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ABSTRACT 

JENNIFER DACKOR: Use of an allelic series in mouse to study the role of epidermal 
growth factor receptor in placental development and pregnancy 

 (Under the direction of David W. Threadgill) 
 

Epidermal growth factor receptor (EGFR) is a member of the ERBB family of 

receptor tyrosine kinases that has been shown to play an important developmental and 

physiological role in many aspects of pregnancy.  Using genetically engineered mice our lab 

and others have demonstrated that Egfrtm1Mag nullizygous placentas exhibit strain-specific 

defects ranging from mild reductions in spongiotrophoblasts to severe labyrinth 

dysmorphogenesis that results in mid-gestational embryonic lethality.  Experiments included 

in this dissertation show that Egfrtm1Mag nullizygous placentas have reduced numbers of 

proliferating trophoblast.  However, intercrosses with mice deficient for cell cycle checkpoint 

genes did not rescue Egfrtm1Mag embryo viability suggesting that reduced proliferation in the 

placenta is not a primary cause of embryonic lethality.   

We characterized an Egfr allelic series on several genetic backgrounds in mice to 

assess the effects of reduced as well as increased EGFR signaling on placental and 

embryonic growth.  Congenic strains homozygous for the hypomorphic Egfrwa2 allele 

exhibited strain-dependent placental and embryonic growth restriction at 15.5 dpc while 

heterozygotes for the antimorphic EgfrWa5 allele had placentas were only slightly reduced in 

size with no effect on embryonic growth.  At the histological level Egfrwa2 homozygous 

placentas had a reduced layer of spongiotrophoblast and in some strains spongiotrophoblasts
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and glycogen cells were almost completely absent.  The placentas of embryos heterozygous 

or homozygous for the hypermorphic EgfrDsk5 allele were enlarged with a more prominent 

spongiotrophoblast layer and increased expression of glycogen cell-specific genes.  There 

were no effects on growth of EgfrDsk5 embryos at 15.5 dpc.  We also observed strain-specific 

sub-fertility in EgfrDsk5 heterozygous adult females that may be due deferred embryo 

implantation beyond the normal window of uterine receptivity.   

Our results demonstrate that EGFR plays a fundamental role in development of the 

placental spongiotrophoblast layer in mice and suggest that reduced proliferation in EGFR-

deficient placentas primarily affects the spongiotrophoblast compartment.  We have also 

shown that aberrant levels of EGFR signaling result in an extensive level of genetic 

background-dependent phenotypic variability and that EGFR expressed in the uterine stroma 

may function in preparation of the uterus for embryo implantation.   
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CHAPTER I 

EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN MOUSE AND HUMAN 
PLACENTAL DEVELOPMENT 

 
 

Introduction 

Proper formation of a functional placenta is essential for normal growth and 

development of mammalian embryos.  The placenta is composed of highly specialized cells, 

called trophoblasts that initiate and regulate feto-maternal exchange of nutrients, gas and 

wastes.  In addition, trophoblasts provide the fetus with a barrier to the maternal immune 

system and modulate maternal response to pregnancy through secretion of various cytokines.  

The mature mouse placenta consists of three distinct layers including the maternally-derived 

decidua, which lies in direct contact with the uterus and two embryonically-derived layers, 

the junctional zone (Jz), composed of trophoblast giant cells and spongiotrophoblast, and the 

labyrinth zone (Lz).  Knock-out and transgenic mice have revealed that a large number of 

genes are required for normal placental development.  To date over 100 mouse models have 

been reported to exhibit placental abnormalities with many resulting in embryonic lethality or 

intra-uterine growth restriction (IUGR).  Development of both the tetraploid aggregation 

technique and trophoblast-specific Cre recombinase mouse lines has allowed further 

delineation of genes required for development of extra-embryonic tissue versus the embryo 

proper. 
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Using genetically engineered mice our lab and others have demonstrated that during 

embryogenesis the prototypical member of the ERBB family of receptor tyrosine kinases, 

epidermal growth factor receptor (EGFR), is required for establishment of a functional 

placenta [1-4].  Embryos deficient for EGFR exhibit IUGR and/or mid-gestational lethality 

due to defects in trophoblast-derived compartments of the placenta [2].  The EGFR 

nullizygous placenta may be a useful model to study placental insufficiency in humans, 

however, cellular and molecular origins of the phenotype remain to be determined.  This 

chapter will focus on mouse placental development and highlight the potential roles of ERBB 

receptors and ligands in both mouse and human placentation. 

 

ERBB Receptors: Mechanisms of Signaling Diversity, Specificity, and Control 

During embryonic development cell fate is frequently determined by spatial and 

temporal cues that originate from adjacent, or in some cases, distant tissue.  Under these 

circumstances cell communication is often facilitated through the use of transmembrane 

receptors that “sense” stimuli in the external environment and then transduce the signal 

intracellularly to promote an appropriate biological response.  One well-studied family of 

transmembrane receptors is the ERBB receptor tyrosine kinases comprised of four family 

members, EGFR (ERBB1), ERBB2 (HER2/Neu), ERBB3 (HER3), and ERBB4 (HER4) [5].  

Activation of ERBB receptors is ligand-induced and results in a number of cellular effects 

including cell survival, growth, proliferation, differentiation, migration, and invasion.  

Accordingly ERBBs have been shown to be indispensable for the embryonic and postnatal 

development of a broad array of tissues and involved in progression of several human 

cancers. 
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Activated ERBB receptors function as ligand-bound dimers, with EGFR and ERRB4 

being autonomous family members that can transduce signals as homodimers and as 

heterodimers with ERBB2, ERBB3, or each other.  Both EGFR and ERBB4 possess an 

extracellular ligand-binding region consisting of domains I-IV, a single-pass transmembrane 

domain, as well as a cytoplasmic domain with tyrosine kinase activity and multiple 

phosphotyrosine docking sites for molecular effectors that initiate downstream signaling 

events [6].  ERBB2 and ERBB3 exhibit highly conserved sequence and structural similarity 

to EGFR and ERBB4 but can only function in heterodimeric complexes with other ERBB 

family members since ERBB2 has no known ligand and ERBB3 has a catalytically inactive 

kinase domain [7,8].   

Eleven distinct ligands have been identified that bind ERBB receptors and they fall 

into three classes.  Epidermal growth factor (EGF), transforming growth factor alpha 

(TGFA), amphiregulin (AREG), and epigen (EPGN) exclusively bind EGFR [9].  

Betacellulin (BTC), heparin binding EGF-like growth factor/diphtheria toxin receptor 

(HBEGF) and epiregulin (EREG) bind both EGFR and ERBB4 while Neuregulins 1-4, 

characterized by numerous splice variants, bind ERBB3 and/or ERBB4 [6].  The ligands are 

present as membrane-bound precursors that undergo metalloprotease-mediated cleavage and 

ectodomain shedding into a mature form, although receptor activation by membrane-

associated ligand has been reported [10,11].  Activation of FZD-, estrogen-, and G-protein-

coupled receptors is known to transactivate the ERBBs by stimulating ectodomain shedding 

of ligands [12,13].  ERBB ligands all share an EGF-like domain that is required, as well as 

sufficient, for interactions with a binding pocket formed by the extracellular receptor 

domains I and II [14,15].  Unexpectedly, crystal structures of activated EGFR revealed that 
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dimerization occurs in a back-to-back orientation resulting in the ligand-binding domains 

being situated on opposed ends of the complex [16].  This data suggests that ERBB dimers 

are stabilized through receptor-receptor contacts rather than by interactions between two 

ligand molecules. 

Active and inactive conformations of EGFR are distinguished by intramolecular 

interactions between extracellular domains I- IV that determine availability of the ligand-

binding site [17].  Interactions between domains II and IV hold the receptor in a tethered, 

inactive position that is unable to bind ligand or dimerize with other receptors [18].  

However, an untethered extended conformation of EGFR is able to dimerize and bind ligand 

resulting in a stabilized active structure [16].  In wildtype cells EGFR exists in equilibrium 

between its tethered and extended conformations.  Equilibrium favors the inactive form so 

that approximately 95% of total cellular EGFR exists in the tethered conformation, 

demonstrating the importance of this structural mechanism in regulating EGFR signaling 

[18].  Interestingly, crystal structures of the ligand-impaired ERBB2 show that it exists 

primarily in an extended conformation allowing ERBB2 to dimerize much more efficiently 

than the other ERBBs [19].  This explains observations suggesting that ERBB2 is a potent 

amplifier of ERBB signaling. 

 Unlike most other tyrosine kinases, ERBB receptors do not require phosphorylation 

for kinase activation [20].  Consequently ERBB kinase activity must be tightly controlled by 

some other mechanism since the kinase itself is in a constitutively “on” state.  Similar to 

inhibitory mechanisms that regulate binding of ligand to the extracellular region of EGFR, 

the cytoplasmic domain exists primarily in an inactive conformation due to intramolecular 

interactions between the C-terminal tail and the kinase domain [21].  Upon ligand binding a 



 5 

rotation of the transmembrane domain occurs and as a result the cytoplasmic domain is 

reoriented so that the kinase is no longer inhibited by the C-terminus.  When the active 

conformation is stabilized phosphorylation of the receptor’s dimerization partner proceeds.  

Crystallography data indicates that active ERBB dimers are asymmetric due to positioning of 

the C-terminus of one receptor in proximity of the kinase domain of the other [22].  This 

structural evidence confirms previous data suggesting that phosphorylation of ERBB dimers 

occur in trans.  

 Specificity of downstream signaling is determined primarily by substrate binding to 

phospho-tyrosine residues on the cytosolic tail of ERBB receptors [23].  Each family member 

is characterized by its own unique combination of docking sites for adaptor proteins that 

assemble multi-component signaling complexes as well as sites that directly regulate enzyme 

activity.  EGFR and ERBB4 exhibit similar substrate preference with multiple binding sites 

for the adaptors SHC and GRB2, both involved in establishing the RAS-MAP kinase 

cascade.  Both receptors have also been shown to bind and activate STAT5.  It has been 

noted that EGFR and ERBB4 are rarely co-expressed, which is not surprising, given the 

redundancy of their signaling capabilities.  EGFR is unique in its binding site for the 

ubiquitin ligase CBL, which negatively regulates signaling by facilitating lysosomal 

degradation of the receptor [23,24].  ERBB2, with the fewest phospho-tyrosine residues, 

contains docking sites for GRB2, SHC, SRC, and a unique site for DOKR, an adaptor shown 

to negatively regulate MAP kinase signal transduction [25].  ERBB3 is distinct from the 

other ERBBs in that it is enriched with docking sites for the p85 subunit of phosphoinositide 

3-kinase (PI3K) [26].  The PI3K-AKT pathway promotes cell survival through suppression 

of pro-apoptotic proteins such as Caspase 6, BAD and MDM2 suggesting that ERBB 
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regulation of cell survival may occur primarily through ERBB3.  Ultimately, many factors 

determine how a cell responds to activation of the ERBB family of receptors.  Ligand 

expression and processing, hetero- or homodimerization of receptors and substrate preference 

as dictated by both specific phospho-tyrosine docking sites and the milieu of downstream 

effectors expressed in the cell all influence how ERBB signaling is interpreted. 

All four ERBB receptors are essential for mammalian development since mice 

deficient for any single ERBB do not survive to reproductive age and rarely survive 

embryogenesis.  ERBB2, ERBB3 and ERBB4 are indispensable for embryonic development 

of the heart and nervous system and in adult animals these family members play a role in 

mammary gland morphogenesis and lactation [27].  EGFR is also required for development 

of the nervous system but in contrast to other ERBB knockouts, EGFR null mice display 

pronounced phenotypes in epithelial structures of the skin, lung, pancreas, kidney, intestine 

and placenta [1,3,4].  Abnormal placental development results in mid- to late-gestational 

lethality of EGFR null embryos but the phenotype is strain-dependent.  Strains such as 129 

and BALB/c die around 11.0 days post-coitus (dpc) and show severe reductions in labyrinth 

and spongiotrophoblast layers.  Some hybrid genetic backgrounds and the outbred stock CD-

1 show varying degrees of spongiotrophoblast reduction but embryos survive until birth and 

succumb to strain-independent neurodegeneration before weaning age [2-4].  Tetraploid 

aggregation experiments in EGFR-deficient mice have demonstrated that EGFR is required 

in the extra-embryonic tissue and that embryonic lethality is attributed to failure in 

developing a functional placenta [2,4]. 
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Placental Development in Mouse 

In mouse embryos the first extra-embryonic cells, called trophectoderm, are specified 

at 3.5 dpc, during the 16-cell stage.  At this time the blastocyst segregates into a polarized 

layer of outer trophectoderm cells surrounding an inner cell mass (ICM), which will 

eventually give rise to the embryo proper [28].  Further differentiation of the trophoblast 

lineage ensues at 4.5 dpc when mural trophectoderm, located on the opposite pole from the 

ICM, differentiates into primary trophoblast giant cells (TG).  These polyploid trophoblasts 

facilitate the process of implantation at 4.5 dpc by invading through maternal luminal 

epithelium (LE) to establish a secure connection between uterus and embryo.  

Decidualization of stromal cells surrounding the implantation site, uterine immune cell 

activity, development of the maternal uterine vasculature, and blood flow to the embryo are 

all influenced by cytokines and hormonal signals produced by TG cells [29]. 

Following implantation, differentiation of cells that will form the placenta continues 

as polar trophectoderm, the trophoblasts in contact with ICM, proliferate and give rise to the 

extraembryonic ectoderm (ExE) and the ectoplacental cone (EPC) [28].  The ExE contains a 

pool of pluripotent trophoblast stem cells (TS) that are maintained in a proliferative state by 

signals from the ICM and eventually it will form the chorion and later labyrinth trophoblasts.  

The EPC contains progenitors of spongiotrophoblast (SpT) and secondary TG [30].  

Concurrent with differentiation of polar trophectoderm the ICM segregates into several 

lineages, including extraembryonic mesoderm that will form the allantois and give rise to the 

vascular portion of the Lz [31].   

Labyrinth formation is initiated at 8.5 dpc when the allantois and chorion fuse, and 

folds in the chorion permit penetration of embryonic mesoderm [32].  Extensive branching of 
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chorionic villi and associated fetal vessels eventually create an elaborate placental vascular 

network where fetal and maternal exchange occurs.  The chorionic villi maintain a 

diffusional barrier between maternal and fetal blood cells composed of three layers of 

differentiated trophoblasts and a layer of fetal endothelium [32].  A discontinuous layer of 

mononuclear trophoblasts lines the maternal sinusoids and two continuous layers of 

multinucleate syncytiotrophoblasts (SynT) lie between the mononuclear trophoblasts and 

fetal endothelium.  Maternal blood enters the labyrinth via canals entirely lined with 

trophoblasts rather than maternal endothelium [33].  Maternal spiral arteries that traverse the 

decidua and converge within the junctional zone supply these canals.  The maternal spiral 

arteries are partially lined by endovascular TG cells and devoid of smooth muscle, allowing 

extreme dilation for increased blood flow towards the placenta.  

From 9.5 to 16.5 dpc, coincident with branching morphogenesis of chorionic villi, the 

SpT of the junctional zone expand rapidly, providing structural support for the growing 

labyrinth [30].  Trophoblasts on the outer periphery of the Jz and in contact with maternal 

decidua differentiate into secondary TG cells while invasive glycogen trophoblasts (GC) 

arise from the pool of SpT around 10.5 dpc.  Glycogen cells migrate through the Jz and 

invade decidual stroma in the area surrounding maternal arteries.  The function of GC is 

unknown but they may serve as a source of energy for the embryo during late gestation by 

releasing glucose directly into maternal blood that circulates back into the placenta [34].  An 

endocrine role of SpT and TG cells has been suggested since they secrete hormones, 

lactogens and cytokines that potentially mediate various physiological adaptations of 

pregnancy [29].  In particular, TG cells produce angiogenic factors, VEGF, proliferin and 

nitric oxide, as well as the vasodilator, adrenomedullin (ADM).  Interestingly, SpT express 
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an anti-angiogenic factor, FLT1, that may limit invasion of maternal vasculature into the 

placenta.  TG and SpT lineages also express lactogenic hormones of the prolactin/placental 

lactogen family, known to regulate mammary gland development and corpus luteum 

maintenance [35]. 

 

Molecular Control of Trophoblast Differentiation in Mouse 

Placental defects identified in transgenic mice and experiments using isolated TS 

cells in culture have provided significant clues to the molecular control of trophoblast 

biology and placental development.  TS cells derived from mouse blastocysts have been 

shown to differentiate into all trophoblast cell types identified in the placenta (Figure 1) and 

can be maintained in culture supplemented with Fibroblast growth factor 4 (FGF4) and either 

Activin, Nodal, or Transforming growth factor beta (TGFB) ligands [36-38].  In vivo, FGF 

signaling is critical for trophectoderm maintenance since knockouts for both Fgf4 and 

fibroblast growth factor 2 receptor (Fgfr2) die during the peri-implantation period with a loss 

of trophoblasts [39,40].  FGF4 is secreted by ICM and FGF2R is present in the 

trophectoderm supporting a role for the ICM in promoting proliferation in adjacent polar 

trophectoderm [41,42].  There is evidence of an in vivo requirement for Nodal in TS cell 

pluripotency as well since embryos homozygous for a hypomorphic allele of Nodal die at 9.5 

dpc due to a loss of labyrinth and spongiotrophoblast [43].  An in vivo role for Activin and/or 

TGFB in TS cell maintenance has not reported. 

Blastocysts null for caudal type homeobox 2 (Cdx2), the earliest in vivo marker of 

trophoblast specification, fail to implant due to a block in trophectoderm differentiation [44].  

CDX2 has been shown to suppress genes required for maintenance of ICM pluripotency, 
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including Oct4, and over-expression of CDX2 in mouse embryonic stem (ES) cells is 

sufficient to transform ES cells into trophoblast [45,46].  Similarly, blastocysts null for 

eomesodermin homolog (Eomes), and transcription factor AP-2 gamma (Tcfap2c) fail to 

form trophoblastic outgrowths in culture [47,48].  In vivo these embryos implant but die 

before mid-gestation due to impairment of differentiation and/or proliferation of cells in the 

ExE.  Embryos deficient for estrogen related receptor beta (Esrrb), an orphan receptor 

expressed specifically in the ExE, fail to form labyrinth and spongiotrophoblasts resulting in 

embryonic lethality at 9.5 dpc [49].  Expression of Cdx2, Eomes and Esrrb is sustained in TS 

cultures supplemented with FGF4 and Activin, Nodal or TGFB but down-regulated upon TS 

differentiation supporting their role in TS pluripotency, proliferation and maintenance 

[36,37].  FGF4 supplementation has also been shown to suppress mammalian achaete scute-

like homologue 2 (Mash2), a transcription factor required for SpT differentiation [37]. 

In the developing mouse placenta TS cells reside in the ExE which eventually 

becomes the chorion and fuses with the allantois to form the labyrinth compartment.  Failure 

of chorio-allantic attachment is a phenotype resulting in embryonic lethality at 8.5 – 10.5 dpc 

and has been described in a considerable number of transgenic mice including knockouts for 

alpha 4 integrin (Itga4), Cyclin F (Ccnf), and Wnt7b [50-52].  An even larger number of 

genes have been shown to play a role in labyrinth morphogenesis.  More than 60 mouse 

models exhibit a small, under-branched labyrinth compartment but the precise role of most of 

these genes in trophoblast differentiation and labyrinth formation has not been determined 

[53].  Broad categories of molecules known to be involved in formation of the labyrinth 

include the signaling pathways WNT/FRZ, FGF, EGF and HGF, as well as many MAPK 

signaling cascade components.  In addition, nuclear receptor signaling components such as 
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peroxisome proliferators-activating receptor gamma (PPARG) have been shown to be 

involved [54]. 

The transcription factor Glial cells missing-1 (Gcm1) is the most well-studied gene 

required for labyrinth morphogenesis and is one of the first genes required to initiate villi 

branching and differentiation of labyrinth trophoblasts.  Gcm1 is expressed in clusters of 

chorionic trophoblasts at sites where the allantois will invade and branch to form the primary 

villious structures [55].  In Gcm1 null embryos the chorion remains flat after chorio-allantoic 

fusion rather than folding to form the primary chorionic villi [55].  Additionally, Gcm1 

expression has been found to be necessary for differentiation of cultured TS cells into SynT, 

although over-expression of Gcm1 is not sufficient to override FGF signaling and induce 

differentiation of TS cells into SynT [55,56].  GCM1 may regulate SynT differentiation 

through transcriptional control of sequences encoding highly fusogenic retroviral envelope 

proteins known to promote syncytium formation in human trophoblasts [57].  Recently, 

murine homologs of these retroviral elements, syncytin A and B, were identified and found to 

be expressed specifically in the labyrinth compartment of the placenta [58].  Binding sites for 

GCM1 are found in the promoter region of both syncytin genes and in vitro experiments 

showed that functionally these genes are involved in cell-cell fusion [59].  Furthermore, 

knockdown of syncytin A mRNA in TS cells or treatment of cells with syncytin A antibodies 

inhibits TS cell fusion and differentation into SynT.   

In addition to SynT that compose chorionic villi there are two mononuclear 

trophoblast lineages present in the labyrinth.  Trophoblasts adjacent to the syncytium and 

lining the maternal sinusoids exhibit characteristics of trophoblast giant cells; they are 

polyploidy and express placental lactogen 2 (Pl2) [60].  However these sinusoidal 
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trophoblasts seem to represent a distinct lineage of TG cells because they do not arise from 

Tbpba-expressing cells in the EPC and are unique in their expression of cathepsin gene Q 

(Cstq).  Clusters of proliferative trophoblasts that express markers of TS cells such as Eomes 

are scattered throughout the labyrinth and may act as a stem cell source for the developing 

villous structures [61].  Embryos null for retinoblastoma protein (Rb1) die by 14.5 dpc due to 

an expansion of Eomes-positive clusters that interfere with morphogenesis of the Lz [61]. 

 Spongiotrophoblasts are another trophoblast cell type frequently affected in knockout 

mice.  The number of genes controlling differentiation and expansion of this compartment is 

probably many more than reported in the literature since embryo growth and/or viability is 

not always affected by reductions in SpT.  Trophoblast specific protein alpha (Tpbpa) is the 

most commonly used SpT marker since it is expressed specifically and abundantly in EPC 

and SpT, but the function of TPBPA is unknown [62].  In experiments with knockout mice 

and cultured TS cells, the basic helix-loop-helix (bHLH) transcription factor MASH2 has 

consistently been shown to play an essential role in SpT proliferation, differentiation and/or 

maintenance.  Mash2 is expressed in both chorion and EPC and placentas from Mash2 null 

embryos display a complete lack of SpT, an excess of TG cells, as well as a reduced 

labyrinth layer [63].  Since bHLH transcription factors are known to function as dimers it has 

been suggested that MASH2 becomes active through dimerization with ALF1 and/or ITF2, 

two bHLH family members co-expressed in SpT [64].  Two dominant negative bHLH 

proteins, inhibitor of DNA binding 1 (Id1) and Id2 are expressed in the labyrinth where they 

may function to inhibit Mash2 [65].  Id1 and Id2 are down-regulated during differentiation of 

mouse TS cells and the rat Rcho-1 trophoblast stem cell line [36,66].  
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 Further characterization of the Mash2 null placental phenotype has led to the 

hypothesis that signals from SpT or their precursors in the EPC are required for proper 

labyrinth development.  In tetraploid aggregation experiments Rosa26-positive/Mash2 null 

cells and Rosa26-negative/Mash2 wildtype cells were used to generate chimeric extra-

embryonic tissue [67].  Mash2 null cells differentiated into TG cells and also contributed to 

the labyrinth portion of the placenta but were completely absent from the SpT layer.  

Although standard Mash2 null embryos exhibit defects in labyrinth morphogenesis, chimeras 

with a labyrinth composed predominantly of Mash2 null trophoblast showed normal 

development of the Lz.  This data demonstrates that MASH2 is required cell autonomously 

in the SpT layer and suggests that development of the Lz may be dependent on SpT 

formation. An interdependence of these layers during placental development is further 

supported by the fact that a number mouse models exhibiting reductions in SpT also show 

defects in labyrinth morphogenesis. 

The lineage of glycogen trophoblasts has just recently been elucidated, but the 

molecular pathways regulating their differentiation are not well understood.  GC arise from 

Tpbpa-positive cells in the ectoplacental cone and can be identified by their clear vacuolated-

appearing cytoplasm as well as their expression of Protocadherin-12 (Pcdh12) that begins as 

early as 7.5 dpc [68].  Mice that lack expression of the imprinted gene, insulin-like growth 

factor 2 (Igf2), are one of the few models described that exhibit reductions specifically of GC 

without reduction of SpT [69].  Interestingly, mice deficient in expression of another 

imprinted gene, cyclin dependent kinase inhibitor p57kip2 (Cdkn1c), show an expansion of 

SpT but not GC suggesting that CDNK1C is also involved in differentiation of GC [70]. 
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Trophoblast giant cell fate is considered a “default” trophoblast differentiation 

pathway since removal of factors required for TS cell pluripotency is sufficient to induce TG 

formation [36-38,56].   TG cells transiently express markers of the SpT lineage (Tpbpa, 

Mash2) before becoming terminally differentiated, but these transcripts are absent in mature 

TG cell cultures and in vivo TG [63,71].  Several genes have been shown to promote or 

inhibit TG cell development including suppressor of cytokine signaling 3 (Socs3), leukemia 

inhibitory factor receptor (Lifr), peroxisome proliferator-activated receptor beta/delta 

(Pparb/Ppard), and a bHLH anatagonist, Imfa [72-74].  In addition, treating TS cell cultures 

with retinoic acid or overexpressing the bHLH transcription factor Stra13 results in TG 

transformation [56,75].  The most well-studied gene required for TG differentiation is the 

bHLH transcription factor, heart and neural crest derivatives expressed transcript 1 (Hand1).  

Hand1 knock-out embryos die at 7.5 dpc, most likely as a consequence of dramatic 

reductions in TG cells [76].  Recently, a detailed study of TG markers revealed the existence 

of at least 4 different polyploid TG cell subtypes, all expressing Hand1 [60].  TG cells lining 

spiral arteries were shown to express proliferin (Plf), TG cells lining canals in the Jz express 

Plf and Pl2, TG cells in the labyrinth (mononuclear trophoblast of the villi) express Pl2 and 

Ctsq, while the TG cells lining the implantation site express Plf, Pl2, placental lactogen-1 

(Pl1).  Marker analysis revealed that all four TG subtypes are present in differentiated TS 

cultures and TS cells from Hand1 knockouts fail to differentiate into any of the TG lineages 

[60]. 
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Mouse Versus Human Placentation: Similarities and Disparities 

The generation and analysis of transgenic mice has provided an unanticipated wealth 

of information concerning the genes and pathways involved in placental development that 

could not have been obtained using human tissue alone.  Our understanding of human 

placentation has arisen mainly from experiments using cultured cells or post-mortem tissue 

and there have been relatively few studies linking gene mutations or polymorphisms to 

placental dysfunction.  Fortunately, the mouse placenta is an appropriate model for 

understanding human placentation since human and mouse placentas have comparable 

structure with analogous cell types shown to express the same or similar molecular markers 

[77,78].  

The human placenta is composed of zones of trophoblasts comparable to the mouse 

Lz and Jz.  The human floating chorionic villi and mouse labyrinth are functionally 

analogous and both regions contain cell types that express markers of undifferentiated, 

proliferative trophoblasts as well as differentiated multinucleate SynTs.  Langhans cells, also 

called villous cytotrophoblast, are analogous to chorionic trophoblast in the mouse and 

similarly express ID2 and TCFAP2C [79,80].  These genes are down-regulated upon 

cytotrophoblast differentiation.  Human and mouse SynT both express the markers 

transcriptional enhancer factor-5 (TEF5), GLUT1, and GCM1 [55,81-83].  SynT fusion in 

humans is controlled by retroviral envelope proteins syncytin-1 and -2 and homologous 

fusogenic syncytin proteins are expressed in mouse placenta [58,84,85].  In addition, 

compound heterozygous mice for null alleles of Sp1 and Sp3, zinc finger transcription factors 

induced during syncytium formation in humans, exhibit trophoblast defects in the labyrinth 

[86,87].  In humans a layer of extravillous trophoblast extending from the chorionic villi to 
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the decidua basalis and traversed by channels of maternal blood plays a structural role similar 

to the mouse Jz.  Called columnar trophoblast or anchoring villi, cells in this layer express 

Mash2 homolog, HASH2, suggesting that human and mouse counterparts have similar origin 

and function [83,88]. 

There are also important differences in the structure and function of human placenta 

compared to mouse [78].  The overall shape of the placenta in both species is similar but 

human villous branching is less extensive, terminating in a blunt-ended tree-like pattern, 

compared to the interconnected maze-like structure of the mouse labyrinth.  Human and 

mouse placentae are both considered haemochorial since feto-maternal exchange occurs by 

direct contact between maternal blood and fetal chorionic trophoblasts.  However, the fetal 

and maternal interface in human is separated by a single layer of SynTs (monochorial) while 

the trichorial mouse chorionic villi consists of a single layer of mononuclear trophoblast 

overlying two layers of SynTs. 

Maternal blood in the human placenta is supplied directly to the villous space via a 

large number of channels originating from over 100 maternal arteries that traverse the 

placental bed [78].  In contrast, maternal spiral arteries in the mouse decidium converge to 

form a small number of central canal spaces that traverse the Jz and empty into the labyrinth 

[33].  The extent of trophoblast invasion through maternal arteries and uterine stroma differs 

as well.  In mouse, endovascular invasion of maternal arteries by TG cells occurs by 10.5 

dpc, prior to intersitial invasion of the stroma.  Endovascular invasion extends into the 

decidua only 20 -30 cell diameters from the periphery of the placenta, whereas trophoblast 

invasion of human maternal arteries extends beyond the deciduas basalis and into the 

myometrium [33,89].  Interstitial invasion occurs prior to endovascular invasion in humans 
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and interstitial trophoblasts penetrate deeper than in mouse, extending through the decidua 

basalis into the inner third of the myometrium [33,90,91].  In humans, interstitial extravillous 

trophoblast are thought to initiate the loss of smooth muscle surrounding the spiral arteries, 

while uterine NK-cells mediate this process in mouse.   

Based on molecular comparisons of invasive trophoblasts in mouse and human, 

analogies between cell types remain unclear.  Functionally, endovascular extravillous 

trophoblasts resemble mouse canal and spiral artery-associated TG cells, but molecular 

similarities between these cell types are not apparent.  A subset of invasive cells are 

polyploid in humans but these cells accumulate 4-8 N DNA content versus the 1000 N+ 

DNA of mouse TG [92].  Importantly, HAND1 is not expressed in the human placenta and 

human giant cells probably originate from cell fusion rather than endoreduplication, 

suggesting that they are not of the same origin as mouse TG cells [83].  Similar to mouse 

glycogen cell differentiation from spongiotrophoblast, human extravillous interstitial 

trophoblast arise from precursors in the proximal region of trophoblast columns [93].  

However, pathways that control differentiation and invasion of interstitial trophoblast in 

humans and glycogen cells in mice have not been described, making it unclear whether these 

cell types are related.

 

EGFR in Normal and Abnormal Placental Development  

The ERBB family of receptors and their ligands are widely expressed in both human 

and mouse placenta (summarized in Table 1) [94-108].  Immunostaining of human placental 

sections and experiments with cultured human trophoblast cell lines indicate that EGFR, in 

particular, is important for trophoblast growth, differentiation, and function.  Interestingly, 
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only EGFR is expressed in proliferating, undifferentiated populations of trophoblasts, while 

terminally differentiated trophoblasts (SynT, EVT, TG) express all four ERBBs 

[95,97,100,101,104,105].  Activating EGFR in cultured trophoblasts by addition of 

exogenous EGF ligand promotes both trophoblast proliferation as well as differentiation of 

syncytiotrophoblast and extravillous trophoblast [109-112].  EGF stimulates secretion of PLI 

in day 7 mouse placenta cultures, suggesting it regulates differentiation of TG cells in mice 

[112].  The EGFR ligand, TGFA, also induces proliferation of human trophoblasts but, in 

contrast to EGF, it inhibits secretion of PL1 in mouse placenta cultures [113].  HBEGF, an 

EGFR/ERBB4 ligand, has been shown to induce differentiation and motility of extravillous 

trophoblasts as well as inhibit apoptosis in human trophoblasts cultured in low oxygen 

conditions [114,115].  In low oxygen conditions expression of HBEGF was found to be 

dependent on ERBB signaling, evidence that a positive feedback loop regulates cell survival 

in this context [114].   

Aberrant EGFR signaling in placental tissue has been associated with several human 

pregnancy complications.  Pre-eclampsia, a hypertensive disorder that can endanger the lives 

of both mother and fetus, is associated with shallow invasion of trophoblasts into the spiral 

arteries and HBEGF expression is severely reduced in these placentas [116].  Another 

condition, placenta accrete, puts a mother at risk for hemorrhage during delivery due to 

abnormally deep uterine invasion by trophoblast and is associated with reduced levels of 

ERBB2 but increased EGFR [117,118].  Perhaps most noteworthy are the numerous studies 

that show lower EGFR expression or phosphorylation in placentas of fetuses affected by 

IUGR, one of the most common conditions to complicate pregnancy.  IUGR affects 4-6% of 

all pregnancies and is the second leading cause of perinatal death [119-123].  
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IUGR is most frequently associated with inadequate placental function, resulting in 

compromised nutrient and oxygen transport from mother to fetus [124].  A recent study of 

310 stillborn births found low birth weight represented in 78.7% of the cases and placental 

alterations were considered to be causative in 45.8% of the intrauterine deaths [125].  IUGR 

can have serious consequences for the fetus, including impaired development of the lungs, 

heart, pancreas and brain [126].  Unfortunately, complications associated with IUGR may 

continue far beyond a newborn's first months of life.  At five years of age cognitive ability is 

more likely to be compromised in children exposed to placental insufficiency in utero [127].  

As adults their chances of developing type II diabetes, coronary artery disease, hypertension, 

and stroke are significantly higher than for adults born with a normal birth weight [128-131].  

This phenomenon is not well understood, but one hypothesis proposes that these effects are a 

result of the developmental programming of fetal organs in response to intrauterine stress.  

Specifically, experimental evidence suggests that reduction in cell number, changes in 

distribution of cell types, and resetting of hormonal feedback can occur in organs of growth-

restricted fetuses [132,133].  Despite the immense impact of IUGR on human health and 

quality of life, our understanding of the origins of this disease is limited.  The significance of 

EGFR signaling in IUGR has not been determined in humans but studies in the mouse 

strongly suggest that reduced EGFR activation may be causative of abnormal placental 

development leading to IUGR. 

Although gene-targeting studies have demonstrated that EGFR is essential for normal 

placental development in the mouse, molecular mechanisms giving rise to the phenotype 

have not been described.  There is no evidence that a single pathway downstream of EGFR 

regulates placental development.  Instead, it is likely that several independent and/or 
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interacting pathways are involved since placental defects have been reported in knockout 

mice for a number of molecules known to transduce signals from activated EGFR (Table 2).  

These include molecular scaffolds, GAB1 and GRB2; the guanine nucleotide exchange 

factor, SOS1; as well as numerous map kinase cascade molecules and transcriptional 

activators [86,134-151].  AKT1, a protein kinase in the PI3K pathway that regulates cell 

cycle progression and apoptosis, is also essential for placental development [152].  Many of 

these models exhibit placental defects that vary depending on genetic background, similar to 

the EGFR-deficient mouse.  It is not surprising that polymorphic loci can influence a 

developmental process regulated by such a complex signaling network.  

In conclusion, data from studies in both human and mouse underscore the importance 

of EGFR and the ERBB family of receptors in placentation.  However, important questions 

remain concerning the relationship between EGFR and the etiology of diseases of human 

pregnancy, such as IUGR.  Mouse models have demonstrated that genetic background 

determines the consequences of EGFR deficiency in placental development suggesting that 

human placental insufficiency may have a complex genetic origin.  An allelic series of EGFR 

has now been generated in mouse allowing further characterization of placental phenotypes 

caused by aberrant levels of EGFR signaling that may be relevant to human conditions.  

Additionally, experiments using TS cell lines derived from EGFR mutant mice will help 

determine the precise role of EGFR in trophoblast proliferation, differentiation, survival and 

invasion. 
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CHAPTER II 

ALTERED TROPHOBLAST PROLIFERATION IS INSUFFICIENT TO ACCOUNT FOR 

PLACENTAL DYSFUNCTION IN EGFR NULL EMBRYOS 
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Abstract 

Homozygosity for the Egfrtm1Mag null allele in mice leads to genetic background 

dependent placental abnormalities and embryonic lethality.  Molecular mechanisms or 

genetic modifiers that differentiate strains with surviving versus non-surviving Egfr 

nullizygous embryos have yet to be identified.  Egfr transcript in wildtype placenta was 

quantified by ribonuclease protection assay (RPA) and the lowest level of Egfr mRNA 

expression was found to coincide with Egfrtm1Mag homozygous lethality.  

Immunohistochemical analysis of ERBB family receptors, ERBB2, ERBB3, and ERBB4, 

showed similar expression between Egfr wildtype and null placentas indicating that Egfr null 

trophoblast do not up-regulate these receptors to compensate for EGFR deficiency.  

Significantly fewer numbers of bromodeoxyuridine (BrdU) positive trophoblast were 

observed in Egfr nullizygous placentas and cdc25A and cMyc, genes associated with 

proliferation, were significantly down-regulated in null placentas, as measured by real-time 

PCR.  However, strains with both mild and severe placental phenotypes exhibit reduced 

proliferation suggesting that this defect alone does not account for strain-specific embryonic 

lethality.  Consistent with this hypothesis, intercrosses generating null mice for cell cycle 

checkpoint components (p53, pRb, p21Cip1, p27Kip1 or p18INK4c) in combination with Egfr 

deficiency did not increase survival of Egfr nullizygous embryos. Since complete 

development of the spongiotrophoblast compartment is not required for survival of Egfr 

nullizygous embryos, reduction of this layer that is commonly observed in Egfr nullizygous 

placentas likely accounts for the decrease in proliferation.   
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Introduction 

EGFR is the prototypical member of a family of related receptor tyrosine kinases 

(RTKs) that includes ERBB2, ERBB3, and ERBB4.  The broadly expressed mouse Egfr 

gives rise to multiple alternatively spliced and polyadenylated transcripts [1]. A null allele of 

the Egfr was previously generated in mice and phenotypic analysis revealed that homozygous 

Egfr null mutants exhibit peri-implantation to post-natal lethality, depending on the genetic 

background of the mouse [2,3].  Egfr homozygous null embryos on a 129/Sv background die 

around 11.5 days post-coitus (dpc) due to abnormal placental development, with a reduced 

spongiotrophoblast layer and severe disorganization of the labyrinth layer [4].  On an outbred 

CD-1 stock the spongiotrophoblast layer is similarly reduced, but there is rescue of the 

disorganized labyrinthine layer allowing Egfr null embryos to survive to birth.  A more 

comprehensive characterization of Egfr null embryonic lethality on many genetic 

backgrounds revealed that the timing of lethality varies widely between strains [5].  Several 

Swiss-derived strains, on either a congenic FVB/NJ or hybrid ICR/HaROS.129 background 

exhibit lethality prior to 10.5 dpc.  Similar to the 129/Sv strain labyrinth defects are observed 

beginning at 11.5 dpc in many strains which do not support embryonic survival, including 

congenic BALB/cJ and BTBR T+ tf/J.  Some backgrounds, such as hybrid ALR.129 and to a 

lesser extent hybrid FVB.129 and BALB.129, support robust survival of Egfr null embryos 

past midgestation although null placentas are smaller than those from wildtype embryos.  The 

existence of placental phenotypes that are strain specific suggests the effects of EGFR 

deficiency on normal growth and differentiation of placenta are mediated by background-

specific modifiers. 
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Thus far no loci have been identified that modify placental development in Egfr 

nullizygous mice.  Two separate mapping crosses have failed to yield significant quantitative 

trait loci (QTL) associated with survival of Egfr nullizygous embryos suggesting the 

existence of many modifiers with complex relationships [5].  In addition, the molecular 

mechanism contributing to the Egfr null placental phenotype has yet to be elucidated.  

Placental defects have been reported in animals deficient for a number of signaling molecules 

downstream of EGFR. Mice deficient for the adaptor proteins GRB2 and GAB1, Ras-specific 

guanine nucleotide exchange factor, SOS1 and its target KRAS, components of MAPK 

cascades including RAF1, MAPK2K1, ERK2 and MAPK14 (p38), and downstream 

transcription factors JUNB, ETS2, and FOS all exhibit labyrinth defects and embryonic 

lethality at midgestation [6-16].  Together these data are consistent with MAPK signaling 

being required for normal placental development and suggests that Egfr null strains surviving 

past midgestation probably use alternate pathways in the trophoblasts to activate MAPK 

signaling and/or achieve the downstream effects of cellular proliferation, migration, and 

differentiation. Consistent with the importance of EGFR signaling for normal placental 

development, EGFR is expressed in human placenta and altered expression has been 

associated with intrauterine growth restriction (IUGR), preeclampsia, and placenta accreta 

[17-22]. 

In this study, we have further characterized strain-dependent Egfr nullizygous 

placental defects to investigate the mechanism responsible for differential survival in the 

absence of EGFR signaling.  RNase protection assays were used to analyze expression of 

alternatively-spliced Egfr transcripts in the developing embryo and placenta.  We tested the 

hypothesis that ERBB family member receptors, ERBB2, ERBB2, or ERBB4 can be up-
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regulated in the placenta to compensate for the loss of EGFR in strains supporting survival of 

Egfr nullizygous embryos.  We have also measured rates of proliferation and apoptosis in 

EGFR-deficient placentas to address the cellular mechanism contributing to Egfr nullizygous 

placental defects.  Lastly, mice double mutant for Egfr and either Trp53 (p53), Rb, Cdkn1a 

(p21Cip1), Cdkn1b (p27Kip1) or Cdkn2c (p18INK4c) were generated to determine if elimination of 

cell cycle checkpoints rescues Egfr null placental defects. 

 

Materials and methods 

Mice and genetic crosses 

 A null allele for Egfr (Egfrtm1Mag) on outbred CD-1 stock or inbred 129/Sv, ALR/LtJ, 

FVB/NJ, C57BL/6J, and BALB/cJ strains have been previously described [5].  129S1/SvImJ 

and 129S6/SvEvTAC strains were used interchangably due to their highly similarity [23].  

Males heterozygous for the Egfrtm1Mag mutation, on either an ALR/LtJ, FVB/NJ, C57BL/6J, or 

BALB/cJ genetic background, were mated to heterozygous 129/Sv females to generate 

hybrid F1 embryos and Egfrtm1Mag heterozygous F1 adults.  The ALR.129 heterozygous F1 

adults were backcrossed to 129/Sv Egfrtm1Mag heterozygotes to obtain N2 backcross embryos.  

Adult mice and embryos were genotyped using 1 uL of a lysed tissue sample (prepared by 

incubating ear punches at 95°C in 100 uL of 25mM NaOH/0.2mM EDTA for 20 minutes and 

then neutralizing with 100 uL 40mM TrisHCl pH 5.0) per PCR reaction.  The following 

primers were used for amplification of the wildtype and Egfrtm1Mag alleles: EgfrCommon, 5’- 

GCCCTGCCTTTCCCACCATA-3’ and EgfrWT, 5’- ATCAACTTTGGGAGCCACAC-3’ 

and EgfrKO, 5’-AACGTCGTGACTGGGAAAAC-3’ (Qiagen).  PCR conditions included 40 

cycles of denaturing at 94°C, primer annealing at 55°C and extension at 72°C.  PCR products 
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were run on a 2.5% agarose gel to separate a 350-bp product corresponding to wildtype Egfr 

and a 450-bp product corresponding to the Egfrtm1Mag allele.   

 Noon on the day that copulation plugs were observed was designated as 0.5 days 

post-coitus (dpc). Pregnant females were euthanized by CO2 asphyxiation and embryos and 

placentas dissected from the uterine horns on the morning of 9.5 through 18.5 dpc into 

phosphate buffered saline (PBS). The placenta and extra-embryonic tissues were separated 

from the embryo by mechanical dissection and either whole embryos before 10.5 dpc or tail 

biopsies after 10.5 dpc were collected for DNA extraction to determine the genotype of each 

individual embryo.   Placentas were either flash frozen or preserved in RNAlater (Ambion) 

for extraction of RNA or fixed in 10% NBF (neutral buffered formalin) for histological 

analysis.   

For cell cycle crosses Egfrtm1Mag heterozygous mice on a 129/Sv genetic background 

were intercrossed with mice heterozygous for Trp53tm1Tyj, Rbtm1Tyj, Cdkn1atm1Tyj, or Cdkn1btm1Mlf 

null alleles maintained on a similar 129/Sv background.  Egfrtm1Mag heterozygous mice from a 

BALB/cJ background were intercrossed with mice heterozygous for Trp53tm1Tyj, Rbtm1Tyj, or 

Cdkn2ctm1Yxi null alleles, also on a BALB/cJ background.  Double heterozygous mice were 

intercrossed and embryos with placentas were collected and genotyped at 13.5 dpc (Table 4).  

To increase numbers of double homozygous embryos, some Trp53tm1Tyj and Cdkn1atm1Tyj 

crosses were set up by intercrossing animals homozygous for Trp53tm1Tyj or Cdkn1atm1Tyj, and 

heterozygous for Egfrtm1Mag (Table 4).  Trp53tm1Tyj, Rbtm1Tyj, Cdkn1atm1Tyj, Cdkn1btm1Mlf and 

Cdkn2ctm1Yxi null alleles were amplified by PCR and detected as previously described [24-27]. 

 Mice were fed Purina Mills Lab Diet 5058 or 5010 and water ad libitum under 

specific pathogen free conditions in an American Association for the Accreditation of Lab 
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Animal Care approved facility.  All experiments were approved by an Institutional Animal 

Care and Use Committee. 

Ribonuclease protection assay 

Wildtype samples were collected at 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, and 16.5 

dpc from CD-1 females mated to CD-1 males.  Embryos were dissected from extraembryonic 

tissue in PBS and total RNA was isolated from the embryo or placenta by homogenizing 

tissue in 1-2 mls of Tri-reagent (Molecular Research Center). A Pvu II-Sst I restriction 

fragment generated from the region spanning exons 15-18 of the Egfr was subcloned into 

pBSK+ for use as a probe.  The plasmid was linearized with Xho I and a 440 bp antisense 

probe was generated and radiolabeled with T3 polymerase and dUTP-P32 using the 

MAXIscript in vitro transcription kit (Ambion).  The riboprobe was quantified by 

scintillation counting and 10 µg of total RNA from each embryonic or placental time point 

was incubated with 6 X 105 CPM (250-300 ng) labeled riboprobe.  Ribonuclease protection 

assays (RPAs) were carried out using the RPA Kit II (Ambion), and analyzed using a 

phosphoimager system (Molecular Dynamics).  The radioactivity of each fragment was 

quantified, normalized to a glyceraldehyde-3-phosphate dehydrogenase (Gapdh) probe, and 

expressed as normalized counts.  Each RPA was repeated three times for each time point and 

each experiment included a 20 µg sample of total liver RNA to demonstrate that the probe 

was in excess of RNA in the reaction.  The Gapdh probe was a 280-bp Hind III-Pst I 

fragment from mouse Gapdh that was linearized with Bam HI and antisense probe was 

generated using SP6 polymerase as described above.  Error is expressed as the standard error 

of the mean for three independent RPAs for the embryonic and placental timepoints. 

Immunohistochemistry and Western blots 
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FVB.129 F1 and BALB.129 F1 placentas at 18.5 dpc were collected and fixed in 10% 

neutral buffered formalin (NBF) at 4oC overnight.  Samples were then floated in 30% 

sucrose, embedded in Tissue Tek (Fisher Scientific), and cryosectioned.  Slides were post 

fixed in 10% NBF for 10 minutes, endogenous peroxidases quenched using 3% hydrogen 

peroxide in MeOH, and subjected to heat-induced epitope retrieval in 10mM citrate buffer 

pH 6.0.  Non-specific sites were blocked using blocking solution (0.1 mM Tris pH 8.0, 0.1% 

Tween-20, 1% BSA) incubated with sheep-anti-mouse-EGFR (1:100; Maine 

Biotechnologies) or rabbit-anti-human-ERBB2 (sc284, 1:100), rabbit-anti-human-ERBB3 

(sc285, 1:100), or rabbit-anti-human-ERBB4 (sc283, 1:100; Santa Cruz Biotechnologies). 

Samples exposed to anti-EGFR were incubated in species-specific anti-sheep secondary 

antibody conjugated to HRP at 1:100, while the other anti-ERBB samples were incubated in 

goat anti-rabbit-HRP secondary antibody (Jackson Immunologics). Antigen was 

colormetrically detected by reaction with 3-3’-diaminobenzidine (DAB) and counterstained 

with hematoxalin.  Slides were viewed using a DMRE microscope (Leica) and photographed 

at 200X with a CCD digital camera (SPOT Diagnostics).  Levels of immunoreactivity were 

determined qualitatively.  

For western analysis placentas were collected at 10.5 dpc from C57B6.129 F1, 13.5 

dpc from ALR.129 F1, and 18.5 dpc from FVB.129 F1 crosses.  Tissues were mechanically 

homogenized on ice in protein lysis buffer (40mM HEPES pH 7.4, 10mM EDTA pH 8.0, 

4mM EGTA pH7.5, 2% Triton X-100, 20 ng/mL aprotinin, 20 ng/mL leupeptin, 1mM 

sodium vanadate, 1mM PMSF) based on 10% weight/volume. Proteins were separated using 

6% stacking and 10% resolving SDS-polyacrylamide gel electrophoresis in 1X Laemelli 

running buffer then transferred to nitrocellulose membrane.   Membranes were washed in 
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TBST (10mM Tris pH7.5, 150mM NaCl, 0.1% Tween 20), blocked with 5% powdered milk 

in TBST, and incubated with the following primary antibodies Egfr (1:500), ErbB3 (1:500), 

or mouse-anti-rat-beta tubulin (Sigma T5201, 1:500), washed and incubated with secondary 

antibody to either rabbit anti-sheep, goat anti-rabbit or rabbit-anti-mouse conjugated to HRP  

(Jackson Immuno) and antigen detected using ECL detection (Amersham cat # RPN 2106).   

Proliferation assays 

Placentas, from N2 embryos generated by backcrossing ALR.129F1 Egfrtm1Mag 

heterozygous mice to 129/Sv Egfrtm1Mag heterozygous mice, were collected two hours after 

maternal intraperitoneal injection with 10 µl per gram of body weight of 25 mg/ml 

bromodeoxyuridine (BrdU) in PBS.  Timed pregnancies were collected at 10.5, 13.5 and 18.5 

dpc, the placenta washed in PBS, bisected, and fixed in 10% neutral buffered formalin at 4°C 

overnight.  Tissue was then washed in PBS and 0.9% saline, dehydrated in ethanols and 

xylenes then embedded in paraffin.  Seven-micron sections were cut using a RM2165 

microtome (Leica).  A BrdU staining kit (Zymed Laboratories) was used to determine 

proliferation rates in Egfrtm1Mag homozygous null and wildtype placentas per manufacturer’s 

protocol.  Colorometric reaction was detected using DAB-tetrahydrochloride horseradish 

peroxidase substrate, counterstained with hematoxylin, dehydrated in a series of ethanols, 

and mounted using Permount (Fisher Scientific).  Samples were photographed on a DMRE 

microscope (Leica) at a magnification of 400X using a CCD digital camera (SPOT 

Diagnostics). BrdU positive nuclei were counted in one field of view for 5-10 independent 

placenta from 3-4 BrdU injected pregnant females per time point.  Percentages are expressed 

as the number of BrdU positive nuclei over total number of nuclei in a field of view.  

Real-time PCR  
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 Total RNA was prepared from 129/Sv and BALB/c 10.5 dpc placentas using Trizol 

reagent and purified using an RNAeasy mini kit according to the manufacturer's protocol 

(Qiagen).   One microgram of each RNA sample was reverse transcribed with the High 

Capacity cDNA Archive Kit (Applied Biosystems) and equivalent amounts of cDNA were 

used in a real-time PCR reaction to measure transcript levels of Cdkn1a, Cdkn1b, Myc, and 

Cdc25a.  Levels were normalized relative to expression of Gusb in each sample and fold 

change in gene expression was calculated using the 2(-ΔΔCt) method [28].  Primer and probe 

sets for Cdkn1a, Cdkn1b, Myc, Cdc25a, and Gusb were Assays-On-Demand (Applied 

Biosysems) and used according to the manufacturer’s protocol with a Mx3000P real-time 

PCR machine (Stratagene). 

Statistical analysis  

For BrdU experiments samples were collected from 2-5 independently injected 

females, with 2-10 placentas collected per gestational time.  Error bars are expressed as the 

standard error of the mean (SEM).  Significance was determined by the Mann-Whitney test 

with p < 0.05 being significant.  For real-time PCR data p-values were determined by 

student’s T-test with p < 0.05 being significant. 

 

Results 

Egfr transcripts are dynamically expressed in the developing mouse placenta 

 Three major transcripts of Egfr have been detected in rodent tissue by northern blot 

analysis; 10 and 6.5-Kb transcripts that encode the full-length 170 kD receptor and a 2.8-Kb 

transcript that encodes a secreted 95 kD protein corresponding to the extracellular ligand-

binding domain of EGFR [29-31].  A quantitative RPA distinguishing the full-length and 
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truncated receptor transcripts revealed a dynamic expression pattern during gestation.  Full-

length Egfr transcripts are expressed at very low levels in the embryo from 8.5 to 10.5 dpc 

with expression increasing steadily from 11.5 dpc to 14.5 dpc and then decreasing after 14.5 

dpc (Fig. 2A).  No truncated Egfr transcripts are detectable during embryogenesis. 

In contrast to the embryonic expression pattern, full-length and truncated Egfr 

transcripts are detectable at all stages of placental development.  Expression of the full-length 

transcripts decrease from 9.5 to 11.5 dpc and then increase from 12.5 to 16.5 dpc, where the 

highest levels of expression are observed (Fig. 2B).  Interestingly, the lowest level of 

expression occurs around 11.5 dpc, coincident with abnormal development of the Egfr 

nullizygous placenta and embryonic lethality on many genetic backgrounds [2,3,5].  The 

highest level of truncated receptor transcript is observed at 9.5 dpc.  When compared to 

levels of full-length transcript at the same time points, truncated transcripts in the placenta 

decrease from 81% at 9.5 dpc to 17% at 13.5 dpc of the total Egfr transcripts.  

ERBB receptor expression is unaltered in EGFR deficient placenta 

Since individual members of the ERBB family can activate similar signaling 

pathways, it is possible that other ERBB family members compensate for the loss of EGFR 

during placental development in strains with a less severe phenotype.   To address this 

possibility, localization of EGFR, ERBB2, ERBB3, and ERBB4 in 18.5 dpc wildtype and 

Egfrtm1Mag null placenta was determined by immunohistochemistry.   

EGFR was detected primarily in the decidua, trophoblast giant and 

spongiotrophoblast cells, with low levels detected in the labyrinthine layer (Fig. 3A). The 

EGFR was not detected in the Egfr null placenta at 18.5 dpc (Fig. 3B).  The only ERBB 

family member not detected in the wildtype or Egfr null placenta was ERBB2 (Fig. 3C and 
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D), suggesting that in the 18.5 dpc mouse placenta this receptor is expressed at undetectable 

levels or is not involved in normal placental formation.  Up-regulation of ERBB2 was not 

detected in response to a lack of EGFR signaling.  Both ERBB3 and ERBB4 were detected in 

the maternal decidua and in the trophoblast giant cells of wildtype and Egfr null placentas 

(Fig. 3E - H).  Since dysregulation of ERBB2, ERBB3 or ERBB4 was not detected in the 

Egfr null placenta, it is unlikely that these ERBB receptors contribute to compensatory 

mechanisms supporting embryonic survival in the absence of EGFR.   

Levels of the ERBB3 and EGFR were confirmed by western blot at 18.5 dpc, as well 

as at 10.5 and 13.5 dpc.  No EGFR immunoreactivity was detected in homozygous Egfr null 

placenta, while a normal 170 kD EGFR protein was detected in corresponding wildtype 

samples (Fig. 4).  Higher levels of ERBB3 were detected at 18.5 dpc compared to 10.5 and 

13.5 dpc in wildtype placentas, with no significant differences noted between wildtype and 

Egfr null samples.  Weak bands observed in 10.5 and 13.5 dpc samples likely reflect 

contribution from the deciduas, since EGFR, ERBB3 and ERBB4 are all highly expressed in 

the decidua.  

Reduced trophoblast proliferation in EGFR deficient placentas  

Differences in cellular proliferation in wildtype and Egfr null placenta were assessed 

by incorporation of the thymidine analog BrdU into cells that are in the S-phase of the cell 

cycle.  Based on immunohistochemical analysis, the number of BrdU-positive nuclei 

appeared reduced in 10.5 dpc Egfr null placentas from 129/Sv, a strain exhibiting abnormal 

labyrinth and spongiotrophoblast development and embryonic lethality by 11.5 dpc (Table 

3).  At 10.5 dpc a 60% decrease in proliferation in the Egfr null placenta was detected 

compared to wildtype placenta, suggesting that there is a significant reduction in proliferating 
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trophoblast cells without EGFR.  To determine whether the reduction in proliferation 

contributes to mid-gestation lethality of Egfr null embryos, BrdU incorporation was 

determined at 10.5 dpc in the ALR.129 mixed genetic background, which has a functional 

labyrinth but reduced spongiotrophoblast layer and supports embryo survival through late 

gestation.  Similar to that observed in the 129/Sv background, EGFR deficiency on the 

ALR.129 background resulted in a 56% reduction in BrdU positive cells. These data suggest 

that proliferation does not contribute to differential survival of Egfr null embryos. 

Interestingly at 13.5 dpc of gestation, there was no longer a statistically significant 

difference in BrdU incorporation between the ALR.129 wildtype and Egfr null placentas 

(Table 3). We also did not observe differences in proliferation rates in specific trophoblast 

layers when the amount of BrdU incorporation was analyzed specifically in the 

spongiotrophoblast or labyrinthine layer at 13.5 dpc (data not shown).  By 18.5 dpc few cells 

are actively replicating (Table 3).   Additionally there was no significant difference in the 

number of trophoblast cells undergoing apoptosis when comparing ALR.129 wildtype and 

Egfr null placentas at 10.5, 13.5 or 18.5 dpc using a TUNEL assay (Table 3).   We observed 

few TUNEL-positive trophoblasts across gestation, consistent with previous reports 

characterizing apoptosis in mouse placental tissue [7,32]. 

To confirm the BrdU data, markers of proliferation and cell cycle arrest were 

measured by real-time PCR in 10.5 dpc Egfr wildtype and null placentas.  Expression of 

Cdc25a and Myc, two genes known to be transcriptionally up-regulated in proliferating cells 

[33,34], were significantly higher in wildtype (n = 11) versus Egfr null (n = 12) placentas 

(Fig. 5). Myc expression in Egfr null placentas was 74% of wildtype levels (p = 0.01), while 

Cdc25a expression was 61% of wildtype levels (p < 0.02) (Fig. 5).  Cdkn1a and Cdkn1b are 
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known to be transcriptionally up-regulated in cells arresting in the cell cycle at G1-S [33].  

We found no significant changes in Cdkn1a expression, but Cdkn1b transcripts were 

significantly higher (117% compared to wildtype) in Egfr null placentas (p < 0.05) (Figure 

5).  These data are consistent with a greater number of Egfr nullizygous trophoblast cells 

undergoing cell cycle arrest. 

Placental defects are not rescued by genetic reduction of cell cycle checkpoint regulators 

Although genetic backgrounds showing disparite survival of Egfr null embryos have 

equivalent reductions in trophoblast proliferation at 10.5 dpc, it is possible that the ALR.129 

strain overcomes the 10.5 dpc proliferation defect and continues to develop a functioning 

placenta while the 129/Sv strain does not.  To investigate this, we intercrossed Egfrtm1Mag 

heterozygous mice with mice carrying null alleles of various cell cycle checkpoint genes that 

regulate the G1 to S transition [33,35], including three cyclin dependent kinase inhibitiors 

(CKIs), Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), and Cdkn2c (p18INK4c), as well as two tumor 

suppressors, Trp53 (p53), and Rb.  Trp53 and Cdkn1a also regulate the G2 to M checkpoint 

[36].  Genetic ablation of these cell cycle checkpoint molecules would be expected to 

increase cellular proliferation and, if this contributed to the mid-gestation lethality observed 

on the 129/Sv background, increase survival of Egfr null embryos.  

The 129/Sv background was used for Trp53tm1Ty, Rbtm1Tyj, Cdkn1atm1Tyj, and 

Cdkn1btm1Mlf null allele crosses while the BALB/cJ background, which has a phenotype 

similar to 129/Sv, was used for Trp53tm1Ty, Cdkn2ctm1Yxi and Rbtm1Tyj null allele crosses. 

Surviving Egfrtm1Mag homozygous embryos were not detected at 13.5 dpc irrespective of 

Trp53tm1Tyj (n = 120), Rbtm1Tyj (n = 108), or Cdkn1btm1Mlf (n = 102) genotype (Table 4).  At 13.5 

dpc a low number of viable embryos from the Cdkn2ctm1Yxi cross were found to be 
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homozygous for Egfrtm1Mag (2 out of 119).  However, one of these two embryos was wildtype 

for Cdkn2c.  Similarly 12 out of 257 total embryos from the Cdkn1atm1Tyj cross were found to 

be Egfrtm1Mag homozygous and viable at 13.5 dpc.  Data from Cdkn1atm1Tyj, Egfrtm1Mag 

heterozygous intercrosses revealed that 3 of the 5 surviving Egfr nullizygous embryos carried 

wildtype Cdkn1a alleles.  Because genotypes of Cdkn1atm1Tyj or Cdkn2ctm1Yxi did not correlate 

with embryonic survival it is likely that Cdkn1atm1Tyj and Cdkn2ctm1Yxi congenic lines were not 

pure 129/Sv or BALB/cJ and were probably segregating unknown genetic background 

modifiers of the Egfrtm1Mag phenotype.  In composite, these data indicate that removing 

negative regulators of the cell cycle is not sufficient to support survival of Egfr null embryos. 

 

Discussion 

EGFR transcripts and protein are abundantly detected in human placenta and aberrant 

expression of the receptor has been associated with IUGR, preeclampsia, and placenta 

accreta [17-22].  Interestingly, alternative transcripts from the Egfr locus that encode a 

secreted 60 kD protein corresponding to the extracellular ligand binding domain of EGFR 

have been reported in both human and mouse placenta [1,21,37].  It has been suggested that 

these secreted EGFRs play a role in negatively regulating ERBB signaling by sequestering 

ligand or binding cell membrane-associated ERBB receptors to prevent receptor 

phosphorylation and activation of downstream pathways [38].  Using RPA we demonstrated 

dynamic expression of the full-length and truncated Egfr transcript during mouse embryo and 

placental development.  Truncated Egfr transcripts were not detected in the developing 

embryo, but low levels detected throughout placental development raise the possibility that 

secreted, ligand-binding EGFR may negatively regulate EGFR signaling in extra-embryonic 
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tissue.  In addition, we observed up-regulation of full-length Egfr transcripts after 11.5 dpc 

suggesting that EGFR is actively being turned-over around the time that the placental 

labyrinth develops and begins to function.  Since RPA provides no information on the 

localization of Egfr transcripts the dynamic expression patterns observed may reflect 

differences in the composition of the placenta related to gestational age rather than changes 

in Egfr expression.  By immunohistochemistry EGFR has been detected in all layers of the 

developing mouse placenta, however, the antibody used does not distinguish between the full 

length and truncated receptor forms.  

 One potential explanation for strain-specificity of the Egfr nullizygous placental 

phenotype is that surviving strains may developmentally compensate for a lack of Egfr 

signaling by up-regulating expression of other ERBB family members. For example, strain-

specific developmental compensation has been demonstrated in the Ptgs2 (Cox2) null mouse 

uterus where up-regulation of Ptgs1 (Cox1) allows partial rescue of fertility defects in CD-1 

females [39]. We compared expression of ERBB2, ERBB3, and ERBB4 in wildtype and Egfr 

null placentas from two hybrid strains that survive until late gestation.  ERBB2 was not 

detected, and although ERBB3 and ERBB4 were detected in the decidua and trophoblast 

giant cells at late gestation, there was no difference in expression or localization between 

Egfr wildtype and null placentas.  In fact, EGFR-deficient strains that survive past mid-

gestation probably utilize a mechanism other than ERBB compensation since ERBB2, 

ERBB3, and ERBB4 are not expressed at detectable levels in the spongiotrophoblasts or 

labyrinth trophoblasts, where defects in the Egfr nullizygous placenta are primarily observed. 

EGFR plays an important role in regulating cellular proliferation and cell survival 

[40].  EGFR signaling has been shown to promote cell cycle progression through the G1-S, 
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as well as G2-M checkpoints, and it is possible that the strain-specific placental phenotype 

observed in Egfr null mice could result from surviving strains using alternate pathways to 

enhance cell cycle progression in trophoblasts [41].  We found that Egfr null placentas on 

129/Sv and ALR.129 genetic backgrounds have fewer BrdU-positive trophoblasts than 

wildtype at 10.5 dpc.  However, proliferation defects in the Egfr nullizygous placentas do not 

correlate with embryonic lethality since Egfr null embryos on ALR.129 survive to late 

gestation despite having equivalently reduced trophoblast proliferation compared to embryos 

on a 129/Sv background at 10.5 dpc,.  This result does not exclude the possibility that the 

ALR.129, but not the 129/Sv genetic background, harbors modifiers allowing the strain to 

overcome proliferation defects at 10.5 dpc and develop a functioning placenta.  We tested 

this hypothesis by genetically reducing negative cell cycle regulators downstream of EGFR, 

thus potentially permitting cell cycle progression in the absence of EGFR on backgrounds 

that do not support survival of Egfr null embryos past mid-gestation.  Hyper-proliferation of 

labyrinth trophoblasts has been observed in mouse RB-deficient placentas and in placentas 

deficient for both CDKN1B and CDKN1C [42-44].  We surmised that eliminating these and 

other cell cycle checkpoint components would rescue Egfr nullizygous placental 

development by increasing trophoblast proliferation.  We intercrossed Egfrtm1Mag 

heterozygotes with mice segregating Trp53tm1Tyj, Rbtm1Tyj, Cdkn1atm1Tyj, Cdkn1btm1Mlf or 

Cdkn2ctm1Yxi null alleles carried on 129/Sv and BALB/cJ backgrounds. Results from the 

intercrosses indicated that genetic reduction of negative cell cycle checkpoint components 

does not rescue the embryonic lethality of EGFR deficient embryos.  

Together our data indicates that proliferation defects observed in 10.5 dpc Egfrtm1Mag 

nullizygous placentas do not contribute to the midgestation embryonic lethality since the 
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phenotype is observed in both surviving (ALR.129) and non-surviving (129/Sv) strains.  At 

10.5 dpc the spongiotrophoblast is likely the primary lineage affected by the proliferation 

defect because both ALR.129 and 129/Sv show dramatic reduction of this trophoblast 

compartment.  Consequently, a decrease in the spongiotrophoblast population probably does 

not contribute to placental insufficiency in Egfr nullizygous embryos.  Rather, survival of 

embryos beyond 11.5 dpc is prevented by an abnormal labyrinth phenotype in strains such as 

129/Sv.  Additional experiments utilizing markers for trophoblast sub-type progenitors are 

necessary to evaluate differences in early labyrinth cell populations that may distinguish 

surviving and non-surviving strains. 
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Figure 3.  Immunohistochemistry for ERBB family members on late gestation placentas.  
Immunohistochemistry was done using FVB.129 or BALB.129 N2 placentas at 18.5 dpc.  
Panels (A, C, E, G) are wildtype samples, while (B, D, F, H) are Egfrtm1Mag null samples.  (A, 
B) Protein localization for an EGFR specific antibody.  In wildtype sample EGFR is 
localized to both the spongiotrophoblast and labyrinthine layers.  Note loss of localization of 
EGFR in the Egfrtm1Mag null placenta, although there is some immunoreactivity in the 
maternally derived decidual layer.  Also note the loss of the spongiotrophoblast cell layer.    
(C, D) ERBB2 is not detected in either wildtype or null samples.  (E, F) Localization of 
ERBB3 protein to the TGC layer and the maternal decidua. Levels of protein appear 
equivalent in both the wildtype and Egfrtm1Mag null placenta.  (G, H) Protein levels of ERBB4 
appear unaltered between the wildtype and Egfrtm1Mag null samples, with localization observed 
in the TGC and maternal decidua. Abbreviations: SP:spongiotrophoblast layer; 
LT:labyrinthine trophoblast layer; De:decidua; TGC:trophoblast giant cells. Arrowheads 
indicate TGC, scale bars 50µm. (Strunk) 
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CHAPTER III 

 

PLACENTAL AND EMBRYONIC GROWTH PHENOTYPES IN MICE WITH 

REDUCED FUNCTION OF EPIDERMAL GROWTH FACTOR RECEPTOR  

 

Abstract 

Epidermal growth factor receptor (EGFR) is an ERBB family receptor tyrosine kinase 

essential for a wide range of developmental and physiological processes.  Although 

characterization of knockout mice has revealed some redundant functions for the four ERBB 

receptors only EGFR is required for development of the placenta.  Egfrtm1Mag nullizygous 

placentas exhibit strain-specific defects that range from mild reductions in 

spongiotrophoblasts to severe labyrinth dysmorphogenesis that results in mid-gestational 

embryonic lethality.  The aim of the current study was to characterize placental development 

in several congenic strains homozygous for the hypomorphic Egfrwa2 allele or heterozygous 

for the antimorphic EgfrWa5 allele.  Egfrwa2 homozygous embryos and placentas exhibited 

strain-dependent growth restriction at 15.5 dpc while EgfrWa5 heterozygous placentas were 

only slightly reduced in size with no effect on embryonic growth.  A panel of genes 

expressed specifically in the various trophoblast cell subtypes of the placenta was used to 

quantify changes in differentiated trophoblasts.  Egfrwa2 homozygous and EgfrWa5 

heterozygous placentas exhibited reduced expression of spongiotrophoblast and glycogen 

cell markers with Egfrwa2 homozygotes having the most pronounced changes.  At the 

histological level Egfrwa2 homozygous placentas had a reduced layer of spongiotrophoblast 

and in some strains spongiotrophoblasts and glycogen cells were almost completely absent. 
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Our results demonstrate that more EGFR signaling occurs in EgfrWa5 heterozygotes versus 

Egfrwa2 homozygotes and suggest that Egfrwa2 homozygous embryos may be useful models 

for studying intrauterine growth restriction (IUGR).  During our study we also consistently 

observed differences between strains in wildtype placenta and embryo size as well as in 

expression of trophoblast cell subtype markers.  Strain-dependent placental trophoblast 

composition and gene expression may contribute to phenotypic variability observed in 

knockouts for Egfr and other genes. 
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Introduction 

Epidermal growth factor receptor (EGFR) is the prototypical member of the ERBB 

family of receptor tyrosine kinases and is known to regulate many aspects of cellular biology 

including cell proliferation, survival, differentiation and migration.  Eleven known ligands 

bind the extra-cellular region of ERBB-family receptors, and activation of the tyrosine kinase 

domain occurs following receptor homo- or heterodimerization.  The resulting biological 

responses are dependent upon specific signaling cascades initiated by ERBBs and can be 

influenced by the particular ligand – ERBB combination [1].  Studies using cultured cells 

have underscored the importance of EGFR in modulating various cellular processes but 

animal models have been able to demonstrate that EGFR is required for numerous 

developmental and physiological processes [2].  In vivo studies have shown that EGFR is 

particularly important for normal placental development in mice; placentas from Egfr 

nullizygous (Egfrtm1Mag/tm1Mag) embryos exhibit strain-specific defects that result in 

differential embryonic lethality [3,4]. Two additional Egfr alleles result in reduced EGFR 

signaling in mice, the recessive hypomorphic Egfrwa2 (waved-2) and dominant antimorphic 

EgfrWa5 (Waved-5) alleles [5-8].  These alleles can provide insight into the level of EGFR 

signaling required for normal placental development. 

Egfrwa2 is a classical spontaneous mutation that arose in 1935, and causes a distinct 

wavy coat phenotype in the homozygote (Figure 6).  This recessive mutation was 

subsequently found to be a single nucleotide transversion resulting in a Valine  Glycine 

substitution in the highly conserved kinase domain of EGFR [6,8].  Since mice homozygous 

for the Egfrtm1mag null allele die before or shortly after birth, the hypomorphic Egfrwa2 allele 

has been the primary model used to study the effect of attenuated EGFR signaling in a 
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variety of adult physiological and disease states.  In addition to eye and hair phenotypes the 

adult Egfrwa2 homozygous mouse exhibits delayed onset of puberty, abnormal ovulation, 

enlarged aortic valves and cardiac hypertrophy, decreased body size, defects in mammary 

gland development and lactation, increased susceptibility to colitis, and impaired intestinal 

adaptation following small bowel resection [6,9-14].  Egfrwa2 homozygosity reduces tumor 

number in several mouse models of cancer including the Apcmin intestinal tumorigenesis, the 

Nf1+/-, p53+/- neurofibromatosis-related peripheral nerve tumorigenesis, the transgenic SOS-F 

skin tumor and the MMTV-ErbB2 mammary tumor models suggesting that EGFR plays a 

role in the development and/or progression of many types of cancer [15-18].  Similarly 

Egfrwa2 homozygosity significantly reduces the number of renal cysts in the orpk model of 

autosomal recessive polycystic kidney disease [19].  

There have been some limitations in using Egfrwa2 homozygous mice to clearly define 

the physiological roles of EGFR.  Egfrwa2 has traditionally been maintained in cis with the 

tightly linked mutant Wnt3a allele, Wnt3a Vt (Vestigal tail), making phenotypic analysis of 

reduced EGFR signaling by itself difficult.  In addition, Egfrwa2 has typically been bred on a 

mixed background and since the Egfr nullizygous phenotype is influenced by genetic 

modifiers a mixed background could mask phenotypes that become evident when Egfrwa2 

mice are inbred.   

The EgfrWa5 allele arose in a large, genome-wide ethylnitrosourea (ENU) mutagenesis 

screen for dominant visible mutations in the mouse.  EgfrWa5 heterozygous mice were first 

identified by their open eyelids at birth and development of a wavy coat, similar to the 

phenotype of Egfrwa2 homozygous mice (Figure 6).    EgfrWa5 failed to complement the 

Egfrtm1mag null allele and was shown to function as an antimorph since EgfrWa5, but not 
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Egfrtm1mag heterozygotes, exhibit a phenotype [7].  Although EgfrWa5 heterozygotes are viable, 

EgfrWa5 homozygotes die prenatally and exhibit placental defects identical to those of 

Egfrtm1mag homozygous null embryos.  Placentas from EgfrWa5 heterozygotes on a mixed 

background show variable reduction in the spongiotrophoblast layer and some abnormalities 

in the labyrinth region, but there are no significant effects on embryo survival.  

A single nucleotide missense mutation was found in the EgfrWa5 allele that results in 

an Asp  Gly substitution in the highly conserved DFG domain of the EGFR kinase 

catalytic loop [5,7].  The Asp833 residue is involved in coordination of ATP and Mg2+ and is 

essential for the phospho-transfer reaction of the kinase.  Results from in vitro studies with 

EgfrWa5 suggest that it encodes a kinase-dead EGFR since no phosphorylation of WA5 is 

detected following stimulation with ligands.  In agreement with the genetic data showing that 

EgfrWa5is an antimorph, in vitro studies have also demonstrated that WA5 receptor can inhibit 

phosphorylation of wildtype EGFR and MAPK in a dose-dependent manner.  In CHO cells 

transfected with equal amount of wildtype EGFR and the WA5 receptor less than 10% of 

wildtype phosphorylation levels were observed by western blot [7].  There have been no 

studies that report the effect of WA5 on phosphorylation of other ERBB family members. 

To have an EGFR allelic series available in the mouse is a phenomenal resource since 

EGFR is involved in a multitude of developmental processes and human diseases.  Although 

both Egfrwa2 and EgfrWa5 alleles result in reduced EGFR signaling, the activity and 

phenotypic consequences of Egfrwa2 homozygosity has not been compared to that of EgfrWa5 

heterozygosity in mice on the same genetic background.  EgfrWa5 heterozygous mice appear 

highly similar to Egfrwa2 homozygotes.  As adults both genotypes exhibit a wavy coat and 

curly or broken whiskers and during embryogenesis delayed eyelid closure is incompletely 
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penetrant.  The only functional studies that have shown a difference in phenotype between 

the Egfrwa2 homozygote and the EgfrWa5 heterozygote are crosses with the ApcMin intestinal 

tumor model [7,17].  A more substantial reduction in tumor number occurs when the ApcMin 

mutation is bred onto the Egfrwa2 homozygous background than onto the EgfrWa5 

heterozygous background suggesting that the EgfrWa5 heterozygous mice retain higher levels 

of EGFR activity than Egfrwa2 homozygous mice.  However the data is confounded by the 

fact that previous crosses were performed on different mixed genetic backgrounds.  

Recently we bred the Egfrwa2 and EgfrWa5 alleles to congenicity on several genetic 

backgrounds.  This study reports the effects of reduced EGFR signaling on placental 

development and embryonic growth for three genetic backgrounds, C57BL/6J (B6), 

129S1/SvImJ (129), and BTBR/J-T+, tf/tf (BTBR).  Wildtype placenta weight, embryo 

weight, and mRNA levels of genes selected for their trophoblast-specific expression were 

found to be highly strain-dependent.  Egfrwa2 homozygous placentas are reduced in size in all 

three strains and a proportion of the 129-Egfrwa2 homozygotes die before 15.5dpc.  Egfrwa2 

homozygous embryos also display background-dependent growth restriction in late gestation, 

which is most severe on 129 and BTBR backgrounds.  EgfrWa5 heterozygous placentas 

exhibit minor reduction in size on all three backgrounds with no impact on embryonic 

growth.  These results suggest that reduced levels of EGFR signaling can interfere with 

normal placental development.  In addition, our data clearly shows that the level of EGFR 

signaling in EgfrWa5 heterozygous mice is higher than in Egfrwa2 homozygotes.  
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Materials and Methods 

Mice and genetic crosses 

Congenic Egfrwa2 lines were generated by backcrossing outbred C57BL/6JEiC3H-

a/A-Egfrwa2/wa2 Wnt3avt/vt mice obtained from The Jackson Laboratory (Bar Harbor, ME) to 

B6, 129 and BTBR wildtype inbred strains for 10 or more generations.  Removal of the 

linked Wnt3avt allele, 20 cM distal to Egfr on chromosome 11, was verified by PCR-based 

genotyping (Figure 7).  Congenic Egfrwa2 heterozygous mice were then intercrossed to 

produce litters from each background containing wildtype, Egfrwa2 heterozygous and 

homozygous congenic embryos and pups (Figure 8A). 

Congenic EgfrWa5 mice were generated by backcrossing heterozygous EgfrWa5 mice 

from a mixed genetic background to inbred B6, 129 and BTBR strains for 10 or more 

generations.  Congenic heterozygous mice were then crossed to wildtype animals of the same 

strain to produce litters containing wildtype and Egfrwa5 heterozygous congenic embryos and 

pups (Figure 8B). 

Mice were fed Purina Mills Lab Diet 5058 or 5010 and water ad libitum under 

specific pathogen free conditions in an American Association for the Accreditation of Lab 

Animal Care approved facility.  All experiments were approved by an Institutional Animal 

Care and Use Committee. 

Genotyping 

DNA was extracted from adult ear punches or embryo tail biopsies for genotyping by 

incubating at 95°C in 100 uL of 25mM NaOH/0.2mM EDTA for 20 minutes and then 

neutralizing with 100 uL 40mM TrisHCl pH 5.0.  For the subsequent genotyping reactions, 1 

uL of lysed tissue sample was used per reaction. 
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The Egfrwa2 allele was amplified by PCR with the following primers: Wa2F, 5’- 

TACCCAGAAAGGGATATGCG-3’ and Wa2R, 5’- GGAGCCAATGTTGTCCTTGT-3’ 

(Qiagen).  PCR conditions were 30 cycles at 94°C for 30 sec, 60°C for 60 sec and 72°C for 

60 sec.  PCR products were digested for 3 hours at 37°C with Fok I and Restriction Enzyme 

Buffer 2 (NEB) and run on a 3% agarose gel to separate a 230-bp product corresponding to 

wildtype Egfr and a 130 and 100-bp set of products corresponding to the digested Egfrwa2 

allele.   

EgfrWa5 allele was detected by real-time PCR with primers WA5F, 5’-

GTGAAGACACCACAGCATGTC-3’ and WA5R, 5’-CTCTTCAGCACCAAGCAGTTTG-

3’ along with 5’ VIC-labeled probe WA5V1, 5’-AAGATCACAGATTTTGG-3’ to detect 

wildtype Egfr and 5’ FAM-labeled probe WA5M1, 5’-AGATCACAGGTTTTGG-3’ to 

detect EgfrWa5 (ABI).  Genotyping was performed on an MXP-3000 Real-time PCR 

instrument (Stratagene) with 2X Taqman Universal PCR Master Mix (Applied Biosystems) 

and 20X mix primers and probes.  PCR conditions were 95°C for 10 minutes followed by 40 

cycles of 92°C for 15 seconds and 60°C for 1 minute.  Amplification of the wildtype allele 

was detected by comparative quantification of VIC-labeled PCR products and amplification 

of the EgfrWa5 allele was detected by comparative quantification of FAM-labeled PCR 

products with positive and negative EgfrWa5 adult tissue used as reference sample.    

Collection of placenta samples 

Noon on the day that copulation plugs were observed was designated as 0.5 days 

post-coitus (dpc). Pregnant females were euthanized by exposure to a lethal dose of 

isoflourane and embryos with their corresponding placentas dissected from the uterine horns 

on the morning of 15.5 dpc or 18.5 dpc into phosphate buffered saline (PBS). The placenta 
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and extra-embryonic tissues were separated from the embryo by mechanical dissection and a 

tail biopsy collected for DNA extraction to determine the genotype of each embryo.  Wet 

weights of embryos and placentas were recorded at the time of dissection.   Placentas were 

preserved in RNAlater (Ambion) for extraction of RNA or fixed in 10% NBF (neutral 

buffered formalin) for histological analysis.   

Histology 

After fixing placentas in 10% neutral buffered formalin overnight, tissues were 

washed in PBS, dehydrated in ethanols and xylenes, and embedded in paraffin.  Seven-

micron sections were cut using a Leica RM2165 microtome.  Sections were deparaffinized, 

rehydrated in a graded series of ethanols, and stained with hematoxylin and eosin (H&E) or 

Periodic acid-Schiff (PAS).  Stained sections were dehydrated in a series of ethanols and 

mounted using permount.  Representative histological images were photographed on a Nikon 

FXA microscope at a magnification of 1.25X, 10X, or 12 X using a CCD digital camera.  

Real-time PCR 

Placentas were homogenized in 1.2 mL Trizol using a bead mill (Eppendorf) and 

RNA was isolated according to manufacturer’s protocol (Invitrogen).  For each sample, 15 

ug of RNA was DNAse-treated, followed by a phenol-chloroform extraction.  RNA was 

quantified (Nanodrop) and 1 ug of each sample was reverse transcribed using the cDNA 

Archive kit (Applied Biosystems).  The amount of cDNA corresponding to 20 ng of RNA 

was used for each 20 uL real-time PCR reaction on an MXP-3000 instrument (Stratagene).  

Primer and probe sets for Gusb, Eomes, Esrrb, Esx1, Dlx3, Gm52, Tcfeb, Ctsq, Timp2, Glut3, 

Cx31 and Pdch12 were run according to manufacturer’s protocol with 2X Taqman Universal 

Mastermix (ABI).  Probes for 4311, Gcm1 and Pl1 were designed and manufactured in-house 
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(Dr. Kathleen Caron, UNC).  Gusb was used as an endogenous control and fold change of 

each gene of interest was calculated using the ΔΔCt method [20].  The average ΔCt of 

wildtype animals for each strain/allele combination was used as the control value to calculate 

ΔΔCt values for samples of the same strain and allele.  Fold-change values were computed 

from the ΔΔCt for each sample and converted to a percent increase over the wildtype average 

fold change for EgfrWa5 heterozygous and Egfrwa2 heterozygous and homozygous samples.  

For cluster analysis, ΔCt values for each sample and probe were uploaded into Cluster 

and median-centered.  Data was visualized using TreeView. 

Statistical Analysis 

All placenta and embryo weights were analyzed using the Mann Whitney test.  A χ2 

goodness of fit test performed to determine if the genotype distribution deviated from 

expected Mendelian ratios.  Real-time fold change values were analyzed using the student’s 

T-test. 

 

Results 

Egfrwa2 homozygous placentas are reduced in size on all genetic backgrounds. 

To determine the effect of the Egfrwa2 allele on placental development, placentas were 

collected at 15.5 dpc and 18.5 dpc from each of the three congenic strains by intercrossing 

respective Egfrwa2 heterozygous mice (Figure 9A).  At 15.5 dpc, placenta weight was reduced 

24% in B6-Egfrwa2 homozygous versus wildtype (p < 0.001) and heterozygous (p < 0.001) 

littermates (Figure 9A).  Placenta weight was similarly affected at 18.5 dpc with a 24% 

weight reduction in B6-Egfrwa2 homozygous versus wildtype (p < 0.01) and heterozygous (p 
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< 0.05) littermates (Figure 9B).  Wildtype and Egfrwa2 heterozygous placenta weights did not 

differ at either timepoint.  

In the 129 congenic strain, Egfrwa2 homozygous placenta weight was reduced 19% 

compared to wildtype (p < 0.001) and heterozygous (p < 0.001) littermates at 15.5 dpc 

(Figure 9A).  Although at 15.5 dpc, 129 had the least affected placental weight of the three 

strains, by 18.5 dpc the 129 congenic strain had the most severe reduction in placenta weight.  

At 18.5 dpc, 129-Egfrwa2 homozygous placentas weighed 37% less than wildtype (p < 0.01) 

and heterozygous (p < 0.01) littermates (Figure 9B).  There were no significant differences 

between 129 wildtype and Egfrwa2 heterozygous placentas at either timepoint. 

The BTBR congenic line showed the most severe placental weight reduction at 15.5 

dpc.  BTBR-Egfrwa2 homozygous placentas weighed 39% less than wildtype (p < 0.01) and 

heterozygous (p < 0.001) littermates (Figure 9A).  By 18.5 dpc, placental growth had 

increased in the BTBR-Egfrwa2 homozygotes since the organ weighed 28% less than wildtype 

(p < 0.01) and heterozygous (p < 0.01) littermates (Figure 9B).  Like the B6 and 129 strains 

there were no differences in placental weight between wildtype and Egfrwa2 heterozygous 

placentas for BTBR at either timepoint. 

 

Egfrwa2 homozygous embryos display strain-dependent intrauterine growth restriction. 

To assess the effect of Egfrwa2 on embryonic growth, wildtype, Egfrwa2 heterozygous 

and homozygous embryos were collected at 15.5 dpc and 18.5 dpc for each strain.  At 15.5 

and 18.5 dpc there were no significant differences in B6 embryo weight between the 

genotypes (Figure 10).  At 18.5 dpc, there was a slight, but not statistically significant, 

Egfrwa2 dose-dependent effect on embryo weight for the B6 background (Figure 10B).   
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At 15.5 dpc, 129-Egfrwa2 homozygous embryos did not weigh significantly different 

from wildtype embryos but heterozygous embryos weighed 12% more than wildtype (p < 

0.01) and Egfrwa2 homozygotes (p < 0.05) (Figure 10A).  In contrast, at 18.5 dpc growth 

restriction was observed in 129-Egfrwa2 homozygotes with Egfrwa2 homozygous embryos 

weighing 34% less than wildtype (p < 0.01) and heterozygous (p < 0.001) littermates (Figure 

10B and 10C).  At 18.5 dpc there were no differences in embryo weight between 129 

wildtype and Egfrwa2 heterozygous embryos (Figure 10B).   

At 15.5 dpc, BTBR-Egfrwa2 homozygous embryos weighed 18% less than wildtype (p 

< 0.05) and heterozygous (p < 0.01) littermates (Figure 10A).  By 18.5 dpc an even more 

severe embryonic growth restriction was observed in BTBR, with Egfrwa2 homozygous 

embryos weighing 32% less than wildtype (p < 0.01) and heterozygous (p < 0.001) 

littermates (Figure 10B).  There were no differences in embryo weight between BTBR 

wildtype and Egfrwa2 heterozygous embryos at either timepoint.  We found that embryo and 

placenta weights were highly correlated in 18.5 dpc BTBR-Egfrwa2 homozygous embryos (R2 

= 0.78) and to some extent in 129 Egfrwa2 homozygotes (R2 = 0.45), suggesting that fetal 

growth restriction was caused by the placental phenotype (Figure 10D). 

 

129-Egfrwa2 homozygous embryo survival is reduced at 15.5 dpc 

To determine the effect of Egfrwa2 on embryo survival, viable 15.5 dpc embryos were 

genotyped for each strain and evaluated for deviation from expected Mendelian ratios (Table 

5).  For B6, 32% of 75 viable embryos were Egfrwa2 homozygous, which was not 

significantly different than the expected 25%.  However, a significant deviation from 

Mendelian ratios was observed on the 129 background as only 14% of 86 viable embryos 
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were Egfrwa2 homozygous at 15.5 dpc (p < 0.01); a similar percentage of homozygotes were 

also observed at weaning (Table 5).  This result suggests that a significant number of Egfrwa2 

homozygous embryos die prior to 15.5 dpc.  Only a few BTBR litters were analyzed and 

survival was statistically similar to B6.  Nevertheless, three BTBR embryos were found dead 

at 15.5 dpc and all three were Egfrwa2 homozygous suggesting that there may be some loss of 

Egfrwa2 homozygotes prior to 15.5 dpc on the BTBR background.  There were also fewer 

than expected numbers of BTBR-Egfrwa2 homozygous weanlings observed in the breeding 

colony (data not shown). 

 

EgfrWa5 heterozygous embryos have a small reduction in placental size but no change in 

embryo weight 

To measure the effect of the EgfrWa5 allele on growth of the placenta and embryo, 

litters were collected from crosses between EgfrWa5 heterozygous and wildtype mice for the 

same three strains.  Placenta weight at 15.5 dpc was reduced by 9% in B6-EgfrWa5 

heterozygous versus wildtype littermates (p< 0.001).  (Figure 11A), but embryo weight was 

not affected (Figure 11B).  A similar reduction in placenta weight was observed in 129-

EgfrWa5 heterozygous embryos compared to wildtype littermates (p < 0.001; Figure 11A), 

with embryo weight being identical to wildtype littermates (Figure 11B).  At 18.5 dpc, 

placenta and embryo weights were unchanged between 129-EgfrWa5 and wildtype littermates 

(Figure 11C).  BTBR-EgfrWa5 heterozygous placentas were more modestly affected, showing 

only a 5% reduction in placenta weight and no difference in embryo weight at 15.5 dpc when 

compared to wildtype littermates (p < 0.05; Figure 11A and 11B). 
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Viable embryos were genotyped for each strain to determine if the genotype 

distributions deviated from expected Mendelian ratios (Table 6).  For B6 and 129, 53% and 

51% of viable embryos, respectively, were EgfrWa5 heterozygotes. Although the BTBR strain 

exhibited the smallest change in placental weight, only 40% of viable embryos were EgfrWa5 

heterozygotes (p < 0.05). 

 

129 and BTBR Egfrwa2 homozygous placentas have very few spongiotrophoblasts 

Placentas from 18.5 dpc embryos were stained with H and E for general 

morphological characterization and with PAS to identify glycogen-containing cells (stain 

magenta in color) of the spongiotrophoblast layer.  The PAS-stained sections were 

particularly useful in visualizing the thickness of the spongiotrophoblast layer since this layer 

stained magenta and a darker purple compared to the labyrinth.  The wildtype B6 placenta 

had a very thick layer of spongiotrophoblast with numerous protrusions into the labyrinth 

region (Figure 12A).  The B6 Egfrwa2 homozygous placentas exhibited a reduction in 

spongiotrophoblasts compared to wildtype (Figure 12B) but there were many glycogen-

positive cells present (Figure 12C).  Overall the B6 strain showed very intense PAS staining 

of the spongiotrophoblast indicating an abundance of glycogen-storing cells in this layer.  

BTBR and 129 wildtype placentas (Figure 12D and 12G, respectively) exhibited a less 

substantial layer of spongiotrophoblast than B6 but the layer was well-developed and stained 

strongly for PAS in all wildtype placentas examined.  In contrast, there were only a few small 

clusters of spongiotrophoblasts in the BTBR and 129 Egfrwa2 homozygous placentas (Figure 

12E and 12H, respectively).  Closer examination of these clusters revealed some PAS 

staining (Figure 12F and 12I, arrowheads).   
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There was no obvious reduction in the the spongiotrophoblast layer of 129 EgfrWa5 

heterozygous placentas (Figure 12J) compared to wildtype (Figure 12G).  There were no 

detectable differences in the structure of the labyrinth region between 129 wildtype and 

Egfrwa2 homozygous 18.5 dpc placentas (Figure 12K, L).  

 

Expression of markers for specific trophoblast cell subtypes differed in Egfrwa2 homozygous 

versus wildtype placentas  

The relative expression of trophoblast cell subtype markers Gcm1, Dlx3, Tcfeb, Esx1, 

Esrrb, Eomes, Gm52, Ctsq, 4311, Pdch12, Pl1, Timp2, Glut3 and Cx31 were measured by 

quantitative PCR (Table 7) and compared to an endogenous control, Gusb, in Egfrwa2 

heterozygous, Egfrwa2 homozygous, EgfrWa5 heterozygous and wildtype placentas from 15.5 

dpc embryos.  Significant differences between Egfrwa2 homozygous and wildtype placentas 

were found in the expression of several placental genes (Table 8).   In B6 several labyrinth 

expressed genes were significantly higher in Egfrwa2 homozygous placentas compared to 

control littermates (n = 10). Gcm1, Dlx3 and Tcfeb were 129 %, 141% and 143% of wildtype 

levels, respectively (p <0.001 to 0.05).  4311, a marker of spongiotrophoblast was 58% of 

wildtype levels (p = 0.001), while Pdch12, a marker of glycogen cells was 71% of wildtype 

levels (p < 0.01).  Levels of a decidua marker, Timp2 were 74% of wildtype levels (p < 0.01) 

and the expression of a gap junction protein expressed in glycogen trophoblast, Cx31, was 

64% of wildtype levels (p < 0.001).  There were no significant changes in expression 

between B6 Egfrwa2 heterozygous (n = 10) and wildtype placentas (n = 5).   In 129-Egfrwa2 

homozygous placentas (n = 7) labyrinth gene expression was also increased, Gcm1 was 142 

% (p = 0.01), Dlx3 was 143% (p = 0.001), Tcfeb was 134 % (p < 0.05) and Gm52 was 164% 
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of wildtype levels (p < 0.01).  For spongiotrophoblast, 4311 was 17% of wildtype levels (p < 

0.001) and Pdch12 was 84% of wildtype levels (p < 0.05).  Expression of a marker of 

sinusoidal labyrinth giant cells, Ctsq, was 78% of wildtype levels (p < 0.01).  The only 

significant change in expression between the 129-Egfrwa2 heterozygous (n = 10) and wildtype 

(n = 6) was in the trophoblast giant cell marker Pl1 which was expressed at 175% of 

wildtype levels in Egfrwa2 heterozygous placenta.  Changes in Esx1, Esrrb1, Eomes, and 

Glut3 were not significant for either strain.  

 ΔCT values for genes that were significantly different between Egfrwa2 homozygous 

and wildtype placentas clustered by genotype for the 129 background with the Egfrwa2 

homozygous samples showing high expression of labyrinth specific genes and low 

expression of spongiotrophoblast specific genes (Figure 13).  The B6 samples showed some 

genotype-specific clustering but not as strongly as for 129.  Overall, the Egfrwa2 samples 

clustered strongly by strain for the probes analyzed. 

Compared to the Egfrwa2 homozygotes, there were fewer differences observed in 

expression between EgfrWa5 heterozygous and wildtype placentas (Table 8).  For the B6 

background, the EgfrWa5 heterozygous (n = 7) expression of Gcm1 was 125% of wildtype (p 

< 0.01, n = 9), Dlx3 was 120% of wildtype (p <0.05) and Esx1 was 121% of wildtype (p < 

0.05).  There were no significant changes in expression for the 129 background between 

EgfrWa5 heterozygous (n = 8) and wildtype (n = 8) placentas. BTBR-EgfrWa5 heterozygotes (n 

= 8) expressed Gm52 at 133% of wildtype (p < 0.05, n = 8).  ΔCT values for EgfrWa5 samples 

clustered strongly by strain but not by genotype (Figure 14).   
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Wildtype placenta weights, embryo weights, and expression of trophoblast markers are 

strain-dependent. 

Wildtype placenta and embryo weights from the EgfrWa5 crosses were compared at 

15.5 dpc for the three strains (Figure 15).  B6 placentas and embryos were the largest of the 

three strains at 15.5 dpc with an average weight of 98.3 mg and 385 mg for the placenta and 

embryo, respectively.  129 placentas and embryos were the smallest with an average of 73.9 

mg for placenta and 318.6 mg for embryos.  The BTBR placentas had an average weight of 

82.3 mg and the embryos an average of 332.5 mg.  Placenta and embryo weights were 

significantly different in all strain comparisons (p < 0.001). 

 ΔCT values of all genes analyzed for EgfrWa5 samples were clustered by sample and 

gene (Figure 14).  This included a larger set of probes than for the Egfrwa2 samples since 

genes were included that were not significantly different between EgfrWa5 heterozygous and 

wildtype samples.  BTBR samples were not included in the cluster analysis because the 

endogenous control was expressed at a different level for this strain.  The genes clustered into 

two main groups with the labyrinth genes Tcfeb, Dlx3, Gm52, Gcm1 and Esx1 in one group 

and the spongiotrophoblast genes, 4311 and Pdch12 in the other group. 

Clustering the ΔCT values of the EgfrWa5 data set by sample revealed interesting 

strain-specific differences in wildtype placenta.  The 129 background showed high 

expression of the labyrinth-specific genes Tcfeb, Dlx3, Gm52, Gcm1, Esx1, and Ctsq 

compared to B6.  B6 showed higher expression of Eomes, 4311, Glut3, Pl1, Esrrb and 

Pdch12 than 129. 
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Discussion 

 Numerous studies have provided evidence that EGFR and its ligands are important 

for normal growth of the placenta and embryo.  Over-expression of the EGFR ligand, EGF, 

has been found to reduce fetal growth in both humans and mice.  In humans, a polymorphism 

in the 5’ untranslated region of EGF that results in increased EGF expression has been 

associated with lower birth weight and fetal growth restriction in pregnant women from 

western Europe [21].  In addition transgenic mice that over-express EGF are born at half the 

weight of their littermates and have lower levels of serum IGFBP3 [22].  Interestingly, 

reduced EGF and EGFR phosphorylation have also been associated with low birth weight.  

Several groups have found associations between intrauterine growth restriction (IUGR) and 

diminished placental EGFR expression and/or activation in human pregnancies [23-27].  In 

pregnant mice, reduction of maternal EGF by sialoadenectomy results in growth restriction 

of embryos [28].  Also, EGFR-deficient mouse embryos exhibit placental defects that are 

dependent on strain and result in embryonic growth restriction and lethality [3,4].  The 

effects of genetically reduced, but not abolished, EGFR signaling on placental development 

and embryo growth has not been reported.  In this study we measured the strain-specific 

effects of two reduced-function alleles of Egfr on placental and embryonic growth, and 

expression of trophoblast cell subtype markers in the placenta.   

 

Attenuated EGFR signaling leads to growth restriction of placenta and embryo. 

Our data shows that mice homozygous for the classical hypomorphic allele of Egfr, 

Egfrwa2, exhibit smaller placentas than wildtype littermates on three inbred strains examined 

at 15.5 dpc (Figure 9A).  The largest effect was seen on the BTBR background where Egfrwa2 
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homozygous placental weight was reduced by almost 40%.  The smallest effect on placental 

weight at 15.5 dpc occurred on the 129 background, where Egfrwa2 homozygous placental 

weights were reduced by 18%.  BTBR was also the only background to show a reduction in 

embryo weight at 15.5 dpc with the weight of Egfrwa2 homozygous embryos being reduced 

18% compared to wildtype littermates (Figure 10A). 

The structure of the mouse placenta is fully developed by 15.5 dpc and its size does 

not change significantly for the remainder of gestation.  However, the embryo undergoes its 

most dramatic change in size during this time period, with a 300% or greater increase in 

weight.  The growth of Egfrwa2 homozygous placentas and embryos during late gestation 

differed by strain (summarized in Figure 16).  Of the three strains, growth of the 129-Egfrwa2 

homozygous placenta and embryo slowed the most during this time period.  At 15.5 dpc the 

129-Egfrwa2 homozygous placenta was the least affected of the three strains but by 18.5 dpc, 

it showed the most severe phenotype, reduced in weight by almost 40% compared to 

wildtype littermates (Figure 9).  The 129-Egfrwa2 homozygous embryos also showed severe 

growth restriction at 18.5 dpc, a phenotype not observed at 15.5 dpc (Figure 10).  The BTBR-

Egfrwa2 homozygous placenta grew more than Egfrwa2 homozygotes on other backgrounds 

between 15.5 dpc and 18.5 dpc.  Placental weight was reduced 28% at 18.5 dpc compared to 

39% at 15.5 dpc (Figure 9).  In contrast the BTBR-Egfrwa2 homozygous embryo became 

more affected by 18.5 dpc with a weight reduction of 32% compared to 18% at 15.5 dpc 

(Figure 10).  No changes were observed in the growth rate of B6-Egfrwa2 homozygous 

placentas and embryos across late gestation.  The B6-Egfrwa2 homozygous placenta was 

reduced by 24% at 15.5 dpc and 18.5 dpc compared to wildtype, and the embryo weight was 

not significantly different than wildtype (Figure 9, 10).  
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We also observed strain-specific embryonic lethality prior to 15.5 dpc (Table 5).  

Only 14% of viable embryos on the 129 background were Egfrwa2 homozygotes suggesting 

that some Egfrwa2 homozygotes die earlier in gestation, possibly due to placental defects as 

previously described for the Egfrtm1Mag null allele.  Most likely there is also lethality of some 

BTBR-Egfrwa2 homozygous embryos since all three dead embryos in the crosses were Egfrwa2 

homozygous.   

 

EgfrWa5 heterozygous embryos exhibit less severe phenotypes than Egfrwa2 homozygotes 

We observed small, but significant differences in placental weight between EgfrWa5 

heterozygotes and wildtype littermates.  Heterozygosity for EgfrWa5 on the B6 and 129 

backgrounds had an approximately 10% reduction in placental weight, while the BTBR 

background had a 5% reduction in placental weight (Figure 11A).  There was no effect on 

embryonic weight for any of the genetic backgrounds at 15.5 dpc (Figure 11B).  Embryos on 

the 129 background were also examined at 18.5 dpc and although there was a trend towards 

lower placental and embryonic weights in the EgfrWa5 heterozygotes, the differences were not 

significant (Figure 11C).  Unlike the Egfrwa2 homozygotes, there was no embryonic lethality 

of 129-EgfrWa5 heterozygotes prior to 15.5 dpc.  Interestingly we did observe significantly 

fewer EgfrWa5 heterozygotes than expected for the BTBR background but the reason remains 

to be determined (Table 6). 

To estimate cellular, as well as molecular, differences in mutant and wildtype 

placenta, we measured transcripts of 14 genes expressed specifically in different placental 

layers and trophoblast cell types (Table 7) [29-41].  The overall gene expression changes 

observed at 15.5 dpc in Egfrwa2 homozygotes and EgfrWa5 heterozygotes mirrored the gross 
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observations.  There were more significant changes between Egfrwa2 homozygotes and their 

wildtype littermates versus EgfrWa5 heterozygotes and wildtype littermates.  Overall, 

expression of genes specific to spongiotrophoblasts and glycogen cells were reduced in 

Egfrwa2 homozygotes and expression of markers specific for labyrinth trophoblasts were 

increased (Table 8).  The histology was consistent with these findings since 18.5 dpc Egfrwa2 

homozygous placentas had a reduction of spongiotrophoblast and glycogen cells that was 

particularly severe in the 129 and BTBR backgrounds (Figure 12).  The placenta of 129 and 

BTBR-Egfrwa2 homozygotes almost completely lacked the spongiotrophoblast layer and 

consisted primarily of labyrinth trophoblasts which explains the increased abundance of 

labyrinth transcripts observed.  Interestingly, expression of Esrrb, a marker of trophoblast 

stem cells and Ctsq, a marker for sinusoidal trophoblast giant cells were decreased in Egfrwa2 

homozygotes, even though both of these cell types reside in the labyrinth, suggesting that 

these particular trophoblasts cells may be reduced in number in the Egfrwa2 homozygous 

placenta [36,39].  We also observed unique down-regulation of Cx31 and Timp2 in B6-

Egfrwa2 homozygotes (Table 8).  

 Although the data was less significant and the changes occurred to a lesser extent, the 

EgfrWa5 heterozygotes also showed up-regulation of labyrinth specific transcripts and down-

regulation of spongiotrophoblast-specific genes (Table 8).  Embryos on the BTBR 

background showed a significant increase in the labyrinth-specific Gm52 transcript although 

the spongiotrophoblast markers were marginally affected, suggesting that the Gm52 increase 

may be from a true mis-regulation of the gene rather than a disproportionate number of 

labyrinth trophoblasts.  
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Together our placenta and embryo weight measurements, histology and gene 

expression data show that the EgfrWa5 heterozygous phenotype is less severe than the Egfrwa2 

homozygous phenotype.  Recent reports provide evidence for an asymmetric dimer model of 

EGFR activation [42].  Studies have shown that in an ERBB dimer, one of the receptors, the 

activator, acts to hold the other, the activated receptor, in a conformation that promotes its 

activation and subsequent auto-phosphorylation.  The N-lobe of the activated receptor makes 

critical contacts with the C-lobe of the activator and mutations that disrupt this interaction 

generally result in reduced or abolished phosphorylation.  A kinase-dead EGFR, such as from 

the EgfrWa5 allele, is capable of acting as the activator but not the activated receptor .  

According to this model, EGFR signaling in the EgfrWa5 heterozygote would occur normally 

through the wildtype dimer, to some extent through the WA5/wildtype dimer, and not at all 

through the WA5 dimer.  However, in vitro experiments have shown that WA5 acts as a 

dominant negative and has a more severe effect on wildtype EGFR phosphorylation than a 

kinase-dead receptor.  EGFR phosphorylation is reduced by approximately 90% when cells 

express equal amounts of EGFR and WA5 [7].  Thus, the EgfrWa5 mutation not only renders 

the receptor kinase-dead but also affects receptor activation through an additional 

mechanism, perhaps by modifying conformation of the receptor it encodes. 

Estimates of WA2 receptor signaling capabilities have varied from 10% to almost 

wildtype levels of activity depending on the cell type analyzed and the experimental 

approach.  The Egfrwa2 mutation lies upstream of EgfrWa5 in an alpha-helix portion of the 

receptor N-lobe [6,8].  The effect of Egfrwa2 on EGFR phosphorylation is not well understood 

but it is possible that the mutation compromises contact with the C-lobe portion of the 

activator directly or indirectly by altering conformation of the activated receptor.  Du and 
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colleagues proposed that Egfrwa2 homozygotes and EgfrWa5 heterozygotes have approximately 

the same reduction in EGFR signaling [5].  Based on the more severe phenotype observed in 

Egfrwa2 homozygous placentas, we propose that the following levels of EGFR signaling occur 

in the Egfr allelic series: 

Egfr+/Egfr+ > Egfr+/Egfrtm1Mag = Egfr+/Egfrwa2 > Egfr+/EgfrWa5 > Egfrwa2/Egfrwa2 = 

Egfrwa2/Egfrtm1Mag > Egfrwa2/EgfrWa5 > EgfrWa5/EgfrWa5 = EgfrWa5/Egfrtm1Mag  = 

Egfrtm1Mag/Egfrtm1Mag  

Our data also demonstrate that tissue-specific requirements for EGFR signaling can 

be determined using the allelic series.  We have shown that normal development of the 

placenta requires less EGFR activity than morphogenesis of hair follicles since the Egfrwa2 

and EgfrWa5 mouse share the same wavy coat phenotype but not the same degree of placental 

defects. 

 

Wildtype placenta show strain-specific characteristics 

Although our study set out to examine placental and embryonic growth in several 

mouse strains with reduced EGFR signaling, we also observed strain-dependent differences 

in growth of wildtype placentas and embryos.  Our data show that there are significant 

differences in placental and embryo weights between the B6, 129 and BTBR strains (Figure 

15).  The B6 strain exhibited the largest placentas at 98.3 mg and the largest embryos at 

385.0 mg, while the 129 strain exhibited the smallest placentas at 73.9 mg and the smallest 

embryos at 318.6 mg.  Real-time PCR data comparing expression of trophoblast cell subtype 

specific genes in 129 and B6 suggests that, in addition to a difference in size, placentas from 

the strains may consists of different proportions of trophoblast layers and/or the level of gene 
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expression may vary.  Histological comparison of wildtype placentas from the three strains 

showed that the numbers of spongiotrophoblast and intensity of PAS-stained varied by strain 

(Figure 12). 

Clustering the ΔCT values revealed that even with Egfr alleles that affect placental 

composition, the data still clustered most strongly by strain rather than genotype (Figure 14).  

Placentas from 129 embryos showed relatively high expression of a set of labyrinth-specific 

genes while B6 exhibited the highest expression of a separate set of genes that included 

Eomes, 4311, Pl1, and Glut3.  The relatively high expression of Glut3 in B6 is interesting 

considering the role of this protein in embryonic growth.  Embryos heterozygous for a null 

allele of Glut3 display late gestational IUGR and placental Glut3 expression is reduced in 

growth-restricted embryos from EGF-deficient sialoadenectomized dams [28,33].  Elevated 

expression of Glut3 in B6 placentas may allow Egfrwa2 homozygous embryos to escape the 

severe growth restriction observed on the 129 and BTBR backgrounds.   

These strain-specific differences are not surprising given the fact that the placenta is 

an organ affected strongly by natural selection [43,44].  Many imprinted genes play a role in 

growth and development of the placenta and during the derivation and maintenance of 

distinct mouse strains, different combinations of alleles that influence placental growth may 

have been fixed.  The unique placental composition and/or expression of genes known to 

play important roles in trophoblast differentiation observed in standard wildtype laboratory 

mouse strains is interesting considering the large number of transgenic and mutant models 

with reported placental defects leading to embryonic lethality [45,46].  For some of these 

models the embryonic lethal phenotype is dependent on genetic background, suggesting the 

causative placental defects probably vary by strain.  This has been shown to be the case in at 
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least one model, the Egfrtm1mag nullizygous mouse, which has been studied throughout 

embryogenesis on a number of genetic backgrounds [47].  The inherent strain-specific 

differences we have observed in wildtype placenta indicate that the response of the placenta 

to genetic changes may be determined, in part, by strain-specific trophoblast characteristics.   

Our study highlights strain dependent variation in placental development as well as 

the effect of diminished EGFR signaling on placental and embryonic growth.  IUGR is a 

common condition with profound consequences for the fetus including elevated risk for 

perinatal mortality and increased incidence of reduced cognitive function, diabetes and heart 

disease later in life [48].  It is known that a large number of IUGR cases are caused by 

placental defects but the precise developmental mechanisms are not well-understood.  Egfrwa2 

homozygous embryos may serve as a model to investigate growth restriction arising from 

placental dysfunction.  We have also demonstrated that the EgfrWa5 heterozygote can be used 

to study levels of EGFR signaling intermediate between wildtype and the Egfrwa2 

homozygote. 
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Figure 10.  Weights of embryos from wildtype (white bars), Egfrwa2 heterozygous (gray 
bars) and homozygous littermates (black bars) measured at 15.5 dpc and 18.5 dpc on three 
genetic backgrounds.  All strains included at least 5 embryos of each genotype. ** indicates p 
< 0.01 compared to wildtype, *** indicates p < 0.001 compared to wildtype.  A.  At 15.5 dpc 
Egfrwa2 homozygous embryo weights were not significantly different on B6 and 129 
compared to wildtype but homozygous embryos weighed 17% less than wildtype on BTBR.  
Egfrwa2 heterozygous embryos on the 129 background weighed 13% more than wildtype 
embryos (p < 0.01).  B.  At 18.5 dpc Egfrwa2 homozygous embryo weights were not 
significantly different on B6 compared to wildtype but homozygous embryos weighed 34% 
less than wildtype on 129 and 32% less than wildype on BTBR.  C.  Growth restricted 129 
Egfrwa2 homozygous embryo at 18.5 dpc (Egfrwa2 homozygous embryo on right versus 
wildtype on left).  D.  Correlation between placenta weight and embryo weight in growth-
restricted 18.5 dpc Egfrwa2 homozygous embryo.  Red squares are 129 Egfrwa2 homozygous 
embryo and black circles are BTBR Egfrwa2 homozygous embryo.  Placenta weight is plotted 
on the x-axis and embryo weight is plotted on the y-axis.   
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Figure 11.  Weights of placentas and embryos from wildtype (white bars) and EgfrWa5 
heterozygous littermates (gray bars) measured at 15.5 dpc on three genetic backgrounds.  All 
strains included at least 26 embryos of each genotype for the 15.5 dpc timepoint and 18 
embryos of each genotype for 18.5 dpc timepoint. * indicates p < 0.05 compared to wildtype, 
*** indicates p < 0.001 compared to wildtype.  A.  EgfrWa5 heterozygous placentas weighed 
9% less than wildtype on B6, 9% less than wildtype on 129, and 5% less than wildtype on 
BTBR.  B.  None of the three genetic backgrounds showed significant differences between 
EgfrWa5 heterozygous and wildtype embryo weights.  C.  The 129 EgfrWa5 heterozygous 
placenta and embryo weights did not differ from wildtype at 18.5 dpc. 



 104 

 



 105 

Table 6.  Survival of EgfrWa5 heterozygotes on three congenic strains 

Strain Age + / + + / EgfrWa5 Total viable P 

C57BL/6J 15.5 dpc 42 (47%) 48 (53%) 90 0.526 

129/Sv 15.5 dpc 32 (49%) 33 (51%) 65 0.901 

BTBR 15.5 dpc 61 (60%) 40 (40%) 101 0.036 
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Figure 12.  Placentas from B6, BTBR and 129 at 18.5 dpc. sp: spongiotrophoblast, la: 
labyrinth.  A.  PAS-stained wildtype B6 placenta (1.25X).  B. PAS-stained Egfrwa2 
homozygous B6 placenta (1.25X).  C.  Higher magnification of PAS-stained 
spongiotrophoblasts in Egfrwa2 homozygous B6 placenta (10X). D.  PAS-stained wildtype 
BTBR placenta.  E. PAS-stained Egfrwa2 homozygous BTBR placenta.  F.  Higher 
magnification of very small cluster of PAS-stained spongiotrophoblasts (arrowhead) in 
Egfrwa2 homozygous BTBR placenta. G.  PAS-stained wildtype 129 placenta.  H.  PAS-
stained Egfrwa2 homozygous 129 placenta.  I.  Higher magnification of small cluster of PAS-
stained spongiotrophoblasts (arrowhead) in Egfrwa2 homozygous 129 placenta.  J.  PAS-
stained EgfrWa5 heterozygous 129 placenta.  K.  Higher magnification of labyrinth region in 
wildtype 129 placenta (H and E stained, 12X).  L.  Higher magnification of labyrinth region 
in Egfrwa2 homozygous 129 placenta (H and E stained). 
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Table 8.  Percent expression of trophoblast cell subtype markers in Egfrwa2 homozygous and 
EgfrWa5 heterozygous placentas compared to wildtype littermates 
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Chapter IV 

 

PLACENTAL OVERGROWTH AND FERTILITY DEFECTS IN MICE WITH A 

HYPERMORPHIC ALLELE OF EPIDERMAL GROWTH FACTOR RECEPTOR 

 

Abstract 

 Epidermal growth factor receptor (EGFR) is a member of the ERBB family of 

receptor tyrosine kinases that has been shown to play an important developmental and 

physiological role in many aspects of pregnancy.  We have previously shown in mice that 

Egfrtm1mag nullizygous placentas have fewer proliferative trophoblasts than wildtype and 

exhibit strain-specific defects in the spongiotrophoblast and labyrinth layers.  In this study we 

used mice with the hypermorphic EgfrDsk5 allele to study effects of increased levels of EGFR 

signaling on placental development.  On three genetic backgrounds, heterozygosity for 

EgfrDsk5 resulted in larger placental size with a more prominent spongiotrophoblast layer and 

increased expression of glycogen cell-specific genes.  The C3HeB/FeJ strain showed 

additional placental enlargement of EgfrDsk5 homozygotes with a significant number of 

homozygous embryos dying prior to 15.5 dpc.  We also observed strain-specific sub-fertility 

in EgfrDsk5 heterozygous females and detected higher levels of phospho-EGFR in the uterus 

of EgfrDsk5 heterozygotes.  The structure of EgfrDsk5 heterozygous non-pregnant uteri 

appeared similar to wildtype but during pregnancy embryo implantation was deferred beyond 

the normal window of uterine receptivity in the sub-fertile strains.  Collectively, our results 
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demonstrate that mice with increased levels of EGFR signaling exhibit an extensive level of 

genetic background-dependent phenotypic variability.  In addition, EGFR promotes growth 

of the placental spongiotrophoblast layer in mice and EGFR expressed in the uterine stroma 

plays an under-appreciated role in preparation of the uterus for embryo implantation. 
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Introduction 

ERBB family receptor tyrosine kinases are critical mediators of cell signaling in a 

broad range of developmental and physiological processes.  Epidermal growth factor receptor 

(EGFR), in particular, plays a role in many aspects of female reproduction and pregnancy. 

Female mice that are homozygous for a hypomorphic allele of Egfr, Egfrwa2, exhibit impaired 

lactation as well as delayed puberty, and three ligands that bind EGFR, Epiregulin (EREG), 

Amphiregulin (AREG), and Betacellulin (BTC) stimulate in vivo oocyte maturation and 

cumulus expansion via EGFR activation in ovarian follicles [1-4].  In addition, EGFR is 

expressed in the uterine stroma where it regulates not only uterine development but also 

embryo implantation [5,6].  Uterine grafts derived from Egfrtm1Mag nullizygous pups develop 

smaller compared to wildtype grafts although differentiation of the uterine luminal and 

glandular epithelium as well as stroma and myometrium occur normally [7].  Proliferative 

response to estradiol is diminished in the uterine stroma but not the epithelium of Egfrtm1Mag 

nullizygous grafts.  During implantation expression of EGFR and ligands are observed in the 

uterus at the site of blastocyst attachment as well as on the surface of the implanting 

blastocyst [5,6].  Although there is redundancy in uterine expression of EGFR ligands, 

heparin-binding EGF-like growth factor (HBEGF) may play a unique and essential role since 

Hbegf null female mice are sub-fertile due to partial implantation failure [8].  Finally, EGFR 

regulates growth and differentiation of the placenta.  Egfrtm1Mag nullizygous embryos exhibit 

strain-dependent placental defects that range from minor reduction of the spongiotrophoblast 

layer to severe labyrinth dysmorphogenesis [9,10].  The consequences of increased EGFR 

signaling in placental development and reproduction can now be determined in mice using a 

hypermorphic EGFR allele, EgfrDsk5 (Dark skin-5).  
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The EgfrDsk5 allele was originally discovered during an N-ethyl-N-nitrosourea (ENU)-

mutagenesis screen for visible dominant mutations [11].  EgfrDsk5 heterozygous and 

homozygous mice on the C3HeB/FeJ background exhibit hyper-pigmented footpads, long 

nails, wavy hair, and a thickened epidermis.  EgfrDsk5 mutants have increased numbers of 

melanocytes in the epidermis leading to late onset pigment accumulation, apparent in the 

footpads at approximately 2-3 months of age.  The EgfrDsk5 mutation was molecularly 

identified as a Leu863Gln substitution within a region of the kinase domain important for 

stabilization of the receptor activation loop.  When crossed to mice heterozygous for the 

Egfrwa2 hypomorphic allele, compound heterozygous mice are wildtype in appearance, 

suggesting that EgfrDsk5 is a gain-of-function allele that causes increased levels of EGFR 

signaling.  Livers from EgfrDsk5/+ mice have significantly lower levels of total EGFR, with 

EgfrDsk5 homozygotes having even less, while both a larger proportion of phosphorylated 

EGFR compared to livers from wildtype mice.  This data demonstrates that a negative 

feedback mechanism limits signaling in EgfrDsk5 livers, and possibly other organs, by down-

regulating EGFR protein.  The hypermorphic EgfrDsk5 allele may also be relevant to human 

cancer since the EGFR L861Q mutation, the human equivalent to mouse L863Q, was 

identified in gefitinib-responsive non-small-cell lung tumors [12].  When transfected into 

32D cells, the L861Q form of EGFR exhibits ligand-independent phosphorylation and 

escapes ligand-induced receptor down-regulation through a mechanism that involves receptor 

binding of HSP90 [13].  Although there has been limited physiological characterization of 

the EgfrDsk5 allele, there have been no reports of lung tumors or increased incidence of any 

other cancers in EgfrDsk5 heterozygous or homozygous mice.  This is somewhat surprising 

considering mice homozygous for the hypomorphic Egfrwa2 allele show a reduction in tumors 
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when crossed to numerous cancer models including those of the mammary, colon and skin 

[14-16]. 

The present study uses EgfrDsk5 mice to determine if increased EGFR signaling has an 

effect on development of the placenta. We utilized three genetic backgrounds to identify 

strain-dependent phenotypes related to the EgfrDsk5 mutation since genetic background 

influences phenotypes in mice with null or hypomorphic Egfr alleles.  In addition to the 

original isogenic C3H strain on which EgfrDsk5 was generated, we backcrossed the allele to 

two additional genetic backgrounds, C57BL/6J (B6) and 129S1/SvImJ (129).  We report that 

placental weight is increased in EgfrDsk5 heterozygotes and homozygotes on all three 

backgrounds.  The larger placenta does not affect embryonic growth but is accompanied by 

strain-specific embryonic lethality of some EgfrDsk5 homozygotes before 15.5 days post-

coitus (dpc).  Additionally, we identified a strain-specific fertility defect in EgfrDsk5 

heterozygous females that may be related to delayed implantation timing, and we found that 

older female EgfrDsk5 heterozygotes frequently exhibited additional reproductive phenotypes 

of the uterus and ovary. 

 

Materials and Methods 

Mice and genetic crosses 

The EgfrDsk5 allele was generated by random mutagensis with ENU as previously 

described and maintained isogenic on the C3H background [11].  B6 and 129-EgfrDsk5 

congenic mice were generated by backcrossing C3H-EgfrDsk5 heterozygous stocks to B6 and 

129 wildtype strains for ten or more generations.  Congenic EgfrDsk5 heterozygous mice were 

then intercrossed to produce litters from each background containing wildtype, EgfrDsk5 
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heterozygous and homozygous congenic embryos and pups.  Mice were fed Purina Mills Lab 

Diet 5058 or 5010 and water ad libitum under specific pathogen free conditions in an 

American Association for the Accreditation of Lab Animal Care approved facility.  All 

experiments were approved by an Institutional Animal Care and Use Committee. 

Genotyping 

DNA was extracted from adult ear punches or embryo tail biopsies for genotyping by 

incubating at 95°C in 100 uL of 25mM NaOH/0.2mM EDTA for 20 minutes and then 

neutralizing with 100 uL 40mM TrisHCl pH 5.0.  For the subsequent genotyping reactions, 1 

uL of lysed tissue sample was used per reaction. 

EgfrDsk5 allele was amplified by PCR with the following primers: DskF, 5’-

AGATGGTTCACTCCCTCACG-3’ and DskR, 5’-ATGCTTCCTGATCTACTCCC-3’ 

(Qiagen).  PCR conditions were 40 cycles at 94°C for 20 seconds, 62°C for 20 seconds and 

72°C for 60 seconds.  PCR products were digested for 3 hours at 37°C with Alu I and 

Restriction Enzyme Buffer 2 (NEB) and run on a 3% agarose gel to separate a 220-bp 

product corresponding to wildtype Egfr and a 150 and 70-bp set of products corresponding to 

the digested EgfrDsk5 allele.   

Collection of placenta and uterus samples 

Noon on the day that copulation plugs were observed was designated as 0.5 dpc. 

Pregnant females were euthanized by exposure to a lethal dose of isoflourane and embryos 

with their corresponding placentas dissected from the uterine horns on the morning of 15.5 

dpc or 18.5 dpc into phosphate buffered saline (PBS). The placenta and extra-embryonic 

tissues were separated from the embryo by mechanical dissection and a tail biopsy collected 

for DNA extraction to determine the genotype of each embryo.  Wet weights of embryos and 
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placentas were recorded at the time of dissection.   Placentas were preserved in RNAlater 

(Ambion) for extraction of RNA or fixed in 10% NBF (neutral buffered formalin) for 

histological analysis.  Uteri were collected from non-pregnant virgin mice approximately 3 

months of age and fixed in 10% NBF. 

Histology 

After fixing placentas and uteri in 10% neutral buffered formalin overnight, tissues 

were washed in PBS, dehydrated in a grade series of ethanols and xylenes, and embedded in 

paraffin.  Seven-micron sections were cut using a Leica RM2165 microtome.  Sections were 

deparaffinized, rehydrated in a graded series of ethanols, and stained with hematoxylin and 

eosin (H&E) or Periodic acid-Schiff (PAS).  Stained sections were dehydrated in a series of 

ethanols and mounted using permount.  Representative histological images were 

photographed on a Nikon FXA microscope at a magnification of 1X, 2X, or 10X using a 

CCD digital camera. 

Real time PCR 

Placentas were homogenized in 1.2 mLs Trizol using a bead mill (Eppendorf) and RNA was 

isolated according to manufacturer’s protocol (Invitrogen).  For each sample, 15 ug of RNA 

was DNAse-treated, followed by a phenol-chloroform extraction.  RNA was quantified 

(Nanodrop) and 1 ug of each sample was reverse transcribed using the cDNA Archive kit 

(Applied Biosystems).  The amount of cDNA corresponding to 20 ng of RNA was used for 

each 20 uL real-time PCR reaction on an MXP-3000 instrument (Stratagene). Primer and 

probe sets for Gusb, Eomes, Esrrb, Esx1, Dlx3, Gm52, Tcfeb, Ctsq, Timp2, Glut3, Cx31 and 

Pdch12 were run according to manufacturer’s protocol with 2X Taqman Universal 

Mastermix (ABI).  Probes for 4311, Gcm1 and Pl1 were designed and manufactured in-house 
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(Dr. Kathleen Caron, UNC).    Gusb was used as an endogenous control and fold change of 

each gene of interest was calculated using the ΔΔCt method. The average ΔCT of wildtype 

animals for each strain/allele combination was used as the control value to calculate ΔΔCt 

values for samples of the same strain and allele. Fold-change values were computed from the 

ΔΔCt for each sample and converted to a percent increase over the wildtype average fold 

change for EgfrDsk5 heterozygous and homozygous samples.  

For clustering analysis, ΔCT values for each sample and probe were uploaded into 

Cluster and median-centered.  Data was visualized using TreeView. 

Implantation site visualization 

 Tail vein injections were performed on pregnant wildtype and EgfrDsk5 heterozygous 

C3H and B6 females at 4.5 and 5.5 dpc.  Approximately 1 mL 0.5% Evan’s blue dye was 

injected into the tail vein of anesthetized mice and 5 minutes later mice were asphyxiated 

using CO2.  Mice were dissected and implantation sites were scored for each genotype. 

Western blot 

 Three-month-old females were treated with 10µL per gram body weight phosphotase 

inhibitor (5mM Na3VO4, 50mM H2O2) by intraperitoneal injection and sacrificed by CO2 

after five minutes.  Whole uteri were collected and snap frozen in liquid nitrogen.  Frozen 

tissue was minced in 5 volumes lysis buffer (10 mM Tris-HCl pH 7.4, 100 mM NaCl, 1mM 

EDTA, 1 mM EGTA, 1% NP-40, 10% glycerol, 0.1% SDS, 0.5% Sodium deoxycholate, 

1mM PMSF, 10 µg/mL Leupeptin, 10 µg/mL Aprotinin, 1mM Na3VO4, 1mM NaF) and 

homogenized in 2 mL tubes for 4 minutes using a bead mill.  Samples were then sonicated 

for 30 seconds and incubated for 1 hour on ice. Lysates were cleared by centrifugation for 10 
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minutes at 13,000 rpm and protein quantified using the Bradford-based Protein Assay 

(Biorad).   

 Samples were diluted with 2X sample buffer and boiled for 5 minutes.  18 µg of each 

sample was separated by denaturing 7.5% sodium dodecylsulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) for 1 hour at 200 V and transferred to a PVDF membrane for 

1.5 hours at 100 V.  The membranes were blocked for 1 hour in 5% BSA/TBST (10 mM Tris 

pH 7.5, 150 mM NaCl, 0.1% Tween 20) for phospho-EGFR detection and 5% milk/TBST for 

total EGFR and β-actin detection.  Primary antibody incubations were overnight at 4°C 

followed by five TBST washes and secondary antibody incubations were 1 hour at room 

temperature.  The phospho-EGFR antibody (Cell signaling) was diluted 1:1,000 in 5 % BSA 

/TBST and the total EGFR antibody (Upstate) was diluted 1:1,000 in 5% milk /TBST.  The 

β-actin antibody (Sigma) was diluted 1:10,000 in 5% milk /TBST.  HRP-conjugated 

secondary antibodies were diluted 1:10,000 in 5% blocking agent /TBST.  Following the 

secondary antibody incubation blots were washed five times in TBST and protein detected by 

an enhanced chemiluminescence system (Amersham). 

Statistical analysis 

All placenta and embryo weights were analyzed using the Mann Whitney test.  A χ2 

goodness of fit test was performed to determine if the genotype distribution deviated from 

expected Mendelian ratios.  Real-time fold change values were analyzed using the student’s 

T-test. 
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Results 

EgfrDsk5 heterozygous and homozygous placentas weigh more than wildtype littermates at 

15.5 dpc 

Strain-dependent phenotypes were evident when the EgfrDsk5 allele was backcrossed 

to 129 and B6 and compared to the original C3H background.  EgfrDsk5 heterozygotes and 

homozygotes exhibited slightly wavy coats on all three backgrounds, with the phenotype 

being most pronounced on the B6 background (Figure 17A and 17B).  The C3H and 129-

EgfrDsk5 heterozygotes exhibited pigmented footpads at 3 months of age, a phenotype not 

manifested by B6-EgfrDsk5 heterozygotes (Figure 17C and 17D).  However, some B6-EgfrDsk5 

heterozygotes showed very slight footpad pigmentation by 6 to 8 months of age.  We also 

observed long toenails in the C3H and 129-EgfrDsk5 heterozygotes that were frequently dark-

colored on the 129 background (Figure 17E).   

Since reduced EGFR signaling has a detrimental effect on proper development of the 

placenta, we investigated whether an increased level of EGFR signaling affects placental 

growth.  At 15.5 dpc placenta weight was increased 18% in B6-EgfrDsk5 heterozygotes (p 

<0.001) and homozygotes (p < 0.001) compared to placentas from wildtype littermates 

(Figure 18A).  On the C3H background, EgfrDsk5 heterozygotes had placenta weights that 

were increased 17% over wildtype (p < 0.01) and EgfrDsk5 homozygotes 55% more than 

wildtype (p < 0.001; Figure 18A).  The difference in placenta weight between EgfrDsk5 

heterozygotes and homozygotes on the C3H background was significant; placentas from 

EgfrDsk5 homozygotes weighted 28% more than placentas from EgfrDsk5 heterozygotes (p 

<0.001).  Placenta weight was increased 12% in 129-EgfrDsk5 heterozygotes (p < 0.01) and 

homozygotes (p < 0.01) compared to wildtype (Figure 18A).  None of the strains examined 
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showed differences in embryo weight between the three genotypes suggesting that increased 

placental weight did not affect growth of the embryo (Figure 18B). 

 

Altered expression of trophoblast cell subtype markers in EgfrDsk5 heterozygous and 

homozygous placentas 

In order to determine the effect of the EgfrDsk5 allele on differentiation of the placental 

trophoblast, we measured transcript levels for a panel of specific trophoblast cell subtype 

markers (Table 7).  Significant differences were observed in the expression of several genes 

in EgfrDsk5 heterozygous and homozygous when compared wildtype placentas at 15.5 dpc 

(Table 9).  On the B6 background labyrinth-expressed genes Gcm1 and Dlx3 were 

significantly reduced in EgfrDsk5 heterozygous (n = 7) and homozygous placentas (n = 4) 

while 4311, a marker of spongiotrophoblast, was elevated in EgfrDsk5 heterozygotes and 

homozygotes compared to wildtype controls (n = 7).  Pdch12, a marker of glycogen cells, 

and Pl-1, a marker of trophoblast giant cells, were significantly elevated in EgfrDsk5 

heterozygotes and homozygotes when data from the two genotypes was combined and 

compared to wildtype.  In addition, expression of the trophoblast stem cell marker, Eomes, 

was significantly elevated in B6 EgfrDsk5 homozygotes but not  heerozygotes.  There were no 

significant changes in the expression of Tcfeb, Esx1, Esrrb1, Gm52, Ctsq, Timp2, Glut3 and 

Cx31. 

On the C3H background expression of Dlx3 was reduced in EgfrDsk5 heterozygotes (n 

= 5) and homozygotes (n = 5) compared to wildtype (n = 5).  Tcfeb and Gm52, both 

labyrinth-specific genes, were reduced in EgfrDsk5 homozygous placentas, while 4311 

expression was increased in both EgfrDsk5 heterozygotes and homozygotes compared to 
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wildtype but the data did not reach significance.  Pdch12 was significantly elevated in 

EgfrDsk5 homozygotes and increased in EgfrDsk5 heterozygotes.  

The 129 strain also exhibited genotype-associated changes in gene expression.  

Overall, the labyrinth-specific genes were reduced in EgfrDsk5 heterozygotes and 

homozygotes but the reduction was not significant for any probe alone.  Esrrb1 was elevated 

in EgfrDsk5 heterozygotes (n = 6) and homozygotes (n = 6) compared to wildtype (n = 4).  

Similar to B6 and C3H, the expression of 4311 and Pdch12 were increased in 129-EgfrDsk5 

heterozygotes and homozygotes but the changes were not significant. 

ΔCT expression values for significant and non-significant genes were also median-

entered and clustered by sample and gene to visualize strain and genotype patterns within the 

data (Figure 19).  Clustering analysis showed strain-specific clustering for B6, C3H and 129.  

The C3H strain showed relatively low expression of Eomes, Glut3 and Gcm1, while 129 

showed relatively low expression of 4311 and Pcdh12 and B6 showed highest expression of 

Ctsq, 4311 and Timp2 compared to the other strains. The B6 strain showed the strongest 

genotype clustering with relatively low expression of Gcm1 and high expression of 4311 in 

EgfrDsk5 heterozygotes and homozygotes (red bars) versus wildtype placenta (green bars). 

 

EgfrDsk5 heterozygous and homozygous placentas have an expanded spongiotrophoblast 

layer 

  We examined H & E and PAS-stained tissue sections to further characterize the over-

growth phenotype observed in EgfrDsk5 heterozygous and homozygous placentas.  Consistent 

with the real-time data, we observed an increased layer of spongiotrophoblast in EgfrDsk5 

heterozygotes and homozygotes compared to wildtype (Figure 20).  There was also increased 
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numbers of PAS-positive cells suggesting that the population of glycogen trophoblasts was 

larger in the EgfrDsk5 placentas (Figure 20G-I).  We did not observe any obvious changes in 

the size or structure of the labyrinth layer for any of the genotypes.  The decreased 

expression of labyrinth markers was probably due to the disproportionate increase in the size 

of the spongiotrophoblast layer. 

 

Reduced fertility observed in 129 and C3H EgfrDsk5 heterozygous females 

During collection of 15.5 dpc placentas, we observed a large number of dead embryos 

in litters from C3H and 129, but not B6-EgfrDsk5 heterozygous females.  In the B6 strain, 

93% of embryos were viable, while in C3H and 129, 39% and 21% of embryos were viable, 

respectively (Figure 21A).  Viable embryos from each strain were genotyped to determine if 

the genotype distribution deviated from expected Mendelian ratios (Table 10).  Neither B6 

nor 129 had numbers of viable EgfrDsk5 heterozygous and EgfrDsk5 homozygous embryos that 

were different than the expected ratios, although data for 129 approached significance with a 

higher number of EgfrDsk5 homozygotes than expected.  However, for C3H only 11% of 

viable embryos were EgfrDsk5 homozygous, which is significantly different from the expected 

25% (p < 0.05).  The viability of EgfrDsk5 heterozygous embryos was not affected in the C3H 

cross and the lethality of the EgfrDsk5 homozygotes did not fully account for the 50 – 60% 

reduction in live embryos observed at 15.5 dpc in C3H.  

Since genotype alone did not explain the lethality of C3H embryos at 15.5 dpc, 

additional matings were set up for C3H and 129 to investigate the origin of reduced 

embryonic viability.  When wildtype C3H and 129 females were mated to EgfrDsk5 

heterozygous males from their respective strains, a significant increase in the number of 
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viable embryos was observed compared to results from the EgfrDsk5 heterozygous intercrosses 

(Figure 21B).  For C3H embryo viability was 86% versus the 39% observed in EgfrDsk5 

heterozygous intercrosses.  For 129, embryo viability was 88% when the female was 

wildtype versus 36% viability in EgfrDsk5 heterozygous intercrosses.  To confirm that the 

embryonic lethality was due to uterine environment, reciprocal crosses were performed for 

the 129 strain (Figure 21B).  When EgfrDsk5 heterozygous females were mated to wildtype 

males, embryo viability was 21%, similar to the number observed in EgfrDsk5 heterozygous 

intercrosses (39%).   

 

Levels of phospho-EGFR are higher in EgfrDsk5 heterozygous uteri 

 Since the fertility defect observed seemed to be dependent on maternal, but not 

embryonic, genotype, we measured the levels of total and phosphorylated EGFR in uteri 

from EgfrDsk5 heterozygous mice to evaluate whether there is a similar down-regulation of 

EGFR in the uterus compared to that previously reported for the EgfrDsk5 liver.  Uteri were 

collected from phosphatase inhibitor-treated 3-month-old wildtype and B6 and C3H-EgfrDsk5 

heterozygotes and their wildtype littermates. Analysis using western blots revealed that the 

levels of total EGFR were similar in samples from wildtype and EgfrDsk5 heterozygous 

placentas but phospho-EGFR was significantly higher in the EgfrDsk5 heterozygous placental 

samples (Figure 22).  Additionally, phospho- and total EGFR were detected at higher levels 

in the C3H strain versus B6. 
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Non-pregnant EgfrDsk5 heterozygous and wildtype uteri are similar at the histological level 

 Next we examined from uteri from virgin, random cycling EgfrDsk5 heterozygous and 

wildtype female littermates at approximately three months of age.  In all four pairs of B6 and 

C3H littermates examined EgfrDsk5 heterozygous uteri weighed more than wildtype.  H & E 

stained tissue sections revealed no obvious defects in EgfrDsk5 heterozygous uterine 

morphology (Figure 23A-D).  Uteri from B6 and C3H-EgfrDsk5 heterozygotes had clearly 

differentiated luminal and glandular epithelium, stroma and myometrium that appeared 

similar to wildtype tissue.  In our B6 breeding colony EgfrDsk5 heterozygous female fertility 

declined at a relatively young age compared to wildtype females (data not shown).  We 

dissected several five to nine month old B6 EgfrDsk5 heterozygous females and frequently 

noted the appearance of fluid-filled cysts on one or both ovaries (Figure 23E).  The aged 

EgfrDsk5 heterozygous females exhibited additional sporadic uterine abnormalities not 

observed in younger animals but these defects have not been fully characterized.   

 

Implantation is delayed in EgfrDsk5 heterozygous females 

Since high levels of embryonic lethality within a litter has been previously associated 

with a delay in the timing of implantation we examined the timing of implantation in EgfrDsk5 

heterozygous versus wildtype females [17].  Evan’s blue dye tail vein injections were 

performed at 4.5 and 5.5 dpc to visualize implantation sites in C3H and B6 uteri (Figure 24).  

At 4.5 dpc we consistently observed implantation sites in wildtype C3H females (8/10) but 

not C3H-EgfrDsk5 heterozygous females (2/9) (Figure 24A-C).  However, implantation did 

eventually occur in C3H-EgfrDsk5 heterozygous females since all C3H females (3/3 for 
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wildtype, 5/5 for EgfrDsk5 heterozygous) examined at 5.5 dpc regardless of genotype had 

implantation sites present in both uterine horns (Figure 24A and 24D).  This data suggest that 

embryos in the C3H-EgfrDsk5 heterozygous uterus implant beyond the normal window of 

uterine receptivity.  In B6-EgfrDsk5 heterozygous females implantation sites were evident at 

4.5 dpc (4/6) suggesting that implantation timing is normal in this strain (Figure 24A and 

24E). 

 

Discussion 

Similar to mouse models in which EGFR signaling is reduced or abolished, we have 

shown here that phenotypes resulting from increased EGFR signaling vary by genetic 

background.  Mice that are heterozygous or homozygous for the hypermorphic EgfrDsk5 allele 

display strain-dependent hair, skin, and nail phenotypes.  EGFR is known to be involved in 

progression of several types of cancer, but our initial characterization of B6, 129 and C3H-

EgfrDsk5 heterozygotes did not reveal an obvious increase in tumor susceptibility in mice 

younger than nine months of age.  However, we found EgfrDsk5 heterozygous and 

homozygous placentas enlarged and EgfrDsk5 heterozygotes sub-fertile due to several strain-

specific defects in the female reproduction.   

 

EGFR in the placenta 

Our examination of placentas from mice with at least one hypermorphic allele of 

EGFR demonstrates that increased activation of EGFR can result in strain-specific effects on 

placental growth.  In the B6 and 129 strains heterozygosity and homozygosity for EgfrDsk5 

resulted in the same increase in placental weight, suggesting that placental growth does not 
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continue beyond a threshold reached with one EgfrDsk5 allele.  However, it is unkonwn 

whether this limitation on growth is a property of the trophoblast population or general 

negative feedback inhibition of EGFR signaling.  There is evidence from studies using 

EgfrDsk5 mouse livers that total EGFR is down-regulated, particularly in the homozygote, and 

a similar mechanism could limit the increase in trophoblasts observed in B6 and 129-EgfrDsk5 

strains.  If there is a threshold in growth-promoting effects of EgfrDsk5, it is not reached in 

C3H EgfrDsk5 heterozygotes since placentas from EgfrDsk5 homozygous mice are larger than 

heterozygous placentas.  The weight differences were highly significant between EgfrDsk5 

genotypes, and we observed some embryonic lethality of C3H-EgfrDsk5 homozygotes that 

could be related to the placental overgrowth.  

Although placental weights were altered, no significant effects of the EgfrDsk5 allele 

on embryo weights were observed at 15.5 dpc in any of the three strains.  Both molecular and 

histological analyses showed that the increased placental weights are due to an increase in 

spongtiotrophoblast and glycogen cell populations. Overall, expression of spongiotrophoblast 

and glycogen trophoblast markers 4311 and Pdch12 were significantly increased in placentas 

from EgfrDsk5 heterozygous and homozygous embryos.  Expression of several labyrinth 

markers was decreased in EgfrDsk5 heterozygous and EgfrDsk5 homozygous placentas but this 

was probably due to a disproportionate amount of RNA coming from the abundant 

spongiotrophoblasts rather than an actual reduction in labyrinth trophoblast.  Histological 

examination of B6 placentas revealed an enlarged layer of spongiotrophoblast and glycogen 

cells in the EgfrDsk5 heterozygotes and homozygotes.  Placentas homozygous for the 

Egfrtm1Mag null allele have fewer numbers of proliferating trophoblasts and this phenotype 

does not correlate with severity of labyrinth defects.  Therefore, the increased layer of 
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spongiotrophoblast observed in EgfrDsk5 heterozygous and EgfrDsk5 homozygous placentas is 

probably a result of greater trophoblast proliferation and suggest that EGFR plays a major 

role in promoting cell cycle progression in spongiotrophoblast and glycogen cell precursors. 

 

EGFR in uterine preparation for implantation 

Our data indicate that 129 and C3H female mice heterozygous for the dominant 

EgfrDsk5 hypermorphic mutation may exhibit uterine defects that significantly reduce fertility.  

In litters from EgfrDsk5 pregnant females, embryos of all genotypes showed reduced survival 

suggesting that the maternal uterine environment has a detrimental effect on litter viability.  

The maternal origin of embryo loss was verified in crosses between EgfrDsk5 heterozygous 

females and wildtype males, which resulted in significant embryo loss while crosses between 

wildtype females and EgfrDsk5 heterozygous males did not.  This phenotype was strain-

specific since embryo viability was normal in litters from B6- EgfrDsk5 heterozygous females.  

The precise timing of implantation is mediated by molecular crosstalk between the uterus and 

blastocyst, and a delay in implantation can result in pregnancy loss [18].  An examination of 

early implantation sites revealed that in C3H-EgfrDsk5 heterozygous females, implantation is 

deferred beyond the normal window of uterine receptivity, which occurs on the evening of 

3.5 dpc in wildtype females.  In B6- EgfrDsk5 heterozygous females, implantation timing was 

normal suggesting that the implantation timing defect in C3H-EgfrDsk5 heterozygous may be 

related to the high levels of embryonic lethality. 

Implantation normally occurs during a defined window of time in which the uterus is 

receptive to the implanting, activated blastocyst [19].  This window of uterine receptivity 

occurs on the evening of day 3 in mice and is controlled by a low dose surge of ovarian 
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estrogen that acts upon the already progesterone-primed uterus [20].  By late day 5 the uterus 

proceeds to a refractory state and no longer supports implantation of embryos.  Several 

mouse models have been described with blastocyst implantation beyond the normal window 

of uterine receptivity and characterization of the phenotype has revealed that production of 

prostaglandins is essential for the process.  In mice deficient for prostaglandin endoperoxide 

synthase 2 (COX2) or cytosolic phospholipase A2 (CPLA2), a provider of arachidonic acid 

for prostaglandin synthesis, implantation sites are not apparent until day 5.5 and they are 

fewer in number with poor permeability compared to implantation sites in wildtype females 

[17,21].  The implantation delay in these mice has been shown to lead to a later wave of 

embryonic lethality resulting in smaller litter sizes for both models.  Wildtype blastocyst that 

are transferred into a pseudopregnant uterus on day 5.5 also exhibit this wave of lethality 

suggesting that embryonic lethality observed in the COX2 and CPLA2 deficient mice is a 

result of the delay in implantation rather than a direct consequence of the gene deletion [17].  

Mice that are null for lysophosphatidic acid G-protein-coupled receptor 7 (Lpa3) also exhibit 

a similar phenotype that is probably due to a reduction in uterine prostaglandin levels 

observed in the model [22].  

The EgfrDsk5 heterozygous females exhibit a phenotype that appears similar to the 

deferred implantation observed in COX2, CPLA2, and LPA3-deficient females.  We 

observed embryonic lethality that is independent of embryo genotype and probably a direct 

result of implantation beyond the normal window of uterine receptivity. Although it has been 

proposed that uterine EGFR may play a role in implantation, few studies have used genetic 

models to investigate the function of EGFR in this process.  In fact, the majority of studies to 

date have focused on the consequences of reduced EGFR signaling in the embryo during 
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implantation.  EGFR and ERBB4 are expressed on the surface of implanting blastocysts and 

are thought to mediate adhesion to the uterus via interactions with the trans-membrane form 

of HBEGF expressed on the uterine luminal epithelium [23,24].  ERBB receptors are also 

expressed in the uterus before, during and following implantation suggesting that receptor 

expression is important in the uterus as well as the implanting embryo [5,6].  Full length 

EGFR is strongly expressed in uterine stroma underlying implantation sites but is absent in 

the luminal epithelium, where a truncated secreted form of EGFR is expressed instead that is 

hypothesized to negatively regulate ERBB signaling [6,25].  ERBB2 is expressed in the 

luminal epithelium throughout the uterus with a peak in expression on day 1 and then again 

on day 5, when both the epithelium and decidualizing stroma surrounding the embryo 

express ERBB2 [26].  ERBB3 and ERBB4 are also present throughout the uterus but their 

expression is less dynamic during pregnancy.  ERBB3 expression is primarily in the luminal 

and glandular epithelium of the uterus, while ERBB4 is expressed in the submyometrial 

stroma and myometrial connective tissue [27].   

A majority of the eleven ERBB ligands have been reported as expressed in the mouse 

uterus during implantation [28-33].  Most important is HBEGF, which is the most 

extensively studied ligand since it is expressed in the uterine luminal epithelium on the 

evening of day 3 specifically at the site of blastocyst apposition [32].  HBEGF-deficient 

female mice are subfertile suggesting that HBEGF plays an essential role in the process of 

embryo apposition and attachment [8].  Leukemia Inhibitory Factor (LIF) deficient mice that 

have a complete failure of implantation do not exhibit the normal upregulation of HBEGF, 

nor the normal up-regulation of the other EGFR ligands AREG and EREG [34]. There are no 

fertility defects reported for females that are null for Btc, Ereg or triple null for Areg, Egf, 
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and Tgfa [35-37].  However, injection of EGF antibody into the uterine horn on day 3 of 

pregnancy decreases the number of implantation sites [29].  

Previous studies suggested that EGFR signaling is involved in uterine receptivity and 

implantation timing.  Transgenic mice that over-express either Tgfa or Btc display delayed 

implantation similar to the EgfrDsk5 heterozygous females [38,39].  However it is unclear 

whether embryonic lethality is associated with the phenotype in these models.  In addition, 

expression of the Tgfa and Btc trangenes may be controlled in a manner not spatially or 

temporally similiar to expression of the endogenous genes making it difficult to determine if 

these particular ligands are involved in implantation timing under normal circumstances.  

Our data demonstrates that hyper-activation of endogenous EGFR in the uterine stroma does 

result in delayed implantation of blastocysts and suggests that EGFR signaling is important 

for coordinating uterine receptivity and blastocyst activation.   

Conjoined placentas and aberrant embryo spacing are also observed in litters from 

Cpla2 and Lpa3 null females [17,22].  This phenotype is probably unrelated to the delay in 

implantation timing since prostaglandin supplementation corrects implantation timing and 

embryonic lethality defects but has no effect on embryo crowding.  Although the EgfrDsk5 

heterozygous females exhibit the same delay in implantation there is no evidence from our 

results to suggest that EGFR is involved in embryo spacing. 

 

EGFR in female reproductive tract pathology 

In addition to abnormal implantation timing, we also noticed other reproductive 

system anomalies in EgfrDsk5 heterozygous females.  EgfrDsk5 heterozygous uteri weighed 

more than uteri from wildtype littermates, however differentiation of the tissue appeared 
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similar to wildtype at the histological level.  At a young age B6-EgfrDsk5 heterozygous 

exhibited normal reproductive capacity but we did notice that following their first pregnancy 

B6 EgfrDsk5 heterozygous female fertility declined (data not shown).  In B6-EgfrDsk5 

heterozygous females, particularly those older than five months we frequently observed 

sporadic uterine abnormalities as well as fluid-filled cysts on one or both ovaries, similar to 

the phenotype of Inhibin alpha (Inha) transgenic mice [40].  Uterine and/or ovarian defects 

may render older EgfrDsk5 heterozygous females unable to ovulate and/or support 

implantation of embryos but more extensive characterization of these phenotypes is needed.  

Several recent studies suggest that increased levels of EGFR activity in female mice may 

result in uterine hyperplasia.  Transgenic mice with mouse mammary tumor virus (MMTV)-

regulated over-expression of human EGFR exhibit cystic hyperplasia of uterine glands at 

nine months of age [41].  Nine month-old mice deficient for Mitogen-inducible gene-6 

(MIG6), an endogenous inhibitor of EGFR signaling, have enlarged uteri with an increased 

numbers of uterine glands and hyperplastic glandular and luminal epithelium [42].  In 

humans, Mig-6 is over-expressed in moderate to severe cases of endometriosis [43]. 

In summary our study emphasizes extensive strain-dependent phenotypic variation 

evident in mice with increased levels of EGFR signaling.   The same modifiers that influence 

variability observed in mice with null and hypomorphic alleles of EGFR are probably 

involved but there may be an additional class of modifiers that control down-regulation of 

activated EGFR.  Our data also indicates that EGFR plays a previously under-appreciated 

role in the uterus during pregnancy.  The fertility defects we have described in EgfrDsk5 

heterozygous mice suggest that in humans an increased level of uterine EGFR signaling may 

be a cause of infertility. 



 141 

 
 
Figure 17.  Strain-specific coat and skin phenotypes observed in EgfrDsk5 heterozygotes.     
A.  Wildtype (left) and EgfrDsk5 heterozygote (right) on C57BL/6J (B6) background.            
B. Wildtype (left) and EgfrDsk5 heterozygote (right) on C3HEB/FeJ (C3H) background.       
C.  Footpads from 3 month old B6 wildtype (left) and EgfrDsk5 heterozygote (right).  D. 
Footpads from 3 month old C3H wildtype (left) and EgfrDsk5 heterozygote (right).  
Arrowhead indicates excess pigmentation on footpad from EgfrDsk5 heterozygote.  E.   
Pigmented nails (arrowheads) in 129- EgfrDsk5 heterozygote (left) but not C3H- EgfrDsk5 
heterozygote (right).  Pigmentation visible on C3H is from footpad. 
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Figure 20.  EgfrDsk5 heterozygous and homozygous placentas have an expanded spongio-
trophoblast layer compared to wildtype.  A, B, C.  H&E staining of 15.5 dpc placentas from 
B6 wildtype (A), EgfrDsk5 heterozygote (B), and EgfrDsk5 homozygote (C).  D, E, F.  Close-up 
of placentas from A. – C.  G, H, I. PAS staining of 15.5 dpc placentas from B6 wildtype (G), 
EgfrDsk5 heterozygote (H), and EgfrDsk5 homozygote (I).  The spongiotrophoblast (sp) 
compartment is bracketed in each section. 



 146 

 



 147 

Table 10.  Survival of 15.5 dpc embryos from EgfrDsk5 intercrosses on three congenic strains 

Strain + / + + / EgfrDsk5 EgfrDsk5 / EgfrDsk5 Total viable P 

C57BL/6J 31 (30.5%) 44 (44%) 26 (25.5%) 101 0.338 

C3HeB/FeJ 16 (26%) 39 (63%) 7 (11%) 62 0.034 

129/Sv 10 (20%) 21 (42%) 19 (38%) 50 0.104 

 



 148 

 



 149 

 

Figure 23.  Reproductive system phenotypes in EgfrDsk5 heterozygous females.  A.  Wildtype 
B6 non-pregnant uterus with myometrium (M), glandular epithelium (GE), stroma (S) and 
luminal epithelium (LE) labeled (2X).  B.  Wildtype C3H non-pregnant uterus (10X).  C.  
EgfrDsk5 heterozygous C3H uterus.  No obvious histological differences were observed.  D.  
EgfrDsk5 heterozygous uterus (1X).  E.  EgfrDsk5 heterozygous B6 ovary. Bursal sac is filled 
with fluid. 
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Figure 24.  Implantation timing may be altered in C3H EgfrDsk5 heterozygous females.  A.  
Percent females with implantation sites visible at 4.5 and 5.5 dpc.  White bars are wildtype 
C3H females, gray bars are EgfrDsk5 heterozygous C3H females and black bars are EgfrDsk5 
heterozygous B6 females.  B.  Wildtype C3H 4.5 dpc pregnant uterus.  C. EgfrDsk5 
heterozygous C3H 4.5 dpc pregnant uterus..  D. EgfrDsk5 heterozygous B6 4.5 dpc pregnant 
uterus.  E. EgfrDsk5 heterozygous C3H 5.5 dpc pregnant uterus. 
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CHAPTER V 

 

FUTURE EXPERIMENTS AND GENERAL DISCUSSION 

 

Introduction  

This thesis has described the use of an allelic series in mice to determine the role of 

Egfr during pregnancy, with a particular focus on placental development.  We showed that 

Egfrtm1Mag nullizygous placentas have fewer proliferating trophoblasts compared to wildtype 

and that Egfrtm1Mag nullizygous embryonic lethality is not rescued by ablation of genes that 

negatively regulate the cell cycle.  We also described growth restriction of placentas and 

embryos homozygous for the hypomorphic Egfrwa2 allele.  A less severe placental phenotype 

in mice heterozygous for the antimorphic EgfrWa5 allele led us to conclude that higher levels 

of EGFR signaling occur in EgfrWa5 heterozygotes versus Egfrwa2 homozygotes.  Our 

characterization of embryos heterozygous and homozygous for the hypermorphic EgfrDsk5 

allele reiterated the important role of EGFR in placentation since these embryos exhibited 

enlarged placentas.  We have also begun to uncover unexpected defects in the female 

reproductive system of EgfrDsk5 heterozygous adults.  Since most of our experiments included 

several genetic backgrounds, our results reveal striking strain-dependent variation in many of 

the phenotypes examined.  This chapter outlines a strategy to map modifying loci that 

influence the strain-dependent Egfrtm1Mag nullizygous placental phenotype.  In addition, the 
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significance of our results will be discussed as they pertain to genetic background specific 

phenotypes, spongiotrophoblast development and intrauterine growth restriction (IUGR). 

 

Mapping modifiers of the Egfrtm1Mag homozygous placental phenotype 

Mice homozygous for a null allele of Egfr, Egfrtm1Mag, display a strain-dependent 

placental phenotype that results in embryonic lethality on many genetic backgrounds [1,2].  

Most strains examined to date, including Swiss-derived outbred CD-1, exhibit a reduced 

spongiotrophoblast layer.  Strains dying before mid-gestation, such as inbred 129S6, are also 

distinguished by a disorganized labyrinth layer.  Our lab has made several attempts to map 

genes that contribute to the strain differences in Egfrtm1Mag homozygous placental 

development.  In Egfrtm1Mag homozygous F2 progeny from a cross between CD-1, which 

survives to term, and the non-surviving 129S1 strain carrying Egfrtm1Mag, no QTL were 

identified that are associated with embryonic survival.  CD-1 is an outbred strain and due to 

the strain’s genetic heterogeneity, there may have been a number of modifiers segregating 

that rescued the placental phenotype.  To eliminate genetic heterogeneity as a confounding 

factor, we set up a cross between 129S1- Egfrtm1Mag and a surviving inbred strain, ALR/LtJ 

[3].  Unfortunately we were unable to map modifiers in this cross because N2 animals 

created by backcrossing ALS.129 F1- Egfrtm1Mag mice to 129S1- Egfrtm1Mag did not segregate 

the embryonic lethality phenotype.  The fact that most N2 Egfrtm1Mag homozygous embryos 

survived in this experiment suggests that the ALR genome contributed numerous dominant 

modifiers that rescued the placental phenotype. 

We have also extensively investigated genetic heterogeneity affecting placental 

development of Egfr nullizygous animals by measuring embryonic survival on selected 
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backgrounds [3].  Intercrosses between Egfrtm1Mag 129S1 and a panel of Swiss-derived inbred 

strains related to CD-1 showed a full range of placental phenotypes that were genetic 

background dependent.  Some strains such as ALS/LtJ and ALR/LtJ supported robust 

Egfrtm1Mag nullizygous survival when crossed to 129S1 while other strains such as 

ICR/HaROS did not support development of Egfrtm1Mag nullizygous embryos past mid-

gestation.  Most strains exhibited a moderate placental phenotype that allowed some 

embryonic survival past mid-gestation when intercrossed with 129S1.  The variable survival 

observed in the panel of Swiss-derived strains suggest that different combinations of Egfr 

modifiers were captured from CD-1 by each of the inbred backgrounds.  We have obtained 

similar results when more diverse congenic Egfrtm1Mag lines are intercrossed.  Some strains 

complement each other to allow robust survival of Egfrtm1Mag nullizygous embryos while 

other strain combinations do not.  Taken together, all of these studies reveal that the strain-

specific Egfr placental phenotype is not modified by a single locus but is determined instead 

by a number of interacting loci in various combinations.  The genomes of inbred mouse 

strains contain unique sets of Egfr modifying loci giving rise to the variation in embryonic 

survival observed between genetic backgrounds. 

The lack of success our lab has encountered while attempting to map Egfr modifiers 

suggest that traditional mapping strategies may not be sufficient to dissect the genetic 

complexity associated with the Egfrtm1Mag homozygous placental phenotype.  An approach 

that may allow us to map QTL is the genetic partitioning of dominant modifiers through a 

serial-backcross breeding scheme.  This approach was used successfully to map genes in 

B10.D2 mice that confer resistance to the parasite Leishmania major [4].  The breeding 

scheme involved backcrossing F1 mice to an L. major susceptible strain, BALB/c and then 
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selecting N2 animals resistant to L. major to establish a subsequent BALB/c backcross.  The 

selection of resistant animals and backcrossing to susceptible BALB/c continued for three 

more generations (N5) resulting in isolation of a minimum number of dominant modifiers 

required for L. major resistance on an otherwise susceptible BALB/c background.  Results 

from the experiment demonstrated that the trait is genetically complex with no single locus 

required for L. major resistance.  Six QTL were found to be significantly associated with 

resistance and various combinations of these loci were present in the N5 resistant animals. 

In order to map QTL associated with normal development of EGFR-deficient 

placentas, we utilized a similar backcrossing strategy designed to isolate dominant modifiers 

from the ALS strain, which supports survival of a majority of Egfrtm1Mag nullizygous 

embryos.  F1 strains were generated by crossing the ALS strain to 129S1 and FVB/NJ, two 

strains exhibiting embryonic lethality at or before mid-gestation (Figure 25).  The ALS.129 

and ALS.FVB hybrids were then backcrossed for four generations to 129 and FVB, 

respectively.  Only animals that produced viable Egfrtm1Mag homozygous pups were used to 

establish each subsequent backcross.  Selection and backcrossing of heterozygous adults with 

Egfrtm1Mag homozygous progeny continued up to N6 in the ALS.129 background and up to 

N5 in the ALS.FVB background.   

Data from these crosses indicates that dominant loci from the ALS strain were better 

able to support placentation in combination with the 129S1 genome compared to FVB.  From 

15 original ALS.129 N2 animals, we were able to establish nine independent lines of N4-

Egfrtm1Mag mice in which ALS placental modifiers were isolated.  We were able to establish 

only two lines of N4-Egfrtm1Mag mice from 16 original ALS.FVB N2 animals.  We 

consistently observed a higher percentage of ALS.129 lines supporting viability of Egfrtm1Mag 
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nullizygous embryos than ALS.FVB lines (Figure 26).  We observed 53% of ALS.129 N2 

lines supporting survival of Egfrtm1Mag nullizygous embryos compared to 25% of ALS.FVB 

N2 lines.  Egfrtm1Mag nullizygous pups represented approximately 5% of all pups born in the 

ALS.129 N2 and only 3% of pups born in ALS.FVB N2.  For the subsequent backcross 24% 

of ALS.129 N3 lines rescued Egfrtm1Mag homozygous embryos versus 8% of ALS.FVB N3.  

From the ALS.129 N3 lines approximately 3% of embryos were nullizygous versus 1% of 

ALS.FVB embryos.  Table 11 shows the number of surviving Egfrtm1Mag homozygous pups 

expected within an established rescuing line based on the number of ALS loci required to 

modify the placental phenotype.  We predict that three dominant ALS modifiers are required 

to rescue placental development of Egfr -/- embryos on the 129 background since 4.9% 

surviving N4 pups and 4.3 % surviving N5 pups were Egfrtm1Mag homozygous.  

Approximately three to four modifiers are required on the FVB background since 2.3 % of 

surviving N4 pups collected from N3 rescuing lines were Egfrtm1Mag homozygous.  

We have completed collection of samples from seven original N2 lines for 129 and 

four N2 lines for FVB (Table 12).  We have performed preliminary genotyping using a panel 

of 672 SNP originally designed for another project.  Genotyping with this panel was 

performed on 63 ALS.129 and 21 ALS.FVB Egfrtm1Mag homozygous pups and their parents. 

Because of a small sample number and technical difficulties with SNP genotyping of 

ALS.FVB samples we have focused on the ALS.129 cross.  From the SNP panel, 347 assays 

spread throughout the genome were found to be informative between ALS and 129 (Figure 

27).  There were several large gaps in our genome coverage particularly for chromosomes 4, 

7, 8, 9, 10, and 16 and additional genotyping will be required to adequately cover the entire 

genome.  The data we have analyzed so far shows that as expected, ALS.129 N5 animals 
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retain only small portions of the ALS genome.  We have not identified any single QTL 

required for embryonic survival but further analysis will most likely reveal multiple 

combinations of ALS genomic segments associated with Egfrtm1Mag homozygous embryo 

survival.  Candidate genes in ALS intervals are predicted to include gene products 

downstream of EGFR and/or genes involved in cell signaling and placentation. 

 

EGFR and genetic background dependent phenotypes 

In addition to placental phenotypes, we have also observed that other phenotypes 

associated with changes in the level of EGFR signaling are strain-dependent (summarized in 

Table 13).  Mice homozygous for a hypomorphic allele of Egfr, Egfrwa2, exhibit strain-

dependent differences in percent tumor reduction when crossed to the Apcmin model of 

intestinal tumorogenesis (unpublished data).  Egfrwa2 homozygotes also exhibit pronounced 

cardiac hypertrophy on the B6 but not the 129 background (CJ Barrick, in press).  Chapter 3 

of this dissertation describes strain differences in Egfrwa2 homozygous placental and 

embryonic growth restriction with the 129 strain being more severely affected than B6.  We 

also reported strain-dependent embryonic lethality of 129 and BTBR-Egfrwa2 homozygotes 

and BTBR embryos heterozygous for an antimorphic allele of Egfr, EgfrWa5.  

In addition to phenotypes resulting from reduced or abolished EGFR signaling, we 

described strain-dependent phenotypes in mice with a hypermorphic allele of Egfr, EgfrDsk5.  

We observed differences in EgfrDsk5 hair, skin and nail phenotypes, which is interesting 

considering that the hair phenotype in Egfrwa2 homozygotes does not vary obviously by 

strain.  The placental overgrowth phenotype observed in EgfrDsk5 heterozygotes is similar in 

the three strains examined but only one strain, C3H, shows a more severe phenotype in 
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EgfrDsk5 homozygotes.  We also reported in Chapter 4 a strain-dependent sub-fertility 

phenotype in 129 and C3H-EgfrDsk5 heterozygous females.  The origin of the fertility defect 

remains to be determined but an initial examination of uteri and ovaries suggest that there 

may be multiple reproductive phenotypes in the EgfrDsk5 heterozygotes that may or may not 

vary by strain.  The genetic modifiers that give rise to the variability in the phenotypes we 

described have not been identified, although two known genes have been found to enhance 

phenotypes in Egfrwa2 homozygotes   Heterozygosity for a null allele of the guanine 

nucleotide exchange factor, Sos1, increases the penetrance of delayed eyelid closure during 

embryonic development and neonatal mortality in Egfrwa2 homozygotes [5].  Heterozygosity 

for a null allele of the protein-tyrosine-phosphatase, Ptpn11, also increases penetrance of 

defective eyelid closure and enhances severity of semilunar valves enlargement and 

electrocardiographic abnormalities in Egfrwa2 homozygotes [6].  Genetic variation in Sos1, 

Ptpn11 or in many other genes could underlie strain-dependent variability of phenotypes 

observed in the Egfr allelic series. 

 

EGFR and spongiotrophoblast 

 Previous studies have shown that Egfr nullizygous placentas from most genetic 

backgrounds examined to date exhibit a reduction in the spongiotrophoblast layer [2,7].  The 

data presented in Chapters 3 and 4 confirm that spongiotrophoblasts are very sensitive to 

levels of EGFR signaling compared to other trophoblast cell types.  We have shown that a 

decrease in EGFR signaling, such as in the Egfrwa2 homozygous and EgfrWa5 heterozygous 

placentas causes a reduction in the thickness of the spongiotrophoblast layer.  Conversely, if 

EGFR signaling is increased, such as in the EgfrDsk5 heterozygote and homozygote, 
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spongiotrophoblast layer is enlarged.  Based on data from Chapter 1 showing reduced 

proliferation in Egfrtm1Mag homozygous placentas, the changes we saw in the Egfrwa2, EgfrWa5 

and EgfrDsk5 placentas are probably due to the effect of EGFR on spongiotrophoblast 

proliferation.  The level of EGFR signaling is correlated with spongiotrophoblast 

proliferation but the threshold required may vary by strain since some strains are more 

severely affected by changes in the level of signaling than others.  An additional experiment 

that should be performed to test this hypothesis is BrdU labeling of cells in Egfrwa2 

homozygous and EgfrDsk5 heterozygous placentas to quantify proliferative 

spongiotrophoblasts.  

Based on studies using a chimera between Mash2 null and wildtype cells, it was 

hypothesized that spongiotrophoblasts are required for proper morphogenesis of the labyrinth 

[8].  MASH2 is necessary for spongiotrophoblast differentiation, and chimeras with a 

MASH2-deficient placenta fail to develop a layer of spongiotrophoblast and also exhibit 

defects in formation of the labyrinth.  However, MASH2 seems to be required only in the 

spongiotrophoblast and not labyrinth trophoblasts for normal placental development.  

Chimeric placentas with Mash2 wildtype spongiotrophoblasts and a labyrinth composed of 

Mash2 null trophoblasts develop normally and fully support embryonic growth.  The 

spongiotrophoblast layer may provide necessary structural support for labyrinth development 

and/or spongiotrophoblasts may secrete signals required for proper labyrinth formation.  

Interestingly, we observed normal development of the placental labyrinth in two homozygous 

Egfrwa2 strains almost entirely lacking spongiotrophoblasts, 129 and BTBR.  Our results 

suggest that only a very small number of spongiotrophoblast are sufficient for labyrinth 

morphogenesis, that the Mash2 phenotype is strain-specific and not all strains require 
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spongiotrophoblasts for proper labyrinth formation, or that another cell trophoblast cell type 

present in Egfr null placentas is absent or non-functional in Mash2 null placentas.  

 

EGFR signaling and intrauterine growth restriction 

 Data from human and mouse studies have suggested that ERBB signaling regulates 

fetal growth through multiple mechanisms.  In mouse, maternal EGF-deficiency by 

sialoadenectomy causes fetal, but not placental growth restriction, that is rescued by 

exogenous EGF supplementation [9].  Fetal liver but not brain weights are significantly 

reduced in litters from sialoadenectomized females, which is probably due to compromised 

transplacental transfer of glucose.  Over-expression of EGF has also been shown to result in 

fetal growth restriction.  Transgenic mouse embryos that over-express human EGF are born 

at half the weight of non-transgenic littermates and have reduced serum levels of IGFBP3 

[10].  Since EGF transgenic placental weight and nutrient transfer was not measured in this 

study, embryonic growth restriction due to placental defects cannot be ruled out.  Mice that 

over-express TGFA are also smaller at birth than their non-transgenic littermates, but further 

characterization of this phenotype has not been reported [11].  

 In humans reduced placental EGFR mRNA and protein, as well as receptor 

phosphorylation, are associated with fetal growth restriction [12-15].  Low levels of EGF in 

maternal urine, maternal and fetal plasma, and amniotic fluid have also been associated with 

IUGR [16-19].  In contrast, a recent study showed that a polymorphism (c.61G) in the 5’ 

untranslated region of EGF, previously shown to increase EGF expression, is associated with 

lower birthweight in healthy pregnancies [20].  Also, babies affected by IUGR are more 

likely to have inherited the c.61G polymorphism in combination with c.2566A, another EGF 
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polymorphism that by itself is associated with low birth weight of normal babies.  Together, 

mouse and human studies demonstrate that regulation of fetal growth by EGFR signaling is 

complex and is modulated by both maternal and fetal components.  The various Egfr alleles 

our lab maintains as congenic mouse strains can be used to better understand the genetics of 

IUGR.  In support of placental and embryonic EGFR phosphorylation being required for 

normal fetal growth, we have shown that 18.5 dpc Egfrwa2 homozygous embryos exhibit 

severe growth restriction.  The growth characteristics of these animals following birth remain 

to be determined.  The EgfrDsk5 heterozygous and homozygous embryos do not exhibit 

growth restriction at 15.5 dpc.  However, considering the reported effects of increased EGF 

and TGFA expression on birth weight, growth patterns of EgfrDsk5 heterozygotes and 

homozygotes should be examined later in gestation and following birth.  Preliminary 

observations suggest that EgfrDsk5 homozygotes are smaller than their littermates at weaning 

(data not shown).  Additionally, adult females null for EGF could be used to genetically test 

the requirement of maternal EGF in fetal growth. 

 

 Conclusions 

Experiments presented in this dissertation have focused primarily on the role of 

EGFR in placental development and pregnancy.  We showed that EGFR is essential for 

normal growth of placenta and embryo and that increased EGFR signaling has detrimental 

effects on female fertility.  Our finding that EGFR is particularly important in driving 

proliferation of placental spongiotrophoblast may help broaden our understanding of how 

EGFR functions in human placental development.  In addition, we have generated a number 

of mouse lines congenic for mutant Egfr alleles that will be useful genetic models for 
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studying the origins of fetal growth restriction.  Through examination of our EGFR allelic 

series on multiple genetic backgrounds, our studies have emphasized the strain-dependent 

variation in phenotypes due to perturbations in EGFR signaling.  Thus far we have been 

unable to identify genetic modifiers that contribute to strain variation in EGFR placental and 

reproductive phenotypes.  Extensive genetic characterization of the Egfrtm1Mag homozygous 

strain-dependent placental phenotype has led us to conclude that the phenotype is modified 

by numerous interacting loci.  To simplify QTL mapping for this multigenic phenotype we 

are currently exploring the use of a serial backcross strategy designed to isolate a minimum 

set of modifiers required.  The identity of genetic modifiers of EGFR signaling could provide 

additional insight into biology and treatment of numerous human diseases and conditions in 

which EGFR is involved. 
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Figure 25.  Breeding scheme for serial backcross mapping strategy.  ALS/LtJ animals were 
backcrossed to 129S6 or FVB/NJ for five generations.  Dominant modifying loci from the 
ALS genome were isolated by establishing each subsequent generation with only lines 
supporting survival of Egfr null embryos (“rescue” of placental development). Genome scans 
were performed on N5 Egfr nullizygous pups to reveal the unique sets of modifiers captured 
from the ALS genome in the individual lines derived.
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Figure 26.  To assess the effect of ALS modifiers in the 129 versus FVB genome the 
percentage of lines supporting survival of Egfr null embryos (“rescuing”) and percentage 
surviving null pups were calculated for each generation of backcrossing.  ALS modifiers in 
combination with the 129 background supported more robust survival in every generation 
compared to FVB. 
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Table 11.  Percent live Egfr -/- pups expected based on number of ALS modifiers to rescue 
embryonic lethality 
   

# ALS modifiers required 
  

Live Egfr - / - expected (%) 

1 
  

14.3 

2 
 

7.7 

3 
 

4.0 

4 
 

2.0 

5 
  

1.0 
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Table 12.  Number of samples with ALS rescuing modifiers collected from each generation 
ALS.129 N2 N3 N4 N5 N6 Total 

Line 2 1 1 1 0 0 3 
Line 3 1 1 5 5 3 15 
Line 4 1 7 9 4 0 21 
Line 5 1 9 3 2 0 15 
Line 9 1 1 1 0 0 3 
Line 11 1 2 3 0 0 6 
Line 13 1 2 6 5 0 14 
       
ALS.FVB N2 N3 N4 N5 N6 Total 

Line 1 1 5 6 2 0 14 
Line 12 1 1 0 0 0 2 
Line 15 1 2 2 0 0 5 
Line 16 1 0 0 0 0 1 
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