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ABSTRACT

Wonil Chung: Bayesian Parametric and Nonparametric Methods for
Multiple QTL Mapping and SNP-Set Analysis

(Under the direction of Professor Fei Zou)

Many complex traits and human diseases, such as blood pressure and body weight,

are known to change over time. The genetic basis of such traits can be better under-

stood by repeatedly collecting data over time. The resulting longitudinal data provide

us useful resources for studying the joint action of multiple time-dependent genetic

factors. In the first part of the dissertation, we extend two existing Bayesian multiple

quantitative trait loci (QTL) mapping methods from univariate traits to longitudinal

traits. Our first approach focuses on mapping genes with main effects and two-way

gene-gene and gene-environment interactions. Multiple QTL are selected by a variable

selection procedure based on the composite model space framework. Our second ap-

proach presents a Bayesian Gaussian process method to map multiple QTL without

restricting to pairwise interactions. Rather than modeling each main and interaction

term explicitly, the nonparametric Bayesian method measures the importance of each

QTL, regardless whether it is mostly due to a main effect or some interaction effect(s),

via an unspecified function. We assign a Gaussian process prior to this unknown func-

tion. For the unstructured covariance matrix, both approaches employ a modified

Cholesky decomposition. For data where phenotype measurements are not collected at

a fixed set of time points across all samples, we propose a grid-based approach which

parsimoniously approximates the covariance matrix of each subject as a function of a

covariance matrix defined on a set of pre-selected time points.

For most genome-wide association studies (GWAS), power to detect an association
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between a single genetic variant, such as a single nucleotide polymorphism (SNP) and a

complex trait is extremely low. Alternative strategies, such as regional SNP-set analysis

have overcome some of the limitations of the standard single SNP analysis. Our third

topic develops a Bayesian regional SNP-set analysis which extends the nonparametric

Gaussian process model and simultaneously models multiple groups of rare and/or

common SNP variants. Instead of assigning each SNP a hyperparameter, we assign

a common hyperparameter to every SNP within each set to measure the cumulative

effect of all SNPs in that set.
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CHAPTER 1

INTRODUCTION

1.1 Statistical Methods for QTL Mapping

QTL Mapping

Quantitative traits are defined as phenotypes which vary in degree and usually deter-

mined by both genetic and environmental factors. There are three types of quantitative

traits: continuous traits in which there is only a gradual change from one phenotype

to another with no clear categories such as height, weight and blood pressure; meristic

traits in which the range of phenotypes can be expressed by counting such as num-

bers of offsprings; threshold traits in which there are a small number of phenotypic

classes such as complex diseases. Quantitative Trait Loci (QTL) refer to genomic re-

gions that affect variation in quantitative traits. Identification of QTL is important

for understanding of genetic nature of quantitative trait variation. QTL mapping is to

identify genetic regions that affect phenotypic variation of quantitative traits, including

the number of QTL, their genomic positions and associated genetic effects including

main effects, gene-gene interactions and gene-environment interactions. QTL mapping

is often conducted using molecular markers such as amplified fragment length polymor-

phism (AFLPs), or more commonly single-nucleotide polymorphism (SNPs).



Single Gene Model

The basic quantitative genetic model partitions the total variance in quantitative traits

into genetic variance and environmental variance. For individual i, Pi = Gi +Ei where

Pi is phenotypic value, Gi is genetic value and Ei is environmental effect. Suppose

two inbred parents (P1 and P2) differ in some quantitative traits. At locus q, the

allele of parent P1 is labeled as Bq and the allele of P2 as bq. An F1 generation is

completely heterozygous with genotype Bqbq, receiving one allele from each parent. A

BC population is generated when F1 is crossed back with P1 (or P2). At locus q, every

BC individual has equal probability of 1/2 to be Bqbq and BqBq (or bqbq). If the average

phenotypic value of P1 and P2 is m, the expected genetic values of Bqbq and BqBq (or

bqbq) can be defined as m + dq and m + aq (or m − aq) where dq is the dominance effect

and aq is the additive effect. The genetic value for BC can be expressed as Gi = µ+cqxiq

where µ =m + 1
2(dq + aq) (or m + 1

2(dq − aq)), and xiq = siq −
1
2 if siq denotes the number

of allele bq (or Bq). An F2 population is generated when F1 individuals are crossed

with each other and each F2 individual has probability of 1/4,1/2 and 1/4 to be bqbq,

Bqbq and BqBq, respectively. The expected genetic values of bqbq, Bqbq and BqBq can

be defined as m − aq, m + dq and m + aq. The genetic value for F2 can be modeled as

Gi = µ + eqxiq + fqziq where µ =m + 1
2dq, xiq = siq − 1 and ziq = (1 + xiq)(1 − xiq) −

1
2 if siq

denotes the number of allele bq.

Genetic Model for Epistasis

Fisher [1918] first partitioned genetic variances into additive, dominance and epistatic

variances based on the least-squares principle. Cockerham [1954] further partitioned

the two-gene epistatic variance into four variance components corresponding to additive

× additive, additive × dominance, dominance × additive and dominance × dominance.

Mather [1967] proposed other epistasis models, and Crow et al. [1970], Mather et al.
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[1977], Haley et al. [1992] and Kearsey et al. [1998] applied the F∞-metric model to study

epistasis. Goodnight [2001] adopted an alternative model modified from Cockerham

[1954] to the study of gene-gene interaction. Among them, Cockerham’s model is

more appropriate than the other models for studying epistasis and mapping QTL in

the populations, such as BC and F2 [Kao and Zeng, 2002]. For the commonly used

Cockerham epistatic model, it is assumed that there are two alleles affecting the traits

of interest. At two loci q and q′, the genotypes of P1 and P2 are BqBqBq′Bq′ and

bqbqbq′bq′ , and all F1 individuals have genotype BqbqBq′bq′ . Each BC population has

equal probability of 1/2 for being BqbqBq′bq′ and BqBqBq′Bq′ (or bqbqbq′bq′). The genetic

values for BC can be expressed as Gi = µ + cqxiq + cq′xiq′ + cqq′xiqq′ where xiq = siq −
1
2

and xiqq′ = xiqxiq′ if siq denotes the number of allele bq (or Bq). Each F2 individual

has probability of 1/4,1/2 and 1/4 for being bqbqbq′bq′ , BqbqBq′bq′ and BqBqBq′Bq′ ,

respectively. The genetic value for F2 can be modeled as Gi = µ+ eqxiq + fqziq + eq′xiq′ +

fq′ziq′ +iaawiaa + iadwiad + idawida + iddwidd where xiq = siq − 1, ziq = (1 + xiq)(1 − xiq) −
1
2 ,

wiaa = xiqxiq′ , wiad = xiqziq′ , wida = ziqxiq′ and widd = ziqziq′ . In the above model,

iaa, iad, ida and idd are the epistatic effects between loci q and q′, called additive ×

additive, additive × dominance, dominance × additive and dominance × dominance

effects, respectively.

Single QTL Mapping

The QTL data include the phenotype values yi (i = 1, ..., n), the marker genotype values

Mij (i, ..., n, j = 1, ...,m) located at certain positions λj where n is the sample size and m

is the number of makers. The genotypes at a putative QTL are denoted by {qq,Qq,QQ}

to distinguish the QTL genotypes from the marker genotypes {mm,Mm,MM}.

The single QTL model assumes that there is only one QTL which is associated with

the trait of interest [Lander and Botstein, 1989]. If the genotypes of QTL are observed,

3



QTL mapping become a simple linear regression problem. For BC population, the

model can be specified as

yi = µ + βxi + ei (i = 1, ..., n), (1.1)

where µ is the overall mean; β is the genetic effect; xi is 1/2 if individual i has Qq geno-

type and -1/2 if individual i has QQ genotype; ei is a random error with ei ∼ N(0, σ2).

A test can be performed on β under H0 ∶ β = 0 vs H1 ∶ β ≠ 0. For F2 population, the

model can be constructed to test additive and dominance effects separately as

yi = µ + βxi + γzi + ei (i = 1, ..., n), (1.2)

where β is the coefficient for additive effect; γ is the coefficient for dominance effect

xi is 1 for qq, 0 for Qq and -1 for QQ; zi is 1/2 for Qq, -1/2 for qq and QQ. Linear

regression can be conducted to test H0 ∶ β = γ = 0. If the effect of a marker is tested

to be significant, that marker is claimed to be associated with one or more QTL.

Although this single marker analysis is simple and captures candidate QTL, it cannot

tell whether the markers are linked to one or more QTL and it does not estimate the

putative positions of the QTL.

In practice, the QTL position is rarely known and the genotypes of QTL are usually

unobserved, leading to all missing xis and zis. To solve this problem, interval map-

ping was introduced by Lander and Botstein [1989]. At any putative QTL position

located in an interval between two flaking markers (Mij,Mij+1) of the individual i, the

probabilities of the unobserved QTL genotypes (Qi) for each individual are computed

given genotypes at the pair of closest flaking markers. Let Pik = P (Qi = k∣Mij,Mij+1, λ)

where k = QQ or Qq for BC and k = QQ, Qq or qq for F2; λ is the testing position

of putative QTL. Pik can be calculated using recombination frequencies between two

4



markers or between a marker and a putative QTL. The distribution of the quantita-

tive trait given the flanking maker genotypes follows a finite mixture model and the

likelihood functions for BC and F2 are given by

LBC(µ,β, σ
2, λ) =

n

∏
i=1

[PiQQφ((yi − µ +
1

2
β)/σ) + PiQqφ((yi − µ −

1

2
β)/σ)], (1.3)

LF2(µ,β, γ, σ
2, λ) =

n

∏

i=1
[PiQQφ((yi−µ+β+

1

2
γ)/σ)+PiQqφ((yi−µ−

1

2
γ)/σ)+Piqqφ((yi−µ−β+

1

2
γ)/σ)],

respectively, where φ(z) is the standard normal density function. The above likelihood

functions can be maximized using EM algorithm to obtain MLE estimates (µ̂, β̂, γ̂, σ̂2).

Since the genotypes of QTL are treated as the missings, the observed data include

only phenotypes and maker genotypes while the full data include phenotypes, marker

genotypes and QTL genotypes. Test statistics are constructed using the LOD scores

LODBC(λ) = log10
LBC(µ̂, β̂, σ̂2)

LBC(µ̃,0, σ̃2)
, LODF2(λ) = log10

LF2(µ̂, β̂, γ̂, σ̂2)

LF2(µ̃,0,0, σ̃2)
, (1.4)

where µ̃ and σ̃2 are MLE estimates under the null hypothesis H0 ∶ β = 0 for BC,

H0 ∶ β = γ = 0 for F2. The location with the maximum LODBC(λ) or LODF2(λ) is the

estimate of the QTL position. Determining the threshold of test statistic (maximum

LODBC(λ) or LODF2(λ)) is quite complicated because many factors, such as the

genome size, genetic map density and the proportion of missing data, could affect

the distribution of the test statistic under the null hypothesis. The usual pointwise

significance level on the basis of the chi-square approximation is inadequate since the

entire genome is tested for the existence of QTL. With an infinitely dense-map and

large samples, the LOD score can be approximated by Ornstein-Uhlenbeck diffusion

processes for BC [Lander and Botstein, 1989] and F2 [Dupuis and Siegmund, 1999].

To obtain an empirical threshold, Churchill and Doerge [1994] proposed a permutation
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procedure.

Multiple Interval Mapping

If there exist more than one QTL affecting the trait on the chromosome, single QTL

method may fail to discover true QTL and instead identify ghost (false) QTL. Moreover,

single QTL model may fail to detect QTL with high epistatic effect but low marginal

effect. To solve this problem, multiple interval mapping [Kao and Zeng, 1997; Kao et al.,

1999] was proposed. This method combines QTL mapping with the analysis of genetic

architecture of quantitative traits through a search algorithm to search for the number

and position of QTL and their genetic effects. Suppose there are p putative QTL and

t significant pairwise epistatic effects. Note that the model only contains a subset (t

pairs) of QTL pairs that each shows a significant epistatic effect since if all pairs of p

QTL are fitted in the model, it can be overparameterized. Cockerham’s genetic model

is used to define the genetic parameters. The main advantage of Cockerham’s model is

that it has an orthogonal property in modeling genetic effects. For BC population, the

model of multiple interval mapping can be expressed as

yi = µ +
p

∑
r=1
βrxir +

t

∑
r≠s
βrsxirxis + ei = µ +xiβ + ei, (1.5)

where βr, βrs are the marginal and epistatic effect; xir is 1/2 for Qq and -1/2 for QQ;

β is the (p + t) × 1 vector of marginal and epistatic effects; xi is the 1 × (p + t) vector

of indicator variables. For F2 population, the model is given by

yi = µ+
p

∑
r=1

(βrxir +γrzir)+
t

∑
r≠s

(βrsxirxis + δrsxirzis + ξrszirxis +γrszirzis)+ ei = µ+ziγ + ei,

(1.6)

where βr, γr are the additive, dominance effect and βrs, δrs, ξrs, γrs are additive × addi-

tive, additive × dominance, dominance × additive and dominance × dominance effects;
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xir is 1 for qq, 0 for Qq, -1 for QQ and zir is 1/2 for Qq, -1/2 for QQ and qq; γ is

the (2p+ 4t)× 1 vector of all effects; zi is the 1× (2p+ 4t) vector of indicator variables.

Even though the genotype of each putative QTL (Qij) in interval Iij is unobserved, the

probabilities of Qij can be inferred from the flanking markers of Iij based on the recom-

bination frequency between them. We have P (Qi1, ...,Qip∣Ii1, .., Iip) = ∏
p
j=1P (Qij ∣Iij).

We refer Pij (j = 1, ...,2p for BC, j = 1, ...,3p for F2) as the conditional probabilities

of all possible QTL genotypes of individual i. The likelihood functions of the multiple

interval mapping for BC and F2 are the following mixture of normal distributions:

LBC(β, µ, σ
2) =

n

∏
i=1

[
2p

∑
j=1
Pijφ(

yi − µ −xijβ

σ
)], LF2(γ, µ, σ

2) =
n

∏
i=1

[
3p

∑
j=1
Pijφ(

yi − µ − zijγ

σ
)],

(1.7)

where φ(z) is the standard normal density function. Again, for the MLE estimates of

(β,γ, µ, σ2), EM algorithm can be employed. The test for marginal effect is performed

by LOD score for H0 ∶ βr = 0 or H0 ∶ γr = 0. For testing epistatic effect, we use

LOD score for βrs = 0, δrs = 0, ξrs = 0 and γrs = 0. In theory, multiple interval

mapping can be applied to more than two QTL straightforwardly. However, since the

search becomes multidimensional, there are some difficulties in parameter estimation

and model identifiability to map more than two QTL simultaneously in practice.

Bayesian Interval Mapping

Several Bayesian methods for QTL mapping has been proposed. Satagopan et al. [1996]

proposed a Bayesian methods to detect multiple QTL simultaneously using Markov

chain Monte Carlo (MCMC) method. When the quantitative trait is explained by

multiple genes (p genes) acting independently and their interactions, we have

yi = µ +
p

∑
j=1
βjxij +

t

∑
j≠k
βjkxijxik + ei = µ +xiβ + ei (i = 1, ..., n), (1.8)
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where xi is the pQTL genotypes and their interactions for the ith individual and β is the

marginal and epistatic effects of the p loci. The genetic parameters are model unknowns

(β,µ,σ2) and the QTL loci λ = {λj}
p
j=1. For individual i, marker genotype M i =

{Mik}
m
k=1 and phenotypic trait y = (y1, ..., yn)T are observed, but the genotypes of the

putative QTL, xi are not observed. However, the conditional distribution P (xi∣λ,M i)

can be obtained using recombination frequency between the putative QTL and the

markers.

To implement Bayesian analysis, the prior distribution is required over the param-

eter space (λ,β,µ,σ2). We assume prior independence of the parameters. That is,

P (λ,β, µ, σ2) = P (λ)P (µ)P (σ2)∏
p
j=1 βj∏

t
j≠k βjk. A natural choice of prior for λ when

there is no available information regarding the location would be a uniform distribu-

tion for p ordered variables on [0,Dm] where Dm is the length of the linkage group

(0 < λ1 < ... < λp < Dm). The prior for overall mean µ is a normal distribution centered

at 0 with variance τ 2µ (µ ∼ N(0, τ 2µ)). The phenotypic variance σ2 is assumed to have

an inverse gamma prior (σ2 ∼ IG(u, v)). The priors of QTL effect βj, βjk (j, k = 1, ..., p)

are independent normal distributions with mean 0 and variance τ 2β (βj, βjk ∼ N(0, τ 2β)).

The posterior distribution over all the unknown parameters (λ,β,µ,σ2) is given

by P (λ,β, µ, σ2∣y) ∝ P (y∣β, µ, σ2) P (λ,β, µ, σ2). MCMC methods are used to ob-

tain the posterior distribution. Specifically, Metropolis-Hastings algorithm is used

to update QTL positions (λ) and Gibbs sampler is used to sample model unknowns

(β, µ, σ2) as follows. For jth locus, a proposal position λ∗j is drawn from a uniform

distribution on the interval (max(λj−1, λj − d),min(λj+1, λj + d)) where d is the tun-

ing parameter and λ0=0 and λp+1 = Dm. The proposal position is accepted with

probability min(α,1) where α(λj, λ∗j ) = P (λ∗j ∣λ−j,y)P (λ∗j , λj)/P (λj ∣λ−j,y) P (λj, λ∗j )
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where λ−j represents all the elements of λ except λj. For model unknown parame-

ters, we can directly sample β, µ and σ2 from their full conditionals. The full condi-

tionals are given by βj ∣λ,β−j, µ, σ
2,y ∼ N(ηβj , τ

2
βj
), βjk∣λ,β−jk, µ, σ

2,y ∼ N(ηβjk , τ
2
βjk

),

µ∣λ,β, σ2,y ∼ N(ηµ∗ , τ 2µ∗) and σ2∣λ,β, µ,y ∼ IG(uσ2 , vσ2) (see Satagopan et al. [1996]

for more details). The marginal posterior density of β, µ and σ2 can be estimated since

their full conditional densities are known completely. However, since the full condi-

tional density of λ is not known, the density estimates of λ should be obtained from

the MCMC samples by different kernel estimate methods (for example, the histogram

estimator). Confidence intervals can be obtained as high posterior density (HPD) re-

gions.

1.2 Gaussian Process Models

Bayesian Neural Networks

Over the last two decades, there has been much activity concerning the application of

Gaussian process models to machine learning tasks [Rasmussen and Williams, 2006].

Gaussian process models in machine learning were aroused in the early 1990s. Many

researchers realized that neural networks were not so easy to apply in practice. MacKay

[1992] and Neal [1996] pursued the probabilistic framework using approximation meth-

ods and Markov chain Monte Carlo (MCMC) methods, respectively. Neal [1996] focused

on sophisticated Markov chain methods for inference in large finite neural networks and

he demonstrated that a large class of Bayesian models, based on neural networks, con-

verged to a Gaussian process in the limit of an infinite network [Neal, 1996]. Gaussian

processes can be also derived from the viewpoint of nonparametric Bayesian regres-

sion, by directly imposing Gaussian process prior on the regression function [MacKay,

1998]. Comparative studies have confirmed the better performance of Gaussian process
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regression than other nonlinear models [Rasmussen, 1996].

The idea of using Gaussian process directly came from investigations by Neal [1996]

into prior over weights for neural networks [Rasmussen, 1996]. We consider a neural

network with J inputs, one layer of K tanh hidden units and one output unit. Both

hidden and output units have weights and biases and the network is fully connected

between consecutive layers:

ψk(x) = tanh(
J

∑
j=1
ujkxj + u0), η(x) =

K

∑
k=1

vkψk(x) + v0. (1.9)

The zero mean Gaussian priors are imposed on all weights and biases. That is,

ujk ∼ N(0, σ2
u), u0 ∼ N(0, σ2

u0), vk ∼ N(0, σ2
v) and v0 ∼ N(0, σ2

v0). Given a specific

input vector xi, we can derive the distribution of a output based on the priors on

weights and biases. We have E[vkψk(xi)] = E[vk]E[ψk(xi)] = 0 (∵ vk�ψk(xi)) and

E[(vkψk(xi))2] = σ2
vE[(ψk(xi))2] (∵ ψk(xi) is bounded). By Central Limit Theo-

rem (CLT), as the number of hidden units K goes to infinity, the prior distribu-

tion of η(xi) converges to a Gaussian distribution with mean 0, variance c(xi) =

σ2
v0 + Kσ

2
vE[(ψk(xi))2]. If we choose σ2

v which scales inversely with K, a well de-

fined prior can be obtained in the limit of infinite number of hidden units. Using the

similar argument, the joint distribution for multiple inputs converges in the limit of K

to a multivariate Gaussian with mean 0 and covariance c(xi,xi′) = E[η(xi)η(xi′)] =

σ2
v0 +Kσ

2
vE[ψk(xi)ψk(xi′)].

Gaussian Process Models

A Gaussian process is a generalization of the Gaussian probability distribution. While

a probability distribution describes random variables which are scalars or vectors, a

stochastic process governs functions of input values. Formally, a Gaussian process is
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a collection of random variables {ηx} indexed by a set x ∈X, where any finite subset

of ηx’s has a joint multivariate Gaussian distribution. Often, Gaussian processes are

defined over time, where the index set is time, but in our case, we index the random

variables η = {ηx} by the input space X.

Consider the case where a training set of n observations is available and thus data

set D = {(xi, yi)∣i = 1, ..., n} = {x,y}, where xi is a vector of p covariates and yi is

the scalar response. We will consider the following Bayesian regression model with

Gaussian noise

yi = η(xi) + ei (i = 1, ..., n), (1.10)

where η is an unknown function of p covariates that we modeled via a Gaussian process

prior and ei is a noise with distribution N(0, σ2
e).

The Gaussian process is completely specified by its mean function m(xi) and co-

variance function c(xi,xi′). The Gaussian process can be expressed as η ∼ GP(m(xi),

c(xi,xi′)). From here on, we will consider only Gaussian process model with a mean

of zero, such that η ∼ GP(0, c(xi,xi′)). One of examples of a covariance function is

c(xi,xi′) = a0 + a1
p

∑
k=1

xikxi′k + v0exp(−
1

2

p

∑
k=1
wk(xik − xi′k)

2), (1.11)

where xi = (xi1, ..., xip) and a0, a1, v0,w1, ...,wp are hyperparameters. In this function,

first two terms involving a0 and a1 control the scale of the bias and linear contribution

to the covariance. The contribution from the linear terms in the covariance function

may become large for inputs which are quite distant from the bulk of the output values.

The exponential part defines the correlation between outputs and nearby inputs. The

parameter wk is multiplied by the coordinate-wise distance in input space and thus

allows for different distance measures for each input dimension. For irrelevant inputs,

the corresponding wk should be small in order for the model to ignore these inputs while
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parameter wk get large for relevant inputs. The parameter v0 defines the overall scale

of the local correlations. The functions of Gaussian process are smooth and stationary.

These are properties which are induced by the covariance function. In the Gaussian

process models, the role of the kernel function and local model are both integrated in

the covariance function. Like the kernel function, the covariance function is a function

of the model inputs, it returns the covariance between the output corresponding to two

inputs. The problem of learning in Gaussian processes is exactly the problem of finding

suitable properties of the covariance function.

Marginal Likelihood

Let θ = (a0, a1, v0,w1, ...,wp, σ2
e), ηi = η(xi) and η = (η1, ..., ηn) such that η ∼ GP(0,Ση).

By the independence assumption, we have the likelihood as P (y∣η,θ) =∏
n
i=1P (yi∣ηi,θ)

d
=N(η, σ2

eIn). The marginal likelihood of y, P (y∣θ) is given by

P (y∣θ) = ∫ P (y∣η,θ)P (η)dη
d
=N(0,Σ) where Σ = Ση + σ

2
eIn. (1.12)

The term marginal likelihood refers to the marginalization over the function value η.

The log likelihood of the hyperparameters and its partial derivatives are given by

logP (y∣θ) = −
1

2
log∣Σ∣ −

1

2
yTΣ−1y −

n

2
log2π,

∂

∂θi
logP (y∣θ) = −

1

2
tr(Σ−1∂Σ

∂θi
) +

1

2
yTΣ−1∂Σ

∂θi
Σ−1y. (1.13)

To calculate the partial derivatives of the likelihood, it is necessary to invert the matrix

Σ, using, for example, Cholesky decomposition. Maximum likelihood can be imple-

mented by several learning schemes such as a Monte Carlo method for integration over

hyperparameters and maximum a posteriori (MAP) method.

12



Prior Specification

Let τa0 = 1/a0, τa1 = 1/a1, τv0 = 1/v0, τe = 1/σ2
e . We impose the Gamma priors on these

four parameters: τa0 ∼ Ga(
αa0
2 ,

αa0
2µa0

), τa1 ∼ Ga(
αa1
2 ,

αa1
2µa0

), τv0 ∼ Ga(
αv0
2 ,

αv0
2µv0

) and τe ∼

Ga(αe2 ,
αe
2µe

) where αa0 , αa1 , αv0 , αe are positive shape parameters and µa0 , µa1 , µv0 , µe are

the means of τa0 , τa1 , τv0 , τe. The large values of α’s produce priors concentrated near

µα’s. The priors for hyperparameter wi are more complicated. As we expect the prior

on the importance of hyperparameter wi to be lower with increasing numbers of input

(i.e. large p), we let τwi = 1/wi and put a gamma prior whose mean scales with the

number of inputs p on τwi as τwi ∼ Ga(
αwi
2 ,

αwi
2µwi

) where µwi = µ0p
2/αwi . Large p makes

µwi large and the mean of wi small.

Hybrid Monte Carlo Method

The joint posterior distribution marginalized with respect to η is computed from the

marginal likelihood multiplied by the prior: P (θ∣y) ∝ P (y∣θ)P (θ). To obtain the

posterior distribution, we need to integrate over the resulting posterior, but analytic

integration is infeasible due to the complex form of the likelihood. The Hybrid Monte

Carlo method [Duane et al., 1987] is appropriate for this case. When sampling from

complicated multidimensional distributions, it is often advantageous to use gradient

information to find regions of high probability when gradients can be obtained. The

Hybrid Monte Carlo method avoids the random walk behavior by creating a virtual

dynamic system where hyperparameter θ plays the role of position variables, which

are augmented by a set of momentum variables φ. The kinetic energy is a function

of momentum variables: K(φ) = 1
2 ∑

p+4
i=1 φ

2
i where φ = (φ1, ..., φp+4) is in one-to-one

correspondence with the component of θ. The potential energy is defined as E(θ) =

−logP (θ∣y). The total energy H of the system which is called ”Hamiltonian” function

is the sum of the kinetic energy K and the potential energy E , such that H(φ,θ) =
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K(φ)+ E(θ). The dynamical system evolved through virtual time t is governed by the

following Hamilton’s differential equations:

dθi
dt

=
∂H

∂φi
= φi,

dφi
dt

= −
∂H

∂θi
= −

∂E

∂θi
. (1.14)

Since the partial derivative of E with respect to θ is a complicated function, the above

equation cannot be simulated exactly. We use the following leapfrog steps to approxi-

mate the dynamic system:

φi(t +
ε

2
) = φi(t) −

ε

2

∂E

∂θi
(θ(t)), (1.15)

θi(t + ε) = θi(t) + εφi(t +
ε

2
),

φi(t + ε) = φi(t +
ε

2
) −

ε

2

∂E

∂θi
(θ(t + ε)),

where ε is the step size for discretizing the dynamic system. The step size ε is set to

the same value for all hyperparameters and is chosen to ε∝ n−1/2 since the magnitude

of the gradients under the posterior are expected to be scale roughly as n1/2 when the

prior is vague. Rasmussen [1996] found that ε = 0.5n−1/2 performs reasonably well, in

practice.

Maximum a Posteriori (MAP) Estimates

When there is a large number of observations, integration via Monte Carlo method

is computationally infeasible and the maximum a posteriori (MAP) approach would

be preferred. When the posterior is fairly narrow, the prediction for a MAP method

may not differ much from the results of integrating over hyperparameters. To find the

MAP estimates, conjugate gradient optimization technique [Rasmussen and Williams,

2006], simplex search method [Lagarias et al., 1998], finite element approach [Roberts
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et al., 2003] and sparse grid approximation [Bungartz and Griebel, 2004] can be used

[Hegland, 2007].

1.3 Bayesian Model Selection Methods

Bayesian Model Selection

A Bayesian approach to model selection is concerned with the following situation [Han

and Carlin, 2001]. Suppose the observed data y are considered to have been generated

by a model m ∈M, where M is the finite set of competing models. Corresponding to

model m, there is a distinct unknown parameter vector θm ∈ Θm of dimension p where

Θm is the set of all possible values for θm. Each model specifies the distribution of

y, P (y∣m,θm). If P (m) is the prior probability of model m, where ∑m∈MP (m) = 1,

the posterior probability is given by P (m∣y) = P (m)P (y∣m)
∑m∈M P (m)P (y∣m) ,m ∈M where P (y∣m)

is the marginal likelihood computed from P (y∣m) = ∫ P (y∣m,θm)P (θm∣m)dθm and

P (θm∣m) is the model-specific conditional prior of θm. To compare two models, m and

m′, we often use the Bayes factor for model m over m′:

BFmm′ =
P (m∣y)/P (m)

P (m′∣y)/P (m′)
=
P (y∣m)

P (y∣m′)
. (1.16)

The Bayes factor BFmm′ captures the change in the odds in favor of model m as

we move from prior to posterior. Equation (1.16) shows that the Bayes factor for the

comparison of two models can be obtained using the marginal likelihoods of two models.

If the model-specific prior P (θm∣m) is improper, the marginal likelihood is necessarily

improper as well and thus the Bayes factor (1.16) is not well defined. Various solutions

have been proposed to this problem, including pseudo Bayes factor approaches [Berger

and Pericchi, 1996]. However, from here on, we will only consider proper Bayes factors.

Several methods seek to estimate the marginal likelihood P̂ (y∣m) directly for each

15



model and subsequently calculate the Bayes factor using equation (1.16). Chen and

Shao [1998] developed an importance sampling approach to estimate the marginal likeli-

hood using a technique of Chen and Shao [1997]. Newton and Raftery [1994] proposed

the estimator for marginal likelihood, which is the harmonic mean of the likelihood

values sampled from the stationary phase of the MCMC run. Chib [1995] and Chib

and Jeliazkov [2001] provides a indirect method to estimate marginal likelihood in the

context of Gibbs sampling and Metropolis-Hastings algorithm. All methods operate

on a posterior sample that has already been produced by some noniterative or MCMC

method, although the methods of Chib [1995] and Chib and Jeliazkov [2001] will often

require multiple runs of slightly different version of the MCMC algorithm to produce

the necessary output. However, for some complicated or high-dimensional models, these

approaches are difficult to implement.

A slight more direct and more common approach to estimating posterior model

probabilities using MCMC is to include the model indicator γ as a parameter in the

sampling algorithm. This may complicate the initial sampling process, but has the clear

benefit of producing a stream of samples {γi}Hi=1 from the marginal posterior distribution

of the model indicator, P (γ∣y). Once the sampler converges, the proportion of times

the sampler visits model m is a simple estimate of each posterior model probability:

P (γ =m∣y) =
number of γi =m

∑
H
i=1 number of γi

, m = 1, ...,K. (1.17)

This estimate can be used to compute the Bayes factor between any two of the models,

say m and m′:

BFmm′ =
P (γ =m∣y)/P (γ =m)

P (γ =m′∣y)/P (γ =m′)
. (1.18)

To avoid the risk of increased correlations and slower convergence, it is sometimes

possible to integrate the parameters θ out of the model before sampling begins, yielding

16



a sampler that operates over the model space alone. Unfortunately, most model settings

are too complicated to allow the entire parameter θ to be integrated out of the model

in a closed form, and thus require that the MCMC search be over the model and

parameter space jointly. This joint search approach also permits posterior estimate of

the parameters under each model P (θ∣γ =m,y), simply by conditioning on the samples

produced when the chain is currently in state γ =m.

Stochastic Search Variable Selection

George and McCulloch [1993] proposed a model selection procedure which is called

stochastic search variable selection (SSVS). This method introduces latent variables to

determine whether particular regression coefficients may safely be estimated by 0 or

not. We consider the following simple linear model

y = xβ + e, e ∼ N(0, σ2I), (1.19)

where y = (y1, ..., yn)T is n× 1, x = (x1, ...,xp) is n× p, β = (β1, ..., βp)T is p× 1 and e is

n × 1. We assign prior for each βi to be a mixture of two normal densities,

βi∣γi ∼ (1 − γi)N(0, τ 2i ) + γiN(0, c2i τ
2
i ), (1.20)

where γi (i = 1, ..., p) is a binary variable with P (γi = 1) = 1−P (γi = 0) = pi. When γi = 0,

βi ∼ N(0, τ 2i ) and when γi = 1, βi ∼ N(0, c2i τ
2
i ). When τi (τi > 0) is small and γi = 0, then

βi would probably be small that it could safely be estimated by 0. When ci (ci > 1) is

large and γi = 1, then a non-zero estimate of βi is probably included in the final model.

Based on this interpretation, pi can be viewed as a prior probability that βi is non-zero.

The mixture prior for βi∣γi can be written in vector form as β∣γ ∼ N(0,DγRDγ) where

γ = (γ1, ..., γp); R is the prior correlation matrix and Dγ = diag(a1τi, ..., apτp), where

17



ai = 1 if γi = 0 and ai = ci if γi = 1. We use the inverse gamma conjugate prior as the

prior for σ2: σ2∣γ ∼ IG(
νγ
2 ,

νγλγ
2 ) where νγ and λγ are hyperparameters to be specified.

Product Space Search

Carlin and Chib [1995] proposed a Gibbs sampling method that avoids convergence

difficulties and accommodates fairly general model settings. Suppose there are K can-

didate models, a distinct parameter vector θm (m = 1, ...,K) for each model, whose

prior is assumed to be independent each other given the model indicator γ. Corre-

sponding to model m, the likelihood is P (y∣θm, γ = m) and the prior is P (θm∣γ = m).

Since γ is an indicator of which θm is relevant to y, y is independent of θ−m given

the model indicator γ where θ−m represents all elements of θ except θm. Under the

conditional independence assumption, we have

P (y∣γ =m) = ∫ P (y∣θm, γ =m)P (θ∣γ =m)dθ

= ∫ P (y∣θm, γ =m)P (θm∣γ =m)dθm, (1.21)

which has nothing to do with the pseudoprior P (θm∣γ ≠m). Therefore, a pseudoprior

is only conveniently chosen liking density which is used to completely define the joint

model specification. In order to implement the Gibbs sampler, the full conditional

distribution of θm is given by

P (θm∣θ−m, γ,y)∝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

P (y∣θm, γ =m)P (θm∣γ =m) if γ =m

P (θm∣γ ≠m) if γ ≠m
(1.22)

Based on the equation (1.22), when γ = m, the parameter θm is generated from the

usual full conditional of model m; when γ ≠m, the parameter θm is generated from the
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pseudoprior. The full conditional distribution of the model indicator γ is given by

P (γ =m∣θ,y) =
P (y∣θm, γ =m)[∏m′∈MP (θm′ ∣γ =m)]P (γ =m)

∑
K
k=1{P (y∣θk, γ = k)[∏m′∈MP (θm′ ∣γ = k)]P (γ = k)}

. (1.23)

Under the usual regularity conditions [Smith and Roberts, 1993], this Gibbs sampler

will produce posterior samples from all conditional posterior distributions. When the

Gibbs sampler converges, the posterior probability of model m can be estimated by

P (γ =m∣y) =
1

H

H

∑
i=1
I(γi =m), (1.24)

which can be used to estimate the Bayes factors in favor of model m as

BFmm′ =
P (γ =m∣y)/P (γ =m)

P (γ =m′∣y)/P (γ =m′)
. (1.25)

Dellaportas et al. [2002] proposed a hybrid Gibbs-Metropolis version of product space

search method. In this method, the model selection step is based on a proposal

for a move from model m to m′ with acceptance rate αmm′ . This method is called

Metropolized product space search method which proceeds as follows [Han and Carlin,

2001]: (1) Let the current state be (m,θm), where θm is of dimension pm. (2) Pro-

pose a new model m′ with probability h(m,m′). (3) Generate θm′ from a pseudoprior

P (θm′ ∣γ ≠m′) as in product space search method. (4) Accept the proposed move from

model m to model m′ with acceptance rate

αmm′ =min{1,
P (y∣θm′ , γ =m′

)P (θm′ ∣γ =m′
)P (θm∣γ =m′

)P (γ =m′
)h(m′,m)

P (y∣θm, γ =m)P (θm∣γ =m)P (θm′ ∣γ =m)P (γ =m)h(m,m′
)

}. (1.26)

When m′ =m, the move become a Gibbs step. Posterior model probabilities and Bayes

factors can be computed as before.
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Reversible Jump MCMC

As the product space search method, the reversible jump MCMC method originally

proposed by Green [1995], samples over the model and parameter space jointly but

it avoids the full product space search at the cost of a less straightforward algorithm

operating on the union space, M ×⋃m∈MΘm. This method generates a Markov chain

that can jump between models with different dimensional parameter spaces, while re-

taining the aperiodicity, irreducibility, and detailed balance conditions necessary for

MCMC convergence. The reversible jump MCMC algorithm proceeds as follows [Han

and Carlin, 2001]: (1) Let the current state be (m,θm), where θm is of dimension pm.

(2) Propose a new model m′ with probability h(m,m′). (3) Generate u from a proposal

density q(u∣θm,m,m′). (4) Set (θm′ ,u′) = gm,m′(θm,u), where gm,m′ is a deterministic

function that is one-to-one and onto. This is a dimension-matching function, specified

so that pm + dim(u) = pm′ + dim(u′). (5) Accept the proposed move from model m to

model m′ with the acceptance rate

αmm′ =min{1,
P (y∣θm′ , γ =m

′
)P (θm′ ∣γ =m

′
)P (γ =m′

)h(m′,m)q(u′∣θm′ ,m
′,m)

P (y∣θm, γ =m)P (θm∣γ =m)P (γ =m)h(m,m′
)q(u∣θm,m,m′

)

∣

∂g(θm,u)

∂(θm,u)
∣}.

(1.27)

When m′ = m, the move can be either a standard Metropolis-Hastings or a Gibbs

step. Posterior model probabilities and Bayes factors can be computed as described

earlier. The dimension-matching aspect of this algorithm is a little obscure, so that

further discussion is needed. Suppose we are comparing two models, for which θm ∈R1

and θm′ ∈ R2 and θm is subvector of θm′ . If we consider moving from model m to

model m′, we simply draw u ∼ q(u) and set θm′ = (θm, u). In this case, the dimension-

matching function g is identity function and u′ should be ignored. We can set h(m,m) =

h(m,m′) = h(m′,m) = h(m′,m′) = 1
2 and the Jacobian of step 5 is equal to 1.

Composite Model Space Framework

Godsill [2001] proposed the composite model space framework, which essentially follows

the setting of product space search method [Carlin and Chib, 1995] except parameters
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are allowed to be shared between different models. If a standard Gibbs sampler is

applied to this composite model space, it becomes the product space search method.

However, a more sophisticated Metropolis-Hastings algorithm approach produces a

version of the reversible jump algorithm that avoids the dimension matching step. The

composite model space procedure is applicable when there exists a subvector βm′ of the

parameter vector θm′ for the model m′ such that P (θm′ ∣θm′(−βm′), γ =m′,y) is available

in closed form, and in the current model m, there exists an equivalent subvector θm(−βm)

of the same dimension as θm′(−βm′). The composite model space algorithm proceeds

as follows [Han and Carlin, 2001]: (1) Let the current state be (m,θm), where θm

is of dimension pm. (2) Propose a new model m′ with probability h(m,m′). (3) Set

θm(−βm) = θm′(−βm′). (4) Accept the proposed move with the acceptance rate

αmm′ =min{1,
P (m′∣θm′(−βm′),y)h(m′,m)

P (m∣θm(−βm),y)h(m,m
′)

}, (1.28)

where P (m∣θm(−βm),y) = ∫ P (m,βm∣θm(−βm),y)dβm. (5) If the model move is ac-

cepted, update the parameters of the new model βm′ and θm′(−βm′) using standard

Gibbs or Metropolis-Hasting steps; otherwise, update the parameters of the old model

βm and θm(−βm) using standard Gibbs or Metropolis-Hastings steps. Note that model

move proposals from model m to model m always have acceptance rate 1, and thus

when the current model is proposed, this algorithm could simplify to standard Gibbs

or Metropolis-Hastings steps. Posterior model probabilities and Bayes factors can be

computed as described earlier.

Variable selection is a special case of model selection. For variable selection, a

natural parameterization for γ is as binary p-vector which is γ = {γ1, ..., γp} ∈ {0,1}p.

That is, parameter γ is a vector of binary variables for indicating which covariates are

included in (γi = 1) or excluded from (γi = 0) the model.
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Deviance Information Criterion (DIC)

Suppose that y = (y1, ..., yn)T is a vector of n observations generated from an unknown

distribution F (y) and a family of distributions with densities {P (y∣θ)∣θ ∈ Θ ⊂ Rp
} is

used to approximate the true distribution F (y). The prior density and the posterior

density are P (θ) and P (θ∣y), respectively. The predictive distribution for a future

observation z is defined as P (z∣y) = ∫ P (z∣θ)P (θ∣y)dθ.

To measure the deviation of the predictive distribution P (z∣y) from the true model

P (z), Spiegelhalter et al. [2002] considered the following posterior mean of the expected

loglikelihood,

ξ = Ez[Eθ∣y{logP (z∣θ)}] = ∫ {∫ logP (z∣θ)P (θ∣y)dθ}dF (z) (1.29)

[Ando, 2007]. A natural estimator of ξ is as follows:

ξ̂ =
1

n
Eθ∣y{logP (y∣θ)} =

1

n ∫
logP (y∣θ)P (θ∣y)dθ. (1.30)

The estimator of ξ, ξ̂, is generally positively biased since the same data y is used twice,

one for constructing the posterior distribution P (θ∣y) and one for evaluating ξ. Note

the expected bias of ξ̂ is

bθ = Ey(ξ̂ − ξ) = ∫ (ξ̂ − ξ)dF (y). (1.31)

Let b̂θ be an estimator of bθ, then the bias-corrected estimator of ξ can be expressed

as 1
nEθ∣y{logP (y∣θ)} − b̂θ. Under this framework, Spiegelhalter et al. [2002] proposed

the deviance information criterion (DIC),

DIC = −2Eθ∣y{logP (y∣θ)} + PD, (1.32)
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where PD is an effective number of parameters, defined as PD = 2logP (y∣θ̄) − 2Eθ∣y

{logP (y∣θ)} where θ̄ is the posterior mean of θ.

Bayesian Predictive Information Criterion (BPIC)

Alternatively, Ando [2007] evaluated the asymptotic bias of ξ̂ and proposed the Bayesian

predictive information criterion:

BPIC = −2Eθ∣y{logP (y∣θ)} + 2nb̂θ, (1.33)

where b̂θ = E[log{P (y∣θ)P (θ)}]−log{P (y∣θ̂n)P (θ̂n)}+tr{J−1n (θ̂n)In(θ̂n)}+p/2, p is the

dimension of θ, θ̂n = argmaxθP (θ∣y) is the posterior mode and the matrices In(θ̂n) and

J−1n (θ̂n) are given by In(θ̂n) =
1
n ∑

n
i=1{

∂ξn(yi,θ)
∂θ

∂ξn(yi,θ)
∂θT

}, J−1n (θ̂n) = −
1
n ∑i=1{

∂2ξn(yi,θ)
∂θ∂θT

},

respectively. Here, ξn(yi,θ) = logP (yi∣θ) + logP (θ)/n. Further, Ando [2011] proposed

a simplified version of BPIC as

Simplified BPIC1 = −2Eθ∣y{logP (y∣θ)} + 2PD, (1.34)

where PD = n̂bθ = 2logP (y∣θ̄n)−2Eθ∣y{logP (y∣θ)}. If we impose additional assumptions

that (a) the prior is assumed to be dominated by the likelihood as n increases, that is,

logP (θ) = O(1), and (b) the specified models include the true model [Ando, 2011], then

the estimated bias term nb̂θ reduces to nb̂θ ≈ p and the BPIC can be further reduced

to

Simplified BPIC2 = −2Eθ∣y{logP (y∣θ)} + 2p. (1.35)
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1.4 Bayesian Covariance Estimation

Bayesian Mixed Effects Models

The most common model for repeated measurements is the linear mixed effects model

of Laird and Ware [1982]. For individual i with ni repeated measurements, the mixed

effects model is given by

yi = µi +xiβ + zibi + ei, i=1,...,n, (1.36)

where yi is an ni × 1 response vector; µi is the overall mean vector; xi is an ni × p

matrix of fixed covariates; β is a p × 1 vector of fixed effects; zi is an ni × k matrix of

random covariates; bi is a k×1 vector of random effects; ei is an ni×1 vector of random

errors. It is standard to assume bi and ei are independent of each other and both are

normally distributed with bi ∼ N(0,D) and ei ∼ N(0, σ2Ini). Under this assumption,

yi∣µi,β,D, σ
2 ∼ N(µi +xiβ + zibi, σ

2Ini). For Bayesian analysis of the random effects

model [Zeger and Karim, 1991; Gilks et al., 1993], we specify the priors on µi, β, D

and σ2 traditionally, as the prior for µ is chosen to be P (µ)
d
=N(µ0, σ2

µ), the prior for β

is chosen to be P (β)
d
=N(0,Σβ) and the prior for σ2 is chosen to be P (σ2)

d
= IG( δ02 ,

γ0
2 ).

By far the most common approach to the prior on D is to use an inverse-Wishart prior,

motivated by its conjugacy property. That is, P (D)
d
= IW (n0,C0). However, there are

many other choices of prior on the covariance D.

Modeling a covariance structure is one of the most difficult and important tasks in

statistical analysis [Barnard et al., 2000]. A covariance matrix may have many param-

eters, which are constrained by a complex requirement that the matrix is nonnegative

definite. There is no standard solution to the problem of choosing a prior on the co-

variance matrix in the mixed effects model, or hierarchical model [Kass and Natarajan,

2006]. Directly specifying a reasonable prior for a covariance matrix is not a easy task.
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The usual inverse-Wishart prior is often inadequate because it is of restrictive form due

to the common degrees of freedom for all the diagonal entries ofD. It is helpful to break

the covariance matrix down into several components. There are several methods based

on well-known matrix decompositions. Barnard et al. [2000] worked with the variance-

correlation decomposition of the covariance matrix. Boik [2002] proposed a spectral

decomposition on the matrix. Another approach is to use the Cholesky decomposition

of the covariance matrix [Pourahmadi, 1999; Chen and Dunson, 2003].

Inverse Wishart Prior

Suppose A is a p × p positive definite random matrix. The Wishart distribution with

n0 degree of freedom is characterized by A ∼W (n0,C
−1
0 ) if and only if A = ∑

n0
i=1 ziz

T
i ,

where p dimensional vectors z1, ...,zn are i.i.d. random samples from N(0,C−1
0 ). The

diagonal elements of a Wishart matrix A are chi-square random variables. That is,

aii ∼ σiiχ2
n, where aii is the ith diagonal element of A and σii is the ith diago-

nal element of C−1
0 . If D = A−1, D have an inverse Wishart distribution, denoted

by D ∼ IW (n0,C0). The mean of inverse Wishart distribution is E(D) = C0

n0−p−1 ,

which means large n0 makes the prior relatively noninformative. Based on the inverse

Wishart prior and other priors as described earlier, the conditional posterior distribu-

tion of D is P (D∣y,µ,b, σ2)
d
= IW (n + n0,C0 + σ−2∑

n
i=1 bib

T
i ) where y = (yi, ...,yn)

T ,

µ = (µi, ...,µn)
T and b = (bi, ...,bn)T . The inverse Wishart prior results in a strong

dependence between variance and correlation: high variance implies high correlation

and low variance implies low or moderate correlation. To overcome this problem, the

inverse Wishart prior for D where the scale matrix is determined from the variance

can be considered [Kass and Natarajan, 2006].
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Variance-Correlation Decomposition

The covariance matrixD can be decomposed asD = SRS where S is the k×k diagonal

matrix of standard deviations and R is the k × k correlation matrix [Barnard et al.,

2000]. This decomposition has a strong practical appeal since these two factors of D

are easily interpreted in terms of standard deviations and correlations. We can write

the prior on D in terms of (S,R) as P (S,R) = P (S)P (R∣S). Since S only have

k-dimensional elements with component-wise nonnegativity as the only constraint, we

can specify the prior for S as P (log(s))
d
=N(ψ,Λ) where s = (s1, ..., sn) are diagonal

elements of S and log(s) = (log(s1), ..., log(sn)). The choice of prior for R given S is

more complicated due to the complexity of space of correlation matrices, and often a

marginally uniform prior or jointly uniform prior are used for R [Barnard et al., 2000].

Spectral Decomposition

The spectral decomposition of a covariance matrix D is given by D = PΛP T
=

∑
q
i=1 λieie

T
i , where Λ is a diagonal matrix of eigenvalues with the ith element λi and P

is the orthogonal matrix of normalized eigenvectors with the ith column, ei [Pourah-

madi, 2011]. There are three classes of priors on Λ and P and details can be found in

[Leonard and Hsu, 1992; Yang and Berger, 1994; Daniels and Kass, 1999].

Cholesky Decomposition

The standard Cholesky decomposition of a positive-definite matrix is given by D =

LLT , where L is a unique lower-triangular matrix with positive diagonal elements.

Statistical interpretation of the elements of L is difficult in the present form. However,

rescaling L to unit lower-triangular matrices by the inverse of ∆ = diag(δi, ..., δk) makes

the statistical interpretation of the diagonal elements of L and the components of the

modified Cholesky decomposition easier. Pourahmadi [1999] proposed the following
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modified Cholesky decomposition

D = L∆−1∆∆∆−1LT = Ψ∆2ΨT , (1.37)

where Ψ = L∆−1. Chen and Dunson [2003] presented another modified Cholesky

decomposition as follows.

D = ∆∆−1LLT∆−1∆ = ∆ΨΨT∆, (1.38)

where Ψ = ∆−1L is obtained from L by dividing the elements of its ith row by δi. In

this decomposition, ∆ is a diagonal matrix with elements proportional to the square

roots of the diagonal elements of D and Ψ is a unit lower-triangular matrix solely de-

termining its correlation matrix. This total separation of variance and correlation is one

of advantages over the more traditional modified Cholesky decomposition of Pourah-

madi [1999] [Pourahmadi, 2007]. Given Chen and Dunson [2003]’s decomposition, the

reparameterized mixed effects model can be written as

yi = µi +xiβ + zi∆Ψci + ei, i=1,...,n, (1.39)

where ci = (c1, ..., ck)T is k × 1 vector of independent standard normal latent variables.

In choosing priors for ∆ and Ψ and hence for D, we permit the variance of random

effects to have zero values [Chen and Dunson, 2003]. Conditionally conjugate prior

distributions for ∆ and Ψ are chosen as P (∆,ψ) = P (ψ∣∆)P (∆). The prior distri-

bution for ψ conditional on ∆ is given by P (ψ∣∆) ∝ N(ψ∣ψ0,R0)I(ψ ∈ R∆) where

∆ = (δ1, ..., δk)T , ψ = (ψml ∶ m = 2, ..., k; l = 1, ...,m − 1)T and R∆ = {ψ ∶ ψml = ψlm′ =

0 if δl = 0, l = 1, ..., k,m = l + 1, ..., k,m′ = 1, ..., l − 1}. Here, the prior for ψ, conditional

on ∆, is proportional to a N(ψ0,R0) multiplied by an indicator function that imposes
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zero on the elements of ψ corresponding to zero ∆. For ∆, we assume that the δ’s are

independent of each other, so that P (∆) = Πk
l=1P (δl). Let ZI − N+(π,µ, σ2) denote

the density of a zero inflated half normal distribution comprised of a point mass at

zero with probability π and a N(µ,σ2) density truncated below by zero. The prior

distribution for ∆ is given by P (∆) = Πk
l=1P (δl) = Πk

l=1ZI −N
+(δl∣pl0,ml0, s2l0) where

pl0,ml0 and s2l0 are hyperparameters to be specified.

1.5 Outline of Thesis

In the present chapter, we have reviewed traditional QTL mapping, Bayesian QTL map-

ping methods and Gaussian process models. And we have introduced the literature on

Bayesian model selection and Bayesian covariance estimation. In Chapter 2, we develop

a Bayesian multiple QTL mapping method with a composite model space framework for

longitudinal traits, and we apply the proposed method to the Genetic Analysis Work-

shop 18 (GAW18) longitudinal blood pressure data. The method is computationally

efficient, but it only allows for pairwise gene-gene and gene-time/environment interac-

tions and may miss genes with higher-order interactions. To overcome this difficulty,

in Chapter 3, we propose a nonparametric Gaussian process model for longitudinal

traits, which measures the importance of each QTL irrespective of whether it functions

through main, epistatic effects, or interactions with environmental factors. Finally, in

Chapter 4, we extend the nonparametric Gaussian process model to SNP-set analysis

to map groups of rare and/or common variants.
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CHAPTER 2

BAYESIAN MULTIPLE QTL MAPPING FOR LONGITUDINAL
TRAITS

2.1 Introduction

Many complex traits, such as blood pressure, cholesterol level are time-dependent or

longitudinal traits and are affected by genetic factors as well as nongenetic factors

(e.g. age, sex or drug). It is crucial to consider the repeated measurements of traits

for better understanding their genetic architectures. Over the past two decades, a

diversity of statistical methodologies have been developed to map quantitative trait

loci (QTL) for complex traits [Lander and Botstein, 1989; Zeng, 1993; Kao and Zeng,

1997; Yi et al., 2007]. Although these methods are effective in detecting QTL, they

are not readily applicable to identify QTL with time-varying genetic effects. Recently,

it becomes of great interest to study genes with time varying genetic effects through

collecting time-dependent traits repeatedly over time.

Several different approaches are currently available for genetic analyses of longitu-

dinal traits. For the data collected at the same time points across all individuals, the

measured values at each time point can be treated as one variable and jointly analyzed

by treating such longitudinal data as multivariate outcomes [Wu et al., 1999, 2002; Ma

et al., 2002; Yap et al., 2009]. For the data collected at different time points across

some or all individuals, the measured values can not be effectively grouped and thus the



multivariate analysis is not applicable. Alternatively, mixed effects models are applied

to QTL mapping for longitudinal traits and a maximum-likelihood method is used for

parameter estimation and statistical tests. [Yang et al., 2006]. Mixed effects models

are flexible for modeling non-constant correlation among observations and unbalanced

data. Moreover, the correlation of measurements at successive time points can be used

to interpolate the adjacent time points. A flexible nonparametric time-varying coef-

ficient QTL mapping method for recombinant inbred intercrosses (RIX) data models

the varying genetic effects nonparametrically with the B-spline bases and models the

polygenic effects via mixed effects model [Gong and Zou, 2012].

Most approaches mentioned above test one gene at a time and may have low power

to map multiple genes that jointly affect the trait. Several Bayesian methods for mul-

tiple QTL mapping [Satagopan et al., 1996; Yi et al., 2002, 2003; Yi, 2004] have been

proposed. Multiple QTL can be simultaneously detected by treating the number of

QTL as a random variable using reversible jump Markov chain Monte Carlo (MCMC)

method [Yi et al., 2002]. Alternatively, multiple QTL can be viewed as a variable se-

lection problem [Yi et al., 2003; Yi, 2004] and Bayesian model selection method is used

for identifying main, epistatic QTL [Yi et al., 2005] and QTL interacting with other

covariates [Yi et al., 2007] based on the composite model space framework. These

approaches use a fixed dimensional parameter space by setting a upper bound on the

number of detectable QTL and introduce latent binary variables to indicate which fac-

tors should be included in or excluded from the model. It can reasonably reduce the

model space and construct efficient MCMC algorithm. Banerjee et al. [2008] extended

Bayesian variable selection method of Yi [2004] to multiple traits via the “seemingly

unrelated regression” (SUR) model.

For Bayesian analysis under the mixed effects model framework [Zeger and Karim,
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1991; Gilks et al., 1993], the covariance structure of random effects needs to be mod-

eled. A large covariance matrix has numerous parameters, which are constrained by

the fact that the covariance matrix is nonnegative definite. Thus, directly specifying

a reasonable prior for a covariance matrix is not a simple task. There is no standard

solution to the problem of choosing a prior on the covariance matrix in the mixed effects

model [Kass and Natarajan, 2006]. The usual inverse-Wishart prior is often inadequate

because of its restrictive form on the common degrees of freedom for all the diagonal

entries. Moreover, the inverse Wishart prior leads to a strong dependence between vari-

ance and correlation: high variance implies high correlation and low variance implies

low or moderate correlation. Alternatively, it may be helpful to decompose the covari-

ance matrix into several components and model each component separately. Barnard

et al. [2000] worked with a variance-correlation decomposition of the covariance matrix.

Boik [2002] proposed to use a spectral decomposition. Another approach is based on

the Cholesky decomposition [Pourahmadi, 1999; Chen and Dunson, 2003]. Chen and

Dunson [2003]’s method has an advantage over the more traditional modified Cholesky

decomposition of Pourahmadi [1999] thanks to the total separation of variance and

correlation [Pourahmadi, 2007].

In this chapter, we develop a Bayesian multiple QTL model which extends the com-

posite model space framework of Yi et al. [2007] to longitudinal traits. For data where

phenotypes are not measured at a fixed set of times for all samples, we parsimoniously

describe the covariance matrix of each subject as a covariance matrix predefined on a

set of pre-selected time points. For those not measured at the pre-selected time points,

we map each observed time point to two nearest adjacent grid time points via the linear

interpolation. This approach only deals with a covariance matrix with a fixed dimen-

sion. The covariance matrix is modeled nonparametrically and we employ a modified

Cholesky decomposition of Chen and Dunson [2003]. Such decomposition facilitates
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the use of normal conjugate priors. The proposed method jointly models the main and

pairwise interactions of all candidate genetic variants.

2.2 Bayesian Multiple QTL Model for Longitudinal Data

2.2.1 Bayesian Mixed Effects Model

Suppose there are n subjects, with subject i having phenotypes measured at ni time

points (i = 1, ..., n). First, we divide the entire genome into h loci, κ = (κ1, ..., κh)T

and assume that all putative QTL are located at these fixed h loci. When the mark-

ers (m) are dense enough, we set κ to the marker positions. If not, κ may contain

points between markers in addition to the marker positions. Before mapping QTL,

the conditional genotypic probabilities of g at loci κ, p(g∣κ,m) can be computed from

the observed marker data using multipoint method [Jiang and Zeng, 1997]. An upper

bound on the number of QTL in the model is set to p which is usually much smaller than

h. Based on the conditional probabilities of genotypes across the genome, we construct

main effects (p terms), gene-gene interactions (p(p − 1)/2 terms) and gene-time/gene-

environment interactions (pq terms) where q is the number of time/environmental co-

variates [Yi et al., 2005].

Let λ = (λ1, ..., λr)T be the current positions of r putative QTL where r = p +

p(p − 1)/2 + pq. Each locus can affect the trait through its marginal effects (main

effects) or two-way interactions with other loci (epistatic effects) or with environmental

effects (gene-time/gene-environment interactions). We use latent binary variables γ =

(γ1, ..., γr)T for indicating which effects are included in (γi = 1) or excluded from (γi =

0) the model. The vector of indicators and positions (γ,λ) determines the number

and positions of QTL. For the ith sample, let xti denote the ni × q design matrix of

time/environmental covariates, xgi denote the ni × p design matrix of p putative QTL
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genotypes, xggi denote the ni × p(p − 1)/2 design matrix of epistatic effects, and xgti

denote the ni × pq design matrix of gene-time/gene-environment interactions, which

results in the design matrix xi = (xti,xgi,xggi,xgti).

Given γ,λ and xi, we consider the following Bayesian mixed effects model:

yi = µi +xiΓβ + piνi + ei (i=1,...,n), (2.1)

where yi = (yi1, ..., yini)
T is the ni×1 phenotype or trait vector of subject i; µi = µ1ni is

the ni × 1 vector of the overall mean; Γ is the diagonal matrix with diagonal elements

(1q, γ); β = (βTt ,β
T
g ,β

T
gg,β

T
gt)

T is the vector of genetic effects, time/environmental

effects, epistatic effects, gene-time/gene-environment interactions; ei is an ni ×1 vector

of random error with ei ∼ N(0, σ2
eIni). In order to model the correlation among the

repeated measurements of the same individual, we first partition the observed time

interval by k grid points, t = (t1, ..., tk)T . Then, we define νi as a k×1 vector of random

effects at the grid time points with νi ∼ N(0,D) where D is an k × k covariance

matrix. If all traits are observed exactly on the k grid time points, matrix pi is an

identity matrix. If we have samples whose phenotypes are not measured on the grid

points, an interpolation procedure (e.g. linear, polynomial or spline) can be applied

for approximately modeling the within-subject correlations. For simplicity, we choose

a linear interpolation. Let the incidence matrix pi = (pTi1, ...,p
T
ini

)T . If jth time point

of ith individual, xtij, is between t1 and t2 (t1 ≤ xtij ≤ t2), then pij = (
t2−xtij
t2−t1 ,

xtij−t1
t2−t1 ,0).

If xtij = t2, then pij = (0,1,0).

2.2.2 Reparameterized Model

For Bayesian estimation of mixed effects model (2.1), we conduct the factorization

of the covariance matrix, D, of the random effects following the modified Cholesky
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decomposition of Chen and Dunson [2003]. Let L denote a k × k lower triangular

Cholesky decomposition matrix which has nonnegative diagonal elements, such that

D = LLT . Let L = ∆Ψ where ∆ = diag(δ1, ..., δk) and Ψ is a k × k matrix with the

(l,m) element denoted by ψlm. To make ∆ and Ψ identifiable, we make the following

assumptions:

δl ≥ 0, ψll = 1 and ψlm = 0, for l = 1, ..., k; m = l + 1, ..., k. (2.2)

These conditions make ∆ a nonnegative k×k diagonal matrix and Ψ a lower triangular

matrix with 1’s in the diagonal elements. This results in the following decomposition

of D,

D = ∆ΨΨT∆. (2.3)

Based on the modified Cholesky decomposition of D, we reparameterize model (2.1)

as

yi = µi +xiΓβ + pi∆Ψbi + ei (i=1,...,n), (2.4)

where bi = (bi1, ...bik)T such that bij ∼ N(0,1) and bij ⊥ bij′ (j ≠ j′), j = 1, ..., k. For the

later use, we define vi = pi∆Ψ = (vi1, ...,vini)
T and v = diag(v1, ...,vn).

2.2.3 Identifiability Problem of the Covariance

For statistical estimation and inference, the proposed Bayesian mixed effects model

should be identifiable. However, the identifiability problem arises in the estimation of

the covariance matrix of the phenotypes. Note that y[= (yT1 , ...,y
T
n)

T ] follows multi-

variate normal distribution. The covariance matrix of y is given by PDP T
+ σ2IN

where P = diag(p1, ...,pn), D = In ⊗ D and N = ∑
n
i=1 ni. It is necessary to find

the conditions that PDP T
+ σ2IN is identifiable, which is equivalent to the fact that

PDP T
+ σ2IN = P D̂P T

+ σ̂2IN if and only if D̂ =D and σ̂2 = σ2. Letting D̃ =D − D̂
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and σ̃2 = σ2− σ̂2, we observe that PDP T
+σ2IN is identifiable if and only if the system

of equations P D̃P T
+ σ̃2IN = 0 has no non-zero solutions for D̃ and σ̃2.

Note that the jth row vector of pi can be expressed as pij = aij1e1+ ...+aijkek where

∑
k
r=1 aijr = 1, 0 ≤ aij1, ..., aijk ≤ 1 and er (1 ≤ r ≤ k) is a 1 × k unit row vector whose

elements are all zero except the rth component, which is one. Note that one or only

two adjacent aijr values are non-zero due to our linear interpolation. Further, let the

(r, s)th element of D̃ (i.e. D̃ = In⊗D̃) be d̃r,s. The following lemma and theorem help

to evaluate the identifiability problem and give us a useful information on selecting the

number of grid points.

Lemma 1. The system of equations P D̃P T
+σ̃2IN = 0 where D̃ =D−D̂ and σ̃2 = σ2−σ̂2

is equivalent to the system of equations AX = 0 where A is a [12 ∑
n
i=1 ni(ni+1)]×[12k(k+

1)+1] matrix of constants and X is a [12k(k+1)+1]×1 vector containing all elements

of matrix D̃ plus σ̃2.

Proof. Since only one or two adjacent aijr are nonzero, pij can be expressed as pij =

aij(cij)e(cij) + aij(cij+1)e(cij+1) where [cij, cij + 1] refers the time interval on which the

jth time of the ith subject falls and 1 ≤ cij ≤ k − 1. Note that the (j, j′)th ele-

ment of piD̃p
T
i + σ̃

2Ini equals pijD̃p
T
ij′ + σ̃

2I(j = j′). Since erD̃eTs = d̃r,s (1 ≤ r, s ≤

k), pijD̃p
T
ij′ + σ̃

2I(j = j′) = aij(cij)aij′(cij′)e(cij)D̃e
T
(cij′)

+ aij(cij)aij′(cij′+1)e(cij)D̃e
T
(cij′+1)

+

aij(cij+1)aij′(cij′)e(cij+1)D̃e
T
(cij′)

+ aij(cij+1)aij′(cij′+1)e(cij+1)D̃e
T
(cij′+1)

+ σ̃2I(j = j′) = aij(cij)

aij′(cij′)d̃(cij),(cij′)+ aij(cij)aij′(cij′+1) d̃(cij),(cij′+1)+ aij(cij+1)aij′(cij′)d̃(cij+1),(cij′)+ aij(cij+1)aij′(cij′+1)

d̃(cij+1),(cij′+1)+ σ̃
2I(j = j′). Therefore, piD̃p

T
i + σ̃

2Ini = 0 is equivalent to the system of

equations, AiX = 0 where Ai is a [12ni(ni+1)]× [12k(k+1)+1] matrix of constants and

X = (d̃1,1, d̃1,2,⋯, d̃1,k, d̃2,2,⋯, d̃k,k, σ̃2)T is a [12k(k+1)+1]×1 vector. Therefore, we have

P D̃P T
+ σ̃2IN = 0 ⇔ piD̃p

T
i + σ̃

2Ini = 0 for ∀i ⇔ AX = 0 where A = (AT
1 , ...,A

T
n)

T

is an [12 ∑
n
i=1 ni(ni + 1)] × [12k(k + 1) + 1] matrix. This completes the proof.

Theorem 1. The proposed Bayesian mixed effects model (2.4) is identifiable if and
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only if rank(A)=1
2k(k + 1) + 1.

Proof. The proof follows from Lemma 1. See Schott [2005] for details.

The above lemma and theorem enable us to check whether the model is identifiable.

Below we show one toy example on how to use Theorem 1 to check the identifiabil-

ity. Suppose there are 3 grid points which produce 2 time intervals. If the model is

identifiable, the rank of A should be 1
23(3 + 1) + 1 = 7 based on Theorem 1. If the

phenotypes of all individuals are observed exactly on the 3 grid points, then pi = I3,

so that A1 = ⋯ = An =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d̃1,1

d̃1,2

d̃1,3

d̃2,2

d̃2,3

d̃3,3

σ̃2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the rank of A

is 1
23(3 + 1) = 6. Therefore, the model is non-identifiable. However, if one individual

has phenotypes measures at different time points from the other individuals, the model

becomes identifiable since the rank of A is now 7.

2.3 Prior Specifications

In order to complete Bayesian modeling, we need to specify priors for all unknown

parameters. The proposed Bayesian mixed effects model contains parameters for both

random and fixed effects. For the random effects, we follow the priors in Chen and

Dunson [2003]. Specifically, we impose independent half normal priors on the diagonal

elements of ∆ and normal priors on the lower triangular elements of Ψ. For the fixed

effects, we straightforwardly extend the priors presented in Yi et al. [2005, 2007].

Prior on γ and λ

We assume that all inclusion probabilities are independent of each other. Letting
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wk = P (γk = 1) be the inclusion probability for the kth effect, we have the following

independent prior on the indicator vector γ: P (γ) = ∏
r
k=1w

γk
k (1 −wk)1−γk . The inclu-

sion probability wk is predetermined and varies according to whether it corresponds

to a main effect, epistasis effect or gene-time/gene-environment interaction [Yi et al.,

2005]. Setting wk to a small value ensures that the model contains a small number of

main effects, epistasis effects, gene-time/gene-environment interactions. We first spec-

ify the prior expected number of QTL with main effect, pm, and all QTL, p0 (p0 > pm),

based on initial investigation and then choose a reasonably large upper bound, p, on

the number of all QTL. We have the following hyperparameters: wm = 1 − [1 − pm
p ]1/g1

for main effects, we = 1 − [
1−(p0/p)
(1−wm)g1 ]

1/g2(p−1) for epistasis effects and wt =
pm
p for gene-

time/gene-environment interactions where g1 is the number of possible main effects for

each QTL; g2 (for example, we set g2 = g21 in this paper) is the number of possible two-

way gene-gene interaction (see Yi et al. [2005] for details). To specify a prior on the

QTL position vector λ, we assume that the locations are independent and uniformly

distributed over the h possible loci and there is at most one QTL within any given

marker interval. Given the expected number of all QTL (p0), the prior distribution of

QTL location λ is given by P (λ) =∏
r
k=1P (λk) where P (λk) =

p0
h .

Prior on b, ∆ and Ψ

In model (2.4), we let the prior of bij follow a standard normal distribution, so that

joint prior distribution for the latent variable b = (bT1 , ...,b
T
n)

T is P (b)
d
=N(0,Ink). In

order to specify priors for ∆ and Ψ, we define two vectors δ = (δl ∶ l = 1, ..., k)T and

ψ = (ψml ∶ m = 2, ..., k; l = 1, ...,m − 1)T . For the prior for δ, we assume that the δl’s

are independent of each other, so P (δ) = Πk
l=1P (δl). The prior distribution for δ is

P (δ) = Πk
l=1N

+(δl∣ml0, s2l0) where N+(δl∣ml0, s2l0) is the density of a half normal distri-

bution which is a N(δl∣ml0, s2l0) density truncated below by zero. The prior distribution
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for ψ is given by P (ψ)
d
=N(ψ0,R0) where ψ0 and R0 are pre-specified hyperparame-

ters.

Prior on β, µ and σ2

The genetic effects are first divided into several groups, corresponding to different

types of effects (i.e. additive, dominance, additive-additive, additive-time/environment

interactions, etc). Suppose the kth genetic effect belongs to group u. All effects in

the same group u follow the same prior, P (βk∣γk, σ2
u)

d
=N(0, γkσ2

u) and the prior for

variance σ2
u is an scaled inverse χ2 distribution, P (σ2

u)
d
= inv-χ2(νu, s2u) whose expected

value is E(σ2
u) = νus

2
u/(νu − 2). The degree of freedom νu affects the skewness of the

prior for σ2
u (we set νk = 6) and the scale parameter s2u controls the prior confidence

region of the heritability which is the phenotypic variance explained by βk divided by

total phenotypic variance. Letting Vp be the total phenotypic variance and Vk be the

sample variance for the column of xi associated with the effect βk, the heritability is

calculated by hk = Vkβ2
k/Vp. Setting E(σ2

u) = E(β2
k), s

2
u = (νu − 2)E(σ2

u)/νu = (νu −

2)E(hk)Vp/(νuVk) (expected effect heritabilities E(hk) is set to 0.1 for the analysis).

The prior for the overall mean µ is given by P (µ)
d
=N(η0, τ 20 ). We could empirically

set η0 = ȳ = (1/N)∑
n
i=1∑

ni
j=1 yij and τ 20 = s2y = (1/(N − 1))∑

n
i=1∑

ni
j=1(yij − ȳ)

2 where

N = ∑
n
i=1 ni. The prior for residual variance σ2 can be chosen by P (σ2) ∝ 1/σ2, which

is noninformative prior for the residual variance σ2 [Gelman et al., 2004].

2.4 MCMC Algorithm and Posterior Analysis

In this section, we describe the posterior distributions of all unknown parameters and

MCMC algorithms. We then discuss how to summarize posterior samples. The joint

posterior distribution is proportional to the product of the likelihood and the prior
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distributions of all unknown parameters, which can be expressed as

P (γ,θ∣y) ∝ P (y∣γ,θ)P (γ)P (λ)P (β∣γ)P (b)P (δ)P (ψ)P (µ)P (σ2), (2.5)

where θ = (λ,β,b,δ,ψ, µ, σ2)T . In order to obtain MCMC samples of all parameters,

we use both Metropolis-Hastings and Gibbs sampling algorithms, alternately updating

each unknown parameter conditional on all the other parameters and the observed data.

Posterior Calculation and MCMC Algorithm

For γ and λ, we utilize Metropolis-Hastings algorithm since their conditional distribu-

tions do not have known distribution forms. To update those parameters, we extend

the Metropolis-Hastings algorithm proposed by Yi et al. [2007] for our Bayesian mixed

effects model straightforwardly. For the other parameters, Gibbs sampling algorithm is

applied. Specifically, since b, δ and ψ have multivariate normal or half normal priors,

their conditional distributions are easy to derive by those conjugacy properties.

Conditional Posterior of γ

The full conditional posterior distribution of the indicator variable γk can be expressed

as

P (γk = 1∣γ−k,θ−βk ,y) = 1 − P (γk = 0∣γ−k,θ−βk ,y)

=
wkLk1

(1 −wk)Lk0 +wkLk1
, (2.6)

where γ−k represents all the elements in γ except γk, θ−βk represents all the elements

of θ except βk and Lkm = P (y∣γk =m,γ−k,θ−βk) for m = 1,0. Suppose that βk belongs

to group u (i.e. P (βk∣γk, σ2
u)

d
=N(0, γkσ2

u)). Note that βk is integrated out in Lk1 and
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Lk0. For Lk1 and Lk0, we first derive the joint distribution of y and βk.

P (y, βk∣γk = 1,γ−k,θ−βk)∝ P (y∣γk = 1,γ−k,θ)P (βk∣σ
2
u) (2.7)

∝ exp(−
1

2σ2

n

∑
i=1

ni

∑
j=1

(yij − µ −xijβ − vijb)
2)exp(−

β2
k

2σ2
u

)

∝ exp(−
1

2

n

∑
i=1

ni

∑
j=1

c2ij
σ2

−
β2
k

σ2
u

) where cij = yij − µ −xijβ − vijb

∝ exp(−
1

2

n

∑
i=1

ni

∑
j=1

(cij + xijkβk)2 − 2xijkβk(cij + xijkβk) + x2ijkβ
2
k

σ2
−
β2
k

σ2
u

)

∝ exp(−
1

2
{
∑
n
i=1∑

ni
j=1(cij + xijkβk)

2

σ2
− (
∑
n
i=1∑

ni
j=1 xijk(cij + xijkβk)

σ2
)2(σ̃u

2)−1 +
(βk − µ̃k)2

σ̃u
2 }),

where µ̃k = (σ̃u
2)−1∑

n
i=1∑

ni
j=1 xijk(cij+xijkβk)/σ

2 and σ̃u
2 = σ−2u +σ−2∑

n
i=1∑

ni
j=1 x

2
ijk. Based

on the joint distribution (2.7), Lk1 and Lk0 can be calculated as follows:

Lk1 = P (y∣γk = 1,γ−k,θ−βk) = ∫
βk
P (y, βk∣γk = 1,γ−k,θ−βk)dβk (2.8)

∝ (σ̃u
2)−

1
2 exp(−

1

2
{
∑
n
i=1∑

ni
j=1(cij + xijkβk)

2

σ2
− (
∑
n
i=1∑

ni
j=1 xijk(cij + xijkβk)

σ2
)2(σ̃u

2)−1}).

Similarly, we have

Lk0 = P (y∣γk = 0,γ−k,θ−βk) = ∫
βk
P (y, βk∣γk = 0,γ−k,θ−βk)dβk (2.9)

∝ (σ2
u)

− 1
2 exp(−

1

2
{
∑
n
i=1∑

ni
j=1(cij + xijkβk)

2

σ2
}).

In order to update γ, we use a Metropolis-Hastings scheme as described below [Yi et al.,

2007]. Suppose the current γk is c(=0 or 1) and a new value d(=0 or 1) is proposed

from the prior probability P (γk = c). If c equals to d, the acceptance probability for

Metropolis-Hastings scheme is set to 1, so that γk remains at c and no update needed.
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Otherwise, we update γk from the current value c to d = 1−c with acceptance probability

α =min(1, (
1 −wk
wk

R)1−2c), where (2.10)

R =
Lk1
Lk0

= (
σ̃u

2

σ2
u

)−
1
2 exp(

1

2
(
∑
n
i=1∑

ni
j=1 xijk(cij + xijkβk)

σ2
)2(σ̃u

2)−1).

Conditional Posterior of λ

The full conditional posterior distribution for the kth QTL location is

P (λk∣γ,λ−k,y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

P (y∣γ,θ)P (λk) if γk = 1

P (λk) if γk = 0
(2.11)

Since this conditional distribution has a nonstandard form, the Metropolis-Hastings

algorithm is needed to update λk. First, a new location λ∗k is sampled from q(λ∗k;λk)

which can be employed as the uniform distribution U[λk −d, λk +d] where d is a prede-

termined tuning number (e.g., d = 2). And a proposal for the new location is accepted

or rejected with the acceptance probability

α =min(1,
P (λ∗k ∣γ,λ−k,y)q(λk;λ

∗
k)

P (λk∣γ,λ−k,y)q(λ∗k;λk)
). (2.12)

Conditional Posterior of b

Let µ = µ1N and x = (xi, ...,xn)T . The full conditional posterior distribution of the

latent normal variable b is given by

P (b∣y,γ,θ−b) ∝ exp{−
1

2σ2
(y −µ −xβ − vb)T (y −µ −xβ − vb)}exp(−

1

2
bTb)

∝ exp{−
1

2
(b − b∗)T (

1

σ2
vTv + Ink)(b − b

∗
)}, (2.13)
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where b∗ = 1
σ2 (

1
σ2vTv +Ink)−1vT (y −µ−xβ). That is, b∣y,γ,θ−b ∼ Nnk(b

∗,Σ∗
b ), where

Σ∗
b = ( 1

σ2vTv + Ink)−1 and b∗ = 1
σ2 Σ

∗
bv

T (y −µ −xβ).

Conditional Posterior of δ

In order to obtain the full conditional distribution of δ, we rewrite the model (2.4) as

yij = µ +xijβ +
k

∑
l=1
δl(pijl(bil +

l−1
∑
m=1

bimψlm)) + eij, (2.14)

and define the k × 1 vector wij = (wij1, ...,wijk)T = (pijl(bil +∑
l−1
m=1 bimψlm) ∶ l = 1, ..., k)T

and ξijl = yij −µ−xijβ −Σm≠lwijmδm. The full conditional distribution of δ is given by

P (δ∣y,γ,θ−δ) ∝ exp{−
1

2σ2
(y −µ −xβ −wδ)T (y −µ −xβ −wδ)} (2.15)

×
k

∏
l=1

{exp(−
1

2s2l0
(δl −ml0)

2)I(δl > 0)}

P (δl∣y,γ,θ−δl) ∝ exp{−
1

2σ2
(ξl −wlδl)

T (ξl −wlδl)}{exp(−
1

2s2l0
(δl −ml0)

2)I(δl > 0)}

∝ {exp(−
1

2σ∗l
2 (δl − δ

∗
l )

2)I(δl > 0)},

wherew = (w11, ...,wnnn)
T ,wl = (w11l, ...,wnnnl)

T , ξl = (ξ11l, ..., ξnnnl)
T , σ∗l

2 = ( 1
σ2wT

l wl+

s−2l0 )
−1 and δ∗l = σ∗l

2( 1
σ2wT

l ξl + s
−2
l0 ml0). That is, δl∣y,γ,θ−δl ∼ N+(δ∗l , σ

∗
l
2), where

σ∗l
2 = ( 1

σ2wT
l wl + s−2l0 )

−1 and δ∗l = σ
∗
l
2( 1

σ2wT
l ξl + s

−2
l0 ml0).

Conditional Posterior of ψ

In order to obtain the full conditional distribution of ψ, we rewrite the model (2.4) as

yij = µ +xijβ +
k

∑
l=1
bil(δlpijl +

k

∑
m=l+1

δmpijmψml) + eij, (2.16)
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and define the k(k − 1)/2 × 1 vector uij = (bilδmpijm ∶ l = 1, .., k,m = l + 1, ..., k)T . The

full conditional distribution of ψ is given by

P (ψ∣y,γ,θ−ψ) ∝ exp{−
1

2σ2
(y −µ −xβ −uψ)T (y −µ −xβ −uψ)} (2.17)

×exp(−
1

2
(ψ −ψ0)

TR−1
0 (ψ −ψ0))

∝ exp{−
1

2
(ψ −ψ∗

)TΣ∗
ψ
−1
(ψ −ψ∗

)},

where u = (u11, ...,unnn)
T , Σ∗

ψ = ( 1
σ2uTu +R

−1
0 )−1 and ψ∗

= Σ∗
ψ(

1
σ2uT (y − µ − xβ) +

R−1
0 ψ0). That is, ψ∣y,γ,θ−ψ ∼ N(ψ∗,Σ∗

ψ) where Σ∗
ψ = ( 1

σ2uTu +R−1
0 )−1 and ψ∗

=

Σ∗
ψ(

1
σ2uT (y −µ −xβ) +R

−1
0 ψ0).

Conditional Posterior of β and σ2
u

Suppose that βk belongs to group u (i.e. P (βk∣γk, σ2
u)

d
=N(0, γkσ2

u)). If γk = 0, βk=0.

Otherwise, βk is generated from its conditional posterior distribution:

P (βk∣γk = 1,γ−k,θ−βk ,y)∝ P (y∣γk = 1,γ−k,θ)P (βk∣γk = 1, σ2
u)

∝ exp(−
1

2σ2

n

∑
i=1

ni

∑
j=1

(yij − µ −xijβ − vijb)
2)exp(−

β2
k

2σ2
u

) (2.18)

∝ exp(−
1

2

n

∑
i=1

ni

∑
j=1

c2ij
σ2

−
β2
k

σ2
u

) where cij = yij − µ −xijβ − vijb

∝ exp(−
1

2

n

∑
i=1

ni

∑
j=1

(cij + xijkβk)2 − 2xijkβk(cij + xijkβk) + x2ijkβ
2
k

σ2
−
β2
k

σ2
u

)

∝ exp(−
(βk − µ̃k)2

2σ̃u
2 ).

That is, βk∣γk = 1,γ−k,θ−βk ,y ∼ N(µ̃k, σ̃u
2) where µ̃k = (σ̃u

2)−1∑
n
i=1∑

ni
j=1 xijk(cij +

xijkβk)/σ2 and σ̃u
2 = σ−2u + σ−2∑

n
i=1∑

ni
j=1 x

2
ijk. For each type of genetic effect, the full
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conditional posterior distribution of hyperparameter σ2
u is given by

P (σ2
u∣βk) ∝ P (βk∣σ

2
u)P (σ2

u) (2.19)

∝ (σ2
u)

− 1
2 exp(−

1

2

β2
k

σ2
u

)(σ2
u)

− νu
2
−1exp(−

νus2u
2σ2

u

)

∝ (σ2
u)

− νu+1
2

−1exp(−
β2
k + νus

2
u

2σ2
u
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That is, σ2
u∣βk ∼ Inv-χ2(νu + 1, (β2

k + νus
2
u)/(νu + 1)).

Conditional Posterior of µ and σ2

The full conditional posterior distributions for µ is given by

P (µ∣γ,θ−µ,y) ∝ P (y∣γ,θ)P (µ) (2.20)

∝ exp(−
1

2σ2
(y −µ −xβ − vb)T (y −µ −xβ − vb))

×exp(−
1

2s2y
(µ − ȳ)T (µ − ȳ))

where ȳ =
1

N

n

∑
i=1

ni

∑
j=1
yij and s2y =
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N − 1

n
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ni
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j=1

(yij − ȳ)
2

∝ exp(−
1

2
(µ − µ∗)T (

1

σ2
+

1

sy2
)(µ − µ∗))

where µ∗ =
1

σ2
(y −xβ − vb)T (y −xβ − vb) +

1

s2y
ȳ.

That is, µ∣γ,θ−µ,y ∼ N(µ∗, σ2∗
µ ) where σ2∗

µ = ( 1
σ2 +

1
sy2

)−1 and µ∗ = 1
σ2 (y−xβ−vb)T (y−

xβ − vb) + 1
s2y
ȳ. The full conditional posterior distributions for σ2 is given by

P (σ2∣γ,θ−σ2 ,y) ∝ P (y∣γ,θ)P (σ2) (2.21)

∝ (σ2)−
N
2 exp(−

1

2σ2
(y −µ −xβ − vb)T (y −µ −xβ − vb))

1

σ2

∝ (σ2)−
N
2
−1exp(−

Nσ̂2

2σ2
)

where σ̂2 =
1

N
(y −µ −xβ − vb)T (y −µ −xβ − vb).
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That is, σ2∣γ,θ−σ2 ,y ∼ Inv-χ2(N, σ̂2) where σ̂2 = 1
N (y−µ−xβ−vb)T (y−µ−xβ−vb).

Posterior Analysis

The posterior samples can be used to estimate the posterior distribution of the param-

eters and the QTL positions. During the MCMC step, initial iterations are discarded

as “burn-in” and the subsequent samples are thinned by keeping every kth simulation

draw. The posterior inclusion probability of each possible locus κl can be calculated

using its inclusion proportion in the MCMC samples as p(κl∣y) =
1
T ∑

T
t=1∑

r
k=1 1(λ

(t)
k =

κl, γ
(t)
k = 1) where T is the total number of MCMC samples. With the prior p(κl) =

pm
h ,

the Bayes factor can be calculated to show evidence for inclusion of κl, against exclusion

of κl as

BF (κl) =
p(κl∣y)/p(κl)

(1 − p(κl∣y))/(1 − p(κl))
=

p(κl∣y)

1 − p(κl∣y)

1 − p(κl)

p(κl)
. (2.22)

The Bayes factor BF (κl) captures the change in the odds in favor of the inclusion of κl

as we move from prior to posterior. In the R/qtlbim manual [Yandell et al., 2007], the

following criteria are suggested for judging the significance of each locus: weak support

if BF (κl) falls between 3 and 10; moderate support if BF (κl) falls between 10 and 30;

strong support if the BF (κl) is larger than 30.

Choice of the Number of Grid Points

The critical issue with the proposed Bayesian mixed effects model is how to effi-

ciently choose the number of grid points, k. To select the number of grid points, we

evaluate the goodness of the predictive distributions of our Bayesian models. Spiegel-

halter et al. [2002] proposed the deviance information criterion (DIC) as DIC = −2Eγ,θ∣y

{logP (y∣γ,θ)} + PD. The second term of DIC, PD is the effective number of parame-

ters, which is defined as PD = −2Eγ,θ∣y{logP (y∣γ,θ)} + 2logP (y∣γ̄, θ̄) where γ̄ and θ̄

are the posterior means of γ and θ. Since P (yi∣γ,θ)
d
=N(µi+xiΓβ,piDpi

T +σ2Ini) in
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model (2.1), the scores of DIC are easy to compute with MCMC samples. As stated by

Robert and Titterington [2002], the observed data are used twice to calculate PD, and

thus the predictive distribution chosen by DIC overfits the observed data. To overcome

the overfitting problem, Ando [2007] developed the following Bayesian predictive infor-

mation criterion (BPIC) as BPIC = −2Eγ,θ∣y{logP (y∣γ,θ)} + 2nb̂ where b̂ is the bias

of the posterior mean of the expected loglikelihood. Under a certain mild regularity

condition, the bias term can be approximately by nb̂ ≈ PD [Ando, 2011], leading to

the simplified BPIC = 2Eγ,θ∣y{logP (y∣γ,θ)} + 2PD. Note that the penalty term of the

simplified BPIC is twice of that of original DIC. To choose the optimal number of grid

points for our Bayesian model, we first compute both DIC and simplified BPIC with

several pre-selected numbers of grid points. We select the number of grid points with

minimal DIC or simplified BPIC scores.

Implementation in R/qtlbimmixed

The proposed methods have been implemented in R/qtlbimmixed which is built on

top of the widely used R packages, R/qtl [Broman et al., 2003] and R/qtlbim [Yandell

et al., 2007]. The MCMC algorithm written in C and data manipulation procedure in

R were modified for handling longitudinal data. For the choice of the optimal number

of grid points, the R/qtlbimmixed provides both DIC and simplified BPIC scores for

our Bayesian model.

2.5 Simulations Study and Real Data Analysis

2.5.1 Simulation I

In this section, we illustrate our Bayesian mixed effects model with simulations. We

simulate a backcross population with 200 individuals and a single chromosome with
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151 evenly spaced markers at 5cM intervals. The number of measurements for each

individual ranges from three to seven and the total number of observations is 1000.

Four different setups (Setups 1, 2, 3 and 4) are considered. We first simulate the data

sets containing four QTL with only main effects (Setup 1). The four simulated QTL

are located at markers 31, 61, 91 and 121, respectively. The simulated setup equals

yi = 0.5⋅(x31i+x61i+x91i+x121i+ti)+piνi+ei, where the xki (k = 31, 61, 91, 121) are the

genotype codes of the four simulated QTL and ti = (ti1, ..., tini)
T are the ith individual’s

time covariates generated from the uniform distribution U[0,1] and then standardized

with mean 0 and variance 1. We set σ2=1. The true number of grid points are set

to 3 (i.e., true k = 3), and thus pi can be calculated from ti by linear interpolation.

We set δ = (δ1, δ2, δ3) = (1,1.2,0.8) and ψ = (ψ21, ψ31, ψ32) = (0.6,0.4,0.6). That

is, νi ∼ N(0,D) with diag(D) = (1,1.96,0.97) and the lower triangle elements are

(d21, d31, d32) = (0.72,0.32,0.81).

The prior distributions for the elements of δ are chosen to be independent N(0,30)

and the prior distributions for the elements of ψ are independent N(0,0.5). We set a

relatively large variance for the prior of δ and a somewhat diffused variance for the prior

of ψ. For all analyses, the MCMC algorithm ran for 4 × 105 iterations after discarding

the first 1000 burn-in iterations. In order to reduce serial correlation in the stored

samples, the chain was thinned for every 40 iteration, yielding 104 MCMC samples for

posterior analysis.

To further investigate our Bayesian mixed effects model, we simulate additional data

sets containing QTL that have one gene-gene interaction (Setup 2), or one gene-time

interaction (Setup 3), or two gene-gene interactions (Setup 4). Specifically, we have

yi = 0.5 ⋅ (x31i +x61i +x91i ⋅x121i + ti)+piνi +ei for Setup 2, yi = 0.5 ⋅ (x31i +x61i +x91i +

x121i ⋅ti)+piνi+ei for Setup 3 and yi = 0.5⋅(x31i ⋅x61i+x91i ⋅x121i+ti)+piνi+ei for Setup

4. For comparison, we run both R/qtlbimmixed and R/qtlbim with simulated data for
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the four setups. Estimated marginal Bayes factor for each marker using R/qtlbimmixed

with all time points and R/qtlbim with one randomly-selected time point are presented

in Figures 2.1 and 2.2. The solid, dot-dashed and long-dashed lines represent main,

epistatic effects and gene-time interaction, respectively. In general, R/qtlbimmixed has

better power to detect QTL than R/qtlbim. Especially, for Setup 3, R/qtlbimmixed

more clearly detects the gene-time interaction than R/qtlbim in Figure 2.2.

To evaluate the performance of our Bayesian mixed effects model, we further calcu-

late the receiver operating characteristic (ROC) curves. For each setup, we conduct 100

simulations with uniformly generated QTL positions which are restricted to be at least

10cM apart. For a given cut-off of the Bayes factor, we calculate true and false positive

findings as follows: a significant finding is claimed to be a true positive if it is located

less than 10Mb from any one of the simulated causal SNPs; otherwise the finding is

false. The ROC curves with the false positive rate less than 0.2 are presented in Figure

2.3. The solid line represents the result of R/qtlbimmixed where the measurements

from all time points are analyzed. The dot-dashed line is from R/qtlbim where only

one randomly selected measurement from each subject. We also apply R/qtlbim to

all time measurements by (wrongly) assuming that all the measurements are indepen-

dent. The results are summarized by the long-dashed line in Figure 2.3. ROC curves

demonstrate that our R/qtlbimmixed with all measurements appears to perform better

than R/qtlbim with both one and all measurements. That is, Bayesian mixed effects

model with all longitudinal measurements which deals with the dependence of the data

improves the mapping power/efficiency compared to ordinary Bayesian model with one

or all measurements.

To diagnose convergence of MCMC samples, we run ten parallel chains with over-

dispersed different initial values with respect to the true posterior distribution. Using

104 iterations, Geweke’s Z-scores [Geweke et al., 1991] for each chain based on the
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first 10% and last 50% of the samples indicate convergence of all parameters. Using

ten chains, Gelman and Rubin’s potential scale reduction factors [Gelman and Rubin,

1992] are calculated and upper limits are less than 1.01 for all parameters. Figure 2.4

presents the trace plots of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for each setup. The black

lines represent the values of the draws for all parameters at each iteration and gray

lines represent the true values of the parameters. Figure 2.4 shows that all chains move

around the true values for every parameter, indicating a good convergence. We plot the

marginal posterior and prior densities of the parameters for the random errors and the

random effects in Figure 2.5. Estimated densities are based on 10000 random draws.

It appears that the random draws approximately follow the normal density and the

means of those are close to the true values. Figure 2.6 displays the 95% high posterior

density (HPD) intervals of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for each setup. The blue

dots represent the posterior means and blue lines represent the HPD intervals. It shows

that most of the 95% HPD intervals contain the true values. Table 2.1 summaries the

posterior estimates corresponding to the parameters of the random errors and random

effects. The posterior means and medians are close to the true values and all the 95%

HPD intervals contain the true ones, representing good performance of our algorithm.

2.5.2 Simulation II

We conduct another simulations and use DIC [Spiegelhalter et al., 2002] and simplified

BPIC [Ando, 2007, 2011] to estimate the number of grid points. The settings are al-

most the same as in Simulation I except that the true number of grid points now varies

from 2 to 4 (i.e., true k = 2,3,4). We simulate 100 data sets containing four QTL with

only main effects. The four simulated QTL are randomly located with at least 10cM

apart. The trait equals yi = 0.5 ⋅ (xk1i +xk2i +xk3i +xk4i + ti)+piνi +ei, where the xkji

(j = 1,2,3,4) are the genotype codes of the four simulated QTL and ti = (ti1, ..., tini)
T
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are the time points of the ith individual. We set (δ1, δ2, δ3, δ4) = (1,1.2,0.8,0.7) and

(ψ21, ψ31, ψ32, ψ41, ψ42, ψ43) = (0.6,0.4,0.6,0.2,0.4,0.6). Table 2.2 shows the average

DIC, average simplified BPIC scores and the percentages of correctly choosing the

number of true grids. All average DIC and average simplified BPIC scores achieved the

minimum scores at the true grid number and the percentages of selection of the right

number of true grids are 97%, 91% and 94% for 2, 3 and 4 grid setups using DIC, 99%,

97% and 81% using simplified BPIC, repectively as shown in table 2.2.

2.5.3 Real Data Analysis

To further test our Bayesian mixed effects model, we analyze a real mouse data on

age-related body weight in backcross mice of NZO/HILtJ and NON/ShiLtJ [Reifs-

nyder et al., 2000]. To identify diabetes-predisposing QTL, diabetes-prone (obese)

NZO/HlLtJ mice were outcrossed with non-diabetic (non-obese) NONShiLtJ mice to

generate F1 hybrids. F1 mice of both sexes were backcrossed (reciprocal) with non-

diabetic (non-obese) NON/ShiLtJ, resulting in 204 male mice reaching 24 weeks of age.

Body weights were measured in four-week intervals from 4-24 weeks of age, and each

mouse has six body weight measurements at weeks 4, 8, 12, 16, 20 and 24, respectively.

Total 84 microsatellite markers were genotyped and distributed ∼ 20cM apart with

higher concentration of markers in areas around suggestive QTL. Genomewide scans

for body weight were performed in Reifsnyder et al. [2000], using one-way ANOVA.

Significance of the ANOVA F-statistic was assessed by permutation test. Based on the

separate analyses on phenotypes from weeks 8, 16 and 24, a large segment of chromo-

some 1 (D1Mit211-M1Mit76) were detected. We consider five body weights at 8, 12, 16,

20 and 24 weeks as longitudinal measurements while the first measurement and time

are treated as fixed covariates. We set 84 marker positions as putative QTL locations.
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For all analyses, we run 4 × 105 iterations after discarding the first 1000 burn-ins. The

MCMC chain are thinned by one in forty, yielding 104 MCMC samples for the posterior

analysis. The number of grid points is set to 3 since DIC and simplified BPIC achieve

their minimal scores at k = 3. The genomewide profile of Bayes factors is presented in

Figure 2.7, which shows a strong evidence of one QTL activity on chromosome 1 and

suggestive QTL on chromosomes 10 and 15. Interestingly, our Bayesian analysis found

a QTL on chromosome 11 with a weak gene-time interaction.

2.6 Analysis of GAW18 Longitudinal Blood Pressure Data

2.6.1 GAW18 Data and Analysis Plan

Genomewide association studies (GWAS) have been performed to examine genetic vari-

ants associated with blood pressure and hypertension [Levy et al., 2009; Padmanabhan

et al., 2010]. As blood pressure changes over time, it is of great interest in collecting

repeated blood measurements to study genes with time varying genetic effects. Genetic

Analysis Workshop 18 (GAW18) data is a real human whole genome sequencing (WGS)

study with systolic and diastolic blood pressure phenotypes plus age, sex, medication

use and cigarette smoking [Almasy et al.]. The data are longitudinal, with three mea-

surements for most participants at roughly 5-year intervals. In this section, we apply

the proposed Bayesian mixed effects model to the GAW18 longitudinal blood pressure

data. Due to the limited sample size, it is not feasible to include all available SNPs in

our Bayesian analysis. To select a subset of top ranked SNPs, we extend the EMMA

approach [Kang et al., 2008], an efficient algorithm which corrects for population struc-

ture and genetic relatedness in model organism association mapping to the data. We

replace the kinship similarity matrix in EMMA with an estimated covariance matrix

for dealing with the correlation among the multiple measurements from each sample.
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Extended EMMA Method: For testing association between a given SNP and the

phenotype, we fit the following mixed effects model

yi = µi +x
e
iβ

e
+xgiβ

g +ui + ei (i = 1, ..., n), (2.23)

where yi = (yi1, ..., yini)
T is the ni×1 phenotype vector of individual i; µi = µ1ni with µ

being the grand mean and 1ni being the ni×1 vector whose elements are all equal to 1;

xei is the design matrix corresponding to non-genetic covariates (such as time) and βe

is the associated non-genetic effects; xgi is the numerically coded genotype of individual

i and βg is the corresponding SNP effect. In the model, we assume random effect

ui ∼ N(0, σ2
gKi) where Ki is an ni × ni matrix, and random error ei ∼ N(0, σ2

eIni).

The SNP effect can be tested as H0 ∶ βg = 0 vs H1 ∶ βg ≠ 0 via the likelihood ratio test.

For GWAS or WGS data, this test needs to be performed with a large number of SNPs

which can be computationally intensive if we treat Kis as the unknowns and estimate

them jointly with the fixed effects. EMMA [Kang et al., 2008] is an efficient algorithm

originally developed for GWAS data where samples are potentially structured. EMMA

models the structure effect via a similarity matrix. An R package that implements

EMMA can either estimate the similarity matrix using genotype data or take any

similarity matrix provided by users. We tweak EMMA for our purpose. We provide

EMMA with the following similarity matrix K = diag(K̂1,K̂2,⋯,K̂n) where K̂is are

the estimated correlation matrices from Model (2.23) in which βg is set to 0. The idea of

estimating Kis this way is not new and has been used in EMMAX [Kang et al., 2010],

a fast version of EMMA. These estimates should be reasonable unless some SNPs have

large effects, which is rare for most complex traits.
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2.6.2 GAW18 Data Analysis

The original GAW18 data includes 849 individuals with both phenotype and imputed

genotype data from a total 20 large pedigrees. Among them, there are 139 geneti-

cally unrelated individuals who have been measured for age, sex, current use of anti-

hypertensive medication, current tobacco smoking status and blood pressure. Our

analysis is based on the 139 unrelated individuals. The number of SBP (and DBP)

measurements ranges from one to four. The whole genome sequence data provided

by GAW18 has about 8.3M SNPs from the odd numbered autosomes, among which

5.5M have minor allele frequency (MAF) < 0.05. All SNPs provided have passed the

initial quality control checking. However, for those SNPs with minor allele frequency

> 0.05 (total of 2.8M), we have found that 17,463 of the SNPs deviate from the Hardy-

Weinberg Equilibrium (HWE) with p-value <0.05/2.8M after the Bonferroni correction

for multiple tests. We remove the SNPs with MAF < 0.05 and those not passing the

HWE test, which results in about 2.8M SNPs for the subsequent analyses. For each

SNP, we recoded the genotypes into the minor allele counts using PLINK [Purcell et al.,

2007].

To check population outliers and potential population stratification, we generated

a subset of SNPs that are in approximate linkage equilibrium with each other and

performed the multidimensional scaling (MDS) analysis in PLINK [Purcell et al., 2007].

The pairwise scatter plots of the top four MDS scores from the genome-wide estimates of

IBD sharing before and after removing three singletons from three pairs who have high

IBD values are presented in Figure 2.8. In general, they show that the 139 individuals

are quite homogeneous in terms of their ethnicities. However, several pairs have very

high estimated IBD values. For example, the estimated IBD value between sample

T2DG0400207 and sample T2DG0400247 is as high as 0.3. Though several individuals

are likely to be related, we retained the 139 samples for all our analysis.
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We applied the extended EMMA to the filtered GAW18 data on two log-transformed

phenotypes: log(SBP) and log(DBP). We included five covariates (age, age2, sex, medi-

cation and smoking status) in our analysis. We fit the data with different covariance ma-

trices in SAS 9.2 and selected the spatial power covariance structure for the downstream

analysis based on the AIC criteria. Specifically, we assume cov(yij, yij′) = σ2ρdi,jj′ where

di,jj′ is the time distance between the jth and j′th examinations for individual i. After

obtaining the parameter estimates, we substituted the kinship matrix K in EMMA by

K = diag(K̂1,K̂2, ...,K̂n) where the jj′ element of K̂i equals ρ̂di,jj′ in which ρ̂ is the

parameter estimate of ρ. Figure 2.9 displays the Manhattan plots of the two pheno-

types from the extended EMMA model. For SBP, one SNP on Chromosomes 5 reaches

genomewide significance (p-value< 5 × 10−7 as in Burton et al. [2007]). For DBP, three

SNPs on Chromosome 3, 17 and 21 exceeded a threshold of genomewide significance.

The top ranked SNPs for SBP and DBP (with P-value < 5 × 10−7) are presented in

Table 2.3.

For each phenotype, we selected a list of 3000 top ranked SNPs that are not highly

correlated with each other (correlation < 0.95) for the proposed Bayesian mixed effects

model. Again our Bayesian analysis included age, age2, sex, medication, smoking

status as covariates. Both SBP and DBP measurements were log-transformed. For all

analyses, the MCMC algorithm ran for 4× 105 iterations after discarding the first 1000

burn-in iterations. In order to reduce the serial correlation of the MCMC samples, the

chain was thinned for every 40 iterations, yielding 104 MCMC samples for the posterior

analysis. The posterior inclusion probability of each possible locus was calculated as

its frequency in the MCMC samples. Each locus can be included in the model through

its main effect and/or its interactions with other loci or age. We estimated the Bayes

Factor (BF) and used it to judge the importance of any given locus to each phenotype

(see Yi et al. [2005, 2007] for more details).
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Figure 2.10 shows the one-dimensional genomewide profiles of 2log(BF ) for the

combined effects (main, epistasis and gene-age interactions). In the R/qtlbim manual

[Yandell et al., 2007], the following criteria are suggested for judging the significance

of each variable: weak support if BF falls between 3 and 10 (2.2 < 2log(BF ) < 4.6);

moderate support if BF falls between 10 and 30 (4.6 < 2log(BF ) < 6.8); strong sup-

port if the BF is larger than 30 (2log(BF ) > 6.8). Based on the criteria, we found

several additional SNPs with strong signals on chromosomes 1, 3, 15 and 19 for SBP.

No new SNPs was found for DBP. In particular, we found one SNP, chr3:197469358

has a very strong interaction with age. Top ranked SNPs for SBP (with 2log(BF ) >

6.8) are presented in Table 2.4. When comparing the results from the first and sec-

ond methods in the genomic regions, we found that both results have high peaks

in Figures 2.9 and 2.10 on the following genomic regions: chr1:17876090-17963920;

chr5:3400160-3580412; chr9:15270545-15278594; chr17:79099414-79113680 for SBP and

chr5:73777556-73777586; chr9:11305052-11326457 for DBP. It shows that there is rea-

sonable concordance between both results (see Chung and Zou [2013] for more details).

2.7 Discussion

We have extended the Bayesian multiple QTL mapping model with a composite model

space framework [Yi et al., 2007] for mapping longitudinal traits and identifying QTL

with varying genetic effects. We have proposed new grid-based method to model co-

variance structure of the data. The proposed method for covariance estimation is

parsimonious but with a reasonable number of grid points, it can approximate any

type of covariance structure. The number of grid points is pre-set by users. In order to

avoid the identifiability problem, we first need to compute the rank of A of Theorem

1 and then check if it equals to 1
2k(k + 1) + 1 where k is the pre-set number of grid

point. If so, our Bayesian model is identifiable. To choose the optimal number of grid

55



points, we utilize DIC and simplified version of BPIC through selecting the number of

grid points which gives the minimum scores.

In order to obtain MCMC samples of all parameters, we use both Metropolis-

Hastings and Gibbs sampling algorithms, alternately updating each unknown parame-

ters conditional on all other parameters and the observed data. For conditional updates

of the indicator variable vector γ and QTL position vector λ, Metropolis-Hastings algo-

rithm is applied. However, for obtaining MCMC samples of other parameters including

the elements of decomposed matrix of covariance, Gibbs sampling algorithm is used via

their conditional posterior distributions. The simulation study shows that proposed

Bayesian method with all time points outperformed ordinary Bayesian method with

one or all time points. To further test our method, we analyzed real mouse data on

age-related body weight in backcross mice with all time points together and found

strong evidence of QTL activity on chromosome 1, suggestive evidence on chromosome

10 and 15 and weak gene-time interaction on chromosome 11.

We further applied the proposed method to the GAW18 longitudinal blood pressure

data. We first utilized the extended EMMA method. We replace the kinship similarity

matrix in EMMA with an estimated correlation matrix for dealing with the dependent

structure of the repeated measurements. And the proposed Bayesian method which

models multiple SNPs simultaneously and allows for gene-gene interactions and gene-

time interactions is applied. The GAW18 data contains extended pedigrees. Ideally,

we should utilize all available data in our analysis. What complicates the analysis

on longitudinal pedigree data is that both the correlation structure of the repeated

measurements and the familial correlation structure of related individuals should be

considered. We are currently extending the proposed methods for the GAW18 pedigree

data. Moreover, our Bayesian model for GWAS data relies on a set of pre-selected

putative SNPs. How to select a good set of putative SNPs, especially those with low
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marginal effects but high interactions with other SNPs or environmental factors is

challenging and deserves further investigations.
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Figure 2.1: Estimated marginal Bayes factors for each marker from R/qtlbimmixed
with all time points and R/qtlbim with one randomly selected time point for Setups 1
and 2. The solid (red), dot-dashed (blue) and long-dashed (green) lines represent main,
epistatic effects and gene-time interaction, respectively.
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Figure 2.2: Estimated marginal Bayes factors for each marker from R/qtlbimmixed
with all time points and R/qtlbim with one randomly selected time point for Setups 3
and 4. The solid (red), dot-dashed (blue) and long-dashed (green) lines represent main,
epistatic effects and gene-time interaction, respectively.
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Figure 2.3: Estimated ROC curves for Setups 1, 2, 3 and 4: solid line (red) - proposed
R/qtlbimmixed on all data; dot-dashed line (blue) - R/qtlbim on one randomly selected
time point data; long-dashed lines (green) - R/qtlbim on all data.
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Figure 2.4: Trace plots of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for Setups 1,2,3 and 4 in the
simulation study. The black lines represent the values of the draws for all parameters
at each iteration and gray lines represent the true values of the parameters.
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Figure 2.5: Posterior (solid line) and prior (dashed line) densities of the parameters
for random errors and random effects for Setups 1,2,3 and 4. Estimated densities are
based on 10000 random draws.
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Figure 2.6: 95% HPD intervals of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for Setups 1,2,3 and
4. The blue dots represent the posterior means and blue lines represent HPD intervals.
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Figure 2.7: Genomewide profile of Bayes factors for body weight in backcross mice
involving NZO/HILtJ and NON/ShiLtJ. The solid line (red) represents main effects,
the dashed line (blue) represents epistasis effects and long-dashed line (green) represents
gene-time interactions.
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Figure 2.8: MDS plots for top four MDS scores from the genome-wide estimate of IBD
sharing before and after removing three singletons from three pairs who have high IBD
values.
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Figure 2.9: Genomewide Manhattan plots of −log10(P-value) for association with SBP
and DBP measurements from extended EMMA, on the basis of covariance matrix
estimated from SAS. Two dashed horizontal lines represent the thresholds for suggestive
(P-value=10−5) and significant (P-value=5 × 10−7) genomewide association.
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Figure 2.10: Genomewide Manhattan plots of 2log(BF ) for all combined effects with
SBP and DBP measurements from R/qtlbimmixed. Two dashed horizontal lines rep-
resent the genomewide thresholds for moderate (BF=10) strong (BF=30) genomewide
associations.
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Table 2.1: Posterior means, medians, standard deviations and 95% HPD intervals of
the parameters for random errors and random effects in the simulation study.

Setup Par True Mean Med SD 95% HPD
1 σ2 1 0.97 0.96 0.06 (0.86,1.1)

δ1 1 1.14 1.13 0.15 (0.88,1.44)
δ2 1.2 1.24 1.25 0.17 (0.9,1.59)
δ3 0.8 0.73 0.73 0.15 (0.44,1.02)
ψ21 0.6 0.79 0.77 0.24 (0.38,1.31)
ψ31 0.4 0.55 0.53 0.28 (0.07,1.18)
ψ32 0.6 0.64 0.59 0.36 (0.03,1.49)

2 σ2 1 1.06 1.05 0.06 (0.93,1.19)
δ1 1 0.88 0.88 0.14 (0.63,1.18)
δ2 1.2 1.11 1.12 0.2 (0.72,1.5)
δ3 0.8 0.7 0.7 0.18 (0.36,1.04)
ψ21 0.6 0.9 0.84 0.36 (0.3,1.78)
ψ31 0.4 0.3 0.28 0.32 (-0.26,0.99)
ψ32 0.6 0.47 0.44 0.41 (-0.24,1.38)

3 σ2 1 1.05 1.05 0.07 (0.93,1.19)
δ1 1 1.06 1.07 0.15 (0.76,1.34)
δ2 1.2 1.23 1.23 0.16 (0.9,1.54)
δ3 0.8 0.76 0.76 0.17 (0.45,1.09)
ψ21 0.6 0.63 0.61 0.23 (0.26,1.17)
ψ31 0.4 0.4 0.39 0.27 (-0.1,0.96)
ψ32 0.6 0.6 0.54 0.37 (0,1.4)

4 σ2 1 0.97 0.97 0.06 (0.86,1.09)
δ1 1 1.01 1.01 0.15 (0.71,1.3)
δ2 1.2 1.32 1.32 0.16 (0.96,1.61)
δ3 0.8 0.86 0.85 0.17 (0.53,1.18)
ψ21 0.6 0.45 0.42 0.23 (0.1,0.98)
ψ31 0.4 0.53 0.5 0.3 (-0.01,1.26)
ψ32 0.6 0.61 0.58 0.29 (0.13,1.25)
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Table 2.2: Average DIC, average simplifed BPIC scores and percentage of selection of
the right number of true grids for Bayesian mixed effects model with different number
of true grid points.

True k k Avg DIC #Sel (%) Avg Sim BPIC #Sel (%) Avg PD
2 2 3291.68 97 3316.61 99 24.93

3 3296.2 3 3324.34 1 28.14
4 3300.92 0 3332.71 0 31.78

3 2 3354.26 0 3378.92 1 24.67
3 3329.95 91 3358.03 97 28.07
4 3336.84 9 3368.24 2 31.4

4 2 3360.12 0 3384.67 2 24.54
3 3347.82 6 3375.16 17 27.34
4 3336.96 94 3367.84 81 30.88
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Table 2.3: Genomewide association results for SBP,DBP-associated SNPs with P-value
< 5 ∗ 10−7 sorted by P-value via extended EMMA.

BP Chr Position Minor Major Counts MAF P (HWE) P (EMMA)

SBP 5 75506197 G C 31/68/40 0.47 0.87 4.67 ∗ 10−7

DBP 3 23715851 C T 0/20/119 0.07 1.00 9.00 ∗ 10−8

17 54834217 T C 11/66/62 0.32 0.33 1.98 ∗ 10−7

21 18744081 C A 33/62/44 0.46 0.23 4.95 ∗ 10−7
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Table 2.4: Genomewide association results for SBP,DBP-associated SNPs with 2log
(BF ) > 6.8 sorted by 2log(BF ) of all combined effects via R/qtlbimmixed.

BP Chr Position Minor Major Counts MAF P (HWE) P (EMMA) 2log(BF )

SBP 1 17876090 A G 1/39/98 0.15 0.31 2.08 ∗ 10−4 9.25
1 17249395 A G 4/71/62 0.29 0.00 1.03 ∗ 10−3 9.25
1 17939373 T C 3/68/67 0.27 0.00 1.53 ∗ 10−3 8.91
3 197469358 T C 2/32/105 0.13 1.00 1.64 ∗ 10−3 8.47
1 17048228 G A 0/24/112 0.09 0.60 1.66 ∗ 10−3 8.24
3 197252834 A G 6/52/81 0.23 0.64 9.22 ∗ 10−4 8.17
1 153023956 C T 1/14/124 0.06 0.37 1.59 ∗ 10−3 7.66
1 17963920 T C 1/28/110 0.11 1.00 1.68 ∗ 10−3 7.57
1 152300819 T C 1/14/124 0.06 0.37 1.54 ∗ 10−3 7.53
15 87675666 C A 0/17/122 0.06 1.00 1.23 ∗ 10−4 7.52
1 153186966 T A 0/20/119 0.07 1.00 8.84 ∗ 10−4 7.51
15 87968635 T G 0/19/120 0.07 1.00 9.99 ∗ 10−4 7.41
15 87444856 A G 1/19/119 0.08 0.56 2.68 ∗ 10−4 7.34
19 41642807 G C 2/27/110 0.11 0.68 7.50 ∗ 10−4 6.99
19 37607570 G A 23/86/28 0.48 0.00 7.74 ∗ 10−4 6.86
19 43979439 C T 21/77/40 0.43 0.12 1.54 ∗ 10−3 6.81
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CHAPTER 3

GAUSSIAN PROCESS BASED NONPARAMETRIC BAYESIAN
QTL MAPPING FOR LONGITUDINAL TRAITS

3.1 Introduction

Recently, there has been a growing interest on mapping time-dependent genetic factors

through measuring traits repeatedly over time. In the previous chapter, we extended

the Bayesian multiple QTL mapping method with a composite model space framework

[Yi, 2004; Yi et al., 2005, 2007] for longitudinal data where a new grid-based covariance

estimation method has been proposed to flexibly model the covariance structure. The

proposed method effectively identify main, two-way gene-gene interaction of the data

and gene by time or gene by environment effects. However, the method only allows

for pairwise interactions among genes and time/environmental covariates and may miss

genes with higher-order interactions. It is not feasible to include all potential effects

and their high-order interactions in this parametric model since this can lead to a

dramatic increase in the number of parameters and the search space. To overcome this

difficulty, we alternatively consider a nonparametric method to search for QTL without

restricting to pairwise interactions among genes and nongenetic factors.

For univariate phenotypes, a nonparametric Bayesian variable selection method

with Gaussian process prior has recently been developed [Zou et al., 2010], where both



genetic and nongenetic effects are modeled nonparametrically. These methods were im-

plemented via hybrid Monte Carlo method and Gaussian process prior [Neal, 1996, 1997;

Rasmussen and Williams, 2006] on the unknown functions for genetic and nongenetic

factors. Rather than modeling each main and interaction term explicitly, this Bayesian

method measures the importance of each QTL, regardless whether it functions through

main, epistatic, or interactions among genes and environment effect non-explicitly. The

importance of each genetic factor and each nongenetic factor included in the function

is estimated by a single hyperparameter, which enters the covariance function and cap-

tures the main and interaction effects associated with each factor. The task is fulfilled

by a Bayesian variable selection method through a set of the latent indicator variables

and gamma mixture priors on both genetic and nongenetic effects.

In this chapter, we extend the nonparametric Bayesian variable selection method

with Gaussian process (GP) prior of Zou et al. [2010] to longitudinal traits. For mod-

eling the covariance structure, we again use the grid-based method presented in the

previous chapter. The usefulness of the proposed approach will be evaluated by simu-

lation studies and a real mouse data analysis.

3.2 Nonparametric GP Model for Longitudinal Data

3.2.1 GP-based Nonparametric Bayesian Model

Suppose there are n subjects under study, with subject i having traits measured at ni

time points (i = 1, ..., n). For the ith individual, let xgi = {xgik}
p
k=1 denote a p×1 vector

of genotypes where xgik is the kth marker genotype (k = 1, .., p), and xti = {xtijm}
ni q
j=1 m=1

denote a q × ni matrix of nongenetic covariates including time where xtijm is the mth
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nongenetic covariate (m = 1, ..., q) measured at time j. We consider the following GP-

based nonparametric Bayesian model:

yi = η(xgi,xti) + piνi + ei i = 1, ..., n, (3.1)

where yi = (yi1, ..., yini)
T is an ni × 1 vector of phenotypes or traits where yij is the

phenotype value of subject i at time j; η is a unknown function which will be used to

flexibly model genetic effects and nongenetic effects; pi is an ni × k incidence matrix

which maps each observed time point to its two nearest adjacent grid time points using

linear interpolation; νi is a k × 1 vector of random variables for a fixed number of grid

time points with νi ∼ Nk(0,D) where D is a k × k matrix; ei is an ni × 1 vector of

random errors with ei ∼ Nni(0, σ
2
eIni).

For Bayesian estimation of the nonparametric model (3.1), we conduct the factor-

ization of the covariance matrix, D, via the modified Cholesky decomposition of Chen

and Dunson [2003]. Let L denote the k × k lower triangular Cholesky decomposition

matrix which have nonnegative diagonal elements, such that D = LLT . Let L = ∆Ψ

where ∆ = diag(δ1, ..., δk) and Ψ is a k × k matrix with the (l,m) element denoted by

ψlm. To make ∆ and Ψ identifiable, we assume the following conditions:

δl ≥ 0, ψll = 1 and ψlm = 0, for l = 1, ..., k; m = l + 1, ..., k. (3.2)

These conditions make ∆ a nonnegative k×k diagonal matrix and Ψ a lower triangular

matrix with all its diagonal elements being 1. This results in the following decomposi-

tion of D,

D = ∆ΨΨT∆. (3.3)

Based on the modified Cholesky decomposition of D, we reparameterize our model
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(3.1),

yi = η(xgi,xti) + pi∆Ψbi + ei i = 1, ..., n, (3.4)

where bi = (bi1, ...bik)T such that bij ∼ N(0,1) and bij ⊥ bij′ (j ≠ j′) j = 1, ..., k. For the

later use, we define vi = pi∆Ψ = (vTi1, ...,v
T
ini

)T .

3.2.2 Prior Specifications

The above GP-based nonparametric Bayesian model contains a unknown function η

and a set of random effects. For random effects, we adopt the priors in Chen and

Dunson [2003]. Specifically, we impose independent half normal priors on the diagonal

elements of ∆ and normal priors on the lower triangular elements of Ψ. For the un-

known function η, we extend the Gaussian process prior to contain both genetic and

time-varying nongenetic covariates. Below we give details.

Prior on η

Let ηi = η(xgi,xti) denote an ni × 1 vector of unknown functions of xgi, xti, and

η = (η1, ...,ηn)
T denote an N × 1 vector where N = Σn

i=1ni. In order to estimate η,

we assume η has a Gaussian process prior which is a stochastic process such that each

finite dimensional distribution is a multivariate normal. Any Gaussian process can be

specified by its mean function and covariance kernel. For model (3.1), we set the prior

of η as a Gaussian process prior with mean 0 and covariance matrix ΣN as follows.

η ∼ NN(0,ΣN), where ΣN = [Σiji′j′]N×N (3.5)

Σiji′j′ = cov(ηij, ηi′j′) = ξ
2exp{−

p

∑
k=1

ρ2gk(xik − xi′k)
2 −

q

∑
m=1

ρ2tm(xtijm − xti′j′m)2}.

where ξ2, ρ2gk and ρ2tm are hyperparameters. Hyperparameter ξ2 defines the vertical
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scale of variation and affects the magnitude of the exponential part. Hyperparameters

ρ2gk and ρ2tm determine the relevance of the various input covariates such as genetic and

nongenetic covariates. Large values of ρ2gk and ρ2tm indicate that variables x̃gk and x̃tm

where x̃gk = (xg1k, ..., xgnk)T and x̃tm = (xt11k, ..., xtnnnk)
T are of high importance to the

phenotype.

Priors on ρ2gk, ρ
2
tm, γgk, γtm, ξ2 and σ2

e

Let τgk = 1/ρ2gk and τtm = 1/ρ2tm. We conduct Bayesian variable selection by imposing

Gamma mixture prior on the parameters τgk and τtm [Zou et al., 2010]. We introduce the

latent variables γgk and γtm to indicate which factors (genetic and nongenetic effects)

are relevant (γgk, γtm=1), or irrelevant (γgk, γtm=0) to the phenotype. Specifically, the

Gamma mixture priors for the parameters related to the genetic covariates are given

by

P (γgk = 1) = 1 − P (γgk = 0) = pgk, pgk ∼ Be(pgk∣agγ, bgγ), (3.6)

τgk∣γgk ∼ (1 − γgk)Ga(τgk∣
αg0
2
,
αg0
2µg0

) + γgkGa(τgk∣
αg1
2
,
αg1
2µg1

),

where Ga(τ ∣a, b) is the Gamma density τa−1exp(−bτ)ba/Γ(a) and Be(p∣a, b) is the Beta

density pa−1(1−p)b−1/B(a, b). Similarly, the Gamma mixture priors for the parameters

related to the nongenetic covariates are

P (γtm = 1) = 1 − P (γtm = 0) = ptm, ptm ∼ Be(ptm∣atγ, btγ), (3.7)

τtm∣γtm ∼ (1 − γtm)Ga(τtm∣
αt0
2
,
αt0
2µt0

) + γtmGa(τtm∣
αt1
2
,
αt1
2µt1

),

respectively. Here, αg0, αg1, αt0 and αt1 are positive shape parameters, and µg0, µg1, µt0

and µt1 are the means of the two Gamma distributions in (3.6) and (3.7), respectively.
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Let µg0 = c2gµg1 and µt0 = c2tµt1. If we set c2g (or c2t ) to a large value, µg0 (or µt0) is

large. In this case, when γgk = 0 (or γtm = 0), we let τgk (or τtm) be large and thus the

corresponding variable is irrelevant. When γgk = 1 (or γtm = 1), we let τgk (or τtm) take

on a small value, indicating the corresponding variable is important.

Let τξ = 1/ξ2, τe = 1/σ2
e . We let the prior distributions of the two parameters be

Gamma distributions with the following densities:

τξ ∼ Ga(
αξ
2
,
αξ
2µξ

), P (τξ) =
τ
αξ
2
−1

ξ

Γ(
αξ
2 )

(
αξ
2µξ

)
αξ
2 exp(−

αξ
2µξ

τξ), (3.8)

τe ∼ Ga(
αe
2
,
αe
2µe

), P (τe) =
τ
αe
2
−1

e

Γ(αe2 )
(
αe
2µe

)
αξ
2 exp(−

αe
2µe

τe). (3.9)

Here, αξ, αe are positive shape parameters and µξ, µe are the means of τξ and τe, re-

spectively.

Priors on b, δ, ψ

In model (3.4), we let the prior of bij follow a standard normal distribution, such that the

joint prior distribution of the latent variable b = (bT1 , ...,b
T
n)

T is P (b)
d
=N(0, I). In order

to choose priors that facilitate the posterior computation, we consider conjugate prior

distributions for ∆ and Ψ and assume that P (δ,ψ) = P (δ)P (ψ). Let δ = (δ1, ..., δk)T ,

ψ = (ψml ∶ m = 2, ..., k; l = 1, ...,m − 1)T . Let N+(µ,σ2) denote the positive normal

density of mean µ and variance σ2 that is truncated at zero. The prior distribution for

δ is P (δ) = Πk
l=1P (δl) = Πk

l=1N
+(ml0, s2l0) where ml0 and s2l0 are hyperparameters to be

specified. The prior distribution for ψ is given by P (ψ)
d
=N(ψ0,R0) where ψ0, R0 are

pre-specified hyperparameters.
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3.2.3 Posterior Calculation and MCMC Algorithm

We define θ as the vector of all unknown parameters, such that θ = (b,τ , τξ, τe,γ,δ,ψ)

where τ = (τg1, ..., τgp, τt1, ..., τtq)T and γ = (γg1, ..., γgp, γt1, ..., γtq)T .

Letting y = (yT1 , ...,y
T
n)

T , the joint posterior distribution of η and θ is given by

P (η,θ∣y)∝ P (y∣η,θ)P (η∣ΣN)P (θ). (3.10)

In order to draw random samples from P (η,θ∣y), we use two different MCMC algo-

rithms. For hyperparameters τ , τξ and τe, we will use hybrid Monte Carlo method

[Neal, 1997] because one cannot sample from their full conditional posteriors. The hy-

brid Monte Carlo method is a family of MCMC methods which merges the Metropolis-

Hastings algorithm with sampling techniques based on dynamic systems in physics

[Duane et al., 1987]. For parameters b, γ, δ and ψ, we will use either Gibbs Sampling

or Metropolis-Hastings method. In this section, we describe the hybrid Monte Carlo

method and conditional posteriors of γ, η, b, δ and ψ.

Posterior calculation via Hybrid Monte Carlo Method

One crucial problem in working with the joint posterior distribution in equation (3.10)

occurs due to the discrete nature of marker data [Zou et al., 2010]. If markers of

two individuals are identical (or similar), the covariance matrix of η will be (nearly)

singular. The joint posterior marginalized with respect to η is considered as P (θ∣y)∝

P (y∣θ)P (θ). The marginal likelihood of y∣θ can be expressed by

y∣θ ∼ NN(0,Σ) where Σ = ΣN + p(In ⊗D)pT +
1

τe
IN , (3.11)

where p = diag(p1, ...,pn). The inference based on the joint posterior marginalized

with respect to η provides clearly superior results to the joint posterior of η and θ [Zou
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et al., 2010]. Letting ν = (log(τg1), ..., log(τgp), , log(τt1), ..., log(τtq), log(τξ) , log(τe)),

the joint posterior distribution marginalized with respect to η can be written by

P (ν ∣y)∝ P (y∣θ)P (ν)∝ (2π)−
N
2 ∣Σ∣−

1
2 exp(−

1

2
yTΣ−1y)P (ν). (3.12)

The potential energy of the system is defined as

E(ν) = −logP (ν ∣y)∝
N

2
log(2π) +

1

2
log∣Σ∣ +

1

2
yTΣ−1y − logP (ν), (3.13)

∂E(ν)

∂νi
=

1

2
tr(Σ−1 ∂Σ

∂νi
) −

1

2
yTΣ−1 ∂Σ

∂νi
Σ−1y −

1

P (ν)

∂P (ν)

∂νi
. (3.14)

The kinetic energy of the system is defined as

K(φ) =
1

2

p+q+2
∑
i=1

φi
2, (3.15)

where φ is a momentum variable which has p+q+2 real-valued components, φi, in one-

to-one correspondence with the components of ν. The total energy H of the system

which is called ”Hamiltonian” function is the sum of the kinetic energy K and the

potential energy E , such that H(φ,ν) = K(φ)+E(ν). The dynamical system simulated

through a virtual time t is governed by the following Hamilton’s differential equations:

dνi
dt

=
∂H

∂φi
= φi,

dφi
dt

= −
∂H

∂νi
= −

∂E

∂νi
, (3.16)

where νi is the ith element of ν. Since the partial derivative of E with respect to νi

is complicated, the above equation cannot be simulated exactly. We use the leapfrog
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steps to approximate the dynamic system via the following equations:

φi(t +
ε

2
) = φi(t) −

ε

2

∂E

∂νi
(ν(t)), (3.17)

νi(t + ε) = νi(t) + εφi(t +
ε

2
),

φi(t + ε) = φi(t +
ε

2
) −

ε

2

∂E

∂νi
(ν(t + ε)),

where ε is the step size for discretizing the dynamic system. The step sizes ε are set

to the same value for all hyperparameters and are chosen to scale as ε ∝ N−1/2 since

the magnitude of the gradients under the posterior are expected to be scale roughly

as N1/2 when the prior is vague. Rasmussen [1996] found that ε = 0.5N−1/2 performs

reasonably well. In summary, one iteration of the Hybrid Monte Carlo sampling is as

follows:

1. Starting from (i−1)th sample (νi−1,φi−1), perform one leap frog step using equations

(4.13) with step size ε, resulting in the proposed value (ν∗,φ∗).

2. With the acceptance rate, min(1, exp[H(νi−1,φi−1) −H(ν∗,φ∗)]), accept the pro-

posed value as (νi,φi) ∶= (ν∗,φ∗); otherwise retain the previous values with negative

momenta as (νi,φi) ∶= (νi−1,−φi−1).

3. Update the total energy of the system by perturbing the momenta according to

φi ∶= αφi + pi
√

1 − α2 for all i, where pi are randomly sampled from a standard normal

distribution and α is set to 0.95 to ensure a reasonable level of perturbation [Rasmussen,

1996].

Since ν and φ are independent of each other, the Gibbs sampling of the momenta (step

3) allows the Hybrid Monte Carlo to explore regions with different values of H. Finally,

we can use the sequence {νi∣i = 1, ...,N} as the samples generated from the posterior

distribution P (ν ∣y).
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Conditional Posterior of γ

Let θ−z be the remaining subvector of θ after removing a subset of parameters, z, from

θ. The full conditional distribution of γgk and γtm are given by

P (γgk = 1∣θ−γgk) =

P (τgk ∣γgk = 1)P (γgk = 1)

P (τgk ∣γgk = 0)P (γgk = 0) + P (τgk ∣γgk = 1)P (γgk = 1)
(3.18)

=

agγ(
αg1
2µg1

)

αg1
2 τ

αg1
2 −1

gk exp(−
αg1
2µg1

τgk)/Γ(
αg1
2

)

bgγ(
αg0
2µg0

)

αg0
2 τ

αg0
2 −1

gk exp(−
αg0
2µg0

τgk)/Γ(
αg0
2

) + agγ(
αg1
2µg1

)

αg1
2 τ

αg1
2 −1

gk exp(−
αg1
2µg1

τgk)/Γ(
αg1
2

)

,

P (γtm = 1∣θ−γtm) =

P (τtm∣γtm = 1)P (γtm = 1)

P (τtm∣γtm = 0)P (γtm = 0) + P (τtm∣γtm = 1)P (γtm = 1)
(3.19)

=

atγ(
αt1
2µt1

)

αt1
2 τ

αt1
2 −1

tm exp(− αt1
2µt1

τtm)/Γ(
αt1
2

)

btγ(
αt0
2µt0

)

αt0
2 τ

αt0
2 −1

tm exp(− αt0
2µt0

τtm)/Γ(
αt0
2

) + atγ(
αt1
2µt1

)

αt1
2 τ

αt1
2 −1

tm exp(− αt1
2µt1

τtm)/Γ(
αt1
2

)

.

We sample γ directly from their conditional posterior distributions using Metropolis-

Hastings algorithm.

Conditional Posterior of η

In order to sample parameters related to the random effects, we first sample η from its

conditional distribution. The full conditional distribution of η is given by

P (η∣θ,y) ∝ exp{−
τe
2
(y − η − vb)T (y − η − vb)}exp(−

1

2
ηTΣ−1

N η)

∝ exp{−
1

2
(η − η∗)T (τeIN +Σ−1

N )(η − η∗)}

, where η∗ = τe(τeIN +Σ−1
N )−1(y − vb). (3.20)

Since η∣θ,y ∼ NN(η∗,Σ∗
η), where Σ∗

η = (τeIN + Σ−1
N )−1 and η∗ = τeΣ

∗
η(y − vb), we

sample η using Gibbs sampling scheme.
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Conditional Posterior of b

The full conditional distribution of b is given by

P (b∣η,θ−b,y) ∝ exp{−
τe
2
(y − η − vb)T (y − η − vb)}exp(−

1

2
bTb)

∝ exp{−
1

2
(b − b∗)T (τev

Tv + Ink)(b − b
∗
)}

where b∗ = τe(τev
Tv + Ink)

−1vT (y − η). (3.21)

Since b∣η,θ−b,y ∼ Nnk(b
∗,Σ∗

b ), where Σ∗
b = (τevTv + Ink)−1 and b∗ = τeΣ

∗
bv

T (y − η),

we sample b using Gibbs sampling scheme.

Conditional Posterior of δ

In order to obtain the full conditional distribution of δ, we rewrite the model (3.4) as

yij = ηij +
k

∑
l=1
δl(pijl(bil +

l−1
∑
m=1

bimψlm)) + eij, (3.22)

and define the k × 1 vector tij = (tij1, ..., tijk)T = (pijl(bil +∑
l−1
m=1 bimψlm) ∶ l = 1, ..., k)T

and ξijl = yij − ηij −Σm≠ltijmδm. The full conditional distribution of δ is given by

P (δ∣η,θ−δ,y) ∝ exp{−
τe
2
(y − η − tδ)T (y − η − tδ)} (3.23)

×
k

∏
l=1

{exp(−
1

2s2l0
(δl −ml0)

2)I(δl > 0)} where t = (t11, ..., tnnn)
T ,

P (δl∣η,θ−δl ,y) ∝ exp{−
τe
2
(ξl − tlδl)

T (ξl − tlδl)}{exp(−
1

2s2l0
(δl −ml0)

2)I(δl > 0)}

where ξl = (ξ11l, ..., ξnnnl)
T and tl = (t11l, ..., tnnnl)

T

∝ {exp(−
1

2σ∗l
2 (δl − δ

∗
l )

2)I(δl > 0)} (3.24)

where σ∗l
2
= (τet

T
l tl + s

−2
l0 )

−1, δ∗l = σ
∗
l
2
(τet

T
l ξl + s

−2
l0 ml0).
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Since δl∣η,θ−δl ,y ∼ N+(δ∗l , σ
∗
l
2) where σ∗l

2 = (τet
T
l tl + s

−2
l0 )

−1, δ∗l = σ
∗
l
2(τet

T
l ξl + s

−2
l0 ml0),

we sample δl using Gibbs sampling scheme.

Conditional Posterior of ψ

In order to obtain the full conditional distribution of ψ, we rewrite the model (3.4) as

yij = ηij +
k

∑
l=1
bil(δlpijl +

k

∑
m=l+1

δmpijmψml) + eij, (3.25)

and define the k(k − 1)/2 × 1 vector uij = (bilδmpijm ∶ l = 1, .., k,m = l + 1, ..., k)T . The

full conditional distribution of ψ is given by

P (ψ∣y,θ−ψ) ∝ exp{−
τe
2
(y − η −uψ)T (y − η −uψ)}exp(−

1

2
(ψ −ψ0)

TR−1
0 (ψ −ψ0))

, where u = (u11, ...,unnn)
T ,

∝ exp{−
1

2
(ψ −ψ∗

)TΣ∗
ψ
−1
(ψ −ψ∗

)} (3.26)

, where Σ∗
ψ = (τeu

Tu +R−1
0 )−1 and ψ∗

= Σ∗
ψ(τeu

T (y − η) +R−1
0 ψ0).

Since ψ∣y,θ−ψ ∼ N(ψ∗,Σ∗
ψ)I(ψ ∈ Rδ), where Σ∗

ψ = (τeuTu + R−1
0 )−1 and ψ∗

=

Σ∗
ψ(τeu

T (y − η) +R−1
0 ψ0), we sample ψ using Gibbs sampling scheme.

Choice of the Number of Grid Points

The critical issue with the proposed nonparametric GP model is how to efficiently

choose the number of grid points, k. To select the optimal number of grid points,

we evaluate the goodness of the predictive distributions of our GP model as pre-

sented in the previous chapter. Spiegelhalter et al. [2002] proposed the deviance

information criterion (DIC) as DIC = −2Eη,θ∣y {logP (y∣η,θ)} + PD. The second

term of DIC, PD is the effective number of parameters, which is defined as PD =

−2Eη,θ∣y{logP (y∣η,θ)} + 2logP (y∣η̃, θ̃) where η̃ and θ̃ are the posterior means of η
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and θ. Since P (yi∣ηi,θ)
d
=N(ηi,piDpi

T + σ2
eIni) in the model (3.1), DIC is easy to

compute using MCMC samples. As stated by Robert and Titterington [2002], the

same observed data are used twice to construct PD, and thus the predictive distribu-

tion chosen by DIC overfits the observed data. To overcome this overfitting problem

of DIC, Ando [2007] developed the following Bayesian predictive information criterion

(BPIC) as BPIC = −2Eη,θ∣y{logP (y∣η,θ)} + 2nb̂ where b̂ is the bias of the posterior

mean of the expected loglikelihood. Under a certain mild regularity condition, the

bias term is given approximately by nb̂ ≈ PD [Ando, 2011], so that the simplified

BPIC = 2Eη,θ∣y{logP (y∣η,θ)} + 2PD. Note that the penalty term of the simplified

BPIC is twice of that of original DIC. In order to choose the optimal number of grid

points for our nonparametric GP model, we first compute both DIC and simplified

BPIC with several pre-selected numbers of grid points. And then we select the number

of grid points that gives the minimum DIC or simplified BPIC scores.

Implementation in gpmixed

The proposed methods have been implemented in the package ”gpmixed” which is built

on top of the C code (called ”original gp” from here on) developed by Zou et al. [2010]

for univariate trait mapping. The MCMC algorithm and data manipulation procedure

were modified for longitudinal data. For the choice of the optimal number of grid

points, the gpmixed provides both DIC and simplified BPIC scores.
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3.3 Simulation Study and Real Data Analysis

3.3.1 Simulation I

In this section, we simulated data for evaluating our GP-based nonparametric Bayesian

variable selection method for longitudinal data. We simulated a backcross popula-

tion with 200 individuals and a single chromosome with 151 evenly spaced markers

at 5cM intervals. Each individual has three to seven measures and the total number

of observations is 1000. In order to investigate the ability of the proposed method,

we consider four different setups. We first simulate a set of four QTL with only

one four-way interaction plus one time effect (Setup 1). The four simulated QTL

are located at markers 31, 61, 91 and 121, respectively. The simulated function η

equals η(xi1, ..., xi151, ti) = xi31xi61xi91xi121+ ti where the xik (k = 31,61,91,121) are the

genotypes of the four simulated QTL and ti = (ti1, ..., tini)
T is the vector of times

of individual i. The time covariates ti are randomly generated from the uniform

distribution in [0,1]. Next, we simulated the data sets containing QTL that have

one three-way gene-gene interaction and one two-way gene-time interaction (Setup

2), or three QTL with main effect and gene-time interaction (Setup 3). The simu-

lated function η for Setup 2 equals η(xi1, ..., xi151, ti) = xi31xi61xi91 + xi121ti and, for

Setup 3, η(xi1, ..., xi151, ti) = 0.5(xi31 + xi61 + xi91 + xi121ti). Last, we simulated data

containing four QTL with only main effects (Setup 4). The simulated function equals

η(xi1, ..., xi151, ti) = 0.5(xi31+xi61+xi91+xi121+ti). For all setups, we consider three grid

time points at (0,0.5,1) and set δ = (δ1, δ2, δ3) = (1,1.2,0.8) and ψ = (ψ21, ψ31, ψ32) =

(0.6,0.4,0.6), which results in νi ∼ N(0,D) with diag(D) = (1,1.96,0.97) and the

lower triangle elements are (d21, d31, d32) = (0.72,0.32,0.81). We set σ2
e = 1.

For the analysis, we choose hyperparameters αx0 = αt0 = αx1 = αt1 = 1, αξ = αe = 0.5,

cx = ct = 100, and µξ = µe = 400. We also set axγ = atγ = 0.05 and bxγ = btγ = 0.95, so that
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the prior probabilities that each variable (QTL or nongenetic covariate) is relevant or

irrelevant to the phenotype are 0.05 and 0.95, respectively. The prior distributions for

the elements of δ are chosen to be independent N+(0,30) and the prior distributions

for the elements of ψ are independent N(0,0.5). We have a relatively large variance

for the prior of δ and a somewhat diffused variance for the prior of ψ.

The upper left panel of Figure 3.1 displays the posterior mean estimates of the

latent variable γgk and γtm for Setup 1 from gpmixed with all time points. All four

QTL and time effect were detected using the criteria that the average marginal posterior

probability of inclusion is larger than 0.5. In order to compare the ability of gpmixed

with previously-proposed original gp [Zou et al., 2010], we conduct the analysis with a

subset of the data with only one randomly selected measurement of each subject. The

results are shown in the middle upper panel of Figure 3.1. All four QTL are identified

though the signals are much smaller. The right upper panel of Figure 3.1 summaries

estimated marginal posterior probability of each marker/gene for Setup 1 with all time

point from the R/qtlbimmixed we proposed in the previous chapter on the full data.

We calculated marginal posterior probability of inclusion based on Bayes factor (BF)

of R/qtlbimmixed. No markers are detected because R/qtlbimmixed is only capable of

detecting main and pairwise interactions.

The lower panels of Figure 3.1 summarize the results for Setup 2. Both gpmixed

and the original gp detect the four QTL and time effect based on the criteria that

the marginal posterior probability is larger than 0.5, while R/qtlbimmixed identifies

only the QTL that interacts with the time covariate and misses the other 3 QTL with

the three-way interaction. Setup 3 includes one two-way interaction and all methods

find the four QTL but the marginal posterior inclusion probabilities from gpmixed are

generally larger than the original gp in Figure 3.2. Setup 4 contains only main effects,

and all QTL and time effects were identified by the three methods in Figure 3.2.
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To further compare the methods, we generated receiver operating characteristic

(ROC) curves by varying the cut-offs imposed on the posterior mean and BF, respec-

tively. For each setup, we conduct 100 simulations with uniformly generated QTL

positions which are restricted to be at least 10cM apart. First, we define true QTL

intervals as the ones containing one true QTL and its two flanking markers. (if the true

QTL is located at one of the two ends, only one flaking marker is included.) And then

remaining genome is divided into non-overlapping 10 cM intervals. For a given cut-off

on the posterior mean or the BF, a significant interval is defined as an interval con-

taining at least one marker whose posterior mean or BF exceeds the cut-off value. An

interval is a true positive if it is a significant true QTL interval, otherwise a false posi-

tive. We then define: True positive rate = (# of significant, true intervals)/(# of true

intervals); False positive rate = (# of significant, false intervals)/(# of false intervals).

The ROC curves up to a false positive rate of 0.2 are shown in Figure 3.3 for all four

setups. For Setup 1, our new gpmixed on the full data outperforms R/qtlbimmixed.

The new method slightly better performs the original gp method when the later is

applied to the subset of the data. For Setup 2, the performance of our gpmixed is

similar to the original gp on the subset of the data while both methods outperform

R/qtlbimmixed. For Setups 3 and 4, our new gpmixed has higher true positive rates

than the other methods.

In Figure 3.4, we display the trace plots of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for each

setup. The black lines represent the values of the random draws for all parameters

at each iteration and gray lines represents the true values of the parameters. It rep-

resents that all chains move around the true values for every parameter, indicating

good convergence. Figure 3.5 presents the marginal posterior and prior densities of the

parameters for random errors and random effects. It shows that the distributions of

posterior samples look approximately normal around true value. Figure 3.6 displays
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95% HPD intervals of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for each setup. The blue dots

represent the posterior means and blue lines represent 95% HPD intervals. Most of

95% HPD interval contains true values. Table 3.1 summaries the posterior estimates

of all parameters for random errors and random effects in the simulation study. The

posterior means and medians are close to the true simulated values and all the 95%

HPD intervals contain the true values, representing good performance of our algorithm.

3.3.2 Simulation II

We conduct another simulations and compute DIC [Spiegelhalter et al., 2002] and

simplified BPIC [Ando, 2007, 2011] to access the number of grid points. The sim-

ulation settings are mostly the same as in simulation I except that the true num-

ber of grid points now varies from 2 to 4 (i.e., true k = 2,3,4). We simulate 100

data sets containing four QTL with main effects for each setup. The four simulated

QTL are randomly located with at least 10cM apart. The simulated setup equals

yi = 0.5 ⋅ (xk1i + xk2i + xk3i + xk4i + ti) + piνi + ei, where the xkji (j = 1,2,3,4) are the

genotypes of the four simulated QTL and ti = (ti1, ..., tini)
T are the times at which

the ith individual has its data collected. We set (δ1, δ2, δ3, δ4) = (1,1.2,0.8,0.7) and

(ψ21, ψ31, ψ32, ψ41, ψ42, ψ43) = (0.6,0.4,0.6,0.2,0.4,0.6). We evaluate DIC and simplified

BPIC to select the number of grid points. Table 3.2 shows the average DIC, average

simplified BPIC scores and the percentages of selecting true grid setup for nonpara-

metric Bayesian model with different number of true grid points. All average DIC and

average simplified BPIC scores achieved the minimum scores with true grid setup and

the percentages of selection of true grid setup are 89%, 96% and 87% for 2, 3 and 4

grid setups using DIC, 98%, 94% and 79% using simplified BPIC in table 3.2.

88



3.3.3 Real Data Analysis

To further evaluate our GP-based nonparametric Bayesian model, we analyze a real

mouse data on plasma HDL cholesterol regulation in backcross progeny involving NZB/

BlNJ and SM/J inbred strains [Pitman et al., 2002]. To identify QTL involved in plasma

HDL cholesterol concentrations, SM females were mated to NZB males to produce

F1 hybrids and F1 females were backcrossed with NZB males to generate 89 female

backcross progeny. For all experiments, all female mice were fed a standard diet until

6-8 weeks of age (0 week time point), and then fed the high-fat diet for 18 weeks.

Plasma HDL cholesterol (HDL-C) levels were measured at weeks 0,4,8 and 18. 53

of 89 backcross mice were genotyped at 79 markers. These include 3-5 markers per

chromosome except for additional markers typed on those chromosomes with suggestive

QTL. Interval mapping were performed by Pitman et al. [2002]. They reported the NZB

alleles on chromosome 5(D5Mit370) and 18(D18Mit34) are associated with higher HDL-

C concentration in the standard diet-fed mice while the NZB alleles on chromosome

5(D5Mit239) and 19(D19Mit71) are associated in the high-fat diet-fed mice. For our

analysis, we consider HDL-C concentration measured at 0,4,8 and 18 weeks. We treat

all 79 markers as putative QTL locations. We treat time as a fixed covariate. For all

analyses, we run 1×104 iterations after discarding the first 1000 burn-ins. The MCMC

chain was thinned by one in twenty, yielding 5 × 103 MCMC samples for the posterior

analysis. The genomewide profile of inclusion probability for HDL-C is presented in

Figure 3.7. This result shows a suggestive evidence of QTL activity on chromosome

5 (D5Mit10-D5MIT239) and 19 (D19MIT71) in Pitman et al. [2002]. No gene-time

interactions are detected but time effect is very clear from Figure 3.7.
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3.4 Discussion

We have extended the nonparametric Bayesian variable selection method with a Gaus-

sian process prior to longitudinal traits. For modeling the dependence structure of the

repeated measurements, we have used a grid-based covariance estimation method to ac-

curately approximate the covariance structure. We have employed a modified Cholesky

decomposition which provides an unconstrained reparameterization of any covariance

matrix. To draw MCMC samples, both hybrid Monte Carlo and Gibbs sampling meth-

ods are used. For the hyperparameters related to QTL, we have adopted a hybrid Monte

Carlo method because one cannot simply sample from their full conditional posteriors.

For parameters related to the random effects, we have used either Gibbs Sampling or

Metropolis-Hastings method.

The performance of the proposed method is evaluated by simulations. For data

with higher-order time by QTL interactions, the proposed gpmixed on the full data

performs much better than the R/qtlbimmixed and slightly better than the original

gp on the subset of the data. For the main effect or pairwise interactions, all methods

work reasonably well although our gpmixed has higher true positive rates than the

other methods. As expected, the proposed gpmixed that utilizes the full data is more

powerful than their corresponding univariate analysis method that only use the subset

of the data. Furthermore, the gpmixed is more powerful than the original gp because

only gpmixed consider within-subject correlation via the proposed grid-based covariance

estimation method.
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Figure 3.1: Posterior mean estimates of the latent variable γgk and γtm from gp-
mixed with all time points, original gp with one randomly selected time point and
R/qtlbimmixed with all time points for Setups 1 and 2.

91



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup 3 (gpmixed,all)

Genome Location (cM)

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 in
cl

ud
ed

 in
 th

e 
m

od
el

0 300 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup 3 (gp,one)

Genome Location (cM)

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 in
cl

ud
ed

 in
 th

e 
m

od
el

0 150 300 450 600 750

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup 3 (qtlbimmixed,all)

Genome Location (cM)

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 in
cl

ud
ed

 in
 th

e 
m

od
el

0 150 300 450 600 750

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup 4 (gpmixed,all)

Genome Location (cM)

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 in
cl

ud
ed

 in
 th

e 
m

od
el

0 300 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup 4 (gp,one)

Genome Location (cM)

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 in
cl

ud
ed

 in
 th

e 
m

od
el

0 150 300 450 600 750

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup 4 (qtlbimmixed,all)

Genome Location (cM)

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 in
cl

ud
ed

 in
 th

e 
m

od
el

0 150 300 450 600 750

Figure 3.2: Posterior mean estimates of the latent variable γgk and γtm from gp-
mixed with all time points, original gp with one randomly selected time point and
R/qtlbimmixed with all time points for for Setups 3 and 4.
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Figure 3.3: Estimated ROC curves for Setups 1,2,3 and 4: solid line (red) - proposed
gpmixed on all data; dot-dashed line (blue) - original gp on one randomly selected time
point data; long-dashed lines (green) - R/qtlbimmixed on all data.
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Figure 3.4: Trace plots of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for Setups 1,2,3 and 4 in the
simulation study. The black lines represent the values of the draws for all parameters
at each iteration and gray lines represents the true values of the parameters.
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Figure 3.5: Posterior (solid line) and prior (dashed line) densities of the parameters for
random errors and random effects for Setups 1,2,3 and 4.
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Figure 3.6: 95% HPD intervals of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for Setups 1,2,3 and
4. The blue dots represent the posterior means and blue lines represent HPD intervals.
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Figure 3.7: Genomewide profile of probability of being included in the model for plasma
HDL cholesterol concentration in backcross progeny involving NZB/BINJ and SM/J
inbred strains. It visualizes each chromosome in different color and time effect in black.
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Table 3.1: Posterior means, medians, standard deviations and 95% HPD intervals of
the parameters for random errors and random effects in the simulation study.

Setup Para True Mean Med SD 95% HPD
1 σ2 1 1 0.99 0.03 (0.94,1.05)

δ1 1 1.17 1.17 0.16 (0.87,1.49)
δ2 1.2 1.03 1.02 0.15 (0.77,1.37)
δ3 0.8 0.66 0.65 0.14 (0.41,0.96)
ψ21 0.6 0.72 0.71 0.27 (0.31,1.29)
ψ21 0.6 0.9 0.84 0.36 (0.3,1.78)
ψ31 0.4 0.85 0.81 0.35 (0.27,1.6)
ψ32 0.6 0.79 0.75 0.36 (0.16,1.56)

2 σ2 1 0.97 0.97 0.03 (0.91,1.03)
δ1 1 0.95 0.97 0.16 (0.63,1.25)
δ2 1.2 1.36 1.36 0.18 (1,1.68)
δ3 0.8 0.59 0.57 0.15 (0.31,0.91)
ψ21 0.6 0.53 0.5 0.24 (0.14,1.08)
ψ31 0.4 0.85 0.81 0.38 (0.22,1.67)
ψ32 0.6 0.39 0.37 0.32 (-0.25,1.04)

3 σ2 1 1.02 1.02 0.03 (0.96,1.07)
δ1 1 1.18 1.17 0.17 (0.85,1.51)
δ2 1.2 1.13 1.13 0.17 (0.81,1.41)
δ3 0.8 0.79 0.78 0.15 (0.53,1.1)
ψ21 0.6 0.8 0.77 0.29 (0.32,1.43)
ψ31 0.4 0.79 0.77 0.31 (0.26,1.42)
ψ32 0.6 0.43 0.42 0.32 (-0.17,1.07)

4 σ2 1 0.99 0.99 0.03 (0.93,1.05)
δ1 1 0.98 0.97 0.16 (0.69,1.3)
δ2 1.2 1.11 1.11 0.16 (0.81,1.44)
δ3 0.8 0.74 0.75 0.17 (0.4,1.07)
ψ21 0.6 0.68 0.67 0.25 (0.27,1.24)
ψ31 0.4 0.18 0.16 0.29 (-0.37,0.8)
ψ32 0.6 0.51 0.45 0.36 (-0.01,1.38)
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Table 3.2: Average DIC, average simplifed BPIC scores and percentage of selection of
the right number of true grids for nonparametric Bayesian model with different number
of true grid points.

True k k Avg DIC #Sel (%) Avg Sim BPIC #Sel (%) Avg PD
2 2 3297.35 89 3327.69 98 30.49

3 3300.92 11 3334.55 2 33.78
4 3306.67 0 3344.17 0 35.25

3 2 3360.15 2 3389.81 4 29.66
3 3336.31 96 3370.16 94 33.85
4 3348.48 2 3386.21 2 37.74

4 2 3372.17 0 3403.83 6 31.66
3 3358.41 13 3393.24 15 34.83
4 3349.54 87 3389.36 79 39.82
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CHAPTER 4

NONPARAMETRIC GAUSSIAN PROCESS MODEL FOR
JOINT SNP-SET ANALYSIS

4.1 Introduction

Although genomewide association studies (GWAS) have successfully identified thou-

sands of novel common variants [Gibson, 2012], these variants typically explain only a

small fraction of overall heritability, which motivates the investigation of the so-called

‘missing heritability’. One of the most important sources of ‘missing heritability’ is be-

lieved to be related to rare variants. Recent advances in whole genome genotyping and

next generation sequencing technologies have led to the identification of rare variants

(i.e. minor allele frequency (MAF) < ∼ 5%) in addition to common variants (i.e. MAF

> ∼ 5%). As the statistical power to detect an association between a single rare variant

and a complex trait is extremely low, rare variant analysis typically seeks to effectively

combine multiple rare variants locally. Alternative strategies, such as regional SNP-set

analysis have overcome some of the limitation of the standard single SNP analysis.

Several statistical methods have been proposed to jointly analyze multiple rare vari-

ants. The cohort allelic sum test (CAST) [Morgenthaler and Thilly, 2007] collapsed

rare variants within a genomic region into a single binary variable to indicate whether

the subject carries at least one copy of rare variants, and Li and Leal [2008] extended

CAST by considering several subgroups instead of two subgroups. The weighted sum



test (WST) [Madsen and Browning, 2009] summarized multiple rare variants by weight-

ing them based on their frequency in the unaffected individuals. Price et al. [2010]

incorporated computational predictions of functional importance of each variant when

summarizing multiple rare variants. Variance components tests such as C-alpha [Neale

et al., 2011] and sequencing kernel association test (SKAT) [Wu et al., 2011] aggregated

individual variant test statistics in a genomic region. Recently, Lee et al. [2012] and

Derkach et al. [2013] proposed unified tests that combine collapsing and variance com-

ponent tests. As a Bayesian approach, Yi and Zhi [2011] introduced a novel Bayesian

hierarchical generalized linear model for analyzing multiple rare variants.

The most existing methods have been developed to assess only one group of rare or

common variants at a time. Since complex traits are likely associated with many genes

and environmental factors, it may be more powerful to simultaneously consider multiple

groups of rare, common variants and covariates. Yi et al. [2011] introduced a Bayesian

hierarchical generalized linear models (GLM) for simultaneously analyzing multiple

groups of rare and/or common variants, in which variants within a gene are divided

into multiple groups on the basis of their allele frequencies and their functions, and the

group effects are jointly estimated. However, this method only allows for main effects

and may miss variants with no marginal effects. It also only consider one region/gene

at a time. Again, it is not feasible or intuitive to model all potential effects, including

interactions parametrically. To get over these problems, we alternatively consider a

nonparametric methods to search for sets of rare and common variants within a gene

or across multiple genes which are associated with complex traits.

For such a purpose, in this chapter, we develop a Bayesian regional SNP-set analysis

which extends the nonparametric Bayesian variable selection method with GP prior

[Zou et al., 2010]. This method simultaneously models multiple groups of rare and/or

common SNP variants. Instead of assigning a hyperparameter to each SNP, we assign a
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common hyperparameter to all SNPs within a SNP-set to measure the cumulative effect

of all SNPs. The usefulness of the proposed approach will be evaluated by simulation

studies. Finally, we conclude the chapter with comments on future directions.

4.2 Nonparametric GP Model for Multiple Groups of Variants

4.2.1 GP-based Nonparametric Bayesian Model

Suppose that there are n unrelated individuals with a continuous phenotype and rare

and/or common SNP variants in multiple genomic regions. Genomic regions can be

defined, for example, by genes or by moving windows across the genome. The n observed

response variables are denoted by y = (y1, ..., yn)T . For the ith individual, the genetic

variants are divided into p groups, xgi = (xgi1, ...xgip)T , where the jth group xgij

contains mi genetic variants. We have q nongenetic factors, xsi = (xsi1, ..., xsiq)T which

are included in the following model as

yi = η(xgi,xsi) + ei, i = 1, ..., n, (4.1)

where η is an unknown function of the p groups of genetic variants and the q nongenetic

covariates; ei is a random error with N(0, σ2
e).

To estimate η, we assume that η follows a Gaussian process prior with η ∼ GP(0,Σn).

To jointly model multiple groups of genetic variants and other nongenetic covariates,

we propose the novel covariance of η whose ii′ (i ≠ i′) element is expressed as

Σii′ = ξ
2exp{−

p

∑
j=1

mj

∑
k=1
ρ2gjwjk(xgijk − xgi′jk)

2 −

q

∑
l=1
ρ2sl(xsil − xsi′l)

2}, (4.2)

where ξ2, ρ2gj and ρ2sl are hyperparameters. Hyperparameter ξ2 defines the vertical

scale of variation and affects the magnitude of the exponential part. Hyperparameters
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ρ2gj and ρ2sl determine the relevance of the various input covariates such as groups of

genetic variants and nongenetic covariates. The common hyperparameter ρ2gj represents

the association between the phenotype and all variants in the jth group. The common

hyperparameter ρ2gj can be regarded as the cumulative importance of the mj individual

variants, hence referred as the group effect of the jth group. As seen in the equation

(4.2), for the kth variant in jth group, we can weigh the contribution of each variant

in a group differently by incorporating wjk into the model. The weight wjk can be set

according to our prior knowledges or our mapping goals. For examples, (1) If all wjk

are set to 1, the method is the simple sum; (2) If wjk = sd(xgijk) where sd(xgijk) is

the estimated standard deviation of xgijk, the model is comparable to the weighted-sum

method [Madsen and Browning, 2009]; (3) If wjk is set according to a prior probability of

being functional for each variant, this is similar to Price et al. [2010]’s approach. These

weights allow us to model the relative importance of each variants. Since the number

of genetic variants may vary across groups, we also need to consider mj, the number

of genetic variants in group j. For example, we may let the weight be wjk = 1/mj.

This weight enables the proposed model not to penalize groups with a large number of

variants and thus we will use it in our analysis.

Let τgj = 1/ρ2gj and τsl = 1/ρ2sl. As in the previous chapter, we conduct Bayesian

variable selection by imposing Gamma mixture priors on the parameters τgj and τsl [Zou

et al., 2010]. We introduce the latent variables γgj and γsl to indicate which factors

(variant groups and nongenetic factors) are relevant (γgj, γsl=1), or irrelevant (γgj,

γsl=0) to the phenotype. Specifically, the Gamma mixture priors for the parameters

related to the variant groups are given by

P (γgj = 1) = 1 − P (γgj = 0) = pgj, pgj ∼ Be(pgj ∣agγ, bgγ), (4.3)

τgj ∣γgj ∼ (1 − γgj)Ga(τgj ∣
αg0
2
,
αg0
2µg0

) + γgjGa(τgj ∣
αg1
2
,
αg1
2µg1

),
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where Ga(τ ∣a, b) is the Gamma density τa−1exp(−bτ)ba/Γ(a) and Be(p∣a, b) is the Beta

density pa−1(1−p)b−1/B(a, b). Similarly, the Gamma mixture priors for the parameters

related to the nongenetic covariates are

P (γsl = 1) = 1 − P (γsl = 0) = psl, psl ∼ Be(psl∣asγ, bsγ), (4.4)

τsl∣γsl ∼ (1 − γsl)Ga(τsl∣
αs0
2
,
αs0
2µs0

) + γslGa(τsl∣
αs1
2
,
αs1
2µs1

),

respectively. Here, αg0, αg1, αs0 and αs1 are positive shape parameters, and µg0, µg1, µs0

and µs1 are the means of the two Gamma distributions in (4.3) and (4.4), respectively.

We set µg0 = c2gµg1 and µs0 = c2sµs1. A large c2g (or c2s) implies a large µg0 (or µs0). For

γgj = 0 (or γsj = 0), a large τgj (or τsj) implies the corresponding variable is irrelevant.

For γgj = 1 (or γsj = 1), a small τgj (or τsj) indicates the corresponding variable is

important.

Letting τξ = 1/ξ2, τe = 1/σ2
e , we set the prior distributions of the two parameters to

be Gamma distributions with the following densities:

τξ ∼ Ga(
αξ
2
,
αξ
2µξ

), P (τξ) =
τ
αξ
2
−1

ξ

Γ(
αξ
2 )

(
αξ
2µξ

)
αξ
2 exp(−

αξ
2µξ

τξ), (4.5)

τe ∼ Ga(
αe
2
,
αe
2µe

), P (τe) =
τ
αe
2
−1

e

Γ(αe2 )
(
αe
2µe

)
αe
2 exp(−

αe
2µe

τe). (4.6)

Here, αξ, αe are positive shape parameters and µξ, µe are the means of τξ and τe, re-

spectively.
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4.2.2 Posterior Computation and Hybrid MCMC

We define θ = (τ ,γ, τξ, τe) as the vector of all unknown parameters where τ = (τg1, ..., τgp,

τs1, ..., τsq)T and γ = (γg1, ..., γgp, γs1, ..., γsq)T . The joint posterior distribution of η and

θ conditional on the phenotype y is given by

P (η,θ∣y)∝ P (y∣η,θ)P (η∣Σn)P (θ). (4.7)

In order to sample from the posterior distribution P (η,θ∣y), we adopt a hybrid Monte

Carlo method [Neal, 1997]. The hybrid Monte Carlo method is a family of MCMC

methods on the basis of the concept of dynamic systems in physics. Recently, it has

been shown in various applications to converge significantly faster than the Metropolis-

Hastings algorithm since the dynamic method avoids the random walk behavior [Ras-

mussen, 1996; Duane et al., 1987]. This section provides a brief description of Hybrid

Monte Carlo method based on the implementation of Rasmussen [1996].

The likelihood function of y conditional on η and θ is given by y∣η,θ ∼ Nn(η,
1
τe
In).

The marginal likelihood of y∣θ is the integral of the likelihood function of y times the

prior as P (y∣θ) = ∫ P (y∣η,θ)P (η)dη. Since η ∼ Nn(0,Σn), we have y∣θ ∼ Nn(0,Σ)

where Σ = Σn +
1
τe
In. Since Σ is nonsingular even if Σn is singular and the infer-

ence based on the marginalized posterior provides clearly superior results to the joint

posterior of both unknown parameters and η [Zou et al., 2010], we only consider the

marginalized posterior from here on.

We set the log-transformed hyperparameters to ν = (log(τg1), ..., log(τgp), log(τs1)

, ..., log(τsq), log(τξ) , log(τe)) and the joint posterior distribution marginalized with

respect to η can be written as

P (ν ∣y)∝ P (y∣θ)P (ν)∝ (2π)−
n
2 ∣Σ∣−

1
2 exp(−

1

2
yTΣ−1y)P (ν). (4.8)
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The hybrid Monte Carlo method creates a virtual dynamic system by augmenting the

log-transformed hyperparameters ν with momentum variables φ. It samples from the

distribution of the combined system P (ν,φ)∝ exp(−E −K), where E is the “potential

energy” of the parameters and K is the “kinetic energy” of momenta. The potential

energy of the system is defined as

E(ν) = −logP (ν ∣y)∝
n

2
log(2π) +

1

2
log∣Σ∣ +

1

2
yTΣ−1y − logP (ν), (4.9)

∂E(ν)

∂νi
=

1

2
tr(Σ−1 ∂Σ

∂νi
) −

1

2
yTΣ−1 ∂Σ

∂νi
Σ−1y −

1

P (ν)

∂P (ν)

∂νi
. (4.10)

The kinetic energy of the system is defined as

K(φ) =
1

2

p+q+2
∑
i=1

φi
2, (4.11)

where φ is momentum variable which has p+q+2 real-valued components, φi, in one-to-

one correspondence with the components of ν. The total energy H of the system which

is called ”Hamiltonian” function is the sum of the kinetic energy K and the potential

energy E , such that H(φ,ν) = K(φ) + E(ν). The dynamical system evolved through

virtual time t is governed by the following Hamilton’s differential equations:

dνi
dt

=
∂H

∂φi
= φi,

dφi
dt

= −
∂H

∂νi
= −

∂E

∂νi
, (4.12)

where νi is the ith elements of ν. Since the partial derivative of E with respect to νi

is a complicated function, the above equation cannot be simulated exactly. We use the
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leapfrog steps to approximate the dynamic system using the following equations:

φi(t +
ε

2
) = φi(t) −

ε

2

∂E

∂νi
(ν(t)), (4.13)

νi(t + ε) = νi(t) + εφi(t +
ε

2
),

φi(t + ε) = φi(t +
ε

2
) −

ε

2

∂E

∂νi
(ν(t + ε)),

where ε is the step size for discretizing the dynamic system. The step sizes ε are set to

the same value for all hyperparameters and are chosen to scale as ε ∝ n−1/2 since the

magnitude of the gradients under the posterior are expected to be scale roughly as n1/2

when the prior is vague. Rasmussen [1996] found that ε = 0.5n−1/2 performs reasonably

well. In summary, one iteration of the Hybrid Monte Carlo sampling is as follows:

1. Starting from (i−1)th sample (νi−1,φi−1), perform one leap frog step using equations

(4.13) with step size ε, resulting in the proposed value (ν∗,φ∗).

2. With the acceptance rate, min(1, exp[H(νi−1,φi−1) −H(ν∗,φ∗)]), accept the pro-

posed value as (νi,φi) ∶= (ν∗,φ∗); otherwise retain the previous values with negative

momenta as (νi,φi) ∶= (νi−1,−φi−1).

3. Update the total energy of the system by perturbing the momenta according to

φi ∶= αφi + pi
√

1 − α2 for all i, where pi are randomly sampled from a standard normal

distribution and α is set to 0.95 to ensure a reasonable level of perturbation [Rasmussen,

1996].

Since ν and φ are independent of each other, the Gibbs sampling of the momenta (step

3) allows the Hybrid Monte Carlo to explore regions with different values of H. Finally,

we can use the sequence {νi∣i = 1, ..., n} as the samples generated from the posterior

distribution P (ν ∣y).
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In order to sample the γgj, γsl, we derive the full conditional distribution as follows:

P (γgj = 1∣θ−γgj) =

P (τgj ∣γgj = 1)P (γgj = 1)

P (τgj ∣γgj = 0)P (γgj = 0) + P (τgj ∣γgj = 1)P (γgj = 1)
(4.14)

=

agγ(
αg1
2µg1

)

αg1
2 τ

αg1
2 −1

gj exp(−
αg1
2µg1

τgj)/Γ(
αg1
2

)

bgγ(
αg0
2µg0

)

αg0
2 τ

αg0
2 −1

gj exp(−
αg0
2µg0

τgj)/Γ(
αg0
2

) + agγ(
αg1
2µg1

)

αg1
2 τ

αg1
2 −1

gk exp(−
αg1
2µg1

τgj)/Γ(
αg1
2

)

,

P (γsl = 1∣θ−γsl) =

P (τsl∣γsl = 1)P (γsl = 1)

P (τsl∣γsl = 0)P (γsl = 0) + P (τsl∣γsl = 1)P (γsl = 1)
(4.15)

=

asγ(
αs1
2µs1

)

αs1
2 τ

αs1
2 −1

sl exp(− αs1
2µs1

τsl)/Γ(
αs1
2

)

bsγ(
αs0
2µs0

)

αs0
2 τ

αs0
2 −1

sl exp(− αs0
2µs0

τsl)/Γ(
αs0
2

) + asγ(
αs1
2µs1

)

αs1
2 τ

αs1
2 −1

sl exp(− αs1
2µs1

τsl)/Γ(
αs1
2

)

,

where θ−z is the remaining subvector of θ after removing parameter subset z from θ.

We sample γ directly from their conditional posterior distributions using Metropolis-

Hastings algorithm.

4.3 Simulation Study

In this section, we present simulation studies to evaluate the proposed GP model for

multiple groups of rare and/or common SNPs. We considered 300 individuals (n =

300), each with total of 50 groups of SNPs. To simulate SNPs with realistic linkage

disequilibrium (LD), we used the calibrated coalescent models [Schaffner et al., 2005]

which can simulate one or more populations retrospectively. In our simulation, we

restricted our samples to European population. SNPs in each group span a 1Mb region.

Each SNP has two states: 0 and 1 which represent the major and the minor alleles,

respectively. Three types of SNPs are simulated:(1) rare SNPs: all SNPs are rare (i.e.

0.01 ≤ MAF < 0.05); (2) common SNPs: all SNPs are common (i.e. MAF ≥ 0.05); (3)

mixed SNPs: SNPs can be rare or common.

From the 50 simulated groups, we selected the 10th, 20th, 30th and 40th groups as

108



the causal groups. In each causal group, there are three causal SNPs. We simulated

responses under four settings. For individual i, the phenotype value was first generated

as yi = cg1(xg10,i + xg20,i + xg30,i + xg40,i) + ei, where xgk,i (k = 10,20,30,40) are the sum

of the three causal variants in the kth simulated group, cg1 is used to control over

all genetic effects of the causal variants and ei was generated from N(0,1) (Setup

1). Next, we simulated data where causal variants have two gene-gene interactions

(Setup 2), or a three-way interaction (Setup 3). Specifically, the simulated phenotype

of individual i, yi for Setup 2 equals cg2(xg10,ixg20,i + xg30,ixg40,i) + ei and yi for Setup 3

equals cg3(xg10,ixg20,ixg30,i+xg40,i)+ei. Last, we simulated data containing one four-way

gene-gene interaction (Setup 4) where yi = cg4(xg10,ixg20,ixg30,ixg40,i) + ei. We varied cgj

(j = 1,2,3,4) in our simulation to ensure that the proposed method has adequate power.

After removing all causal SNPs from the downstream analysis, each individual has 1000

SNPs and each group either has the same number of SNPs (20 SNPs) or varying number

of SNPs (10,15,20,25 or 30 SNPs) in them. For the analysis, we chose hyperparameters

αx0 = αs0 = αx1 = αs1 = 1, αξ = αe = 0.5, cx = ct = 100, and µξ = µe = 400. We also set

axγ = atγ = 0.05 and bxγ = btγ = 0.95, so that the prior probabilities that each variable is

relevant or irrelevant to the phenotype are 0.05 and 0.95, respectively.

Figure 4.1 displays the posterior mean estimates of the latent variable γgk for Setup

1 and Setup 2 using the proposed GP model and the original GP model of Zou et al.

[2010] with common variants. The results for Setup 3 and Setup 4 are shown in Figure

4.2. For all the setups, the proposed GP model performs better than the original GP

model in general. A similar conclusion holds when all the genetic variants are rare

(Figures 4.3 and 4.4). The results with both common and rare variants for all Setups

are presented in Figures 4.5 and 4.6. The proposed GP model identified the true causal

variants clearer than the original GP model.

To further compare the proposed method with the original GP model, we generated
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receiver operating characteristic (ROC) curves by varying the cut-offs imposed on the

inclusion probability with 100 simulations for each setup. For the original GP model,

a group is defined as significant if at least one variant in the group exceeds the given

cut-off value. We define a significant group as a true positive finding if it contains any

causal variants. Otherwise, it is a false positive. We let true positive rate = (# of

significant, true groups)/(# of true groups) and false positive rate = (# of significant,

false groups)/(# of false groups). The estimated ROC curves with common variants

are shown in Figures 4.7 and 4.8 for all four setups. The proposed GP model clearly

outperforms the original GP model for all situations. The estimated ROC curves with

rare variants are displayed in Figures 4.9 and 4.10. For Setup 1 and 2, the proposed GP

model performs better than the original GP model, especially when the false positive

rate is low. For setup 3 and 4, the proposed GP model performs much better than the

original GP model. The estimated ROC curves with both common and rare variants

are presented in Figures 4.11 and 4.12. For all cases, the proposed GP model clearly

outperforms the original GP model.

4.4 Discussion

We have proposed a nonparametric Bayesian variable selection method with Gaussian

process priors for simultaneously analyzing multiple groups of rare and common vari-

ants and nongenetic covariates. Since complex traits are likely influenced by complex

interactions among genes and nongenetic factors, the joint analysis of multiple groups

of genetic variants can potentially improve mapping power. However, most existing

methods only allow for main effects and often ignore higher interactions among genetic

variants and environmental factors. Our proposed novel nonparametric GP model mea-

sures the importance of each group regardless of whether it functions through its main

effect or epistasis effects with other groups or environmental factors. We modified the
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covariance of unknown function in the GP prior by introducing a common hyperparam-

eter for all the variants in each group, though each variant can be weighted differently.

The common hyperparameter represents the association between the phenotype and

the genetic variants in the group. The proposed GP model outperforms the original

GP model for both common and rare variants. In addition to the advantages described

above, our method enhances the speed of computation since the proposed GP model

dramatically reduces the number of hyperparameters in the original GP model.

As seen in the covariance of η, each genetic variant can be modified by a pre-specified

weight. Weights can be set according to our prior knowledge on the genetic variant

from other GWAS studies or based on the functional importance of the variants such as

whether they are in exon or intron regions. Weights can also be used to deal with the

number of genetic variants, mj in each group which may varies across groups. In our

analysis, we set wjk = 1/mj. This weight enables the proposed model not to penalize

groups with a large number of variants. Furthermore, we can assign different weights

to common and rare variants based on MAF of each variant. How to choose weights

efficiently is important and will be carefully evaluated as a future research. Finally,

we are currently extending nonparametric Gaussian process model for SNP-set analysis

from univariate traits to longitudinal traits. The grid-based approach proposed in the

previous chapter will be applied to the method and approximate the covariance matrix

of each subject for SNP-set analysis.
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Figure 4.1: Posterior mean estimates of the latent variable γgk from the proposed GP
model and the original GP model for Setups 1 and 2 with common variants (cg1 = 0.30
and cg2 = 0.20).
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Figure 4.2: Posterior mean estimates of the latent variable γgk from the proposed GP
model and the original GP model for Setups 3 and 4 with common variants (cg3 = 0.20
and cg4 = 0.20).
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Figure 4.3: Posterior mean estimates of the latent variable γgk from the proposed GP
model and the original GP model for Setups 1 and 2 with rare variants (cg1 = 2.50 and
cg2 = 1.00).
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Figure 4.4: Posterior mean estimates of the latent variable γgk from the proposed GP
model and the original GP model for Setups 3 and 4 with rare variants (cg3 = 2.00 and
cg4 = 1.00).
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Figure 4.5: Posterior mean estimates of the latent variable γgk from the proposed GP
model and the original GP model for Setups 1 and 2 with both common and rare
variants (cg1 = 2.50 and cg2 = 1.00).
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Figure 4.6: Posterior mean estimates of the latent variable γgk from the proposed GP
model and the original GP model for Setups 3 and 4 with both common and rare
variants (cg3 = 2.00 and cg4 = 1.00).
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Figure 4.7: Estimated ROC curves for Setups 1,2,3 and 4 where each group has twenty
common variants: solid line (red) - proposed GP model; dot-dashed line (blue) - original
GP model.
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Figure 4.8: Estimated ROC curves for Setups 1,2,3 and 4 where each group has different
number of common variants (10, 15, 20, 25 or 30): solid line (red) - proposed GP model;
dot-dashed line (blue) - original GP model.
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Figure 4.9: Estimated ROC curves for Setups 1,2,3 and 4 where each group has twenty
rare variants: solid line (red) - proposed GP model; dot-dashed line (blue) - original
GP model.
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Figure 4.10: Estimated ROC curves for Setups 1,2,3 and 4 where each group has
different number of rare variants (10, 15, 20, 25 or 30): solid line (red) - proposed GP
model; dot-dashed line (blue) - original GP model.
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Figure 4.11: Estimated ROC curves for Setups 1,2,3 and 4 where each group has twenty
common and rare variants. All causal variants are rare: solid line (red) - proposed GP
model; dot-dashed line (blue) - original GP model.
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Figure 4.12: Estimated ROC curves for Setups 1,2,3 and 4 where each group has
different number of common and rare variants (10, 15, 20, 25 or 30). All causal variants
are rare: solid line (red) - proposed GP model; dot-dashed line (blue) - original GP
model.
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