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ABSTRACT 

Ying Lu: Advance in Statistical Theory and Methods for Social 

Sciences 

(Under the direction of Jianqing Fan) 

This dissertation includes three papers. In the first paper, a new statistical procedure 

is proposed to analyze verbal autopsy data.  Verbal autopsy procedures are widely used for 

estimating cause-specific mortality in areas without medical death certifications.  We show 

that the problem of estimating   cause-specific mortality rate can be directly solved using 

the distribution of symptoms that is available from the population verbal autopsy survey 

and the cause-specific distribution of symptoms that can be obtained from hospital data. To 

solve this deconvolution problem, we offer an optimization procedure that is stable and 

easy to compute.  Through empirical analyses in data from China and Tanzania, we 

illustrate the accuracy of this approach. 

In the second paper, we focus on the analysis of roll call and vote records data to 

legislative and judicial voting behaviors. Ideal point estimation is an important tool to 

analyze this type of data.  We introduce a hierarchical ideal point estimation framework 

that directly models complex voting behaviors based on the characteristics of the political 

actors and the votes they cast.  Bayesian MCMC algorithms are proposed to estimate the 

proposed hierarchical models. Through simulations and empirical examples we show that 

this framework holds good promise for resolving many unsettled issues, such as the multi-

dimensional aspects of ideology, and the effects of political parties. 

In the third paper, we address the issue of variable selection in linear mixed effect 

models. Mixed effect models are fundamental tools for the analysis of longitudinal data, 

panel data and cross-sectional data. However, the complex nature of these models has made 

variable selection and parameter estimation a challenging problem. In this paper, we 

propose a simple iterative procedure that estimates and selects fixed and random effects for 

linear mixed models. In particular, we propose to utilize the partial consistency property of 

the random effect coefficients and select groups of random effects simultaneously via a 

data-oriented penalty function. We show that the proposed method is a consistent variable 

selection procedure and possesses the Oracle properties. Simulation studies and a real data 

analysis are also conducted to empirically examine the performance of this procedure.  
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Chapter 1

Introduction



This dissertation is a compilation of three research projects each of which addresses

an important issue in social science methodology.

Verbal autopsy procedures are widely used for estimating cause-specific mortality

in areas without medical death certification. Data on symptoms reported by care-

givers along with the cause of death are collected from a medical facility, and the

cause-of-death distribution is estimated in the population where only symptom data

are available. Current approaches analyze only one cause at a time, involve assump-

tions judged difficult or impossible to satisfy, and require expensive, time consuming,

or unreliable physician reviews, expert algorithms, or parametric statistical models.

By generalizing current approaches to analyze multiple causes, we show how most of

the difficult assumptions underlying existing methods can be dropped. These gener-

alizations also make physician review, expert algorithms, and parametric statistical

assumptions unnecessary. With theoretical results, and empirical analyses in data

from China and Tanzania, we illustrate the accuracy of this approach. While no

method of analyzing verbal autopsy data, including the more computationally in-

tensive approach offered here, can give accurate estimates in all circumstances, the

procedure offered is conceptually simpler, less expensive, more general, as or more

replicable, and easier to use in practice than existing approaches. We also show how

our focus on estimating aggregate proportions, which are the quantities of primary

interest in verbal autopsy studies, may also greatly reduce the assumptions necessary,

and thus improve the performance of, many individual classifiers in this and other ar-

eas. As a companion to this paper, we also offer easy-to-use software that implements

the methods discussed herein.

Ideal point estimation is an important tool for political scientists to study leg-

islator’s voting behaviors and to assess their political preferences. In traditional

statistical models of ideal point estimation, individuals are unrealistically assumed

to make decisions independently from each other, and to make each decision inde-

2



pendently from other decisions. When such assumptions do not hold, the parameters

estimated from the traditional ideal point estimation model tend to be biased and

inefficient. Moreover, failing to address these issues has limited the ideal point re-

search from understanding important topics such as party influence, period effect and

the multidimensional nature of political ideology. In this paper, we propose a hier-

archical ideal point estimation framework that directly models inter-individual and

intra-individual correlations in legislative behaviors via random effects and/or fixed

effects. Under this framework, modelers can define clusters of individuals (allysets),

clusters of bills (votesets), and/or voting blocks (tactsets) based on the characteristics

of the legislators and the votes they cast. The effects and the significance of these

ex ante clusters can then be assessed statistically. Such setup entails a substantively

intuitive and methodologically coherent approach to test political theory of legislative

behaviors. Through simulations and empirical examples of the legislative behaviors

of the US supreme court and the House of Representatives, we show that the pro-

posed framework holds good promise for resolving many unsettled issues in ideal

point estimation. In addition, the proposed framework can be readily extended to

a more general family of 2-parameter Rasch model with applications in other fields.

As a companion to this paper, we offer an easy-to-use R package with C code that

implements the methods discussed herein.

Lastly, in this dissertation, the problem of variable selection for linear mixed ef-

fects model will be studied. Mixed effect models are fundamental tools for the analysis

of longitudinal data, panel data and cross-sectional data. They are widely used by

various fields of social sciences, medical and biological sciences. However, the com-

plex nature of these models has made variable selection and parameter estimation

a challenging problem. In this paper, we propose a simple iterative procedure that

estimates and selects fixed and random effects for linear mixed models. In particular,

we propose to utilize the partial consistency property of the random effect coeffi-

3



cients and select groups of random effects simultaneously via a data-oriented penalty

function (the smoothly clipped absolute deviation penalty function). We show that

the proposed method is a consistent variable selection procedure and possesses some

oracle properties. Simulation studies and a real data analysis are also conducted to

empirically examine the performance of this procedure.
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Chapter 2

Verbal Autopsy Methods with

Multiple Causes of Death

2.1 Introduction

National and international policymakers, public health officials, and medical person-

nel need information about the global distribution of deaths by cause in order to

set research goals, budgetary priorities, and ameliorative policies. Yet, only 23 of

the world’s 192 countries have high quality death registration data, and 75 have no

cause-specific mortality data at all (Mathers et al., 2005). Even if we include data of

dubious quality, less than a third of the deaths that occur worldwide each year have

a cause certified by medical personnel (Lopez et al., 2000).

Verbal autopsy is a technique “growing in importance” (Sibai et al., 2001) for

estimating the cause-of-death distribution in populations without vital registration or

other medical death certification. It involves collecting information about symptoms

(including signs and other indicators) from the caretakers of each of a randomly

selected set of deceased in some population of interest, and inferring the cause of



death. Inferences in these data are extrapolated either by physicians from their prior

experiences or by statistical analysis of a second data set from a nearby hospital

where information on symptoms from caretakers as well as validated causes of death

are available.

Verbal autopsy studies are now widely used throughout the developing world to

estimate cause-specific mortality, and are increasingly being used for disease surveil-

lance and sample registration (Setel et al.,2005). Verbal autopsy is used on an ongoing

basis and on a large scale in India and China, and in 36 demographic surveillance sites

around the world (Soleman, Chandramohan and Shibuya, 2005). The technique has

also proven useful in studying risk factors for specific diseases, infectious disease out-

breaks, and the effects of public health interventions (Anker, 2003; Pacque- Margolis

et al., 1990; Soleman, Chandramohan and Shibuya, 2006).

Until now, the most commonly used method has been physician review of symp-

toms with no additional validation sample. This approach can be expensive as it

involves approximately three physicians, each taking 20-30 minutes to review symp-

toms and classify each death. To reduce the total time necessary, more physicians can

be hired and work in parallel. Because judgments by these doctors are highly sensitive

to their priors (when a Kansas doctor hears “fever and vomiting,” malaria would not

be her first thought), physicians need to come from local areas. This can pose difficult

logistical problems because physicians in these areas are typically in very short supply,

as well as serious ethical dilemmas since doctors are needed in the field for treating

patients. Physician review also poses scientific problems since, although scholars have

worked hard at increasing inter-physician reliability for individual studies, the cross-

study reliability of this technique has remained low. Attempts to formalize physician

reviews via expert-created deterministic algorithms are reliable by design, but ap-

pear to have lower levels of validity, in part because many diseases are not modeled

explicitly and too many decisions need to be made.
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Inferences from verbal autopsy data would thus seem ripe for adding to the growing

list of areas where radically empirical approaches imbued with the power of modern

statistics dominate human judgments by local experts (Dawes, Faust and Meehl,

1989). Unfortunately, the parametric statistical modeling that has been used in this

area (known in the field as “data-derived techniques”) have suffered from low levels

of agreement with verified causes of death and are complicated for large numbers of

causes. In practice, the choice of model has varied with almost every application. We

attempt to rectify this situation.

In this article, we describe the current verbal autopsy approaches and the not

always fully appreciated assumptions underlying them. We show that a key prob-

lem researchers have in satisfying most of the assumptions in real applications can

be traced to the constraint existing methods impose by requiring the analysis of

only one cause of death at a time. We generalize current methods to allow many

causes of death to be analyzed simultaneously. This simple generalization turns out

to have some considerable advantages for practice, such as making it unnecessary to

conduct expensive physician reviews, specify parametric statistical models that pre-

dict the cause of death, or build elaborate expert algorithms. Although the missing

(cause of death) information guarantees that verbal autopsy estimates always have

an important element of uncertainty, the new approach offered here greatly reduces

the unverified assumptions necessary to draw valid inferences. As a companion to

this article, we are making available easy-to-use, free, and open source software that

implements all our procedures.

The structure of the inferential problem we study can also be found in applica-

tion areas fairly distant from our verbal autopsy applications. Some version of the

methods we discuss may be of use in these areas as well. For example, a goal of pale-

odemography is to estimate the age distribution in a large sample of skeletons from

measurements of their physical features by using a small independent reference group
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where validated ages are available and skeletal features are also measured (Hoppa

and Vaupel, 2002). Our methods seem to have already proven useful for estimating

the proportion of text documents in each of a set of given categories, using a smaller

reference set of text documents hand coded into the same categories (Hopkins and

King, 2007). Also, as we show in Section 2.8, the methods introduced here imply that

individual level classifiers can greatly reduce the assumptions necessary for accurate

generalization to test sets with different distributional characteristics.

2.2 Data Definitions and Inferential Goals

Denote the cause of death j (for possible causes j = 1, . . . , J) of individual i as Di = j.

Bereaved relatives or caretakers are asked about each of a set of symptoms (possibly

including signs or other indicators) experienced by the deceased before death. Each

symptom k (for possible symptoms k = 1, . . . , K) is reported by bereaved relatives to

have been present, which we denote for individual i as Sik = 1, or absent, Sik = 0. We

summarize the set of symptoms reported about an individual death, {Si1, . . . , SiK}, as

the vector Si. Thus, the cause of death Di is one variable with many possible values,

whereas the symptoms Si constitute a set of variables, each with a dichotomous

outcome.

Data come from two sources. The first is a hospital or other validation site, where

both Si and Di are available for each individual i (i = 1, . . . , n). The second is the

community or some population about which we wish to make an inference, where

we observe S` (but not D`) for each individual ` (` = 1, . . . , L). Ideally, the second

source of data constitutes a random sample from a large population of interest, but

it could also represent any other relevant target group.

The quantity of interest for our analysis is P (D), the distribution of cause-specific

mortality in the population. Public health scholars are not normally interested in

8



the cause of death D` of any particular individual in the population (although some

current methods require estimates of these as intermediate values to compute P (D)).

They are sometimes also interested in the cause of death distribution for subgroups,

such as age, sex, region, or condition. We return to the implications of our approach

for individual level classifiers in Section 2.8.

The difficulty of verbal autopsy analyses is that the population cause of death

distribution is not necessarily the same in the hospital where D is observed. In

addition, researchers often do not sample from the hospital randomly, and instead

over-sample deaths due to causes that may be rare in the hospital. Thus, in general,

the cause of death distribution in our two samples cannot be assumed to be the same:

P (D) 6= P h(D).

Since symptoms are consequences of the cause of death, the data generation pro-

cess has a clear ordering: Each disease or injury D = j produces some symptom

profiles (sometimes called “syndromes” or values of S) with higher probability than

others. We represent these conditional probability distributions as P h(S|D) for data

generated in the hospital and P (S|D) in the population. Thus, since the distribution

of symptom profiles equals the distribution of symptoms given deaths weighted by

the distribution of deaths, the symptom distribution will not normally be observed

to be the same in the two samples: P (S) 6= P h(S).

Whereas P (D) is a multinomial distribution with J outcomes, P (S) may be

thought of as either a multivariate distribution of K binary variables or equivalently

as a univariate multinomial distribution with 2K possible outcomes, each of which is

a possible symptom profile. We will usually use the 2K representation.

9



2.3 Current Estimation Approaches

The most widely used current method for estimating cause of death distributions in

verbal autopsy data is physician review. What appears to be the best practice among

the current statistical approaches used in the literature is the following multi-stage

estimation strategy.

1. Choose a cause of death, which we here refer to as cause of death D = 1, apply

the remaining steps to estimate P (D = 1), and then repeat for each additional

cause of interest (changing 1 to 2, then 3, etc).

2. Using hospital data, develop a method of using a set of symptoms S to create

a prediction for D, which we label D̂ (and which takes on the value 1 or not

1). Some do this directly using informal, qualitative, or deterministic prediction

procedures, such as physician review or expert algorithms. Others use formal

statistical prediction methods (called “data-derived algorithms” in the verbal

autopsy literature), such as logistic regression or neural networks, which involve

fitting P h(D|S) to the data and then turning it into a 0/1 prediction for an

individual. Typically this means that if the estimate of P h(D = 1|S) is greater

than 0.5, set the prediction as D̂ = 1 and otherwise set D̂ 6= 1. Of course,

physicians and those who create expert algorithms implicitly calculate P h(D =

1|S), even if they never do so formally.

3. Using data on the set of symptoms for each individual in the community, S`,

and the same prediction method fit to hospital data, P h(D` = 1|S`), create a

prediction D̂` for all individuals sampled in the community (` = 1, . . . , L) and

average them to produce a preliminary or “crude” estimate of the prevalence of

the disease of interest, P (D̂ = 1) =
∑L

`=1 D̂`/L.

4. Finally, estimate the sensitivity, P h(D̂ = 1|D = 1), and specificity, P h(D̂ 6=

10



1|D 6= 1), of the prediction method in hospital data and use it to “correct” the

crude estimate and produce the final estimate:

P (D = 1) =
P (D̂ = 1)− [1− P h(D̂ 6= 1|D 6= 1)]

P h(D̂ = 1|D = 1)− [1− P h(D̂ 6= 1|D 6= 1)]
(2.1)

This correction, sometimes known as “back calculation”, was first described in

the verbal autopsy literature by Kalter (1992, Table 1) and originally developed

for other purposes by Levy and Kass (1970). The correction is useful because

the crude prediction, P (D̂ = 1), can be inaccurate if sensitivity and specificity

are not 100%.

A variety of creative modifications of this procedure have also been tried (Chan-

dramohan, Maude, Rodrigues and Hayes, 1994). These include meta-analyses of

collections of studies (Morris, Black and Tomaskovic, 2003), different methods of

estimating D̂, many applications with different sets of symptoms and different sur-

vey instruments (Soleman, Chandramohan and Shibuya, 2006), and other ways of

combining the separate analyses from different diseases (Quigley et al., 2000; Boulle,

Chandramohan and Weller, 2001).

2.4 Assumptions Underlying Current Practice

The method described in Section 3.2 makes three key assumptions that we now de-

scribe. Then in the following section, we develop a generalized approach that reduces

our reliance on the first assumption and renders the remaining two unnecessary.

The first assumption is that the sensitivity and specificity of D̂ estimated from

the hospital data are the same as that in the population:

P (D̂ = 1|D = 1) = P h(D̂ = 1|D = 1)

P (D̂ 6= 1|D 6= 1) = P h(D̂ 6= 1|D 6= 1). (2.2)

11



The literature contains much discussion of this assumption, the variability of estimates

of sensitivity and specificity across sites, and good advice about controlling their

variability (Kalter, 1992).

A less well known but worrisome aspect of this first assumption arises from the

choice of analyzing the J-category death variable as if it were a dichotomy. Because

of the composite nature of the aggregated D 6= 1 category of death, we must assume

that what makes up this composite is the same in the hospital and population. If

it is not, then the required assumption about specificity (i.e., about the accuracy of

estimation of this composite category) cannot hold in the hospital and population,

even if sensitivity is the same. In fact, satisfying this assumption is more difficult than

may be generally understood. To make this point, we begin with the decomposition

of specificity, offered by Chandramohan, Setel and Quigley (2001) (see also Maude

and Ross, 1997), as one minus the sum of the probability of different misclassifications

times their respective prevalences:

P (D̂ 6= 1|D 6= 1) = 1−
J∑
j=2

P (D̂ = 1|D = j)
P (D = j)

P (D 6= 1)
, (2.3)

which emphasizes the composite nature of the D 6= 1 category. Then we ask: under

what conditions can specificity in the hospital equal that in the population if the dis-

tribution of cause of death differs? The mathematical condition can be easily derived

by substituting (2.3) into each side of the second equation of (2.2) (and simplifying

by dropping the “1−” on both sides):

J∑
j=2

P (D̂ = 1|D = j)
P (D = j)

P (D 6= j)
=

J∑
j=2

P h(D̂ = 1|D = j)
P h(D = j)

P h(D 6= j)
(2.4)

If this equation holds, then this first assumption holds. And if J = 2, this equa-

tion reduces to the first line of (2.2) and so, in that situation, the assumption is

unproblematic.

12



However, for more than two diseases specificity involves a composite cause of death

category. We know that the distribution of causes of death (the last factor on each

side of Equation 2.4) differs in the hospital and population by design, and so the

equation can hold only if a miraculous mathematical coincidence holds, whereby the

probability of misclassifying each cause of death as the first cause occurs in a pattern

that happens to cancel out differences in the prevalence of causes between the two

samples. For example, this would not occur according to any theory or observation

of mortality patterns offered in the literature. Verbal autopsy scholars recognize that

some values of sensitivity and specificity are impossible when (2.1) produces estimates

of P (D = 1) greater than one. They then use information to question the values of, or

modify, estimates of sensitivity and specificity, but the problem is not necessarily due

to incorrect estimates of these quantities and could merely be due to the fact that the

procedure requires assumptions that are impossible to meet. In fact, as the number

of causes of death increase, the required assumption can only hold if sensitivity and

specificity are each 100%, which we know does not describe real data.1

The second assumption is that the (explicit or implicit) model underlying the

prediction method used in the hospital must also hold in the population: P (D|S) =

P h(D|S). For example, if logistic regression is the prediction method, we make this

assumption by taking the coefficients estimated in hospital data and using them to

multiply by symptoms collected in the population to predict the the cause of death in

the population. This is an important assumption, but not a natural one since the data

generation process is the reverse: P (S|D). And most importantly, even if the identical

1The text describes how this first assumption can be met by discussing specificity only with

respect to cause of death 1. In the general case, (2.4) for all causes requires satisfying
∑

j P (D̂ 6=

j|D 6= j)− (J − 2) =
∑

j [P (D̂ 6= j|D 6= j) + P (D̂ = j|D = j)]P (D = j). For small J > 2, this will

hold only if a highly unlikely mathematical coincidence occurs; for large J , this condition is not met

in general unless sensitivity and specificity is 1 for all j.
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data generation process held in the population and hospital, P (S|D) = P h(S|D), we

would still have no reason to believe that P (D|S) = P h(D|S) holds. The assumption

might hold by luck, but coming up with a good reason why we should believe it holds

in any real case seems unlikely.

This problem is easy to see by generating data from a regression model with

D as the explanatory variable and S as the simple dependent variable, and then

regressing S on D: Unless the regression fits perfectly, the coefficients from the first

regression do not determine those in the second. Similarly, when Spring comes, we

are much more likely to see many green leaves; but visiting the vegetable section of

the supermarket in the middle of the winter seems unlikely to cause the earth’s axis

to tilt toward the sun. Of course, it just may be that we can find a prediction method

for which P (D|S) = P h(D|S) holds, but knowing whether it does or even having a

theory about it seems unlikely. It is also possible, with a small number of causes of

death, that the sensitivity and specificity for the wrong model fit to hospital data

could by chance be correct when applied to the population, but it is hard to conceive

of a situation when we would know this ex ante. This is especially true given the

issues with the first assumption: the fact that the composite D 6= 1 category is by

definition different in the population and hospital implies that different symptoms

will be required predictors for the two models, hence invalidating this assumption.

A final problem with the current approach is that the multi-stage procedure

estimates P (D = j) for each j separately, but for the ultimate results to make

any sense the probability of a death occurring due to some cause must be 100%:∑J
j=1 P (D = j) = 1. This can happen if the standard estimation method is used,

but it will hold only by chance.
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2.5 An Alternative Approach

The key problem underlying the veracity of each of the assumptions in Section 2.4

can be traced to the practice of sequentially dichotomizing the J-category cause of

death variable. In analyzing the first assumption, we learn that specificity cannot

be equal in hospital and population data as the number of causes that make up the

composite residual category gets large. In the second assumption, the practice of col-

lapsing the relationship between S and D into a dichotomous prediction, D̂, requires

making assumptions opposite to the data generation process and either a sophisti-

cated statistical model, or an expensive physician review or set of expert algorithms,

to summarize P (D|S). And finally, the estimated cause of death probabilities do not

necessarily sum to one in the existing approach precisely because D is dichotomized

in multiple ways and each dichotomy is analyzed separately.

Dichotomization has been used in each case to simplify the problem. However, we

show in this section that most aspects of the assumptions with the existing approach

are unnecessary once we treat the J-category cause of death variable as having J

categories. Moreover, it is simpler conceptually than the current approach. We begin

by reformulating the current approach so it is more amenable to further analysis and

then generalizing it to the J-category case.

Reformulation Under the current method’s assumption that sensitivity and speci-

ficity are the same in the hospital and population, we can rearrange the back-

calculation formula in (2.1) as

P (D̂ = 1) = P (D̂ = 1|D = 1)P (D = 1) + P (D̂ = 1|D 6= 1)P (D 6= 1). (2.5)

and rewrite (2.5) in equivalent matrix terms as

P (D̂)
2×1

= P (D̂|D)
2×2

P (D)
2×1

(2.6)
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where the extra notation indicates the dimension of the matrix or vector. So P (D̂)

and P (D) are now both 2× 1 vectors, and have elements [P (D̂ = 1), P (D̂ 6= 1)]′ and

[P (D = 1), P (D 6= 1)]′, respectively; and P (D̂|D) is a 2× 2 matrix where

P (D̂|D)
2×2

=

P (D̂ = 1|D = 1) P (D̂ = 1|D 6= 1)

P (D̂ 6= 1|D = 1) P (D̂ 6= 1|D 6= 1)

 .

Whereas (2.1) is solved for P (D = 1) by plugging in values for each term on

the right side, (2.6) is solved for P (D) by linear algebra. Fortunately, the linear

algebra required is simple and well known from the least squares solution in linear

regression. We thus recognize P (D̂) as taking the role of a “dependent variable,”

P (D̂|D) as two “explanatory variables,” and P (D) as the coefficient vector to be

solved for. Applying least squares yields an estimate of P (D), the first element of

which, P (D = 1), is exactly the same as that in Equation 2.1. Thus far, only the

mathematical representation has changed; the assumptions, intuitions, and estimator

remain identical to the existing method described in Section 3.2.

Generalization The advantage of switching to matrix representations is that they

can be readily generalized, which we do now in two important ways. First, we drop

the modeling necessary to produce the cause of death for each individual D̂, and use

S in its place directly. And second, we do not dichotomize D and instead treat it as a

full J-category variable. We implement both generalizations via a matrix expression

that is the direct analogue of (2.6):

P (S)
2K×1

= P (S|D)
2K×J

P (D)
J×1

(2.7)

The quantity of interest in this expression remains P (D). Although we use the better

nonparametric estimation methods (described in the appendix), we could in principle

estimate P (S) by direct tabulation, by simply counting the fraction of people in the
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population who have each symptom profile. Since we do not observe and cannot

directly estimate P (S|D) in the community (because D is unobserved), we estimate

it from the hospital and assume P (S|D) = P h(S|D). We estimate P h(S|D = j) for

each cause of death j the same way as we do for P (S).

The only assumption required for connecting the two samples is P (S|D) = P h(S|D),

which is natural as it directly corresponds to the data generation process. We do not

assume that P (S) and P h(S) are equal, P (D) and P h(D) are equal, or P (D|S)

and P h(D|S) are equal. In fact, prediction methods for estimating P (D|S) or D̂

are entirely unnecessary here, and so unlike the current approach, we do not require

parametric statistical modeling, physician review, or expert algorithms.

We solve Equation 2.7 for P (D) directly. This can be done conceptually using

least squares. That is, P (S) takes the role of a “dependent variable,” P (S|D) takes

the role of a matrix of J “explanatory variables,” each column corresponding to a

different cause of death, and P (D) is the “coefficient vector” with J elements for

which we wish to solve. We also modify this procedure to ensure that the estimates

of P (D) are each between zero and one and together sum to one by changing least

squares to constrained least squares (see the Appendix).

Although producing estimates from this expression involves some computational

complexities, this is a single equation procedure that is conceptually far simpler than

current practice. As described in Section 3.2, the existing approach requires four

steps, applied sequentially to each cause of death. In contrast, estimates from our

proposed alternative only require understanding each term in Equation 2.6 and solving

for P (D).
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2.6 Illustrations in Data from China and Tanzania

Since deaths are not observed in populations for which verbal autopsy methods are

used, realistic validation of any method is, by definition, difficult or impossible (Ga-

jalakshmi and Peto, 2004). We attempt to validate our method in two separate ways

in data from China and Tanzania.

China We begin with an analysis of 2,822 registered deaths from hospitals in urban

China collected and analyzed by Alan Lopez and colleagues (see, most recently, Yang

et al., 2005). Thirteen causes of death were coded, and 56 (yes or no) symptoms were

elicited from caretakers. We conducted three separate analyses with these data. We

designed the first test to meet the assumptions of our method by randomly spliting

these data into halves. Although all these data were collected in hospitals, where we

observe both S and D, we label the first random set “hospital data,” for which we use

both S and D, and the second “population data,” for which we only use S during

estimation. We emulate an actual verbal autopsy analysis by using these data to

estimate the death frequency distribution, P (D), in the “population data.” Finally,

for validation, we unveil the actual cause of death variable for the “population data”

that were set aside during the analysis and compare it to our estimates.

The estimates appear in the top panel of the left graph of Figure 2.1, which plots

on the horizontal axis a direct sample estimate — the proportion of the sample from

the population dying from each of 13 causes — and on the vertical axis an estimate

from our verbal autopsy method. (This direct estimator is not normally feasible in

verbal autopsy studies because of the impossibility of obtaining medically verified

cause of death data in the community.) Since both are sample-based estimates,

and thus both are measured with error, if our method predicted perfectly, all points

would fall approximately on the 45 degree line. Clearly, the fit of our estimates to
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Figure 2.1: Validation in China. A direct estimate of cause-specific mortality is plot-

ted horizontally in the top panel by the estimate from our method plotted vertically

for randomly split data (top left) and for predictions of one set of hospitals to an-

other (the two top right graphs). The bottom panel of each graph contains 95%

confidence intervals of the difference between our estimator and the direct estimate,

both of which are measured with error; almost all of these vertical lines cross the zero

difference point marked by a horizontal line.

the direct estimates of the truth is fairly close, with no clear pattern in deviations

from the line. The bottom panel of this graph portrays the difference between our

estimates and the direct sample estimates, along with a 95% confidence interval for the

difference. Almost all confidence intervals of the errors cover no difference (portrayed

as a horizontal line), which indicates approximately accurate coverage.

For a more stringent test of our approach, we split the same sample into 1,409

observations from hospitals in three cities (Beijing, Chengdu, and Wuhan) and 1,413

observations from hospitals in another three cities (Haierbin, Guangzhou, and Shang-

hai). We then let each group takes a turn playing the role of the “population” sample

(with known cause of death that we use only for validation) and the other as the

19



actual hospital sample. These are more difficult tests of our method than would be

necessary in practice, since researchers would normally collect hospital data from a

facility physically closer to, part of, and more similar to the population to which they

wish to infer.

The right two graphs in Figure 2.1 give results from this test in the same format

as for the random split on the left. The middle graph estimates the cause of death

distribution of our first group of sample cities from the second group, whereas the

right graph does the reverse. The fit between the directly estimated true death pro-

portions and our estimates in both is slightly worse than for the left graph, where

our assumptions were true by construction, but predictions in both are still excellent.

Again, almost all of the 95% confidence intervals for the difference between our es-

timator and the direct sample estimate cross the zero line (see the bottom of each

graph).

Tanzania We also analyze cause-specific adult mortality from a verbal autopsy

study in Tanzania (see Setel et al., 2006). The data include 1,261 hospital deaths

and 282 deaths from the general population, about which 51 symptoms questions

and 13 causes of death were collected. The unusual feature of these data is that all

the population deaths have medically certified causes, and so we can set aside that

information and use it to validate our approach. We again use S and D from the

hospital and S from the population and attempt to estimate P (D) in the population,

using D from the population only for validation after the estimation is complete.

The results appear in Figure 2.2 in the same format as the China data. We

constructed randomly split data on the left and an actual prediction to the community

for the graph on the right. The results are similar to that in China, where the point

estimates appear roughly spread around the 45◦ line, indicating, in this very different

context, that the fit is approximately as good — and again better for the random
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Figure 2.2: Validation in Tanzania. Each graph plots the (normally unknown) direct

estimate of cause-specific mortality horizontally and estimates from our method ver-

tically. This is done for data based on a random split, where our assumptions are

true by construction, on the left and for predictions of the community sample based

on hospital sample on the right.

split than the actual forecast. The confidence intervals of the differences between the

direct estimate and our estimate, in the bottom panel, are larger than for the China

data due to the smaller target population used to estimate P (S), but almost all the

intervals cross zero.

The variance of the direct sampling estimator, D̄j, is approximately D̄j(1−D̄j)/n,

and thus varies with category size. Uncertainty estimates from our approach are

computed by bootstrapping, and of course also vary by category size. The 95%

confidence interval from our estimator is on average across categories 50% wider than

the direct sampling estimator in the China data and 25% wider in the Tanzania

data. Obviously, the reason verbal autopsy procedures are necessary is that direct

sampling estimates of the cause of death in the population are unobtainable, and so

these numbers summarize the necessary costs incurred for this lack of information.
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Of course, compared to the huge costs of complete national vital registration systems,

this is a trival difference.

2.7 Interpretation

We offer five interpretations of our approach. First, since S contains K dichotomous

variables and thus 2K symptom profiles, P (S) and P (S|D) have 2K rows, which take

the role of “observations” in this linear expression. By analogy to linear regression,

where more observations make for more efficient estimates (i.e., with lower variances),

we can see clearly here that having additional symptoms that meet the assumptions

of verbal autopsy studies will decrease the variance, but not affect the bias, of our

estimates of cause-specific mortality.

Second, when the number of symptoms is large, direct tabulation can produce

an extremely sparse matrix for P (S) and P (S|D). For example, our data from

China introduced in Section 2.6 have 56 symptoms, and so we would need to sort

the n = 1, 411 observations collected from the population into 256 categories, which

number more than 72 quadrillion. Reliable estimation by direct tabulation in this case

is obviously infeasible. In practice, we only need to keep the symptom profiles that

actually appear in both the hospital and population data sets, but even this can be

sparsely populated. We thus develop an easy computational solution to this problem

in the Appendix based on a varient of discrete kernel smoothing, which involves using

random subsets of symptoms, solving (2.7) for each, and averaging. The difference

here is that unlike the usual applications of kernel smoothing, which reduce variance

at the expense of some bias, our procedure actually reduces both bias and variance

here.

Third, the key statistical assumption of the method connecting the two samples is

that P (S|D) = P h(S|D). If this expression holds in sample, then our method (and
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indeed every subset calculation) will yield the true P (D) population proportions

exactly, regardless of the degree of sparseness. If the assumption instead holds only

in the population from which the observed data are drawn, then our approach will

yield statistically consistent estimates of the population density P (D). If, in addition,

subset sizes are small enough, then we find through simulation that our estimates are

approximately unbiased.

Substantively, this key assumption would fail for example for symptoms that doc-

tors make relatives more aware of in the hospital; following standard advice for writing

survey questions simply and concretely can eliminate many of these issues. Another

way this assumption can be violated would be if hospitals keep patients alive for cer-

tain diseases longer than they would be kept alive in the community, and as a result

they experience different symptoms. In these examples, and others, an advantage of

our approach, compared to approaches which model P (D|S), is that researchers have

the freedom to drop symptoms that would seem to severely violate the assumption.

Fourth, a reasonable question is whether expert knowledge from physicians or

others could somehow be used to improve our estimation technique. This is indeed

possible, via a Bayesian extension of our approach that we have also implemented.

However, in experimenting with our methods with verbal autopsy researchers, we

found few sufficiently confident of the information available to them from physicians

and others that they would be willing to add Bayesian priors to the method described

here. We thus do not develop our full Bayesian method here, but we note that if

accurate prior information does exist in some application and were used, it would

improve our estimates (see also Sibai et al. 2001).

Finally, the new approach represents a major change in perspective in the verbal

autopsy field. The essential goal of the existing approach is to marshal the best

methods to use S to predict D. The thought is that if we can only nail down the

“correct” symptoms, and use them to generate predictions with high sensitivity and
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specificity, we can get the right answer. There are corrections for when this fails,

of course, but the conceptual perspective involves developing a proxy for D. That

proxy can be well chosen symptoms or symptom profiles, or a particular aggregation

of profiles as D̂. The existing literature does not seem to offer methods for highly

accurate predictions ofD, even before we account for the difficulties in ascertaining the

success of classifiers (Hand, 2006). Our alternative approach would also work well if

symptoms or symptom profiles are chosen well enough to provide accurate predictions

of D, but accurate predictions are unnecessary. In fact, choosing symptoms with

higher sensitivity and specificity would not reduce bias in our approach, but in the

existing approach they are required for unbiasedness except for lucky mathematical

coincidences.

Instead of serving as proxies, symptoms in the new approach are only meant to

be observable implications of D, and any subset of implications are fine. They need

not be biological assays or in some way fundamental to the definition of the disease

or injury or an exhaustive list. Symptoms need to occur with particular patterns

more for some causes of death than others, but bigger differences do not help reduce

bias (although they may reduce the variance). The key assumption of our approach

is P (S|D) = P h(S|D). Since S is entirely separable into individual binary variables,

we are at liberty to choose symptoms in order to make this assumption more likely

to hold. The only other criteria for choosing symptoms, then, is the usual rules for

reducing measurement error in surveys, such as reliability, question ordering effects,

question wording, and ensuring that different types of respondents interpret the same

symptom questions in similar ways. Other previously used criteria, such as sensitivity,

specificity, false positive or negative rates, or other measures of predictability, are not

of as much relevance as criteria for choosing symptom questions.
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2.8 Implications for Individual Classifiers

We now briefly discuss the implications of our work for classification of the cause of

each individual death. As the same results would seem to have broader implications

for the general problem of individual classification in a variety of applications, we

generalize the discussion here but retain our notation with S referring to what is

called in the classifier literature features or covariates and D denoting category labels.

As Hand (2006, page 7) emphasizes, “Intrinsic to the classical supervised clas-

sification paradigm is the assumption that the data in the design set are randomly

drawn from the same distribution as the points to be classified in the future.” In

other words, individual classifiers make the assumption that the joint distribution

of the data is the same in the unlabeled (community) set as in the labeled (hospi-

tal) set P (S,D) = P h(S,D), a highly restrictive and often unrealistic condition. If

P (D|S) fits exceptionally well (i.e., with near 100% sensitivity and specificity), then

this common joint distribution assumption is not necessary, but classifiers rarely fit

that well.

In verbal autopsy applications, assuming common joint distributions or nearly

perfect predictors is almost always wrong. Hand (2006) gives many reasons why

these assumptions are wrong as well in many other types of classification problems.

We add to his list a revealing fact suggested by our results above: Because P (S) and

P h(S) are directly estimable from the unlabeled and labeled sets respectively, these

features of the joint distribution can be directly compared and this one aspect of

the common joint distribution assumption can be tested directly. Of course, the fact

that this assumption can be tested also implies that this aspect of the common joint

distribution assumption need not be made in the first place. In particular, we have

shown above that we need not assume that P (S) = P h(S) or P (D) = P j(D) when

trying to estimate the aggregate proportions. We show here that these assumptions
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are also unnecessary in individual classifications.

Thus, instead of assuming a common joint distribution between the labeled and

unlabeled sets, we make the considerably less restrictive assumption that only the

conditional distributions are the same: P (S|D) = P h(S|D). (As above, we get the

needed joint distribution in the unlabeled set by multiplying this conditional distri-

bution estimated from the labeled set by the marginal distribution P (S) estimated

directly from the unlabeled set.) Thus, to generalize our results to apply to individual

classification, which requires an estimate of P (D`|S` = s`), we use Bayes theorem:

P (D`|S` = s`) =
P (S` = s`|D` = j)P (D` = j)

P (S` = s`)
(2.8)

We propose to use this by taking P (S` = s`|D` = j) from the labeled set, the

estimated value of P (D` = j) from the procedure described in Section 2.5, and

P (Si = si) directly estimated nonparametrically from the unlabeled set, also as in

Section 2.5. As with our procedure, we use subsets of S and average different esti-

mates of P (D`|Si = si), although this time the averaging is via committee methods

since each subset implies a different model (with the result is constrained so that

the individual classifications aggregate to the P̂ (D) estimate). Each of these lower

dimensional subsets (labled “sub”) also imply easier-to-satisfy assumptions than the

full conditional relationship, P (Ssub|D) = P h(Ssub|D).

We illustrate the power of these results with a simple simulation. For simplicity,

we assume that features are independent conditional on the category labels in the

labeled set, P h(S = s|D) =
∏K

k=1 P (Sk = sk|D), which is empirically reasonable

except for heterogeneous residual categories. We then simulate data, with 5 (disease)

categories, 20 (symptom) features, and 3000 observations in the labeled (hospital)

and unlabeled (community) sets. We generate the data so they have very different

marginal distributions for P (S) and P (D). Figure 2.3 gives these marginal distri-

butions, plotting the unlabled set values horizontally and labeled set vertically; note
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that few points are near the 45 degree line. These data are generated to violate the

common joint distribution assumptions of all existing standard classifiers, but still

meet the less restrictive conditional distribution assumption.
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Figure 2.3: Simulated data. For both the proportion of observations in each category

(in the left panel) and the proportion with each feature present (in the right panel),

the labeled set is very different from the unlabeled target population of interest. These

data would violate the assumptions underlying most existing classifiers.

We then run a standard support vector machine classifier (Chang and Lin, 2001)

on the simulated data, which classifies only 40.5% of the observations correctly. In

contrast, our simple nonparametric alternative classifies 59.8% of the same obser-

vations correctly. The key advantage here is coming from the adjustment of the

marginals to fit P̂ (D) in the “unlabeled” set. We can see this by viewing the ag-

gregate results. These appear in Figure 2.4, with the truth plotted horizontally and

estimates vertically. Note that our estimates (plotted with black disks) are much

closer to the 45 degree line for every true value than the SVM estimates (plotted with
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open circles).
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Figure 2.4: Individual-Level Classification by Support Vector Machine (open circles)

and our improved Nonparametric Alternative (closed disks). Despite the differences

between the labeled and unlabeled sets in Figure 2.3, our approach generates better

aggregate results than the standard support vector machine classifier.

This section illustrates only the general implications of our strategy for individ-

ual classification. It should be straightforward to extend these results to provide

a simple but powerful correction to any existing classifier, as well a more complete

nonparametric classifier.

2.9 Concluding Remarks

By reducing the assumptions necessary for valid inference and making it possible to

model all diseases simultaneously, the methods introduced here make it possible to

extract considerably more information from verbal autopsy data, and as a result can
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produce more accurate estimates of cause-specific mortality rates. Since our approach

makes physician reviews, expert algorithms, and parametric statistical models unnec-

essary, it costs considerably less to implement and is easier to replicate in different

settings and by different researchers. The resulting increased accuracy of our rela-

tively automated statistical approach, compared to existing methods which require

many more ad hoc human judgments, is consistent with a wide array of research in

other fields (Dawes, Faust and Meehl, 1989)..

Even with the approach offered here, many issues remain. For example, to esti-

mate the distribution of death by age, sex, or condition with our methods requires

separate samples for each group. To save money and time, the methods developed

here could also be extended to allow covariates, which would enable these group-

specific effects to be estimated simultaneously from the same sample. A Bayesian

approach could also be applied to borrow strength across these areas. A formal ap-

proach to choosing the smoothing parameter (the number of symptoms per subset)

would be useful as well. In addition, scholars still need to work on reducing errors in

eliciting symptom data from caregivers and validating the cause of death. Progress

is needed on procedures for classifying causes of death and statistical procedures

to correct for the remaining misclassifications, and on question wording, recall bias,

question ordering effects, respondent selection, and interviewer training for symptom

data. Crucial issues also remain in choosing a source of validation data for each

study similar enough to the target population so that the necessary assumptions

hold, and in developing procedures that can more effectively extrapolate assumptions

from hospital to population via appropriate hospital subpopulations, data collection

from community hospitals, or medical records for a sample of deaths in the target

population.
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2.10 Appendix: Estimation Methods

We now describe the details of our estimation strategy. Instead of trying to use all

2K symptoms simultaneously, which will typically be infeasible given commonly used

sample sizes, we recognize that only full rank subsets larger than J with sufficient

data are required. We thus sample many subsets of symptoms, estimate P (D) in

each, and average the results (or if prior information is available we use a weighted

average). To choose subsets, we could draw directly from the 2K symptom profiles,

but instead use the convenient approach of randomly drawing B (B < K) symptoms,

which we index as I(B), and use the resulting symptom sub-profile. This procedure is

mathematically equivalent to imposing a version of kernel smoothing on an otherwise

highly sparse estimation task. (More advanced versions of kernel smoothing might

improve these estimates further.)

We estimate P (SI(B)) using the population data, and P (SI(B) | D) using the hos-

pital data. Denote Y = P (SI(B)) and X = P (SI(B) | D), where Y is of length n,

X is n × J , and n is the subset of the 2B symptom profiles that we observe. We

obtain P (D) ≡ β̂ by regressing Y on X under the constraint that elements of β̂ fall

on the simplex. The subset size B should be chosen to be large enough to reduce

estimation variance (and so that the number of observed symptom profiles among

the 2B possible profiles is larger than J) and small enough to avoid the bias that

would be incurred from sparse counts used to estimate of elements of P (SI(B)|D).

We handle missing data by deleting incomplete observations within each subset (an-

other possibility would be model-based imputation). Although cross-validation can

generate optimal choices for B, we find estimates of P (D) to be relatively robust to

choices of B within a reasonable range. (When choosing B via cross-validation from

the hospital data, we use random subsets to separate this decision from the assump-

tion that P (S|D) = P h(S|D).) We have experimented with nonlinear optimization
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procedures to estimate P (D) directly, but it tends to be sensitive to starting values

when J is large. As an alternative, we developed the following estimation procedure,

which tends to be much faster, more reliable, and accurate in practice.

We repeat the following two steps for each different subset of symptoms and then

average the results. The two steps involve reparameterization, to ensure
∑
βj = 1,

and stepwise deletion, to ensure βj > 0.

1. To reparameterize, we follow this algorithm:

(a) To impose a fixed value for some cause of death,
∑
βj = c, rewrite the

constraint as Cβ = 1, where C is a J-row vector of 1
c
. When none of the

elements of β are known a priori, c = 1. When we know some elements βi,

such as from another data source, the constraint on the rest of β changes

to
∑

j 6=i βj = c = 1− βi.

(b) Construct a J − 1 × J matrix A of rank J − 1 whose rows are mutually

orthogonal and also orthogonal to C, and so CA> = 0 and AA> = IJ−1.

A Gram-Schmidt orthogonalization gives us a row-orthogonal matrix G

whose first row is C, and the rest is A.

(c) Rewrite the regressor as X = ZA+WC, where Z is n×J −1, W is n×1,

and (W,Z)G = X. Under the constraint Cβ = 1, we have Y = Xβ =

ZAβ +WCβ = Zγ +W , where γ = Aβ, and γ is a J − 1 vector.

(d) Obtain the least square estimate γ̂ = (Z>Z)−1Z>(Y −W ).

(e) The equality constrained β is then β̂ = G−1γ∗, where G = (C,A), a J × J

row-orthogonal matrix derived above,and γ∗ = (1, γ̂). This ensures that

Cβ̂ = 1. Moreover, Cov(β̂) = G−1Cov(γ∗)(G>)−1 (Thisted, 1988).

2. Then for Stepwise deletion:
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(a) To impose nonnegativity, find the β̂j < 0 whose associated t-value is the

biggest in absolute value among all β̂ < 0.

(b) Remove the jth column of the regressorX, and go to the reparameterization

step again to obtain β̂ with the jth element coerced to zero.

Alternatively, we can view the estiamtion of β to be a constrained optimiza-

tion problem and use the dual method to solve the strictly convex quadratic pro-

grams(citations.. ) Finally, our estimate of P (D) can be obtained by averaging over

the estimates based on each subset of symptoms. The associated standard error can

be estimated by bootstrapping over the entire algorithm. Subsetting is required be-

cause of the size of the problem, but because S can be subdivided and our existing

assumption P (S|D) = P h(S|D) implies P (SI(B)|D) = P h(SI(B)|D) in each subset,

no bias is introduced. In addition, although the procedure is statistically consistent

(i.e., as n→∞ with K fixed) the procedure is approximately unbiased only when the

elements of P (S|D) are reasonably well estimated; subsetting (serving as a version of

kernel smoothing) has the advantage of increasing the density of information about

the cells of this matrix, thus making the estimator approximately unbiased for a much

smaller and reasonably sized sample. We find through extensive simulations that this

procedure is approximately unbiased, and robust except in very small sample sizes.
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Chapter 3

Understanding Complex

Legislative and Judicial Behavior

via Hierarchical Ideal Point

Estimation

3.1 Introduction

In political science, researchers are often interested in understanding political actors’

decision-making behavior. For example, why do the judges on the Supreme Court vote

the way they do? And why do house members support some bills and reject others?

Theorists of legislative and judicial behavior posit that political actors hold certain

policy preferences or ideological values and such preferences underpin their voting

behavior. However, there is usually no explicit data about political actors’ preference.

Instead, researchers seek to derive such information from alternative resources such

as recorded vote data, speeches of political actors, or newspaper editorials.



In this paper, we focus on methods of ideal point estimation that measure polit-

ical preferences through recorded vote data. A hierarchical statistical framework for

ideal point estimation is introduced. Under this framework, researchers can model

correlated voting behavior among groups of individuals and each individual’s deci-

sions on related issues. In particular, the hierarchical structure is implemented to

allow the elucidation of the characteristics of the decision makers and of the pending

bills/cases. Hence, this framework entails a substantively intuitive and statistically

coherent approach to address important issues such as the multidimensional nature of

political ideology, party or interest group influence, period effect and strategic voting.

The rest of this paper is organized as follows. In Section 3.2, we briefly review

existing ideal point estimation research, and discuss how the complexity in voting be-

havior could falsify the commonly adopted assumptions regarding independent voting.

Section 3 introduces our model and an schematic illustration of modeling correlated

voting behavior through hierarchical structures. Section 4 highlights model estima-

tion. Section 5 presents the results of simulation studies to assess model performance.

Section 6 follows with two empirical examples. One example analyzes the legislative

behaviors of the 109th US house of representatives and the other analyzes the judicial

behaviors of the US supreme court justices (1919-1996). Finally, Section 7 concludes

the paper with a discussion about the potential of this framework.

3.2 Traditional Ideal Point Estimation and Corre-

lated Voting Behavior

In political science research, the quantitative measurement of political preference

is typically done from ideal points (Epstein & Mershon, 1996; Poole & Rosenthal,

1997; Segal & Spaeth, 1997; Jackman, 2000; Longdregan, 2000; Martin & Quinn,
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2002; Clinton et.al., 2004; Poole, 2005). The estimation of ideal points is based on

a theoretical construct of ideological space which represents a liberal-conservative

continuum (Poole & Rosenthal, 1997). The main goal of ideal point estimation is to

uncover the position of each legislator in the ideological space based on observed vote

records.

Suppose there are I political actors making decisions on J different items. The

items can be bills discussed in the Congress or cases in the court. The decisions are

recorded in a data matrix {yij, i = 1, . . . I, j = 1, . . . , J}. When we observe a “Yea”

vote on the jth item by the ith legislator, yij = 1; when we observe a “Nay” vote,

yij = 0. Following Clinton, et.al. (2004), a unidimensional ideal point estimation

model is based on a latent score tij with the following form

tij = ajθi − bj + εij, (3.1)

and

yij =

 1 if tij ≥ 0

0 if tij < 0

where θi is the ideal point of the ith individual, bj measures how difficult it is for

an individual to agree with the jth item, aj measures the direction and sensitivity of

the jth item in distinguishing individuals’ ideal points, and εij is the identically and

independently distributed error term.

In recent years, more attention has been paid to complex ideological structures and

voting behavior. For examples, to what extent does partisanship influence legislators’

voting behaviors? Is the unidimensional ideological space sufficient to summarize the

variation of political preference? Other questions of interest include the temporal

changes of legislators’ political preference, committee voting and strategic voting.

Much of the work has been done based on an ad hoc analysis of ideal point estimates

from models, such as equation (3.1), and they often suffer from mis-specification
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problems. There have been several attempts to extend the classical model, such

as multidimensional ideological estimation (e.g., Jackman, 2001; Rivers, 2003) and

dynamic ideal point estimation (Martin and Quinn, 2002). But those models are

not only computationally challenging due to rapidly increasing number of parameters

to be estimated, they are also difficult to interpret since no information about the

characteristics of the legislators and the contents of bills and cases that are presented

to the legislators is incorporated into the estimation.

Under the classical ideal point model (1), there are two assumptions of indepen-

dence: given item j, every individual votes independently; given ith individual’s ideal

point, he/she votes independently across all items. The first independence assumption

could be violated when voters are influenced by peers, for example, when party mem-

bers are influenced to vote toward the party policy line regardless of their ideological

values. The second independent assumption is termed Local Item Independence (LII)

in psychometric literature. One situation in which it fails is when the unidimensional

model is insufficient. For example, a justice can be socially liberal, but conservative

concerning economic issues. Another source of local item dependence is related to

temporal changes in political preference. In different time periods, legislators could

vote differently in responding to the changes in political institutions. For example,

Lu and McFarland (2007) found that in the US house of representatives, there are

significant period patterns in voting behavior of the congressmen under unified demo-

cratic, divided and unified republican government in the last ten US congresses. When

the independence assumptions are violated, the parameter estimates θis and aj, bjs

conditional on those independencies will be biased and inefficient. There are many

references in psychometrics discussing this issue (see Sireci et. al., 1991, Wainer and

Thissen, 1996 and Yen, 1993).

In this paper, we generalize equation (1) to allow the characteristics of the political

actors and of the cases/bills as well as the context in which the votes are cast to be
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modeled in ideal point estimation. Specifically, the generalization takes the following

form

tij = aj(θik + δm)− blj + εij

where we allow the ideal point θi to vary across subgroups of the bills/cases of dif-

ferent contents and the item parameter bj to vary across subgroups of individuals

of different characteristics. δm is an additional term that capture transitory drifts

across subsets of votes cast by subgroup of individuals. In other words, we model

the “covariates” into ideal point estimation. Naturally this model takes care of the

deviation of the assumptions of independence by introducing random effect terms θik,

blj and δm, and allowing them to interact with individuals and cases. Hence the dif-

ferent dependence structures in ideal point estimation can be conveniently modeled.

A detailed discussion of this model will be presented in Sections 3 and 4.

3.3 Model Complex Dependent Structure

To illustrate our model, we first introduce a set of definitions to denote different types

of dependent structures in the recorded vote data. The chart below illustrates these

definitions in a political voting context where there are 10 legislators casting votes

on 12 bills. The party affiliations of the legislators are labeled D, R, or blank if the

legislator does not belong to either party. Moreover, we assume that the contents

of the 12 bills can be classified into three different issue areas: economic activities

(EA), civil liberties issues (CL) and political issues (PI). A vote cast by a legislator

is indicated by an “·”. The symbols ?, ∗ and $ represent the three different voting

blocks.
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J 1 2 3 4 5 6 7 8 9 10 11 12

I EA EA EA EA CL CL CL CL PI PI PI PI

1 D · · ·? ·? ·? · · · · · · ·

2 D · · ·? ·? ·? · · · · · · ·

3 D · · ·? ·? ·? · · · · · · ·

4 D · · · · · · · · · ·∗ ·∗ ·∗

5 R · · · · · · · · · ·∗ ·∗ ·∗

6 R · · · · · · · · · ·∗ ·∗ ·∗

7 R · · · · · · · · · ·∗ ·∗ ·∗

8 R · · ·$ ·$ · · · · · · · ·

9 · · ·$ ·$ · · · · · · · ·

10 · · ·$ ·$ · · · · · · · ·

We use the term allyset to denote a group of individuals who typically vote to-

gether; the term voteset to denote a cluster of items to which each individual’s deci-

sions are correlated; and the term tactset to indicate a block of correlated decisions

made by a group of individuals on a cluster of items.

• allyset: The hierarchical structure among individuals is defined by allysets. An

allyset consists of individuals who tend to influence each other when they vote.

For example, individuals who belong to party D can be considered as an allyset,

while individuals labeled R belong to another allyset. Allysets are flexible con-

structs which can be determined by the characteristics of the political actors.

Furthermore, not all individuals need to be included in an allyset; individual

voters can coexist with allysets.

• voteset: The hierarchical structure among items is delineated by votesets. Specif-

ically this term denotes a cluster of bills/cases to which each individual’s deci-
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sions are correlated; A voteset can be determined by the characteristics of the

items such as issue areas or time periods. For example, bills 1-4 belong to same

voteset EA because they all concern economic activities, while bills 5-8 and 9-12

belong to two other votesets.

• tactset: tactsets are flexible constructs. They are blocks (or collections) of cor-

related decisions that are made by a subgroup of individuals on a selection of

bills. In the chart above, the components of a tactset are indicated by the addi-

tional symbols ?, *, or $. In general, a tactset consists of votes that are affected

by temporary political coalitions. An example of tactset are the decisions made

by individuals 8, 9 and 10 on bills 3 and 4 driven by shared economic incentives.

Tactsets can also represent strategic votes. For example, individuals 1, 2 and 3

can vote strategically on bills 3-5 in trade for preferred outcomes of individuals

4 to 7 voting on bills 10-12.

Conditional on allysets, votesets and tactsets, we can write a hierarchical ideal

point estimation model as follows,

P ( yij = 1| d(j) = k, p(i) = l, r(i, j) = m) = Φ(aj(θik + δm)− blj), (3.2)

with the corresponding latent function,

tij = aj(θik + δm)− blj + εij (3.3)

where εij is a standard normal error. Votesets are indexed by d(j); if question j

belongs to voteset k, d(j) = k. When making decisions, the model assumes each

individual has a unique and voteset-specific ideal point, θik. Allysets are indexed by

p(i); if individual i belongs to allyset l, p(i) = l. The term blj then measures how

likely it is for members of the lth allyset to agree with the jth item. Hence we

can view blj as the lth allyset’s policy position for the jth item. Lastly, the effect
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of tactset–transitory coalition is denoted by δr(i,j) with tactset indexed by r(i, j). If

individual i and item j belong to tactset m, r(i, j) = m. For individuals and items

that do not belong to any of the tactsets, r(i, j) = 0 and δr(i,j) = 0.

We model θik, k = 1, . . . , K as random effects following Multivariate Normal Dis-

tribution with mean 0 and variance-covariance matrix ΣK . K is the number of

votesets.

(θi1, . . . , θiK)t ∼ MVN ( 0, ΣK) , i = 1, . . . , I,

where the mean equal to 0 is for model identification purpose and the diagonal el-

ements of ΣK are the variance of the votesets, σ2
k. The off-diagonal terms are the

covariance between two votesets, σkk′ . We model each distinct value of blj as indepen-

dent random effects following Multivariate Normal Distribution with mean µb and

variance ΨG where G is the number of allysets.

(b1j, . . . , bGj)
t ∼ MVN

(
µb,ΨG

)
, j = 1, . . . , J.

Last, we model δm through

δm ∼ N(µδ, σ
2
δ ), m = 1, . . . ,M.

We complete the specification of model (3.3) into a larger Bayesian hierarchical

framework by treating item parameter aj as random effects. Specifically we assume:

aj ∼ N(µa, σ
2
a)

Compared to the traditional ideal point estimation model, now we can model

various dependencies introduced by the votesets and allysets. For example, in model

(1) the within-person correlation and within-item correlation of the latent scores are

assumed to be constant.

cor (tij, tij′) =
µ2
aσ

2
θ

V (tij)
, j 6= j′, cor (ti′j, tij) =

σ2
b

V (tij)
, i 6= i′.
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where the variance of tij is a constant, V (tij) = 1 + σ2
b + (µ2

a + σ2
a)σ

2
θ . However, when

there are votesets, cor(tij, tij′) depends on whether items j and j′ belong to the same

voteset or not. Under the hierarchial model (3), assuming no allysets to simplify the

situation:

cor (tij, tij′) =


µ2
aσ

2
k

(σ2
a+µ

2
a)σ

2
k+σ

2
b+1

, if d(j) = d(j′) = k

µ2
aσkk′√

(σ2
a+µ

2
a)σ

2
k+σ

2
b+1
√

(σ2
a+µ

2
a)σ

2
k′+σ

2
b+1

, if d(j) = k, d(j′) = k′, k 6= k′

We note that for ith person, the correlation between his/her responses to two items

j and j′ that belong to the same voteset k is proportional to the variance of that

voteset, σ2
k. Hence the larger the variance, the more significant the voteset effect. On

the other hand, if the two items do not belong to the same voteset, the correlation

of the corresponding latent scores depends on σkk′ , the covariance between the two

votesets. Similarly, where there are allysets, we can capture the dependencies within

and across allysets.

In model (3), the covariance matrix Σk reveals the dependence structure of the

votesets. We can derive the correlation between any two votesets, ρkk′ = σkk′/(σkσk′).

The value ρkk′ = −1 indicates maximal deviation of individual’s ideological values in

the two votesets k and k′; the same individual who is liberally minded when making

decisions in voteset k can be conservatively minded when making decisions in vote-

set k′. When ρkk′ = 0, the individual makes a decision in voteset k independently

from decisions in voteset k′. In this situation, knowing the liberalism/conservativeness

of an individual i in voteset k does not help us to infer his/her ideological stand in

the other voteset k′. On the other hand, if the two votesets are highly positively

correlated, one could consider combining them.

Similarly, the covariance matrix ΨG models how allysets affect the vote outcomes

and the interactions among them. A larger variance of allyset l implies a more unified

vote outcomes among the allyset members than the sincere vote outcomes based solely
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on their ideal points, hence more significant group effect. The correlation ρll′ between

any two allysets measures the extent to which these two groups cooperate with or

obstruct each other. When there is little difference between the policy positions

induced by two allysets, ρll′ → 1. On the other hand, a small correlation or even

negative correlation implies that a fair number of votes are influenced by the different

party agendas.

In this hierarchical framework, allysets, votesets and tactsets are defined by the

contents of the bills or the cases, the characteristics of the voters as well as the

context in which they vote. Hence researchers are empowered to directly incorporate

their substantive knowledge about legislative and judicial behaviors into statistical

modeling. Furthermore, such definitions of allysets, votesets and tactsets make them

very malleable structures and they offer researchers opportunities to test alternative

theories of voting. In the following sections, we will demonstrate models with only

allysets or votesets through simulations and real data application. We will discuss the

cases of tactsets and any combinations of three dependent structures in Section 3.7

for future applications. Therefore, in the rest of the paper, we focus on the following

reduced model

tij = ajθid(j) − bp(i)j + εij (3.4)

3.4 Hierarchical Ideal Point Estimation

3.4.1 The identification of the model

Without constraints, model (3.4) is in general non-identifiable. Bafumi et.al. (2005)

pointed out two sources of identification problems:
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additive aliasing: ajθik − blj = aj(θik + c0)− (blj + c0)

multiplicative aliasing: ajθik − blj =

(
aj
d0

)
(θikd0)− blj

To solve the additive aliasing problem, we constrain the ideal points to be mean

0.

E(θik) = 0.

Since aj ∈ (−∞,∞), one aspect of the multiplicative aliasing problem is reflection

invariance, i.e., ajθik = (−)aj(−)θik. To prevent this problem, a constraint can be

put on the rank orders of at least two θik values of each voteset. In a political voting

context, this can be easily done by identifying a subset of legislators that are quoted

as being highly conservative or highly liberal in each voteset. To completely solve the

multiplicative aliasing problem, constraints also need to be imposed on the variance of

either votesets θik or aj. As will be shown in Section 3.4.2, we handle this problem by

applying an informative prior distribution to θik such that the posterior distribution

is not subject to multiplicative aliasing. Essentially the political interpretation of the

ideal points, allysets effects and votesets effects are not affected by these constraints

since they are invariant to the scale changes.

3.4.2 Estimation of the proposed models

The large number of parameters in model (3.4) invites a fully specified Bayesian

framework. Advances in Bayesian estimation such as Gibbs sampler and Markov

Chain Monte Carlo make the posterior simulation of large number of parameters

tractable and efficient.

To minimize the impact of prior specification on the posterior estimation, we apply
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noninformative Jeffrey’s prior distributions to the hyper-parameters.

(
µb,ΨG

)
∼ | ΨG |−(L+1)/2,

(µa, σ
2
a) ∼ σ−2

a .

Then we choose the prior distribution for the voteset effects θik in order to solve

the multiplicative aliasing problem as follows:

(θi1, . . . , θiK)t ∼ MVN ( 0, IK) , i = 1, . . . , I,

where IK is a K-dimensional identity matrix. Then the conditional posterior distri-

bution of θik given the latent score tij and the posterior draws of aj, blj, p(i) = l, as

follows,

f(θik | tij, aj, blj) ∝ exp

{
−1

2

[
(
∑
j

a2
j + 1)θ2

ik − 2
∑
j

(tij − blj)ajθik

+
∑
j

(tij − blj)2

]}
(3.5)

where
∑

j is a summation over j ∈ votesetk.

Under the above prior specifications, the posterior estimation of model (3.4) is

fairly straightforward via data augmentation (Tanner and Wong, 1988) and Gibbs

sampler. In particular, at each step of Gibbs sampler, the conditional posterior dis-

tributions have closed forms. For details see Lu & Wang (2008) (Software manual).

3.4.3 Assessing the model fit

As the entire estimation is carried through a Bayesian framework, one can access

the model fitting through the posterior predictive checks, for example, calculating

the latent continuous residual or the Mean Absolute Predictive Error. Moreover,

researchers can test hypotheses through the posterior p-value. For example, one can
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test whether there is difference in the variances of two allysets by comparing their

posterior draws.

The formation of allysets, votesets and tactsets are all subjective. To choose the

right formation, we use the Deviance Information Criterion (DIC) for model selection,

which is a Bayesian model selection rule developed by Spiegelhalter et al. (2002). DIC

is an extension to the Akaike information criterion and it takes the following form:

DIC = D̄ + pD,

where D̄, the posterior expectation of the deviance, serves as the Bayesian measure

of model adequacy. It can be calculated directly from the MCMC chains. pD is a

penalty term that accounts for the complexity of the model. Due to the structure

of the Bayesian hierarchical model and the shared prior distribution, the parameters

are in general not independent. The value pD in this case can be interpreted as “the

effective number of parameters”. In general, the smaller the value of DIC, the better

the model fitting.

3.5 Simulation Studies

In this section, we present a set of simulation studies to assess the performance of our

model in estimating allyset effects and voteset effects.

There are three different hypothetical scenarios from which simulated data sets

are generated. In the first scenario it is assumed that 100 individuals vote on 100

items. Moreover, there are 4 votesets, each of which has 25 items; and 2 allysets, each

of which has 50 individuals. The second scenario assumes 200 individuals voting on

200 items. As in the first scenario, there are 4 votesets of equal numbers of items

and 2 allysets of equal numbers of individuals. Lastly the third scenario involves 400

individuals voting on 400 items. It has the same structure of votesets and allysets.
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Moreover, in each of the scenarios, voteset 1 and voteset 2 are assumed to be corre-

lated with correlation 0.5, and voteset 1 and voteset 3 are correlated with correlation

-0.8. The rest of the votesets are assumed to be pair-wise independent. Hence, in

each simulation, the voteset effects θik, k = 1, . . . , 4, are drawn from a multi-variate

normal distribution as follows:


θi1

θi2

θi3

θi4

 ∼ MVN




0

0

0

0

 ,


1 0.5 −0.8 0

0.5 1 0 0

−0.8 0 1 0

0 0 0 1



 .

The two allysets are correlated with correlation -0.5 and they have different mean

and variance. Specifically, in each simulation, the allyset effects blj, l = 1, 2, are drawn

from a bivariate normal distribution as follows:

 b1j

b2j

 ∼ BVN

 1

−1

 ,

 2 −0.7071

−0.7071 1

 .

To directly assess the performance of the proposed Bayesian model estimation,

we simulate 100 datasets (due to the expansive computation of Bayesian method) for

each scenario and fit the Bayesian model for each data set. In Table 3.1, the estimated

expected values (est.) of the following parameters are reported: the posterior variance

of the voteset effects θik and the correlation between every two votesets, the posterior

mean and variance of the allyset effects blj and the correlation between the two allysets,

and the posterior mean and variance of item parameter aj. The expected values of

these parameter estimates are estimated by averaging the results based on the 100

simulations. The estimated standard errors (s.e.) of these parameter estimates are

also reported. Table 3.1 indicates that the estimated entries for the covariance matrix

of θ tend to be underestimated when sample size is small. This is due to the shrinkage
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effect of Bayesian modeling. However, this effect decreases as sample size increases.

Similarly, as sample size increases, the parameter estimates of the allyset effects and

of ajs approach to their true values with higher precision.

Table 2 reports the mean square errors of the individual level voteset specific

ideal point estimates,
∑I

i=1(θ̂ik − θik)
2/I, the mean square errors of the item level

allyset specific effects estimates,
∑J

j=1(b̂lj − blj)2/J , and the mean square error of aj,∑J
j=1(âj−aj)2)/J . As the number of questions and the number of individuals double,

the mean square errors of these individual level and item level parameters are also

halved. In general, these simulation studies show that the Bayesian estimation gives

consistent results.

3.6 Applications to US Judicial and Legislative Be-

havior

In this section, we offer two examples of applying the hierarchical ideal point estima-

tion model to analyze legislative and judicial behavior. In the first example, treating

each party as an allyset, we examine to what extent party affiliations affect decisions

made by the members of the 109th US congress. The second example explores the

issue-specific preferences of the US Supreme Court justices in different issue areas

defined by votesets.

To ensure the convergence of estimating a large number of parameters, all the

results we present are based on multiple chains and past convergence diagnostics

(Gelman and Rubin, 1992). Four Markov Chains are run in each example; each chain

consists of 10,000 iterations after a burn-in period of 10,000 iterations, and only every

10th draw is kept in order to reduce the serial correlation of the Markov Chains.

In both data sets, especially in the Supreme Court data, there are many missing
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Table 3.1: Parameter estimation of the simulated examples.

Simulation 1 Simulation 2 Simulation 3

I = 100, J = 100 I = 200, J = 200 I = 400, J = 400

parameter est.(s.e.) est.(s.e.) est.(s.e.)

voteset

V (θ1) = 1 0.876 (0.067) 0.931 (0.040) 0.975 (0.024)

V (θ2) = 1 0.869 (0.072) 0.938 (0.044) 0.969 (0.026)

V (θ3) = 1 0.874 (0.058) 0.939 (0.037) 0.965 (0.028)

V (θ4) = 1 0.875 (0.063) 0.937 (0.038) 0.965 (0.034)

ρθ(1, 2) = 0.5 0.438 (0.086) 0.478 (0.052) 0.486 (0.040)

ρθ(1, 3) = −0.8 -0.711 (0.042) -0.758 (0.028) -0.776 (0.019)

ρθ(1, 4) = 0 -0.000 (0.102) -0.011 (0.061) 0.000 (0.050)

ρθ(2, 3) = 0 0.006 (0.092) -0.006 (0.068) -0.002 (0.049)

ρθ(2, 4) = 0 0.002 (0.102) -0.005 (0.070) -0.001 (0.047)

ρθ(3, 4) = 0 -0.013 (0.090) 0.001 (0.069) 0.001 (0.050)

allyset

E(b1) = 1 1.012 (0.137) 1.004 (0.097) 0.999 (0.075)

E(b2) = −1 -1.002 (0.089) -1.011 (0.065) -0.994 (0.043)

V (b1) = 2 2.159 (0.399) 2.032 (0.242) 2.058 (0.174)

V (b2) = 1 1.058 (0.174) 1.014 (0.114) 1.011 (0.075)

ρb(1, 2) = −0.5 -0.497 (0.081) -0.501 (0.057) -0.509 (0.040)

a

E(a) = 0 -0.001 (0.136) 0.010 (0.100) 0.000 (0.073)

V (a) = 2 2.068 (0.437) 2.050 (0.239) 2.013 (0.159)
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Table 3.2: Mean square errors of the individual level and item level parameters.

parameter Simulation 1 Simulation 2 Simulation 3

I = 100, J = 100 I = 200, J = 200 I = 400, J = 400

Est.(s.e.) Est.(s.e.) Est.(s.e.)

Mse(θ1) 0.128(0.028) 0.066(0.014) 0.032(0.005)

Mse(θ2) 0.130(0.037) 0.062(0.012) 0.032(0.005)

Mse(θ3) 0.127(0.034) 0.064(0.013) 0.032(0.006)

Mse(θ4) 0.122(0.031) 0.063(0.011) 0.031(0.004)

Mse(b1) 0.201(0.056) 0.112(0.030) 0.062(0.012)

Mse(b2) 0.121(0.025) 0.068(0.010) 0.035(0.005)

Mse(a) 0.142(0.031) 0.068(0.011) 0.034(0.004)

values in the data matrices. To minimize the impact of these missing values on model

fit, we treat them as missing at random.

3.6.1 Party effect in Congress

The roll call records in the US house of Representatives are known to be very po-

larized. For example, 48% of the bills voted during the term of the 109th Congress

were unanimously voted by at least one party. Researchers have been studying the

effect of party in roll call voting, specifically, whether the observed polarization is

due to the sharp division of political preference between the Democrats and the Re-

publicans, or is due to party pressure during the roll call processes. There have been

some attempts to measure the party effect in roll call voting, for examples, by com-

paring the ideal points of the median legislator within each party (Schickler, 2000);

by examining the behavioral changes in individual party switchers (Clinton, Jackman
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and Rivers, 2004); or by modeling party induced effect (see e.g., party inducement

model, Snyder and Groseclose, 2000; Clinton, et.al., 2004). However, none of these

approaches directly address the problem that the existence of party effect violates the

assumption of independent voting. Hence these models suffer from inaccurate model

specifications and inability to quantify party effect.

In this section, we will explore the effect of party in the context of correlated

voting behavior. To examine the extent to which parties shape individuals’ voting

behavior, we fit a hierarchical ideal point estimation model with two allysets that

are defined by the Democratic party and the Republican party in the Congress. Our

strategy is to estimate the ideal point of each House member assuming a party specific

policy position, the allyset effect blj, l = 1, 2, for each roll call j. Meanwhile, we can

obtain estimates of the true ideal point of each legislator, while controlling for party

influence. For comparison purposes, we also fit standard ideal point model (the

null model, model (3.1)) through a Bayesian framework based on the assumption of

independent voting.

In this analysis, we take the roll call data of the 109th Congress compiled by Lewis

and Poole (2008). Unanimous votes were excluded from the analysis since they do

not offer any information in distinguishing the ideal points of the legislators. There

are 1038 non-unanimous votes cast by 440 representatives of the 109th congress, in

which 203 were Democrats and 237 were Republicans. Figure 3.1 summarizes the

results based on these data.

The x-axes of the two graphs on the left plot the estimations of the ideal points of

house members before and after controlling for the effects of the allysets (null model

versus the party model). Each dot represents a member of the congress; solid dots

indicate Democrats and circled dots indicate Republicans. To identify the model,

we constrain the most liberal member of the house to have a negative valued ideal

point and vice versa for the most conservative member of the house. Hence, the more
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Figure 3.1: Ideal point estimates of members of US congress and party induced policy

positions.

negative the ideal point, the more liberal the legislator is.

The most distinctive feature of these two graphs is that after controlling for party

effect, there is significant overlap of the ideal points of the two parties. In contrast,

the null model suggests absolute polarization. This shows that the observed dra-

matic separation between the Democrats and the Republicans (as modeled under

the null model) is partially due to the party effect, rather than stark separations of

the ideological preferences between the individuals of the two parties. Moreover, it

is interesting to see that under the party model, the ideological positions of both

moderates and extremists of each party extend further away from the party median

positions (as indicated by the vertical lines), which implies that parties tend to in-

fluence the vote outcomes by squeezing both moderates and extremists closer to the

party line (compared to the observed ones under the null model). On the other hand,

we also observe that the median positions of the ideal points for both are still widely

separated, and change little between the two models. Therefore, in general, the roll
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call outcomes are congruent with most House members’ ideological preferences even

under significant party influence.

Furthermore, our model reveals that the variance of the allyset Democrat is 6.7

and the variance of allyset Republican is 2.8. This shows that when voting on each

bill, there is a much higher correlation among the decisions made by Democratic party

members than among the Republican party members. Hence the Democratic party

members tend to have more unified votes than the Republican party given their ideal

points. This finding is not surprising since being the minority party in the 109th

Congress, the Democratic party might be expected to influence the vote results to

maximize the party’s power.

Moreover, the correlation between these two allysets is just 0.07, suggesting that

the two parties obstruct each other on a large number of roll calls. In the right

panel of Figure reffig:party, we plot the Democratic allyset effects b1j against the

Republican allyset effects b2j. A bill with liberal content (aj < 0) is labeled by a solid

dot and a bill with conservative content (aj > 0) is labeled by a circle. In this scatter

plot, about 40% of the dots are located in the 1st and 4th quadrangles. This shows

that both parties move the policy positions of those bills toward opposite directions

for favorable vote outcomes. In particular, data points in the 1st quadrangle mostly

consist of solid dots, suggesting that the Democratic party tends to make a sizable

number of the bills with liberal contents more passable (with negative b1j values)

among their members while the Republican party does the opposite. A mirror image

can be seen in the 4th quadrangle suggesting both parties manipulate a significant

number of the conservatively contented roll calls as well. Further research is called

for to investigate which types of roll calls are more subject to party manipulation.

Lastly, we present the Deviance Information Criterion (DIC) and Mean Absolute

Predictive Errors (MAPE) of these two models (see Table 3.3. Not surprisingly, the

party allyset model performs much better than the null model. To compare the
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performance of non-informative prior, we also present the DIC and MAPE of the

standard software package MCMCpack where informative priors are used (Martin &

Quinn, 2008). It seems that the model is not sensitive to the different priors.

Table 3.3: Deviance Information Criterion and Mean Absolute Predictive Errors of 3

models.

Model DIC D̄ pD MAPE

Null model 145248 143565.3 1682.7 0.167

Party model 140100.5 137850.3 2250.2 0.159

MCMCirt1d 145233.6 143550.7 1682.8 0.167

3.6.2 Estimating ideal points within different issue areas

Being the individuals with the highest judicial power in the US, the Supreme Court

justices receive a lot of attention on their ideological values. Earlier substantive re-

search has suggested that the decisions justices make could have come from different

ideological dimensions. For examples, Schubert (1974) suggests that the ideological

values of the justices can be summarized within two value systems–civil liberties and

economic liberties. Spaeth (1979) suggests the justices support or oppose the three

values of freedom, equality and New Deal economics. On the other hand, more recent

research based on the court rulings records under chief justice Rehnquist found evi-

dence of uni-dimensional court via pattern analysis (Sirovich, 2003). Recently, efforts

have been made to develop multidimensional ideal point estimation (Jackman, 2001;

Rivers, 2003, Poole, 2005). However, such models are all based on the assumption of

orthogonal multidimensional space which suffers lack of substantive interpretation of

each subdimension and great difficulty in model fitting.
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In this section, we approach the task of modeling multidimensional ideal points

via hierarchical model with votesets. Specifically, we directly group the cases into

votesets defined by the general issue areas: civil liberties (which encompasses liberal

versus conservative), economic activities (which encompasses New Deal versus Lais-

sez Faire economic policies) and federalism (which encompasses federal versus state

power). This allows us to estimate the issue-specific ideal points and the correspond-

ing variance-covariance structure.

The vote records of the US Supreme Court Justices are extracted from the Original

U.S. Supreme Court Judicial Database compiled by Harold Spaeth. This dataset

includes all court cases and the vote results from 1953 to 2003. There were 29 justices

and 3069 cases with non-unanimous decisions debated during this period.

In Spaeth’s original database, 13 issue areas are defined based on the contents of

the cases. We group them into three votesets of major categories: economic activities

(including 543 cases related to economic activity, federal taxation, interstate relations

and labor unions), civil liberties (including 1180 cases related to civil rights, criminal

procedures, due process, first amendment and privacy) and federalism (including 325

cases related to attorneys, federalism and judicial power).

To understand whether the Justices have different ideological values within dif-

ferent issue areas, we fit five models based on different definitions of the votesets:

considering all issue areas as one voteset, combining any two of the issue areas as a

voteset and leaving the other one as another voteset, and treating each issue area as

a voteset. The models and their performances are presented in Table 3.4. We can

see that a 2-voteset model which combines issue areas economic activities and polit-

ical institutions as one voteset and leaving cases concerning civil liberties as another

voteset fits the data best.

Furthermore, our model reveals that there is considerable variation of the jus-

tices’ ideology toward civil liberties (variance=1.17) compared to the areas of eco-
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Table 3.4: Deviance Information Criterion and Mean Absolute Predictive Errors of 5

models.

votesets DIC D̄ pD MAPE

one voteset 21348.4 17309.3 4039.1 0.2344

(civil and political)/economic 21123.3 17045.9 4077.4 0.2305

(economic and civil)/political 23696.2 19633.7 4062.5 0.2688

(economic and political)/ civil 20988.9 16979.8 4019.1 0.2297

economic/civil/political 22996.8 18884.6 4112.2 0.2307

nomic/political voteset (variance=0.36). In Figure 3.2, we plot the rank orders of the

justices in the two votesets. Largely, the ideology of most justices remained consistent

in both votesets and the correlation between their rank orders is 0.8. Nevertheless

there are exceptions. For example, Judge Clark, an avid promoter of the New Deal

economic policy, is estimated as having a moderate point of view toward civil lib-

erties issues. On the other hand, the model shows that Justices Reed and Minton

had very conservative view when deciding cases of civil liberties but were moderate

justices when debating cases regarding economic activities and political institutions.

The findings about these individual justices are consistent with existing anecdotal

research on judicial behavior.

3.7 Discussion and Remarks

A unified approach to modeling complex legislative behaviors through votesets, ally-

sets and tactsets in ideal point estimation is presented in this paper. Compared with

alternative methods, this model directly speaks to a missing connection between the
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Figure 3.2: Ideal point estimates of the Supreme Court justices in different issue

areas.

questions of substantive interest and statistical modeling of ideal points: modeling

correlated voting behavior via dependence structures that are characterized by “co-

variate” and contextual variables. Hence it offers a more practical solution and is

very intuitive. Guided by this framework, researchers of legislative and judicial be-

havior are empowered to test various propositions of formal political theories via the

constructions of votesets, allysets and tactsets based on their substantive knowledge.

Indeed, the model we proposed in Section 3 represents a general form of modeling

hierarchical structures in ideal point estimations, and can be easily generalized or

reparameterized. For example, when there are independent voters, one can model

the true policy position b0j in absence of allysets effects,

tij = ajθik − (b0j + ϕlj) + εij (3.6)

ϕlj ∼ N(0, σ2
l )

where ϕlj is the allyset induced effect and is equal to zero for independent voters, and
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σls actually quantify the exact party effects. Moreover, one can model time-varying

party influence through votesets defined by time periods and interacting allyset effects

and votesets effects (Lu & McFarland, 2007). Similar to the reparameterization (6), if

we know only a subset of items violates the local item independence assumption, we

can group them into votesets and model main ideal points of each individual, allowing

occasional deviations within votesets.

tij = aj(θ
0
i + γik)− b0j + εij (3.7)

γik ∼ N(0, σ2
k)

where γik is the voteset induced effect and is equal to zero for independent items

and σk actually quantifies the deviation from main ideological dimension of each

voteset. For example, one can test whether Justice Rehnquist influences the decisions

made during his tenure as Chief Justice or the Conditional Government hypothesis

of conditional party influence. In reparameterization (7) the model specification is a

close variation of Bradlow, Wainer and Wang’s “testlet effects model” in the field of

education testing (1999).

Moreover, tactset is a very flexible concept which allows researchers to model and

test transitory collaborative voting behaviors such as strategic voting, vote trades and

agenda setting.

tij = aj(θi + δm)− bj + εij

Take the example of the two tactsets as our illustrating example in Section 1, one is

represented by the ? votes and the other by the ∗ votes. We can examine whether

the members of these two tactsets trade votes for more favorable vote outcomes in

specific bills. A formal test of δ1 > 0 and δ2 < 0 is equivalent to testing the existence

of a conservative shift among members of tactset 1 in trading for a liberal shift among
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members of tactset 2. Not shown in this paper, simulation studies have been carried

out for models with tactsets and consistent results are established.
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Chapter 4

Variable Selection for Linear

Mixed Effect Model

4.1 Introduction

Clustered data is a common phenomenon in modern data analysis. For example, in

social surveys, the individual respondents are often clustered under city blocks, neigh-

borhoods or other geographical regions. Another example can be seen in longitudinal

studies where repeated measurements under the same subject are taken over time.

Mixed effect models are widely used statistical tools to deal with clustered data (see

for examples, Goldstein, 2002; Bryk and Raudenbush, 2001). In this paper we aim

to study the problem of variable selection and parameter estimation for linear mixed

effect models.

In mixed effect models, it is assumed that the unobserved heterogeneity at cluster

level causes intra-cluster correlation between the responses, and hence the mean level

of the responses and/or the effects of the covariates can vary across clusters. Fixed

effects and random effects are used to model such intra-cluster correlation. The key



difference between fixed effect and random effect is that the former assumes unob-

served heterogeneity at cluster level is constant while the latter assumes such quantity

is random. Hence the estimation of the fixed effects concerns the actual sizes of the

cluster-specific effects. When the number of clusters is large, the number of fixed

effect coefficients increases rapidly. Conversely, for random effects researchers are

more interested in the distribution rather than the actual sizes of random effect coef-

ficients. Random effects are often assumed to follow a zero-mean multivariate normal

distribution, and its covariance matrix becomes our key interest since it summarizes

the intra-cluster correlation. When the number of the random effect components is

large, the estimation of random effects in a mixed effect model involves a high dimen-

sional covariance matrix that can greatly increase computational instability. Since

mixed effect models are of high dimension, identifying the significant fixed effect co-

efficients and the effective components of random effects is very important for applied

researchers to build more interpretable models and to ease the computational burden.

Traditionally, variable selection for mixed effect models has relied on p value-based

stepwise deletion, or more elaborately, the Akaike’s information criterion (Akaike,

1973), the FPEλ method (Shibata, 1984), and Mallow’s Cp (Mallow, 1973). How-

ever, these procedures ignore stochastic errors inherited through the process of vari-

able selection. Hence, the estimators based on these variable selection procedures

suffer from lack of stability and it is hard to understand their theoretical properties

(Breiman, 1996). Alternatively, the Bayesian information criterion (Schwartz, 1978)

and Generalized information criterion (Nishii, 1984; Rao and Wu, 1989) are used as

consistent variable selection procedures for fixed effect parameters, but Pu and Niu

(2006) found that these procedures perform poorly in selecting random effect com-

ponents. Moreover, all of these variable selection procedure involve a combinatorial

optimization problem which is NP -hard with computational time increasing expo-

nentially with the number of parameters. (see comments in Fan and Li, 2004). Hence
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it is not feasible to apply these procedures to the complete set of the candidate models

when the number of parameters is large.

To address the weakness of traditional variable selection procedures, recent work

has focused on selecting variables simultaneously with model estimation using data

oriented penalty functions. For examples, the bridge regression (Frank and Friedman,

1993), the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996,

1997), and the smoothly clipped absolute deviation penalty (SCAD) (Fan and Li,

2001). Among the alternatives, the SCAD penalty function has some oracle properties

such that the estimators based on which converge to the true model while others are

only shrinkage estimators. Moreover, Fan and Peng (2004) established the asymptotic

properties when the number of parameters increases with sample size.

When random effects are not subject to selection, the penalty method for variable

selection problem in linear mixed effect is straightforward. One can use a penalized

likelihood estimation approach. When random effects are subject to selection, the

problem becomes more complicated as the estimation of the covariance matrix in-

volves a constrained optimization problem that is close to or on the boundary of the

parameter space. In this situation, for most optimization procedures such as Newton-

Raphson and the EM algorithm, the convergence can be slow and often fails. Only

recently, Krishna (2008) developed a restricted EM algorithm that uses the adaptive

LASSO (Zou, 2006) to estimate and select linear mixed model under the penalized

likelihood framework.

In this paper, we aim to develop an optimization-free variable selection procedure

for linear mixed effect models. To ease the burden of computation, we propose a

simple iterative procedure that takes advantage of the partial consistency property

of random effects. This approach has another advantage is that it allows us to select

effective random effect components by penalizing random effect coefficients in groups.

Antoniadis and Fan (2001) pointed out that selecting variable based on the informa-
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tion of a group of variables will lead to better thresholding decision rules and faster

convergence. As our simulation and theoretical results will show, this procedure se-

lects both fixed effect and random effects consistently, and gives unbiased estimates.

As sample size becomes large, the procedure has some oracle properties. Although

our analysis is limited to linear mixed effect models, it provides important insights to

generalized linear mixed effect models.

The rest of this paper is organized as follows: In Section Two we present a simple

iterative procedure that can effectively estimate linear mixed effect model without

burdensome optimization. In Section Three, we adapt this procedure to select ran-

dom effect and fixed effect components simultaneously during estimation. Simulation

results and an example of data analysis will be presented in Section Four. The paper

ends with a discussion and future research directions.

4.2 Variable selection and estimation in linear mixed

effect model

To avoid constrained optimization problem, we hereby propose to select variable and

estimate parameters for linear mixed effect models based on a simple iterative pro-

cedure. We first describe how we can use this procedure to estimate linear mixed

effect models and the proposed estimators can achieve satisfactory sampling proper-

ties under mild conditions. Then we extend this procedure so that it also selects the

effective components of fixed effects and random effects during model estimation.

Consider the linear mixed effect model (LMM) that was originally introduced by

Laird and Ware (1982). For each cluster i,

Yi = Xiβ + Zibi + εi i = 1, . . . ,m, (4.1)

where Yi is a vector of dependent variables of length ni, the elements of Yi are
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assumed to be independent across clusters, but correlated within the cluster. Xi

is a ni by p matrix of covariates whose effects are assumed to fixed, β is a p × 1

vector of corresponding fixed effect coefficients. To simplify the notations, we allow

X to include both the traditional sensed covariates whose effects are constant across

clusters and the cluster-specific fixed effects. Zi is a ni by q matrix of covariates

whose effects are assumed to be random across clusters and bi is a q × 1 vector of

random effect coefficients. εi is a vector of residuals of length ni that is independent

of Xi, Zi and bi. Moreover,

εi ∼ N(0, σ2Ini),

bi ∼ N(0, σ2D),

Yi ∼ N(Xiβ, σ
2Vi),

where D is a q × q nonnegative definite matrix, and Vi = Ini + ZT
i DZi. Since D

characterizes the variation across groups, it is also called the variance component of

the model.

4.2.1 An iterative procedure to estimate LME

Inspired by Sun, Zhang and Tong (2007), we consider the following two-step iterative

procedure to estimate fixed and random effects. We start with initial values β̂ =

β̂0 = [
∑

i(X
T
i Xi)]

−1[
∑

i X
T
i Yi].

Step 1: predict the residuals given β̂ for group i,

ui = Yi −Xiβ̂,

for i = 1, . . . ,m we can estimate

b̂i = (ZT
i Zi)

−1ZT
i ui, (4.2)
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and residual ei = ui − Zib̂i. Based on ei and b̂i, we propose an estimator of σ2,

σ̂2 =

∑m
i=1 eTi ei

(n− qm)
, (4.3)

and an estimator of D,

D̂ =

∑m
i=1 b̂ib̂

T
i

mσ̂2
−
∑m

i=1(Z
T
i Zi)

−1

m
. (4.4)

The first term of (4.4) appears to be a näıve estimator of D. But if we look closely,

b̂i = (ZT
i Zi)

−1ZT
i ui = bi + (ZT

i Zi)
−1ZT

i εi.

This leads to
m∑
i=1

bib
T
i =

m∑
i=1

b̂ib̂
T
i +

m∑
i=1

(ZT
i Zi)

−1ZT
i εiε

T
i Zi(Z

T
i Zi)

−1 +
m∑
i=1

(ZT
i Zi)

−1ZT
i εib

T
i

+
m∑
i=1

biε
T
i Zi(Z

T
i Zi)

−1.

As Sun, Zhang and Tong (2007) pointed out, the last two terms are of order

Op(m1/2), hence

m−1

m∑
i=1

bib
T
i ≈ m−1

{
m∑
i=1

b̂ib̂
T
i −

m∑
i=1

(ZT
i Zi)

−1ZT
i εiε

T
i Zi(Z

T
i Zi)

−1

}

≈ m−1

{
m∑
i=1

b̂ib̂
T
i −

m∑
i=1

σ2(ZT
i Zi)

−1

}
.

Substituting σ2 by σ̂2, we obtain the estimator of D in (4.4).

Step 2: given D̂, now we can estimate β̂ based on generalized least squares.

β̂ = (XTWX)−1XTWy, (4.5)

where W is a block diagonal matrix with diagonal elements (Ini + ZiD̂ZT
i )−1, i =

1, . . . ,m.

To achieve numerically stable estimates of σ̂2, β̂ and D̂, we can iterate between

step 1 and step 2 until convergence.
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4.2.2 Asymptotic Properties

The estimators we proposed in Section 4.2.1 have been mentioned in several papers in

various contexts (for examples, Sun, Zhang and Tong (2007) and Demindeko (2006).)

In this section, we systematically show that the estimators of β, D are
√
n−consistent.

To make the presentation clearer, we introduce the following notations,

c1 = lim
m→∞

n

n− qm
(4.6)

c2 = lim
m→∞

n

m
(4.7)

Γ = lim
m→∞

1

m

m∑
i=1

E[(ZT
i Zi)

−1], (4.8)

∆2 = lim
m→∞

1

m

m∑
i=1

E[{(ZT
i Zi)

−1} ⊗ {(ZT
i Zi)

−1}] (4.9)

∆3 = lim
m→∞

1

m

m∑
i=1

ni∑
j=1

E[vec{(ZT
i Zi)

−1ZijZ
T
ij(Z

T
i Zi)

−1}vecT{(ZT
i Zi)

−1ZijZ
T
ij(Z

T
i Zi)

−1}]

∆4 = vec

{
D +

1

m

m∑
i=1

(ZT
i Zi)

−1

}
vec

{
D +

1

m

m∑
i=1

(ZT
i Zi)

−1

}T

(4.10)

γ = lim
m→∞

(n− qm)−1

m∑
i=1

nj∑
j=1

E[ZT
ij(Z

T
i Zi)

−1Zij]
2 − c1q/c2 + 1 (4.11)

and

∆1 =


D⊗ Γ(1) + Γ⊗D(1)

...

D⊗ Γ(q) + Γ⊗D(q)


where Γ(r),D(r)(r = 1, . . . ,q ) denote the rth row of D,Γ, respectively, ⊗ is the kro-

necker product, vech(A) denotes the vector consisting of all elements on and below

the diagonal of the matrix, and vec(M) denotes the vector by simply stacking the

column vectors of the matrix M below one another. Obviously there exists a unique

q2 × q(q + 1)/2 matrix Rq such that vec(A) = Rqvech(A).
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Under some mild conditions, we have the following results.

Lemma 4.2.1 Under the regularity conditions (A)-(D),

n1/2
{
σ̂2 − σ2

} D−→ N (0, 2σ4(1 + γ)c1 + Var(ε11)γc1).

Proposition 4.2.1 Under the regularity conditions (A)-(D), given a
√
n−consistent

estimator D̂ of D, for the generalized least square estimator of β,

β̂ = argmin
m∑
i=1

(Yi −Xiβ)T (I + ZiDZ′i)
−1(Yi −Xiβ),

we have
√
n(β̂ − β)

D−→ N (0,Σβ),

where

Σβ = lim
m→∞

σ2

(
m∑
i=1

X′i(I + ZiDZ′i)
−1Xi

)−1

.

Proposition 4.2.2 Under the regularity conditions (A)-(D), given a
√
n−consistent

estimate of β, for the estimate of D by (4.4), we have

√
n
{

vec(D̂−D)
}

D−→ N (0, (RT
q Rq)

−1RT
q ∆Rq(R

T
q Rq)

−1c2),

where

∆ = E{b1b
T
1 ⊗ b1b

T
1 } − vec(Σ)vecT (Σ) + σ2{Σ⊗ Γ + Γ⊗ Σ + ∆1}

+2σ4{∆2 −∆3 + c1/c2(1 + γ)∆4}+ var(ε2
11){∆3 + c1/c2γ∆4}.

4.3 Selecting Effective Fixed and Random Effects

components

Since the procedure we proposed in Section 4.2.1 is an optimization-free one, it enjoys

great computational stability even when the covariance matrix is near singular. In
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this section, we consider selecting the effective components of fixed and random effects

in linear mixed effect model via the penalty function SCAD.

Now suppose in model (4.1), some components of β are zero, and some random

effects are zero such that the corresponding diagonal elements of D are zero. Without

loss of generality, we write

β0 = (βT10,β
T
20)

T

where β20 = 0, and diag(D0) = (dT10,d
T
20)

T , where d20 = 0, and corresponding rows

and columns of D0 are zero as well.

To be able to simultaneously select the nonzero components of fixed effects and

random effects during the estimation, we adjust the above two-step estimating pro-

cedures such that the small fixed effect coefficients will be shrunk to zero and the

effective dimension of D will be correctly identified.

4.3.1 An Iterative Procedure to Select and Estimate LME

Step 1: First observe that if the kth random effects component is effectively ab-

sent, then the (k, k) diagonal element of D is zero, and so are the elements of the

corresponding kth row and kth column since the correlation between the kth random

effect and other components of random effects is zero. Hence we expect the estimate

D̂ as given in (4.4) will be close to zero as well. Using this fact, we consider shrinking

the corresponding random effect coefficients bik, i = 1, . . . ,m to zero if their variance

is estimated to be sufficiently close to zero.

Hence we propose to estimate bi , for each i, i = 1, . . . ,m, by minimizing the

following penalized least squares

1

2
(ui − biZi)

T (ui − biZi) +

q∑
k=1

npξ(ck), (4.12)
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where ck =
√
Dkk, Dkk is the kth diagonal element of the covariance matrix D. pξ(θ)

is the smoothly clipped absolute deviation penalty function (SCAD) by Fan and Li

(2001), where

p′ξ(θ) = ξ
{
I(θ ≤ ξ) +

(aξ − θ)+

(a− 1)ξ
I(θ > ξ)

}
, (4.13)

for some a > 2 and θ > 0. ξ is the tuning parameter for penalty function p(·). As

Fan and Li pointed out, the SCAD function is singular at the origin and does not

have a continuous secondary derivative. To solve this penalized least squares, one can

locally approximate the penalty function by its quadratic function when ck 6= 0,

[pξ(ck)]
′ ≈ {p′ξ(ck0)/ck0}ck, for ck0 ≈ ck.

In other words,

pξ(ck) ≈ pξ(ck0) +
1

2
{p′ξ(ck0)/ck0}(c2k − c2k0).

Consequently, the solution to (4.12) can be updated based on the following ridge

regression

b∗i = (ZT
i Zi + nΣξ(c0))−1ZT

i ui, i = 1, . . . ,m. (4.14)

where c0 = diag(c1, . . . , cq) and Σξ = diag(
p′
ξ(c10)bi10sgn(bi10)

mc10
, . . . ,

p′
ξ(cq0)biq0sgn(biq0)

mcq0
).

An estimator of D is then,

D∗ =

∑m
i=1 b∗ib

∗T
i

mσ̂2
−
∑m

i=1(Z
T
i Zi)

−1

m
. (4.15)

If the variance of the kth random effect cj is estimated to be small, then we

expect the solution b̂ik in (4.14) will shrink to zero. This is true for all i = 1, . . . ,m.

Correspondingly, the corresponding diagonal elements and the corresponding rows

and columns of D∗ in (4.15) will be estimated to be zero.
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Comments: Our approach of shrinking a group of random effect coefficients to-

gether is closely related to the blocked-wise penalized functions that were discussed

in Antoniadis and Fan (2001). In particular, the blocked-wise penalized least squares

problem takes the following form,

‖Z − θ‖2 + pλ(‖θ‖)

. They argue that whenever applicable, to shrink the coefficients in groups will make

the thresholding decision more accurate and improve the convergence rate since the

information within a group is bigger. This idea is also seen in more recent work such

as group LASSO (Yuan and Lin, 2006).

Step 2: The selection of fixed effects given random effect variance estimates D̂ is

simply the solution to the penalized weighted least squares

1

2
(Y−Xβ)TW(Y−Xβ) + n

p∑
k=1

pλ(|βk|). (4.16)

Similarly, we can use a local quadratic approximation of pλ(|βk|) and update β∗ based

on the following ridge regression,

β∗ = (XTWX + nΣλ(|β0|))−1XTWy, (4.17)

where λ is the tuning parameter for the penalty function, and

Σλ(β0) = diag [p′λ(|β10|)/|β10|, . . . , p′λ(|βp0|)/|βp0|] .

To achieve numerically stable estimates of β∗ and D∗, we can iterate between step

1 and step 2 until convergence.

4.3.2 Asymptotic Properties

We can show that the estimators of D and β given in (4.15) and (4.17) are consistent

and have some oracle properties.

69



Theorem 4.3.1 Under the regularity conditions (A)-(D), given a
√
n−consistent es-

timate D∗ of D, if
√
nλn →∞ and λn → 0 as n→∞, then there is a local minimizer

β∗ of (4.16) such that

‖β − β∗‖ = Op(1/
√
n),

and this minimizer must satisfy

(a) Sparsity: β∗2 = 0.

(b) Asymptotic normality:

√
n(β∗1 − β01)

D−→ N (0,Σβ01)

where

Σβ01 = lim
m→∞

σ2

(
m∑
i=1

X′i1(I + ZiD
∗Z′i)

−1Xi1

)−1

.

Theorem 4.3.2 Under the regularity conditions (A)-(D), given a
√
n−consistent es-

timate of β, if
√
n/log(n)ξn → O(1) as n→∞, then then there is a local minimizer

b∗i , i = 1, . . . ,m of (4.14) such that for the estimate of D∗ by (4.15) we have

(a) Sparsity: d∗2 = 0.

(b) Asymptotic Normality:

√
n {vech(D∗1 −D01)}

D−→ N (0, (RT
q Rq)

−1RT
q ∆Rq(R

T
q Rq)

−1c2)

where Zi,bi, q are replaced by Zi1,bi1 and q1 in (4.6)—(4.11) and the definition

of Rq.

4.3.3 Tuning Parameter Selection and Thresholding

To implement our variable selection procedure in Section 4.2, we need to consider

the choice of tuning parameter λ and ξ. Theoretically, we need λ → 0 and ξ → 0
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as n → 0 but faster than O(n−1/2) in order to consistently select fixed and random

effects. In practice, the tuning parameter can be selected based on data oriented

method. Following Fan and Li (2001), Wang, Li and Tsai (2007), we consider the

following three criteria,

1. generalized cross-validation criterion

argminλGCVλ =
‖Y−Xβ̂‖2W
n(1−Dfλ/n)

,

2. the AIC criterion

argminλAICλ = log‖Y−Xβ̂‖2W + 2Dfλ/n,

3. the BIC criterion

argminλBICλ = log‖Y−Xβ̂‖2W + Dfλlog(n)/n.

where ‖Y−Xβ̂‖2W is the model error for linear mixed model, W is a block diagonal

matrix with diagonal elements (Ini + ZiD̂ZT
i )−1,, i = 1, . . . ,m. Wang, Li and Tsai

(2007) argued that the BIC criterion is an optimal and consistent procedure to select

the tuning parameter for linear regression, while GCV and AIC criteria tend to overfit

the model. We expect this argument holds for our application as well.

The degree of freedom is hard to determine in linear mixed effect model. Here

we adopt Hodges & Sargent (2001)’s formula to calculate the degree of freedom. We

write model (4.1) by adding a block of “pseudo data”

Y∗ = Uδ + e,

where

Y∗ =

 Y

0qm

 , δ =

 β

b

 , U =

 X Z

0 −∆

 , e =

 ε

b

 ,
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where ∆T∆ = G−1, and G is a qm× qm block diagonal matrix with diagonal element

D. Then we can obtain a quasi “Hat” matrix H1 for linear mixed model,

H1 =
(

X Z
)

(UTU)−1

 XT

ZT

 .

The effective degree of freedom is then trace(H1).

4.4 Simulation Studies and Real Data Analysis

In this section, we conduct a set of simulation studies to assess the performance of the

proposed variable selection and estimation procedure for linear mixed effect model.

A real data analysis will also be conducted. We are particularly interested in model

performance in the following aspects: whether the correct subsets of fixed effects

and random effects can be correctly selected; whether the parameter estimates are

unbiased and efficient in small to medium sample sizes; and when the true models

are ascertained, whether the iterative method has comparable sample properties to

maximum likelihood method.

4.4.1 Simulation I

In the first set of simulations, we adopt the examples in Krishna (2008). There are

two scenarios:

1. Example 1: Consider m = 30 subjects, ni = 5 observations per subject.

There are 9 fixed effects to be considered, the true value of coefficients are

β = [0, 1, 1, 0, 0, 0, 0, 0, 0]. For random effects, we consider 4 dimensions, with
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the true covariance matrix

D =


9 4.8 0.6 0

4.8 4 1 0

0.6 1 1 0

0 0 0 0


The model variance σ2 = 1. Furthermore, covariates X are generated from a

uniform (−2, 2) distribution, along with a vector of 1’s for the subject-specific

intercept. The values of Z are taken to be the values of the first four columns

of X.

2. Example 2: The set up of the second example is the same as the first, except the

number of the subjects increases to m = 60 and the number of the observations

per subject increases to ni = 10.

For each example, we randomly draw 200 samples and apply the proposed variable

selection and estimation procedure to these data sets. In Table 4.1, we summarize the

performance of the proposed iterative procedure under different tuning parameters.

We notice that as sample size grows, the procedure selects the correct fixed and

random effect components with increasing accuracy. Due to the benefit of group

selection, the selected random effect components in particular quickly converge to

the true model. For different tuning parameter choices, we can see that in general

the BIC criterion outperforms the other tuning parameter choices. Both the false

positive rate and the false negative rate are smaller for the models selected based on

the BIC criterion. The average model size is closer to that of the true model as well.

We also compare the the percentage of the models that are correctly identified by

our procedure in comparison with Krishna’s Table (3.1). In Table 4.2, We can see as

the sample size increases, the performance of our method improves dramatically. With

a fixed size of 600, random effect selection has nearly 100% accuracy and the fixed
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Tuning FPR% FNR% Model Size FPR% FNR% Model Size

Fixed Effects Example 1 Example 2

BIC 21.5 9.9 2.26 1.5 1.9 2.10

AIC 17 11.0 2.43 1.5 3.3 2.20

GCV 20.5 10.1 2.30 1.5 3 2.18√
log(n)/n 21 15.6 2.67 1.5 4.1 2.26

Random Effects

BIC 27 6 2.25 0 0 3

AIC 25 12 2.37 0 0 3

GCV 26 6 2.28 0 0 3√
log(n)/n 33 7 2.09 0 0 3

Table 4.1: Performance of fixed and random effect selection. “FPR%” is the average

false positive rate which is defined as the percentage of the coefficients that are in-

correctly estimated to be nonzero. “FNR%” is the average false negative rate that is

the percentage of the coefficients that are incorrectly estimated to be zero. “Model

size” reports the average size of nonzero fixed effect coefficients and nonzero random

effect components.
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effect selection (using GIC as tuning parameter criterion) outperforms all the other

existing approaches. As a matter of fact, the overall model selection performance

is partly impacted by the simulation set up. The first random effect is assumed a

large variance of 9 which causes large uncertainty in estimating the random effect

coefficients b1 and in turn affects the estimation and selection of the first fixed effect

coefficient in our iterative procedure. A detailed look of the fixed effect selection

reveals that our method successfully selects all but the first fixed effect in the 200

simulations we conducted.

On the other hand, our model performs relatively unsatisfactorily with low sample

size, especially when the number of observations per group is low compared to the

number of the random effect coefficients need to be estimated. Since our method is

conditional on the estimated individual random effect coefficients, when the number of

within group observation is low compared to the number of random effect coefficients

that need to be estimated, it is understandable that it does not perform as well as the

penalized likelihood approaches where only the marginal distribution of the random

effects is involved.
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Method Tuning %Correct %CF %CR %Correct %CF %CR

Example 1 Example 2

Iterative method BIC 19 49 35 86 86 100

Iterative method AIC 21 46 35 77 77 100

Iterative method GCV 20 49 37 79 79 100

Iterative method
√

log(n)/n 16 33 27 72 72 100

M-ALASSO BIC 71 73 79 83 83 89

EGIC BIC 47 56 52 48 59 53

RIC AIC 19 21 62 31 34 74

RIC BIC 59 59 68 77 79 81

Stepwise AIC 17 21 62 26 28 74

Stepwise BIC 51 53 68 68 69 81

ALASSO AIC 21 24 62 39 41 74

ALASSO BIC 62 63 68 74 75 81

Table 4.2: Comparing the model selection performance of the proposed iterative

method with other existing methods. “% Correct” reports the percentage of times

the correct true model was selected, “% CF” and “%RF” report the percentage of

the times correct fixed effect components and random effect components are selected.

The results for M-ALASSO, EGIC, RIC, Stepwise deletion and ALASSO are borrowed

from Krishan (2008).
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4.4.2 Simulation II

In the second simulation study, we focus on the performance of parameter estimates

of our proposed methods. We consider the following 4 different scenarios: the number

of clusters is either 10 or 20, and the number of observations within each cluster is

either 10 or 20. For each scenario, we assume the same model structure as follows:

the dimension of fixed effects is p = 5 with true value β = [1, 0, 1.5, 1, 0]. The

dimension of the random effects is q = 4 with the covariance matrix of the random

effect coefficients D specified as follows,

D =


0 0 0 0

0 0.5 0 0.354

0 0 0 0

0 0.354 0 1


so that only the second and the fourth random effect components are significant.

Furthermore, the correlation between the second and the fourth random effects is

0.5. The model variance σ2 is assumed to be 1. Without loss of generality, the

components of X are generated from standard normal distributions, and Z assumes

the same values as X1, . . . ,X4.

For each scenario, we simulate 100 data sets and run the iterative variable selection

and estimation procedure for each data set. For the purpose of comparison, we esti-

mate three different models. First we apply the proposed iterative penalized method

to select and estimate both fixed effects and random effects simultaneously. Then

we estimate the model using the iterative procedure and the maximum likelihood

estimation assuming the true model is known.

The number of correctly and incorrectly selected fixed effects and random effects

among the 100 simulated data sets are reported in Table 4.3. We can clearly see that

as both the number of clusters and the number of within cluster observations increase,
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the fixed effects and random effects are selected with increasingly high accuracy.

sample size Fixed Effects Random Effects

m ni β1 β2 β3 β4 β5 D1 D2 D3 D4

10 10 0 92 1 11 94 100 39 100 5

20 10 1 98 1 0 98 100 8 100 0

10 20 1 96 0 1 95 100 9 100 1

20 20 1 100 0 0 99 100 0 100 0

Table 4.3: Numbers of fixed effects and random effects that are selected to be zero

in 100 simulated data sets. For β2, β5, D1 and D3, the table reports the number

of parameters that are correctly selected to be zero. For β1, β3, β4, D2 and D4, it

reports the number that are incorrectly selected to be zero.

Next we examine the performance of parameter estimation of our proposed models.

For each simulation set up, we present bias and median absolute deviation of the

nonzero fixed effect and random effect parameters in Table 4.4. These summary

statistics demonstrate that the parameter estimators based on our proposed iterative

procedure possess satisfying sampling properties. For both fixed effects and random

effects, the estimators are unbiased and behave as if the true model is known when

sample size is large. Moreover, we can see that when the true model is known,

our proposed iterative procedure performs equally well as the maximum likelihood

estimation.
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m ni parameter Bias MAD

iter iterO MLEO iter iterO MLEO

10 10 β1 0.006 0.012 0.011 0.073 0.065 0.067

β3 -0.010 -0.003 0.000 0.064 0.065 0.064

β4 -0.112 0.022 0.019 0.292 0.260 0.251

D22 -0.124 -0.008 -0.002 0.275 0.135 0.130

D44 0.150 0.038 -0.040 0.437 0.321 0.313

D24 -0.120 -0.019 -0.023 0.115 0.185 0.189

20 10 β1 -0.001 0.008 0.009 0.046 0.044 0.046

β3 -0.006 0.002 0.002 0.046 0.046 0.046

β4 -0.007 -0.010 -0.008 0.141 0.140 0.130

D22 -0.010 0.013 0.026 0.128 0.125 0.155

D44 -0.004 -0.031 -0.029 0.238 0.231 0.257

D24 -0.024 -0.005 0.008 0.117 0.109 0.112

10 20 β1 -0.005 0.004 0.004 0.047 0.046 0.046

β3 -0.006 -0.008 -0.008 0.053 0.051 0.047

β4 0.052 0.063 0.063 0.207 0.186 0.189

D22 -0.062 -0.033 -0.033 0.183 0.160 0.141

D44 -0.006 -0.023 -0.090 0.253 0.269 0.241

D24 -0.033 -0.025 -0.027 0.188 0.185 0.164

20 20 β1 -0.010 0.001 0.001 0.034 0.033 0.033

β3 0.007 0.004 0.004 0.037 0.037 0.036

β4 0.003 0.001 0.002 0.126 0.121 0.120

D22 0.013 0.013 0.020 0.113 0.112 0.111

D44 -0.021 -0.021 -0.040 0.201 0.201 0.210

D24 -0.003 -0.002 0.005 0.119 0.118 0.110

Table 4.4: Bias and median absolute deviation (MAD) of the significant fixed effect

and random effect parameter estimates. “iter” refers to iterative variable selection

and estimation method, “iterO” refers to iterative estimation method under the true

model, and “MLEO” refers to MLE under the true model.
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4.4.3 Real Data Analysis

In this section, we apply the proposed method to the 2004 American National Election

Study. The ANES is a series of surveys that capture voters’s opinions before and

after each election since 1948. The outcome variable we are interested in is the

feeling thermometer reading for George W. Bush. Feeling thermometer is a widely

accepted way of quantifying individuals’ feeling toward public figures. It mimics a

physical thermometer and ranges from 0 to 100 degrees. The higher temperature an

individual assigns indicates he/she feels more positive toward Bush, and vice versa.

The 2004 ANES is a national representative sample of 1212 respondents from 29

states in the US. In this analysis, we will examine what factors affect individuals’

feeling toward Bush. Since such effects tend to be mediated by social and cultural

contexts at the state level, we will further examine whether these effects vary across

states. Hence we fit a linear mixed effect model with individuals nested under states.

After removing missing data and states with too few observations, the effective sample

size consists of 1156 individuals from 24 states.

Figure 4.1 shows the histogram of Bush feeling thermometer readings. We can

see that there is considerable amount of variation and the distribution appears to

be bimodal rather than normally distributed. Like many other social and behavioral

studies, there exists a large amount of individual level heterogeneity that can not be

easily captured via systematic modeling. Our results reveal that the model variance

σ2 is rather large compared to the amount of variance systematically explained by

fixed effects and random effects (the intracluster correlation is only 18%). Moreover,

since there could be a wide arrays of factors influencing individuals’ preference toward

political figures, we start with a linear mixed effect model with a large number of fixed

and random effects (see Table 4.5).

In this data analysis, large model variance and a number of potentially nuisance
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Figure 4.1: Histogram of the outcome variable “Bush feeling thermometer readings”

random effect components can pose great challenge to maximum likelihood based

approaches in estimating and selecting the correct submodel. In our attempts to

fit the model using commercial software such as the xtmixed package in STATA

and the nlme package in R, the initial full model and its many submodels fail to

converge. To tackle this problem, we apply the proposed procedure in Section 4.3

to estimate the model while shrinking the insignificant fixed and random effects to

zero simultaneously. We use general cross validation method to determine the values

of the tuning parameters for selecting fixed effects and random effects via the SCAD

function. The results are presented in Table 4.5. Among the 14 random effects

listed in Table 4.4, only two are deemed to be effective random effect components.

For comparison purposes, we also fit the same model using R package nlme that is

based on RMLE. We can see that in general our model yields estimates that are close

to the R package. However, as mentioned before, since the outcome variable Bush
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Fixed effects Random Effects

intercept, age, gender, education, in-

come, Christian, black, other, gun

control, liberal view, moderate view,

defense issues, abortion right, death

penalty, environment issues, social

trust, church attendance, health in-

surance, Democrat, Independent, Iraq

war

intercept, gender,income, Christian,

gun control, liberal view, moder-

ate view, defense issues, abortion

right, death penalty, health insurance,

Democrat, Independent, Iraq war

Table 4.5: The complete lists of the candidate fixed effect and random effect compo-

nents.

feeling thermometer appears to be bimodally distributed, our approach is expected

to provide more robust results than the MLEs that are based on the assumption of

normality.
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Method Iterative Method nlme package

Fixed effects (β) coefficient s.e. p value coefficient s.e. p value

(Intercept) 48.57 3.46 0.00 46.62 3.34 0.00

age 0.06 0.04 0.12 0.09 0.04 0.02

education -4.96 1.36 0.00 -5.23 1.33 0.00

Christian 7.32 1.65 0.00 7.62 1.76 0.00

black -3.97 2.17 0.06 -2.52 2.01 0.21

other 3.6 2.03 0.07 4.59 1.97 0.02

liberal -11.97 1.77 0.00 -11.68 1.75 0.00

defense 2.39 1.35 0.07 1.95 1.31 0.14

death penalty 4.17 1.44 0.00 4.62 1.43 0.00

Democrat -24.48 2.08 0.00 -25.05 2.06 0.00

Independent -14.21 1.73 0.00 -14.53 1.71 0.00

Iraq war 30.47 1.61 0.00 30.62 1.58 0.00

Random effects (D)

gender 52.32 55.38

Christian 25.91 15.44

Covariance -19.65 -28.27

Model variance (σ2)

438.02 442.26

Table 4.6: Parameter estimation of the fixed effect coefficients and the random ef-

fect covariance. The first three columns report the coefficients, standard errors and

p−values estimated based on the iterative variable selection and estimation proce-

dure. The last three columns report the corresponding estimates based on R package

nlme under the model that is selected via iterative procedure.
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4.5 Discussion

In this paper, we present a simple iterative penalized procedure that selects and esti-

mates fixed effects and random effects simultaneously. The theoretical and simulation

investigations of the proposed procedure have shown that it selects the correct sub-

model effectively and has some oracle properties. Although in mixed effect model it

is well known that the random effect coefficients can not be consistently estimated,

we have demonstrated that the covariance of the random effect coefficients can be

consistently estimated. Moreover, we can take advantage of this partial consistency

property to select the effective component of random effects by penalizing the random

effect coefficients in group. If the corresponding variance term is sufficiently small,

then we shrink the entire group of random effect coefficients to zero via penalized

least squares.

Our method is based on the estimation of the random effect coefficients. The

cost of relying on the estimation of the random effect coefficients is that we need

sufficient number of observation within each cluster. When the cluster size is small

relative to the dimension of random effects, our method does not perform as well as

the likelihood based approaches that only concern the marginal distribution of the

data. However, in survey data analysis, the size of the clusters is typically large, so

we expect this method offers a practical solution to many real data analysis problems.

In general, this method enjoys many advantages over the classical likelihood based

approaches. Compared to the classical likelihood approach, this procedure has greater

computational stability since it avoids the complicated constrained optimization prob-

lem of estimating a high dimensional covariance matrix that is located at the boundary

of the parameter space due to the inclusion of non-existing random effects.

Moreover, since our method does not rely on multivariate normal distribution of

the data, it is expected to be robust under model misspecification. In particular,
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we can further relax step 2 of the iterative procedure: instead of using (penalized)

weighted least squared that takes the normal covariance structure of the error terms

into account, we can simply use (penalized) ordinary least squares to calculate β

based on Y0i = Yi − Zibi.

β = (XTX + nΣλ(|β0|))−1XTY0 (4.18)

Based on simulation evidence (not shown in this paper), this distribution-free version

of the iterative procedure can also select fixed effects and random effects satisfactorily.

Although this procedure is less efficient when the errors are known to be normally

distributed, it is more robust if the model is misspecified as it does not depend on

particular information of the error structure.

Lastly, this method can be easily adapted to estimate multiple levels of hierar-

chical structure. To select and estimate fixed and random effects at multiple levels,

we can simply condition on the random effect coefficients at lower level and partial

consistency property will ensure the validity of this approach.

Appendix: Proofs

In this section, we outline the detailed proofs of the asymptotic results in previous

sections.

First, we state the following regularity conditions under which the proofs are

derived.

(A) E(ε4
11) < ∞,E‖b1‖4 < ∞,Ex2s

i < ∞ and Ez2s
j < ∞ where ‖b1‖ = (bT1 b1)

1/2,

xi denotes the ith element of X and zi denotes the jth element of Z for s > 2,

i = 1, . . . , p, j = 1, . . . , q.

(B) The elements of Zi, i = 1, . . . ,m are uniformly bounded by a constant.
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(C) The minimum eigenvalue of ZT
i Zi and XT

i Xi, i = 1, . . . ,m are uniformly larger

than a constant.

(D) The size of each cluster, ni, i = 1, . . . ,m is bounded by a constant, so m =

nO(1).

Proof of Lemma 4.2.1: It can be deduced directly from Theorem 2 of Sun, Zhang,

and Tong (2007).

Proof of Proposition 4.2.1: It is not difficult to show that

β̂ =

(
m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Xi

)−1 m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Yi.

Next define

β̂
∗

=

(
m∑
i=1

XT
i (I + ZiDZ′i)

−1Xi

)−1 m∑
i=1

XT
i (I + ZiDZ′i)

−1Yi.

Based on linear model theory,

√
n(β̂

∗
− β)

D−→ N (0,Σβ)

Hence to prove Proposition 2.1, by Slutsky’s lemma, we only need to prove that

√
n(β̂ − β̂

∗
) = op(1). (4.19)

To show (4.19), we rewrite β̂ − β̂
∗

as

β̂ − β̂
∗

=

(
m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Xi

)−1 m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Yi

−

(
m∑
i=1

XT
i (I + ZiDZ′i)

−1Xi

)−1 m∑
i=1

XT
i (I + ZiDZ′i)

−1Yi

= I1 + I2.
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where

I1 =

(
m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Xi

)−1{ m∑
i=1

XT
i (I + ZiD̂Z′i)

−1(Zibi + εi)

−
m∑
i=1

XT
i (I + ZiDZ′i)

−1(Zibi + εi)

}
and

I2 =


(

m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Xi

)−1

−

(
m∑
i=1

XT
i (I + ZiDZ′i)

−1Xi

)−1


×
m∑
i=1

XT
i (I + ZiDZ′i)

−1(Zibi + εi).

First notice that since bi ∼ N(0, Dσ2), εi ∼ N(0, Ini), by Central Limit Theorem and

the regularity condition (C), we can show that

m∑
i=1

XT
i ZiZ

′
i(Zibi + εi) = Op(

√
n)

and
m∑
i=1

XT
i (I + ZiDZ′i)

−1(Zibi + εi) = Op(
√
n).

Now let’s consider I1. Because D̂−D = Op(1/
√
n),

m∑
i=1

XT
i (I + ZiD̂Z′i)

−1(Zibi + εi)−
m∑
i=1

XT
i (I + ZiDZ′i)

−1(Zibi + εi)

= Op(1/
√
n)

∣∣∣∣∣
m∑
i=1

XT
i ZiZ

′
i(Zibi + εi)

∣∣∣∣∣ (4.20)

= Op(1/
√
n)Op(

√
n) = Op(1) (4.21)

Next because the elements of Zi are bounded and D̂ − D = Op(1/
√
n), it is not

difficult to show that

m∑
i=1

XT
i Xi ≤

m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Xi ≤ (1 + C)
m∑
i=1

XT
i Xi
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where C is a positive constant determined by Zi, i = 1, . . . ,m and D. So

Op(1/n) =

{
m∑
i=1

XT
i Xi

}−1

≥

{
m∑
i=1

XT
i (I + ZiD̂Z′i)Xi

}−1

≥ 1

1 + C

{
m∑
i=1

XT
i Xi

}−1

= Op(1/n). (4.22)

By (4.20) and(4.22), we have that

I1 = Op(1/n) = op(1/
√
n). (4.23)

Next consider I2. First notice that

m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Xi −
m∑
i=1

XT
i (I + ZiDZ′i)

−1Xi

= Op(1/
√
n)

m∑
i=1

∣∣XT
i ZiZ

′
iXi

∣∣
= Op(1/

√
n)Op(n)

= Op(
√
n).

and

m∑
i=1

XT
i (I + ZiDZ′i)

−1Xi = Op(n),
m∑
i=1

XT
i (I + ZiD̂Z′i)

−1Xi = Op(n),

hence

I2 =
Op(
√
n)

Op(n) ·Op(n)
·Op(

√
n) = Op(

√
n/n) = op(1/

√
n) (4.24)

Finally, by (4.23) and (4.24), (4.19) is easy to obtain and the proof of Proposition

4.2.1 is complete. 2

Proof of Proposition 4.2.2: If β is known, then we have

ui = Yi −Xiβ and b̃i = (ZT
i Zi)

−1ZT
i ui.
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Then an estimate of D is given

D̃ =
1

mσ̂2

m∑
i=1

b̃ib̃
T
i −

1

m

m∑
i=1

(ZT
i Zi)

−1. (4.25)

where σ̂2 is an estimate of σ2 defined by the following (4.26).

Let β̂ is the
√
n consistent estimate of β, we can define

ûi = Yi −Xiβ̂ and b̂i = (ZT
i Zi)

−1ZT
i ûi,

and an estimate of σ2 can be defined as

σ̂2 = (n− qm)−1

m∑
i=1

RSSi, RSSi = ûTi (Ini −Pi)ûi. (4.26)

By Lemma 4.2.1, it is known that σ̂2 is a
√
n-consistent estimate of σ2. Then D

can be estimated as

D̂ =
1

mσ̂2

m∑
i=1

b̂ib̂
T
i −

1

m

m∑
i=1

(ZT
i Zi)

−1. (4.27)

Next we first prove that

D̃− D̂ = op(1/
√
n).

Then we only need study the asymptotic distribution of
√
nD̃. By (4.25) and (4.38),

we have

D̃− D̂ =
1

mσ̂2

m∑
i=1

b̃ib̃
T
i −

1

mσ̂2

m∑
i=1

b̂ib̂
T
i (4.28)

Because

ûi = Yi −Xiβ̂ = Yi −Xiβ + Xiβ −Xiβ̂

= ui + Xi(β − β̂)

and

b̂i = (ZT
i Zi)

−1ZT
i ûi

= (ZT
i Zi)

−1ZT
i ui + (ZT

i Zi)
−1ZT

i Xi(β − β̂)

=̂ b̃i + ei,
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Then

D̃− D̂ = − 1

mσ̂2

m∑
i=1

{b̃ieTi + eib̃
T
i } −

1

mσ̂2

m∑
i=1

eie
T
i .

On the other hand, it is easy to show that

b̃i = (ZT
i Zi)

−1ZT
i ui = bi + (ZT

i Zi)
−1ZT

i εi.

Hence by the regularity conditions and the definition of bi, it can be shown that

1

mσ̂2

m∑
i=1

b̃ie
T
i =

1

mσ̂2

m∑
i=1

(bi + (ZT
i Zi)

−1ZT
i εi)(β

T − β̂
T

)XT
i Zi(Z

T
i Zi)

−1

≤ Op(1/
√
n)

(∣∣∣∣∣ 1

mσ̂2

m∑
i=1

biX
T
i Zi(Z

T
i Zi)

−1

∣∣∣∣∣
+

∣∣∣∣∣ 1

mσ̂2

m∑
i=1

(ZT
i Zi)

−1ZT
i εiX

T
i Zi(Z

T
i Zi)

−1

∣∣∣∣∣
)

(4.29)

= Op(1/
√
n)Op(1/

√
m) = Op(1/n). (4.30)

Similarly, we also have
1

mσ̂2

m∑
i=1

eib̃
T
i = Op(1/n) (4.31)

It is also easy to find

1

mσ2

m∑
i=1

eie
T
i =

1

mσ2

m∑
i=1

(ZT
i Zi)

−1ZT
i Xi(β − β̂)(β − β̂)TXT

i Zi(Z
T
i Zi)

−1

= Op(1/n)

∣∣∣∣∣ 1

mσ2

m∑
i=1

(ZT
i Zi)

−1ZT
i XiX

T
i Zi(Z

T
i Zi)

−1

∣∣∣∣∣
= Op(1/n)Op(1) = Op(1/n). (4.32)

So by (4.29), (4.31) and (4.32), it is obtained that

D̃− D̂ = Op(1/n). (4.33)

For D̃, this can be written as

D̃ =
1

mσ2

n∑
i=1

b̃ib̃
T
i −

1

m

n∑
i=1

(ZT
i Zi)

−1 +
{ 1

mσ̂2
− 1

mσ2

} n∑
i=1

b̃ib̃
T
i =̂D1 +D2.
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Notice from the definition of σ̂2, it is not difficult to show that D1 and D2 are linear

independent and ED2 → 0. Hence

Var(vec(D̃)) = Var(vec(D1)) + Var(vec(D2))

and

E(D̃)→ E(D1) as n→∞.

For D1, we have

D1 =
1

mσ2

m∑
i=1

bib
T
i +

{
1

mσ2

m∑
i=1

(ZT
i Zi)

−1ZT
i εε

T
i Zi(Z

T
i Zi)

−1 − 1

m

m∑
i=1

(ZT
i Zi)

−1

}

+
1

mσ2

m∑
i=1

{
(ZT

i Zi)
−1ZT

i εib
T
i + biε

T
i Zi(Z

T
i Zi)

−1
}

=̂ D11 +D12 +D13

It is easy to see that D11, D12 and D13 are independent and ED12 = ED13 = 0, so we

have

ED1 = ED11 and Var(vec(D1)) = Var(vec(D11)) + Var(vec(D12)) + Var(vec(D13))

It is obvious that

ED1 = D and Var(
√
m · vec(D11)) =

1

σ4
E{b1b

T
1 ⊗ b1b

T
1 } −D⊗D (4.34)

D12 can be written as

1

mσ2

m∑
i=1

(ZT
i Zi)

−1ZT
i ε

T
i εiZi(Z

T
i Zi)

−1 − 1

m

m∑
i=1

(ZT
i Zi)

−1

=
1

mσ2

m∑
i=1

(ZT
i Zi)

−1ZT
i (εTi εi − σ2Ini)Zi(Z

T
i Zi)

−1

=
1

mσ2

m∑
i=1

(ZT
i Zi)

−1ZT
i AZi(Z

T
i Zi)

−1 +
1

mσ2

m∑
i=1

(ZT
i Zi)

−1ZT
i BZi(Z

T
i Zi)

−1

=̂ D121 +D122
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where

A = diag(ε2i1 − σ2, . . . , ε2ini − σ
2)

and

Bjl = εijεil, j 6= l and Bjj = 0, j, l = 1, . . . , ni.

It is not difficult to show that

Var(
√
m · vec(D12)) = Var(

√
m · vec(D121)) + Var(

√
m · vec(D122))

and by some complex calculation,

Var(
√
m · vec(D121)) = Var(ε211)∆3/σ

4, (4.35)

Var(
√
m · vec(D122)) = 2(∆2 −∆3). (4.36)

For D13, we have

Var(
√
m · vec(D13)) =

1

σ2
{D⊗ Γ + Γ×D + ∆1} (4.37)

Next consider D2. By Lemma (2.1), σ̂2 − σ2 = Op(1/
√
n), hence

D2 =
{ 1

mσ̂2
− 1

mσ2

} n∑
i=1

b̃ib̃
T
i =

σ̂2 − σ2

σ2

(
D +

1

m

m∑
i=1

(ZT
i Zi)

−1
)

+ op(1/
√
n),

and

Var(
√
m · vec(D2))

=
(
2(1 + γ)c1 + Var(ε211)γc1

)
vec

{
D +

1

m

m∑
i=1

(ZT
i Zi)

−1

}
vec

{
D +

1

m

m∑
i=1

(ZT
i Zi)

−1

}T

=
(
2(1 + γ)c1 + Var(ε211)γc1

)
∆4 (4.38)

Finally, by (4.33)—(4.38), the transformation from vec to vech by Rq, and the

central limited theory, the proof of Proposition 4.2.2 is complete. 2
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Proof of Theorem 4.3.1: Define

Q(β) =
m∑
i=1

(Yi −Xiβ)T (I + ZiD̂Z′i)
−1(Yi −Xiβ) + n

p∑
j=1

pλn(|βj|)

= L(β) + n

p∑
j=1

pλn(|βj|)

and αn = (1/
√
n).

To prove the theorem, we first show that for any give ε > 0, there exist a large

constant C such that

P

{
sup
‖u‖=C

Q(β0 + αnu) > Q(β0)

}
> 1− ε (4.39)

This implies with probability at least 1−ε that there exist local minimizer in the ball

{β0 + αnu : ‖u‖ ≤ C}. Hence there exists a local minimizer such that ‖β∗ − β0‖ =

Op(αn).

Since pλn(0) = 0, we have

Dn(u) = Q(β0+αnu)−Q(β0) ≥ L(β0+αnu)−L(β0)+n
s∑
j=1

{
pλn(|βj0 + αnuj|)− pλn(|βj0|)

}
where s is the number of components of β10. By simple calculation, it is not difficult

to show that

Dn(u) ≥ α2
n

m∑
i=1

uTXT
i (I + ZiD̂ZT

i )−1Xiu− αn
m∑
i=1

(Zibi + εi)
T (I + ZiD̂ZT

i )−1Xiu

− αn

m∑
i=1

uTXT
i (I + ZiD̂ZT

i )−1(Zibi + εi)

+ n

s∑
j=1

{
pλn(|βj0 + αnuj|)− pλn(|βj0|)

}
=̂ Dn1 +Dn2 +Dn3 +Dn4.

Under the regularity condition (C), we have
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Dn1 ≥ Op(nα
2
n)‖u‖2, (4.40)

and

Dn2 = Op(αn
√
n)‖u‖ and Dn3 = Op(αn

√
n)‖u‖. (4.41)

After taking the second order Taylor expansion of the first term around βj0 in Dn4

we have

Dn4 = n
s∑
j=1

p′λn(|βj0|)sgn(βj0)αnuj + n

s∑
j=1

p′′λn(|βj0|)α2
nu

2
j · (1 + o(1))

By the definition of the SCAD function, as λn → 0, an = max{p′λn(|βj0|) : βj0 6= 0} =

0 and max(p′′λn(|βj0|)) → 0. Hence when n is large enough, Dn4 = 0. Moreover it

is obvious that Dn1 dominates Dn2 and Dn3, therefore (4.39) holds. In other words,

there is a local minimizer β̂ of (4.17) such that

‖β0 − β̂‖ = Op(αn).

Next we show this minimizer β̂ has properties of (a) and (b). In fact if (a) is true,

by the oracle properties of SCAD penalty, we know that the asymptotic normality of

β̂ can be directly deduced from Proposition 4.2.1. Hence we only need to show that

β̂ has the property (a).

For ‖β−β0‖ = O(1/
√
n) and βj0 = 0,j = s+ 1, . . . , p, we consider the derivative

of Q(β) with respect to βj,

∂Q(β)

βj
= −

m∑
i=1

2XT
ij(Yi −Xiβ)(I + ZiD̂ZT

i )−1 + np′λn(|βj|)sgn(βj)

= Q1 +Q2.

Based on the definition of SCAD penalty function, p′λn(|βj|) = λn when βj = o(1/
√
n)

and
√
nλn →∞. Hence Q2 = nλnsgn(βj) when n is large enough.
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Under the regularity condition (C), we know that

m∑
i=1

2XT
ij(Yi −Xiβ)(I + ZiD̂ZT

i )−1 = Op(
√
n).

Since
√
nλn → ∞ when n → ∞, Q1 is dominated by Q2 and Q2 determines the

sign of the derivative above. This means that for some small εn = Cn−1/2 and

j = s+ 1, . . . , p, we have

∂Q(β)

βj
> 0 for 0 < βj < εn (4.42)

∂Q(β)

βj
< 0 for 0 > βj > −εn (4.43)

Therefore, only when βj = 0, j = s+ 1, . . . , p, Q(β) arrives its minimizer point.

Hereby we finish the proof of this theorem. 2

Proof of Theorem 4.3.2: Similar as the proof of Proposition 4.2.2, we only need

to show there exists a local minimizer D∗ such that

‖D−D∗‖ = Op(
√

log n/n), and d∗2 = 0.

The asymptotic normality of D∗1 follows by the properties of the SCAD penalty func-

tion.

To show ‖D−D∗‖ = Op(
√

log n/n), it suffices to show ‖D̂−D∗‖ = Op(
√

log n/n)

since we showed in Proposition 4.2.2 that ‖D̂ −D‖ = Op(
√

1/n). Moreover, since

D∗ =
1

m

m∑
i=1

b∗i b
∗T
i −

1

m

m∑
i=1

ZiZ
T
i

and

D̂ =
1

m

m∑
i=1

b̂ib̂
T
i −

1

m

m∑
i=1

ZiZ
T
i

we only need to show ‖B̂−B∗‖ = Op(
√

log(n)/n), where B̂ = (b̂T1 , . . . , b̂
T
m)T .
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First define ûi = Yi −Xiβ̂ and

Q(B) =
m∑
i=1

(ûi − Zibi)
T (ûi − Zibi) +

q∑
i=1

npξn(ck),

where

ck =

∣∣∣∣∣ 1

mσ̂2

m∑
i=1

b2ik −
1

m

m∑
i=1

ni∑
j=1

Z2
ijk

∣∣∣∣∣
1
2

.

To prove the theorem, we need to show that for any give ε > 0, there exists a

large constant C such that

P

{
sup
‖v‖=C

Q(B̂ + αnv) > Q(B̂)

}
> 1− ε (4.44)

where αn =
√

log n/n, B̂ = (b̂T1 , . . . , b̂
T
m)T and b̂i = (ZT

i Zi)
−1ZT

i ûi is defined as in the

proof of Proposition 4.2.2. This implies with probability at least 1−ε that there exists

a local minimizer such that ‖B∗−B̂‖ = Op(
√

log n/n) and ‖D̂−D∗‖ = Op(
√

log n/n).

Then it is easy to see that by Theorem 2.2, ‖D−D∗‖ = Op(
√

log n/n).

By the definition of B̂, we have

Q(B̂ + αnu)−Q(B̂) =
m∑
i=1

(
(ûi − Zib̂i)

TZiαnvi + αvTi ZT
i (ûi − Zib̂i)Zi

+α2
nv

T
i ZT

i Zivi
)

+

q∑
i=1

n(pξn(c̃k)− pξn(ĉk))

= Q1 +Q2

where ĉk =

∣∣∣∣∣ 1
mσ̂2

m∑
i=1

b̂2ik − 1
m

m∑
i=1

ni∑
j=1

Z2
ijk

∣∣∣∣∣
1
2

and c̃k =

∣∣∣∣∣ 1
mσ̂2

m∑
i=1

(b̂ik + αnvi)
2 − 1

m

m∑
i=1

ni∑
j=1

Z2
ijk

∣∣∣∣∣
1
2

.

First by the definitions of b̂i, we know that the first two terms in Q1 are equal to

0. By the regularity conditions, the third term of Q1 is of order Op(nα
2
n)C2.

After taking the Taylor expansion of pξn(c̃k) around ĉk,

Q2 =

q∑
i=1

np′ξn(ĉk)(c̃k − ĉk) +

q∑
i=1

np′′ξn(ĉk)(c̃k − ĉk)2(1 + o(1))
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For Q2, because
√
n/ log n·ξn →∞ and Proposition 4.2.2, when n is large enough,

we have p′ξn(ĉk) is bounded by ξn and

max{p′′ξn(ĉk), k = 1, . . . , q} → 0.

On the other hand, since 1
m

∑m
i=1 b̂i = Op(1/

√
n), by regularity conditions we

know that

1

mσ̃2

m∑
i=1

(b̂i + αnui)
T (b̂i + αnui)−

1

mσ̂2

m∑
i=1

b̂ib̂
T
i

=
1

mσ̂2

m∑
i=1

(
αnb̂

T
i vi + αnv

T
i b̂i + α2

nv
T
i vi

)
+ (

1

mσ̂2
− 1

mσ̂2
)

m∑
i=1

b̂ib̂
T
i

= Op(α
2
n) · C2

Hence c̃2k − ĉ2k = Op(α
2
n) · C2, and c̃k − ĉk ≤ Op(αn) · C.

Q2 = Op(nξnαn) · C + op(nα
2
n) · C2 = Op(nα

2
n) · C + op(nα

2
n) · C2.

It is obvious that Q2 is dominated by Q1 when C is large enough and Q(B̂ + αnu)−

Q(B̂) > 0. Hence it is easy to see that (4.44) has been proved.

Next we want to show that d∗2 = 0. To simplify the analysis, assume that Dqq = 0,

and D∗−D0 = Op(
√

log n/n). We want to show that c∗q = 0 where c∗q is the estimate

of D
1
2
qq. First we assume that c∗q = Op(

√
log n/n) 6= 0. For i = 1, . . . , q,

∂Q(B∗)

∂biq
= (ûi − Zib

∗
i )
TZiq + np′ξn(c∗q) ·

b∗iqsign(c∗q)

mc∗qσ̂
2

= (Zi(Z
T
i Zi)

−1ZT
i ûi − Zib

∗
i )
TZiq + np′ξn(|c∗q|) ·

b∗iqsign(c∗q)

mc∗qσ̂
2

= (Zib̂i − Zib
∗
i )
TZiq + np′ξn(|c∗q|) ·

b∗iqsign(c∗q)

mc∗qσ̂
2

Furthermore,

m∑
i=1

∂Q(B∗)

∂biq
· b∗iq =

m∑
i=1

(Zib̂i − Zib
∗
i )
TZiqb

∗
iq + np′ξn(|c∗q|) ·

m∑
i=1

b∗2iq sign(c∗q)

mc∗qσ̂
2

=̂ Qd1 +Qd2.
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For Qd1, by Cauchy inequality, ni and Zijq are bounded by constants, therefore

Q2
d1 ≤

{
m∑
i=1

‖bi − b̂i‖2
}{

m∑
i=1

‖ZT
i Ziq‖2b2iq

}
= Op(log n) ·

m∑
i=1

b2iq

= Op(n log n) ·

{
1

mσ̂2

m∑
i=1

b2iq −
1

m

m∑
i=1

ZT
iqZiq

}
+Op(n log n) ·

{
1

m

m∑
i=1

ZT
iqZiq

}
= Op(n log(n)) ·Op(

√
log(n)/n) +Op(n log n) (4.45)

= Op(n log n). (4.46)

For Qd2, because D∗ −D0 = Op(
√

log n/n), we know that c∗k = Op(
√

log n/n), and

hence

Qd2 = np′ξn(|cq|) ·
sign(cq)

mcq

{
m∑
i=1

b2iq
σ̂2
−

m∑
i=1

ZT
iqZiq +

m∑
i=1

ZT
iqZiq

}

= np′ξn(|cq|) · sign(cq)cq + np′ξn(|cq|) ·
sign(cq)

cq
·O(1)

= Op(
√
n log n ·

√
log n/n) +O(

√
n log n ·

√
n/ log n) · sign(cp) (4.47)

If B∗ = (b∗T1 , . . . ,b∗Tm )T is the minimizer point of Q(B) and c∗q does not equal to

zero, we should have that

Q1d +Q2d = 0,

However, it can be easily seen that Qd1 is dominated by Qd2 and the sign of cq

determines the sign of Q1d + Q2d, which cannot equal to zero. This contradicts the

assumption that c∗q = Op(
√

log n/n) 6= 0. Hence it is a necessary condition that c∗q = 0

if c∗q = Op(
√

log n/n) is also a local minimizer. Therefore for the local minimizer

b∗i , i = 1, . . . ,m, the sparsity property must hold. The proof of this Theorem has

been finished. 2

98



Bibliography

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
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