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ABSTRACT 

 

Benjamin Charles Giglio: Alkene Difunctionalization Using Hydroxamic Acids 

(Under the direction of Erik Alexanian) 

 

 

Alkene difunctionalizations are a core transformation in synthetic organic chemistry.  A majority 

of these reactions proceed through polar or transition-metal-catalyzed methods.  Alkene 

difunctionalizations that pass through a free radical reaction manifold are less common.  Even less 

common are radical-based alkene difunctionalizations utilizing oxygen-centered radicals, which are well 

known for their high reactivity. 

 Disclosed herein is technology which controls the reactivity of oxygen-centered radicals, 

allowing them to be used for useful and productive synthetic chemistry.  The hydroxamic acid functional 

group was utilized for this purpose. 

An intermolecular alkene dioxygenation using molecular oxygen as an O-atom source was 

developed.   Derivatives of the hydroxamic acid functional group, N-hydroxy carbamates, were crucial to 

the success of the reaction.   

The ability of hydroxamic acids to function as hydrogen-atom donors capable of reducing carbon-

centered radicals to alkanes was also discovered.  The use of this property lead to the development of an 

intramolecular formal alkene hydration and cascade diene carbocyclization reaction.   
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CHAPTER 1: RADICAL-MEDIATED ALKENE DIFUNCTIONALIZATIONS IN SYNTHESIS 

1.1 Alkenes and Alkene Difunctionalizations  

 Carbon-carbon double bonds of alkenes are of key importance to synthetic organic chemistry.  

Due to the facility in which its reactivity can be influenced, alkenes have been utilized as substrates for 

hundreds of different chemical transformations.  The presence of alkenes in hydrocarbon feedstocks as 

well as the ease by which they can be made further adds to their attractiveness as potential substrates to 

pursue for the development of a synthetic methodology.  Among the many transformations in which 

alkenes can participate, alkene difunctionalization has emerged as one of the most useful.  The ability to 

simultaneously install two different or identical atoms onto vicinal carbon atoms provides unparalleled 

opportunities for further chemical elaboration.   

1.2 Free-Radical Reactions as an Alternative for Transition-Metal-Catalyzed Processes 

 Traditional alkene difunctionalization protocols involve the use of transition metals as catalysts.  

The Nobel Prize winning Sharpless asymmetric dihydroxylation and aminohydroxylation are important 

examples of transition-metal-catalyzed alkene difunctionalization.
1
  Numerous other methodologies 

employing transition metals have appeared, and it continues to be an active and productive area of 

research.
2
  Despite their successes, transition-metal-catalyzed protocols suffer from certain drawbacks.  In 

particular, the metals typically employed for difunctionalization reactions are osmium and palladium.  

Both metals are expensive as a result of their low abundance in the Earth’s crust.  Furthermore, the 

toxicity of osmium poses a serious threat to the user as well as the environment.
3
   

Free radical methods have the potential to address the shortcomings of metal-catalyzed methods, 

and provide reactivity that complements that of transition metals.  With regard to chemical synthesis, 

problems associated with functional group tolerance and regioselectivity can arise when using transition-

metal-catalyzed processes.  For example, in order to perform difunctionalizations, osmium must exist in 



 

 

2 

 

the +8 oxidation state.  Osmium(VIII) is a strong oxidizer, and poses a threat to chemical functionality 

that are vulnerable to oxidation.
1
  In addition, protection is necessary for coordinating functionality within 

the molecule which can potentially poison the catalyst.  Extra protection and deprotection steps in a 

synthesis will reduce the final yield.  Radical reactions, on the other hand, are well known for their ability 

to tolerate coordinating functional groups as well as other sensitive functionality.
4
     

In addition to functional group tolerance concerns, regioselectivity problems can arise when using 

transition-metal-catalyzed methods.  For molecules containing more than one alkene, the possibility of 

unintentionally difunctionalizing the additional alkene or alkenes exists.  For intermolecular 

difunctionalization reactions which deliver two different atoms to the alkene, the formation of 

constitutional isomers possessing the undesired atom connectivity can arise.  Regioselectivity problems 

with radical reactions, on the other hand, rarely occur.  In intramolecular radical cyclizations, the relative 

rates of the competing cyclizations, which are typically understood in terms of Baldwin’s rules,
5
 control 

regioselectivity (Figure 1.1).
6
  For substrates containing multiple alkenes, the major product will be 

formed from the alkene that can undergo the fastest cyclization with the radical.  Often, the large 

difference between the relative rates of the competing cyclizations (fast 5-exo cyclization vs. slow 4-exo 

cyclization, for example) ensure that only one product is observed.
7
  For difunctionalizations which 



 

 

3 

 

deliver two different atoms to a single alkene, the same principles are used to control the site selectivity 

for possible constitutional isomers (fast 5-exo vs. slow 6-endo).  For intermolecular reactions, the relative 

stability of the carbon-centered radical formed following addition of the heteroatom-centered radical into 

the alkene dictates the regioselectivity leading to different products (Markovnikov’s rule).
7
 

The problems associated with transition-metal-catalyzed alkene difunctionalization reactions 

underscore the need for next-generation methods to address these problems.  Heteroatom-centered 

radicals are capable of reacting with alkenes through addition into the double bond.  It is this property that 

makes difunctionalizations possible.  Radical reactions have the potential to address the toxicity, 

functional group tolerance, and regioselectivity issues that hinder transition-metal-catalyzed methods, 

thus providing a suite of reactivity that complements that of transition metals.  

1.3 Developing Difunctionalization Methodology Employing Oxygen-Centered Radicals 

 As one of the elements necessary 

for life, the presence of oxygen in natural 

products is extensive.  Furthermore, the 

presence of oxygen in organic molecules 

constitutes a useful handle for subsequent 

transformations.  Accordingly, oxygen is one of the most common atoms added to alkenes in 

difunctionalization reactions.   

 Oxygen-centered radicals display a broad spectrum of reactivity (Figure 1.2).  Alkoxyl radicals 

are on the reactive extreme of the spectrum.  These highly reactive species are difficult to control and are 

generally not amenable for use in synthesis.  The high bond strength of the O-H bond of the parent 

alcohol (106 kcal/mol)
8
 relative to 

that of the C-H bond (95 kcal/mol)
8
 

indicates that a strong 

thermodynamic driving force for 

hydrogen atom abstraction exists.  Fragmentation via β-scission into a carbonyl group and a relatively 
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more stable carbon-centered radical is also a viable decomposition pathway.
9
 (Figure 1.3)  It is the 

propensity for hydrogen atom abstraction from allylic hydrogen atoms, however, that presents the greatest 

difficulty for applying alkoxyl radicals to alkene difunctionalization methodology, as competing hydrogen 

atom abstraction from the substrate would lead to its decomposition.   

Opposite alkoxy radicals in the reactivity spectrum are nitroxyl radicals.  Nitroxyl radicals, 

including the commercially available TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical), are stable, 

isolable radicals.   The thermodynamic stability of these radicals is a result of the delocalization of the 

spin density on the oxygen atom with the lone pair on the neighboring nitrogen atom.
10

  Due to the weak 

oxygen-hydrogen bond strength (70 kcal/mol)
8
 of the parent hydroxylamine, nitroxyl radicals have little 

thermodynamic incentive to 

participate in hydrogen atom 

abstractions.  Their principle 

reactivity in radical chemistry involves recombination with carbon-centered radicals.  Also, due to their 

stability, nitroxyl radicals generally do not add into alkenes in such a fashion that the process would be 

useful for preparative synthetic chemistry.
11

  

 Lying between the two reactivity extremes is the amidoxyl radical (Figure 1.4).  Like TEMPO, 

the amidoxyl radical derives stability from the presence of the lone pair on the nitrogen atom.  However, 

the lone pair on nitrogen is in resonance with the carbonyl group, and resonance structures which remove 

the lone pair from the nitrogen atom serve to destabilize the amidoxyl radical.  This mixture of stability 

and instability endows the amidoxyl radical with reactivity that is intermediate between the two extremes.  

It is reactive enough to perform useful chemical reactions, but it is stable enough to be tolerant of 

chemical functionality on the substrate being reacted.  This intermediacy is reflected in the oxygen-

hydrogen bond strength of the parent hydroxamic acid (80 kcal/mol),
12

 which lies roughly in between that 

of the hydroxylamine and the alcohol.   

 The springboard for the development of a hydroxamic acid mediated alkene difunctionalization 

research program was provided by Perkins and coworkers in 1990.
13

  In their work detailing a comparison 



 

 

5 

 

of intramolecular hydrogen atom abstraction and alkene addition of amidoxyl radicals, they reported a 

single example of an alkene 

dioxygenation (Figure 1.5), 

whereby the carbon-centered radical 

formed following addition of the amidoxyl radical into the alkene was trapped by molecular oxygen.  This 

precedent layed the groundwork for the development of hydroxamic acid mediated intermolecular alkene 

difunctionalizations in our laboratory.  

1.4 State-of-the-Art Heteroatom-Centered Radical Mediated Alkene Difunctionalizations 

 Nearly every main group element in the periodic table has radical chemistry associated with it.  

Radicals centered on phosphorous, sulfur, nitrogen, and oxygen atoms have been the most heavily 

studied.  Methodologies focusing on the use of these radicals in difunctionalization typically follow a 

common mechanism (Figure 1.6).  The heteroatom-centered radical is generated by oxidation or by 

hydrogen atom abstraction from an initiator, and adds into an alkene.  This reaction creates a carbon-

heteroatom bond and a carbon-

centered radical on the vicinal carbon 

atom, which is subsequently 

quenched with a radical trap.  Variations in the heteroatom-centered radical used and the trap employed 

create a diverse array of opportunities for difunctionalization of a common olefinic substrate. 

1.4a Sulfur-Centered Radical Mediated Alkene Difunctionalization 

The most well-known radical reaction associated with sulfur is hydrothiolation, which is the 

addition of the sulfur-hydrogen bond of a thiol across the double bond of an alkene.  This reaction is also 

known as the thiol-ene coupling.  Hydrothiolation can be initiated thermally through the addition of a 

free-radical initiator or photochemically through the use of a photosensitizer.  The substrate scope of the 

reaction, in terms of both the thiol and the alkene, is extremely broad.  Nearly any thiol can hydrothiolate 

any alkene.  Furthermore, hydrothiolation reactions typically take place under mild reaction conditions 

and return product yields with predictable regioselectivity.  For terminal alkenes, the thiyl radical adds in 
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an anti-Markovnikov fashion in order to generate the more stable secondary carbon-centered radical.  The 

hydrothiolation of terminal alkenes uniformly follow this model, and the regioselectivities are excellent.  

For internal alkenes, however, the aforementioned controlling element is absent, and the regioselectivity 

is low.
14

  

The versatility, efficiency, and reliability of the hydrothiolation reaction are reflected in the 

diversity of the applications in which it has been used, which include total synthesis and material science.  

In their total synthesis of cembrene, Pattenden and co-workers
15

 utilized a hydrothiolation reaction which 

was interrupted by the ring-opening of a cyclopropane ring before the reductive termination of the 

carbon-centered radical with a hydrogen atom (Figure 1.7).   Treatment of the diterpene cembrene with 

ethanethiol and 

light led to a 

regioselective 

addition of the 

thiyl radical into the trisubstituted alkene adjacent to the cyclopropane.  The origin of the regioselectivity 

can be attributed to two factors.   The reversibility of the thiyl radical addition reaction as well as the slow 

rates of radical additions into heavily substituted alkenes ensures that any undesired, normal 1,2-

hydrothiolation does not occur  to a significant extent.
14,16

  However, the placement of the cyclopropane 

adjacent to the targeted alkene provides for the opportunity for a fast, irreversible cyclopropane ring 

opening following the desired thiyl addition event.  This ring opening helps to ensure that the Casbene 

substrate is converted to the desired product.  Following the formal 1,4-hydrothiolation, the newly 

installed thiol is oxidized and thermally 

eliminated to yield Cembrene.  In addition to 

natural product synthesis, hydrothiolation has 

powerful applications in materials chemistry.  

One such application is surface modification 

of a polymer.  The surface of the polymer, which can either contain free alkenes or free thiols, is reacted 
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with a thiol or alkene, respectively.
16

  A dramatic application of this technique was achieved by the 

surface modification of the non-polar polymer 1,2-polybutadiene (Figure 1.8).
17

  It was found that 

hydrothiolation of the pendant vinyl groups with hydrophilic thiols allowed for the hydrophilicity of the 

1,2-polybutadiene surface to be increased to the extent that it displayed ambiphilic properties.  These 

modified polymers are anticipated to have applications in drug delivery.  A similar strategy was used in a 

bio-orthogonal context by Waldman and co-workers to immobilizing proteins to surfaces.
18

  Waldman’s 

approach involved attaching an allyl-containing biotin derivative to calf-liver phosphatase enzymes, and 

then adhering the enzymes to a thiol-containing surface through a photoinduced thiol-ene coupling.  The 

degree of enzyme immobilization onto the surface could be tuned by varying the irradiation time.  

Saturation of the surface with enzyme was achieved in 10 minutes.  The activity of the enzyme was 

retained after immobilization, which serves as an excellent example of the bio-orthogonality of the thiol-

ene coupling reaction conditions. 

A less common alkene difunctionalizations involving thiyl radicals is the thiol-olefin cooxidation 

(Figure 1.9).  The thiol-ene co-oxidation process involves similar reaction conditions to the thiol-ene 

reaction, with the exception being that the reaction is carried out under aerobic conditions.  In this variant, 

triplet oxygen intercepts the 

carbon-centered radical 

generated by thiyl radical 

addition into the alkene.  After 

hydrogen atom abstraction, a 

hydroperoxide is formed.  Due to the reducing powers of the adjacent sulfide, the hydroperoxide is 

immediately reduced the alcohol with simultaneous oxidation of the sulfide to the sulfoxide.
14,19,20

  An 

oxysulfonylation, a similar variant to the thiol-olefin cooxidation reaction, was recently published.
21

  In 

this system, however, sulfonyl radicals generated from sulfinic acids are employed and an external 

reductant is required to reduce the hydroperoxide to the ketone.  The substrate scope is limited to 

activated olefins, such as styrenes and acrylates.  
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1.4b Phosphorus-Centered Radical Mediated Alkene Difunctionalizations 

 Like sulfur, phosphorus centered radicals are also capable of efficiently adding to alkenes, and a 

rich set of difunctionalization chemistry has stemmed from this property.  Radical chemistry with 

phosphorus is typically carried out using pentavalent radical precursors.  These can include both 

phosphorus(V) oxides and sulfides.  Radical methods stemming from the use of trivalent phosphorus 

precursors are less common.  The most common method for generating a phosphorus-centered radical 

involves hydrogen atom abstraction from a phosphorus hydride using a free-radical initiator or a 

photoinitiator.
22

  The electronic character of the phosphorus center has a dramatic effect on the 

phosphorus-hydrogen bond 

strength, as was illustrated by 

Parsons and coworkers through 

DFT calculations (Figure 1.10).
23

  

In general, phosphine sulfides have weaker P-H bond strengths than their oxide counterparts.  In addition, 

replacing phenyl substituents on the phosphorus atom with ethoxide ligands led to an increase in P-H 

bond strength for both phosphine oxides and sulfides.  In general, the rate of addition of alkenes increases 

as the P-H bond strength of the precursor increases.   

 The two main radical difunctionalization reactions developed for phosphorus-centered radical 

parallel those developed for sulfur: hydrophosphorylation and oxyphosphorylation.  

Hydrophosphorylation has been reported several times in various forms.
24

  Like hydrothiolation, the 

hydrophosphorylation of terminal alkenes proceeds with perfect anti-Markovnikov selectivity.  However, 

also like hydrothiolation, this selectivity erodes significantly for internal double bonds.
25

  An excellent 

example of hydrophosphorylation proceeding under very mild conditions was reported by Dondoni and 

coworkers (Figure 1.11).
26

  This system involves the hydrophosphorylation of alkenes bearing acetylated 

pyranoses using dimethyl phosphite.  Hydrophosphorylation was initiated using the photoinitiator 2,2-

dimethoxy-2-phenylacetophenone (DPAP) and UVA light.  The yields obtained ranged from 45 to 90%, 

with the majority falling in the 90’s.  Recently, Grubbs and co-worker
27

 developed an innovative 
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photochemical hydrophosphorylation procedure using triphenylphosphonium tetrafluoroborate as the 

phosphorus source.  This reaction is distinct from other phosphorus-based radical reactions because it 

proceeds through a phosphorus radical cation intermediate, rather than a neutral radical as is shown 

above.  Interestingly, the counterion has a significant effect on reactivity.  Triphenylphosphonium 

bromide failed to difunctionalize 4-

allyanisole and triphenylphosphonium 

hexafluorophosphate returned a severely 

diminished yield compared to that of the 

tetrafluoroborate analog (13 vs. 50% 

yield).  The reaction system is capable of 

functionalizing unactivated olefins in high yield (72 to 95% yield).  Activated alkenes, such as styrenes 

and acrylates, are absent from the substrate scope possibly as a result of thermoneutrality of the hydrogen 

atom transfer from the phosphonium salt to the stabilized carbon centered radical.  To demonstrate the 

utility of this method, the crude hydrophosphonation product was employed as a substrate in a Wittig 

reaction with p-tolualdehyde, and was found to return the olefinated product in high yield.  In addition to 

hydrophosphonylation reactions, phosphorus(V) hydrides can participate in oxyphosphorylation reactions 

(Figure 1.12).  Ji and co-worker
28

 developed such a system using diisopropyl phosphite and dioxygen as 

the oxygen source.  The products of this reaction are β-ketophosphonates, which are substrates for the 

Horner-Wadsworth-Emmons olefination reaction.  A mixed catalyst system consisting of copper(II) 

bromide and iron(III) bromide was required for reactivity.   These salts are presumably responsible for the 

oxidation events necessary to generate the phosphorus-centered radical, as well as the 

oxidation/dehydration of the intermediate 

alkyl hydroperoxide formed following the 

trapping of dioxygen to the ketone.  This 

method is applicable towards styrenes, and 

returns the corresponding β-ketophosphonates in good to moderate yields (52-84% yield).  However, 
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unactivated alkenes, such as octene, return low yields (26%).  This is a surprising finding considering the 

high yields obtained with unactivated alkene substrates in the hydrophosphonylation reaction. 

1.4c Nitrogen-Centered Radical Mediated Alkene Difunctionalizations 

 Alkene difunctionalizations utilizing nitrogen as one of the reaction components are of very high 

value.
29

  One of the obstacles to utilizing nitrogen-centered radicals in synthesis is the generation of the 

radical itself.  Unlike thiols (80 kcal/mol)
8
 and phosphorus hydrides (85-70 kcal/mol),

23
 which possess 

weak heteroatom-hydrogen bonds, the nitrogen-hydrogen bond in amines and amides is relatively strong 

(95-100 and 105-110 kcal/mol).
8
  Accordingly, the methods used to generate nitrogen-centered radicals 

vary greatly from those used for sulfur and phosphorus, which typically involve radical formation by 

abstraction of hydrogen from the parent thiol or phosphorus hydride.  Relative to sulfur and phosphorus, 

nitrogen is more prevalent in natural products, drugs, and synthetic building blocks.  Accordingly, a 

greater effort has been exerted towards developing nitrogen-based difunctionaliztion methodologies.  This 

is reflected in the greater variety of transformations currently available that employ nitrogen-centered 

radicals. 

 Hydroamination is an extremely important alkene monofunctionalization that has been studied 

extensively in the context of transition-metal-catalysis and lanthanide-metal-catalysis.  Problems 

associated with the use of metals can include harsh reaction conditions, including high temperatures or the 

use of strong bases, premature β-hydride elimination to deliver enamines rather than alkyl amines, and 

regioselectivity issues associated with competitive formation of the Markovnikov product vs. the anti-

Markovnikov product.
30

  The group of Armido Studer has developed a creative hydroamination method  

using N-aminated dihydropyridines (Figure 1.13), which function as both the source of the nitrogen-

centered radical and as a hydrogen atom donor.
31

  Notably, the method takes place at low temperatures 

and yields, in most cases, exclusively the anti-Markovnikov product.  The mechanism begins with 

abstraction of the hydrogen atom from the dihydropyridine by a thiyl radical (thiophenol functions as the 

polarity reversal catalyst).
32

  Aromatization of the dihydropyridine leads to homolytic scission of the weak 

nitrogen-nitrogen single bond to form the carbamoyl radical, which then adds into the alkene in an anti-
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Markovnikov fashion.  The resulting carbon-centered radical is reduced to the alkane by a fast hydrogen-

atom abstraction from thiophenol.  In the absence of the thiophenol polarity reversal catalyst, hydrogen 

atom-transfer would be expected to occur between the carbon-centered radical and the dihydropyridine C-

H bond, which is a kinetically slow process.
33

  Indeed, reactions lacking thiophenol proceeded in yields 

diminished by over 10%.  The substrate scope of the reaction includes unactivated alkenes (such as 

hexene and octene), enol ethers, and silyl enol ethers.  Yields range from 50 – 70%, with the highest 

yields being obtained using enol ethers as substrates.  

 The aminooxygenation reaction, particularly the Sharpless asymmetric aminohydroxylation, has 

found considerable use in natural product synthesis.
29

  Its utility has made aminooxygenation reactions an 

attractive target for radical methodology involving the addition of a nitrogen-centered radical into an 

alkene.  Oxyaminations, which involve an oxygen-centered radical adding into an alkene to produce the 

opposite regioisomers, will be discussed in the next section.  The first example of a radical 

aminooxygenation appeared in 2002 from the Gottlich group (Figure 1.14).
34

  This system depends on the 

cyclization of nitrogen-centered radicals derived from unsaturated O-benzoylhydroxylamines.  The 

generation of the radical is achieved by reduction of the nitrogen-oxygen bond using a copper(I) catalyst.  

During this process, a copper(II) salt containing a benzoate ligand is formed.  Exo cyclization of the 

nitrogen-centered radical generates a carbon-centered radical.  This radical is oxidized by the copper(II) 

salt with concomitant transfer of the benzoate group to the carbon atom to effect the aminooxygenation.  

The substrate scope is limited to the formation of pyrrolidines through 5-exo cyclizations.  The addition of 



 

 

12 

 

boron trifluoride diethyletherate is necessary for high yields. Its coordination to the benzoyl group of the 

substrate decreases the electron density of the nitrogen-oxygen bond, making it more susceptible to 

reduction by the copper(I) salt.  Furthermore, 

it is believed to coordinate to the aminyl 

radical, making it more electrophilic and 

more capable of adding into the alkene.  

More recently, Studer and co-worker 

developed an azidooxygenation procedure for 

alkenes (Figure 1.14).
35

  The reaction is 

versatile in substrate scope, with a variety of 

alkenes being capable of functioning as 

substrates.  These include styrenes, enol ethers, as well as unactivated alkenes (such as octene).  The 

reaction is made possible by a redox event occurring between the sodium salt of TEMPO (a reductant) 

and an azidoiodine(III) reagent (an oxidant).  Following the redox event, an azido radical and a TEMPO 

radical are formed.  The azido radical then adds into the alkene in an anti-Markovnikov fashion, and 

TEMPO recombines with the carbon-centered radical formed following addition.  Post-reaction 

modifications that can be made to the azide and alkoxyamine functionality within the molecule include a 

[3+2] cycloaddition with the azide group with phenylacetylene to produce a triazole, reduction of the 

azide to the amine (Staudinger reaction), reduction of the alkoxyamine to the alcohol, and oxidation of the 

alkoxyamine to the ketone.  In a similar study, the Han group demonstrated that intramolecular 

aminohydroxylations can be performed using the radicals derived from hydrazones and the TEMPO 

radical (Figure 1.14).
36

  Like the radical chemistry derived from thiols and phosphorus hydrides, the 

hydrazonyl radical is formed by abstraction of the N-H bond from the hydrazone, presumably by 

TEMPO.  A variety of pyrazolines were synthesized using this method via 5-exo cyclizations onto β,γ-

unsaturated hydrazones.  Substrates containing an endocyclic alkene produce aminooxygenated products 

with high trans diastereoselectivity.  However, attempts to carry out a 6-exo cyclization onto a γ,δ-
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unsaturated hydrazone led to undesired byproduct formation stemming from 1,5-hydrogen atom 

abstraction outcompeting the desired 6-exo cyclization.   

Like vicinal amino alcohols, vicinal diamines are important structural motifs in natural products, 

medicinal agents, and chiral ligands for catalysis.   Efforts to extend the Sharpless strategy of employing 

osmium(VIII) compounds towards the 

asymmetric aminofunctionalization of 

alkenes were hindered by the bis-imido 

osmium(VIII) complexes inability to 

bind to the Cinchona alkaloids 

previously used for the Sharpless 

asymmetric dihydroxylation and aminohydroxylation.  Furthermore, the osmaimidazolidines formed upon 

reaction of a bis-imido osmium(VIII) complex are resistant to hydrolysis, making the development of a 

system catalytic in osmium difficult (Figure 1.15).  Metal hydrides, such lithium aluminum hydride or 

sodium borohydride, can cleave the osmaimidazolidine ring to free the 1,2-diamine, but the harshness of 

these reagents precludes their use in a setting where functionality vulnerable to reduction may be 

present.
37

  Considerable effort has also been invested in developing diamination procedures using other 

metals, namely palladium, copper, nickel, and gold.
38

  The difficulties associated with performing 

diamination reactions with transition metals has also spurred the development of diamination reactions 

proceeding through a radical mechanism.  The 

Han group successfully applied their hydrazone 

radical based aminooxygenation methodology 

towards diamination by substituting TEMPO 

with the nitrogen-based radical trap diisopropyl 

azodicarboxylate (DIAD).
36

  This diamination 

method faces the same limitations of the 

aminooxygenation method, namely that 1,5-hydrogen atom abstraction of the allylic hydrogen atom 
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outcompetes 6-exo cyclization.  A similar diamination methodology was simultaneously disclosed by the 

Loh group (Figure 1.16).
39

  Loh group identified that acetic acid was a key additive that allowed for the 

reaction to be carried out at lower temperatures than those of Han (40 
ο
C rather than 100 

ο
C) and that di-

tert-butyl azodicarboxylate (DTAD) could be used in place of DIAD.  The use of DTAD provides for a 

more facile removal of the carbamate groups in the hydrazine product by treatment with trifluoracetic 

acid.  Both the Han and Loh groups reported that 1,2-disubstituted alkenes can be diaminated with high 

trans selectivity.  More recently, the Zhang group disclosed a copper catalyzed diamination of styrenes 

based upon the generation of the bisphenylsulfonylamidyl radical from N-fluorobenzenesulfonamide 

(NFSI) (Figure 1.17).
40

  The nitrile solvent serves as the source of the source of the nitrogen atom 

attached to the benzylic carbon.  The yields obtained vary from good to excellent (50% to 97% yield).  

Curiously, electron poor styrenes return higher yields than electron rich styrenes, despite being 

electronically mismatched with the electron poor bisphenylsulfonylamidyl radical.  Studer and co-workers 

developed a similar aminoazidation protocol using a system employing NFSI and trimethylsilyl azide as 

the nitrogen sources (Figure 1.17).
41

  Both the Zhang and Studer methods are postulated to proceed 

through the same mechanism.  The bis-sulfonylamidyl radical is proposed to be generated by the 

reduction of the N-F bond of NFSI using 

the copper(I) catalyst.  The radical trap is 

transferred to the substrate through via 

reductive elimination from an 

intermediate alkyl copper(III) species.  

Alternatively, the radical trap may be 

transferred to the substrate via a polar 

Ritter type reaction following oxidation of 

the carbon-centered radical to the 

carbocation.  Interestingly, the aminoazidation of β-methyl styrene using Studer’s method provided the 

trans diaminated product in high diastereoselectivity (98:2 d.r.), whereas the diamination of the same 
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substrate with the aforementioned Zhang method provided a 1:1 mixture of diastereomers of 

aminoamidated product.  This comparison suggests that the two methods may be operating through 

different mechanisms.  

1.4d Oxygen-Centered Radical-Mediated Alkene Difunctionalization 

Being the most electronegative of the atoms so far considered, oxygen-centered radicals, such as 

hydroxyl and alkoxyl radicals, are the most reactive and most difficult radical species to control.  The 

application of alkoxyl radicals to synthesis is dominated by the threat of substrate decomposition through 

unintended hydrogen atom abstraction from the substrate or by β-fragmentation to form a carbonyl group 

and a carbon-centered radical (see Figure 1.3).  Reversion of the alkoxyl radical to the parent OH 

compound through hydrogen atom abstraction from the solvent is another problem that reduces reaction 

efficiency.
42

   Another obstacle to the application of oxygen-centered radicals is the difficulty in 

producing them.  The strong oxygen-hydrogen bond strength of the alcohol or the carboxylic acid (105 

kcal/mol)
8
 rules out hydrogen-atom abstraction as a means of generating the radical.  Precursors with 

weak oxygen-heteroatom bonds, such as alkyl hypochlorites, hyponitrates, and hyponitrites, are capable 

of generating the oxygen-centered radical, although their inherent instability also makes them difficult to 

synthesize and unreliable to use.  Thiohydroxamates and similar derivatives have seen success as sources 

of oxygen-centered radicals, and address some of the aforementioned problems.  However, these 

substrates require a stoichiometric amount of tin in order to generate the radical.
42

 The application of 

alkoxyl radicals towards reactions involving addition of the radical into the alkene are extremely limited 

by the fact that intramolecular 

1,5-hydrogen atom abstraction 

and β-fragmentation are faster 

processes than radical 

addition.
43

  Modification of the substrate, such as limiting the reaction to a 5-exo cyclization
44

 or by fully 

substituting the allylic carbon atom, can help to coerce the oxygen centered radical into cyclizing.  The 

Sammis group took an alternative approach to gaining control over alkoxy radical cyclizations (Figure 
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1.18).
45

  They hypothesized that by matching the electronics of an electron rich silyl enol ether to the 

electron poor alkoxyl radical, they could increase the rate of cyclization relative to undesired 1,5-

hydrogen atom abstraction or β-fragmentation pathways.  In practice, this theory is successful.  In 

attempting a 6-exo cyclization with a silyl enol ether, an 8:1 preference for cyclization to the 

tetrahydropyran over abstraction of the allylic hydrogen atoms is observed.  The olefin analog of this 

substrate demonstrates a 20-fold preference for abstraction over cyclization.  An alternative strategy for 

utilizing oxygen-centered radicals is altering its chemical behavior through substitution on the oxygen 

atom.  Nitroxyl radicals, which are oxygen-centered radicals bound to a nitrogen atom, display an 

attenuated reactivity profile relative to alkoxyl radicals due to the stabilization gained by resonance 

delocalization between the unpaired electron on the oxygen atom and the lone pair on the nitrogen atom.
46

  

Early evidence for the synthetic utility of nitroxyl radicals was reported by the Perkins group in the early 

nineties.
47

  This group was studying the difference in effective molarity values between intramolecular 

hydrogen atom abstraction from alkanes and intramolecular addition into alkenes. N-tertbutyl amidoxyl 

radicals derived from the corresponding hydroxamic acids were the radical species employed for this 

study.  During the preparation of a stilbene derivative, an autooxidation event occurred whereby the 

unsaturated amidxoyl radical cyclized and trapped molecular oxygen present in the air to yield an alkyl 

hydroperoxide (see Figure 1.5).  This event is effectively a dioxygenation of the alkene. Capitalizing on 

this discovery, our group developed a suite of intramolecular alkene difunctionalizations based on the 

unique ability of hydroxamic acids to add into alkenes (Figure 1.19).   The first of these methods was an 

intramolecular dioxygenation of alkenes employing unsaturated N-phenyl hydroxamic acids.
48

  Both 5-

exo and 6-exo cyclizations can be carried out efficiently to yield the deoxygenated products.  Notably, no 

by-products associated with 1,5-hydrogen atom abstraction are formed.  Furthermore, endocyclic alkenes 

react to provide the trans dioxygenation products in good d.r. (up to 5:1 d.r.).  These results complement 

the cis dihydroxylation products that are typically obtained using osmium catalyzed methods.   The initial 

products of the dioxygenation reaction are alkyl hydroperoxides.  These products can be isolated or 

reduced to the alcohols upon completion of the reaction by reduction with triphenylphosphine.  Cleavage 
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of the nitrogen-oxygen bond of the isoxazoline products can be achieved by reduction of the bond with 

zinc dust.  An 

extension of this 

methodology was 

achieved by utilizing 

diisopropyl 

azodicarboxylate 

(DIAD) as a radical 

trap to effect an oxyamination.
49

 Both 5-exo and 6-exo cyclizations could be achieved.  Like the 

dioxygenation method, endocyclic alkenes yield difunctionalized products with high trans selectivity 

(typically >95:5 d.r.).  A third method employing this difunctionalization strategy was achieved using 

carbon-based radical traps.
50

  Three carbooxygenation variants were disclosed.  Oxyallylations could be 

achieved using allyl sulfone radical traps, while oxycyanations were accomplished using toluenesulfonyl 

cyanide.  Oxyacylations could be carried out over two steps using phenylsulfonyl oxime ethers.   

A functional group related to hydroxamic acids, the oxime, has recently been shown by other 

groups to be capable of carrying out similar difunctionalizations (Figure 1.20).  The Han group recently 

disclosed an oxime mediated intramolecular dioxygenation and oxyamination method using TEMPO and 

diethylazodicarboxylate (DEAD) as oxygen and nitrogen based radical traps, respectively.
51

  Cyclizations 

proceeding through the 5-exo 

cyclization manifold proceed in 

good yields (77 – 90% yield) 

and, notably, like the 

hydroxamic acid methods, the 

difunctionalization products of 

endocyclic alkene substrates 

yield products with high trans selectivity.  Oximes, however, lack the carbonyl group of hydroxamic 
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acids.  The carbonyl group serves to remove spin density from the nitrogen atom.
12

  With oximes, spin 

density is approximately evenly distributed between the nitrogen atom and the oxygen atom.
51

  When γ,δ-

unsaturated oximes are employed as substrates, the 5-exo cyclization stemming from addition of the 

nitrogen-centered radical cation resonance structure of the oxime into the alkene outcompetes the 6-exo 

cyclization of the oxygen-centered radical resonance structure.  The products of this form of the reaction 

are cyclic nitrones.  The use of TEMPO as the radical trap provides for the formation of formal 

aminooxygenation products, while the use of DEAD yields diamination products.  Very recently, an 

extension of this oxime radical methodology was published by the Wang group in the form of an 

intramolecular oxyazidation procedure for unsaturated oximes.
52

  Azidotrimethylsilane was utilized as the 

nitrogen-based radical trap, which provides for more convenient post-reaction modifications.  However, 

only 5-exo cyclization substrates were reported.    

 In considering the strengths and weaknesses of competing alkene difunctionalization 

methodologies in the literature, we identified several improvements that could enhance the utility of our 

hydroxamic acid based methods.  The first area was the development of an intermolecular 

difunctionalization protocol.  An intermolecular oxyfunctionalization of alkenes would be an 

unquestionably useful extension of the intramolecular versions.  Due to the rapid rate of dioxygen 

recombining with carbon-centered radicals, as well as the well-established utility of dihydroxylated 

organic compounds, we selected the dioxygenation reaction as our first target for an intermolecular 

method.  The second area of improvement would be to examine the capabilities of a hydroxamic acid to 

function as a reducing agent for carbon-centered radicals.  With a weak OH bond strength (approximately 

80 kcal/mol), we hypothesized that the hydroxamic acid itself could function as a hydrogen atom donor in 

a difunctionalization reaction and reduce a carbon-centered radical to the alkane.  The realization of this 

concept would lead to a formal alkene hydration reaction, which is unprecedented in radical chemistry. 
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CHAPTER 2:  DEVELOPMENT OF AN INTERMOLECULAR ALKENE DIOXYGENATION 

 

2.1 Introduction 

Before developing an intermolecular variant of a hydroxamic acid mediated alkene 

dioxygenation, we were conscious of two main challenges that we would face in pursuing this goal.  The 

first difficulty was a lack of precedent in the synthetic literature for general difunctionalization 

methodologies of alkenes based on the addition of nitroxyl radicals into alkenes.  Only isolated examples 

of this type of radical reactivity have been 

reported (Figure 2.1).   One such report 

came from Perkins, who reported that 

isolated amidoxyl radicals would add into 

activated alkenes, including styrenes and 

norbornene, with subsequent 

recombination of the newly formed 

carbon-centered radical with a second 

molecule of amidoxyl radical.
1
   Notably, 

however, allylic oxidation stemming from 

hydrogen atom abstraction was reported for β-methyl styrene.  The highly reactive phthalamido-N-oxyl 

(PINO) derived from N-hydroxyphthalimide (NHPI) has also been reported to be capable of addition into 

alkenes.  Masui and co-workers developed an alkene epoxidation reaction utilizing a manganese(III) 

porphyrin catalyst, NHPI, and a sacrificial alkene.
2
  They determined that the hydroperoxide formed 

following PINO addition into the alkene and trapping of the carbon-centered radical with molecular 

oxygen oxidizes Mn
3+

 to the Mn
5+

 oxo species, which is responsible for the epoxidation of the alkene.   

This conclusion was based on the isolation of the corresponding dioxygenated by-products following the 
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completion of the epoxidation reaction.  Ishii and co-workers witnessed a similar dioxygenation of methyl 

methacrylate during the development of their cobalt and NHPI co-catalyzed oxyalkylation method.
3
  

These precedents for the PINO radical adding into alkenes is an important precedent because it 

demonstrated the feasibility of our intermolecular dioxygenation strategy.  However, the PINO radical is 

too reactive for general use in synthesis.  Its ability to abstract 

hydrogen atoms from hydrocarbons has been well documented 

and exploited.
4
  The development of a general alkene 

dioxygenation reaction would require a less reactive radical 

than PINO, where radical addition into the alkene would 

outcompete hydrogen atom abstraction.  The second difficulty 

to overcome would be the decrease in entropy associated with 

an intermolecular reaction relative to its intramolecular version, and the resulting drop in reaction rate 

(Figure 2.2).  The magnitude of this challenge is best demonstrated as a ratio of the relative rates between 

the two processes.  The kinetics work done by the Perkins group determined that the intramolecular 

addition of a N-tert-butyl amidoxyl radical onto an alkene is 500,000 times faster than the intermolecular 

version of the process.
5 
  

2.2 Creating a Hydroxamic Acid Reagent Capable of Intermolecular Reactivity 

 Our initial attempts to 

perform intermolecular alkene 

dioxygenations drew upon the 

experience that we gained during the 

development of the intramolecular 

variant. The amidoxyl radicals 

generated from N-phenyl hydroxamic 

acids with alkyl substitutions on the 

carbonyl carbon had proven to be capable of adding into alkenes.  Accordingly, the first successful 
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derivative that was tested was N-phenyl acetyl hydroxamic acid 1  (Figure 2.3).   Upon reaction with α-

methyl styrene under an atmosphere of oxygen gas, the desired hydroperoxide was formed in low yield 

(30%).  Other derivatives, such as benzoyl or trifluoroacetyl N-phenyl hydroxamic acids failed to yield 

product.  During the dioxygen reaction employing derivative 1, O-acetyl-N-phenyl hydroxylamine (3) 

was formed as a significant byproduct.  The formation of this byproduct likely occurs via decomposition 

of an oxaziridine intermediate formed following nucleophilic attack of the hydroxamic acid OH group 

upon the carbonyl carbon.
6
  This problem was efficiently solved by utilizing a N-hydroxy carbamate 

reagent (4) rather than a hydroxamic acid for the 

difunctionalization.  Under the same conditions, 

reagent 4 doubled the yield of the desired 

dioxygenated product, and did not undergo 

rearrangement.  The rationale for the lack of the 

formation of the rearrangement product is the 

decreased electrophilicity of the carbonyl carbon of the N-hydroxy carbamate relative to that of the 

hydroxamic acid.  This reduction of electrophilicity is attributed to the cross-conjugation that is present in 

the carbamate derivative due to the ester portion of the molecule. 

2.3 Dioxygenation Reaction Conditions and Post-Reaction Workup Options 

 The fully optimized conditions for the dioxygenation are depicted in Figure 2.4.  Changes from 

the initial conditions shown in Figure 2.3 include a decrease in reaction temperature, initiator loading 

(DLP = dilauroyl peroxide), as well as a lower alkene stoichiometry.  Esters proved to be the most 
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effective solvents.  n-Butyl acetate was chosen over the more common ethyl acetate due to its decreased 

volatility at the reaction temperature.  The removal of the initiator (DLP) (Entry 2) led to an expected 

increase in reaction time (8 hours) with no change in yield.  The formation of amidoxyl radicals in the 

absence of an added initiator is attributed to auto-oxidation of the N-hydroxy carbamate from trace singlet 

oxygen present in the reaction vessel.  Reacting N-hydroxy carbamate 4 with an equimolar amount of 

alkene resulted in a significantly longer reaction time and the yield being decreased by nearly 50% (Entry 

3).  The decreased yield could stem 

from the loss of the styrene substrate 

through polymerization.  The use of 

one equivalent of alkene and an 

excess of the N-hydroxy carbamate 

reagent led to a lower, but acceptable 

yield of 74% (Entry 4).  These 

conditions would be useful if the 

alkene substrate was valuable or in 

short supply. 

 Because molecular oxygen is 

incorporated into the molecule, the 

products of the dioxygenation 

reaction are alkyl hydroperoxides.  

The various post-dioxygenation 

workup options are listed in Figure 

2.5.  Hydroperoxides can be reduced 

to the alcohol under mild conditions 

through the addition of dimethyl 
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sulfide.  The nitrogen-oxygen bond of the resulting hydroxamate can be cleaved using zinc dust or 

through hydrogenation.  Alternatively, the diol can be immediately accessed in a one pot procedure from 

the crude hydroperoxide by treating it with zinc dust.  The advantage of the dimethyl sulfide reduction 

procedure is that it allows for the chemical differentiation of the two hydroxyl groups of the diol.  For 

example, further synthetic steps could be carried on the alcohol group while the alcohol protected as the 

hydroxamate ester is left untouched.  When the protected alcohol is needed, it can be accessed by 

cleavage of the nitrogen-oxygen bond.  The chemical differentiation of the diol functionality provided by 

this method is an important advantage over metal catalyzed methods, which typically immediately deliver 

the diol as the product.  Selective functionalization of one of the alcohols of this diol product can pose a 

significant challenge. 

2.4 Substrate Scope of the Intermolecular Dioxygenation 

Styrenes are excellent candidates for dioxygenation (Figure 2.6).  The yields generally remain 

constant regardless of the electronic character of the styrene.  The reaction rates, however, vary drastically 

depending on the electronics of the substrate (Entries 2-5).  Electron rich styrenes tend to react faster than 

electron poor styrenes.  To explore this observation further, a competition experiment was carried out, 

whereby equimolar amounts of an 

electron rich styrene (4-methoxy 

styrene) and an electron poor 

styrene (4-trifluoromethyl styrene) 

were allowed to react with N-

hydroxy carbamate 4 in the same reaction vessel (Figure 2.7).  Based on the crude proton NMR, 4 

showed close to a three-fold preference for reaction with 4-methoxy styrene, indicating that the amidoxyl 

radical derived from 4 is electron deficient in nature.  Substitution on the alkene portion of the styrene is 

well tolerated also.  Alkyl substitution on either the α (Entries 6-8 and 11) or β positions of the alkene 

leads to no erosion of the yield.  Interestingly, β-methyl styrene (Entry 9) is dioxygenated with a 4 : 1 

diastereoselectivity favoring the trans diastereomer.  This contrasts with transition-metal-catalyzed 
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dihydroxylation methods, which deliver the cis dihydroxylated product.  Considering that the act of a 

carbon-centered radical capturing oxygen is an essentially barrier-less process, the observation of a 

diastereoselectivity is very surprising.  A possible explanation for this phenomenon is that the 

intermediate formed following amidoxyl addition into the alkene adopts a conformation where one face of 

the benzylic radical is sterically shielded by the hydroxamate portion of the molecule.  In addition to 

disubstituted styrenes, trisubstituted alkenes are viable substrates (Entry 12).  Tetrasubstituted styrenes, 

however, fail to react.  To demonstrate the functional group tolerance of this method, a styrene with an 

appended, unprotected alcohol group was subjected to the reaction conditions (Entry 8).  This substrate is 

dioxygenated without any detectable 

oxidation of the alcohol group.  This 

functional group would not be compatible 

with transition-metal-catalyzed 

dihydroxylation methods, which typically 

employ strong oxidants that could oxidize 

the alcohol.  Furthermore, most of the 

styrene substrates possess benzylic and/or 

allylic C-H bonds.  No by-products 

resulting from hydrogen atom abstraction 

and subsequent oxidation were observed. 

Non-styrenyl olefins are capable of undergoing dioxygenation as well (Figure 2.8).  Vinyl 

heterocycles are viable substrates(Entries 1 and 2).  Electron poor alkenes, such as acrylates (Entries 3 

and 4) also participate in the dioxygenation reaction. The lower yields for the vinyl furan substrate (2) and 

methacrylic acid were likely a result of polymerization of the highly reactive monomer substrates.   

Dienes, another class of activated olefins, typically give mixtures of the 1,2 and 1,4 dioxygenated 

products (Figure 2.9).  The 1,2-dioxygenated products are the favored isomers for isoprene and 2,3-

dimehyl-1,3-butadiene (Entries 1and 2).  This selectivity is likely a result of the greater stability of the 
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tertiary allylic carbon-centered radical intermediate that gives rise to the 1,2 product relative to the shorter 

lived and less stable primary carbon-centered radical intermediate that yields the 1,4 isomer.  This 

hypothesis is consistent with the results obtained from Entry 3.  This diene substrate yields exclusively 

the 1,4-dioxygenated product, since this 

product stems from a tertiary allylic 

carbon centered radical.  The unobserved 

1,2-addition product would have been 

formed from a less stable secondary allylic 

carbon-centered radical.  Enynes (Entry 4) 

show complete preference for addition into 

the alkene rather than the alkyne.  Alkynes 

are unreactive due to the instability of the 

vinyl radical that would be formed 

following addition.  The selectivity for 

alkenes over alkynes displayed by this 

method is another advantage that would 

likely not be observed using metal-catalyzed methods.   

Unfortunately, unactivated alkenes, such as octene, are not suitable substrates for this method due 

to the low rates of nitroxyl radical addition.
7
  No dioxygenation products were observed following 

reaction of unactived alkenes under the standard conditions.  The strained alkene norbornene is the closest 

chemical relative to unactivated alkenes that can be dioxygenated (see Figure 2.8, Entry 2).  Exo 

addition of the amidoxyl radical is favored,
8
 and oxygen trapping occurs with essentially no 

diastereoselectivity. 
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The mechanism for dioxygenation parallels that which was reported for the intramolecular 

method (Figure 2.10).  The amidoxyl radical (28) is formed via oxidation of 4 by either oxygen or 

initiator.  The amidoxyl radical (28) adds into the alkene to form a benzylic radical species (29), which is 

trapped by molecular oxygen to give a hydroperoxyl radical species (30).  The hydroperoxyl radical 

abstracts a hydrogen atom from another molecule of starting material to yield the initial hydroperoxide 

(31) intermediate as well as propagate the chain reaction.  The hydroperoxide can be reduced to the 

alcohol (8) using dimethyl sulfide. 

2.5 Preliminary Results for an Asymmetric Alkene Dioxygenation 

 The next stage of development for the intermolecular dioxygenation method was to investigate 

the possibility of carrying out the reaction asymmetrically.  Due to the extremely fast rate of 

recombination between molecular oxygen and carbon-centered radicals, we did not anticipate being able 

to control the stereochemistry of the carbon atom at which this trapping event takes place.  However, the 

addition step presented an opportunity to 

control the stereochemistry of the carbon 

atom which receives the oxygen atom of the 

amidoxyl radical. 

 Our studies commenced with an 

attempt to observe an accelerated rate of the 

reaction (Figure 2.11).  The observation that 

the use of acetic acid as a solvent drove the 
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dioxygenation reaction to completion 9 hours faster than when n-butyl acetate was used as solvent 

prompted us to investigate Brønsted acids as potential catalysts.  Indeed, the addition of 20 mol% various 

sulfonamide-based Brønsted acids to the reaction did lead to an enhanced rate.  We postulate that the 

origin of the enhanced rate involved increased electrophilicity of the amidoxyl radical as a result of 

protonation or hydrogen bonding with the carbonyl carbon of 4.  This increased electrophilicity is 

expected to correlate to an increase in reactivity.  According to Figure 2.11, the reaction time generally 

decreases as the pKa of the sulfonamide decreases.  Interestingly, no difference in reaction time was 

observed between benzenesulfonamide and trifluoromethanesulfonamide, despite the 6 order of 

magnitude difference in acidity between the two.  The addition of sulfonamide derivative, N,N-

dimethylbenzenesulfonamide, does not show an increase in reaction rate, which provides further evidence 

that hydrogen-bond catalysis was occurring. 

Asymmetric catalysis using hydrogen-bond donors has been explored extensively.
9
  With our 

aforementioned results in hand, we 

sought to capitalize on the plethora of 

successful hydrogen-bond donor 

catalysts available.  Various catalysts 

were screened, and a summary of the 

conditions and catalysts tested is listed 

in Figure 2.12.  Unfortunately, all 

attempts led to racemic products.  A 

likely reason for the failure of the 

reaction is non-specific binding of the 

chosen catalysts to 4.  A variety of 

substrate-catalyst binding structures can be envisioned, with some even placing the catalyst’s chirality far 

away from the OH portion of the molecule where the reaction takes place.  Successful applications of 

asymmetric hydrogen-bond donor catalysis typically involve multiple non-covalent attractions between 
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the catalyst and the substrate(s).  This 

serves to create a rigid, ordered 

transition state that can effectively 

transfer the chiral information of the 

catalyst into the substrates.
10

  The 

inability of 4 to participate in multiple 

hydrogen-bonds with the catalyst does not provide for an ordered transition state suitable for transfer of 

chirality, and is the likely reason for the failure of this class of catalyst.                

Our next attempt at performing this reaction asymmetrically involved the use of chiral Lewis 

acids (Figure 2.13).  Hydroxamic acids are known to chelate metal cations.
11

  We hypothesized that the 

amidoxyl radicals formed from hydroxamic acids could also chelate to a Lewis acid.  The enhanced 

electrophilicity of the amidoxyl radical provided by chelation to the metal cation was expected to translate 

into greater reactivity and faster addition rates relative to the background, uncatalyzed addition of 

uncomplexed amidoxyl radicals.  The chiral ligand bound to the Lewis acid could then sterically influence 

the approach of the alkene in such a way that facial selectivity during the addition step could be achieved.  

The representative results for this study are listed in Figure 2.14.  The highest yields and 

enantioselectivities were obtained by using copper(II) triflate and bis-oxazoline ligands.  The use of 

alternative counteranions 

on copper (Cl, Br, OAc, 

SbF6) led to racemic 

product.  Other metals, 

such as zinc(II), iron(II), 

Mn(III), or Mg(II), either 

did not proceed to 

completion or returned 

racemic product.  Other classes of ligands tested included chiral diamines, pyridyl bisoxazolines, and 
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salen ligands.  N-hydroxy carbamate 4 proved to be an inferior reagent to NHPI, which typically returned 

higher yields and  

enantioselectivities.  A likely explanation for the low yields is decomposition of the hydroperoxide 

product by the catalyst.  A by-product typically observed in these reactions was benzophenone.  A 

possible decomposition pathway is outline in Figure 2.15.  Following chelation of the hydroperoxide  

 

product with copper, the complex degrades with formation of a copper oxide species, benzophenone, and 

an O-amidated acetaldehyde derivative.  The formation of the copper oxide presumably removes the 

ability of the catalyst to bind the chiral ligands, while the formation of the highly electrophilic 

acetaldehyde would consume the nucleophilic hydroperoxide product as well as the hydroxamic acid 

starting material, resulting in low enantioselectivities and yields, respectively.  The identification of this 

decomposition pathway raised concerns that a kinetic resolution operating through this pathway could be 

the origin of the enantioselectivities (Figure 2.16).  Hypothetically, if the hydroperoxide product was 

actually being formed racemically, the chiral catalyst could be decomposing one enantiomer faster than 

the other.  This would lead to an enrichment in the enantiomer which decomposes slower. To test this 

hypothesis, the hydroperoxide in question was synthesized racemically, isolated, and exposed to a 

copper(II) bis-oxazoline complex for one hour (the typical reaction time observed for the dioxygenation 

reactions).  The remaining hydroperoxide was isolated, and found to be racemic.  This control experiment 

suggests that the decomposition pathway is not the origin of the observed enantioselectivity. 
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2.6 Conclusions 

 The lack of a general method for nitroxyl radical mediated, intermolecular dioxygenation was 

addressed upon the completion of this work.  Proceeding in high yields and under mild conditions using 

inexpensive oxygen gas as an oxygen atom source, this method is an attractive alternative to metal-

catalyzed dioxygenations.  In addition, proof-of-concept was demonstrated for an asymmetric variant of 

the reaction. 
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CHAPTER 3:  HYDROXAMIC ACIC-MEDIATED FORMAL ALKENE HYDRATION 

 

3.1 Introduction 

 

 The hydrofunctionalization of an alkene delivers both a heteroatom and a hydrogen atom to the 

two carbon atoms of an alkene.  

This reaction has been applied 

extensively in a variety of 

transformations in the context of 

transition-metal-catalysis.
1
  In 

addition, effective radical alkene 

hydrofunctionalizations have been developed using sulfur, phosphorus, and nitrogen-centered radicals 

(see Chapter 1).  However, no analogous free-radical hydration using oxygen-centered radicals has been 

developed.
2
  We hypothesized that, due to the weak homolytic bond strength of their OH bond, 

hydroxamic acids could function as a hydrogen atom donor and reduce carbon-centered radicals to the 

alkane (Figure 3.1).  This capability, when coupled with the ability of amidoxyl radicals to add into 

alkenes, would provide for a formal free-radical alkene hydration where the hydroxamic acid acts as both 

as the oxygen-atom source as well as the hydrogen-atom source.  In addition, by tethering two alkenes to 

a hydroxamic acid, a radical C-O/C-C/C-H bond-forming cascade could be carried out, allowing for the 

rapid construction of carbocycles.   

3.2 Initial Alkene Hydration Studies 

 Proof of concept for the claimed reaction was demonstrated using unsaturated hydroxamic acid 1, 

and the initial hydrofunctionalization studies are shown in Figure 3.2.  By heating this substrate in 

dichloroethane in the presence of DLP, the formal hydration product is obtained in moderate yield after 
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16 hours with incomplete conversion (80%, Entry 2).  Interestingly, the reaction still takes place in the 

absence of DLP initiator (Entry 3).   

The formation of amidoxyl radicals in 

an oxygen-free environment in the 

absence of added initiator is attributed 

to trace oxidation of the hydroxamic 

acid during exposure to the 

atmosphere during synthesis and 

purification.  In an attempt to raise the 

yield and conversion, various hydrogen atom donors were added to the reaction, including silanes, thiols, 

and catechols (Entries 3-5).  N-hydroxy carbamate 3 was also tested as a possible hydrogen atom source, 

and proved to be superior to all other sources tested. Including a substoichiometric amount of 3 in the 

reaction boosted the yield to 90% with complete conversion (Entry 1).  With the optimized conditions in 

hand, we sought to next investigate the scope of this reaction.  

3.3  Substrate Scope of Formal Alkene Hydration 

 A variety of unsaturated hydroxamic acids were synthesized and subjected to the optimized 

reaction conditions (Figure 3.3).  Both 5-exo and 6-exo cyclization substrates are amenable for hydration.  

Substrates containing endocyclic and exocyclic alkenes are also excellent substrates, delivering the cis 

fused ring products in high yield (Entries 2 and 3).  Substrates which undergo 5-exo cyclizations and 

possess 1, 1-alkene disubstitution proceed rapidly, and do not require the addition of an external hydrogen 

atom source (Entries 3 and 4).  This alkene substitution pattern was employed to enhance the rate of   



37 

 

the slower 6-exo cyclization substrates.  γ, δ- unsaturated hydroxamic acid 9, which does not possess this 

substitution pattern, only delivered a 32% 

yield with 43% conversion after 42 hours, 

even in the presence of an excess of 3.  

However, γ, δ- unsaturated 1,1-disubstituted 

substrate 11 reacted to completion in nearly 

the same amount of time with over twice the 

yield.  For every substrate, the hydrated 

product is obtained as a single regioisomer, 

due to the relative rates of the two possible 

cyclization modes (i.e. fast 5-exo vs. slow 6-

endo).  This result contrasts with metal-

catalyzed hydration processes, including the 

Brown hydroboration, which often struggle 

to obtain complete regioselectivity for the 

hydrated product.
3
 

3.4 Extension to Radical Cascade 

Cyclizations 

 In adapting the hydration 

methodology to a carbocyclization process, several adaptions to the procedure were necessary.  The 

primary obstacle to developing the radical cascade cyclization was premature reduction of the carbon-

centered radical formed following amidoxyl radical addition.  To reduce the formation of by-products 

resulting from premature hydrogen atom abstraction, the reaction was carried out a lower concentration 

and no external hydrogen atom source was added.  In addition, because the hydration reaction had shown 

depressed rates in aromatic solvents, the solvent was switched from dichloroethane to benzene.    
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 The hydroxamic acid substrates in Entries 1-3 of Figure 3.4 undergo two sequential 5-exo-trig 

cyclizations to form cyclopentane products.  Hydroxamic acid 20 in Entry 4 contains an alkyne, and 

undergoes a 5-exo-trig; 5-exo-dig cascade 

to produce a cyclopentane ring with an 

exocyclic alkene. Substrates which could 

undergo 5-exo; 6-exo cyclizations (not 

shown) did produce cyclohexane 

products.  However, a significant amount 

of a variety of inseparable, unidentified 

by-products were present.  These by-

products are presumably formed by the 

competing 1,5-hydrogen atom abstraction 

of the allylic hydrogen atoms instead of 

the desired carbon-carbon bond forming 

cyclization step.   

The stereochemistry at the ring junction for each of the cyclopentenyl products was determined to 

be cis.  The stereoselectivity of the amidoxyl radical addition step can be rationalized by considering the 

mechanism of the reaction (Figure 3.5).  Following addition of the amidoxyl radical into the first alkene, 

the resulting carbon-centered radical can either be oriented in a trans (23) or cis (24) relationship relative 

to the second alkene.  Only the cis isomer is capable of undergoing the second cyclization to form the 

cyclopentane ring (25).  The overall diastereoselectivity of the reaction, however, is modest, due a lack of 

alkene facial selectivity during the carbocyclization step. 
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3.5 Post-Reaction Elaboration of Products 

 The nitrogen-oxygen bond of the isoxazolidinone product can be reduced under mild conditions 

through palladium catalyzed hydrogenolysis (Figure 3.6).  The reduction procedure used for the 

dioxygenation methodologies, which involved using zinc as a reductant, was not used because it required 

extended reaction times for this class of products.  Hydration product 9 and cascade cyclization product 

19 were reduced to afford the cyclohexanol (28) and hydrindane (27) derivatives, respectively. 

3.6 Proof-of-Concept for an Intermolecular Alkene Hydration 

 An intermolecular variant of the hydration reaction would be an extremely useful extension of 

this methodology.  The hydration of 

terminal olefins using hydroxamic acids 

would be expected to proceed 

regioselectively to form the anti-

Markovnikov hydration product, similar to 

how the thiol-ene coupling selectively 

forms anti-Markovnikov hydrothiolation products.  The selective anti-Markovnikov hydration of olefins 

is an unsolved problem in chemical synthesis,
3f

 and continues to be an active area of methodology 

research.
2,3

 

 The development of a hydroxamic acid mediated intermolecular hydration method faces severe 

challenges.  Like the intermolecular dioxygenation reaction, there is an extremely high entropic barrier for 
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the reaction.  Furthermore, the transfer of a hydrogen atom from heteroatoms to carbon-centered radicals 

is known to be a kinetically slow process.
4
  

Nonetheless, preliminary data has been 

obtained which demonstrates that such a 

reaction is possible (Figure 3.7).  Using N-

hydroxy carbamate 3, the formal hydration product of norbornene (29) is obtained in 34% yield (with 

67% conversion) after 96 hours.  Other activated alkenes, such as styrenes, failed to react.  

3.7 Conclusions 

 The absence of an oxygen-centered radical based hydrofunctionalizations was filled with the 

development of a hydroxamic acid mediated formal alkene hydration.  The identification of hydroxamic 

acids as hydrogen atom donors capable of reducing carbon-centered radicals was key to the development 

of the method.  The methodology was successfully extended into a carbocyclization process capable of 

producing oxygenated cyclopentanes.  Proof of concept for an intermolecular variant of the hydration 

reaction was also established. 
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EXPERIMENTAL FOR CHAPTER 2:  DEVELOPMENT OF AN INTERMOLECULAR 

HYDROXAMIC ACID MEDIATED ALKENE DIOXYGENATION 

 

E2.1 General Information 

 

Methods: Nuclear magnetic resonance spectra were obtained on either a Bruker AVANCE III 600 MHz 

spectrometer (
1
H NMR at 600 MHz and 

13
C at 151 MHz), a Bruker AVANCE III 500 MHz spectrometer 

(
1
H NMR at 500 MHz and 

13
C at 126 MHz), or a Bruker AVANCE Nanobay 400 MHz spectrometer (

1
H 

NMR at 400 MHz and 
13

C at 101 MHz).  
1
H NMR are reported in the following format: chemical shift, 

multiplicity (s = singlet, br s = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, 

m = multiplet), coupling constant (Hz), and integration.   All NMR spectra are calibrated relative to 

residual protiated solvent resonances (
1
H NMR: CDCl3 at 7.26 ppm and C6D6 at 7.16 ppm; 

13
C NMR: 

CDCl3 at 77.0 ppm and C6D6 at 128.4 ppm).  Low-resolution mass spectra were obtained on a Bruker 

BioTOF high resolution mass spectrometer in positive ion mode using flow injection electrospray 

ionization or using a Micromass Quattro II (triplequad) equipped with nanoelectrospray ionization.  

Samples were prepared in methanol and 1% aqueous formic acid. Infrared spectra were recorded on a 

Jasco 260 Plus Fourier transform infrared spectrometer.  Thin layer chromatography (TLC) was carried 

out on SiliaPlate 250 µm thick silica gel plates purchased from Silicycle.  Visualization was achieved 

using short wave ultraviolet light (254 nm), alkaline aqueous potassium permanganate solution, or acidic 

ethanolic p-anisaldehyde solution followed by heating.  Hydroxamic acids were visualized using a 1% 

aqueous solution of FeCl3.  Flash chromatography was carried out using SiliaFlash T60 silica gel (5-20 

µm) or SiliaFlash P60 silica gel (40-63 µm) purchased from Silicycle.  Moisture sensitive reactions were 

carried out under an argon atmosphere in an Innovative Technologies glovebox.  Chiral HPLC analyses 

were carried out using an Agilent 1200 HPLC (UV detection at 210, 230, 250, and 254 nm) equipped 

with a Chiral pack IA column.   
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Materials: All chemicals were used as received from their manufacturer (Sigma-Aldrich, Fisher 

Scientific, and Alfa Aesar) unless otherwise noted.  Dichloromethane, tetrahydrofuran, and diethyl ether 

were dried by passage through a column of activated alumina while under dry nitrogen gas.  Norbornene 

was purified by sublimation and stored at -30 ºC under an argon atmosphere.  Oxygen gas was purchased 

from Airgas National Welders. 

 

E2.2 Substrate Preparation:  Styrene, -methylstyrene, -methylstyrene, para-methylstyrene, para-

methoxystyrene, 2-bromostyrene, isoprene, 2,3-dimethyl-1,3-butadiene, 2,5-dimethyl-2,4-hexadiene, 2-

methyl-1-buten-3-yne, methyl methacrylate, and methacrylic acid were purchased from commercial 

sources, purified by distillation, deoxygenated via multiple freeze-pump-thaw cycles, and stored at -35 C 

under an inert atmosphere prior to use.  Norbornene was purified by sublimation and stored under an inert 

atmosphere.  Hydroxamic acid 1
1
 Para-trifluoromethylstyrene

2,3
, 3-nitro--methylstyrene

4,3
, 2-

vinylnaphthalene
2,5

, 1-methylene-1,2,3,4-tetrahydronaphthalene
6
, 1,1-diphenylpropene

7,8
, 2-

vinylthiophene
9
, 2-(prop-1-en-2-yl)furan

7,8,6
, and 2-(4-(prop-1-en-2-yl)phenyl)ethan-1-ol

10
 were prepared 

according to standard procedures.  All physical and spectral data were in accordance with literature data.  

N-Phenylhydroxylamine was synthesized according to literature procedures.
11,12

 Physical and spectral 

data were in accordance with literature data.
13

  

 
Synthesis of Methyl N-hydroxy(phenyl) carbamate (4): N-phenylhydroxylamine (1.86 g, 17.1 mmol, 1 

eq) was dissolved in Et2O (37 mL, 0.46 M).  A magnetic stir bar was added, along with saturated, aqueous 

NaHCO3 (25 mL).  The reaction mixture was cooled to 0 ºC and placed under an argon atmosphere.  

Methyl chloroformate (1.30 mL, 17.1 mmol, 1 eq) was added dropwise via syringe pump over one hour.  

After addition was complete, the reaction mixture was allowed to warm to room termperature over the 

course of 30 minutes.  The organic phase was separated, and the aqueous phase was extracted twice with 

Et2O.  The combined organic phases were washed three times with 1N HCl, once with brine, dried over 
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anhydrous MgSO4, filtered, and concentrated in vacuo in a room temperature water bath.  The residue 

was purified by silica gel flash chromatography (2:1 hexanes:EtOAc) to afford 4 as a white, waxy solid 

(1.70 g, 10.2 mmol, 60% yield).  Proton and carbon NMR spectra were in accordance with literature 

data.
14

 

E2.3 General Dioxygenation Conditions 

 A 1-dram vial containing a magnetic stir bar was charged with 4 (50.0 mg, 0.299 mmol, 1.0 

equiv.), dilauroyl peroxide (DLP, 3.0 mg, 0.007 mmol, 2.5 mol%), alkene (1.2 equiv.) and nBuOAc (0.30 

mL, 1 M).  The vial was fitted with a PTFE-lined screw cap, and the reaction mixture was oxygenated by 

bubbling O2 gas through it for 3 minutes.  The reaction was allowed to stir under an atmosphere of oxygen 

at 60 C.  Upon disappearance of 4, as indicated by TLC analysis, the reaction solvent was removed under 

a positive flow of argon.  The crude reaction mixture was then taken up in CH2Cl2 (0.30 mL, 1 M) and 

dimethyl sulfide (0.11 mL, 1.5 mmol, 5.0 equiv.) added. The reaction was tightly capped and heated to 40 

C until disappearance of the initially formed hydroperoxide was observed by TLC analysis.  The reaction 

mixture was then concentrated under reduced pressure and purified by silica gel flash chromatography 

using the specified solvent system to yield the resultant dioxygenation product. 

 

Alcohol 6 was prepared using -methylstyrene (46.6 µL, 0.359 mmol) under the standard conditions. The 

reaction was complete, as indicated by TLC, after heating at 60 ºC for 8.5 h. The crude reaction mixture 

was reduced with DMS prior to purification by flash chromatography (20% EtOAc/hexanes) to afford 6 

(83.2 mg, 0.276 mmol, 92% yield) as a colorless residue. 

Analytical data for 6:  
1
H NMR (500 MHz, CDCl3) δ = 7.53 - 7.46 (m, 2 H), 7.42 - 7.18 (m, 8 H), 4.38 

(br. s, 1 H), 4.24 (d, J = 10.1 Hz, 1 H), 4.07 (d, J = 10.4 Hz, 1 H), 3.80 (s, 3 H), 1.56 (s, 3 H); 
13

C NMR 

(126 MHz, CDCl3) 155.4, 144.8, 139.4, 128.8, 128.2, 127.0, 126.5, 125.0, 122.8, 83.3, 73.2 53.7, 27.0; IR 

(thin film, cm
-1

) 3425, 3061, 3029, 2979, 2955, 2934, 2249, 1953, 1882, 1714, 1595, 1495, 1442, 1348, 

1119, 912, 763, 697; LRMS (ESI) Calcd. for [C17H19NO4+Na]
+
 = 324.12, Found = 324.10. 
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Alcohol 7 was prepared using -methylstyrene (77.8 µL, 0.598 mmol, 2.0 equiv.) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 8.5 h. The crude 

reaction mixture was concentrated, taken up in AcOH (1 mL), then water (1 mL) and Zn powder (391.0 

mg, 5.98 mmol, 20 equiv.) were added.  The reaction was complete, as indicated by TLC, after heating at 

40 ºC for 3 h.  The crude reaction mixture was taken up in CH2Cl2, filtered through Celite, dried 

(MgSO4), filtered, and concentrated under reduced pressure. The resulting residue was purified by silica 

gel flash chromatography (50% EtOAc/hexanes) to afford 2-phenylpropane-1,2-diol (7) (41.5 mg, 0.273 

mmol, 91% yield) as a colorless residue.  Physical and spectral data were in accordance with literature 

values.
15

 

 
Alcohol 8 was prepared using styrene (41.1 µL, 0.359 mmol) under the standard conditions. The reaction 

was complete, as indicated by TLC, after heating at 60 ºC for 17 h. The crude reaction mixture was 

reduced with DMS prior to purification by flash chromatography (25% EtOAc/hexanes) to afford 8 (79.8 

mg, 0.278 mmol, 93% yield) as a colorless residue. 

Analytical data for 8:  
1
H NMR (500 MHz, CDCl3) δ = 7.44 - 7.27 (m, 10 H), 5.07 (dd, J = 2.5, 9.8 Hz, 1 

H), 4.49 (br. s, 1 H), 4.05 (dd, J = 2.8, 11.3 Hz, 1 H), 3.88 (s, 3 H), 3.86 - 3.83 (m, 1 H); 
13

C NMR (126 

MHz, CDCl3) 156.4, 139.5, 134.0, 129.0, 128.5, 127.9, 127.1, 126.2, 123.6, 80.6, 70.7, 54.0; IR (thin 

film, cm
-1

) 3443, 30.63, 3031, 2955, 2928, 1715, 1595, 1494, 1440, 1348, 1117, 754, 697; LRMS (ESI) 

Calcd. for [C16H17NO4+Na]
+
 = 310.11, Found = 310.10. 
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Alcohol 9 was prepared using para-methoxy styrene (48.0 µL, 0.359 mmol) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 5 h. The crude 

reaction mixture was reduced with DMS prior to purification by flash chromatography (1:2 

EtOAc/hexanes) to afford 9 (77.7 mg, 0.245 mmol, 82% yield) as a colorless residue. 

Analytical data for 9: 
1
H NMR (500 MHz, C6D6) δ = 7.45 (d, J = 7.6 Hz, 2 H), 7.38 (d, J = 8.5 Hz, 2 H), 

7.17 (t, J = 7.7 Hz, 2 H), 7.07 - 6.98 (m, 1 H), 6.87  (d, J = 8.2 Hz, 2 H), 5.20 (d, J = 9.5 Hz, 1 H), 4.91 

(br. s., 1 H), 4.00 (dd, J = 1.9, 11.0 Hz, 1 H), 3.91 - 3.81 (m, 1 H), 3.38 (s, 6 H); 
13

C NMR (126 MHz, 

CDCl3) 159.3, 156.3, 139.5, 131.0, 128.9, 127.0, 123.5, 113.9, 80.5, 70.2, 55.3, 54.0; IR (thin film, cm
-1

) 

3449, 3065, 3004, 2956, 2838, 1714, 1612, 1597, 1514, 1494, 1441, 1347, 1250, 1030, 833, 753, 694; 

LRMS (ESI) Calcd. for [C17H19NO5+Na]
+
 = 340.12, Found = 340.11.   

 

 
Alcohol 10 was prepared using para-methyl styrene (47.0 µL, 0.359 mmol) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 15 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (1:4 to 

1:3 EtOAc/hexanes) to afford 10 (74.4 mg, 0.247 mmol, 83% yield) as a colorless residue. 

Analytical data for 10:  
1
H NMR (500 MHz, CDCl3) δ = 7.46 - 7.39 (m, 4 H), 7.32 - 7.27 (m, 3 H), 7.18 

(d, J = 7.9 Hz, 2 H), 5.04 (dd, J = 2.0, 9.6 Hz, 1 H), 4.45 (br. s, 1 H), 4.03 (dd, J = 2.5, 11.3 Hz, 1 H), 

3.88 (s, 3 H), 3.88 - 3.82 (m, 1 H), 2.36 (s, 3 H); 
13

C NMR (126 MHz, CDCl3) 156.3, 139.5, 137.6, 136.0, 

129.1, 129.0, 127.0, 126.2, 123.5, 80.6, 70.5, 54.0, 21.2; IR (thin film, cm
-1

) 3446, 3027, 2955, 2924, 

2872, 1714, 1595, 1494, 1441, 1347, 1117, 816, 753; LRMS (ESI) Calcd. for [C17H19NO4+Na]
+
 = 

324.12, Found = 324.13. 
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Alcohol 11 was prepared using 2-bromostyrene (45.0 µL, 0.359 mmol) under the standard conditions. 

The reaction was complete, as indicated by TLC, after heating at 60 ºC for 15 h. The crude reaction 

mixture was reduced with DMS prior to purification by silica gel flash chromatography (1:4 to 1:3 

EtOAc/hexanes) to afford 11 (96.7 mg, 0.264 mmol, 89% yield) as a colorless residue. 

Analytical data for 11:  
1
H NMR (500 MHz, CDCl3) δ = 7.73 (dd, J = 1.6, 7.9 Hz, 1 H), 7.52 - 7.27 (m, 6 

H), 7.16 (dt, J = 1.9, 7.7 Hz, 1 H), 5.43 (dd, J = 2.2, 9.5 Hz, 1 H), 4.75 (br. s, 1 H), 4.18 (dd, J = 2.4, 11.5 

Hz, 1 H), 3.88 (s, 3 H), 3.62 (dd, J = 9.5, 11.7 Hz, 1 H); 
13

C NMR (126 MHz, CDCl3) 156.7, 139.4, 

138.1, 132.5, 129.3, 129.0, 128.2, 127.9, 127.4, 124.2, 121.7, 78.4, 69.6, 54.1; IR (thin film, cm
-1

) 3438, 

2955, 1714, 1595, 1494, 1441, 1347, 1118, 1025, 911, 755, 694; LRMS (ESI) Calcd. for 

[C16H16BrNO4+Na]
+
 = 388.02, Found = 388.00. 

 

 
Alcohol 12 was prepared using para-trifluoromethylstyrene (61.8 mg, 0.359 mmol) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 15 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (25% 

EtOAc/hexanes) to afford 12 (88.9 mg, 0.250 mmol, 84% yield) as a colorless residue. 

Analytical data for 12:  
1
H NMR (600 MHz, CDCl3) δ = 7.62 (d, J = 8.3 Hz, 2 H), 7.54  (d, J = 8.3 Hz, 2 

H), 7.47 - 7.38 (m, 4 H), 7.32 (tt, J = 1.6, 6.9 Hz, 1 H), 5.12 (d, J = 9.4 Hz, 1 H), 4.77 (br. s, 1 H), 4.07 

(dd, J = 2.6, 11.7 Hz, 1 H), 3.88 (s, 3 H), 3.82 (dd, J = 9.4, 11.7 Hz, 1 H); 
13

C NMR (151 MHz, CDCl3) 

156.6, 143.1, 139.4, 129.0, 127.3, 126.5, 125.42, 125.39, 125.36, 125.34, 123.8, 80.3, 70.2, 54.1; IR (thin 

film, cm
-1

) 3435, 3068, 3044, 2958, 1714, 1620, 1326, 1123, 1017, 845, 755; LRMS (ESI) Calcd. for 

[C17H16F3NO4+Na]
+
 = 378.09, Found = 378.11. 
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Alcohol 13 was prepared from m-nitro-α-methyl styrene (58.6 mg, 0.359 mmol) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 5 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (1:3 

EtOAc/hexanes) to afford 13 (85.4 mg, 0.247 mmol, 83% yield) as a colorless residue. 

Analytical data for 13:  
1
H NMR (500 MHz, CDCl3) δ = 8.37 (t, J = 2.0 Hz, 1 H), 8.16  (ddd, J = 0.9, 2.4, 

8.0 Hz, 1 H), 7.87 (qd, J = 0.9, 7.8 Hz, 1 H), 7.55 (t, J = 8.0 Hz, 1 H), 7.40 - 7.33 (m, 2 H), 7.28 - 7.24 

(m, 1 H), 7.23 - 7.19 (m, 2 H), 4.84 (br. s, 1 H), 4.32 (d, J = 10.7 Hz, 1 H), 4.11 (d, J = 10.7 Hz, 1 H), 

3.79 (s, 3 H), 1.56 (s, 3 H); 
13

C NMR (126 MHz, CDCl3) 155.6, 148.3, 147.5, 139.2, 131.5, 129.2, 128.9, 

127.0, 123.1, 122.1, 120.4, 83.0, 73.1, 53.9, 27.0; IR (thin film, cm
-1

) 3417, 3090, 2981, 2875, 1695, 

1595, 1531, 1349, 909; LRMS (ESI) Calcd. for [C17H18N2O6+Na]
+
 = 369.11, Found = 369.10. 

 
Alcohol 14 was prepared using 2-(4-(prop-1-en-2-yl)phenyl)ethan-1-ol  (58.2 mg, 0.359 mmol) under the 

standard conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 5 h. The 

crude reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography 

(1:1 EtOAc/hexanes) to afford 14 (80.5 mg, 0.233 mmol, 78% yield) as a colorless residue. 

 Analytical data for 14:  
1
H NMR (500 MHz, CDCl3) δ = 7.46 - 7.42 (m, 2 H), 7.39 - 7.34  (m, 2 H), 7.29 

- 7.22 (m, 5 H), 4.35 (br. s, 1 H), 4.23 (d, J = 10.1 Hz, 1 H), 4.05 (d, J = 10.4 Hz, 1 H), 3.88 (t, J = 6.6 Hz, 

2 H), 3.80 (s, 3 H), 2.89 (t, J = 6.6 Hz, 2 H), 1.54 (s, 3 H); 
13

C NMR (126 MHz, CDCl3) 155.4, 143.0, 

139.4, 137.2, 128.8, 128.7, 126.6, 125.3, 122.8, 83.4, 73.1, 63.7, 53.7, 38.8, 26.9; IR (thin film, cm
-1

) 

3418, 3061, 2954, 2876, 1713, 1595, 1494, 1349, 1048, 751; LRMS (ESI) Calcd. for [C19H23NO5+Na]
+
 = 

368.15, Found = 368.15. 
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Alcohol 15 was prepared using -methylstyrene (46.6 µL, 0.359 mmol,), under the standard conditions. 

The reaction was complete, as indicated by TLC, after heating at 60 ºC for 7.5 h. The crude reaction 

mixture was reduced with DMS prior to purification by silica gel flash chromatography (15-20% 

EtOAc/hexanes gradient) to afford 15 as a mixture of diastereomers (56.0 mg major and 21.7 mg minor, 

0.258 mmol total, 86% yield) as a colorless residue. 

Analytical data for 15a (major isomer):  
1
H NMR (400 MHz, CDCl3) δ = 7.40 - 7.52 (m, 4 H), 7.21 - 

7.37 (m, 6 H), 5.21 (d, J=2.51 Hz, 1 H), 4.15 - 4.44 (m, 1 H), 4.05 (dd, J=6.53, 2.51 Hz, 1 H), 3.88 (s, 3 

H), 1.03 (d, J=6.53 Hz, 3 H); 
13

C NMR (101 MHz, CDCl3) 156.2, 139.9, 139.3, 129.0, 128.2, 127.2, 

127.1, 125.8, 123.8, 83.8, 71.2, 54.1, 11.2; IR (thin film, cm
-1

) 3455, 3063, 3030, 2989, 2955, 2925, 2854, 

2250, 1954, 1884, 1714, 1595, 1494, 1441, 1337, 1117, 1067, 913, 747, 699; LRMS (ESI) Calcd. for 

[C17H19NO4+Na]
+
 = 324.12, Found = 324.12. 

Analytical data for 15b (minor isomer):  
1
H NMR (400 MHz, CDCl3) δ = 7.40 - 7.26 (m, 10 H), 5.04 

(br. s., 1 H), 4.65 (dd, J = 1.60, 5.20 Hz, 1H), 4.21 (m, 1H), 3.84 (s, 3H), 0.938 (d, J = 4.00 Hz, 3H); 
13

C 

NMR (101 MHz, CDCl3) 157.0, 141.44, 140.3, 128.7, 128.4, 127.9, 127.0, 126.9, 123.9, 88.5, 54.0, 16.6; 

IR (thin film, cm
-1

) 3420, 3031, 2981, 2925, 1714, 1595, 1494, 1441, 1341, 1114, 1041, 761, 698; LRMS 

(ESI) Calcd. for [C17H19NO4+Na]
+
 = 324.12, Found = 324.12. 

The stereochemistry of 15 was determined by reductive cleavage of the N-O bond using Zn (using an 

analogous procedure to that used in the 1-pot, direct dihydroxylation of -methylstyrene reported below).  

Literature values for the anti diol report a 4.61 ppm (m, 1H), matching that obtained from reductive 

cleavage of 15a, while the corresponding syn diol is shifted upfield at 4.28 ppm (m, 1H).
16
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Alcohol 16 was prepared using 2-vinylnaphthalene (55.4 mg, 0.359 mmol) under the standard conditions. 

The reaction was complete, as indicated by TLC, after heating at 60 ºC for 24 h. The crude reaction 

mixture was reduced with DMS prior to purification by silica gel flash chromatography (20% 

EtOAc/hexanes) to afford 16 (89.5 mg, 0.265 mmol, 89% yield) as a colorless residue.  

Analytical data for 16:  
1
H NMR (600MHz, CDCl3) δ = 7.92 (s, 1 H), 7.88 - 7.81 (m, 3 H), 7.54 - 7.40 

(m, 7 H), 7.34 - 7.27 (m, 1 H), 5.25 (dd, J = 2.4, 9.6 Hz, 1 H), 4.66 (br. s, 1 H), 4.16 (dd, J = 2.6, 11.3 Hz, 

1 H), 3.95 (dd, J = 9.8, 11.3 Hz, 1 H), 3.90 (s, 3 H); 
13

C NMR (151 MHz, CDCl3) 156.5, 139.5, 136.4, 

133.3, 133.1, 129.0, 128.2, 127.9, 127.7, 127.1, 126.2, 126.0, 125.2, 124.1, 123.6, 80.5, 70.8, 54.1; IR 

(thin film, cm
-1

) 3437, 3060, 2955, 1714, 1595, 1494, 1348, 1122, 750; LRMS (ESI) Calcd. for 

[C20H19NO4+Na]
+
 = 360.12, Found = 360.13. 

 
Alcohol 17 was prepared using 1-methylene-1,2,3,4-tetrahydronaphthalene (51.8 mg, 0.359 mmol) under 

the standard conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 3 h. 

The crude reaction mixture was reduced with DMS prior to purification by silica gel flash 

chromatography (1:4 EtOAc/hexanes) to afford 17 (76.6 mg, 0.234 mmol, 78% yield) as a colorless 

residue. 

Analytical data for 17:  
1
H NMR (500 MHz, CDCl3) δ = 7.65 - 7.56 (m, 1 H), 7.48 - 7.34 (m, 4 H), 7.30 - 

7.17 (m, 3 H), 7.14 - 7.05 (m, 1 H), 4.20 (d, J = 9.8 Hz, 1 H), 4.03 (d, J = 9.8 Hz, 1 H), 3.89 (s, 3 H), 3.80 

(br. s., 1 H), 2.93 - 2.82 (m, 1 H), 2.81 - 2.71 (m, 1 H), 2.42 - 2.31 (m, 1 H), 2.04 - 1.91 (m, 2 H), 1.89 - 

1.74 (m, 1 H); 
13

C NMR (126 MHz, CDCl3) 155.4, 139.8, 138.0, 137.5, 128.9, 128.8, 127.7, 126.9, 

126.4, 126.2, 122.6, 81.5, 71.8, 53.7, 33.5, 29.4, 19.9; IR (thin film, cm
-1

) 3434, 3063, 3025, 2940, 2872, 
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2839, 2249, 1714, 1595, 1494, 1442, 1348, 1119, 911, 735, 693; LRMS (ESI) Calcd. for 

[C19H21NO4+Na]
+
 = 350.14, Found = 350.13. 

 
Alcohol 18 was prepared using 1,1-diphenylpropene (61.8 mg, 0.359 mmol) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 5 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (10% 

EtOAc/hexanes) to afford 18 (98.2 mg, 0.260 mmol, 87% yield) as a colorless residue. 

Analytical data for 18:  
1
H NMR (500 MHz, CDCl3) δ = 7.70 - 7.61 (m, 2 H), 7.49 (dd, J = 1.1, 8.4 Hz, 2 

H), 7.44 - 7.39 (m, 2 H), 7.37 - 7.32 (m, 2 H), 7.30 - 7.23 (m, 6 H), 7.19 - 7.14 (m, 1 H), 5.11 (q, J = 6.3 

Hz, 1 H), 4.72 (br. s., 1 H), 3.64 (s, 3 H), 1.19 (d, J = 6.3 Hz, 3 H); 
13

C NMR (126 MHz, CDCl3) 155.5, 

145.8, 144.5, 139.8, 128.7, 128.2, 127.8, 126.6 126.4, 126.0, 125.4, 123.0, 82.9, 78.5, 53.6, 14.1; IR (thin 

film, cm
-1

) 3515, 3396, 3060, 3031, 3000, 2954, 2852, 2250, 1953, 1882, 1714, 1595, 1494, 1441, 1344, 

1190, 910, 732, 696; LRMS (ESI) Calcd. for [C23H23NO4+Na]
+
 = 400.15, Found = 400.13. 

 
Alcohol 19 was prepared using 2-vinylthiophene (65.9 mg, 0.598 mmol, 2.0 equiv.) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 7 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (1:3 

EtOAc/hexanes) to afford 19 (73.6 mg, 0.251 mmol, 84% yield) as a colorless residue. 

Analytical data for 19:  
1
H NMR (600 MHz, CDCl3) δ = 7.43 (d, J = 4.1 Hz, 2 H), 7.33 - 7.27 (m, 2 H), 

7.02 - 6.98 (m, 2 H), 5.32 (td, J = 2.4, 9.5 Hz, 1 H), 4.66 (br. s, 1 H), 4.12 (dd, J = 2.8, 11.5 Hz, 1 H), 3.98 

(dd, J = 9.4, 11.7 Hz, 1 H), 3.88 (s, 3 H); 
13

C NMR (151 MHz, CDCl3) 155.5, 142.2, 139.4, 129.0, 127.2, 

126.7, 125.0, 124.3, 123.7, 80.1, 67.1, 54.1; IR (thin film, cm
-1

) 3433, 2360, 1714, 1493, 1440, 1348, 

1116, 753, 694; LRMS (ESI) Calcd. for [C14H15NO4S+Na]
+
 = 316.06, Found = 316.03. 
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Alcohol 20 was prepared using 2-(prop-1-en-2-yl)furan (64.7 mg, 0.598 mmol, 2.0 equiv.) under the 

standard conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 2.5 h. The 

crude reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography 

(20% EtOAc/hexanes) to afford 20 (41.4 mg, 0.142 mmol, 48% yield) as a colorless residue. 

Analytical data for 20:  
1
H NMR (600 MHz, CDCl3) δ = 7.40 - 7.35 (m, 3 H), 7.32 - 7.29  (m, 2 H), 7.27 - 

7.23 (m, 1 H), 6.41 - 6.34 (m, 2 H), 4.53 (br. s, 1 H), 4.32 (d, J = 10.2 Hz, 2 H), 3.98 (d, J = 10.5 Hz, 1 

H), 3.80 (s, 3 H), 1.55 (s, 3 H); 
13

C NMR (151 MHz, CDCl3) 157.3, 155.6, 141.7, 139.4, 128.8, 126.7, 

123.0, 110.3, 105.4, 81.0, 70.5, 53.8; IR (thin film, cm
-1

) 3411, 2984, 2955, 1714, 1595, 1447, 1349, 

1015, 751; LRMS (ESI) Calcd. for [C15H17NO5+Na]
+
 = 314.10, Found = 314.06. 

 

 
Alcohol 21 was prepared using methacrylic acid (130.0 µL, 1.50 mmol, 5.0 equiv.) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 7 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (30:1 

CH2Cl2:MeOH) to afford 21 (36.5 mg, 0.136 mmol, 45% yield) as a colorless residue. 

Analytical data for 21:  
1
H NMR (600 MHz, CDCl3) δ = 7.43 - 7.39 (m, 2 H), 7.38 - 7.35  (m, 2 H), 7.32 - 

7.29 (m, 1 H), 4.49 (d, J = 10.9 Hz, 1 H), 3.87 (d, J = 10.9 Hz, 1 H), 3.83 (s, 3 H), 1.45 (s, 3 H); 
13

C NMR 

(151 MHz, CDCl3) 176.6, 156.6, 139.0, 129.0, 127.5, 123.7, 80.0, 73.8, 54.3, 22.4; IR (thin film, cm
-1

) 

3449, 2957, 1723, 1493, 1442, 1349, 1349, 754, 695; LRMS (ESI) Calcd. for [C12H15NO6+Na]
+
 = 

292.08, Found = 292.05. 
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Alcohol 22 was prepared using methyl methacrylate (160.0 µL, 1.50 mmol, 5.0 equiv.) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 22 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (1:2 to 

1:1 EtOAc/hexanes) to afford 22 (70.9 mg, 0.250 mmol, 84% yield) as a colorless residue. 

Analytical data for 22:  
1
H NMR (500 MHz, CDCl3) δ = 7.41 - 7.35 (m, 4 H), 7.27 - 7.22 (m, J = 3.2, 5.7, 

5.7 Hz, 1 H), 4.36 (br. s., 1 H), 4.29 (d, J = 10.1 Hz, 1 H), 3.89 (d, J = 10.1 Hz, 1 H), 3.83 (s, 3 H), 3.78 

(s, 3 H), 1.39 (s, 3 H); 
13

C NMR (126 MHz, CDCl3) 174.9, 155.6, 139.5, 128.8, 126.7, 122.8, 80.4, 73.8, 

53.8, 52.8, 22.3; IR (thin film, cm
-1

) 3447, 2996, 2955, 1732, 1595, 1494, 1441, 1349, 759, 695; LRMS 

(ESI) Calcd. for [C13H17NO6+Na]
+
 = 306.10, Found = 306.10. 

 

 
Alcohol 23 was prepared using norbornene (141.0 mg, 1.50 mmol, 5.0 equiv.) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 6 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (15-20% 

EtOAc/hexanes gradient) to afford 23 as a mixture of diastereomers (35.2 mg, 0.127 mmol, 42% yield 

23a and 28.8 mg, 0.104 mmol, 35% yield 23b) as a colorless residue.  

Analytical data for 23a:  
1
H NMR (600 MHz, C6D6) δ = 7.40 - 7.33 (m, 2 H), 7.11 - 7.03  (m, 2 H), 6.95 - 

6.87 (m, 1 H), 4.71 (br. s., 1 H), 3.91 (d, J = 5.6 Hz, 1 H), 3.71 (dd, J = 1.5, 5.6 Hz, 1 H), 3.26 (s, 3 H), 

2.32 (d, J = 4.5 Hz, 1 H), 2.19 (td, J = 1.7, 10.1 Hz, 1 H), 2.13 (d, J = 4.1 Hz, 1 H), 1.15 - 1.06 (m, 1 H), 

1.06 - 0.99 (m, 1 H), 0.93 - 0.89 (m, 1 H), 0.69 (ddd, J = 2.1, 4.1, 11.9 Hz, 1 H), 0.56 - 0.50 (m, 1 H); 
13

C 

NMR (151 MHz, C6D6) 155.9, 141.0, 128.6, 128.0, 126.5, 123.6, 90.2, 76.2, 53.0, 43.3, 41.2, 32.8, 25.0, 

23.7; IR (thin film, cm
-1

) 3432, 2961, 2874, 1708, 1646, 1493, 1341, 756; LRMS (ESI) Calcd. for 

[C15H19NO4+Na]
+
 = 300.12, Found = 300.12. 
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Analytical data for 23b:  
1
H NMR (600 MHz, C6D6) δ = 7.55 (d, J = 7.5 Hz, 2 H), 7.11 (t, J = 8.1 Hz, 2 

H), 6.94 - 6.88 (m, 1 H), 4.19 (d, J = 3.8 Hz, 1 H), 3.88  (s, 1 H), 3.38 (s, 3 H), 2.67 (br. s, 1 H), 2.28 (d, J 

= 5.3 Hz, 1 H), 2.17 - 2.11 (m, 1 H), 1.89 - 1.82 (m, 1 H), 1.75 (d, J = 10.2 Hz, 1 H), 1.33 - 1.25 (m, 1 H), 

1.13 - 1.05 (m, 1 H), 1.04 - 0.99 (m, 1 H), 0.99 - 0.94 (m, 1 H); 
13

C NMR (151 MHz, C6D6) 156.0, 142.0, 

128.5, 128.0, 125.8, 123.0, 94.5, 77.7, 52.7, 41.7, 40.8, 34.2, 24.9, 19.7; IR (thin film, cm
-1

) 3428, 2958, 

2876, 1712, 1440, 1341, 1107, 758; LRMS (ESI) Calcd. for [C15H19NO4+Na]
+
 = 300.12, Found = 300.11. 

 
Alcohol 24 was prepared using isoprene (150.0 µL, 1.50 mmol, 5.0 equiv.) under the standard conditions. 

The reaction was complete, as indicated by TLC, after heating at 60 ºC for 6 h. The crude reaction 

mixture was reduced with DMS prior to purification by silica gel flash chromatography (25% 

EtOAc/hexanes) to afford 24 as a mixture of isomers (44.0 mg, 0.175 mmol, 59% yield of the kinetic 

isomer and 21.9 mg, 0.087 mmol, 29% yield of the thermodynamic isomer) as a colorless residue. 

Analytical data for 24a:  
1
H NMR (600 MHz, CDCl3) δ = 7.44 - 7.38 (m, 4 H), 7.28 - 7.25  (m, 1 H), 5.93 

(dd, J = 10.7, 17.1 Hz, 1 H), 5.43 (dd, J = 1.3, 17.1 Hz, 1 H), 5.18 (dd, J = 1.3, 10.7 Hz, 1 H), 3.95 (d, J = 

9.8 Hz, 1 H), 3.87 - 3.85 (m, 1 H), 3.84 (s, 3 H), 1.31 (s, 3 H); 
13

C NMR (126 MHz, CDCl3) 155.4, 141.6, 

139.5, 128.9, 128.8, 127.0, 126.6, 123.4, 122.8, 113.7, 112.6, 82.4, 78.5, 72.1, 71.8, 53.8, 24.5; IR (thin 

film, cm
-1

) 3434, 2978, 2956, 2876, 1714, 1595, 1348, 1119, 751; LRMS (ESI) Calcd. for 

[C13H17NO4+Na]
+
 = 274.11, Found = 274.10. 

Analytical data for 24b:  
1
H NMR (600 MHz, CDCl3) δ = 7.50 - 7.43 (m, 2 H), 7.42 - 7.36  (m, 2 H), 7.27 

- 7.19 (m, 1 H), 5.75 - 5.66 (m, 1 H), 4.51 and 4.20 (d, J = 7.2 and 6.8 Hz, 2 H), 4.32 and 4.04 (s, 2 H), 

3.87 and 3.85 (d, J = 1.1 and 0.8 Hz, 3 H), 1.75 and 1.72 (s, 3 H); 
13

C NMR (126 MHz, CDCl3) 155.3, 

140.1, 133.0, 130.4, 128.7, 126.1, 125.9, 122.7, 122.1, 117.4, 80.5, 70.5, 67.7, 59.1, 53.4, 14.6, 13.9; IR 

(thin film, cm
-1

) 3422, 2955, 2863, 1714, 1595, 1494, 1349, 1114, 752; LRMS (ESI) Calcd. for 

[C13H17NO4+Na]
+
 = 274.11, Found = 274.10. 
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Alcohol 25 was prepared using 2,3-dimethyl-1,3-butadiene (169.7 µL, 1.50 mmol, 5.0 equiv.) under the 

standard conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 3 h. The 

crude reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography 

(25% EtOAc/hexanes) to afford 25 as a mixture of isomers (59.2 mg, 0.223 mmol, 75% yield of the 

kinetic isomer and 10.0 mg, 0.038 mmol, 13% yield of the thermodynamic isomer) as a colorless residue. 

Analytical data for 25a:  
1
H NMR (400 MHz, CDCl3) δ = 7.45 - 7.36 (m, 4 H), 7.28 - 7.23  (m, 1 H), 5.23 

- 5.16 (m, 1 H), 4.98 - 4.92 (m, 1 H), 4.17 (d, J = 9.8 Hz, 1 H), 3.87 - 3.81 (m, 4 H), 1.81 (s, 3 H), 1.31 (s, 

3 H); 
13

C NMR (126 MHz, CDCl3) 155.4, 127.8, 139.7, 128.9, 126.5, 122.7, 111.1, 81.5, 74.1, 53.7, 24.0, 

19.4; IR (thin film, cm
-1

) 3441, 3066, 2977, 2855, 1714, 1596, 1347, 1119, 905; LRMS (ESI) Calcd. for 

[C14H19NO4+Na]
+
 = 288.12, Found = 288.12. 

Analytical data for 25b:  
1
H NMR (500 MHz, CDCl3) δ = 7.51 - 7.44 (m, 2 H), 7.44 - 7.35  (m, 2 H), 7.26 

- 7.18 (m, 1 H), 4.46 (s, 2 H), 4.17 (s, 2 H), 3.87 (s, 3 H), 1.90 - 1.84 (m, 3 H), 1.84 - 1.79 (m, 3 H); 
13

C 

NMR (126 MHz, CDCl3) 155.2, 140.2, 136.7, 128.8, 128.6, 126.2, 126.1, 125.9, 122.5, 122.1, 75.9, 75.0, 

63.6, 63.4, 53.6, 53.4, 18.7, 17.7, 17.1, 16.5; IR (thin film, cm
-1

) 3425, 2954, 2924, 1715, 1596, 1494, 

1349, 1107, 750; LRMS (ESI) Calcd. for [C14H19NO4+Na]
+
 = 288.12, Found = 288.12. 

 
Alcohol 26 was prepared using 2,5-dimethyl-2,4-hexadiene (85.3 µL, 0.598 mmol, 2.0 equiv.) under the 

standard conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 2 h. The 

crude reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography 

(20% EtOAc/hexanes) to afford 26 (52.0 mg, 0.177 mmol, 59% yield) as a colorless residue.  

Analytical data for 26:  
1
H NMR (400 MHz, CDCl3) δ = 7.43 - 7.36 (m, 2 H), 7.36 - 7.27  (m, 2 H), 7.22 - 

7.09 (m, 1 H), 5.66 - 5.52 (m, 2 H), 3.77 (s, 3 H), 1.44 - 1.31 (m, 6 H), 1.11 (s, 6 H); 
13

C NMR (101 

MHz, CDCl3) 157.1, 144.1, 137.8, 130.9, 128.2, 125.8, 123.7, 84.4, 70.1, 53.4, 29.2; IR (thin film, cm
-1

) 
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3456, 3030, 2977, 2933, 1723, 1595, 1364, 1133, 769; LRMS (ESI) Calcd. for [C16H23NO4+Na]
+
 = 

316.15, Found = 316.16. 

 
Alcohol 27 was prepared using 2-methyl-1-buten-3-yne (140.0 µL, 1.50 mmol) under the standard 

conditions. The reaction was complete, as indicated by TLC, after heating at 60 ºC for 7 h. The crude 

reaction mixture was reduced with DMS prior to purification by silica gel flash chromatography (1:3 

EtOAc/hexanes) to afford 27 (50.6 mg, 0.203 mmol, 68% yield) as a colorless residue. 

Analytical data for 27:  
1
H NMR (400 MHz, CDCl3) δ = 7.48 - 7.39 (m, 4 H), 7.31 - 7.26  (m, 1 H), 4.69 

(br. s, 1 H), 4.08 (d, J = 10.8 Hz, 1 H), 3.85 (s, 3 H), 3.82 (d, J = 10.5 Hz, 1 H), 2.50 (s, 1 H), 1.50 (s, 3 

H); 
13

C NMR (101 MHz, CDCl3) 155.8, 139.2, 128.9, 126.9, 123.2, 85.5, 82.0, 71.6, 65.8, 53.9, 25.9; IR 

(thin film, cm
-1

) 3414, 3286, 2956, 1714, 1594, 1494, 1441, 1348, 1305, 1119, 1026, 751, 694; LRMS 

(ESI) Calcd. for [C13H15NO4+Na]
+
 = 272.09, Found = 272.09. 

 

E2.3 Representative Procedures for Asymmetric Alkene Dioxygenation 

 

 
In an argon filled glovebox, (S,S)-2,2′-Isopropylidene-bis(4-tert-butyl-2-oxazoline) (4.2 mg, 0.0144 

mmol, 0.12 eq) and Cu(OTf)2 (4.3mg, 0.0120 mmol, 0.10 eq) were dissolved in 0.4 mL THF and allowed 

to stir under overnight.  N-hydroxyphthalimide (23.5 mg, 0.144 mmol, 1.2 eq) was added, followed by 

1,1-diphenylpropene (23.6 mg, 0.120 mmol, 1.0 eq) as a solution in 0.2 mL THF.  Oxygen gas was 

bubbled through the reaction mixture for 2 minutes.  After 4 hours, the reaction was deemed complete by 

TLC analysis.  Dimethyl sulfide (0.2mL, 2.72 mmol, 23 eq) was added and the reaction mixture was 

stirred until disappearance of the hydroperoxide product by TLC analysis.  Volatiles were removed under 

a stream of nitrogen, and the residue was purified by silica gel flash chromatography (4:0.5:0.5 

hexanes:EtOAc:DCM) to yield the dioxygenated product 33 (12.5 mg, 0.0335 mmol, 28% yield) as a 
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white solid.  Enantiomeric excess was determined by elution through an IA column using an isocratic 

(95:5 hexanes : iPrOH) solvent system (60:40 e.r., 20% ee).   

Analytical data for 33:  
1
H NMR (500 MHz, CDCl3); δ = 7.70 (m, 6 H), 7.50 (dd, J = 8.4, 1.1 Hz, 2 H), 

7.28 (m, 2 H), 7.17 (m, 3 H), 6.97 (m, 1 H), 5.71 (q, J = 6.3 Hz, 1 H), 4.26 (s (br), 1 H), 1.24 (d, J = 6.4 

Hz, 3 H)  
13

C NMR (101 MHz, CDCl3); 164.2, 144.9, 143.9, 134.4, 128.5, 128.2, 128.0, 126.8, 126.6, 

126.0, 125.3, 123.4, 85.7, 78.5, 13.5. IR (thin film, cm
-1

); 3471, 3060, 3029, 3000, 2942, 2359, 2341, 

2251, 1787, 1730, 1599, 1492, 1468, 1730, 1599, 1492, 1468, 1450, 1378, 1188, 1131, 1080, 1061, 1015, 

979, 910, 879, 846, 768, 733, 700, 668, 653, 640, 600, 519. LRMS (ESI) Calcd. for [C23H19NO4 + H]
+
 = 

374.14 , Found = 374.16.  HPLC: Chiralpak IA, 95:5 hexanes:iPrOH, 60:40 e.r. (20% ee). 
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E2.5  Proton, Carbon-13, and Correlation Spectra 
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EXPERIMENTAL FOR CHAPTER 3: 

HYDROXAMIC ACID MEDIATED FORMAL ALKENE HYDRATION 

 

E3.1 General Information 

 

Methods:   Nuclear magnetic resonance spectra were obtained on either a Varian INOVA 600 MHz 

spectrometer (
1
H NMR at 600 MHz and 

13
C at 151 MHz), a Bruker AVANCE III 600 MHz spectrometer, 

or a Bruker AVANCE 400 MHz spectrometer (
1
H NMR at 400 MHz and 

13
C at 101 MHz).  

1
H NMR are 

reported in the following format: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, 

dd = doublet of doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration.   

All NMR spectra are calibrated relative to residual protiated solvent resonances (
1
H NMR: CDCl3 at 7.26 

ppm; 
13

C NMR: CDCl3 at 77.0 ppm).  High-resolution mass spectra were obtained on a Thermo Finnigan 

LTQ FT mass spectrometer in positive ion mode using flow injection electrospray ionization. All samples 

were prepared in methanol.  Low resolution mass spectra were obtained using a Micromass Quattro II 

(triplequad) equipped with nanoelectrospray ionization.  Samples were prepared in methanol and 1% 

aqueous formic acid.   Calculated values for the monoisotopic ion masses were determined with the aid of 

ChemCalc.
1
 Infrared spectra were recorded on a Jasco 260 Plus Fourier transform infrared spectrometer.  

Thin layer chromatography (TLC) was carried out on SiliaPlate 250 µm thick silica gel plates purchased 

from Silicycle.  Visualization was achieved using short wave ultraviolet light (254 nm), alkaline aqueous 

potassium permanganate solution, or acidic ethanolic p-anisaldehyde solution followed by heating.  

Hydroxamic acids were visualized using a 1% aqueous solution of FeCl3.  Flash chromatography was 

carried out using SiliaFlash T60 silica gel (5-20 µm) or SiliaFlash P60 silica gel (40-63 µm) purchased 

from Silicycle.  Oxygen sensitive reactions were assembled under an argon atmosphere in an Innovative 

Technologies glovebox.  All reactions were performed under an argon atmosphere, unless otherwise 

noted. 
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Materials: All chemicals were used as received from their manufacturer (Sigma-Aldrich, Fisher 

Scientific, and Alfa Aesar) unless otherwise noted.  Dichloromethane, tetrahydrofuran, and diethyl ether 

were dried by passage through a column of activated alumina while under dry nitrogen gas.  

Dichloroethane and benzene were degassed by multiple freeze-pump-thaw cycles and stored over 

activated 3 Å molecular sieves under an argon atmosphere.  Norbornene was purified by sublimation and 

stored at -30 ºC under an argon atmosphere. 

E3.2 Substrate Synthesis 
 

N-phenylhydroxylamine
2,3

 and methyl N-hydroxy(phenyl) carbamate 3
4,5

 were synthesized according to 

standard procedures.  The carboxylic acids derived from hydroxamic acids 1, 3, 7, and 9 were prepared 

using routes previously described.
3,6

 Physical and spectral characteristics of the synthesized compounds 

matched those reported by the authors. 

Synthesis of E3 

 
 

Synthesis of E2 

The title compound was synthesized using an olefination procedure adapted from a protocol described by 

Chiba and Hui.
7
 To a slurry of methyltriphenylphosphonium iodide (10.13 g, 24.9 mmol, 1.2 eq) in THF 

(70 mL) was added a magnetic stir bar and potassium tert-butoxide (2.80 g, 24.9 mmol, 1.2 eq).  The 

slurry was stirred for 30 minutes.  Ester E1
8,9

 (3.83 g, 20.8 mmol, 1 eq) was dissolved in THF (12 mL) 

and added dropwise to the slurry, which was heated at 65 ºC for 2 hours. The reaction mixture was diluted 

with hexanes, and filtered through a short pad of silica.  After rinsing the filter cake with hexanes, the 

filtrate was concentrated and the residue purified by silica gel flash chromatography (20:1 

hexane:EtOAc). Ester E2 was obtained in 80% yield (3.04 g, 16.7 mmol) as a colorless oil.  Physical and 

spectral data were in agreement with literature data.
10
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Synthesis of E3 

To a solution of E2 (2.75g, 15.1 mmol, 1 eq) in absolute ethanol (15 mL) was added a magnetic stir bar 

and a solution of NaOH (1.33g, 33.2 mmol, 2.2 eq) in deionized water (15 mL). The reaction mixture was 

heated to reflux overnight. After cooling to 0 ºC, the mixture was diluted with water, acidified to a pH of 

2 (Litmus paper) with 6N HCl, and extracted three times with EtOAc.  The combined organic layers were 

washed once with brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo.  The residue 

was purified by silica flash chromatography (4:1 hexane:EtOAc) to yield E3 (1.88 g, 12.2 mmol, 81% 

yield) as a tan semisolid.  Analytical data for E3: 
1
H NMR (600 MHz, CDCl3): = 12.05 (br. s, 1 H), 4.92 

(s, 1 H), 4.83 (s, 1 H), 2.34 (dt, J = 3.1, 13.6 Hz, 1 H), 2.26 (m, 1 H), 2.17 (td, J = 4.5, 13.2 Hz, 1 H), 1.76 

(dt, J = 3.4, 12.4 Hz, 1 H), 1.66 (m, 1 H), 1.56 (m, 1 H), 1.39 (s, 3 H), 1.32 (qt, J = 4.1, 12.6 Hz, 1 H), 

1.22 (td, J = 4, 13 Hz, 1H); 
13

C NMR (151 MHz, CDCl3):  = 183.2, 150.1, 108.8, 49.0, 38.0, 34.6, 27.9, 

24.4, 23.6 ; IR (Thin film, cm
-1

): 2938 (br), 1810, 1697, 1646, 1446, 1404, 1281, 1243, 1171, 1143, 1101, 

903, 809, 732, 645, 572;  HRMS (ESI) Calc. for [C9H14O2+Na]
+
 = 177.0891, Found = 177.0887.  

Synthesis of E4 

 
Carboxylic acid E4 was prepared by the alkylation of the isobutyrate dianion with methallyl chloride 

following a procedure developed by Coates and co-workers.
11

  Physical and spectral properties of the 

product matched those reported. 

Synthesis of E5 

 
The title compound was synthesized by the -alkylation of the lithium dienolate of tiglic acid with allyl 

bromide using the procedure provided by Parra and co-workers.
12

  Physical and spectral properties of the 

product matched those reported. 
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Synthesis of E6 

 

 
The title compound was synthesized using an adaptation of the tiglic acid alkylation procedure described 

by Parra and co-workers.
12

 n-Butyllithium (58 mL of a 1.52 M solution in hexanes, 87.9 mmol, 2.2 eq) 

was syringed into a dry, 500 mL round-bottom flask containing a magnetic stir bar.  The hexane was 

removed under a stream of dry nitrogen, and the residue was cooled to -78 ºC in a dry ice/acetone bath.  

The n-butyllithium was redissolved in THF (40 mL) which had been precooled to -78 ºC.  Diethylamine 

(8.7 mL, 83.9 mmol, 2.1 eq) was then added dropwise.  The reaction mixture was held at 0 ºC for 30 

minutes before being cooled to -78 ºC.  Propargyl bromide (4.5 mL of an 80% wt solution in toluene, 40 

mmol, 1 eq) was dissolved in 67 mL of THF, and transferred via cannula into the reaction mixture.  After 

stirring at -78 ºC for 30 minutes, the reaction mixture was warmed to room temperature over the course of 

an hour.  The reaction was quenched by the slow addition of 150 mL H2O and washed three times with 

EtOAc.  The aqueous layer was cooled to 0 ºC and acidified to a pH of 2 (Litmus paper) with 

concentrated HCl before being extracted three times with EtOAc.  The combined organic layers were 

washed with brine, dried over anhydrous MgSO4, filtered, and concentrated in vacuo.  The residue was 

purified by silica gel flash chromatography (4:1 to 3:1 hexane:EtOAc solvent gradient) to yield E6 (4.14 

g, 30.0 mmol, 75% yield) as a yellow oil.  The product formed from the alkylation of the -carbon of 

tiglic acid (2-methylhept-2-en-6-ynoic acid) was also isolated as an inseparable byproduct.  This 

byproduct could be removed in later steps. Analytical data for E6: 
1
H NMR (400 MHz, CDCl3):  = 12.06 

(br. s, 1 H), 6.00 (dd, J = 10.7, 17.4 Hz, 1 H), 5.24 (d, J = 17.6 Hz, 1 H), 5.23 (d, J = 10.5 Hz, 1 H), 2.65 

(dd, 2.7, 16.5 Hz, 1 H), 2.51 (dd, J = 2.7, 16.8 Hz), 2.03 (t, J = 2.6 Hz, 1 H), 1.43 (s, 3 H); 
13

C NMR (101 

MHz, CDCl3):  = 181.1, 139.1, 115.6, 80.1, 70.9, 48.1, 28.1, 20.6; IR (Thin film, cm
-1

): 3925, 3303, 

2988(br), 2648, 2121, 1705, 1639, 1461, 1415, 1286, 1124, 928, 762, 644, 531;  HRMS (ESI) Calc. for 

[C8H10O2+Na]
+
 = 161.0578, Found = 161.0574.  
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Synthesis of E10 

 

 
Synthesis of E7 

Sodium hydride (60% wt. dispersion in mineral oil, 1.54 g, 38.4 mmol, 1 eq) was suspended in dry THF 

(75 mL), and cooled to 0 C.  Ethyl acetoacetate (5 g, 4.86 mL, 38.4 mmol, 1 eq) was added dropwise 

while stirring magnetically.  After hydrogen evolution ceased and the solution became clear, iodomethane 

(6.54 g, 2.90 mL, 46.1 mmol, 1.2 eq) was added dropwise.  The solution was allowed to warm to room 

temperature before being heated at 65 C overnight.  The reaction mixture was quenched with water and 

extracted three times with EtOAc.  The combined organic extracts were washed twice with brine, dried 

over anhydrous MgSO4, filtered, and concentrated in vacuo.  The residue was purified by vacuum 

distillation to afford E7 (4.69 g, 32.5 mmol, 85% yield) as a colorless oil.
  
Physical and spectral data were 

in accordance with literature values.
13

 

Synthesis of E8 

Sodium hydride (60% wt. dispersion in mineral oil, 2.62 g, 65.6 mmol, 1.05 eq) was suspended in 

benzene (60 mL).  E7 (9.0 g, 62.4 mmol, 1 eq) was dissolved in benzene (60 mL), and slowly transferred 

via cannula into the magnetically stirring sodium hydride suspension.  Dry DMF (30 mL) was added to 

solubilize the sodium enolate.  After stirring 20 minutes, allyl bromide (7.94 g, 5.7 mL, 65.6 mmol, 1.05 

eq) was added dropwise, and the reaction was heated at 80 C overnight.  The reaction was quenched with 

water and extracted three times with Et2O.  The combined organic extracts were washed with brine, dried 



101 

 

over anhydrous MgSO4, filtered, and concentrated in vacuo.  The residue was purified by silica gel flash 

chromatography (8:1 hexane:EtOAc) to yield E8 (7.47 g, 40.5 mmol, 65% yield) as a colorless oil. 

Physical and spectral properties of the product matched those reported.
14

 

Synthesis of E9 

The title compound was synthesized using a procedure adapted from that described by Chiba and Hui.
7
  

To a slurry of methyltriphenylphosphonium iodide (2.43 g, 6.0 mmol, 1.1 eq) in Et2O (17 mL) was added 

a magnetic stir bar and potassium tert-butoxide (0.670 g, 6.0 mmol, 1.1 eq).  The slurry was stirred for 30 

minutes.  Ester E8 (1.00 g, 5.43 mmol, 1 eq) was dissolved in Et2O (3.3 mL) and added dropwise to the 

slurry, which was heated at 35 C until TLC analysis indicated the completion of the reaction. The 

reaction mixture was cooled, diluted with hexanes, and filtered through a short pad of silica.  After rinsing 

the filter cake with hexane, the filtrate was concentrated and the residue purified by vacuum distillation.  

E9 was obtained as a colorless oil in 81% yield (0.837g, 4.59 mmol).  An unidentified, inseparable by-

product was present in the purified material.  This by-product could be removed during later steps.  A 

pure sample of E9 for analysis was prepared through esterification of the acid chloride derived from E10.  

Analytical data for E9: 
1
H NMR (600 MHz, CDCl3):  = 5.66 (m, 1 H), 5.06 (m, 2 H), 4.92 (m, 1 H), 4.86 

(s, 1 H), 4.14 (m, 2 H), 2.54 (dd, J = 7.4, 13.8 Hz, 1 H), 2.43 (dd, J = 7.1, 13.8 Hz, 1 H), 1.72 (d, J = 0.7 

Hz, 3 H), 1.26 (s, 3 H), 1.24 (t, J = 7.1 Hz, 3 H)  ; 
13

C NMR (151 MHz, CDCl3):  = 175.5, 146.3, 134.2, 

117.9, 111.6, 60.6, 51.0, 40.7, 21.2, 20.1, 14.2; IR (Thin film, cm
-1

): 2980, 1731, 1643, 1457, 1377, 1288, 

1235, 1145, 1106, 897;  HRMS (ESI) Calc. for [C11H18O2+Na]
+
 = 205.1204, Found = 205.1201.  

Synthesis of E10 

To a solution of E9 (0.750g, 4.12 mmol, 1 eq) in absolute ethanol (4 mL) was added a magnetic stir bar 

and a solution of NaOH (0.36 g, 9.05 mmol, 2.2 eq) in deionized water (4 mL). The reaction mixture was 

placed under an argon atmosphere and refluxed overnight. After cooling to 0 ºC, the mixture was diluted 

with water, acidified to a pH of 2 (Litmus paper) with 6 N HCl, and extracted three times with EtOAc.  

The combined organic layers were washed once with brine, dried over anhydrous MgSO4, filtered, and 
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concentrated in vacuo.  The residue was purified by silica gel flash chromatography (4:1 hexane:EtOAc) 

to yield E10 (0.362 g, 2.33 mmol, 57% yield) as a colorless oil. Analytical data for E10: 
1
H NMR (600 

MHz, CDCl3):  = 11.88 (br. s, 1 H), 5.67 (m, 1 H), 5.08 (m, 2 H), 4.99 (s, 1 H),  4.93 (s, 1 H),  2.54 (dd, 

J = 7.5, 14 Hz, 1 H), 2.47 (dd, J = 7, 14 Hz, 1 H), 1.79 (d, J = 0.7 Hz, 3 H), 1.31 (s, 3 H); 
13

C NMR (151 

MHz, CDCl3):  = 182.1, 145.4, 133.7, 118.3, 112.5, 50.9, 40.4, 21.0, 20.2 ; IR (Thin film, cm
-1

): 

2980(br), 2646, 1704, 1643, 1455, 1403, 1378, 1293, 1269, 1233, 1151, 1119, 1066, 994, 917, 741, 651, 

586;  HRMS (ESI) Calc. for [C9H14O2+Na]
+
 = 177.0891, Found = 177.0887.  

Synthesis of E12 

 
To a solution of E11

15
 (1.27 g, 6.06 mmol, 1 eq) in absolute ethanol (6 mL) was added a magnetic stir bar 

and a solution of NaOH (0.533 g, 13.3 mmol, 2.2 eq) in deionized water (6 mL). The reaction mixture 

was placed under an argon atmosphere and heated to reflux.  Additional NaOH (0.580 g, 14.5 mmol, 2.4 

eq) was added after 16 hours. After 50 hours, more was added (1.00 g, 25.0 mmol, 4.1 eq) to accelerate 

the sluggish reaction.  After a total of 62 hours of reflux, the reaction was cooled to 0 ºC, diluted with 

water, acidified to a pH of 2 (Litmus paper) with 6 N HCl, and extracted three times with EtOAc.  The 

combined organic layers were washed once with brine, dried over anhydrous MgSO4, filtered, and 

concentrated in vacuo.  The residue was purified by silica gel flash chromatography (4:1 hexane:EtOAc) 

to yield E12 (0.698 g, 3.87 mmol, 64% yield) as a viscous, pale yellow oil. Analytical data for E12: 
1
H 

NMR (600 MHz, CDCl3):  = 12.00 (br. s, 1 H), 5.81 (m, 1 H), 5.09 (m, 2 H), 4.95 (s, 1 H), 4.87 (s, 1 H), 

2.67 (dd, J = 6.9, 13.8 Hz, 1 H), 2.41 (dd, J = 7.6, 13.9),  1 H), 2.33 (dt, J = 4.2, 13.6 Hz), 1 H), 2.21 (dt, J 

= 3.8, 13.4 Hz, 1 H), 2.12 (td, J = 4.1, 12.6 Hz, 1 H), 1.72 (m, 1 H), 1.62 (m, 2 H), 1.37 (m, 1 H), 1.27 (m, 

1 H); 
13

C NMR (151 MHz, CDCl3):  = 181.2, 149.2, 133.5, 118.2, 109.2, 52.8, 41.1, 35.0, 34.8, 27.9, 

22.9; IR (Thin film, cm
-1

): 3079, 2937(br), 2859, 2628, 1700, 1643, 1448, 1401, 1290, 1241, 1169, 1135, 

992, 915, 811, 735, 646;  HRMS (ESI) Calc. for [C11H16O2+Na]
+
 = 203.1048, Found = 203.1044.  
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E3.3 General Procedure for the Synthesis of Hydroxamic Acids 

A dry 50 mL-round-bottom flask was charged with a magnetic stir bar, carboxylic acid (3.24 mmol, 1 eq), 

DMF (13 µL, 0.162 mmol, 0.05 eq), and diethyl ether (6.5 mL).  The vessel was then placed under an 

argon atmosphere and cooled to 0 ºC in an ice-water bath.  Oxalyl chloride (0.30 mL, 3.57 mmol, 1.1 eq) 

was added dropwise, and the reaction was stirred at 0 ºC for 5 minutes and at ambient temperature for 1 

hour.  After chilling the flask to 0 ºC, NaHCO3 (0.544 g, 6.48 mmol, 2 eq) was added, followed by 3.2 

mL of deionized water.  After effervescence ceased, N-phenylhydroxylamine (0.354 g, 3.24 mmol, 1 eq) 

was added portionwise.  The reaction was then placed under an argon atmosphere, stirred at 0 ºC for 5 

minutes, and at room temperature for 1 hour.  After diluting with water, the reaction mixture was 

extracted three times with Et2O.  The combined organic extracts were washed three times with 1N HCl, 

once with brine, and dried over anhydrous MgSO4.  After filtration and concentration in vacuo, the 

residue was purified by silica gel column chromatography and stored at 5 ºC. 

 
Hydroxamic acid 1 was synthesized according to the general procedure from the corresponding 

carboxylic acid (1.00 g, 8.76 mmol).  The crude product was purified by silica gel flash chromatography 

(4:1 hexane:EtOAc), to afford a light yellow solid (1.39 g, 6.77 mmol, 70% yield).  Physical and spectral 

properties matched those previously reported.
3
 

 
Hydroxamic acid 3 was synthesized according to the general procedure from the corresponding 

carboxylic acid (0.500 g, 3.96 mmol).  The crude product was purified by silica gel flash chromatography 

(4:1 hexane:EtOAc) to afford a pale yellow solid (0.58 g, 2.66 mmol, 67% yield).  Physical and spectra 

properties matched those previously reported.
3
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Hydroxamic acid 5 was prepared according to the general procedure from E3, with the following 

modifications: 1.6 equivalents of oxalyl chloride and 0.1 equivalents of DMF were employed, and 1 hour 

of heating at 35 C was needed to help convert the carboxylic acid to the acid chloride.  The crude 

product was purified by silica gel flash chromatography (5:1 hexane:EtOAc) to yield a light yellow solid 

(0.456 g, 1.86 mmol, 57% yield).  Analytical data for 5: 
1
H NMR (600 MHz, CDCl3):  = 7.41 (br. s, 2 

H), 7.32 (m, 2 H), 7.28 (br. s, 1 H), 4.59 (br. s, 2 H), 2.48 (d, J = 12.8 Hz, 1 H), 2.20 (br. s, 1 H), 2.10 (m, 

1 H), 1.75 (br. m, 2 H), 1.61 (m, 1 H), 1.37 (s, 3 H), 1.33 (br. s, 1 H), 1.11 (br. s, 1 H); 
13

C NMR (151 

MHz, CDCl3):  = 172.6 (br.), 151.1 (br.), 140.0 (br.), 128.5, 127.8 (br.), 125.1 (br.), 109.0, 49.2 (br.), 

40.0 (br.), 35.3, 28.5, 24.1 (br.), 23.4; IR (Thin film, cm
-1

): 3238(br), 2936, 1621, 1592, 1491, 1447, 1373, 

1351, 1308, 1067, 896, 758, 694;  HRMS (ESI) Calc. for [C15H19NO2+Na]
+
 = 268.1313, Found = 

268.1311. 

 
Hydroxamic acid 7 was synthesized according to the general procedure from the corresponding 

carboxylic acid (0.50 g, 3.90 mmol).  The crude product was purified via silica gel flash chromatography 

(4:1 hexane:EtOAc) to give a pale green solid (0.682 g, 3.11 mmol, 77% yield).  Physical and spectral 

properties of the product matched those previously reported.
6
 

 
Hydroxamic acid 9 was prepared according to the general procedure from the corresponding carboxylic 

acid (0.100 g, 0.78 mmol).  The crude product was purified by silica gel flash chromatography (4:1 
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hexane:EtOAc) to afford a light yellow solid (0.124 g, 0.565 mmol, 72% yield).  Physical and spectral 

properties of the product matched those previously reported.
3
 

 
Hydroxamic acid 11 was prepared from E4 (0.500 g, 3.52 mmol) according to the general procedure, with 

the following exceptions: 2 equivalents of oxalyl chloride, 0.1 equivalents of DMF, and 4 equivalents of 

NaHCO3 were used, and the reaction mixture was heated at 35 C 2 hours to assist with the conversion of 

the carboxylic acid to the acid chloride.  The crude product was purified by silica gel flash 

chromatography (4:1 hexane:EtOAc) to yield an light yellow solid (0.590 g, 2.53 mmol, 72% yield). 

Analytical data for 13: 
1
H NMR (600 MHz, CDCl3):  = 8.76 (br. s, 1 H), 7.37 (m, 5 H), 4.81 (s, 1 H), 

4.68 (s, 1 H), 2.34 (s, 2 H), 1.67 (s, 3 H), 1.11 (s, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 174.6 (br), 

142.7, 140.5, 128.8, 128.6 (br), 126.8 (br), 113.8, 48.3, 42.3, 26.9, 23.8; IR (Thin film, cm
-1

): 3183(br), 

2969, 1612, 1591, 1495, 1453, 1390, 1359, 1258, 1068, 891, 760, 692, 668, 622;  HRMS (ESI) Calc. for 

[C14H19NO2+Na]
+
 = 256.1313, Found = 256.1310.  

 
Hydroxamic acid 14 was prepared from E5 (0.500 g, 3.57 mmol) according to the standard procedure.  

The crude product was purified by silica gel flash chromatography (5:1 hexane: EtOAc) to give 14 (0.408 

g, 1.76 mmol, 49% yield) as a pale yellow oil. Analytical data for 14: 
1
H NMR (600 MHz, CDCl3):  = 

7.42 (d, J = 7.7 Hz, 2H), 7.35 (m, 2H), 7.28(br. m, 1H), 5.92 (br. s, 1 H), 5.74 (m, 1 H), 5.08 (m, 1 H), 

5.06 (s, 1 H), 4.98 (m, 2 H), 2.62 (br. s, 1 H), 2.39 (dd, J = 7.0, 13.8 Hz, 1 H), 1.25 (s, 3 H)  ; 
13

C NMR 

(151 MHz, CDCl3):  = 172.7 (br), 141.8 (br.), 140.3 (br.), 133.8, 128.6, 127.8 (br.), 125.5 (br.), 118.3, 

113.6, 48.4, 43.0, 22.5; IR (Thin film, cm
-1

): 3212(br), 3078, 2979, 2936, 1945, 1837, 1615, 1592, 1495, 

1454, 1374, 1307, 1262, 1223, 1065, 995, 916, 759, 699;  HRMS (ESI) Calc. for [C14H17NO2+Na]
+
 = 

254.1157, Found = 254.1154.  
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Hydroxamic acid 16 was prepared from E10 (0.300 g, 1.95 mmol) according to the standard procedure, 

with the following exceptions: 3.3 equivalents of oxalyl chloride and 8 equivalents of NaHCO3 were 

used.  The crude product was purified by silica gel flash chromatography (4:1 hexane:EtOAc) to give 16 

(0.344 g, 1.40 mmol, 72% yield) as an off-white solid. Analytical data for 16: 
1
H NMR (600 MHz, 

CDCl3):  = 7.45 (d, J = 7.0 Hz, 2 H), 7.33 (t, J = 7.9 Hz, 2 H), 7.24 (br. s, 1 H), 5.70 (m, 1 H), 5.06 (m, 2 

H), 4.86 (br. s, 1 H), 4.74 (br. s, 1 H), 2.69 (br. s, 1 H), 2.40 (dd, J = 7.2, 13.9 Hz, 1 H), 1.79 (s, 3 H), 1.29 

(br. s, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 173.4 (br.), 147.5 (br.), 140.6 (br.), 134.1, 128.5, 127.1 

(br.), 123.4 (br.), 118.1, 111.1, 51.4 (br.), 41.3, 21.9, 20.3; IR (Thin film, cm
-1

): 3214(br), 2972, 1619, 

1494, 1592, 1452, 1373, 1067, 757, 694;  HRMS (ESI) Calc. for [C15H19NO2+Na]
+
 = 268.1313, Found = 

268.1310.  

 
Hydroxamic acid 18 was prepared from E12 (0.500 g, 2.77 mmol) according to the standard procedure.  

The crude product was purified by silica gel flash chromatography (6:1 hexane:EtOAc) to give 18 (0.459 

g, 1.69 mmol, 61% yield) as a pale yellow solid. Analytical data for 18: 
1
H NMR (600 MHz, CDCl3):  = 

7.43 (br. s, 2 H), 7.34 (t, J = 7.5 Hz, 2 H), 7.27 (br. s, 1 H), 5.84 (ddt, J = 7.2, 10, 17.1 Hz, 1 H), 5.11 (m, 

2 H), 4.82 (br. s, 2 H), 2.92 (br. s, 1 H), 2.56 (d, J = 12.8 Hz, 1 H), 2.26 (br. s, 2 H), 2.12 (td, J = 3.3, 12.3 

Hz, 1 H), 1.77 (m, 2 H), 1.64 (m, 1 H), 1.37 (br. s, 1 H), 1.11 (br. s, 1 H); 
13

C NMR (151 MHz, CDCl3):  

= 171.8 (br.), 151.0 (br.), 140.3 (br.), 133.8, 128.5, 127.7 (br.), 122.3 (br.), 118.0, 109.1, 52.5 (br.), 40.3 

(br.), 37.0, 35.6, 28.5, 23.0; IR (Thin film, cm
-1

): 3216(br), 2935, 1620, 1591, 1492, 1447, 1363, 914, 760, 

694, 668;  HRMS (ESI) Calc. for [C17H21NO2+Na]
+
 = 294.1470, Found = 294.1468.  
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Hydroxamic acid 20 was prepared from E6 (0.500 g, 3.61 mmol) according to the standard procedure.  

The crude product was purified by silica gel flash chromatography (3:1 hexane:EtOAc) to give 20 (0.540 

g, 2.36 mmol, 65% yield) as a light brown solid. Analytical data for 20: 
1
H NMR (600 MHz, CDCl3):  = 

7.43 (d, J = 7.7 Hz, 2 H), 7.35 (t, J = 7.7 Hz, 2 H), 7.28 (m, 1 H), 5.96 (s, 1 H), 5.05 (m, 2 H), 2.66 (m, 1 

H), 2.56 (m, 1 H), 2.02 (t, J = 2.6Hz, 1 H), 1.40 (s, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 171.8 (br.), 

140.4, 128.6, 127.8 (br.), 125.1 (br.), 114.5, 80.8, 70.9, 48.3, 28.9, 22.2; IR (Thin film, cm
-1

): 3294(br), 

2979, 2937, 2118, 1621, 1592, 1494, 1454, 1375, 1308, 1258, 1066, 993, 919, 761, 700, 646;  HRMS 

(ESI) Calc. for [C14H15NO2+Na]
+
 = 252.1000, Found = 252.0997.  

 

E3.4 General Procedure for Intramolecular Formal Hydration of Alkenes 
 

Condition A: A 1-dram vial was charged with a magnetic stir bar, unsaturated hydroxamic acid (0.10 

mmol, 1 eq), dilauroyl peroxide (2.0 mg, 0.005 mmol, 0.05 eq), and N-hydroxy carbamate 3 (13.4 mg, 

0.080 mmol, 0.80 eq).  The vial was sealed with a screw cap lined with a PTFE septum and transferred 

into an argon-filled glovebox.  After allowing argon to displace the air in the vial and dissolving the 

reagents in dichloroethane (0.20 mL), the vial was removed from the glove box and heated at 60 ºC. After 

TLC analysis indicated the completion of the reaction, solvent was removed in vacuo, and the residue was 

purified by column chromatography.  Note:  If the reaction was not complete after 24 hours 

(approximately two half-lives of dilauroyl peroxide), the reaction was re-initiated with an additional 2 mg 

(0.05 eq) of dilauroyl peroxide.  This process was repeated until the reaction was deemed complete. 

Condition B: A 1-dram vial was charged with a magnetic stir bar, unsaturated hydroxamic acid (0.50 

mmol, 1 eq), and dilauroyl peroxide (5.0 mg, 0.0125 mmol, 0.025 eq).  The vial was sealed with a screw 

cap lined with a PTFE septum and transferred into an argon-filled glovebox.  After allowing argon to 

displace the air in the vial and dissolving the reagents in dichloroethane (1.0 mL), the vial was removed 
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from the glove box and heated at 60 ºC.  After TLC analysis indicated the completion of the reaction, 

solvent was removed in vacuo, and the residue was purified by silica gel flash chromatography.  

 
Isoxazolidinone 2 was prepared from hydroxamic acid 1 (20.2 mg, 0.100 mmol) according to Condition 

A.  The reaction was deemed complete by TLC after 16 hours.  The crude product was purified by silica 

gel flash chromatography (5:1 hexane:Et2O) to afford 8 (18.1 mg, 0.0881 mmol, 90% yield) as a clear oil. 

Analytical data for 2: 
1
H NMR (400 MHz, CDCl3):  = 7.73 (m, 2 H), 7.36 (m, 2 H), 7.12 (m, 1 H), 4.34 

(q, J = 6.5 Hz, 1 H), 1.36 (d, J = 6.5 Hz, 3 H), 1.24 (s, 3 H), 1.16 (s, 3 H); 
13

C NMR (101 MHz, CDCl3):  

= 172.1, 137.2, 128.7, 124.4, 116.4, 83.7, 46.2, 20.9, 17.3, 12.4; IR (Thin film, cm
-1

): 2974, 2930, 2870, 

1706, 1595, 1496, 1395, 1367, 1350, 1305, 1181, 1131, 1086, 1042, 889, 752, 690, 582;  HRMS (ESI) 

Calc. for [C12H15NO2+Na]
+
 = 228.1000, Found = 228.0997.  

 
Isoxazolidinone 4 was prepared from hydroxamic acid 3 (20.9 mg, 0.100 mmol) according to Condition 

A.  The reaction was deemed complete by TLC after 42 hours.  The crude product was purified by silica 

gel flash chromatography (5:1 hexane:Et2O) to afford 16 (16.8 mg, 0.0773 mmol, 77% yield) as a clear 

oil. Analytical data for 16: 
1
H NMR (600 MHz, CDCl3):  = 7.73 (m, 2 H), 7.36 (m, 2 H), 7.13 (m, 1 H), 

4.71 (dd, J = 1, 5 Hz, 1 H), 2.33 (m, 1 H), 2.15 (m, 1 H), 1.93 (m, 1 H), 1.83 (m, 2 H), 1.60 (m, 1 H), 1.42 

(s, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 170.9, 137.0, 128.7, 124.5, 116.7, 89.5, 55.2, 38.1, 33.8, 24.5, 

21.4; IR (Thin film, cm
-1

): 2963, 1696, 1595, 1496, 1369, 1307, 951, 752, 689;  HRMS (ESI) Calc. for 

[C13H15NO2+Na]
+
 = 240.1000, Found =240.0997.  
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Isoxazolidinone 6 was prepared from hydroxamic acid 5 (122.0 mg, 0.5 mmol) according to Condition B.  

The reaction was deemed complete by TLC after 24 hours.  The crude product was purified by silica gel 

flash chromatography (8:1 hexane:Et2O) to afford 6 (107.8 mg, 0.439 mmol, 88% yield) as a clear, 

viscous oil. Analytical data for 6: 
1
H NMR (600 MHz, CDCl3):  = 7.72 (dd, J = 1, 8.7 Hz, 2 H), 7.35 (m, 

2 H), 7.11 (m, 1 H), 2.04 (m, 1 H), 2.04 (m, 1 H), 1.82 (m, 1 H), 1,69 (m, 1 H), 1.48 (m, 1 H), 1.37 (m, 6 

H), 1.19 (s, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 171.9, 137.9, 128.7, 124.1, 116.3, 86.0, 49.2, 33.5, 

31.7, 22.6, 22.1, 19.6, 18.7; IR (Thin film, cm
-1

): 2936, 1704, 1596, 1496, 1460, 1388, 1366, 1305, 1184, 

867, 751, 689;  HRMS (ESI) Calc. for [C15H19NO2+Na]
+
 = 268.1313, Found = 268.1308.  

 
Isoxazolidinone 8 was prepared from hydroxamic acid 7 (109.4 mg, 0.5 mmol) according to Condition B.  

The reaction was deemed complete by TLC after 24 hours.  The crude product was purified by silica gel 

flash chromatography (8:1 hexane:Et2O) to afford 8 (92.7 mg, 0.423 mmol, 85% yield) as a clear, viscous 

oil. Analytical data for 8: 
1
H NMR (400 MHz, CDCl3):  = 7.72 (m, 2 H), 7.36 (m, 2 H), 7.11 (m, 1 H), 

1.36 (s, 6 H), 1.19 (s, 6 H); 
13

C NMR (101 MHz, CDCl3):  = 172.2, 137.6, 128.7, 124.2, 116.4, 86.4, 

49.1, 21.3, 19.3; IR (Thin film, cm
-1

): 2978, 1704, 1596, 1496, 1394, 1361, 1137, 869, 752, 689;  HRMS 

(ESI) Calc. for [C13H17NO2+Na]
+
 = 242.1157, Found = 242.1151.  

 
Isoxazolidinone 10 was prepared from hydroxamic acid 9 (22.0 mg, 0.100 mmol) according to Condition 

A, with the exception that 1.6 equivalents of 7 (26.7 mg, 0.160 mmol) were used.  After 42 hours, the 

reaction was stopped due to lack of progression.  The crude product was purified by silica gel flash 
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chromatography (5:1 hexane:Et2O) to afford 10 (7.1 mg, 0.0324 mmol, 32% yield) as a clear oil. 

Analytical data for 10: 
1
H NMR (600 MHz, CDCl3):  = 7.69 (dd, J = 1, 8.7 Hz, 2 H), 7.35 (m, 2 H), 7.14 

(m, 1 H), 4.42 (m, 1 H), 2.09 (dd, J = 7, 13.6 Hz, 1 H), 1.82 (dd, J = 8.4, 13.6 Hz, 1 H), 1.43 (s, 3 H), 1.41 

(d, J = 6.4 Hz, 3 H), 1.34 (s, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 174.7, 139.8, 128.5, 124.9, 119.4, 

76.6, 44.6, 39.2, 27.3, 26.3, 20.7; IR (Thin film, cm
-1

): 2975, 2930, 1682, 1595, 1494, 1389, 1349, 1300, 

753, 690, 507;  HRMS (ESI) Calc. for [C13H17NO2+Na]
+
 = 242.1157, Found = 242.1154.  

 
Isoxazolidinone 12 was prepared from hydroxamic acid 11 (23.5 mg, 0.100 mmol) according to 

Condition A.  The reaction was deemed complete by TLC after 51 hours.  The crude product was purified 

by silica gel flash chromatography (10:1 hexane:Et2O) to afford 12 (16.6 mg, 0.0711 mmol, 71% yield) as 

a clear oil. Analytical data for 12: 
1
H NMR (600 MHz, CDCl3):  = 7.77 (dd, J = 1, 8.7 Hz, 2 H), 7.34 (m, 

2 H), 7.11 (m, 1 H), 1.91 (s, 2 H), 1.40 (s, 6 H), 1.36 (s, 6 H); 
13

C NMR (151 MHz, CDCl3):  = 175.0, 

140.8, 128.4, 124.4, 118.8, 81.4, 48.9, 39.7, 28.2, 25.7; IR (Thin film, cm
-1

): 2977, 2930, 1681, 1594, 

1494, 1388, 1370, 1354, 1287, 754, 690;  HRMS (ESI) Calc. for [C14H19NO2+Na]
+
 = 256.1313, Found = 

256.1312.  

E3.5 General Procedure for Cascade Cyclization Reactions 

 

A 1-dram vial was charged with a magnetic stir bar, hydroxamic acid (0.10 mmol, 1 eq), and dilauroyl 

peroxide (2.0 mg, 0.005 mmol, 0.05 eq).  The vial was sealed with a screw cap lined with a PTFE septum 

and transferred into an argon-filled glovebox.  After allowing argon to displace the air in the vial and 

dissolving the reagents in benzene (1.0 mL), the vial was removed from the glove box and heated at 60 

ºC. After TLC analysis indicated the completion of the reaction, solvent was removed in vacuo, and the 

residue was purified by column chromatography.  Note:  If the reaction was not complete after 24 hours, 

the reaction was re-initiated with an additional 2 mg (0.05 eq) of dilauroyl peroxide.  This process was 

repeated until the reaction was deemed complete. 
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Carbocycle 15 was prepared from hydroxamic acid 14 (23.5 mg, 0.100 mmol) according to the general 

procedure.  The reaction was deemed complete by TLC after 26 hours.  The crude product was purified 

by silica gel flash chromatography (10 : 1 hexane : Et2O) to afford the partially separable diastereomers 

15a and 15b (12.7 mg, 0.0549 mmol, 54% yield, 1.2 : 1 d.r.) as a clear oil.  A third product, presumably 

the cyclohexane derived from a 5-exo; 6-endo cyclization, was also present and co-eluted with 15b.   The 

by-product stemming from hydration (15c, 4.1 mg, 0.0177 mmol, 17% yield) was also isolated.  

Analytical data for 15a (major diastereomer) : 
1
H NMR (600 MHz, CDCl3):  = 7.73 (m, 2 H), 7.36 (m, 

2 H), 7.13 (m, 1 H), 4.70 (d, J = 5.1 Hz, 1 H), 2.44 (ddd, J = 6.5, 13.1 Hz, 1 H), 2.25 (m, 2 H), 1.56 (m, 1 

H), 1.44 (s, 3 H), 1.21 (dd, J = 11.7, 13.2 Hz, 1 H), 1.03 (d, J = 6.2 Hz, 3 H); 
13

C NMR (151 MHz, 

CDCl3):  = 170.7, 136.9, 128.7, 124.6, 116.7, 89.1, 55.7, 46.8, 42.8, 33.2, 22.2, 18.9; IR (Thin film, cm
-

1
): 2955, 2926, 2870, 1696, 1596, 1496, 1458, 1380, 752, 689;  HRMS (ESI) Calc. for [C14H17NO2+Na]

+
 

= 254.1157, Found = 254.1154.   

Analytical data for 15b (minor diastereomer with byproduct): 
1
H NMR (600 MHz, CDCl3):  = 7.71 (m, 

3.27 H), 7.36 (m, 3.23 H), 7.13 (m, 1.68 H), 4.65 (m, 1 H), 4.05 (dd, J = 3.7, 12.5 Hz, 0.67 H), 2.31 (m, 

2.16 H), 2.00 (m, 0.69 H), 1.93 (m, 1.26 H), 1.90 (s, 0.95 H), 1.89 (m, 0.92 H), 1.80 (m, 0.79 H), 1.69 (m, 

1.82 H), 1.56 (m, 2.09 H), 1.38 (s, 3 H), 1.22 (s, 1.78 H), 1.09 (d, J = 6.6 Hz), 3 H); 
13

C NMR (151 MHz, 

CDCl3):  = 173.0, 171.6, 137.7, 137.3, 128.7, 128.68, 124.5, 124.2, 116.7, 116.2, 90.4, 86.1, 55.1, 45.6, 

44.3, 40.2, 33.4, 29.2, 23.5, 23.0, 20.7, 20.3, 19.8, 13.3; IR (Thin film, cm
-1

): 2955, 2926, 2870, 1699, 

1595, 1496, 1458, 1375, 1303, 751, 689.  HRMS (ESI) Calc for [C14H17NO2+H]
+ 

= 232.1338, Found = 

232.1334.   

Analytical data for 15c (hydration by-product): 
1
H NMR (600 MHz, CDCl3):  = 7.73 (m, 2 H), 7.36 (m, 

2 H), 7.13 (m, 1 H), 5.83 (m, 1 H), 5.15 (s, 1 H), 5.13 (m, 1 H), 4.51 (q, J = 6.4 Hz, 1 H), 2.49 (dd, J = 
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6.8, 14.1 Hz, 1 H), 2.33 (dd, J = 8, 14.2 Hz, 1 H), 1.34 (d, J = 6.2 Hz, 3 H), 1.18 (s, 3 H); 
13

C NMR (151 

MHz, CDCl3):  = 171.0, 137.0, 132.7, 128.7, 124.5, 119.1, 116.4, 81.0, 49.2, 39.5, 15.9, 13.2; IR (Thin 

film, cm
-1

): 3078, 2979, 2919, 1703, 1596, 1496, 1396, 1368, 1305, 920, 752, 689;  HRMS (ESI) Calc. 

for [C14H17NO2+Na]
+
 = 254.1157, Found = 254.1153. 

 

 
Carbocycle 17 was prepared from hydroxamic acid 16 (24.2 mg, 0.100 mmol) according to the general 

procedure.  The reaction was deemed complete by TLC after 22 hours.  The crude product was purified 

by silica gel flash chromatography (10:1 hexane:Et2O) to afford 17 (19.9 mg, 0.0811 mmol, 82% yield, 

2.9 : 1 d.r.)  as a mixture of inseperable diastereomers.  Analytical data for 17: 
1
H NMR (600 MHz, 

CDCl3):  = 7.74 (m, 2.73 H), 7.36 (m, 2.72), 7.12 (m, 1.36), 2.45 (ddd, J = 1.7, 6.6, 13.4 Hz, 1 H), 2.29 

(ddd, J = 1.7, 6.6, 13.8 Hz, 1 H), 2.20 (m, 1.69 H), 2.03 (m, 0.76 H), 1.86 (m, 0.72), 1.42 (m, 5.10), 1.25 

(m, 6.49), 1.06 (d, J = 6.6 Hz, 1.11 H), 0.99 (d, J = 6.6 Hz, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 172.2, 

171.1, 137.5, 137.0, 128.7, 128.6, 124.4, 116.7, 116.6, 94.4, 92.9, 56.5, 56.3, 48.9, 47.7, 46.1, 45.0, 31.8, 

31.1, 29.7, 20.8, 20.6, 19.4, 19.2, 18.8, 17.4; IR (Thin film, cm
-1

): 2954, 2927, 2871, 1696, 1596, 1496, 

1460, 1387, 1370, 1320, 1308, 1144, 901, 851, 752, 689;  HRMS (ESI) Calc. for [C15H19NO2+Na]
+
 = 

268.1313, Found = 268.1311.  

 
Carbocycle 19 was prepared from hydroxamic acid 18 (108.5 mg, 0.400 mmol) according to the general 

procedure on a 0.400 mmol scale.  The reaction was deemed complete by TLC analysis after 22 hours.  

The crude product was purified by silica gel flash chromatography (10:1 hexane:Et2O) to afford 19 (88.6 

mg,  0.316 mmol, 82% yield, 2.7 : 1 d.r.) as an inseperable mixture of diastereomers. Analytical data for 
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19: 
1
H NMR (600 MHz, CDCl3):  = 7.74 (m, 2.82 H), 7.36 (m, 2.82 H), 7.12 (m, 1.41), 2.39 (m, 2.46), 

2.23 (m, 2 H), 2.11 (m, 0.76 H), 1.89 (m, 3.19 H), 1.78 (m, 0.76 H), 1.48 (m, 9.66 H), 1.11 (d, J = 6.6 Hz, 

1.09 H), 1.05 (d, J = 6.2 Hz, 3 H); 
13

C NMR (151 MHz, CDCl3):  = 171.7, 171.2, 137.9, 137.5, 128.7, 

124.3, 124.2, 116.6, 116.5, 94.5, 93.4, 56.4, 56.2, 45.8, 45.1, 43.8, 43.1, 32.4, 31.4, 30.92, 30.90, 30.4, 

28.7, 21.9, 21.8, 21.4, 21.1, 21.0, 20.8; IR (Thin film, cm
-1

): 2934, 2861, 1699, 1596, 1496, 1458, 1372, 

1320, 1306, 1186, 1142, 1047, 959, 861, 751, 689;  HRMS (ESI) Calc. for [C17H21NO2+Na]
+
 = 294.1470, 

Found = 294.1468.  

 
Carbocycle 21 was prepared from hydroxamic acid 20 (22.6 mg, 0.100 mmol) according to the general 

procedure.  The reaction was deemed complete by TLC after 72 hours.  The crude product was purified 

by silica gel flash chromatography (10:1 hexane:Et2O) to afford 21 (9.3 mg, 0.0406 mmol, 41% yield) as 

a clear oil.  The hydration by-product (21a) and other inseparable, unidentified isomers were present as 

inseperable by-products. Analytical data for 21 and 21a: 
1
H NMR (600 MHz, CDCl3):  =  7.72 (m, 3.15 

H, 7.37 (m, 3.43 H), 7.14 (m, 1.59), 4.97 (s, 2 H), 4.72 (dd, J = 2.0, 5.3 Hz, 1 H), 4.67 (q, J = 6.2 Hz, 0.35 

H), 2.92 (dd, J = 1.8, 16.5 Hz, 1 H), 2.77 (m, 2 H), 2.57 (dd, J = 2.8, 18.9 Hz, 0.93 H), 2.41 (m, 1.36 H), 

2.08 (t, J = 2.8 Hz, 0.34 H), 1.45 (d, J = 6.2 Hz, 1.05 H), 1.39 (s, 3 H), 1.27 (s, 1.12 H); 
13

C NMR (151 

MHz, CDCl3):  = 170.7, 169.9, 146.6, 137.1, 136.8, 128.7, 128.68, 124.7, 124.6, 116.6, 116.5, 109.1, 

89.0, 82.0, 81.7, 71.9, 54.4, 42.6, 38.3, 25.2, 24.8, 19.9, 15.2, 13.4; IR (Thin film, cm
-1

): 3297, 3076, 

2927, 1704, 1595, 1496, 1459, 1371, 1305, 1197, 1156, 1043, 1007, 897, 814, 752, 689;  HRMS (ESI) 

Calc. for [C14H15NO2+Na]
+
 = 252.1000, Found = 252.0997.  

E3.6 General Procedure for Hydrogenation of the Isoxazolidinone N-O Bond 
 

To a solution of isoxazolidinone (0.1 mmol, 1 eq) in absolute ethanol (1 mL) was added palladium on 

carbon (5.3 mg of 10% Pd
0
/C, 0.005 mmol, 5 mol%).  The reaction vessel was evacuated and refilled with 

hydrogen gas three times before being allowed to magnetically stir at room temperature overnight under 1 
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atm of hydrogen.  The reaction mixture was diluted with dichloromethane and filtered through a plug of 

Celite.  After rinsing the plug with dichloromethane, the filtrate was concentrated in vacuo, and the 

residue was purified by silica gel flash chromatography.
16

 

 
Alcohol 27 was prepared through hydrogenation of isoxazolidinone 19 (26.8 mg, 0.100 mmol) according 

to the standard hydrogenation procedure.  The crude product was purified by silica gel flash 

chromatography (3:1 hexane:EtOAc) to afford 27 (25.4 mg, 0.0929 mmol, 93% yield,  2.8 : 1 d.r.) as a 

viscous, clear oil. Analytical data for 27: 
1
H NMR (600 MHz, CDCl3):  = 8.17 (s (br), 1.34 H), 7.49 (m, 

2.76 H), 7.32 (m, 2.77), 7.10 (m, 1.39 H), 3.67 (s, 1 H), 3.46 (s, 0.36 H), 2.55 (m, 2.00 H), 2.38 (m, 0.36 

H), 2.30 (m, 0.42 H), 2.10 (m, 1.00 H), 2.04 (m, 0.75 H), 1.84 (m, 6.66 H), 1.65 (s, 0.33 H), 1.56 (m, 2.44 

H), 1.38 (m, 5.33 H), 1.15 (d, J = 6.6 Hz, 1.10 H), 1.12 (d, J = 6.6 Hz, 3 H); 
13

C NMR (151 MHz, 

CDCl3):  = 175.7, 175.3, 137.8, 128.9, 124.3, 120.3, 120.26, 83.1, 82.8, 57.4, 56.4, 44.5, 44.4, 44.1, 

43.8, 36.5, 34.83, 34.81, 33.7, 28.6, 28.1, 23.9, 23.7, 23.1, 22.9, 22.3; IR (Thin film, cm
-1

): 3274(br), 

2932, 2865, 1651, 1597, 1550, 1500, 1444, 1322, 995, 909, 754, 691;  HRMS (ESI) Calc. for 

[C17H23NO2+Na]
+
 = 296.1626, Found = 296.1624.  

 
Alcohol 28 was prepared through hydrogenation of isoxazolidinone 6 (24.5 mg, 0.100 mmol) according 

to the standard hydrogenation procedure.  The crude product was purified by silica gel flash 

chromatography (3:1 hexane:EtOAc) to afford 28 (20.6 mg, 0.0833 mmol, 83% yield) as a yellow oil. 

Analytical data for 28: 
1
H NMR (400 MHz, CDCl3):  = 9.04 (br. s, 1 H), 7.52 (dd, J = 1, 8.5 Hz, 2 H), 

7.32 (m, 2 H), 7.10 (m, 1 H), 3.52 (s, 1 H), 2.23 (m, 1 H), 1.7 (m, 3 H), 1.56 (m, 3 H), 1.46 (m, 1 H), 1.34 

(s, 3 H), 1.30 (s, 3 H); 
13

C NMR (101 MHz, CDCl3):  = 176.3, 138.1, 128.9, 124.1, 120.3, 74.1, 49.9, 
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37.0, 33.8, 25.7, 21.9, 21.2, 20.2; IR (Thin film, cm
-1

): 3269(br), 2939, 2864, 1651, 1597, 1549, 1499, 

1444, 1317, 1176, 1107, 1049, 755, 691;  HRMS (ESI) Calc. for [C15H21NO2+Na]
+
 = 270.1470, Found = 

270.1467.  

E3.7 Procedure for Formal Hydration of Norborne 
 

 
A 1-dram vial was charged with a magnetic stir bar, N-hydroxy carbamate 3 (40.1 mg, 0.239 mmol, 1 eq), 

and benzoyl peroxide (2.9 mg, 0.0120 mmol, 0.05 eq).  The vial was sealed with a screw cap lines with a 

PTFE septum and transferred into an argon-filled glovebox.  After allowing argon to displace the air in 

the vial, norbornene (112.6 mg, 1.20 mmol, 5 eq) and dichloroethane (0.24 mL) were added.  The vial 

was removed from the glove box and heated at 70 ºC for four days.  (After 24 and 48 hours, the reaction 

was dosed with an additional 0.05 equivalents of benzoyl peroxide.)  The reaction was then concentrated, 

and the residue was purified by column chromatography (10 : 1 hexanes/EtOAc) to afford 21.4 mg 

(0.0819 mmol) of norbornane 29 as a clear oil (34% isolated yield).  Analytical data for 29: 
1
H NMR (600 

MHz, CDCl3):  = 7.43 (m, 2 H), 7.35 (m, 2 H), 7.19 (m, 1 H), 3.98 (t, J = 4.7 Hz, 1 H), 3.81 (s, 3 H), 

2.37 (d, J = 4.8 Hz, 1 H), 2.27 (s, 1 H), 1.60 (m, 1 H), 1.53 (m, 2 H), 1.43 (m, 2 H), 1.08 (d, J = 9.7 Hz, 1 

H), 1.02 (m, 1 H), 0.93 (m, 1 H);  
13

C NMR (151 MHz, CDCl3):  = 156.0, 141.3, 128.5, 125.8, 122.7, 

87.4, 53.4, 39.8, 37.1, 35.4, 34.9, 28.5, 24.0; IR (Thin film, cm
-1

): 2956, 2871, 1717, 1595, 1494, 1439, 

1338, 1302, 1254, 1191, 1155, 1104, 1073, 1047, 1026, 978, 918, 838, 757, 694, 668, 634;  LRMS (ESI) 

Calc. for [M+Na]
+
 = 284.13, Found = 284.08.  The exo stereochemistry of the product was ascertained by 

hydrogenolysis of the N-O bond and comparing the crude spectra of the resulting product to literature 

chemical shifts for exo-norborneol.
17
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E3.9 Proton, carbon-13, and correlation spectroscopy spectra
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