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Abstract 
 

Amanda L. Stewart:  β-Hairpin Peptides and WW Domains Designed for Selective 
Recognition of Oligonucleotides 

(Under the direction of Professor Marcey L. Waters) 
 

 Protein-nucleic acid interactions are crucial in a variety of biological processes.  

Protein interactions with single-stranded DNA are particularly important in DNA replication, 

repair, and telomere regulation.  The interactions involved in the binding of a designed β-

hairpin dimer, (WKWK)2,  to ssDNA and dsDNA were previously explored, and the peptide 

was found to bind ssDNA with a Kd of 3 µM via a combination of aromatic and electrostatic 

interactions, whereas binding to duplex DNA was driven primarily by electrostatic 

interactions.  In this work, the effects of folding and chirality were studied to determine 

factors that contribute to affinity and selectivity for ssDNA versus dsDNA.  Binding studies 

showed that (1) folding is crucial for binding to both ss- and dsDNA and (2) chirality affects 

binding for duplex DNA but not for ssDNA.  Taken together, these studies reveal different 

modes of binding for ss- and duplex DNA, with different driving forces, but in each case 

peptide structure contributes significantly to binding.   

In another study, a β-sheet peptide based on a WW domain sequence was redesigned 

for the molecular recognition of ssDNA.  A previous report showed that (WKWK)2 binds 

ssDNA with low micromolar affinity but with little selectivity over dsDNA.  This work 

extends those studies to a three-stranded β-sheet designed to mimic the OB-fold.  The new 

peptide binds ssDNA with low micromolar affinity and shows enhanced selectivity for 



ssDNA.  The redesigned peptide no longer binds its native ligand, the polyproline helix.  This 

indicates that the peptide has been redesigned for the function of binding ssDNA.   

Structural studies indicate that this peptide consists of a structured β-hairpin made of 

Strands 2&3 with a less structured strand 1, which provides affinity for ssDNA but does not 

improve the stability of the full peptide.  Both function and stability are gained by 

incorporating a novel binding pocket into the peptide, and the redesigned peptide 

successfully mimics the OB-fold domain.  Further mutations were made to design a mutant 

with increased structure, affinity, and selectivity for ssDNA.  Knowledge gained from these 

binding and structural studies may lead to better designs of β-sheet peptides designed to 

target nucleotides, damaged DNA, and ssDNA.
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Chapter I 
 

Introduction 
 
A.  Background and Significance 

i.  Protein-Nucleotide Interactions 

Proteins and nucleotides are essential elements to life and the life cycle.  They are 

both a part of and contribute to the central dogma of biochemistry.  From single nucleotide 

triphosphates to individual strands of both ribonucleic acid (RNA) and deoxyribonucleic acid 

(DNA) to complex structures of duplex DNA and RNA, nucleotides function in a variety of 

ways on a number of levels.  There are specific proteins to recognize each of these different 

nucleotide structures.  This work focuses on the specific interactions that proteins have with 

nucleic acids.  There are many levels in which this study could be pursued.  This volume will 

attempt to look at the specific interactions and the roles that proteins play in recognizing 

nucleotides using structured peptides as model systems.  More specifically, a major theme 

and focus of this work is to understand the specific driving forces involved in the recognition 

of single-stranded DNA (ssDNA) by proteins.   

ii.  Single-stranded DNA Binding Proteins and Their Significance 

The reasons behind the focus on ssDNA recognition are that this recognition event is 

important in so many different processes and has vast influence on so many of the crucial 

processes in nature.  The primary class of single-stranded DNA binding proteins (SSBs)

contains what is termed the oligonucleotide/oligosaccharide binding domain (OB-fold 



domain) which specifically recognizes single-stranded DNA and RNA sequences.1  Many of 

the classic SSB proteins are known simply for their ability to discriminate between ssDNA 

and double-stranded DNA (dsDNA).  Their roles in metabolism, however, range from 

recognizing ssDNA sequences during replication, stabilizing ssDNA in its functional single-

stranded state, protecting ssDNA from nucleases, melting secondary DNA structures, 

assisting in homologous recombination, and recognizing DNA damage.2  OB-fold domains 

are found in a variety of different proteins and are known to specifically recognize single 

strands of DNA and RNA as well as single bases that may emerge during replication, 

recombination, and at damaged DNA sites.1  Most OB-fold domains are composed of several 

basic amino acids that bind to the phosphates in the DNA backbone, and they utilize aromatic 

residues which usually form a cleft which recognizes the nucleotide bases.3  A study of 

proteins containing OB-fold domains or other ssDNA binding domains reveals that their 

mode of recognition and their roles in recognizing bases as well as in stabilizing protein-

DNA complexes during binding and DNA repair vary greatly depending on the protein and 

its function.   

                                                 
1 (a) Theobald, D. L.; Mitton-Fry, R. M.; Wuttke, D. S. Annu. Rev. Biophys. Biomol. Struct. 
2003, 32, 115-133. (b) Bochkarev, A.; Bochkareva, E. Curr. Opin. Struct. Biol. 2004, 14, 36-
42. (c) Murzin, A. G. EMBO J. 1993, 12, 861-867.  
 
2 (a) Pestryakov, P. E.; Lavrik, O. I. Biochemistry (Moscow) 2008, 73, 1388-1404. (b) 
Shamoo, Y.; Friedman, A. M.; Parsons, M. R.; Konigsberg, W. H.; Steitz, T. A. Nature 1995, 
376, 362-366. (c) Mer, G.; Bochkarev, A.; Gupta, R.; Bochkareva, E.; Frappier, L.; Ingles, J. 
C.; Edwards, A. M.; Chazin, W. J. Cell, 2000, 103, 449-456. 
 
3 (a) Kloks, C. P.; Spronk, C. A.; Lasonder, E.; Hoffmann, A.; Vuister, G. W.; Grzesiek, S.; 
Hilbers, C. W. J. Mol. Biol. 2002, 316, 317-326. (b) Schroder, K.; Graumann, P.; Schnuchel, 
A.; Holak, T. A.; Marahiel, M. A. Mol. Microbiol. 1995, 16, 699-708. 
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Replication protein A (Figure 1.1), for example, is a classic ssDNA binding protein 

known for its six OB-fold domains, four of which are involved in DNA binding.1, 4  Its 

functions range from binding ssDNA during replication to facilitating the coordination of 

DNA repair machinery by specifically interacting with DNA repair proteins.2c  It is also 

associated with nucleotide excision repair, base excision repair, and recombination.2c 

 

 

(a)       (b) 

  

Figure 1.1.  Structure of crystallographic dimer of RPA14/3245–170.  The RPA14 subunits are 
shown in blue and green and the RPA32 subunits in red and yellow. (b) Structure of 
RPA70299–420 subunit in complex with oligodeoxycytosine; two Trp residues involved in 
binding are shown in red and the crystallographically determined structure of three bases is 
highlighted in purple.4c  
  
 

                                                 
4 (a) Bochkarev, A.; Pfuetzner, R. A.; Edwards, A. M.; Frappier, L. Nature 1997, 385, 176-
181. (b) Wold, M. S. Annu. Rev. Biochem. 1997, 66, 61-92. (c) Bochkarev, A.; Bochkareva, 
E.; Frappier, L.; Edwards, A. M. EMBO J. 1999, 18, 4498-4504. 
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Other examples of β-hairpins or β-sheet proteins involved in DNA repair include 

UvrB,5 Chlorella virus DNA ligase,6 Rad4,7 and BRCA2 protein.1b  UvrB is the primary 

prokaryotic nucleotide excision repair (NER) protein, and its structure reveals that it interacts 

with DNA by inserting a β-hairpin between the strands of the duplex DNA, locking one of 

the strands between the hairpin and another domain within the protein (Figure 1.2).  Upon 

DNA binding, UvrB ATPase is activated which leads to translocation.  In the DNA-helicase 

complex, one of the DNA strands threads behind the β-hairpin, and the hairpin forms strong 

interactions with this 3’ overhang.  Three crucial Tyr residues, Tyr 92, 93, and 96 form an 

aromatic pocket that stabilizes the complex.  Tyr 96 is also known to bind the C-G base pair 

which is adjacent to the 3’ overhang.5 

 

 

 

 

 

 

 

                                                 
5 (a) Malta, E.; Moolenaar, G. F.; Goosen, N. J. Biol. Chem. 2006, 281, 2184-2194. (b) 
Truglio, J. J.; Karakas, E.; Rhau, B.; Wang, H.; DellaVecchia, M. J.; Van Houten, B.; Kisker, 
C. Nat. Struct. Mol. Biol. 2006, 13, 360-364. (c) Skorvaga, M.; DellaVecchia, M. J.; Croteau, 
D. L.; Theis, K.; Truglio, J. J.; Mandavilli, B. S.; Kisker, C.; Van Houten, B. J. Biol. Chem. 
2004, 279, 51574-51580. (d) Skorvaga, M.; Theis, K.; Mandavilli, B. S.; Kisker, C.; Van 
Houten, B. J. Biol. Chem. 2002, 277, 1553-1559. 
 
6 Nair, P. A.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C. D.; Shuman, S. Nat. Struct. 
Mol. Biol. 2007, 14, 770-778. 
 
7 Min, J. H.; Pavletich, N. P. Nature 2007, 449, 570-576.  
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(a) 

  

(b) 

 

Figure 1.2.  UvrB-DNA interactions. (a) Superposition of UvrB-DNA complex and apo-
UvrB (pdb: 1D9X). (b) UvrB bound to DNA with β-hairpin shown in cyan (pdb: 2FDC).5 

 

 

Figure 1.3.  DNA interface with the OB-fold domain in Chlorella virus DNA ligase. 

5 
 



In a similar manner, Rad4 positions a β-hairpin through the duplex DNA which 

causes the two damaged bases to flip out of the duplex and be recognized by the protein.7 

Chlorella virus DNA ligase, like all ligases, contains an OB-fold domain, and this peptide 

recognizes nicked DNA through a hairpin which stems from the OB-fold domain and inserts 

into the major groove of the DNA near the nick (Figure 1.3).6  BRCA2, the breast cancer 

susceptibility gene 2 protein, is involved in double-stranded DNA break repair and it has 

been shown to function in a similar fashion to replication protein A.1b  In another similar 

recognition motif, a β-hairpin within the RNA polymerase of bacteriophage 7 intercalates 

DNA at the fork of the single-stranded/double-stranded junction of the promoter DNA.  A 

valine residue at the tip of the hairpin seems to stack with the first base pair in the duplex 

region.8  All of these proteins exemplify the variety of roles that these domains play in DNA 

recognition.  While aromatic residues are key to stacking with single bases, these peptides 

also recognize less stable regions within duplex DNA as well as in separated DNA strands or 

single bases that exist temporarily due to a variety of cellular metabolic processes.   

B.  Targeting ssDNA – Applications  

i.  Molecular Recognition of Nucleotides 

Many groups have employed molecular recognition processes to design peptides, 

proteins, or small molecules which bind biologically relevant targets.  Peter Dervan’s lab has 

designed a host of DNA binding small molecules.  One example of his work is the design of 

hairpin polyamides which bind duplex DNA.  The compounds are functionalized with a 

fluorophore, and a fluorescence increase is observed upon binding.  This type of study has 

led to the development of sensors that could be used to detect certain DNA sequences such as 

                                                 
8 Stano, N. M.; Patel, S. S. J. Mol. Biol. 2002, 315, 1009-1025. 
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DNA mismatches.9  Schepartz and colleagues have designed mini-proteins that recognize 

DNA with high affinity and specificity through protein grafting.  This method has afforded α-

helices that are highly selective for their DNA targets.10  Using a different approach, 

Robinson and colleagues have designed cyclic β-hairpin peptides which bind tightly to BIV 

TAR RNA and inhibit the Tat-TAR interaction of the bovine immunodeficiency virus.11a  

The group also inhibited the REV/RRE interaction.11b  This type of binding achieved is 

significant because it is applicable to ongoing studies to stop HIV and other viruses.  

Molecules such as Robinson’s peptidomimetic disrupt the Tat protein-TAR RNA interaction 

which inhibits the generation of full-length transcripts and decreases HIV replication.11  

ii.  Disrupting Protein-ssDNA Interactions 

Robinson’s peptidomimetic is one of many molecules that disrupt key protein-

nucleotide interactions to block debilitating processes from occurring.  Inhibiting the Simian 

virus 40 function can be likened to disruption of the well-known Tat-TAR interaction.  

Simian virus 40 large tumor antigen (SV40 LTag) is crucial for DNA unwinding during the 

replication stage of the virus.  This protein is a hexamer which interacts with DNA through a 

positively charged hexameric channel.  Six β-hairpins are connected to each of these 

subunits, and two Lys residues along with a histidine and a phenylalanine are positioned on 

                                                 
9 Rucker, V. C.; Foister, S.; Melander, C.; Dervan, P. B. J. Am. Chem. Soc. 2003, 125, 1195-
1202. 
 
10 Yang, L.; Schepartz, A. Biochemistry 2005, 44, 7469-7478. 
 
11 (a) Athanassiou, Z.; Patora, K.; Dias, R. L. A.; Moehle, K.; Robinson, J. A.; Varani, G. 
Biochemistry 2007, 46, 741-751. (b) Moehle, K.; Athanassiou, Z.; Patora, K.; Davidson, A.; 
Varani, G.; Robinson, J. A. Angew Chem. Int. Ed. 2007, 46, 9101-9104. 
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the tip of the hairpin.12  Their positions indicate that those residues are important for DNA 

recognition.  A close examination of the interactions involved in DNA binding could lead to 

a similar peptide designed to inhibit viral replication.12  Using the knowledge of ssDNA 

binding protein characteristics, one could imagine several applications to the design of 

ssDNA binding ligands such as telomerase inhibition, inhibition of replication, and DNA 

damage detection. 

 iii.  Mimicking the OB-fold Domain 

Recognizing the importance of ssDNA and other nucleotides as target molecules, this 

laboratory has delved into the area of molecular recognition of ATP, ssDNA, and RNA.13  

This research began with the synthesis of peptides designed to target ATP.  A β-hairpin 

peptide was designed with a binding pocket to recognize the adenine or other nucleotide 

base.5  The binding pocket contains two aromatic Trp residues intended to form favorable 

stacking interactions with the base accompanied by two flanking Lys residues to form 

electrostatic interactions with the phosphates of the ATP.  The peptide was named for its 

binding cleft, WKWK (Figure 1.4).  Fluorescence binding studies were conducted to 

determine the binding affinity of the peptide for ATP.  The dissociation constant for the 

interaction is about 170 µM.  This is a good starting point for studying the interactions 

involved in DNA binding.  

 

                                                 
12 Shen, J.; Gai, D.; Patrick, A.; Greenleaf, W. B.; Chen, X. S. Proc. Natl. Acad. Sci. U. S. A. 
2005, 102, 11248-11253. 
 
13 (a) Stewart, A. L.; Waters, M. L. ChemBioChem 2009, 10, 539-544. (b) Butterfield, S. M.; 
Cooper, W. J.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 24-25. (c) Butterfield, S. M.; 
Sweeney, M. M.; Waters, M. L. J. Org. Chem. 2005, 70, 1105-1114. (d) Butterfield, S. M.; 
Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. 
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Figure 1.4.  WKWK peptide designed for molecular recognition of ATP and ssDNA. 
 

A structural model of the interaction between WKWK and ATP was generated based 

on NMR structural studies.  The model indicates that the peptide binds ATP as intended, with 

the tryptophans forming stacking interactions with the adenine and the lysines making 

electrostatic interactions with the phosphate groups.  This peptide mimics the recognition 

mode of OB-fold domains, and is a minimalist model system for understanding the driving 

forces for nucleotide binding by peptides and proteins.   
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Figure 1.5.  Computational model of peptide WKWK interacting with ATP. The model is 
based on NMR structural data with WKWK shown in yellow and Trp residues drawn.  The 
adenine base is shown in green with the triphosphate group in red and white. 
 
 
C.  Model Systems for Protein Structure-Function Studies 

 Model systems have been used for many years to study protein structure and function.  

The first studies of beta-sheet peptides emerged long after that of alpha-helices due to 

problems with solubility and aggregation in water.14  Many of the first model systems were 

designed to understand protein folding and stability.  In recent years, these model systems 

have been applied to the study of a particular function such as DNA binding.  Original model 

systems used short peptide sequences to probe folding.  More recently, β-hairpin peptides 

have been used to understand specific interactions such as sidechain-sidechain interactions, 

π-π stacking interactions, and cation-π interactions.15  Using small peptides to characterize 

such driving forces of stability can provide great insight into how these interactions work 

                                                 
14 Blanco, F. J.; Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.; Nieto, J. L. J. Am. Chem. 
Soc. 1993, 115, 5887. 
 
15 (a) Tatko, C. D.; Waters, M. L. J. Am. Chem. Soc. 2004, 126, 2028-2034. (b) Hughes, R. 
M.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 6518-6519. (c) Hughes, R. M.; Benshoff, M. 
L.; Waters, M. L. Chem. Eur. J. 2007, 13, 5753-5764. (d) Riemen, A. J.; Waters, M. L. 
Biochemistry 2009, 48, 1525-1531. (e) Russell, S. J.; Blandl, T.; Skelton, N. J.; Cochran, A. 
G. J. Am. Chem. Soc. 2003, 125, 388-395. (f) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 
97, 1303-1324. 
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together to form and stabilize larger protein complexes.  When these model systems are 

applied to the function of particular proteins, one can gain knowledge of specific binding 

interactions and enzymatic activity for the full proteins using a simpler system.   

 WW domains have been used for many years in the study of protein folding16 and in 

understanding the interactions between WW domain peptides and their natural ligand, the 

polyproline helix.17  WW domains are thought to be one of the smallest classes of fully 

functional miniature proteins, exhibiting cooperativity in folding as well as binding their 

natural ligand with high affinity.  These peptides are certainly some of the most well 

characterized peptides known.  Because of this and because β-sheet peptides and proteins are 

                                                 
16 (a) Jager, M.; Zhang, Y.; Bieschke, J.; Nguyen, H.; Dendle, M.; Bowman, M. E.; Noel, J. 
P.; Gruebele, M.; Kelly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10648-10653. (b) 
Fernandez-Escamilla, A. M.; Ventura, S.; Serrano, L.; Jimenez, M. A. Protein Sci. 2006, 15, 
2278-2289. (c) Karanicolas, J.; Brooks, C. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3954-
3959. (d) Kraemer-Pecore, C. M.; Lecomte, J. T. J.; Desjarlais, J. R. Protein Sci. 2003, 12, 
2194-2205. (e) Jiang, X.; Kowalski, J.; Kelly, J. W. Protein Sci. 2001, 10, 1454-1465. (f) 
Jager, M.; Nguyen, H.; Crane, J. C.; Kelly, J. W.; Gruebele, M. J. Mol. Biol. 2001, 311, 373-
393. (g) Macias, M. J.; Gervais, V.; Civera, C.; Oschkinat, H. Nat. Struct. Biol. 2000, 7, 375-
379. (h) Koepf, E. K.; Petrassi, M.; Ratnaswamy, G.; Huff, M. E.; Sudol, M.; Kelly, J. W. 
Biochemistry 1999, 38, 14338-14351. (i) Nguyen, H.; Jager, M.; Moretto, A.; Gruebele, M.; 
Kelly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3948-3953. (j) Jager, M.; Dendle, M.; 
Fuller, A. A.; Kelly, J. W. Protein Sci. 2007, 16, 2306-2313. 
 
17 (a) Kato, Y.; Miyakawa, T.; Kurita, J.; Tanokura, M. J. Biol. Chem. 2006, 281, 40321-
40329. (b) Pires, J. R.; Parthier, C.; do Aido-Machado, R.; Wiedemann, U.; Otte, L.; Bohm, 
G.; Rudolph, R.; Oschkinat, H. J. Mol. Biol. 2005, 348, 399-408. (c) Ball, L. J.; Kuhne, R.; 
Schneider-Mergener, J.; Oschkinat, H. Angew. Chem. Int. Ed. 2005, 44, 2852-2869. (d) Kato, 
Y.; Nagata, K.; Takahashi, M.; Lian, L.; Herrero, J. J.; Sudol, M.; Tanokura, M. J. Biol. 
Chem. 2004, 279, 31833-31841. (e) Bedford, M. T.; Chan, D. C.; Leder, P. EMBO J. 1997, 
16, 2376-2383. (f) Otte, L.; Wiedemann, U.; Schlegel, B.; Pires, J. R.; Beyermann, M.; 
Schmieder, P.; Krause, G.; Volkmer-Engert, R.; Schneider-Mergener, J.; Oschkinat, H. 
Protein Sci. 2003, 12, 491-500. (g) Zarrinpar, A.; Lim, W. A. Nat. Struct. Biol. 2000, 7, 611-
613. (h) Espinosa, J. F.; Syud, F. A.; Gellman, S. H. Peptide Sci. 2005, 80, 303-311. (i) 
Dalby, P. A.; Hoess, R. H.; DeGrado, W. F. Protein Sci. 2000, 9, 2366-2376. (j) Chan, D. C.; 
Bedford, M. T.; Leder, P. EMBO J. 1996, 15, 1045-1054. (k) Macias, M. J.; Hyvonen, M.; 
Baraldi, E.; Schultz, J.; Sudol, M.; Saraste, M.; Oschkinat, H. Nature 1996, 382, 646-649. (l) 
Chen, H. I.; Sudol, M. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7819-7823.   
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known to bind DNA, the WW domain was employed as a model system for nucleotide 

recognition in this laboratory.   

There are several advantages to using model systems in structure-function studies.  In 

the case of binding, specific interactions at the binding site of large complexes are often 

difficult to deduce.  While model systems only approximate native proteins, the task of 

understanding what specific forces drive the interaction of interest may be simplified by 

studying the interactions in a designed mini-protein or peptide.  Studying the interaction 

between methylated DNA and the protein MBD1, for instance (Figure 1.6), can reveal many 

important features.  An alternative to studying the full protein is to examine closely the 

region of the protein involved in the binding interaction.  The region of the protein or the 

peptide that makes direct contacts with the DNA can then be synthesized quickly to study the 

interactions involved in the binding event.  Once binding and structural studies are 

conducted, the knowledge gained can then be applied to the full system.  Inhibitors can be 

made using this philosophy because learning about the interactions involved in binding can 

lead to a peptide or molecule designed to bind the target with high affinity and high 

selectivity.  If this is achieved, the designed ligand may bind the target and inhibit the natural 

ligand from binding, as in the case of Robinson’s β-hairpin peptidomimetics.11  This method 

also lends itself to quickly incorporating different amino acids or functional groups for study 

of many peptide mutations.  Another advantage to using model systems is that 

characterization of peptides and their interactions with other molecules is simplified because 

of their smaller size.  This laboratory has used the WKWK peptide as a model system for 

12 
 



ATP, RNA, and DNA binding, and numerous peptides have been designed based on the 

original WKWK parent peptide sequence.13, 18    

(a)    (b)    (c) 

                            

Figure 1.6.  Structure of MBD1 β-hairpin, MBD1 protein, and MBD1 complexed with 
methylated DNA.  (a) Full protein-DNA complex (pdb:  lig4). (b) Full MBD1 protein. (c) β-
hairpin involved in methylated DNA binding. 
 

One advantage of designing peptides as receptors for recognition of nucleotides is 

that this type of design is also amenable to easily making mutations to the original design and 

gives the ability to add unnatural amino acids or other molecules.  Peptides also allow the 

possibility for combinatorial chemistry which could provide attractive sequences and 

structures not likely considered by rational design.  Cyclic peptides can be easily made by 

solid phase peptide synthesis, and d-amino acids can be incorporated into sequences.  Both 

cyclic peptides19 and peptides made with D-amino acids20 have been shown to add stability 

to designed peptides.  

                                                

D.  Analyzing Protein-DNA Interactions 

 i.  Binding Studies 
 

 
18 Cline, L. L.; Waters, M. L. Org. Biomol. Chem. 2009, 7, 4622-4630. 
 
19 Cowell, S. M.; Gu, X.; Vagner, J.; Hruby, V. J. Methods Enzymol. 2003, 369, 288-297. 
 
20 Samson, I.; Rozenski, J.; Samyn, B.; Van Aerschot, A.; Van Beeumen, J.; Herdewijn, P. J. 
Biol. Chem. 1997, 272, 11378-11383. 
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  There are several methods in which one can determine binding interactions and 

recognition events between proteins and nucleotides.  Here we have used β-hairpin peptides 

and WW domain peptides as models to study DNA recognition.  The peptides used in these 

studies include at least one Trp residue in their sequences.  This fact gives us the advantage 

of being able to use fluorescence quenching to quantify the binding interaction between 

peptides and DNA.  Quenching experiments take advantage of the intrinsic fluorescence 

properties of a molecule.  In this case, the amino acid tryptophan, which is included in the 

peptides and proteins studied, has fluorescent properties which allow one to observe and 

quantify its interactions with other proteins or nucleotides.  An advantage of this technique is 

that nothing needs to be attached to the peptide which may affect its binding properties.  A 

fluorophore could interact with the peptide or protein to which it is attached instead of the 

peptide or nucleotide which it should be binding.  This type of unintended interaction leads to 

inaccurate binding data. The results of fluorescence quenching studies indicate a direct 

interaction between the two molecules without any disruption by a tag.   

 A disadvantage of this method when used with nucleotides is that nucleotides have 

absorbance spectra that overlap with the excitation wavelength of tryptophan.  As seen in 

Figure 1.7, the DNA absorbs light in the same region as does Trp.  This means that during 

fluorescence quenching experiments, DNA absorbs some light which decreases the excitation 

of the Trp residues, causing what appears to be quenching of the tryptophans.  To account for 

this, an inner filter effect correction must be made to accurately determine binding constants.  

The calculations for each of these can be found in each chapter as appropriate.    
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Figure 1.7.  Absorbance spectra for ssDNA and WKWK peptide used in binding studies. 
Conditions:  10mM Na2HPO4, 100 mM NaCl, pH 7; ~8 µM peptide; ~ 12 µM ssDNA. 
 

The inner filter effect calculations limit the conditions that can be used in binding 

studies.  In order to be able to use optimal conditions, an alternative method was employed in 

some cases.  Another method utilized to study protein-protein and protein-nucleic acid 

interactions is fluorescence anisotropy.  Anisotropy requires a fluorophore to be added to one 

molecule and measures the tumbling rate of that fluorescent molecule in solution (both 

before and after interaction with the nucleotide).  Upon binding of a ligand, the complex is 

larger than the individual molecule and the tumbling rate decreases, leading to an increase in 

anisotropy.21 

The peptides used in these studies are made by solid phase peptide synthesis, so they are 

amenable to synthetic perturbation and mutation, including the addition of fluorophores.  The 

fluorophore TAMRA was attached to a sidechain of some of the peptides, and fluorescence 

                                                 
21 Bahr, M.; Valis, L.; Wagenknecht, H.-A.; Weinhold, E. Nucleosides, Nucleotides, and 
Nucleic Acids 2007, 26, 1581-1584. 
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anisotropy was conducted.  Different methods were used in this report based on the 

conditions required for binding. 

ii.  Combinatorial Chemistry 

 There are two schools of thought regarding designing targets for nucleotides and 

proteins.  One thought is that one should carefully study the interaction under investigation 

and design molecules that could inhibit the interaction by fitting into a specific pocket or by 

tightly binding the target molecule.  The second school of thought is that there are a host of 

possible favorable interactions.  These researchers favor the idea of creating a library of 

molecules to allow the best binding interactions to occur without rationally designing one 

specific compound.  With library studies, researchers design a library rather than a particular 

molecule and allow for the variations in the library to provide different functional groups that 

will likely form favorable interactions in the target complex.  In this case, the researcher 

rationally designs the library but allows the library to “decide” which compound is the best 

fit or the best binder.  Subsequently, the “hits” from the library are further tested to determine 

the specific favorable properties involved in the binding interaction.  Here we utilize methods 

of rational design and combinatorial chemistry in designing peptides for the recognition of 

ssDNA.  

iii.  Structural Studies 

Structural studies were employed to better characterize the designed peptides.  Two 

methods were used to gain the most insight into the stability of each peptide.  Circular 

dichroism (CD) experiments were utilized to determine the global structure of peptides.  

NMR experiments were also used to attain specific information about how each amino acid 

contributes to the structure of the peptides.  Two different NMR methods have been used, 
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and the first takes advantage of the glycine residue in the turn sequence of each of the 

peptides synthesized.  The glycine hydrogens are diastereotopic.  If a peptide is completely 

unstructured and the peptide backbone is fully extended, one signal or peak will result from a 

one-dimensional or two-dimensional experiment.  In the case of structured peptides, 

however, the glycine hydrogens are in different environments and have different signals.  

Figure 1.8a depicts a peptide with the diastereotopic hydrogens circled in red and the 

resulting glycine NMR signal for that peptide.  For structured peptides, the more well-folded 

the peptide, the larger the difference in glycine signals.  This difference is termed glycine 

splitting and gives a measure of the folding or stability of the peptide.  A comparison of the 

Gly splitting in the β-hairpin with that of a fully folded cyclic control peptide gives the extent 

of folding and overall stability for the peptide.  Another method used to measure peptide 

folding is to determine the chemical shift differences of the α-hydrogens in the peptide.  The 

extent of downfield shifting of the protons’ chemical shifts in the hairpins relative to the 

corresponding random coil peptides indicates the degree of β-sheet structure for each residue 

along the peptide backbone.  Downfield shifting of Hα protons is evidence of increased β-

hairpin population, with a chemical shift difference of greater than 0.1 ppm taken to indicate 

β-sheet structure.22 An example of this type of data is shown in Figure 1.8b.   

 

 

 

 

                                                 
22 (a) Wishart, D. S.; Sykes, B. D.; Richards, F. M. J. Mol. Biol. 1991, 222, 311-333. (b) 
Maynard, A. J.; Sharman, G. J.; Searle, M. S. J. Am. Chem. Soc. 1998, 120, 1996-2007. 
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Figure 1.8.   NMR characterization of peptide folding.  (a) Structure of folded peptide and 
corresponding Gly splitting data. (b) Example of chemical shift deviations for alpha 
hydrogens.
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E.  Conclusions 

 The work presented here is a culmination of a variety of different experiments 

intended to understand the interactions that are crucial for β-sheet recognition of ssDNA.  

Two different model systems were utilized to study the driving forces for DNA binding 

by β-sheets.  As stated above, there are many important proteins that have OB-fold 

domains or other DNA binding domains in which β-sheets or β-hairpins play key roles in 

recognition.  A better understanding of the specific interactions involved will shed light 

on the mode of DNA recognition and how these domains function within the context of 

the full peptide or protein.  Mimicking these domains may also lead to designs of 

inhibitors that could be used in various applications.  Although we cover only a few of 

these examples in the following chapters, this introduction gives a broad overview of the 

types of interactions involved in recognition by OB-fold domains as well as the various 

applications which may be pursued as a result of studying these peptides and proteins.  
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Chapter II 

Structural Effects on ss- and dsDNA Recognition by a β-Hairpin Dimer 

(Reproduced, in part, with permission from Stewart, A. L.; Waters, M. L. ChemBioChem 
 
2009, 10, 539-544.) 

 

A.  Background and Significance 

 Protein-DNA interactions are involved in a variety of biological processes such as 

transcription, translation, and DNA repair.  Protein interactions with single-stranded DNA 

(ssDNA) are particularly critical in DNA recombination, replication and repair,1 telomere 

regulation,2 and cold shock response.3  Proteins recognize ssDNA through a combination of 

electrostatic, aromatic, and hydrogen-bonding interactions.  Almost all proteins recognize 

                                                 
1 (a) Bochkarev, A.; Pfuetzner, R. A.; Edwards, A. M.; Frappier, L. Nature 1997, 385, 176-
181. (b) Wold, M. S. Annu. Rev. Biochem. 1997, 66, 61-92. 
 
2 (a) Anderson, E. M.; Halsey, W. A.; Wuttke, D. S. Biochemistry 2003, 42, 3751-3758. (b) 
Mitton-Fry, R. M.; Anderson, E. M.; Hughes, T. R.; Lundblad, V.; Wuttke, D. S. Science 
2002, 296, 145-147. 
 
3 (a) Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. FEBS J. 2007, 274, 
1265-1279. (b) Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. J. Mol. 
Biol. 2006, 360, 702-714. (c) Hillier, B. J.; Rodriguez, H. M.; Gregoret, L. M. Folding Des. 
1998, 3, 87-93. (d) Newkirk, K.; Feng, W.; Jiang, W.; Tejero, R.; Emerson, S. D.; Inouye, 
M.; Montelione, G. T. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 5114-5118. (e) Schindelin, 
H.; Marahiel, M. A.; Heinemann, U. Nature 1993, 364, 164-168. (f) Schnuchel, A.; 
Wiltscheck, R.; Czisch, M.; Herrier, M.; Willimsky, G.; Graumann, P.; Marahiel, M. A.; 
Holak, T. A. Nature 1993, 364, 169-171.   
 



ssDNA through an OB-fold domain (oligonucleotide/oligosaccharide-binding fold)4 which is 

a solvent-exposed β-sheet surface composed of two three-stranded anti-parallel β-sheets that 

form a five-stranded beta-barrel in which the first strand is in both sheets (Figure 1).3a, 4  

Replication protein A (RPA)1 and cold shock protein3 are well-studied examples of proteins 

containing single-stranded DNA binding domains.  This laboratory has designed a β-hairpin 

peptide dimer that functions as a minimalist mimic of the OB-fold for recognition of 

ssDNA.5  This peptide was designed to recognize nucleic acids and to determine the 

favorable interactions that provide affinity and selectivity for recognition of ssDNA.  

                                                 
4 (a) Theobald, D. L.; Mitton-Fry, R. M.; Wuttke, D. S. Annu. Rev. Biophys. Biomol. Struct. 
2003, 32, 115-133. (b) Bochkarev, A.; Bochkareva, E. Curr. Opin. Struct. Biol. 2004, 14, 36-
42. (c) Murzin, A. G. EMBO J. 1993, 12, 861-867.  
 
5 Butterfield, S. M.; Cooper, W. J., Waters, M. L. J. Am. Chem. Soc. 2005, 127, 24-25. 
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Figure 2.1.  Structure of the Bacillus caldolyticus cold shock protein bound to 
oligothymidine. Cold shock protein is shown in gray; oligothymidine is highlighted in green; 
the aromatic sidechains involved in binding are shown in blue (pdb: 2hax).3a   

 

Originally, the peptide WKWK (Figure 2.3a) was designed to bind nucleotides 

through a binding cleft of two tryptophan residues and two flanking cationic lysine residues.  

The name of the peptide reflects the residues on the binding face of the beta-hairpin.6  The 

peptide is based on Gellman’s 12-residue beta-hairpin peptide used to study turn nucleators.7 

The design employs a diagonal Trp-Trp pair into the sequence which is similar to that in 

Cochran’s Trpzip peptide,8 with the Trp pair intended to form a cleft for nucleotide base 

recognition.  The Lys residues were placed in the opposite diagonal positions to provide 

electrostatic interactions with the phosphate groups.  Both aromatic and cationic residues are 

                                                 
6 (a) Butterfield, S. M.; Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. (b) 
Butterfield, S. M.; Sweeney, M. M.; Waters, M. L. J. Org. Chem. 2005, 70, 1105-1114. 
 
7 Stanger, H. E.; Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 4236-4237. 
 
8 Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 
5578-5583. 
 
 
 

   22



known to be crucial for DNA binding by OB-fold proteins,9 so these were key factors for the 

design of an OB-fold mimic.  NMR experiments revealed a well-folded β-hairpin 

conformation for the peptide.6  Tryptophan’s natural fluorescence properties were employed 

for this study, and the peptide was shown by fluorescence quenching of the tryptophan 

residues to bind ATP with a Kd of 170 µM.6a  Through a combination of salt studies, 

mutation studies, and NMR and circular dichroism (CD) investigations of the peptide-ATP 

complex, the binding mode of WKWK was characterized.  Binding was found to be driven 

by both aromatic and electrostatic interactions.  Aromatic interactions between the 

nucleobase and the cleft made up of the two Trp sidechains were found to contribute about 2 

kcal/mol to binding, whereas electrostatic interactions between basic residues on the peptide 

and the triphosphate contribute about 3 kcal/mol.6a  Dimerization of WKWK via a disulfide 

bond to give (WKWK)2 (Figure 2.3b) provided two aromatic pockets for binding to 

oligonucleotides, and the experiments were extended to short single-stranded DNA 

oligomers (three deoxy-pentanucleotides, A, T, and C).5  Binding to penta-dG was not 

attempted because sequences of four or more guanosine bases are known to form a G-

quadruplex structure.10  The binding constant for penta-dA was determined to be 12 µM, 

which is greater than the binding affinities for penta-dT and penta-dC.  The interaction 

between (WKWK)2 and the dA5 sequence was found to be between -0.3 and -0.6 kcal/mol 

                                                 
9 (a) Kloks, C. P.; Spronk, C. A.; Lasonder, E.; Hoffmann, A.; Vuister, G. W.; Grzesiek, S.; 
Hilbers, C. W. J. Mol. Biol. 2002, 316, 317-326. (b) Schroder, K.; Graumann, P.; Schnuchel, 
A.; Holak, T. A.; Marahiel, M. A. Mol. Microbiol. 1995, 16, 699-708. 
 
10 (a) Neidle, S.; Parkinson, G. N. Curr. Opin. Struct. Biol. 2003, 13, 275-283. (b) 
Simonsson, T., Biol. Chem. 2001, 382, 621-628. (c) Zahler, A. M.; Williamson, J. R.; Cech, 
T. R.; Prescott, D. M. Nature 1991, 350, 718-720. (d) Sundquist, W. I.; Klug, A. Nature 
1989, 342, 825-829. (e) Williamson, J. R.; Raghuraman, M. K.; Cech, T. R. Cell 1989, 59, 
871-880.  
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stronger than the interaction with the other pentanucleotides.5  Upfield shifting of the Trp 

aromatic protons and of the adenine aromatic protons in dA5 indicates that stacking 

interactions contribute to binding.  Comparison of the studies with the monomer and the 

dimer indicate that stacking of adenine between the Trp residues occurs in WKWK and that 

adenine bases bind within both binding pockets in the presence of the dimer, as depicted in 

Figure 2.2.5-6  Mutation studies have also shown that the two Lys residues on the binding face 

each contribute ~ -1.5 kcal/mol to binding6a and that Ornithine 8, which was incorporated for 

water solubility, also contributes significantly to binding.11 

 

     β-hairpin peptide dimer            Oligonucleotide                Peptide-ssDNA complex 

 
Figure 2.2.  Model for beta-hairpin dimer binding to an oligonucleotide.  Red indicates Trp 
residues; blue indicates nucleobases.  Adapted from Butterfield, et al.6b 
 

 The binding of a randomized single-stranded 11mer (Figure 2.3g) was also analyzed, 

and the peptide dimer was shown to bind the ssDNA sequence with a Kd of 3 µM in 10 mM 

sodium phosphate buffer, 100 mM NaCl, pH 7.0, at 298 K.5  The higher affinity for this 

oligonucleotide is due to the increase in favorable contacts present in the longer sequence.  

This binding affinity is comparable to that found in the cold shock protein A (Kd ~ 6 µM), 

which consists of a single OB-fold.3c  Binding of (WKWK)2 to a duplex DNA strand of the 

same length (Figure 2.3h) was found to display similar affinity (Kd ~ 5-9 µM), despite the 

doubling of the negative charge.  Studies have shown that aromatic interactions between 

                                                 
11 Hughes R. M.; Waters, M. L. unpublished results. 
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(WKWK)2 and the unpaired bases in ssDNA provide selectivity over dsDNA under high salt 

conditions in which the electrostatic interactions are screened.5  In duplex DNA, the bases are 

packed inside the duplex and are not accessible to stacking with residues in the peptide.  

Thus, the preference for ssDNA over dsDNA at physiological salt is modest, but it is a 

starting point for a system to improve selectivity for ssDNA over the duplex structure.  These 

studies aimed to explore the mode of binding to ss- and dsDNA by the hairpin dimer to 

provide insight into approaches for optimizing selectivity.  More specifically, in this study 

the contributions of beta-hairpin structure, chirality, and electrostatic interactions to binding 

affinity and selectivity for ssDNA and double-stranded DNA (dsDNA) were investigated. 
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(a) WKWK: Ac-Arg-Trp-Val-Lys-Val-Asn-Gly-Orn-Trp-Ile-Lys-Gln-NH2 

(b) (WKWK)2: 
(Ac-Cys-Gly-Arg-Trp-Val-Lys-Val-Asn-Gly-Orn-Trp-Ile-Lys-Gln-NH2)2 

 
(c) (WKWK-N6P)2: 

(Ac-Cys-Gly-Arg-Trp-Val-Lys-Val-Pro-Gly-Orn-Trp-Ile-Lys-Gln-NH2)2 

(d) (WKWK-Scrambled)2: 
(Ac-Cys-Gly-Lys-Trp-Val-Arg-Trp-Ile-Lys-Gln-Asn-Orn-Val-Gly-NH2)2 

(e) (D-WKWK)2: 
(Ac-DCys-Gly-DArg-DTrp-DVal-DLys-DVal-DAsn-Gly-DOrn-DTrp-DIle-DLys-DGln-
NH2)2 

(f)  (WKWK-R1Q)2: 
(Ac-Cys-Gly-Gln-Trp-Val-Lys-Val-Asn-Gly-Orn-Trp-Ile-Lys-Gln-NH2)2 

(g) ssDNA:  5’-CCATCGCTACC-3’ 

(h) dsDNA:  5’-CCATCGCTACC-3’ 
                3’-GGTAGCGATGG-5’ 
 
Figure 2.3.  (a) β-hairpin sequence WKWK. (b) Sequence and structure of peptide 

(WKWK)2. The bold residues are those thought to be involved in the nucleic acid binding 

pocket.  Those residues are all on the same face of the peptide. (c-f) Mutations to (WKWK)2 

with specific mutations underlined. (g) ssDNA sequence. (h) dsDNA sequence.   

 
 
 
 

   26



B.  Results and Discussion 

i.  Sequence Design 

Starting with the previously reported β-hairpin dimer, (WKWK)2, as a template, two 

peptides were designed as controls for structure.  Peptide (WKWK-N6P)2 (Figure 2.3c) 

exchanges the Asn residue with L-Pro, which has been shown to disrupt the turn,7 and was 

designed to determine if structure is important for binding of the peptide to the ssDNA.  The 

L-Pro-Gly sequence does not promote a typical turn like that of the Asn-Gly and the D-Pro-

Gly turn sequences (Type I’ and Type II’, respectively), but rather distorts the turn such that 

the peptide has no secondary structure.  A scrambled peptide, (WKWK-Scrambled)2 (Figure 

2.3d), was also made to investigate the importance of sequence and structure on binding.  

This peptide has no turn sequence and therefore should have no structure.  In addition, the 

aromatic residues have been scrambled so that no aromatic pocket would be formed if it did 

take on a β-hairpin structure via induced fit binding, for example.  This second structure 

control was designed to provide additional information regarding how structure affects 

binding to DNA.  Taken together, these peptides allow us to probe directly whether the 

aromatic cleft in the beta-hairpin contributes to binding. 

A third peptide, (D-WKWK)2 (Figure 2.3e), was synthesized with all D-amino acids to 

determine the importance of chirality in binding.  While (WKWK)2 has a right-handed twist, 

as do all β-hairpins with all L-amino acids, (D-WKWK)2 takes on a left-handed twist.  

Whether the macromolecular chirality of the peptide influences the binding affinity will 

depend on the mode of binding to ss- and dsDNA. 

Finally, (WKWK-R1Q)2 (Figure 2.3f), was designed with the N-terminal arginine 

residue mutated to a glutamine to give a neutral side chain at that position, leaving the dimer 
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with two fewer positive charges. This residue is on the opposite face of the hairpin as the 

aromatic cleft, and it is less structured due to its position at the N-terminus, which is frayed, 

as determined by the NMR spectrum.  Initial experiments determined that Arg residues 

exhibited chemical shift deviations upon binding, suggesting that the Arg residues are 

involved in the binding event.5  In addition, we were curious whether reducing the net charge 

of the peptide by +2 (since there is an Arg in each of the peptides in the dimer) would have a 

larger effect on dsDNA, with its greater charge, than ssDNA, as was predicted from salt 

studies reported previously.5  Thus, we aimed to determine whether the arginine residues at 

that position contributed significantly to binding. 

ii.  Characterization of Structure 

Circular dichroism spectra were obtained to verify the secondary structure of each of 

the mutants studied.  The parent peptide, (WKWK)2, has a characteristic β-sheet spectrum 

with a minimum at 210 nm (Figure 2.4).  Typically, β-sheet peptides and proteins have a 

minimum at 215 nm.  The shift for these peptides is likely due to the contributions of the Trp 

residues in the sequence.  This is consistent with previous NMR data which indicates that 

both the monomer and dimer have high β-hairpin populations under physiological 

conditions.5-6  The CD spectra of both (WKWK-N6P)2 and (WKWK-Scrambled)2, verified 

that they were unstructured, each having a peak with a minimum at about 200 nm (Figure 

2.4).  The CD spectrum of (D-WKWK)2, containing all D-amino acids, displayed the 

expected signal for the enantiomer of the parent peptide (WKWK)2, with a positive peak at 

210 nm which indicates a D-peptide with β-sheet structure (Figure 2.4).  The R1Q mutation 

in peptide (WKWK-R1Q)2 did not change the overall structure of the peptide and gave a 

signal consistent with β-sheet structure with a minimum at 210 nm (Figure 2.4). 
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Figure 2.4.  CD data for WKWK dimer and mutants.  Data was obtained at 30 µM peptide 
concentrations in 10 mM Na2HPO4.  Scans were performed from 260-190 nm at 298 K.  
 

iii.  Binding Measurements 

 Binding of ssDNA and duplex DNA to each of the peptides was determined by 

quenching of the Trp fluorescence as described in the Experimental Procedures.  A correction 

for the inner filter effect arising from absorbance of the nucleobases at the excitation 

wavelength of Trp was performed for all binding data except for the binding of (WKWK-

N6P)2 to duplex DNA, where binding was weak (see Experimental Procedures).  In this case, 

the inner filter effect was too large to correct for, so the reported dissociation constant is 

uncorrected and represents a lower limit.  In the case of (WKWK-N6P)2, CD mixing 

experiments were also performed to confirm that folding of the peptide was not induced upon 

binding to duplex DNA.  This was also repeated for (WKWK)2.  Neither spectrum showed a 

change in folding due to binding (see Experimental Section). 

The stoichiometry of binding was determined for (WKWK)2 by fluorescence 

quenching using the molar variation method (see Experimental Section).  A 1:1 binding 

stoichiometry for the interaction between (WKWK)2 and the 11-mer ssDNA sequence 

(Figure 2.3g) was determined (Figure 2.5), in agreement with the stoichiometry reported for 
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the (WKWK)2 interaction with dA5.5  The binding stoichiometry for the interaction between 

(WKWK)2 and the duplex DNA sequence (Figure 2.3h) was also determined to be 1:1 

(Figure 2.6).  
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Figure 2.5.  Molar variation plot for (WKWK)2 (25 µM) binding to ssDNA (Figure 2.3g; 0-
60 µM). A 1:1 binding interaction was demonstrated with the average of two runs in 10 mM 
Na2HPO4, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.6.  Molar variation plot for (WKWK)2 (20 µM) binding to duplex DNA (Figure 
2.3h; 0-42 µM).  A 1:1 binding interaction was determined in 10 mM Na2HPO4, 100 mM 
NaCl, pH 7.0, 298 K. 
 

iv.  Influence of Folding on Binding 

To probe the importance of the aromatic pocket in the β-hairpin dimer, we measured 

binding of the unstructured peptide, (WKWK-N6P)2, to ss- and dsDNA.  In both cases, 

binding was significantly weaker than with (WKWK)2 (Figures 2.7 and 2.8b; Table 2.1). 

Binding is nearly 10-fold worse for both ssDNA and dsDNA.  (Note that due to the small 

change in tryptophan fluorescence resulting from weak binding, no accurate dissociation 

constant could be obtained for the WKWK-N6P dimer with dsDNA).  However, evidence 

suggests that the reason for the loss of binding upon disruption of beta-hairpin structure 

differs for ss- and dsDNA.  In the case of ssDNA, the decrease in binding affinity associated 

with loss of structure is consistent with previous data indicating that interaction of ssDNA 

with the beta-hairpin is mediated by stacking interactions with the aromatic pocket.5-6   

   31



As for dsDNA, the role of structure on binding is less clear. The influence of folding 

on binding is surprising given that previous studies indicated that binding of (WKWK)2 is 

primarily electrostatic in nature. Differences in charge density of the folded and unfolded 

peptides or differences in the entropic cost of binding may play a role.  Another possibility is 

that binding might occur in a structurally defined manner, such as groove binding.   

The peptide (WKWK-Scrambled)2 also has a weaker binding affinity for ssDNA than 

the structured β-hairpin, (WKWK)2. The scrambled peptide (Kd = 17.4 µM; Figure 2.7; Table 

2.1) binds more strongly to ssDNA than does (WKWK-N6P)2 but still does not bind as 

tightly as the structured peptide.  This further suggests that the lack of structure of the peptide 

causes the decrease in binding affinity.  The difference in binding of (WKWK-N6P)2 and 

(WKWK-Scrambled)2 may have to do with differences in their structures and with 

differences in spacing of charged residues.  Since charged residues are known to bind tightly 

to phosphates in the DNA backbone, the lack of structure could allow the positively charged 

residues easier access to the phosphate groups which could improve the binding affinity.  

This result, however, likely decreases the selectivity the peptide has for ssDNA, thereby 

reducing its effectiveness as an OB-fold mimic.  The kink in the WKWK-N6P dimer 

possibly prohibits easy access of cationic residues to bind the phosphates as in the scrambled 

sequence.  Also of importance is that the conditions for binding of (WKWK-Scrambled)2 to 

ssDNA are not ideal, as the peptide concentration of 8 µM is much higher than one-tenth the 

dissociation constant.  This could generate a Kd value that suggests tighter binding than is 

actually occurring.  Binding studies for the interaction between (WKWK-Scrambled)2 and 

duplex DNA were not attempted. 
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Figure 2.7.  Fluorescence titrations of (WKWK)2 and mutant peptide dimers with the single-
stranded DNA sequence 5’-CCATCGCTACC-3’ (Figure 2.3g) corrected for the inner filter 
effect (see Experimental Section); 2-8 µM peptide concentrations; 10 mM sodium phosphate 
buffer, 100 mM NaCl, pH 7.0, 298 K. 
 

 
v.  Influence of Chirality on Binding   

As the peptide structure is important to binding, the chirality of the peptide might be 

important as well.  In particular, it may be more important in binding to duplex DNA due to 

its macromolecular chirality arising from the double helix, than to single-stranded DNA, 

which is unstructured.   

Fluorescence binding studies of the all D-amino acid peptide (D-WKWK)2 and 

ssDNA gave binding affinities identical to those of its enantiomer (Figure 2.7; Table 2.1).  In 

the case of ssDNA, with no macromolecular structure, this suggests that the ribose ring is not 

directly involved in binding.  This is reminiscent of the binding mode for cold shock protein 
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and ssDNA, in which the ribose rings are solvent-exposed and are not in direct contact with 

the protein (Figure 2.1).3a  The fact that the all D-peptide binds with equal affinity to the 

ssDNA sequence is also significant because all D-peptides typically display enhanced 

resistance to cleavage by proteases.12 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
12 (a) Hamamoto, K.; Kida, Y.; Zhang, Y.; Shimizu, T.; Kuwano, K. Microbiol. Immunol. 
2002, 46, 741-749. (b) Tugyi, R.; Uray, K.; Ivan, D.; Fellinger, E.; Perkins, A.; Hudecz, F. 
Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 413-418. 
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Figure 2.8.  Fluorescence titrations of (WKWK)2 and mutant peptide dimers with duplex 
DNA (Figure 2.3h); 2-7 µM peptide, 10 mM sodium phosphate buffer, 100 mM NaCl, pH 
7.0, 298 K. (a) (WKWK)2 and (D-WKWK)2 corrected for the inner filter effect (see 
Experimental Section). (b) (WKWK)2, (WKWK-R1Q)2, and (WKWK-N6P)2 uncorrected for 
the inner filter effect. 
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In contrast to its binding to ssDNA, the enantiomeric peptide dimer (D-WKWK)2 

binds to duplex DNA with a somewhat weaker affinity than does (WKWK)2 (Figure 2.8a; 

Table 2.1).  Thus, chirality has some influence on binding to duplex DNA, unlike to ssDNA.  

For duplex DNA, the small but measurable difference in the binding affinities of the L- and 

D-peptides indicates that the diastereomeric complexes are of different stabilities.  This is 

consistent with the finding that folding influences binding of the parent peptide to dsDNA 

and provides further support for a structurally defined binding event such as groove binding, 

in which the twist of the hairpin would be expected to influence its binding affinity. 

 
Table 2.1.  Affinity constants for binding of peptide dimers to ssDNA and dsDNA 

sequences.a 
 

Peptide 
ssDNA 

Kd, µM (error) 
dsDNA 

Kd, µM (error) 
(WKWK)2 3.5  (0.2) 9.2 (0.9)b 

(WKWK-N6P)2 24.7 (1.6) > 80c 

(WKWK- Scrambled)2 17.4 (1.0) n. d. 

(WKWK-R1Q)2 21.9 (2.4) > 46c 

(D-WKWK)2 3.4 (0.2) 17.5 (1.3) 

(a) Conditions:  10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.  Each value 
is the average of at least two measurements. The error is from the fitting.  (b) This Kd was 
previously reported as 5 µM.  See reference 5. (c) This value is not corrected for the inner 
filter effect and thus is only approximate.  n. d. denotes a measurement that was not 
determined. 
 

vi.  Effect of Electrostatic Interactions on Binding 

The Kd determined for the interaction between (WKWK-R1Q)2 and ssDNA was 18.5 

µM, as compared to 3.5 µM for (WKWK)2 (Figure 2.7; Table 2.1).  This amounts to a loss of 

1 kcal/mol in binding affinity or 0.5 kcal/mol per Arg residue.   This is less than the 

contribution of the Lys residues on the binding face of the hairpins, which have been 

   36



determined to contribute 1.5 kcal/mol each.6  While Lys, Orn, and Arg are all thought to be 

capable of participating in similar electrostatic interactions with phosphate groups, their 

positioning within the peptide seems to be a primary difference and distinguishing factor in 

how much these cationic residues contribute to binding.  The frayed N-terminus in which the 

Arg is placed in WKWK dimer positions the amino acid such that it does not interact with 

the phosphate groups as well as the Lys residues which are on the binding face and which 

closely contact the DNA.  The Orn in (WKWK)2 is also on the opposite face of the peptide 

from the binding pocket, but its close proximity to the binding cleft seems to contribute to its 

importance in binding.  These results are consistent with previous research asserting that 

electrostatic interactions are important for DNA recognition within the OB-fold domain.9  

The results also indicate that position 1 may be a good position to reduce the net charge of 

the peptide in order to reduce nonspecific electrostatic interactions to other biomolecules 

such as duplex DNA or RNA. 

Binding of (WKWK-R1Q)2 to duplex DNA was found to be weak such that the inner 

filter effect was too large to allow for accurate correction.  A lower limit of ≥  46 µM was 

estimated from the uncorrected binding curve (Figure 2.8b; Table 1; see Experimental 

Section).  Binding is certainly weaker than this, since the inner filter effect results in an 

enhanced apparent binding affinity. Thus, the reduction of net charge from +8 in (WKWK)2 

to +6 in (WKWK-R1Q)2 results in at least a ten-fold reduction in binding affinity for duplex 

DNA.  This compares to a reduction of only about 5-fold for ssDNA. Thus, the Arg in the 

first position contributes to the binding affinity for both ss- and dsDNA, but the Gln mutation 

increases selectivity for ssDNA over dsDNA.  This is consistent with the greater salt-
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dependence observed for binding of (WKWK)2 to duplex DNA relative to ssDNA reported 

previously.5  

vii.  Structural Models for Binding ss- and dsDNA 

 The studies performed here, in conjunction with our previous studies, are consistent 

with a binding model in which ssDNA interacts with the hairpin dimer via a combination of 

aromatic and electrostatic interactions defined by the secondary structure of the peptide.  In 

the parent peptide, (WKWK)2, recognition of ssDNA is approximately 1.5 to 3-fold more 

favorable than recognition of duplex DNA, despite the fact that the net charge on the duplex 

is twice that of the single-stranded oligonucleotide.  This selectivity is ascribed to aromatic 

interactions between the unpaired bases and the aromatic cleft in the beta-hairpin.5  

Disruption of the hairpin structure results in a reduction in binding affinity of nearly ten-fold 

and is attributed to loss of the aromatic pocket.  Because the ssDNA is unstructured, the 

chirality of the peptide does not influence binding.  Thus, (D-WKWK)2 provides selectivity 

for ssDNA over dsDNA by a factor of five.  Lastly, we found that the net charge of the 

peptide influences affinity of the peptide to both ss- and dsDNA, but to different degrees. 

With a reduction of the net positive charge on the peptide from +8 to +6, the binding affinity 

was decreased by 5-fold for ssDNA, but by at least 10-fold for dsDNA.  Thus, decreasing the 

net charge on the peptide reduces binding affinity for both ss- and dsDNA, but it increases 

selectivity for ss- over dsDNA. 

 The binding mode for duplex DNA is quite different from that of ssDNA.  Previous 

studies indicated that binding is primarily electrostatic in nature, suggesting nonspecific 
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binding,5 as has been observed with unstructured cationic peptides.13  However, the 

importance of both folding and chirality to binding provide a more complex picture for 

binding.  Also of significance is that the sequence-dependent difference in the influence of 

charged residues on binding again reinforces the importance of structure to binding.  The 

decrease of negative charge also decreased the peptide’s affinity for the peptide, but the 

binding is weakened more in the case of duplex DNA, likely because of the greater negative 

charge due to the number of phosphates in the duplex.  The structure of the peptide also 

seems to affect the contributions of the electrostatic interactions.  Thus, it is not only the 

number of positive charges that a peptide or protein possesses, but the position of the charge 

is also important for binding.  This presents a unique, additional factor in the argument that 

structure contributes to binding both ssDNA and duplex DNA. 

Taken together, these studies suggest that binding occurs through a structurally 

defined complex, likely involving groove binding of the hairpin to the duplex DNA.  In this 

case, the Trp sidechains may simply provide a well-folded structure or may position 

hydrophobic contacts in the major groove (alternatively, the aliphatic sidechains on the 

opposite face of the hairpin may provide such contacts).  Groove binding by a β-hairpin is 

not unprecedented in protein-DNA interactions.  Binding of beta-hairpins within the major 

groove of duplex DNA has been observed in several protein-DNA complexes such as those 

shown in Figure 2.9.14   

                                                 
13 (a) Mascotti, D. P.; Lohman, T. M. Biochemistry 1992, 31, 8932–8946. (b) Mascotti, D. P.; 
Lohman, T. M. Biochemistry 1993, 32, 10568–10579. 
 
14 (a) Allen, M. D.; Yamasaki, K.; Ohme-Takagi, M.; Tateno, M.; Suzuki, M. EMBO J. 1998, 
17, 5484-5496. (b) Ohki, I.; Shimotake, N.; Fujita, N.; Jee, J. G.; Ikegami, T.; Nakao, M.; 
Shirakawa, M. Cell 2001, 105, 487-497. 
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(a)  (b)  

Figure 2.9.  Protein-DNA complexes of (a) the GCC-box binding domain of AtERF1 (pdb: 
1gcc)14a and (b) the methyl-CpG-binding domain of Human MBD1 (pdb: 1ig4).14b 
 

A β-hairpin, for example, is key in recognizing the target sequence GCC-box in the 

GCC-box binding domain of AtERF1 (Figure 2.9a).14a  The GCC-box binding domain 

(GBD) binds to the major groove of the GCC-box through a three-stranded β-sheet and an α-

helix.  The beta-sheet forms extensive interactions with the DNA, with Arg and Trp residues 

recognizing the DNA and forming contacts with eight base pairs in the major groove.  

Arginine and tryptophan also bind the sugar phosphate backbone.  The α-helix is known to 

make only one contact with the DNA, binding a phosphate group.  Interestingly, the GBD 

binds DNA similar to binding by zinc finger proteins except that the α-helix which binds to 

the major groove in the zinc finger is replaced by the β-hairpin in GBD.14a   

In the human methylation-dependent transcriptional regulator methyl-CpG binding 

domain 1 (MBD1), a hairpin loop forms several contacts deep within the major groove near 

the methylated DNA site (Figure 2.9b).14b Specific recognition of the methylated bases is 

mediated by two arginine residues, a tyrosine residue, and an aspartic acid residue.  

Sidechain-sidechain interactions seem to play an important role in binding, as mutations of 

the Asp residue weaken DNA binding despite its lack of direct contact with the DNA.14b 
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The Chlorella virus DNA ligase recognizes nicked DNA through a β-hairpin loop that 

stems from an OB-fold domain to form a latch which binds the major groove flanking the 

nick.  The OB-fold domain binds the minor groove behind the nick.15  The homing 

endonuclease I-SceI in yeast also recognizes DNA primarily by interactions with a long β-

hairpin loop which extends into the major groove of the duplex DNA.16 

 There are recent examples of designed beta-hairpin peptides that bind to RNA,17 but 

to our knowledge, this is the first example of a designed beta-hairpin that binds to duplex 

DNA.  Moreover, there are examples of synthetic β-hairpins which mimic helical protein 

domains in protein-protein18 and protein-RNA interactions,17 but not in DNA.  Our findings 

suggest that β-hairpins may be promising mimics for α-helical DNA binding domains.  This 

is appealing in that β-hairpins provide a more robust structure than α-helices and can easily 

be cyclized to reduce entropic costs and provide increased protease resistance. 

C.  Conclusions 

                                                 
15 Nair, P. A.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C. D.; Shuman, S. Nat. Struct. 
Mol. Biol. 2007, 14, 770-778. 
 
16 Moure, C. M.; Gimble, F. S.; Quiocho, F. A. J. Mol. Biol. 2003, 334, 685-695. 
 
17 (a) Athanassiou, Z.; Patora, K.; Dias, R. L. A.; Moehle, K.; Robinson, J. A.; Varani, G. 
Biochemistry 2007, 46, 741-751. (b) Moehle, K.; Athanassiou, Z.; Patora, K.; Davidson, A.; 
Varani, G.; Robinson, J. A. Angew. Chem. Int. Ed. 2007, 46, 9101-9104. (c) Leeper, T. C.; 
Athanassiou, Z.; Dias, R. L. A.; Robinson, J. A.; Varani, G. Biochemistry 2005, 44, 12362-
12372. (d) Athanassiou, Z.; Dias, R. L. A.; Moehle, K.; Dobson, N.; Varani, G.; Robinson, J. 
A. J. Am. Chem. Soc. 2004, 126, 6906-6913. 
 
18 (a) Fasan, R.; Dias, R. L. A.; Moehle, K.; Zerbe, O.; Vrijbloed, J. W.; Obrecht, D.; 
Robinson, J. A. Angew. Chem. Int. Ed. 2004, 43, 2109-2112. (b) Fasan, R.; Dias, R. L. A.; 
Moehle, K.; Zerbe, O.; Obrecht, D.; Mittl, P. R.; Grutter, M. G.; Robinson, J. A. 
ChemBioChem 2006, 7, 515-526. 
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In conclusion, we investigated the contribution of folding, chirality, and net charge to 

binding of a folded peptide to ss- and dsDNA, as a model for the OB-fold.  These studies 

provide insight into the factors that contribute to beta-hairpin recognition of both ss- and 

dsDNA, which has relevance to protein receptors for each of these types of DNA. These 

studies indicate that folding is required for binding of both ss- and dsDNA even though the 

driving forces for binding them are different.  In the case of ssDNA, folding provides an 

aromatic cleft to form favorable stacking interactions with the nucleobases.  In the case of 

duplex DNA, folding allows for binding in a structure-dependent manner, such as groove 

binding, via favorable electrostatic interactions.  We found that folding contributed to 

binding in the case of both ss- and duplex DNA while chirality only influenced binding to 

duplex DNA.  Reduction of charge had a larger impact on binding to duplex DNA than on 

binding to ssDNA.  Thus, both chirality and net charge influence the selectivity for ss- over 

dsDNA.  These results underscore the subtle features that contribute to molecular recognition 

of oligonucleotides, and the observed differences in binding suggest approaches to improve 

selectivity for ssDNA versus double-stranded DNA with biomimetic receptors.  

D.  Experimental Section 

i.  Peptide Synthesis and Purification 

Peptides were synthesized via automated solid phase peptide synthesis using an 

Applied Biosystems Pioneer Peptide Synthesizer.  Fmoc protected amino acids were used 

with a PEG-PAL-PS resin.  Amino acid residues were activated with HBTU (O-

benzotriazole-N,N,N’,N’,-tetramethyluronium hexafluorophosphate) and HOBT (N-

hydroxybenzotriazole) along with DIPEA (diisopropylethylamine) in DMF (N,N-

dimethylformamide).  Amino acids were deprotected with 2% DBU (1,8-
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diazabicyclo[5.4.0]undec-7-ene) and 2% piperidine in DMF for approximately 10 minutes.  

Each amino acid was coupled on an extended cycle of 75 minutes to improve coupling.  The 

N-terminus of each peptide was acetylated using 5% acetic anhydride and 6% lutidine in 

DMF for 30 minutes.  Cleavage of the peptides from the resin was performed in 94% 

trifluoroacetic acid (TFA), 2.5% H2O, 2.5% ethanedithiol (EDT), and 1% triisopropylsilane 

(TIPS) for three hours.  TFA was evaporated by bubbling with nitrogen, and ether was added 

to the resulting product.  The peptide was then extracted with water and lyophilized to a 

powder.   

Peptides were purified by reversed-phase HPLC.  A Vydac C-18 semi-preparative 

column was used for separation with a gradient of 5-35% solvent B over 25 minutes with 

solvent A 95:5 water:acetonitrile, 0.1% TFA and solvent B 95:5 acetonitrile:water, 0.1% 

TFA.  Peptides were then lyophilized and the peptide sequence was confirmed by MALDI 

mass spectrometry.  Peptide dimers were formed by oxidation of the cysteine residues with 

stirring in 1% DMSO in 10 mM phosphate buffer, pH 7.5 for 7-12 hrs.  After purification, all 

peptides were desalted with a Pierce D-Salt Polyacrylamide 1800 desalting column.   

ii.  DNA Sample Preparation 

          Two strands of DNA were purchased from IDT (Integrated DNA Technologies).  The 

strands obtained were 5’-CCATCGCTACC-3’ and its complement.  All DNA samples were 

prepared in triethylammonium acetate (TEAA) buffer.  DNA samples were dissolved in 1 

mL TEAA buffer (5.6% acetic acid, 13.86% triethylamine (TEA) in water, adjusted to pH 

7.0). Buffer was added individually to 1 µmole DNA.  The DNA solution was pooled and an 

additional 1 mL of TEAA buffer was added to each DNA sample.  This was then pooled and 

filtered before purification by reversed-phase HPLC.  Purification was performed using the 
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same column as that used for peptides with a gradient of 25-75% B over 20 minutes with a 6 

mL/min flow rate.  Solvent A was 5% acetonitrile, 95% TEAA buffer and solvent B was 

15% acetonitrile, 85% TEAA buffer.  Samples were lyophilized after purification and the 

resulting product was then dissolved in water and re-lyophilized to remove any remaining 

salts.  Concentrations of both DNA strands were determined using a Perkin Elmer Lambda 

35 UV/Vis Spectrometer.  Absorbance values were determined at 260 nm, and concentrations 

were calculated using the extinction coefficients of the two DNA strands (ε260, ssDNA = 95500 

M-1·cm-1 and ε260, ssDNA complement = 112600 M-1·cm-1).  Equal concentrations of the two strands 

(in sodium phosphate buffer, pH = 7.0) were pooled in a final concentration of 100 mM 

NaCl.  The solution was heated at 95 ºC for 5 minutes to anneal the strands and was then 

allowed to cool to room temperature before storing at -20 ºC. 

iii.  Circular Dichroism 

 All peptide dimers were analyzed by CD to verify their structure.  CD measurements 

were performed on an Applied Photophysics Pistar-180 Circular Dichroism/Fluorescence 

Spectrophotometer.  CD data was obtained for the peptide dimers at 30 µM and 60 µM 

concentrations.  The peptides were dissolved in 10 mM Na2HPO4, pH 7.0.  Wavelength scans 

were performed at 298 K from 260-185 nm.  CD mixing experiments were performed using 

the same method.  Concentrations for the peptide and DNA were 50 µM, and the mixtures 

were 50 µM of each.  Mixing experiments were performed in phosphate buffer containing 

100 mM NaCl because NaCl is required for DNA annealing.     
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Figure 2.10.  CD spectrum of (WKWK-N6P)2 (blue), duplex DNA (red), the additive 
spectrum (green), and a 1:1 mixture (yellow).  Differences in the green and yellow spectra 
are likely due to errors in concentration measurement. 
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Figure 2.11.  CD spectrum of (WKWK)2 (blue), duplex DNA (red), the additive spectrum 
(green), and a 1:1 mixture (yellow).   
 
 iv.  Fluorescence Titrations 

To determine the recognition of single-stranded and double-stranded oligonucleotides 

by the peptide dimers, fluorescence titrations were performed which followed the Trp 

quenching with increasing oligonucleotide concentration.  Peptide and nucleotide samples 

were prepared in 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0.  Peptide 
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concentrations were determined in 5 M guanidine hydrochloride by recording the absorbance 

of the Trp residues at 280 nm (ε = 5690 M-1cm-1) by UV/vis spectroscopy.  Concentrations of 

nucleotides were determined by UV/vis spectroscopy by observing the absorbance at 260 

nm.  Fluorescence scans were obtained on a Cary Eclipse Fluorescence Spectrophotometer 

from Varian.  Experiments were performed at 298 K using an excitation wavelength of 297 

nm.  Fluorescence emission intensities of the Trp residues at 348 nm were fit as a function of 

nucleotide concentration to the binding equation (Equation 2.1) on Kaleidagraph using non-

linear least squares fitting.19 

 Equation 2.1.    I = [Io + I∞([L]/Kd)]/[1 + ([L]/Kd)]      

where I is the observed fluorescence intensity, Io is the initial fluorescence intensity of the 

peptide, I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of 

added nucleotide, and Kd is the dissociation constant.   

Oligonucleotides have an observable absorbance at the excitation wavelength of Trp 

(297 nm), and therefore there is an inner filter effect for which one must take account.  The 

absorbance of the oligonucleotides at 297 nm was monitored at known concentrations and 

the extinction coefficient was determined.  Absorbance values were determined for each 

oligonucleotide concentration.  Corrected fluorescence values were determined from the 

following equations (Equation 2.2 and Equation 2.3).20 

 Equation 2.2.    Fc = Fo/Ci 

 Equation 2.3.    Ci = (1-10-Ai)/(2.303)(Ai) 

                                                 
19 Lim, W. A.; Fox, R. O.; Richards, F. M. Protein Sci. 1994, 3, 1261-1266.    
 
20 Lohman, T. M.; Mascotti, D. P. Methods Enzymol. 1992, 212, 424-458. 
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where Fc is the corrected fluorescence, Fo is the fluorescence observed, and Ci is the 

correction factor for each absorbance value (i).  Ai is the absorbance value for each 

concentration determined by the extinction coefficient. 

 An example of the fluorescence raw data observed for these peptides is given in 

Figure 2.12.  The plots in the DNA Binding Measurements section show overlays of both 

ssDNA and duplex DNA data, but individual plots with the binding curve included are 

provided in the Experimental Section (Figures 2.13-2.21). 
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Figure 2.12.  Fluorescence quenching of (D-WKWK)2 (2 µM) by ssDNA (Figure 2.3g, 0-60 
µM), in 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298K.  The arrow indicates 
the direction of change in fluorescence intensity as ssDNA concentration increases.      
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Figure 2.13.  Fluorescence titration of (WKWK)2 with single-stranded DNA sequence 5’-
CCATCGCTACC-3’ corrected for the inner filter effect (see Experimental Section); 2 µM 
peptide concentration; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.14.  Fluorescence titration of (D-WKWK)2 with single-stranded DNA sequence 5’-
CCATCGCTACC-3’ corrected for the inner filter effect (see Experimental Section); 2 µM 
peptide concentration; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.15.  Fluorescence titration of (WKWK-R1Q)2 with single-stranded DNA sequence 
5’-CCATCGCTACC-3’ corrected for the inner filter effect (see Experimental Section); 5 µM 
peptide concentration; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.16.  Fluorescence titration of (WKWK-N6P)2 with single-stranded DNA sequence 
5’-CCATCGCTACC-3’ corrected for the inner filter effect (see Experimental Section); 5 µM 
peptide concentration; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.17.  Fluorescence titration of (WKWK-Scrambled)2 with single-stranded DNA 
sequence 5’-CCATCGCTACC-3’ corrected for the inner filter effect (see Experimental 
Section); 8 µM peptide concentration; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 
7.0, 298 K. 
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Figure 2.18.  Fluorescence titration of (WKWK)2 with duplex DNA (Figure 2.3h) corrected 
for the inner filter effect (see Experimental Section); 2 µM peptide, 10 mM sodium 
phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.19.  Fluorescence titration of (D-WKWK)2 with duplex DNA (Figure 2.3h) 
corrected for the inner filter effect (see Experimental Section); 5 µM peptide, 10 mM sodium 
phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.20.  Fluorescence titration of (WKWK-R1Q)2 with duplex DNA (Figure 2.3h) 
uncorrected for the inner filter effect (see Experimental Section); 7 µM peptide, 10 mM 
sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 2.21.  Fluorescence titration of (WKWK-N6P)2 with duplex DNA (Figure 2.3h) 
uncorrected for the inner filter effect (see Experimental Section); 5 µM peptide, 10 mM 
sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
 

v.  Stoichiometry of Binding  

 The stoichiometry of binding was determined by the molar variation method 

following the quenching of tryptophan fluorescence.  Conditions were such that the peptide 

and DNA should be fully bound.  Peptide concentrations were in the range of 25-45 µM, 

depending on the maximum DNA concentrations used.  The conditions were limited to low 

DNA concentrations (~60 µM for ssDNA and ~40 µM for duplex DNA) because of the inner 

filter effect.  After correction for the inner filter effect, the fluorescence intensity was plotted 

against the ratio of DNA/peptide concentrations to give the stoichiometry of binding.  The 

stoichiometry of binding is shown in plots (Figures 2.5 and 2.6) with the X-intercept of the 

dashed lines indicating the stoichiometry for each.        
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Chapter III 

Optimization of the Binding Face of the Designed β-Hairpin Peptide Receptor for Selective 

Recognition of ssDNA through Library Screening 

A.  Background and Significance 

The binding capabilities of (WKWK)2 have been explored previously, and the results 

show that it is a strong binder of oligonucleotides.  Much has been learned about the system 

and about the residues involved in binding.1  While strong binding has been determined, the 

extent to which one can gain significant selectivity with this peptide is unknown.  Analysis of 

various protein structures has shown, however, that selectivity can be achieved by 

incorporating amino acids that can hydrogen-bond selectively to a particular base.2  For 

example, hydrogen-bonding is favored between guanine and Arg, Lys, His, and Ser, while 

Asn and Gln sidechains form hydrogen bonds more favorably with adenine bases.2a  Figure 

3.1 shows favorable hydrogen-bonding patterns between nucleotide bases and amino acid

                                                 
1 (a) Stewart, A. L.; Waters, M. L. ChemBioChem 2009, 10, 539-544. (b) Butterfield, S. M.; 
Cooper, W. J.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 24-25. (c) Butterfield, S. M.; 
Sweeney, M. M.; Waters, M. L. J. Org. Chem. 2005, 70, 1105-1114. (d) Butterfield, S. M.; 
Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. 
 
2 (a) Luscombe, N. M.; Laskowski, R. A.; Thornton, J. M. Nucleic Acids Res. 2001, 29, 
2860-2874. (b) Moodie, S. L.; Mitchell, J. B. O.; Thornton, J. M. J. Mol. Biol. 1996, 263, 
486-500. (c) Cheng, A. C.; Chen, W. W.; Fuhrmann, C. N.; Frankel, A. D. J. Mol. Biol. 2003, 
327, 781-796. 
 



sidechains which have favored interactions with those bases.  With this in mind, we 

employed combinatorial chemistry to produce peptides that mimic the OB-fold domain.3   

 

Figure 3.1.  H-bonding patterns between amino acid sidechains and (a) adenine, (b) guanine, 
(c) cytosine, and (d) thymine. Adapted from Cheng, et al.2c 

 

Combinatorial chemistry has been used for many years to determine high affinity, 

high selectivity binders for a number of different targets4 and has been a crucial tool for 

many pharmaceutical companies in their drug discovery efforts.5  Combinatorial libraries of 

RNA,6, 7 DNA,7, 8 proteins and antibodies,9 peptides,10 and small molecules11 have all been 

                                                 
3 Murzin, A. G. EMBO J. 1993, 12, 861-867.  
 
4 Liu, D. R.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 36-54. 
 
5 Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P.; Gordon, E. M. J. Med. Chem. 
1994, 37, 1233-1251. 
 
6 (a) Famulok, M.; Jenne, A. Curr. Opin. Chem. Biol. 1998, 2, 320-327.  (b) Joyce, G. F. 
Gene 1989, 82, 83-87.  (c) Tuerk, C.; Gold, L. Science 1990, 249, 505-510. (d) Ellington, A. 
D.; Szostak, J. W. Nature 1990, 346, 818-822. 
 
7 (a) Hahn, W. C.; Dunn, I. F.; Kim, S. Y.; Schinzel, A. C.; Firestein, R.; Guney, I.; Boehm, 
J. S. Biochim. Biophys. Acta. 2009, 1790, 478-484. (b) Perrin, D. M. Comb. Chem. High 
Throughput Screen. 2000, 3, 243-269.  (c) Hamy, F.; Felder, E. R.; Heizmann, G.; Lazdins, 
J.; Aboul-ela, F.; Varani, G.; Karn, J.; Klimkait, T. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 
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used for high throughput screens of hundreds to millions of compounds.  Combinatorial 

chemistry has been useful in determining not only ligand-binding  activity5, 9a but also in 

                                                                                                                                                       
3548-3553. (d) Ahn, D. R.; Yu, J. Bioorg. Med. Chem. 2005, 13, 1177-1183. (e) Tisne, C.; 
Dardel, F. Comb. Chem. High Throughput Screen. 2002, 5, 523-529. 
 
 
8 (a) Gunawardane, R. N.; Sgroi, D. C.; Wrobel, C. N.; Koh, E.; Daley, G. Q.; Brugge, J. S. 
Cancer Res. 2005, 65, 11572-11580. (b) Koh, E. Y.; Chen, T.; Daley, G. Q. Nucleic Acids 
Res. 2002, 30, e142. (c) Wang, B.; Dickinson, L. A.; Koivunen, E.; Ruoslahti, E.; Kohwi-
Shigematsu, T., J. Biol. Chem. 1995, 270, 23239-23242.  (d) Krook, M.; Mosbach, K.; 
Lindbladh, C. Biochem. Biophys. Res. Commun. 1994, 204, 849-854. (e) Pollock, R.; 
Treisman, R. Nucleic Acids Res. 1990, 18, 6197-6204. (f) Blackwell, T. K..; Weintraub, H. 
Science 1990, 250, 1104-1110. (g) Horwitz, M. S. Z.; Loeb, L. A. Proc. Natl. Acad. Sci. U. S. 
A. 1986, 83, 7405-7409. (h) Oliphant, A. R.; Nussbaum, A. L.; Struhl, K. Gene 1986, 44, 
177-183.   
 
9 (a) Kijanka, G.; Murphy, D. J. Proteomics 2009, 72, 936-944. (b) Hughes, M. D.; Zhang, Z. 
R.; Sutherland, A. J.; Santos, A. F.; Hine, A. V. Nucleic Acids Res. 2005, 33, e32. (c) 
Bussow, K.; Cahill, D.; Nietfeld, W.; Bancroft, D.; Scherzinger, E.; Lehrach, H.; Walter, G. 
Nucleic Acids Res. 1998, 26, 5007-5008. (d) Barbas, C. F., 3rd; Bain, J. D.; Hoekstra, D. M.; 
Lerner, R. A. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 4457-4461. 
 
10 (a) Murray, J. K.; Farooqi, B.; Sadowsky, J. D.; Scalf, M.; Freund, W. A.; Smith, L. M.; 
Chen, J.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 13271-13280. (b) Camperi, S. A.; 
Marani, M. M.; Iannucci, N. B.; Cote, S.; Albericio, F.; Cascone, O. Tettrahedron Lett. 2005, 
46, 1561-1564. (c) Halkes, K. M.; Gotfredsen, C. H.; Grotli, M.; Miranda, L. P.; Duus, J. O.; 
Meldal, M. Chem. Eur. J. 2001, 7, 3584-3591. (d) Vetter, D.; Thamm, A.; Schlingloff, G.; 
Schober, A. Mol. Divers. 2000, 5, 111-116. (e) Gotfredsen, C. H.; Grotli, M.; Willert, M.; 
Meldal, M.; Duus, J. O. J. Chem. Soc., Perkin Trans. 1 2000, 1167-1171. (f) Huang, P. Y.; 
Carbonell, R. G. Biotechnol. Bioeng. 1999, 63, 633-641. (g) Hiemstra, H. S.; Duinkerken, G.; 
Benckhuijsen, W. E.; Amons, R.; de Vries, R. R.; Roep, B. O.; Drijfhout, J. W. Proc. Natl. 
Acad. Sci. U. S. A. 1997, 94, 10313-10318. (h) Kramer, A.; Volkmer-Engert, R.; Malin, R.; 
Reineke, U.; Schneider-Mergener, J. Pept. Res. 1993, 6, 314-319. (i) Houghten, R. A.; 
Pinilla, C.; Blondelle, S. E.; Appel, J. R.; Dooley, C. T.; Cuervo, J. H. Nature 1991, 354, 84-
86.  (j) Scott, J. K.; Smith, G. P. Science 1990, 249, 386-390. 
 
11 (a) Hu, L. A.; Tang, P. M.; Eslahi, N. K.; Zhou, T.; Barbosa, J.; Liu, Q., J. Biomol. Screen. 
2009, 14, 789-797. (b) Yu, P.; Liu, B.; Kodadek, T. Nat. Biotechnol. 2005, 23, 746-751. (c) 
Liu, R.; Marik, J.; Lam, K. S. Methods Enzymol. 2003, 369, 271-287. (d) Schouten, J. A.; 
Ladame, S.; Mason, S. J.; Cooper, M. A.; Balasubramanian, S. J. Am. Chem. Soc. 2003, 125, 
5594-5595. (e) Lam, K. S.; Lehman, A. L.; Song, A.; Doan, N.; Enstrom, A. M.; Maxwell, J.; 
Liu, R. Methods Enzymol. 2003, 369, 298-322. 
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identifying catalysts12 and in studying folding of peptides and proteins.13  Of the various 

combinatorial methods utilized, many involve targeting nucleic acids.  These include the 

methods of split-and-pool on-bead libraries,7c-7e phage display,14 dynamic combinatorial 

chemistry,15 and various selection and randomization methods.7  

 To apply the concept of combinatorial chemistry to this project, a peptide library was 

designed.  One advantage of designing a β-hairpin peptide library is that it can be synthesized 

by solid phase peptide synthesis, rendering it amenable to a variety of combinatorial 

methods.  By using solid phase peptide synthesis, any amino acid can be incorporated into a 

library, allowing natural amino acids, D-amino acids,16 or non-natural amino acids16 to be 

included.  This approach can produce a large variety of functional groups that may provide 

different types of interactions not observed in libraries comprised of only natural amino 

acids.  Peptides can be synthesized on solid support, and cyclic13 and dimeric17 peptide 

libraries, which could improve affinity, are also possible using on-bead libraries.  Because of 

these advantages, a peptide library was synthesized through split-and-pool synthesis to give a 

                                                 
12 (a) Taylor, S. J.; Morken, J. P. Science 1998, 280, 267-270. (b) Danek, S. C.; Queffelec, J.; 
Morken, J. P. Chem. Commun. 2002, 528-529. 
 
13 Cowell, S. M.; Gu, X.; Vagner, J.; Hruby, V. J. Methods Enzymol. 2003, 369, 288-297. 
 
14 Smith, G. P.; Petrenko, V. A. Chem. Rev. 1997, 97, 391-410. 
 
15 Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J. K.; Otto, S. 
Chem. Rev. 2006, 106, 3652-3711. 
 
16 Samson, I.; Rozenski, J.; Samyn, B.; Van Aerschot, A.; Van Beeumen, J.; Herdewijn, P. J. 
Biol. Chem. 1997, 272, 11378-11383. 
 
17 Aggarwal, S.; Harden, J. L.; Denmeade, S. R. Bioconjugate Chem. 2006, 17, 335-340. 
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“one-bead-one-compound” library.18  The one-bead-one-compound method was first 

described in 1991 and generates an on-bead library in which each bead contains a unique 

peptide sequence, allowing for screening of individual hits.18  This split-and-pool synthesis 

method is depicted in Figure 3.2. 

 

 

Figure 3.2.  Split-and-Pool synthesis method for producing a one-bead-one-compound 
combinatorial library using solid phase peptide synthesis.  Adapted from Gallop, et al.5 
 
 
B.  Results     

i.  Library 1 Design 
                                                 
18 (a) Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. 
Nature 1991, 354, 82-84. (b) Lam, K. S.; Lebl, M.; Krchnak, V. Chem. Rev. 1997, 97, 411-
448. (c) Lam, K. S.; Lehman, A. L.; Song, A.; Doan, N.; Enstrom, A. M.; Maxwell, J.; Liu, 
R. Methods Enzymol. 2003, 369, 298-322. (d) Morken, J. P.; Kapoor, T. M.; Feng, S.; Shirai, 
F.; Schreiber, S. L. J. Am. Chem. Soc. 1998, 120, 30-36. (e) Combs, A. P.; Kapoor, T. A.; 
Feng, S.; Chen, J. K.; Daude-Snow, L. F.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 287-
288.  
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To obtain high affinity sequence selectivity for single-stranded DNA or RNA 

sequences, a peptide library has been designed using WKWK as a template and varying 

amino acids within the binding pocket of the peptide.  The twelve-residue peptide library was 

synthesized through split-and-pool synthesis on TentaGel Macrobeads.  The peptide was 

originally designed to mimic the OB-fold domain, with aromatic residues to stack with 

nucleotide bases and cationic residues to form electrostatic interactions with the phosphate 

groups.1  We wanted to maintain these characteristics in the library since these types of 

interactions are known to be important in OB-fold domains.19  For this library, we kept one 

side of the binding pocket constant and varied the other side to provide additional diversity 

near the aromatic and basic residues. The peptide was varied at N-terminal positions 2 and 4 

for Library 1 (Figure 3.3) to determine if we could improve the binding pocket.  Polar, 

cationic, and anionic residues were included at position 4, and various hydrophobic residues 

were included at position 2 (Table 3.1).  Unnatural amino acids incorporated into Library 1 

are shown in Figure 3.4.  The variations were intended to maintain similar types of 

functionalities in those positions, with hydrophobic and aromatic residues in the original Trp 

position 2 and residues that will form hydrogen bonds or electrostatic interactions at Lys 4.   

 

 

 

 

 
                                                 
19 (a) Kloks, C. P.; Spronk, C. A.; Lasonder, E.; Hoffmann, A.; Vuister, G. W.; Grzesiek, S.; 
Hilbers, C. W. J. Mol. Biol. 2002, 316, 317-326. (b) Schroder, K.; Graumann, P.; Schnuchel, 
A.; Holak, T. A.; Marahiel, M. A. Mol. Microbiol. 1995, 16, 699-708. 
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(a) WKWK Monomer:  Ac-R-W-V-K-V-N-G-O-W-I-K-Q-NH2 

(b)         —— βAla-βAla-Gln-Lys-Ile-Trp-Orn-Gly-Asn-Val-Lys4-Val-Trp2-Arg-NH2 
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Figure 3.3.  (a) Sequence of WKWK with amino acids thought to be involved in the binding 
pocket shown in bold. (b) On-bead representation of Library 1. (c) Structure of Library 1 
peptide with position 2 shown as X2 in blue and position 4 shown as X4 in red.  Positions 2 
and 4 were varied with five different residues each, as shown in Table 3.1.  The βAla-βAla 
linker was added as a spacer between the bead and the peptide. 
 

Table 3.1.  Varied positions and residues used for Library 1. 
Varied Residue Amino Acids 
Tryptophan (2) Trp, Phe, Leu, Val, PhG 

Lysine (4) Lys, Gln, Orn, Glu, Arg 
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Figure 3.4.  Structures of unnatural amino acids incorporated into Library 1.  (a) 
phenylglycine (PhG). (b) ornithine (Orn). 
 

 ii.  Library 1 Screen and Identification of Hits 

The library was screened against the single-stranded nucleotide sequence 5’-

d(AAAAA)-3’ (penta-dA).  A colorimetric assay reported by the Schreiber group which 

takes advantage of the strong binding interaction between biotin and streptavidin was used to 

screen the libraries for hits.18d-18e  In the screen, biotinylated penta-dA was incubated with a 

streptavidin/alkaline phosphatase complex.  After incubation, the Biotin-penta-dA/SAAP 

complex was allowed to react with the on-bead peptide library.  Once the reaction was 

complete, the resin was washed with high salt screening buffer to remove any nonspecific 

binders, and then the resin was washed with a dye.  The dye reacts with alkaline phosphatase, 

which is complexed with the DNA, and this reaction produces an insoluble dye that colors 

the beads which are bound to DNA.  Additional details of the screen are included in the 

Experimental Section.  Hits were identified from the assay and selected for sequence analysis 

by Edman degradation.   

Thirty hits were identified in screen 1, and eight of those were sequenced.  The results 

of the screen and subsequent Edman degradation analysis are shown in Table 3.2.  The first 

screen identified charged residues in position 4 for each of the hits and gave aromatic 

residues (either Trp or Phe) in position 2 for each hit.  This suggests that the initial design 
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(with Trp 2 and Lys 4) was already optimized.  Basic residues seem to increase binding 

affinity to a higher degree than the other hydrogen-bonding residues for position 4.  Aromatic 

residues apparently provide necessary stacking interactions with the DNA bases that are 

missing in the other hydrophobic residues.    

 

Table 3.2.  Sequences of hits from Library 1 screen (Varied positions shown in bold). 
Bead Number Sequence of Hits 

Bead 1 Arg-Trp-Val-Orn-Val 

Bead 2 Arg-Phe-Val-Lys-Val 

Bead 3 Arg-Phe-Val-Lys-Val 

Bead 4 Arg-Trp-Val-Arg-Val   

Bead 5 Arg-Phe-Val-Arg-Val 

Bead 6 Arg-Trp-Val-Orn-Val 

Bead 7 Arg-Trp-Val-Orn-Val 

Bead 8 Arg-Phe-Val-Arg-Val 

 

 iii.  Fluorescence Binding of Library 1 Hit 

Based on the results of screen 1, the FKWK hit (Beads 2 and 3 from Table 3.2; Figure 

3.5a) was studied further.  The FKWK dimer (Figure 3.5b) was synthesized, and 

fluorescence titrations were performed with ssDNA.  We were interested in understanding 

the difference in binding by a Phe-Trp pocket versus the Trp-Trp binding pocket.  Although 

the library was made of peptide monomers, the FKWK dimer was made because the original 

WKWK dimer binds ssDNA with higher affinity than does the monomer.1  The dissociation 

constant for the interaction between (FKWK)2 and the randomized 11 base pair single-
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stranded DNA sequence (Figure 3.5c) was determined to be around 32 µM.  This is weaker 

than that of the WKWK dimer, which has a Kd of 3 µM for ssDNA (Table 3.3; Figure 3.6).1   

(a) FKWK: Ac-Arg-Phe-Val-Lys-Val-Asn-Gly-Orn-Trp-Ile-Lys-Gln-NH2 
 

(b) (FKWK)2:   
(Ac-Cys-Gly-Arg-Phe-Val-Lys-Val-Asn-Gly-Orn-Trp-Ile-Lys-Gln-NH2)2 
 

 
 

(c)  ssDNA:  5’-CCATCGCTACC-3’ 

Figure 3.5.  Sequence and structure of FKWK monomer and dimer.  (a) β-hairpin sequence 
FKWK with the Phe mutation underlined. (b) Sequence and structure of peptide (FKWK)2 
with the Phe mutation underlined.  Note that the numbering excludes the Cys-Gly residues 
added to form the disulfide.  The bold residues are those thought to be involved in the nucleic 
acid binding pocket.  Those residues are all on the same face of the peptide. (c) ssDNA 
sequence.    
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Table 3.3.  Dissociation constants for the binding interaction between WKWK and FKWK 
dimers and ssDNAa 

Peptide ssDNA Kd, µM (error) 

(WKWK)2 3.5 (0.2)b 

(FKWK)2 32 (6) 

a) Conditions: 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.  Each value 
is the average of at least two measurements. The error is from the fitting.  (b) Reported 
previously.1   
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Figure 3.6. Fluorescence titrations of (FKWK)2 and (WKWK)2 with the single-stranded 
DNA sequence 5’-CCATCGCTACC-3’ (Figure 3.5c) corrected for the inner filter effect (see 
Experimental Section); 2-4 µM peptide concentrations; 10 mM sodium phosphate buffer, 100 
mM NaCl, pH 7.0, 298 K. 
 
 iv.  Library 2 Design 
 

A second library was designed with variations in the Arg 1, Val 3, and Lys 4 residues 

(Table 3.4; Figure 3.7).  The library should reveal possible additional binding interactions as 

well as other amino acids that could increase binding affinity.  This library varied the first 
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and third residues positioned on the opposite face of the binding pocket while keeping the 

Trp residues constant.  The Lys 4 position was varied as well.  Non-natural amino acids in 

the library are shown in Figure 3.8. 

 

(a)            βAla-βAla-Gln-Lys-Ile-Trp-Orn-Gly-Asn-Val-Lys4-Val3-Trp-Arg1-NH2 

(b)  
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Figure 3.7.  Library 2.  (a) Depiction of on-bead Library 2.  Lys, Val, and Arg residues 
shown were varied with several different residues each, shown in Table 3.4.  The βAla-βAla 
linker was added as a spacer between the bead and the peptide. (b) Structure of the WKWK 
peptide template for Library 2 with positions X1, X3, and X4 as varied positions in the library.   
 
 

Table 3.4.  Varied positions and residues used for Library 2. 
Varied Residue Amino Acids 

Arginine (1) Arg, Gln, Lys, Orn, Asn, Cit, Dab, Ser, Thr, Glu, His 
Valine (3) Arg, Gln, Lys, Orn, Asn, Cit, Dab, Ser, Thr, Glu, His, Val, Tyr 
Lysine (4) Arg, Gln, Lys, Orn, Asn, Cit, Dab, Ser, Thr, Glu, His, Val, Tyr, Trp, Phe
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Figure 3.8.  Structures of unnatural amino acids used in Library 2. (a) ornithine (Orn). (b) 
diaminobutyric acid (Dab). (c) citrulline (Cit). 

 

v.  Library 2 Screen and Identification of Hits 

For the second library, 30 hits were identified and again eight were sequenced.  The 

results of the sequencing showed that binding is primarily due to electrostatics, with mostly 

positively charged residues selected.  As shown in Table 3.5, non-charged residues were 

found only on the opposite face of the hairpin as Trp.  This suggests that the face of the 

peptide containing the Trp residues is the nucleotide binding face.  Bead 7 (Table 3.5) was 

selected as a hit in the second library screen and is the parent sequence, WKWK.  This once 

again indicates that this peptide is optimized for binding ssDNA.  The positively charged 

residues are very important in binding of ssDNA, consistent with data from the (WKWK-

R1Q)2 peptide, which gave a Kd of about 22 µM versus 3 µM for (WKWK)2.1a  The Lys 

residues on the binding face1d as well as the Orn in the sequence20 have also been shown to 

be critical for binding ssDNA, with the Lys residues each contributing -1.5 kcal/mol to the 

binding interaction.1d  The presence of different basic residues chosen suggests that the 

difference in the length and type of cationic sidechains makes little difference, with a small 

preference for Arg and Lys.  Arg may be favored in some cases for its guanidinium group 

which provides additional hydrogen-bonding capabilities. 
                                                 
20 Hughes R. M.; Waters, M. L. unpublished results. 
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Table 3.5.  Sequences of hits from Library 2 screen with varied positions shown in bold. 
Bead Number Sequence of Hits 

Bead 1 Arg-Trp-Arg-Arg-Val 

Bead 2 Dab-Trp-Orn-Arg-Val  

Bead 3 Dab-Trp-Arg-Arg-Val 

Bead 4 Lys-Trp-Tyr-Arg-Val 

Bead 5 Cit-Trp-Val-Arg-Val 

Bead 6 Orn-Trp-Orn-Arg-Val 

Bead 7 Arg-Trp-Val-Lys-Val 

Bead 8 Orn-Trp-Arg-Dab-Val 

Bead 9 Dab-Trp-Arg-Orn-Val 

 

 The screens were performed at physiological pH and salt conditions, but magnesium, 

which is in the cell, was not included.  To determine whether the presence of magnesium 

affects the binding of single-stranded DNA sequences to the peptides, a 1 mM solution of 

MgCl2 was added to another screen of Library 2.  The screen was performed with the same 

concentrations, including the NaCl concentration of 500 mM.  As expected, the beads chosen 

from this screen (Table 3.6) were very similar to those in the screen without magnesium 

(Table 3.5).   

Another assay was performed in 1M NaCl (Table 3.7) to further screen the 

electrostatic interactions and to determine other favorable interactions between the hairpin 

and the DNA.  This screen did show some change in residues at each position, indicating that 

the high salt concentration screened the electrostatic interactions to some extent.  The general 

conclusion from these screens is that the original design of the peptide is optimized with 
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binding occurring through an aromatic pocket with electrostatic interactions providing 

increased affinity.  Little or no selectivity was observed with the screens.   

 

Table 3.6.  Sequences of hits from the Library 2 screen with 1 mM MgCl2 (varied positions 
shown in bold). 

Bead Number Sequence of Hits 

Bead 1 Arg-Trp-Orn-Tyr-Val 

Bead 2 Arg-Trp-Dab-Arg-Val 

Bead 3 Lys-Trp-Tyr-Arg-Val          

Bead 4 Lys-Trp-Dab-Arg-Val               

Bead 5 Arg-Trp-Orn-Arg-Val           

Bead 6 Arg-Trp-Dab-Lys-Val 

Bead 7 Lys-Trp-Orn-Dab-Val 

Bead 8 Arg-Trp-Arg-Dab-Val 

Bead 9 Arg-Trp-Dab-Tyr-Val 
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Table 3.7.  Sequences of hits from the Library 2 screen at 1 M NaCl with varied positions 
shown in bold. 

Bead Number Sequence of Hits 

Bead 1 Ser-Trp-Arg-Dab-Val 

Bead 2 Cit-Trp-Asn-Thr-Val    

Bead 3 Orn-Trp-His-Tyr-Val 

Bead 4 Orn-Trp-Tyr-Arg-Val 

Bead 5 Ser-Trp-Thr-His-Val 

Bead 6 Orn-Trp-Gln-Dab-Val 

Bead 7 Arg-Trp-His-Orn-Val 

Bead 8 Arg-Trp-Asn-Arg-Val 

 

 vi.  KFFK Library Design 

 An alternative method of analysis for the library screen was pursued in an attempt to 

build a library which included varied positions throughout the peptide.  Because Edman 

degradation sequences peptides from the N-terminus, it becomes more expensive with each 

additional position sequenced.  As a result, making variations at many positions would 

become costly.  Using tandem mass spectrometry for analyzing hits would allow for variation 

in any position without added expense.  Due to their advantages in peptide libraries, the 

TentaGel Macrobeads were used as the resin for the library.  A photocleavable linker (See 

Experimental Section; Figure 3.10) was purchased for use in the library so that the non-

cleavable linker of the TentaGel resin could be functionalized with a linker which could be 
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cleaved after screening.21  This linker allows for a library screen to be performed and for 

analysis to be made on each bead “hit.”  In this method, hits can be extracted and 

individually cleaved by light for mass spec analysis and sequencing.  A similar method was 

used by Zuckermann and colleagues in which they used a cleavable linker for their one-bead-

one-compound library, and they analyzed their hits by tandem mass spectrometry.22  Our 

method differs from this only in that it employs a photocleavable linker for cleavage of the 

hits from the beads.  Single bead cleavage of a template peptide was achieved and the mass 

spectrum showed the correct molecular weight of the peptide.   

 The peptide made for analysis was KFFK (Figure 3.9), a peptide based on the 

WKWK template but which has cross-strand phenylalanine residues to mimic some OB-fold 

proteins.  The peptide design retains the Asn-Gly turn sequence that has provided well folded 

β-hairpins in previous peptides.1  It also maintains its +4 charge by switching the Lys near 

the turn (Lys 4) to the original Trp position (position 2) and placing the Phe residues in the 

Lys 4 position and in the Trp 9 position.  Overall the change in sequence is a displacement of 

the Trp binding pocket with a cross-strand Phe-Phe pair near the turn (Figure 3.9).  This 

could mimic certain OB-fold domains because many are known to have a pocket of Phe 

residues at the DNA binding site.23   

 

                                                 
21 Burgess, K.; Martinez, C. I.; Russell, D. H.; Shin, H.; Zhang, A. J. J. Org. Chem. 1997, 62, 
5662-5663. 
 
22 Paulick, M. G.; Hart, K. M.; Brinner, K. M.; Tjandra, M.; Charych, D. H.; Zuckermann, R. 
N. J. Comb. Chem. 2006, 8, 417-426. 
 
23 (a) Chan, K.-W.; Lee, Y.-J.; Wang, C.-H.; Huang, H.; Sun, Y.-J.  J. Mol. Biol. 2009, 388, 
508–519. (b) Warren, E. M.; Huang, H.; Fanning, E.; Chazin, W. J.; Eichman, B. F. J. Biol. 
Chem. 2009, 284, 24662-24672.   
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(a) KFFK:  Ac-Arg-Lys-Val-Phe-Val-Asn-Gly-Orn-Phe-Ile-Lys-Gln-NH2 

(b) 
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Figure 3.9.  (a) Sequence of peptide KFFK with the new binding pocket residues shown in 
bold.  (b) Structure of KFFK. 
 

If ATP binds KFFK with comparable affinity to that of WKWK, this peptide could be 

used as a template for creating a new library.  Additional mutations could be made to the 

template as in the previous library to determine residues that could provide more favorable 

binding interactions with ssDNA.  To determine KFFK’s binding potential, we conducted 

NMR titrations with ATP.  The KFFK peptide does not have any Trp residues, so 

fluorescence quenching could not be used.   

An NMR 1D experiment was performed to determine if any chemical shift change 

was evident after addition of ATP to the KFFK peptide sample.  Very little chemical shift 

difference was observed upon titration with ATP (Table 3.8).  If binding was occurring, it 
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was too weak to be useful in a library, so this peptide was not pursued as a template for DNA 

binding in library screens.   

 

Table 3.8.  Chemical shift difference for ATP titration of KFFK peptide.a 
Peptide Chemical Shift Difference (ppm) 

KFFK   6.801, 7.185, 7.224, 7.335 

ATP + KFFK 6.761, 7.149, 7.204, 7.294 

(a) Conditions: Values calculated from data obtained at 298 K, 10 mM potassium 
dideuterium phosphate, pD 7.0 (uncorrected), referenced to DSS. Error is + 0.005 ppm, 
determined by chemical shift accuracy on the NMR spectrometer.  The ATP concentration 
was 6.7 mM; the KFFK concentration was 0.67 mM. 

 

Tandem mass spectrometry was attempted for the KFFK peptide to determine if the 

photocleavage of single hits along with the MS/MS method would provide unambiguous 

identification of the library hits’ sequences.  Unfortunately, the tandem mass spectrometry 

did not provide data that could give sequence information.  Some of the amino acids could be 

identified while others were ambiguous.  One difference between this method and 

Zuckermann’s is that KFFK is a 12 residue peptide while the Zuckermann group used a 

pentamer.  The difference in peptide length could affect the mass spectrometry analysis due 

to overlapping signals for amino acids with similar masses.  Thus, this method was not 

pursued further. 

C.  Discussion and Conclusions 

 The peptide libraries resulted in several different hits for each, but the overwhelming 

result was the selection of basic residues that prevented the desired result of favorable 

hydrogen-bonding interactions to improve selectivity.  In this case, one step that could be 

taken is to exclude charged residues from the library.  That could produce favorable 
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hydrogen-bonding residues as hits and prevent nonspecific binding.  The overall conclusion 

from both library studies is that the original WKWK peptide is optimized for binding with its 

Trp-Trp binding pocket and the two cationic Lys residues to form electrostatic interactions 

with the phosphates.  Other aromatic residues were selected in place of Trp, but fluorescence 

studies have shown that Phe incorporated into the binding pocket does not recognize ssDNA 

as well as Trp within this particular peptide.  There seems to be no selectivity for a specific 

basic residue.  This is likely because of nonspecific electrostatics.  The KFFK peptide was 

determined to be a weaker ATP binder than WKWK, so this peptide was not pursued for 

further library studies.  We also found that tandem mass spectrometry does not give 

unambiguous results for library members of this size, so that method will no longer be 

utilized for library studies of this kind. 

D.  Experimental Section 

 i.  Library Design and Synthesis 

 The libraries were designed such that the WKWK template was used.  Both libraries 

were synthesized manually by solid phase peptide synthesis using the split-and-pool 

synthesis method.18  For the first library, varied residues were positions two and four.  For 

the second library, the varied positions were residues one, three, and four.   

Peptides studied in the library screens were synthesized manually using Fmoc 

protected amino acids and TentaGel S NH2 Macrobeads resin (0.21 mmol/g loading with 

0.21 mmol scale).  Amino acid residues (5 equivalents each) were activated with 5 

equivalents of HOBT/HBTU solution in DMF along with 5 equivalents of DIPEA for 90 

minutes.  The peptide was washed with DMF and methanol between couplings and 

deprotections.  Amino acids were Fmoc deprotected with 20% piperidine in DMF (two 15 
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minute washes).  The Kaiser test was performed after each deprotection and after each 

coupling to confirm that each residue was deprotected and coupled appropriately.  

Deprotection of the sidechains was completed in 95% TFA, 2.5% water, and 2.5% TIPS for 4 

hrs.   

ii.  Library Screening 

 Both libraries were screened against the single-stranded nucleotide sequence 5’-

d(AAAAA)-3’ (penta-dA).  A colorimetric assay reported by the Schreiber group which 

employs the use of biotin and streptavidin was used to screen the libraries for hits.18d-18e  The 

pentanucleotide was purchased from Integrated DNA Technologies, Inc., with the 5’ end 

biotinylated, and streptavidin was purchased from Pierce Biotechnology, Inc., in conjugate 

with alkaline phosphatase (SAAP).  The alkaline phosphatase is essential for the dye that is 

utilized in the screen.  All screens were performed by incubating the biotinylated penta-dA 

with the streptavidin/alkaline phosphatase complex in high salt (500 mM NaCl) phosphate 

buffer, pH 7.4.  (Screening the library with lower salt concentrations resulted in too many 

hits due to nonspecific electrostatic interactions.)  The resin containing the peptide library 

(~75 mg) was also incubated in high salt PBS.  Once the biotin was complexed with the 

streptavidin, the Biotin-penta-dA/SAAP was allowed to bind to the peptides on the resin.  

After reaction, the resin was washed with high salt screening buffer four times and then 

washed with a dye for 10 minutes.  The dye is a mixture of nitro blue tetrazolium chloride/5-

Bromo-4-Chloro-3’-Indolyl phosphate p-Toluidine Salt (NBT/BCIP).  When in the presence 

of alkaline phosphatase, the phosphate group of the BCIP is hydrolyzed and then a 

tautomerization occurs, followed by the dimerization of the compound by NBT.  The 

resulting compound produces an insoluble indigo dye that colors the beads which are bound 
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to the biotinylated DNA.  After quenching the reaction with EDTA, the beads were washed 

with phosphate buffer and then plated in screening buffer.  The beads were various colors of 

purple, and the darkest beads were picked as hits and sequenced by Edman degradation.  

Control experiments were performed to show that the screen was choosing true hits due to 

binding.   

iii.  Photocleavable Linker  

 A photocleavable linker, Fmoc-aminoethyl photolinker (4-{4-[1-(Fmoc-amino)ethyl]-

2-methoxy-5-nitrophenoxy}butanoic acid) (Figure 3.10), was coupled to the TentaGel 

Macrobeads and manual synthesis of the peptide KFFK (Figure 3.9) was completed as 

described for a regular manual synthesis.  The N-terminus was capped for this peptide 

because Edman degradation was not performed.  The capping of the N-terminus was 

performed by acetylating with 50% acetic anhydride in DMF.  Single bead cleavages were 

performed by subjecting one bead to 365 nm light for 3 hours in 5 µL 1:2 

acetonitrile:water.21  Longer cleavages (~12 hours) were performed to get better mass 

spectral data. 

 

NH-Fmoc

NO2

H3CO

O
OH

O

 

Figure 3.10.  Structure of the Fmoc aminoethyl photolinker used for KFFK synthesis. 
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iv.  Peptide Synthesis and Purification 

Peptides were synthesized via automated solid phase peptide synthesis using an 

Applied Biosystems Pioneer Peptide Synthesizer.  Fmoc protected amino acids were used 

with a PEG-PAL-PS resin.  Amino acid residues were activated with HBTU (O-

benzotriazole-N,N,N’,N’,-tetramethyluronium hexafluorophosphate) and HOBT (N-

hydroxybenzotriazole) along with DIPEA (diisopropylethylamine) in DMF (N,N-

dimethylformamide).  Amino acids were deprotected with 2% DBU (1,8-

diazabicyclo[5.4.0]undec-7-ene) and 2% piperidine in DMF for approximately 10 minutes.  

Each amino acid was coupled on an extended cycle of 75 minutes to improve coupling.  The 

N-terminus of each peptide was acetylated using 5% acetic anhydride and 6% lutidine in 

DMF for 30 minutes.  Cleavage of the peptides from the resin was performed in 94% 

trifluoroacetic acid (TFA), 2.5% H2O, 2.5% ethanedithiol (EDT), and 1% triisopropylsilane 

(TIPS) for three hours.  TFA was evaporated by bubbling with nitrogen, and ether was added 

to the resulting product.  The peptide was then extracted with water and lyophilized to a 

powder.   

Peptides were purified by reversed-phase HPLC.  A Vydac C-18 semi-preparative 

column was used for separation with a gradient of 5-35% solvent B over 25 minutes with 

solvent A 95:5 water:acetonitrile, 0.1% TFA and solvent B 95:5 acetonitrile:water, 0.1% 

TFA.  Peptides were then lyophilized and the peptide sequence was confirmed by MALDI 

mass spectrometry.  Peptide dimers were formed by oxidation of the cysteine residues with 

stirring in 1% DMSO in 10 mM phosphate buffer, pH 7.5 for 7-12 hrs.  After purification, all 

peptides were desalted with a Pierce D-Salt Polyacrylamide 1800 desalting column.   
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 v.  DNA Sample Preparation 

 DNA sequences were purchased from IDT (Integrated DNA Technologies).  All 

DNA samples were dissolved in 10mM Na2HPO4, 100 mM NaCl, adjusted to pH 7.0.  

Concentrations of both DNA strands were determined using a Perkin Elmer Lambda 35 

UV/Vis Spectrometer.  Absorbance values were determined at 260 nm, and concentrations 

were calculated using the extinction coefficients of the two DNA strands (ε260, ssDNA = 95500 

M-1·cm-1 and ε260, dsDNA = 112600 M-1·cm-1).  Equal concentrations of the two strands (in 

sodium phosphate buffer, pH 7.0) were pooled in a final concentration of 100 mM NaCl.  

The solution was heated at 95 ºC for 5 minutes to anneal the strands and was then allowed to 

cool to room temperature before storing at -20 ºC. 

vi.  Fluorescence Titrations 

To determine the recognition of single-stranded and double-stranded oligonucleotides 

by the peptide dimers, fluorescence titrations were performed which followed the Trp 

quenching with increasing oligonucleotide concentration.  Peptide and nucleotide samples 

were prepared in 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0.  Peptide 

concentrations were determined in 5 M guanidine hydrochloride by recording the absorbance 

of the Trp residues at 280 nm (ε = 5690 M-1cm-1) by UV/vis spectroscopy.  Concentrations of 

nucleotides were determined by UV/vis spectroscopy by observing the absorbance at 260 

nm.  Fluorescence scans were obtained on a Cary Eclipse Fluorescence Spectrophotometer 

from Varian.  Experiments were performed at 298 K using an excitation wavelength of 297 

nm.  Fluorescence emission intensities of the Trp residues at 348 nm were fit as a function of 
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nucleotide concentration to the binding equation (Equation 3.1) on Kaleidagraph using non-

linear least squares fitting.24 

 Equation 3.1.    I = [Io + I∞([L]/Kd)]/[1 + ([L]/Kd)]      

where I is the observed fluorescence intensity, Io is the initial fluorescence intensity of the 

peptide, I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of 

added nucleotide, and Kd is the dissociation constant.   

Oligonucleotides have an observable absorbance at the excitation wavelength of Trp 

(297 nm), and therefore there is an inner filter effect for which one must take account.  The 

absorbance of the oligonucleotides at 297 nm was monitored at known concentrations and 

the extinction coefficient was determined.  Absorbance values were determined for each 

oligonucleotide concentration.  Corrected fluorescence values were determined from the 

following equations (Equation 3.2 and Equation 3.3).25 

 Equation 3.2.    Fc = Fo/Ci 

 Equation 3.3.    Ci = (1-10-Ai)/(2.303)(Ai) 

where Fc is the corrected fluorescence, Fo is the fluorescence observed, and Ci is the 

correction factor for each absorbance value (i).  Ai is the absorbance value for each 

concentration determined by the extinction coefficient. 

                                                 
24 Lim, W. A.; Fox, R. O.; Richards, F. M. Protein Sci. 1994, 3, 1261-1266.    
 
25 Lohman, T. M.; Mascotti, D. P. Methods Enzymol. 1992, 212, 424-458. 
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Figure 3.11.  Fluorescence titration of FKWK dimer (Figure 3.5b) with ssDNA (Figure 3.5c) 
corrected for the inner filter effect (see Experimental Section); 4 µM peptide concentration; 
10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
   

vii.  NMR Spectroscopy 

Both KFFK and ATP were dissolved in 10 mM K2DPO4, 0.5 mM DSS, and buffered 

to pD 7.0 (uncorrected) with sodium deuteroxide and deuterated phosphoric acid.  Samples 

were analyzed on a Varian Inova 600 MHz spectrometer at room temperature.  All one-

dimensional NMR spectra were collected using 32K data points and between 16 and 64 scans 

with 1-3 s presaturation or solvent suppression.  The ATP concentration (6.7 mM) was ten 

times the concentration of peptide (0.67 mM) to ensure that complete binding could occur.  A 

1D NMR experiment was conducted for solutions of ATP, KFFK and an ATP/KFFK 

mixture.  These were analyzed for chemical shift changes that could indicate binding (Table 

3.8).   

 78



 

Figure 3.12.  1HNMR of peptide KFFK. 
 

 
Figure 3.13.  1HNMR of ATP. 
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Figure 3.14.  1HNMR Titration of peptide KFFK with ATP. 
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Chapter IV 
 

Redesign of a WW Domain Peptide for Selective Recognition of ssDNA 
 
A.  Background and Significance  

While much research has been performed to determine the mechanisms by which 

proteins interact with double-stranded DNA,1 the interactions between β-sheet proteins and 

single-stranded DNA are less well studied.  This laboratory previously reported a β-hairpin 

peptide dimer designed as a minimalist oligonucleotide/oligosaccharide binding motif (OB-

fold, Figure 4.12) mimic.  The peptide (WKWK)2 is composed of two identical well folded 

beta-hairpins, each with a binding cleft made up of two diagonal Trp sidechains and two Lys 

residues, which binds ssDNA with a Kd of 3 µM.3  This is comparable to the 6 μM Kd of 

cold shock protein A with ssDNA; the cold shock protein A consists of a single OB-fo

(WKWK)2 mimics an OB-fold in that it uses a combination of aromatic and electrostatic 

ld.4  

                                                 
1 (a) Krajewska, W. M. Int. J. Biochem. 1992, 24, 1885-1898. (b) Kaptein, R. Curr. Opin. 
Struct. Biol. 1993, 3, 50-56. (c) Latchman, D. S. Int. J. Biochem. Cell. Biol. 1997, 29, 1305-
1312.  (d) Harrison, S. C. Nature 1991, 353, 715-719.  (e) Travers, A. DNA—Protein 
Interactions.  Chapman and Hall:  London, 1993. 
 
2 Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. J. Mol. Biol. 2006, 360, 
702-714. 
 
3 Butterfield, S. M.; Cooper, W. J.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 24-25. 
 
4 Hillier, B. J.; Rodriguez, H. M.; Gregoret, L. M. Folding Des. 1998, 3, 87-93. 
 

 



interactions on the surface of a β-sheet to bind to the unpaired nucleotides in ssDNA.3, 5  

However, (WKWK)2 binds dsDNA with a similar affinity, albeit primarily through 

electrostatic interactions.3  Structure-function studies demonstrated additional differences in 

the mechanism of binding to ss- and dsDNA.6  In particular, these studies indicated that 

binding to duplex DNA may be occurring via groove binding.  Thus, we hypothesized that 

addition of a third strand may inhibit binding to duplex DNA while maintaining or increasing 

affinity for ssDNA.  To this end, a three-stranded β-sheet peptide based on the FBP11 

(formin binding protein 11) WW1 domain peptide has been redesigned for binding to 

ssDNA.  While WW domains have been studied extensively in the areas of protein folding 

and protein design,7 the potential for DNA binding has never been explored.  The WW 

domain proteins are three-stranded β-sheet mini proteins known for their conserved 

tryptophan residues.  The natural ligands for FBP WW domains are proline-rich sequences 

                                                 
5 (a) Butterfield, S. M.; Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. (b) 
Butterfield, S. M.; Sweeney, M. M.; Waters, M. L. J. Org. Chem. 2005, 70, 1105-1114. 
  
6 Stewart, A. L.; Waters, M. L. ChemBioChem 2009, 10, 539-544. 
 
7 (a) Jager, M.; Zhang, Y.; Bieschke, J.; Nguyen, H.; Dendle, M.; Bowman, M. E.; Noel, J. 
P.; Gruebele, M.; Kelly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10648-10653. (b) 
Fernandez-Escamilla, A. M.; Ventura, S.; Serrano, L.; Jimenez, M. A. Protein Sci. 2006, 15, 
2278-2289. (c) Karanicolas, J.; Brooks, C. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3954-
3959. (d) Kraemer-Pecore, C. M.; Lecomte, J. T. J.; Desjarlais, J. R. Protein Sci. 2003, 12, 
2194-2205. (e) Jiang, X.; Kowalski, J.; Kelly, J. W. Protein Sci. 2001, 10, 1454-1465. (f) 
Jager, M.; Nguyen, H.; Crane, J. C.; Kelly, J. W.; Gruebele, M. J. Mol. Biol. 2001, 311, 373-
393. (g) Macias, M. J.; Gervais, V.; Civera, C.; Oschkinat, H. Nat. Struct. Biol. 2000, 7, 375-
379. (h) Koepf, E. K.; Petrassi, M.; Ratnaswamy, G.; Huff, M. E.; Sudol, M.; Kelly, J. W. 
Biochemistry 1999, 38, 14338-14351. (i) Nguyen, H.; Jager, M.; Moretto, A.; Gruebele, M.; 
Kelly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3948-3953. (j) Jager, M.; Dendle, M.; 
Fuller, A. A.; Kelly, J. W. Protein Sci. 2007, 16, 2306-2313. 
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which often form polyproline helices,8 with the FBP11 WW1 domain ligand being PPLP.8a-f   

Knowledge of the structural features of this class of proteins combined with data from 

previous ssDNA binding peptides from this laboratory led to this redesign of a WW domain 

mutant (Figure 4.2) which binds ssDNA in the low micromolar range with 20-fold selectivity 

over duplex DNA.  This chapter describes the redesign of a WW domain peptide as a 

molecular receptor selective for ssDNA, mimicking the natural OB-fold domain.  These 

model systems provide a method to reveal factors contributing to protein-nucleic acid 

recognition.

 
8 (a) Kato, Y.; Miyakawa, T.; Kurita, J.; Tanokura, M. J. Biol. Chem. 2006, 281, 40321-
40329. (b) Pires, J. R.; Parthier, C.; do Aido-Machado, R.; Wiedemann, U.; Otte, L.; Bohm, 
G.; Rudolph, R.; Oschkinat, H. J. Mol. Biol. 2005, 348, 399-408. (c) Ball, L. J.; Kuhne, R.; 
Schneider-Mergener, J.; Oschkinat, H. Angew. Chem. Int. Ed. 2005, 44, 2852-2869. (d) Kato, 
Y.; Nagata, K.; Takahashi, M.; Lian, L.; Herrero, J. J.; Sudol, M.; Tanokura, M. J. Biol. 
Chem. 2004, 279, 31833-31841. (e) Bedford, M. T.; Chan, D. C.; Leder, P. EMBO J. 1997, 
16, 2376-2383. (f) Otte, L.; Wiedemann, U.; Schlegel, B.; Pires, J. R.; Beyermann, M.; 
Schmieder, P.; Krause, G.; Volkmer-Engert, R.; Schneider-Mergener, J.; Oschkinat, H. 
Protein Sci. 2003, 12, 491-500. (g) Zarrinpar, A.; Lim, W. A. Nat. Struct. Biol. 2000, 7, 611-
613. (h) Espinosa, J. F.; Syud, F. A.; Gellman, S. H. Peptide Sci. 2005, 80, 303-311. (i) 
Dalby, P. A.; Hoess, R. H.; DeGrado, W. F. Protein Sci. 2000, 9, 2366-2376. (j) Chan, D. C.; 
Bedford, M. T.; Leder, P. EMBO J. 1996, 15, 1045-1054. (k) Macias, M. J.; Hyvonen, M.; 
Baraldi, E.; Schultz, J.; Sudol, M.; Saraste, M.; Oschkinat, H. Nature 1996, 382, 646-649. (l) 
Chen, H. I.; Sudol, M. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7819-7823.   
 
 



(a)      (b)       

   

   (c)  

           

Figure 4.1.  (a) Structure of a single OB-fold in cold shock protein B from Bacillus subtilis 
bound to dT6 (pdb: 2es2).2 (b) Structure of the FBP11 WW1 domain bound to a polyproline 
helix (pdb: 2dyf).  (c) FBP11 WW1 domain showing the WKWK binding pocket mutations 
(cyan) in Mut1.  Aromatic residues are shown in blue, basic residues are shown in magenta, 
and ligands are shown in green.  Mutations were generated with Pymol. 

 
B.  Results 
  

i.  Sequence Design   

In further attempts to design a well folded beta-sheet peptide to selectively bind 

ssDNA, we explored the WW domain class of three-stranded β-sheets for use as a scaffold.  

Results from previous studies showed that structure is important for DNA binding.6  Because 

we wanted to design a peptide that binds single-stranded DNA selectively over duplex DNA, 

the additional strand in the WW domain peptides was an attractive method for gaining 

selectivity by possibly inhibiting duplex DNA binding.  Since proteins recognize ssDNA 

primarily through an OB-fold motif (Figure 4.1) via a combination of electrostatic, aromatic,  
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and hydrogen-bonding interactions,9 we wanted to maintain a peptide template that includ

structural features like that of an OB-fold domain. We also endeavored to maintain a small 

ed 

 of the full mammalian FBP11 WW1 

protein

t1; 

 

tations 

nt 

g 

scaffold amenable to both solid phase peptide synthesis and to the structure-function studies 

necessary for a DNA-binding β-sheet model system.  

The FBP11 WW1 domain peptide (Figure 4.3a) used in these studies corresponds to 

residues 15-42 of the native peptide (residues 144-171

), 8f-8g with an additional glycine residue coupled to the C-terminus for ease in 

synthesis.  Using the same principles as with WKWK and (WKWK)2,3, 5-6 the FBP11 WW1 

domain was mutated to form a putative binding cleft for ssDNA to give Mutant 1 (Mu

Figure 4.2; 4.3b).  The C-terminal β-hairpin was mutated such that a Trp binding pocket was 

placed on the binding face with two flanking Lys residues cross-strand to the two 

tryptophans.  The turn sequences were changed to Asn-Gly turns since these gave well folded

turns in the hairpins used previously for nucleotide binding studies,3, 5-6 and the mu

taken together gave the peptide a +5 net charge.  The C-terminal β-hairpin sequence mimics 

the binding face of the β-hairpin peptide, WKWK.  The amino acid numbering for the muta

peptides is 1-30.  Position 16 (Position 2 in Mut1) is varied in several known FBP WW 

domains.8f-g  Arginine was placed in that position for Mut1 since Arg is known to provide 

favorable contacts in DNA binding.10  Residues 2 and 4 are cross-strand from the bindin

                                                 
 (a) Theobald, D. L.; Mitton-Fry, R. M.; Wuttke, D. S. Annu. Rev. Biophys. Biomol. Struct.

2003, 32, 115-133. (b) Bochkarev, A.; Bochkareva, E. Curr. Opin. Struct. Biol. 2004, 14, 3
9  

6-
42. (c) Murzin, A. G. EMBO J. 1993, 12, 861-867.  
 

, 

be, N. M.; Laskowski, R. A.; Thornton, 
M. Nucleic Acids Res. 2001, 29, 2860-2874. (d) Moodie, S. L.; Mitchell, J. B. O.; 

10 (a) Allen, M. D.; Yamasaki, K.; Ohme-Takagi, M.; Tateno, M.; Suzuki, M. EMBO J. 1998
17, 5484-5496. (b) Ohki, I.; Shimotake, N.; Fujita, N.; Jee, J.-G.; Ikegami, T.; Nakao, M.; 
Shirakawa, M. Cell 2001, 105, 487-497. (c) Luscom
J. 
Thornton, J. M. J. Mol. Biol. 1996, 263, 486-500. 
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pocket in strands 2 and 3 and may be positioned to make favorable contacts with the DNA to 

improve binding affinity and selectivity.  These additional interactions were not present in 

the WKWK monomer and dimer. 

 

Figure 4.2.  Structure of WW domain Mut1.  Turn mutations are shown in red and the 
WKWK binding cleft is shown in blue and green. 
 

Two additional mutants were designed to further understand the characteristics that 

drive the interactions of interest.  Mut2 (Figure 4.3c) was designed with no proline on the C-

terminus.  Proline is conserved in many different WW domains and has been shown to be 

crucial in the folding of native WW domain peptides.8a  In the original mutant, the Pro was 

retained because of its proposed importance in β-sheet stability.  As noted in previous work 

by this laboratory, folding is crucial for binding both ssDNA and duplex DNA.6  It is 

therefore thought that the C-terminal Pro may be important for binding ssDNA using the 

WW Domain template as well.  To determine if this residue is still important for folding and 

 ssDNA recognition in Mut1, structure and binding studies of Mut2 were performed.  
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Research by Kelly, et al., has shown that the native turn sequence between strands 1 

and 2 is important for structure and stability,7a leading to another mutant made with the 

native t

 

 

urn one sequence replacing the Asn-Gly turn that was introduced in the original 

mutant.  The other mutations remained the same to give Mut3 (Figure 4.3d). 
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(a) Native FBP11 WW1 domain: Ac-S-E-W-T-E-H-K-S-P-D-G-R-T-Y-Y-Y-N-T-E-T-K-
-S-T-W-E-K-P-G-NH2 

H2 

) Mut1-S2: Ac-G-R-T-Y-Y-W-N-K-V-N-G-NH2 

) Mut1-S3: Ac-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 

) Mut1-S12: Ac-S-R-W-T-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-NH2 

) Mut1-S23: Ac-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 

) Mut1-S23-E27Q: Ac-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-Q-K-P-G-NH2 

) WKWK: Ac-R-W-V-K-V-N-G-O-W-I-K-Q-NH2 

Y-G-G-G-P-P-P-P-P-P-P-L-P-P 

) ssDNA:  5’-CCATCGCTACC-3’ 

) dsDNA:  5’-CCATCGCTACC-3’ 

1 WW1 domain, WW domain mutants and controls, 
sed in binding studies. Residues in the turn 

quences and in the binding pocket are highlighted as in Figure 4.2, with turn sequences in 

(Mut1-S23) as well as single strands (Mut1-S1, Mut1-S2, and Mut1-S3; Figure 4.3e-i) were 

also characterized as additional means to understand the role of each strand in folding and 

binding to ssDNA.  An additional hairpin composed of strands 2 and 3 with an E27Q 

Q
 
(b) Mut1: Ac-S-R-W-T-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-P-
G-NH2 
 
(c) Mut2: Ac-S-R-W-T-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-G-
NH2 
 
(d) Mut3: Ac-S-R-W-T-E-H-K-S-P-D-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-
P-G-N
 
(e) Mut1-S1: Ac-S-R-W-T-E-H-K-S-N-G-NH2 
 
(f
 
(g
 
(h
 
(i
 
(j
 
(k
 
(l) 
 
(m
 
(n
                      3’-GGTAGCGATGG-5’ 
 
Figure 4.3.  Sequences of native FBP1
polyproline helix, and DNA sequences u
se
red, Trp residues in the binding pocket in blue, and Lys residues in the binding pocket in 
green.  Other mutations are shown in bold. 

 
The isolated hairpins made up of strands 1 and 2 (Mut1-S12) or strands 2 and 3 
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mutation, Mut1-S23-E27Q (Figure 4.3j), was also characterized to better understand the rol

of stability and electrostatic interactions in ssDNA recognition by Mut1.    

A polyproline sequence based on a peptide used in studies as an FBP11 WW1 domain

ligand (Figure 4.3l)8b, 8m was synthesized to determine if binding to this seq

e 

 

uence is affected 

by the m

rformed by CD and compared to the native 

FBP11 f the mutations on β-sheet structure (Figure 

4.4).  T

 

210 

 likely 

 

e 

utations made.  This polyproline helix contains the PPLP motif known as the ligand 

specific to the FBP11 WW1 domain.8b, 8h, 8i, 8m    

ii.  CD Characterization of Folding 

Structural studies on Mutants 1-3 were pe

 WW1 domain to determine the effect o

he CD spectra of the mutants differ from that of the native WW domain.  In 

particular, the native protein displays a larger exciton coupling peak at 227 nm than the 

mutants.  This is likely due to differences in orientations of the aromatic sidechains. 

Nonetheless, the mutants clearly exhibit β-sheet structure, as indicated by the minima at 

nm.  Although β-sheets typically have minima at about 215 nm, the shift to 210 nm is

due to the contributions of the Trp residues, and the differences in these spectra could be due 

to the number and relative conformations of tryptophans in each peptide. The minima near 

195 nm may represent random coil due to some degree of fraying or some extent of 

polyproline helix character due to the KPG sequence at the C-terminus of each peptide, as a

minimum is also observed in that region for the native protein.  Mut3 displays a mor

significant minimum near 195 nm, which may be attributed to the more flexible turn 

sequence between strands 1 and 2. 
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Figure 4.4.  CD spectra for the native WW domain and WW domain mutants. Data was 
recorded at 30 µM peptide, 10 mM Na2HPO4, 298 K, pH 7.0, with a wavelength range from 
250-190 nm.  
 

The Mut1 control peptides Mut1-S12 and Mut1-S23 were also analyzed by CD 

(Figure 4.5a). Mut1-S12 is primarily unstructured with a minimum at 195 nm corresponding 

to random coil but with a shoulder at 215 nm which is indicative of β-sheet structure. Mut1-

S23 gives a minimum CD signal at about 215 nm which is consistent with beta-sheet 

peptides and proteins.  This peptide also has a minimum at about 190 nm, which may be due 

to fraying or the KPG tail at the C-terminus.  The CD spectrum of Mut1-S23-E27Q is almost 

identical to that of Mut1-S23, as expected, with primarily β-sheet character not disrupted by 

the E27Q mutation.  Thus, it appears that the random coil nature of the three-stranded sheets 

primarily comes from strand one.  Each of the three control peptides, Mut1-S1, Mut1-S2, and 

Mut1-S3, produced CD wavelength data consistent with random coil peptides, as expected 

(Figure 4.5b).  CD wavelength data was also obtained for the polyproline helix (Figure 4.3l), 

used for binding studies with the native WW domain and the mutants, to confirm that it 

adopts a polyproline helix structure (Figure 4.6). 
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Figure 4.5.  CD spectra for WW domain mutants (a) control hairpins and (b) individual 
strand control peptides.  Wavelength data was recorded at 30 µM peptide concentrations, 10 
mM Na2HPO4, 298 K, pH 7.0 with a wavelength range from 250-190 nm.   
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Figure 4.6.  CD spectra for the polyproline helix (Figure 4.3l).  CD wavelength data was 
recorded at 75 µM with a wavelength range from 250-190 nm.  The scan was performed at 
298 K. 
 

Thermal denaturation studies were conducted for the native WW domain and for 

Mutants 1-3 as well as for Mut1-S23 to determine the stability of the mutants compared to 

the native peptide (Figure 4.7).  Thermal denaturations were performed at 227 nm, following 

the Trp exciton coupling peak over a range of temperatures.  The native FBP11 WW1 

domain has a melting temperature similar to that of the hPin1 and FBP287a WW domains.  

Mutants 1 and 3 show similar stability as the native WW domain, but Mut2 appears to be less 

folded (Figure 4.7).  The reduced stability of Mut2 verifies the role of Pro 27 in stabilizing 

the mutants, as has been observed in the native protein.8a  Mut1-S23 seems to have similar 

thermal stability as Mut2, so Strand 1 may increase the stability of S23 to some extent.  
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Figure 4.7.  Thermal denaturation plots for the native WW domain and the mutant peptides.  
Thermal denaturations were performed at 227 nm from 4-96 °C with 4°/step. Data was 
recorded at 30 µM peptide, 10 mM Na2HPO4, pH 7.0. Lines are meant to guide the eye. 
 

iii.  Characterization of the Peptide-ssDNA Interactions 

The stoichiometry of binding was determined for Mut1 as well as Mut1-S23 and 

ssDNA by fluorescence quenching using the molar variation method (see Experimental 

Section).  A 1:1 binding stoichiometry for the interaction between Mut1 and the 11-mer 

ssDNA sequence (Figure 4.3m) was determined, in agreement with the stoichiometry 

reported for the (WKWK)2 interaction with dA5 and with the same 11-mer ssDNA (see 

Experimental Section; Figure 4.8).3, 6  The binding stoichiometry for the interaction between 

Mut1-S23 (Figure 4.3i) and ssDNA was also determined to be 1:1 (see Experimental Section; 

Figure 4.9).  Molar variation plots were performed using different peptide concentrations to 

attain optimal conditions of DNA/peptide ratios while using the highest DNA concentrations 

possible under the inner filter effect limitations.    

Binding of ssDNA to each of the peptides was determined by quenching of the 

tryptophan fluorescence as described in the Experimental Procedures.  A correction for the 
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inner filter effect arising from absorbance of the nucleobases at the excitation wavelength of 

Trp was performed for all binding data (see Experimental Procedures).  
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Figure 4.8.  Molar variation plot for Mutant 1 (50 µM) binding to ssDNA (0-64 µM).  A 1:1 
binding interaction was demonstrated with the average of two runs in 10 mM Na2HPO4, 100 
mM NaCl, pH 7.0, 298 K. 
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Figure 4.9.  Molar variation plot for Mut1-S23 (50 µM) binding to ssDNA (0-63 µM).  A 1:1 
binding interaction was demonstrated with the average of two runs in 10 mM Na2HPO4, 100 
mM NaCl, pH 7.0, 298 K. 
 
 As a reference point, the dissociation constant of the WKWK monomer binding to the 

11-mer ssDNA sequence was determined to be 39.3 µM (Table 4.1; Figure 4.10).  This 

affinity is much weaker than that of (WKWK)2, due to the lack of the second DNA binding 

pocket provided by the dimer as well as a lower net charge. WKWK can be compared to 

Mut1 and Mut1-S23 to gain information regarding structural and sequence related aspects of 

ssDNA binding for each.  
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Figure 4.10.  Fluorescence titrations of WW domain Mutant 1 and WKWK with single-
stranded DNA sequence 5’-CCATCGCTACC-3’ (Figure 4.3m) corrected for the inner filter 
effect (see Experimental Section); 3-5 µM peptide; 10 mM sodium phosphate buffer, 100 
mM NaCl, pH 7.0, 298 K. 
 
 
 

Mut1 was designed with two strands mimicking the binding pocket of the β-hairpin 

WKWK and has a net charge of +5.  The additional N-terminal strand was intended to allow 

additional contacts to improve the binding to ssDNA.  Fluorescence quenching experiments 

determined that Mut1 binds ssDNA with an affinity of 16.6 µM (Table 4.1; Figures 4.10-

4.12).  This peptide does not bind ssDNA as well as the WKWK dimer, which has a net 

charge of +8 and two aromatic binding pockets.3  However, Mut1 binds ssDNA more than 2-

fold more tightly than the WKWK hairpin monomer, which has a similar aromatic binding 

cleft as Mut1 and a +4 charge (Figure 4.10).  This suggests that strand 1 contributes to the 

binding affinity and provides some additional contacts favorable for binding.  Whether these 
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additional contacts are electrostatic or not was explored further, as described in the following 

section.   
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Figure 4.11.  Fluorescence titrations of WW domain mutants 1-3 with single-stranded DNA 
sequence 5’-CCATCGCTACC-3’ (Figure 4.3m) corrected for the inner filter effect (see 
Experimental Section); 5 µM peptide; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 
7.0, 298 K. 
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Table 4.1.  Dissociation constants for the binding interaction between WW domain peptides 
and ssDNAa 

Peptide ssDNA Kd, µM (error) 

Native WW domain 12500b

WKWK 39.3 (2.4) 

WKWK Dimer 3.5 (0.2)c 

Mut1 16.6 (1.5) 

Mut1-S23 32.4 (1.8) 

Mut1-S23-E27Q 22.9 (0.8) 

Mut2 34.2 (0.9) 

Mut3 45.8 (2.7) 

(a) Conditions: 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.  Each value 
is the average of at least two measurements. The error is from the fitting.  (b) This data was 
collected using fluorescence anisotropy.  The conditions are the same as with the 
fluorescence quenching binding measurements.  (c) Reported previously.3, 6   

 

The C-terminal proline was removed in Mut2 to determine if the residue is important 

in binding since it has been shown to be critical for folding of the native peptide.8a  Pro 37 in 

the native WW domain (Pro 29 in Mutant1) interacts with the N-terminal Trp 12 as well as 

Tyr 24 to form a small hydrophobic pocket which stabilizes the structure.8a  Thermal 

denaturations suggest that it contributes to the stability of the mutants as well.  Binding of 

Mut2 to ssDNA is weaker than Mut1, with a Kd of 34.2 µM (Table 4.1; Figure 4.11).  This 

indicates that stability of the three-stranded sheet influences binding, confirming the 

importance of the folded structure.  

Replacing the Asn-Gly turn sequence in turn 1 of Mut1 with the native turn sequence 

in Mut3 also weakened the binding as compared to the original mutant by about three-fold 
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(Table 4.1; Figure 4.11).  It may be that strand 1 is less folded in Mut3, which would explain 

the more negative peak at 195 nm in the CD spectrum for Mut3 relative to Mut1 (Figure 4.4). 
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Figure 4.12.  Fluorescence titrations of WW domain Mutant 1, Mut1-S23, and Mut1-S23-
E27Q with single-stranded DNA sequence 5’-CCATCGCTACC-3’ (Figure 4.3m) corrected 
for the inner filter effect (see Experimental Section); 5 µM peptide; 10 mM sodium 
phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.  
 
 

To further explore the role of strand 1 in Mut1, the binding of Mut1-S23 to ssDNA 

was analyzed by fluorescence quenching. The affinity was reduced by about two-fold (Kd = 

32.4 µM; Table 4.1; Figure 4.12).  The overall charge of the peptide is +4 versus the +5 

charge for the full peptide, which could explain the difference in binding.  However, Mut1-

S23 binds ssDNA more strongly than does WKWK even though the charge is the same. 

Mut1-S23 has a longer sequence and the number of available contacts may enhance binding.  

 To determine whether charge is the only factor affecting the difference in binding of 

ssDNA to Mut1 versus Mut1-S23, a glutamic acid in strand 3 of Mut1-S23 was mutated to a 
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glutamine (E27Q), resulting in a peptide with the same net charge as Mut1.  The binding 

affinity of Mut1-S23-E27Q was intermediate to the full peptide and strands 2&3, with a Kd 

of 22.9 µM (Table 4.1; Figure 4.12).  This indicates that the addition of the single positive 

charge improves the binding affinity, but the data suggests that strand 1 in Mut1 also 

contributes to binding in some way other than simply net charge.    

As a control, we measured the binding of the native FBP11 WW1 domain to ssDNA.  

While all of the data for the mutants binding to ssDNA and duplex DNA were obtained by 

fluorescence quenching, the binding affinities of the native peptide for these DNA sequences 

were too weak to be determined using that method due to inner filter effects. Fluorescence 

anisotropy was therefore employed to determine the binding of the native peptide to the DNA 

sequences.  A fluorophore, 5’-Bodipy 630/650-X NHS Ester, was attached to the ssDNA 

sequence.  Fluorescence anisotropy data gave a Kd in the millimolar range, providing 

evidence that the native peptide has little affinity for ssDNA (Table 4.1; Figure 4.13).  Mut1 

binds Bodipy-labeled ssDNA with a Kd of about 26 µM, similar to that determined by 

fluorescence quenching. This provides further evidence that the native WW domain has been 

redesigned to bind ssDNA (Figure 4.13).  Control experiments were performed to confirm 

that the peptide does not bind to the fluorophore directly. 
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Figure 4.13.  Bodipy-ssDNA titrated with the native WW domain and Mut 1.  Fluorescence 
monitored by fluorescence anisotropy; 1.5 µM Bodipy-ssDNA for Mut 1; 50 µM Bodipy-
ssDNA for native WW domain; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 
298 K. 
 

iv.  Characterization of the Peptide-dsDNA Interactions 

Because of inner filter effects due to DNA absorption at the excitation wavelength of 

Trp, fluorescence quenching of Trp could not be used for accurate duplex DNA binding 

studies with Mut1.  Instead, fluorescence anisotropy was utilized to determine a more 

accurate dissociation constant for the binding interaction between Mut1 and duplex DNA.  

(5-(and -6)-Carboxytetramethylrhodamine (TAMRA) was coupled onto the peptide Mut1 at 

position 21 for these binding experiments via attachment to a Lys sidechain (see 

Experimental Procedures). This amino acid substitution has been shown to have minimal 
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effects on stability and folding in model β-hairpins.11  As a control, fluorescence anisotropy 

was also used to measure the binding of Mut1 to ssDNA. The fluorescence anisotropy data 

for binding to ssDNA is consistent with the fluorescence quenching data, giving a 

dissociation constant of 20.4 µM (Table 4.2).  The anisotropy data shows that Mut1 binds 

ssDNA with about 20-fold selectivity over duplex DNA (Kd = 390 µM; Table 4.2; Figure 

4.14).  This selectivity of Mut1 for ssDNA versus dsDNA is much greater than that observed 

for (WKWK)2 and ssDNA over duplex DNA.3,6  This is consistent with earlier studies that 

suggested WKWK dimer is a groove binder.6  The three-stranded sheet in Mut1 is likely too 

big to function as a groove binder and results in significantly greater selectivity for ssDNA.   
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Figure 4.14.  Fluorescence anisotropy titrations of TAMRA-WW domain Mut1 and ssDNA 
sequence 5’-CCATCGCTACC-3’ (Figure 4.3m) and the complementary duplex DNA 
(Figure 4.3n); 2 and 20 µM peptide, respectively; 10 mM sodium phosphate buffer, 100 mM 
NaCl, pH 7.0, 298 K. 
                                                 
11 Cooper, W. J.; Waters, M. L. Org. Lett. 2005, 7, 3825-3828.  
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Table 4.2.  Comparison of dissociation constants for the binding interactions between WW 
domain peptides and ssDNA and dsDNA sequences and polyproline helixa 

Peptide ssDNA  
Kd, µM (error) 

dsDNA 
Kd, µM (error) 

Polyproline Helix 
Kd, µM (error) 

Native FBP11 WW1 domain >6000b >1100b 59.6 (5.9) 

WKWK dimer 3.5 (0.2)c 9.2 (0.9)c n. d. 

TAMRA-Mut1 20.4 (3.8) 390 (45) No binding 
observed 

(a) Conditions: 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. Each value 
is the average of at least two measurements. The error is from the fitting. n.d. denotes a 
measurement that was not determined. (b) This data was collected using fluorescence 
anisotropy with Bodipy-labeled DNA. (c) These values were reported previously.3, 6   
 
 

Control experiments showed that binding of the native WW domain to duplex DNA 

was in the millimolar range, as with ssDNA.  This provides further evidence that Mut1 has 

been successfully redesigned to bind DNA and that the native peptide has little affinity for 

any DNA sequence.   

v.  Binding to the Native Polyproline Helix  

The ability of Mut1 to bind the natural ligand of the FBP11 WW1 domain was 

investigated by conducting fluorescence experiments with a polyproline helix containing a 

PPLP consensus sequence (Figure 4.3l) and comparing that to binding of the consensus 

sequence for the native WW domain peptide. The binding affinity for the polyproline helix 

used in this laboratory was 59.6 µM (Table 4.2; Figure 4.15).  Pires, et al., found that the 

interaction between FBP11 WW1 domain and a similar polyproline helix had a Kd of 145 

µM.8b  The difference between the two polyproline sequences is that the one used in this 

study contains a glycine spacer of three residues and a tyrosine tag at the N-terminus (Figure 

4.3l).  The difference in Kds could be due to small structural differences.  The tyrosine could 
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contribute to the increased binding affinity to give the lower Kd.  Tyrosine residues are 

known to form favorable interactions with other aromatic residues, and this may contribute to 

the binding affinity.12  In contrast to binding by the native WW domain, no measurable 

binding was observed between Mut1 and the polyproline helix (Table 4.2; Figure 4.15).  This 

demonstrates that the mutant does not bind its natural ligand and has been redesigned to bind 

ssDNA.  No binding interaction was observed between Mutant 3 and the polyproline helix, 

providing additional evidence that this class of mutants has been redesigned for the purpose 

of binding ssDNA. 
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Figure 4.15.  WW domain peptide titrations with polyproline helix (Figure 4.3l); 15 µM 
WW domain peptides, 0-600 µM polyproline helix; 10 mM sodium phosphate buffer, 100 
mM NaCl, pH 7.0, 298 K.  This data was normalized by subtracting the initial peptide 
observed fluorescence from each fluorescence value.  
 

                                                 
12 Sillerud, L. O.; Larson, R. S. Current Protein and Peptide Science 2005, 6, 151-169. 
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vi.  NMR Characterization of Mut1 

NMR experiments were conducted to more fully characterize the folding of Mut1 and 

the role of strand 1 in stability and binding. Mut1-S1, Mut1-S12, and Mut1-S23 were studied 

by one- and two-dimensional NMR.  Glycine splitting and α-hydrogen (Hα) chemical shift 

values were determined to characterize the full peptide, both hairpins, the three individual 

strands, and their respective stabilities.  The Hα chemical shifts of the hairpins relative to the 

random coil peptides indicate the degree of β-sheet structure for each residue along the 

peptide backbone.  Downfield shifting of Hα protons is evidence of increased hairpin 

population, with a chemical shift difference of greater than 0.1 ppm taken to indicate β-sheet 

structure.13  A second method to determine the extent of folding of each peptide is to 

determine the Gly Hα splitting values.  The glycine in the turn possesses two diastereotopic 

hydrogens.  As folding of the hairpin increases, the splitting of the hydrogens increases as 

well, giving a measure of stability.13b  A comparison of the Gly splitting in the β-hairpin with 

that of a fully folded cyclic control peptide gives the extent of folding and overall stability for 

the peptide (see Experimental Section).  NMR peak assignments from individual strands S1, 

S2, and S3 are consistent with random coil values, as expected.   

NMR data revealed that the N-terminal β-hairpin, Mut1-S12, has a glycine splitting 

value of 0.11, giving a fraction folded of 27% (Table 4.3).  The C-terminal β-hairpin, Mut1-

S23, is significantly more folded, with a glycine splitting value of 0.67 and a fraction folded 

of 89% (Table 4.3).  This is similar to the WKWK peptide, which has a reported percent 

folding value of 96%.5   

                                                 
13 (a) Wishart, D. S.; Sykes, B. D.; Richards, F. M. J. Mol. Biol. 1991, 222, 311-333. (b) 
Maynard, A. J.; Sharman, G. J.; Searle, M. S. J. Am. Chem. Soc. 1998, 120, 1996-2007. 
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Comparison of Gly splitting for the full Mut1, Mut1-S12, and Mut1-S23 indicate that 

while the hairpin formed by strands 1&2 alone is poorly folded, addition of strand 3 in the 

full-length peptide adds stability to this hairpin, exhibiting an increase in structure from 27% 

to 63% folded (Table 4.3).  This data suggests some degree of cooperative folding of the 

three-stranded sheet.  This type of cooperativity is not unprecedented.14  For example, Searle 

et al., found that the N-terminal strand of their three-stranded beta-sheet (peptide 1-24) 

cooperatively stabilized the C-terminal hairpin of the peptide.14a-c  Likewise, Kelly and 

coworkers have shown that the hPin1 WW domain and various mutants exhibit cooperative 

unfolding.14e-f  In contrast to Mut1-S12, strands 2&3 alone are as well folded in Mut1-S23 as 

in the full peptide, with a percent folded of 89% and 91%, respectively (Table 4.3).   

Table 4.3.  Fraction folded for Mut1 and control peptides.a 

Peptide Gly chemical shifts, ppmb ΔδGly, ppmb Fraction Folded  
(Gly Splitting)c 

Mut1-S12 3.91, 4.02 0.11 0.27 

Mut1-S23 3.45, 4.12 0.67 0.89 

Mut1 3.82, 4.08; 

3.38, 4.06 

0.26; 

0.68 

0.63; 

0.91 

(a) Conditions: Values calculated from data obtained at 298 K, 50 mM potassium 
dideuterium phosphate, pD 7.0 (uncorrected), referenced to DSS. (b) Error is + 0.005 ppm, 
determined by chemical shift accuracy on the NMR spectrometer. (c) Error is + 0.01, 
determined by chemical shift accuracy on the NMR spectrometer.  

Ηα chemical shift differences for the two hairpins and the full peptide are consistent 

with both the CD data and the NMR glycine splitting data (Figure 4.16).  This data indicates 

that Mut1-S12 is only marginally folded at best, but when incorporated into the full length 

                                                 
14 (a) Sharman, G. J.; Searle, M. S. Chem. Commun. 1997, 1955-1956. (b) Sharman, G. J.; 
Searle, M. S. J. Am. Chem. Soc. 1998, 120, 5291-5300. (c) Griffiths-Jones, S. R.; Searle, M. 
S. J. Am. Chem. Soc. 2000, 122, 8350-8356. (d) Kortemme, T.; Ramirez-Alvarado, M.; 
Serrano, L. Science 1998, 281, 253-256. (e) Kaul, R.; Angeles, A. R.; Jager, M.; Powers, E. 
T.; Kelly, J. W. J. Am. Chem. Soc. 2001, 123, 5206-5212. (f) Nguyen, H.; Jager, M.; Kelly, J. 
W.; Gruebele, M. J. Phys. Chem. B 2005, 109, 15182-15186. 
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peptide, strand 1 exhibits modestly increased downfield shifting, corresponding to an 

increase in folding.  In contrast, strands 2 and 3 are well folded in both Mut1 and Mut1-S23. 
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Figure 4.16.  NMR chemical shift differences for WW domain Mut1 peptides. Conditions: 
Values calculated from data obtained at 298 K, 50 mM potassium dideuterium phosphate, pD 
7.0 (uncorrected), referenced to DSS.  Error is + 0.005 ppm, determined by chemical shift 
accuracy on the NMR spectrometer.   
 

C.  Discussion & Conclusions 

We have found that introduction of a WKWK binding pocket into a three-stranded β-

sheet via mutation of a native WW domain leads to a change in function of the native protein 

from a polyproline helix binder to a ssDNA receptor.  In contrast, the native WW domain 

exhibits no binding to ssDNA.  Both sets of data clearly indicate that the binding pocket 

designed with two Trp residues to recognize and stack with a DNA base and two flanking 

Lys residues for electrostatic contacts with the phosphate backbone result in a redesigned 

peptide which binds ssDNA with high affinity and knocks out binding to the polyproline 

helix.  The mutations which form the binding pocket lead to DNA recognition as the native 

peptide does not bind DNA.  This result is consistent with research by Kelly and colleagues 

 107



who found that adding a Trp–Trp pair in a beta-sheet structure adds stability but at the cost of 

its natural function.  They showed that the addition of a cross-strand Trp-Trp pair in a non 

hydrogen-bonding position in the hPin1 WW domain increased the peptide’s thermodynamic 

stability but in turn decreased its phosphorylated peptide (YSPTpSPS) binding capacity.7j   

The designed binding pocket mimics that of the WKWK peptide, but its position in 

this three-stranded β-sheet peptide gives it additional contacts to enhance binding that are not 

present in WKWK.  The first strand provides residues that should increase the binding 

affinity and selectivity for the peptide to ssDNA through hydrogen bonding, aromatic, and 

electrostatic interactions.  A comparison of the dissociation constants of Mutant 1 and 

WKWK reveals that Mutant 1 binds ssDNA with a higher affinity than does WKWK, with 

Kds of 16.6 µM and 39.3 µM, respectively (Table 4.1; Figure 4.10).  The new design is an 

improvement over the WKWK peptide as well as the WKWK dimer, which has a binding 

affinity of 3 µM for ssDNA but little selectivity over dsDNA.3, 6  While the binding constant 

for the interaction between (WKWK)2 and ssDNA is better than that of the WW domain 

Mutant 1, the goal of this research is to design a ssDNA binding peptide that displays 

selectivity for ssDNA over duplex DNA.  The binding constants for (WKWK)2 recognition 

of ssDNA and duplex DNA are both in the low micromolar range, with the dimer binding 

duplex DNA with a Kd of 5-9 µM.3, 6  The difference in binding between the two is minimal, 

giving only a starting point for obtaining high affinity, high selectivity ssDNA binding 

peptides.  The Mutant 1 peptide is significant because the difference in selectivity is nearly 

twenty-fold, much greater than the previously designed peptides.3, 5-6  Of particular 

importance is that the binding affinity of Mutant 1 for ssDNA is similar to that of cold shock 
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protein A (CspA), a natural OB-fold protein whose full structure is a single OB-fold.3, 15  

This peptide is the most similar to CspA because the peptide forms a three-stranded β-sh

structure which contains a single binding pocket for DNA base recognition.  CspA binds 

ssDNA with a dissociation constant of ~6 µM4 while Mutant 1 binds ssDNA with a Kd of 

about 20 µM.  Although this value is somewhat higher than the natural protein, it is within 

that range of affinities and binds with selectivity for ssDNA which is requisite for a mimic of 

the OB-fold domain.      

eet 

                                                

Structure-function studies indicate that Pro 29 helps to stabilize the folded state of the 

mutant, as has been observed for the native protein, and this also impacts ssDNA binding 

affinity.  In addition, Mut1, which has an Asn-Gly turn between strands 1 and 2, was found 

to have a stronger binding affinity to ssDNA than did Mut3, which has the native turn 

sequence at that position.  The Pro deletion in Mutant 2 supports the previous conclusion that 

structure is crucial for binding both ssDNA and duplex DNA.6  Proline 37 (Pro 29 in 

Mutant1) is known to maintain the structure of the full FBP11 WW1 domain peptide because 

it interacts with the N-terminal Trp 12 as well as Tyr 24 to form a small hydrophobic pocket 

which stabilizes the structure.8a  While Mutant 1 was designed to have a vastly different 

function than the native peptide, presumably Pro maintains its interaction with Trp 12 and 

Tyr 24 to stabilize the peptide, as has been shown in native WW domains.8a  It should be 

noted that Mutant 2 does give some selectivity for ssDNA.  Mutant 3 demonstrates that the 

 
15 (a) Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. FEBS J. 2007, 274, 
1265-1279. (b) Newkirk, K.; Feng, W.; Jiang, W.; Tejero, R.; Emerson, S. D.; Inouye, M.; 
Montelione, G. T. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 5114-5118. (c) Schindelin, H.; 
Marahiel, M. A.; Heinemann, U. Nature 1993, 364, 164-168. (d) Schnuchel, A.; Wiltscheck, 
R.; Czisch, M.; Herrier, M.; Willimsky, G.; Graumann, P.; Marahiel, M. A.; Holak, T. A. 
Nature 1993, 364, 169-171.   
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original Asn-Gly turn sequence for Mutant 1 is important for nucleating a turn that best 

orients strand 1 to interact with strands 2&3 and which gives the higher binding affinity for 

ssDNA.  While the native turn one sequence was shown by Kelly and co-workers to give a 

more stable peptide,7a this did not result in a higher affinity DNA binding peptide.  

Interestingly, CD studies suggest that Mut3 has a higher random coil population than does 

Mut1, presumably due to a less structured turn region and less well folded strand 1, which 

may explain the weaker binding of Mut3.  Thus, the native turn 1 sequence may maintain 

higher stability in the native peptide but not when combined with the other mutations which 

produced Mut1.  The original Mut1 design gave the most stable peptide as well as the one 

with the highest binding affinity and selectivity for ssDNA.  Comparison of Mut1 to the 

truncated peptides, Mut1-S23 and Mut1-S23-E27Q, confirms that strand 1 contributes to 

ssDNA binding, albeit weakly. NMR studies indicate that Mut1 is well folded at strands 2 

and 3, but that strand 1 is not as well folded. Nonetheless, strand 1 influences binding to 

ssDNA. 

This three-stranded motif provides substantial (20-fold) selectivity for ssDNA over 

dsDNA, unlike the (WKWK)2, which has only approximately 2-fold selectivity for ssDNA.3  

Previous studies suggest that (WKWK)2 binds to duplex DNA via groove binding.6  Thus, the 

selectivity observed for Mut1 may be due to inhibition of groove binding due to the third 

strand (strand 1).   

 These studies provide insight into features that can provide structure-selectivity 

protein-DNA interactions. This model system represents a conceptual mimic of the OB-fold, 

which consists of a beta-sheet surface that binds ssDNA.  As such, it may have applications 

as an inhibitor of OB-fold-containing proteins such as replication protein A, which is 
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involved in DNA replication and repair,16 or the telomere-binding protein Cdc13, which is 

involved in telomere regulation.17  Further mutation studies were continued to optimize 

ssDNA binding affinity and selectivity for this peptide. 

D.  Experimental Section 

i.  Peptide Synthesis and Purification 

Peptides were synthesized via automated solid phase peptide synthesis using an 

Applied Biosystems Pioneer Peptide Synthesizer.  Fmoc protected amino acids were used 

with a PEG-PAL-PS resin.  Amino acid residues were activated with HBTU (O-

benzotriazole-N,N,N’,N’,-tetramethyluronium hexafluorophosphate) and HOBT (N-

hydroxybenzotriazole) along with DIPEA (diisopropylethylamine) in DMF (N,N-

dimethylformamide).  Amino acids were deprotected with 2% DBU (1,8-

diazabicyclo[5.4.0]undec-7-ene) and 2% piperidine in DMF for approximately 10 minutes.  

Each amino acid was coupled on an extended cycle of 75 minutes to improve coupling.  The 

N-terminus of each peptide was acetylated using 5% acetic anhydride and 6% lutidine in 

DMF for 30 minutes.  Cleavage of the peptides from the resin as well as sidechain 

deprotection was performed in 95% trifluoroacetic acid (TFA), 2.5% H2O, and 2.5% 

triisopropylsilane (TIPS) for three hours.  TFA was evaporated by bubbling with nitrogen, 

                                                 
16 (a) Bochkarev, A.; Pfuetzner, R. A.; Edwards, A. M.; Frappier, L. Nature 1997, 385, 176-
181. (b) Wold, M. S. Annu. Rev. Biochem. 1997, 66, 61-92. (c) Theobald, D. L.; Mitton-Fry, 
R. M.; Wuttke, D. S. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 115-133. (d) Bochkarev, 
A.; Bochkareva, E. Curr. Opin. Struct. Biol. 2004, 14, 36-42.   
 
17 (a) Anderson, E. M.; Halsey, W. A.; Wuttke, D. S. Biochemistry 2003, 42, 3751-3758. (b) 
Mitton-Fry, R. M.; Anderson, E. M.; Hughes, T. R.; Lundblad, V.; Wuttke, D. S. Science 
2002, 296, 145-147. (c) Chandra, A.; Hughes, T. R.; Nugent, C. I.; Lundblad, V. Genes Dev. 
2001, 15, 404-414. 
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and ether was added to the resulting product.  The peptide was then extracted with water and 

lyophilized to a powder.   

Peptides were purified by reversed-phase HPLC.  A Vydac C-18 semi-preparative 

column was used for separation with a gradient of 5-35% solvent B over 25 minutes with 

solvent A 95:5 water:acetonitrile, 0.1% TFA and solvent B 95:5 acetonitrile:water, 0.1% 

TFA.  Peptides were then lyophilized and peptide sequence was confirmed by MALDI mass 

spectrometry.  After purification, all peptides were desalted with a Pierce D-Salt 

Polyacrylamide 1800 desalting column.   

 ii.  DNA Sample Preparation 

 DNA sequences were purchased from IDT (Integrated DNA Technologies, Inc.).  All 

DNA samples were dissolved in 10mM Na2HPO4, 100 mM NaCl, adjusted to pH 7.0.  

Concentrations of both DNA strands were determined using a Perkin Elmer Lambda 35 

UV/Vis Spectrometer.  Absorbance values were determined at 260 nm, and concentrations 

were calculated using the extinction coefficients of the two DNA strands (ε260, ssDNA = 95500 

M-1·cm-1 and ε260, dsDNA = 112600 M-1·cm-1).  Equal concentrations of the two strands (in 

sodium phosphate buffer, pH 7.0) were pooled in a final concentration of 100 mM NaCl.  

The solution was heated at 95 ºC for 5 minutes to anneal the strands and was then allowed to 

cool to room temperature before storing at -20 ºC. 

iii.  Fluorescence Titrations 

To determine the recognition of single-stranded and double-stranded oligonucleotides 

by the peptides, fluorescence titrations were performed which followed the Trp quenching 

with increasing oligonucleotide concentration.  Peptide and nucleotide samples were 

prepared in 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0.  Peptide concentrations 
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were determined in 5 M guanidine hydrochloride by recording the absorbance of the Trp 

residues at 280 nm (ε = 5690 M-1cm-1) by UV/vis spectroscopy.  Concentrations of 

nucleotides were determined by UV/vis spectroscopy by observing the absorbance at 260 

nm.  Fluorescence scans were obtained on a Cary Eclipse Fluorescence Spectrophotometer 

from Varian.  The experiments were performed at 298 K using an excitation wavelength of 

297 nm.  Fluorescence emission intensities of the Trp residues at 348 nm were fit as a 

function of nucleotide concentration to the binding equation (Equation 4.1) with 

Kaleidagraph using non-linear least squares fitting.18 

 Equation 4.1.    I = [Io + I∞([L]/Kd)]/[1 + ([L]/Kd)]      

where I is the observed fluorescence intensity, Io is the initial fluorescence intensity of the 

peptide, I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of 

added nucleotide, and Kd is the dissociation constant.  Oligonucleotides have an observable 

absorbance at the excitation wavelength of Trp (297 nm), and therefore there is an inner filter 

effect for which one must take account.  The absorbance of the oligonucleotides at 297 nm 

was monitored at known concentrations and the extinction coefficient was determined.  New 

absorbance values were determined for each oligonucleotide concentration.  Corrected 

fluorescence values were determined from the following equations (Equation 4.2 and 

Equation 4.3).19 

 Equation 4.2.    Fc = Fo/Ci 

 Equation 4.3.    Ci = (1-10-Ai)/(2.303)(Ai) 

                                                 
18 Lim, W. A.; Fox, R. O.; Richards, F. M. Protein Sci. 1994, 3, 1261-1266.    
 
19 Lohman, T. M.; Mascotti, D. P. Methods Enzymol. 1992, 212, 424-458. 
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where Fc is the corrected fluorescence, Fo is the fluorescence observed, and Ci is the 

correction factor for each absorbance value (i).  Ai is the new absorbance value for each 

concentration determined by the extinction coefficient. 

iv.  Stoichiometry of Binding 

 The stoichiometry of binding was determined by the molar variation method 

following the quenching of tryptophan fluorescence.  Conditions were such that the peptide 

and DNA should be fully bound.  Peptide concentrations were in the range of 25-50 µM, 

depending on the maximum DNA concentrations used.  The conditions were limited to low 

DNA concentrations (~60 µM ssDNA) because of the inner filter effect.  After correction for 

the inner filter effect, the fluorescence intensity was plotted against the ratio of DNA/peptide 

concentrations to give the stoichiometry of binding.  The stoichiometry of binding is shown 

in Figure 4.8 for Mut1 and Figure 4.9 for Mut1-S23 with the X-intercept of the dashed lines 

indicating the stoichiometry for each.    

v.  Polyproline Helix Binding 

 Fluorescence titrations using the polyproline helix were performed using the same 

procedures as with DNA.  Fluorescence scans were obtained on a Cary Eclipse Fluorescence 

Spectrophotometer from Varian.  The experiments were performed at 298 K using an 

excitation wavelength of 297 nm.  Fluorescence emission intensities of the Trp residues at 

340 nm were fit as a function of polyproline concentration to the following equation 

(Equation 4.4) with Kaleidagraph using non-linear least squares fitting8b 

 Equation 4.4.    FObs = [Ffree + (Fsat - Ffree)[WL]/[W0] 

where Ffree is the fluorescence intensity without ligand added and Fsat is the fluorescence 

intensity of a saturating concentration of ligand titrated.  [WL] is the fraction of WW domain 
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bound to ligand and is obtained by Equation 4.5.  [W0] is the total WW domain concentration 

used.     

 Equation 4.5.  ]][[
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vi.  Fluorescence Anisotropy 

A fluorophore, 5’-Bodipy 630/650-X NHS Ester, was attached to the ssDNA 

sequence for all binding studies.  For duplex DNA binding, the labeled DNA was annealed to 

the complementary sequence as above stated.  The fluorophore has an absorbance maximum 

at 638 nm and an emission maximum at 653 nm.  Its molar extinction coefficient is 101000 

M-1 ·cm-1.  Fluorescence anisotropy was measured using a Varian Cary Eclipse Fluorescence 

Spectrophotometer with a temperature controller.  Bodipy-labeled DNA samples (low 

micromolar concentrations) were titrated with peptide samples (0-low millimolar 

concentrations) in 10 mM Na2HPO4, 100 mM NaCl, pH 7.0. Fluorescence samples were 

analyzed at 298 K and were excited at 638 nm with excitation and emission slit widths of 2.5 

nm.  Fluorescence was observed at 653 nm, and the anisotropy was determined by the 

software that came with the instrument.  The anisotropy was fit to the following equation 

(Equation 4.6) using Kaleidagraph to determine the binding constant 

 Equation 4.6.  oo

dd
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where F is the fluorescence anisotropy, Io is the initial fluorescence intensity of the peptide, 

I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of added 
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nucleotide, [P] is the peptide concentration for each fraction, and Kd is the dissociation 

constant.  Equation 4.6 was derived from equations given by Wang and coworkers.20 

Another fluorophore employed was 5-(and -6)-Carboxytetramethylrhodamine, mixed 

isomers (TAMRA), which was purchased from Biotium, Inc.  TAMRA was coupled onto the 

peptide Mut1 at Orn 21.  The synthesis was completed by coupling Lys(ivDde) in the 

original ornithine position (Orn21Lys).  The ivDde protecting group was orthogonally 

deprotected by treatment with 2% hydrazine in DMF.  Manual coupling of TAMRA was 

performed with two equivalents of TAMRA (100 mg bottle used for 0.1 mmol peptide) and 

four equivalents of HOBT, HBTU, and DIPEA in DMF.  Cleavage from the resin and 

sidechain deprotection was completed as with all other peptides.  The resulting peptide was 

purified by HPLC and its sequence and purity determined by mass spectrometry.  Peptide 

concentrations were determined by UV-Vis using TAMRA’s extinction coefficient of 91000 

M-1·cm-1 at wavelength 559 nm.  This extinction coefficient was supplied by Integrated DNA 

Technologies, www.idtdna.com.  The excitation wavelength used in the experiments was 559 

nm, and the observed emission wavelength was 583 nm.  Anisotropy experiments were 

performed using the same methods as with the Bodipy-labeled DNA experiments.      

                                                 
20 Wang, Y.; Hamasaki, K.; Rando, R. R. Biochemistry 1997, 36, 768-779.   
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Figure 4.17.  Fluorescence titrations of WW domain Mutant 1 with ssDNA (Figure 4.3m) 
and duplex DNA (Figure 4.3n) by the Trp quenching method, corrected for the inner filter 
effect (see Experimental Section); 5 µM peptide; 10 mM sodium phosphate buffer, 100 mM 
NaCl, pH 7.0, 298 K. 
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Figure 4.18.  Fluorescence titrations of WW domain mutants with duplex DNA sequence 
(Figure 4.3n) corrected for the inner filter effect (see Experimental Section); 5-8 µM peptide; 
10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 4.19.  Fluorescence anisotropy titrations of TAMRA-WW domain Mut1 and ssDNA 
sequence 5’-CCATCGCTACC-3’ (Figure 4.3m); 2 µM peptide; 10 mM sodium phosphate 
buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 4.20.  Fluorescence anisotropy titrations of TAMRA-WW domain Mut1 and duplex 
DNA sequence (Figure 4.3n); 20 µM peptide; 10 mM sodium phosphate buffer, 100 mM 
NaCl, pH 7.0, 298 K. 
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Figure 4.21.  Native FBP11 WW1 domain peptide (Figure 4.3a) titrated with polyproline 
helix (Figure 4.3l); 15 µM WW domain peptide, 0-1450 µM polyproline helix; 10 mM 
sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.   
 

vii.  Circular Dichroism 

 All CD measurements were obtained using an AVIV 62 DS Circular Dichroism 

Spectrometer.  CD data was obtained for the WW domain peptides at 30 µM concentrations 

from 260-185 nm.  The peptides were dissolved in 10 mM Na2HPO4, pH 7.0.  Wavelength 

scans were performed at 25 ºC.  Thermal denaturations were performed at 227 nm from 4 to 

96 ºC, with 4 degree temperature steps.  Equilibration times were ten minutes at each step.  

viii.  NMR Spectroscopy 

 NMR samples were made in about 1 mM concentrations (650 μL) and were dissolved 

in 50 mM KD2PO4, 0.5 mM DSS, and buffered to pD 7.0 (uncorrected) with sodium 

deuteroxide.  Samples were analyzed on a Varian Inova 600 MHz spectrometer.  All one-

dimensional NMR spectra were collected using 32K data points and between 16 and 64 scans 
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and 1-3 s presaturation or solvent suppression.  The two-dimensional TOCSY NMR spectra 

used pulse sequences from the Chempack software.  The 2D NMR scans were obtained using 

16-64 first dimension scans and 128-512 second dimension scans.  All spectra were analyzed 

by using standard window functions (Sinebell and Gaussian).  Peptide proton assignments 

were made using standard methods as described by Wuthrich.21  Deviations in alpha 

hydrogen chemical shifts from random coil values, ΔδHα, were calculated according to 

Equation 4.7, 

Equation 4.7.  ΔδHα = δHα,obs – δHα,RC 

where δHα,obs is the observed chemical shift of a given alpha hydrogen in the peptide, and 

δHα,RC is the random coil chemical shift of the corresponding proton determined from 

unstructured control peptides, strand 1, strand 2, and strand 3.  The extent of folding for each 

peptide can be determined by calculating the fraction folded, as in equation 4.8,  

Equation 4.8.  Fraction folded = ΔδGlyobs/ΔδGly100 

where ΔδGlyobs is the observed glycine diastereotopic protons splitting for the peptide, and 

ΔδGly100 is the glycine splitting for the fully folded control peptide that is presumed to take 

on a 100% fold.   

 

                                                 
21 Wuthrich, K. NMR of Proteins and Nucleic Acids, Wiley-Interscience: New York, 1986. 
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Figure 4.22.  1HNMR spectrum of Mutant 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 121



Table 4.4.  Alpha proton chemical shifts (in ppm) of WW domain Mutant 1 in 50 mM 
KD2PO4 buffer, pD 7.0. 

Residue α β γ δ ε 
Ser 4.40 3.75     
Arg 4.32 1.61 1.35 2.90   
Trp 4.86 3.30, 3.10     
Thr 4.32 4.07 1.04    
Glu 4.36 1.83 2.16    
His 4.67 3.22     
Lys 4.53 2.13, 1.85 1.12 1.70 2.98 
Ser 4.49 3.85     
Asn 4.64 2.83, 2.64     
Gly 0.26     
Arg 4.57 1.87 1.69 3.00   
Thr 4.64 3.97 0.95    
Tyr 4.63 2.47     
Tyr 5.03 2.70     
Trp 4.92 3.42, 3.07     
Asn 5.21 2.68, 2.51     
Lys 4.16 0.61, 0.4 1.33 2.07, 1.78 2.53 
Val 4.03 1.86 0.85    
Asn 4.53 2.98, 2.75     
Gly 0.68     
Orn 4.73 1.67, 1.63 1.35 2.90   
Trp 5.10 3.36, 3.18     
Gln 4.84 2.12, 1.91 2.27    
Lys 4.06 1.83, 0.59 1.27 1.57 2.85 
Thr 4.43 4.10 1.09    
Trp 5.00 3.16, 2.95     
Glu 4.22 1.88, 1.76 2.09    
Lys 4.34 0.40, 0.16   2.50 
Pro 4.41 2.26, 2.01 1.96, 1.83 3.82, 3.66   
Gly 3.89         
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Figure 4.23.  1HNMR spectrum of Mutant 1 Strands 1&2. 
 
 
Table 4.5.  Alpha proton chemical shift assignments (in ppm) for Mutant 1 Strands 1&2,  
Ac-Ser-Arg-Trp-Thr-Glu-His-Lys-Ser-Asn-Gly-Arg-Thr-Tyr-Tyr-Trp-Asn-Lys-Val-NH2   

Residue α β γ δ ε 
Ser 4.37 3.76    
Arg 4.30 1.57 1.37 3.00  
Trp 4.60 3.18    
Thr 4.21 4.00 1.03   
Glu 4.19 1.89 2.14   
His 4.63 3.02    
Lys 4.39 1.72 1.33 1.63 2.90 
Ser 4.43 3.84    
Asn 4.51 2.84    
Gly 3.91     
Arg 4.37 1.70, 1.55 1.33 3.06  
Thr 4.26 4.01 1.00   
Tyr 4.47 2.66    
Tyr 4.57 2.51    
Trp 4.76 3.21    
Asn 4.69 2.84    
Lys 4.16 2.13 1.29 1.59 2.89 
Val 4.05 2.02 0.92   
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Figure 4.24.  1HNMR spectrum of Mutant 1 Strands 2&3. 
 
Table 4.6.  Alpha proton chemical shift assignments (in ppm) for Mutant 1 Strands 2&3,  
Ac-Gly-Arg-Thr-Tyr-Tyr-Trp-Asn-Lys-Val-Asn-Gly-Orn-Trp-Gln-Lys-Thr-Trp-Glu-Lys-
Pro-Gly-NH2    

Residue α β γ δ ε 
Gly 3.91     
Arg 4.43 2.21 1.92 3.01  
Thr 4.40 4.12 1.08   
Tyr 4.72 3.08    
Tyr 4.80 2.85    
Trp 4.97 3.38    
Asn 5.18 2.82, 2.61    
Lys 4.45 1.97 1.43 1.68 2.99 
Val 4.10 1.91 0.90    
Asn 4.50 2.96, 2.76     
Gly 4.12      
Orn 4.71 1.93 1.75 3.08   
Trp 4.95 3.14     
Gln 4.95 2.19, 2.00 2.35    
Lys 4.43 1.98 1.70 1.89 2.76 
Thr 4.52 3.90 1.16   
Trp 4.98 3.14    
Glu 4.28 1.89, 1.84 2.15   
Lys 4.10 1.68 1.33 1.70 3.10 
Pro 4.39 2.27, 2.07 1.93 3.69, 3.50  
Gly 3.87     
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Figure 4.25.  1HNMR spectrum of Mutant 1 Strand 1. 
 
 
Table 4.7.  Alpha proton chemical shift assignments (in ppm) for random coil peptide 
Mutant 1 Strand 1, Ac-Ser-Arg-Trp-Thr-Glu-His-Lys-Ser-Asn-Gly-NH2 

Residue α 
Ser 4.38 
Arg 4.28 
Trp 4.72 
Thr 4.19 
Glu 4.12 
His 4.62 
Lys 4.32 
Ser 4.42 
Asn 4.72 
Gly 3.89 

 
 
 
 
 
 
 
 
 
 

 125



 
Figure 4.26.  1HNMR spectrum of Mutant 1 Strand 2. 
 
Table 4.8.  Alpha proton chemical shift assignments (in ppm) for random coil peptide 
Mutant 1 Strand 2, Ac-Gly-Arg-Thr-Tyr-Tyr-Trp-Asn-Lys-Val-Asn-Gly-NH2

a 

 
Residue α 
Gly 3.85
Arg 4.33
Thr 4.20
Tyr 4.40
Tyr 4.51
Trp 4.51
Asn 4.66
Lys 4.15
Val 4.02
Asn 4.40
Gly 3.91

aTyrosine residues could not be definitively distinguished. 
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Figure 4.27.  1HNMR spectrum of Mutant 1 Strand 3. 
 
Table 4.9.  Alpha proton chemical shift assignments (in ppm) for random coil peptide 
Mutant 1 Strand 3, Ac-Asn-Gly-Orn-Trp-Gln-Lys-Thr-Trp-Glu-Lys-Pro-Gly-NH2   
 

Residue α 
Asn 4.65
Gly 3.91
Orn 4.37
Trp 4.65
Gln 4.20
Lys 4.27
Thr 4.20
Trp 4.60
Glu 4.14
Lys 4.08
Pro 4.37
Gly 3.86
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Chapter V 

Designing a WW Domain Peptide Library to Optimize the Binding Face of the OB-

Fold Mimic Mut1  

A. Background and Significance 

In previous studies, the FBP11 WW1 domain peptide (Figure 5.1a) was mutated to 

form a putative ssDNA binding pocket based on the WKWK peptide (Mut1, Figure 5.1b).  

The peptide was designed such that the WKWK binding pocket was positioned within 

strands two and three with the first strand intended to add favorable contacts for binding.  

This peptide was the latest design to mimic the OB-fold domain.  The peptide displayed tight 

binding and good selectivity for ssDNA.  The binding, however, was weaker than with the 

(WKWK)2, with binding constants of about 20 µM for Mut1 and 3 µM for (WKWK)2.1a, b  

The difference in binding affinities for the two peptides may be due to the fact that the 

peptide dimer has two DNA binding pockets while Mut1 has only one.  Thus, we endeavored 

to gain affinity and selectivity by mutating residues on the third strand that might add 

favorable contacts to the DNA.  Based on the fluorescence and CD data for Mutant 1, a 

library was designed in an attempt to find a WW domain mutant which is a high affinity 

ssDNA binder and which demonstrates high selectivity for ssDNA over duplex DNA and 

over other peptides in the library.   

                                                 
1 (a) Stewart, A. L.; Waters, M. L. ChemBioChem 2009, 10, 539-544. (b) Butterfield, S. M.; 
Cooper, W. J.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 24-25. (c) Butterfield, S. M.; 
Sweeney, M. M.; Waters, M. L. J. Org. Chem. 2005, 70, 1105-1114. (d) Butterfield, S. M.; 
Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. 
 



B. Results 

 i.  Library Design 

The library was based on Mut1 and contained two varied positions.  Because of 

electrostatic interactions overwhelming previous library screens (see Chapter 3), all charged 

amino acids were left out of the library to eliminate binding simply due to non-specific 

electrostatic interactions.  The library was designed to determine specific hydrogen-bonding 

interactions that give enhanced selectivity.  Unlike previous libraries designed with WKWK, 

this library keeps the binding pocket constant and utilizes the third strand to incorporate 

additional favorable contacts to increase binding affinity and selectivity.  These interactions 

were not possible to this extent in the WKWK peptides because there was no third strand to 

provide additional interactions to the binding pocket.  We wanted to maintain the putative 

binding pocket because much evidence suggests that a DNA base stacks with the Trp 

residues and the Lys residues form electrostatic interactions with the phosphate groups.1  

Previous library studies also indicate that the WKWK peptide binding pocket is optimized 

for ssDNA binding.  Because the goal is to mimic the OB-fold domain, it is also important to 

maintain the basic and aromatic residues known to be crucial for ssDNA binding,2 as was 

intended in the original peptide design and in the design of Mut1.   

 

 

 

 
                                                 
2 (a) Kloks, C. P.; Spronk, C. A.; Lasonder, E.; Hoffmann, A.; Vuister, G. W.; Grzesiek, S.; 
Hilbers, C. W. J. Mol. Biol. 2002, 316, 317-326. (b) Schroder, K.; Graumann, P.; Schnuchel, 
A.; Holak, T. A.; Marahiel, M. A. Mol. Microbiol. 1995, 16, 699-708. (c) Murzin, A. G. 
EMBO J. 1993, 12, 861-867. 
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(a) Native FBP11 WW1 domain:  
Ac-S-E-W-T-E-H-K-S-P-D-G-R-T-Y-Y-Y-N-T-E-T-K-Q-S-T-W-E-K-P-G-NH2   

(b) Mut1:   
Ac-S-R-W-T-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(c)   S-X2-W-X4-E-H-K-S-N  

    N-V-K-N-W-Y-Y-T-R-G 

   G-O-W-Q-K-T-W-E-K-P-G-βAla-βAla— 

(d)  

 

Figure 5.1. (a) Sequence of native FBP11 WW1 domain.  (b) Sequence of Mutant 1 with 
position 2 (Arg 2) in blue and position 4 (Thr 4) in red.  (c) Illustration of WW domain 
library.  The βAla-βAla linker was added as a spacer between the bead and the peptide.  (d) 
Structure of Mutant 1 with varied position X2 shown in blue and position X4 in red.  The 
DNA binding pocket cross-strand from these positions is shown in green. 

 

Mut1 has the potential to make more contacts near the binding pocket which may 

increase binding affinity and improve selectivity, and we can take advantage of this by 

varying residues across from the Trp pocket on the binding face to attain the peptide with the 

highest ssDNA affinity and selectivity.  As noted previously, the analysis of protein 
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structures has shown that hydrogen bonding is important for selective protein recognition of 

nucleotides.3  Figure 5.2 shows common examples of favorable interactions between specific 

bases and different amino acid sidechains.  Amino acids known to form favorable hydrogen 

bonds with DNA bases were included in the library.  The positions varied in the peptide were 

residues 2 and 4, which are Arg 2 and Thr 4 in Mut1 (Table 5.1; Figure 5.1).  As in previous 

studies using Mutant 1, the numbering for the mutant peptide is from 1-30, corresponding to 

the native FBP11 WW1 domain peptide residues 15-42.  The library was synthesized using 

solid phase peptide synthesis as before on TentaGel Macrobeads.  Split-and-pool synthesis 

was completed to give a one-bead-one-compound library,4 as shown in Figure 5.3.5 

                                                 
3 (a) Luscombe, N. M.; Laskowski, R. A.; Thornton, J. M. Nucleic Acids Res. 2001, 29, 
2860-2874. (b) Moodie, S. L.; Mitchell, J. B. O.; Thornton, J. M. J. Mol. Biol. 1996, 263, 
486-500. (c) Cheng, A. C.; Chen, W. W.; Fuhrmann, C. N.; Frankel, A. D. J. Mol. Biol. 2003, 
327, 781-796. 
 
4 (a) Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. 
Nature 1991, 354, 82-84. (b) Lam, K. S.; Lebl, M.; Krchnak, V. Chem. Rev. 1997, 97, 411-
448. (c) Lam, K. S.; Lehman, A. L.; Song, A.; Doan, N.; Enstrom, A. M.; Maxwell, J.; Liu, 
R. Methods Enzymol. 2003, 369, 298-322. (d) Morken, J. P.; Kapoor, T. M.; Feng, S.; Shirai, 
F.; Schreiber, S. L. J. Am. Chem. Soc. 1998, 120, 30-36. (e) Combs, A. P.; Kapoor, T. A.; 
Feng, S.; Chen, J. K.; Daude-Snow, L. F.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 287-
288.  
 
5 Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P.; Gordon, E. M. J. Med. Chem. 
1994, 37, 1233-1251. 
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Figure 5.2.  Hydrogen-bonding patterns between amino acid sidechains and (a) adenine, (b) 
guanine, (c) cytosine, and (d) thymine. Adapted from Cheng, et al.3c   
 

 Varied residues included hydrogen-bonding amino acids as well as aromatic amino 

acids.  The hydrogen-bonding residues were thought to add selectivity and improve binding 

affinity by increasing direct favorable contacts to the DNA bases.  Aromatic residues were 

included because they could form additional stacking interactions with the bases to improve 

the binding affinity.  Both positions were varied with the same eight residues (Table 5.1) to 

generate a 64-member on-bead peptide library as depicted in Figure 5.1c. 
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Figure 5.3.  Split-and-pool synthesis method for producing a one-bead-one-compound 
combinatorial library using solid phase peptide synthesis.  Figure adapted from Gallop, et al.5 
 

Table 5.1.  Amino acids incorporated into the WW domain peptide library. 
Varied Residue Amino Acids 

Arginine (2) Q, N, S, H, Y, W, F, T 

Threonine (4) Q, N, S, H, Y, W, F, T 

 

ii.  Library Screen and Identification of Hits  

This peptide library was screened against the single-stranded nucleotide sequence 5’-

d(AAAAA)-3’ (penta-dA) as in previous library screens.  A colorimetric assay reported by 

the Schreiber group involving biotin and streptavidin was used to screen the libraries for hits 

as in Chapter 3 (See Experimental Section).4d-4e  Hits were identified from the assay and 

selected for sequence analysis by Edman degradation.   
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Several library screens were performed before optimal conditions were reached.  

Once those conditions were determined (2 nM Penta-dA; 0.5 nM SAAP; 500 mM NaCl in 10 

mM Na2HPO4, pH 7.5), a library screen was performed and about 45 hits were obtained.  Of 

these, ten hits were analyzed by Edman degradation and amino acid sequencing.  The results 

of the screen are reported in Table 5.2 and gave a consensus sequence of ‘S-F-W-Q’ for the 

first four residues.  Position two resulted in primarily aromatic residues with five 

phenylalanines and a Tyr as well as three His residues and an asparagine.  The fourth 

position gave a variety of different amino acids but included mostly glutamines and 

asparagines and a few aromatic amino acids.  This is consistent with the report by Luscombe 

and coworkers which showed that Asn and Gln residues are favored to hydrogen bond with 

adenine bases as seen in Figure 5.2a.3  With charged amino acids excluded from the library, 

the screens resulted in presumably the most favorable amino acids hydrogen-bonding with 

the adenine bases of the penta-adenosine.  Phenylalanine was selected most for position 2 

while Gln was most favored at position 4, so these two amino acids were included in the 

peptide to give the final consensus sequence, Mutant 4.  The numbering of the mutants 

continues from the previous WW domain mutant research (Chapter 4).  Mutant 4 (Mut4; 

Figure 5.4) was synthesized, and binding studies were performed as with previous 

fluorescence quenching experiments (see Experimental Section).   
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Table 5.2.  Sequences of hits from WW domain library screen with varied positions shown 
in blue and red for positions 2 and 4, respectively. 

Number of Hits Sequence of Hits 

2 Beads Ser-Phe-Trp-Gln-Glu 

2 Beads Ser-Phe-Trp-Asn-Glu 

1 Bead Ser-Phe-Trp-Thr-Glu 

1 Bead Ser-His-Trp-His-Glu 

1 Bead Ser-His-Trp-Trp-Glu 

1 Bead Ser-Tyr-Trp-Phe-Glu 

1 Bead Ser-Asn-Trp-Phe-Glu 

1 Bead Ser-His-Trp-Gln-Glu 

 

iii.  Fluorescence Binding Studies of Consensus Sequence and Mutants 

The interaction between Mutant 4 and ssDNA was tested by fluorescence quenching, 

and the binding affinity was determined to be 34 µM (Table 5.3; Figure 5.5).  This is about a 

two-fold lower affinity than that of Mut1, which has a Kd of 16.6 µM as determined by 

fluorescence quenching.  The mutations R2F and T4Q weakened the binding moderately, 

indicating that the loss of a positive charge is likely decreasing the affinity by a lack of some 

electrostatic interactions between the arginine’s guanidinium group and the phosphate group 

of the DNA backbone.  Another possibility for a decrease in binding affinity is that the Arg 

could bind favorably to a DNA base and that specific interaction may be lost with 

phenylalanine in that position.  The difference in Thr and Gln may have some effect, but that 

is not thought to be significant.   
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(a) WW domain Mut4: 
Ac-S-F-W-Q-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(b) WW domain Mut5: 
Ac-S-G-W-G-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(c) ssDNA:  5’-CCATCGCTACC-3’ 
 
Figure 5.4.  (a) Sequence of WW domain Mutant 4.  (b) WW domain Mutant 5 sequence.  
(c) ssDNA sequence used in binding studies.  Peptide mutations are shown in bold. 
 

Because the varied positions 2 and 4 are directly across from Lys 17 and Trp 15 of 

the binding pocket, these two positions are most likely to contribute to binding if the peptide 

is structured.  Results of the binding studies with Mut4 led to more structural and binding 

studies to further investigate the stability and the binding of Mut1 and subsequent mutants.  

As a negative control, Mutant 5 (Mut5) was synthesized, replacing the amino acids at 

positions 2 and 4 with glycines (Figure 5.4b).  If the peptide is unstructured or is in some 

conformation in which the first strand is not in close proximity to the second strand, the two 

peptides should give similar binding constants.  The R2F mutation also allows an easier 

comparison between Mutants 4 and 5 rather than comparing Mutants 1 and 5 because the 

former mutants have the same net charge.  Mutant 1 could have greater affinity for ssDNA 

based on its charge alone. 

Table 5.3.  Dissociation constants for the binding interaction between WW domain mutants 
and ssDNA.a 

Peptide Kd, µM (error) 

Mutant 1 16.6 (1.5) 

Mutant 4 34.0 (2.2) 

Mutant 5 38.8 (4.3) 

(a) Conditions: 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.  Each value 
is the average of at least two measurements. The error is from the fitting.  
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Figure 5.5.  Fluorescence titrations of WW domain mutants 1, 4, and 5 with single-stranded 
DNA sequence 5’-CCATCGCTACC-3’ (Figure 5.4c) corrected for the inner filter effect (see 
Experimental Section); 5-8 µM peptide; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 
7.0, 298 K. 
 
 

The negative control peptide Mut5 with R2G and T4G surprisingly binds with similar 

affinity to Mut4.  This indicates that the particular residues in these positions are not very 

important.  This result suggests that the overall net charge is particularly important but that 

the residues in strand 1 do not contribute significantly to ssDNA binding.  These results 

suggest that strand 1 may not be interacting with the DNA.  If strand 1 is structured, it is 

more likely to contribute to binding due to hydrogen-bonding and other possible interactions.  

If strand 1 is not structured, it is possibly not close enough to the binding pocket to contribute 

to the binding interaction. 
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iv.  CD Characterization of Folding  

WW Domain Mutant 1 was characterized by CD, thermal denaturation, as well as 

one- and two-dimensional NMR data (See Chapter 4).  It seems that the peptide structure 

comes from strands 2&3, while strand 1 adds little to the stability.  This could be the reason 

that Mutant 4 exhibits a lower affinity for ssDNA than Mutant 1.  Strand 1 of Mut1 may 

improve binding largely due to electrostatic interactions.  If stand 1 is not close in space to 

the second strand, strand 1 may not be able to contribute to binding.  This would explain why 

Mutants 4 and 5 have similar binding affinities for ssDNA and why glycines can be added in 

seemingly important or proximal positions and have no effect on binding affinity.  Structural 

studies of Mut4 and Mut5 were conducted by CD and compared to Mut1 to gain further 

information about the stability of each mutant.  All three mutants have similar CD spectra, 

each exhibiting a minimum around 210 nm which is characteristic of β-sheet peptides and 

proteins (Figure 5.6).  Typically β-sheets are displayed at 215 nm, and this difference is 

attributed to the contributions of the tryptophan residues.  This has been seen in previous 

WW domain mutants designed by this laboratory.  Mut1 is shifted slightly more than Mut4 

and Mut5, and this could be due to some change in orientation of the Trp residues based on 

the mutations made.  Each peptide also has a similar exciton coupling peak near 227 nm due 

to the aromatic amino acids present in each sequence.  Consistent with previous CD and 

NMR structural studies with this class of WW domain mutants, these peptides also have 

some unstructured region as each displays a minimum around 195 nm, consistent with 

random coil peptides.  Along with previous structural evidence for Mut1, this data further 

indicates that a portion of the peptide is very stable and well folded while part of the peptide 

is unstructured.  All evidence indicates that the unstructured region is Strand 1.  
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Figure 5.6.  CD spectra for WW domain mutants 1, 4, and 5.  Data was recorded at 30 µM 
peptide, 10 mM Na2HPO4, 298 K, pH 7.0, with a wavelength range from 250-190 nm. 
 

C.  Discussion and Conclusions 

The designed peptide was based on the idea that the first strand would provide 

additional contacts to improve affinity and selectivity for ssDNA.  The two residues cross-

strand from the binding pocket in Mutant 1, Arg 2 and Thr 4, were thought to add affinity 

and selectivity by potential hydrogen-bonding interactions not available in the WKWK 

monomer and dimer peptides.  Initial results supported that hypothesis in part because the 

peptide provided selectivity for ssDNA versus duplex DNA.  Further studies found, however, 

that residues in strand 1 do not contribute to binding as much as expected.  When glycine 

residues replaced residues 2 and 4 of strand one, which are directly across from the binding 

pocket in strands two and three, there was little change in binding affinity as compared to 

Mut4, which has a Phe at position 2 and a Gln at position 4.  Of importance is that Mutants 4 

and 5 have the same net charge, so charge is not a factor here.  If strands 1&2 form a 

structured β-hairpin within Mutant 1, then residues at those two positions should provide 
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favorable contacts that influence binding.  The data, however, suggests that this is not the 

case.  To further study the structural features of Mut1 and to increase the stability of strand 1 

within the full peptide, additional structural studies and mutations will be conducted.   

D.  Experimental Section 

 i.  Library design and screening 

 The WW domain library was synthesized as in the library synthesis in Chapter 3 and 

was screened against the single-stranded nucleotide sequence 5’-d(AAAAA)-3’ (penta-dA).  

A screen reported by the Schreiber group which takes advantage of the strong binding 

interaction between biotin and streptavidin was used to screen the libraries for hits.4d-4e  The 

pentanucleotide was purchased from Integrated DNA Technologies, Inc., with the 5’ end 

biotinylated, and streptavidin was purchased from Pierce Biotechnology, Inc., in conjugate 

with alkaline phosphatase (SAAP).  The alkaline phosphatase is essential for the dye that is 

utilized in the screen.  All screens were performed by incubating the biotinylated penta-dA 

with the streptavidin/alkaline phosphatase complex in high salt (500 mM NaCl) phosphate 

buffer, pH 7.4.  The resin containing the peptide library (~75 mg) was also incubated in high 

salt PBS.  Once the biotin was complexed with the streptavidin, the Biotin-penta-dA/SAAP 

was allowed to bind to the peptides on the resin.  After reaction, the resin was washed with 

high salt screening buffer four times and then washed with a dye for 10 minutes.  The dye is 

a mixture of Nitro Blue Tetrazolium chloride/5-Bromo-4-Chloro-3’-Indolyl Phosphate p-

toluidine salt (NBT/BCIP).  When in the presence of alkaline phosphatase, the phosphate 

group of the BCIP is hydrolyzed and then a tautomerization occurs, followed by the 

dimerization of the compound by NBT.  The resulting compound produces an insoluble 

indigo dye that colors the beads which are bound to the biotinylated DNA.  After quenching 
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the reaction with EDTA, the beads were washed with phosphate buffer and then plated in 

screening buffer.  The beads were various colors of purple, and the darkest beads were 

picked as hits and sequenced by Edman degradation.  Control experiments were performed to 

show that the screen was selecting true hits due to binding.   

ii.  Peptide Synthesis and Purification 

Peptides were synthesized via automated solid phase peptide synthesis using an 

Applied Biosystems Pioneer Peptide Synthesizer.  Fmoc protected amino acids were used 

with a PEG-PAL-PS resin.  Amino acid residues were activated with HBTU (O-

benzotriazole-N,N,N’,N’,-tetramethyluronium hexafluorophosphate) and HOBT (N-

hydroxybenzotriazole) along with DIPEA (diisopropylethylamine) in DMF (N,N-

dimethylformamide).  Amino acids were deprotected with 2% DBU (1,8-

diazabicyclo[5.4.0]undec-7-ene) and 2% piperidine in DMF for approximately 10 minutes.  

Each amino acid was coupled on an extended cycle of 75 minutes to improve coupling.  The 

N-terminus of each peptide was acetylated using 5% acetic anhydride and 6% lutidine in 

DMF for 30 minutes.  Cleavage of the peptides from the resin was performed in 95% 

trifluoroacetic acid (TFA), 2.5% H2O, and 2.5% triisopropylsilane (TIPS) for three hours.  

TFA was evaporated by bubbling with nitrogen, and ether was added to the resulting product.  

The peptide was then extracted with water and lyophilized to a powder.   

Peptides were purified by reversed-phase HPLC.  A Vydac C-18 semi-preparative 

column was used for separation with a gradient of 5-35% solvent B over 25 minutes with 

solvent A 95:5 water:acetonitrile, 0.1% TFA and solvent B 95:5 acetonitrile:water, 0.1% 

TFA.  Peptides were then lyophilized and the peptide sequence was confirmed by MALDI 

mass spectrometry.  Peptide dimers were formed by oxidation of the cysteine residues with 
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stirring in 1% DMSO in 10 mM phosphate buffer, pH 7.5 for 7-12 hrs.  After purification, all 

peptides were desalted with a Pierce D-Salt Polyacrylamide 1800 desalting column.   

 iii.  DNA Sample Preparation 

 DNA sequences were purchased from IDT (Integrated DNA Technologies).  All 

DNA samples were dissolved in 10mM Na2HPO4, 100 mM NaCl, adjusted to pH 7.0.  

Concentrations of DNA strands were determined using a Perkin Elmer Lambda 35 UV/Vis 

Spectrometer.  Absorbance values were determined at 260 nm, and concentrations were 

calculated using the extinction coefficient of the ssDNA (ε260, ssDNA = 95500 M-1·cm-1).   

iv.  Fluorescence Titrations 

To determine the recognition of single-stranded oligonucleotides by the peptide 

dimers, fluorescence titrations were performed which followed the Trp quenching with 

increasing oligonucleotide concentration.  Peptide and nucleotide samples were prepared in 

10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0.  Peptide concentrations were 

determined in 5 M guanidine hydrochloride by recording the absorbance of the Trp residues 

at 280 nm (ε = 5690 M-1cm-1) by UV/vis spectroscopy.  Concentrations of nucleotides were 

determined by UV/vis spectroscopy by observing the absorbance at 260 nm.  Fluorescence 

scans were obtained on a Cary Eclipse Fluorescence Spectrophotometer from Varian.  

Experiments were performed at 298 K using an excitation wavelength of 297 nm.  

Fluorescence emission intensities of the Trp residues at 348 nm were fit as a function of 

nucleotide concentration to the binding equation (Equation 5.1) with Kaleidagraph using 

non-linear least squares fitting.6 

 Equation 5.1.    I = [Io + I∞([L]/Kd)]/[1 + ([L]/Kd)]      

                                                 
6 Lim, W. A.; Fox, R. O.; Richards, F. M. Protein Sci. 1994, 3, 1261-1266.    
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where I is the observed fluorescence intensity, Io is the initial fluorescence intensity of the 

peptide, I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of 

added nucleotide, and Kd is the dissociation constant.   

Oligonucleotides have an observable absorbance at the excitation wavelength of Trp 

(297 nm), and therefore there is an inner filter effect for which one must take account.  The 

absorbance of the oligonucleotides at 297 nm was monitored at known concentrations and 

the extinction coefficient was determined.  Absorbance values were determined for each 

oligonucleotide concentration.  Corrected fluorescence values were determined from the 

following equations (Equation 5.2 and Equation 5.3).7 

 Equation 5.2.    Fc = Fo/Ci 

 Equation 5.3.    Ci = (1-10-Ai)/(2.303)(Ai) 

where Fc is the corrected fluorescence, Fo is the fluorescence observed, and Ci is the 

correction factor for each absorbance value (i).  Ai is the absorbance value for each 

concentration determined by the extinction coefficient. 

 Binding curves were shown comparing Mut1, Mut4, and Mut5.  The fits of the 

corrected, un-normalized data are included in this section. 

                                                 
7 Lohman, T. M.; Mascotti, D. P. Methods Enzymol. 1992, 212, 424-458. 
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Figure 5.7.  Fluorescence titration of WW domain Mut4 with single-stranded DNA sequence 
5’-CCATCGCTACC-3’ (Figure 5.4c) corrected for the inner filter effect (see Experimental 
Section); 8 µM peptide; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
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Figure 5.8.  Fluorescence titration of WW domain Mut5 with single-stranded DNA sequence 
5’-CCATCGCTACC-3’ (Figure 5.4c) corrected for the inner filter effect (see Experimental 
Section); 5 µM peptide; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
 
 

v.  Circular Dichroism  

 The WW domain peptides were analyzed by CD to verify their structure.  CD 

measurements were performed on an AVIV 62 DS Circular Dichroism Spectrometer.  CD 

data was obtained for the peptides at 30 µM concentrations.  The peptides were dissolved in 

10 mM Na2HPO4, pH 7.0.  Wavelength scans were performed at 298 K from 260-185 nm.   
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Chapter VI 
 

Stabilization of the WW Domain Mutant 1 for Single-Stranded DNA Binding 
 

A.  Background and Significance 

 In an effort to gain enhanced affinity and improve upon the selectivity of Mut1 for 

ssDNA, further structural studies of Mut1 were conducted. This chapter focuses on the 

structural features of the peptide as we endeavor to optimize Mut1 as an OB-fold mimic.  

Although the study of β-sheet structure has lagged behind that of α-helices, much research 

has been done to advance our understanding of β-sheet structure and to improve de novo 

design of small structured beta-sheet peptides and proteins in recent years.1 The WW domain 

                                                 
1 (a) Jager, M.; Zhang, Y.; Bieschke, J.; Nguyen, H.; Dendle, M.; Bowman, M. E.; Noel, J. 
P.; Gruebele, M.; Kelly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10648-10653. (b) 
Fernandez-Escamilla, A. M.; Ventura, S.; Serrano, L.; Jimenez, M. A. Protein Sci. 2006, 15, 
2278-2289. (c) Karanicolas, J.; Brooks, C. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3954-
3959. (d) Kraemer-Pecore, C. M.; Lecomte, J. T. J.; Desjarlais, J. R. Protein Sci. 2003, 12, 
2194-2205. (e) Jiang, X.; Kowalski, J.; Kelly, J. W. Protein Sci. 2001, 10, 1454-1465. (f) 
Jager, M.; Nguyen, H.; Crane, J. C.; Kelly, J. W.; Gruebele, M. J. Mol. Biol. 2001, 311, 373-
393. (g) Macias, M. J.; Gervais, V.; Civera, C.; Oschkinat, H. Nat. Struct. Biol. 2000, 7, 375-
379. (h) Koepf, E. K.; Petrassi, M.; Ratnaswamy, G.; Huff, M. E.; Sudol, M.; Kelly, J. W. 
Biochemistry 1999, 38, 14338-14351. (i) Nguyen, H.; Jager, M.; Moretto, A.; Gruebele, M.; 
Kelly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3948-3953. (j) Jager, M.; Dendle, M.; 
Fuller, A. A.; Kelly, J. W. Protein Sci. 2007, 16, 2306-2313.  (k) Zarrinpar, A.; Lim, W. A. 
Nat. Struct. Biol. 2000, 7, 611-613. (l) Espinosa, J. F.; Syud, F. A.; Gellman, S. H. Peptide 
Sci. 2005, 80, 303-311. (m) Dalby, P. A.; Hoess, R. H.; DeGrado, W. F. Protein Sci. 2000, 9, 
2366-2376. (n) Chan, D. C.; Bedford, M. T.; Leder, P. EMBO J. 1996, 15, 1045-1054. (o) 
Macias, M. J.; Hyvonen, M.; Baraldi, E.; Schultz, J.; Sudol, M.; Saraste, M.; Oschkinat, H. 
Nature 1996, 382, 646-649. (p) Chen, H. I.; Sudol, M. Proc. Natl. Acad. Sci. U. S. A. 1995, 
92, 7819-7823. (q) Sharman, G. J.; Searle, M. S. Chem. Commun. 1997, 1955-1956. (r) 
Sharman, G. J.; Searle, M. S. J. Am. Chem. Soc. 1998, 120, 5291-5300. (s) Griffiths-Jones, S. 
R.; Searle, M. S. J. Am. Chem. Soc. 2000, 122, 8350-8356. (t) Kortemme, T.; Ramirez 
 



is one class of peptides that is especially well studied because its three-stranded β-sheet 

makes it one of the smallest known functional native peptides.1a-p  This laboratory has also 

contributed significantly to this promising field through studies of β-hairpins.2  Research has 

been conducted in the areas of protein design and redesign, folding and stability, and 

structure-function studies.1, 2  The knowledge gained from these studies and other significant 

breakthroughs have led to our attempt to stabilize Mut1 to optimize binding affinity and 

selectivity for ssDNA.   

B.  Results 

 i.  Sequence Design 

 Beginning with the Mut1 (Figure 6.1a-b) peptide from previous studies, mutations 

were made to improve binding and selectivity for ssDNA.  The original mutant was designed 

with the WKWK nucleotide binding pocket in the second hairpin of a three-stranded beta-

sheet peptide based on the FBP11 WW1 domain.  The insertion of these mutations into this 

peptide produced a folded peptide that binds ssDNA with a Kd of about 20 µM and which 

demonstrates selectivity for ssDNA over duplex DNA by about 20-fold.   

 Upon determination that strand 1 of Mut1 was not well folded and could not 

contribute to binding as was intended in the original design, we used our knowledge of β-

                                                 
-Alvarado, M.; Serrano, L. Science 1998, 281, 253-256. (u) Kaul, R.; Angeles, A. R.; Jager, 
M.; Powers, E. T.; Kelly, J. W. J. Am. Chem. Soc. 2001, 123, 5206-5212. (v) Nguyen, H.; 
Jager, M.; Kelly, J. W.; Gruebele, M. J. Phys. Chem. B 2005, 109, 15182-15186. (w) Russell, 
S. J.; Blandl, T.; Skelton, N. J.; Cochran, A. G. J. Am. Chem. Soc. 2003, 125, 388-395. (x) 
Ramirez-Alvarado, M.; Blanco, F. J.; Niemann, H.; Serrano, L. J. Mol. Biol. 1997, 273, 898-
912. 
 
2 (a) Tatko, C. D.; Waters, M. L. J. Am. Chem. Soc. 2004, 126, 2028-2034. (b) Hughes, R. 
M.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 6518-6519. (c) Hughes, R. M.; Benshoff, M. 
L.; Waters, M. L. Chem. Eur. J. 2007, 13, 5753-5764. (d) Riemen, A. J.; Waters, M. L. 
Biochemistry 2009, 48, 1525-1531. 
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sheet structure to design more well folded peptides without disrupting the favorable 

interactions afforded by the Trp binding pocket.  Maintaining hairpin 2 stability is crucial 

because disruption of the binding pocket would decrease binding affinity and likely 

selectivity.  Three positions were mutated to give Mut1A (Figure 6.1c).  Ser8 was substituted 

for a Val because Ser is thought to be destabilizing near a turn sequence and Val has been 

shown to be a stabilizing residue in that position in the WKWK peptide and other systems as 

well.1x, 3  Phe was substituted for Tyr 14 to ease in NMR analysis.  Phe is also known to be 

important in the recognition of ssDNA and damaged bases by OB-fold proteins,4 so this may 

contribute to binding.  The Asn at position 16 was replaced with a Leu residue as leucine is 

known to pack with cross-strand Trp residues to stabilize beta-sheet peptides, and thus should 

pack with Trp 3 to increase the stability of hairpin 1.1w  

 
 
 
 
 
 
 
 
 
 

                                                 
3 (a) Stewart, A. L.; Waters, M. L. ChemBioChem 2009, 10, 539-544. (b) Butterfield, S. M.; 
Cooper, W. J.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 24-25. (c) Butterfield, S. M.; 
Sweeney, M. M.; Waters, M. L. J. Org. Chem. 2005, 70, 1105-1114. (d) Butterfield, S. M.; 
Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. 
 
4 (a) Chan, K.-W.; Lee, Y.-J.; Wang, C.-H.; Huang, H.; Sun, Y.-J.  J. Mol. Biol. 2009, 388, 
508–519. (b) Warren, E. M.; Huang, H.; Fanning, E.; Chazin, W. J.; Eichman, B. F. J. Biol. 
Chem. 2009, 284, 24662-24672. (c) Kunkel, T. A.; Erie, D. A. Annu. Rev. Biochem. 2005, 
74, 681-710. (d) Yamamoto, A.; Schofield, M. J.; Biswas, I.; Hsieh, P. Nucleic Acids Res. 
2000, 28, 3564-3569. (e) Malkov, V. A.; Biswas, I.; Camerini-Otero, R. D.; Hsieh, P. J. Biol. 
Chem. 1997, 272, 23811-23817. 
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(a) Mut1:  
Ac-S-R-W-T-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(b) 
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(c) Mut1A:   
Ac-S-R-W-T-E-H-K-V-N-G-R-T-Y-F-W-L-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(d) Mut1B: 
Ac-S-R-W-T-E-V-F-V-N-G-R-F-I-K-W-L-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(e) Mut1C: 
Ac-S-R-W-T-E-V-F-V-N-G-R-F-L-K-W-L-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 

(f)  ssDNA:  5’-CCATCGCTACC-3’ 

(g) dsDNA:  5’-CCATCGCTACC-3’ 
          3’-GGTAGCGATGG-5’ 
 
Figure 6.1.  WW domain Mut1.  (a) Sequence of Mut1 with residues in the binding pocket 
highlighted.  (b) Structure of Mut1.  The WKWK binding cleft is shown with Trp and Lys 
residues in blue.  (c-e) Mutants 1A-C.  Mutations made at each generation are highlighted. (f) 
ssDNA sequence.  (g) dsDNA sequence. 
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We wanted to further stabilize the β-sheet, so a second generation of mutations was 

made to give Mut1B (Figure 6.1d).  Strands 1&2 of Mut1B contain elements from two stable 

hairpins designed in this laboratory.  The N-terminal portion of the peptide contains the 

previously reported WKL sequence in non-hydrogen bonded positions 3, 14, and 16,2c and 

the residues near the turn at positions 5, 7, 12, and 14 mimic the EFFK peptide from a 

previous report.5  His 6 and Tyr 13 were mutated to Val and Ile, respectively, because a 

cross-strand hydrophobic interaction on the H-bonded face has been shown to be important 

for folding in β-hairpin model systems.1w  The cross-strand phenylalanines at positions 7 and 

12 were intended to be stabilizing residues near the turn to increase folding throughout the 

hairpin.  It is important that the charge is maintained at 5 to compare to previous mutants 

because electrostatic interactions are important for binding to the phosphates on the DNA 

backbone.  For this reason, Lys that was replaced by Phe at position 7 was incorporated at 

position 14.  These mutations made up Mut1B to determine if the mutations that were 

stabilizing for previous β-hairpins would stabilize the full Mut1 peptide.  Strand 3 was not 

changed for this mutant. 

 A third generation mutant was designed with Ile 13 mutated to Leu (Mut1C; Figure 

6.1e).  It was thought that the Ile which should be stabilizing to hairpin 1 may be 

destabilizing to hairpin 2 due to steric clashes with Trp 26.  Additionally, Ile may alter the 

conformation of Trp 26 and influence binding to ssDNA.  Leucine has been shown to pack 

favorably with Trp residues.1w 

 In addition, cyclization was explored to induce stability within the peptide.  

Cyclization has been used in designed peptides to stabilize structures and to improve 

                                                 
5 Kiehna, S. E.; Waters, M. L. Protein Sci. 2003, 12, 2657-2667. 
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binding.6  Because strand 1 was less structured than hairpin 2, we chose to cyclize hairpin 1 

of Mut1 in an attempt to move the residues cross-strand from the binding pocket in close 

proximity to the cleft such that they might contribute to the binding event (Mut1D; Figure 

6.2). 

(a) Mut1D: 
Ac-C-R-W-T-E-H-K-S-N-G-R-T-Y-Y-W-N-K-C-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(b) 
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Figure 6.2.  Sequence and structure of WW domain Mut1D.  (a) Sequence of Mut1D.  (b) 
Structure of Mut1.  The WKWK binding cleft is shown with Trp and Lys residues in blue.  
The disulfide bond formed to cyclize strands 1&2 is highlighted in purple.  
 

 

 

                                                 
6 (a) Moehle, K.; Athanassiou, Z.; Patora, K.; Davidson, A.; Varani, G.; Robinson, J. A. 
Angew. Chem. Int. Ed. 2007, 46, 9101-9104. (b) Moreno, R.; Jiang, L.; Moehle, K.; 
Zurbriggen, R.; Gluck, R.; Robinson, J. A.; Pluschke, G. ChemBioChem 2001, 2, 838-843. 
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ii.  CD Characterization of Folding 

Structural insight was first gained from the CD spectra for all of the full peptides as 

well as the truncated peptides composed of Strands 1&2 (S12) and those forming Strands 

2&3 (S23).  The full peptides all exhibit β-sheet structure with minima around 210 nm 

(Figure 6.3).  The CD signal for these peptides occurs closer to 210 nm than the typical 215 

nm, as was seen previously (Chapter 4), and this is likely due to the contributions of the Trp 

residues in the peptide.  Mut1 displays two distinct minima, one which is consistent with 

beta-sheet structure and another which indicates that the peptide has some random coil 

character.  Mutants 1A-1C each have a broad minimum around 210 nm that overlaps with the 

region for random coil peptides at 195 nm.  This suggests that they all have some random 

coil character as well, but this is manifested differently in the mutants’ CD spectrum than in 

that of Mut1.  All of the mutants 1A-1C display a stronger CD signal at 210 nm than does 

Mut1.  The mutants no longer have the exciton coupling peak at 227 nm, which is consistent 

with a mutation of an aromatic residue.  The orientation of the aromatic species within the 

peptide likely changed with the first generation mutation.  The exciton coupling peak is 

present, however, with Mut1D, which is the same Mut1 sequence with hairpin 1 cyclized.  In 

the case of Mut1D, the peak at 227 nm is larger than for the original Mut1.  This suggests 

that the cyclization changes the structure such that the orientation of the aromatic residues 

within the peptide is different from the uncyclized mutant.   

A close inspection of the CD spectra for the peptides composing hairpin 1 (Figure 

6.4a) reveals a measured increase in structure with each generation of mutations.  With each 

round of mutations, the minima around 210 nm grow more distinct and the minima at 195 nm 
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decrease in intensity.  This data suggests that the mutations made to Strands 1&2 have 

increased the β-sheet structure in hairpin 1. 
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Figure 6.3.  CD spectra for the WW domain Mut1 and the structural mutants 1A-D. Data 
was recorded at 30 µM peptide, 10 mM Na2HPO4, 298 K, pH 7.0, with a wavelength range 
from 250-190 nm.  
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Figure 6.4.  CD spectra for (a) Mut1-S12 and structural S12 mutants and (b) Mut1-S23 and 
S23 mutant hairpins.  Data was recorded at 30 µM peptide, 10 mM Na2HPO4, 298 K, pH 7.0, 
with a wavelength range from 250-190 nm.  
 

Since the binding pocket of Mut1 is in Strands 2&3, it is important that the mutations 

do not decrease the stability of hairpin 2.  Thus, we characterized the folding of hairpin 2 for 

each of the mutants as well.  The exciton coupling peak is lost with Mut1A in the case of 

Strands 2&3 as well.  This is likely due to a change in structure which could change the 

relative orientations of the aromatic residues in the peptide.  The mutations do not seem to 

decrease the stability significantly, however.  Mut1A-S23 seems to be destabilized but still 
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maintains its primarily β-sheet character.  The other mutants maintain a strong minimum 

around 210 nm indicating that there was no destabilization of hairpin 2 due to the mutations. 

 iii.  NMR Characterization of Structure 
  
 To better understand the specific interactions occurring in Mut1 and in the mutants, 

the peptides were more fully characterized by one- and two-dimensional NMR experiments.  

Figure 6.5 shows the Hα chemical shift differences relative to random coil for Mut1 and its 

two hairpins, S12 and S23.  One method to determine the extent of folding of each peptide is 

to determine the Gly Hα splitting values.7  The glycine in the turn possesses two 

diastereotopic hydrogens.  As folding of the hairpin increases, the splitting of the hydrogens 

increases as well, giving a measure of stability.7b  A comparison of the Gly splitting in a β-

hairpin with that of a fully folded cyclic control peptide gives the extent of folding and 

overall stability for the peptide (see Experimental Section).  Glycine splitting and α-hydrogen 

(Hα) chemical shift values were determined to characterize the full peptides, both hairpins 

for each mutant, and the individual strands composing each.  The Hα chemical shifts of the 

hairpins and the full mutants relative to the random coil peptides indicate the degree of β-

sheet structure for each residue along the peptide backbone.  Downfield shifting of Hα 

protons is evidence of increased hairpin population, with a chemical shift difference of 

greater than 0.1 ppm taken to indicate β-sheet structure.7  As observed in previous studies 

(see Chapter 4), the first hairpin is not structured and cannot contribute to DNA binding.  The 

mutations were intended to increase the peptide stability, specifically in Strands 1&2.  

Glycine splitting data also indicates that Strand 1 is not fully structured.   

                                                 
7 (a) Wishart, D. S.; Sykes, B. D.; Richards, F. M. J. Mol. Biol. 1991, 222, 311-333. (b) 
Maynard, A. J.; Sharman, G. J.; Searle, M. S. J. Am. Chem. Soc. 1998, 120, 1996-2007. 
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Figure 6.5.  NMR chemical shift differences for WW domain Mut1 peptides.  Conditions:  
Values calculated from data obtained at 298 K, 50 mM potassium dideuterium phosphate, pD 
7.0 (uncorrected), referenced to DSS.  Error is + 0.005 ppm, determined by the chemical shift 
accuracy on the NMR spectrometer.   
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Figure 6.6.  NMR Hα chemical shift differences for Mut1A peptides.  Conditions: Values 
calculated from data obtained at 298 K, 50 mM potassium dideuterium phosphate, pD 4.0 
(uncorrected), referenced to DSS.  Error is + 0.005 ppm, determined by the chemical shift 
accuracy on the NMR spectrometer.   
 
 The NMR data for Mut1A (Figure 6.6) indicates that the structure of hairpin 1 

increased to some extent, but not significantly.  Strand 1 is still much less structured than 

Strands 2&3.  Glycine splitting data is consistent with the chemical shift data, with an 

increase in fraction folded for hairpin 1 from 27 to 39 percent.  In the full peptide, the Mut1A 

folding decreased compared to Mut1, with Mut1-S12 increasing in stability in the full peptide 
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and Mut1A-S12 stability decreasing in the full peptide.  With the second generation mutant, a 

marked increase in structure was observed (Figure 6.7).  Strands 2&3 seem to be somewhat 

more stable than Strands 1&2, but the overall stability for the peptide is much greater than 

for previous mutants.  Fraction folded values indicate this as well, with a jump from 39 to 92 

percent folded in hairpin 1 and a fraction folded of 81 percent in the full peptide.   
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Figure 6.7.  NMR Hα chemical shift differences for Mut1B peptides.  Conditions: Values 
calculated from data obtained at 298 K, 50 mM potassium dideuterium phosphate, pD 4.0 
(uncorrected), referenced to DSS.  Error is + 0.005 ppm, determined by the chemical shift 
accuracy on the NMR spectrometer.   
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Figure 6.8.  NMR Hα chemical shift differences for Mut1C peptides.  Conditions: Values 
calculated from data obtained at 298 K, 50 mM potassium dideuterium phosphate, pD 4.0 
(uncorrected), referenced to DSS.  Error is + 0.005 ppm, determined by the chemical shift 
accuracy on the NMR spectrometer.   
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 There was little difference between the NMR spectra for Mut1B and Mut1C (Figures 

6.7 and 6.8).  The chemical shift differences were about the same for both peptides, and 

fraction folded data indicates that the folding may have been slightly destabilized with this 

Ile to Leu mutation.  Mut1B has a fraction folded of 81% for both hairpins within the full 

peptide, and the fraction folded is slightly higher for the hairpins alone (Table 6.1).  Mut1C 

seems to be less structured for the full peptide and the individual hairpins, with fraction 

folded values of 84% for both of the individual hairpins and 68 and 74% folded for S12 and 

S23, respectively within the full peptide.  No chemical shift data is available for Mut1D yet, 

but glycine splitting data (Table 6.1) indicates that one hairpin is fully folded (98%) and the 

other hairpin is moderately well folded (69% folded).   
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Figure 6.9.  NMR chemical shift differences for Mut1 full peptide and structural mutants 
1A-D.  Conditions: Values calculated from data obtained at 298 K, 50 mM potassium 
dideuterium phosphate, pD 4.0 (uncorrected), referenced to DSS.  Error is + 0.005 ppm, 
determined by the chemical shift accuracy on the NMR spectrometer.   
 

A comparison of all of the NMR data is consistent with the CD data, indicating that 

the mutations resulted in an increase in the stability of the peptide.  The chemical shift 

differences also indicate that structure has been gained in Strand 1.  Overlays of the full 

peptides and the individual hairpins for each mutant are provided (Figures 6.9-6.11), and they 
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suggest that the chemical shift differences for many of the amino acids within strands 2&3 

are very similar for all peptides.  Residues in Strands 1&2 exhibit the largest differences 

among the mutants. 
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Figure 6.10.  NMR Hα chemical shift differences for Mut1-S12 and S12 structural mutants. 
Conditions: Values calculated from data obtained at 298 K, 50 mM potassium dideuterium 
phosphate, pD 4.0 (uncorrected), referenced to DSS.  Error is + 0.005 ppm, determined by 
the chemical shift accuracy on the NMR spectrometer.   
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Figure 6.11.  NMR Hα chemical shift differences for Mut1-S23 and S23 structural mutants. 
Conditions: Values calculated from data obtained at 298 K, 50 mM potassium dideuterium 
phosphate, pD 4.0 (uncorrected), referenced to DSS.  Error is + 0.005 ppm, determined by 
the chemical shift accuracy on the NMR spectrometer.   
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Table 6.1.  Fraction folded values for Mut1 and structural mutants.a 

Peptide ΔδGly, ppmb Fraction Folded 
(Gly Splitting)c 

Mut1 S12 0.11 27 
Mut1 S23 0.67 89 

Mut1  0.26; 0.68 63; 91 
Mut1A S12 0.24 39 
Mut1A S23 0.73 96 

Mut1A  0.18; 0.73 30; 96 
Mut1B-S12 0.57 92 
Mut1B-S23 0.65 87 

Mut1B  0.46; 0.61 81; 81 
Mut1C-S12 0.53 84 
Mut1C-S23 0.65 84 

Mut1C  0.43; 0.57 68; 74 
Mut1D S12d 0.41 100 
Mut1D-S23e 0.67 96 

Mut1D 0.48; 0.40 98; 69 

(a) Conditions: Values calculated from data obtained at 298 K, 50 mM potassium 
dideuterium phosphate, pD 4.0 (uncorrected), referenced to DSS. (b) Error is + 0.005 ppm, 
determined by chemical shift accuracy on the NMR spectrometer. (c) Error is + 0.01, 
determined by chemical shift accuracy on the NMR spectrometer. (d) Mut1D-S12 = Mutant 1 
S1&2 Cyclic (same peptide); cyclic peptides are taken to be fully folded. (e) Mut1D-S23 = 
Mutant 1 S2&3; used as an estimate for Gly splitting calculations.  
 
 iv.  Characterization of the Binding Interactions Between Mutants and DNA 
  
 To complete the study, we wanted to determine if the mutations increased the binding 

and selectivity for ssDNA.  As seen in previous studies, structure is crucial for binding,3a so 

fluorescence binding studies between the mutants and ss- and dsDNA would determine if 

increased structure in strand 1 would improve ssDNA binding.  Fluorescence anisotropy 

binding studies were conducted as in the past except these experiments were performed using 

a plate reader (see Experimental Section). 
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Table 6.2.  Comparison of dissociation constants for the binding interaction between Mut1 
peptide structural mutants and ssDNA and dsDNA sequences a 

Peptide ssDNA
Kd, µM (error) 

dsDNA 

Kd, µM (error) 
Mut1 

 
48.7 (3.1)b 235 (18)b 

Mut1A 51.1 (2.1) 263 (7) 

Mut1B 53.0 (3.5) 271 (12) 

Mut1C 91.9 (3.4) 436 (28) 

Mut1D 35.6 (1.8) 210 (8) 

(a) Conditions: 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.  Each value 
is the average of three measurements.  The error is from the fitting.  This data was collected 
using fluorescence anisotropy with TAMRA as the fluorophore. (b)  This data was reported 
previously (see Chapter 4) and the difference is due to the instrument used.  
 
 As can be seen in Table 6.2 and Figure 6.12, ssDNA binding is fairly similar for most 

of these mutants.  Mut1, Mut1A, and Mut1B all bind ssDNA with a Kd of about 50 µM.  

Mut1C does not bind as tightly, with a dissociation constant of 91.9 µM.  Mut1D, however, 

displays a somewhat higher affinity, with a Kd of 35.6 µM.  The data suggests that the 

structural changes either did not improve the structure enough for strand 1 to contribute to 

binding or the mutations affected the binding pocket to the extent that the mutants did not 

bind in the same manner.  Mut1D may keep the binding pocket the same and may bring 

Strand 1 closer to the binding pocket in such a way that binding is improved. 
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Figure 6.12.  Fluorescence titrations of Mut1 and structural mutants with ssDNA; 5 µM 
peptide; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
 

For duplex DNA, binding by each peptide is weak (Figure 6.13), but the trends for 

binding affinities are the same as for ssDNA.  Mutants 1, 1A, and 1B have very similar 

binding constants, while 1C is a weaker dsDNA binder, as in the case of ssDNA.  Mut1D 

binds dsDNA with a slightly higher affinity, with a Kd of 210 µM.  This makes Mut1D the 

peptide with the highest affinity and selectivity for ssDNA, with a preference for ssDNA of 

nearly 6-fold. 
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Figure 6.13.  Fluorescence titrations of Mut1 and structural mutants with dsDNA; 5 µM 
peptide; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
 
 
C.  Discussion and Conclusions 
 
 Structural mutations made to the WW domain Mut1 produced increased stability with 

each new mutant designed.  Varying degrees of stability resulted with each mutation, but in 

each case greater stability was achieved in Strands 1&2.  Based on Gly splitting alone, 

Mut1C seems to be less stable than Mut1B.  A closer examination of the chemical shift data 

reveals, however, that greater downfield shifting of some amino acids occurs with Mut1C, 

indicating that the mutations increased the stability to some extent.  One can see from the 
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chemical shift data that the ends of the peptide are frayed, and this could be the reason that 

binding did not improve for Mutants 1A-1C.  The Arg 2 position in the full peptide 

incrementally increases in structure with each mutation, but the position is still not as 

structured as other residues in hairpin 1.  The Thr at position 4 exhibits large chemical shift 

changes in the S12 peptides, but that does not occur to the same extent in the full length 

mutants.  These data indicate that the N-terminus of the peptide is still not fully folded and 

may not be positioned to interact favorably with DNA near the binding pocket.  It may be 

that Mut1D has the advantage of the best sequence for overall stability of Strands 2&3, and 

specifically the binding pocket region, while maintaining Strand 1 near the binding pocket 

due to the rigidity of the cyclic hairpin 1.  This would explain the improved binding to 

ssDNA.  The Gly splitting data indicates that one hairpin is nearly 100% folded while the 

other is only about 70% folded in Mut1D.  It could be that structure is induced upon binding.  

Further structural and binding data could provide more insight into these interactions, but the 

cyclization of hairpin 1 seems to have improved the stability and subsequently the binding of 

the peptide as has been seen in other systems.  CD and NMR structural studies are underway 

to determine if structure is induced upon binding and to determine the role of structure in 

Mut1D’s recognition of ssDNA.  

 
D.  Experimental Section 
 

i.  Peptide Synthesis and Purification 

Peptides were synthesized via automated solid phase peptide synthesis using a Tetras 

Peptide Synthesizer.  Fmoc protected amino acids were used with a PEG-PAL-PS resin.  

Amino acid residues were activated with HBTU (O-benzotriazole-N,N,N’,N’,-

tetramethyluronium hexafluorophosphate) and HOBT (N-hydroxybenzotriazole) along with 
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DIPEA (diisopropylethylamine) in DMF (N,N-dimethylformamide).  Amino acids were 

deprotected with 2% DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) and 2% piperidine in DMF 

for approximately 15 minutes.  Each amino acid was coupled on a double coupling cycle of 

30 minutes each.  The N-terminus of each peptide was acetylated using 5% acetic anhydride 

and 6% lutidine in DMF for 30 minutes.  Cleavage of the peptides from the resin as well as 

sidechain deprotection was performed in 95% trifluoroacetic acid (TFA), 2.5% H2O, and 

2.5% triisopropylsilane (TIPS) for three hours.  TFA was evaporated by bubbling with 

nitrogen, and ether was added to the resulting product.  The peptide was then extracted with 

water and lyophilized to a powder.   

Peptides were purified by reversed-phase HPLC.  A Vydac C-18 semi-preparative 

column was used for separation with a gradient of 0-100% solvent B over 60  or 100 minutes 

with solvent A 95:5 water:acetonitrile, 0.1% TFA and solvent B 95:5 acetonitrile:water, 0.1% 

TFA.  Peptides were then lyophilized and peptide sequence was confirmed by MALDI mass 

spectrometry.  Cyclic peptides were formed by oxidation of the cysteine residues with 

stirring in 1% DMSO in 10 mM phosphate buffer, pH 7.5 for 7-12 hrs.  After purification, all 

peptides were desalted with a Pierce D-Salt Polyacrylamide 1800 desalting column.   

ii.  DNA Sample Preparation 

 DNA sequences were purchased from IDT (Integrated DNA Technologies, Inc.).  All 

DNA samples were dissolved in 10mM Na2HPO4, 100 mM NaCl, and adjusted to pH 7.0.  

Concentrations of both DNA strands were determined using a Perkin Elmer Lambda 35 

UV/Vis Spectrometer.  Absorbance values were determined at 260 nm, and concentrations 

were calculated using the extinction coefficients of the two DNA strands (ε260, ssDNA = 95500 

M-1·cm-1 and ε260, dsDNA = 112600 M-1·cm-1).  Equal concentrations of the two strands (in 
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sodium phosphate buffer, pH 7.0) were pooled in a final concentration of 100 mM NaCl.  

The solution was heated at 95 ºC for 5 minutes to anneal the strands and was then allowed to 

cool to room temperature before storing at -20 ºC. 

iii.  Peptide Concentration Determination 

To determine the recognition of single-stranded and double-stranded oligonucleotides by the 

peptides, fluorescence titrations were performed by fluorescence anisotropy of the WW 

domain mutants titrated with increasing oligonucleotide concentrations.  Peptide samples 

were prepared in 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0.  Peptide 

concentrations were determined in 5 M guanidine hydrochloride by UV-Vis by recording the 

absorbance of the fluorophore attached to the peptide, 5-(and -6)-

Carboxytetramethylrhodamine, mixed isomers.  TAMRA’s extinction coefficient is 91000 

M-1·cm-1 at wavelength 559 nm.  This extinction coefficient was supplied by Integrated DNA 

Technologies, www.idtdna.com.  Concentrations of nucleotides were determined by UV/vis 

spectroscopy by observing the absorbance at 260 nm.   

iv.  Fluorescence Anisotropy 

As in previous chapters, a fluorophore, 5-(and -6)-Carboxytetramethylrhodamine, 

mixed isomers (TAMRA), was purchased from Biotium, Inc., and was employed to provide 

an alternative to fluorescence quenching experiments.  Because of the inner filter effect, 

many of the binding interactions cannot be measured accurately using the fluorescence 

quenching method.  TAMRA was coupled onto the peptide Mut1 at Orn 21.  The synthesis 

was completed by coupling Lys(ivDde) in the original ornithine position (Orn21Lys).  The 

ivDde protecting group was orthogonally deprotected by 3 treatments with 2% hydrazine in 

DMF for 3 minutes each.  Manual coupling of TAMRA was performed with two equivalents 
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of TAMRA (100 mg bottle used for 0.1 mmol peptide) and four equivalents of HOBT, 

HBTU, and DIPEA in DMF, and the reaction was allowed to bubble with nitrogen overnight.  

Cleavage from the resin and sidechain deprotection was completed as with all other peptides 

using 95% TFA, 2.5% H2O, and 2.5% TIPS.  The resulting peptide was purified by HPLC 

and its sequence and purity determined by mass spectrometry as in previous chapters (see 

Experimental Section, Chapter 4).  The excitation wavelength used in the experiments is 559 

nm, and the observed emission wavelength is 583 nm.  In a departure from the usual 

anisotropy experiments, a plate reader was used in these studies.  The peptide concentration 

for each study was 5 µM; DNA concentrations ranged from 0-400 µM.  DNA samples were 

made by serial dilutions, and a multi-channel pipet was used.  DNA samples were placed into 

a prep 96 well plate and then transferred using the multi-channel pipet to a Corning 96 well 

plate.  The experiments were performed using a POLARstar Omega plate reader.  Anisotropy 

was determined by the software that came with the instrument.  The anisotropy was fit to the 

following equation (Equation 6.1) using Kaleidagraph to determine the binding constant 

 Equation 6.1.  oo

dd

IIIP
PLPLKPLKF +−××

××−−−−−−−−−

∞
= ))(]))[2(

))]))[][4(])[][(((])[][(((( 2

   

where F is the fluorescence anisotropy, Io is the initial fluorescence intensity of the peptide, 

I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of added 

nucleotide, [P] is the peptide concentration for each fraction, and Kd is the dissociation 

constant.  Equation 6.1 was derived from equations given by Wang and coworkers.8 

v.  Circular Dichroism 

 All CD measurements were obtained using an AVIV 62 DS Circular Dichroism 

Spectrometer.  CD data was obtained for the WW Domain peptides at 30 µM concentrations 
                                                 
8 Wang, Y.; Hamasaki, K.; Rando, R. R. Biochemistry 1997, 36, 768-779.   
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from 250-190 nm.  The peptides were dissolved in 10 mM Na2HPO4, pH 7.0.  Wavelength 

scans were performed at 298 K.   

vi.  NMR Spectroscopy 

 NMR samples for Mutant 1 peptides were made in about 1 mM concentrations (650 

µL) and were dissolved in 50 mM KD2PO4 (in D2O), 0.5 mM DSS, and buffered to pD 7.0 

(uncorrected) with sodium deuteroxide.  Control peptides and other mutants were dissolved 

in 50 mM d3-NaOAc (in D2O), 0.5 mM DSS, and buffered to pD 4.0.  These samples were 

made with a lower pD because of solubility problems.  A Mutant 1 sample was made and 

analyzed by NMR to determine if the change in pD affected the NMR signal.  NMR data for 

Mutant 1 at pD 4.0 and at pD 7.0 was not significantly different.  Samples were analyzed on 

a Varian Inova 600 MHz spectrometer.  All one-dimensional NMR spectra were collected 

using 32K data points and between 16 and 64 scans and 1-3 s presaturation or solvent 

suppression.  The two-dimensional TOCSY NMR spectra used pulse sequences from the 

Chempack software.  The 2D NMR scans were obtained using 16-64 first dimension scans 

and 128-512 second dimension scans.  All spectra were analyzed by using standard window 

functions (Sinebell and Gaussian).  Peptide proton assignments were made using standard 

methods as described by Wuthrich.9  Deviations in alpha hydrogen chemical shifts from 

random coil values, ΔδHα, were calculated according to Equation 6.2, 

Equation 6.2.  ΔδHα = δHα,obs – δHα,RC 

where δHα,obs is the observed chemical shift of a given alpha hydrogen in the peptide, and 

δHα,RC is the random coil chemical shift of the corresponding proton determined from 

                                                 
9 Wuthrich, K. NMR of Proteins and Nucleic Acids, Wiley-Interscience: New York, 1986. 
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unstructured control peptides, strand 1, strand 2, and strand 3.  The extent of folding for each 

peptide can be determined by calculating the fraction folded, as in Equation 6.3,  

Equation 6.3.  Fraction folded = ΔδGlyobs/ΔδGly100 

where ΔδGlyobs is the observed splitting of the glycine diastereotopic protons for the peptide, 

and ΔδGly100 is the glycine splitting for the fully folded control peptide that is presumed to 

take on a 100% fold.  
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The following pages include tables of proton chemical shift assignments and 1HNMR 

spectra for each mutant.  Chemical shift values that are highlighted were not able to be 

unambiguously assigned.  Amino acids are colored to indicate mutations as in Figures 6.1 

and 6.2.   
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Figure 6.14.  1HNMR spectrum of Mut1A-S1. 
 
 
 

Table 6.3.  Proton Chemical Shift Assignments for Peptide Mut1A-S1 (in ppm). 
Residue α β γ δ ε 

Ser 4.38 3.80    
Arg 4.26 1.61 1.36 3.04  
Trp 4.74 3.34, 3.23    
Thr 4.21 4.10 1.08   
Glu 4.17 1.94 2.32   
His 4.69 3.24    
Lys 4.34 1.73 1.39 1.68 2.97 
Val 4.09 2.06 0.94   
Asn 4.71 2.86, 2.78    
Gly 3.92         
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Figure 6.15.  1HNMR spectrum of Mut1A-S2. 
 
 
 
 
 

Table 6.4.  Proton Chemical Shift Assignments for Peptide Mut1A-S2 (in ppm). 
Residue α β γ δ ε 

Asn 4.66 2.79    
Gly 3.93     
Arg 4.34 1.74 1.54 3.12  
Thr 4.21 4.03 1.06   
Tyr 4.34 2.65    
Phe 4.44 2.97    
Trp 4.57 3.21    
Leu 4.24 1.72 1.69 0.85  
Lys 4.24 1.67 1.35 1.47 2.94 
Val 4.06 2.04 0.94     

 
 
Mut1A-S3 (and S3 for all other mutants in this chapter) is the same as Mut1-S3, shown in 
Chapter 4. 
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Figure 6.16.  1HNMR spectrum of Mut1A-S12. 
 
 

Table 6.5.  Proton Chemical Shift Assignments for Peptide Mut1A-S12 (in ppm). 
Residue α β γ δ ε 

Ser 4.42 3.78     
Arg 4.31 1.61, 1.56 1.39 3.05   
Trp 4.69 3.05, 2.85     
Thr 4.31 3.92 0.94    
Glu 4.37 1.85 2.13    
His 4.60 3.19     
Lys 4.66 1.67 1.27 1.56 2.99 
Val 4.14 2.03 0.81    
Asn 4.58 2.95, 2.79     
Gly 4.04, 3.80      
Arg 4.46 1.74 1.60, 1.47 3.13   
Thr 4.42 4.10 1.13    
Tyr 4.50 2.76, 2.59     
Phe 4.81 2.90     
Trp 4.89 3.31, 3.18     
Leu 4.24 1.46, 1.30 1.02 0.76, 0.69   
Lys 4.22 1.73 1.30 1.61 2.91 
Val 4.05 2.01 0.93     
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Figure 6.17.  1HNMR spectrum of Mut1A-S12 Cyclic. 
 
 

Table 6.6.  Proton Chemical Shift Assignments for Peptide Mut1A-S12 Cyclic (in ppm). 
Residue α β γ δ ε 

Cys 4.73 3.02, 2.47     
Arg 4.57 1.77, 1.61 1.39 3.13   
Trp 5.29 3.22     
Thr 4.38 3.78 0.78    
Glu 4.64 1.77 1.90    
His 4.89 3.13     
Lys 5.15 1.54 1.18  2.82 
Val 4.17 1.96 085, 0.69    
Asn 4.42 3.09, 2.78     
Gly 4.16, 3.55      
Arg 4.63 1.77 1.57 3.20   
Thr 4.77 3.87 1.19    
Tyr 4.73 2.87, 2.66     
Phe 5.02 2.98, 2.93     
Trp 5.52 2.86     
Leu 3.95 1.31 0.77 0.31, 0.23   
Lys 4.30 1.70 1.26, 1.15 1.56 2.79 
Cys 5.17 3.01, 2.38     
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Figure 6.18.  1HNMR spectrum of Mut1A-S23. 
 
 

Table 6.7.  Proton Chemical Shift Assignments for Peptide Mut1A-S23 (in ppm). 
Residue α β γ δ ε 

Gly 3.9      
Arg 4.61 1.90 1.74 3.08   
Thr 4.34 4.13 1.06    
Tyr 4.54 3.24     
Phe 4.67 3.04     
Trp 4.82 3.21 3.04    
Leu 4.82 1.72 1.54 0.98   
Lys 4.08 1.15, -0.02 0.42 0.19 2.24 
Val 4.04 1.84 0.88    
Asn 4.27 3.04, 2.73     
Gly 0.72      
Orn 4.82 2.30 1.96 3.20   
Trp 5.13 3.23, 3.04     
Gln 4.92 1.92 2.10    
Lys 3.69 0.82, -0.02  0.17 ~2.1a 
Thr 4.34 3.47 1.06    
Trp 4.55 3.23     
Glu 4.82 1.96 2.30    
Lys 4.39 2.09, 1.93 1.53 1.71 2.33 
Pro 4.31 2.29, 1.96 2.02, 1.97 3.69, 3.51   
Gly 3.86      

a Highlighted values are those that could not be determined unambiguously. 
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Figure 6.19.  1HNMR spectrum of Mut1A-S23 Cyclic. 
 
 

Table 6.8.  Proton Chemical Shift Assignments for Peptide Mut1A-S23 Cyclic (in ppm).  
Residue α β γ δ ε 

Cys 4.82 3.17, 2.93     
Thr 4.36 4.10 0.98    
Tyr 4.76 3.00     
Phe 4.90 3.06     
Trp 4.96 3.03, 2.86     
Leu 4.92 1.58  0.98   
Lys 4.13 0.84, -0.096 0.091 0.37 2.23 
Val 4.11 1.81 0.84    
Asn 4.32 3.03, 2.74     
Gly 4.13, 3.37      
Orn 4.72 1.90 1.74 3.07   
Trp 5.16 3.01     
Gln 5.28 1.81 2.24    
Lys 3.86 0.88 0.16 0.65 1.89 
Thr 4.52 3.55 1.11    
Trp 4.82 3.17     
Glu 4.90 1.97 2.30, 2.23    
Cys 5.16 3.19, 2.33     
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Figure 6.20.  1HNMR spectrum of Mut1A. 
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Table 6.9.  Proton Chemical Shift Assignments for Peptide Mut1A (in ppm).  
Residue α β γ δ ε 

Ser 4.29 3.79     
Arg 4.49 1.80 1.59 2.95   
Trp 4.61 2.78     
Thr 4.28 4.13 1.10    
Glu 4.79 2.18, 1.98 2.32    
His 4.60 3.07     
Lys 4.17 1.52 1.3  2.93 
Val 4.02 1.83 0.86    
Asn 4.51 2.96, 2.78     
Gly 3.78, 3.51      
Arga 4.79     3.04   
Thr 4.51 4.06 1.01    
Tyr 4.51 2.69     
Phe 4.67 3.02     
Trp 5.14 3.00     
Leu 4.81 1.60 1.40 0.90   
Lys 4.07 2.23, -0.048 0.18 1.63, 0.42 2.94 
Val 4.13 2.10 0.97    
Asn 4.27 3.03, 2.74     
Gly 4.13, 3.40      
Orn 4.60 1.72 1.30 3.07   
Trp 5.28 3.28, 3.03     
Gln 4.94 2.15 1.94    
Lys 3.87 1.85, -0.015 0.25 0.87, 0.64 2.06 
Thr 4.39 3.54 1.05    
Trp 4.81 3.28, 3.00     
Glu 4.35 2.06, 1.86 2.32    
Lysa ~4.3         
Pro 4.39 2.25 1.95 3.57,3.36   
Gly 3.87         

a Highlighted values are those that could not be determined unambiguously. 
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Figure 6.21.  1HNMR spectrum of Mut1B-S1-KK.  This peptide was used in place of 
Mut1B-S1 due to solubility problems. 
 
 

Table 6.10.  Proton Chemical Shift Assignments for Peptide Mut1B-S1-KK (in ppm).  
Residue α β γ δ ε 

Lys 4.15   1.41 1.69 3.01 
Lys 4.17   1.40 1.68 3.06 
Ser 4.33 3.81    
Arg 4.27 1.70 1.44 2.96  
Trp 4.65 3.34, 3.23    
Thr 4.13 4.24 1.10   
Glu 4.11 1.90 2.28   
Val 3.93 1.96 0.86   
Phe 4.53 2.85, 2.76    
Val 3.97 2.01 0.91   
Asn 4.58 3.08, 2.95    
Gly 3.84         
Highlighted values are those that could not be determined unambiguously. 
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Figure 6.22.  1HNMR spectrum of Mut1B-S2. 
 
 

Table 6.11.  Proton Chemical Shift Assignments for Peptide Mut1B-S2 (in ppm).  
Residue α β γ δ ε 

Gly 3.93     
Arg 4.12 1.67 1.42 3.12  
Phe 4.56 2.81    
Ile 3.91 1.71 1.41, 1.10; (γMe=0.82) 0.67  
Lys 4.06 1.66 1.30  2.93 
Trp 4.56 3.23    
Leu 4.18 1.51  0.87  
Lys 4.13 1.69 1.42  2.99 
Val 3.97 2.06 0.96   
Asn 4.53 3.19, 3.01    
Gly 3.70     
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Figure 6.23.  1HNMR spectrum of Mut1B-S12. 
 
 

Table 6.12.  Proton Chemical Shift Assignments for Peptide Mut1B-S12 (in ppm).  
Residue α β γ δ ε 

Ser 4.36 3.71     
Arg 4.38 1.76, 1.66 1.53 3.16   
Trp 4.58 3.22, 2.94     
Thr 4.71 4.08 1.28    
Glu 4.25 2.70a     
Val 4.05 1.83 0.87    
Phe 4.67 2.89     
Val 4.37 1.66 0.68    
Asn 4.45 2.91, 2.75     
Gly 4.08, 3.51      
Arg 4.51 1.76 1.56 3.18   
Phe 4.88 2.72     
Ile 3.97 2.01 1.49, (γMe=0.92) 0.68   
Lys 4.13 1.69 0.73 1.39 2.97 
Trp 5.05 3.31, 3.08     
Leu 4.20  1.49 0.82   
Lys 4.07 1.65  1.25 2.92 
Val 3.90 1.68 0.64     

a Highlighted values are those that could not be determined unambiguously. 
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Figure 6.24.  1HNMR spectrum of Mut1B-S12 Cyclic. 
 
 

Table 6.13.  Proton Chemical Shift Assignments for Peptide Mut1B-S12 Cyclic (in ppm).  
Residue α β γ δ ε 

Cys 4.73 2.87, 2.47     
Arg 4.55 1.73 1.50 3.14   
Trp 4.81 3.08     
Thr 4.77 3.92 1.12    
Glu 5.54 1.95 2.32    
Val 4.10 1.76 0.78    
Phe 4.73 2.87     
Val 4.66 1.99 0.84    
Asn 4.23 2.97, 2.59     
Gly 3.98, 3.36      
Arg 4.60 1.95, 1.74  3.18   
Phe 5.08 3.04     
Ile 4.60 1.95 1.11 0.88   
Lys 3.70 1.17 -0.16 0.32   
Trp 5.00 2.98, 2.91     
Leu 5.25 1.81  1.39   
Lys 4.21 1.76 1.25 1.61 2.40 
Cys 5.17 2.95, 2.32     
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Figure 6.25.  1HNMR spectrum of Mut1B-S23. 
 
 

Table 6.14.  Proton Chemical Shift Assignments for Peptide Mut1B-S23 (in ppm).  
Residue α β γ δ ε 

Gly 3.88      
Arg 4.49 1.64 1.34 2.91   
Phe 4.63 3.21     
Ile 4.15  1.59, 1.15    
Lys 4.19 1.25, 0.13 0.49, 0.33 1.07 2.29 
Trp 4.91 3.20, 3.07     
Leu 4.79 1.51  0.86   
Lys 4.09 1.49 0.35 0.53   
Val 4.11 1.84 0.84    
Asn 4.39 2.97, 2.73     
Gly 4.09, 3.44      
Orn 4.67 1.88 1.72 3.05   
Trp 5.04 3.20, 3.00     
Gln 4.80 2.30, 2.15     
Lys 3.85 1.30 0.52, 0.36 0.98 2.65 
Thr 4.44 4.03 1.10    
Trp 4.81 3.10, 2.95     
Glu 4.24 1.76 2.16    
Lys 4.54 1.66 1.40  2.95 
Pro 4.42 2.28, 1.95 1.85, 2.23  3.82, 3.68 
Gly 3.94      
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Figure 6.26.  1HNMR spectrum of Mut1B-S23 Cyclic. 
 

Table 6.15.  Proton Chemical Shift Assignments for Peptide Mut1B-S23 Cyclic (in ppm).  
Residue α β γ δ ε 

Cys 4.97 3.16, 3.03     
Phe 4.92 3.00     
Ile 4.12 1.45 0.26 0.45, 0.85   
Lys 4.69 1.73 1.38 1.57 3.01 
Trp 5.05 3.02, 2.87     
Leu 4.92 1.56  0.90   
Lys 4.19 1.19, -0.023 0.39, 0.16 1.00   
Val 4.13 1.83 0.85    
Asn 4.36 3.07, 2.76     
Gly 4.15, 3.40      
Orn 4.74 1.92 1.77 3.09   
Trp 5.17 3.19, 3.00     
Gln 4.90 2.19, 2.00 2.35    
Lys 3.72 1.31 0.32 0.85 2.70 
Thr 4.56 4.04 1.12    
Trp 5.05 3.02, 2.87     
Glu 4.58 2.21 1.64, 1.50    
Cys 5.33 2.98, 2.39     
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Figure 6.27.  1HNMR spectrum of Mut1B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 185



Table 6.16.  Proton Chemical Shift Assignments for Peptide Mut1B (in ppm).  
Residue α β γ δ ε 

Ser 4.47 3.79     
Arg 4.53 1.70 1.46 2.98a   
Trp 5.02 3.27, 3.15     
Thr 4.46 4.08 1.14    
Glu 4.66 2.20 2.29    
Val 4.16 1.93 0.88    
Phe 4.70 3.25, 3.10     
Val 4.34 1.62 0.55    
Asn 4.54 2.96, 2.78     
Gly 0.45    4.06, 3.61 
Arg 4.61 1.75 1.52 3.06   
Phe 4.87 2.94, 2.72     
Ile 4.31 1.83 1.61    
Lys 4.34 1.62 0.55    
Trp 5.11 3.06     
Leu 4.77  1.38 0.78   
Lys 4.21 1.35 0.62 1.20 2.90a

Val 4.38 1.95 0.83    
Asn 4.43 3.01, 2.72     
Gly 0.61    4.13, 3.52 

Orna 4.70    3.20 
Trp 5.22 3.28, 3.07     
Gln 4.80 1.96 2.31    
Lys 4.04 1.44 0.80 1.25   
Thr 4.56 4.13 1.12    
Trp 4.92 3.16     
Glua 4.40 2.00 2.25    
Lys 4.36 1.60 1.37  2.97 
Pro 4.44 2.28, 2.01 2.12, 1.99 3.87, 3.72   
Gly 3.9         

a Highlighted values are those that could not be determined unambiguously. 
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Figure 6.28.  1HNMR of Mut1C-S2.   
 

Table 6.17. Proton Chemical Shift Assignments for Peptide Mut1C-S2 (in ppm).  
Residue α β γ δ ε 

Gly 3.88     
Arg 4.19  1.56 3.08  
Phe 4.60 3.17, 2.99    
Leu 4.22  1.56 0.89  
Lys 4.14  1.25 1.64 2.90 
Trp 4.67 3.28    
Leu 4.26 1.51  0.86  
Lys 4.24   1.71 2.98 
Val 4.09 2.05 0.92   
Asn 4.69 2.82, 2.69    
Gly 3.67     

 
Mut1C-S1 is the same sequence as Mut1B-S1. 
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Figure 6.29.  1HNMR of Mut1C-S12. 
 
Table 6.18. Proton Chemical Shift Assignments for Peptide Mut1C-S12 (in ppm). 

Residue α β γ δ ε 
Ser 4.47 3.73     
Arg 4.28 1.70 1.48    
Trp 4.70 3.27     
Thr 4.78 4.05     
Glu 4.66 1.79, 1.61     
Val 4.21 1.89 0.89    
Phe 4.65 3.21, 2.97     
Val 4.31 1.86     
Asn 4.39 3.06, 2.75     
Gly 4.10, 3.57     
Arg 4.50 1.72 1.55 3.15   
Phe 4.91 2.76     
Leu 4.54 1.26     
Lys 4.13 1.48, 1.43 1.10  2.72 
Trp 5.15 3.30, 3.10     
Leu 4.42 1.34  0.80   
Lys 4.47 1.72 1.55 1.07 2.72 
Val 4.11 2.00 0.91     
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Figure 6.30.  1HNMR of Mut1C-S12 Cyclic. 
 
 
 
Table 6.19.  Proton Chemical Shift Assignments for Peptide Mut1C-S12 Cyclic (in ppm). 

Residue α β γ δ ε 
Cys 4.82 2.55     
Arg 4.21 1.69 1.25 2.90   
Trp 4.82 3.08     
Thr 4.73 3.84 1.07    
Glu 5.45 2.27, 1.94     
Val 4.12 1.78 0.80    
Phe 4.99 2.93     
Val 4.64 1.98     
Asn 4.24 2.92, 2.60     
Gly 4.00, 3.38     
Arg 4.59 1.73 1.55 3.18   
Phe 5.13 2.98     
Leu 5.25 1.79  1.40   
Lysa 3.76 1.77 1.24     
Trp 5.13 3.14     
Leu 4.70 1.57  0.84   
Lysa 4.21         
Cys 5.13 2.98, 2.37     

a Highlighted values are those that could not be determined unambiguously. 

 189



 
Figure 6.31.  1HNMR of Mut1C-S23. 
 

Table 6.20.  Proton Chemical Shift Assignments for Peptide Mut1C-S23 (in ppm). 
Residue α β γ δ ε 

Gly 3.86      
Arg 4.51 1.62 1.39 2.89   
Phe 4.85 3.09     
Leu 4.34 1.62 1.34    
Lys 4.45 1.67 1.30  2.92 
Trp 4.89 3.12, 3.04     
Leu 4.76 1.50  0.86   
Lys 4.15 1.17, 0.10 0.44, 0.33 1.05, 0.83 2.30 
Val 4.10 1.84 0.83    
Asn 4.39 2.98, 2.71     
Gly 4.09, 3.44     
Orn 4.66 1.88 1.72 3.04   
Trp 5.04 3.20, 3.00     
Gln 4.79 2.15, 1.94 2.31    
Lys 3.97 1.27, 0.35 0.62 1.10, 0.91 2.65 
Thr 4.41 4.01 1.08    
Trp 4.79 3.10, 2.94     
Glu 4.43 1.94 2.25    
Lys 4.56 1.72 1.43 1.66 2.96 
Pro 4.42 2.28, 1.96     
Gly 3.90      
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Figure 6.32.  1NMR of Mut1C-S23 Cyclic. 
 

Table 6.21.  Proton Chemical Shift Assignments for Peptide Mut1C-S23 Cyclic (in ppm). 
Residue α β γ δ ε 

Cys 4.94 3.17, 3.01     
Phe 4.94 3.01     
Leu 4.67 1.80 1.43    
Lys 4.68 1.81 1.44 1.64 2.99 
Trp 5.12 3.20, 2.90     
Leu 4.90 1.57  0.93   
Lys 4.17 1.16, -0.057 0.39, 0.18 0.99 2.28 
Val 4.15 1.92 0.86    
Asn 4.37 3.07, 2.77     
Gly 4.17, 3.40     
Orn 4.76 1.87 1.78 3.11   
Trp 5.15 3.21, 2.94     
Gln 4.92 2.20, 1.99 2.36    
Lys 4.13 1.26, 0.33 0.52 0.87 2.66 
Thr 4.51 3.96 1.13    
Trp 4.95 3.14     
Glu 4.66 2.26     
Cys 5.35 3.00, 2.44     
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Figure 6.33.  1HNMR of Mut1C. 
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Table 6.22.  Proton Chemical Shift Assignments for Peptide Mut1C (in ppm). 
Residue α β γ δ ε 

Ser 4.42 3.70     
Arg 4.60 1.84 1.48 3.01   
Trp 4.91 2.87, 2.73     
Thr 4.40 4.02 1.09    
Glu 4.69 1.73 2.26    
Val 4.10 1.84 0.81    
Phe 4.69 2.26     
Val 4.29 1.95 0.85    
Asn 4.43 2.94, 2.70     
Gly 0.43     
Arg 4.68 1.73 1.49 2.95   
Phe 4.80 3.06     
Leu 4.62 1.69     
Lys 4.21 1.29, 0.44 1.01, 0.21    
Trp 4.97 3.06     
Leu 4.77 1.51 1.37 0.78   
Lys 3.96 1.34 0.98, 0.74 1.16 2.71 
Val 4.62 1.88 1.22    
Asn 4.35 2.90, 2.61     
Gly 0.57     
Orn 4.60 1.69 1.48 3.00   
Trp 5.14 3.20, 2.95     
Glna 4.77        
Lys 4.14 0.49 0.12  2.29 
Thr 4.45 4.10 1.11    
Trp 4.84 3.26, 3.08     
Glu 4.49 1.74 2.24    
Lysa 4.26 1.48 1.24     
Pro 4.45 2.30, 2.01 2.11 3.94, 3.77   
Gly 3.94         
a Highlighted values are those that could not be determined unambiguously. 
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Figure 6.34.  1HNMR of Mut1D. 
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Chapter VII 
 

Recognition of Modified, Damaged, and Mismatched DNA Bases by β-Sheet Peptides 
 
A. Background and Significance 

OB-fold domains are thought of primarily as single-stranded DNA binding domains 

that recognize single strands of DNA such as those found at the replication fork1 and in 

telomeric DNA.2  While that is a primary function of OB-fold domains, the depth of their 

cellular roles is much greater.  In fact, OB-fold domains are single-stranded DNA binding 

motifs that emerge in various processes in which single-stranded DNA or single, unpaired 

nucleotide bases are present and become exposed.3  This occurs at the mRNA cap,4 in 

                                                 
1 (a) Bochkarev, A.; Bochkareva, E. Curr. Opin. Struct. Biol. 2004, 14, 36-42. (b) Mer, G.; 
Bochkarev, A.; Gupta, R.; Bochkareva, E.; Frappier, L.; Ingles, J. C.; Edwards, A. M.; 
Chazin, W. J. Cell 2000, 103, 449-456. (c) Bochkarev, A.; Pfuetzner, R. A.; Edwards, A. M.; 
Frappier, L. Nature 1997, 385, 176-181. (d) Wold, M. S. Annu. Rev. Biochem. 1997, 66, 61-
92. 
 
2 (a) Anderson, E. M.; Halsey, W. A.; Wuttke, D. S. Biochemistry 2003, 42, 3751-3758. (b) 
Mitton-Fry, R. M.; Anderson, E. M.; Hughes, T. R.; Lundblad, V.; Wuttke, D. S. Science 
2002, 296, 145-147. (c) Croy, J. E.; Wuttke, D. S. Trends Biochem. Sci. 2006, 31, 516-525. 
 
3 Pestryakov, P. E.; Lavrik, O. I. Biochemistry (Moscow) 2008, 73, 1388-1404. 
 
4 (a) Guilligay, D.; Tarendeau, F.; Resa-Infante, P.; Coloma, R.; Crepin, T.; Sehr, P.; Lewis, 
J.; Ruigrok, R. W. H.; Ortin, J.; Hart, D. J.; Cusack, S. Nat. Struct. Mol. Biol. 2008, 15, 500-
506. (b) Rutkowska-Wlodarczyk, I.; Stepinski, J.; Dadlez, M.; Darzynkiewicz, E.; Stolarski, 
R.; Niedzwiecka, A. Biochemistry 2008, 47, 2710–2720. (c) Richter, J. D.; Sonenberg, N. 
Nature 2005, 433, 477-479. (d) Quiocho, F. A.; Hu, G. H.; Gershon, P. D. Curr. Opin. Struct. 
Biol. 2000, 10, 78-86. (e) Sonenberg, N.; Gingras, A.-G. Curr. Opin. Cell Biol. 1998, 10, 
268-275. 
 



telomeric DNA,2 during recombination,5 and during DNA replication and repair.1  Single-

stranded DNA binding proteins, many of which have OB-fold domains, are often involved in 

recognizing damaged DNA.6, 7  The primary eukaryotic ssDNA binding protein Replication 

Protein A1 has been shown to bind damaged and mismatched DNA.1d  It is thought that these 

proteins use the same mechanism of recognition as they do to bind single-stranded DNA.  In 

this way, the peptide or protein recognizes the damaged or mismatched base as it would a 

single-stranded nucleotide.1d  DNA methylation, for example, is one such DNA modification 

often found in nature.  Methylation is known to occur at the mRNA cap4 as well as in other 

DNA sequences such as the promoter regions of certain genes.8  As shown in Figure 8.1, the 

PB2 cap binding domain recognizes the m7GTP cap analog via a β-sheet with specific 

aromatic stacking interactions stabilizing the complex (Figure 7.1b).4a-4b   

 

                                                 
5 (a) Min, J.; Park, P.; Ko, E.; Choi, E.; Lee, H. Biochem. Biophys. Res. Commun. 2007, 362, 
958-964. (b) Nair, P. A.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C. D.; Shuman, S. Nat. 
Struct. Mol. Biol. 2007, 14, 770-778. (c) Sugiyama, T.; Kantake, N.; Wu, Y.; 
Kowalczykowski, S. C. EMBO J. 2006, 25, 5539-5548. (d) Moure, C. M.; Gimble, F. S.; 
Quiocho, F. A. J. Mol. Biol. 2003, 334, 685-695. (e) Stano, N. M.; Patel, S. S. J. Mol. Biol. 
2002, 315, 1009-1025. (f) Cheetham, G. M. T.; Jeruzalmi, D.; Steitz, T. A. Nature, 1999, 
399, 80-83. (g) Cheetham, G. M. T.; Steitz, T. A. Science 1999, 286, 2305-2309.  
 
6 (a) Malta, E.; Moolenaar, G. F.; Goosen, N. J. Biol. Chem. 2006, 281, 2184-2194. (b) 
Truglio, J. J.; Karakas, E.; Rhau, B.; Wang, H.; DellaVecchia, M. J.; Van Houten, B.; Kisker, 
C. Nat. Struct. Mol. Biol. 2006, 13, 360-364. (c) Skorvaga, M.; DellaVecchia, M. J.; Croteau, 
D. L.; Theis, K.; Truglio, J. J.; Mandavilli, B. S.; Kisker, C.; Van Houten, B. J. Biol. Chem. 
2004, 279, 51574-51580. (d) Skorvaga, M.; Theis, K.; Mandavilli, B. S.; Kisker, C.; Van 
Houten, B. J. Biol. Chem. 2002, 277, 1553-1559. 
 
7 Min, J. H., Pavletich, N. P. Nature 2007, 449, 570-576.  
 
8 (a) Desmond, J. C.; Raynaud, S.; Tung, E.; Hofmann, W.-K.; Haferlach, T.; Koeffler, H. P. 
Leukemia 2007, 21, 1026-1034. (b) Ohki, I.; Shimotake, N.; Fujita, N.; Jee, J. G.; Ikegami, 
T.; Nakao, M.; Shirakawa, M. Cell 2001, 105, 487-497. (c) Ballestar, E.; Wolffe, A. P. Eur. 
J. Biochem. 2001, 268, 1-6. 
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(a)  

 

(b)  

 

Figure 7.1.  Structure of the PB2 cap binding domain bound to m7GTP.4a-4b (a) Ribbon 
diagram of the full structure of the cap binding domain with the β-sheet portion shown in 
gold and the m7GTP as well as the sidechains involved in stacking interactions shown as a 
ball-and-stick model. (b) Specific interactions between the PB2 cap binding domain and 
m7GTP.  Green dotted lines represent proposed hydrogen bonds. 
 

There are several other examples of systems involving β-hairpin recognition of 

damaged DNA.  The nucleotide excision repair pathway utilizes β-hairpins to recognize 

lesions in duplex DNA.  In prokaryotes, the protein UvrB interacts with DNA by inserting a 

flexible β-hairpin between the two strands of the duplex DNA.  This hairpin uses a cluster of 

conserved aromatic residues to form tight contacts with the DNA.6   Similarly, eukaryotic 

protein Rad4 has been shown to insert a β-hairpin into double stranded DNA, causing 
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damaged bases to flip out and allowing the protein to recognize the unpaired bases.7  In each 

case, regulation of the modification or repair by the appropriate repair pathways is crucial to 

maintain genomic stability and to prevent disease.9  Thus, an important application of the 

current research is the relevance of the OB-fold properties in the designed β-sheet peptides to 

the study and recognition of damaged and mismatched DNA bases.     

Though much of the work done in this laboratory has focused on designing peptides 

to bind short ssDNA sequences, this chapter delves into the application of peptides 

recognizing damaged or modified and mismatched nucleotide bases.  In this study we 

endeavored to determine whether minimalistic OB-fold peptides shown to bind ssDNA with 

selectivity in previous work also bind damaged or mismatched bases and to understand more 

about the role of flipped out bases.   

B.  Results 

 i.  Sequence Design  

 The WW domain Mutant 1 (Mut1; Figure 7.2) was applied to the selective 

recognition of damaged bases in ssDNA and mismatched bases in duplex DNA sequences.  

Because of the success with Mut1 as a peptide selective for single-stranded DNA over duplex 

DNA, Mut1 was the only peptide used in studies with damaged and mismatched bases.  The 

DNA sequences were varied to study several different types of DNA damage (Table 7.1)  All 

binding studies were conducted by either fluorescence quenching or fluorescence anisotropy 

as in previous chapters and described in the Experimental Section. 

 
 

                                                 
9 (a) Mathers, J. C.; Coxhead, J. M.; Tyson, J. Curr. Cancer Drug Tar. 2007, 7, 425-431. (b) 
Sansom, O. J.; Maddison, K.; Clarke, A. R. Nat. Clin. Pract. Oncol. 2007, 4, 305-315. 
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(a) Mut1:  
Ac-S-R-W-T-E-H-K-S-N-G-R-T-Y-Y-W-N-K-V-N-G-O-W-Q-K-T-W-E-K-P-G-NH2 
 
(b) 
 

 

Figure 7.2.  WW domain Mut1.  (a) Sequence of Mut1 with residues in the binding pocket 
highlighted.  (b) Structure of Mut1.  The WKWK binding cleft is shown with Trp residues in 
blue and Lys residues in green. 
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Table 7.1.  DNA sequences used as damaged or mismatched DNA.a   
DNA Sequence Name Sequence 

(a)  TTGTT 5’-TTGTT-3’ 

(b)  TT(8oxoG)TT 5’-TT(8oxoG)TT-3’ 

(c)  Duplex DNA 5’-CCATCGCTACC-3’ 
3’-GGTAGCGATGG-5’ 
 

(d)  Duplex DNA with G-G Mismatch 5’-CCATCGCTACC-3’ 
3’-GGTAGGGATGG-5’ 
 

(e)  Duplex DNA with C-C Mismatch 5’-CCATCCCTACC-3’ 
3’-GGTAGCGATGG-5’ 
 

aDNA bases shown in blue are either the damaged base or the mismatched base pairs. 

 

 ii.  8-oxo-Guanine Recognition Studies 

The first set of experiments conducted involved studying oxidative DNA damage, and 

8-oxo-guanine (8oxoG) (Figure 7.3) is known to be one of the most prevalent manifestations 

of oxidative damage.10  In duplex DNA, damaged DNA sites are known to have a sharp 

bend, and molecular dynamics simulations have shown that in the case of 8-oxo-guanine, the 

8oxoG causes distortion or kinks in the DNA backbone which assists these proteins in 

recognizing the damaged base.10  Within the context of a single-stranded DNA sequence, we 

studied the recognition of this specific modification by Mut1.  We used a short, five base pair 

sequence, 5’-TTGTT-3’ (Table 7.1a), with 8oxoG replacing the guanine for comparison 

(Table 7.1b), to test the binding interaction between Mut1 and 8oxoG.   Binding constants 

                                                 
10 (a) Miller, J. H.; Fan-Chiang, C.-C. P.; Straatsma, T. P.; Kennedy, M. A. J. Am. Chem. 
Soc. 2003, 125, 6331-6336. (b) Malins, D. C.; Polissar, N. L.; Ostrander, G. K.; Vinson, M. 
A. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 12442-12445. 
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were determined by fluorescence quenching experiments.  Penta-thymidine displayed the 

weakest affinity for (WKWK)2 in previous studies,11 so it was thought that placing 8oxoG in 

the middle of this sequence may cause enhanced binding or selectivity by Mut1, a similar 

peptide to WKWK dimer, for this specific damage. 

N

H
N

N

NH
O

O

NH2
 

Figure 7.3.  Structure of 8-oxo-guanine, a base damaged due to oxidation.  
 

Mut1 binds the control sequence, 5’-TTGTT-3’, with a Kd of about 50 µM, while it 

binds the analogous sequence including the 8oxoG with a dissociation constant of about 180 

µM (Table 7.2, Figure 7.4).  The binding affinity for both sequences is very weak, and the 

conditions were not optimal for binding in this case.  The data suggests, however, that there 

is no real selectivity for the 8-oxo-guanine.  This is consistent with the research indicating 

that the 8oxoG and other DNA damaged sites distort the DNA helix when placed in duplex 

DNA, and this may be the primary factor in the damaged base recognition.  In that case, there 

would be no recognition of the base itself, but recognition would be due to the helix 

distortion.  If this experiment were repeated in a duplex, we could determine if there is any 

selectivity for a mismatched base that could be flipped out into solution and more accessible 

for recognition by Mut1.  Because of the weak binding, further studies in this area were not 

continued.  

                                                 
11 Butterfield, S. M.; Cooper, W. J.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 24-25. 
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Table 7.2.  Dissociation constants for Mut1 binding to two ssDNA sequences.a 
DNA Sequence Kd, µM (error) 

5’-TTGTT-3’ 50 (20) 

5’-TT(8oxoG)TT-3’ 180 (30) 

(a) Conditions:  5 µM peptide concentrations; 10 mM Na2HPO4, 100 mM NaCl, pH 7.0, 298 
K.  Each value is the average of at least two measurements. The error is from the fitting.  
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Figure 7.4.  Fluorescence titrations of Mut1 with the single-stranded DNA sequences 5’-
TTGTT-3’ and 5’-TT(8oxoG)TT-3’ (Table 7.1); 5 µM peptide concentrations; 10 mM 
sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
 
 

iii.  Recognition of Duplex DNA Containing Single Mismatches  

We then explored the ability of Mut1 to recognize mismatched DNA bases.  Studies 

have shown that a conserved Phe residue stacks with the mismatched DNA in the mismatch 
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repair pathway.12  Similarly, the base excision repair pathway uses an aromatic pocket for 

recognition of damaged bases by glycosylase enzymes.13  We wanted to determine if the 

designed beta-sheet peptide Mut1 could recognize a mismatched DNA through its Trp 

binding pocket.   

The first DNA sequence used was similar to the 11-mer duplex DNA sequence that 

has been used with all other experiments with this project (Table 8.1c).  In this set of 

experiments, the fluorophore TAMRA was placed on Mut1 as in previous chapters (see 

Experimental Section) to attain optimal binding conditions using fluorescence anisotropy.  

We employed a G-G mismatch (Table 7.1d) as well as a C-C mismatch (Table 7.1e) for these 

experiments.  Pyrimidine-pyrimidine mismatches are known to be the most destabilizing,14 

so that would indicate that the C-C mismatch would be the least stable in this case. 

 Fluorescence anisotropy studies showed that there is no significant selectivity for 

either of the mismatches by Mut1.  Mut1 exhibits weak binding for each.  Mut1 binds the 

duplex sequence with a Kd of about 390 µM.  Similarly, the binding constant for the 

interaction between Mut1 and the duplex with a G-G mismatch is about 315 µM.  Mut1 binds 

the double helix with the C-C mismatch with a dissociation constant of about 260 µM (Table 
                                                 
12 (a) Kunkel, T. A.; Erie, D. A. Annu. Rev. Biochem. 2005, 74, 681-710. (b) Yamamoto, A.; 
Schofield, M. J.; Biswas, I.; Hsieh, P. Nucleic Acids Res. 2000, 28, 3564-3569. (c) Malkov, 
V. A.; Biswas, I.; Camerini-Otero, R. D.; Hsieh, P. J. Biol. Chem. 1997, 272, 23811-23817. 
 
13 (a) Cao, C. Y.; Kwon, K.; Jiang, Y. L.; Drohat, A. C.; Stivers, J. T. J. Biol. Chem. 2003, 
278, 48012-48020. (b) Eichman, B. F.; O’Rourke, E. J.; Radicella, J. P.; Ellenberger, T. 
EMBO J. 2003, 22, 4898-4909. (c) Asaeda, A.; Ide, H.; Asagoshi, K.; Matsuyama, S.; Tano, 
K.; Murakami, A.; Takamori, Y.; Kubo; K. Biochemistry, 2000, 39, 1959-1965. 
 
14 (a) Cordier, C.; Pierre, V. C.; Barton, J. K. J. Am. Chem. Soc. 2007, 129, 12287-12295. (b) 
Jackson, B. A., Barton, J. K. Biochemistry 2000, 39, 6176-6182. (c) Tikhomirova, A.; 
Beletskaya, I. V.; Chalikian, T. V. Biochemistry 2006, 45, 10563-10571. (d) Aboul-ela, F.; 
Koh, D.; Martin, F. H.; Tinoco, I. Jr. Nucleic Acids Res. 1985, 13, 4811-4824. 
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7.3; Figure 7.5).  Thermal UV experiments were attempted to gain more knowledge about 

these interactions, but those studies were unsuccessful due to instrument problems. 
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Figure 7.5.  Fluorescence titrations of Mut1 with the double-stranded DNA sequence and the 
sequence with a G-G mismatch and a C-C mismatch (Table 7.1c-e); 20 µM peptide 
concentrations; 10 mM sodium phosphate buffer, 100 mM NaCl, pH 7.0, 298 K. 
   
 

Table 7.3.  Dissociation constants for binding of Mut1 to dsDNA and the corresponding 
mismatched DNA sequences.a 

DNA Sequence Kd, µM (error) 

Duplex DNA 390 (45) 

Duplex DNA with G-G Mismatch 315 (40) 

Duplex DNA with C-C Mismatch 
 

260 (55) 

(a) Conditions:  20 µM peptide concentrations; 10 mM sodium phosphate buffer, 100 mM 
NaCl, pH 7.0, 298 K.  Each value is the average of at least two measurements. The error is 
from the fitting. 
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 According to these binding affinities, the conditions for binding are still not 

optimized because of the high DNA concentrations required.  The design for Mut1 may have 

fulfilled its original purpose of gaining selectivity for ssDNA at the expense of weak binding 

for single base mismatches.  By having the first strand inhibit duplex DNA binding, the 

additional strand may make the full peptide too large for the single mismatch to be accessible 

for favorable binding interactions.  Strands 2&3 of Mut1 (Mut1-S23) may be better equipped 

to recognize a single mismatch because that peptide includes the full binding pocket but 

excludes Strand 1 which may inhibit the peptide from closely contacting the mismatched 

base.  Some small preference may exist for the C-C mismatch, but the conditions are not 

optimal to determine this due to the weak binding.  Experiments with more ideal conditions 

have not been attempted.    

C.  Discussion, Conclusions, and Future Directions 

 Initial attempts at recognizing damaged and mismatched DNA were not successful 

due to conditions that were not ideal.  Data suggests that the original purpose for the design 

of Mut1 was realized and that duplex DNA binding has been inhibited due to the first strand.  

Previous data indicates that the peptide WKWK binds duplex DNA via some type of groove 

binding, and the first strand included in this peptide, Mut1, seems to make the peptide too 

large to form the same favorable contacts as it does in recognizing ssDNA.  The idea for 

applying this peptide to damaged and mismatched bases is that the binding pocket would 

recognize the damaged or mismatched base like it would a single-stranded sequence11 or 

ATP.15  A truncated version of Mut1 composed of Strands 2&3 (Mut1-S23) may be the best 

binder of a damaged or mismatched DNA base.  Many of the proteins which bind DNA 

                                                 
15 (a) Butterfield, S. M.; Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. (b) 
Butterfield, S. M.; Sweeney, M. M.; Waters, M. L. J. Org. Chem. 2005, 70, 1105-1114. 
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damage utilize β-hairpins in the recognition event,6, 7 so the hairpin forming Strands 2&3 

may display the tightest binding of a single base in the context of a duplex sequence such as 

in DNA damage.  Several additional studies could be conducted to better understand DNA 

recognition by different types of proteins.  These include comparing Mut1, Mut1-S23, and 

related peptides to binding different DNA modifications such as oxidative damage, 

methylation, and various mismatches.  New designs could be completed to improve binding 

affinity such that these types of studies could be more useful.  These experiments have not 

been attempted but could shed light on the mechanisms by which proteins recognize the 

various DNA modifications that occur within the cell. 

D.  Experimental Section 

i.  Peptide Synthesis and Purification 

Peptides were synthesized via automated solid phase peptide synthesis using an 

Applied Biosystems Pioneer Peptide Synthesizer.  Fmoc protected amino acids were used 

with a PEG-PAL-PS resin.  Amino acid residues were activated with HBTU (O-

benzotriazole-N,N,N’,N’,-tetramethyluronium hexafluorophosphate) and HOBT (N-

hydroxybenzotriazole) along with DIPEA (diisopropylethylamine) in DMF (N,N-

dimethylformamide).  Amino acids were deprotected with 2% DBU (1,8-

diazabicyclo[5.4.0]undec-7-ene) and 2% piperidine in DMF for approximately 10 minutes.  

Each amino acid was coupled on an extended cycle of 75 minutes to improve coupling.  The 

N-terminus of each peptide was acetylated using 5% acetic anhydride and 6% lutidine in 

DMF for 30 minutes.  Cleavage of the peptides from the resin as well as sidechain 

deprotection was performed in 95% trifluoroacetic acid (TFA), 2.5% H2O, and 2.5% 

triisopropylsilane (TIPS) for three hours.  TFA was evaporated by bubbling with nitrogen, 
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and ether was added to the resulting product.  The peptide was then extracted with water and 

lyophilized to a powder.   

Peptides were purified by reversed-phase HPLC.  A Vydac C-18 semi-preparative 

column was used for separation with a gradient of 5-35% solvent B over 25 minutes with 

solvent A 95:5 water:acetonitrile, 0.1% TFA and solvent B 95:5 acetonitrile:water, 0.1% 

TFA.  Peptides were then lyophilized and peptide sequence was confirmed by MALDI mass 

spectrometry.  After purification, all peptides were desalted with a Pierce D-Salt 

Polyacrylamide 1800 desalting column.   

ii.  DNA Sample Preparation 

          DNA sequences were purchased from IDT (Integrated DNA Technologies, Inc.).  All 

DNA samples were dissolved in 10mM Na2HPO4, 100 mM NaCl, adjusted to pH 7.0.  

Concentrations of both DNA strands were determined using a Perkin Elmer Lambda 35 

UV/Vis Spectrometer.  Absorbance values were determined at 260 nm, and concentrations 

were calculated using the extinction coefficients of the two DNA strands (ε260, ssDNA = 95500 

M-1·cm-1 and ε260, dsDNA = 112600 M-1·cm-1).  Equal concentrations of the two strands (in 

sodium phosphate buffer, pH 7.0) were pooled in a final concentration of 100 mM NaCl.  

The solution was heated at 95 ºC for 5 minutes to anneal the strands and was then allowed to 

cool to room temperature before storing at -20 ºC. 

iii.  Fluorescence Titrations 

To determine the recognition of single-stranded and double-stranded oligonucleotides 

by the peptides, fluorescence titrations were performed which followed the Trp quenching 

with increasing oligonucleotide concentration.  Peptide and nucleotide samples were 

prepared in 10 mM sodium phosphate buffer, pH 7.0.  Peptide concentrations were 
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determined in 5 M guanidine hydrochloride by recording the absorbance of the Trp residues 

at 280 nm (ε = 5690 M-1cm-1) by UV/vis spectroscopy.  Concentrations of nucleotides were 

determined by UV/vis spectroscopy by observing the absorbance at 260 nm.  Fluorescence 

scans were obtained on a Cary Eclipse Fluorescence Spectrophotometer from Varian.  The 

experiments were performed at 298 K using an excitation wavelength of 297 nm.  

Fluorescence emission intensities of the Trp residues at 348 nm were fit as a function of 

nucleotide concentration to the binding equation (Equation 7.1) on Kaleidagraph using non-

linear least squares fitting.16 

 Equation 7.1.    I = [Io + I∞([L]/Kd)]/[1 + ([L]/Kd)]      

where I is the observed fluorescence intensity, Io is the initial fluorescence intensity of the 

peptide, I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of 

added nucleotide, and Kd is the dissociation constant.  Oligonucleotides have an observable 

absorbance at the excitation wavelength of Trp (297 nm), and therefore there is an inner filter 

effect for which one must take account.  The absorbance of the oligonucleotides at 297 nm 

was monitored at known concentrations and the extinction coefficient was determined.  New 

absorbance values were determined for each oligonucleotide concentration.  Corrected 

fluorescence values were determined from the following equations (Equation 7.2 and 

Equation 7.3).17 

 Equation 7.2.    Fc = Fo/Ci 

 Equation 7.3.    Ci = (1-10-Ai)/(2.303)(Ai) 

                                                 
16 Lim, W. A.; Fox, R. O.; Richards, F. M. Protein Sci. 1994, 3, 1261-1266.    
 
17 Lohman, T. M.; Mascotti, D. P. Methods Enzymol. 1992, 212, 424-458. 
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where Fc is the corrected fluorescence, Fo is the fluorescence observed, and Ci is the 

correction factor for each absorbance value (i).  Ai is the new absorbance value for each 

concentration determined by the extinction coefficient. 

iv.  Fluorescence Anisotropy 

As in previous chapters, a fluorophore, 5-(and -6)-Carboxytetramethylrhodamine, 

mixed isomers (TAMRA), was purchased from Biotium, Inc., and was employed to provide 

an alternative to fluorescence quenching experiments using Mut1.  Because of the inner filter 

effect, many of the binding interactions cannot be measured accurately using the 

fluorescence quenching method.  TAMRA was coupled onto the peptide Mut1 at Orn 21.  

The synthesis was completed by coupling Lys(ivDde) in the original ornithine position 

(Orn21Lys).  The ivDde protecting group was orthogonally deprotected by treatment with 

2% hydrazine in DMF.  Manual coupling of TAMRA was performed with two equivalents of 

TAMRA (100 mg bottle used for 0.1 mmol peptide) and four equivalents of HOBT, HBTU, 

and DIPEA in DMF.  Cleavage from the resin and sidechain deprotection was completed as 

with all other peptides.  The resulting peptide was purified by HPLC and its sequence and 

purity determined by mass spectrometry.  Peptide concentrations were determined by UV-

Vis using TAMRA’s extinction coefficient of 91000 M-1·cm-1 at wavelength 559 nm using 

the same conditions as with unlabeled peptides.  This extinction coefficient was supplied by 

Integrated DNA Technologies, www.idtdna.com.  The excitation wavelength used in the 

experiments is 559 nm, and the observed emission wavelength is 583 nm.  Anisotropy was 

determined by the software that came with the instrument.  The anisotropy was fit to the 

following equation (Equation 7.4) using Kaleidagraph to determine the binding constant 

 Equation 7.4.  oo

dd

IIIP
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∞
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where F is the fluorescence anisotropy, Io is the initial fluorescence intensity of the peptide, 

I∞ is the fluorescence intensity at binding saturation, [L] is the concentration of added 

nucleotide, [P] is the peptide concentration for each fraction, and Kd is the dissociation 

constant.  Equation 7.4 was derived from equations given by Wang and coworkers.18 

 Overlay fluorescence plots are provided in the text of the chapter, but fits of each 

individual binding experiment are included in the Experimental Section below for 

completion.   
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Figure 7.6.  Fluorescence titrations of Mut1 with the single-stranded DNA sequence 5’-
TTGTT-3’ (Table 7.1a); 5 µM peptide concentration; 10 mM sodium phosphate buffer, 100 
mM NaCl, pH 7.0, 298 K. 
 

                                                 
18 Wang, Y.; Hamasaki, K.; Rando, R. R. Biochemistry 1997, 36, 768-779.   
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Figure 7.8.  Fluorescence titration of Mut1 with the double-stranded DNA sequence 
containing a G-G mismatch (Table 7.1d); 20 µM peptide concentration; 10 mM sodium 
phosphate buffer, 100 mM NaCl, pH 7.0, 298 K.  Experiment performed by fluorescence 
anisotropy. 
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Figure  7.9.  Fluorescence titration of Mut1 with the double-stranded DNA sequence with a 
C-C mismatch (Table 7.1e); 20 µM peptide concentration; 10 mM sodium phosphate buffer, 
100 mM NaCl, pH 7.0, 298 K. 
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