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Abstract

Samuel Behrend: Using Gram Matrices and Residues
to Generate Symmetric Functions

(Under the direction of Dr. Richard Rimanyi)

In this paper we argue for the use of a symmetric bilinear map S on Qn+1

as a means of producing and manipulating symmetric functions; using certain
vectors of rational functions we can produce Schur functions. We define S as
the determinant of a specific Gram matrix, whose elements are the result of an
antisymmetric bilinear map 〈, 〉 on Q as well as a reversion map R on the same
space. Ultimately, S allows us to derive an alternative construction of the Jacobi-
Trudi identity (extending the identity to Schur functions) as well as a variant of
the Cauchy identities.
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1. Introduction

The purpose of this paper is to summarize the concepts and results presented in
[10] and [11]. Certain proofs required the consultation of additional texts ([1]-[9]),
though the intention is for this paper to be as self-contained as possible.

In the first section we introduce an antisymmetric bilinear map on the space
Q of rational functions of one complex variable We discuss two interpretations of
the map, as an implementation of the Taylor functional and as the iterated residue
of the product of the component functions at the roots of the first component.

We then prove properties of the inner product, including the removal of com-
mon factors and translation invariance. We also discuss the use of the differentia-
tion operator as well as an involution of Q defined as R f (z) = (1/z) f (1/z).

Section 3 examines the use of our inner product and a general polynomial

w(z) as a divided difference functional sending f (z) to the scalar
〈

1
w

, f
〉

. We

then define a set of polynomials, known as Horner polynomials, which simplify
the definition of the difference quotient of w, which we can use to interpolate a
rational function at the roots of w.

In the next section we work through properties of Gram matrices and its re-
lation to the difference quotient operator. We also work through a number of
examples using certain bases and dual bases in spaces of polynomials that facili-
tate the construction of symmetric polynomials and Schur functions.

The paper concludes by explicitly defining and exploring the properties of the
symetric bilinear map S. We supply an alternative construction of the Jacobi-
Trudi identity (extending the identity to Schur functions), derive Schur functions
and produce a variant of the Cauchy identities.



2. An inner product on Q
Denote P as the complex vector space of all polynomials in one complex variable,
z, and Pn as the subspace of the polynomials of degree at most n ∈ Z>0. Consider
the complex vector space R generated by functions of the form

ra,k(z) =
1

(z− a)k+1 a ∈ C, k ∈N. (2.1)

Such functions are called proper rational functions. When applying a partial fraction
decomposition,R can be seen as the set of rational functions of the form p(z)/u(z)
where p and u are polynomials sharing no roots and u is monic with degree
strictly greater than that of p.

By the division algorithm of polynomials we know that every rational function
can be written uniquely as the sum of a polynomial and a proper rational function,
that is Q = P ⊕R where Q is the space of rational functions. This means that
{zn : n ∈ N} ∪ {ra,k : a ∈ C, k ∈ N}, the union of the standard bases of P and R,
is a basis for Q. With this in mind we define a bilinear map Q×Q → C on our
basis elements as follows:

〈ra,k(z), zn〉 =

(
n
k

)
an−k a ∈ C, k, n ∈N (2.2)

〈zn, ra,k(z)〉 = −
(

n
k

)
an−k a ∈ C, k, n ∈N (2.3)

〈ra,k(z), rb,m(z)〉 = (−1)k
(

k + m
k

)
1

(a− b)k+m+1 a 6= b, k, m ∈N (2.4)

〈ra,k(z), ra,m(z)〉 = 0 a ∈ C, k, m ∈N (2.5)〈
zn, zk

〉
= 0 k, n ∈N. (2.6)



It is clear that
〈
zn, zk〉 = 0 = −

〈
zk, zn〉 and moreover,

〈ra,k(z), rb,m(z)〉 = (−1)k
(

k + m
k

)
1

(a− b)k+m+1

= (−1)k
(

m + k
m

)
1

(a− b)k+m+1

= (−1)k
(

m + k
m

)
(−1)−k−m−1

(b− a)k+m+1

= (−1)−m−1
(

m + k
m

)
1

(b− a)k+m+1

= (−1)m+1
(

m + k
m

)
1

(b− a)k+m+1

= − 〈rb,m(z), ra,k(z)〉 .

So by the above definitions and the extension by linearity, we see 〈, 〉 is an anti-
symmetric bilinear form on Q.

Alternative Notation

Let (a, k)∗ denote the Taylor functional defined on the set of rational functions
defined at a (so f does not have a singularity at a) as follows

(a, k)∗ f =
Dk f (a)

k!
a ∈ C, k ∈N (2.7)

where D denotes the usual differentiation operator. Note then that this means
(a, k)∗ = 〈ra,k(z),−〉.

The Leibniz rule for differentiation affords us the following property

(a, n)∗( f g) =
n

∑
k=0

[(a, k)∗ f ][(a, n− k)∗g] (2.8)

for any rational functions f , g defined at a. In our earlier notation we would have
written

〈ra,n(z), f g〉 =
n

∑
k=0
〈ra,k(z), f 〉 〈ra,n−k(z), g〉 .

So if g is a rational function defined at a and f (z) = (z− a)m where m ≥ 0 then
by (2.8) we have (a, n)∗( f g) = 0 for 0 ≤ n ≤ m − 1. Further if we consider
f (z) = (z− a)m and g(z) = 1 then (a, k)∗(z− a)m = δk,m for k, m ∈N because the
mth derivative of f will be just m! (which cancels out the m! in the denominator)
and any subsequent derivative will just be 0.

In the next section we will begin discussing how our inner product is actually
a residue calculation of the product of the two arguments. However, in order to do
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so, we will need to develop the algebra of taking products with our new notation.
Specifically, our goal will be to develop a partial fraction decomposition formula
for the product of two strictly rational functions. Let r ≥ 0 and a0, a1, . . . , ar be
distinct complex numbers (roots) with corresponding positive integers m0, . . . , mr

(their orders). Define

w(z) =
r

∏
i=0

(z− ai)
mi

noting n + 1 = ∑ mi. For sake of ease define the index set

I = {(i, j) : 0 ≤ i ≤ r, 0 ≤ j ≤ mi − 1}

and for each (i, j) ∈ I let

qi,j(z) =
w(z)

(z− ai)mi−j . (2.9)

So qi,j(z) is a polynomial whose degree is at most n. Essentially qi,j(z) is our
polynomial w but the root ai now has multiplicity j. This will be most useful
when we use the term qi,0(z), which effectively removes ai as a root.

Next we define the linear functionals Li,j by

Li,j p = (ai, j)∗
p

qi,0(z)
p ∈ P , (i, j) ∈ I . (2.10)

Now since
qk,s(z)
qi,0(z)

=
(z− ai)

mi

(z− ak)mk−s

we see that Li,jqk,s(z) = 0 for i 6= k and Li,jqi,s(z) = (ai, j)∗(z− ai)
s = δj,s. Hence

Li,jqk,s(z) = δ(i,j),(k,s) (i, j), (k, s) ∈ I . (2.11)

This means that the set {qi,j(z) : (i, j) ∈ I} is linearly independent. Note also
that |I| = ∑r

i=0 mi = n + 1, which makes {qi,j(z) : (i, j) ∈ I} a basis for the
subspace Pn. Hence we can describe our polynomials

p(z) = ∑
(i,j)∈I

[
Li,j p

]
qi,j(z), p ∈ Pn (2.12)

so that when we divide the above equation by w(z) we obtain the partial fractions
decomposition formula (see 2.9)

p(z)
w(z)

= ∑
(i,j)∈I

Li,j p
(z− ai)mi−j , p ∈ Pn. (2.13)
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This says that every element of R can be written uniquely as a finite linear
combination of functions of the form (z − a)−k−1 where a is a complex number
(root of w) and k is a nonnegative integer, i.e. our strictly rational functions ra,k(z).
Consider a more compact notation for these strictly rational functions

(a, k) = (a, k)(z) =
1

(z− a)k+1 a ∈ C k ∈N

Then if we let p = 1 and w(z) = (a, k)(z)(b, m)(z) the partial fractions formula
(2.13) gives us the multiplication formula

(a, k)(z)(b, m)(z) =

[
k

∑
j=0

[(a, j)∗(b, m)][(a, k− j)]

]

+

[
m

∑
i=0

[(b, i)∗(a, k)][(b, m− i)]

]
a 6= b.

(2.14)

Also,

(a, k)(z)(a, m)(z) =
1

(z− a)k+1(z− a)m+1 =
1

(z− a)k+m+2 = (a, k + m + 1)(z).

Residue interpretation

Another powerful interpretation of our inner product is as the residue of the prod-
uct of the component functions. Considering first two purely rational functions
(where a 6= b), we want to show

〈(a, k), (b, m)〉 = Residue at a of (a, k)(b, m). (2.15)

Using the multiplication formula derived earlier, we see that

Res
a

(a, k)(b, m) = Res
a

[
k

∑
j=0

[(a, j)∗(b, m)][(a, k− j)] +
m

∑
i=0

[(b, i)∗(a, k)][(b, m− i)]

]

= Res
a

[
k

∑
j=0

[(a, j)∗(b, m)][(a, k− j)]

]
+ Res

a

[
m

∑
i=0

[(b, i)∗(a, k)][(b, m− i)]

]

=
k

∑
j=0

[(a, j)∗(b, m)]Res
a

(a, k− j) +
m

∑
i=0

[(b, i)∗(a, k)]Res
a

(b, m− i)

Notice that the terms (b, m − i) have no singularities at a, so their residues are
zero.
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Likewise, the residues of (a, k − j) are all zero except for when k = j (which
leaves us with just a simple pole at a) because when we remove the singularity
we’re left to differentiate a constant.

Res
a

(a, k)(b, m) =
k

∑
j=0

[(a, j)∗(b, m)]Res
a

(a, k− j)

= [(a, k)∗(b, m)]Res
a

(a, 0)

= (a, k)∗(b, m)

= 〈(a, k), (b, m)〉 .

Now assuming the second component function is a polynomial, we can see

〈(a, k), zn〉 =

(
n
k

)
an−k

=
1
k!
·
[

n!
(n− k)!

an−k
]

=
1
k!

lim
z→a

dk

dzk (z
n)

= Res
a

zn

(z− a)k+1 .

And obviously, if both component functions are polynomials there are no sin-
gularities, which means the residue of their product is just zero, which is con-
sistent with our inner product definition. The following proposition takes the
residue interpretation a step further.

Proposition 2.1. Let p, w be polynomials such that p/w is in R and let f ∈ Q
such that f is defined at the roots of w. Then

〈 p
w

, f
〉
=

〈
1
w

, p f
〉

= ∑
i

Res
ai

p f
w

(2.16)

where the sum runs over the distinct roots ai of w.

Proof. Let w(z) = ∏r
i=0(z− ai)

mi and notice that (2.13) - the partial fractions de-
composition formula - can be rewritten, using the definition in (2.10), as

6



p(z)
w(z)

= ∑
(i,j)∈I

Li,j p
(z− ai)mi−j

= ∑
(i,j)∈I

Li,j p · (ai, mi − j− 1)(z)

= ∑
(i,j)∈I

(ai, j)∗
p

qi,0(z)
· (ai, mi − j− 1)(z)

= ∑
(i,j)∈I

〈
(ai, j),

p
qi,0(z)

〉
· (ai, mi − j− 1)(z).

Then using the Leibniz rule (in the third and fourth upcoming steps) to shuffle
the second component functions in our inner product we get〈

p(z)
w(z)

, f
〉

= ∑
(i,j)∈I

〈
(ai, j),

p
qi,0(z)

〉
· (ai, mi − j− 1)(z)∗ f

= ∑
(i,j)∈I

(ai, j)∗
p

qi,0(z)
· (ai, mi − j− 1)∗ f

= ∑
i

〈
(ai, mi − 1),

p f
qi,0(z)

〉
= ∑

(i,j)∈I
(ai, j)∗

1
qi,0(z)

· (ai, mi − j− 1)∗p f

= ∑
(i,j)∈I

〈
(ai, j),

1
qi,0(z)

〉
· (ai, mi − j− 1)(z)∗p f

=

〈
1

w(z)
, p f
〉

.

Now we’ve previously shown that given a strictly rational function as our first
component our inner product is equivalent to the residue of the product of the
component functions (for any rational second component). So using the third

equality above and the fact that
1

qi,0(z)
=

(z− ai)
mi

w(z)
we can complete our statment:

∑
i

〈
(ai, mi − 1),

p f
qi,0(z)

〉
= ∑

i
Res

ai

p f
w

.
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3. Early Properties

Immediately, we would like to develop a means of transferring functions from one
argument of the inner product to the other, akin to an adjoint operator to a linear
transformation.

Proposition 3.1. Let f be an element of Q and let p, q ∈ P . Then

〈p f , q〉 = 〈 f , pq〉 . (3.1)

Proof. We will conduct this proof on the basis elements of Q = R⊕P and then
use linearity to achieve our goal. Let k, n and m be nonnegative integers and let
a ∈ C. Then

〈(a, k)(z), znzm〉 = (a, k)∗zn+m =

(
n + m

k

)
an+m−k.

On the other hand, writing zn = (a + z− a)n we can use the binomial formula to
see

zn(a, k)(z) =

[
n

∑
j=0

(
n
j

)
an−j(z− a)j

]
(a, k)(z) =

n

∑
j=0

(
n
j

)
an−j(z− a)j−k−1,

and since the inner prduct of two polynomials is zero we only need to consider
the terms in which j does not exceed k, that is, where r = min{n, k}:

〈zn(a, k)(z), zm〉 =
r

∑
j=0

(
n
j

)
an−j 〈(a, k− j), zm〉

=
r

∑
j=0

(
n
j

)
an−j

(
m

k− j

)
am−k+j

=
r

∑
j=0

(
n
j

)(
m

k− j

)
am+n−k

=

(
n + m

k

)
an+m−k.



The last equality requires some combinatorics, known formally as the Chu-
Vandermonde convolution formula. Thus

〈(a, k)(z), znzm〉 = 〈zn(a, k)(z), zm〉 .

Finally, notice that 〈zs, znzm〉 = 0 = 〈znzs, zm〉 – where s is a nonnegative integer –
so (3.1) follows by linearity.

We can use (2.16) now to prove two similar properties: the first is known as
Popoviciu’s reduction and the second is a decomposition formula for the product
of two strictly rational functions. Recall that a function f is said to be defined
on the roots of a polynomial u(z) if for each root a of u with multiplicity m, the
derivatives Dk f for 0 ≤ k < m are defined (i.e. have no singularities) at a.

Proposition 3.2. (Popoviciu’s Reduction) Let u, v ∈ P and f be a function defined
on the roots of uv. Then 〈

1
uv

, v f
〉

=

〈
1
u

, f
〉

. (3.2)

Proof. Assume the roots of u and v are indexed as ai ∈ A and bj ∈ B respectively
(it is possible that ai = bj for some i, j). Using our residue interpretation,〈

1
uv

, v f
〉

= ∑
i

Res
{ai}∪{bj}

v f
uv

= ∑
i

Res
{ai}∪{bj}

f
u

= ∑
i

Res
{ai}

f
u

=

〈
1
u

, f
〉

.

This penultimate equality holds because for bj ∈ B \ A, the residue of
f
u

is 0 ( f
does not have a singularity at any bj and u has no roots in B \ A).

Proposition 3.3. (Popoviciu’s Decomposition) Let u, v ∈ P and f be a function
defined on the roots of uv. If u, v have no common roots, then〈

1
uv

, f
〉

=

〈
1
u

,
f
v

〉
+

〈
1
v

,
f
u

〉
. (3.3)
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Proof. Assume the unique roots of u and v are indexed as ai ad bj respectively
(ai 6= bj for all i, j). Then with our residue interpretation we can see〈

1
uv

, f
〉

= ∑
i

Res
ai

f
uv

+ ∑
j

Res
bj

f
uv

=

〈
1
u

,
f
v

〉
+

〈
1
v

,
f
u

〉
.

The next property we consider is the behavior of the operator D, differentiation
with respect to z.

Proposition 3.4. Let f , g ∈ Q. Then

〈 f , Dg〉 = 〈−D f , g〉 . (3.4)

Proof. We will again be considering the basis elements of Q = R⊕ P and then
use linearity to finish the proof.

Case 1: 〈zn, zm〉. We know the inner product of two polynomials is just zero,
so it’s easy to see 〈

zn, mzm−1
〉
= 0 =

〈
−nzn−1, zm

〉
.

Case 2: 〈(a, k), zn〉. Using linearity and the definition of our inner product,

〈(a, k), Dzn〉 =
〈
(a, k), nzn−1

〉
= n

〈
(a, k), zn−1

〉
= n

(
n− 1

k

)
an−k−1

=

(
n!

k!(n− k− 1)!

)
an−k−1

= (k + 1)
(

n
k + 1

)
an−k−1

= (k + 1) 〈(a, k + 1), zn〉
= 〈(k + 1)(a, k + 1), zn〉
= 〈−D(a, k), zn〉 .

Because of antisymmetry we also have proof of the 〈zn, (a, k)〉 case.

10



Case 3: 〈(a, k), (b, m)〉. Again we use linearity and the definition of our inner
product to see

〈(a, k), D(b, m)〉 = 〈(a, k),−(m + 1)(b, m + 1)〉
= −(m + 1) 〈(a, k), (b, m + 1)〉

= −(m + 1)(−1)k
(

k + m + 1
k

)
1

(a− b)k+m+2

= (−1)k+1
(
(k + m + 1)!

k!m!

)
1

(a− b)k+m+2

= (k + 1)(−1)k+1
(

k + m + 1
k + 1

)
1

(a− b)k+m+2

= (k + 1) 〈(a, k + 1), (b, m)〉
= 〈−D(a, k), (b, m)〉 .

So by linearity we have proved our hypothesis.

Another operator with similar behavior regarding our inner product is the
reversion map R : Q → Q which is defined by

R f (z) =
1
z

f
(

1
z

)
, f ∈ Q. (3.5)

Note that
Rzn =

1
zn+1 = (0, n)(z), n ∈N (3.6)

and

R(a, k)(z) =
1
z
· 1(

1
z
− a
)k+1 =

zk

(1− az)k+1 , a ∈ C, k ∈N. (3.7)

Further we can see that R2 = I. This allows us to prove the following

Proposition 3.5. Let f , g be any rational functions. Then

〈 f , Rg〉 = 〈−R f , g〉 . (3.8)

Proof. We need to preface the work in this proof with a simple lemma.

Lemma 3.1. Let f be a rational function. Then

Res
1/a

f (z) = Res
a

−1
z2 f (1/z). (3.9)

11



Proof. Assume f : C → C is some smooth function mapping a to f (a)
and that we have some smooth one-form ω = f (z)dz. We know that
under the pullback, the following holds true

Res
f (a)

ω = Res
a

f ∗ω.

Then if f (z) =
1
z

we can see

Res
1/a

f (z)dz = Res
a

f (1/z)d(1/z)

= Res
a

f (1/z) · −1
z2 dz,

and we can just supress the dz terms in the residues on either side of
the equality to finish our proof.

With this Lemma in mind we proceed case-by-case with the basis elements of
Q using properties (3.6) and (3.7).

Case 1: f = zn; g = zm. Using our definition of the reversion map and inner
product we see

〈 f , Rg〉 = 〈zn, Rzm〉
= 〈zn, (0, m)(z)〉
= − 〈(0, m)(z), zn〉

= −
(

n
m

)
0n−m

= −
(

m
n

)
0m−n

= − 〈(0, n)(z), zm〉
= 〈−Rzn, zm〉
= 〈−R f , g〉

Case 2: f = (a, k)(z); g = zn. First we use our definition of the reversion
map and the residue interpretation of the inner product. The fourth proceeding
step is simply a convenient rephrasing of each term so we can use the lemma.

12



〈 f , Rg〉 = 〈(a, k)(z), Rzn〉
= 〈(a, k)(z), (0, n)(z)〉
= Res

a
[(a, k)(z)][(0, n)(z)]

= Res
a

[
1
z

R(a, k)(1/z)
] [

1
z

(
1
z

)n]
= Res

a

1
z2 R(a, k)(1/z)

(
1
z

)n

= Res
1/a
− R(a, k)(z)zn

= 〈−R(a, k)(z), zn〉
= 〈−R f , g〉 .

Case 3: f = (a, k)(z); g = (b, m)(z). We proceed much the same way as the
previous case, using our lemma and the residue interpretation.

〈 f , Rg〉 = 〈(a, k)(z), R(b, m)(z)〉
= Res

a
[(a, k)(z)][R(b, m)(z)]

= Res
a

[
1
z

R(a, k)(1/z)
] [

1
z
(b, m)(1/z)

]
= Res

a

1
z2 [R(a, k)(1/z)] [(b, m)(1/z)]

= Res
1/a
− [R(a, k)(z)] [(b, m)(z)]

= 〈−R(a, k)(z), (b, m)(z)〉
= 〈−R f , g〉 .

Then with (3.8) we can prove

〈 f , g〉 = − 〈g, f 〉
= −

〈
R2g, f

〉
= 〈Rg, R f 〉 .

We will finish up by proving the translation invariance property of 〈, 〉.

Proposition 3.6. Let f , g ∈ Q and a ∈ C. Then

〈 f (z), g(z)〉 = 〈 f (z + a), g(z + a)〉 . (3.10)
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Proof. As with the previous proposition, we will take this one case at a time,
considering the basis elements of Q = R⊕P and then use linearity to finish the
proof. So let f , g ∈ Q, a, b, c ∈ C and k, m, n ∈ Z>0.

Case 1: 〈zn, zm〉. We know the inner product of two polynomials is just zero,
so it’s easy to see

〈zn, zm〉 = 0 = 〈(z + a)n, (z + a)m〉 .

Case 2: 〈(a, k)(z), zn〉. Note that if we translate a strictly rational function

(a, k) =
1

(z− a)k+1 by b then we’re left with
1

(z + b− a)k+1 = (a− b, k)(z). Then

using our rules we see

〈(a− b, k)(z), (z + b)n〉 =

(
n
k

)
((a− b) + b)n−k

=

(
n
k

)
an−k

= 〈(a, k), zn〉 .

Because of antisymmetry we also have proof of the 〈(z + b)n, (a− b, k)(z)〉 case.
Case 3: 〈(a, k)(z), (b, m)(z)〉. The evaluation of this inner product is more

dependant on the exponents k and m than the roots themselves, so we see

〈(a + c, k)(z), (b + c, m)(z)〉 = (−1)k
(

k + m
k

)
1

((a + c)− (b + c))k+m+1

= (−1)k
(

k + m
k

)
1

(a− b)k+m+1

= 〈(a, k)(z), (b, m)(z)〉 .

So by linearity we have proved our hypothesis.
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4. Divided Difference Functional and the Difference

Quotient

With all this information we now have regarding our inner product, we can dis-

cuss the specific linear functional that sends a rational function f to
〈

1
w

, f
〉

where

w(z) = ∏r
i=0(z− ai)

mi and f is defined on the roots of w. We call this the divided
differences functional; in [8] Verde-Star introduces a whole seperate notation for

this functional, stating ∆w f (z) =
〈

1
w(z)

, f (z)
〉

. Interestingly enough we can de-

velop an explicit expression for this functional as a linear combination of Taylor
functionals at the roots of w.

First, we repeatedly use (3.3) to obtain〈
1
w

, f
〉

=
r

∑
i=0

〈
(ai, mi − 1)(z),

f
qi,0(z)

〉
. (4.1)

Then we apply Leibniz’s rule (2.8) to get the following formalization.

Proposition 4.1. The divided differences functional sending rational function f to〈
1
w

, f
〉

can be expressed as the following linear combination of Taylor functionals

at the roots of w:〈
1
w

, f
〉

=
r

∑
i=0

mi−1

∑
k=0

〈
(ai, k)(z),

1
qi,0(z)

〉
〈(ai, mi − 1− k)(z), f 〉 . (4.2)

If all the multiplicities mi are equal to one then,



〈
1
w

, f
〉

=
r

∑
i=0

〈
(ai, 0)(z),

1
qi,0(z)

〉
〈(ai, 0)(z), f 〉

=
r

∑
i=0

〈
(ai, 0)(z),

1
qi,0(z)

〉
f (ai)

=
r

∑
i=0

[
Res

ai

1
w(z)

]
f (ai)

=
r

∑
i=0

[
1

∏i 6=j(ai − aj)

]
f (ai)

=
r

∑
i=0

[
1

w′(ai)

]
f (ai)

=
r

∑
i=0

f (ai)

w′(ai)
.

Notice this implies that 〈
1
w

, w′ f
〉

=
r

∑
i=0

f (ai) (4.3)

and in particular 〈
1

w(z)
, w′(z)zm

〉
=

r

∑
i=0

am
i = σm(a0, a1, . . . , an) (4.4)

where σm(a0, a1, . . . , an) is a the power sum symmetric polynomial on elements
(a0, a1, . . . , an). We will see this property of the inner product later in our discus-
sion of Gram matrices. We will also return to these symmetric polynomials in our
discussion of partitions and Schur functions.

However, we first use our divided difference functional with specific mono-
mials to develop coefficients we will find useful in our discussion of difference
quotients.

Toeplitz Matrices

Let n + 1 = ∑i mi. Then define

hk =

〈
1

w(z)
, zn+k

〉
. (4.5)
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Proposition 4.2. Let w be defined as usual, then

hk = ∑
r

∏
i=0

(
ki + mi − 1

ki

)
aki

i (4.6)

where the sum runs over the multi-indices (k0, k1, . . . , kr) that satisfy ∑i ki = k.

Proof. Let x be any number such that w(x) 6= 0. Let f (z) =
1

x− z
and use (2.16)

to first bring the polynomial p to the other component. Then we use our Liebniz
rule (4.2) and evaluate the second inner product. Finally we can use the partial
fractions decomposition formual (2.13) to simplify:〈

p(z)
w(z)

,
1

x− z

〉
=

〈
1

w(z)
,

p(z)
x− z

〉
=

r

∑
i=0

mi−1

∑
k=0

〈
(ai, k)(z),

p(z)
qi,0(z)

〉〈
(ai, mi − 1− k)(z),

1
x− z

〉

=
r

∑
i=0

mi−1

∑
k=0

〈
(ai, k)(z),

p(z)
qi,0(z)

〉
1

(x− ai)mi−k

= ∑
(i,k)

Li,k p(z)
(x− ai)mi−k

=
p(x)
w(x)

.

Then let p(z) = zn where n + 1 is the degree of w. Then we have

xn

w(x)
=

〈
1

w(z)
,

zn

x− z

〉
.

Multiply both sides of the equation by x (the inner product is dependent on z, so
x is just a scalar) and replace x by 1/y to get the following generating function:

17



xn+1

w(x)
= x

〈
1

w(z)
,

zn

x− z

〉
xn+1

r

∏
i=0

(x− ai)
−mi =

〈
1

w(z)
,

xzn

x− z

〉
1

yn+1

r

∏
i=0

(
1
y
− ai)

−mi =

〈
1

w(z)
,

xzn

x− z

〉
r

∏
i=0

(1− yai)
−mi =

〈
1

w(z)
,

xzn

x− z

〉

=

〈
1

w(z)
,

1
y

zn

1
y
− z

〉

=

〈
1

w(z)
,

zn

1− yz

〉
.

Then we apply the Taylor functional (0, k)∗ with respect to y to both sides. On
the left hand side we use the Leibniz rule (2.8) over and over to seperate factors
in the product, applying them to decreasing orders of (0, ki) giving us

(0, k)∗
r

∏
i=0

(1− yai)
−mi = ∑

(k0,...,kr)

r

∏
i=0

〈
(0, ki), (1− yai)

−mi
〉

= ∑
(k0,...,kr)

r

∏
i=0

〈
(0, ki),

(
−1
ai

)mi

(y− 1
ai
)−mi

〉

= ∑
(k0,...,kr)

r

∏
i=0

(
−1
ai

)mi

〈(0, ki), (1/ai, mi − 1)〉

= ∑
(k0,...,kr)

r

∏
i=0

(
−1
ai

)mi

(−1)ki

(
ki + mi − 1

ki

)
1(

−1
ai

)ki+mi

s = ∑
(k0,...,kr)

r

∏
i=0

(
ki + mi − 1

ki

)
aki

i

where the multiindices in the sum satisfy ∑i ki = k. On the right hand side,
because we’re taking the Taylor functional with respect to y, the inner product
(which is with respect to z) treats it like a constant, and so by bilinearity we apply
(0, k) to the second component and see
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〈
1

w(z)
, (0, k)∗

zn

1− yz

〉
=

〈
1

w(z)
,

Dk
(

zn

1− yz

)
k!

∣∣∣∣∣∣∣∣
y=0

〉

=

〈
1

w(z)
,

(−1)2kk!

(
zn+k

(1− yz)k+1

)
k!

∣∣∣∣∣∣∣∣∣∣
y=0

〉

=

〈
1

w(z)
,

zn+k

(1− yz)k+1

∣∣∣∣∣
y=0

〉

=

〈
1

w(z)
, zn+k

〉
.

Thus by the definition (4.5)

hk =

〈
1

w(z)
, zn+k

〉
= ∑

(k0,...,kr)

r

∏
i=0

(
ki + mi − 1

ki

)
aki

i .

Notice then if again all the multiplicities mi are one then hk becomes the com-
plete homogeneous symmetric polynomial of order k in the variables ai. Also, the
proposition shows that h0 = 1 (this will be useful later). With this information we
can begin to develop the concept of the Toeplitz matrix. First note that from (4.5)
and properties of the reversion map (3.10) we know

hk =

〈
1

w(z)
, zn+k

〉
=

〈
Rzn+k, R

1
w(z)

〉
=

〈
1

zn+k+1 ,
1

zw(1/z)

〉
=

〈
1

zk+1 ,
1

zn+1w(1/z)

〉
.

The last step uses Popoviciu’s reduction (3.2).
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Proposition 4.3. The function
1

zn+1w
(

1
z

) is the generating function of hk, that is

1

zn+1w
(

1
z

) = h0 + h1z + . . ..

Proof. Let w(z) = zn+1 + b1zn + . . . + bn+1. Then zn+1w
(

1
z

)
= 1 + b1z + . . . +

bn+1zn+1. It is sufficient then to show

1
1 + b1z + . . . + bn+1zn+1 = h0 + h1z + . . .

In other words, we need to prove that hk is the kth coefficient of the Taylor expan-

sion of
1

zn+1w
(

1
z

) at z = 0. Let f (z) = 1
zn+1w( 1

z )
, so that hk =

〈
1

zk+1 , f (z)
〉

. Let

ĥ(z) = 1
kzk which means Dĥ(z) = −1

zk+1 where D is differentiaion with respect to z.
Then we use Proposition 3.4 to show

hk =
〈
−Dĥ(z), f (z)

〉
=

〈
ĥ(z), D f (z)

〉
=

〈
1

kzk , D f (z)
〉

= Res
z=0

D f (z)
kzk

=
1

(k− 1)!
lim
z→0

d(k−1)

dz(k−1)

[
zk D f (z)

kzk

]
=

1
k!

lim
z→0

d(k−1)

dz(k−1)
D f (z)

=
1
k!

lim
z→0

dk( f (z))
dzk

=
f (k)(0)

k!

which is by definition the kth coefficient of the Taylor expansion of f (z) at z = 0.

Furthermore, if we let w(z) = zn+1 + b1zn + . . . + bn+1 so that zn+1w(1/z) =

1 + b1z + b2z2 + . . . + bn+1zn+1, then

1 =

[
∞

∑
k=0

hkzk

] [
zn+1w(1/z)

]
=

[
∞

∑
k=0

hkzk

] [
n+1

∑
l=0

blzl

]
.
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Thus,
m

∑
j=0

bjhm−j = δ0,m, m ≥ 0. (4.7)

Then for k ≥ 0 we can solve for hk using Cramer’s rule on the finite system of
equations that corresponds to m = 0, 1, . . . , k to get

hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 1
b1 1 0 0
...

... . . . ...
bk−1 bk−2 . . . 1 0

bk bk−1 . . . b1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

b1 1 0
...

...
... . . .

bk−1 bk−2 . . . 1 0
bk bk−1 . . . b1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)k

∣∣∣∣∣∣∣∣∣∣
b1 1 0
...

... . . .

bk−1 bk−2 . . . 1
bk bk−1 . . . b1

∣∣∣∣∣∣∣∣∣∣
, k ≥ 1. (4.8)

By the symmetry of the system in (4.7) we also have

bk = (−1)k

∣∣∣∣∣∣∣∣∣∣
h1 1 0
...

... . . .

hk−1 hk−2 . . . 1
hk hk−1 . . . h1

∣∣∣∣∣∣∣∣∣∣
, k ≥ 1. (4.9)

We call these matrices (lower triangular) Toeplitz matrices because each left-right
diagonal is a constant value. Also if k > n + 1 then bk = 0.

Difference Quotient

Before we introduce the difference quotient terminology and ultimately a means
of interpolating a polynomial using our inner product, we need to expound on
our divided difference operator. Let w(z) = zn+1 + b1zn + . . . + bn+1 (bj = 0 for
j > n + 1) be a fixed monic polynomial of degree n + 1. Then define the sequence
{wk} of Horner polynomials of w as follows

wk(z) = zk + b1zk−1 + . . . + bk. (4.10)
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It is clear that {wk} is a basis of the vector space P and that wn+1 = w and
wn+1+k(z) = zkw(z) for k ≥ 0. Furthermore, the Horner polynomials satisfy the
following recurrence relation

wk+1(z) = zwk(z) + bk+1, k ≥ 0

Now we can prove a few properties of the divided difference linear functional(
f 7→

〈
1

w(z)
, f
〉)

on these Horner polynomials using our definitions of hk and

(4.7):〈
1

w(z)
, wk(z)

〉
=

〈
1

w(z)
, zk + b1zk−1 + . . . + bk

〉
= b0

〈
1

w(z)
, zk
〉
+ b1

〈
1

w(z)
, zk−1

〉
+ . . . + bk

〈
1

w(z)
, 1
〉

= b0hk−n + b1hk−1−n + . . . + bkh−n

=
k

∑
j=0

bjhk−n−j

= δ0,k−n

= δk,n.

Next, if we consider a polynomial f with degree less than n, we can express it as
a linear combination of {wk} as follows

〈
1

w(z)
, f (z)

〉
=

〈
1

w(z)
,

n−1

∑
k=0

akwk(z)

〉

=
n−1

∑
k=0

ak

〈
1

w(z)
, wk(z)

〉
= 0

since k < n. Finally, we can see that any polynomial multiple of w also produces
a value of 0 under the divided difference with respect to w:

〈
1

w(z)
, g(z)w(z)

〉
=

〈
1

w(z)
,

m

∑
k=0

akzkw(z)

〉

=
m

∑
k=0

ak

〈
1

w(z)
, zkw(z)

〉
=

m

∑
k=0

ak

〈
1

w(z)
, wn+1+k(z)

〉
= 0.
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Proposition 4.4. The divided difference of polynomial multiples of Horner poly-
nomials can be described as:〈

1
w(z)

, zn−jwk(z)
〉

= δj,k 0 ≤ j, k ≤ n.

Proof. We will proceed in three cases:
Case 1: k < j. In this case zn−jwk(z) is a polynomial of degree less than n,

which we have seen produces 0 under the divided difference operator.
Case 2: k = j. This means zn−kwk(z) is a monic polynomial of degree n.

Because {wk} forms a basis of Pn we see

zn−kwk(z) = wn(z) +
n−1

∑
i=0

aiwi(z).

Hence, because
〈

1
w(z)

, wk(z)
〉

= δk,n,

〈
1

w(z)
, zn−kwk(z)

〉
=

〈
1

w(z)
, wn(z)

〉
+

n−1

∑
i=0

ai

〈
1

w(z)
, wi(z)

〉
= 1.

Case 3: k > j. Let k = j + i where i ≥ 1. Then

zn−jwk(z) = zn−k+i(zk + b1zk−1 + . . . + bk)

= zi−1(zn+1 + b1zn + . . . + bkzn−k+1)

= zi−1w(z)− zi−1(bk+1zn−k + . . . + bn+1).

The first summand is a multiple of w so when we introduce our divided difference
operator, we get a 0. The remaining polynomial has order n− j− 1 < n so as in
case 1, we get 0 for our divided difference.

Now for any polynomial u(z) we define the difference quotient

u[z, t] =
u(z)− u(t)

z− t
. (4.11)

It is easy to see that

zk+1 − tk+1 = (z− t)
k

∑
j=0

zjtk−j ⇒ zk+1 − tk+1

z− t
=

k

∑
j=0

zjtk−j, (4.12)

which means that for any polynomial u of degree m + 1, the difference quotient
u[z, t] is a homogeneous symmetric polynomial in z and t of degree m. If we
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rearrange some terms, we can introduce our Horner polynomials as follows

w[z, t] =
n

∑
k=0

wk(z)tn−k =
n

∑
k=0

wk(t)zn−k. (4.13)

Isaac Newton used the concept of divided differences to calculate the coeffi-
cients of the polynomial (of least possible degree) that interpolates a given set of
data points. That is, he described a means of developing a polynomial that reaches
every point in a given set. Charles Hermite took this a step further by describing
a method of producing a polynomial that not only matches an unknown function
at certain points, but whose first k derivatives match the unknown function’s first
k derivatives at those points.

Specifically, if f (z) = g(z)w(z) + r(z), note that for any linear functional L on
P such that L{g(z)w(z)} = 0 for any g(z) then L f (z) = L(g(z)w(z) + r(z)) =

Lr(z). If a is a root of w with multiplicity m, then applying Leibniz’s rule, we
see that 〈(a, k)(z), g(z)w(z)〉 = 0 for any polynomial g(z) and 0 ≤ k ≤ m − 1.
This last qualification is critical, because if k cant exceed m − 1 then, thinking
of the inner product from a Taylor functional standpoint, when we differentiate
g(z)w(z) k times each summand (assuming we split things naturally using the
product rule) will have a w(z) term and will zero out when evaluated at a. Thus
Dk f (a) = Dkr(a) for 0 ≤ k ≤ m− 1. This means that r(z) is the element of Pn that
interpolates f (z), in the sense of Hermite, at the roots of w(z).

Proposition 4.5. [Hermite Interpolation] Let f be a rational function with poly-
nomials g, r such that f = gw + r with r ∈ Pn and w defined as usual ( f is defined
on the roots of w). Then〈

1
w(z)

, f (z)w[z, t]
〉

=

〈
w[z, t]
w(z)

, f (z)
〉

= r(t) (4.14)

is the unique polynomial of degree less than or equal to n that interpolates f at
the roots of w in the sense of Hermite.

Proof. Since applying our divided difference operator to any multiple of w yields
zero, it is clear that〈

1
w(z)

, f (z)w[z, t]
〉

=

〈
1

w(z)
, r(z)w[z, t]

〉
.

Then since r ∈ Pn it is suffient to show that〈
1

w(z)
, zjw[z, t]

〉
= tj, 0 ≤ j ≤ n.

24



By (4.13) and Proposition 4.4 we have

〈
1

w(z)
, zjw[z, t]

〉
=

〈
1

w(z)
, zj

[
n

∑
k=0

wn−k(z)tk

]〉

=
n

∑
k=0

〈
1

w(z)
, zjwn−k(z)

〉
tk

=
n

∑
k=0

δn−j,n−ktk

=
n

∑
k=0

δj,ktk

= tj.

Note that the second step pulls out tk from the inner product because the operator
functions on variable z, making t just a constant. Then for the last equality, because
w[z, t] is just a polynomial, by (3.1) we have〈

1
w(z)

, f (z)w[z, t]
〉

=

〈
w[z, t]
w(z)

, f (z)
〉

.

We call (4.14) the general interpolation formula.

There is another interesting property concerning the difference quotient we
can now prove.

Proposition 4.6. Let f , g and h be rational functions such that f and gh have no
common poles. Then

〈 f , gh〉 = 〈〈− f [x, y], g(x)〉 , h(y)〉 . (4.15)
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Proof. First, given n ≥ 0, we use (4.12) to show

(a, n)[x, y] =

1
(x− a)n+1 −

1
(y− a)n+1

x− y

=
(y− a)n+1 − (x− a)n+1

(x− y)(x− a)n+1(y− a)n+1

= −
[
(x− a)n+1 − (y− a)n+1

(x− y)

]
1

(x− a)n+1(y− a)n+1

= −
n

∑
k=0

(x− a)k(y− a)n−k · 1
(x− a)n+1(y− a)n+1

= −
n

∑
k=0

(x− a)k−n−1(y− a)−k−1

= −
n

∑
k=0

(a, n− k)(x)(a, k)(y)

= −
n

∑
k=0

(a, k)(x)(a, n− k)(y).

So if f (z) is of the form (a, n)(z) then by Leibniz’s rule (2.8) we see

〈〈−(a, n)[x, y], g(x)〉 , h(y)〉 =

〈〈
n

∑
k=0

(a, k)(x)(a, n− k)(y), g(x)

〉
, h(y)

〉

=

〈
n

∑
k=0
〈(a, k)(x), g(x)〉 (a, n− k)(y), h(y)

〉

=
n

∑
k=0
〈(a, k)(x), g(x)〉 〈(a, n− k)(y), h(y)〉

=
n

∑
k=0
〈(a, k), g〉 〈(a, n− k), h〉

= 〈(a, n), gh〉 .
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Now if f is a polynomial, say f (t) = ti, then by (4.12) and antisymmetry we see

〈〈− f [x, y], g(x)〉 , h(y)〉 =

〈〈
−

i−1

∑
k=0

xkyi−1−k, g(x)

〉
, h(y)

〉

=

〈
−

i−1

∑
k=0

〈
xk, g(x)

〉
yi−1−k, h(y)

〉

= −
i−1

∑
k=0

〈
xk, g(x)

〉 〈
yi−1−k, h(y)

〉
= −

i−1

∑
k=0

〈
g(x), xk

〉 〈
h(x), xi−1−k

〉
= −

〈
g(x)h(x)), xi

〉
=

〈
xi, g(x)h(x)

〉
= 〈 f , gh〉 .

Note that the variable change midway through the proof is for convenience. As
long as the change is consistent in both arguments, the inner product is unaffected.
Also, the next step is a generalization of Leibniz’s rule. Even though g and h
can be any rational function, the rule holds because any rational function can be
split into the sum of a strictly rational function and a polynomial and the inner
product of two polynomials is just zero (essentially we can assume g and h are
just strictly rational, and use (2.8) as we always do). So now that we’ve proven the
statement for basis elements of the polynomials and strictly rational functions, we
use linearity to finish the proposition.

For an explicit example of the operation of this proposition, see Appendix B.
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5. Gram Matrices and Polynomial Bases

We now introduce a specific matrix construction known as a Gram matrix which
will set us up for the next section on symmetric polynomials using our inner prod-
uct and difference quotient. First, let E be a complex vector space of dimension
m and let E∗ be its dual vector space. The elements of the Cartesian products Em

and (E∗)m are written in bold as column vectors. LetM be the algebra of m×m
matrices with complex entries. Then for each pair (L, f) ∈ (E∗)m × Em we define
the Gram matrix [L : f] as the element ofM whose (j, k) entry is the number Lj fk.

Proposition 5.1. The following are basic properties of Gram matrices:

(i) If A and B are inM then [AL : Bf] = A[L : f]BT.

(ii) The matrix [L : f] is nonsingular if and only if L and f are ordered bases of
E∗ and E respectively.

(iii) For each basis f of E there exists a unique basis f∗, called the dual basis of f,
that satisfies [f∗ : f] = I.

(iv) If f is a basis of E and g = Bf for some B ∈ M, then BT = [f∗ : g].

(v) If g∗ is a basis of E∗ and L = Ag∗ for some A ∈ M, then A = [L : g].

(vi) Let g be a basis of E , let L be in (E∗)m and f in Em. Then [L : f] = [L : g][g∗ :
f].

(vii) If f and g are bases of E then [f∗ : g][g∗ : f] = I.

(viii) If f is a basis of E and A, B are nonsingular elements ofM, then the bases of
Af∗ and Bf are dual of each other if and only if ABT = I.

Proof. First let E be a complex m-dimensional vector space with standard basis
B = {ei} while E∗ is the associated dual space with dual basis B∗ = {εi} such
that εi(ej) = δi,j.

(i) Let A, B ∈ M with A = (aij) and B = (bij). Further, let LT = (`1, . . . , `m)

and fT = ( f1, . . . , fm). From this we see

AL =


∑m

i=1 a1i`i
...

∑m
i=1 ami`i

 Bf =


∑m

i=1 b1i fi
...

∑m
i=1 bmi fi

 ,



[AL : Bf] =


∑m

i=1 ∑m
j=1 a1ib1j`i f j . . . ∑m

i=1 ∑m
j=1 a1ibmj`i f j

... . . . ...

∑m
i=1 ∑m

j=1 amib1j`i f j . . . ∑m
i=1 ∑m

j=1 amibmj`i f j

 = A[L : f]BT.

The second equality results from the definition of the Gram matrix and sim-
ple inspection.

(ii) Consider L and f to be ordered bases of E∗ and E respectively. This means
there exist linear isomorphisms A and B from the standard bases to L and
f, i.e. L = A(ε1, . . . , εm)T and f = B(e1, . . . , em)T. By (i) we know [L :
f] = [Aε : Be] = A[ε : e]BT. Now the determinant of [ε : e] is just 1,
and A and B are invertible matrices, so det[L : f] 6= 0 which means it is
nonsingular. Conversely, assuming L = Aε and f = Be (where A and B
are not necessarily linear isomorphisms) we can use the fact that [L : f] is
non singular to prove A and BT have non-zero determinants, and are thus
invertible. Thus ε = A−1L and e = B−1 f which means L and f are just
ordered bases of our spaces.

(iii) We know for any basis f of E there will be a unique dual basis f∗ of E∗.
As with the previous part, we have invertible matrices A, B ∈ M such that
f∗ = Affl and f = Be, however, from linear algebra we know that ABT = I.
Hence

[f∗ : f] = [Aε : Be] = A[ε : e]BT = AIBT = I.

(iv) Let f be a basis of E with unique dual basis f∗ and g = Bf with B ∈ M. Then
using our previous proofs we see

[f∗ : g] = [f∗ : Bf] = [f∗ : f]BT = IBT = BT.

(v) Let g∗ be a basis of E∗ with unique dual basis g and L = Ag∗ with A ∈ M.
Then using our previous proofs we see

[L : g] = [Ag∗ : g] = A[g∗ : g] = AI = A.

(vi) Let g be a basis of E with L ∈ (E∗)m and f ∈ Em. Then we know there exists
a unique dual basis g∗ of E∗ such that [g∗ : g] = I and there exists A, B ∈ M
such that L = Ag∗ and f = Bg. So

[Ag∗ : Bg] = A[g∗ : g]BT = A[g∗ : g][g∗ : g]BT = [Ag∗ : g][g∗ : Bg] = [L : g][g∗ : f].

(vii) Let f and g be bases of E which means there are unique dual bases such that
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[f∗ : f] = I = [g∗ : g]. Then by the previous proof we see

I = [f∗ : f] = [f∗ : g][g∗ : f].

(viii) If ABT = I then because we have a unique dual basis f∗ of f such that
[f∗ : f] = I we see I = A[f∗ : f]BT = [Af∗ : Bf]. Now because B f is a basis
of E (B is invertible) this means Af∗ is a dual basis of Bf. The converse is a
similar proof.

From now on the space E will be the set Pn, the polynomials of degree less
than or equal to n. Let J be the permutation matrix of order n + 1 that reverses
order, that is J(a0, a1, . . . , an)T = (an, an−1, . . . , a0)

T. Note that J is symmetric and
that J2 = I. Letting w = (w0, w1, . . . , wn)T and p(z) = (1, z, . . . , zn)T we can
rewrite (4.13) as

w[z, t] = wT(z)Jp(t) = pT(t)Jw(z). (5.1)

Further, based on our definition of the Horner polynomials we can rewrite the
difference quotient further as w[z, t] = pT(z)JBp(t) where

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

b1 1 0
...

...
... . . .

bk−1 bk−2 . . . 1 0
bk bk−1 . . . b1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Matrix JB is what we call a Hankel matrix (a matrix with constant skew-diagonals
– closely related to Toeplitz matrices) and is symmetric. Now define the reversal of
A ∈ M by

A# = JAJ. (5.2)

This leads us to our next proposition.

Proposition 5.2. For any ordered basis f of Pn there exists a unique ordered basis
F of Pn such that

w[z, t] = fT(z)JF(t). (5.3)
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Proof. Let f = Ap with A ∈ M. Hence

fT = pT AT

= pT[p∗ : Ap]

= pT[p∗ : f]

fT[f∗ : p] = pT.

Substitute this into (5.1) to get

w[z, t] = fT(z)[f∗ : p]Jw(t).

Define F = [f∗ : p]#w. Because f∗ and p are bases of E∗ and E respectively, [f∗ : p]#

is nonsingular by Proposition 5.1 (ii). Then because w is a basis of Pn, we see F is
another basis of Pn and that

w[z, t] = fT(z)JF(t).

As for uniqueness, assume there were another basis G(t) such that w[z, t] =

fT(z)JF(t) = fT(z)JG(t). Applying f∗(z) to both sides leaves us with JF(t) =

JG(t), and since J is nonsingular F(t) = G(t).

Since w = Bp, the bases f and F of the above proposition are related by

F = A#BATf

where A = [f∗ : p]. Note also that [f∗ : F]T = [f∗ : F]#.

Proposition 5.3. Let f and F be bases of Pn. Then the following statments are
equivalent:

(i) There exists a symmetric permutation matrix P such that

w[z, t] = fT(z)PF(t).

(ii) There exists a permutation σ of {0, 1, . . . , n} such that σ2 = 1 and〈
1
w

, f jFσ(k)

〉
=

〈Fσ(k)

w
, f j

〉
= δj,k, 0 ≤ j, k ≤ n.

Proof. First assume (i) holds and let A = [f∗ : p]. Then p = ATf. From the
previous proposition we found that

w[z, t] = fT(z)[f∗ : p]Jw(t) = fT(z)AJw(t),
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so by the cancellation technique used to prove uniqueness in the previous propo-
sition we get PF = AJw. Let A = (aij), A−1 = (cij) and let σ be the permutation
represented by the matrix P, i.e.

P(y0, y1, . . . , yn)
T = (yσ(0), yσ(1), . . . , yσ(n))

T.

Then we can see

fTPF =
(

pT A−1
)
(AJw)⇒ f jFσ(k) =

n

∑
i=0

cij pi

n

∑
r=0

akrwn−r.

By Proposition 4.4 we obtain〈
1
w

, f jFσ(k)

〉
=

n

∑
i=0

n

∑
r=0

akrcij

〈
1
w

, ziwn−r

〉
=

n

∑
i=0

n

∑
r=0

akrcijδi,r =
n

∑
i=0

akicij = δk,j.

Now assume (ii) holds. Let P be the matrix that corresponds to the permuta-
tion σ as before. Changing the definition in the proof of the previous proposition,
given the basis f and the symmetric permutation matrix P, then G = P[f∗ : p]Jw
is the unique basis that satisfies

w[z, t] = fT(z)PG(t) =
n

∑
j=0

f j(z)Gσ(j)(t)

Then because f j and Fσ(k) are just elements of Pn, then using (4.14) and hypothesis
(ii) we get

Fσ(k)(t) =

〈
1

u(z)
, Fσ(k)(z)w[z, t]

〉
=

〈
1

w(z)
, Fσ(k)(z)

n

∑
j=0

f j(z)Gσ(j)(t)

〉

=

〈
1

w(z)
, Fσ(k)(z)

n

∑
j=0

f j(z)

〉
Gσ(j)(t)

=
n

∑
j=0

〈
1

w(z)
, Fσ(k)(z) f j(z)

〉
Gσ(j)(t)

=
n

∑
j=0

δj,kGσ(j)(t)

= Gσ(k)(t).

Therefore F = G and (i) follows.
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We say that the bases f and F are biorthonormal with respect to w, or that they
are w-reciprocal since from the last proposition f ∗k = Fn−k/w and F∗k = fn−k/w
for 0 ≤ k ≤ n. A more general statement can be written as follows:

Corollary 5.1. If f and F are bases of P which are biorthonormal with respect to
w then

F∗k g =

〈
1
w

, g fσ(k)

〉
, 0 ≤ k ≤ n, g ∈ Pn,

and
f ∗k g =

〈
1
w

, gFσ(k)

〉
, 0 ≤ k ≤ n, g ∈ Pn,

where σ is as in the above proposition.

Next we generalize the Leibniz rule for divided differences (2.8).

Corollary 5.2. Let f and F be bases of Pn which are biorthonormal with respect
to w, and let σ be as in proposition 5.3. Then for any g and h in Pn we have〈

1
w

, gh
〉

=
n

∑
j=0

f ∗j gF∗σ(j)h (5.4)

Proof. Let g, h ∈ Pn. Then since

g =
n

∑
j=0

f ∗j g f j and h =
n

∑
k=0

F∗σ(k)hFσ(k)

we get

〈
1
w

, gh
〉

=

〈
1
w

,
n

∑
j=0

n

∑
k=0

f ∗j g f jF∗σ(k)hFσ(k)

〉

=
n

∑
j=0

n

∑
k=0

〈
1
w

, f ∗j g f jF∗σ(k)hFσ(k)

〉

=
n

∑
j=0

n

∑
k=0

f ∗j gF∗σ(k)h
〈

1
w

, f jFσ(k)

〉

=
n

∑
j=0

n

∑
k=0

f ∗j gF∗σ(k)hδj,k

=
n

∑
j=0

f ∗j gF∗σ(j)h.

Now before we move on to some examples using Propositions 5.2 and 5.3 we
prove a statement about the relationship between the bases developed therein.
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Proposition 5.4. Let f, F and g, G be two pairs of bases of Pn that are biorthonor-
mal with respect to u. Let P and Q be symmetric permutation matrices for which

w[z, t] = FT(z)Pf(t) = GT(z)Qg(t).

Then we have
P[F∗ : G]Q[f∗ : g]T = I.

Proof. As we saw in the proof of Proposition 5.2, GT = FT[F∗ : G] and g = [f∗ :
g]Tf. Hence from our hypothesis we have

FT(z)Pf(t) = FT(z)[F∗ : G]Q[f∗ : g]Tf(t).

Using the same cancellation property as in previous propositions we see

Pf(t) = [F∗ : G]Q[f∗ : g]Tf(t),

and since P2 = I,
f(t) = P[F∗ : G]Q[f∗ : g]Tf(t),

which proves our statement.

Notice that if F = g and f = G we obtain

P[F∗ : f]P[f∗ : F]T = I,

which is equivalent to
P[F∗ : f]P = [F∗ : f]T.

Examples

Our first example uses a simple monomial for w and the standard basis of Pn.

Example 5.1. Let p be the standard basis of powers for Pn as before, and w(z) =
zn+1. Then from (4.13) we know

w[z, t] =
n

∑
k=0

tn−kzk

which means, by proposition 5.2, our biorthonormal basis F(t) = (tn, tn−1, . . . , 1)
is the same basis p we started with. Then proposition 5.3 tells us p∗k = zn−k/zn+1 =

1/zk+1, which corresponds to the Taylor functional at zero of order k.
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Now we consider the monic polynomial w weve been using for most of this pa-
per and whose Horner polynomials we rely on greatly. Again we use the standard
basis of Pn.

Example 5.2. Let w(z) = zn+1 + b1zn + . . . + bn+1. Recall from (4.13)

w[z, t] =
n

∑
k=0

wn−k(t)zk

where wk are the Horner polynomials associated with w. In this case we find
p∗k = wn−k/w and w∗k = zn−k/w(z).

We can also express the difference quotient of w in terms of the Lagrange
interpolation polynomials. As before, w is a product of simple roots.

Example 5.3. Let w(z) = ∏n
j=0(z− aj) where the aj are distinct complex numbers.

The Lagrange interpolation polynomials associated with nodes aj are defined by

`k(z) =
w[z, ak]

w′(ak)
, 0 ≤ k ≤ n. (5.5)

By Lagrange’s interpolation formula we have

w[z, t] =
n

∑
k=0

w[t, ak]`k(z).

Further, proposition 5.3 tells us `∗k(z) =
w[z, ak]

w(z)
= 1/(z− ak) which is just evalu-

ation at ak.

Next we use the same w from the previous eample, but instead of Lagrange
polynomials, we define a set of polynomials that are increasing factors of w (given
a sequence of its roots).

Example 5.4. Let w be as in the previous example. Define N0(z) = 1 and

Nk(z) = (z− a0)(z− a1) . . . (z− ak−1), 1 ≤ k ≤ n. (5.6)

These are what we call the Newton polynomials associated with the sequence of
roots a0, a1, . . . , an. Let Fk be the Newton polynomials associated with the reversal
of this sequence, i.e. an, an−1, . . . , a0. Then by a simple telescopic summation we
have

w[z, t] =
n

∑
k=0

Fn−k(t)Nk(z)

which means N∗k = Fn−k/w = 1/Nk+1 and F∗k = Nn−k/w = 1/Fk+1.
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Our last example assumes that w’s roots are not necessarily simple, and re-
quires us to develop another set of interpolation polynomials.

Example 5.5. Let w(z) = ∏s
j=0(z − aj)

mj where aj are distinct roots and mj are
postiive integers that satisfy ∑j mj = n + 1. In (2.9) we defined the polynomials

qi,k(z) =
w(z)

(z− ai)mi−k , 0 ≤ i ≤ s, 0 ≤ k ≤ mi − 1

which is our original polynomial w with all but k of the ai terms removed (qi,0(z)
then becomes a convenient means of removing a root from w). Then

w[z, t] =
s

∑
i=0

mi−1

∑
k=0

Hi,k(t)qi,mi−1−k(z)

where the Hi,k are the basic Hermite interpolation polynomials associated with the
nodes aj with multiplicities mj. Therefore H∗i,k = 1/(z− ai)

1+k.

Determinants of Specific Gram Matrices

Using the Lagrange polynomials we defined in the previous section we can ex-
press the product of the derivatives of w evaluated at its roots as the square of a
specific Vandermonde matrix.

Recall at the beginning of this section we defined a symmetric reversal matrix J.
Note that detJ = (−1)(

n+1
2 ). Let a = (a0, a1, . . . , an)T be a vector of distinct complex

coordinates. Now denote by `a the basis of Lagrange polynomials associated with
the nodes aj, that is `a = (`0, `1, . . . , `n)T. We define

Va = det [`∗a : p] = det[ak
j ] (5.7)

where p is the standard power basis of Pn. The second equality comes from
Example 5.3 of the previous section in which we found that the associated dual
basis of the Lagrange polynomials amounted to evaluation of functions at the
roots aj. We call [ak

j ] the Vandermonde matrix of a, and in Appendix C we prove
its determinant is

Va = ∏
0≤i<j≤n

(aj − ai). (5.8)

Now let u = (u0, u1, . . . , un)T where uk is a monic polynomial of degree k for
0 ≤ k ≤ n. Then u = Ap where A is a lower triangular matrix with determinant
one and for which p∗ = ATu∗. Hence

[`∗a : u] = [`∗a : Ap] = [`∗a : p] AT
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and, taking the determinant of both sides,

det [`∗a : u] = det [`∗a : p] = Va. (5.9)

So if u = (u0, u1, . . . , un)T is the vector of Horner polynomials of u, then for any a
defined as above, det [`∗a : u] = Va and

det [`∗a : Ju] = (−1)(
n+1

2 )Va. (5.10)

Take now w(z) = ∏n
j=0(z− aj) with distinct roots aj. Recall from Example 5.2

that p∗k = wn−k/w, which means the inverse of the Vandermonde matrix [`∗a : p]
(see Proposition 5.1 part (vii)) is

[p∗ : `a] =
[

p∗j `k

]
=

[〈
wn−j

w
, `k

〉]
=

[〈
1
w

, wn−j`k

〉]
=

[
wn−j(ak)`k(ak)

w′(ak)

]
=

[
wn−j(ak)

w′(ak)

]
where the second to last equality follows from a simple case of (4.2) where all
mi = 1, and because `j(ak) = δj,k. Computing determinants we obtain

V−1
a = det [p∗ : `a]

= det
[

wn−j(ak)

w′(ak)

]

=

(
n

∏
k=0

w′(ak)

)−1

det
[
wn−j(ak)

]
=

(
n

∏
k=0

w′(ak)

)−1

det [`∗a : Jw]

=

(
n

∏
k=0

w′(ak)

)−1

(−1)(
n+1

2 )Va.

This means
n

∏
k=0

w′(ak) = (−1)(
n+1

2 )V2
a . (5.11)
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6. Symmetric Functions

We are now prepared to discuss how the determinants of certain Gram matrices
(which implicitly use our inner product) can produce rather interesting symmetric
functions such as the factorial Schur functions. This will require some discussion
of partitions, Schur polynomials and a new bilinear map S : Qn+1 ×Qn+1 → C.

So let f and g be elements of Qn+1. Since 〈 f , g〉 ∈ C we can really consider
the bilinear map 〈, 〉 as a linear functional on Q allowing us to rewrite our Gram
matrices as follows

[f : g] = [
〈

f j, gk
〉
]. (6.1)

Now define S : Qn+1 ×Qn+1 → C as

S(f, g) = det[f : Rg], f, g ∈ Qn+1 (6.2)

where R is the reversion map defined previously, which acts coordinate-wise on
g. Moreover, recalling (3.8) and (3.10), we can see

S(f, g) = det[f : Rg]

= det[
〈

f j, Rgk
〉
]

= det[
〈
−R f j, gk

〉
]

= det[
〈

gk, R f j
〉
]

= det[g : Rf]

= S(g, f).

Hence S is a symmetric map.

Partitions and Schur Functions

For the remainder of this section let w(z) = (z − x0)(z − x1) . . . (z − xn) where
xj are all distinct. Then define w as the basis of Horner polynomials of w (see
Example 5.2) and let u = Jw. Then we know u∗j = zj/w(z) for 0 ≤ j ≤ n.

We define a partition as a vector with integer components λ = (λ0, λ1, . . . , λn)

with λ0 ≥ λ1 ≥ . . . ≥ λn ≥ 0. The standard partition we will denote as δ =

(n, n− 1, . . . , 1, 0). A Young tableau is a finite collection of boxes, or cells, arranged
in left-justified rows, with the row lengths weakly decreasing (each row has the



same or shorter length than its predecessor). As such we can see that a partition
λ can be represented by a Young tableau with row i containing λi boxes – this
we will call shape λ. A semistandard Young tableau T of shape λ is a filling of the
Young diagram of λ with positive integers that are weakly increasing along rows
and strictly increasing along columns. The weight of a tableau T is defined as
xT = xT0

0 xT1
1 xT2

2 . . . where Ti is the total number of times i appears in the tableau.
We can then define the Schur function of a partition λ as

sλ(x0, . . . , xn) = ∑
T

xT (6.3)

where the sum is taken over all semistandard Young tableaux of shape λ. Then
we can see s(k)(x0, . . . , xn) = hk(x0, . . . , xn) where (k) is the tableau of one row of
k boxes and hk is the complete homogenous symmetric polynomial of order k on
elements (x0, . . . , xn) – see (4.5).

Another approach to developing the Schur functions concerns our S functional.
For any partition λ define zλ as the element of Pn+1 whose k-th component is zλk .
We can see that

S(u∗, Rzλ+δ) = det[u∗ : zλ+δ]

= det[
〈

u∗j , zλk+n−k
〉
]

= det[
〈

zj

w(z)
, zλk+n−k

〉
]

= det[
〈

1
w(z)

, zλk+n−k+j
〉
]

= det[hλk−k+j(x0, . . . , xn)].

By Giambelli’s Formula (a consequence of Pieri’s Formula) we know that the
last term is the Schur function associated with the partition λ, i.e. sλ. Hence the
same is true for S(u∗, Rzλ+δ). This leads us to an important proposition classically
presented with respect to partitions, but can be generalized to rational functions
and a general basis of Pn.

Proposition 6.1. [Generalized Jacobi-Trudi Identity] Let u be a basis of Pn and let
f be in Qn+1. Then for any basis g of Pn we have

S(u∗, f) =
S(g∗, f)

S(g∗, Ru)
. (6.4)
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Proof. By Proposition 5.1 (vi) we know [u∗ : Rf] = [u∗ : g][g∗ : Rf] and by part
(vii) [u∗ : g] = [g∗ : u]−1. Therefore using the definition of S we see

S(g∗, f)
S(g∗, Ru)

=
det[g∗ : Rf]
det[g∗ : u]

= det
(
[g∗ : u]−1[g∗ : Rf]

)
= det ([u∗ : g][g∗ : Rf])

= det[u∗ : Rf]

= S(u∗, f).

If we let f = Rzλ+δ, g = `x and u = Jw then using (5.7) and (5.10) we can
obtain the classical Jacobi-Trudi identity

S(u∗, Rzλ+δ) =
S(`∗x, Rzλ+δ)

S(`∗x, RJw)

=
det[`∗x : zλ+δ]

det[`∗x : Jw]

=
det[`∗x : zλ+δ]

(−1)(
n+1

2 )Vx

=
det[xλk+n−k

j ]

(−1)(
n+1

2 )Vx

= (−1)(
n+1

2 )V−1
x det[xλk+n−k

j ]

= V−1
x det[xk+λn−k

j ].

Alternatively let g = N, the basis of Newton polynomials associated with
x0, x1, . . . , xn. Then from Example 5.4 we know N∗k = Fn−k/w, which means by

Proposition 5.3 (ii)
〈

N∗j , wk

〉
= δj,k. Thus [N∗ : w] = I and det[N∗ : w] = 1. So by

Proposition 6.1 we have

S(u∗, Rzλ+δ) =
S(N∗, Rzλ+δ)

S(N∗, RJw)

=
det[N∗ : zλ+δ]

det[N∗ : Jw]

= (−1)(
n+1

2 )det[N∗ : zλ+δ]

= det[hλn−k+k−j(x0, . . . , xj)].

This is another representation of the Schur functions in terms of the complete
homogeneous symmetric functions. Even further, the Schur functions can be ex-
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pressed in terms of the determinants of the power sum symmetric functions σk,
which we show next.

Proposition 6.2. For any partition λ = (λ0, λ1, . . . , λn) we have

S(u∗, Rzλ+δ) = (−1)(
n+1

2 )V−2
x det

[
σλk+n−k+j(x0, . . . , xn)

]
.

Proof. Let us define g by gk(z) = w′(z)zλk+n−k, for 0 ≤ k ≤ n. Then by (4.4),

[u∗ : g] =
[〈

u∗j (z), gk(z)
〉]

=

[〈
zj

w(z)
, w′(z)zλk+n−k

〉]
=

[〈
1

w(z)
, w′(z)zλk+n−k+j

〉]
=

[
n

∑
i=0

xλk+n−k+j
i

]
=

[
σλk+n−k+j(x0, . . . , xn)

]
.

On the other hand we can write [u∗ : g] = [u∗ : `x][`∗x : g] = [`∗x : u]−1[`∗x : g].
Then we obtain

det[u∗ : g] =
det[`∗x : g]
det[`∗x : u]

=
det[w′(xj)xλk+n−k

j ]

det[`∗x : u]

=
n

∏
j=0

w′(xj)
det[xλk+n−k

j ]

det[`∗x : u]

=
n

∏
j=0

w′(xj)
det[`∗x : zλ+δ]

det[`∗x : u]

= (−1)(
n+1

2 )V2
x

det[`∗x : zλ+δ]

det[`∗x : u]

= (−1)(
n+1

2 )V2
x S(u∗, Rzλ+δ).

The penultimate step used (5.11) and the last step used Proposition 6.1.

Now using the generalized Leibniz rule (Proposition 5.4) we can actually factor
our Schur functions. Using the Newton polynomials Nk associated with the roots
(x0, . . . , xn) – see Example 5.4 – we get
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〈
1

w(z)
, zλk−kzn+j

〉
=

n

∑
i=0

〈
N∗i (z), zλk−k

〉 〈
F∗n−k+1, zn+j

〉
=

n

∑
i=0

〈
1

Ni+1(z)
, zλk−k

〉〈
1

Fn−i+1(z)
, zn+j

〉
.

Then using our previous derivations of Schur polynomials this becomes

hλk−k+j(x0, x1, . . . , xn) =
n

∑
i=0

hλk−k−i(x0, x1, . . . , xi)hj+i(xi, xi+1, . . . , xn),

and thus

S(u∗, Rzλ+δ) = det[hλk−k−i(x0, x1, . . . , xi)]det[hj+i(xi, xi+1, . . . , xn)].

Taylor Series Expansions and Cauchy Identities

Recall in (2.7) we defined the Taylor series expansion of a function f around the
point a. Taking a = 0 and using our reversion map R, we find

f (z) = ∑
k≥0

Dk f (0)
k!

zk

= ∑
k≥0

〈
1

tk+1 , f (t)
〉

zk

= ∑
k≥0

〈
R f (t), R

1
tk+1

〉
zk

= ∑
k≥0

〈
R f (t), tk

〉
zk.

Then because
〈

R f (t), tk〉 is a scalar, for any rational function g, we have

〈g, f 〉 = ∑
k≥0

〈
R f (t), tk

〉 〈
g(z), zk

〉
. (6.5)

Bringing back in our discussion of partitions, let Λ be the set of all partitions
λ = (λ0, λ1, . . . , λn) such that λ0 > λ1 > . . . > λn. Also let Π be the group of
permutations on n+ 1 elements. These sets help us develop an expansion formula
for our S operator.
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Theorem 6.1. Let f and g be elements of Qn+1 such that each R fi has a Taylor
series expansion at zero. Then

S(g, f) = ∑
λ∈Λ

S(g, Rzλ)S(f, Rzλ). (6.6)

Proof. By definition (6.2) and the discussion immediately prior to Proposition 6.1
we know S(g, f) = det[g : Rf] = det[

〈
gj, R fi

〉
]. Then using Leibniz’s formula for

determinants and (6.5) we see

S(g, f) = ∑
τ∈Π

sign(τ)
n

∏
j=0

〈
gj, R fτ(i)

〉
= ∑

τ∈Π
sign(τ) ∑

k∈Nn+1

n

∏
j=0

〈
fτ(j)(t), tkj

〉 n

∏
j=0

〈
gj(z), zkj

〉
= ∑

k∈Nn+1

(
∑

τ∈Π
sign(τ)

n

∏
j=0

〈
fτ(j)(t), tkj

〉) n

∏
j=0

〈
gj(z), zkj

〉
= ∑

k∈Nn+1

det[
〈

fi(t), tkj
〉
]

n

∏
j=0

〈
gj(z), zkj

〉
= ∑

λ∈Λ

det[
〈

fi(t), tλj
〉
] ∑

ρ∈Π
sign(ρ)

n

∏
j=0

〈
gj(z), zλρ(j)

〉
= ∑

λ∈Λ

det[f : zλ]det[g : zλ].

The second to last step comes from the fact that reordering the rows of the matrix
to turn the (n + 1)-tuple k into a partition λ by a series of permutations affects
the determinant by a product of the signs of those permutations.

A specific application of Proposition 6.1 gives us an equality we can use with
Theorem 6.1 to develop the Cauchy identities (an application of the Robinson-
Schensted-Knuth correspondence).

Proposition 6.3. Let f be a rational function and define v ∈ Qn+1 by vj = zn−j f (z)
for 0 ≤ j ≤ n. Then

S(u∗, Rv) =
n

∏
k=0

f (xk). (6.7)

Proof. By Proposition 6.1 if we take the basis of Lagrange polynomials `,

S(u∗, Rv) =
S(`∗, Rv)
S(`∗, Ru)

.
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As for the numerator, we recall that the action of these Lagrange polynomials
amounts to evaluation at a given root:

S(`∗, Rv) = det
[〈

1
z− xk

, zn−j f (z)
〉]

= det
[

xn−j
k f (xk)

]
= det[xn−j

k ]
n

∏
k=0

f (xk).

Then the denominator, by (5.9) and (5.7) gives us

S(`∗, Ru) = det[`∗ : u] = det[xn−j
k ].

After cancelation we see our proposition holds.

Corollary 6.1. [Cauchy Identities] Let r ≤ n and let y0, y1, . . . , yr be distinct num-

bers. Let u∗y be the elements of Qn+1 whose j-th component is
zj

zn−r ∏r
i=0(z− yi)

and denote by u∗x the vector with k-th component equal to
zk

∏n
i=0(z− xi)

. Then

S(u∗x, u∗y) =
n

∏
k=0

r

∏
i=0

(1− xkyi)
−1 = ∑

λ∈Λ

S(u∗x, Rzλ)S(u∗y, Rzλ). (6.8)

Proof. Let f (z) =
1

∏r
i=0(1− zyi)

= ∏r
i=0(1− zyi)

−1 with r ≤ n. By Proposition 6.3

we know vj =
zn−j

∏r
i=0(1− zyi)

and

Rvj =
1
z

 1

zn−j ∏r
i=0(1−

yi

z
)


=

1

zn−j+1 ∏r
i=0(1−

yi

z
)

=
zr+1

zn−j+1 ∏r
i=0(z− yi)

=
zj

zn−r ∏r
i=0(z− yi)

= u∗yj
.
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Thus Rv = u∗y and by Proposition 6.3

S(u∗x, u∗y) =
n

∏
k=0

f (xk) =
n

∏
k=0

r

∏
i=0

(1− xkyi)
−1

As for the second equality, note that Ru∗yj
= vj =

zn−j

∏r
i=0(1− zyi)

is a rational

function defined at zero. This means we can develop its Taylor series expansion
and use Theorem 6.1 (with u∗x, u∗y as g and f respectively) to show

S(u∗x, u∗y) = ∑
λ∈Λ

S(u∗x, Rzλ)S(u∗y, Rzλ).
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Appendix A: Methods of Deriving hk terms.

We recall the definition of the hk terms in (4.5):

hk =

〈
1

w(z)
, zk+n

〉
,

where the order of w is n + 1 = ∑j mj, the sum of the orders of the roots of w.
The first method we use is just to refer to the axioms of the inner product and its
residue interpretation. The second method is to take determinants of increasingly
larger lower triangular matrices whose terms are the coefficients of the expanded
polynomial w(z):

hk = (−1)k det



b1 1 0
b2 b1 1
...

...
... . . .

bk−1 bk−2 bk−3 . . . 1
bk bk−1 bk−2 . . . b1


.

Example 6.1. w(z) = (z− 1)2 = z2 − 2z + 1. This means b0 = 1, b1 = −2, b2 = 1
and n + 1 = 2⇒ n = 1. Using our first method we have

hk =

〈
1

(z− 1)2 , zk+1
〉

=
〈
(1, 1), zk+1

〉
= k + 1.

This means h0 = 1, h1 = 2, h2 = 3. We can support this claim using the second
method (though we assume h0 = 1):

h1 = (−1)1 det[−2] = 2

h2 = (−1)2 det

[
−2 1
1 −2

]
= 3.

Example 6.2. w(z) = (z − 1)(z − 2)(z − 3) = z3 − 6z2 + 11z − 6. This means
b0 = 1, b1 = −6, b2 = 11, b3 = −6 and n + 1 = 3⇒ n = 2. Using our first method
with (2.14) we have



hk =

〈
1

(z− 1)(z− 2)(z− 3)
, zk+2

〉
=

〈
(〈(1, 0), (2, 0)〉 (1, 0) + 〈(2, 0), (1, 0)〉 (2, 0))(3, 0), zk+2

〉
=

〈
(−(1, 0) + (2, 0))(3, 0), zk+2

〉
= −

〈
(1, 0)(3, 0), zk+2

〉
+
〈
(2, 0)(3, 0), zk+2

〉
= −

〈
−1
2
(1, 0) +

1
2
(3, 0), zk+2

〉
+
〈
−(2, 0) + (3, 0), zk+2

〉
=

1
2

〈
(1, 0), zk+2

〉
− 1

2

〈
(3, 0), zk+2

〉
−
〈
(2, 0), zk+2

〉
+
〈
(3, 0), zk+2

〉
=

1
2
− 9

2
(3k)− 4(2k) + 9(3k) =

1
2
+

9
2

3k − 4 · 2k.

This means h0 = 1, h1 = 6, h2 = 25, h3 = 90. We support this claim using the
second method:

h1 = (−1)1 det[−6] = 6

h2 = (−1)2 det

[
−6 1
11 −6

]
= 25

h3 = (−1)3 det

 −6 1 0
11 −6 1
−6 11 −6

 = 90.

Example 6.3. w(z) = (z− 1)2(z− 2) = z3 − 4z2 + 5z− 2. This means b0 = 1, b1 =

−4, b2 = 5, b3 = −2 and n + 1 = 3⇒ n = 2. Using our first method we have

hk =

〈
1

(z− 1)2(z− 2)
, zk+2

〉
=

〈
〈(1, 0), (2, 0)〉 (1, 1) + 〈(1, 1), (2, 0)〉 (1, 0) + 〈(2, 0), (1, 1)〉 (2, 0), zk+2

〉
=

〈
−(1, 1)− (1, 0) + (2, 0), zk+2

〉
= −

〈
(1, 1), zk+2

〉
−
〈
(1, 0), zk+2

〉
+
〈
(2, 0), zk+2

〉
= −(2 + k)− 1 + 4(2k) = −3− k + 4(2k).
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This means h0 = 1, h1 = 4, h2 = 11, h3 = 26. We can support this claim using
the second method:

h1 = (−1)1 det[−4] = 4

h2 = (−1)2 det

[
−4 1
5 −4

]
= 11

h3 = (−1)3 det

 −4 1 0
5 −4 1
−2 5 −4

 = 26.

Of special note is that hk represents the complete homogeneous symmetric
polynomial of order k on the root values ai, i.e.

h0 = 1

h1 = a0 + a1 + . . . + an

h2 = a2
0 + . . . + a2

n + a0a1 + a0a2 + . . . + an−1an

and so forth. Also, while the second method (matrix determinants) is generally
easier computationally, the axiomatic method of decomposition allows us to get a
closed form for hk. With a little work up front, the first method gives us a formula
into which we can simply plug values of k to get an answer, which is far easier
than calculating determinants of large matrices. Hence for small values of k it
makes sense to calculate determinants of small matrices as opposed to grinding
out the costly up-front calculations of the axiomatic method, but for large values it
might make sense to choose the first method (especially if you can get a computer
program to break things down).
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Appendix B: An Example of Statement (4.15)

Proposition 3 states that for rational functions f , g, h with f and gh having no
common poles, that:

〈 f , gh〉 = 〈〈− f [x, y], g(x)〉 , h(y)〉 .

Now the use of different variables is actually important as we know the inner
product is bilinear in a single variable from both components. This means if both
the first and second component are functions of x and one of the components has
a factor of another variable y, we can pull that out of the inner product as if it
were a constant.

Claim:
〈

1
(z−1)2 , 1

(z−2)2(z−3)2

〉
=

〈〈
−

1
(x−2)2

− 1
(y−1)2

x−y , 1
(x−2)2

〉
, 1
(y−3)2

〉
.

LHS: Partial Fractions The first approach we take is to break up the second
component of the LHS so that we can use bilinearity of the inner product to break
the product up into something manageable. Therefore we start with the following:

1
(z− 2)2(z− 3)2 =

A
(z− 2)

+
B

(z− 2)2 +
C

(z− 3)
+

D
(z− 3)2 .

Once we find a common denominator, we can identify the numerators:

1 = A(z− 2)(z− 3)2 + B(z− 3)2 + C(z− 2)2(z− 3) + D(z− 2)2.

When we expand this out and combine like terms we’re left with a system of
equations we can solve using matrices:

1 0 1 0
−8 1 −7 1
21 −6 16 −4
−18 9 −12 4




A
B
C
D

 =


0
0
0
1


which is solved by A = 2, B = 1, C = −2, D = 1. Then proceed axiomatically:



〈
1

(z− 1)2 ,
1

(z− 2)2(z− 3)2

〉
=

〈
1

(z− 1)2 ,
2

(z− 2)
+

1
(z− 2)2 −

2
(z− 3)

+
1

(z− 3)2

〉
= 2

〈
1

(z− 1)2 ,
1

(z− 2)

〉
+

〈
1

(z− 1)2 ,
1

(z− 2)2

〉
−2
〈

1
(z− 1)2 ,

1
(z− 3)

〉
+

〈
1

(z− 1)2 ,
1

(z− 3)2

〉
= 2 〈(1, 1), (2, 0)〉+ 〈(1, 1), (2, 1)〉
−2 〈(1, 1), (3, 0)〉+ 〈(1, 1), (3, 1)〉

= 2(−1) + 1(−2)− 2(−1/4) + 1(−2/− 8)

=
3
4

.

We will now check that against the other methods for consistency.
LHS: Expansion using (2.8) The next approach uses (2.8), Liebniz’s rule with

our vocabulary. This allows us to again split the second component of the inner
product to apply our axioms more directly:

〈
1

(z− 1)2 ,
1

(z− 2)2(z− 3)2

〉
=

1

∑
k=0

〈
(1, k),

1
(z− 2)2

〉〈
(1, 1− k),

1
(z− 3)2

〉
=

〈
(1, 0),

1
(z− 2)2

〉〈
(1, 1),

1
(z− 3)2

〉
+

〈
(1, 1),

1
(z− 2)2

〉〈
(1, 0),

1
(z− 3)2

〉
= 〈(1, 0), (2, 1)〉 〈(1, 1), (3, 1)〉+ 〈(1, 1), (2, 1)〉 〈(1, 0), (3, 1)〉

= (1)(1/4) + (2)(1/4) =
3
4

.

RHS: Axiomatically We now tackle the RHS of the equality strictly using the
bilinearity of the inner product and other axioms:
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〈〈
−

1
(x−2)2 − 1

(y−1)2

x− y
,

1
(x− 2)2

〉
,

1
(y− 3)2

〉

=

〈〈
x + y− 2

(x− 1)2(y− 1)2 ,
1

(x− 2)2

〉
,

1
(y− 3)2

〉
=

〈
1

(y− 1)2

〈
x + y− 2
(x− 1)2 ,

1
(x− 2)2

〉
,

1
(y− 3)2

〉
=

〈
1

(y− 1)2

〈
x

(x− 1)2 ,
1

(x− 2)2

〉
,

1
(y− 3)2

〉
+

〈
y

(y− 1)2

〈
1

(x− 1)2 ,
1

(x− 2)2

〉
,

1
(y− 3)2

〉
−
〈

2
(y− 1)2

〈
1

(x− 1)2 ,
1

(x− 2)2

〉
,

1
(y− 3)2

〉
=

〈
1

(y− 1)2 Res
x=1

x
(x− 1)2(x− 2)2 ,

1
(y− 3)2

〉
+

〈
y

(y− 1)2 〈(1, 1), (2, 1)〉 ,
1

(y− 3)2

〉
−
〈

2
(y− 1)2 〈(1, 1), (2, 1)〉 ,

1
(y− 3)2

〉
=

〈
1

(y− 1)2 (3),
1

(y− 3)2

〉
+

〈
y

(y− 1)2 (2),
1

(y− 3)2

〉
−
〈

2
(y− 1)2 (2),

1
(y− 3)2

〉
= 3 〈(1, 1), (3, 1)〉+ 2Res

y=1

y
(y− 1)2(y− 3)2 − 4 〈(1, 1), (3, 1)〉

= 3(1/4) + 2(1/2)− 4(1/4) =
3
4

.

RHS: Iterated Residue Finally we will tackle the RHS iterated inner product
by simply treating it as a residue calculation:
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〈〈
−

1
(x−2)2 − 1

(y−1)2

x− y
,

1
(x− 2)2

〉
,

1
(y− 3)2

〉
=

〈〈
x + y− 2

(x− 1)2(y− 1)2 ,
1

(x− 2)2

〉
,

1
(y− 3)2

〉
= −

〈〈
1

(x− 2)2 ,
x + y− 2

(x− 1)2(y− 1)2

〉
,

1
(y− 3)2

〉
= −

〈
Res
x=2

x + y− 2
(x− 2)2(x− 1)2(y− 1)2 ,

1
(y− 3)2

〉
=

〈
1

(y− 3)2 , Res
x=2

x + y− 2
(x− 2)2(x− 1)2(y− 1)2

〉
= Res

y=3

[
Res
x=2

x + y− 2
(x− 2)2(x− 1)2(y− 1)2(y− 3)2

]
= Res

y=3

1− 2y
(y− 3)2(y− 1)2

=
3
4

.

We can then conclude that the proposition indeed holds, at least with the given
example. We can also see certain methods of resolution are faster computationally
than others.
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Appendix C: Determinant of a Vandermonde Matrix

Let a = (a1, . . . , an)T be a vector of distinct complex coordinates.

Va = det[ak
j ] = ∏

1≤i<j≤n
(aj − ai). (6.9)

Proof. Let

Vn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 . . . an−2
1 an−1

1

1 a2 . . . an−2
2 an−1

2
...

... . . . ...
...

1 an−1 . . . an−2
n−1 an−1

n−1

1 an . . . an−2
n an−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We can subtract row 1 from each of the other rows and leave Vn unchanged:

Vn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 . . . an−2
1 an−1

1

0 a2 − a1 . . . an−2
2 − an−2

1 an−1
2 − an−1

1
...

... . . . ...
...

0 an−1 − a1 . . . an−2
n−1 − an−2

1 an−1
n−1 − an−1

1

0 an − a1 . . . an−2
n − an−2

1 an−1
n − an−1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Similarly without changing the value of Vn we can subtract, in order, a1 times
column n− 1 from column n, a1 times column n− 2 from column n− 1, and so
on, until we subtract a1 times column 1 from column 2. This eliminates the first
row save for the first element which is just 1.

Vn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
0 a2 − a1 . . . (a2 − a1)an−3

2 (a2 − a1)an−2
2

...
... . . . ...

...
0 an−1 − a1 . . . (an−1 − a1)an−3

n−1 (an−1 − a1)an−2
n−1

0 an − a1 . . . (an − a1)an−3
n (an − a1)an−2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.



Notice then that every row i save for the first is a multiple of (ai − a1), so we
can extract these factors, which means our determinant is just multiplied by these
elements.

Vn =
n

∏
i=2

(ai − a1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0
0 1 . . . an−3

2 an−2
2

...
... . . . ...

...
0 1 . . . an−3

n−1 an−2
n−1

0 1 . . . an−3
n an−2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expand the determinant along the first row or column to get

Vn =
n

∏
i=2

(ai − a1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a2 . . . an−3
2 an−2

2

1 a3 . . . an−3
3 an−2

3
...

... . . . ...
...

1 an−1 . . . an−3
n−1 an−2

n−1

1 an . . . an−3
n an−2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Repeating this process were next left with

Vn =
n

∏
i=2

(ai − a1)
n

∏
i=3

(ai − a2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a3 . . . an−4
3 an−3

3

1 a4 . . . an−4
4 an−3

4
...

... . . . ...
...

1 an−1 . . . an−4
n−1 an−3

n−1

1 an . . . an−4
n an−3

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

So we continue until we’re left with a 2x2 matrix∣∣∣∣∣1 an−1

1 an

∣∣∣∣∣ = an − an−1.

The result follows.
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