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ABSTRACT 

TONG-YING WU: Novel Cheminformatics Methods for Modeling Biomolecular Data in 

High Dimension Low Sample Size (HDLSS) Chemistry Space 

 (Under the direction of Dr. Alexander Tropsha) 

 

The increasing availability of biological and chemical data has led to a critical need for 

cheminformatics and bioinformatics tools to analyze the data. However, not all datasets contain 

sufficient information for significant analysis. One problem is High Dimension Low Sample Size 

(HDLSS), where the number of structural characteristics, e.g., molecular descriptors, that can be 

calculated from a single compound (high dimensionality) far exceeds the number of compounds 

(low sample size). A major challenge associated with modeling HDLSS data is overfitting, and 

specialized tools are required to overcome the statistical difficulties inherent to HDLSS. We 

improved the Distance Weighted Discrimination (DWD) statistical learning method through a 

new variable selection technique for estimating the intrinsic dimension of a dataset, i.e., the 

minimum number of descriptors to classify data. Compared to SVM and DWD without variable 

selection, DWD with variable selection achieved higher prediction accuracy on several 

benchmarking datasets and allowed the identification of key molecular features that contribute to 

investigated biological properties, e.g., inhibition of AmpC β-lactamase and binding affinity for 

the various serotonin receptors. 

For analyzing and modeling stereochemistry-dependent datasets, we developed chiral 

atom-pair descriptors (3D chiral atom-pair), which were calculated from three-dimensional 

molecular structures. QSAR models built with these descriptors, versus either 3D non-chiral 

atom-pair or 2D Dragon descriptors, more accurately predicted antimalarial activity and binding 



iv 
 

affinities of small molecules toward various receptors. Our method not only led to the 

identification of a subset of chiral atoms that are expected to affect the selected biological 

property, e.g., antimalarial activity, but also enabled the development of models that would not be 

possible otherwise. 

To aid automatic protein function annotation, especially in the case of functional 

homologs, we developed new protein descriptors based solely on protein's structure. Our method 

showed sensitivity comparable to that of ScanPROSITE. When predicted annotations from both 

ScanPROSITE and our method were combined into a consensus model, we observed a significant 

gain in prediction reliability and the successful functional annotation of proteins with low 

sequence similarity. 
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Chapter 1 

Introduction

1.1 Background Information 

1.1.1 Growth of Publically Available Data 

Due to technological advancements within the past two decades, rapid synthesis and 

high-throughput screening of large chemical libraries have become routine procedures in the 

pharmaceutical industry, which has resulted in a massive increase of data for chemical 

compounds, and their targets, pathways, and associated data. These data were largely proprietary 

and therefore rarely available to the academic research community. However, within the past 

decade, high-throughput screening has become increasingly common in academia, and the 

resulting data are typically published and often made publically available in relevant databases. 

Additionally, some pharmaceutical companies are also beginning to put some of their datasets in 

the public domain. 

Several publically available databases have been created. PubChem 
97

 is a public database 

that launched as a result of the cheminformatics initiatives from the National Institutes of Health 

(NIH) in October, 2004. It contains data regarding chemical molecules whose activities have been 

experimentally measured using biological assays. As of mid January, 2011, PubChem provides 

open access to data from over 31 million pure and characterized chemical compounds and close 

to 75 million substance mixtures, extracts, complexes, and other uncharacterized substances. Two 

other public databases, PDSP 
112

 and ChEMBL 
142

, are popular within the cheminformatics 

community. PDSP currently contains 55,440 competitive inhibition assay data for psychoactive 
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compounds, and ChEMBL includes 8,372 targets, 1,000,470 distinct compounds, and 4,668,202 

activities.

In 2010, after seeing the potential of open innovation, GlaxoSmithKline publically 

released 13,471 molecules that had been screened for activity against malaria. This move marks 

the first large-scale public release of experimentally tested chemical compounds by a 

pharmaceutical company. These compounds and their associated screening data are available via 

CDD (Collaborative Drug Discovery) Public 
40

. As of January, 2011, CCD Public contains 69 

datasets for a total of about 1.5 million small molecules 
40

.  

In addition to small-molecule databases, many public databases provide access to larger 

biological molecules. For instance, Protein Data Bank (PDB) is a repository for the three-

dimensional x-ray crystallography or NMR spectroscopy data of large biological molecules such 

as proteins and nucleic acids. As of January 13, 2011, the PDB contains 70,494 protein structure 

entries.  

1.1.2 Overview of Computational Methods Employed in Drug Discovery 

Cheminformatics and bioinformatics tools, such as statistical classification methods, have 

proven to be reliable in handling and analyzing large datasets 
16

. However, the explosion of 

publicly available biological and chemical data has lead to a critical need for modifications of  

existing and developments of new cheminformatics and bioinformatics tools for integration of the 

data 
101

. These publicly available data could serve as a platform for computer-aided drug design 

(CADD) that refers to discovery of new molecules with desirable properties through 

computational methodologies. There are two major types of methods utilized in CADD:  

structure-based and ligand-based. Structure-based methods utilize knowledge of the three 

dimensional structure of a biological target (e.g., protein). However, many targets lack 

experimental structures, in which case, a homology model based on the experimental structure 
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from a related protein may be used. Even worse, in many cases the biological target associated 

with a disorder is unknown, and structure-based drug design cannot be used. 

On the other hand, ligand-based methods do not require three-dimensional structural 

information of biological targets. Instead, ligand-based methods, which are also referred to as 

ligand-based drug designs (LBDD), only require one or more chemical compounds that display a 

particular experimentally measured activity, thus allowing a broader range of applicability than 

its structure-based counterpart. More specifically, LBDD identifies the structural characteristics 

for a molecular compound, usually referred to as descriptors. These descriptors describe the 

multi-dimensional features of a compound, e.g., molecular weight, topolology, volume, and are in 

turn applied to estimate biological activity. 

 The assumption in LBDD is that structurally similar compounds will possess similar 

biological activity. This structural similarity can be assessed either globally or locally using 

descriptors. A global similarity search can work with only a single active compound, making it 

especially useful in earlier phases of CADD where one does not have enough information about 

the biological targets and few binding ligands are available. However, if only one active 

compound is used, a global similarity search will utilize all descriptors, including those irrelevant 

to the biological activity of interest. In contrast, local similarity search methods can identify 

molecular descriptors relevant to the biological activity, but they also require more compounds 

known to have the requested biological activity. Because more and more experimental screening 

data are being made available, LBDD using local similarity is becoming increasingly applicable. 

1.1.3 Applications of Classification Methods in Cheminformatics and Bioinformatics 

Biological activities can be generalized into two types: continuous and categorical. For 

modeling categorical data, there are two learning methods to group data: unsupervised and 

supervised. In unsupervised learning (referred to as cluster analysis), the problem is to analyze a 

single dataset and decide how and whether the observations in the dataset can be divided into 
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groups. Supervised learning (referred to as classification) is a method of assigning unknown 

entities into known groups. The goal is to learn from training sets and then apply the knowledge 

to test sets. Thus, entities from test sets are placed into established groups, i.e., active or inactive, 

based on their measurable quantitative characteristics. Although both classification and cluster 

analysis determine which group a compound belongs to based on the quantitative measurements, 

the sorting of groups associated with classification attempts to identify the contributions of the 

quantitative measures to the established groups. In fact, classification, as a method for 

information extraction, has been applied to many fields, including cheminformatics and 

bioinformatics, which are important in the drug discovery process. 

In bioinformatics, classification is applied from microarray gene expression data to 

proteins. In gene expression analysis, the goal is to separate signal from noise in high-throughput 

gene expression studies. Another important application of classification in bioinformatics is 

classifying proteins into groups. The grouping, which is well established, can be based on the 

similarities in structures or functions of proteins. The functional grouping of proteins can be 

found by the Enzyme Classification (EC) number while Structural Classification of Proteins 

(SCOP) provides the structural grouping of proteins. Given a group of proteins, the goal of 

classification is to identify common patterns (or motifs) that are conserved. 

In cheminformatics, quantitative structure-activity relationship (QSAR) modeling relies 

on machine learning methods to correlate molecular descriptors to well-defined biological 

activities, which can be categorized into groups, such as inhibitors, weak inhibitors, and non-

inhibitors. In the scenario of categorized biological activity, classification is used to build models 

from the molecules in the training set and then to predict the biological activities of unknown 

molecules through these models. These models select molecular descriptors that are relevant to 

the biological activity from a population of descriptors determined either empirically or by 

computational methods. Selected descriptors, which encode structural or property parameters, 

provide clues to understanding the structural requirements for compounds to exhibit biological 
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activity. With the amount of biomolecular data available to the public, classification is ideal to 

analyze these data and to identify important molecular features attributing to the given biological 

activity. 

1.2 Research Motivation 

Modern QSAR studies are characterized by the use of multiple descriptors of chemical 

structure combined with linear or non-linear machine learning methods in an attempt to build 

predictive QSAR models through rigorous model validation. As summarized by Tropsha et al 
136

, 

the major differences between various QSAR paradigms are due to the different molecular 

descriptors and the algorithms used to establish a correlation between descriptor values and 

biological activity; however, there appears to be no universal QSAR paradigm that produces the 

best QSAR models for any datasets. The combination of the significant increase in publicly 

available datasets of biologically active compounds and the critical need to improve the hit rate of 

experimental compound screening has created a strong need to develop reliable computational 

QSAR modeling techniques and specific end-point predictors, i.e. a specific set of variables 

expected to predict a biological activity (end-point). 

The challenges associated with modeling these biomolecular data include (1) high 

dimension low sample size (HDLSS), i.e., when the embedded dimension (e.g., number of 

descriptors) far exceeds the sample size (e.g., number of molecules in the dataset), and (2) 

imbalanced categorical data, i.e., when the number of samples in one class far exceeds that of the 

other. HDLSS data is challenging largely due to the high likelihood of overfitting. Overfitting 

occurs when a statistical model captures noise bias toward the training set instead of identifying 

specific end-point predictors that describe the underlying biological activity relationship. Thus, 

overfitting generally lowers the prediction accuracy for samples that are not part of the training 

set. 
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Another challenge associated with modeling the biomolecular data is the imbalanced 

class distribution of categorized biological activity, which means that there is at least one class of 

instances which significantly outnumbers other classes. This challenge is also referred in this 

dissertation as the imbalanced categorical characteristic. Some modern classification methods, 

which optimize the overall misclassification rate of the whole training set, do not perform well on 

data with imbalanced categorical characteristic, because such methods generally assume a 

relatively balanced class distribution and put too much strength on the majority class. 

There is a middle ground between using simplistic models that are traditional in 

biochemistry and letting powerful computers free to do data mining on a huge number of 

potential features.  In this dissertation, we demonstrate the benefit of choosing models that 

attempt to capture a (relatively) small number of chosen features that are then subjected to 

statistical analysis.  Specifically, we show that 

(i) estimating the intrinsic dimension of a dataset can improve DWD statistical learning, 

and overcome the statistical difficulties inherent to biological data with high dimension, low 

sample size (HDLSS)  and imbalanced categorical characteristics; 

 (ii) novel, three-dimensional chiral atom-pair descriptors for stereochemistry-dependent 

datasets produce more accurate QSAR models; and 

(iii) new protein descriptors based solely on structure aid automatic function annotation, 

especially in cases of function homologs with low sequence similarity. 

 



 
 

Chapter 2 

Variable Selection Based Classification Method for Imbalanced and HDLSS Data

2.1 Motivation 

Classification 
50

 as a method for information extraction is a statistical tool that has been 

applied to many fields, including QSAR and micro-array analysis. The typical biomolecular data 

associated with QSAR and micro-array analysis have the characteristics of High Dimension Low 

Sample Size (HDLSS) and imbalanced categorical data. The defining characteristic of HDLSS is 

when the dimension of the data vectors is larger (often much larger) than the sample size (the 

number of data vectors available). A major challenge associated with modeling HDLSS data is 

the problem of overfitting, which occurs in the event that a statistical model is driven by noise 

artifacts in the training set instead of the underlying relationship. Thus, overfit models generally 

have poor predictive performance for unseen data. It has been demonstrated that the Support 

Vector Machine 
140

 (SVM), which is a clever and powerful discrimination method, suffers from 

the data piling effect at the margin (overfitting) for HDLSS data, and as a result, generalizability 

is diminished 
92

. 

The defining characteristic of imbalanced categorical data is when at least one class of 

instances (major class) significantly outnumbers other classes (minor classes). Ding suggests a 

five percent threshold to distinguish a significantly imbalanced categorical dataset from a 

moderately imbalanced one 
47

. Based on Ding’s threshold, a binary classification dataset is 

considered significantly imbalanced if the size of a minor class is no more than five percent of the 

entire data size. One major problem associated with modeling imbalanced categorical data is that 

some modern statistical learning methods, e.g., the decision tree and support vector machine, 



8 
 

optimize the overall misclassification rate and treat all classes equally. Optimization of this type 

of classification criterion can be problematic because the minority classes tend to be ignored or 

discounted during the classification due to their small proportions 
107

. This can be a serious 

problem if those minority classes are important, which is often the case in QSAR and micro-array 

analysis. Current solutions to classify the imbalanced categorical data include upsampling the 

minor classes, downsampling the major classes, and/or changing the optimization criteria (such as 

the correct classification rate, or CCR). CCR, which is the average of sensitivity and specificity in 

the case of binary classification, is an optimization criterion that can be applied to both balanced 

and imbalanced categorical data. However, the ultimate goal should be finding an algorithm that 

classifies the data without removing, re-sampling or modifying the set.

To address problems associated with HDLSS and imbalanced categorical characteristics, 

a modification of the existing Distance Weighted Discrimination (DWD) has been proposed 
108

. 

DWD, which is a linear classifier and operates by splitting a high-dimensional input space with a 

hyperplane, performs binary classification by projecting the data onto a DWD direction.  This 

DWD direction, which is a real vector of weights corresponding to the input space, is relatively 

insensitive to the imbalanced categorical dataset; however, the previous optimization to determine 

the location of the hyper-plane (threshold), which separates the positive class from the negative 

class, was not optimized for the case of imbalanced categorical data. In more recent work 
108

, the 

location of the hyper-plane has now been optimized using weighted Distance Weighted 

Discrimination (wDWD) for both balanced and imbalanced categorical data. 

However there is still a problem that even wDWD does not fully address: the actual 

separation may exist in a lower dimension space instead of in the full feature space. In other 

words, not all the features are important to a given biological property, i.e., only some of the 

chemical descriptors may be relevant. Although both versions of DWD assign weights (loadings) 

to features (or descriptors in QSAR), those weights are typically non-zero values. Therefore 

features that are not relevant to the biological property are still considered, which can result in 
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overfitting, especially in the HDLSS setting. Our proposed method intends to strengthen this 

aspect.  Due to the classification performance improvement of wDWD over the original DWD 

and because the loading values assigned in both methods are identical, wDWD is utilized 

exclusively throughout this research. From this point forward, DWD will refer to wDWD. 

2.2 Overview of Variable Selection 

In working with HDLSS data, potential overfitting is a serious problem. To minimize the 

effect of overfitting, we implemented a method of variable selection to identify specific end-point 

predictors (predictive features or descriptors) that describe the underlying biological activity 

relationship. Although variable selection can be applied to both unsupervised and supervised 

learning, the focus of this research is the selection of a subset of relevant features for building 

predictive learning models.  

As pointed out by Guyon et al, the primary objectives of variable selection are 
63

: 

 To improve the prediction performance of the models 

 To provide faster and more cost-effective models by identifying the predictor variables 

 To obtain a better understanding of the underlying process that generated the data 

These objectives are especially critical for datasets with tens or hundreds of thousands of 

available variables, which are frequently encountered in the field of bioinformatics and 

cheminformatics.  

Techniques for variable selection can be summarized into three different types 
115

: filter, 

wrapper, and embedded. Filter techniques select subsets of variables as a preprocessing step using 

selection criteria that are independent of the chosen classifier, possibly based on information gain 

(univariate) and/or correlation (multivariate). However, by discounting the interaction with the 

classifier, filter techniques can also limit classification performance. In addition, univariate 
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versions of the filter technique are even more likely to achieve lower classification performance 

because they discount the dependencies between features. 

Wrapper techniques utilize the machine learning of interest to measure the quality of 

feature subsets according to their predictive power and can therefore be combined with any 

learning machine. Wrapper techniques such as sequential forward selection (deterministic) and 

simulated annealing (stochastic) can improve classification performance by interacting with 

classifiers. However, the performance gain comes at the price of higher computational cost as the 

method is typically computationally intensive. Another critical drawback associated with wrapper 

techniques is the higher risk of overfitting and getting stuck in a local optimum. 

Embedded techniques perform variable selection in the training process and are usually 

specific to given learning machines. In contrast to filter and wrapper techniques, the learning and 

the feature selection procedures in embedded techniques cannot be separated. The advantage of 

embedded techniques over wrapper techniques is in computational complexity. The benefit of 

being less computationally intensive makes embedded techniques more attractive than wrapper 

techniques. Feature selection using the weight vector of SVM is an example of an embedded 

technique. Other embedded techniques include decision trees and weighted naïve Bayes. 

2.3 Overview of the Proposed Method 

 To address the problems associated with imbalanced HDLSS categorical data, we 

implemented a variable evaluation and selection method to couple with DWD. This variable 

evaluation and selection method contains two components:  variable evaluation and variable 

selection. The variable evaluation component utilizes a permutation test to evaluate how well a 

set of descriptors can separate two classes without setting aside additional data. In this 

permutation test, a value indicating the significance of a descriptor set to a categorized biological 

activity is calculated by comparing the separation obtained from the original label to the 

separations obtained from a population of permuted labels.  This value of significance is then 
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used to compare a different set of top ranked descriptors and to estimate the intrinsic dimension 

by identifying the most significant set of top ranked descriptors. 

The variable selection component utilizes an embedded variable selection technique that 

takes advantage of the weight vector from DWD, which is a linear classifier that makes a 

classification decision based on the value obtained from the dot product of the weight vector and 

the feature vector (descriptors of a molecule). Each descriptor has a corresponding weight by 

design; therefore, based on the absolute value of the weights, it is possible to generate a ranked 

list of the descriptors. This ranked list serves as a reference for selecting different sets of top 

ranked descriptors, e.g., top 10 and top 20, to incorporate into the new DWD models. Each of 

these DWD models is then evaluated for significance through the variable evaluation component 

of the method, and only the most significant model with the corresponding descriptors is selected. 

2.3.1 Variable Evaluation Component 

To evaluate how well a set of descriptors can separate two classes, a procedure known as 

y-randomization, i.e., positive and negative class labels are randomly assigned to each compound, 

is performed N times (N = 1,000 for QSAR studies). For each y-randomization, the original ratio 

of positive to negative labels is maintained, and a new model is generated (random model) with 

the same set of descriptors. Then the classes are projected onto the DWD direction where the 

decision for binary classification occurs. To quantitatively estimate the separation between the 

two classes, a mean-difference is computed by calculating the distance between the center of the 

positive class and the center of the negative class in the projected DWD direction, which is 

generated based on a given set of descriptors 
144

. By comparing the model built with original 

labels (original model) against the population of random models, the significance of the original 

model can be quantified by two different p-values: an empirical and a Gaussian fit. 

Both empirical and Gaussian fit p-values estimate the likelihood that a random model 

will have better separation than the original model, but the Gaussian fit p-value improves the 
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significance estimation over the empirical p-value by approximating a Gaussian distribution 

curve based on the mean-difference values of the random models and calculating the area under 

the curve with mean-difference values better than that of the original model. However, when 

comparing the different sets of top-ranked descriptors, there is a potential problem that the 

likelihood cannot be used to accurately estimate significance because both the empirical and 

Gaussian p-values could be too small to be detected. To solve this problem, we implemented an 

alternate criterion, a z-score, to indicate the significance of a set of top ranked descriptors. This z-

score, i.e., the number of standard deviations of the original model mean-difference from the 

population mean for the mean-difference values of the y-randomization models, will yield a value 

in scenarios when both empirical and Gaussian p-values are too small to detect; thus the z-score is 

more suitable when comparing different sets of descriptors. 

2.3.2 Variable Selection (Ranking) Component 

The proposed variable selection technique relies on the initial weight vector of DWD 

obtained from the full descriptor set to generate a ranked list. This ranked list is sorted in a 

descending order based on the absolute value of the weights. Since each weight corresponds to a 

descriptor, new classification models are built with a different number of top ranked descriptors.  

 The variable selection technique utilizes a greedy algorithm to search for the optimal set 

of top ranked descriptors to incorporate in the final model. The initial search step is to identify the 

interval where the combination of top ranked descriptors is likely to achieve the most significance. 

The search begins by considering a coarse logarithmic series of sets of partial descriptors, e.g., 

the top 500 descriptors, top 200 descriptors, and top 100 descriptors, which are incorporated in 

the new models and evaluated for model significance. In the region where the z-score values are 

much higher, further searches with smaller step size are performed to identify the optimal set of 

top ranked descriptors for the final model.  
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2.5 Simulation 

2.5.1 Experimental Design  

A simulation was designed to benchmark DWD with and without variable selection for 

imbalanced HDLSS categorical data to evaluate the performance gained by coupling DWD with 

variable selection. In addition, a version of SVM without variable selection was added into the 

benchmark to compare the 

difference in performance 

between DWD and SVM.  

The data for this 

simulation was designed to be 

imbalanced, with the training set 

containing 21 actives and 80 

inactives while the external set 

contained 200 actives and 800 

inactives. To ensure the HDLSS 

characteristic of the data, there 

were 731 features associated 

with each entry (active or 

inactive). The simulation was 

designed to contain only 50 

informative descriptors. The 

values of the informative 

descriptors for the actives were 

randomly sampled from the 

normal distribution with a mean 
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Figure 2. 1. Informative descriptor vs. noise. 

The y-axes in both plots, which are the density 
estimations, are associated with the curves and not the 

markers (blue and red circles). The locations of the 

markers are based on the order of the molecules in the 
dataset. The feature (descriptor) in the top plot encodes 

some information to separate the positive class (blue 

circles) from the negative class (red circles) while the 
feature in the right plot is pure noise (bottom plot). 
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of -0.50 and a standard deviation of 1.0, denoted as N(-0.50, 1.0). For the inactives, these values 

were sampled from N(0.50, 1.0). As for the remaining descriptors, which were designed to be 

noise, the values were randomly sampled from N(0.0, 1.0). The distributions of both the active 

class and the inactive class in informative descriptor vs. noise are shown in the figure below 

(Figure 2.1). The purpose of this simulation is to test how well the DWD with variable selection 

could retrieve the 50 features that do contain information to separate the two classes. In addition, 

this simulation is designed to avoid a single magic descriptor that could separate the two classes; 

the most significant separation should incorporate a significant portion of the 50 features while 

minimizing the noise. This simulation was replicated 30 times. 

In addition, five-fold cross-validation was performed in the training set during the 

modeling procedure for both SVM and DWD to tune the penalty parameter, which adjusted the 

associated projected direction (e.g., DWD direction) for each corresponding linear classifier. The 

values considered for the penalty parameter range from 2 to 1,024 with the value doubled in each 

step. After identifying the optimal value for the penalty parameter, a single model was built using 

all the available data within a given training set. Each resulting model was then used to predict 

the actives and inactives in the corresponding test set.  

2.5.2 Simulation Result 

 The prediction results of the test sets from the 30 simulation runs are summarized by the 

box-and-whisker plots shown in Figure 2.2, which shows the sensitivity, specificity, and correct 

classification rate (CCR) over the 30 test runs. The results of the simulation showed that all three 

methods performed similarly in specificity. With the implemented variable selection (V.S.), 

DWD consistently achieved a higher sensitivity and CCR than the other two methods.  
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Analyzing the 30 optimal models obtained from DWD-VS indicates that the number of 

descriptors incorporated in the model was frequently 30 or 35; however, one instance out of 30 

simulations yielded an optimal model with 40 descriptors. Figure 2.3 identifies the optimal model 

and the searching process for the optimal set of top ranked descriptors in one of the simulation 

runs. The initial search considered a coarse logarithmic series of partial descriptor sets and 

identified the interval where the optimal number of top ranked descriptors to incorporate into the 

model was likely to occur. Another search with a step size of ten was applied to this particular 

interval, which covered the range between the top 20 and the top 200 ranked descriptors, and 

identified that the highest z-score was associated with the model built with the top 30 ranked 
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Figure 2. 2. Prediction results of the 30 simulation runs. 

The box-and-whisker plots show the sensitivity, specificity, and CCR of the 30 test sets. 

The median values are indicated by circles with a black dot inside. The lower and upper 
ends of the boxes indicate the lower quartile and upper quartile, respectively, with standard 

whisker lengths of 1.5 times of the interquartile range, i.e., the height of the box. Values 

outside the whiskers are considered as performance outliers and represented by red pluses.   
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descriptors. One last search with a step size of 5 was performed in the region between the top 20 

to the top 110 ranked descriptors in order to approximate the location of the optimal z-score.  

 

To further analyze the performance of the implemented variable selection, recall and true 

negative rate were calculated based on the descriptors selected by each of the optimal models 

obtained from DWD-VS. The recall is the percentage of the 50 informative descriptors selected 

 

 

 

Figure 2. 3. Identification of the optimal model through the z-score. 

The initial search considered a coarse logarithmic series of partial descriptor sets and 

identified the interval where the optimal number of top ranked descriptors to incorporate 

into the model was likely to occur (left plot). Once the region of high z-scores was 

identified, additional searches were performed with smaller increments of the number of 

top ranked descriptors. In this particular run, the optimal model was the one that 

incorporated the 30 top ranked descriptors (right plot).  
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by the model, and the true negative rate or the noise removal rate is the percentage of the noise 

excluded by the model. The true negative rate for each of the 30 simulation runs was close to 

100%; however, the recall for the informative descriptors ranged only from 0.58 to 0.78, with a 

median of 0.60 (Figure 2.4). The recall and the true negative rate calculated from the 30 

simulation run indicated that the implemented variable selection was capable of improving the 

classification result by removing most of the noise while retaining the majority of the informative 

descriptors.  

  

 The outcome of this simulation shows that the z-score proved to be a strong indicator 

for model performance and a helpful parameter for model optimization. Since the calculation of 

the z-score does not require setting aside additional data, the resulting models also have the 
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 Figure 2. 4. Model analysis of the simulated data. 

In this simulation, the optimal model usually selected 30 out of the 50 informative 

descriptors while removing most of the noise. 
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advantage of using all the data available. This advantage is critical for modeling the imbalanced 

categorical dataset in the HDLSS setting. 

2.6 QSAR Studies 

 For the QSAR studies, all three methods, i.e., SVM without VS and DWD both with and 

without VS, were applied to build binary classification models for five different datasets. The first 

dataset contains 110 compounds that include inhibitors and non-inhibitors for AmpC β-lactamase. 

The other four datasets are the binders and non-binders for the different families of serotonin 

receptors (5-HT receptors). For each of these datasets, Dragon 
3
 descriptors, which include both 

physicochemical and structural properties of molecules, were generated. Descriptors with zero 

variance were removed from the generated descriptor matrices.  For highly correlated descriptors 

within the descriptor matrix that achieve pairwise correlation close to 1.00 from one another, an 

additional step was taken by selecting only one descriptor as representative. The resulting 

descriptor matrix and the corresponding categorized biological activity for each dataset were 

partitioned into modeling and test sets, and all three methods were built with the same modeling 

sets and applied to the same test sets for the benchmark. 

 In QSAR studies, model validation is an important part of the workflow. To make the 

model validation process more generalizable, a five-fold cross-validation procedure was applied 

to the data partitioning of modeling sets and test sets (external validation set). Within each 

modeling set, another five-fold cross-validation procedure was applied for model tuning by 

further partitioning the modeling set into both training and validation sets (internal test set). To 

distinguish the two procedures, the five-fold cross-validation procedures associated with model 

validation and model tuning were denoted as five-fold external cross-validation and five-fold 

internal cross-validation, respectively. 

 For all the QSAR studies in this research, five-fold internal cross-validation was applied 

to estimate the optimal penalty parameters for both SVM and DWD. DWD was tuned without 
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variable selection and those tuning parameters were used throughout the variable selection 

process. After the optimal penalty was identified through the five-fold internal cross-validation 

process, a single model was then built based on the complete modeling set data (using the union 

of the training set and the validation set). Each complete model was then applied to classify the 

corresponding test set. To summarize the classification result of the test sets, the prediction 

outcomes from the 5 test sets were combined. Sensitivity, specificity, and CCR were calculated 

from this combined set of outcomes. 

2.7 QSAR Datasets Description 

2.7.1 AmpC β–lactamases Dataset Description (110 Compounds) 

 The β-lactam ring is an essential structure of several antibiotic families, such as the 

penicillins, cephalosporins, carbapenems, and monobactams. Due to the commonality of this 

particular active structural feature among these chemical compounds, they are collectively called 

as the β-lactam antibiotics 
66

. These chemical compounds gain their antibiotics status by 

inhibiting bacterial cell wall synthesis. The inhibition of cell wall synthesis has a lethal effect on 

bacteria, especially on the Gram-positive bacteria that are characterized by the high amount of 

peptidoglycan in the cell wall. However bacteria can become resistant against β-lactam antibiotics 

by expressing β-lactamase, an enzyme that is produced by Gram-negative organisms and has the 

ability to break open the β-lactam ring thus deactivating the antibacterial properties. In 1940, 

AmpC β-lactamse of Escherichia coli was the first bacterial enzyme reported to destroy penicillin 

70
. Since the discovery of the β-lactamases and their attributions toward antibiotic resistance, there 

has been a significant amount of efforts in the scientific community to identify compounds that 

inhibit β-lactamases to work in conjunction with antibiotics. 

 A dataset containing AmpC β-lactamases inhibitors and non-inhibitors was published by 

Shoichet’s group 
120

. In this data, competitive binding (Ki in µM) was measured for all the 

molecules. Molecules with Ki less than 1,000 µM were considered inhibitors and molecules with 
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Ki greater or equal to 1,000 µM were considered non-inhibitors. The range of inhibition (Ki 

values) is from 1.0 to 646.0 µM. Molecules with smaller Ki are considered strong inhibitors but 

for the classification, there is no distinction between strong inhibitors and weak inhibitors. The 

published data contains 21 inhibitors and 84 non-inhibitors. Additional data were later provided 

by Shoichet’s group that includes five additional inhibitors of the same chemical series. 

2.7.2 5-HT Datasets Description 

 The serotonin receptors, also known as 5-Hydroxytryptamine (5-HT) receptors, 

influence various biological and neurological processes such as aggression, anxiety, appetite, 

cognition, learning, memory, mood, nausea, sleep, and 

thermoregulation. The serotonin receptors are the target of 

a variety of pharmaceutical and illicit drugs, including 

many antidepressants, antipsychotics, anorectics, 

antiemetics, gastroprokinetic agents, antimigraine agents, 

hallucinogens, and entactogens  [3]. 

There are 7 different 5-HT receptor families: 5-

HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7. 

These 5-HT receptor families can be further characterized 

in subtypes (shown in Table 2.1). With the exception of the 

5-HT3 receptors, which are ligand-gated ion channel, all 

other serotonin receptors are G protein-coupled receptors 

that activate an intracellular second messenger cascade to 

produce an excitatory or inhibitory response.  

 A collection of binders and non-binders associated with 5-HT1B, 5-HT1D, 5-HT2B, and 5-

HT6 receptors are obtained from PDSP 
112

. In the collected data, there are 91 binders and 79 non-

binders associated with 5-HT1B receptors. As for 5-HT1D receptors, the numbers are 87 and 81 for 

Family Subtype

5-HT1A

5-HT1B

5-HT1D

5-HT1E

5-HT1F

5-HT2A

5-HT2B

5-HT2C

5-HT3 5-HT3

5-HT4 5-HT4

5-HT5 5-HT5A

5-HT6 5-HT6

5-HT7 5-HT7

5-HT1

5-HT2

 

Table 2. 1. 5-HT receptor 

families and subtypes. 
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binders and non-binders respectively. Comparison between the binders of 5-HT1B and 5-HT1D 

receptors indicates 70 overlapping binders that bind to both receptors. However, there is no 

evidence in the data to suggest that the non-overlapping binders are specific to their 

corresponding receptors.  

2.8 QSAR Modeling Results 

2.8.1 AmpC Β-lactamase Modeling Result (110 Compounds)  

In total 894 two-dimensional (2D) molecular descriptors were generated for these 110 

compounds with commercially available software, Dragon 
3
. As mentioned earlier (Section 2.6), 

five-fold external cross validation was implemented to perform the QSAR study for this dataset. 

The classification results of the five test sets were combined into a single set to calculate the 
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Figure 2. 5. Performance comparison between the methods (AmpC dataset). 

The bar graph shows the test set result of the five-fold external cross validation. The 

predictions for each of the five test sets were combined into a single set to calculate the 

sensitivity, specificity, and CCR. In the AmpC dataset, both DWD methods achieve 

better classification outcomes than SVM; however, the classification results between the 

two DWD methods are quite similar. 
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sensitivity, specificity, and CCR (shown in Figure 2.5). The three methods performed similarly in 

classifying the inhibitors vs. non-inhibitors in the test sets. Compared to SVM, DWD with 

variable selection was able to give correct predictions for one additional inhibitor and two non-

inhibitors. The difference in specificity between the two DWD methods was caused by the correct 

prediction of one non-inhibitor. The small difference in classification performance could be 

explained by the structure similarities of the 

inhibitors. The chemical structures of the majority 

of inhibitors in this dataset belonged to a 

chemotype that can be characterized by a 

sulfonamide bridging two aromatic rings, with 

one aromatic ring containing a carboxylic 

functional group. Molecular descriptors reflecting 

the characteristic of this chemotype were highly 

ranked in both DWD and DWD-VS, thus causing 

the similarity in classification performance 

between the two methods. However, DWD-VS 

did have an advantage over the DWD in model 

interpretation by identifying a much smaller set of 

descriptors that are significant to a biological 

property. 

Analyzing the models obtained from 

DWD-VS indicated that the numbers of 

descriptors incorporated in each of the five folds 

were 100, 150, 150, 250, and 100. Cross-checking 

these descriptors yielded 315 unique descriptor 

Mp nSO2N

nS nThiophenes

T(O..S) C-027

MATS4v C-029

MATS3e C-033

MATS4e C-034

MATS6e H-047

MATS4p H-048

GATS2m H-049

GATS1v O-057

GATS2v O-060

GATS4v N-067

GATS5v N-075

GATS6v Inflammat-80

GATS5e Infective-50

GATS6e F01[C-N]

GATS4p F01[N-S]

EEig01x F02[C-S]

BELm3 F03[C-O]

BEHe8 F03[N-S]

BEHp1 F04[N-O]

BELp3 F04[N-S]

JGI9 F04[O-S]

nArCOOH F05[O-O]

nArCONHR

Descriptor Name

 

Table 2. 2. The 49 unique descriptors 
selected by all 5 models. 

The highlighted descriptors reflect the 

common structure features that 

distinguished the inhibitors from the 

non-inhibitors. 
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names. Among these unique descriptors, 49 were selected by all the five models. These 49 

descriptors are shown in Table 2.2. 

Although not all the descriptors from Dragon are easily interpretable, some can be easily 

mapped back to the molecules. For example, nSO2N, nThiophenes, and nArCOOH are the 

descriptors that reflect the common structure features of the inhibitors. Visual inspection of the 

inhibitors indicates that the molecular structures usually contain a sulfonamide linking two 

aromatic substituents (Figure 2.6). One of the aromatic substituents should include a carboxylic 

acid. These observations match with the descriptors selected by the models. The nArCOOH is a 

descriptor that indicates the occurrence of an aromatic substituent with carboxylic acid in a 

molecule. As for nSO2N and nThiophenes, these are the occurrences of sulfomamide and 

thiophene respectively.  

 

  

 

Figure 2. 6. Common structure features of the AmpC inhibitors. 

Most of the inhibitors have a sulfonamide (orange) linking two aromatic substituents. One 

aromatic substituent must contain a carboxylic acid (blue). Thiophene (purple) is 

considered as an aromatic substituent.  
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2.8.2 5-HT1B Modeling Result 

In total 875 2D Dragon descriptors were generated for the 170 structurally diverse 

compounds. Building global models yielded poor and inconsistent classification performance 

across the folds. To improve the classification performance, the modeling approach was to 

partition the data into clusters and to build specific models for each cluster. 

 Unsupervised 

clustering analysis of the 

170 compounds was 

performed based on the 

875 chemical descriptors. 

A dendrogram was 

constructed based on 

hierarchical clustering 

with Ward linkage 

(Figure 2.7). The 

dendrogram indicates 

how the data can be 

subdivided into clusters. 

Local models were built 

by clustering the data into either 2 or 3 groups. Building local models for the three clusters 

yielded better and more consistent results than building local models for the two higher level 

clusters. In order to obtain some insight regarding the clusters, a principal component analysis 

(PCA) plot was generated to visualize the distributions of both clusters and different classes of 

compounds (Figure 2.8).  

  

 

Figure 2. 7. Dendrogram of the 5-HT1B dataset. 

Hierarchical clustering (with Ward linkage) was performed for 

the dataset based on the chemical descriptors. The dendrogram 

indicates how the data can be subdivided into clusters. For 

building local models, the data were subdivided into either two 
or three clusters. 
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There are 41 binders and 35 non-binders in the red cluster. The green cluster contains 18 

binders and 24 non-binders. As for the blue cluster, the numbers of binders and non-binders are 

32 and 20 respectively. Five-fold external cross-validation procedure was applied for each cluster. 

However, the cluster labels were only applied for the training sets and not the test set. 

To predict the compounds in the test sets, a neighborhood search was performed in the 

full descriptor space. For each compound in the test set, its nearest neighbor in the training set 

was identified. The decision of model selection for predicting a given test set compound was 

based on the nearest training set compound in each cluster. For any given data in the test set, its 

nearest neighbor in the training set will determine the cluster membership. Based on the cluster 

 

Figure 2. 8. Data distribution of the 5-HT1B dataset in Dragon chemical descriptor space. 

The different colors (red, blue and green) in the plots indicate the three clusters identified in 

hierarchical clustering. Binders and non-binders are represented as circles and crosses 

respectively.  In the two clusters scheme, the data in green and red are merged into a single 
cluster. 
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membership, the corresponding local model will be applied for prediction. The classification 

results from the five-fold external cross-validation of the three clusters were combined into a 

single set to calculate the sensitivity, specificity, and CCR. As indicated by the results in Figure 

2.9, all three methods performed well after clustering the 5-HT1B data. DWD-VS was able to 

correctly predict five more binders than SVM and DWD without variable selection. SVM also 

misclassified five more non-binders than either DWD method. 

 

Analyzing the descriptors incorporated in the optimal models from DWD-VS yielded 169 

unique descriptors for the red cluster, 173 for the green cluster, and 119 for the blue cluster. 

Among the 169 unique descriptors identified for the red cluster, there are 26 descriptors which 
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Figure 2. 9. Performance comparison through five-fold external cross validation for the 5-

HT1B dataset. 

For both the 5-HT1B and the 5-HT1D datasets, local models were built based on the clusters 

suggested by hierarchical clustering. Selection of a model to predict a compound in the test 

set was based on identifying its most similar compound in the training compounds. All 

three methods performed well in this 5-HT1B dataset. 
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showed up in all models. For the green and blue clusters, the numbers of unique descriptors 

selected by all models were 33 and 12, respectively. These selected descriptors are listed in Table 

2.3 according to the membership of the clusters. The overlap of selected descriptors between 

clusters was minimal. Between the green and the blue clusters, the two descriptor lists did not 

overlap. Five descriptors, which are nR12, nRNR2, C-006, N-068, and O-56, were incorporated 

in all the models for both red and blue clusters. As for the red and green clusters, both 

incorporated the descriptors, nRCOOH and nPyrroles, in all of their respective models.  

 

 

 

 

nR10 N-068

nR12 N-069

D/Dr10 N-073

JGI9 Inflammat-50

JGI10 Neoplastic-50

nRCOOH Infective-50

nRNR2 F03[N-O]

nArOH F04[C-S]

nOHs F05[C-S]

nROR F05[N-N]

nPyrroles F07[O-S]

C-006 F08[N-S]

O-056 F09[N-O]

Descriptor Name (Red Cluster)

 

 

 

ARR nCrt

nDB nRCOOH

nO nROH

nF nPyrroles

nX C-003

PJI2 C-013

piPC10 C-033

PCR C-040

EEig01x O-058

ESpm14x F-083

ESpm15x F02[C-F]

ESpm01d F02[O-O]

BEHv1 F03[C-F]

BEHe1 F04[C-F]

BEHp1 F05[C-F]

JGI8 F07[N-F]

nCt

Descriptor Name (Green Cluster)

 

nR12 C-008

T(N..N) C-040

nCs H-046

nCrs O-056

nRNR2 N-068

C-006 F10[C-N]

Descriptor Name (Blue Cluster)

 

Table 2. 3. The unique descriptors 

selected by all 5 models from each of the 
three clusters. 
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2.8.3 5-HT1D Modeling Result 

 In total 870 2D Dragon descriptors were generated for the 168 structurally diverse 

compounds. Similar to the outcome for the 5-HT1B dataset, local models yielded better 

classification performance than global models. Hierarchical clustering of the 5-HT1D dataset with 

Ward linkage produced 

the following 

dendrogram (Figure 

2.10). Due to a 

significant amount of 

overlapping compounds 

between the 5-HT1B and 

the 5-HT1D datasets, 

local models were built 

based on clustering the 5-

HT1D dataset into 3 

groups in an attempt to 

compare the results. The 

PCA plot below shows the data distribution of the 3 clusters in the chemical space (Figure 2.11). 

The data distribution of 5-HT1D in the PCA plot is similar to that of the 5-HT1B. The largest 

cluster (red cluster) contains 61 binders and 41 non-binders while the smallest cluster (green 

cluster) includes 11 binders and 16 non-binders. As for the blue cluster, the numbers of binders 

and nonbinders are 15 and 24, respectively. 

  

 

Figure 2. 10. Dendrogram of the 5-HT1D dataset. 

Due to a significant amount of overlapping compounds between 

the 5-HT1B and the 5-HT1D datasets, local models were built by 

clustering the 5-HT1D dataset into 3 groups in an attempt to 
compare the results. 
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Five-fold external cross-validation procedure was applied to each of the cluster to obtain 

the corresponding optimized models. Once again, the cluster labels were only applied for the 

training sets and not the external test set. To predict the compounds in the test sets, a 

neighborhood search was performed in the full descriptor space. For any given data in the test set, 

its nearest neighbor in the training set will determine the cluster membership. Based on cluster 

membership, the corresponding local model will be applied for prediction. The classification 

results from the five-fold external cross-validation of the three clusters were combined into a 

single set to calculate the sensitivity, specificity, and CCR. As indicated by the results in Figure 

 

Figure 2. 11. Data distribution of the 5-HT1D dataset in Dragon chemical descriptor space. 

The different colors (red, green, and blue) in the plots are to indicate the three clusters 

identified in hierarchical clustering. Binders and non-binders are represented as circles and 
crosses respectively.  In the two clusters scheme, the data in green and red are in a single 

cluster. The relative position of the three clusters identified for the 5-HT1D dataset is similar 

to the three clusters associated with 5-HT1B. 
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2.12, all three methods performed well after clustering the 5-HT1D data. DWD without variable 

selection was able to correctly predict five additional binders more than SVM and DWD-VS. 

SVM also misclassified ten more non-binders than either DWD method. 

 

Analyzing the descriptors incorporated in the optimal models from DWD-VS method 

yielded 328 unique descriptors for the red cluster, 251 for the green cluster, and 120 for the blue 

cluster. Among the 328 unique descriptors identified for the red cluster, there are 57 descriptors 

that showed in all models. For the green and blue clusters, the numbers of unique descriptors 

selected by all models were 36 and 19, respectively. These selected descriptors are listed in Table 

2.3 according to the membership of the clusters. 
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Figure 2. 12. Performance comparison through five-fold external cross validation for the 

5-HT1D dataset. 

Similar to the 5-HT1B dataset, local models were built for the 5-HT1D dataset based on the 

clusters suggested by hierarchical clustering. Selection of models to predict the compounds 

in the test set was based on the similarity search against the training compounds. All three 

methods performed well in this 5-HT1D dataset. 
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nO nPyrrolidines

nX nPyrroles

nR09 C-006

TI2 C-007

D/Dr07 C-027

D/Dr09 C-033

D/Dr10 C-034

T(O..S) C-040

MATS1p H-049

GATS5m H-052

GATS4v N-068

GATS5v N-069

GATS4e N-075

GATS5e Depressant-80

GATS1p Hypertens-50

EEig01x Hypnotic-50

ESpm12x Neoplastic-80

ESpm13x Neoplastic-50

ESpm14x F01[C-N]

ESpm15x F01[C-O]

BEHv1 F03[C-S]

BEHe1 F03[N-O]

BEHp1 F04[C-S]

VEA1 F05[S-Cl]

nCrs F06[N-Cl]

nRCOOH F07[N-N]

nCONN F07[N-O]

nRNR2 F08[N-S]

nArX

Descriptor Name (Red Cluster)

 

ARR GATS7p

nN EEig13d

nF EEig14d

nX nCRX3

PW5 nPyrroles

piPC10 C-013

X3A C-033

MATS6m O-058

MATS5v N-073

MATS5e F-083

MATS6p GVWAI-80

GATS6m F01[C-F]

GATS7m F02[F-F]

GATS6v F03[C-F]

GATS7v F04[C-F]

GATS6e F05[C-F]

GATS7e F05[N-N]

GATS6p F07[N-F]

Descriptor Name (Green Cluster)

 

nN C-008

nR09 C-012

TI2 C-013

D/Dr09 N-067

T(N..N) F01[C-N]

nCs F07[N-N]

nCrs F08[C-N]

nRNHR F09[C-N]

nRNR2 F10[N-O]

C-006

Descriptor Name (Blue Cluster)

 

Table 2. 4. The unique descriptors selected by all 5 models from each of the three 

clusters. 

The highlighted descriptors are selected by the similarly located clusters in both 5-HT1B 

and 5-HT1D. 
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Comparing these descriptors with those of the similarly located clusters in 5-HT1B 

indicated some overlapping descriptors. There were nine descriptors that appeared in both red 

clusters. The numbers of overlapping descriptors between the two datasets were 12 and 6 for the 

green and blue clusters, respectively. Understanding the contribution of these overlapping 

descriptors to the binding of 5-HT1B and 5-HT1D receptors could contribute to designing a safer 

drug. 

2.8.4 5-HT2B Modeling Result 

In total 1,030 Dragon 2D descriptors were generated for these 753 compounds. The 

classification results of the five-fold external cross validation were combined into a single set to 

calculate the sensitivity, specificity, and CCR (shown in Figure 2.13). The difference in 

classification results between the three methods is minimal. Both DWD methods had higher 

 

DWD with 
Variable Selection

DWD without
Variable Selection

SVM

Sensitivity Specificity CCR

P
er

ce
n

ta
g

e

Combined Result of Test Sets

(5-HT2B Dataset)

Figure 2. 13. Performance comparison through five-fold external cross validation for the 5-
HT2B dataset. 

For the 5-HT2B dataset, both DWD methods yielded similar performance in classifying 

binders vs. non-binders from the test sets. In comparison, the sensitivity associated with 

SVM did show a drop in performance. 
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sensitivity and specificity than SVM. Comparison with SVM, DWD-VS was able to provide 

correct predictions for four additional binders and six non-binders. The differences in sensitivity 

and specificity between the two DWD methods were caused by the correct predictions of two 

binders and four non-binders. 

Analyzing the models 

obtained from DWD-VS 

indicated that the numbers of 

descriptors incorporated in 

each of the five folds were 

250, 250, 200, 400, and 200. 

Cross-checking these 

descriptors yielded 482 

unique descriptor names. 

Among these unique 

descriptors, 79 were selected 

by all the 5 models. These 79 

descriptors are shown in 

Table 2.5. 

 

 

 

 

 

 

 

 

 

 

 

Ms BELm6 H-049

nO BEHv1 N-070

nR07 BELv6 N-071

nR10 BELe6 N-074

nR11 BEHp1 Cl-086

Lop JGI2 Ui

D/Dr11 JGI3 Psychotic-50

T(N..F) JGI7 F02[C-O]

PCR JGI8 F03[N-F]

X0Av nCrq F04[N-Cl]

IC2 nCb- F05[N-N]

SIC2 nR=Cs F05[N-O]

CIC2 nR#CH/X F05[N-Cl]

BIC2 nRCOOR F05[S-Cl]

MATS1m nArCOOR F07[C-F]

MATS4m nArOCON F08[C-N]

MATS5m nC(=N)N2 F08[N-S]

GATS2m nArNHR F09[C-N]

GATS3m nArNR2 F09[O-O]

GATS7v nRCN

GATS8v nOHs

GATS3e nArOR

GATS2p nSO2N

GATS3p nPyrroles

EEig05x nPyridines

EEig06x C-006

EEig07x C-013

EEig09d C-021

EEig11d C-028

EEig09r C-033

Descriptor Name

 

Table 2. 5. The 79 unique descriptors selected by all 5 
models for the 5-HT2B dataset. 
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2.8.5 5-HT6 Modeling Result 

 In total 1,233 2D Dragon descriptors were generated for these 176 compounds. The 

classification results of the five-fold external cross validation were combined into a single set to 

calculate the sensitivity, specificity, and CCR (shown in Figure 2.14). The classification results of 

the three methods revealed similar performance in classifying the binders vs. non-binders. DWD-

VS was able to predict one additional binder and 4 non-binders more than the other two methods. 
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Figure 2. 14. Performance comparison through five-fold external cross validation for the 

5-HT6 dataset. 

For the 5-HT6 dataset, DWD with variable selection showed better classification 

performance than the other two methods. 
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Analyzing the models obtained from DWD-VS indicated that the numbers of descriptors 

incorporated in each of the five folds were 400, 300, 250, 200, and 250. Cross-checking these 

descriptors yielded 505 unique descriptor names. Among these unique descriptors, 87 were 

selected by all the 5 models. These 87 descriptors are shown in Table 2.2. 

 

  

ARR nNq Inflammat-50 B09[O-O]

nDB nArOH Depressant-50 B10[C-C]

nAB nPyrroles Neoplastic-80 B10[C-O]

nBnz C-001 Neoplastic-50 F01[C-N]

D/Dr09 C-004 Infective-80 F02[C-S]

MATS5m C-005 BLTF96 F03[N-S]

MATS1v C-006 BLTD48 F04[C-S]

GATS7v C-008 BLTA96 F06[C-N]

GATS5e C-013 B02[N-O] F06[N-Cl]

GATS7e C-025 B03[N-N] F07[C-N]

GATS8p C-027 B03[N-O] F07[N-S]

EEig03d C-031 B03[N-S] F08[C-Cl]

JGI9 C-034 B04[N-S]

JGI10 C-040 B04[O-O]

nCp H-046 B05[N-O]

nCs H-047 B06[C-N]

nCq H-049 B06[N-Cl]

nCrs O-057 B07[C-S]

nCar O-058 B07[N-S]

nCb- N-073 B07[O-O]

nRCONHR N-079 B08[C-N]

nRCONR2 Ui B08[C-O]

nN=C-N< MLOGP B08[N-N]

nArNR2 ALOGP2 B08[O-O]

nN+ GVWAI-80 B09[C-F]

Descriptor Name

 
Table 2. 6. The 87 unique descriptors selected by all 5 models for the 5-HT6 

dataset. 
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2.9 Conclusion 

 The results obtained on simulated data clearly indicated that DWD with variable selection 

(DWD-VS) could significantly improve the model prediction performance for datasets that are 

imbalanced and HDLSS. DWD-VS consistently achieved the highest prediction performance, and 

both DWD methods showed better classification performance than SVM in predicting the test set 

data. Analysis of DWD-VS models indicated that the high prediction accuracy was consistently 

achieved by nearly 100% noise removal while retaining the majority of the informative 

descriptors. In the modeling of real QSAR datasets, DWD-VS was consistently better than SVM 

and had superior or similar performance to DWD without variable selection. 

Analysis of descriptors incorporated in DWD-VS models suggested that the selected 

descriptors could explain the contribution of a molecular structure feature to the desired target 

biological property. This is especially evident in the modeling result of the AmpC β-lactamase 

dataset, where the three descriptors, nArCOOH, nSO2N, and nThiophenes, reflect common 

structure features of the inhibitors. Thus, DWD-VS can be used to obtain a better understanding 

of the underlying process that generated the data. Compared to DWD without variable selection, 

DWD-VS provided more cost-effective models by identifying predictor variables while achieving 

high prediction accuracy, i.e. identifying a smaller number of descriptors that are significant to a 

biological property. 



 
 

 Chapter 3 

Novel Three-Dimensional Chirality Atom-Pair Descriptors

3.1 Motivation / Background 

Many biologically-active compounds 

are in fact chiral, and their stereochemistries 

are believed to directly influence their 

bioactivities because these compounds 

(ligands) are recognized differently by their 

corresponding receptors which are also chiral. 

A molecule is said to be chiral when it cannot 

be superimposed on its mirror image. 

Chirality can be defined either by the 

molecular optical activity or by the 

configuration of the molecule. When optical 

activity is considered, (+) or (-) notations are 

used to distinguish the chiral compounds 

from their mirror images. D/L or R/S 

notations can alternatively be used to distinguish the enantiomers if chirality of the molecule is 

defined by its molecular configuration instead (illustrated in Figure 3.1). The assignment of the 

D/L system is based on the association between chiral molecules and glyceraldehydes. As for the 

R/S system, it is determined by the Cahn-Ingold-Prelog priority rules. It is interesting to point out 

 

Figure 3. 1. Two enantiomers of a generic 

amino acid. 

Pairs of enantiomers are often designated as 

“right-“ or “left-handed.” Multiple notations 
can be used to differentiate one enantiomer 

from the other. 

 

Source: 

http://en.wikipedia.org/wiki/File:Chirality_with_hands.jpg 



38 
 

that there is no fixed relation to the three labeling system. For example, an R isomer can be either 

dextrorotatory or levorotatory, depending on its exact substituents. 

Before the 1980s, the pharmacopoeia was dominated by compounds in the form of 

racemic mixtures, but a breakthrough in technology enabling pure enantiomers to be generated in 

significant quantities has not only revolutionized the pharmaceutical industry but also has raised 

the awareness of and interest in the stereochemistry of drug action 
6;29;30;53

. It is frequently the 

case that one enantiomer is responsible for the activity of interest while its paired enantiomer is 

found to be inactive but does share some other desirable or undesirable activities of interest. 

Benefits such as reduction of the total administered dose, enhancement of the therapeutic window, 

and a more precise estimation of dose–response relationships have been identified as the 

advantages of using stereochemically pure drugs 
6;29;30

. As a result, single enantiomers are 

preferred by both industry and regulatory authorities, such as the US Food and Drug 

Administration (FDA). In 1992, the FDA published a formal guideline regarding the development 

of chiral drugs in a document entitled Development of New Stereoisomeric Drugs. As stated in the 

document, “The stereoisomeric composition of a drug with a chiral center should be known and 

 

Figure 3. 2. Growing trend of chiral technology. 

According to a study by Frost & Sullivan, worldwide revenues related to chiral technology, 

which amounted to $4.8 billion in 1999, were expected to be $14.9 billion in 2009 
2
. 
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the quantitative isomeric composition of the material used in pharmacologic, toxicologic, and 

clinical studies known. Specifications for the final product should assure identity, strength, 

quality, and purity from a stereochemical viewpoint.” 
55

  

The growing trend for worldwide sales of chiral drugs in single-enantiomer forms is 

expected to continue. In 1996, the worldwide annual sales of chiral drugs amounted to $74.4 

billion, which constituted more than one-fourth of all drug sales; the number exceeded $159 

billion in 2002 
30;113;114;125-128

 and the sales figure was projected to reach $200 billion in 2008 
128

. 

Brand 

Name 

Generic 

Name 

Therapeutic 

Area 

Pharmaceutical 

Company 

Lipitor Atorvastatin calcium Cardiovascular Pfizer 

Zocor Simvastatin Cardiovascular Merck 

Pravachol Pravastatin sodium Cardiovascular Bristol-Myers Squibb 

Paxil Paroxetine hydrochloride 
Central Nervous 

System 
GlaxoSmithKline 

Plavix Clopidogrel bisulfate Hematology 
Sanofi-Synthelabo / 

Bristol-Myers Squibb 

Zoloft Sertraline hydrochloride 
Central Nervous 

System 
Pfizer 

Advair HFA 
Fluticasone propionate and 

salmeterol xinafoate 
Respiratory GlaxoSmithKline 

Nexium Esomeprazole magnesium Gastrointestinal AstraZeneca 

Augmentin 
Amoxicillin and potassium 

clavulanate 
Antibiotic GlaxoSmithKline 

Diovan Valsartan Cardiovascular Novartis 

 
Table 3. 1. List of top ten single enantiomer blocker drugs in ranking order. 

Drugs must exceed the amount of $ 1 billion dollars in annual sales to be qualified as 

blockbuster drugs. The global combined sales of Lipitor and Zocor almost reached 14 

billion in 2002 2;30;114. 
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According to a study by Frost & Sullivan in 2001, worldwide revenues related to chiral 

technology (equipment), which amounted to $4.8 billion in 1999, is expected to reach $14.9 

billion in 2009 (Figure 3.2). Table 3.1 lists the top ten single enantiomer blockbuster drugs that 

achieve more than $ 1 billion in sales per year. 

3.2 Overview of Current Chirality Descriptors 

As summarized by Crippen 
42

, current chirality descriptors applied in the field of QSAR 

can be classified as either qualitative or quantitative descriptors. To characterize chirality 

quantitatively, three different computational implementations have been applied. The first 

implementation is to calculate the overlap of the Van Der Waals volume or electrostatic potential 

by superimposing a pair of enantiomers 
28;93;117

. Another quantitative implementation is achieved 

by measuring the degree of distortion, which can be characterized by calculating the distance 

required to convert the molecule or subsets of its atoms into a structure with a desired symmetry, 

such as mirror symmetry 
7;11;45;148;149

. The third implementation to quantitatively characterize 

chirality is achieved by translating and rotating the molecule to a standard position associated 

with symmetry axes that are based on various atomic properties 
49;91;94;145

. 

Qualitative chirality descriptors, on the other hand, are typically based on the 

mathematical concept of oriented volume and with the notational viewpoint of the Cahn-Ingold-

Prelog rules 
60;61;72;146

. Instead of focus on atomic number, qualitative chirality descriptors could 

place emphasis on other properties, such as electronegativity, polarizability, resonance 

stabilization, etc 
34;75;80;104;150

.  

The idea of characterizing chirality has sparked a lot of imaginative work by many 

scientists over the years. Both quantitative and qualitative chirality descriptors have been shown 

to build successful models in QSAR studies. However, as suggested by Crippen, it has not yet 

been determined how to best apply these descriptors in QSAR applications 
42

. 
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3.2.1 Prior Implementation of the Chirality Descriptors 

Several series of chirality descriptors of chemical organic molecules have been developed 

earlier in this laboratory 
60;61;76

. These descriptors have been used to build predictive quantitative 

structure-activity relationship (QSAR) models for several datasets 
60-62;74-76

 and were developed 

on the basis of conventional topological descriptors of molecular graphs. Chirality descriptors 

emphasized on electronegativity instead of atomic number were particularly intriguing due to the 

fact that receptor-ligand interaction is affected by factors such as Van Der Waals interactions, 

hydrophobic interactions, and electrostatic interactions. 

The concept of chirality based on partial charges, which capture the electrostatic 

interactions at the atomic level, was introduced by Kovatcheva, et al. to study a set of chiral 

ambergris fragrance compounds 
75

. Similar to 

the traditional R/S notation, which follows the 

Cahn-Ingold-Prelog priority rules, the 

configuration of the molecule was rearranged 

in such a way that the neighboring atom with 

the lowest partial-charge was projected 

toward the back of the plane formed by the 

remaining 3 neighboring atoms. The three 

neighboring atoms within the plane can either 

be in a clockwise or counter-clockwise 

rotation if moving from the atom with the 

highest partial charge among the three to the 

lowest one. The chiral atom would be labeled 

as R
*
 for clockwise rotation and S

*
 for 

counter-clockwise. In a previous study, the 

Atom Types Description 

01 Negative Point Center 

02 Positive Point Center 

03 Hydrogen Bond Acceptor 

04 Hydrogen Bond Donor 

05 Aromatic Ring Center 

06 Nitrogen (All) 

07 Oxygen (All) 

08 Sulfur (All) 

09 Phosphor (All) 

10 Fluorine 

11 Chlorine, Bromine, Iodine 

12 Carbon 

13 Other Elements 

14 Triple Bond Center 

15 Double Bond Center 

16 Chiral Atom R
*
 

17 Chiral Atom S
*
 

 
Table 3. 2. The 17 atom types defined in 
the atom pair descriptors. 

Regular atom pair descriptors contain atom 

types 01 to 15 while chirality atom pair 

descriptors contained all the atom types in 

regular atom pair descriptors (with two 

additional atom types - 16 and 17). 
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method of choice to calculate partial change in order to define atomic chirality was Gasteiger-

Hükkel 
75

. Additionally, minimum graph distance, which is derived from a 2D molecular 

structure, was used to define molecular features. 

Chiral atom types defined above were incorporated as new atom types for calculation of 

atom-pair descriptors, based on an approach proposed by Carhart et al. 
32

. Atom-pair descriptors 

encoded the molecular graph patterns defined by atom types and topological distance bins. These 

contained the number of occurrences for each particular pattern. A molecular pattern in atom-pair 

descriptors was a substructure path separation (or graph distance) between the atoms:  

<Atom type I><Atom type II>_<distance between atom types> 

The distance between any two atom types was defined as the minimum graph distance. The 

minimum graph distance is the smallest amount of bond distance along the path between any two 

specified atom types within a molecular structure (2D distance). The value encoded within the 

atom-pair descriptors contained the number of occurrences associated with a particular pattern as 

defined by a pair of atom types within a certain distance (binned distance) away. Listing of all 17 

atom types implemented in the atom-pair descriptors was shown in Table 3.2. 

3.2.2 Three Dimensional Chiral Atom-Pair Descriptors 

A shortcoming associated with the prior implementation of the atom-pair descriptors was 

related to the minimum graph distance (2D distance). The molecular patterns defined by the 

minimum graph distance could not capture the difference between the trans- and cis- 

configurations of molecules that could have dissimilar biological property. By not capturing the 

subtle structural differences in the molecular configurations, the descriptors became limited in the 

QSAR studies. 

To address this shortcoming, the distance bin that defined the molecular patterns was 

changed from 2D distance to three-dimensional (3D) distance, which was calculated by taking the 

Euclidean distance of the atom coordinates in the physical space (3D space). However, a 
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limitation associated with 3D molecular descriptors (a set of features describing molecules in 3D) 

is the fact that the method is conformation dependent. Depending on the structural rigidity of a 

given molecule, multiple different 3D representations (conformations) can be generated. In order 

to get a single structural representation for each compound, one common approach is to use the 

minimum energy conformer, which may not accurately capture the binding conformation of the 

ligand, especially when the given compounds are very flexible. In fact, there is no a priori reason 

to exclude higher energy conformers as a source of activity. 

Another alternative to the 3D descriptors generated from a single conformation would be 

deriving the 3D descriptors from multiple conformers of a molecule, which requires a 

conformation search of all the molecules. A conformation search was achieved through the 

OMEGA 
100

 software by OpenEye. The search criteria implemented in this study included the 

generation of a maximum of 50,000 possible conformations for each molecule. For molecules 

containing less than or equal to 4 rotors, the associated conformers were considered duplicated if 

the minimum Root Mean Square (RMS) Cartesian distance was less than 0.8. The RMS cutoff 

value was increased to 1.15 for molecules containing more than 4 rotors. A maximum of 1,000 

conformations satisfying the selection criteria were retained. However, the number of resulting 

conformers could be less than 1,000 if a compound was structurally rigid. 

After the completion of a conformation search, 3D chiral atom-pair descriptors were 

generated for each conformer. Since multiple conformers were associated with a single molecule, 

each molecule would be characterized by a molecular pattern matrix, where the rows represented 

the conformers and the molecular patterns associated with each conformer were represented by 

the columns. To summarize the molecular pattern matrix associated with each molecular entry, 

taking the Boltzmann average of the molecular pattern matrix could derive a single 3D 

descriptors vector for a given molecule 
80

. However, using the Boltzmann average placed higher 

emphasis on the conformers with much lower energy. 



44 
 

Rather than using the Boltzmann average to derive the final 3D descriptor vector for a 

given molecule, three different values, which were the maximum, the arithmetic mean, and the 

percentage of zero values (the percentage of conformers that lack the particular feature), were 

used to characterize the distribution of each descriptor value with the given number of conformers. 

The choice of an arithmetic mean over the Boltzman average meant that the possibilities for all 

the resulting conformers to be in the bioactive form were all equally likely. 

In addition to the change of the distance type that defined the molecular patterns, the 3D 

chiral atom-pair descriptor matrix incorporated the concept of the degree of chirality, which is a 

threshold used to define the chiral atom types. In order for a carbon atom to be considered as a 

chiral atom, the minimum difference in the atomic partial charge between any two of the four 

connecting atoms must be greater than this threshold. By varying this threshold, multiple 3D 

atom-pair descriptor matrices with different degree of chirality could be generated but only 

molecular patterns involving atom type 12, 16, and 17 were affected by the threshold. By 

incorporating the degree of chirality concept, it is possible to identify a subset of chiral carbon 

atoms and their association with the target properties. 

In the earlier study, a carbon atom would be considered as a chiral atom type if all four of 

its connecting atoms were different and the method of choice to calculate partial charge was 

Gasteiger-Hükkel 
75

. The partial charge calculation in this study was accomplished by the 

QUACPAC 
99

 software from OpenEye, which suggested AM1-BCC to be the model of choice for 

calculating partial charge due to the better performance on predicting protein-ligand binding 

calculations and virtual screening through docking methods. The calculation scheme for AM1-

BCC was to calculate the initial partial charges derived from the AM1 semi-empirical method, 

followed by bond-charge corrections (BCC) to generate the final atomic partial charges. 

To avoid incorporating the non-chiral atoms as defined by the International Union of 

Pure and Applied Chemistry into the chiral atom types in the 3D chiral atom-pair descriptors, the 

minimum threshold to define chiral atoms was set to 0.0010. Additional thresholds were 
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evaluated by setting the maximum value to 0.0290 with a step size of 0.0020. Thus a total of 15 

different thresholds were evaluated. With higher threshold value, the number of chiral atoms in 

the new definition will be smaller. 

3.3 Dataset Description 

3.3.1 Peptide Transporter 1 (PEPT1) Dataset 

Peptide transporter 1 (PEPT1), localized to the brush border membrane of the intestinal 

epithelium, is a solute carrier for oligopeptides and transports nutritional di- and tripeptides across 

the luminal membrane into small intestinal cells 
4;5;133

. In addition to the oligopeptides, other 

peptidomimetics, which are molecules designed to mimic peptides, are also transported by PEPT1. 

The ability of PEPT1to transport peptidomimetic drugs, such as β-lactam antibiotics, valacyclovir, 

δ-amino-levulinic acid, angiotensin-converting enzyme inhibitors, and bestatin, allows the oral 

application of these drugs for the therapy of several diseases 
13;24-26;48;56;57;64;96;129;130;132;134;151

. 

Targeting the membrane transport protein PEPT1 to enhance the oral bioavailability of 

drugs is a promising strategy; however, very little is known about the substrate binding pocket of 

PEPT1. To gain some insights regarding the structural requirements for the PEPT1 binding 

substrates, cheminformatic analysis, such as QSAR, can be applied to identify key molecular 

structure features that are contributing to the binding of PEPT1. 

A dataset published by Biegel et al 
20

, which contained 122 compounds (substrates) and 

their corresponding binding affinity values (Ki values) to PEPT1, was retrieved from the 

ChEMBL database. Among the 122 PEPT1 binding substrates, there were 31 β–lactam antibiotics, 

32 tripeptides, and 59 dipeptides. For tripeptides and dipeptides, different amino acid sequences 

were measured experimentally for their binding affinity. The experimentally measured Ki values 

also included polypeptides (tripeptides and dipeptides) with amino acids that were strategically 

substituted with D-enantiomers. Tripeptides in LLL configuration display a higher affinity to 

PEPT1 (with Ki values ranging from 0.1 to 0.5 mM) compared to tripeptides in DLL, LDL, and 
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LLD configurations. This stereochemical preference is also observed in dipeptides, which 

preferred LL more than DL, LD, or DD. However the binding affinity value for the tripeptide, D-

Met-Met-Met, also indicated high affinity to PEPT1 (with Ki value of 0.52 mM). In contrast, the 

LLL configuration of the tripeptides achieved the Ki value of 0.10 mM. 

 The Ki values for the 122 compounds ranged from 0.01 mM to values greater than 30 

mM. The locations of the Ki values were used to determine the labels of the corresponding 

compounds, which can be labeled as either high affinity or low affinity groups. Based on the 122 

logarithmic transformed Ki values, Gaussian kernel density estimation was constructed to 

estimate the distribution of the experimental binding affinity values (Figure 3.3). According to the 

constructed density estimation, the tripeptides, D-Met-Met-Met, are closer to the high affinity 

group than to the low 

affinity group. By 

incorporating D-Met-Met-

Met into the high affinity 

group, the upper bound of 

Ki values for the high 

affinity group would 

increase to 0.52 mM. As for 

the low affinity group, the 

new lower bound was 

shifted to 0.86 mM. By 

taking the average of these 

two boundary values, a 

hypothetical threshold of 

0.69 was proposed to 

 

Figure 3. 3. Activity distribution of the PEPT1 binding 
substrates. 

The plot showes the distribution of the log10(Ki) values for the 

122 compounds (black circles). The vertical positions of the 

black circles were based on the entry order, which was sorted 

in an ascending order according to the Ki values. The Ki 

values for the 122 compounds ranged from 0.01 mM to values 

greater than 30 mM. Compounds with Ki value less than 0.69 

(green vertical line) are considered as high affinity. Low 

affinity compounds have Ki value greater than 0.69. 
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determine the labels of compounds. Compounds with Ki value less than 0.69 mM were 

considered as high affinity. Low affinity compounds had Ki value greater than 0.69 mM. As a 

result, the dataset contained 52 and 70 compounds in the high affinity and low affinity group 

respectively. 

To ensure the proper stereochemistry of the retrieved molecules is represented as in the 

original literature, visual inspection was performed by comparing the retrieved structures with the 

data available in both the original literature and SciFinder. The resulting comparison indicated 

that there were 28 structure entries obtained from the ChEMBL database with either incorrect 

structures or misannotated stereochemistries. 

3.3.2 AmpC β–lactamases Dataset (149 Compounds) 

As previously described in Section 2.7.1, a dataset 

containing AmpC β-lactamases inhibitors and non-

inhibitors was obtained from Shoichet’s group [17]. In 

addition to the 110 compounds previously modeled, 39 

more compounds with a different scaffold were added. 

The new scaffold resembles the isoindole (Figure 3.4) and 

is structurally different from the sulfonamide scaffold. 

 As with the compounds with the sulfonamide 

scaffold, the 39 additional compounds were 

experimentally tested with the same assay to obtain the Ki 

values. The same Ki threshold criteria applied to the 

previous data for determining inhibitors and non-

inhibitors was also applied to the 39 additional molecules. 

Molecules with Ki less than 1,000 µM were considered as 

inhibitors whereas molecules with Ki greater or equal to 

 

Figure 3. 4. Isoindole-like 
scaffold (top) vs. isoindole 

(bottom). 

The 39 additional compounds 

have a scaffold resembling 

isoindole, which is structurally 

different from the sulfonamide 

scaffold. 
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1,000 µM were considered as non-inhibitors. With these 39 additional molecules, the dataset now 

contained 64 inhibitors and 85 non-inhibitors. 

Given the criteria to determine inhibitors and non-inhibitors, it was observed that 

stereochemistry did have some effect on the 39 additional molecules. There were two pairs of 

enantiomers observed. The first pair of enantiomers, with both considered as inhibitors, involved 

entries 111 and 112. Entries 134 and 135 were the other pair of enantiomers, with entry 135 as an 

inhibitor and entry 134 as a non-inhibitor. The chemical structures of these four molecules were 

shown in Figure 3.5. 

 

  

 

Figure 3. 5. The two enantiomeric pairs observed in the additional AmpC dataset. 

There were two enantiomeric pairs observed in the 39 additional compounds. The first 

pair of enantiomers, which were both inhibitors, involved entries 111 and 112.  Entries 

134 and 135 were the other enantiomeric pair with different labels. Entry 134 was 

considered as a non-inhibitor while entry135 was an inhibitor. 



49 
 

3.3.3 Artemisinin Dataset 

 Artermisinin and its derivatives 

have become the focus of anti-malarial 

treatment in recent years due to their 

effectiveness in treating multi-drug 

resistant P. falciparum and their excellent 

safety records. However their mechanism 

of action is not well understood. The 

presence of a peroxide bridge (Figure 

3.14) in artemisinin and its analogues is 

hypothesized to be an essential feature for 

its ability to form a bond with a high 

valence non-heme iron molecule, 

resulting in a generation of free radicals. These free radicals cause lethal damage to the parasites. 

However, there is another interesting feature of artemisinin and its derivatives, an abundance of 

chiral atoms located near the peroxide bridge. 

 The dataset of 122 artemisinin analogs was obtained from Avery’s lab. Rather than using 

the experimentally derived IC50 value (in ng/mL), the relative activity (RA) was associated with 

each molecule. RA, suggested by Avery et al., was first calculated by taking the ratio of the 

experimentally derived IC50 values between artemisinin and the analog, followed by the 

correction ratio of the molecular weight between the analog and artemisinin. This value was 

proposed to minimize the intraday and interlaboratory measurement variation in the IC50 of 

artemisinin. Based on logarithmically transformed RA values (Equation 1), the molecules can be 

categorized into 2 classes: molecules with activities better than artemisinin (positive class) and 

molecules with activities equal to or less than artemisinin (negative class). This particular 

classification was implemented because our collaborators are interested only in the molecules that 

 

Figure 3. 6. Structure of artemisinin. 

The peroxide bridge (highlighted in red) is 

hypothesized to be the key attribute of the 
anti-malarial property. 
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have activities better than artemisinin. As a result, the data contained 71 and 51entries associated 

with positive and negative classes, respectively.  

 

          
                   

                  
        

                

                 
                  

 

3.4 Evaluation of Descriptor Significance and Generalizability 

 Two different procedures were performed to evaluate the performance of the 3D chiral 

atom-pair (cAP) descriptors. The first procedure was to evaluate the significances of different 

cAP descriptor matrices, which were generated by varying the threshold for chirality. By varying 

the chirality threshold, a different degree of chirality can be assigned to the corresponding cAP 

descriptor matrix. This procedure allowed for the identification of a subset of chiral carbon atoms 

that are more likely to attribute to a given biological target property by optimizing the chirality 

threshold to achieve the highest model significance. The calculation of model significance 

described in Section 2.3.1 was applied to the full dataset without data partitioning to identify the 

optimal chirality threshold. By varying the chirality threshold from 0.001 to 0.029 with an 

increment of 0.002, a total of fifteen cAP descriptor matrices were generated for each of the three 

datasets. A regular atom-pair descriptor matrix (APair) without chiral atom types was generated 

as a control group in order to compare the significance of the chiral atom types. 

 To evaluate the generalizability of the cAP descriptors, the five-fold external cross-

validation procedure described in Section 2.6 was applied to generate five different sets of 

descriptor matrices for the performance benchmark. The benchmark was designed not only to 

compare the performance between Dragon, APair, and cAP descriptors but also to evaluate the 

potential for prediction accuracy by combining Dragon descriptors with chiral atom-pair 

descriptors. Regular atom-pair descriptors were combined with Dragon descriptors to serve as a 

control group in order to compare the generalizability of the chiral atom types in predicting 
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unseen data (data in the external test sets). All data entries in training and test sets remained the 

same for the five different descriptor matrices. 

3.5 Modeling Results 

3.5.1 PEPT1 Dataset 

 Compared to all the fifteen cAP descriptor matrices, the model built with APair achieved 

a much lower significance. As illustrated in Figure 3.7, all fifteen optimal models (models with 

the highest z-scores) associated with the corresponding cAP descriptor matrices achieved much 

 

Figure 3. 7. Degrees of chirality and the corresponding significance for the PEPT1 dataset. 

The model significance, which is determined by the z-scores, indicated that models built 

with the chiral atom types (atom types 16 and 17) were more significant than the model built 

without (APair; black line). The most significant model was achieved with the threshold of 
0.007 (cyan). 
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higher z-score values than the model with APair descriptors. This outcome indicated that the 

chiral atom types do capture the effect of stereochemistry in this highly chirality sensitive dataset. 

Additional comparison among the optimal models built with different cAP descriptors indicated 

that different levels of significance were achieved by varying the chirality threshold (degree of 

chirality). The observation of lower z-score values associated with thresholds ranging from 0.001 

to 0.005 suggested the corresponding descriptor matrices contained some chiral atoms that might 

be trivial to the target property. By considering those trivial chiral atoms as non-chiral atoms, 

higher z-score values were obtained from the modified descriptor matrices, which were generated 

by increasing the chiralty threshold. Given the ranges of chirality threshold evaluated in this study, 

the highest z-score value was achieved by the optimal model obtained from the cAP descriptor 

matrix with a chirality threshold of 0.007. 

 After establishing the association between the target property and the degree of chirality, 

the next goal was to evaluate the generalizability of the 3D chiral atom-pair descriptors through a 

five-fold external cross-validation procedure. To summarize the classification results for the five-

fold external cross-validation procedure, sensitivity, specificity, and CCR were calculated from 

the single combined set of the five test sets associated with each descriptor matrix. The cAP 

descriptor matrix being evaluated was generated with a threshold of 0.007. As illustrated in 

Figure 3.8, the models obtained using cAP descriptors achieved higher prediction accuracy than 

models obtained from either APair or Dragon descriptors alone. By combining Dragon and cAP 

descriptors, the resulting optimal models achieved higher sensitivity, specificity, and CCR than 

the models obtained from the combination of Dragon and APair descriptors. Furthermore, the 

addition of either APair or cAP descriptors to Dragon descriptors improved the models prediction 

accuracy more than the Dragon descriptors alone. 
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The benchmarking results of the five-fold external cross-validation indicated cAP 

descriptors can be used to build predictive models, especially for a chirality sensitivity dataset. In 

this PEPT1 dataset, models with cAP descriptors achieved more significance and higher 

prediction accuracy than models with APair descriptors. Both cAP and APair descriptors encoded 

valuable information associated with PEPT1 binding that is not captured by 2D descriptors such 

as the Dragon descriptors.  

  

 

Figure 3. 8. Five-fold external cross-validation results of the PEPT1 dataset. 

Models built with descriptors containing only 2D molecular structure information (Dragon 

descriptors) performed worse than models built with descriptors containing 3D molecular 

structure information. Among the descriptors containing 3D molecular structure 

information, descriptor matrices containing chiral atom pair descriptors yielded much 

better performances in classifying the test sets. 
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3.5.2 AmpC β–lactamase Dataset (149 Compounds) 

  When compared to the APair descriptors, only the two cAP descriptor matrices generated 

with the thresholds 0.011 and 0.013 achieved higher values in z-scores during the evaluation of 

significance. As illustrated in Figure 3.9, most of the optimal models (models with the highest z-

score) associated with the corresponding cAP descriptor matrices achieved similar if not lower z-

score values than the model with APair descriptors. This outcome matched the fact that this 

AmpC β-lactamase dataset is fairly insensitive to stereochemistry since there only existed a pair 

of enantiomers with different property labels. However, the outcome of higher z-scores achieved 

 

Figure 3. 9. Degrees of chirality and the corresponding significance for AmpC β-lactamase 
dataset (149 compounds). 

The semi-log plot indicated that only the chiral atom pair descriptor matrices generated with 
a threshold of 0.011 and 0.013 were more significant than the regular atom pair descriptor 

matrix (APair). 
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by setting the chirality threshold to 0.011 and 0.013 suggested that the targeted biological 

property could be influenced by a subset of chiral atoms within the molecular entries. These 

potentially influential chiral atoms and their associated 3D molecular patterns became less 

distinctive as the chirality threshold further increased, thus resulting in a drop in z-score values. 

 A five-fold external cross-validation procedure was applied to evaluate the 

generalizability of the cAP descriptors. To summarize the classification results for the five-fold 

external cross-validation procedure, sensitivity, specificity, and CCR were calculated from the 

single combined set of the five test sets associated with each descriptor matrix. The cAP 

 

Figure 3. 10. Five-fold external cross-validation result of AmpC β-lactamase dataset (149 

compounds). 

For this AmpC β-lactamase dataset, the models built with chiral atom pair descriptors 

achieved better specificity than models built with other descriptors. The outcome was 

interesting, especially when comparing the model performance between descriptor 

matrices containing chiral atom pair descriptors only and the combined descriptor matrix 

containing both Dragon and chiral atom pair descriptors.  
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descriptor matrix being evaluated was generated with a threshold of 0.011. As illustrated in 

Figure 3.10, the models obtained using cAP descriptors achieved higher prediction accuracy 

(higher specificity) than models obtained from either APair or Dragon descriptors alone. 

However, the difference in performance only existed when predicting the non-inhibitors. The 

combination of Dragon descriptors with either APair or cAP descriptors showed minor 

performance gain in specificity more than the Dragon descriptors alone. However, combining 

Dragon and cAP descriptors achieved similar if not equivalent results to the combination of 

Dragon with APair descriptors. 

The benchmarking results of the five-fold external cross-validation indicated cAP 

descriptors can be used to build predictive models that are comparable to the models built with 

Dragon descriptors. For this AmpC β-lactamase dataset, which is relative insensitive to 

stereochemistry, models built with cAP descriptors achieved higher prediction accuracy than 

models with other descriptors. Given the higher prediction accuracy associated with models built 

with cAP and APair descriptors, there could be molecular patterns encoded in these descriptor 

matrices that might not be captured by 2D descriptors such as the Dragon descriptors. 

3.5.3 Artemisinin Dataset 

Similar to the PEPT1 dataset, the model built with APair achieved a much lower 

significance when comparing all fifteen cAP descriptor matrices. As illustrated in Figure 3.11, all 

fifteen optimal models (models with the highest z-scores) associated with the corresponding cAP 

descriptor matrices achieved much higher z-score values than the model with APair descriptors. 

This outcome indicated that the chiral atom types do capture the effect of stereochemistry in this 

chirality sensitive dataset. Additional comparison among the optimal models built with different 

cAP descriptors indicated that different levels of significance were achieved by varying the 

chirality threshold (degree of chirality). Given the ranges of chirality threshold evaluated in this 
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study, the highest z-score value was achieved by the optimal model obtained from the cAP 

descriptor matrix with a chirality threshold of 0.015. 

 

Five-fold external cross-validation was applied to evaluating the generalizability of the 

3D chiral atom-pair descriptors. To summarize the classification results from the five-fold 

external cross-validation procedure, average values for sensitivity, specificity, and CCR were 

reported for each descriptor matrix. The cAP descriptor matrix being evaluated was generated 

with a threshold of 0.015. As illustrated in Figure 3.12, the models obtained using cAP 

 

Figure 3. 11. Degrees of chirality and corresponding significance for the artemisinin dataset. 

The model significance, which is determined by the z-scores, indicated that models built 

with the chiral atom types (atom types 16 and 17) were more significant than the model built 

without (APair; black line). The most significant model was achieved with the threshold of 

0.015(red). 
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descriptors achieved higher CCR than models obtained from either APair or Dragon descriptors 

alone. By combining Dragon and cAP descriptors, the resulting optimal models achieved higher 

specificity than the models obtained from the combination of Dragon and APair descriptors. With 

the addition of either APair or cAP descriptors combined with Dragon descriptors, the prediction 

accuracy of the models improved compared to models obtained from Dragon descriptors alone. 

 

The benchmarking results of the five-fold external cross-validation indicated that cAP 

descriptors can be used to build predictive models for datasets containing chiral centers but not 

necessarily including enantiomeric pairs. In this artemisinin dataset, models with cAP descriptors 

 

Figure 3. 12. Five-fold external cross-validation result of the artemisinin dataset. 

For this, the models built with chiral atom pair descriptors achieved better specificity than 

models built with other descriptors. Similar to the outcome obtained from the AmpC β-

lactamase dataset, models built with chiral atom pair descriptors only achieved better 

specificity than the combined descriptor matrix containing both Dragon and chiral atom 

pair descriptors. 
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achieved more significance and higher prediction accuracy than models with APair descriptors. 

Both cAP and APair descriptors encoded valuable information associated with antimalarial 

property that is not captured by the 2D descriptors, such as the Dragon descriptors 

3.6 Conclusion 

Chirality is an important concept in medicinal chemistry, and many biochemical reactions 

and processes are stereospecific, such as the recognition of ligands by their corresponding 

receptors. In order to identify key stereochemistry associated with a given biological property, 

novel 3D chiral atom-pair descriptors were developed. By varying the chirality threshold, 

different subsets of chiral atoms and their associated molecular patterns were encoded in a 

descriptor matrix. Three datasets containing stereochemistry information were selected for 

benchmarking the developed descriptors. Results indicated that the models based on developed 

3D chiral atom-pair descriptors were more predictive than models obtained from non-chiral 3D 

atom-pair or 2D Dragon descriptors alone. The difference in descriptor performance directly 

correlated to the amount of stereochemistry information available in the dataset. 

Due to the varying amount of chirality data available in the datasets, both 3D chiral and 

3D non-chiral atom-pair descriptors were independently compared in combination with 2D 

Dragon descriptors. The resulting models indicated better prediction accuracy than models 

obtained from Dragon descriptors alone, suggesting that the 3D atom-pair descriptors used in this 

study could be complementary to Dragon descriptors. However, lower prediction accuracy 

associated with the models obtained from both sets of combined descriptors (Dragon + 3D atom-

pairs) when compared to models obtained from 3D atom-pair descriptors alone raised two 

concerns: 1) a problem of simple merge for descriptor matrices and 2) a limitation of DWD with 

variable selection. Thus, simple merging of descriptor matrices can result in the united descriptor 

matrix containing highly correlated descriptors, which could affect the descriptor loadings 

assigned in DWD and decrease the predictivity of the resulting model. To address this problem 
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and to improve the performance of the variable selection DWD, correlation between descriptors 

will have to be considered as part of the variable selection procedure. One possible method would 

be to cluster the descriptors first and evaluate the significance of the descriptors as a group. This 

solution will likely retain all instances when important descriptors are highly correlated with one 

another. 



 
 

Chapter 4 

Novel Protein Descriptors

4.1 Growth of Protein Structure Data 

Proteins, whether from bacteria or the most complex forms of life, are constructed from 

the same ubiquitous set of twenty amino acids (building blocks). Cells can produce proteins with 

strikingly different properties and activities by joining these building blocks in many different 

combinations and varying the length of sequences, creating a great variety of enzymes with 

specific biological activities. Enzymes are usually very specific to the reactions they catalyze and 

the substrates involved. Impressive levels of stereo-, region- and chemo-specificity have been 

demonstrated in enzymes 
71

. This specificity is achieved by the complementarity in characteristics 

such as shape, charge and pattern of hydrophilic/hydrophobic interactions between enzymes and 

substrates. 

Enzymes are generally globular proteins made of long, linear chains of amino acids that 

fold to three-dimensional structures with their sizes ranging from 62 amino acid residues, e.g., the 

monomer of 4-oxalocrotonate tautomerase 
35

, to over 2,500 residues, e.g., the fatty acid synthase 

found in animals 
123

. Each unique amino acid sequence produces a specific structure, which has 

unique properties. Individual protein chains may sometimes group together to form a protein 

complex. Most enzymes are much larger than the substrates they act on, but only a small portion 

of the enzyme (up to 7 amino acids) is believed to be directly involved in catalysis 
15

. This region, 

which is responsible for binding the substrate and carries out the reaction, is known as the active 

site. Enzymes can also contain sites (allosteric sites) that bind cofactors (for catalysis) and/or 

small molecules that directly or indirectly interact with products or substrates of the reaction 
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catalyzed. The later can contribute to the activity of an enzyme through feedback regulation. The 

activities of enzymes are believed to be determined by their three-dimensional structure 
10

. 

Although structure does determine function, predicting a novel enzyme’s activity base purely on 

its structure information remains a challenging problem 
51

.

However, due to recent technology advances in the field of genomics, there are a 

significant amount of protein structures made available. Figure 4.1 shows the nearly exponential 

growth in the number of structures added each year to the Protein Data Bank (PDB) 
19

, a public 

database for biological macromolecular structures. In 1976, there were only 13 protein structures 

in the PDB. Starting from 1990, the annual growth of protein structure entries exceeded 3 digits. 

 

Figure 4. 1. Annual growth of structures in Protein Data Bank (PDB). 

The figure shows the nearly exponential growth of protein structure entries in the PDB. 
The red line represents the cumulative total structure entries available per year (log10 

scale) while the blue bars represent the protein structure entries added in each year.  
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Beginning with 1993, the pace at which protein structures are being discovered has grown at a 

much faster rate, with the PDB exceeding 23,000 structures in 2003, and 78,000 in 2011. 

With the increase in protein structure entries, the number of protein structures with 

unknown function also increases. There were only 5 protein structures with unknown function in 

2000, but within a decade, that number had quickly grown to 2,422. Figure 4.2 illustrates the 

number of protein structures obtained by querying 
110

 with the keyword, “Unknown_Function,” 

grouped by the year that the structure was released. Identifying the function of these protein 

structures remains a challenging task. 

 

A recent revision 
110

 of the PDB allows users easier retrieval of protein structure entries 

based on a wide variety of information associated with the entries. Possible query types include, 

but are not limited to, structure features, sequence features, chemical components, biology, and 

method. Under the biology query types, users can retrieve protein structure entries with similar 

 

Figure 4. 2. Annual growth of protein structures with unknown function. 
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functions by querying Enzyme Commission or Classification (E.C.) number, which is a numerical 

classification scheme for enzymes that is based on the chemical reactions they catalyze. The E.C. 

number is based on a hierarchical order as denoted by the four numbers separated by periods, 

with the first number ranging from one to six to represent the six major classes of enzyme: 

oxidoreductases (E.C. 1), transferases (E.C. 2), hydrolases (E.C. 3), lyases (E.C. 4), isomerases 

(E.C. 5), and ligases (E.C. 6). As the notations increase in length, a progressively finer 

classification of the enzyme can be obtained. The first version of the enzyme classification 

number, which contains 712 enzymes, was published in 1961. The latest version, published in 

1992, contains 3,196 different enzymes 
1
. 

4.2 Overview of Current Methods for Protein Function Annotation 

Function-prediction methods existing today are based on the sequence-function and 

structure-function relationships of proteins. The challenge for protein function annotation is to 

decipher the connection between the structural or sequence similarities and the actual level of 

functional relatedness. In this section, we describe the progress in the automated prediction of 

protein function based on protein sequence and structure. We will first focus on methods that 

attempt to extract functional information from protein sequences, which generally utilize 

sequence alignment and clustering, and then discuss methods that use protein structure 

information. 

4.2.1 Sequence-Based Methods 

Sequence-based methods annotate protein structures with possible function by either 

grouping proteins into families or comparing a target sequence with pre-compiled databases of 

families, which often rely on a sequence similarity search through BLAST 
8
, or Basic Local 

Alignment Search Tool. BLAST calculates similarity of a query sequence against a database of 

sequences and retrieves sequences that resemble the query sequence above a certain threshold. 

Sequences retrieved from BLAST are typically close homologues to the query sequence. 
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To identify distant homologues, Position-Specific Iterative BLAST, or PSI-BLAST 
9
, is 

utilized. PSI-BLAST first retrieves a list of all closely related proteins and generates a sequence 

profile based on multiple sequence alignment (MSA). This sequence profile, which summarizes 

significant features presented in these closely related sequences, is served as query for searching 

the database. Examples of these sequence profiles can be found at Conserved Domains Database 

90
 (CDD), ProDom 

27
, and PROSITE 

68
. Sequence profiles can also be obtained through hidden 

Markov models (HMM), which assume the system being modeled is a memoryless stochastic 

process with unobserved states. Examples of sequence profiles generated from HMM are 

provided by Pfam 
54

, EVEREST 
106

, and SMART 
85

. All profile-based methods vary significantly 

in their level of automation, manual curation, and reliance on complementary resources in the 

annotation of protein functions 
88

. By integrating all the different methods, a more comprehensive 

coverage can be achieved, such as shown in InterPro 
95

, an integrated database of protein families 

that combines at least twelve member databases.  

4.2.2 Structure-Based Methods 

Observations have been made that evolution retains the protein folding pattern long after 

sequence similarity becomes undetectable 
37;143

. For example, the catalytic triad located in the 

active site of the enzyme is structurally preserved in all serine protease enzymes. The triad is a 

coordinated structure consisting of three essential amino acids: histidine (His), aspartic acid (Asp), 

and serine (Ser). Mapping the triad back to the sequence indicates that the His, Asp, and Ser are 

located at sequence positions of 57, 102, and 195 for bacterial serine protease. For mammalian 

serine protease, the positions are 64, 32 and 221 respectively (Figure 4.3). Neither the order nor 

the length between these three amino acids is conserved at the sequence level 
103

. Consequently, a 

benchmark study showed that structural similarities can be more reliable than sequence 

similarities for grouping proteins with a common biological function 
88;131

. 
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Structure similarity can be calculated by using global structure comparison, which 

compares the structure of a queried protein to domains in the structure databases. Global 

structure-comparison methods, such as DALI 
65

, MSDFold 
79

, VAST 
89

, CE 
119

, STRUCTAL 
73

, 

and FATCAT 
147

, identify structural neighbors in the Protein Data Bank through pairwise 

structural alignment and differ in alignment methods; however, they do not discriminate between 

conservation of the overall fold and functionally relevant regions of the protein 
88

. By focusing 

structure similarity comparison on more localized regions, such as clefts, pockets and surfaces, 

the identification and comparison of such regions can suggest similarity in protein function, 

because the ligand-binding pocket or active site is commonly situated in the largest cleft in the 

protein 
83

. 

Multiple methods have been developed to define these local regions within a protein 

structure. SURFNET 
58;82

 attempts to identify clefts by fitting spheres of a range of sizes between 

atoms of a given protein. Further enhancement can be made by coupling SURFNET with 

ConSurf 
81

 to isolate the clefts that are close in proximity to the evolutionarily conserved residues 

which are defined by the ConSurfHSSP database 
59

. 

A surface-comparison method that identifies similar surface patterns based on 

geometrically defined pocket and void surfaces of amino acid residues on proteins is called 

pvSOAR 
21;22

 (pocket and void Surfaces Of Amino acid Residues). This method first establishes a 

residue correspondence between surfaces by aligning sub-sequences of surface residues. These 

residues are then superimposed and the resulting root-mean-square deviation (RMSD) is 

evaluated for statistical significance. The pvSOAR and CASTp 
52

 databases are the two essential 

components for the Global Protein Surface Survey (GPSS) 
23

, which contains three-dimensional 

libraries of functionally annotated surfaces from ligand, deoxyribonucleic acid (DNA), metal and 

peptide binding surfaces. 

Other methods such as Catalytic Site Atlas 
105

, PDBSiteScan 
69

, PINTS 
124

 (Patterns In 

Non-homogous Tertiary Structures), and ET 
87

 (Evolutionary Trace) are template-based methods 
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to identify active-site residues. These methods utilize a variety of template-based scans to identify 

active sites and putative ligand-binding pockets. The representation of a template varies by 

method and can be derived either manually or automatically. For Catalytic Site Atlas, the 

templates can either reflect the backbone orientation (a set of Cα and Cβ atoms) or the orientation 

of the ends of the residue sidechains (three functional atoms for each sidechain). These templates 

from Catalytic Site Atlas are derived manually by mining the literature. The templates from 

PDBScan that contain a set of residues and their corresponding atoms are automatically generated 

based on the information within the SITE records of PDB files and protein-protein interaction 

data. PINTS defines its templates by detecting the largest common 3D arrangement of residues 

between any two structures. The representation of the templates in PINTS can be atoms or points 

defined by other criteria (e.g., sidechain centroids). As for ET, it uses phylogenetic trees to rank 

residues in a protein sequence by their evolutionary importance and maps these residues onto the 

structure. 

There are also other pocket-centric methods, such as FEATURE 
12

, SiteEngine 
121

, and 

SURF’S UP 
116

, that describe protein-ligand interactions and active-site chemistry by the 

physicochemical properties of the local environments in the pockets and surfaces. For example, 

FEATURE represents the local microenvironment using various physical and chemical properties 

ranging from simple atom-based characteristics such as charge to polypeptide-based 

characteristics such as type of secondary structure. These methods are based on the assumption 

that protein surface regions with similar physicochemical properties and shapes may perform 

similar functions and bind similar binding partners. 

Integrating multiple resources from both sequence-based and structure-based methods 

provides a consensus view, which increases the likelihood of accurate predictions of function. 

Examples of such integrated metaservers include ProFunc 
84

 and ProKnow 
102

. However, most 

methods described above either rely on global structural alignment or local region comparison 

(template based). Methods based on global structural alignment find proteins with a similar fold, 
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but will not be successful when either proteins adopt a new fold (i.e., does not resemble any 

known structure) or proteins adopt very common folds that perform many different functions. 

Template-based methods usually perform better in scenarios where methods based on global 

structural alignment fail; however, the performance of the template-based methods depends on 

the identification of the active sites. 

4.3 Motivation 

With the large amount of protein structure information available, identifying the common 

structure features, or structure motifs associated with a group of enzymes sharing similar 

functions, has become feasible. Once identified, the presence of these structure motifs, which 

could be portions of an active site, allosteric site, or structure conserved region, is used to 

associate (or infer) the protein structures with unknown functions to a enzyme class with known 

function. Function inference from structure is facilitated by the use of patterns of residues (3D 

motifs), normally identified by expert knowledge, that correlate with function. As an alternative 

to often limited expert knowledge, we use statistical learning techniques and novel protein 

descriptors to automatically identify residues that contribute to protein functions. 

4.4 Novel Protein Descriptors 

The goal for designing novel protein descriptors is to study the structure-function 

relationship of proteins through QSAR-like strategies. By combining variable selection DWD 

with the novel protein descriptors, it is possible to identify important amino acids that are 

common in proteins with similar functions. 

The novel protein descriptors implemented in this research are designed to characterize 

the three-dimensional protein structures, with emphasis on the local geometric properties of 

proteins. The rationale is that the 3D arrangement of enzyme active-site residues is often more 

conserved than the overall fold. For enzymes, or proteins with similar functions, it is not the 

similarity of their global structures that define their functions but rather the catalytic sites (local 
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region). Enzymes can have dissimilar structures globally but perform the same catalytic reaction. 

The goal of this set of descriptors is to capture the information within the local regions of protein 

structures. 

For protein function annotation, multiple studies have successfully identified family 

motifs by applying Delaunay Tessellation to the protein crystal structures 
33;67;78;118;122;135;137-139

. By 

representing amino acid residues in protein chains by Cα atoms or side-chain centroids, a protein 

is represented as a set of points in three-dimensional space. Cα atoms, which are located on a 

protein backbone, were chosen to represent the amino acid residues in the protein descriptors for 

their relative stability over the side-chain centroid. Delaunay Tessellation naturally partitions the 

space occupied by the protein into tetrahedra with Cα atoms or side-chain centroids at their 

vertices. Implementing Delaunay tessellation on this set of points generated an aggregate of 

space-filling irregular tetrahedra, or Delaunay simplices. The vertices of each simplex 

(tetrahedron) define objectively four nearest neighbor Cα atoms, which correspond to four 

nearest-neighbor residues; thus, these tetrahedra can be categorized by the amino acid residues 

occupied at their vertices. By combining the different categories of tetrahedra and the 

corresponding geometric properties, a protein structure can be encoded as a feature vector. 

4.4.1 Classification Scheme of Amino Acids (Ten Classes) and Geometric Properties 

Each tetrahedron is categorized by the various amino acids occupied at its four vertices, 

and the number of possible tetrahedral categories, if determined by all the twenty amino acids, is 

8,855. This number is tripled when geometric features, such as volume, exposed surface area, and 

hidden surface area, are incorporated into each tetrahedral category as features to describe protein 

structures. This rapid increase in dimensions puts constraints on the number of possible geometric 

properties that can be incorporated into each tetrahedral category. By reducing the twenty amino 

acids labels into ten classes, the total number of tetrahedral categories can be drastically reduced 

(a reduction that exceeds tenfold reduction), and Table 4.1 showed the categorization of possible 



70 
 

tetrahedral associated with twenty amino 

acids and ten amino acid classes, which 

are 8,855 and 715 respectively. A recent 

study by Li et al. compared the ability to 

detect distantly related protein folds with 

various reduced alphabets of amino acids 

and suggested that ten classes of amino 

acids may be the degree of freedom for 

characterizing the complexity in proteins 
86

. 

We assigned the vertices of the tetrahedra 

using a modified Delvin’s amino acid 

classification (Table 4.2) that classifies 

twenty amino acids into ten classes.  

After establishing the tetrahedral categories with ten amino acid classes, we calculated 

various geometric properties, such as volume and two different surface area measures (i.e., 

hidden and exposed surfaces between tetrahedra), for a set of tetrahedra to describe a protein 

structure. The volume of a tetrahedron encodes the proximity of the four amino acids at its 

vertices situated in space. The hidden surface area is the surface area that a tetrahedron shared 

with its nearest neighboring tetrahedron, and the exposed surface area is the unshared surface area 

of a tetrahedra. By recording different surface area measures, the location of the tetrahedron with 

respect to other tetrahedra was encoded in the descriptors. For instance, a tetrahedron surrounded 

by 4 other tetrahedra would have zero exposed surface area; thus it is buried inside the protein 

structure. 

Tetrahedral Qty Qty

Categories (20 amino acids) (10 Classes)

AAAA 20 10

AAAB 380 90

AABB 190 45

AABC 3420 360

ABCD 4845 210

Total 8855 715  

Table 4. 1. Possible categories of tetrahedra. 

The amino acids corresponding to the 

vertices of each tetrahedron can be classified 

into 10 classes. By placing the twenty amino 

acids into ten classes, there is a reduction of 

the possible tetrahedron types from 8,855 to 

715. The A, B, C, and D, which are listed in 

the tetrahedral categories, represent different 

labels or classes of amino acids. 
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Our implemented protein descriptors characterize a protein structure with a vector 

containing 2,145 features, which include the total volume, total hidden surface area, and total 

exposed surface area for each of the 715 tetrahedral categories. As illustrated in Figure 4.3, when 

comparing two hypothetical proteins containing the same amount of tetrahedra of the same 

category but different sizes, one can easily distinguish the two proteins by using the total volume. 

Class Full Name 3 Letter 1 Letter Superstructure structure

Glycine Gly G

Alanine Ala A

Valine Val V

Leucine Leu L

Isoleucine Ile I

2 Proline Pro P Monoamino, monocarboxylic Heterocyclic

Tyrosine Tyr Y

Phenylalanine Phe F

Tryptophan Trp W

4 Methionine Met M Monoamino, monocarboxylic Thioether

Serine Ser S

Threonine Thr T

6 Cysteine Cys C Monoamino, monocarboxylic Mercapto

Asparagine Asn N

Glutamine Gln Q

Aspartate Asp D

Glutamate Glu E

Lysine Lys K

Arginine Arg R

Histidine His H

Small

Unsubstituted

Aromatic

Hydroxy

Carboxamide

8

9

Monoamino, monocarboxylic

Monoamino, monocarboxylic

Monoamino, monocarboxylic

Monoamino, monocarboxylic

Monoamino, monocarboxylic

Monoamino, dicarboxylic

Diamino, monocarboxylic

1

0

3

5

7

 

Table 4. 2. Classification of amino acids. 

The twenty amino acids were partitioned into 10 classes based on Devlin
46

. We 

split Class 0 and Class 1, which Devlin puts in the same class.  
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4.4.2 Geometric Property of α–helix vs. β sheet 

 In proteins, α–helix and β-sheet are the two common forms of secondary structure, or 

highly regular local sub-structures. To evaluate the ability of different geometric properties in 

capturing the difference between α–helix and β-sheet, we applied Delaunay Tessellation to Cα 

atoms of two PDB entries that represent α–helix (PDB ID: 2GOF) and β-sheet (PDB ID: 2JNI). 

We then removed tetrahedra containing an edge greater or equal to 12 Å in order to focus on the 

local neighborhood relationships of amino acids within a protein structure. Setting the threshold 

to 12 Å was empirical, and this threshold value was determined based on tessellating a random 

set of PDB entries to avoid orphan Cα atoms that were not associated with any tetrahedron. 

Visual comparison between the two sets of Delaunay simplices (tetrahedra) suggested that 

 

15 14 13

Protein B

40 28

19

Protein A

Figure 4. 3. Illustration of the potential benefit by encoding the geometric property of 

tetrahedra for proteins. 

Both protein A and B contain three instances of a particular tetrahedral category with 

different sizes. Based on the instances of the tetrahedral category, the two proteins are 

indistinguishable, but the two proteins become distinguishable when total volume is used 

to characterize these tetrahedra within the two proteins. 
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geometric properties alone (without information regarding the composition of amino acids) can 

distinguish α–helix from β sheet. Figure 4.4 indicates that the packing of tetrahedra between α–

helix (PDB ID: 2GOF) and β-sheet (PDB ID: 2JNI) appears different. The tetrahedra in α–helix 

visually appear more uniform than those in β sheet. 

 

By comparing three geometric properties of tetrahedra, i.e., volume, hidden surface area, 

and exposed surface area, between α–helix and β-sheet, we can make two observations. First, the 

tetrahedra associated with α–helix have less variation in both volume and hidden surface area 

(shared surface area). The tetrahedra with volume greater than 15 units or with exposed surface 

area greater than 60 units were likely to belong to β sheet. This result confirmed the uniformity of 

tetrahedra associated with α–helix that were previously observed through visual inspection. 

Second, the exposed surface areas for tetrahedra associated with both α–helix and β-sheet 

have a similar longtail distribution with zero as the dominate value (bottom plot of Figure 4.5). 

This finding suggested that using the exposed surface area of a tetrahedron as a feature by itself is 

insufficient to distinguish an α-helix from a β sheet. 

 

 

 

Figure 4. 4. α–helix vs. β–sheet. 

The packing of the tetrahedra in blue and red corresponds to the α–helix (PDB ID: 2GOF) 
and the β-sheet (PDB ID: 2JNI) respectively. The tetrahedra in α–helix are more uniform 

in size than those in β-sheet. 
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Figure 4. 5. Difference in geometric properties of tetrahedra between α-helix and β sheet. 

Tetrahedra associated with α-helix are blue; those with β-sheet are red. The tetrahedra 

associated with α-helix are more uniform than those from β-sheet as shown in volume (top) 
and hidden surface area (middle). It is less distinctive in exposed surface area (below). 



75 
 

4.5 Selection of Enzyme Diversity Set 

  

We selected a subset representing each of the six major types of enzyme as the enzyme 

diversity set. This enzyme diversity set served as the negative class to contrast with the enzyme 

class of interest (positive class) in order for the classifier described in Chapter 2 to extract 

tetrahera unique to the positive class. The selection criteria for PDB entries associated with each 

major enzyme type were as follows: 

 Must be a biological unit 

 Must match the enzyme classification number (top level) 

 Must have X-ray resolution better than 1.59 Å 

 Must have sequence identity less than 50% 

 

Figure 4. 6. Distribution of the six major enzyme groups in the enzyme diversity set. 

There are 1,005 enzymes in the enzyme diversity set, consisting of hydrolases (EC 3) 
45%, transferases (EC 2) 21%, and oxidoreductases (EC 1) 18%. Lyases (EC 4), 

isomerases (EC 5), and ligases (EC 6) made up the remaining data, each less than 10%.  
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The resulting enzyme diversity set contained 1,005 PDB entries, consisting of hydrolases (EC 3) 

45%, Transferases (EC 2) 21%, and oxidoreductases (EC 1) 18%. Lyases (EC 4), isomerases (EC 

5), and ligases (EC 6) made up the remaining data, with each less than 10%. Figure 4.6 shows the 

distribution of enzyme families in the enzyme diversity set. The number of entries in the enzyme 

diversity set was further reduced by removing entries with identical function as the enzyme class 

of interest. Thus the size of the enzyme diversity set depends on the enzyme class of interest.  

 The distribution of the enzyme families within the enzyme diversity set showed the 

limitation for selecting the enzyme class of interest. With the data size of isomerases and ligases 

both under 50, it was not feasible to study the enzymes in these two groups with more specific 

function. 

4.6 Selection of Enzyme Homologs 

 The level of function specificity for a given enzyme class can be determined by its EC 

number. The length of the EC numbers (up to four digits) is designed to reflect the level of 

specificity in enzyme function. As the enzyme functions become more specific, their 

corresponding EC number becomes longer. The selection criteria for the enzyme homologs were 

similar to that of the enzyme diversity set. However, the sequence identity criterion had to be 

modified in order to obtain a sufficient number of structure entries that are functional homologs 

with low sequence similarity. The selection criteria for the enzyme homologs were as follows: 

 Must be a biological unit 

 Must match exactly the enzyme classification number 

 Must have X-ray resolution better than 1.59 Å 

 Must have sequence identity less than 70% 

The PDB partitions the sequence identity into intervals and the jump from 50% to 70% is the 

smallest step possible. Six different functional classes of enzyme homologs were selected 

according to these criteria: superoxide dismutase (EC1.15.1.1), cellulase (EC 3.2.1.4), β-
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lactamase (EC 3.5.2.6), methyltransferase (EC 2.1.1), protein-tyrosine kinase (EC 2.7.10), and 

protein-serine/threonine kinases (EC 2.7.11). 

These six functional classes of enzyme homologs were selected because the numbers of 

entries associated with them are sufficient after applying the selection criteria. More than ten 

PDB entries, which are functional homologs, were retrieved for all of the six enzyme classes. 

These six enzyme classes could be grouped into two types: enzymes classes with more specific 

function or enzymes classes with more general functions. The goal to include enzyme classes 

with two different levels of function specificity was to evaluate the capability of applying the 

protein descriptors in order to study enzyme classes with more generalized function.  

4.6.1 Superoxide Dismutase (EC 1.15.1.1) 

EC 1.15.1.1 is the enzyme classification number for superoxide dismutases (SOD). The 

enzymes that belong to this class are responsible to catalyze the dismutation of superoxide into 

oxygen and hydrogen peroxide. They serve as an important antioxidant defense in nearly all cells 

exposed to oxygen. Three 

major families of 

superoxide dismutase are 

classified based on the 

binding metal cofactor:  

SODs that bind to nickel, 

SODs that bind to either 

iron or manganese, and 

SODs that bind to 

copper/zinc. 

Abnormalities in the 

copper- and zinc-

PDB Entries Types

1BSM IRON (III) SUPEROXIDE DISMUTASE

1F1G COPPER,ZINC SUPEROXIDE DISMUTASE

1IX9 MANGANESE SUPEROXIDE DISMUTASE

1MFM COPPER,ZINC SUPEROXIDE DISMUTASE

1OAL COPPER,ZINC SUPEROXIDE DISMUTASE

1T6U NICKEL SUPEROXIDE DISMUTASE

1TO4 COPPER,ZINC SUPEROXIDE DISMUTASE

1XSO COPPER,ZINC SUPEROXIDE DISMUTASE

2AQM COPPER,ZINC SUPEROXIDE DISMUTASE

2AQP COPPER,ZINC SUPEROXIDE DISMUTASE

2NYB IRON (II) SUPEROXIDE DISMUTASE

2P4K MANGANESE SUPEROXIDE DISMUTASE

3CE1 COPPER,ZINC SUPEROXIDE DISMUTASE

3F7L COPPER,ZINC SUPEROXIDE DISMUTASE  

Table 4. 3. Fourteen PDB entries retrieved based on the 
selection criteria from EC 1.15.1.1. 
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dependent superoxide dismutase gene may contribute to the development of Amyotrophic Lateral 

Sclerosis, a fatal disease that causes deterioration of motor nerve cells in the brain and spinal cord 

41;98;109
. Table 4.3 shows the fourteen PDB entries associated with SOD that met the selection 

criteria. 

4.6.2 Cellulase (EC 3.2.1.4) 

EC 3.2.1.4 is the enzyme classification number for cellulase, which is a class of enzymes 

produced by fungi, bacteria, and protozoans to catalyze cellulolysis. Other types of organisms, 

including some plants and animals, also produce cellulases. Several different kinds of cellulases 

are known, which differ structurally and mechanistically, and their applications exist in both 

commercial and pharmaceutical settings. Commercial applications of cellulases include laundry 

detergents; food processing, e.g., hydrolysis of cellulose during drying of coffee beans; and 

renewable energy, e.g., hydrolysis of cellulose in biomass to glucose in the fermentation stage. 

Since cellulase is a digestive 

enzyme and an anti-cholinergic 

agent, it is used to help digest 

protein, starch, and fat.  As a result, 

there are also pharmaceutical 

applications associated with 

cellulases, including treatments for 

bowel spasms and Phytobezoars, a 

form of cellulose bezoar found in 

the human stomach. Table 4.4 

shows the eighteen retrieved PDB 

entries associated with cellulase 

based on the selection criteria. 

PDB Entries Types

1H1N ENDO TYPE CELLULASE ENGI

1KS8 ENDO-BETA-1,4-GLUCANASE

1KWF ENDOGLUCANASE A

1OA2 ENDO-BETA-1,4-GLUCANASE

1OJJ ENDOGLUCANASE I

1OLR ENDO-BETA-1,4-GLUCANASE

1TVN CELLULASE

1UWW ENDOGLUCANASE

1WC2 ENDOGLUCANASE

2BOG ENDOGLUCANASE E-2

2BW8 ENDOGLUCANASE

2E4T ENDOGLUCANASE

2ENG ENDOGLUCANASE V

2JEN ENDO-BETA-1,4-GLUCANASE

2NLR ENDOGLUCANASE

2V3G ENDOGLUCANASE H

3ACH ENDO-BETA-1,4-GLUCANASE

7A3H ENDOGLUCANASE

 
Table 4. 4. Eighteen PDB entries retrieved based on 

the selection criteria for EC 3.2.1.4. 
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4.6.3 β-lactamase (EC 3.5.2.6) 

EC 3.5.2.6 is the enzyme classification number for β-lactamase, which is secreted by 

Gram-negative bacteria to hydrolyze the β-lactam ring of penicillins and cephalosporins. Based 

on the specificity of the β-lactamase, individual enzymes may be called penicillinase or 

cephalosporinase. There are four groups of β-lactamase that are roughly determined by inhibition 

of clavulanic acid. Enzymes in group 1 are cephalosporinases not inhibited by clavulanic acid 

while enzymes in group 4 are penicillinases that are also not inhibited by clavulanic acid. Group 2 

contains penicillinases, cephalosporinases, or both that are inhibited by clavulanic acid. Group 3 

holds the zinc based or metallo β-lactamases. Due to the increased size in group 2, it can further 

be divided into 8 

subgroups based 

on the specificity 

of the enzymes. 

Table 4.5 showed 

the twelve 

retrieved PDB 

entries associated 

with β-lactamase 

based on the 

selection criteria. 

  

PDB Entries Types

1K38 BETA-LACTAMASE OXA-2

1K55 BETA-LACTAMASE OXA-10

1M2X CLASS B CARBAPENEMASE BLAB-1

1M6K BETA-LACTAMASE OXA-1

1MQO BETA-LACTAMASE II

1NYM BETA-LACTAMASE TEM

1O7E L2 BETA-LACTAMASE

1ONG BETA-LACTAMASE SHV-1

1ZKJ EXTENDED-SPECTRUM BETA-LACTAMASE

2GMN METALLO-BETA-LACTAMASE

2HDS BETA-LACTAMASE

3G35 BETA-LACTAMASE CTX-M9A  

Table 4. 5. Twelve PDB entries retrieved based on the selection 

criteria for EC 3.5.2.6. 
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4.6.4 Methyltransferases (EC 2.1.1) 

A methyltransferase (EC 2.1.1) is a type of 

transferase enzyme that transfers a methyl group from a 

donor to an acceptor and can be further classified into 

195 subfamilies. Methylation often occurs on amino 

acids in protein structures or nucleic bases in DNA. 

DNA methylation is often utilized to silence and regulate 

genes without changing the original DNA sequence. 

While DNA methylation is an important regulator of 

gene transcription, its role in carcinogenesis has recently 

generated considerable interest 
43

. Compared with 

normal cells, the malignant cells show major disruptions 

in their DNA methylation patterns 
17;18;43

. 

Methylation of amino acids in the formation of 

proteins leads to more diversity of possible amino acids 

and, therefore, more diversity of function. The 

methylation reactions occurring on nitrogen atoms in N-

terminal and side-chain positions are generally 

irreversible 
38;39

. Table 4.6 shows the thirty-two retrieved 

PDB entries associated with methyltransferase based on 

the selection criteria. 

  

PDB Entries E.C. Numbers

1EJ0 2.1.1.-

1I1N 2.1.1.77

1JG1 2.1.1.77

1NTH 2.1.1.-

1V2X 2.1.1.34

2BLN 2.1.1.2

2F69 2.1.1.43

2G8O 2.1.1.45

2GB4 2.1.1.67

2NXC 2.1.1.-

2WK1 2.1.1.-

2Z6R 2.1.1.98

3AJD 2.1.1.-

3BO5 2.1.1.43

3C3Y 2.1.1.104

3CJS 2.1.1.-

3CKK 2.1.1.33

3DMG 2.1.1.-

3DOU 2.1.1.-

3DUW 2.1.1.-

3DXY 2.1.1.33

3EVF 2.1.1.56;2.7.7.48

3F9X 2.1.1.43

3FRH 2.1.1.-

3FTD 2.1.1.-

3FUT 2.1.1.-

3G5S 2.1.1.74

3G5T 2.1.1.145

3G89 2.1.1.-

3HNA 2.1.1.43

3HVI 2.1.1.6

3M6W 2.1.1.-  

Table 4. 6. Thirty-two PDB 

entries retrieved based on the 

selection criteria for EC 2.1.1. 
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4.6.5 Protein-Tyrosine Kinases (EC 2.7.10) 

Tyrosine kinase is an enzyme that regulates many cellular functions through the transfer 

of a phosphate group from adenosine-5’-triphosphate (ATP) to the amino acid tyrosine on the 

protein.  Phosphorylation of proteins by kinases is an important mechanism in cellular signal 

transduction and cellular activity regulation in response to external and internal stimuli. The 

cellular activities regulated by tyrosine kinases include apoptosis, cell cycle progression, 

cytoskeletal rearrangement, differentiation, development, the immune response, nervous system 

function, and transcription 
111

. Dysregulation of protein kinases caused by the mutation or the 

fusion of tyrosine kinases with a partner protein has been implicated with cancer 
77;111

.  

Protein tyrosine kinases are divided into two 

main classes: receptor tyrosine kinases (EC 2.7.10.1) 

and nonreceptor tyrosine kinases (EC 2.7.10.2). Both 

receptor and nonreceptor tyrosine kinases have emerged 

as clinically useful drug target molecules for treating 

certain types of cancer 
77;141

. Table 4.7 shows the eleven 

retrieved PDB entries associated with EC 2.7.10 based 

on the selection criteria. 

  

PDB Entries E.C. Numbers

2QOL 2.7.10.1

2REI 2.7.10.1

3CC6 2.7.10.2

3CQT 2.7.10.2

3EAZ 2.7.10.2

3EG3 2.7.10.2

3EWH 2.7.10.1

3F66 2.7.10.1

3G0E 2.7.10.1

3GEN 2.7.10.2

3KFA 2.7.10.2  

Table 4. 7. Eleven PDB entries 

retrieved base on the selection 
criteria for EC 2.7.10. 
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4.6.6 Protein-Serine/Threonine Kinases (EC 2.7.11) 

Protein serine/threonine kinases (EC 2.7.11) differ from protein tyrosine kinases by 

phosphorylating the OH group of serine or threonine instead of tyrosine. EC 2.7.11 can be further 

divided into 31 subfamilies (Table 4.8). The activity of serine/threonine protease can be triggered 

Subfamilies Descriptions

2.7.11.1 Non-specific serine/threonine protein kinase.

2.7.11.2 [Pyruvate dehydrogenase (acetyl-transferring)] kinase.

2.7.11.3 Dephospho-[reductase kinase] kinase.

2.7.11.4 [3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring)] kinase.

2.7.11.5 [Isocitrate dehydrogenase (NADP(+))] kinase.

2.7.11.6 [Tyrosine 3-monooxygenase] kinase.

2.7.11.7 [Myosin heavy-chain] kinase.

2.7.11.8 Fas-activated serine/threonine kinase.

2.7.11.9 [Goodpasture-antigen-binding protein] kinase.

2.7.11.10 I-kappa-B kinase.

2.7.11.11 cAMP-dependent protein kinase.

2.7.11.12 cGMP-dependent protein kinase.

2.7.11.13 Protein kinase C.

2.7.11.14 Rhodopsin kinase.

2.7.11.15 [Beta-adrenergic-receptor] kinase.

2.7.11.16 [G-protein-coupled receptor] kinase.

2.7.11.17 Calcium/calmodulin-dependent protein kinase.

2.7.11.18 [Myosin light-chain] kinase.

2.7.11.19 Phosphorylase kinase.

2.7.11.20 [Elongation factor 2] kinase.

2.7.11.21 Polo kinase.

2.7.11.22 Cyclin-dependent kinase.

2.7.11.23 [RNA-polymerase]-subunit kinase.

2.7.11.24 Mitogen-activated protein kinase.

2.7.11.25 Mitogen-activated protein kinase kinase kinase.

2.7.11.26 [Tau protein] kinase.

2.7.11.27 [Acetyl-CoA carboxylase] kinase.

2.7.11.28 Tropomyosin kinase.

2.7.11.29 [Low-density-lipoprotein receptor] kinase.

2.7.11.30 Receptor protein serine/threonine kinase.

2.7.11.31 [Hydroxymethylglutaryl-CoA reductase (NADPH)] kinase.  

Table 4. 8. List of subfamilies associated with EC 2.7.11. 

EC 2.7.11 can be further classified into 31 subfamilies. 
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by DNA damage and chemical signals, such as 

cAMP/cGMP, diacylglycerol, and Ca2+/calmodulin. 

Compared to tyrosine kinases, serine/threonine 

kinases received comparatively less attention in cancer 

studies. However, a recent study has found frequent 

alterations in the expression of serine/threonine kinases 

in human cancers 
31

. Table 4.9 shows the twenty-two 

retrieved PDB entries associated with EC 2.7.11 based 

on the selection criteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDB Entries E.C. Numbers

1UNR 2.7.11.1

2HLR 2.7.11.30

2IZR 2.7.11.1

2IZX 2.7.11.11

2J0I 2.7.11.1

2R3I 2.7.11.22

2RIK 2.7.11.1

2W5A 2.7.11.1

3A99 2.7.11.1

3BHY 2.7.11.1

3CCD 2.7.11.-

3F6Q 2.7.11.1

3FJQ 2.7.11.11

3FVH 2.7.11.21

3GP2 2.7.11.17

3K21 2.7.11.1

3KHF 2.7.11.1

3KNB 2.7.11.1

3LKM 2.7.11.7

3NSZ 2.7.11.1

3OEF 2.6.11.24

3PA3 2.6.11.1  

Table 4. 9. Twenty-two PDB 
entries retrieved based on the 

selection criteria for EC 2.7.11. 
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4.7 Modeling Results 

4.7.1 Superoxide Dismutase (EC 1.15.1.1) 

After 

applying the 

classification 

method described 

in Chapter 2 to 

separate the EC 

1.15.1.1 from the 

enzyme diversity 

set, nine different 

models with 

corresponding z-

score, sensitivity, 

and specificity 

values were 

obtained. As 

illustrated in Figure 4.7, the z-score was the highest, thus most significant, when only the top five 

ranked features were considered. This particular plot was to help guiding the selection of features 

when multiple z-scores are close to one another in values. Since the z-score associated with the 

top five ranked features is distinct from the rest of the z-scores, sensitivity and specificity will not 

be considered for selecting the important features of superoxide dismutase. With the top 5 ranked 

features, it is possible to achieve sensitivity of 1.0 and specificity above 0.90. 

  

 

Figure 4. 7. Identifying the most significant model through z-scores for 
the EC1.15.1.1 dataset. 

This semi-log plot indicates that the z-score associated with the top five 
features is the highest. The y-axis on the left (Percentage) is for 

sensitivity and specificity while the y-axis on the right is for the z-score. 
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Figure 4.8 shows the top five 

ranked features associated with EC 

1.15.1.1. The descriptor names of 

these top five ranked features 

indicated that four tetrahedral 

categories were identified: 6600, 9997, 

9999, and 9995. For tetrahedral 

category 6600, a larger value in total 

volume was preferred for EC 1.15.1.1. 

For both 9997 and 9999 tetrahedral 

categories, a larger value in total 

hidden surface area was preferable. 

For tetrahedral category 9995, both total volume and total hidden surface area were listed in the 

top five features, which implied that a tetrahedron with large volume but small hidden surface 

area is likely to associate with EC 1.15.1.1. 

Mapping these four categories of tetrahedra on to the 14 structures showed interesting 

results, as they tend to cluster around the binding ligands (Figure 4.9 and Figure 4.10). Among 

the fourteen structure entries, tetrahedra with category 6600 appeared only on SODs that bind to 

copper/zinc (Cu/Zn). In addition, tetrahedra with category 9999 did not appear on all the Cu/Zn 

binding SOD. The remaining three categories of tetrahedra appeared to cluster around the binding 

ligands, with the exception of PDB entry 1T6U, which was the only nickel binding SOD among 

the 14 structure entries. Although the tetrahedra in PDB entry 1T6U did not cluster around the 

ligand, nickel ion, these tetrahedra did cluster at six local regions. Incidentally, there are also six 

nickel ions in this PDB entry. 

  

 

Figure 4. 8. The five most significant features 
associated with SOD. 

The bar graph shows the five most significant 
features selected by DWD and their corresponding 

weights. With the exception of 9995-hsa, the 

selected features all had received positive weights. 
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Figure 4. 9. Mapping the four identified tetrahedral categories onto structures associated 
with SOD binding to Fe

3+
 and Mn

2+
. 

The four categories of tetrahedra clustered around the binding ligands. Among the 14 

structure entries, the tetrahedron with category 6600 did not occur in SODs that bind to 

either iron or manganese. The remaining three categories of tetrahedra appeared to cluster 

around the binding ligands. Both PDB entries (1BSM and 2P4K) belong to the same SOD 

family. 
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Figure 4. 10. Mapping the four identified tetrahedral categories onto structures associated 

with SOD binding to Cu
2+

/Zn
2+

 and Ni
2+

. 

When mapping the four categories of tetrahedra onto the fourteen structure entries, 

tetrahedron with category 6600 appeared only on SODs that bind to Cu
2+

/Zn
2+

. The 

additional molecule in the PDB entry 3CE1 is an acetate ion. For the PDB entry 1T6U, the 

identified tetrahedra did not cluster around the binding ligand; however, it was the only 

nickel binding SOD among the fourteen structure entries. 
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 For PDB entry 1TO4, which is a copper and zinc binding SOD with two identical chains 

illustrated in Figure 4.11, only two of the four tetrahedral categories appear:  6600 and 9997. 

Tetrahedral category 9997 was identified to locate near the zinc ion, but it only appeared on one 

of the two chains.  

 

Figure 4. 11. Mapping the four identified tetrahedral categories onto PDB entry, 

1TO4. 

The PDB entry, 1TO4, contains two identical chains, but the tetrahedral category 

9997, which was found to be near the zinc ion, only appears on one chain and not the 

other.  None of the four identified tetrahedral categories were found near the copper 

(II) ions.  The coordinate of Cu
2+

 is imprecise as shown in the figure. 
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4.7.2 Cellulase (EC 3.2.1.4) 

 Nine different models with corresponding z-score, sensitivity, and specificity values were 

obtained after applying the classification method described in Chapter 2 to separate the EC 

3.2.1.4 from the enzyme diversity set. As illustrated in Figure 4.12, there were a few models with 

z-scores in 

proximity of one 

other. The model 

built with the top 

20 ranked features 

achieved a z-score 

of 10.95 while the 

z-score associated 

with the model 

with the top ten 

ranked features 

was 10.67. Since 

the z-scores of 

these two models 

were above 10.5, 

we used both 

sensitivity and specificity to guide the final selection of features. The set of the 20 top ranked 

features had higher z-score (10.95), sensitivity (0.94) and specificity (0.90) than the set of the 10 

top ranked features, so we selected the top 20 ranked features as the important features associated 

with cellulase. 

 

Figure 4. 12. Identifying the most significant model through z-score 

for the EC 3.2.1.4 dataset. 

This semi-log plot indicates that the z-scores associated with the top 

ten and top twenty features are both similar in values. A model built 
with top twenty features is selected for the classification performance 

in sensitivity and specificity. The y-axis on the left (Percentage) is for 

sensitivity and specificity while the y-axis on the right is for z-score. 



90 
 

Figure 4.13 shows 

the top twenty ranked 

features associated with 

the EC 3.2.1.4. The 

descriptor names of these 

top twenty ranked features 

indicated that eighteen 

tetrahedral categories 

were identified as 

significant to cellulase. 

For tetrahedral categories 

5330 and 8870, both total 

volume and total hidden 

surface area were listed in 

the top twenty features, which implied that a tetrahedron with large volume and hidden surface 

area is likely to associate with EC 3.2.1.4. In addition, the lower value in total exposed surface 

area for type 9751 and type 9811 were also preferable for cellulase. 

Mapping these 18 categories of tetrahedra onto structures indicated that not all 18 

categories of tetrahedra were available in each structure entry (Figure 4.14). Each structure entry 

contained different sets of the 18 categories of tetrahedra. Although not all the tetrahedra were 

located in proximity of the binding ligands, some do cluster around the ligands. In the example of 

PDB entry 2BOG, there are three structurally similar ligands located in the same binding pocket. 

For PDB entry 1OA2, the binding pockets for the two different ligands are far apart. 

  

 

Figure 4. 13. The twenty most significant features associated 
with cellulase. 

The bar graph shows the twenty most significant features 
selected by DWD and their corresponding weights. Most 

features have positive weights. The only two features that 

have negative weights are 9751-esa and 9811-esa. 
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Figure 4. 14. Mapping the 18 identified tetrahedral categories on to the structures 

associated with cellulases. 

The selected structure entries of cellulases did not contain all 18 categories of tetrahedra. 

Although not all the tetrahedra were located in proximity of the binding ligands, some do 

cluster around the ligands. There are three structurally similar ligands located in the same 

binding pocket for PDB entry 2BOG. For PDB entry 1OA2, the binding pockets for the 

two different ligands are far apart.  
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4.7.3 β-lactamase (EC 3.5.2.6) 

Nine different models with corresponding z-score, sensitivity, and specificity values were 

obtained after applying the aforementioned classification method to separate EC 3.5.2.6 from the 

enzyme diversity set. As illustrated in Figure 4.15, the model built with the top ten ranked 

features achieved a 

much higher z-score 

than the other models. 

With the top ten ranked 

features, it was possible 

to achieve sensitivity of 

0.92 and specificity 

above 0.88. 

Figure 4.16 shows the 

top ten ranked features 

associated with EC 

3.5.2.6. The descriptor 

names from these top ten 

ranked features indicated 

that there were six 

tetrahedral categories that were significant to β-lactamase: 3322, 5442, 5543, 7332, 9555 and 

9965. The loading associated with the top ten ranked features were all positive, which indicating 

higher values were preferable. For tetrahedra with categories 5442, 5543, 9555, and 9965, both 

total volume and total hidden surface area were indicated as important features, which implied 

that a tetrahedron with large volume and hidden surface area is likely to associate with EC 3.5.2.6. 

In addition, the exposed surface area associated with tetrahedral category 3322 received the 

largest weight. 

 

Figure 4. 15. Identifying the most significant model through z-
score for the EC 3.5.2.6 dataset. 

This semi-log plot indicates the z-score associated with the top 
ten features is the highest. The y-axis on the left (Percentage) is 

for sensitivity and specificity while the y-axis on the right is for 

z-score. 
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Mapping these six 

categories of tetrahedra onto 

the structures showed that 

not all six categories of 

tetrahedra appeared in the 

selected structure entries 

(Figure 4.17 and Figure 

4.18). Each structure entry 

contained different sets of 

the six categories of 

tetrahedra, with tetrahedral 

category 9555 being the 

most frequent. Among the 

twelve structure entries, tetrahedra with category 9555 was typically found next to a binding 

ligand that is not a metal ion, except PDB entry 1M2X. For that structure entry, the tetrahedron 

next to the binding ligand was category 9965, which was one of the six identified tetrahedral 

categories. 

Mapping the tetrahedra on to the structures also showed mixed results for structure 

entries that contained multiple binding pockets. In some cases, the six identified categories of 

tetrahedra might not be observed in all the binding pockets. In the example of PDB entry 3G35, 

there are two binding pockets for the same ligand; however, the identified tetrahedral categories 

were found only in one of the two pockets. The two binding pockets are different in amino acid 

composition and, the original paper 
36

 focused on the binding site that contains the amino acids 

belonging to the tetrahedra identified.  

 

Figure 4. 16. The ten most significant features associated 

with β-lactamase. 

The bar graph shows the ten most significant features 

selected by DWD and their corresponding weights. All 
features have positive weights. 
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Figure 4. 17. Mapping the six identified tetrahedral categories on to the 1M2X and 1NYM 

structure entries (EC 3.5.2.6 family). 

Mapping the six categories of tetrahedra on to the structures showed the selected structure 

entries contained only a subset of the six categories of tetrahedron. Tetrahedral category 

9555, being the most frequent, was typically found next to a binding ligand that is not a 

metal ion, except PDB entry 1M2X. For PDB entry 1M2X, the tetrahedron next to the 

binding ligand was category 9965, which was one of the six identified tetrahedral 

categories. 
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Figure 4. 18. Mapping the six identified tetrahedral categories on to the 3G35 structure 
entry (EC 3.5.2.6 family). 

Mixed results for structure entries contained multiple binding pockets that were observed 

when mapping the tetrahedra on to the structures. In some cases, the six identified 

categories of tetrahedra might not be observed in all the binding pockets. For example, 

PDB entry 3G35 contains two binding pockets for the same ligand; however, the 

identified tetrahedral categories were found only in one of the two pockets. 
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4.7.4 Methyltransferases (EC 2.1.1) 

 Nine different models with corresponding z-score, sensitivity, and specificity values were 

obtained after applying the classification method described in Chapter 2 to separate the EC 2.1.1 

from the enzyme diversity set. EC 2.1.1 contains enzymes with more generalized function as 

hinted by the three-digit Enzyme Classification number and can be further classified into 195 

subfamilies. As illustrated in Figure 4.19, the most significant model (with the highest z-score) 

was built with the top 

500 ranked features. 

Although the model 

was capable to 

perfectly separate the 

structure entries 

associated with EC 

2.1.1 from the enzyme 

diversity set (both 

sensitivity and 

specificity equal to 

one), it was not 

feasible to analyze or 

interpret the model due 

to the large number of 

features incorporated.  

  

 

Figure 4. 19. Identifying the most significant model through z-

score for the EC 2.1.1 dataset. 

This semi-log plot indicates the z-score associated with the top 

500 features is the highest. The y-axis on the left (Percentage) is 
for sensitivity and specificity while the y-axis on the right is for z-

score. 
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4.7.5 Protein-Tyrosine Kinases (EC 2.7.10) 

Nine different models with corresponding z-score, sensitivity, and specificity values were 

obtained after applying the classification method described in Chapter 2 to separate the EC 2.7.10 

from the enzyme diversity set. EC 2.7.10 contains enzymes with more generalized function and 

can be further classified into two additional subfamilies. As illustrated in Figure 4.20, both 

models built with top 50 and top 100 ranked features achieved similar values in z-scores, which 

are 7.09 and 7.06 respectively. Since the z-scores of these two models were above 7.0, we used 

both sensitivity and specificity to guide the final selection of features. Based on the classification 

performance (both 

sensitivity and 

specificity equal to 

1.0), we selected the 

top 100 ranked 

features as the 

important features 

associated with 

protein-tyrosine 

kinases. Similarly to 

the results for EC 

2.1.1, it was not 

feasible to analyze or 

interpret the model 

due to the large 

number of features 

incorporated. 

 

 

Figure 4. 20. Identifying the most significant model through z-

score for the EC 2.7.10 dataset. 

This semi-log plot indicates that the z-scores associated with the 

top 50 and top 100 features are both similar in values. A model 

built with top 100 features is selected for the performance in 

sensitivity and specificity. The y-axis on the left (Percentage) is for 
sensitivity and specificity while the y-axis on the right is for z-

score. 
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4.7.6 Protein-Serine/Threonine Kinase (EC 2.7.11) 

Nine different models with corresponding z-score, sensitivity, and specificity values were 

obtained after applying the classification method described in Chapter 2 to separate the EC 2.7.11 

from the enzyme diversity set. EC 2.7.11 contains enzymes with more generalized function and 

can be further classified into 31 subfamilies. As illustrated in Figure 4.21, the model built with 

the top 1,000 

ranked features 

achieved the highest 

z-score, sensitivity 

(1.0), and 

specificity (1.0). As 

noted in other 

results obtained 

from enzymes with 

more generalized 

function, it was not 

feasible to analyze 

or interpret the 

model due to the 

large number of 

features incorporated. 

 

 

  

 

Figure 4. 21. Identifying the most significant model through z-
scores for the EC 2.7.11 dataset. 

This semi-log plot indicates the z-score associated with the top 1000 
features is the highest. The y-axis on the left (Percentage) is for 

sensitivity and specificity while the y-axis on the right is for z-

score. 
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4.8 Evaluating the Stability of the Delaunay Simplices  

 The definition of the Delaunay tessellation depends on the precise coordinate values 

given to its points.  In the scenario that point coordinates are known only imprecisely, the stability 

and robustness of the resulting Delaunay simplices under changes to the input coordinates could 

be questioned 
14

. The results in enzyme families EC 1.15.1.1 and EC 3.5.2.6, where the Delaunay 

simplices captured only one binding pocket of the two available, might be explained by the 

imprecision of the input coordinates. In PDB entry, 3G35, there are two binding pockets for the 

same ligand but the amino acid compositions for these two sites are completely different. 

However, in the case of PDB entry, 1TO4, there are two identical binding pockets within the 

structure, and the tetrahedral categories identified as significant to the protein function only 

appeared in one of the two binding pockets.  

 To evaluate the stability and robustness of the Delaunay simplices, a Gaussian sphere 

with a radius of approximately 0.5 Å was applied to each of the original Cα atom coordinates in 

PDB entry, 1TO4, to permit the shifting of the points. The shifting of each Cα atom is 

independent of one another, and 30 structures were generated with the new Cα coordinates. 

Delaunay tessellation was then applied to these 30 modified structures, and tetrahedra with edges 

longer than 12 Å were removed. Within each of the 30 tessellation outcomes, a search for the four 

tetrahedral categories, i.e., 6600, 9995, 9997, and 9999, was performed. Figure 4.22 shows all the 

tetrahedra associated with the four tetrahedral types that are found in the search result.     

The three tetrahedra associated with category 6600 that were found in the original 

structure also appeared in all the 30 modified structures. These tetrahedra were formed by the 

amino acids Gly (9), Gly (55), Cys (56), Ala (144), and Cys (145).  While the tetrahedron formed 

by Gly (9), Gly(55), Cys (56), and Cys (145) was found in only one of the two chains, the 

tetrahedron formed by Gly (9), Cys (56), Ala (144), and Cys (145) appeared in both chains. 
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For tetrahedral categories 9997, new tetrahedra were found in addition to the one 

tetrahedron appearing in the original structure.  The tetrahedron formed by amino acids His (62), 

Asn (64), His (70), and His (79) that appeared in the original structure was also found on the 

modified structures in 21out of 30 instances. The same four amino acids on the other chain also 

formed a tetrahedron in 9 out of 30 instances of modified structures.  Additionally, the 

tetrahedron formed by Lys (38), Lys (41), His (42), and Asn (121) that did not appear in the 

original structure was found in four out of the 30 instances. 

The outcome from this evaluation indicated that the Delaunay simplices calculated solely 

from the original X-ray crystal structures did not fully capture the comprehensive local 

neighborhood relationship of the amino acids within a protein structure. By treating the atom 

 

Figure 4. 22. Mapping the four categories of tetrahedron found in the modified structures 
onto the original 1TO4 PDB structure. 

The tetrahedra that appeared in the original and modified structures are shown in stick and 

line, respectively.  
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coordinates of a protein crystal structure as flexible points rather than fixed ones, the resulting 

Delaunay simplices, which were obtained from a set of thirty structures with perturbed atom 

coordinates, could capture a more comprehensive local neighborhood relationship of the amino 

acids within the protein structure. Since our protocol for studying the protein structure-function 

relationship was designed to utilize the atom coordinates as fixed points, this finding raised 

concerns regarding the performance of our model in protein function prediction.  

There are two possible methods to predict a protein function based on this developed 

QSAR-like strategy:  direct and indirect. The direction prediction, which is a straightforward 

utilization of a model, would be most likely to suffer from a higher type II error (false negative) 

caused by a set of simplices that did not fully capture the local packing order of amino acids in 

protein structures.  The same cause for a higher type II error would also likely affect indirect 

prediction but with less impact, because an additional search for common simplices with similar 

geometric properties was performed in the tetrahedral categories identified by the model. The 

presence of these resulting common simplices would then be used to predict the function of other 

protein structures that are not part of the training set. However, grouping simplices based on 

similar geometric properties required additional analysis to critically assess the appropriate 

binning of each geometric property, which was not part of the scope of this research; thus, 

indirect prediction was not implemented in this research.   
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4.9 Comparison with PROSITE 

 PROSITE is a protein database consisting of manually curated amino acid profiles and 

patterns that describe protein domains, families and functional sites. Applications of these profiles 

and patterns include both identifying possible functions for newly discovered proteins and 

analyzing known proteins for previously undetermined activities. These patterns were utilized in 

this comparison study. 

 To compare the performance between our method and PROSITE, we used ScanPROSITE 

44
, a web-based tool for detecting protein sequences that match PROSITE patterns and/or profiles. 

Additionally, a separate test set containing both positive and negative classes was selected to 

benchmark both methods. Standard criteria for evaluating the performance of information 

retrieval systems, such as precision, recall (sensitivity), and true negative rate (specificity), were 

calculated to compare the two methods. For PROSITE evaluation, a PDB entry was considered to 

be a positive hit if its sequence matched at least one of the evaluated PROSITE profiles or 

patterns. In total, nine PROSITE patterns were utilized in this benchmark study – four patterns for 

E.C. 1.15.1.1 and five patterns for E.C. 3.5.2.6. 

4.9.1 Test Set Selection Criteria for Both E.C. 1.15.1.1 and E.C. 3.5.2.6 

For the positive class, a set of PDB entries from family members belonging to either 

E.C. 1.15.1.1 or E.C. 3.5.2.6 was created, while the negative class contained PDB entries from an 

enzyme diversity set, excluding E.C. 1.15.1.1 and E.C. 3.5.2.6. The test set for each enzyme set, 

i.e., E.C. 1.15.11 and E.C. 3.5.2.6, was created by combing the corresponding positive class with 

the negative class. The selection criteria for the positive and negative classes were similar to that 

of the enzyme class of interest and enzyme diversity set, respectively. This benchmark study 

excluded E.C. 3.2.1.4 because none of the PROSITE patterns was specific for this particular 

enzyme family. 
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Several criteria were used during the PDB entry selection to ensure the quality and size of 

the test set. First, the X-ray resolution for the positive class of the test set was relaxed to 2.00 Å to 

include a greater number of crystal structures. Structure entries previously included in our 

modeling procedure were removed 

from the test sets to allow for fair 

comparison. Similarly, all entries 

selected were released within the past 

three years, i.e., between 01/01/2008 

and 12/31/2011, to ensure that the 

resulting structure entries were not 

used in generating the PROSITE 

signatures applied to this study, which 

were last updated in 2006. The 

resulting test sets, based on these 

selection criteria, contained 421 

structure entries for the negative class, 

15 structure entries for E.C. 1.15.1.1 

and 22 for E.C. 3.5.2.6. The PDB 

entries for the two positive classes are 

listed in Table 4.10. 

4.9.2 Comparison Results 

Both methods were able to retrieve the positive class for both E.C. 1.15.1.1 and E.C. 

3.5.2.6 comparably well. For E.C. 1.15.1.1, our method achieved a recall (sensitivity) value of 

0.87 by retrieving thirteen out of the fifteen PDB entries associated with the positive class while 

ScanPROSITE was able to retrieve one addition entry and achieved a recall value of 0.93. 

PDB 

Entries

E.C. 

Numbers

PDB 

Entries

E.C. 

Numbers

2JLP 1.15.1.1 2V1Z 3.5.2.6

2RCV 1.15.1.1 2WHG 3.5.2.6

2WYT 1.15.1.1 2WK0 3.5.2.6

3AK2 1.15.1.1 2X02 3.5.2.6

3DC5 1.15.1.1 2ZD8 3.5.2.6

3G4Z 1.15.1.1 2ZQ7 3.5.2.6

3H1S 1.15.1.1 3E2L 3.5.2.6

3JS4 1.15.1.1 3FKW 3.5.2.6

3K9S 1.15.1.1 3G4P 3.5.2.6

3KBE 1.15.1.1 3HBR 3.5.2.6

3KKY 1.15.1.1 3I11 3.5.2.6

3L9Y 1.15.1.1 3IOF 3.5.2.6

3LIO 1.15.1.1 3ISG 3.5.2.6

3LSU 1.15.1.1 3L6N 3.5.2.6

3PU7 1.15.1.1 3LEZ 3.5.2.6

3M8T 3.5.2.6

3MZF 3.5.2.6

3NY4 3.5.2.6

3P09 3.5.2.6

3Q6V 3.5.2.6

3Q6X 3.5.2.6

3S1Y 3.5.2.6

 
Table 4. 10. The list of PDB entries selected for 

the two positive classes. 
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However, when comparing the two lists of retrieval entries, only twelve entries were correctly 

identified by both methods. ScanPROSITE failed to identify 3G4Z, while our model missed 3JS4 

and 3KBE. The failure to identify 3G4Z by PROSITE was likely due to the lack of manually 

curated patterns for the nickel-binding SOD, which belonged to E.C. 1.15.1.1. A similar outcome 

was also observed in the test set for E.C. 3.5.2.6. Both methods were able to retrieve twelve out of 

the twenty-two PDB entries from the positive class, yielding a recall value of 0.55. Comparison 

of each of the twelve entries identified indicated only four common entries between the two 

methods. Used together, 100% of the positive class was correctly identified for E.C. 1.15.1.1, and 

91% of the positive class was identified for E.C. 3.5.2.6, suggesting that the two protocols are 

potentially complementary. Figure 4.23 shows the benchmarking results. 

 

  

 

Figure 4. 23. Benchmarking results. 

Both methods performed similarly in sensitivity and specificity. When used together, 

we observe an increase in sensitivity for both E.C. 1.15.1.1 and E.C. 3.5.2.6, suggesting 

that the two protocols are potentially complementary. 
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 However, ScanPROSITE identified no false positives for either test set, while our method 

incorrectly labeled 33 negatives (0.93 in true negative rate or specificity) and 50 (0.87 in true 

negative rate or specificity) in the E.C. 1.15.1.1 and E.C. 3.5.2.6 datasets, respectively. Due to the 

number of false positives (or type I error) in our model, the precision of our models for predicting 

the test sets for E.C. 1.15.1.1 and E.C. 3.5.2.6 was 0.28 and 0.19, respectively.  

To improve the number of true positives and false positives predicted by our model, two 

possible enhancements could be made to our protein descriptors that would enable DWD-VS to 

identify a more specific set of Delaunay simplices that contributed to a given enzyme function. 

Our protein descriptors, which utilized Delaunay simplices to characterize protein structures, 

could be enhanced by considering protein structures obtained from experimental X-ray 

crystallography as flexible entities rather than rigid ones. By calculating the protein descriptors 

from a set of movable points instead of fixed ones, the Delaunay simplices could then be able to 

capture a more comprehensive local neighborhood relationship between Cα atoms, as was 

observed in our Delaunay simplices stability evaluation (Section 4.7). 

Additionally, we could further distinguish Delaunay simplices with additional geometric 

characteristics, such as chirality and volume. Especially the chirality of a Delaunay simplex, 

which could be defined by the four amino acid vertices and the Cahn-Ingold-Prelog priority rules, 

would provide the relative spatial orientation of the four amino acids to distinguish between 

Delaunay simplices with the same composition. 

4.10 Conclusion 

The goal for implementing the protein descriptors was to study the structure-function 

relationship of proteins. By combining variable selection DWD with the novel protein descriptors, 

our intention was to identify important amino acids that are common in proteins with similar 

functions. The results of our study indicated that our QSAR-like strategy helped to identify 

groups of amino acid residues located near the corresponding binding ligand, which indicated that 
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the identified amino acids could be part of the binding pocket. Additionally, categorized 

Delaunay simplices and their geometric properties were found to encode valuable structural 

information and enabled DWD-VS to identify a specific set of Delaunay simplices that attributed 

to a given enzyme function, especially when enzyme function was more specific, such as 

observed in the studies of EC 1.15.1.1, EC 3.2.1.4, and EC 3.5.2.6. Mapping identified Delaunay 

simplices onto their corresponding protein structures provided insights and led to generation of 

hypotheses regarding the important binding residues. 

The results of the comparison study for E.C. 1.15.1.1 and E.C. 3.5.2.6 against 

ScanPROSITE indicated that when combining the protein descriptors with variable selection 

DWD could provide a potentially complementary method to PROSITE, which utilizes expert 

knowledge to annotate protein functions. Currently, this automated strategy is based on objective 

structural data and proof of the concept for use of a QSAR-like analysis for protein function 

annotation. Additional enhancements to the protein descriptors, such as flexible structure 

sampling and geometric categorization of Delaunay simplices, would likely improve the precision 

and recall for this QSAR-like strategy. 

For applicability in future studies of protein families and for predicting structures with 

unknown functions, the prediction procedure will also have to improve. One possible 

improvement could result from the coupling of direct and indirect prediction using our method. 

Specifically, direct prediction involves using a model built for a specific protein family, while 

indirect prediction (discussed in Section 4.7) refers to a similarity search for tetrahedra within the 

training set that display similar geometric characteristics, i.e., the use similar tetrahedra to imply 

similar function.  

Overall, our automated method showed comparable sensitivity to that of ScanPROSITE, 

which showed considerable improvement and complementarity when the two methods were 

combined. However, our method suffers from poor specificity, a problem that could likely be 

resolved with the addition of the geometric descriptors mentioned above and by the use of both 



107 
 

direct and indirect prediction. Despite this drawback, the complementary results suggest that our 

automated method is able to correctly identify functionally similar proteins that PROSITE 

patterns, which were curated using expert knowledge, completely miss. The nature of these 

missed proteins suggests that our method is better at identifying protein functional homologs with 

a more distant similarity. Thus, our method could prove useful for more difficult protein 

annotation, especially with further improvement and refinement of the protein descriptors.   

 



 
 

Chapter 5 

Summary

The increasing availability of biological and chemical data has led to a critical need for 

cheminformatics and bioinformatics tools to analyze the data. One of the major challenges 

involved in this data analysis is HDLSS. To overcome the statistical difficulties inherent in 

HDLSS data, DWD was improved by adding variable selection. In a simulation using imbalanced, 

HDLSS data, DWD with variable selection (DWD-VS) significantly improved model prediction 

performance compared to SVM and DWD without variable selection. Analysis of models 

indicated that DWD-VS consistently achieved high-prediction accuracy by removing greater than 

99.9% of the noise while retaining up to 70% of the signal through informative descriptors. These 

simulation results suggested that DWD-VS could be used to obtain a better understanding of the 

underlying biological activities; thus, DWD-VS could provide faster and more cost-effective 

models by identifying predictor variables to achieve high prediction accuracy. Similar results 

were also observed in QSAR studies; however, the differences between SVM, DWD, and DWD-

VS were all too small to claim one method is much better than the others based solely on the 

prediction accuracy. 

While the strategies used to build predictive models are important for identifying the 

structure-activity relationship of biomolecules, it is also essential to employ descriptors that 

encode molecular characteristics associated with a target property. The 3D chiral atom-pair 

descriptors were developed to evaluate the effect that the degree of chirality contributes to various 

target properties. For the selected stereochemistry-dependent datasets, the 3D chiral atom-pair 

descriptors showed better classification performance than 3D non-chiral atom-pair descriptors 

(without chiral atom types), and as expected, both sets of 3D atom-pair descriptors performed 
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better than 2D Dragon descriptors. Not unexpectedly, for datasets with minimal chirality 

information, classification performance of developed chirality-sensitive descriptors is similar to 

the performance with either 2D Dragon or 3D chirality-insensitive atom-pair descriptors.

The QSAR studies of the stereochemistry dependent datasets also suggested that the 

variable selection procedure implemented in the DWD-VS was likely to miss groups of 

descriptors that contributed to biological activity but were highly correlated to one another. For 

two datasets where the effect of stereochemistry on biological activities was not apparent, lower 

prediction accuracy was observed in the DWD-VS models obtained from the combined 

descriptors (2D Dragon + either 3D chiral atom-pair or 3D non-chiral atom-pair descriptors) than 

DWD-VS models obtained from each of the 3D atom-pair descriptors alone. By using a simple 

merge to combine different descriptor matrices, more instances of highly correlated descriptors 

are likely to occur, especially if 3D atom-pair descriptors encode redundant information as the 2D 

Dragon descriptors. These highly correlated descriptors affect the weighting assigned by DWD 

internal algorithms, causing the descriptors that should be selected to be dropped instead. To 

improve the performance of the variable selection DWD, correlation between descriptors will 

have to be considered as part of the variable selection procedure. 

To study the structure-function relationship of proteins, combining novel protein 

descriptors with DWD-VS provided a potential complement to ScanPROSITE, which utilized 

expert knowledge to annotate protein function. This QSAR-like strategy helped to identify groups 

of amino acid residues that were a part of the binding pocket, as observed in the studies of EC 

1.15.1.1, EC 3.2.1.4, and EC 3.5.2.6. Mapping identified tetrahedra onto the corresponding 

protein structures provided insights and hypotheses on the important binding residues; however, it 

also indicated two drawbacks of the protein descriptors. First, Delaunay simplices in protein 

structures are sensitive to the imprecision of the input coordinates -- some examples capture one 

binding pocket when there are multiple binding pockets available. Second, if multiple tetrahedra 

from the same category are identified as significant, the current implementation of tetrahedral 
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categories does not allow users to further narrow down these tetrahedra to a smaller set that is 

critical to binding. To address the first shortcoming, one solution is to apply a Gaussian sphere 

around each coordinate to sample other likely locations of the atoms and then generate a 

descriptor matrix that summarizes all the resulting Delaunay simplices and their associated 

geometric properties. This solution is likely to address only the scenario where multiple binding 

pockets within a protein structure have the same amino acid composition, e.g. PDB entry 1TO4. 

In the case of multiple binding pockets that are different in amino acid composition, e.g. PDB 

entry 3G35, the binding pocket that was not identified in our result may not be the primary site 

since the original literature only focused on the binding pocket identified in this research. As for 

the second shortcoming, a possible solution would be to further categorize the tetrahedron based 

on values of geometric properties.  

In summary, the outcomes of this research provide cheminformatics and bioinformatics 

tools for modeling and analyzing the structure-activity relationship within biomolecular data 

through novel molecular descriptors and a variable selection based statistical machine learning 

method. Specifically, the technologies set forth in this dissertation address the HDLSS 

imbalanced categorical characteristics present in many biomolecular datasets. The data evaluated 

in this research were embedded in dimension that ranged from 2 to 42 times the sample size, and 

multiple imbalanced categorical datasets were evaluated, including datasets with the positive 

class contributing less than 5% of the total data. Our results indicated that DWD-VS gave models 

with high external prediction power and the estimated intrinsic dimension that is usually lower 

than the sample size and contained predictive descriptors that characterize the target biological 

property. We also showed that the developed chirality-sensitive descriptors increased the 

predictive power of QSAR models obtained for stereochemistry dependent datasets. In addition 

we demonstrated that our method is better at identifying protein functional homologs with a more 

distant similarity and could prove useful for more difficult protein annotation, especially with 

further improvement and refinement of the protein descriptors. Overall, these developed 
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descriptors and DWD-VS provide not only tools for modeling and analyzing the structure-activity 

relationship of biomolecular data but also direction for future advancements in chemical 

compound and protein classification. 
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