B̂k)A∗
nγ̂

k,

where B̂k is defined as

⎛
⎜⎜
⎝

tr(β̂kzv) tr(β̂kzw)

0q×p Iq

⎞
⎟⎟
⎠
.

The weight matrix, A∗
n, is defined as the inverse of the empirical covariance matrix of {n1/2(γ̂1 −

B̂1α̂I), ..., n1/2(γ̂K−B̂Kα̂I)} and α̂I = (B̂T B̂)−1B̂T γ̂. The distribution of α̂ can be approximated

by the empirical distribution of {α̂1, ..., α̂K}.

2.3.1 Case 1-1: Fully-observed continuous exposure

Here we specify the methods for Case 1-1. We employ the AFT model for the censored

response model (3.29), assuming that (τ1, ..., τn) are independent error terms with a common,

but unspecified distribution. The response vector Y is the vector of log of survival times. Let

CY = (CY
1 , ...,C

Y
n )T be the vector of log of censoring times for Y . Assume that Yi and CY

i are

independent conditionally on DT
i = (V T

i ,W
T
i ) and CY

i is not affected by Ui. The data consists of

(Ỹi,∆Y
i ,Di), where Ỹi = min(Yi,CY

i ), ∆Y
i = I(Yi ≤ CY

i ). Here, I(Q) is one when a statement

Q is true, and zero otherwise.

Define ei(γ) = Ỹi − γTDi, Ni(γ; t) = ∆Y
i I{ei(γ) ≤ t} and Yi(γ; t) = I{ei(γ) ≥ t}. Note

Ni(γ; t) and Yi(γ; t) are the counting process and at-risk process on the residual time scale.
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Write

S(0)(γ; t) = n−1
n

∑
i=1

Yi(γ; t), S(1)(γ; t) = n−1
n

∑
i=1

Yi(γ; t)Di.

The Gehan-type rank estimator γ̂G is a root of the following estimating equation.

U1,G(γ) =
n

∑
i=1

ˆ ∞

−∞
S(0)(γ; t){Di − D̄(γ; t)}dNi(γ; t), (2.8)

where D̄(γ; t) = S(1)(γ; t)/S(0)(γ; t). Or equivalently,

U1,G(γ) = n−1
n

∑
i=1

n

∑
j=1

∆y
i (Di −Dj)I{ei(γ) ≤ ej(γ)}. (2.9)

The above equation is monotone in each component of γ (Fygenson and Ritov 1994).

We can generate the resampled rank estimators by solving the following perturbed estimating

equation,

U∗
1,G(γ) = n−1

n

∑
i=1

n

∑
j=1

∆y
i (Di −Dj)I{ei(γ) ≤ ej(γ)}RiRj, (2.10)

where Ri(i = 1, ..., n) are positive random variables with E(Ri) = var(Ri) = 1, and independent

of the data. The perturbation in (2.10) is more complex than the usual approach, in which each

term in the estimating equation is multiplied by a single Ri. Jin et al. (2006a) showed that the

resampling technique in (2.10) can produce joint distribution of the rank estimators from separate

marginal linear models. Since the reduced response model is the accelerated failure time model,

the resampling technique in (2.10) is essential to generate joint distribution of the estimators.

For the exposure which is fully observed, one may use least squares estimation. For simplicity,

we assume that the error terms, (δ∗1 , ..., δ∗n), in the reduced exposure model are independent with

a common unspecified distribution. The least squares estimator for β0, which will be denoted as

29



β̂L, is obtained by solving the following estimating equation, which is the normal equation,

U2,L(β) =
n

∑
i=1

(Di − D̄)(Zi −DT
i β). (2.11)

We can generate the resampled least squares estimators by solving the following perturbed

estimating equation,

U∗
2,L(β) =

n

∑
i=1

(Di − D̄)(Zi −DT
i β)Ri, (2.12)

where Ri(i = 1, ..., n) are the same random variables used in (2.10). Employing the same

perturbations is essential to generating the joint distribution of (γ̂G, β̂L).

Below we present corollaries and a theorem for the asymptotic properties of the two-stage IV

estimator with the Gehan rank estimator and the least square estimator, and the approximation of

the asymptotic distribution of the two-stage IV estimator via the above resampling.

Corollary 1. For Case 1-2, the Gehan rank estimator for γ0, denoted as γ̂G, and the lest squares

estimator for β0, denoted as β̂L, satisfy Assumption 1 and 2 under the conditions A1-A4 in the

appendix. Therefore the two-stage estimator, α̂, with γ̂G and β̂L converges in probability to α0

and asymptotically normal by Theorem 1 and 2.

Theorem 3. For Case 1-2, under the conditions A1-A4 in the appendix, the asymptotic distribution

of α̂ can be estimated by the empirical distribution of α̂∗ = (α̂1, ..., α̂K) conditionally on the data,

where α̂k(k = 1, ...,K) is the resampled α̂ at the kth perturbation.

2.3.2 Case 1-2: Right or left-censored exposure

Next we specify the methods for Case 1-2 where both the response and exposure is right or

left-censored. The model with left-censored data can be estimated by taking negative values of

the parameter estimates obtained from the estimation method for right-censored data, where the

outcome is multiplied by a negative sign. Left-censoring often occurs in the studies where the
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measurement of biomarkers or environmental substances is subject to detection limit. As Wang

and Feng (2012) stated, the methods for regression with the covariates missing at random is not

applicable to this case as the censoring of the covariates reflects the size of true value.

Akritas et al. (1995) developed the Theil-Sen estimator for the slope in a simple regression

when both the response and exposure are possibly left-censored. They referred this to doubly

censored data. The motivation of their methods comes from astronomical data where nondetections

occur when observed values of the samples are below a certain level. Thus these nondetections

become left-censored data points. Wang and Feng (2012) proposed multiple imputation for

M-regression with left-censored covariates. Their method uses a linear quantile regression model

to impute the censored values given the observed data. Bernhardt et al. (2014) proposed imputation

method for left-censored covariates under accelerated failure time model. They use seminonparametric

distribution to model the error term and assume the distribution of censored covariates conditional

on observed variables is known. Thus their method relies on parametric models and the regression

parameters are estimated by maximum likelihood estimation. The proposed method for Case

1-2 requires the presence of IVs which satisfy the three conditions mentioned in Introduction.

Our method has been developed under the situation where there are unmeasured confounders,

however, also can be applicable to the data without unmeasured confounders.

Our method is similar to that of Wang and Feng (2012) in the sense that model treating

the exposure as the dependent variable is fitted to account for the censoring for the exposure.

However, unlike the method of Wang and Feng (2012), our method does not involve imputation

and censoring for the response is allowed, and can account for potential unmeasured confounders.

In addition, Wang and Feng (2012) requires exogenous censoring, which may not hold if unmeasured

confounders are present. Like our method, the method of Akritas et al. (1995) allows for

doubly-censored data. However, their method cannot include other covariates in the model

and assumes that the single covariate is independent of the error term. Bernhardt et al. (2014)

considers censored covariates problem in the accelerated failure time model, but their method

requires parametric assumptions on the error term and on the conditional distribution of censored
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covariates given the observed data.

The real example where our method can be applied is the study of Smith et al. (2005) who

investigated the influence of C-reactive protein levels on blood pressure. They employed IV

estimation using Mendelian randomization to account for unmeasured confounders with an IV

being a specific gene relating with C-reactive protein. However, some measured values of

C-reactive protein levels were left-censored because of limit of detections and those censored

data was omitted from their analysis. Our method can be used to account for left-censoring and

may give more reliable estimates.

To derive the asymptotic properties of the two-stage IV estimator for doubly-censored data,

we directly use the theoretical results of Section 2 in Jin et al. (2006a), which discusses the rank

regression for multivariate failure time data based on marginal accelerated failure time models. In

Case 1-2, both reduced response and exposure models are the accelerated failure time models and

we use the Gehan rank estimators to estimate the regression parameters. We will use Theorem 1

of Jin et al. (2006a) to derive consistency and asymptotic joint normality of the rank estimators

obtained from the reduced models.

The rank estimation for both reduced models is conducted exactly in the same way as in Case

1-1. For completeness, we describe rank estimation for the reduced exposure model in detail. We

consider the accelerated failure time model for the reduced exposure model (3.27) with assuming

that (δ∗1 , ..., δ∗n) are independent error terms with a common, but unspecified distribution. Without

loss of generality, let Z = (Z1, ..., Zn)T and CZ = (CZ
1 , ...,C

Z
n ) be the vectors of the log of

the exposure and the corresponding log of the censoring time. Assume that Zi and CZ
i are

independent conditionally on DT
i = (V T

i ,W
T
i ) and CZ

i is not affected by Ui. The data consists

of (Z̃i,∆Z
i ,Di), where Z̃i = min(Zi,CZ

i ), ∆Z
i = I(Zi ≤ CZ

i ).

Define ei(β) = Z̃i − βTDi, Ni(β; t) = ∆Z
i I{ei(β) ≤ t} and Yi(β; t) = I{ei(β) ≥ t}. Write

S(0)(β; t) = n−1
n

∑
i=1

Yi(β; t), S(1)(β; t) = n−1
n

∑
i=1

Yi(β; t)Di.
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The Gehan-type rank estimator β̂G is a root of the following estimating equation.

U2,G(β) =
n

∑
i=1

ˆ ∞

−∞
S(0)(β; t){Di − D̄(β; t)}dNi(β; t), (2.13)

where D̄(β; t) = S(1)(β; t)/S(0)(β; t). Or equivalently,

U2,G(β) = n−1
n

∑
i=1

n

∑
j=1

∆Z
i (Di −Dj)I{ei(β) ≤ ej(β)}. (2.14)

The above equation is monotone in each component of β.

We can generate the resampled rank estimators by solving the following perturbed estimating

equation,

U∗
2,G(β) = n−1

n

∑
i=1

n

∑
j=1

∆Z
i (Di −Dj)I{ei(β) ≤ ej(β)}RiRj, (2.15)

where Ri(i = 1, ..., n) are the same random variables used for perturbing the reduced response

model.

Corollary 2. For Case 1-2, the Gehan rank estimators for γ0 and β0, denoted as γ̂G and β̂G,

satisfy Assumption 1 and 2 under the conditions A1-A4 in the appendix. Therefore the two-stage

estimator, α̂, with γ̂G and β̂G converges in probability to α0 and asymptotically normal by

Theorem 1 and 2.

Theorem 4. For Case 1-2, under the conditions A1-A4 in the appendix, the asymptotic distribution

of α̂ can be estimated by the empirical distribution of α̂∗ = (α̂1, ..., α̂K) conditionally on the data.

2.3.3 Case 2-1: Dichotomized exposure via coarsening of latent exposure

In Case 2-1, we assume that Zi in the true response model (3.26) is a latent variables which

are not directly observed. The observed exposure is denoted as one when the latent exposure

variable, Zi, is greater than zero and as zero otherwise. That is, the observed exposure is Z̃i =

I(Zi > 0). This kind of approach using latent variables is often employed to model dummy
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variables (Heckman 1978). Thus, in Case 2-1 analysis, we measure the effect of the latent

exposure on the response. Through this analysis, we can test whether their is a causal effect

of the exposure on the response, however, cannot estimate binary effect directly unlike Case

2-2 analysis, which will be discussed next subsection. An additional analysis for Case 2-1 is to

convert the estimate of the latent exposure to that of binary exposure. However, in the appendix,

we showed that this conversion dose not give a correct binary estimate in general.

We fit the probit model to the observed binary exposure, which is a coarsening of the underlying

latent variable. For identification of the model parameters, we assume that δ∗i (i = 1, ..., n)

independently follows a standard normal distribution. The probit model is

P (Z̃i = 1) = P (Zi > 0) = Φ(βzo + βT0 Di),

where Φ(⋅) is the cumulative distribution function of standard normal random variable.

The maximum likelihood estimator for β0, β̂M , is obtained by solving the following estimating

equation, which is a likelihood score equation,

U2,M(βo, β) =
n

∑
i=1

{Z̃i −Φ(βo + βTDi)}φ(βo + βTDi)
Φ(βo + βTDi){1 −Φ(βo + βTDi)}

Di,

where βo is a parameter for an intercept and φ(⋅) is the density function of standard normal

random variable.

To generate the resampled maximum likelihood estimator for β0, we solve the perturbed score

equation,

U∗
2,M(βo, β) =

n

∑
i=1

{Z̃i −Φ(βo + βTDi)}φ(βo + βTDi)
Φ(βo + βTDi){1 −Φ(βo + βTDi)}

DiRi, (2.16)

where Ri(i = 1, ..., n) are also used to perturb the reduced response model.

Corollary 3. For the data with the censored response and dichotomized exposure (Case 3),

the Gehan rank estimators for γ0, denoted as γ̂G, and the maximum likelihood estimator for

β0, denoted as β̂M , satisfy Assumption 1 and 2 under the conditions A1-A4 in the appendix.
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Therefore the two-stage estimator, α̂, with γ̂G and β̂M converges in probability to α0 and asymptotically

normal by Theorem 1 and 2.

Theorem 5. For Case 3, under the conditions A1-A4 in the appendix, the asymptotic distribution

of α̂ can be estimated by the empirical distribution of α̂∗ = (α̂1, ..., α̂K), conditionally on the

data.

2.3.4 Case 2-2: Binary exposure

In Case 2-2, we use the binary exposure itself and does not consider coarsening of the

exposure. That is, Zi in the true response model (3.26) is binary. Thus, we estimate the causal

effect of binary exposure on the response directly. In this case, the exposure model (2.2) becomes

a linear probability model and the variance of the error terms depends on the covariates.

Recall that the true exposure model and the corresponding reduced exposure model are given

by

Zi = βzo + βTzvVi + βTzwWi + βzuUi + δi,

= βzo + βT0 Di + δ∗i , (2.17)

where E(δi ∣ Di, Ui) = 0 and var(δi ∣ Di, Ui) = µz(Di, Ui)(1 − µz(Di, Ui)) by construction. As

in Section 2⋅1, the reduced response model is given by

Yi = γyo + γT0 Di + τi,

where τi = ε∗i +αyzδ∗i . Now the variance of τi depends on Di as so does that of δ∗i . Two-stage IV

estimation for binary exposure will be discussed with the assumptions that E(τi ∣ Di) = E(δ ∣

Di) = 0. As in the previous cases, E(τi ∣ Di) = E(δ∗i ∣ Di) = 0, holds if E(εi ∣ Di) = E(δi ∣

Di) = E(Ui ∣Di) = 0. Thus, an additional required condition is E(Ui ∣Di) = 0.

In Remark 3, we show that with the IV independence assumption the reduced exposure model

is still a linear probability model with the variance var(δ∗i ∣ Di) = µ∗z(Di)(1 − µz(Di)) where
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µ∗z(Di) = E(Zi ∣Di) = βzo + βT0 Di.

Remark 3. By a simple probability argument, var(δ∗i ∣ Di) = E{var(δ∗i ∣ Di, Ui) ∣ Di} +

var{E(δ∗i ∣ Di, Ui) ∣ Di} and that var(δ∗i ∣ Di, Ui) = var(δi ∣ Di, Ui). From µz(Di, Ui) =

µ∗z(Di) + βzuUi, it follows that

E{var(δ∗i ∣Di, Ui) ∣Di} = E{var(δi ∣Di, Ui) ∣Di}

= µ∗z(Di)(1 − µ∗z(Di)) − β2
zuE(U2

i ∣Di)

+ βzuE(Ui ∣Di) − 2βzuµ
∗
z(Di)E(Ui ∣Di).

Note that var{E(δ∗i ∣ Di, Ui) ∣ Di} = β2
zuvar(Ui ∣ Di). Since E(Ui ∣ Di) = 0, var(δ∗i ∣ Di) =

µ∗z(Di)(1 − µ∗z(Di)).

Since the reduced response model has a heteroscedastic error variance, we cannot use rank

estimators to estimate the parameters. Instead, we use the local Buckley-James estimator (Pang

et al. 2014) to account for heteroscedastic error variance. The authors showed that the local

Buckley-James estimator is consistent and asymptotically normal under some regularity conditions.

As in rank estimation, we assume that Yi and CY
i are independent conditionally on Di and CY

i is

not affected by Ui.

The local Buckley-James estimator (Pang et al. 2014) was developed under the following

model,

Yi = γyo + γT0 Di + σ(γT0 Di)ωi, (2.18)

where ωi(i = 1, ..., n) are independent and identically distributed random variables with mean

zero and standard deviation one. The function σ(γT0 Di) is a nonparametric function of γT0 Di and

describes the heteroscedastic error variance which depends on γT0 Di. The model (2.18) implies

that the conditional variance of Yi depends on the covariate Di through γT0 Di.
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The model we may have is slightly different from the model (2.18),

Yi = γyo + γT0 Di + σ(βT0 Di)ωi, (2.19)

where τi = σ(βT0 Di)ωi and ωi(i = 1, ..., n) are independent and identically distributed random

variables with mean zero and standard deviation one. Thus the conditional error variance in

(2.19) is the function of βT0 Di, which is the mean function of the reduced exposure model. This

comes from the fact that heteroscedastic error variance in the reduced response model is induced

by that in the reduced exposure model. The local Buckley-James estimation will be performed

to account for σ(βT0 Di). To have the model (2.19), we need the condition that var(ε∗i ∣ Di) and

cov(ε∗i , δ∗i ∣ Di) do not depend on Di, which may hold when the conditional covariance matrix

of (εi, δi, Ui) given Di is fixed. Under this condition, var(τi ∣ Di) = constant + α2
yzµ

∗
z(Di)(1 −

µ∗z(Di)), hence we can write τi = σ(βT0 Di)ωi.

Now we describe the procedure of the local Buckley-James estimation for the model (2.19).

As in the Buckley-James estimation, we impute censored data by its estimated conditional mean,

E(Yi ∣ Yi ≥ CY
i , Ỹi,Di) = E(ei ∣ Yi ≥ CY

i , Ỹi, β
T
0 Di) + γT0 Di

=
´∞
Ỹi−γT0 Di

u dFθ0(u ∣ βT0 Di)
1 − Fθ0(Ỹi − γT0 Di ∣ βT0 Di)

+ γT0 Di,

where θT0 = (γT0 , βT0 ) and Fθ0(u ∣ ν) is the unknown cumulative distribution function of the

residual ei ≡ τi = Yi − γT0 Di conditional on βT0 Di = ν. Since Fθ0(u ∣ βT0 Di) depends on βT0 Di,

it cannot be consistently estimated by the Kaplan-Meier estimate. Instead, we will use local

Kaplan-Meier estimator (Dabrowska, 1987) to estimate Fθ0(u ∣ βT0 Di). The local Buckely-James

estimation for the model (2.19) is performed as follows.

Step 1. Obtain an initial estimator for γ0, for example, the Buckley-James estimator or the

rank estimator.
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Step 2. At the ath iteration, compute the imputed response value Yi by

Ŷi(γa) = ∆Y
i Ỹi + (1 −∆Y

i )Ê(Yi ∣ Yi ≥ CY
i , Ỹi, β̂

T
PDi), i = 1, ...., n,

where β̂P is the least squares estimator for β0 in the linear probability model (2.17) and

Ê(Yi ∣ Yi ≥ CY
i , Ỹi, β̂

T
PDi) = γTaDi +

´∞
ei(γa) u dF̂θ̌a(u ∣ β̂TPDi)

1 − F̂θ̌a{ei(γa) ∣ β̂TPDi}
,

where θ̌Ta = (γTa , β̂TP ) and e(γa) = Ỹi − γTaDi. The local Kaplan-Meier estimate of Fθ(t ∣ βTDi)

is obtained as follows.

F̂θ(t ∣ βTDi) = 1 −
n

∏
j∶ej(γ)<t

{1 − Bnj(βTDj)∆Y
i

∑nk=1 I{ek(γ) ≥ ej(γ)}Bnk(βTDi)
} ,

whereBnk(⋅), k = 1, ..., n, is a sequence of nonnegative weights whose sum is one,∑nk=1Bnk(⋅) =

1. The Nadaraya-Watson type of weights for Bnk(βTDi) is used,

Bnk(βTDi) =
K(βTDi−βTDkhn

)
∑nl=1K(βTDi−βTDlhn

)
,

where hn is the bandwidth such that hn → 0 as n→∞ and K(⋅) is a symmetric kernel function.

Step 3. Apply the least squares to the imputed log-transformed survival times for getting an

updated estimator

γa+1 = {
n

∑
i=1

(Di − D̄n)⊗2}
−1 n

∑
i=1

(Di − D̄n){Ŷi(γa) − Ȳn(γa)},

where Ȳn(γa) = n−1∑ni=1 Ŷi(γa).

Step 4. Repeat Steps 2 and 3 until a certain convergence criteria is achieved. We denote by

γ̂B the converged estimator.
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The local Buckely-James estimator γ̂B is the solution to

U1,B(γ) =
n

∑
i=1

(Di − D̄n){γTDi − Ŷi(γ)}

=
n

∑
i=1

{
ˆ ∞

−∞
t dY D

i (t, γ) +
ˆ ∞

−∞

ˆ ∞

t

1 − F̂iθ̌(s)
1 − F̂iθ̌(t)

dsdJDi (t, γ)} = 0,

where Y D
i (t, γ) = (Di − D̄n)1{ei(γ) ≥ t} and JDi (t, γ) = (Di − D̄n)1{ei(γ) ≥ t,∆Y

i = 0}, and

F̂iθ̌(t) is the shorthand notation of F̂θ̌(t ∣ β̂TPDi), where θ̌T = (γT , β̂TP ). Since U1,B(γ) is neither

continuous nor monotone in γ, we define γ̂B as a zero-crossing of U1,B(γ). Similar as in Lai and

Ying (1991), we define V1,B(γ) as a smooth approximated function of U1,B(γ),

V1,B(γ) =
n

∑
i=1

{
ˆ ∞

−∞
t dEY D

i (t, γ) +
ˆ ∞

−∞

ˆ ∞

t

1 − Fiθ̃0(s)
1 − Fiθ̃0(t)

dsdEJDi (t, γ)} ,

where Fiθ̃0(t) is the limit of F̂iθ̌ and θ̃T0 = (γT , βT0 ).

Pang et al. (2014) took the resampling technique of Jin et al. (2006b) to make an inference on

γ̂B. The variance estimation using the resampling is very similar to that used in rank estimation.

The key step of resampling method is to generate positive random variables Ri, which are

independent of the data, i = 1, ..., n, with E(Ri) = var(Ri) = 1. We define

L∗(γ) = {
n

∑
i=1

Ri(Di − D̄n)⊗2}
−1

[
n

∑
i=1

Ri(Di − D̄n){Ŷ ∗
i (γ) − Ȳ ∗

n (γ)}] , (2.20)

where

Ŷ ∗
i (γ) = ∆Y

i Ỹi + (1 −∆Y
i )

⎡⎢⎢⎢⎢⎣

´∞
ei(γ) u dF̂

∗
θ̌
(u ∣ β̂TPDi)

1 − F̂ ∗
θ̌
{ei(γ) ∣ β̂TPDi}

+ γTDi

⎤⎥⎥⎥⎥⎦
,

F̂ ∗
θ̌
(t ∣ β̂TPDi) = 1 −

n

∏
j∶ej(γ)<t

⎧⎪⎪⎨⎪⎪⎩
1 −

RjBnj(β̂TPDi)∆Y
j

∑nk=1RkI{ek(γ) ≥ ej(γ)}Bnk(β̂TPDi)

⎫⎪⎪⎬⎪⎪⎭
,

and Ȳ ∗
n (γ) = n−1∑ni=1 Ŷ

∗
i (γ). Note that L∗(γ) is a perturbed version of local Bukley-James
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estimator. The updated perturbed estimator is obtained by

γ∗a+1 = L∗(γ∗a).

We denote by γ̂∗B the converged perturbed estimator.

To approximate the asymptotic distribution of γ̂B, we repeat the procedure described above

many times to generate many of γ̂∗B. That is, we start with the Buckely-James estimator with

an initial value and compute L∗(γ) with being perturbed by Ri(i = 1, ..., n). Repeating this

procedure gives many of γ̂∗B. By Jin et al. (2006b) and Pang et al. (2014), the conditional

distribution of n1/2(γ̂∗B − γ̂B) converges almost surely to the asymptotic distribution of n1/2(γ̂B −

γ0). Based on this result, the variance of γ̂B can be estimated by the sample variance of γ̂∗B.

The parameter β0 is estimated by the least squares estimator, namely,

β̂P = (DT
(c)D(c))−1DT

(c)Z.

The estimator β̂P is the solution to

U2,P (β) =
n

∑
i=1

(Di − D̄)(Zi −DT
i β).

Note that the reduced exposure model with the binary exposure has a heteroscedastic error

variance. We used theoretical results of White (1980) to state the asymptotic properties of β̂P .

We can generate the resampled least squares by solving the following perturbed estimating

equation,

U2,P (β) =
n

∑
i=1

(Di − D̄)(Zi −DT
i β)Ri,

where Ri(i = 1, ..., n) are the same random variables used in (2.20).

Corollary 4. For Case 2-2, the local Buckley-James estimator for γ0, denoted as γ̂B, and the least
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squares estimator for β0, denoted as β̂P , satisfy Assumption 1 and 2 under the conditions B1-B9

in the appendix. Therefore the two-stage estimator, α̂, with γ̂B and β̂P converges in probability

to α0 and asymptotically normal by Theorem 1 and 2.

Theorem 6. For Case 2-2, under the conditions B1-B9 in the appendix, the asymptotic distribution

of α̂ can be estimated by the empirical distribution of α̂∗ = (α̂1, ..., α̂K), conditionally on the

data.

2.4 Simulation study

We conducted extensive simulation studies to evaluate the proposed two-stage estimation in

finite sample sizes. Four scenarios are considered to generate Case 1-1 to Case 2-2. For Case

1-1, Case 1-2 and Case 2-1, the simulation models are given by

Yi = αyo + αyzZi + αTywWi + αyuUi + εi,

Zi = βzo + βTzvVi + βTzwWi + βzuUi + δi.

We generated (V T
i ,W

T
i , Ui)T from a standard normal truncated at ±2. Censoring time for Yi

were generated form Unif(0, cy), where cy is determined to yield a desired right-censoring rate,

20%. For Case 1-1 and Case 1-2, we considered two-dimensional Vi and Wi, while for Case 2-1,

we considered univariate Vi and Wi. All parameters are set to be one except for Case 2-1 where

βzo = 0 and the rest of parameters are one.

For Case 1-1, we generated εi and δi independently from standard normal, N(0,1) and

standard Gumbel, G(0,1). The variable from G(0,1) was standardized to have mean 0 and

variance 1. Since Gumbel distribution has a skewness, which is about 1.14, we can evaluate

the effect of skewness of error distributions on estimation. For Case 1-2, εi ∼ N(0,1) and

δi ∼ N(0,1) independently. Left-censored exposure was considered and the censoring variable

was generated from Unif(−7, cz), where cz is determined to yield a desired left-censoring rate,

20%. For Case 2-1, Ui ∼ N(0,0.5), εi ∼ N(0,1) and δi ∼ N(0,0.5) so βzuUi + δi ∼ N(0,1).
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For Case 2-2, the same response model was used with a standard normal εi and univariate

Vi ∼ Beroulli(0.5), Wi ∼ Beroulli(0.5) and Ui ∼ Beroulli(0.5). All parameters were set to be

one. The binary exposure Zi was generated by Zi ∼ Beroulli(Pi) with

Pi = βzo + βTzvVi + βTzwWi + βzuUi,

where (βzo, βzv, βzw, βzu) = (0, b,0.1,0.2) and b ∈ {0.2,0.4}.

The size of resampling to estimate the covariance matrix is 500. The perturbing variables

were generated from an exponential distribution with mean 1. We estimated the parameters

using the proposed two-stage estimation with the rank and the local Buckley-James estimators

with optimal and identity weight matrices, and the naive rank-based method based on fitting the

accelerated failure time model directly to the exposure and observed confounders. We used the

R package called lss (Huang and Jin 2006) for implementation. We iterated this procedure

500 times. The results are summarized in Table 2.1-2.4. For Case 2-1 and Case 2-2, since B is

invertible, the two-stage estimator does not depend on An.

The simulation results show that the proposed estimator is unbiased and the variance estimator

obtained by the proposed resampling method performs well. The IV estimators with the identity

matrix and optimal weights performed similarly. The naive method gave biased estimators and

the confidence intervals for the exposure effect were far below the target coverage rate, 95%.

In Case 1-1 results, the naive estimators have much greater biases when the exposure is

generated from Gumbel distribution. This implies that skewness of exposure distribution enlarges

the bias of the naive estimators. The two-stage estimators performed well across a range of the

response and exposure distributions we considered. In Case 2-1, we conducted complete case

naive analysis. There is a bias in that analysis because exogenous censoring does not hold as

an unmeasured confounder exists. Thus, the method of Wang and Feng (2012) also will not

be reliable in our simulation setting. In Case 2-2 results with b = 0.2, the proposed estimator

based on the local Buckely-James estimation is unbiased, however, the estimator based on rank
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estimation has a bias, and that bias decreases as b increases to 0.4.

2.5 SEER Colon Cancer Data

We applied the proposed method to Surveillance, Epidemiology and End Results (SEER)

data for elderly stage III colon cancer patients. Oxaliplatin is a chemotherapeutic agent that is

used as part of a multi-agent adjuvant chemotherapy regimen for stage III colon cancer patients.

Based on 2003 efficacy results from the MOSAIC trial (Andre et al. 2004), the FDA approved

Oxaliplatin for use in stage III colon cancer. After FDA approval for this new indication,

it disseminated rapidly among stage III colon cancer patients to replace 5-fluorouracil (FU)

monotherapy as the standard of care. The objective of our analysis is to determine if Oxaliplatin,

compared to 5-FU alone, will increase survival time of the patients.

The cohort included individuals aged 65+ from 12 US states who were diagnosed with

primary stage III colon cancer between 2003 and 2007, with follow-up through April 2010.

Included patients received surgical resection within 90 days of diagnosis, survived longer than

30 days, and initiated either Oxaliplatin or 5-FU/capecitabine without Oxaliplatin within 110

days of surgery and 120 days of diagnosis. Patients who received radiation, were diagnosed at

autopsy, or had HMO coverage or incomplete Medicare claims during the 12 months pre- and

post-diagnosis (or until death) were excluded.

The binary exposure variable (Trt) is coded as 1 if the patient was treated with Oxaliplatin

and 0 if being treated with 5-FU. The IV (Time) is coded as 1 if the patient was treated after

the US Food and Drug Administration’s approval of Oxaliplatin for use in Stage III colon cancer

(Mack et al. 2015) and 0 otherwise. The three confounders were used: age in years (age),

household median income in 2000 in 10,000 dollar units (income) and an indicator for diabetes

(Dia). We generated dummy variables for age and income as follows. Four categories for age

were generated using quartiles of age distribution: Group.1 = I(65 ≤ age < 70), Group.2 =

I(70 ≤ age < 74), Group.3 = I(74 ≤ age < 78) and Group.4 = I(78 ≤ age). And then, three

dummy variables to compare Group.j to Group.1 were generated: Age.j = I(age ∈ Group.j)
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Table 2.1: Results for Case 1-1 (NN): empirical bias (Bias), empirical standard error (ESE),
average of the estimated standard error (ASE) and empirical coverage rate (ECR) of 95%
Wald-type confidence interval.

n Methods Parameter Bias ESE ASE ECR
100 Identity matrix αyz -0.002 0.140 0.147 0.956

αyw,1 -0.001 0.231 0.254 0.950
αyw,2 0.017 0.243 0.252 0.962

Optimal weight αyz -0.004 0.142 0.145 0.960
αyw,1 -0.002 0.235 0.249 0.944
αyw,2 0.015 0.247 0.248 0.948

Naive αyz 0.237 0.081 0.079 0.172
αyw,1 -0.246 0.177 0.180 0.706
αyw,2 -0.229 0.183 0.178 0.712

200 Identity matrix αyz -0.002 0.097 0.099 0.954
αyw,1 0.008 0.164 0.170 0.950
αyw,2 0.007 0.159 0.170 0.956

Optimal weight αyz -0.003 0.098 0.098 0.954
αyw,1 0.008 0.165 0.168 0.950
αyw,2 0.008 0.160 0.168 0.952

Naive αyz 0.232 0.056 0.055 0.018
αyw,1 -0.230 0.127 0.125 0.542
αyw,2 -0.228 0.121 0.125 0.574

400 Identity weight αyz 0.004 0.068 0.069 0.952
αyw,1 -0.002 0.111 0.118 0.972
αyw,2 -0.003 0.119 0.117 0.926

Optimal weight αyz 0.003 0.068 0.069 0.952
αyw,1 -0.002 0.112 0.118 0.968
αyw,2 -0.002 0.120 0.117 0.930

Naive αyz 0.237 0.038 0.039 0.000
αyw,1 -0.236 0.085 0.088 0.234
αyw,2 -0.234 0.088 0.089 0.250

Note: “Identity matrix" is the proposed two-stage IV method with An = I . “Optimal weight" is
the proposed two-stage IV method with An = Ω̂(α̂I). “Naive" is the rank method with observed
variables.
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Table 2.2: Results for Case 1-2: empirical bias (Bias), empirical standard error (ESE), average
of the estimated standard error (ASE) and empirical coverage rate (ECR) of 95% Wald-type
confidence interval.

n Methods Parameter Bias ESE ASE ECR
100 Identity matrix αyz 0.000 0.157 0.154 0.936

αyw,1 0.012 0.255 0.255 0.936
αyw,2 -0.017 0.271 0.255 0.936

Optimal weight αyz -0.001 0.158 0.152 0.937
αyw,1 0.012 0.256 0.250 0.937
αyw,2 -0.018 0.272 0.251 0.937

Naive αyz 0.236 0.101 0.096 0.298
αyw,1 -0.227 0.204 0.204 0.766
αyw,2 -0.246 0.204 0.206 0.744

200 Identity matrix αyz 0.001 0.099 0.104 0.951
αyw,1 -0.004 0.172 0.175 0.951
αyw,2 -0.003 0.182 0.175 0.951

Optimal weight αyz 0.001 0.099 0.103 0.945
αyw,1 -0.005 0.171 0.173 0.945
αyw,2 -0.004 0.182 0.173 0.945

Naive αyz 0.233 0.063 0.066 0.046
αyw,1 -0.241 0.134 0.142 0.616
αyw,2 -0.232 0.155 0.142 0.610

400 Identity matrix αyz 0.001 0.076 0.073 0.947
αyw,1 -0.002 0.121 0.122 0.947
αyw,2 -0.002 0.124 0.123 0.947

Optimal weight αyz 0.000 0.076 0.073 0.945
αyw,1 -0.002 0.121 0.122 0.945
αyw,2 -0.002 0.123 0.122 0.945

Naive αyz 0.237 0.046 0.047 0.002
αyw,1 -0.237 0.103 0.101 0.344
αyw,2 -0.236 0.101 0.101 0.344

Note: “Identity matrix" is the proposed two-stage IV method with An = I . “Optimal weight" is
the proposed two-stage IV method with An = Ω̂(α̂I). “Naive" is the rank method with observed
variables.
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Table 2.3: Results for Case 2-1: empirical bias (Bias), empirical standard error (ESE), average
of the estimated standard error (ASE) and empirical coverage rate (ECR) of 95% Wald-type
confidence interval.

n Methods Parameter Bias ESE ASE ECR
100 Two-stage αyz -0.025 0.245 0.254 0.946

αyw 0.002 0.304 0.298 0.954
Naive αyz 0.289 0.101 0.101 0.186

αyw -0.288 0.181 0.176 0.622
200 Two-stage αyz -0.025 0.177 0.174 0.917

αyw 0.006 0.208 0.203 0.933
Naive αyz 0.285 0.068 0.071 0.012

αyw -0.281 0.123 0.123 0.378
400 Two-stage αyz -0.003 0.117 0.123 0.958

αyw -0.005 0.137 0.142 0.970
Naive αyz 0.279 0.047 0.050 0.000

αyw -0.277 0.088 0.086 0.130
Note: “Two-stage" is the proposed two-stage IV method. “Naive" is the rank method with
observed variables.

for j = 2, ...,4. A dummy variable for income is generated by Inc = I{income ≥ 50,000}.

The response (Y ) is log survival time in years. The sample size is 2879, with the resampling size

equal to 200 when computing the standard errors of the parameter estimates with unit exponential

perturbations.

The models to be estimated are given by

Y = α∗yzTrt∗ + α∗yw,1Age.2 + α∗yw,2Age.3 + α∗yw,3Age.4 + α∗yw,4Inc + α∗yw,5Dia + e∗y , (2.21)

Y = αyzTrt + αyw,1Age.2 + αyw,2Age.3 + αyw,3Age.4 + αyw,4Inc + αyw,5Dia + ey, (2.22)

where Trt∗ in (2.21) is an unobserved latent variable for Trt, which is assumed to be observed via

Trt = I(Trt∗ > 0). To account for possible endogeneity of Trt∗ and Trt, we conducted IV analyses

of Case 2-1 and Case 2-2 with the rank, Buckley-James and local Buckely-James estimators.

The corresponding exposure models to (2.21) and (2.22) are given by

Trt∗ = β∗zo + β∗zvTime + β∗zw,1Age.2 + β∗zw,2Age.3+
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Table 2.4: Results for Case 2-2: empirical bias (Bias), empirical standard error (ESE), average
of the estimated standard error (ASE) and empirical coverage rate (ECR) of 95% Wald-type
confidence interval.

b = 0.2 b = 0.4
n Methods Para Bias ESE ASE ECR Bias ESE ASE ECR
800 LBJ αyz -0.035 0.257 0.252 0.962 -0.013 0.124 0.121 0.948

αyw 0.002 0.054 0.055 0.962 -0.002 0.048 0.049 0.952
Rank αyz -0.152 0.264 0.261 0.920 -0.024 0.143 0.138 0.926

αyw 0.003 0.056 0.056 0.966 -0.001 0.051 0.053 0.958
Naive αyz 0.288 0.057 0.059 0.002 0.234 0.053 0.053 0.006

αyw -0.027 0.044 0.046 0.906 -0.023 0.044 0.046 0.926
1600 LBJ αyz -0.010 0.177 0.173 0.949 -0.004 0.087 0.085 0.936

αyw 0.001 0.038 0.038 0.947 0.000 0.034 0.035 0.959
Rank αyz -0.134 0.184 0.182 0.896 -0.014 0.098 0.097 0.942

αyw 0.002 0.038 0.039 0.952 0.000 0.036 0.037 0.964
Naive αyz 0.292 0.039 0.042 0.000 0.233 0.037 0.037 0.000

αyw -0.028 0.032 0.032 0.852 -0.021 0.031 0.032 0.902
3200 LBJ αyz 0.000 0.118 0.123 0.952 0.002 0.061 0.060 0.950

αyw 0.000 0.027 0.027 0.960 -0.001 0.025 0.025 0.958
Rank αyz -0.124 0.124 0.128 0.844 -0.009 0.069 0.069 0.957

αyw 0.000 0.027 0.028 0.954 -0.001 0.026 0.026 0.961
Naive αyz 0.289 0.029 0.029 0.000 0.232 0.026 0.026 0.000

αyw -0.027 0.023 0.023 0.786 -0.023 0.023 0.023 0.836
Note: “LBJ" is the proposed two-stage IV method with local Buckley-James estimator. “Rank"
is the proposed two-stage IV method with rank estimator. “Naive" is the rank method with
observed variables.
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β∗zw,3Age.4 + β∗zw,5Inc + β∗zw,6Dia + e∗z , (2.23)

Trt = βzo + βzvTime + βzw,1Age.2 + βzw,2Age.3+

βzw,3Age.4 + βzw,5Inc + βzw,6Dia + ez, (2.24)

where e∗z is assumed to follow a standard normal distribution and ez is assumed to follow a

Bernoulli distribution with the mean zero and the variance being a function of the conditional

mean of Trt.

The results are given in Table 2.5. Since there is only a single IV, B0 is invertible and the

two-stage estimators do not depend on An. The naive estimate of Trt is 0.149 with p-value of

0.059, hence was not significant at level of 0.05. In contrary, all of the two-stage estimates of Trt∗

and Trt were significant at level of 0.05. The parameter αyz has an interpretation that Oxaliplatin,

compared to 5-FU, increases median survival time by 100(eαyz − 1)% if αyz is positive. The

amounts of increase in median survival time were 44% (9%, 91%) from rank estimator, 48%

(11%, 97%) from Buckley-James estimator, and 49% (12%, 98%) from local Buckley-James

estimator. Based on the two-stage IV analysis, we conclude that Oxaliplatin is more beneficial

than 5-FU in treating colon cancer patients. The difference in naive and IV analyses suggests

that there may exist unmeasured confounders.

The F-statistic for Time variable in (2.24) is 1328.75, thus it is much greater than rule of

thumb of 10 (Staiger and Stock 1997), which may imply that Time is a strong instrument. We

examined whether the unmeasured confounding is similar between the IV groups by computing

two parameters for the exposure effect, one for pre-FDA approval and the other for post-FDA

approval. For this examination, we stratified the data by Time variable and calculated the naive

estimate for each stratum. Similar inference results for those two estimates may indicate that the

unmeasured confounder is balanced well between the two IV periods. The estimate of Trt for

pre-FDA approval was 0.059 with p-value of 0.706 and that for post-FDA approval was 0.004

with p-value of 0.976. Thus, the inference results are similar and this supports the validity of our

IV analysis.
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The MOSAIC trial (Andre et al. 2004) provided the evidence for the improvement of the

treatment of colon cancer by adding Oxaliplatin to a regimen of Fluorouracil and Leucovorin

(FL). The primary outcome was disease-free survival. The study showed that the probabilities of

disease-free survival at 3 years are 78.2% (75.6% - 80.7%) for the Oxaliplatin group and 72.9%

(70.2% - 75.7%) for the FL group. The study also investigated the overall survival of stage III

colon cancer patients in terms of a hazard ratio, which was 0.86 with a confidence interval of

(0.66 - 1.11). Thus it was not significant at level of 0.05, while our result in the SEER data was

significant.

2.6 Discussion

The proposed methods can be applied to other types of coarsened data if reliable estimation

methods to fit the reduced models exist. For example, we may apply our method to the current

status or general interval-censored data. Several methods have been developed for the accelerated

failure time model with currents status or interval censored data; see for example Self and

Grossman (1986), Rabinowitz et al. (1995), Betensky et al. (2011), and Tian and Cai (2006).

Among them, the approaches of Betensky et al. (2011) and Tian and Cai (2006) can be readily

adapted in our method.

We developed the method for Case 2-1, where both the response and exposure are censored.

We illustrated out method in the context of left-censored exposure due to a limit of detection, but

the method is not limited to left-censoring. One of interesting examples to have right-censored

exposure is an observational duration-response study, where duration may be right-censored

(Johnson and Tsiatis 2004). In may cases, treatment duration is left to the discretion of the

physicians or investigators but often terminated by treatment-terminating events. Suppose we

are interested in the effect of assigned treatment duration on the outcome. In this case, the

censoring time for the treatment duration is the time to a treatment-terminating event and that for

the outcome is the time to endpoint at that censoring time. Keeping the conditional independence

assumption of censoring times and failure times made in Case 2-1 method, the proposed method
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Table 2.5: Estimates (Est), Standard errors (Se), p-values (p-value) and 95% Wald confidence
intervals (95% CI) for the parameters in the SEER data.

Methods Parameter Est Se p-value 95 % CI
Rank Trt∗ 0.115 0.045 0.010 0.028 to 0.203

Age.2 -0.138 0.102 0.176 -0.339 to 0.062
Age.3 -0.264 0.115 0.021 -0.489 to -0.040
Age.4 -0.631 0.111 0.000 -0.849 to -0.414
Inc 0.148 0.072 0.040 0.006 to 0.289
Dia -0.208 0.087 0.016 -0.378 to -0.038

Rank Trt 0.368 0.142 0.010 0.089 to 0.647
Age.2 -0.140 0.102 0.171 -0.340 to 0.060
Age.3 -0.270 0.115 0.018 -0.495 to -0.045
Age.4 -0.650 0.108 0.000 -0.863 to -0.438
Inc 0.151 0.072 0.035 0.011 to 0.292
Dia -0.210 0.087 0.015 -0.379 to -0.040

BJ Trt 0.392 0.147 0.008 0.105 to 0.679
Age.2 -0.122 0.106 0.250 -0.329 to 0.086
Age.3 -0.310 0.121 0.010 -0.547 to -0.073
Age.4 -0.656 0.117 0.000 -0.886 to -0.426
Inc 0.152 0.076 0.045 0.003 to 0.300
Dia -0.245 0.093 0.009 -0.427 to -0.062

LBJ Trt 0.398 0.144 0.006 0.116 to 0.681
Age.2 -0.115 0.102 0.258 -0.314 to 0.084
Age.3 -0.312 0.121 0.010 -0.549 to -0.075
Age.4 -0.637 0.117 0.000 -0.866 to -0.408
Inc 0.158 0.075 0.034 0.012 to 0.304
Dia -0.244 0.093 0.009 -0.425 to -0.062

Naive Trt 0.149 0.079 0.059 -0.006 to 0.304
Age.2 -0.162 0.102 0.112 -0.362 to 0.038
Age.3 -0.294 0.114 0.010 -0.517 to -0.071
Age.4 -0.709 0.104 0.000 -0.913 to -0.505
Inc 0.167 0.070 0.017 0.030 to 0.304
Dia -0.220 0.085 0.010 -0.387 to -0.053

Note: “BJ" is the proposed two-stage IV method with Buckley-James estimator. “LBJ" is the
proposed two-stage IV method with local Buckley-James estimator. “Rank" is the proposed
two-stage IV method with rank estimator. “Naive" is the rank method with observed variables.
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can be applied to estimate the parameters of interest. Potential IVs would be ‘preference-based

instruments’ such as geographic region, hospital, dialysis center or individual physician (Brookhart

et al. 2010).

Minimum distance estimators for causal parameters are derived from the reduced linear

models. If appropriate estimators of the reduced linear models are available for any type of

coarsened data, then causal inference will be easily made by using the proposed method. For

the binary exposure (Case 2-2), we used the linear probability model. One is tempted to use

other models such as a logistic regression model for the binary exposure and this approach sets

both the reduced models to be non-linear. For a such non-linear case, it is not straightforward to

derive minimum distance estimators without strong model assumptions. To obtain IV estimators

in this case, we may use two-stage predictor substitution method (Terza et al. 2008), where the

binary exposure is replaced by its predicted value of the exposure. However, in order to state

its asymptotic properties, we need to identity other types of assumptions and theories. Further

research for the extension of our method to the non-linear case would be needed.

2.7 Proofs

Before the proofs, we present some definitions for the rank estimators with right censored

data. For k = 1,2, let

Mi(θk; t) = Ni(θk; t) −
ˆ t

0

Yi(θk;u)λk(u)du,

where θT = (θT1 , θT2 ) = (γT , βT ), λ1 and λ2 are the common hazard functions of τi and δ∗i

respectively. The equation ∑ni=1 Yi(θk; t){Di − D̄(θk; t)} = 0 implies that

Uk,G(θk) =
n

∑
i=1

ˆ ∞

−∞
S(0)(θk; t){Di − D̄(θk; t)}dMi(θk; t),
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where D̄(θk; t) = S(1)(θk; t)/S(0)(θk; t). It is well known that E{Mi(θ0k; t)} = 0, where θT0 =

(θT01, θ
T
02) = (γT0 , βT0 ) is the vector of true value of θ. Define

Ak = lim
n→∞

n−1
n

∑
i=1

ˆ ∞

−∞
s(0)(θ0k; t){Di − d̄(θ0k; t)}⊗2{λ̇k(t)/λk(t)}dNi(θ0k; t),

where a⊗2 = aaT , λ̇(t) = dλ(t)/dt, s(0)(θ0k; t) = limn→∞ S(0)(θ0k; t) and s(1)(θ0k; t) = limn→∞ S(1)(θ0k; t),

d̄(θ0k; t) = s(1)(θ0k; t)/s(0)(θ0k; t) for k = 1,2, and

Σk,G = lim
n→∞

n−1
n

∑
i=1

uk,G(i)(θ0k)uk,G(i)(θ0k)T ,

where

uk,G(i)(θ0k) =
ˆ ∞

−∞
s(0)(θ0k){Di − d̄(θ0k; t)}dMi(θ0k; t).

We impose the following regularity conditions.

Condition 1. For k = 1,2, the parameter space Θk containing θk is compact.

Condition 2. For i = 1, ..., n, the Euclidean norm ∥Di∥ is bounded by a constant.

Condition 3. Let fk(t) be the density function associated with λk(t)(k = 1,2). Then fk(t) and

dfk(t)/dt are bounded and
´
(dlogfk(u)/du)2fk(u)du < ∞.

Condition 4. The matrix Ak(k = 1,2) is non-singular.

Remark 4. Condition 1–4 are the regularity conditions for the consistency and asymptotic

normality of the Gehan rank estimators hold (Jin et al. 2006a, Ying 1993).

Proof Corollary 1: Under Condition 1-4, by proof of theorem 1 of Jin et al. (2006a), the

Gehan rank estimator, γ̂G, converges to γ0 almost surely. The least squares estimator, β̂L also

converges to β0 almost surely. Thus Assumption 1 holds.

Under condition 1-4, by using the arguments of Ying (1993), we have

n
1
2 (γ̂G − γ0) = −A−1

1 n
− 1

2U1,G(γ0) + op(1). (2.25)
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A Taylor expansion of U2,L(β̂L) at β0 gives

n
1
2 (β̂L − β0) = M̄−1n−

1
2U2,L(β0) + op(1). (2.26)

The asymptotic covariance matrix of n−
1
2U2,L(β0) is Σ2,L = M̄var(δ∗).

By Lemma 1 of Jin et al. (2006a),

n−
1
2U1,G(γ0) = n−

1
2u1,G(γ0) + op(1). (2.27)

By the uniform strong law of large numbers (Pollard 1990), s(0)(γ0; t) = limn→∞ S(0)(γ0; t) and

s(1)(γ0; t) = limn→∞ S(1)(γ0; t). The asymptotic covariance matrix of u1,G(γ0) is Σ1,G.

The asymptotic covariance matrix of n−
1
2u1,G(γ0) and n−

1
2U2,L(β0) is given by

ΣG,L = lim
n→∞

n−1
n

∑
i=1

u1,G(i)(γ0)U2,L(i)(β0)T , (2.28)

where U2,L(i)(β0) = (Zi −DT
i β0)(Di − D̄).

In view of (2.25), (2.26), (2.27) and (2.28), the multivariate central limit theorem implies

that n1/2{(γ̂G, β̂L) − (γ0, β0)} converges to a mean-zero normal distribution with the covariance

matrix

ΣGL =
⎛
⎜⎜
⎝

A−1
1 Σ1,GA−1

1 A−1
1 ΣG,LM̄−1

M̄−1ΣT
G,LA

−1
1 M̄−1Σ2,LM̄−1

⎞
⎟⎟
⎠
.

Proof Corollary 2: In order to get the two-stage estimator, we fit the two reduced models.

We can build the multivariate model to represent those reduced models,

Hik = θT0kDi + ηik, k = 1,2,

where (Hi1,Hi2) = (Yi, Zi), (θT01, θ
T
02) = (γT0 , βT0 ) and (ηi1, ηi2) = (τi, δ∗i ). If both response and
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exposure are censored, then this model is a multivariate AFT model with multiple event data

where the design matrices are identical for all types of the events (Jin et al. 2006a). In this case,

we have two types of events (k = 1,2). We fit this multivariate AFT model with the methods

of Jin et al. (2006a), which are used for Case 1-2. Then, by Theorem 1 of Jin et al. (2006a),

Assumption 1 and 2 hold.

Proof Corollary 3: Under the regularity conditions for the MLE, the MLE for β0, β̂M ,

converges to β0 almost surely. We also have asymptotic linearity to state,

n
1
2 (β̂M − β0) = [0(p+q)×1 Ip+q]I(βzo, β0)−1n−

1
2U2,M(βzo, β0) + op(1),

= I∗(βzo, β0)−1n−
1
2

n

∑
i=1

U2,M(i)(βzo, β0) + op(1), (2.29)

where U2,M(i)(βzo, β0) is the ith contribution to the probit score function, I(βzo, β0) is the

corresponding Fisher information matrix and I∗(βzo, β0)−1 = [0(p+q)×1 Ip+q]I(βzo, β0)−1. The

function I(βzo, β0) is defined as

I(βzo, β0) = lim
n→∞

1

n

n

∑
i=1

U2,M(i)(βzo, β0)U2,M(i)(βzo, β0)T .

The asymptotic covariance matrix of n−
1
2U2,M(βzo, β0) is I(βzo, β0). The asymptotic covariance

matrix of n−
1
2u1,G(γ0) and n−

1
2U2,M(β0) is given by

ΣG,M = lim
n→∞

n−1
n

∑
i=1

u1,G(i)(γ0)U2,M(i)(βzo, β0)T . (2.30)

In view of (2.25), (2.27), (2.29) and (2.30), the multivariate central limit theorem implies that

n1/2{(γ̂G, β̂M)−(γ0, β0)} converges to mean-zero normal distribution with the covariance matrix

ΣGL =
⎛
⎜⎜
⎝

A−1
1 Σ1,GA−1

1 A−1
1 ΣG,M tr{I∗(βzo, β0)−1}

I∗(βzo, β0)−1ΣT
G,MA

−1
1 I(β0)−1

⎞
⎟⎟
⎠
,

where I(β0)−1 = [0(p+q)×1 Ip+q]I(βzo, β0)−1[0(p+q)×1 Ip+q]T .
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Proof Theorem 3: To prove Theorem 3, it suffices to show that the conditional distribution

of n1/2(θ̂∗ − θ̂) converges to the limiting distribution of n1/2(θ̂ − θ0), where θ̂T = (γ̂TG, β̂TL) and

θ̂∗T = (γ̂∗TG , β̂∗TL ) is the solution of the perturbed estimating equations.

The loss functions for reduced response and exposure models are given by

n−1
n

∑
i=1

n

∑
j=1

∆Y
i {ei(γ) ≤ ej(γ)}−,

n

∑
i=1

(Zi − βo −DT
i β)2,

where βo is an intercept, a− = I(a < 0) ∣ a ∣ and the two loss functions are convex. Suppose

we perturb the two estimation equations with the same positive random variables Ri(i = 1, ..., n)

whose mean and variance are all one. Then perturbed loss functions are given by

n−1
n

∑
i=1

n

∑
j=1

∆Y
i {ei(γ) ≤ ej(γ)}−RiRj,

n

∑
i=1

(Zi − βo −DT
i β)2Ri.

By the way of random perturbation, the perturbed loss functions retain the convexities of the

original loss functions. Thus, the consistency of θ̂∗ can be proven by the same arguments to

prove the consistency of θ̂ (Jin et al. 2006a).

Jin et al. (2006a) showed that the equation (10) can be written as

U∗
1,G(γ) =

n

∑
i=1

ˆ ∞

−∞
S(0)(γ; t){Di − D̄(γ; t)}dMi(γ; t)Ri. (2.31)

This is the critical result to derive the joint distribution of θ̂∗. From the results of Jin et al.

(2006a), it follows that

n
1
2 (γ̂∗G − γ̂G) = −A−1

1 n
− 1

2U∗
1,G(γ̂G) + op(1), (2.32)

n
1
2 (β̂∗L − β̂L) = M̄−1n−

1
2U∗

2,L(β̂L) + op(1), (2.33)
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and

U∗
1,G(γ̂G) = U∗

1,G(γ̂G) −U1,G(γ̂G) + o(n1/2), U∗
2,L(β̂L) = U∗

2,L(β̂L) −U2,L(β̂L) + o(n1/2),

(2.34)

as γ̂G and β̂L are roots of U1,G(γ) and U2,L(β). From (2.31) and (2.34),

n−
1
2U∗

1,G(γ̂G) = n−
1
2

n

∑
i=1

ˆ ∞

−∞
S(0)(γ̂G; t){Di − D̄(γ̂G; t)}dMi(γ̂G; t)(Ri − 1) + o(1), (2.35)

n−
1
2U∗

2,L(β̂L) = n−
1
2

n

∑
i=1

(Zi −DT
i β̂L)(Di − D̄)(Ri − 1) + o(1). (2.36)

Conditionally on the data, the right-hand sides of (2.35) and (2.36) are the sum of independent

zero-mean random vectors. Therefore, the multivariate central limit theorem implies that the

conditional distribution of n−1/2{U∗
1,G(γ̂G)T , U∗

2,L(β̂L)T}T given the data converges to a mean 0

multivariate normal distribution with the covariance matrix

Σ̃GL =
⎛
⎜⎜
⎝

Σ̃1,G Σ̃G,L

Σ̃T
G,L Σ̃2,L

⎞
⎟⎟
⎠
,

where

Σ̃1,G = lim
n→∞

n−1
n

∑
i=1

U1,G(i)(γ̂G)U1,G(i)(γ̂G)T ,

Σ̃2,L = lim
n→∞

n−1
n

∑
i=1

U2,L(i)(β̂L)U2,L(i)(β̂L)T ,

Σ̃G,L = lim
n→∞

n−1
n

∑
i=1

U1,G(i)(γ̂G)U2,L(i)(β̂L)T ,

and

U1,G(i)(γ̂G) =
ˆ ∞

−∞
S(0)(γ̂G; t){Di − D̄(γ̂G; t)}dMi(γ̂G; t),

U2,L(i)(β̂L) = (Zi −DT
i β̂L)(Di − D̄).
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As S(0)(γ; t) → s(0)(γ; t), S(1)(γ; t) → s(1)(γ; t) and θ̂ → θ0, we have Σ̃GL → ΣGL. Then it

follows from (2.32) and (2.33) that the conditional distribution of n1/2(θ̂∗ − θ̂) converges to a

mean 0 multivariate normal distribution with the covariance matrix ΣGL, which is the limiting

distribution of n1/2(θ̂ − θ0).

Proof Theorem 4: As we mentioned in proof of Corollary 2, for Case 1-2, the model we fit

is a multivariate AFT model with multiple event data. We fit this model using the method of Jin

et al. (2006a) which is based on marginal linear models. By Theorem 1 of Jin et al. (2006a),

the conditional distribution of n1/2(θ̂∗ − θ̂) converges to the limiting distribution of n1/2(θ̂ − θ0),

where θ̂T = (γ̂TG, β̂TG) and θ̂∗T = (γ̂∗TG , β̂∗TG ) is the solution of the perturbed estimating equations.

Proof Theorem 5: To prove Theorem 5, it suffices to show that the conditional distribution

of n1/2(θ̂∗ − θ̂) converges to the limiting distribution of n1/2(θ̂ − θ0), where θ̂T = (γ̂TG, β̂TM) and

θ̂∗T = (γ̂∗TG , β̂∗TM ) is the solution of the perturbed estimating equations. Suppose we perturb the

two estimation equations with the same positive random variables Ri(i = 1, ..., n) whose mean

and variance are all one. Then, by the similar arguments in proof of Theorem 3, θ̂∗ → θ̂ almost

surely.

From the results of Jin et al. (2006a), it follows that

n
1
2 (β̂∗M − β̂M) = I∗(βzo, β0)−1n−

1
2U∗

2,M(β̂zo, β̂M) + op(1), (2.37)

and

U∗
2,M(β̂zo, β̂M) = U∗

2,M(β̂zo, β̂M) −U2,M(β̂zo, β̂M) + o(n1/2), (2.38)

as (β̂zo, β̂M) is a root of U2,M(βo, β). From (2.38), it follows that

n−
1
2U∗

2,M(β̂zo, β̂M) = n− 1
2

n

∑
i=1

{Z̃i −Φ(β̂zo + β̂TMDi)}φ(β̂zo + β̂TMDi)
Φ(β̂zo + β̂TMDi){1 −Φ(β̂zo + β̂TMDi)}

Di(Ri − 1) + o(1). (2.39)

Conditionally on the data, the right-hand side of (2.35) and (2.39) are the sum of independent
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zero-mean random vectors. Therefore, the multivariate central limit theorem implies that the

conditional distribution of n−1/2{U∗
1,G(γ̂G)T , U∗

2,M(β̂M)T}T given the data converges to a mean

0 multivariate normal distribution with the covariance matrix

Σ̃GM =
⎛
⎜⎜
⎝

Σ̃1,G Σ̃G,M

Σ̃T
G,M Σ̃2,M

⎞
⎟⎟
⎠
,

where

Σ̃2,M = lim
n→∞

n−1
n

∑
i=1

U2,M(i)(β̂zo, β̂M)U2,M(i)(β̂zo, β̂M)T ,

Σ̃G,M = lim
n→∞

n−1
n

∑
i=1

U1,G(i)(γ̂G)U2,M(i)(β̂zo, β̂M)T ,

and

U2,M(i)(β̂zo, β̂M) = {Z̃i −Φ(β̂zo + β̂TMDi)}φ(β̂zo + β̂TMDi)
Φ(β̂zo + β̂TMDi){1 −Φ(β̂zo + β̂TMDi)}

Di.

As S(0)(γ; t) → s(0)(γ; t), S(1)(γ; t) → s(1)(γ; t) and θ̂ → θ0, we have Σ̃GM → ΣGM . Then it

follows from (2.32) and (2.37) that the conditional distribution of n1/2(θ̂∗ − θ̂) converges to a

mean 0 multivariate normal distribution with the covariance matrix ΣGM , which is the limiting

distribution of n1/2(θ̂ − θ0).

This appendix gives proofs of the Corollary 4 and Theorem 4. First we impose the following

regularity conditions.

Condition 5. supi ∥Di∥ ≤ M , where M is a positive constant, and θ0 ∈ Bp+q(0, ρ), a p +

q-dimensional ball in Rp+q centered at zero and with radius ρ. In addition, µi = βT0 Di has a

differentiable and bounded density function fµ(⋅) and σ(⋅) is differentiable.

Condition 6. For all ν, Fθ0(u ∣ ν) has a bounded twice-differentiable density fθ0(u ∣ ν). In

addition,
´∞
−∞ u

2 dFθ0(u ∣ ν) < ∞ and
´∞
−∞{ḟθ0(u ∣ ν)}2 fθ0(u ∣ ν)du < ∞, where ḟθ0(u ∣ ν) is

the first derivative of fθ0(u ∣ ν) with respect to u.
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Condition 7. The bandwidth satisfies hn = O(n−1/2+κ), where 0 < κ ≤ 1/6.

Condition 8. The kernel functionK(⋅) is Lipschitz continuous of order one and satisfies
´
K(u)du =

1,
´
uK(u)du = 0,

´
K2(u)du < ∞ and

´
u2K(u)du < ∞.

Condition 9. There exist some constants e1 and e2 > 0 such that P (CY
i − γT0 Di > e1) = 0 and

infν Fθ0(e1 ∣ ν) > e2 for all ν.

Condition 10. For 0 < λ < 1
12 , limn→∞ n−3/4{inf∥γ∥≤ρ,∥γ−γ0∥≥n−λ ∥V1,B(γ)∥} = ∞.

Condition 11. The first order derivative matrix Γn of n−1V1,B(γ) at γ0 converges to a finite and

nondegenerate matrix Γ, as n goes to infinity.

Condition 12. There exist positive finite constants c1 and c2 such that for all i, E(∣ δ∗2
i ∣1+c1) < c2

and M̄ = limn→∞ n−1∑ni=1Di(c)D
T
i(c) is nonsingular.

Condition 13. The limit of the average covariance matrix

∆̄ = limn→∞n−1∑ni=1 δ
∗2
i Di(c)D

T
i(c) is nonsingular.

Proof Corollary 4. Under Condition 5-13, by Theorem 1 of Pang et al. (2014) and Lemma 1 of

White (1980), γ̂B → γ0 and β̂P → β0 almost surely.

Pang et al. (2014) showed that under Condition 5-11 for sufficiently large n,

n
1
2 (γ̂LBJ − γ0) = n−

1
2 Γ−1U1,B(γ0) + op(1), (2.40)

and that

n−
1
2U1,B(γ0) → N(0,Σ1,B), in distribution, (2.41)

where

U1,B(γ0) =
n

∑
i=1

(Di − D̄){γT0 Di − Ŷi(γ0)}
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=
n

∑
i=1

{
ˆ ∞

−∞
t dY D

i (t, γ0) +
ˆ ∞

−∞

ˆ ∞

t

1 − F̂iθ0(s)
1 − F̂iθ0(t)

dsdJDi (t, γ0)} ,

Y D
i (t, γ0) = (Di − D̄)I{ei(γ0) ≥ t} and JDi (t, γ0) = (Di − D̄)I{ei(γ0) ≥ t,∆Y

i = 0}, and F̂iθ0(t)

is the shorthand notation of F̂θ0(t ∣ βT0 Di), where θT0 = (γT0 , βT0 ).

To prove the asymptotic normality of n−1/2U1,B(γ0), Pang et al. (2014) used independent and

identically distributed representation of local Kaplan-Meier estimators (Gonzalez-Manteiga and

Cadarso-Suarez 1994). Let Yi(t) = I{ei(γ0) ≥ t} and Ji(t) = I{ei(γ0) ≥ t,∆Y
i = 0}. Define

uB1(γ0) = n−
1
2

n

∑
i=1

(Di − D̄){
ˆ ∞

−∞
t dYi(t) +

ˆ ∞

−∞

ˆ ∞

t

1 − Fiθ0(s)
1 − Fiθ0(t)

dsdJi(t)} ,

uB2(γ0) = n−
1
2

n

∑
i=1

(Di − D̄)
ˆ ∞

−∞

ˆ ∞

t

1 − Fiθ0(s)
{1 − Fiθ0(t)}2

{F̂iθ0(t) − Fiθ0(t)}dsdJi(t),

uB3(γ0) = n−
1
2

n

∑
i=1

(Di − D̄)
ˆ ∞

−∞

ˆ ∞

t

F̂iθ0(s) − Fiθ0(s)
1 − Fiθ0(t)

dsdJi(t).

Further define

Ai =
ˆ ∞

−∞
t dYi(t) +

ˆ ∞

−∞

ˆ ∞

t

1 − Fiθ0(s)
1 − Fiθ0(t)

dsdJi(t).

Based on the consistency of F̂iθ0(t), we have

n−
1
2U1,B(γ0) = uB1(γ0) + uB2(γ0) + uB3(γ0) + op(1).

Pang et al. (2014) showed that for i = 1, ...n, E(Ai ∣Di) has a common value denoted by µA.

Let µD = E(Di), µi = βT0 Di and Gγ0(t ∣Di) = P (CY
i − γT0 Di > t ∣Di). It follows from Theorem

2.3 of Gonzalez-Manteiga and Cadarso-Suarez (1994) that

F̂iθ0(t) − Fiθ0(t) =
1

nhn

n

∑
j=1

K (µj − µi
hn

) ξ(Ỹj,∆Y
j , t, µi) +Op(n−

1
2
+ε), (2.42)

where conditional on Di, ξ(Ỹj,∆Y
j , t, µi), j = 1, ..., n, are independent random variables with
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zero mean and finite variance for any t. Plugging the independent and identically distributed

representation of (2.42) into uB2(γ0) and uB3(γ0) gives the following result,

n−
1
2U1,B(γ0) = n−

1
2

n

∑
i=1

u1,B(i)(γ0) + op(1),

where u1,B(i)(γ0) = (Di − µD)(Ai − µA) + η(Ỹi,∆Y
i , µi) + ϕ(Ỹi,∆Y

i , µi) and

η(Ỹi,∆Y
i , µi) =

ED {(Di − µD)fµ(µi)
ˆ ∞

−∞

ξ(Ỹi,∆Y
i , t, µi)

1 − Fθ0(t ∣ µi)

ˆ ∞

t

{1 − Fθ0(s ∣ µi)}dsdGγ0(t ∣Di)∣βT0 Di = µi} ,

ϕ(Ỹi,∆Y
i , µi) = ED {(Di − µD)fµ(µi)

ˆ ∞

−∞
ξ(Ỹi,∆Y

i , s, µi)dsdGγ0(t ∣Di)∣βT0 Di = µi} ,

The asymptotic covariance matrix of n−1/2U1,B(γ0) is denoted as Σ1,B and multivariate central

limit theorem implies (2.41).

We can write n1/2(β̂P − β0) as

n
1
2 (β̂ − β0) = n−

1
2M̄−1U2,P (β0) + op(1). (2.43)

Under Condition 12-13, by Lemma 2 of White (1980), the asymptotic variance of n−1/2U2,P (β0)

is ∆̄.

We assume that the limit of the covariance matrix of n−1/2u1,B(γ0) and n−1/2U2,P (β0)

ΣB,P = lim
n→∞

n−1
n

∑
i=1

u1,B(i)(γ0)U2,P (i)(β0)T (2.44)

is non-singular where U2,P (i)(β0) = ∑ni=1(Di − D̄)(Zi −DT
i β0).

In the view of (2.40), (2.41), (2.43) and (2.44), multivariate central theorem implies that

n1/2{(γ̂B, β̂P ) − (γ0, β0)} converges to a mean-zero normal distribution with the covariance
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matrix

ΣBP =
⎛
⎜⎜
⎝

Γ−1Σ1,B(Γ−1)T Γ−1ΣB,PM̄−1

M̄−1ΣT
B,PΓ−1 M̄−1∆̄M̄−1

⎞
⎟⎟
⎠
.

◻

Proof Theorem 6: To prove Theorem 6, it suffices to show that the conditional distribution

of n1/2(θ̂∗ − θ̂) converges to the limiting distribution of n1/2(θ̂ − θ0), where θ̂T = (γ̂TB, β̂TP ) and

θ̂∗T = (γ̂∗TB , β̂∗TP ) is the solution of the perturbed estimating equations.

The perturbed Buckley-James estimator is the solution to

U∗
1,B(γ) =

n

∑
i=1

Ri(Di − D̄n){Ŷ ∗
i (γ) − Ȳ ∗(γ) − γT (Di − D̄)}.

Following the proofs of Jin et al. (2006b) and Pang et al. (2014), we incorporate the random

weights Ri into the derivation of the asymptotic linearity in Pang et al. (2014). As a result,

n
1
2 (γ̂∗B − γ̂B) = n−

1
2 Γ−1U∗

1,B(γ̂B) + op(1). (2.45)

Since γ̂B is the solution to U1,B(γ),

U∗
1,B(γ̂B) = U∗

1,B(γ̂B) −U1,B(γ̂B) + o(n
1
2 ). (2.46)

Clearly,

U∗
1,B(γ̂B) −U1,B(γ̂B) =

n

∑
i=1

(Ri − 1)(Di − D̄){Ŷ ∗
i (γ̂B) − Ȳ ∗(γ̂B) − γ̂TB(Di − D̄)}

+
n

∑
i=1

(Di − D̄){Ŷ ∗
i (γ̂B) − γ̂TBDi} −U1,B(γ̂B) (2.47)

Since E(Ri − 1∣Ỹi,∆Y
i ,Di) = 0 and Ŷ ∗

i (γ̂B) − γ̂TBDi can be approximated by E(Yi∣Ỹi,∆Y
i ,Di) −
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γT0 Di,

n

∑
i=1

(Ri − 1)(Di − D̄){Ŷ ∗
i (γ̂B) − Ȳ ∗(γ̂B) − γ̂TB(Di − D̄)}

=
n

∑
i=1

(Ri − 1)(Di − D̄){E(Yi∣Ỹi,∆Y
i ,Di) − γT0 Di} + o(n

1
2 )

=
n

∑
i=1

(Ri − 1)(Di − D̄){
ˆ ∞

−∞
t dYi(t) +

ˆ ∞

−∞

ˆ ∞

t

1 − Fiθ0(s)
1 − Fiθ0(t)

dsdJi(t)} + o(n
1
2 )

=
n

∑
i=1

(Ri − 1)(Di − µD)(Ai − µA) + op(n
1
2 ). (2.48)

Note that

n

∑
i=1

(Di − D̄){Ŷ ∗
i (γ̂B) − γ̂TBDi} −U1,B(γ̂B)

=
n

∑
i=1

(Di − D̄)
ˆ ∞

−∞

ˆ ∞

t

1 − F̂iθ̂(s)
{1 − F̂iθ̂(t)}2

{F̂ ∗
iθ̂
(t) − F̂iθ̂(t)}dsdJi(t) (2.49)

+
n

∑
i=1

(Di − D̄)
ˆ ∞

−∞

ˆ ∞

t

F̂ ∗
iθ̂
(s) − F̂iθ̂(s)
1 − F̂iθ̂(t)

dsdJi(t) (2.50)

As in Jin et al. (2006b), by approximating F̂ ∗
iθ̂
(t) − F̂iθ̂(t) with a weighted sum of Rj − 1, j =

1, ..., n, (2.49) can be written as

n

∑
i=1

(Ri − 1)η(Ỹi,∆Y
i , µi) +

n

∑
i=1

(Ri − 1)ϕ(Ỹi,∆Y
i , µi) + op(n

1
2 ) (2.51)

From (2.46), (2.48) and (2.51), it follows that

n−
1
2U∗

1,B(γ̂B) = n−
1
2

n

∑
i=1

(Ri − 1)u1,B(i)(γ0) + op(1). (2.52)

The perturbed least squares estimator denoted by β̂∗ is the solution to

U∗
2,P (β) =

n

∑
i=1

Ri(Di − D̄)(Zi −DT
i β).
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By the same arguments used in previous theorems and approximating β̂P by β0, we have

n−
1
2U∗

2,P (β) = n−
1
2

n

∑
i=1

(Ri − 1)(Di − D̄)(Zi − βT0 Di) + op(1). (2.53)

Conditionally on the data, the right-hand side of (2.52) and (2.53) are the sum of independent

zero-mean random vectors. Therefore, the multivariate central limit theorem implies that the

conditional distribution of n−1/2{U∗
1,B(γ̂B)T , U∗

2,P (β̂P )T}T given the data converges to a mean 0

multivariate normal distribution with the covariance matrix ΣBP , which is the limiting distribution

of n1/2(θ̂ − θ0).

Now we will show that the converting the estimate of the latent exposure in Case 2-1 analysis

to that of binary exposure does not give a correct result in general. Remind that our true response

model is given by

Yi = αyo + αyzZi + αTywWi + ε∗i , (2.54)

where E(ε∗i ∣ Vi,Wi) = 0. Consider the linear model with binary exposure,

Yi = α̃yo + α̃yzZ̃i + α̃TywWi + ε̃∗i , (2.55)

where Z̃i = I(Zi > 0). Note that the parameters in (2.55) may be different from those in

(2.54). Suppose we want to obtain the estimate of α̃yz from the estimates of the parameters

in model (2.54). As in model (2.54), we impose the conditional independence assumption of the

instrumental variables on ε̃∗i , E(ε̃∗i ∣ Vi,Wi) = 0.

Note that

ε̃∗i = Yi − α̃yo − α̃yzZ̃i − α̃TywWi

= ε∗i + (αyo − α̃yo) + αyzZi − α̃yzZ̃i + (αyw − α̃yw)TWi.
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The equation E(ε̃∗i ∣Di) = 0 can be written as

E(ε∗i ∣Di) + (αyo − α̃yo) + αyzE(Zi ∣Di) − α̃yzE(Z̃i ∣Di) + (αyw − α̃yw)TWi = 0. (2.56)

From (2.56), it follows that

α̃yzE(Z̃i ∣Di) = E(ε∗i ∣Di) + (αyo − α̃yo) + αyzE(Zi ∣Di) + (αyw − α̃yw)TWi.

Since E(ε∗i ∣Di) = 0, we have

α̃yz =
αyo − α̃yo

n−1∑ni=1E(Z̃i ∣Di)
+ αyz

∑ni=1E(Zi ∣Di)
∑ni=1E(Z̃i ∣Di)

+ (αyw − α̃yw)T ∑ni=1Wi

∑ni=1E(Z̃i ∣Di)
.

If αyo = α̃yo and αyw = α̃yw, then α̃yz reduces to

α̃yz = αyz
∑ni=1E(Zi ∣Di)
∑ni=1E(Z̃i ∣Di)

,

hence we can estimate α̃yz from the estimate of αyz, E(Zi ∣ Di) and E(Z̃i ∣ Di). However, in

general, αyo = α̃yo and αyw = α̃yw does not hold.
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CHAPTER 3: A NEW INSTRUMENTAL VARIABLE ESTIMATOR USING A
NEGATIVE CONTROL OUTCOME

3.1 Introduction

Confounders are the variables that affect both exposure and outcome. Regression adjustment

and propensity score method are usually used to rule out the bias by confounding. However, it

is hard to guarantee that all of the confounders are measured. If such an unmeasured confounder

exists, then the aforementioned methods that adjust for the confounders do not give unbiased

estimates of the exposure effect.

Instrumental variable (IV) methods are designed to eliminate the bias by unmeasured confounding,

thus they give unbiased estimates of the exposure effect. The variable V is called a valid IV if

it satisfies the following three assumptions (Brookhart et al. 2010): (i) V has an effect on the

exposure Z, (ii) V has an effect on the outcome Y only through Z, (iii) V is unrelated to an

unmeasured confounder U . In terms of assumption (i), the strength of the association between

Z and V determines the validity of the IV estimator: a strong association yields an efficient and

unbiased IV estimator. The assumption (ii) is called the exclusion restriction (Angrist et al. 1996)

and is needed to identify the estimand for the exposure effect via an IV (Angrist et al. 1996). The

assumption (iii) is satisfied if U is well balanced between the IV groups when the IV is binary.

We will call assumption (iii) IV independence assumption.

Negative controls are useful tools to detect unmeasured confounding (Flanders et al. 2011,

Lipsitch et al. 2010, Lumley and Sheppard 2000, Jackson et al. 2006, Smith 2008; 2012). An

outcome N is called a valid negative control outcome if N satisfies the following two conditions

(Lipsitch et al. 2010, Tchetgen Tchetgen 2014): (i) N shares a set of common confounders of

Z and Y , (ii) N is not caused by Z conditional on the common confounders. Those conditions
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are sufficient to identify the existence of unmeasured confounding, but insufficient to obtain the

unbiased estimate of the exposure effect. Tchetgen Tchetgen (2014) proposed control outcome

calibration methods to estimate the exposure effect by imposing an assumption thatN is independent

of Z conditional on measured confounders W and counterfactual outcomes. This assumption

holds when the counterfactual outcomes are ideal proxies of U (the variation of U is completely

explained by that of the outcomes), however, this may not happen in practice because the measurement

of the outcomes usually are exposed to some errors.

In observation studies, it may not be easy to find a valid IV that satisfies all the three IV

assumptions. The weak IV problems have been focused well and theoretical results of IV models

with weak IVs have been studied by some researchers (Staiger and Stock 1997, Stock and Yogo

2005). However, to our knowledge, there is a lack of literatures to deal with the violation of the

IV independence assumption.

In Section 2, we propose a new IV estimator using a negative control outcome. The new IV

estimator has been shown to be theoretically valid even if the IV independence assumption is

violated. Structural equation models are used to define the IV and the negative control outcome.

For the case of multiple IVs, the new IV method depends on weights and the optimal weight is

identified. In section 3, a Wald test is proposed to test the IV independence assumption and a

new IV estimator combining the new IV estimator and an usual IV estimator is developed, which

may be superior to both individual IV estimators. The new IV estimator is shown to perform

well in simulations reported in Section 4.

3.2 A new instrumental variable estimator with a negative control outcome

We start with a simple case where one instrumental variable is available. For i = 1, ..., n,

suppose Yi is the main outcome, Ni is the negative control outcome, Zi is the exposure, Vi is the

instrumental variable, Wi = (wi1, ...,wiq)T is the q × 1 vector of (measured) confounders and Ui

is the unmeasured confounder.

67



��

��

�

�

Figure 3.1: Causal diagram showing an ideal negative control outcome N for use in estimating
an exposure effect on an outcome with an instrument V. N should have the same incoming arrow
as an outcome Y, except that N is not caused by Z. V can be caused by measured and unmeasured
confounders W and U.
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For the main and negative control outcomes, we consider the following linear models:

Yi = αyo + αyzZi + αyvVi + αTywWi + αyuUi + εi, (3.1)

Ni = αno + αnzZi + αnvVi + αTnwWi + αnuUi + ξi, (3.2)

αyw = (αyw,1, ..., αyw,q)T is a q × 1 parameter vector and E(εi∣Xi, Ui) = E(ξi∣Xi, Ui) = 0 for

all i by construction and XT
i = (1, Zi, Vi,W T

i ). Assume that (Xi, Ui, εi, ξi) is a sequence

of independent and not (necessarily) identically distributed random vectors. The conditional

covariance matrix of (εi, ξi) given Xi is allowed to depend on Xi. In (3.1), we set αyv = 0

as Vi and Yi are conditionally independent given (Zi,W T
i , Ui), that is, the exclusion restriction

assumption (Angrist et al., 1996). In (3.2), we also set αnv = 0 by the exclusion restriction

assumption and αnz = 0 following the definition of the negative control outcome, that is, there is

no effect of Zi on Ni conditional on (W T
i , Ui).

We consider the situation where Ui is unmeasured. In vector notation, the models of (3.1)

and (3.2) can be written as

Y =Xαy + αyuU + ε, (3.3)

N =Xαn + αnuU + ξ, (3.4)

where αTy = (αyo, αyz, αyv, αTyw), αTn = (αno, αnz, αnv, αTnw), Y = (Y1, ..., Yn)T ,N = (N1, ...,Nn)T ,

U = (U1, ..., Un)T , ε = (ε1, ..., εn)T , ξ = (ξ1, ..., ξn)T and X is the matrix with a typical row Xi.

The least squares estimators for αy and αn with observed covariates are given by

α̂y = (XTX)−1XTY = αy + (XTX)−1XT ε + αyu(XTX)−1XTU, (3.5)

α̂n = (XTX)−1XTN = αn + (XTX)−1XT ξ + αnu(XTX)−1XTU. (3.6)

In general, n−1XTU dose not converge to zero because Zi and Ui are correlated. Therefore, α̂y

is not a consistent estimator for αy.
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Let STi = (XT
i , Ui) and r = 4+q denote the length of Si. Further let Sij denote the jth element

of the vector Si. To identify the limiting values of α̂y and α̂n, we make the following assumption.

Assumption 3. (a) There exist positive finite constants δ and ∆ such that, for all i, E(∣ε2
i ∣1+δ) <

∆, E(∣ξ2
i ∣1+δ) < ∆ and E(∣SijSik∣1+δ) < ∆(j, k = 1, ..., r); (b) M̄n = n−1E(XTX) is nonsingular

for (all) n sufficiently large.

Under Assumption 3, it follows by strong law of large numbers that almost surely

(XTX)−1XT ε→ 0, (XTX)−1XT ξ → 0, (XTX)−1XTU → M̄−1
n n−1E(XTU). (3.7)

Denote M̄−1
n n−1E(XTU) by ν = (νo, νz, νv, νTw)T . From (3.7), it follows that

α̂y = αy + αyuν + o(1) = α∗y + o(1), (3.8)

α̂n = αn + αnuν + o(1) = α∗n + o(1), (3.9)

where α∗y = αy +αyuν and α∗n = αn +αnuν. Note that α̂y and α̂n are biased estimators for αy and

αn, but unbiased estimators for α∗y and α∗n.

The proposed instrumental variable estimator for αyz is given by

α̂NCyz = α̂yz −
α̂yv
α̂nv

α̂nz, (3.10)

where α̂nv is non-zero. Using (3.8), (3.9) and continuous mapping theorem, we can show that

the proposed estimator converses almost surely to αyz,

α̂NCyz = (αyz + αyuνz) −
αyv + αyuνv
αnv + αnuνv

(αnz + αnuνz) + o(1),

= (αyz + αyuνz) −
αyuνv
αnuνv

αnuνz + o(1),

= αyz + o(1).
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The critical condition for which the proposed instrumental variable estimator is valid is that

both αnu and νv are non-zeros because the estimator is a function of 1/α̂nv and the estimator

α̂nv converges to αnuνv. The condition of αnu ≠ 0 indicates that Ni shares Wi and Ui with

Yi. This is called “U-comparable" condition for the use of the negative control outcome to

detect unmeasured confounding (Lipsitch et al. 2010). The condition of νv ≠ 0 implies the

correlation between Vi and Ui and this condition holds if both Vi and Ui affect Zi or there is a

direct relationship between Vi and Ui. Thus the proposed new instrumental variable method is

reliable even if an usual instrumental variable assumption that Vi is independent of Ui is violated.

Next we consider multiple instrumental variables. Define Vi = (Vi1, ..., Vip)T as the p × 1

vector of instruments. Further Define XT
i = (1, Zi, V T

i ,W
T
i ), αyv = (αyv,1, ..., αyv,p)T , αTy =

(αyo, αyz, αTyv, αTyw), αTn = (αno, αnz, αTnv, αTnw) and νT=(νo,νz,νTv ,

νTw ). In the case of multiple instrumental variables, the proposed instrumental variable estimator

for αyz has the following form,

α̂NCyz = α̂yz − (ωTn
α̂yv
α̂nv

) α̂nz,

= α̂yz − (
p

∑
j=1

ωnj
α̂yv,j
α̂nv,j

) α̂nz, (3.11)

where the division sign in the first line is understood to perform element by element and ωn =

(ωn1, ..., ωnp)T → ω0 = (ω1, ..., ωp)T almost surely with the condition of ωT0 1p = ∑pj=1 ωj = 1,

where 1p is the p×1 vector of ones. In the sequel, the division sign used for vectors is understood

to indicate division of two vectors element by element. The following theorem states the strong

consistency of α̂NCyz .

Theorem 7. Given Assumption 3 and ω0 such that ∑pj=1 ωj = 1, α̂NCyz converges almost surely to

αyz.

Proof. By continuous mapping theorem, it follows that

α̂NCyz = (αyz + αyuνz) − (ωT0
αyuνv
αnuνv

)αnuνz + o(1),
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= (αyz + αyuνz) − (ωT0 1p)αyuνz + o(1),

= αyz + o(1).

◻

Note that the parameter αyz can be written as

αyz = α∗yz − ωT0 γ∗nz,

= (αyz + αyuνz) − ωT0 1p(αyuνz), (3.12)

where γ∗nz = (α∗yv/α∗nv)α∗nz. Any ω0 satisfying ωT0 1p = 1 makes (3.12) hold. Define the estimator

with a known weight ω0,

α̂†
yz = α̂yz − ωT0 γ̂nz, (3.13)

where γ̂nz = (α̂yv/α̂nv)α̂nz. Note that n1/2(α̂NCyz − αyz) can be written as

n1/2(α̂NCyz − αyz) = n1/2(α̂yz − α̂†
yz) + n1/2(α̂†

yz − αyz). (3.14)

and that

n1/2(α̂yz − α̂†
yz) = −n1/2(ωn − ω0)T γ̂nz

= −n1/2(ωn − ω0)T (γ̂nz − γ∗nz) − n1/2(ωn − ω0)Tγ∗nz. (3.15)

If we assume n
1
2 (γ̂nz − γ∗nz) = Op(1), then n1/2(ωn − ω0)T (γ̂nz − γ∗nz) = op(1). Since (ωn −

ω0)Tγ∗nz = 0, n1/2(ωn −ω0)Tγ∗nz = 0. Thus, the distribution of n1/2(α̂NCyz −αyz) converges almost

surely to the limiting distribution of n1/2(α̂†
yz − αyz).
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We can write n1/2(α̂†
yz − αyz) as

n1/2(α̂†
yz − αyz) = n1/2(α̂yz − α∗yz) − ωT0 n1/2(γ̂nz − γ∗nz).

The asymptotic covariance matrix of n1/2(α̂†
yz − αyz) is given by

Σ(α̂†
yz) = Σ(α̂yz) + ωT0 Σ(γ̂nz)ω0 − 2ωT0 Σ(α̂yz, γ̂nz),

where Σ(α̂yz), Σ(γ̂nz) and Σ(α̂yz, γ̂nz) are the asymptotic variance-covariance matrices of n1/2(α̂yz−

α∗yz) and n1/2(γ̂nz − γ∗nz), and the asymptotic covariance matrix between n1/2(α̂yz − α∗yz) and

n1/2(γ̂nz − γ∗nz). Hereafter, let Σ(T1) and Σ(T1, T2) denote the asymptotic variance-covariance

matrix of T1 and the asymptotic covariance matrix of T1 and T2. It can be shown that ω0 yielding

the minimum of Σ(α̂†
yz) with the condition of ωT0 1p = 1 is given by

ω0 = β0 +
1 − βT0 1p

1Tp Σ(γ̂nz)−11p
Σ(γ̂nz)−11p,

= β0 +
1 −∑pj=1 βj

∑pk,l=1 Σkl(γ̂nz)−1
Σ(γ̂nz)−11p, (3.16)

where β0 = (β1, ..., βp)T = Σ(γ̂nz)−1Σ(α̂yz, γ̂nz) is the value of ω0 yielding the minimum of

Σ(α̂†
yz) without the condition of ωT0 1p = 1 and Σkl(γ̂nz)−1 is the (k, l)th element of Σ(γ̂nz)−1.

We choose ωn as the consistent estimator of ω0 in (3.16),

ωn = β̂ +
1 − β̂T1p

1Tp Σ̂(γ̂nz)−11p
Σ̂(γ̂nz)−11p,

= β̂ +
1 −∑pj=1 β̂j

∑pk,l=1 Σ̂kl(γ̂nz)−1
Σ̂(γ̂nz)−11p, (3.17)

where β̂ = Σ̂(γ̂nz)−1Σ̂(α̂yz, γ̂nz), and Σ̂(γ̂nz)−1 and Σ̂(α̂yz, γ̂nz) are consistent estimators of

Σ(γ̂nz)−1 and Σ(α̂yz, γ̂nz).
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Let α̂ = (α̂Ty , α̂Tn)T and α∗ = (α∗Ty , α∗Tn )T . It can be shown that

α̂y − α∗y = (XTX)−1XT εu, α̂n − α∗n = (XTX)−1XT ξu, (3.18)

where

εu = (εu1, ..., εun)T = Y −Xα∗y = ε + αyu(U −Xν), (3.19)

ξu = (ξu1, ..., ξun)T = N −Xα∗n = ξ + αnu(U −Xν), (3.20)

Note that E(XT εu) = 0 because of the fact that E(XTU) = E(XTX)ν while E(εu) may not

be zero. Thus we use the methods of White (1980) for heteroskedasticity-consistent covariance

matrix estimation. Define the following average covariance matrices

V̄n,εε = n−1
n

∑
i=1

E(ε2
uiXiX

T
i ), V̄n,ξξ = n−1

n

∑
i=1

E(ξ2
uiXiX

T
i ), V̄n,εξ = n−1

n

∑
i=1

E(εuiξuiXiX
T
i ),

and the covariance matrix

Σα =
⎛
⎜⎜
⎝

M̄−1
n V̄n,εεM̄−1

n M̄−1
n V̄n,εξM̄−1

n

M̄−1
n V̄n,εξM̄−1

n M̄−1
n V̄n,ξξM̄−1

n

⎞
⎟⎟
⎠
.

With the next assumption, an asymptotic normality can be obtained.

Assumption 4. Let Xij be the jth element of the vector Xi. (a) There exist positive finite

constants δ and ∆ such that for all i E(∣ε2
uiXijXik∣1+δ) < ∆ and E(∣ξ2

uiXijXik∣1+δ) < ∆ (j, k =

1, ...,2 + p + q); (b) Σα is nonsingular for n sufficiently large.

With Assumptions 3 and 4, by Lemma 2 of White (1980), n1/2(α̂ − α∗) → N(0,Σα) in

distribution. To obtain the asymptotic distribution of n1/2(α̂†
yz − αyz), we let

⎛
⎜⎜
⎝

α̂yz

γ̂nz

⎞
⎟⎟
⎠
= g(α̂) =

⎛
⎜⎜
⎝

g1(α̂)

g2(α̂)

⎞
⎟⎟
⎠
. (3.21)
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The first derivative of g at α∗ is given by

ġ(α∗)T =
⎛
⎜⎜
⎝

0, 1, 0Tp , 0Tq , 0, 0, 0Tp , 0Tq

0p, 0p, diag (α
∗

nz

α∗nv
) , 0p×q, 0p,

α∗yv
α∗nv

, −diag (α
∗

yvα
∗

nz

α∗2nv
) , 0p×q

⎞
⎟⎟
⎠
, (3.22)

where diag(A) is a diagonal matrix with the ith diagonal element being the ith element of vector

A. By Delta method, n1/2{(α̂yz, γ̂Tnz)T − (α∗yz, γ∗Tnz )T} converges in distribution to N(0,Σg),

where Σg = ġ(α∗)TΣαġ(α∗). From this result, we can obtain Σ(α∗yz), Σ(γ∗nz) and Σ(α∗yz, γ∗nz).

Further let α̂†
yz = h(α̂yz, γ̂nz). The first derivative of h at (α∗yz, γ∗Tnz )T is given by ḣ(α∗yz, γ∗nz)T =

(1,−ωT0 ). By Delta method, n1/2(α̂†
yz−αyz) converges in distribution to a mean-zero multivariate

normal distribution with the covariance matrix of (1,−ωT0 )Σg(1,−ωT0 )T . Using this asymptotic

result, we obtain asymptotic normality of the proposed estimator.

Theorem 8. With Assumptions 3 and 4 and ωn which converges in almost surely to ω0, n1/2(αNCyz −

αyz) → N{0,Σ(αNCyz )} in distribution,

where Σ(αNCyz ) = (1,−ωT0 )Σg(1,−ωT0 )T .

To estimate Σα, we use the estimators of White (1980). Define the residuals to be ε̂u =

Y −Xα̂y and ξ̂u = N −Xα̂n, which are consistent for εu and ξu. The estimators of Vn,εε, Vn,ξξ

and Vn,εξ are given by

V̂n,εε = n−1
n

∑
i=1

ε̂2
uiXiX

T
i , V̂n,ξξ = n−1

n

∑
i=1

ξ̂2
uiXiX

T
i , V̂n,εξ = n−1

n

∑
i=1

ε̂uiξ̂uiXiX
T
i . (3.23)

The next assumption is required to get strong consistency results of the variance estimators

in (3.23).

Assumption 5. There exist positive constants δ and ∆ such that for all i,

E(∣X2
ijXikXil∣1+δ) < ∆ (j, k, l = 1, ...,2 + p + q).
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Under Assumption 3, 4 and 5, from Theorem 1 of White (1980), it follows that almost surely

∣V̂n,εε − V̄n,εε∣ → 0, ∣V̂n,ξξ − V̄n,ξξ ∣ → 0, ∣V̂n,εξ − V̄n,εξ ∣ → 0 (3.24)

and that

∣(XTX/n)−1V̂n,εε(XTX/n)−1 − M̄−1
n V̄n,εεM̄

−1
n ∣ → 0,

∣(XTX/n)−1V̂n,ξξ(XTX/n)−1 − M̄−1
n V̄n,ξξM̄

−1
n ∣ → 0,

∣(XTX/n)−1V̂n,εξ(XTX/n)−1 − M̄−1
n V̄n,εξM̄

−1
n ∣ → 0, (3.25)

where the notation is understood to imply convergence of the matrices element by element. Based

on (3.25), we can calculate ωn, α̂NCyz and Σ̂(α̂NCyz ).

3.3 A Test for Instrumental Variable Assumption and Combined Instrumental Variable

Estimator

Usual instrumental variable estimators such as two-stage least squares require the models for

the outcome and the exposure. One of key assumptions of instrumental variable estimators is that

the instrument should be independent of the unmeasured confounder. In contrary, the proposed

instrumental variable estimator does not require the model for the exposure, but the model for the

negative control outcome, and is still reliable even if the independence assumption is violated.

In this section, first we discuss the method to test the independence assumption by comparing

an usual instrumental variable estimator and an instrumental variable estimator with a negative

control outcome. Second, under the independence assumption, we introduce an instrumental

variable estimator combining both individual instrumental variable estimators. This combined

estimator is shown to be more efficient than each instrumental variable estimator.

As an usual instrumental variable estimator, we will consider the two-stage estimator discussed

by Choi et al. (2014). Based on the model of (3.3) along with the assumptions made, the model
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for the main outcome can be written as

Yi = αyo + αyzZi + αTywWi + αyuUi + εi

= αyo + αT0Ai + ε∗i , (3.26)

where ε∗i = αyuUi + εi, αT0 = (αyz, αTyw), ATi = (Zi,W T
i ) and E(εi ∣ Ai, Ui) = 0.

Assume the following linear model for the exposure:

Zi = βzo + βTzvVi + βTzwWi + βzuUi + ηi,

= βzo + βT0 Di + η∗i , (3.27)

where βzv = (βzv,1, ..., βzv,p)T , βzw = (βzw,1, ..., βzw,q)T , E(ηi ∣ Di, Ui) = 0 by construction,

η∗i = βzuUi + ηi, βT0 = (βTzv, βTzw), and DT
i = (V T

i ,W
T
i ).

The implied model for Ai is

Ai =
⎛
⎜⎜
⎝

Zi

Wi

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

βzo

0q×1

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

βTzv βTzw

0q×p Iq

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

Vi

Wi

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

η∗i

0q×p

⎞
⎟⎟
⎠

= β∗zo +BT
0 Di + η∗∗i , (3.28)

where B0 is a (p + q) × (1 + q) parameter matrix, 0q×p is a q × p zero matrix and Iq is a q × q

identity matrix.

Substituting model (3.28) into Si in (3.26) gives

Yi = γyo + γT0 Di + τi, (3.29)

where γyo = αyo+αT0 β∗zo is an intercept, γ0 = (γTyv, γTyw)T = B0α0 is a (p+ q)×1 parameter vector

and τi = ε∗i + αT0 η∗∗i = ε∗i + αyzη∗i . The models of (3.27) and (3.29) are called reduced exposure

and response models (Choi et al. 2014). The conditional covariance matrix of τi and η∗i given Di
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is allowed to depend onDi, which includes a special case of a binary exposure (Choi et al. 2014),

where the heteroskedastic covariance matrix is induced by a linear probability model error η∗i .

The two-stage instrumental variable estimator, α̂IV , for α0 is obtained as the form of minimum

distance estimator,

α̂IV = (B̂TCnB̂)−1B̂TCnγ̂,

where Cn = C0 + o(1) and θ̂T = (γ̂T , β̂T ) is a consistent estimator for θT0 = (γT0 , βT0 ). Note that

n1/2(α̂IV − α0) = (B̂TCnB̂)−1B̂TCnn
1
2 (γ̂ − B̂α0).

If θ̂ = θ0+o(1) and n1/2(θ̂−θ0) is asymptotically zero-mean normal, then by continuous mapping

theorem and Slutsky theorem, α̂IV = α0 + o(1) and n1/2(α̂IV −α0) converges in distribution to a

zero-mean multivariate normal distribution with the covariance matrix of

(BT
0 C0B0)−1BT

0 C0Ω(α0)C0B0(BT
0 C0B0)−1, (3.30)

where Ω(α0) = var{n1/2(γ̂ − B̂α0)}. The lower bound of the above covariance matrix of

n1/2(α̂IV −α0) is (BT
0 Ω(α0)−1B0)−1, which is obtained by takingC0 = Ω(α0)−1. The corresponding

α̂IV is obtained by using the weight Cn = Ω̂(α̂)−1, which is a consistent estimator for Ω(α0)−1 if

α̂ is consistent for α0. In order to compute Cn = Ω̂(α̂)−1, we need an initial consistent estimator

for α0. In practice, we may use the following initial estimator, α̂IVI = (B̂T B̂)−1B̂T γ̂, with identity

weight matrix Cn = I .

The instrumental variable estimator assumes that E(τi∣Di) = E(η∗i ∣Di) = 0. This assumption

holds ifE(Ui∣Di) = 0 (Choi et al. 2014). However, if Ui andDi are correlated, then the condition

of E(Ui∣Di) = 0 may be violated. Under the model assumptions of (3.1) and (3.2), α̂NCyz is valid

whether or not E(Ui∣Di) = 0 holds. Thus we can test whether E(Ui∣Di) = 0 is satisfied by

comparing α̂NCyz and α̂IVyz , where α̂IVyz is the first element of α̂IV . If E(Ui∣Di) = 0 holds, then

78



those two statistics will be similar.

In vector notation, the reduced models can be written as

Y = γyo +DγT0 + τ (3.31)

Z = βzo +DβT0 + η∗ (3.32)

Z = (Z1, ..., Zn)T , τ = (τ1, ..., τn)T , η∗ = (η∗1 , ..., η∗n)T and D is a design matrix with the ith row

of Di. Without loss of generality, we assume that Vi and Wi are centered to have mean zeros.

Then, the least squares estimator for θT0 = (γT0 , βT0 ), θ̂T = (γ̂T , β̂T ), is given by

γ̂ = (DTD)−1DTY, (3.33)

β̂ = (DTD)−1DTZ. (3.34)

Let Dij denote the jth element of the vector Di. To obtain a consistency results, we make the

following assumption.

Assumption 6. (a) There exist positive finite constants δ and ∆ such that, for all i, E(∣η∗2
i ∣1+δ) <

∆; (b) L̄n = n−1E(DTD) is nonsingular for (all) n sufficiently large.

Since ε∗i = εi + αyuUi, from Assumption 1(a), it follows that E(∣ε∗2
i ∣1+δ) < ∆. Again, since

τi = ε∗i + αyuη∗i , from Assumption 1(a) and 4(a), E(∣τ 2
i ∣1+δ) < ∆. Assumption 1(a) also ensures

that E(∣DijDik∣1+δ) < ∆ (j, k = 1, ..., p + q). Assumption 1(b) is sufficient for Assumption 4(b).

Theorem 9. With Assumption 3 and 6, α̂IVyz converges almost surely to α.

The above theorem is followed by Lemma 1 of White (1980) and Theorem 1 of Choi et al.

(2014).

Define the following average covariance matrices

V̄n,ττ = n−1
n

∑
i=1

E(τ 2
i DiD

T
i ), V̄n,η∗η∗ = n−1

n

∑
i=1

E(η∗2
i DiD

T
i ), V̄n,τη∗ = n−1

n

∑
i=1

E(τiη∗iDiD
T
i ),
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and the covariance matrix

Σθ =
⎛
⎜⎜
⎝

L̄−1
n V̄n,ττ L̄

−1
n L̄−1

n V̄n,τη∗L̄
−1
n

L̄−1
n V̄n,τη∗L̄

−1
n L̄−1

n V̄n,η∗η∗L̄
−1
n

⎞
⎟⎟
⎠
.

With the next assumption, an asymptotic normality of α̂IV is obtained.

Assumption 7. (a) There exist positive finite constants δ and ∆ such that for all i E(∣τ 2
i DijDik∣1+δ) <

∆ and E(∣η∗2
i DijDik∣1+δ) < ∆ (j, k = 1, ..., p + q); (b) Σθ is nonsingular for n sufficiently large.

With Assumption 3, 6 and 7, by Lemma 2 of White (1980), n1/2(θ̂ − θ0) converges in

distribution to N(0,Σθ). Using this result, we obtain the asymptotic normality of the two-stage

instrumental variable estimators.

Theorem 10. Under Assumption 3, 6 and 7, n1/2(α̂IVyz − αyz) converges in distribution to a

mean-zero multivariate normal distribution with the variance of the (1,1)th element of (3.30).

Define the residuals to be τ̂ = Y − γ̂yo −Dγ̂y and η̂∗ = Z − β̂zo −Dβ̂z, which are consistent

estimators of τ and η∗. The estimators of Vn,ττ , Vn,η∗η∗ and Vn,εη∗ are given by

V̂n,ττ = n−1
n

∑
i=1

τ̂ 2
i DiD

T
i , V̂n,η∗η∗ = n−1

n

∑
i=1

η̂∗2
i DiD

T
i , V̂n,εη∗ = n−1

n

∑
i=1

τ̂iη̂
∗
iDiD

T
i . (3.35)

Under Assumptions 3, 5, 6 and 7(a), from Theorem 1 of White (1980), it follows that almost

surely

∣V̂n,ττ − V̄n,ττ ∣ → 0, ∣V̂n,η∗η∗ − V̄n,η∗η∗ ∣ → 0, ∣V̂n,εη∗ − V̄n,εη∗ ∣ → 0 (3.36)

and that

∣(DTD/n)−1V̂n,ττ(DTD/n)−1 − L̄−1
n V̄n,ττ L̄

−1
n ∣ → 0,

∣(DTD/n)−1V̂n,η∗η∗(DTD/n)−1 − L̄−1
n V̄n,η∗η∗L̄

−1
n ∣ → 0,
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∣(DTD/n)−1V̂n,τη∗(DTD/n)−1 − L̄−1
n V̄n,τη∗L̄

−1
n ∣ → 0, (3.37)

where the notation is understood to imply convergence of the matrices element by element.

Under the assumption of E(Ui∣Di) = 0, if n1/2{(α̂NCyz , α̂IVyz ) − (αyz, αyz)} converges in

distribution to N{0,Σ(α̂NCyz , α̂IVyz )}, then we can test whether E(Ui∣Di) = 0 using a Wald test

statistic. If the absolute Wald test statistic is greater than a certain critical value, say 1.96,

then we conclude that E(Ui∣Di) = 0 is not true, and this implies the two-stage instrumental

variable estimator is not valid. If we do not reject E(Ui∣Di) = 0, then we can use both the

two-stage instrumental variable estimator and the proposed instrumental variable estimator, and

make another instrumental variable estimator by combining those two estimators.

Define the following average covariance matrices:

V̄n,ετ = n−1
n

∑
i=1

E(εuiτiXiD
T
i ), V̄n,εη∗ = n−1

n

∑
i=1

E(εuiη∗iXiD
T
i ),

V̄n,ξτ = n−1
n

∑
i=1

E(ξuiτiXiD
T
i ), V̄n,ξη∗ = n−1

n

∑
i=1

E(ξuiη∗iXiD
T
i ).

Further define

Σαθ =
⎛
⎜⎜
⎝

M̄−1
n V̄n,ετ L̄−1

n M̄−1
n V̄n,εη∗L̄−1

n

M̄−1
n V̄n,ξη∗L̄−1

n M̄−1
n V̄n,ξη∗L̄−1

n

⎞
⎟⎟
⎠
, ΣJ =

⎛
⎜⎜
⎝

Σα Σαθ

ΣT
αθ Σθ

⎞
⎟⎟
⎠
. (3.38)

By Lemma 2 of White (1980), n1/2{(α̂T , θ̂T )T−(α∗T , θT0 )T )} converges to a mean-zero multivariate

normal distribution with the covariance matrix ΣJ under the following assumption together with

Assumptions 3, 4, 6, 7.

Assumption 8. The covariance matrix ΣJ is nonsingular for n sufficiently large.

The estimators of V̄n,ετ , V̄n,εη∗ , V̄n,ξτ and V̄n,ξη∗ are given by

V̂n,ετ = n−1
n

∑
i=1

ε̂uiτ̂iXiD
T
i , V̂n,εη∗ = n−1

n

∑
i=1

ε̂uiη̂
∗
iXiD

T
i
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V̂n,ξτ = n−1
n

∑
i=1

ξ̂uiτ̂iXiD
T
i , V̂n,ξη∗ = n−1

n

∑
i=1

ξ̂uiη̂
∗
iXiD

T
i

Under Assumptions 3, 4(a), 5, 6 and 7(a), from Theorem 1 of White (1980), it follows that almost

surely

∣V̂n,ετ − V̄n,ετ ∣ → 0, ∣V̂n,εη∗ − V̄n,εη∗ ∣ → 0, ∣V̂n,ξτ − V̄n,ξτ ∣ → 0, ∣V̂n,ξη∗ − V̄n,ξη∗ ∣ → 0 (3.39)

and that

∣(XTX/n)−1V̂n,ετ(DTD/n)−1 − M̄−1
n V̄ετ L̄

−1
n ∣ → 0,

∣(XTX/n)−1V̂n,εη∗(DTD/n)−1 − M̄−1
n V̄εη∗L̄

−1
n ∣ → 0,

∣(XTX/n)−1V̂n,ξτ(DTD/n)−1 − M̄−1
n V̄ξτ L̄

−1
n ∣ → 0,

∣(XTX/n)−1V̂n,ξη∗(DTD/n)−1 − M̄−1
n V̄n,ξη∗L̄

−1
n ∣ → 0. (3.40)

Define the 2 × 4(1 + p + q) matrix φ to be

φ(α∗, θ0)T =
⎛
⎜⎜
⎝

k(α∗)T 0T
2(p+q)

0T
2(2+p+q) f(θ0)T

⎞
⎟⎟
⎠
, (3.41)

where 0p is a p × 1 vector of zeros and

k(α∗)T = (1, −ωT0 )ġ(α∗)T

f(θ0)T = (1, 0Tq ) (BT
0 C0B0)−1BT

0 C0 (Ip+q, −αyzIp+q) .

Then, Σ(α̂NCyz , α̂IVyz ) is given by φ(α∗, θ0)TΣJφ(α∗, θ0). If we have one instrumental variable

(p = 1) and B0 is invertible, then α̂IV = B̂−1γ̂ dose not depend on the weight matrix Cn. In this

case, f(θ0)T has the simple form as (1, 0Tq )B−1
0 (I1+q, −αyzI1+q). The Wald test statistic to test
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E(Ui∣Di) = 0 is

α̂NCyz − α̂IVyz
Σ̂(α̂NCyz − α̂IVyz )

1
2

,

where Σ̂(α̂NCyz − α̂IVyz ) = (1,−1)Σ̂(α̂NCyz , α̂IVyz )(1,−1)T and

Σ̂(α̂NCyz , α̂IVyz ) = φ(α̂, θ̂)T Σ̂Jφ(α̂, θ̂),

k(α̂)T = (1, −ωTn )ġ(α̂)T

f(θ̂)T = (1, 0Tq ) (B̂TCnB̂)−1B̂TCn (Ip+q, −α̂IVyz (I)Ip+q) .

and α̂IVyz (I) is the first element of α̂IVI .

Now we introduce a new instrumental variable estimator combining α̂NCyz and α̂IVyz with the

assumption of E(Ui∣Di) = 0. We consider a weighted sum of α̂NCyz and α̂IVyz . It can be easily

shown that the sum of weights should be one to make the combined estimator be consistent.

Thus, our new estimator has the form of

α̂yz(λn) = λnα̂NCyz + (1 − λn)α̂IVyz , (3.42)

where λn = λ0 + o(1) may depend on the data. Define the estimator with the known weight λ0 as

α̂yz(λ0) = λ0α̂
NC
yz + (1 − λ0)α̂IVyz . (3.43)

Note that

n
1
2{α̂yz(λn) − αyz} = n

1
2{α̂yz(λn) − α̂yz(λ0)} + n

1
2{α̂yz(λ0) − αyz} (3.44)

and that n1/2{α̂yz(λn) − α̂yz(λ0)} = n1/2(α̂NCyz − α̂IVyz )(λn − λ0) = op(1). Thus the distribution

of n1/2{α̂yz(λn)−αyz} converges almost surely to the asymptotic distribution of n1/2{α̂yz(λ0)−
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αyz}.

The asymptotic covariance matrix of n1/2{α̂yz(λ0) − αyz} is

Σλ = λ2
0Σ(α̂NCyz ) + (1 − λ0)2Σ(α̂IVyz ) + 2λ0(1 − λ0)Σ(α̂NCyz , α̂IVyz ). (3.45)

The value of λ0 to yield minimum of Σλ is given by

λ0 =
Σ(α̂IVyz ) −Σ(α̂NCyz , α̂IVyz )

Σ(α̂NCyz ) +Σ(α̂IVyz ) − 2Σ(α̂NCyz , α̂IVyz )
. (3.46)

The value of Σλ with (3.46) is given by

Σλ0 = Σ(α̂IVyz ) −
{Σ(α̂IVyz ) −Σ(α̂NCyz , α̂IVyz )}2

Σ(α̂NCyz − α̂IVyz )
=

Σ(α̂NCyz )Σ(α̂IVyz ) −Σ(α̂NCyz , α̂IVyz )2

Σ(α̂NCyz − α̂IVyz )
. (3.47)

The equation (3.47) implies that Σλ0 is smaller than both Σ(α̂NCyz ) and Σ(α̂IVyz ) and that Σλ0 > 0.

We choose λn to be consistent estimator of λ0, namely,

λn =
Σ̂(α̂IVyz ) − Σ̂(α̂NCyz , α̂IVyz )

Σ̂(α̂NCyz ) + Σ̂(α̂IVyz ) − 2Σ̂(α̂NCyz , α̂IVyz )
. (3.48)

Following theorems are followed by previous theorems.

Theorem 11. With Assumptions 3 and 6, and λn = λ0 + o(1), α̂yz(λn) converges almost surely

to αyz.

Theorem 12. With Assumptions 3, 4, 6, 7 and 8, n1/2{α̂yz(λn) − αyz} converges in distribution

to N(0,Σλ0).

3.4 Simulations

In the first simulation study, we compare the proposed equally weighted and optimally weighted

instrumental variable estimators of the exposure effect. For this comparison, we consider the

case where we have multiple instruments. The outcomes and the exposure were generated by the
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following models.

Yi = αyzZi + αTyvVi + αywWi + αyuUi + εi, (3.49)

Ni = αnzZi + αTnvVi + αnwWi + αnuUi + ξi, (3.50)

Zi = βTzvVi + βzwWi + βzuUi + ηi. (3.51)

All of the paraemters are set to be ones except that αnz = αyv = αnv = 0 and Vi = (Vi1, Vi2)T is

a two-dimensional vector. The covariate vector (Vi1, Vi2,Wi, Ui) was generated from standard

normal distribution truncated at ±2.5 and the error vector (εi, ξi, ηi) was generated from standard

normal. We also considered the case of binary exposure by replacing Zi in (3.49) and (3.50)

with I(Zi > 0). We varied the value of βzv to control the degree of the balance of instruments.

For the case of continuous exposure, we used βzv = (1,1)T to generate balanced instruments

and βzv = (0.75,1.25)T to generate unbalanced instruments. For the case of binary exposure, we

used βzv = (2,2)T to generate balanced instruments and βzv = (1.5,2.5)T to generate unbalanced

instruments.

We summaried the results for the continous exposure in Table 5.1 and those for the binary

exposure in Table 3.2. Both tables show that the proposed instruemtnal variable estimator is

unbiased and has resonable accuracy in estimating standard errors and confidnece intervals. In

the case of contionus exposure, equall and optimal weiths performed similarly. However, in that

of binary exposure, the optimal weights outperformed the equall weights

In the second simulation study, we evaluate the combined instrumental variable estimator.

The outcome models of the first simulation have been slightly changed to be

Yi = αyzZi + αyvVi + αywWi + (αu + 0.1)Ui + εi, (3.52)

Ni = αnzZi + αnvVi + αnwWi + (αu − 0.1)Ui + ξi, (3.53)

where Vi is now univariate and the regression parameters for Ui are different between the two
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outcome models. All of the parameters in (3.52) and (3.53) are set be ones except that αnz =

αyv = αnv = 0. We varied the value of αu ∈ {0.5,1,2} to control the strength of unmeasured

confounding. The continuous exposure was generated from (3.51) with all of the parameters

being ones. The covariate vector (Vi,Wi, Ui) was generated from standard normal distribution

truncated at ±2.5 and the error vector (εi, ξ, ηi) was generated from standard normal. The

binary exposure was generated from Beroulli(Pi), where Pi = βTzvVi + βzwWi + βzuUi and

(βzv, βzw, βzu) = (0.4,0.2,0.2), with (Vi,Wi, Ui) ∼ Beroulli(0.5) and (εi, ξi) ∼ N(0,0.32). To

estimate αyz, we computed the proposed instrumental variable estimate using a negative control

outcome, two-stage instrumental variable estimate and combined instrumental variable estimate.

We summarized the results in Table 3.3.

In the last simulation study, we evaluate the proposed method to test the instrumental variable

assumption, E(Ui∣Di) = 0. The outcomes and continuous exposure were generated from the

same models used for the first simulation except that Vi was univariate and the covariate vector

(Vi,Wi, Ui) were generated from truncated zero-mean multivariate normal distribution with the

covariance matrix of

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 ρ ρ

ρ 1 ρ

ρ ρ 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (3.54)

where ρ ∈ {0,0.1,0.2,0.4} and lower and upper truncation points were (−2.5,2.5). We computed

the proposed instrumental variable estimate and the two-stage instrumental variable estimate and

tested whether E(Ui∣Di) = 0 is true with the Wald test statistic.

The results for the test of the instrumental variable assumption are summarized in Table 3.4.
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Table 3.1: Results for continuous exposure: empirical bias (Bias), empirical standard error
(ESE), average of the estimated standard error (ASE) and empirical coverage rate (ECR) of
95% Wald-type confidence interval.

balaned instruments unbalaned instruments
n Methods Bias ESE ASE ECR Bias ESE ASE ECR
400 Equal -0.011 0.056 0.054 0.936 -0.013 0.065 0.054 0.912

Optimal 0.000 0.057 0.052 0.928 0.005 0.055 0.058 0.950
Naive 0.243 0.034 0.034 0.000 0.236 0.033 0.033 0.000

800 Equal -0.004 0.039 0.038 0.930 -0.004 0.043 0.038 0.910
Optimal 0.001 0.040 0.036 0.922 0.003 0.040 0.040 0.948
Naive 0.242 0.024 0.024 0.000 0.235 0.024 0.023 0.000

1600 Equal -0.001 0.027 0.027 0.952 -0.002 0.029 0.027 0.928
Optimal 0.001 0.027 0.025 0.936 0.002 0.027 0.028 0.960
Naive 0.244 0.017 0.017 0.000 0.237 0.017 0.017 0.000

3200 Equal 0.000 0.018 0.019 0.964 0.000 0.020 0.019 0.934
Optimal 0.001 0.019 0.018 0.942 0.002 0.019 0.020 0.962
Naive 0.244 0.012 0.012 0.000 0.237 0.011 0.012 0.000

6400 Equal -0.001 0.014 0.013 0.956 -0.001 0.015 0.014 0.920
Optimal 0.000 0.014 0.013 0.926 0.000 0.014 0.014 0.954
Naive 0.244 0.008 0.008 0.000 0.237 0.008 0.008 0.000

Note: “Equal" is the proposed instrumental variable estimator with equal weights, ωn =
(0.5,0.5)T . “Optimal" is the proposed instrumental variable estimator with optimal weights.
“Naive" is the least squares estimator with observed variables.
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Table 3.2: Results for binary exposure: empirical bias (Bias), empirical standard error (ESE),
average of the estimated standard error (ASE) and empirical coverage rate (ECR) of 95%
Wald-type confidence interval.

balaned instruments unbalaned instruments
n Methods Bias ESE ASE ECR Bias ESE ASE ECR
400 Equal -0.115 0.642 0.235 0.910 -0.115 0.771 0.241 0.872

Optimal 0.044 0.231 0.234 0.966 0.045 0.223 0.213 0.942
Naive 0.476 0.139 0.140 0.078 0.463 0.139 0.140 0.088

800 Equal -0.028 0.212 0.167 0.938 -0.044 0.228 0.171 0.906
Optimal 0.023 0.156 0.163 0.946 0.024 0.155 0.147 0.934
Naive 0.473 0.096 0.099 0.002 0.460 0.096 0.099 0.004

1600 Equal -0.010 0.109 0.118 0.966 -0.013 0.126 0.121 0.940
Optimal 0.015 0.104 0.113 0.964 0.017 0.103 0.102 0.956
Naive 0.481 0.073 0.070 0.000 0.467 0.075 0.070 0.000

3200 Equal -0.004 0.073 0.083 0.976 -0.005 0.086 0.086 0.950
Optimal 0.009 0.071 0.079 0.974 0.009 0.072 0.071 0.950
Naive 0.479 0.050 0.050 0.000 0.468 0.052 0.049 0.000

6400 Equal -0.005 0.055 0.059 0.966 -0.007 0.062 0.061 0.938
Optimal 0.001 0.055 0.056 0.956 0.003 0.055 0.050 0.924
Naive 0.482 0.034 0.035 0.000 0.468 0.034 0.035 0.000

Note: “Equal" is the proposed instrumental variable estimator with equal weights, ωn =
(0.5,0.5)T . “Optimal" is the proposed instrumental variable estimator with optimal weights.
“Naive" is the least squares estimator with observed variables.
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Table 3.3: Results for the combined estimator: strength of unmeasured confounding (Strength),
empirical bias (Bias), empirical standard error (ESE), average of the estimated standard error
(ASE) and empirical coverage rate (ECR) of 95% Wald-type confidence interval.

continuous exposure binary exposure
Strength n Methods Bias ESE ASE ECR Bias ESE ASE ECR
αu = 1 800 iv.nc -0.004 0.063 0.060 0.954 -0.018 0.188 0.233 0.972
(moderate) iv.ts -0.004 0.055 0.054 0.952 0.004 0.113 0.112 0.952

iv.cm 0.004 0.049 0.047 0.940 0.033 0.085 0.075 0.884
naive 0.353 0.027 0.028 0.000 0.241 0.044 0.045 0.000

1600 iv.nc -0.002 0.043 0.042 0.940 -0.013 0.105 0.082 0.960
iv.ts 0.000 0.039 0.038 0.958 -0.005 0.078 0.079 0.946
iv.cm 0.003 0.034 0.033 0.964 0.014 0.055 0.053 0.934
naive 0.356 0.020 0.020 0.000 0.239 0.033 0.032 0.000

3200 iv.nc -0.001 0.029 0.029 0.954 -0.001 0.047 0.045 0.946
iv.ts -0.001 0.026 0.027 0.958 0.000 0.057 0.055 0.940
iv.cm 0.001 0.023 0.024 0.948 0.009 0.040 0.038 0.930
naive 0.354 0.013 0.014 0.000 0.238 0.022 0.023 0.000

αu = 2 800 iv.nc -0.001 0.058 0.056 0.948 -0.002 0.178 0.192 0.974
(strong) iv.ts -0.007 0.083 0.083 0.952 0.002 0.198 0.194 0.942

iv.cm 0.003 0.054 0.051 0.942 0.033 0.098 0.083 0.918
naive 0.674 0.039 0.041 0.000 0.457 0.079 0.078 0.000

1600 iv.nc -0.001 0.040 0.039 0.946 -0.005 0.069 0.065 0.976
iv.ts -0.001 0.058 0.059 0.950 -0.007 0.138 0.137 0.950
iv.cm 0.002 0.036 0.036 0.956 0.012 0.058 0.057 0.946
naive 0.679 0.028 0.029 0.000 0.458 0.053 0.055 0.000

3200 iv.nc 0.000 0.027 0.028 0.952 0.001 0.043 0.042 0.950
iv.ts -0.001 0.039 0.042 0.962 -0.001 0.100 0.097 0.946
iv.cm 0.001 0.025 0.026 0.952 0.007 0.040 0.039 0.948
naive 0.677 0.019 0.020 0.000 0.457 0.041 0.039 0.000

“iv.nc" is the IV estimator with a negative control outcome. “iv.ts" is the two-stage IV estimator.
“iv.cm" is the combined IV estimator. “naive" is the least squares estimator with observed
variables.

89



Table 3.4: Results for the test: power of the test (Power), empirical bias (Bias), empirical standard
error (ESE), average of the estimated standard error (ASE) and empirical coverage rate (ECR) of
95% Wald-type confidence interval.

ρ n Power Method Bias ESE ASE ECR
0 800 0.040 iv.nc -0.002 0.055 0.054 0.942

iv.ts -0.001 0.053 0.052 0.944
naive 0.322 0.027 0.027 0.000

1600 0.050 iv.nc 0.001 0.036 0.037 0.958
iv.ts 0.000 0.038 0.036 0.934
naive 0.323 0.020 0.019 0.000

3200 0.060 iv.nc 0.001 0.026 0.026 0.946
iv.ts 0.000 0.026 0.026 0.960
naive 0.323 0.013 0.013 0.000

6400 0.052 iv.nc -0.001 0.018 0.019 0.954
iv.ts 0.000 0.018 0.018 0.946
naive 0.323 0.009 0.009 0.000

0.2 800 0.750 iv.nc -0.006 0.074 0.070 0.934
iv.ts 0.131 0.041 0.043 0.146
naive 0.334 0.024 0.025 0.000

1600 0.966 iv.nc -0.002 0.047 0.048 0.960
iv.ts 0.129 0.029 0.030 0.006
naive 0.334 0.017 0.018 0.000

3200 1.000 iv.nc -0.002 0.032 0.034 0.964
iv.ts 0.132 0.022 0.021 0.000
naive 0.334 0.013 0.013 0.000

6400 1.000 iv.nc 0.000 0.023 0.024 0.956
iv.ts 0.132 0.015 0.015 0.000
naive 0.335 0.009 0.009 0.000

0.4 800 0.894 iv.nc -0.023 0.138 0.120 0.960
iv.ts 0.208 0.039 0.039 0.000
naive 0.332 0.025 0.025 0.000

1600 1.000 iv.nc -0.015 0.073 0.075 0.964
iv.ts 0.206 0.027 0.028 0.000
naive 0.330 0.017 0.018 0.000

3200 1.000 iv.nc -0.008 0.052 0.051 0.966
iv.ts 0.207 0.020 0.019 0.000
naive 0.330 0.012 0.012 0.000

6400 1.000 iv.nc -0.001 0.034 0.035 0.952
iv.ts 0.208 0.014 0.014 0.000
naive 0.331 0.009 0.009 0.000
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CHAPTER 4: SENSITIVITY ANALYSIS FOR AN EXPOSURE EFFECT WITH A
NEGATIVE CONTROL OUTCOME WHEN UNOBSERVED CONFOUNDERS MAY

BE PRESENT

4.1 Introduction

Confounding happens when there are variables affecting both of an outcome and an exposure.

To deal with confounding, one can take regression adjustment or propensity score method.

However, those methods require that all of the confounding variables are observed and this

may not be true in observational studies. A commonly employed method to rule out the bias

due to unmeasured confounding is an instrumental variable (IV) method (Brookhart et al. 2006,

McClellan et al. 1994, Schneeweiss et al. 2006, Stukel et al. 2007). Although the requirements

of an IV depend on a particular analytic method one chooses, we can say that a variable is an

IV if it satisfies the following three conditions (Brookhart et al. 2010): (i) it has a causal effect

on the exposure; (ii) it has effects on the outcome only through the exposure; (iii) it is unrelated

to an unmeasured confounder. A typical example of an IV is a randomized indicator, which is

usually available, to estimate a drug effect in randomized trial with non-compliance. However,

in observational studies, it is not easy to find an “valid" IV.

In the case where we do not have a tool such a valid IV, thus it is hard do find a reliable way to

consistently estimate the parameters, it is desirable to evaluate the sensitivity of regression results

to unmeasured confounders. There have been several developed sensitivity analysis techniques

(Rosenbaum and Rubin 1983, Lin et al. 1998, Brumback et al. 2004, Gustafson et al. 2010,

VanderWeele et al. 2012). Among those, the methods of Lin et al. (1998) are applicable to general

regression models and can be easily performed (VanderWeele 2008). Lin et al. (1998) assumed

that the distribution of the unmeasured confounder conditional on the measured confounders and
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the exposure is normal or binomial, and they identified simple algebraic relationships between

a true exposure effect in the full model and an apparent exposure effect in the reduced model

which does not control for unmeasured confounders. One can make an inference on the true

exposure effect by making a simple adjustment to the estimate and the confidence interval of the

apparent exposure effect. Lin et al. (1998) developed their method for linear, log-linear, logistic

and proportional hazard models.

Negative controls technique has been emerging as a tool to detect unmeasured confounding

(Flanders et al. 2011, Lipsitch et al. 2010, Lumley and Sheppard 2000, Jackson et al. 2006, Smith

2008; 2012). An outcome is said to be a valid negative control outcome (N) if it is influenced

by measured confounders (W ) and an measured confounder (U) in the association between the

exposure (Z) and the main outcome (Y ), but not directly influenced by the exposure (Lipsitch

et al. 2010). Those conditions are sufficient to detect unmeasured confounding, but insufficient to

estimate the causal effect. Tchetgen Tchetgen (2014) made more progress to estimate the causal

effect by imposing an additional assumption that the negative control outcome is independent

of a treatment received conditional on the measured confounders and counterfactual outcomes.

This assumption implies that the counterfactual outcomes are ideal proxies of the unmeasured

confounders. Under this assumption, an additive causal effect on a continuous outcome can be

estimated by regressing N onto (W,Y,Z).

In this paper, we develop new methods of sensitivity analysis in various regression models

under unmeasured confounding using a negative control outcome. As in Lin et al. (1998), we

assume that the causal exposure effect is represented by a regression parameter. We use outcome

models which follow the definition of the negative control outcome presented in Lipsitch et al.

(2010) and definition 1 of Tchetgen Tchetgen (2014), but unlike assumption 1 of Tchetgen Tchetgen

(2014) the outcomes are not ideal proxies in our model setup, thus the methods of Tchetgen Tchetgen

(2014) are not valid. In Section 2, first, we extended the control outcome calibration approach of

Tchetgen Tchetgen (2014) to conduct sensitivity analysis. Second, we extended Lin’s methods

to use a negative control outcome with fewer sensitivity parameters. Furthermore, we developed
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Lin’s methods for probit model and additive hazard model and extended those to use a negative

control outcome. Third, we applied Lin’s methods to a conditional likelihood with a negative

control outcome for binary and right-censored outcome data. The proposed methods are shown to

perform well and better than Lin’s method in logistic and proportional hazard regression models

reported in Section 3, where the conditional likelihood method is superior than both the marginal

model method and the Lin’s method when the unmeasured confounding is huge.

4.2 Methods

In this section, we describe the proposed three types of techniques of sensitivity analysis

using a negative control outcome. Denote n by the number of samples. For i = 1, ..., n,

suppose that Yi is the main outcome, Ni is the negative control outcome, Zi is the exposure,

Wi = (Wi1, ...,Wiq)T is the q × 1 vector of measured confounders and Ui is the unmeasured

confounder.

4.2.1 Control outcome calibration approach

Tchetgen Tchetgen (2014) proposed control calibration approach which fits the model of

the negative control outcome conditional on measured variables including the main outcome.

This approach can be generalized to conduct a sensitivity analysis by considering the model of

Yi − cNi, where c is a known constant related to a sensitivity parameter.

For the main and negative control outcomes, we consider the following linear models,

Yi = βyo + βyzZi + βTywWi + βyuUi + εi = βTy Xi + βyuUi + εi, (4.1)

Ni = βno + βnzZi + βTnwWi + βnuUi + ξi = βTnXi + βnuUi + ξi, (4.2)

where for i = 1, ..., n, (εi, ξi) is assumed to be independent and identically distributed error

terms with E(εi∣Xi, Ui) = E(ξi∣Xi, Ui) = 0, βyw = (βyw,1, ..., βyw,q)T is a q × 1 parameter

vector, βnz = 0, and XT
i = (1, Zi,W T

i ). Note that models of Yi and Ni share the measured and
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unmeasured confounders and that βnz = 0, which correspond to the the definition of a negative

control outcome described in Lipsitch et al. (2010) and in definition 1 of Tchetgen Tchetgen

(2014).

Consider the difference of the outcomes depending on a constant c, Di(c) = Yi − cNi. The

model of Di(c) can be written as

Di(c) = (βyo − cβno) + βyzZi + (βyw − cβnw)TWi + (βyu − cβnu)Ui + (εi − cξi). (4.3)

Define the sensitivity parameter: γu = βyu/βnu, which is the ratio of the regression parameters of

Ui. Further define γu(c) to be

γu(c) ≡ βyu − cβnu = βyu − (c − γu + γu)βnu,

= (γu − c)βnu. (4.4)

Using (4.4), the model (4.3) can be written as

Di(c) = δo(c) + βyzZi + δw(c)TWi + γu(c)Ui + τi(c),

= θ(c)TXi + γu(c)Ui + τi(c), (4.5)

where δo(c) = βyo − cβno, δw(c) = βyw − cβnw, τi(c) = εi − cξi and θ(c)T = {δo(c), βyz, δw(c)T}.

In vector notation, model (4.5) can be written as

D(c) =Xθ(c) +Uγu(c) + τ(c), (4.6)

where D(c), U and τ(c) are n × 1 vectors with typical rows of Di(c), Ui and τi(c),and X is a

n × p matrix with a typical row of Xi, where p = 2 + q. Then, the least squares estimator of θ̂(c)
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is given by

θ̂(c) = (XTX)−1XTD(c), (4.7)

which is consistent for θ when c = γu. If a prior information about γu is available, then we can use

it to calculate θ̂(c). However, that information is not readily available in practice. Conducting a

sensitivity analysis may be desirable within a reasonable range of c.

To identify the limiting value of θ̂(c), we impose the following assumptions.

Assumption 9. Let ATi = (XT
i , Ui), Σn(XX) = n−1E(XTX) and Σn(XU) = n−1E(XTU).

(a) There exist positive finite constants δ and ∆ such that for all i, E(∣τi(c)2∣1+δ) < ∆ and

E(∣AijAik∣1+δ) < ∆ (j, k = 1, ..., p+ 1); (b) Σn(XX) is nonsingular for (all) n sufficiently large.

From Assumption 1(a), it follows by strong law of large numbers that

n−1XTX →a.s Σn(XX), n−1XTU →a.s Σn(XU), and n−1XT τ(c) →a.s 0.

Under Assumption 1, the limiting value of θ̂(c) is given by

θ̂(c) = θ(c) + γu(c)(XTX)−1XTU + (XTX)−1XT τ(c) →a.s θols(c),

where θols(c) = θ(c) + γu(c)ω and ω = Σn(XX)−1Σn(XU).

Write

n
1
2{θ̂(c) − θols(c)} = (n−1XTX)−1n

1
2XT τ∗(c),

where τ∗(c) = Y −Xθols(c) = γu(c)(U −Xω)+τ(c), which is consistently estimated by τ̂∗(c) =

Y −Xθ̂(c). Note thatE{XT τ∗(c)} = 0 whileE{τ∗(c)} may not be zero. Thus we use theoretical

results of White (1980). With the following assumption, the asymptotic distribution of θ̂(c) can

obtained.

Assumption 10. (a) There exist positive constant δ and ∆ such that for all i, E(∣τ∗i (c)2∣1+δ) < ∆
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and E(∣τ∗i (c)2
iXijXik∣1+δ) < ∆ (j, k = 1, ..., p); (b) The average covariance matrix V̄n(c) =

n−1∑ni=1E(τ∗i (c)2XiXT
i ) is nonsingular for n sufficiently large.

Under assumption 1 and 2, by Lemma 2 of White (1980), the asymptotic distribution of

n
1
2{θ̂(c) − θols(c)} is a zero-mean multivariate normal distribution with the covariance matrix of

Σn{θ̂(c)} = Σn(XX)−1V̄n(c)Σn(XX)−1.

By Theorem 1(i) of White (1980), the estimators

V̂n(c) = n−1
n

∑
i

τ̂∗i (c)2
iXiX

T
i , and Σ̂n{θ̂(c)} = (n−1XTX)−1V̂n(c)(n−1XTX)−1

are consistent for V̄n(c) and Σn{θ̂(c)} respectively with the following assumption along with

assumption 1 and 2.

Assumption 11. There exist positive constants δ and ∆ such that for all i,

E(∣X2
ijXikXil∣1+δ) < ∆ (j, k, l = 1, ..., p).

In our model setup, the estimator of Tchetgen Tchetgen (2014) can be obtained by imposing

an additional condition on model (4.1), which is related to Assumption 1 of Tchetgen Tchetgen

(2014). Note that from (4.1), Ui can be written as

Ui = β−1
yu(Yi − βTy Xi − εi). (4.8)

Substituting (4.8) into (4.2) gives

Ni = (βn −
βnu
βyu

βy)
T

Xi +
βnu
βyu

Yi + ξi −
βnu
βyu

εi, (4.9)

= αTnXi + αnyYi + ζi, (4.10)
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where αn = (αno, αnz, αTnw)T = βn − (βnu/βyu)βy, αny = βnu/βyu and ζi = ξi − αnyεi. To make

Assumption 1 of Tchetgen Tchetgen (2014) be satisfied, we need the condition that Yi and εi is

uncorrelated, which is realized if the variance of εi is zero. Under this assumption, the exposure

effect estimator is given by

−αnz/αny, (4.11)

which is the estimator of Tchetgen Tchetgen (2014). One can see that the inference is made by

estimating the sensitivity parameter γu = 1/αny directly.

4.2.2 Marginal model approach

Lin et al. (1998) proposed the method to assess the sensitivity of regression results to unmeasured

confounders in observational studies. They derived reduced models which are obtained by

integrating the full models with respect to specified conditional distribution of the unmeasured

confounder given the exposure and the measured confounders. They identified a simple algebraic

relationship between the true exposure effect in the full model and the apparent exposure effect

in the reduced model.

We extended Lin’s approach to the case where a negative control outcome is present. To apply

the methods of Lin et al. (1998), we need to assume that the exposure is binary. For continuous

outcome, since Ui is unmeasured, one is forced to fit the reduced models,

Yi = β∗Ty Xi + ε∗i , (4.12)

Ni = β∗Tn Xi + ξ∗i , (4.13)

where β∗Ty = (β∗yo, β∗yz, β∗Tyw), β∗Tn = (β∗no, β∗nz, β∗Tnw) and E(ε∗i ∣Zi,Wi) = E(ξ∗i ∣Zi,Wi) = 0 by

construction. Note that

E(Yi∣Zi,Wi) = βTy Xi + βyuµ(Zi,Wi), (4.14)
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where µ(Zi,Wi) = E(Ui∣Zi,Wi). Model (4.14) can be written as

E(Yi∣Zi,Wi) = βyo + βyuµ(0,Wi) + {βyz + βyuδ(Wi)}Zi + βTywWi, (4.15)

where δ(Wi) = µ(1,Wi) − µ(0,Wi). Thus,

βyz = β∗yz − βyuδ(Wi) (4.16)

To make (4.16) more sensible, we assume that the effects of Zi andWi on µ(Zi,Wi) are additive,

i.e., µ(Zi,Wi) = µz(Zi) + µw(Wi) as in Lin et al. (1998), where µz(⋅) and µw(⋅) are marginal

functionals of Z and W . Then, (4.16) reduces to

βyz = β∗yz − βyuδ, (4.17)

where δ = µz(1) − µz(0). Let β̂yz denote the consistent estimator of β∗yz. Define the estimator to

be

β̂yz(βyu, δ) = β̂yz − βyuδ. (4.18)

Lin et al. (1998) proposed sensitivity analysis using β̂yz(βyu, δ) with the sensitivity parameters

βyu and δ.

We propose a new method of sensitivity analysis with a negative control outcome. Our

method only needs to vary one parameter, γu = βyu/βnu, which is more intuitive to be varied

than βyu and δ. Similarly to (4.16), we can show that

βnz = β∗nz − βnuδ (4.19)

Since βnz = 0 by the definition of the negative control outcome, δ = β∗nz/βnu. This gives the
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following formula for βyz,

βyz = β∗yz − γuβ∗nz. (4.20)

We can estimate β∗yz and β∗nz consistently by fitting the models (4.12) and (4.13). Denote β̂yz and

β̂nz by the consistent estimators of β∗yz and β∗nz. Sensitivity analysis is performed by calculating

the following estimator with varying γu,

β̂yz − γuβ̂nz. (4.21)

We can see that (4.21) is equivalent to the control outcome calibration method, which is developed

without the requirement that the exposure is binary. In fact, the methods of Lin et al. (1998) can

allow continuous Zi with the additive model assumption of Ui such that µ(Zi,Wi) = τZi+q(Wi)

(VanderWeele, 2008). In that case, δ in the formula (4.20) may be replaced by τ .

Lin’s approach for continuous outcomes may be more useful when dealing with censoring.

Under the accelerated failure time models with right-censoring, we often set Yi and Ni to be log

of survival times. The right-censoring times for Yi and Ni are assumed to be independent of

each outcome conditional on Xi. There are well-established methods for parameter estimation

of accelerated failure time model such as rank estimation and Buckley-James estimation. The

methods of Jin et al. (2006) for multivariate accelerated failure time models can be applied to

estimate the regression parameters and the covariance matrix for models (4.12) and (4.13).

For binary outcomes, we first assume the log-linear models,

pr(Yi = 1∣Zi,Wi, Ui) = exp(βTy Xi + βyuUi), (4.22)

pr(Ni = 1∣Zi,Wi, Ui) = exp(βTnXi + βyuUi). (4.23)

The log-linear model is an good approximation to the logistic regression model for rare events.
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Since Ui is unmeasured, one is forced to fit the following reduced models

pr(Yi = 1∣Zi,Wi) = exp(β∗Ty Xi), (4.24)

pr(Ni = 1∣Zi,Wi) = exp(β∗Tn Xi). (4.25)

Let F (u∣Zi,Wi) be the distribution function of Ui given Zi and Wi. By the law of conditional

expectation,

pr(Yi = 1∣Zi,Wi) =
ˆ ∞

−∞
pr(Yi = 1∣Zi,Wi, u)dF (u∣Zi,Wi)

= exp(βTy Xi)
ˆ ∞

−∞
exp(βyuu)dF (u∣Zi,Wi). (4.26)

Similarly,

pr(Ni = 1∣Zi,Wi) = exp(βTnXi)
ˆ ∞

−∞
exp(βnuu)dF (u∣Zi,Wi). (4.27)

Suppose that conditional on Zi and Wi, the confounder Ui is normally distributed with mean

µ(Zi,Wi) and unit variance. Lin et al. (1998) showed that reduced models (4.26) and (4.27) are

still log-linear models:

pr(Yi = 1∣Zi,Wi) = exp[βyo + βyuµ(0,Wi) + 0.5β2
yu + {βyz + βyuδ(Wi)}Zi + βTywWi], (4.28)

pr(Ni = 1∣Zi,Wi) = exp[βno + βnuµ(0,Wi) + 0.5β2
nu + {βnz + βnuδ(Wi)}Zi + βTnwWi], (4.29)

where δ(Wi) = µ(1,Wi) − µ(0,Wi). Under the additive model assumption of µ(Zi,Wi),

βyz = β∗yz − βyuδ, (4.30)

βnz = β∗nz − βnuδ. (4.31)

By using that βnz = 0, a sensitivity analysis can be performed in the same way as in the
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continuous case. Again, Lin’s method needs to vary two parameters βyu and δ(Wi), but only

one parameter γu needs to be varied for our method.

Now we consider the logistic regression models for binary outcomes,

logit{pr(Yi = 1∣Zi,Wi, Ui)} = βTy Xi + βyuUi, (4.32)

logit{pr(Ni = 1∣Zi,Wi, Ui)} = βTnXi + βnuUi. (4.33)

From models (4.32) and (4.33), the reduced are given as

pr(Yi∣Zi,Wi) = exp(βTy Xi)
ˆ ∞

−∞

exp(βyuu)
1 + exp(βTy Xi + βyuu)

dF (u∣Zi,Wi), (4.34)

pr(Ni∣Zi,Wi) = exp(βTnXi)
ˆ ∞

−∞

exp(βnuu)
1 + exp(βTnXi + βnuu)

dF (u∣Zi,Wi). (4.35)

Generally, equations of (4.34) and (4.35) does not reduce to logistic regression models. In other

words, models (4.34) and (4.35) cannot be written as

logit{pr(Yi = 1∣Zi,Wi)} = β∗Ty Xi (4.36)

logit{pr(Ni = 1∣Zi,Wi)} = β∗Tn Xi. (4.37)

It is practically important to ascertain under what circumstances models (4.36) and (4.37) provide

reasonable approximations to models (4.34) and (4.35) and whether simple relationships such as

(4.30) and (4.31) exit for the logistic regression. Lin et al. (1998) showed that (4.34) can be

written as

logit{P (Yi = 1∣Zi,Wi)} = βTy Xi + g(Zi,Wi), (4.38)

where

g(Zi,Wi) =βyuµ(Zi,Wi) + 0.5β2
yu
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+ log

´∞
−∞{1 + exp(β2

yu + βTy Xi + βyuu)}−1 exp{−u−µ(Zi,Wi)2
2 }du´∞

−∞{1 + exp(βTy Xi + βyuu)}−1 exp{−u−µ(Zi,Wi)2
2 }du

(4.39)

If the event is rare or ∣βyu∣ is small, g(Zi,Wi) ≈ βyuµ(Zi,Wi) + 0.5β2
yu. It then follows that

logit{P (Yi = 1∣Zi,Wi)} ≈ βyo + βyuµ(0,Wi) + 0.5β2
yu + {βyz + βyuδ(Wi)}Zi + βTywWi (4.40)

Model (4.40) takes the form of (4.36) and imply that formulas (4.30) and (4.31) hold approximately

for the logistic regression. Then both formulas (4.18) and (4.20) for sensitivity analysis also

approximately hold.

An alternative to the logistic regression model is the probit regression model. Our probit

regression models for the main and negative control outcomes are given by

pr(Yi = 1∣Zi,Wi, Ui) = Φ(βTy Xi + βyuUi), (4.41)

pr(Ni = 1∣Zi,Wi, Ui) = Φ(βTnXi + βnuUi), (4.42)

where Φ(⋅) is a cumulative normal distribution function. One is forced to fit

pr(Yi = 1∣Zi,Wi) = Φ(β∗Ty Xi), (4.43)

pr(Ni = 1∣Zi,Wi) = Φ(β∗Tn Xi). (4.44)

Using the result of Carroll and Spiegelman (1984), we can obtain the explicit form of pr(Yi =

1∣Zi,Wi):

pr(Yi = 1∣Zi,Wi) = Φ

⎧⎪⎪⎨⎪⎪⎩

βyo + βyuµ(Zi,Wi) + βyzZi + βTywWi

(1 + β2
yu)

1
2

⎫⎪⎪⎬⎪⎪⎭

= Φ

⎡⎢⎢⎢⎢⎣

βyo + βyuµ(0,Wi) + {βyz + βyuδ(Wi)}Zi + βTywWi

(1 + β2
yu)

1
2

⎤⎥⎥⎥⎥⎦
. (4.45)
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Under the additive model assumption of µ(Zi,Wi), it follows that

βyz = (1 + β2
yu)

1
2β∗yz − βyuδ (4.46)

Unfortunately, using a negative control outcome does not reduce the number of the sensitivity

parameters. To see this, note that

βnz = (1 + β2
nu)

1
2β∗nz − βnuδ, (4.47)

which implies δ = β−1
nu(1 + β2

nu)1/2β∗nz. Substitution gives that

βyz = (1 + β2
yu)

1
2β∗yz − (γ2

u + β2
yu)

1
2β∗nz, (4.48)

which has two sensitivity parameters, γu and βyu.

Now we discuss the method for survival time outcomes which are subject to be right-censored.

Let Tyi and Tni denote the main and negative control survival times for the ith subject. The true

proportional hazard models conditional on (Zi,Wi, Ui) are given by

λy(t∣Zi,Wi, Ui) = λY0 (t) exp(βTy Xi + βyuUi), (4.49)

λn(t∣Zi,Wi, Ui) = λN0 (t) exp(βTnXi + βnuUi), (4.50)

where Xi does not include an intercept and λY0 (t) and λN0 (t) are arbitrary baseline hazard

functions. Since Ui is unmeasured, one is forced to fit

λy(t∣Zi,Wi) = λY ∗0 (t) exp(β∗Ty Xi), (4.51)

λn(t∣Zi,Wi) = λN∗0 (t) exp(β∗Tn Xi) (4.52)

where λY ∗0 (t) and λN∗0 (t) are arbitrary baseline hazard functions. Let f(t∣⋅) and S(t∣⋅) be the
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conditional density and survival functions of Tyi. By elementary probability arguments,

λy(t∣Zi,Wi) =
f(t∣Zi,Wi)
S(t∣Zi,Wi)

=
´∞
−∞ f(t∣Zi,Wi, u)dF (u∣Zi,Wi)´∞
−∞ S(t∣Zi,Wi, u)dF (u∣Zi,Wi)

(4.53)

Lin et al. (1998) showed that

λy(t∣Zi,Wi) = λY0 (t) exp(βTy Xi)h(t;Zi,Wi), (4.54)

where

h(t;Zi,Wi) = exp{βyuµ(Zi,Wi) + 0.5β2
yu}´∞

−∞ exp{−ΛY
0 (t) exp(β2

yu + βTy Xi + βyuu)} exp{−u−µ(Zi,Wi)2
2 }du´∞

−∞ exp{−ΛY
0 (t) exp(βTy Xi + βyuu)} exp{−u−µ(Zi,Wi)2

2 }du
, (4.55)

where ΛY
0 (t) =

´ t
0
λY0 (t). It can be approximated by h(t;Zi,Wi) ≈ exp{βyuµ(Zi,Wi) + 0.5β2

yu}

if Λ0(t) or ∣βyu∣ is small. Then

λy(t∣Zi,Wi) ≈ λY0 (t) exp[βyuµ(0,Wi) + {βyz + βyuδ(Wi)}Zi + βTywWi], (4.56)

which has the form of (4.51). Then both formulas (4.18) and (4.20) for sensitivity analysis also

approximately hold.

An alternative to the proportional hazard model is the additive hazard model. As shown in Lin

et al. (1998), generally, marginalization does not keep the original model under the proportional

hazard model. However, we will show that this is the case under additive hazard model.

The true additive hazard models conditional on (Zi,Wi, Ui) are given by

λy(t∣Zi,Wi, Ui) = λY0 (t) + βTy Xi + βyuUi, (4.57)

λn(t∣Zi,Wi, Ui) = λN0 (t) + βTnXi + βnuUi, (4.58)
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where Xi does not include an intercept and λY0 (t) and λN0 (t) are arbitrary baseline hazard

functions. One may be forced to fit

λy(t∣Zi,Wi) = λY ∗0 (t) + β∗Ty Xi, (4.59)

where λY ∗0 (t) is an arbitrary baseline hazard function. Under the model (4.57),

ˆ ∞

−∞
f(t∣Zi,Wi, u)dF (u∣Zi,Wi) = {λY0 (t) + βTy Xi}

ˆ ∞

−∞
S(t∣Zi,Wi, u)dF (u∣Zi,Wi)

+βyu
ˆ ∞

−∞
u exp{−ΛY

0 (t) − t(βTy Xi + βyuUi)}dF (u∣Zi,Wi),

(4.60)ˆ ∞

−∞
S(t∣Zi,Wi, u)dF (u∣Zi,Wi) =

ˆ ∞

−∞
exp{−ΛY

0 (t) − t(βTy Xi + βyuUi)}dF (u∣Zi,Wi) (4.61)

Thus,

λy(t∣Zi,Wi) = λY0 (t) + βTy Xi + βyua(t∣Zi,Wi), (4.62)

where

a(t∣Zi,Wi) =
´∞
−∞ u exp{−ΛY

0 (t) − t(βTy Xi + βyuUi)}dF (u∣Zi,Wi)´∞
−∞ exp{−ΛY

0 (t) − t(βTy Xi + βyuUi)}dF (u∣Zi,Wi)
. (4.63)

We can show that a(t∣Zi,Wi) = µ(Zi,Wi) − tβyu. It then follows that

λy(t∣Zi,Wi) = λY0 (t) − tβ2
yu + βyuµ(0,Wi) + {βyz + βyuδ(Zi,Wi)}Zi + βywWi. (4.64)

This implies that

βyz = β∗yz − βyuδ(Zi,Wi), (4.65)

which is the same as (4.16). Employing the negative control outcome with the additive model
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assumption of δ(Zi,Wi) gives the previous formula (4.20).

4.2.3 Conditional likelihood approach

The sensitivity analysis of Lin et al. (1998) in the logistic regression for binary outcome and

the proportional hazard model for survival time outcome appeared to be reliable if event rates

are rare or ∣βyu∣ is small. In their simulation studies, in case of normal Ui, β̂yz(βyu, δ) for logistic

regression appeared to be accurate if the overall event rate is below 10% or ∣βyu∣ < 0.75. The

smaller δ gave less bias of β̂yz(βyu, δ). For proportional hazard model, β̂yz(βyu, δ) appeared to

be reliable if the censoring percentage is greater than 90% or ∣βyu∣ < 0.75. However, in many

cases, those conditions may not be satisfied.

We proposed conditional likelihood approach for logistic regression model for binary outcome

and proportional hazard model for survival outcome. Our method uses a negative control outcome

to make the condition that the regression parameter for the unmeasured confounder should be

small more likely to be met. The proposed method is applicable when ∣βyu − βnu∣ is much less

than ∣βyu∣, which will happen if βyu and βnu have the same signs and ∣βnu∣ ≈ ∣βyu∣. The key step

is that first we construct conditional likelihood with a negative control outcome and apply the

method of Lin et al. (1998) to the conditional likelihood.

As before, for binary outcomes, we use the logistic regression models,

logit{P (Yi = 1∣Zi,Wi, Ui)} = βTy Xi + βyuUi, (4.66)

logit{P (Ni = 1∣Zi,Wi, Ui)} = βTnXi + βnuUi. (4.67)

Let Si = Yi + Ni be the sum of the two outcomes and S = (S1, ..., Sn)T . The distribution of

(Yi,Ni) conditional on Si = 1 is given by

P (Yi,Ni∣Si = 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(θTXi+δuUi)
1+exp(θTXi+δuUi) , if Yi = 1,Ni = 0,

1
1+exp(θTXi+δuUi) , if Yi = 0,Ni = 1,

(4.68)
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where θT = (δo, βyz, δTw), δo = βyo − βno, δw = βyw − βnw and δu = βyu − βnu. We assume that ∣δu∣

is small, which is more acceptable than that ∣βyu∣ is small. The corresponding joint probability

function to (4.68) is given by

L(θ, δu) =∏
i∈A

( exp(θTXi + δuUi)
1 + exp(θTXi + δuUi)

)
Yi

( 1

1 + exp(θTXi + δuUi)
)

1−Yi
, (4.69)

where A = {i ∶ Si = 1}. We can see that (4.69) is the one for the following conditional logistic

regression model,

logit{pr(Yi = 1∣Zi,Wi, Ui, Si = 1)} = θTXi + δuUi. (4.70)

One is forced to fit the conditional logistic regression model with measured variables (Zi,Wi):

logit{pr(Yi = 1∣Zi,Wi, Si = 1)} = θ∗TXi, (4.71)

where θ∗T = (δ∗o , β∗yz, δ∗Tw ). Under the model (4.70),

pr(Yi = 1∣Zi,Wi, Si = 1) = exp(θTXi)
ˆ ∞

−∞

exp(δuu)
1 + exp(θTXi + δuu)

dF (u∣Zi,Wi, Si = 1) (4.72)

In section 2.2, we assumed that the conditional distribution of Ui given (Zi,Wi) is normal with

mean η(Zi,Wi) and unit variance. Since ∣δu∣ is small, the same conditional distribution may

approximately hold forUi given (Zi,Wi, Si = 1) because Yi (orNi) is approximately independent

of Ui conditional on (Zi,Wi, Si = 1) when ∣δu∣ ≈ 0, and hence Si and Ui are also approximately

independent. Straightforward algebraic calculation shows that

logit{pr(Yi = 1∣Zi,Wi, Si = 1)} = θTXi + q(Zi,Wi), (4.73)
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where

q(Zi,Wi) =δuη(Zi,Wi) + 0.5δ2
u

+ log

´∞
−∞{1 + exp(δ2

u + θTXi + δuu)}−1 exp{−u−η(Zi,Wi)2
2 }du´∞

−∞{1 + exp(θTXi + δuu)}−1 exp{−u−η(Zi,Wi)2
2 }du

. (4.74)

Since δu is small, q(Zi,Wi) ≈ δuη(Zi,Wi) + 0.5δ2
u. It then follows that

βyz = β∗yz − δu{η(1,Wi) − η(0,Wi)} (4.75)

Assume that the effects ofZi andWi are additive on q(Zi,Wi), i.e., η(Zi,Wi) = ηz(Zi)+ηw(Wi).

Then (4.75) reduces to

βyz = β∗yz − δuν, (4.76)

where ν = ηz(1) − ηz(0). The estimator of β∗yz is obtained by fitting the conditional logistic

regression model (4.71).

Now we describe the conditional likelihood method for survival data. Let Tyi and Tni denote

the main and negative control survival outcomes. We assume the following proportional hazard

models

λy(t∣Zi,Wi, Ui) = λ0i(t) exp(βTy Xi + βyuUi) (4.77)

λn(t∣Zi,Wi, Ui) = λ0i(t) exp(βTnXi + βnuUi), (4.78)

where different subject can have a different arbitrary baseline hazard function λ0i(t), but the

pair within a subject shares the same baseline hazard function. First we suppose that there is no

censoring. Under models (4.77) and (4.78), pair ranks are marginally sufficient for (θ, δu) (Holt

and Prentice, 1974). The marginal likelihood for the parameters is proportional to the product of
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the following terms over pair

pr(Tyi < Tni) =
exp(θTXi + δuUi)

1 + exp(θTXi + δuUi)
, (4.79)

pr(Tyi > Tni) =
1

1 + exp(θTXi + δuUi)
. (4.80)

Let Yi denote the event I(Tyi < Tni). The marginal likelihood can be written as

L1(θ, δu∣Zi,Wi, Ui) ∝
n

∏
i=1

{ exp(θTXi + δuUi)
1 + exp(θTXi + δuUi)

}
Yi

{ 1

1 + exp(θTXi + δuUi)
}

1−Yi
, (4.81)

which corresponds to the logistic regression model,

logit{pr(Yi = 1∣Zi,Wi, Ui)} = θTXi + δuUi (4.82)

Thus sensitivity analysis can be performed by the method of Lin et al. (1998) for the logistic

regression.

Holt and Prentice (1974) pointed out that in the presence of censoring, marginally sufficient

statistics generally depends on the censoring times and nuisance parameter. An important special

case arises when members of a pair share the same censoring time and in this case the same

form of marginal likelihood as (4.81) can be constructed. This may frequently occur in our

setting because the two outcomes come from the same subject. A pair rank is observed if paired

survivals are uncensored or singly censored but is unknown for doubly censored pairs.

Suppose that T 0
i is the censoring time for the ith subject. Then

pr(Tyi < Tni∣Tyi < T 0
i or Tni < T 0

i ) =
exp(θTXi + δuUi)

1 + exp(θTXi + δuUi)
, (4.83)

pr(Tyi > Tni∣Tyi < T 0
i or Tni < T 0

i ) =
1

1 + exp(θTXi + δuUi)
, (4.84)

which are equivalent to those for the uncensored case. The inference for the parameter can be
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made from

L2(θ, δu∣Zi,Wi, Ui) ∝
r

∏
i=1

{ exp(θTXi + δuUi)
1 + exp(θTXi + δuUi)

}
Yi

{ 1

1 + exp(θTXi + δuUi)
}

1−Yi
, (4.85)

where pairs i = 1, ..., r are uncensored or singly censored while pairs i = r + 1, ..., n are doubly

censored.

For general censoring scheme, the inference for (θ, δu) can be made with more restrictive pair

ranks. That is, a pair rank is observed if both paired survivals are uncensored or singly censored

but the censored part is greater than the uncensored part. Let T 0
yi and T 0

ni denote the censoring

times for Tyi and Tni respectively. Then

pr(Tyi < Tni∣i ∈ C) = exp(θTXi + δuUi)
1 + exp(θTXi + δuUi)

, (4.86)

pr(Tyi > Tni∣i ∈ C) = 1

1 + exp(θTXi + δuUi)
, (4.87)

where C = C1 ∪ C2 ∪ C3, and C1 = {i ∶ Tyi < T 0
yi and Tni < T 0

ni}, C2 = {i ∶ Tyi < T 0
yi and Tni ≥

T 0
ni and T 0

ni ≥ Tyi} and C3 = {i ∶ Tni < T 0
ni and Tyi ≥ T 0

yi and T 0
yi ≥ Tni}.

The inference for the parameter can be made from

L3(θ, δu∣Zi,Wi, Ui) ∝
k

∏
i=1

{ exp(θTXi + δuUi)
1 + exp(θTXi + δuUi)

}
Yi

{ 1

1 + exp(θTXi + δuUi)
}

1−Yi
, (4.88)

where pairs i = 1, ..., k are uncensored or singly censored but the censored part is greater than

the uncensored part while pairs i = k + 1, ..., n are doubly censored or singly censored with the

censored part being less than the uncensored part.

4.3 Simulations

The goal of our simulation study is to examine the proposed methods based on marginal

model and conditional likelihood using a negative control outcome and compared those to Lin’s

methods. We used logistic regression model for binary outcome and Cox proportional hazard
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model for survival outcomes.

First, we generated the exposure Z from Bernoulli distribution with an event probability of

0.5. Next, we generated the confounder W from N(Z,1) and the unmeasured confounder U

from N(Z +W,1). We used the following logistic regression models for binary outcomes:

logit{P (Y = 1∣Z,W,U)} = βyzZ + βywW + aU, (4.89)

logit{P (N = 1∣Z,W,U)} = βnzZ + βnwW + bU. (4.90)

For survival outcomes, we used the following proportional hazard models:

λy(t∣Z,W,U) = exp(βyzZ + βywW + aU), (4.91)

λn(t∣Z,W,U) = exp(βnzZ + βnwW + bU). (4.92)

The censoring variables for the main and the negative control survival outcomes were generated

from Unif(0,4) separately, and thus for conditional likelihood approach we used the method

with general censoring scheme. With the parameter values of (a, b) we used, this simulation

configuration gives the censoring rates of about 20% and 21% for the main and the negative

control survival outcomes respectively. For each simulation scenario of the binary and survival

outcomes, we generated 500 data sets with the sample size of 1600.

The regression parameter vector (βyz, βnz, βyw, βnw) was set to be (1,0,1,1). For (a, b), we

used (0.5,0.4) and (1,0.8). If (a, b) = (0.5,0.4), then the condition (∣βyu∣ < 0.75), for which the

approximations of Lin’s methods used for binary and proportional hazard models work well, is

satisfied. The case where (a, b) = (1,0.8) does not satisfy this condition, and thus the methods

of Lin et al. (1998) may not work well in this setting. Those two vectors all give a/b = 1.25.

To implement the methods of Lin et al. (1998), we used the formula β̂yz(βyu, δ) in (4.18)

with varying βyu and δ, where β̂yz was obtained by fitting model (4.89) or (4.91) without U .

To implement the marginal model methods, we used the formula β̂yz − γuβ̂nz with varying γu,

where β̂nz was obtained by fitting model (4.90) or (4.92) without U . Lastly, for the conditional
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Table 4.1: Sensitivity parameter values used in simulations.

Parameter (a, b) Values
βyu (0.5,0.4) 0.3, 0.4, 0.5, 0.6, 0.7

(1.0,0.8) 0.8, 0.9, 1.0, 1.1, 1.2
δu (0.5,0.4) 0.01, 0.05, 0.10, 0.15, 0.20

(1.0,0.8) 0.01, 0.10, 0.20, 0.30, 0.40
δ, ν 0.50, 0.75, 1.00, 1.25, 1.50
γu 0.50, 0.53, 0.57, 0.60, 0.64, 0.67,

0.71, 0.76, 0.80, 0.85, 0.89, 0.95, 1.00,
1.06, 1.12, 1.18, 1.25, 1.32, 1.40,
1.48, 1.57, 1.67, 1.77, 1.88, 2.00

likelihood methods, we applied the methods of Lin et al. (1998) to the conditional likelihoods

with varying δu and ν, where δu and ν play roles as βyu and δ. Since βyu and δu need to be

around the values of a and a − b for reliable sensitivity analysis, those parameter values were

varied depending on the values of a and a − b respectively. To be specific, we varied βyu within

{0.3,0.7} when a = 0.5 and within {0.8,1.2} when a = 1.0. We varied δu within {0.01,0.2}

when a − b = 0.1 and within {0.01,0.40} when a − b = 0.2. All of the parameter values of

(βyu, δu, δ, ν, γu) considered were listed in Table 4.1.

Table 4.2-4.5 show the simulation results. For each method, we calculated the bias, and the

empirical coverage rate (ECR) of a 95% confidence interval. In each table, the bold characters

indicate the results when the sensitivity parameters have the same value as those of the corresponding

parameters. It may be reasonable to say that the method having a less bias and an ECR close to

95% at or near the true parameter values works well.

In the logistic regression with (a, b) = (0.5,0.4), all of the three methods worked well.

The ECR of Lin’s method was slightly lower than 95%, however, conditional likelihood and

marginal model methods gave correct coverage probabilities. In the logistic regression with

(a, b) = (1.0,0.8), the only conditional likelihood method gave correct inference results at

the true value. Lin’s method failed to give correct inference results at the true value because

of huge unmeasured confounding. Since the proposed marginal model method uses the same

approximations used in Lin’s method, it also failed to yield correct results like Lin’s, however,
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Table 4.2: Logistic regression model with (a, b) = (0.5,0.4)

Lin’s method Marginal model Conditional Likelihood
(βyu,δ) Bias ECR LEN γu Bias ECR LEN (δu, ν) Bias ECR LEN

(0.30,0.50) 0.294 0.530 0.608 0.50 0.252 0.668 0.654 (0.01,0.50) 0.096 0.936 0.856
(0.30,0.75) 0.219 0.702 0.53 0.240 0.702 0.660 (0.01,0.75) 0.094 0.936
(0.30,1.00) 0.144 0.848 0.57 0.227 0.728 0.667 (0.01,1.00) 0.091 0.938
(0.30,1.25) 0.069 0.930 0.60 0.214 0.760 0.675 (0.01,1.25) 0.089 0.938
(0.30,1.50) -0.006 0.930 0.64 0.200 0.784 0.684 (0.01,1.50) 0.086 0.940
(0.40,0.50) 0.244 0.648 0.67 0.185 0.808 0.693 (0.05,0.50) 0.076 0.938
(0.40,0.75) 0.144 0.848 0.71 0.170 0.838 0.703 (0.05,0.75) 0.064 0.936
(0.40,1.00) 0.044 0.948 0.76 0.154 0.860 0.715 (0.05,1.00) 0.051 0.936
(0.40,1.25) -0.056 0.910 0.80 0.137 0.876 0.727 (0.05,1.25) 0.039 0.936
(0.40,1.50) -0.156 0.798 0.85 0.120 0.904 0.741 (0.05,1.50) 0.026 0.938
(0.50,0.50) 0.194 0.760 0.89 0.101 0.910 0.756 (0.10,0.50) 0.051 0.936
(0.50,0.75) 0.069 0.930 0.95 0.081 0.922 0.772 (0.10,0.75) 0.026 0.938
(0.50,1.00) -0.056 0.910 1.00 0.061 0.928 0.790 (0.10,1.00) 0.001 0.934
(0.50,1.25) -0.181 0.758 1.06 0.039 0.932 0.809 (0.10,1.25) -0.024 0.934
(0.50,1.50) -0.306 0.498 1.12 0.015 0.934 0.831 (0.10,1.50) -0.049 0.926
(0.60,0.50) 0.144 0.848 1.18 -0.009 0.936 0.854 (0.15,0.50) 0.026 0.938
(0.60,0.75) -0.006 0.930 1.25 -0.035 0.936 0.879 (0.15,0.75) -0.011 0.936
(0.60,1.00) -0.156 0.798 1.32 -0.063 0.930 0.907 (0.15,1.00) -0.049 0.926
(0.60,1.25) -0.306 0.498 1.40 -0.093 0.918 0.938 (0.15,1.25) -0.086 0.916
(0.60,1.50) -0.456 0.182 1.48 -0.124 0.908 0.971 (0.15,1.50) -0.124 0.906
(0.70,0.50) 0.094 0.912 1.57 -0.158 0.892 1.008 (0.20,0.50) 0.001 0.934
(0.70,0.75) -0.081 0.876 1.67 -0.195 0.876 1.048 (0.20,0.75) -0.049 0.926
(0.70,1.00) -0.256 0.610 1.77 -0.234 0.856 1.093 (0.20,1.00) -0.099 0.912
(0.70,1.25) -0.431 0.226 1.88 -0.277 0.834 1.142 (0.20,1.25) -0.149 0.880
(0.70,1.50) -0.606 0.030 2.00 -0.323 0.810 1.195 (0.20,1.50) -0.199 0.840
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Table 4.3: Logistic regression model with (a, b) = (1.0,0.8)

Lin’s method Marginal model Conditional Likelihood
(βyu,δ) Bias ECR LEN γu Bias ECR LEN (δu, ν) Bias ECR LEN

(0.80,0.50) 0.343 0.482 0.673 0.50 0.384 0.424 0.702 (0.01,0.50) 0.150 0.908 0.986
(0.80,0.75) 0.143 0.878 0.53 0.361 0.476 0.707 (0.01,0.75) 0.147 0.910
(0.80,1.00) -0.057 0.916 0.57 0.337 0.524 0.714 (0.01,1.00) 0.145 0.910
(0.80,1.25) -0.257 0.668 0.60 0.313 0.590 0.721 (0.01,1.25) 0.142 0.912
(0.80,1.50) -0.457 0.256 0.64 0.286 0.658 0.729 (0.01,1.50) 0.140 0.914
(0.90,0.50) 0.293 0.618 0.67 0.259 0.716 0.737 (0.10,0.50) 0.105 0.934
(0.90,0.75) 0.068 0.936 0.71 0.231 0.772 0.747 (0.10,0.75) 0.080 0.936
(0.90,1.00) -0.157 0.840 0.76 0.201 0.828 0.758 (0.10,1.00) 0.055 0.934
(0.90,1.25) -0.382 0.394 0.80 0.169 0.858 0.770 (0.10,1.25) 0.030 0.930
(0.90,1.50) -0.607 0.068 0.85 0.136 0.884 0.783 (0.10,1.50) 0.005 0.942
(1.00,0.50) 0.243 0.724 0.89 0.101 0.914 0.797 (0.20,0.50) 0.055 0.934
(1.00,0.75) -0.007 0.922 0.95 0.065 0.936 0.813 (0.20,0.75) 0.005 0.942
(1.00,1.00) -0.257 0.668 1.00 0.026 0.946 0.831 (0.20,1.00) -0.045 0.938
(1.00,1.25) -0.507 0.192 1.06 -0.015 0.940 0.850 (0.20,1.25) -0.095 0.918
(1.00,1.50) -0.757 0.022 1.12 -0.059 0.916 0.872 (0.20,1.5) -0.145 0.890
(1.10,0.50) 0.193 0.802 1.18 -0.105 0.910 0.895 (0.30,0.50) 0.005 0.942
(1.10,0.75) -0.082 0.906 1.25 -0.153 0.890 0.921 (0.30,0.75) -0.070 0.922
(1.10,1.00) -0.357 0.442 1.32 -0.205 0.856 0.950 (0.30,1.00) -0.145 0.890
(1.10,1.25) -0.632 0.054 1.40 -0.261 0.820 0.981 (0.30,1.25) -0.220 0.828
(1.10,1.50) -0.907 0.002 1.48 -0.320 0.774 1.016 (0.30,1.50) -0.295 0.764
(1.20,0.50) 0.143 0.878 1.57 -0.384 0.714 1.054 (0.40,0.50) -0.045 0.938
(1.20,0.75) -0.157 0.840 1.67 -0.452 0.612 1.096 (0.40,0.75) -0.145 0.890
(1.20,1.00) -0.457 0.256 1.77 -0.526 0.554 1.142 (0.40,1.00) -0.245 0.806
(1.20,1.25) -0.757 0.022 1.88 -0.605 0.480 1.193 (0.40,1.25) -0.345 0.702
(1.20,1.50) -1.057 0.000 2.00 -0.691 0.432 1.250 (0.40,1.50) -0.445 0.572
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Table 4.4: Proportional hazard model with (a, b) = (0.5,0.4)

Lin’s method Marginal model Conditional Likelihood
(βyu,δ) Bias ECR LEN γu Bias ECR LEN (δu, ν) Bias ECR LEN

(0.30,0.50) 0.169 0.258 0.258 0.50 0.139 0.496 0.285 (0.01,0.50) 0.100 0.882 0.508
(0.30,0.75) 0.094 0.702 0.53 0.128 0.576 0.288 (0.01,0.75) 0.098 0.884
(0.30,1.00) 0.019 0.916 0.57 0.116 0.662 0.292 (0.01,1.00) 0.095 0.888
(0.30,1.25) -0.056 0.832 0.60 0.103 0.730 0.296 (0.01,1.25) 0.093 0.894
(0.30,1.50) -0.131 0.494 0.64 0.090 0.788 0.301 (0.01,1.50) 0.090 0.894
(0.40,0.50) 0.119 0.558 0.67 0.077 0.832 0.305 (0.05,0.50) 0.080 0.912
(0.40,0.75) 0.019 0.916 0.71 0.062 0.888 0.311 (0.05,0.75) 0.068 0.920
(0.40,1.00) -0.081 0.756 0.76 0.047 0.932 0.316 (0.05,1.00) 0.055 0.936
(0.40,1.25) -0.181 0.232 0.80 0.032 0.954 0.323 (0.05,1.25) 0.043 0.946
(0.40,1.50) -0.281 0.016 0.85 0.015 0.964 0.330 (0.05,1.50) 0.030 0.950
(0.50,0.50) 0.069 0.804 0.89 -0.003 0.962 0.337 (0.10,0.50) 0.055 0.936
(0.50,0.75) -0.056 0.832 0.95 -0.021 0.958 0.345 (0.10,0.75) 0.030 0.950
(0.50,1.00) -0.181 0.232 1.00 -0.040 0.930 0.354 (0.10,1.00) 0.005 0.960
(0.50,1.25) -0.306 0.010 1.06 -0.061 0.904 0.364 (0.10,1.25) -0.020 0.964
(0.50,1.50) -0.431 0.000 1.12 -0.083 0.858 0.374 (0.10,1.50) -0.045 0.938
(0.60,0.50) 0.019 0.916 1.18 -0.106 0.818 0.386 (0.15,0.50) 0.030 0.950
(0.60,0.75) -0.131 0.494 1.25 -0.130 0.764 0.398 (0.15,0.75) -0.007 0.960
(0.60,1.00) -0.281 0.016 1.32 -0.156 0.680 0.412 (0.15,1.00) -0.045 0.938
(0.60,1.25) -0.431 0.000 1.40 -0.184 0.612 0.427 (0.15,1.25) -0.082 0.908
(0.60,1.50) -0.581 0.000 1.48 -0.214 0.526 0.443 (0.15,1.50) -0.120 0.846
(0.70,0.50) -0.031 0.884 1.57 -0.246 0.440 0.461 (0.20,0.50) 0.005 0.960
(0.70,0.75) -0.206 0.124 1.67 -0.280 0.390 0.480 (0.20,0.75) -0.045 0.938
(0.70,1.00) -0.381 0.000 1.77 -0.317 0.306 0.502 (0.20,1.00) -0.095 0.886
(0.70,1.25) -0.556 0.000 1.88 -0.357 0.252 0.525 (0.20,1.25) -0.145 0.784
(0.70,1.50) -0.731 0.000 2.00 -0.400 0.210 0.550 (0.20,1.50) -0.195 0.678
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Table 4.5: Proportional hazard model with (a, b) = (1.0,0.8)

Lin’s method Marginal model Conditional Likelihood
(βyu,δ) Bias ECR LEN γu Bias ECR LEN (δu, ν) Bias ECR LEN

(0.80,0.50) -0.023 0.892 0.258 0.50 0.076 0.826 0.285 (0.01,0.50) 0.181 0.722 0.520
(0.80,0.75) -0.223 0.112 0.53 0.057 0.892 0.289 (0.01,0.75) 0.178 0.730
(0.80,1.00) -0.423 0.000 0.57 0.037 0.932 0.293 (0.01,1.00) 0.176 0.732
(0.80,1.25) -0.623 0.000 0.60 0.016 0.958 0.297 (0.01,1.25) 0.173 0.736
(0.80,1.50) -0.823 0.000 0.64 -0.006 0.968 0.301 (0.01,1.50) 0.171 0.744
(0.90,0.50) -0.073 0.758 0.67 -0.029 0.958 0.306 (0.10,0.50) 0.136 0.836
(0.90,0.75) -0.298 0.014 0.71 -0.053 0.916 0.311 (0.10,0.75) 0.111 0.892
(0.90,1.00) -0.523 0.000 0.76 -0.078 0.836 0.317 (0.10,1.00) 0.086 0.920
(0.90,1.25) -0.748 0.000 0.80 -0.104 0.762 0.324 (0.10,1.25) 0.061 0.938
(0.90,1.50) -0.973 0.000 0.85 -0.132 0.660 0.331 (0.10,1.50) 0.036 0.946
(1.00,0.50) -0.123 0.528 0.89 -0.161 0.542 0.338 (0.20,0.50) 0.086 0.920
(1.00,0.75) -0.373 0.000 0.95 -0.192 0.406 0.346 (0.20,0.75) 0.036 0.946
(1.00,1.00) -0.623 0.000 1.00 -0.225 0.312 0.355 (0.20,1.00) -0.014 0.954
(1.00,1.25) -0.873 0.000 1.06 -0.259 0.204 0.365 (0.20,1.25) -0.064 0.938
(1.00,1.50) -1.123 0.000 1.12 -0.295 0.096 0.376 (0.20,1.50) -0.114 0.852
(1.10,0.50) -0.173 0.296 1.18 -0.334 0.050 0.387 (0.30,0.50) 0.036 0.946
(1.10,0.75) -0.448 0.000 1.25 -0.375 0.020 0.400 (0.30,0.75) -0.039 0.954
(1.10,1.00) -0.723 0.000 1.32 -0.418 0.008 0.414 (0.30,1.00) -0.114 0.852
(1.10,1.25) -0.998 0.000 1.40 -0.465 0.004 0.429 (0.30,1.25) -0.189 0.684
(1.10,1.50) -1.273 0.000 1.48 -0.515 0.000 0.445 (0.30,1.50) -0.264 0.502
(1.20,0.50) -0.223 0.112 1.57 -0.568 0.000 0.463 (0.40,0.50) -0.014 0.954
(1.20,0.75) -0.523 0.000 1.67 -0.625 0.000 0.482 (0.40,0.75) -0.114 0.852
(1.20,1.00) -0.823 0.000 1.77 -0.687 0.000 0.504 (0.40,1.00) -0.214 0.638
(1.20,1.25) -1.123 0.000 1.88 -0.753 0.000 0.527 (0.40,1.25) -0.314 0.360
(1.20,1.50) -1.423 0.000 2.00 -0.826 0.000 0.553 (0.40,1.50) -0.414 0.106
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the results were much better than those of Lin’s with less bias and more accurate ECR at the true

value. In the proportional hazard model, the only conditional likelihood method worked well for

both (a, b) = (0.5,0.4) and (a, b) = (1.0,0.8).

The naive estimator for the exposure effect is β̂yz, which was obtained by fitting the outcome

model ignoring U . The biases (ECRs) of β̂yz were 0.444 (0.194), 0.743 (0.006), 0.319 (0.006)and

0.377 (0.000) for Table 4.2-4.5. The variance of Lin’s estimator is equal to that of the naive

estimator because it is obtained by adding a constant to the naive estimator.

The simulation results showed proposed methods had larger variances than Lin’s methods.

The marginal model method has an additional variability coming from β̂nu and its variance is

approximately proportional to γ2
u. The conditional likelihood method uses fewer samples than

the other methods because it uses the subjects that satisfies a certain condition.
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CHAPTER 5: PRACTICABLE CONFIDENCE INTERVALS FOR CURRENT STATUS
DATA

5.1 Introduction

Nonparametric estimation of binary isotonic regression functions has been well studied theoretically

and its connection to current status survival data has been described. A systematic overview of

available binary isotonic regression methods is given in Ghosh et al. (2008) Although non-parametric

estimation of parameters can be easily obtained using the pooled-adjacent violators algorithm,

confidence intervals and other assessments of sampling variability are rarely employed, limiting

the practical utility of this methodology. Inferential difficulties arise because the nonparametric

estimator converges at a rate that is slower than the usual parametric rate of n1/2.

Bootstrapping is a popular technique for computing confidence intervals in settings where

analytic formulae may not exist. However, the usual nonparametric bootstrap is not theoretically

justified for binary isotonic regression. Ghosh et al. (2008) investigated three alternative inferential

procedures for the nonparametric maximum likelihood estimator (NPMLE): (i) a Wald-based

method; (ii) a subsampling-based method; and (iii) a likelihood-ratio test-based method. Their

simulation study indicated that the LRT and sub-sampling methods have superior performance

to the Wald method, most notably with small and moderate sample sizes, where the Wald-based

intervals were found to perform poorly. Unfortunately, to our knowledge, there is no publicly

available software for computing confidence intervals using either the LRT or the subsampling

approach, owing in part to their computational complexities. This has limited their adoption in

statistical practice.

In contrast, the Wald-type confidence intervals are straightforward to compute, involving

only “smooth” estimation of certain density functions. We hypothesized that transformations of
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the estimated regression function would substantially improve the empirical coverage the Wald

CIs. This approach is motivated by related work in survival analysis with right censored data. Bie

et al. (1987) and Borgan and Liestol (1990) studied confidence intervals for the cumulative hazard

function and the survival function, demonstrating numerically that CIs based on transformations

of the Nelson-Aalen and Kaplan-Meier estimators may have better properties than untransformed

CIs. In isotonic regression, the results are more complicated, owing to the facts that the estimators

being transformed converge at a rate of n1/3 and have non-normal distributions, which differs

from the earlier survival settings.

In the present paper, we establish the distribution of the transformed NPMLE for binary

isotonic regression and use this result to construct Wald CIs which are as easy to implement

as the untransformed Wald CIs. We evaluate via extensive simulation studies the performance

of these across a variety of data generating models. We also consider a simple nonparametric

bootstrap procedure. Finally, we apply all of the inferential methods to two example studies: 1)

a large study of age at menopause using cross-sectional survey data; and 2) a small study of time

until tumor development in mice.

5.2 Nonparametric confidence interval methods

Let (S,T ) be a pair of random variables where S is observable and T is not observable and

distributed as G, and δ be an indicator for whether T is less than S or not (δ = 1 if T ≤ S, δ = 0

otherwise). We assume the following nonparametric regression model:

Pr(δ∣S) = G(S), (5.1)

where G is assumed to be monotonically increasing and continuously differentiable on [0,∞)

with G(0) = 0 and limz→∞G(z) = 1. The model (1) is binary isotonic regression, where the

effect of S on δ is assumed monotone but otherwise unspecified. In Ghosh et al. (2008), S is

tumour size and δ is an indicator of tumour metastasis. In current status data setting, S is an
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observation time and δ indicates whether the failure time, T , is less than the observation time, S.

The data consist of n independent and identically distributed observations (δ1, S1), (δ2, S2),

..., (δn, Sn). The joint density of (δ, S) is {G(s)}δ{1 −G(s)}1−δh(s), where h(⋅) is the density

of function of S. Ignoring h, the likelihood function of the observed data is

Ln({δi, si}ni=1) =
n

∏
i=1

{G(si)}δi{1 −G(si)}1−δi . (5.2)

Although we evaluate G at observed values of S, the standard estimation method for current

status survival data (the NPMLE method) can estimate the distribution of T unconditionally. The

estimate of G maximizing this likelihood function may be obtained using standard algorithms.

Let S(i) be the ith smallest value of tumor size (or observation time) and δ(i) be the corresponding

indicator function for tumor metastasis (or the indicator for whether failure time is less than

observation time). The NPMLE of G is the left derivative of the greatest convex minorant

of the points {i,∑ij=0 δ(i)}. The theoretical properties of the NPMLE procedure are given in

Groeneboom and Wellner (1992), including its consistency and limiting distribution. Interestingly,

the variance of the NPMLE converges more slowly than the usual n1/2 rate for parametric

estimators and for nonparametric estimators in “regular” problems, eg, the Kaplan-Meier estimator.

Moreover, appropriately standardized, the NPMLE does not have a standard normal distribution.

This greatly complicates inference.

The asymptotic distribution of the NPMLE of G(s0), Ĝn(s0), is

n1/3{Ĝn(s0) −G(s0)} →d [4g(s0)G(s0){1 −G(s0)}
h(s0)

]
1/3

Z ≡ CZ, (5.3)

where g(s0) is the derivative of G at fixed point s0 and Z is the location of the minimum of

W (t) + t2, with W being the standard two-sided Brownian motion starting from 0. Note that the

distribution of W does not depend on any unknown parameters and hence its percentiles may be

easily tabulated. Hence, the main difficulty in constructing confidence intervals is the estimation

of the scaling constant C in (3).
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An asymptotic 95% Wald-based confidence interval for G(s0) using the limiting distribution

of the NPMLE is:

{Ĝn(s0) − n−1/3Ĉn × .99818, Ĝn(s0) + n−1/3Ĉn × .99818} , (5.4)

where the scaling factor C is estimated by

Ĉn = [4ĝn(s0)Ĝn(s0){1 − Ĝn(s0)}
ĥn(s0)

]
1/3

, (5.5)

and ĝn(s0) and ĥn(s0) are the estimates of g and h at s0. To obtain Ĉn, we need to estimate g(s0)

and h(s0). Since S is observable for all samples, nonparametric density estimation can be used

to estimate h(s0). In this article, we use kernel density estimation for h(s0) with the bandwidth

chosen by the data-based direct plug-in methodology for band width selection Sheather and Jones

(1991). The estimation for g(s0) is more difficult than the estimation for h(s0), since the failure

times are not known exactly with current status data. We used kernel smoothing of the NPMLE

Ĝn, where the bandwidth was chosen by likelihood-based cross-validation (Pan 2000, Banerjee

and Wellner 2005). A standard normal kernel was used in estimating g(s0) and h(s0).

To improve the performance of the Wald methods, we now describe an approach based on

constructing confidence intervals using the transformed NPMLE. LetA(⋅) be a strictly monotone

function which is differentiable in a neighborhood of G(s0) and has inverse A−1(⋅). A first order

Taylor expansion, eg, the Delta method, gives that

n1/3 {A (Ĝn(s0)) −A (Gn(s0))} →d Ȧ (G(s0))CZ, (5.6)

where Ȧ is the derivative ofA. The asymptotic 95% Wald-based confidence interval forA (Gn(s0))

is constructed as follows:

A (Ĝn(s0)) ± n−1/3Ȧ (Ĝn(s0)) Ĉn × .99818. (5.7)

121



As with right censored data (Bie et al. 1987, Borgan and Liestol 1990), one might expect that

with current status data, such transformed intervals will perform better than the untransformed

intervals.

It is worth noting that no additional quantities need to be estimated, beyond those needed for

the untransformed Wald interval with A(u) = u. In this article, we consider two transformations,

A(x) = log(x/(1−x)) andA(x) = log(−log(x)), which are the logit and log(-log) transformations.

These transformations have previously been studied when constructing transformed Wald confidence

intervals with right censored survival data (Bie et al. 1987, Borgan and Liestol 1990). The

derivatives of A(⋅) for the logit and log(-log) transformations are Ȧ(x) = 1/(x(1 − x)) and

Ȧ(x) = 1/(xlog(x)), respectively.

Let (L,U) denote the lower and upper confidence limits ofA(G(s0)). The logit transformation

gives the following 95% confidence interval for G(s0):

( eL

1 + eL ,
eU

1 + eU ) . (5.8)

The log(-log) transformation gives the following 95% confidence interval for G(s0):

(e−eU , e−eL) . (5.9)

For general monotone increasing A, the 95% CI is (A−1(L),A−1(U)).

Next, we consider the nonparametric bootstrap method. Bootstrap samples of size n are

constructed by resampling from the n observations (δi, Si)ni=1. In each bootstrap sample, one

calculates the NPMLE of G(s0), Ĝn

∗(s0), using the bootstrap sample. We iterate this procedure

a large number, B, times, say 500. A 95% confidence interval for G(s0) using the bootstrap is

given by the 2.5 and 97.5 percentiles of the distribution of Ĝ∗
n(s0).

To compute the Wald CI, we need to estimate the scaling factor C, which involves “smooth"

estimation of g(s0) and h(s0), and hence may be unstable with small to moderate sample sizes.

As an alternative, one may use the bootstrap to estimate C using the following approach. The
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asymptotic results for the NPMLE yield that the limiting distribution for Z is symmetric, with

E(Zk) = 0 for k odd, and the second absolute moment of Z is 0.2636 (Groeneboom and Wellner

2001). Thus the variance of Z is 0.2636. By eq. (3), asymptotically V ar(n1/3Ĝn(s0)) =

C2V ar(Z) = C2(0.2636), and hence C can be written as C = n1/3
√
V ar(Ĝn(s0))/

√
0.2636.

The bootstrap estimator forC, which will be denoted as Ĉ∗, is computed by estimating V ar(Ĝn(s0))

based on bootstrap samples. The 95% bootstrap-Wald CI is given by

Ĝn(s0) ± n−1/3Ĉ∗ × .99818. (5.10)

For the transformed bootstrap-Wald CI, we estimated

CA = Ȧ(Ĝn(s0))C by ĈA
∗ = n1/3

√
ˆV ar

∗(A(Ĝn(s0)))/
√

0.2636, where ˆV ar
∗(A(Ĝn(s0))) is

the estimate of V ar(A(Ĝn(s0))) based on bootstrap. The 95% transformed bootstrap-Wald CI

is given by

A−1 {A(Ĝn(s0)) ± n−1/3ĈA
∗ × .99818} . (5.11)

In addition to the confidence interval methods, we introduce a simple method to examine the

reliability of the confidence interval obtained under given data. The basic idea is as follows. First,

one generates data to mimic the given real data many times. Then, in each simulated dataset, one

constructs confidence intervals as described above and computes performance measures, like

empirical coverage probabilities, treating the simulation model as the truth. The sensitivity of

the performance measures to the underlying simulation model may be assessed. We applied this

approach to the two real data examples in Section 4, with the details reported in that section.

5.3 Simulations

The goal of our simulations is to compare the performance of the standard Wald-type confidence

intervals to Wald-type CI based on transformations as well as confidence intervals based on the

nonparametric bootstrap. For simulations, we adopted the same data generating mechanism as

used in Banerjee and Wellner (2005) who studied confidence intervals for current status data.
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This will facilitate comparison with the LRT and subsampling confidence intervals, which were

examined in Banerjee and Wellner (2005).

We begin by presenting the results with h(s) = e−s and G(s) = 1 − e−s, where both the

observation time and the failure time are unit exponential. We compared the CIs at three points

s0 such that G(s0)=0.2, 0.5 and 0.8. The sample sizes we consider are n=25, 50, 75, 100, 200,

500, 800, 1000 and 3000. We repeatedly generated data 5000 times and calculated the bias,

the estimated asymptotic standard errors of Ĝ(s0), average length of confidence intervals (Len)

and coverage rate (CV). The bias is obtained as the average of (Ĝn(s0) − G(s0)), ŝd(Ĝ(s0))

is obtained by n−1/3Ĉ
√
V ar(Z), Len is calculated by the average of U−L, and the CV is the

empirical coverage probability of the confidence intervals.

Tables 5.1 presents the simulation results for (S ∼exp(1), T ∼exp(1)) at the three points s0

respectively (Tables 5.2 ∼ 5.9 in the Appendix show the results for the rest of the simulation

settings). As expected, as sample size increases, bias and average length of confidence intervals

decrease, and coverage rate increases. For sample size n=3000, all of the methods produce

satisfactory results in the sense that their coverage rates are near 0.95.

In the simulation setting (S ∼exp(1), T ∼exp(1)), Banerjee and Wellner (2005) compared

the three methods outlined in Section 1 at G(s0)=0.5. We compared our results and theirs

for the Wald CIs (non-transformed) at G(s0)=0.5, and confirmed that the two results are very

similar, except that we obtained somewhat higher coverage rates for large sample sizes (n ≥ 500).

Given these similarities, it seems reasonable to compare our results for the Wald CIs using

transformations and bootstrap to the simulation results in Banerjee and Wellner (2005) for the

LRT and subsampling methods. Considering the result at G(s0) = 0.5, the logit and log(-log)

transformed Wald CIs produce results that are competitive with the likelihood-ratio-based (LRT)

CI in Banerjee and Wellner (2005) in terms of average length and coverage probabilities. We note

that the nonparametric bootstrap CI also produces comparable results to those from subsampling

CIs in Banerjee and Wellner (2005) in terms of average length and coverage rate.

The main discovery in our simulations is that the Wald intervals may be improved by transformations
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across a wide range of observation and failure time scenarios. In each of our data generation

models, one observes that the transformations improved the coverage of the Wald CI by 5-10%

with small to moderate sample sizes. Comparing the logit and log(-log) transformations, there

is some evidence that the logit transformation provides greater improvement than the log(-log)

transformation. In addition, the numerical results indicate that the nonparametric bootstrap may

have better coverage than the untransformed Wald CI in small to moderate sample sizes, but may

not achieve the nominal coverage rate with large sample sizes. The results for the bootstrap Wald

CI are similar to those for the nonparametric bootstrap.

The simulations provide evidence that the performances of the methods for constructing CIs

are affected by the point s0 where the confidence interval is constructed. For overall range of

samples sizes and the distributions for S and T, the performances at G(s0) = 0.5 (s0 is a median)

are better than those at the other points, G(s0) = 0.2 and G(s0) = 0.8. Relative to G(s0)=0.5 (s0

is the median), the other time points are in the tails of the distribution. For these time points,

h(s0) has a relatively small value when (S ∼ exp(1), G(s0) = 0.8) and S ∼ gamma(3,1/3),

and with small sample sizes, instability in kernel estimation may inflate the estimated value of

C and make the confidence interval unstable. The diminished performances at G(s0) = 0.2 and

G(s0) = 0.8 may also be related to the boundary problem in nonparametric estimation.

The results also demonstrate that the observation time distribution may significantly affect

the performance of the CI methods. In our simulations, three observation time distributions

are used (Figure 1-a): exp(1), unif(0,2) and gamma(3,1/3). Exp(1) has a monotone decreasing

density function, which has the greatest density near 0. Unif(0,2) has a constant density across

the limited range of S. Gamma(3,1/3) has the greatest density in the center of the distribution,

with the density decreasing in the two tails. In general, the coverage rate is closer to the nominal

level at time points where the density of the observation time is great. In contrast, the coverage

rate may be poor when this density is very small. For example, when S ∼gamma(3,1/3), T ∼

W (0.75,0.840), and at G(s0) = 0.2 (s0=0.114), all methods fail to attain 95% coverage rate.

This poor performance results from the fact that there are few data points near s0 for constructing
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Figure 5.1: (a): Three observation time distributions (exp(1),gamma(3,1/3) and unif(0,2)) used
in simulations. (b) and (c): Mice data, kernel density estimates for observed death time in
conventional environment and germ-free environment. (d): Menopause data, kernel density
estimates for observed age in years

a reliable confidence interval. The density of gamma(3,1/3) at s0(=0.114) is 0.124, and hence the

data is very sparse near this observation time. When the observation time density is low and the

sample size is small or moderate, both the nonparametric bootstrap and the bootstrap-Wald CIs

outperformed the simple and transformed Wald CIs. Moreover, in that case, the bootstrap-Wald

CI is also much narrower than the other CI methods.

5.4 Real examples

5.4.1 Mice lung tumor data

The methods described in this article are applied to mice lung tumor data (Hoel and Walburg

1972). The data consists of 144 male mice from two groups maintained in either conventional

environment (96 mice) and germ-free environment (48 mice). The time to tumor onset (in days)
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Table 5.1: Biases, estimated standard errors of Ĝ(s0), average lengths of confidence intervals and coverage rates of seven types of
confidence intervals for the simulation setting (S ∼exp(1), T ∼exp(1)): non-transformed CIs, logit transformed CIs, log(-log) transformed
CIs, nonparametric bootstrap CIs, bootstrap-Wald CIs, logit transformed bootstrap-Wald CIs, and log(-log) transformed bootstrap-Wald
CIs at P0 = G(s0)=0.2, 0.5 and 0.8

Length Coverage rate
P0 N Bias ŝd(Ĝ) wald logit llog nbt bwald blogit wald logit llog nbt bwald blogit

.2

25 -0.036 0.146 0.570 0.576 0.543 0.562 0.443 0.474 0.525 0.517 0.537 0.790 0.727 0.484
50 -0.034 0.111 0.432 0.466 0.425 0.439 0.383 0.380 0.702 0.692 0.711 0.845 0.769 0.650
75 -0.026 0.096 0.374 0.409 0.372 0.388 0.357 0.348 0.797 0.810 0.825 0.882 0.812 0.750

100 -0.026 0.087 0.337 0.370 0.336 0.355 0.333 0.329 0.824 0.867 0.882 0.895 0.838 0.802
200 -0.014 0.071 0.277 0.293 0.273 0.284 0.278 0.301 0.885 0.963 0.955 0.924 0.881 0.903
500 -0.006 0.055 0.213 0.216 0.209 0.206 0.208 0.229 0.925 0.967 0.956 0.946 0.905 0.947
800 -0.004 0.047 0.184 0.185 0.181 0.175 0.177 0.189 0.936 0.965 0.959 0.955 0.913 0.941
1000 -0.004 0.044 0.171 0.172 0.168 0.163 0.164 0.173 0.940 0.965 0.958 0.959 0.919 0.946
3000 -0.002 0.030 0.118 0.119 0.118 0.112 0.113 0.115 0.948 0.957 0.957 0.967 0.925 0.933

.5

25 0.028 0.153 0.596 0.569 0.589 0.686 0.676 0.568 0.819 0.917 0.894 0.761 0.816 0.850
50 0.011 0.130 0.507 0.478 0.491 0.562 0.555 0.528 0.878 0.964 0.936 0.947 0.897 0.936
75 0.008 0.116 0.453 0.427 0.436 0.478 0.479 0.469 0.898 0.959 0.942 0.963 0.907 0.948

100 0.004 0.107 0.416 0.395 0.402 0.427 0.431 0.423 0.914 0.953 0.945 0.965 0.914 0.944
200 0.004 0.085 0.332 0.320 0.324 0.331 0.334 0.328 0.930 0.955 0.949 0.969 0.921 0.935
500 0.002 0.063 0.245 0.240 0.242 0.239 0.241 0.238 0.947 0.959 0.954 0.971 0.923 0.932
800 0.002 0.054 0.211 0.208 0.209 0.203 0.205 0.203 0.949 0.956 0.954 0.975 0.920 0.924
1000 0.000 0.050 0.195 0.193 0.194 0.188 0.189 0.188 0.953 0.959 0.957 0.973 0.923 0.929
3000 0.000 0.035 0.137 0.137 0.137 0.130 0.131 0.130 0.954 0.958 0.957 0.971 0.924 0.926

.8

25 0.091 0.131 0.511 0.530 0.581 0.525 0.387 0.436 0.358 0.360 0.349 0.437 0.403 0.367
50 0.065 0.105 0.407 0.448 0.490 0.427 0.432 0.356 0.570 0.579 0.574 0.620 0.607 0.571
75 0.046 0.089 0.348 0.389 0.421 0.375 0.384 0.329 0.689 0.710 0.705 0.742 0.720 0.685

100 0.035 0.081 0.314 0.352 0.379 0.344 0.348 0.317 0.747 0.783 0.778 0.806 0.778 0.757
200 0.022 0.064 0.247 0.272 0.287 0.276 0.275 0.295 0.809 0.880 0.877 0.888 0.855 0.891
500 0.008 0.049 0.190 0.195 0.200 0.204 0.206 0.231 0.851 0.889 0.888 0.942 0.899 0.947
800 0.006 0.043 0.167 0.169 0.172 0.174 0.176 0.189 0.869 0.893 0.892 0.953 0.902 0.941
1000 0.005 0.040 0.157 0.158 0.160 0.161 0.163 0.172 0.884 0.905 0.904 0.953 0.909 0.937
3000 0.002 0.029 0.114 0.114 0.115 0.112 0.113 0.115 0.936 0.946 0.947 0.965 0.919 0.933
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Figure 5.2: Mice lung tumor data. Four types of confidence intervals for conventional
environment (the first row) and germfree environment (the second row). From the left, the Wald
CIs, the logit-transformed Wald CIs, the log(-log) transformed Wald CIs, the nonparametric
bootstrap CIs and the bootstrap-Wald CIs. The estimates of NPMLE for the distribution function
of time to lung tumor onset are plotted at observed death times and the corresponding confidence
intervals are plotted with vertical lines.
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Figure 5.3: Menopause data. Four types of confidence intervals for operative menopause
(the first row) and natural menopause (the second row). From the left, the Wald CIs, the
logit-transformed Wald CIs, the log(-log) transformed Wald CIs, the nonparametric bootstrap
CIs and the bootstrap-Wald CIs. The estimates of NPMLE for the cumulative incidence rate of
menopause are plotted at observed ages and the corresponding confidence intervals are plotted
with vertical lines.
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is of interest, but is not directly observable. Instead, the sacrifice time is available for each mouse

and we can observe whether the mouse has a tumor or not at the time of sacrifice.

A 95% CI for the distribution function of time to lung tumour onset (in days) at each observed

sacrifice time was constructed using four different methods: the three Wald-type methods and the

nonparametric bootstrap, separately for each group. Figure 5.2 shows the NPMLE of distribution

function of time to lung tumor onset with the 95% CIs. As with the simulation results for small

sample sizes, the transformed Wald CIs seems to be more stable and have shorter lengths than do

the non-transformed Wald CIs. The Wald-type CI and bootstrap CI seem to have a similar pattern

over time. However, there are some differences. The Wald-type methods shrink to a point when

the estimate for the distribution function is zero. In contrast, the bootstrap CI can be constructed

at all data points including the points where the estimate for the distribution function is zero. The

largest differences between the Wald-type CIs and bootstrap CI occur in the tails where data are

sparse. At such time points, the bootstrap CI is highly variable and wider than those based on the

Wald-type methods.

By 800 days, the probability of a tumour has leveled off at roughly 0.8 in the germ free

environment and 0.7 in the conventional environment. One notes that the onset of tumour occurs

earlier in the germ free environment than in the conventional environment, with corresponding

probabilities of roughly .5 and .2 at 400 days. One may construct confidence intervals for this

difference, which would not be statistically significant, owing to the relatively large standard

errors for the respective point estimates, particularly in the germ free group.

To study the reliability of the confidence intervals for this dataset, we used the approach

described at the end of Section 2. To repeatedly generate data, we used a kernel smooth estimate

of the observation time distribution in each group (see Figure 1(b) and (c)) and fit parametric

Weibull models (Keiding et al. 1996) to the data, giving W (2.04,1038.07) and W (2.01,705.72)

for the conventional and the germ-free environments. The two groups have similar shape parameters

with 2.04 and 2.01, but scale parameter is much greater in the conventional environment than in

the germ-free environment. Because of the small sample sizes, the performance of the confidence
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intervals depends heavily on s0 (see Table 5.10 and 5.11 in the appendix). One sees that the

coverage is better at those time points having high density in Figure 1(b) and 1(c). Simulations

using alternative models for the failure time distribution gave similar results.

5.4.2 Menopause data

Next we consider menopause data on 2423 females whose age range from 25-29 years from

the Health Examination Survey of the National Center for Health Statistics (Macmahon and

Worcestor 1966). The females provided their age and menopausal status. For those who had

experienced menopause, the causes of menopause, which could be operative or natural, were

investigated and reported. Thus the data can be viewed as current status data with competing

risk, where the observation time is age and the outcome is menopause with the two competing

risks, operative or natural menopause (Maathuis and Hudgens 2011, Jewell et al. 2003).

Jewell et al. (2003) introduced the naive approach to calculate the NPMLE for current status

data with competing risks. The approach is to calculate the separate NPMLE for the two competing

risks by applying isotonic regression independently, after censoring individuals who experience

competing events. We followed this approach to construct CIs for the two menopause groups,

which is equivalent to the Wald-type methods we consider in this article. Figure 5.3 displays the

confidence intervals for the cumulative incidence functions of operative and natural menopause

computed via the Wald-based methods and bootstrap. As in simulation results for large sample

sample sizes, the four types of CIs are quite similar, with the intervals being substantially

narrower and more informative than those in the mice tumour example.

One observes that operative menopause occurs at a relatively constant rate between ages

30 and 60, while natural menopause only initiates after age 40 and accelerates quickly after

age 45. In fact, the two curves cross between ages 45 and 50. By age 60, all women have

experienced either operative or natural menopause, with the corresponding difference in their

respective probabilities, 0.3 and 0.7, appearing to be highly significant.

Employing the reliability assessment described previously, we simulated using the kernel
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smooth estimate of the observation time distribution which is the same for both types of menopause

and parametric fits to the cumulative incidence functions using the naive likelihood approach

Jewell et al. (2003), which yieldedW (10.73,55.07) andW (3.67,71.83) for the natural menopause

and the operative menopause. In contrast to the mice data, all of the confidence intervals at the

examined time points are reliable and not sensitive to s0 because of large sample size (Table 5.12

and 5.13 in the Appendix). The coverage rate of the Wald CI varies from 0.938 to 0.948 for the

natural menopause, and from 0.934 to 0.944 for the operative menopause.

5.5 Conclusion

We introduced the transformation of Wald-based CI in binary isotonic regression. Our extensive

simulations show that the transformed Wald-CIs have a competitive performance compared to

LRT-based CI developed by Banerjee and Wellner (2005) and outperform the non-transformed

Wald-CI in small and moderate samples, where improvements are achieved in the coverage rates

across a wide range of observation time and failure time scenarios.

We also studied the nonparametric bootstrap CI based on the NPMLE. Although there is

no theoretical justification for bootstrap CI for isotonic regression, our simulation shows that

bootstrap seems to perform reasonably well in many settings in the sense that it attains a nominal

coverage rate, 95%, even in large sample size setting. This is also supported by menopause

data whose sample size is large, in which bootstrap CI is quite similar to the Wald type CIs.

We also introduced the bootstrap transformed and untransformed Wald CI, where the constant

C is estimated by the bootstrap instead of by kernel smoothing. In simulations, they performed

reasonably well for small and moderate sample sizes. However, in some cases, they did not attain

a nominal coverage rate for large sample sizes, similar to the nonparametric bootstrap. Both the

nonparametric bootstrap and the bootstrap-Wald CIs outperformed the simple and transformed

Wald-type CIs for the data where the observation time density is low and the sample size is small

or moderate.

Our study showed that the performances of confidence interval methods are affected by the
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observation time (s0) where a confidence interval is calculated. Near the left and right tails (or

boundaries) of the observation time distribution, the coverage rate of CI tends to be lower than in

the center of the distribution. The shape of the distributions of the observation and failure time

also significantly contribute to the difference in the performance of confidence interval methods.

To give a rough idea as to the reliability of the confidence intervals in a particular dataset,

we proposed a simple ad hoc method based on repeatedly simulating under an assumed model

for the observation and failure times. In practice, the simulation model may be estimated using

the observed data, either using nonparametric or parametric models. The real data examples

showed how this technique may be useful. The results show that for the mice data the confidence

intervals may perform poorly, with coverage varying substantially across s0. For the menopause

data all of the confidence intervals are reliable because of large sample size.

Transformed Wald confidence intervals for differences between nonparametric estimates based

on two independent samples, as in the mice tumour study, may be constructed in a similar

fashion to those from a single sample. Here, one can show that the distribution of the difference

of two independent NPMLEs is again a scaled version of Z, where the scale factor for the

difference involves only the two scale factors for the individual estimates. The distribution of

the transformed difference may then be obtained via the Delta method, as in Section 2. The

resulting inferences require only the NPMLEs and the estimated scale factors in each group.

The application of the confidence interval methodology to the menopause data in Section

4.2 is the first instance in which theoretically justified confidence intervals have been utilized

in nonparametric estimation of the cumulative incidence function with current status competing

risks data via naive estimation (Jewell et al. 2003). The construction of such intervals based

on full maximum likelihood is unclear, owing to the complicated limiting distribution of the

resulting estimators, which is not a simple scaling of Z. Further work is needed to determine

whether practicable Wald intervals may be constructed using NPMLE from full maximum likelihood

in the competing risks set-up.
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