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ABSTRACT 
 
 

 
 

This project formulates a computational model for the biochemical network interlacing 

inositol phosphates (InsPs) critical in the metabolism of myo-inositol hexakisphosphate (InsP6). The 

role these InsPs are believed to play in developmental and homeostatic regulation underlines the 

need for novel analysis in model organisms like Arabidopsis thaliana. While some effects with 

apparent cause may be accessible by means of conventional analytics, a computational model for 

InsP synthesis could facilitate the resolution of far more complex queries and provide a 

comprehensive assessment of potential, even unintuitable, behavior. The primary goal of this project 

was to formulate an in silico model and to verify if, and to what extent, borrowed reaction kinetics for 

the InsP synthesis network recapitulate the behavior seen in traditional, in vivo studies. Preliminary 

results suggest that while our model’s response to loss of function mutations emulates some aspects 

of the expected results, divergent phenomena indicate the need for deliberate modification. A 

subsidiary goal of this project was to demonstrate the utility of the model through its application in a 

variety of perturbation schemes. The model was able to, among other goal-oriented objectives, 

verify behavioral expectations in response to an indirect implementation of an energy-sensing kinase, 

SnRK1, and thereby corroborate contemporary understanding of certain protein-protein interactions 

without the need for expensive testing. Clearly, the flexibility and heuristic capacity of this model are 

of value and suggest that this project may very well represent the state of the art insofar as 

computational modeling of InsP signaling is concerned. In the future, iterative revision will only 

help to improve this model’s efficacy and predictive power.  
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A COMPUTATIONAL MODEL FOR THE METABOLISM 
OF MYO-INOSITOL HEXAKISPHOSPHATE 

 
 

 
 
Introduction 
 
 

Myo-inositol phosphates (InsPs) are signaling molecules with diverse function that can be 

found in variety of organisms [1]. In animals, InsPs have been shown to demonstrate antineoplastic 

influence by means of mitigated proliferation and modulated cellular differentiation [2-3]. In yeast, 

the behavior of one particular InsP has been linked to mRNA export and chromatin remodeling [4]. 

In plants, the most prominent function of InsPs could be debated, but salient cases include roles in 

developmental transitions [5], homeostasis [6, 7], and secondary messaging—a process central to the 

continued transduction of extracellular stimuli [8]. These activities clearly illustrate the basic, if not 

translational, significance of InsPs in a broad contextual sense and underline the need for novel 

analysis in model systems like Arabidopsis thaliana.  

In plants, the regulatory mechanisms supporting inositol signaling are of particular interest. 

Unfortunately, very little is known about the gene regulatory network (GRN) responsible for 

controlling the expression and activity of enzymes pertinent to InsP synthesis [1]. Network inference 

is convoluted, or otherwise complicated, by the stochastic quality of molecular interaction, the 

expense required to mitigate noise via the abstraction of high-throughput data, and the crosstalk that 

occurs between “levels” of interaction, where the lattermost element here describes edges that 

extend between nodes of the central dogma or detail catalysis. Phytogenetics, even in the kingdom’s 

most studied organism, has not yet developed to the extent required to map interplay between 
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relevant transcription factors and the sequences they affect. This knowledge would be of great utility 

in developing genetically modified organisms with characteristics optimized for a variety of 

applications. To achieve this end, however, would require that the scientific community engage in 

research that is traditionally hindered by costly experimentation—tests and assays that, without 

adequate support, can be largely immaterial. Consequently, most related work has instead focused, at 

least for the time being, on developing an understanding of the metabolic network InsPs comprise, 

which is a logical precursor to resolving “deep” connections [9].  

Some current research questions concerning InsPs might appear fairly elementary to those 

unfamiliar with the subject. For instance, a legitimate question might ask, although there are existing 

theories, when and where in cellular dynamics is myo-inositol hexakisphosphate (InsP6) synthesized? 

Other questions might merit more intricate consideration. For instance, how and why might InsP6 

be transported into vacuolar space (a form of storage), presuming its synthesis occurred in a 

cytosolic compartment? What effect could the energy status of a cell or a perturbed enzymatic 

balance have on said transport? Could a missing link in the metabolic network explain conceptual 

discrepancies in the response to loss of function mutations? What regulatory quotient might push 

the system toward a specific target state? These questions are just a few examples of the catechisms 

that this project hopes to influence.   

While some effects with apparent cause may be accessible by means of conventional 

analytics, a computational model for InsP synthesis could facilitate the resolution of far more 

complex queries and provide a comprehensive assessment of potential, even unintuitable, behavior 

[10, 11]. The purpose of this research, then, is to employ a bottom-up approach to the resolution of 

hierarchical influence in InsP signaling by first synthesizing prevailing theoretical schemes and 

measurable parameters in an in silico environment before migrating into implicit dimensions or 

developing a sense of systemic behavior. In the simplest sense, this framework will predict metabolic 
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dynamics as a function of enzyme concentrations. This operational link creates an opportunity for 

meta-heuristics—in this case, system-level insight that exceeds simply evaluating time-course 

kinetics. If this model demonstrates sufficient predictive power and has been agreeably verified, we 

may gain new intuition concerning the enzymatic balance needed to push the system’s states toward 

some target and peer, as it were, into regulatory space. If in nothing else, this approach finds merit in 

that computational modeling tends to be relatively exhaustive and yet financially modest, so that any 

cost can be outweighed by substantial benefit.  

There are a variety of mathematical paradigms that could be utilized in this situation to 

reconstruct subcellular interplay. The simplicity of flux balance analysis is attractive for systems with 

gaps in documented kinetics, but this structure lacks analytical flexibility in its constraints [12]. We 

turn, instead, to frameworks that boast resilience and familiarity in their use of ordinary differential 

equations, for which there are many well-documented approaches to systems analysis. Control 

theory and biochemical systems theory are robust schemes but rely on information that is either 

unknown or limiting in terms of the heuristic scope this project could have [13]. Mass action kinetics 

and Michaelian kinetics are differentiated by their popularity in biochemical modeling and the 

mechanistic significance of Michaelis constants in vitro [14].  

Unfortunately, most kinetic models require a large number of empirically derived constants 

to accurately emulate in vivo behavior. Mass action models use “turnover” numbers or catalytic rate 

constants for each reaction to estimate dynamics through a linear sum. Michaelian models employ 

differential algebraic equations that rely on pairs of so-called “Michaelis constants.” Together, these 

metrics describe substrate-enzyme affinity and reaction momentum. Notably, these mechanistic 

equations involve knowledge of the absolute concentration of a network’s enzymes and metabolites. 

While the experiments used to quantify these characteristics can be complicated and expensive, in 

recent years the state of the art has witnessed a growing precedence for parameter estimation and 
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data curation [15, 16]. With the advent of BRENDA and other online resources for information 

concerning biochemical reaction kinetics, computational models may instead rely on data abstracted 

from literature [17]. The primary goal of this project is to, first, formulate an in silico model of the 

biochemical network interlacing InsPs critical in the metabolism of InsP6 and, then, to verify if, and 

to what extent, borrowed reaction kinetics recapitulate the behavior seen in traditional in vivo studies. 

 
Background 
 
 

Chemically, InsPs differ according to the number and position of phosphate groups bound 

to a myo-inositol ring, which is the most common stereoisomer of cyclohexanehexol. Together, these 

characteristics (i.e., number and position) form the basis for a chemical language [9]. Figure 1 

illustrates that InsP6 can be synthesized by phosphorylating the second position of Ins(1,3,4,5,6)P5, a 

specific constitutional isomer of InsP5. Note that the rate of each kinase reaction is dependent on 

the state of cellular energetics, since ATP is called upon to donate a phosphate group.   

 
 

 
 
 
 

Figure 1 

Phosphorylation of C2 on Ins(1,3,4,5,6)P5 

 Figure 2 depicts the section of the InsP synthesis network that we have chosen to include in 

our pilot model. The selected window represents each path leading to the production and storage of 

InsP6, beginning with either lower InsPs or inositol pyrophosphates (PPx-InsPs). To be clear, PPx-

InsPs are similar to InsPs but instead carry two phosphate groups at one (or more) position(s). Our 

system includes six explicit reactions, three implicit “reactions” or channels for material flux, and 
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one avenue for “transportation,” or transmembrane migration. Despite an effort to account for 

every salient reaction between the metabolites that appear, there may be additional interactions that 

have not been described. For instance, while a single “reaction” has been employed to describe 

material influx (a source of mass) at the top of Figure 2, Ins(1,3,4,5,6)P5 is actually synthesized via 

one of two evolutionarily discrete channels, termed the lipid-dependent and lipid-independent 

pathways [18]. The former sequence is shared with other organisms (e.g., animals and yeast) while 

the latter is unique to plants [1]. That the model can readily integrate “new” or missing reactions on 

the basis of biochemical theory is a testament to its flexibility. The effect of this capacity will be 

demonstrated in rectifying a discrepancy between theoretical expectations and experimental 

observations. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2 

The InsP synthesis network 
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 Once Ins(1,3,4,5,6)P5 has been synthesized, irrespective of its origin, a specific kinase (IPK1) 

may readily phosphorylate its second carbon position, as depicted in Figure 1. In seeds and 

vegetative tissue alike, this reaction results in the accumulation of InsP6 in subcellular space. At this 

juncture, mass will flow in one of five “directions,” excluding the course just described.  

That is, mass may: 

Option 1. Shift back toward Ins(1,3,4,5,6)P5 if the reaction quotient has outstripped the 

concomitant equilibrium constant, 

Option 2. Migrate into vacuolar space (storage) via an ABC transporter, MRP5, 

Note: this action does not alter chemical identity. 

Option 3. Shift (a) to or (b) from the PPx-InsP branch via VIP1/2 or DIPP, respectively, or 

Option 4. Shift “forward” into degradation, wherein Phytase is purportedly responsible for 

facilitating a reclamation process or “positive synthetic feedback.” 

 
 Option 2 is of particular interest in biochemical research. As noted in the introduction, InsPs 

are biologically diverse in function but can be thought of, in the simplest sense, as being molecular 

storage units for phosphate groups. In the context of buffering the bioavailability of phosphate, the 

ability to bind any number of these key substituents is of great importance and is only augmented by 

creating sequestered pools of InsP6 in vacuolar space. In theory, plants could retain this particular 

polyphosphate—InsP6—in nutrient-rich intervals, only to mobilize these deposits as incident 

nutrients are drained. In this arrangement, transport to and from vacuolar space would be a function 

of and reflect not only development, but also environmental conditions. There is evidence for 

similar phenomena in Arabidopsis thaliana, the model organism we hope to emulate [19].  

A member of the ATP-binding cassette (ABC) superfamily termed multidrug resistance 

protein 5 (MRP5) has been identified as the most likely macromolecule responsible for the 
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transmembrane migration of InsP6. This is significant because this particular ABC transporter can 

only export mass from the intracellular compartment [20]. After InsP6 has migrated through some 

imagined tonoplast, it may be integrated into one or another “globoid,” a spherical inclusion in 

protein bodies that serves to store phytate and other nutrients. While the exact mechanism through 

which InsP6 is released may not be understood and has only been theorized, nutrient discharge has 

been documented throughout seedling development [19]. With this information in mind, it is 

possible to ask informed questions. Specifically, what effect could the energy status of a cell or a 

perturbed enzymatic balance have on this transport? 

 It is important to understand that options 1, 3b, and 4 entail degradation or the removal of 

one or another phosphate group while options 2 (no change) and 3a (an addition) do not. Likewise, 

it is critical that we distinguish each reaction on the basis of its complexity. In an attempt to reduce 

the number of kinetic parameters required for each reaction, we have chosen to exclude kinetic 

metrics for water and inorganic phosphate from all reactions, irrespective of volatility, but will 

include ATP and ADP as important substrates tied to cellular energetics. Consequently, the 

hydrolysis reactions catalyzed by either Phytase or DIPP are necessarily “uni-uni” reactions, meaning 

these are reactions with a single substrate and a lone product. Fortunately, these reactions are, at 

least when catalyzed by Phytase and DIPP, inherently irreversible. This scheme is somewhat 

complicated by the reversible behavior IPK1 and the VIP kinases demonstrate, in that we classify 

their reactions as “bi-bi,” despite the potential involvement, again, of water and inorganic phosphate. 

Finally, we consider the transmembrane migration facilitated by MRP5 to be, at least conceptually, a 

“bi-uni” reaction [14]. This is because while the concentration of ATP is critical in determining the 

activity of the pump, its function is purportedly irreversible, making the concentration and 

Michaelian kinetics of ADP inconsequential.   

 In mammals and in yeast, option 3a is achieved through the action of at most two enzyme 
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classes: the IP6 kinases (IP6Ks) and/or the VIP kinase sequence described above. The genes for the 

former class do not appear in plants, establishing AtVIP1 and AtVIP2 as those enzymes most 

pertinent to this and the neighboring PPx-InsP reaction: from InsP7 to InsP8 [21]. The specific 

constitutional isomers of the PPx-InsP branch have not yet been definitively resolved in Arabidopsis. 

A comparison with	phylogenetically proximal organisms might suggest that the phosphorylation of 

InsP6 and InsP7 is most likely to occur at the 1st or 5th position of the myo-inositol ring [22]. At any 

rate, this project will instead delineate any	diphosphoinositol pentakisphosphate as InsP7 and any 

bis-diphosphoinositol tetrakisphosphate as InsP8 . 

 In general, option 4 presents difficulty in that while Phytase may theoretically reduce InsP6 

to a simple polyol via intermediates that share an identity with substrates driving influx—thereby 

creating some form of positive synthetic feedback—the specific identity of those intermediates is 

largely unknown. Inasmuch, the influx, synthetic feedback, and efflux of the selected window must 

be accounted for indirectly and represent the three “implicit” reactions mentioned earlier. A recent 

article in the New Phytologist by Panzeri, et al. has suggested that in mutants with a defective ABC 

transporter, this loop becomes “futile” and negative feedback inhibition represses IPK1 and a 

handful of enzymes upstream [23]. Given this project’s limited resources and the modest number of 

reactions it considers, addressing this theory directly is likely beyond scope of our pilot model but 

could hopefully be investigated with future revisions. It is worth noting that MRP5 mutants are also 

known to present decreased and increased concentrations of InsP6 and InsP7, respectively [24]. The 

mechanism for this is not yet fully understood, but it is hoped that this model might provide insight 

concerning what mechanism may be needed to rectify this and similar, unexpected observations. 

 For instance, a correlation between the proliferation of PPx-InsPs, low energy status, and 

the necessity of VIP genes in responding to low energy conditions has led to the supposition that 

AtVIP enzymes may function as metabolic regulators. One possible mechanistic link between PPx-
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InsPs and elevated enzymatic activity could be the sucrose non-fermenting related kinase 1 (SnRK1) 

[unpublished]. This protein is a low-energy sensing kinase that, beneath a certain energetic threshold, 

forms a protein complex with VIP. This interaction results in a key phosphorylation that may 

increase VIP’s activity and is believed to escalate the concentration of “higher” and 

pyrophosphorylated InsPs. We hope to verify these behavioral expectations in response to an 

indirect implementation of SnRK1 and thereby further corroborate contemporary understanding of 

this protein-protein interaction without the need for expensive testing. 

 In reviewing the in vivo response to various double VIP mutations, we noticed that the 

presence of InsP7 was more or less unaffected by what should amount to pinching the source of 

mass for the PPx-InsP branch. Naturally, this discrepancy engendered a series of questions that 

culminated with the following query: could a missing link in the metabolic network we have 

proposed explain conceptual discrepancies in the response to loss of function mutations? More 

specifically, and on the basis of expert knowledge concerning this system, could a reaction between 

Ins(1,3,4,5,6)P5  and InsP7 more or less bypass the activity of VIP in its absence? This hypothetical 

reaction will herein be referred to as the system’s “X-link.” 

 
Significance 
 
 

Recall that Figure 1 illustrates the phosphorylation of Ins(1,3,4,5,6)P5 to generate myo-inositol 

hexakisphosphate, or phytic acid. Decomposition of any InsP, by contrast, releases inorganic 

phosphate, a macronutrient, through hydrolysis. Systematic degradation of InsP6 is, however, 

particularly favorable as phytic acid is considered an “antinutrient” [25]. This property of InsP6 is a 

physical consequence of its affinity for metal ions as a highly charged molecule.  Phytic acid can 

chelate (or bind) essential minerals like iron, zinc, magnesium, or manganese. This activity could lead 

to intriguing inorganic biochemical queries if, as discussed in the background section, InsP6 is 
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sequestered as a function of the cellular environmental or developmental stage and carries with it the 

aforementioned minerals.  At any rate, chelation leads to nutrient deficiency because InsP6 is, by 

itself, indigestible by non-ruminant animals [26]. In the context of agricultural ecosystems and 

nutritional balance, targeted decomposition of InsP6 could therefore lead to a reduction in dietary 

interference in that these minerals would be more readily absorbed. Likewise, a deliberate shift in 

state away from phytic acid in genetically modified plants may decrease the need for supplementary 

inorganic phosphate in animal feed because endogenous bioavailability would necessarily increase. 

Finally, these effects may, in turn, reduce nutrient runoff in nearby aquatic ecosystems, provided that 

the inorganic phosphate released by hydrolysis is absorbed. The cascading consequence of the 

lattermost effect is of particular significance, as phosphate runoff is understood to cause 

eutrophication that threatens the survival of key endangered species and, at length, Earth’s delicate 

biosphere [21, 27]. Despite the variety of potential translational applications for InsPs in general, our 

focus on plants and Arabidopsis specifically has limited the immediate significance of this project to 

applications that are likely agronomical in nature. If nothing else, this model will likely help to 

address some of the long-standing issues in basic science that have for years impeded our 

understanding of inositol phosphate signaling in plants.  

 
State of the Art 
 
 

Generating a resilient in silico model of complex biochemical dynamics using only broad 

conceptual notions and external references certainly presents a challenge. To date, many biochemical 

models with mathematical structures similar to ours have utilized in-house experiments to quantify 

key kinetic or system parameters. This process can be complicated and expensive. While the 

accuracy and applicability of pertinent information is certainly in direct proportion to success, 

measuring any and all potentially relevant parameters can be problematic from a practical 
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perspective. Indeed, measuring the value of each parameter only to construct a model that indicates 

which metrics may need to be revised on the basis of verification seems a bit paradoxical. Why not 

first estimate the required kinetics and cross check sensitivity analysis with uncertainty metrics to 

determine which kinetic parameters are of relatively greater value and therefore worth resolving 

more precisely? The latter approach, here, relies on whether or not it is possible to synthesize a more 

or less functional system using information that has been synthesized from various sources.  

In recent years there has been a growing precedence for parameter estimation and data 

curation [15, 16]. With the advent of BRENDA and other online resources for information 

concerning biochemical reaction kinetics, computational models may instead rely on data abstracted 

from literature [17]. These online tools simplify the otherwise impossibly laborious task of sifting 

through hundreds and maybe even thousands of papers to find a handful of key kinetic parameters. 

As the results section illustrates, the flexibility and heuristic capacity of this model are of value and 

suggest that this project may very well represent the state of the art insofar as computational 

modeling of InsP signaling is concerned, certainly in that its parameters have almost entirely been 

sourced from external assessments. In fact, to the best of our knowledge, there are no other 

computation models for InsP signaling that employ a mathematical framework of similar quality, 

particularly not any that consider this relatively unexplored set of reactions or have a capacity for 

system level meta-heuristics.  

 
Research Goals 
 
 

In light of the state of the art, this project aims to forgo undertaking measurements for all 

potentially relevant parameters by first synthesizing prevailing theoretical schemes and kinetic data 

from online resources. If the resulting model is used to cross check sensitivity analysis with 

uncertainty metrics, we will be able to determine which kinetic parameters are of relatively greater 
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value in goal-oriented tasks and thereby create a shortlist of parameters that are worth resolving 

more precisely. This information can be used to optimize iterative improvements to the model by 

focusing primarily on revising data points with the most influence.  

To appreciate its impact, it is important to position this work in the context of being 

preliminary to a larger cohort of related research. As a pilot model, this project need only produce a 

basis for future iterations that, having been informed by the returns this model generates, aim to 

improve the system’s validation, predictive power, and resilience. Since this venture is highly 

interdisciplinary in nature, it may take time for future iterations to engender new developments as 

the result of continued collaboration.  

For reference, a reasonable functional metric in this context may be simply whether or not 

the system’s response to perturbation matches the expected phenomena in a qualitative sense. For 

instance, an acceptable outcome might be that, for one or another loss of function mutation, the 

system’s states shift not only in the expected direction, but with a magnitude more or less 

comparable to experimental data. 

 

 
 

 

 

 

 

 

Figure 3 

Diagram of interplay between key objectives 
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 Figure 3 illustrates how the fundamental elements for this research project cooperate 

diagrammatically to achieve key objectives. By piecing together the appropriate substituent data and 

by corroborating early returns, we hope to assemble an in silico replica of the selected metabolic 

window capable of facilitating key applications with the hope that in doing so we may glean insight 

and new intuitions concerning system-level behavior in InsP signaling.  

 
In summary, we hope to: 

1. Formulate a computational model for InsP synthesis that will: 

a. Employ parametric data obtained from literature and various databases to determine 

if, and to what extent, borrowed reaction kinetics can recapitulate in vivo behavior 

b. Facilitate key system-level analytics such as objective-driven optimization and 

sensitivity analysis, among other more elementary tasks 

2. Verify the pilot model by comparing the system’s response to in vivo observations for 

knockout mutations in key enzymes 

3. Demonstrate the utility of the model in various applications by: 

a. Predicting the regulatory balance concomitant to a low energy state 

b. Testing the response of the system to energetic modulation via SnRK1 

c. Investigating the model’s behavior with a new reaction (the “X-link”)  

 
Methodology 
 
 

There are a variety of mathematical paradigms that could be utilized in this situation to 

reconstruct subcellular interplay. Flux balance analysis is common [12]. Its structure only requires 

knowledge of stoichiometric coefficients for each reaction. This simplicity is attractive for networks 

with gaps in documented kinetics but sacrifices flexibility by assuming steady state conditions and 
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optimality. In this framework, some objective function would describe a scenario wherein the 

relative amount of each metabolite is defined. The system would then return the (or, more 

problematically, a) flux distribution capable of maintaining the prescribed state. Subsequent 

variability analysis might elucidate interdependent flux domains from which the optimal solution can 

be obtained. Since analysis does not necessitate knowledge of kinetic parameters, the window of 

analysis can be extended greatly, so long as gaps in the network are avoided. Such gaps are, however, 

a shortcoming of research related to InsP signaling. Many reactions and their stoichiometric 

coefficients are only just now being theorized. If the window of considered reactions needs to be 

relatively limited to ensure accuracy, flux balance analysis would undoubtedly be outstripped by a 

more robust mathematical device.  

Control theory, for example, may be used to explicate relationships beyond the scope of flux 

balance analysis by integrating information on feedback inhibition. More generally, biochemical 

systems theory (BST) constructs ordinary differential equations for metabolite concentrations [Mi] as 

a function of system variables [13]:  

 
d[Mi]
dt

 = µij· λj
j

[M]
k

Qjk

k

 

	
—with stoichiometric coefficients µ, rate constants λ, and kinetic order Q. Much like flux balance 

analysis, however, BST relies on knowledge of stoichiometric coefficients and reaction order in a 

way that limits the window of considered reactions without providing a sufficient advantage over 

other methods that might warrant its use. One advantage of BST is the flexibility and familiarity of 

ordinary differential equations (ODEs). There are many well-documented approaches to systems 

analysis for ODEs. In contrast with Michaelian kinetics, BST does not utilize system parameters 

with measurable, mechanistic phenomenon in vitro.  With this in mind, we turn to kinetic analysis.  
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In general, a kinetic system can be developed by assuming that the time derivative of any 

quantity X varies as the difference between the rate, v, of its production and depletion. That is: 

dX
dt

 = vproductionX
i

- vdepletionX
i

 

	

 Much in the same way, we have created a system of differential algebraic equations by 

considering this scheme for each metabolite within the InsP synthesis network—more specifically, 

the window delineated in Figure 2. For simple uni-uni, irreversible reactions like those catalyzed by 

Phytase and DIPP, we chose to employ the familiar Michaelis-Menten expression [14]. That is: 

 

v = d[P]
dt

 = kcatE E T S
KMS,E+ S

 

	

 Here, KMS, E and kcatE represent the substrate-specific Michaelis constant and catalytic rate 

constant (or turn over number) for the general reaction S + E ↔ ES → P + E, so that [S] and [P] 

represent the substrate and product concentrations, respectively, while E denotes the enzyme 

responsible for catalyzing the reaction. Since there may not be a one-to-one correspondence 

between active loci and protein bodies, the total concentration of catalytic sites is symbolized by [E]T 

to clarify this distinction. While rate equations are certainly simpler for uni-reactant systems, few 

reactions truly consist of a single substrate-product pair. For similar bi-substrate, irreversible 

reactions with the form A + B → P, we employ a related expression found in literature [14]: 

 

v = kcatE E T A B
A B +KMA,E B +KMB,E A +KMA,EKMB,E

 

 
 

 With some inspection, it should be clear that this equation is simply an extension of the 

familiar Michaelis-Menten expression we employed for simple uni-uni reactions. Differences 
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between the two forms have been highlighted in red to accentuate a sensitive trade off between the 

accuracy of mechanistic equations and their simplicity. To consider an additional substrate for an 

irreversible reaction, the expression must integrate knowledge of not only a new Michaelis constant, 

but also the absolute value for boundaries that describe the range of state for the concentration of 

the subsidiary substrate. The latter information is important for sampling initial conditions and 

gauging the viability of the model’s response. The transmembrane migration of InsP6 is the only 

network link that fits this description in the reactions this project considers. This is because while 

the concentration of ATP is critical in determining the activity of the ABC pump, its function is 

purportedly irreversible, making the concentration and Michaelian kinetics of ADP inconsequential. 

While this form does not, in the strictest sense, describe the mechanism of this transport, the 

selected expression should reasonably approximate the protein-substrate interactions required to 

ship phytic acid across some vacuolar tonoplast.  

 Given the complexity of explicit mechanistic expressions for fully reversible bi-bi reactions 

of the form A + B ↔ P + Q, we have opted to use a “simplified, generic” equation [28] developed 

by Rohwer, et al. Again, key differences between this and the prior form, insofar as parametric 

complexity is concerned, have been highlighted in red: 

 

vnet = kcatE E T

A B
KMA,EKMB,E

1-
P Q

Keqn A B

1+
A

KMA,E
+

Q
KMQ,E

1+
B

KMB,E
+

P
KMP,E

 

 
 
—where Keqn denotes the equilibrium constant for the reaction. In total, this expression requires 

knowledge of only seven additional values, two for each metabolite that together comprise the 

expected bounds for the substrate concentration in wild-type (WT) conditions. This is actually a 
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favorable reduction as it eliminates the need for as many as twelve additional values. To be clear, this 

form was originally derived by Rohwer for its “relative simplicity in comparison to … mechanistic 

models.” Rohwer believed that the modeling “process would … be aided if a generic equation was 

available that contained fewer parameters and yet described the kinetic behavior of [an] enzyme 

adequately.” The value of his contribution, however, is not limited to the reduction of parametric 

data. Mechanistic equations are further complicated by differences in form that account for the 

order of substrate binding [14]. The primary mechanistic classifications include random, ordered-

sequential, and ping-pong schemes that describe operations that fit nominal expectation. Since the 

mechanism for these reactions is unknown, that Rohwer’s equation is not only “simple,” but also 

“generic” is of great importance since it “fits data from both the ordered and … ping-pong models 

well.” The exact mechanism is “irrelevant” to “the behavior of the pathway as a whole.” In theory, 

the rate given by this expression matches the mechanistic rate within, at most, 3% of the “true” 

value for domains ranging well over 2 orders of magnitude [28].  

 The use of Michaelian kinetics is only further supported by its capacity to integrate explicit 

measures of inhibition and activation. While specific details concerning feedback are yet to be 

uncovered, these features can be integrated into the model by scaling the applicable Michaelis 

constant. That is, by scaling either a KM value or kcat [E]T = Vmax. For reference, modifications are 

feasible for competitive, non-competitive, and uncompetitive inhibition, respectively, where the 

latter-most modification alters both kinetic constants as follows [14]. Here, KMi has scaled its 

uninhibited counterpart KMo by some term with inhibitor I and its Michaelis constant Ki . Similar 

adjustments are possible for enzyme activation.  

 

KMi  = KMo
I
Ki
+1  
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Vmaxi  = Vmaxo
I
Ki
+1

 

 
 In theory, Arabidopsis should retain InsP6 in nutrient-rich intervals only to mobilize these 

deposits as incident nutrients are drained. In this scenario, transport to and from vacuolar space is a 

function of development. For the sake of simplicity, this project will assume that phosphate 

accumulates in early development (that is, in seeds, if an organ-level distinction must be made) 

before being called upon throughout maturity (or in leaves). This is consistent with documentation 

of nutrient discharge throughout seedling development [19]. With this proposition, we may 

reasonably assign a leak from storage in leaves while constraining vacuolar capacity in seeds to the 

bounds of experimental observation.  

 

  

 

 

 

 

 

 

 

 

 

Figure 4 

Limit to vacuolar capacity achieved by waning the activity of MRP5 
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 This task is accomplished using a novel approach developed for this project. We begin by 

sampling a threshold for capacity between the nominal concentration of phytic acid in vacuolar 

space and half the distance to the upper bound of expectation. This sampling is repeated with each 

set of initial conditions to maintain some semblance of freedom in the terminal cap. From a practical 

perspective, once this threshold has been exceeded, the activity of MRP5 is diminished exponentially 

as a function of the distance between the rising concentration and said threshold. This modulation is 

made dynamically within the system of equations. Allegorically, this amounts to pinching some 

channel connecting intra- and extracellular space. Figure 4 illustrates the result.  

While the mechanism that releases InsP6 from storage may not be understood, a study by 

Bohn et al. has quantified the Michaelis constants for the degradation of InsP6 found in isolated 

phytate globoids, the protein structures within which phytic acid is believed to nest while in storage. 

Additionally, Bohn identifies myo-inositol’s third carbon position as being the target for catabolic 

activity in this context [29]. This suggests that, if this information is used to theorize some form of 

emission, the “product” of our leak should be Ins(1,2,4,5,6)P5. Two caveats to this arrangement are 

that it necessarily assumes that the phytic acid in storage is found only in globoid deposits and that 

these complexes cannot be otherwise disintegrated.  

Flux at the periphery of the selected window is accounted for using Hill functions with an 

adjustable parameter vector ϕ and constants n [14]: 

d[Xi]
dt

 = ϕi
n

ϕi
n+ Xi n

 OR 
Yi n

ϕi
n+ Yi n

 

 
—where ϕ represents the “substrate” specific concentration concomitant to a reaction rate at half its 

maximum value. Here, X and Y are used to differentiate whether or not a rate is self-dependent. A 

limit of the first expression reveals that if the concentration of X is large, its rate of change 
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approaches zero. The converse is also true. These characteristics are useful for modeling generic 

influx. Likewise, a limit of the second expression shows that if the concentration of Y is small, the 

rate of change for X approaches zero. Inasmuch, the latter expression is used to emulate not only a 

generic efflux, but also the positive synthetic feedback described in the background section on pages 

6 and 8. This scheme was favored in deliberations for its flexibility, as the appropriate definitions for 

material flux can vary not only between seeds and other vegetative tissue, but also across 

development. In general, Hill functions are appropriate because the resulting rate of mass transfer 

may increase or decrease dynamically depending on what other strains the system is experiencing.  

 For these functions to stabilize the system in way that best emulates in vivo behavior, values 

for each constant ϕ must be resolved alongside some Hill constant n. Given that the purpose of 

these “reactions” is to prevent systemic mass from either proliferating or becoming depleted, a value 

of 3 was proposed for all Hill constants n on the basis that this balances the reactivity of these flux 

channels and is therefore best suited for this context. This was confirmed empirically. Meanwhile, 

the vector ϕ was set using Monte Carlo runs that aimed to minimize the Euclidean distance between 

the present and wild-type steady state for select metabolites while maintaining a 9:1 ratio between 

synthetic feedback and material efflux. This proportion was favored in discussions relating this 

framework to biochemical experts. The algorithm responsible for pushing the system’s states to a 

favorable location (i.e., ‘phiset.m’) would not be possible without empirical knowledge of the effects 

each flux channel has on the system. These characteristics were discovered by inspection. Figures 5 

and 6 demonstrate the algorithm’s ability to minimize this distance and maintain a 9:1 ratio between 

synthetic feedback and material efflux, respectively.  
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Figure 5           

Resolving the vector ϕ           

                                             

 

 

 

 

 

 

 

Figure 6 

Maintaining a 9:1 ratio between synthetic feedback and material efflux  
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Figure 7 

Resolving the vector ϕ 

 
 Figure 7 illustrates the effect of this approach in 3-space, where each circle denotes a steady 

state and each curve the trajectory from the system’s initial condition. The red box encloses the 

expected space for solutions on the basis of probable boundaries for each concentration. Bounds 

were derived either from literature or our own measurements [30-38, unpublished].                                               

Kinetic data for each of the six enzymes was obtained in a literature search expedited by 

online databases like BRENDA [20, 30-38]. Note that of the six, only two enzymes are currently 

being modeled using data from Arabidopsis, while the rest use parameters obtained using enzymes 

isolated from either other plants (1), yeast (1), or humans (2). Likewise, wild-type enzyme and 

metabolite levels were derived either from related literature or from our own measurements.  

MATLAB was selected as the coding environment for this work due to its matrix-oriented 

manipulation of data. System parameters for seeds and leaves are indexed separately so that the user 
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can quickly select the organ she would like to investigate. The steady-state solution space is 

determined with Monte Carlo runs that sample initial conditions within the bounds of expectation 

for each reactant and solve the system of equations over some interval. It is wise to include a safety 

factor here to avoid false returns in transience. The argument for this action must include a vector 

containing the concentration of each enzyme. In most cases, the WT profile should be provided. 

Redundant solutions are excluded on the basis of a tunable threshold for uniqueness. This approach 

to steady state determination may be supplemented with the Levenberg-Marqaurdt algorithm. Time-

course data is then tabulated and plotted for some number of initial conditions. Solutions can be 

viewed with or without a variety of key markers. The stability of a solution is assessed by evaluating 

the sign of eigenvalues associated with the system’s Jacobian matrix at that location. Loss of 

function mutations are modeled by executing the preceding tasks in quick succession, passing an 

increasingly modulated enzymatic profile with each iteration. An algorithm has been developed to 

automate this process and track the return.   

 
Algorithms for System Analysis 

 
Interest in predicting the regulatory balance concomitant to a particular steady state has led 

to the development of an optimization function. The resulting framework uses a “genetic algorithm” 

(GA) to assess the fitness of each solution and adjusts its operation accordingly [39]. Conceptually, a 

GA appeals to preeminent ideas in the theory of evolution to inform its mechanism for 

optimization. Much in the same way that key characteristics advantage certain individuals competing 

for, say, food and shelter, our GA assigns an elevated metric of “fitness” to enzyme profiles that 

correspond to states proximal to the target “location” in hyperspace. By using Euclidean distance as 

a metric for strength and by sifting through a batch of entries, the function can rank a set, or 

“generation,” of profiles. The next generation is created by retaining elite individuals and by 
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introducing variation through the stochastic combination of mutation and recombination. Mutation 

is accomplished by resampling random indices within a profile while recombination applies a 

complementary pair of binary masks to facilitate a random exchange between profiles in a process 

analogous to chromosomal crossover. If this technique is repeated for a sufficient number of 

generations, the function will likely reach an optimum. This process can be improved by adjusting 

the mutation rate and by increasing the number of individuals within the population.  

To determine which kinetic parameters are of greatest value in goal-oriented tasks, the model 

needs to implement some form of sensitivity analysis. The Morris one-at-a-time (MOAT) method 

was selected for its flexible scope and efficiency [40]. Conceptually, the MOAT method calculates 

statistics for the so-called “elementary effects” of our parameter matrix. These elements are nothing 

more than a measure of the effect a small change in one input can have on the system’s output. In 

the simplest sense, this function generates a rank-ordered list that indicates which parameters have 

the most influence in a particular context. Practically, this feat is accomplished by first reducing the 

range of k parameters to dimensionless intervals between zero and one. The resulting unit 

hypercube is then discretized along each dimension using a constant and predetermined interval. A 

trajectory is formed within this space by selecting a random initial condition and by changing one 

coordinate at a time using a premeditated step Δi k+1 times. Trajectories differ, then, according to 

both the initial condition and the order of modulation. For each step Δi , an elementary effect EEi is 

calculated: 

EEi = y x+ei∆i -y x
∆i

 

 
… with parameter vector x, output y, and unit vector ei . The mean and standard deviation of 

elementary effects are then calculated for each parameter. The former is a straightforward measure 

of relative importance while the latter metric is said to reveal the prevalence of parametric 
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interaction and divergence from linearity. This information can be used to optimize iterative 

improvements to the model by focusing primarily on revising data points with the most influence.  

 
Results  

  
 A comparison of the model’s response to key loss of function mutations with in vivo 

observations yielded promising markers for verification. In some cases, the model performed 

extraordinarily well by matching not only the direction of influence, but also its magnitude with 

accuracy well within an estimated range of uncertainty. Figure 8 depicts one such case for an IPK1 

knockdown in seeds. Experimental data reports an 83% reduction of InsP6 [20]. As is the case with 

most observations concerning loss of function mutations, this value is reported without an explicit 

metric for translational interference. If, however, the knockdown is presumed to affect about 90% 

of translation with, say, a conservative 10% estimate for uncertainty, then the model’s prediction 

either intersects the biological measurement or nearly does so. In other cases, the model 

demonstrated a more qualitative capacity by tracking the direction of a response for one or another 

metabolite without strictly matching its magnitude.   

 Of course, this trend for verification was not without exception. Figure 9 details an 

interesting case in which the model predicts a steady decline in the concentration of both inositol 

pyrophosphates in response to a VIP1/2 double knockdown. This behavior is not in line with 

experimental observations that indicate that, in fact, little to no change occurs for these metabolites. 

Intriguingly, however, there is no intuitable reason to conclude that the PPx-InsP branch would be 

insensitive to a deliberate reduction of its only source. Could a missing link in the metabolic network 

we have proposed explain this conceptual discrepancy? More specifically, and on the basis of expert 

knowledge concerning this system, could a reaction between Ins(1,3,4,5,6)P5  and InsP7 more or less 

bypass the activity of VIP in its absence and stabilize the PPx-InsP branch? Figure 10 illustrates the 
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effect of integrating this reaction (or, rather, set of reactions) using kinetic parameters for IPK, a 

likely candidate for this interaction should it exist in actuality. While the specifics for this X-link are, 

of course, almost entirely unknown and can only be theorized, the heuristic capacity of the model 

supports our suspicion by sustaining the stability of diphosphoinositol pentakisphosphate. That the 

model still predicts a steady decline in concentration for InsP8 may be a shortcoming of the model 

to adequately capture material transfer without detailed kinetics or perhaps the consequence of yet 

another uncharted connection.   

 Much in the same way, we hope to investigate a correlation between the proliferation of 

PPx-InsPs and low energy status. One possible mechanistic link between the PPx-InsP branch and 

energetics could be SnRK1, a low-energy sensing kinase that phosphorylates VIP and augment’s its 

activity [unpublished]. This cascade is believed to escalate the concentration of pyrophosphorylated 

InsPs. Indeed, Figure 11 depicts the expected phenomenon in response to an indirect 

implementation of SnRK1.  

 

 

 

 

 

 

 

 

 

Figure 8 

Intersection of in vivo and in silico behavior 
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Figure 9 

Divergent phenomena  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10 
 

Impact of new reaction 
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Figure 11 
 

Indirect energy modulation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12 

 
Tracking fitness of 20 individuals over 10 generations 
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Figure 13 
 

An optimum 
 

While the activity of SnRK1 could be modeled and evaluated by mapping its mechanism to 

an increase in VIP’s activity, it is often desirable to reverse this process and begin by specifying a 

target state. Since the low energy phenotype is of interest, we can use data on the relative abundance 

of InPs in plants 24 hours without sucrose to estimate an appropriate objective. Since this batch of 

data [unpublished] indicates relative abundance as a function of radioactive labeling, the time-course 

difference between the WT and low energy state must be used to extrapolate absolute values via 

percent difference. We ran optimization with the resulting target state using the genetic algorithm 

described above. Figure 12 illustrates how the “fitness” of 20 individuals improved over 10 

generations. Figure 13 displays the corresponding optimum.  

 

 
 
 



	 30 

Discussion 
 
 

Preliminary results suggest that while our model’s response to loss of function mutations 

agreeably emulates some aspects of the expected results (Figure 8), divergent phenomena (Figure 9) 

indicate a need for deliberate revision. It is thought that the observed discrepancies result from:  

 
1. Considering a limited or incomplete window of reactions, 

2. Disparity in reaction kinetics for different organisms, and / or 

3. Assuming a constant state for cellular energetics 

 
 Fortunately, each of these issues can be readily addressed using the framework this project 

has created. A key constraint to development has always been that the model be open to expansion. 

As the X-link application demonstrated, the flexibility to add new reactions to the existing model 

may very well be critical to reconciling differences between in silico and in vivo behavior and can even 

reveal novel connectivity, so long as new channels are added on the basis of robust biochemical 

theory and are implemented with caution (Figure 10). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 
 

Parameter uncertainty as a key limitation 
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Figure 15 

 
Organizing a multiplicity of local optimums 

 

 Since a computational approach to biological modeling is inherently indirect, there will 

inevitably be uncertainty propagation from input parameters to the results a system generates. This 

is particularly true for this model given that parameters were obtained from experiments that involve 

various, and often phylogenetically distant, organisms (e.g., yeast and humans). The influence of this 

uncertainty is best illustrated by considering the model’s response to a VIP1/2 double knockdown 

before and after having revised a set of parameters critical to activity in the PPx-InsP branch 

(Figures 9 and 14). Clearly, this revision has a significant impact on the behavior we observe and 

most likely stems from variance furnished by a disparity in reaction kinetics for different organisms. 

Ideally, each parameter would be measured in the same environment using similar diagnostics by the 

same team within a fixed interval of time. Practically, this process would be expensive, time 

consuming, and prohibitive. Indeed, it is the daunting nature of this task itself that has led the state 

of the art to shift toward first estimating the required kinetics and cross checking sensitivity analysis 
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with uncertainty metrics to determine which kinetic parameters are of value and therefore worth 

resolving more precisely. To this end, this project has synthesized prevailing theoretical schemes and 

measurable parameters into an in silico environment and customized a generic protocol for parameter 

screening so that this goal may be accomplished.  

 Of the various forms of utility this model provides, its optimization framework is likely the 

most attractive for its capacity to predict system-level organization and the regulatory balance 

concomitant to specific states. With that said, however, it important to understand that there may be 

a multiplicity of “optimal” profiles for a single target state, depending on how the algorithm is used 

and on the location of the objective. In the former case, if only a few “individuals” are allowed to 

evolve in the genetic algorithm over a handful of generations, the result will most likely be a local 

optimum. This limitation is analogous to searching for a function’s critical points within a limited 

interval. As Figure 12 illustrates, a local optimum can be found after only a few generations. In the 

latter case, the model’s inherent dimensional constraints may prohibit the system from reaching a 

global optimum, generating one or more possible locations that minimize the Euclidean distance 

between the system’s state and its target without ever allowing the two to intersect. Singular value 

decomposition was used to confirm that although this system’s state varies as a function of both its 

enzyme profile and the flux vector ϕ, this model is nevertheless constrained to a complex subspace.  

 The issue of multiplicity in this context can be approached in one of two ways. The first is to 

sacrifice computational cost for a deep search. Finding a global optimum may simply require the 

evolution of a large population over many generations. This process can be improved by adjusting 

the mutation rate. The second is to organize an array of optimums, found with the same argument, 

using basic statistics. Of course, the variance each enzyme has would be of particular interest. Figure 

15 illustrates this technique for the same low-energy objective described for Figure 13 and organizes 

30 optimums for 5 individuals over 10 generations.  
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Figure 16 
 

Vacuolar storage as a key limitation 
 
 

Conclusion 
 
 

 As with any research project, this model has inspired a new set of questions for every answer 

it helps facilitate. One key question concerns the model’s approach to emulating vacuolar storage of 

InsP6. Since most translational applications and many basic research questions hinge on 

understanding the mechanism for and influence of having stored large quantities of phytate, we 

believe this feature should be emphasized as a focal point in future revision. Figure 16 illustrates 

deficiency in contrast with the success this model has had in emulating in vivo behavior outside of 

vacuolar space. The “noise” featured in this figure is the consequence of how the vesicle’s cap is 

allowed to fluctuate with each initial condition. This measure ensures that the resulting steady states 

are realistic but renders this space more or less non-responsive to modulation of the enzymatic 

profile.  
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At any rate, iterative revision will help to improve the model’s efficacy and predictive power. 

In the future, this model will likely help to address some of the long-standing issues that have for 

years impeded our understanding of inositol phosphate signaling. Ultimately, this construct may 

even serve as a tool in resolving certain features of the gene regulatory network that governs InsP 

and PPx-InsP activity. As the results section illustrates, the flexibility and heuristic capacity of this 

model are of value and suggest that this emulator may very well represent the state of the art insofar 

as computational modeling of InsP signaling is concerned, certainly in that its parameters have 

almost entirely been sourced from external assessments. In fact, to the best of our knowledge, there 

are no other computation models for InsP signaling that employ a mathematical framework of 

similar quality, particularly not any that consider this relatively unexplored set of reactions or have a 

capacity for system level meta-heuristics.  
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