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ABSTRACT

Veronica T. Cole: Modeling Complex Longitudinal Data from Heterogeneous Samples
Using Longitudinal Latent Profile Analysis.

(Under the direction of Daniel J. Bauer)

Traditional approaches for examining longitudinal data tend to assume that (1) each

individual’s shape of change over time follows a pre-specified functional form, and (2) this

same basic shape applies to all individuals under study. However, these assumptions are

not always tenable in current psychological research. The current report introduces longi-

tudinal latent profile analysis (LLPA), a mixture model which relaxes these assumptions

by allowing flexible representation of both inter-individual difference and intra-individual

change over time. The LLPA framework allows for this flexibility by modeling the shape

of change as a function of two parameters – a time-invariant level, and a vector of time-

specific deviations from that overall level – and allowing these paramters to vary categor-

ically between individuals according to latent classes. LLPA and an extension including

random effects within-class are applied to an empirical dataset concerning the develop-

ment of depression in early adulthood, and results are compared to a number of traditional

models. The sensitivity of LLPA to random noise in the data is then explored through a

brief proof-of-concept simulation. Potential opportunities brought to bear by LLPA, as well

as limitations of this approach, are discussed.
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1 INTRODUCTION

Researchers are often interested in how behaviors or constructs change and develop

over time. As such, recent years have seen substantial development of methods to test

longitudinally oriented research questions, such as the multilevel model (MLM; Rauden-

bush and Bryk, 2002; Snijders and Bosker, 2011) and latent curve model (LCM; Bollen

and Curran, 2006). These methods allow for random variation in the factors that influence

change in different individuals – meaning that each subject is characterized by a (poten-

tially) unique set of parameters governing the initial level of the phenomenon under study

(i.e., a random intercept) and change in this phenomenon to time (i.e., a random slope).

While linear growth is specified using a simple intercept and slope, growth factors can

take many forms, corresponding to the hypothesized shape of growth over time. For in-

stance, the volume of myelinated neurons in the brain, known as white matter, is known

to increase rapidly through childhood and adolescence; this increase continues at a slower

rate until middle age, after which white matter volume decreases (Bartzokis et al., 1999;

Sowell et al., 2004). Thus, the relationship between age and volume of white matter in the

brain resembles an inverted U with its peak around age 50, and is likely better accounted

for by a quadratic trajectory than a linear one; in this scenario, a parameter corresponding

to quadratic growth can easily be added to the latent curve model. More complex nonlin-

ear forms may be accommodated in a number of ways, from transforming the dependent

variable (e.g., Choi, Harring, and Hancock, 2009), to constraining the value of nonlinear

parameters to allow them to be modeled as linear terms (e.g., Blozis and Cudeck, 1999), to

treating the nonlinear parameters as latent variables (Browne, 1993; Browne and Du Toit,

1991).



Despite the flexibility of the LCM framework, most extensions of these models make

two assumptions about the nature of heterogeneity in the data: (1) that inter-individual

differences in growth parameters are normally distributed around a population mean; and

(2) that intra-individual change follow a prescribed functional form, usually linear or some

lower-order polynomial. Thus, these methods are helpful in describing processes in which

the same functional form is thought to describe the shape of change for all individuals, per

the first assumption, and the basic shape of this functional form is known, per the second

assumption.

The main goal of this thesis is to introduce a modeling framework, longitudinal latent

profile analysis (LLPA), which allows for the modeling of trajectories without being subject

to either of the above assumptions governing the nature of inter-individual differences or

the shape of intra-individual change. To contextualize these developments, I first review

the rationale for methods that relax the first assumption – specifically, mixture models,

which allow categorically different trajectories for different members of the sample. I then

introduce LLPA as a minimally parameterized mixture model, and show how it may be

used to make inferences about the nature of change at the whole-sample level. Then I

extend LLPA’s potential utility to individual-level analyses, and thus attempt to show how

LLPA may make a novel contribution to person-centered research. Finally, I will compare

LLPA to modeling methods which also allow fewer assumptions about the nature of intra-

and inter-individual difference in the data.

1.1 Longitudinal mixture models in person-centered analysis

Most extensions of the LCM framework assume that the same general shape of change

applies to everyone in the sample. One example of a scenario in which such an assumption

might be tenable is the age-white matter curve described earlier: virtually everyone in

the population likely experiences the same shape, with white matter volume increasing

until middle age and decreasing thereafter. While certain factors, such as neuropsychiatric
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illnesses, may alter the rate of change in white matter volume (Bartzokis et al., 2003) the

fundamental shape of the growth curve across the lifespan is probably quadratic for each

individual.

In psychology, however, researchers are frequently interested in phenomena that may

follow trajectories of completely different shapes for different individuals in the sample.

A broad class of models that can be implemented for evaluating this heterogeneity is mix-

ture models (McLachlan and Peel, 2000). Though a formal treatment of mixture models

will be given later, the basic premise of these models is that they treat subjects as though

they come from distinct subpopulations (known as classes or components), allowing for

statistical inference to be made on the basis of these subpopulations. Originally conceived

as a method of classifying natural phenomena (Pearson, 1894), mixtures have gained use

in the social sciences, with both cross-sectional (e.g., Lazarsfeld and Henry, 1968) and

longitudinal (e.g., Muthén and Shedden, 1999; Nagin, 1999) applications.

Titterington, Smith, and Makov (1985) distinguish between direct and indirect appli-

cations of mixture modeling. The vast majority of published applications of longitudinal

mixture models are direct applications, in which the goal is to ascertain subgroup mem-

bership – in these models, categorical variation is a substantive outcome of interest. Direct

apppications are consistent with the search for meaningful typologies of psychological phe-

nomena, a goal which has characterized much psychological work throughout the past cen-

tury (e.g., Meehl, 1992). In indirect applications, by contrast, parameters from the mixture

model are usually used to ascertain information about the population as a whole, aggregat-

ing across clusters; thus, in indirect applications, the categorical latent variable is typically

not an outcome of intrinsic interest.

Both direct and indirect applications of mixture models have a great deal of potential

relevance to a ”person-centered” framework (Bergman and Magnusson, 1997). Rather than

isolating the relationship between one variable and another, a person-centered approach
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seeks to isolate individuals, or clusters thereof, who show particular patterns of response

to any number of variables, including both time-varying indicators (e.g., substance abuse

at time t) and covariates. The draw of such an approach is that it allows individuals to

be characterized holistically in terms of interactions between any number of internal and

external factors working in concert (Bauer and Shanahan, 2007). Proponents argue that this

approach is far closer to the reality of complicated developmental processes than variable-

centered techniques, which are often applications of regression models emphasizing single

factors’ effects controlling for all others.

One substantive area in which person-centered analyses have frequently taken the form

of direct applications of mixture models is the developmental etiology of substance abuse.

For instance, Schulenberg et al. (1996a) find six trajectories of binge drinking between

ages 18 and 24, and link these trajectories post-hoc to a number of covariates (1996b).

Their work shows a number of individuals maintaining habits of either minimal, moder-

ate, or heavy binge drinking, some decreasing linearly in the frequency of binge drinking,

and others (termed ”fling” binge drinkers by the authors) showing a period of increased

binge drinking toward the middle of the study period, after which drinking decreases sub-

stantially, thus resembling a quadratic trend (Maggs and Schulenberg, 2005). Casswell,

Pledger and Pratrap (1996) report a similar quadratic pattern in one subset of their sample,

only these individuals experienced peak binge drinking around age 26. Similar findings of

heterogeneity have also been reported when considering younger samples (e.g.,King et al.,

2000; Chassin, Pitts, and Prost, 2002; Sher, Jackson, and Steinley, 2011), as well as sub-

stances besides alcohol such as marijuana (e.g, Schulenberg et al., 2005; White, Labouvie,

and Papadaratsakis, 2005; Windle and Wiesner, 2004), and cigarettes (e.g., White, Padina,

and Chen, 2002).

These analyses, which focus on decomposing a heterogeneous sample into ”prototypi-

cal” trajectories of substance abuse and relating these trajectories to covariates, still assume
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that each group is defined by a parametric form. It is possible, however, that assuming linear

or quadratic increases in substance use might be an oversimplification of what is occurring

in the data. For instance, the ”fling” group of binge drinkers identified by Schulenberg et al.

(1996a; 1996b) may not uniformly show a single period of increased binge drinking around

college age, as would be implied by the quadratic trajectory found by the researchers. Per-

haps some subjects show this trend of one isolated period of heavy drinking during college

but, additionally, there are individuals in the sample who show multiple recurring periods

of increased drinking, as well as some who show a single period of binge drinking past

college age, et cetera. Furthermore, it may be the case that these sub-classifications of

”fling” drinkers are differentiated from one another by covariates (e.g., Wechsler et al.,

1995; Weitzman, Nelson, Wechsler, 2003). Therefore, imposing functional forms on tra-

jectories of binge drinking across time might sacrifice valuable information required for

a truly person-centered approach, both by oversimplifying the true shape of change as it

occurs on an individual level, and by obscuring the relationship between these changes and

contextual factors.

More generally, the direct application of mixture models is a controversial practice for

a number of reasons. On a conceptual level, direct applications yield subgroups, which are

often reified in the literature as ”types” that exist as real entities. This can be particularly

problematic because mixture models are likely to spuriously extract multiple classes in the

sample even if the data come from a single population. This can happen when the data show

even mild departures from normality (Bauer and Curran, 2003a; 2003b), or, in the multi-

variate case, if the indicators are highly correlated; thus, in most longitudinal applications

the extraction of multiple classes is more likely than not, regardless of the underlying nature

of inter-individual differences (Bauer and Curran, 2004; Bauer, 2007). However, some of

the features of mixture models that make their direct application problematic may actually

make them well-suited to indirect application (Bauer, 2005). Pursuing this possibility, I
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will now introduce a new mixture model, longitudinal latent profile analysis (LLPA), and

discuss several potential indirect applications of this model.

1.2 Longitudinal Latent Profile Analysis

Latent profile analysis (LPA; Gibson, 1959) is a type of mixture modeling that was

developed for and has traditionally been applied to data obtained at a single time point

on multiple, distinct continuous indicators. Direct applications of LPA are common, and

LPA has shown its utility in studies seeking to classify patients into subgroups of symptom

profiles, with degree of endorsement of each symptom being an indicator (e.g., Mitchell et

al., 2007; Holliday et al., 2009). LPA has also been used in community samples with the

aim of determining the level and nature of certain psychiatric issues in the population (e.g.,

Wade, Crosby and Martin, 2006).

In a basic LPA, the observed score for individual i (i=1,...,N) on indicator j given mem-

bership in class k is given by:

y
(k)
ij = ξ

(k)
j + Eij (1)

where ξ(k)j is the true score on indicator j for class k. Here error is represented by Eij ∼

N(0, σ2
j ), where σ2

j is the residual, or within-class, variance of indicator j across indi-

viduals. Importantly, residuals are assumed uncorrelated with one another across vari-

ables within class. Thus class membership, and therefore between-class differences in true

scores, is the only source of covariance between the variables; this is termed the conditional

independence assumption.

The traditional LPA framework, which forms profiles based on multiple variables at

one time, may be adapted to a longitudinal setting, such that profiles capture differences

in a single variable over time. Equation 1 may be reconsidered so that j indexes occasions

of measurement of a single variable, and thus ξj represents scores on this variable across

time (e.g., Degnan et al., 2010). When applied to longitudinal data, it may be helpful to

reparameterize the LPA by decomposing each time-specific indicator into two parameters:
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a class-specific grand mean of the indicators, µ(k), which represents the overall level of the

indicator in class k across time; and time-specific deviations from the overall level, δ(k)t ,

which sum to zero and represent the shape of variation around the within-person mean.

The longitudinal latent profile analysis (LLPA) may thus be written as:

y
(k)
it = µ(k) + δ

(k)
t + Eit (2)

Here yit refers not to individual i’s score on item j, as in Equation 1, but to individual i’s

score at time t (t=1,...,T), given membership in class k. The individual error component is

given by Eit ∼ N(0, σ2
t ), where σ2

t is the variance at time t across individuals. Importantly,

there are no constraints on the values of δ(k)t aside from the fact that all values for each

class must sum to zero – they simply represent vertical deviations from the overall level at

time t. Therefore, the model allows for maximum flexibility, as no parametric relationship

between time and the indicator is modeled.

While y(k)it represents the observed score for individual i given membership to class

k, one may aggregate over the classes using πk, the proportion of the sample in class k,

to obtain the marginal means and covariance structure for the whole sample. The model-

implied marginal means are:

µy =
K∑
k=1

π(k)(µ(k) + δ(k)) (3)

where µy represents a vector of length T containing the estimated marginal means of the

repeated measures at each time point; µ(k) is a vector of length T containing the level of

class k, repeated t times; and δ(k)t is a vector of length T containing time-varying shape

parameters for class k.

Similarly, the model-implied marginal covariance matrix can be ascertained. Because

Equation 2 represents a decomposition of the repeated measure ξ(k)j into two parts, we will
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refer to the vector of class-specific means of indicators formed by adding µ(k) and δ(k) as

ξ(k) for the purpose of brevity; because ξ(k) = µ(k) + δ(k), ξ(k) represents the vector of

means at each of time t for class k. Thus covariance matrix of indicators in the sample is

calculated as:

Σyy =
K∑
k=1

π(k)(ξ(k) − µy)(ξ(k) − µy)′ +
K∑
k=1

π(k)Σ(k) (4)

The first term refers to the between-class contribution to the marginal covariance ma-

trix; the second term refers to within-class contribution to the marginal covariance. The

first term models the variances of indicators, as well as covariances between them, as a

result of differences in within-class means; in the LLPA, each class’ vector of means repre-

sents the unique longitudinal profile of that class. Here Σ(k) is a diagonal matrix, with the

within-class variance of repeated measures in class k on the diagonal, and thus the second

term of this equation contributes only to the variances of repeated measures, not covari-

ances, in the marginal covariance matrix. Thus, all covariance in the observed scores yit

is thought to be explained by the first term, or differences in between-class means. Thus,

conditional independence assumption, which holds that covariances between indicators are

accounted for by class membership, holds as in Equation 1.

Beyond simply describing the patterns of change in the data, researchers often want

to use covariates to predict which members of the sample will follow specific patterns.

Person-level covariates can readily be incorporated into the LPA, through a multinomial

regression sub-model for the class probabilities. Importantly, these predictors affect the

model only through their effects on class membership – they do not directly affect the level

or shape parameters within-class. In conventional LPA, the addition of both time-invariant

and time-varying covariates can be incorporated, and help to identify classes. For instance,

Vaughn et al. (2007) find four categories of psychopathology and substance use in juvenile
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offenders by using subscales of the Brief Symptom Inventory (BSI) as indicators, and in-

formation about offense history (e.g., violent vs. nonviolent offending, age at first offense)

as covariates. However, the person-level predictors considered in this thesis are thought to

be antecedent to the groupings themselves and are thus fundamentally different in meaning

from the repeatedly measured class indicator (Lubke and Muthén, 2007; Marsh, Ludtke,

Trautwein, and Morin, 2009). For this reason, only time-invariant covariates are considered

formally here. Considering only time-invariant predictors in the current analysis helps to

make the distinction between covariates and indicators somewhat less hazy: indicators are

a time-varying dimension, while covariates are time-invariant antecedents influencing class

membership but not the shape of the trajectory in each class.

The class probabilities, dependent on covariates, are defined through a multinomial

logistic regression:

π(k)(zi) =
exp(θ

(k)
0 + θ(k)

′
zi)∑K

k=1 exp(θ
(k)
0 + θ(k)

′
zi)

(5)

where θ(k)0 is a class-specific multinomial intercept for class k, and θ(k) is the multinomial

regression coefficient relating the covariate vector zi to membership in class k. As in most

applications of multinomial logistic regression, one class is treated as a reference class, in

which θ(k)0 and θ(k) are constrained to zero for model identification.

The vector of model-implied means for the repeated measures given zi can thus be

given by a slightly altered version of Equation 3, which conditions on the covariate vector

zi:

µyi =
K∑
k=1

π(k)(zi)(µ
(k) + δ(k)) (6)

Given Equations 5 and 6, expected trajectories can be calculated and plotted at different

values of the covariates, as is often done in multilevel modeling and latent curve analysis

(Preacher, Curran, and Bauer, 2006). This strategy can serve a number of purposes. First,

one can generate values of π(k)(zi) for selected values of a single covariate (e.g., low,
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medium, and high) holding other covariates constant (e.g., at their means) using Equation 5,

and then use the resultant value to generate a predicted trajectory using Equation 6. Such

results may be useful for determining the nature of the relationship between predictors

and trajectories on average in the population. However, LLPA can be extended further to

provide insight into the shape of change at the individual level; I now explore the two main

ways, using Equations 5 and 6 and extensions thereof, of using LLPA to make individual

predictions.

1.3 Individual-level inference in LLPA

Pursuant to the goals of person-centered analysis, it is often of interest to plot model-

predicted trajectories for individuals in the sample. Assessment of model fit at the indi-

vidual level is common in the MLM literature (Rabe-Hesketh and Skrondal, 2008), but

relatively rare in mixture models. However, these individual model-implied trajectories

can provide information about how well the model approximates the observed trajectories

at the individual level.

LLPA can be used to accomplish this goal in two ways. First, one can generate pre-

dicted values of π(k)(zi) for each individual in the sample, given each individual’s vector

of predictors zi – in other words, rather than using Equations 5 and 6 to calculate hypo-

thetical trajectories given values of covariates chosen by the researcher, one could input

the combination of covariates specific to individual i to obtain that individual’s predicted

trajectory.

In this formulation, π(k)(zi) is considered to be the predicted probability of class mem-

bership, and is thus used to weight each class’ trajectory. However, π(k)(zi) is essentially

a prior probability in the sense that it doesn’t incorporate any information about the vec-

tor of observed scores into the probability of individual i belonging to class k. In order to

incorporate information about both covariates zi and the observed time-varying indicator

yi, one may obtain the posterior probability of individual i belonging to class k. Given a
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vector of length T consisting of all of subject i’s observed scores, referred to as yi, this

posterior probability is given by:

τi
(k)(zi) =

π(k)(zi)f
(k)(yi|zi)

f(yi|zi)
(7)

where f (k)(yi|zi) is the class-specific multivariate normal density for yi conditional on zi;

and f(yi|zi) is the marginal multivariate normal density for yi conditional on zi.

Thus, the posterior probability of person i belonging to class k is calculated by weight-

ing the class-specific likelihood by the whole-sample membership proportion for class k

given covariates z, and dividing by the whole sample likelihood. Importantly, each mem-

ber of the sample has a nonzero probability of belonging to each class, and all posterior

probabilities over the K classes sum to 1 for individual i.

Just as the whole-sample trajectories can be calculated by weighting class-specific tra-

jectories according to class membership proportion (found in Equation 6), individual tra-

jectories can be calculated weighting by an individual’s posterior probability of belonging

to a particular class. Thus, an individual’s model-predicted trajectory is given by:

ŷi =
K∑
k=1

τ
(k)
i (zi)(µ

(k) + δ(k)) (8)

Equation 8 indicates that class-specific values of level and shape can be weighted by the

posterior probability of membership to each class (given by Equation 7), and aggregated to

yield the predicted trajectory for person i. For each individual, this total trajectory repre-

sents the weighted sum of all classes’ trajectories. Contrasting this trajectory to with one

found using Equation 6 represents a distinction similar to that between marginal and con-

ditional predicted trajectories in the mixed models literature (Laird and Ware, 1982). As

Equation 6 predicts values for individual i only on the basis of prior probability of group

membership, the resultant trajectory is analogous to a marginal predicted value based only
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on fixed effects. By contrast, Equation 8 represents a conditional predicted trajectory, as it

incorporates the equivalent of a random effect in τ (k)i (zi) in weighting the class’ trajecto-

ries; thus trajectories predicted using Equation 8 with sample values in place of population

parameters are empirical Bayes estimates.

Both the marginal and conditional predicted trajectories for individuals in the sample

may be of interest, and they may serve distinct but complementary purposes. In particular,

gauging the discrepancy between an individual’s observed and marginal predicted trajecto-

ries may yield an impression of whether a given individual is ”typical” given a certain set of

covariates or predisposing factors (e.g., Skrondal and Rabe-Hesketh, 2003). By contrast,

the discrepancy between an individual’s observed and conditional predicted trajectories

will be used to index individual-level model fit (Coffman and Milsap, 2006; Skrondal and

Rabe-Hesketh, 2009).

1.4 Random-effects LLPA

It is often of greater interest in longitudinal research to ascertain differences in the shape

of a phenomenon, rather than differences in level. However, in the LLPA as it is currently

formulated, differences in overall level may have more influence on class membership than

shape, even if heterogeneity in shape is the primary outcome of interest. For example, given

the vast heterogeneity in overall level of depression among adolescents (e.g., Dekker et al.,

2007), one might imagine that classes based on longitudinal measures of depression would

largely reflect variance in level, potentially obscuring interesting heterogeneity in shape.

One potential modification to the LLPA that may address this concern is to allow for

within-class variability in the level parameter. In this scenario Equation 2 would be altered

as follows:

y
(k)
it = [µ(k) + α

(k)
i ] + δ

(k)
t + Eit (9)

where α(k)
i ∼ N(0, σ2

α). Whereas the term µ(k) in Equation 2 represented a constant within-

class level parameter, here it is simply the mean value of level for class k. Thus, the portion
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of Equation 9 in brackets refers to a person-specific level parameter, comprised of mean

µ(k) and person-specific deviation α
(k)
i , where these deviations are normally distributed

across persons within-class.

In this model, referred to here as the random-effects LLPA, fewer classes would likely

be needed to approximate heterogeneity in profiles of growth, and the latent class variable

would capture more information about the shape of change for the variable, which may

produce more substantively interesting and interpretable profiles. Importantly, this also

means that covariates, in that they are linked to the variables exclusively through class

membership, may now only explain one of two pools of variability in the level parameter.

The random-effects LLPA will be further explored in an empirical analysis later in this

thesis.

Both with and without within-class random effects for level, LLPA’s lack of assump-

tions about the functional form of growth may help to preserve a greater level of detail about

within-person variability than standard extensions of the LCM. However, LLPA is not the

only model that has been proposed to facilitate person-centered analysis through flexible

modeling of change. In order to better understand the unique features of LLPA, I will

now consider its potential advantages and disadvantages relative to two existing techniques

allowing different types of within- and between-person variability: longitudinal mixture

models, and single-class extensions of the latent growth model allowing different forms of

growth.

1.5 Relation to other models

One sort of longitudinal mixture model that has gained popularity in recent years is the

semiparametric growth model (SPGM; Nagin and Land, 1993; Nagin, 1999). In an SPGM,

subjects are assumed to come from K classes, with each class k defined by its own growth

equation. For instance, a linear SPGM would be of the form:

y
(k)
it = β

(k)
0 + β

(k)
1 timeit + Eit (10)
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where β(k)
0 and β(k)

1 vary between (not within) classes, and Eij ∼ N(0, σ2
t ).

If time is centered at the midpoint, the intercept term β
(k)
0 Equation 10 represents the

within-class average level of the observations, just like the level parameter µ(k) in Equa-

tion 2. Where SPGM differs from LLPA is in the specification of a parametric relationship

between the repeated measure and time: whereas the shape parameter δ(k)t in Equation 2

does not directly incorporate any parametric function of time, the term β
(k)
1 timeit in Equa-

tion 10 imposes straight-line growth. While Equation 10 represents linear growth in each

class, quadratic or cubic growth can also be modeled (e.g., Karp, O’Loughlin, Paradis,

Hanley, and Difranza, 2005; Tucker, Orlando, and Ellickson, 2003), as can more complex

functions such as Gompertz and logistic curves (Grimm and Ram, 2009; Grimm, Ram,

and Estabrook, 2010). The disadvantage of this approach, relative to LLPA, is that the

researcher must know the function a priori, whereas this function may often be unknown

or uncertain. An advantage of SPGM over LLPA, however, is that the specification of a

parametric form allows for individually-varying times of observation.

Just as the LLPA can be extended to incorporate within-class variance of level, so too

can the SPGM be extended to allow within-class variance of growth parameters. Longi-

tudinal mixture models that allow growth parameters to vary within-class are generally

referred to as growth mixture models (GMM; Muthén and Shedden, 1999). A GMM of

linear growth would be given by:

y
(k)
it = β

(k)
0 + β

(k)
1 timeit + Eit (11)

where

β(k)
0

β
(k)
1

 ∼ N


µ(k)

β0

µ
(k)
β1

 ,
σ2(k)

β0

σ
(k)
β0β1

σ
2(k)
β1


.

While growth itself is represented just as in the SPGM, here the growth parameters are

14



assumed to vary normally within class around the class mean; thus β(k)
0 and β(k)

1 are es-

sentially random effects within class. Furthermore, one can formulate longitudinal mixture

models in which different components have different functional forms of growth, such as

one class showing linear growth and another class with quadratic growth (Muthén and

Muthén, 2000; Muthén, 2001). Freeing the variance of growth parameters changes their

interpretation, a point that has been debated widely within the context of direct applications

of mixture models (Nagin, 2005; Nagin and Tremblay, 2005; Muthén, 2006). Rather than

being a parameter defining the entirety of the group, in a GMM the parameter value simply

represents a mean around which there is random variance, just as in a single-class latent

growth model. Importantly, however, these interpretational changes are most relevant in

direct applications, given that within-class parameters are typically not interpreted in indi-

rect applications. In this sense, what both GMM and the random-effects LLPA represent

is a combination of categorical and continuous treatments of variance in growth param-

eters, since these growth parameters are allowed to vary categorically according to class

membership but also continuously around a class mean parameter value.

The LLPA and other longitudinal mixture models (SPGM, GMM) are similar in that

they treat trajectories as varying categorically between subjects and thus relax the standard

LCM’s assumptions about the nature of inter-individual differences. Unlike the SPGM

and GMM, however, the LLPA is also minimally parameterized with respect to the shape

of change, and thus relaxes assumptions about the nature of intra-individual differences.

Another model that shares LLPA’s lack of a pre-specified functional form is a LCM with

completely freed loadings, sometimes referred to as the latent basis LCM (Meredith and

Tisak, 1984, 1990; McArdle and Epstein, 1987). This model is specified as:

Yit = β0i + β1iλt + Eit (12)

where λt designates a factor loading that (aside from identification restrictions) is estimated
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from the data. Just as an LLPA is essentially an SPGM without pre-defined functions of

time, a latent basis model is an LCM without pre-specified loadings for time, and therefore

no pre-defined functional form. Two loadings are fixed at 0 and 1 to set the metric of the

factor; the remaining loadings are estimated freely. This is contrasted with models such as

a linear LCM, in which the loadings of λt are fixed at linearly increasing values, usually [0,

1, 2,..., T-1]; unlike these models, time is unstructured in the latent basis model. Because

the loadings of time are freely estimated, the metric of time is not always easily interpreted;

McArdle (2004) recommends setting the first and last loadings at 0 and 1 respectively, in

which case the loading of each time point represents the proportion of total change that has

occurred at time t. This particular parameterization is most useful if change is monotonic.

Though both the loadings and the growth factors lose some degree of interpretability

under this approach, the latent basis allows not only for a nonlinear functional form but for

the lack of any a priori specification of functional form at all. As with LLPA, this degree of

flexibility can be greatly beneficial in modeling change when the functional form of intra-

individual change is unknown. For instance, Grimm (2007), modeling the relationship

between depression and academic achievement between ages 7 and 14, finds that a latent

basis model provides an excellent fit to the data; similarly, Grimm and Ram (2009) find

that a latent basis model very well approximates the fluctuations in cortisol over trials of

a stress test. However, a disadvantage of the latent basis model is that it assumes that

the same basic shape of change is the same for all individuals, with only differences in

magnitude or direction.

1.6 Summary and Research Aims

Table 1 summarizes the models considered thus far in terms of their treatment of intra-

and inter-individual variability. The current report considers the ways in which LLPA com-

pares with a number of the other models in Table 1 at approximating functional form hetero-

geneity in longitudinal data. These comparisons are not driven by particular hypotheses, as
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the goals of these analyses are mostly exploratory. An empirical examination of longitudi-

nal data investigates the various methods’ ability to fit trajectories at both the aggregate and

individual levels in the 1997 National Longitudinal Survey of Youth (NLSY97). Following

this analysis, a brief proof-of-concept simulation is conducted with the goal of elucidating

model selection between LLPA and other candidate models.
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2 METHODS

2.1 The National Longitudinal Survey of Youth

Data come from the 1997 National Longitudinal Survey of Youth (NLSY97), an on-

going longitudinal study that has collected data on education, employment, government

program participation, crime, family life, substance abuse, and health in a nationally rep-

resentative sample of adolescents. From 1997 to 2000, data were collected at one-year

intervals; thereafter, data were collected at two-year intervals. Information sources in-

cluded face-to-face and computerized interviews with subjects and their parents, as well

as examination of school and administrative records. For the current study, I examine data

taken from six of the time points: 2000, 2002, 2004, 2006, 2008, and 2010.

From the larger NLSY dataset a smaller sample (N = 1686), consisting exclusively of

individuals who were 14 years old at the time of their first interview in 1997, is analyzed.

The age requirement ensured that all subjects were transitioning from adolescence to adult-

hood between 2000 and 2010. The sample was 50.4 percent male, and relatively ethnically

diverse, with 26.8, 20.0, .08, and 50.5 percent of respondents identifying as Black, His-

panic/Latino, mixed race, and neither Black nor Hispanic/Latino, respectively. For ease of

model fitting, this sample includes individuals who were interviewed at least half of the

time points. Patterns of missing data are shown in Table 2.

2.2 Measures

The main outcome of interest, depression, was measured in the NLSY using five items

from the Center for Epidemiological Studies Depression scale (CES-D), listed in Table 3.

During this part of the interview subjects were asked how often during the past month

they had experienced various emotions, and gave a response from 1-4, with a score of 1



representing all of the time and 4 representing none of the time. The data were coded such

that higher values were indicative of less depression. An aggregate score was created from

these five items, which showed moderately good internal consistency, with Cronbach’s

alpha of .76, .76, .77, .77, .80, and .81 at each of the successive six time points, respectively.

Four covariates were also included in the conditional analyses. First, given the frequent

finding that women tend to report higher levels of depression than men, gender was in-

cluded as a covariate in the model, coded as 1 if the subject was female and 0 otherwise.

Race was also included in the model, coded as 1 if the subject was Caucasian and 0 other-

wise. In order to consider theories relating physical and mental health in development (e.g.,

Repetti, Taylor, and Seeman, 2002) we considered parent ratings of the subject’s general

health at age 13, two years before the subject’s first interview. Parent-rated health was an

ordinal variable, coded from 1-5, with lower scores representing better overall health. Fi-

nally, given that there are some reports of different clinical patterns among college students

and their non-college-attending counterparts (e.g., Gfoerer, Greenblatt, and Wright, 1997;

Blanco et al., 2008), class membership was also regressed on a binary variable representing

college attendance, coded as 1 if the subject attended college by age 23 and 0 otherwise.

2.3 Analysis

2.3.1 Model Fitting

Models were fit to the data using Mplus 7.0 (Muthén and Muthén, 2012). Table 1

shows all sets of models that were tested, comprising six sets in all. The first three require

a priori specification of a functional form: (1) a standard latent curve model (LCM) with

linear and quadratic components; (2) a semiparametric growth model (SPGM) with linear

and quadratic components; and a (3) growth mixture model (GMM) with fixed slope and

quadratic components and an intercept component estimated as a random effect with a

normal distribution within class. The final three models do not require a priori specification

of functional form: (4) a latent basis model (LBM) with all loadings except the first and
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last ones freely estimated; (5) a longitudinal latent profile analysis (LLPA) with fixed level

and shape factors; and (6) a longitudinal latent profile analysis with a random effect for

level within class (LLPA-RE).

2.3.2 Model Comparison at the Global Level

For the mixture models, the Bayesian Information Criterion (BIC; Schwartz, 1978) was

used to select the optimal number of classes. The BIC is equal to−2×log(LL)+q(log(N)),

where LL represents the log-likelihood of the model, q represents the number of repeated

measures, and N represents the sample size; a lower BIC thus indicates a stronger fit and

more model parsimony at the global level. Both across models and within solutions for the

same model (e.g., a 4-class LLPA vs. a 5-class LLPA), BIC was used to compare fit.

2.3.3 Individual Level Analysis

Assessment of fit at the individual level proceeded via the Root Mean Square Residual

(RMSR), as defined by Coffman and Millsap (2006). The RMSR directly measures the

proximity between individual i’s observed trajectory yi, and individual i’s model-predicted

trajectory. The model-predicted trajectory is defined two ways: first as the marginal pre-

dicted trajectory given by Equation 6, µyi, and second as the conditional predicted tra-

jectory given by Equation 8, ŷi. Thus, the individual fit to the marginal and conditional

predicted trajectories will be assessed, and termed RMSRMi and RMSRCi respectively

and defined as:

RMSRMi =

√∑Ti
t=1 (yit − µyit)2

Ti
(13)

RMSRCi =

√∑Ti
t=1 (yit − ŷit)2

Ti
(14)

where Ti is equal to the number of times at which each individual i is assessed.

The RMSR provides an intuitive basis for comparing the fit of predicted trajectories

generated using the LLPA, SPGM, and latent basis model to the observed trajectory for

each individual. One important caveat to the RMSR is that, unlike the BIC, the RMSR does
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not take into account any measure of model parsimony; thus, it is exclusively a measure of

closeness of fit and not necessarily generalizability.

For the conditional analyses, the RMSR was calculated two ways – first using Equation

14, yielding RMSRCi, the RMSR comparing subject i’s observed and posterior-predicted

trajectories, and then using Equation 13, yieldingRMSRMi, the RMSR comparing subject

i’s observed and prior predicted trajectories given values of covariates. The RMSR was ex-

amined only using equation 14 in the unconditional analysis. The reason for this seeming

discrepancy is that, in an unconditional analysis, there are no covariates on which to condi-

tion the prior probability of class membership and thus the prior-predicted trajectories are

not meaningful at the individual level. First, RMSR values were compared among all of

the models, to see if any models provide closer fit to individual data than others.

Then, in order to determine the possibility that models fit differentialy well for indi-

viduals with different values of covariates, I examined Pearson’s correlation coefficients

relating RMSR values (RMSRCi in both the conditional and unconditional analyses, and

RMSRMi in the conditional analysis) to the four covariates included in the conditional

analysis – gender, race, college attendance, and parent-rated health at age 13. Additionally,

I examined the correlation between the RMSR under each model and the number of miss-

ing CES-D scores to see whether each model showed differentially close fit for individuals

with more or less missingness. Finally, in order to demonstrate the graphical capabilities

of LLPA to gain exploratory, non-hypothesis-driven insight into individual trajectories, the

individual predicted and observed curves for a selection of cases were plotted. The methods

of Pek, Bauer and Losardo (2011) were used to generate bootstrap-predicted uncertainty

around each individual trajectory. This method entails using the covariance matrix of model

parameters to simulate 100 alternative sets of parameters, which are used to generate 100

alternative trajectories for each individual; by plotting these, one can see a random sample

of the trajectories that would be expected given the distribution of sampling error in the
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parameter estimates.
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3 RESULTS

3.1 Overall model fit

Table 4shows the BIC values for all unconditional models that were tested, ranked

according to overall standing (with lower BIC values indicating better performance and

thus being ranked higher). The latent curve and latent basis models performed poorly

relative to other models; among these options, however, BIC was lower in the versions of

both models in which the residual variances of all time points were assumed equal. The

mixture models with only categorical variation between latent classes in growth parameters

showed wide variation in the degree of fit. Solutions with more classes fit better, with an

11-class solution fitting best in the SPGM – however solutions with more than 11 classes

did not converge, and the best likelihood was replicated in neither the 10- nor the 11-class

solution. Thus, a 9-class SPGM is considered in further analyses, as this was the last

solution at a probable global maximum. Fit was better in the LLPA than in the SPGM; a

12-class solution was the best fit. The GMM and LLPA-RE, which allow both categorical

and continuous variation in growth parameters, fit the data the best overall. In the GMM a

5-class solution fit the data the best. In the LLPA-RE an 11-class solution represented the

best balance of fit and parsimony. Importantly, this was the best fitting model in the whole

sample, with a BIC value almost 200 points below the best-fitting GMM.

Taken together, these results suggest two trends in the data. First, models allowing both

continuous and categorical variation across individuals in growth parameters (the GMM

and the LLPA-RE) fit better than models allowing only categorical variation in growth pa-

rameters (the SPGM and the LLPA), which in turn (given a large number of classes) fit bet-

ter than those allowing only continuous inter-individual variation in growth parameters (the



latent curve and latent basis models). Second, regardless of the specification of between-

person variation in growth parameters, models which do not require pre-specification of

functional form (the latent basis model, LLPA, and LLPA-RE) fit better than models that

do (latent curve model, SPGM, and GMM).

Findings related to the conditional analysis, which are shown in Table 5 showed a few

differences from the unconditional analysis. First, models with fewer classes were gen-

erally favored by the BIC in the mixture model solutions, likely reflecting the fact that

models with the added complexity of covariates cannot accommodate more parameters re-

lating to class membership. Second, findings related to the specification of inter-individual

difference in trajectories were somewhat more equivocal than in the unconditional model.

Unlike in the unconditional analysis, the BIC did not favor models with exclusively cate-

gorical differences between individuals in growth parameters (the LLPA and SPGM) over

those with continuous inter-individual variation in growth parameters (the latent curve and

latent basis models). In fact, the latent basis model fit the data better than any of models al-

lowing exclusively categorical differences in growth parameters, including the best-fitting

LLPA. However, as in the unconditional analysis, models allowing both continuous and

categorical variation between individual growth parameters showed the best balance of fit

and parsimony. As before, the best-fitting model in the data was a LLPA with random

effects; this time a seven-class solution was favored by the BIC. Thus, the major trends

of the unconditional analyses were basically replicated when covariates were added: mod-

els allowing both continuous and categorical variation in growth parameters (GMM and

LLPA-RE) showed the best fit to the data, as did models in which the functional form of

growth was not pre-specified (latent basis model, LLPA, and LLPA-RE).

3.2 Whole-sample predicted trajectories

Figure 1 shows the predicted trajectories at the whole-sample level for each of the best-

fitting solutions for all models considered in the analysis without covariates; thickness and
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transparency of each line is used to indicate the proportion of individuals in the corre-

sponding class. In both models the latent curve and latent basis models, only the mean of

the intercept coefficient was significant, indicating that only initial level of depression was

significantly different from zero. However, the variance of all of the growth coefficients –

intercept, linear slope, and quadratic slope in the latent curve model; intercept and basis co-

efficient in the latent basis model – were significant. These combined findings – no growth

coefficient having a significant mean, but each having a significant variance – suggest that

while at the aggregate level there is no overall change in depression over time, individuals

differ in the extent to which their self-rated depression changes over time.

One trend that characterized all of the mixture models is that they all placed the majority

of the sample in classes defined by high CES-D scores that do not change much over time.

Where the models differ is in their representation of the rest of the sample. In the SPGM,

classes were differentiated from one another most by overall level; only three classes –

classes 2, 4, and 6, comprising a total of 5.6% of the sample – were characterized by

a significant quadratic trend, and only class 7, comprising roughly 8.0% of the sample,

showed a linear increase in CES-D score over time. In the GMM, three classes – classes

2, 3, and 4 – were defined by any change over time; the remainder of the sample fell into

classes 1 or 5, which where characterized by either low or high overall CES-D scores,

neither of which increased or decreased over time. Thus, though there were fewer classes

in the GMM than in the SPGM, roughly the same proportion of the sample, 12.1%, fell into

classes characterized by any sort of change in depression over time.

The LLPA models, also placed the majority of the sample in classes defined by high

CES-D scores that did not change over time; however, the nature of change in the low-

CES-D classes is somewhat different from the other models. In the LLPA, roughly 20% of

the sample fell outside of the three classes with high overall CES-D and no change over

time, classes 6, 11, and 12. Each of these classes is characterized by a unique pattern
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of change that, by graphical examination, appear to represent a variety of potential func-

tional forms; classes’ trajectories range from those with small periodic fluctuations, such

as classes 2 and 3, to those with large increases or decreases at one age, such as classes

1, 5, and 10. The LLPA-RE is similar in that roughly 25% of the sample fell into classes

characterized by change over time, and these changes were not well-defined by any single

functional form, but there were two main differences. First, here only one class, class 11,

was needed to characterize individuals with high CES-D scores that did not change over

time, as opposed to three. Second, the remaining classes are distinguished from one an-

other less by differences in overall level of CES-D, and more by differences in shape, as

represented graphically by the fact that trajectories overlap a great deal in overall level of

CES-D scores but show wider differences in their profiles of change over time.

Results in the conditional model are presented in Figure 2. As before, neither the latent

curve nor the latent basis models were characterized by a great deal of change over time.

While fewer classes were found in almost all mixture models, the shapes of the trajectories

defining each class were similar, and two main trends in the unconditional analysis were

replicated. First, most of the sample fell into trajectories with high CES-D scores that

did not change over time, with more sparsely-populated classes representing individuals

with lower scores who did change over time. Second, in models in which some within-

class variation in overall level of CES-D score was allowed (the GMM and the LLPA-RE),

classes were less differentiated from one another by level and more by the overall shape of

each trajectory.

3.3 Effects of covariates

The effects of gender, general health, college attendance by age 23, and parent-rated

general health at age 13, were all tested in every model. In the latent curve model, the effect

of gender on intercept was significant, z = 6.542, p<.001. No other effect on the intercept,

slope, or quadratic component was significant. Results in the latent basis model were
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similar, with a highly significant effect of gender on the intercept (z = 7.054, p<.001) and

no other effect on either the intercept or latent basis coefficient approaching significance.

Table 6 shows the results of logistic regressions using all of the covariates as predictors

of class membership for each mixture model. In all models, the modal class – which in

each solution was characterized by high CES-D scores and minimal change over time – is

used as the reference class.

In the SPGM, members of classes 1 and 3, which showed low overall CES-D score,

were more likely to be female, whereas members of class 6, which showed high overall

CES-D scores, were less likely to be female. Members of class 6, the only class with higher

overall CES-D score than the reference class, were also less likely to be white. Members of

class 4, which was characterized by lower scores (corresponding to increased depression)

at later ages, were less likely to have completed college.

In the GMM, the only covariates with any significant partial effects were gender and

college. Members of classes 1 and 3, which were characterized by either lower overall

CES-D score (class 1) or low CES-D score which increased over time (class 3), were more

likely than members of the reference class (class 4) to be female. Members of class 1 and

class 2, which was characterized by decreasing CES-D score, were also less likely to attend

college than members of the reference class.

Results were relatively similar in the models without a pre-defined functional form,

the LLPA and LLPA-RE, in that gender and college attendance were the only significant

predictors of class membership. In the LLPA, members of classes 1 and 3, both of which

are characterized by low CES-D scores which fluctuate over time, were more likely to be

female than members of the reference class. By contrast, members of class 6, the only

class with higher and more stable CES-D scores than the reference class, were less likely

to be female; they also showed better overall parent-rated general health at the trend level.
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Interestingly, members of class 4, which was defined by the decreasing CES-D scores cor-

responding to an increase in depression at later ages, were less likely to have attended

college by age 23, but this effect was not significant for any other classes.

In the LLPA-RE, only class 3 was distinguished from the reference class by gender;

thus, only members of the class with lowest and most widely-varying CES-D scores were

more likely to be female. Members of this class were also less likely to have attended

college by age 23, as well as members of class 1, which was also characterized by low and

widely-fluctuating CES-D score, and class 6, in which CES-D score started out high but

dropped precipitously at the later ages.

3.4 Individual fit

Root mean squared residual (RMSR) scores were calculated for each individual under

each model using posterior-predicted individual trajectories (given Equation 14) for both

the conditional and unconditional analysis; RMSRMi values for each individual under

each model were calculated using Equation 13 for the conditional analysis only. Their rela-

tionship to a number of covariates, including the four that were examined in the conditional

model – gender, race, college attendance, and parent-rated general health – as well as the

number of missing CES-D scores, were then examined. The intent with this analysis was

not hypothesis-driven, but instead focused on whether, both in the unconditional analysis

in which none of these covariates was included and in the conditional analysis in which

the covariates were included, any given model fit individuals with certain values of the

covariates better or worse.

The means of RMSRCi scores for the unconditional analysis are presented in Table 7.

The averageRMSRCi scores were relatively similar in most models but were considerably

lower in the LLPA-RE than in the other models, indicating that trajectories fit more closely

to individual data in the LLPA-RE than in other models. RMSRCi scores were strongly re-

lated to race, general health, and college attendance, with individual fit being the strongest
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in white subjects, subjects with better overall general health, and subjects who attended

college. Interestingly, gender was not significantly related to individual fit in any model

except for the LLPA-RE, in which being female was associated with worse overall fit. An-

other interesting finding is that the number of missing time points was significantly related

to individual fit in all models except for the LLPA and the LLPA-RE models, potentially

suggesting closer fit of these models to subjects with higher degrees of missing data.

The means of RMSRCi scores for the conditional analysis are shown in Table 8. As in

the unconditional analysis, the LLPA-RE fits the data more closely at the individual level

than any other model; however, the difference in fit was smaller than in the unconditional

analysis. As before, race and college attendance were strongly related to individual fit and

gender was not; however, in the conditional analysis, there was no relationship between

general health and any of the models’ RMSRCi values except for the LLPA-RE at the

trend level. The previous pattern of relationships between RMSRCi and missingness were

replicated: there was no significant relationship between missingness and individual model

fit in the LLPA and the LLPA-RE, but significant (or, in the case of the SPGM, marginally

significant) relationships to missingness in all other models.

Finally, the means of RMSRMi values in the conditional analysis are shown in Table

9. Values overall were higher than the RMSRCi values in either the conditional or uncon-

ditional analyses; however, the values for both of the models allowing both continuous and

categorical variation in growth paramters (GMM and LLPA-RE) were the lowest, indicat-

ing closest overall fit at the individual level in these models. As with the RMSRCi, there

was no overall relationship between gender and RMSRMi values. There was, however, a

significant relationship between fit and race, general health, and college attendance in every

model. There was no significant relationship between fit and missingness in any model.

In summary, the fit of individual trajectories appear to follow three general patterns.

First, regardless of whether the analysis included covariates or not, LLPA-RE provided
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closer fit to each individual’s data, on average, than any other method under consideration.

Second, the inclusion of covariates in the analysis did not lead to much attenuation of

the relationship between covariates and fit, as indexed either using the RMSRCi based

on posterior-predicted individual trajectories or the RMSRMi based on prior-predicted

individual trajectories. Finally, when considering fit to each individual’s posterior-predicted

trajectory (i.e.,RMSRCi in either the unconditional and conditional model, the fit of LLPA

and LLPA-RE is not as greatly affected by missingness of CES-D scores than the other

models.

3.5 Individual Prediction

For each individual, a prediction plot given the best fitting unconditional model – the

11-class LLPA-RE – was created. These plots are shown for six individuals in the sam-

ple, in Figures 3-5. In the first panel of each plot is the 11-class LLPA-RE solution, with

the lines weighted (both using line thickness and transparency) by the subject’s posterior

probability of belonging to each class. From this plot one can visualize how well each

class represents a given individual’s model-implied trajectory. In the second panel is the

individual’s observed and model-implied trajectories, as well as 100 predicted trajectories

generated by the bootstrap methods of Pek, Bauer, and Losardo (2011) using the covariance

matrix of model parameters. By visualizing the uncertainty around the individual predicted

trajectory nonparametrically, one can get a sense of the error around each individual obser-

vation.

In Figure 3, the plots for subjects 1266 and 1401 are shown; these two individuals had

RMSRCi scores at the median for the sample, and thus they represent the exact midpoint

of individual model fit. In Figure 4, the plots for subjects 286 and 560 are shown; these two

individuals had RMSRCi scores at the 75th percentile and thus represent relatively poor

individual model fit. In Figure 5, the plots for subjects 550 and 691 are shown; these two

individuals had RMSRCi scores at the 25th percentile and thus represent relatively close
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individual model fit.

Finally, in order to demonstrate the graphical capabilities of LLPA with covariates,

predicted trajectories were created by using hypothetical configurations of zi in Equation

5 to create prior probabilities of class membership. Figure 6 shows one such plot, which

compares subjects on the basis of gender and college attendance (holding race constant at

white, and general health constant at the sample average). The plot provides insight into one

trend that might not have been apparent from examination of the model parameters alone:

while female college attendees have higher CES-D scores than non-attendees, indicating

generally lower depression for the entire study period, male college attendees and non-

attendees seem to diverge in depression only in the later ages.

The current analyses compare the LLPA framework to other analytic approaches in the

context of only one dataset. It may be the case that LLPA was favored by fit indices due

to idiosyncratic characteristics of the NLSY data. This possibility is explored next using

a brief proof-of-concept simulation, which examines the sensitivity of a number of these

models to random noise in the data.

3.6 Proof-of-concept simulation

In the preceding analyses, both variations of the LLPA framework – with and without

a random effect of level – were favored by the BIC over the latent basis and latent curve

models (as well as other models). At the same time, all models tested gave the impression

of minimal change over time for most individuals. This conclusion stems from the lack

of significant growth coefficients in either the latent curve or latent basis models, as well

as as the fact that in the mixture models most individuals were in groups characterized

by minimal change. These general findings, in combination, raise the concern that the

impression of LLPA models’ superior fit may in fact be driven by overfitting in the absence

of systematic change in the data.

In order to address these concerns, I simulated data from a random-intercept model

31



with no growth of any sort and tested whether an LLPA would be spuriously favored over

an intercept-only latent curve model. In order to do this, I simulated six time points for 1686

cases (as there were 1686 individuals in the original sample). The random intercept was

set to have a mean of 15.24 and a variance of 3.35, as these were the mean and variance of

the random intercept in the latent curve model fit in the unconditional analysis. Similarly,

residual variance at each time point was set at 3.166, as this was the estimated residual

variance in this latent curve model. The slope coefficient was fixed at zero and had zero

variance.

While generating data from a latent curve model may partially address the concern that

an LLPA might pick up random noise in the data and be spuriously chosen over a LCM,

the original data is ”noisy” in two ways that simulated data typically is not. First, where

the simulated data is fully continuous, the original data was on a 20-point scale and scores

could only take on integer values. Second, there was no missingness in the simulated

data, whereas there was a moderate degree of missingness in the original data. To rectify

these two discrepancies, I altered the simulated dataset such that all values were rounded to

the nearest whole number, and values were deleted to simulate the pattern of missingness

shown in Table 2.

The models tested were an intercept-only LCM, as well as an LCM with intercept and

linear slope components; additionally, LLPA models with and without random effects for

levels were fit to the data. BICs for all models tested are shown in Table 10, ranked from

best to worst values. As predicted, an intercept-only LCM with equal time variances was

the best-fitting model. An LCM with both intercept and linear slope was attempted, but

yielded a Hessian matrix that was not positive definite. Among the LLPA models, the BIC

favored a one-class model when a random effect for level was included, and a five-class

model when the random effect was excluded. However, regardless of the fact that an LLPA

without a random effect spuriously favored a solution with more than one class, the latent
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curve model was nevertheless favored over any of the LLPA models.

Model-implied trajectories for the 5-class LLPA solution shown in the second dataset

are shown in Figure 7. Rather than several nonparametric shapes of change, as was ob-

served in the original analysis (shown in the middle panel of Figure 1), the model-implied

trajectories here are simply five straight lines, with no change across time and differences

exclusively in overall level. Thus, the LLPA does not, in this case, appear to spuriously

find systematic change in the data.
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4 DISCUSSION

This thesis introduced longitudinal latent profile analysis (LLPA), a mixture model

which allows for maximum flexibility in the shape of intra-individual change and inter-

individual differences in longitudinal analyses. The LLPA models growth in terms of two

parameters – level and shape – and allows these parameters to vary categorically between

people. This model was extended to allow for a random effect of level within each class

(LLPA-RE), which allows class membership to reflect more shape-based differences across

individuals. The LLPA-based methods were applied to a study of depression in a nationally

representative sample of adolescents, and the fit of these models was compared with a num-

ber of comparable latent curve models and parametric mixture models at the whole-sample

level using the Bayesian Information Criterion (BIC). This thesis also examined the use of

individual fit statistics, particularly the individual root mean squared residual (RMSR), to

examine the different models’ fit at the individual level, and examined graphical methods

for individual-level inference.

4.1 Fit at the whole-sample level

All models tested, including the LLPA and the LLPA-RE, found that trajectories with

high overall CES-D scores and virtually no change in scores over time applied to the bulk

of the sample. These scores indicate that most of the sample was characterized by a lack of

depressive symptomatology that was stable over time. The LLPA-based methods, however,

also disaggregated the sample at the lower levels of CES-D scores, breaking a minority of

the sample into smaller groups characterized by high levels of depression, which showed

various patterns of change over time.



The main question regarding these findings is whether the non-parametric shapes un-

covered by LLPA and LLPA-RE are valid points from which to draw inference, or simply

capturing random noise in the data. A number of the current findings offer a good deal of

evidence that the LLPA analyses picked up signal, and not noise, in the data. The BIC was

reliably lowest in the LLPA-RE, both in models with and without covariates, and impor-

tantly the BIC reflects both parsimony and fit. This finding likely reflects the minimally

restrictive nature of the LLPA-RE, which neither forces all individuals to have the same

shape of growth, nor the same overall level of depression as everyone in their class. In-

terestingly, after the LLPA-RE the second-lowest BIC scores tended to be observed in the

GMM, suggesting the possibility that allowing flexibility in the representation of between-

person differences in growth parameters may be the best way to optimize fit and parsimony

simultaneously.

Further evidence for the LLPA’s lack of susceptibility to conflating random noise with

systematic change comes from the proof-of-concept simulation. These results suggest that,

in the presence of only level differences, neither the LLA nor its random-level extension

will erroneously find nonlinear shapes in the data. The LLPA-RE only found one class,

and this class was only characterized by a significant mean and variance for level, with

no change in shape. Even an LLPA solution which erroneously divided the sample into

classes found these classes to be differentiated only by level, with complete stability of

scores across times for all groups. More systematic simulations in future work will further

assess LLPA methods’ sensitivity to error variance in the lack of any meaningful change

in the data. One important focus of potential future work will be investigating the effect

of heteroscedasticity of error – importantly, the simulation assumed that error variance was

distributed identically for all classes, but this may not be a tenable assumption in the CES-

D.

The question of error heteroscedasticity in the CES-D presents one obvious argument
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for LLPA’s findings at the lower end of the CES-D’s range being attributable to random

noise as opposed to systematic change: responses at the extreme end of the scale are nec-

essarily more error-prone than observations closer to the mean. While the CES-D has been

shown to have comparable internal consistency and test-retest reliability in both depressed

and non-depressed populations (Radloff, 1997), it is important to consider the possibility

that non-parametric shapes among those with higher overall degrees of depression are an

artifact of random, unsystematic fluctuation in depression.

It is also important to consider, however, the difference between unsystematic error

and meaningful instability across time – i.e., state variance as opposed to trait variance

in depression. This distinction has been raised with regard to the CES-D in adolescents

by Dumenci and Windle (1996), who applied a latent trait-state (LTS) model. Using the

full CES-D, the authors determined that there was a significant component relating CES-

D scores to trait-level depression, as well as a significant amoung of state-level variance.

They hypothesize that the relatively low test-retest reliability of the CES-D (Lin and Ensel,

1984) may in fact be a byproduct of the fact that the CES-D measures a great deal of state

variance in depression, which, though it represents meaningful time-to-time fluctuation, is

often conflated with measurement error (Nesselroade, 1988).

In essence, the LLPA conducted here can potentially be seen as a different way of cast-

ing questions of state vs. trait measurement of depression: whereas previous work has

isolated specific variables (i.e., CES-D items) that are more related to either state or trait

depression, the current LLPA may capture differences between specific cases in terms of

state- and trait-level depression. It may be of clinical and scientific significance to dis-

tinguish cases with ”reactive” depressive symptomatology – i.e., individuals who become

more depressed following a life event – from those with more constant depressive symp-

toms, and to determine possible connections to these disparate experiences (Hankin, Mer-

melstein, and Roesch, 2007). Importantly, the use of LLPA to distinguish such cases does
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not necessitate interpreting each predicted increase or decrease in CES-D score for each

class; it may be of interest to simply differentiate individuals who experience change from

those who do not. By contrast, parametric mixtures such as SPGM, in hypothesizing a

particular form of growth (e.g., linear or quadratic), are much more commonly directly

interpreted as being representative of a particular type of growth or decay.

4.2 The effect of covariates

The effect of covariates on growth was relatively consistent across models. All found

that female participants generally reported higher overall levels of depressive symptoma-

tology, which is consistent with the widely-reported finding that women experience depres-

sion with higher frequency than men (e.g. Nolan-Hoeksema, 1990; Kessler et al., 2005).

Results related to race and parent-reported general health were generally minimal, with

only a few inconsistent findings relating CES-D score to either covariate.

The results present a complicated picture of the relationship between college attendance

and CES-D score, with only the mixture models detecting any difference in probability of

college attendance between the classes. However, all of the mixture models isolated at

least one class with a lower probability of college attendance than the reference class; in

the SPGM, GMM, and LLPA, this was a class with decreasing values of CES-D, corre-

sponding to increased depressive symptomatology at the later ages. Given that educational

attainment and SES are highly correlated, and that low SES is strongly linked to increased

depression (Lorant et al., 2003; Everson, Maty, Lynch, and Kaplan, 2002), it may be the

case depressive symptomatology worsens at later ages among college non-attendees after

the socioeconomic effects of not having attended college (e.g., instability of employment)

begin to manifest.

Interestingly, the LLPA-RE found more systematic class differences in college atten-

dance, including a decreased probability of college attendance among members of three
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classes, each of which were characterized by low CES-D score at some point in develop-

ment. This finding stands somewhat in contrast to the results of the SPGM, GMM, and

LLPA, that individuals with increasing levels of depression across early adulthood, but not

those with generally high levels of depression or decreasing levels of depression, are less

likely to go to college. This discrepancy raises the possibility that more strictly parameter-

ized methods (e.g., SPGM, GMM, and LLPA without random effects for level) may find

that a covariate is linked to a given shape which no longer holds once a more flexible model

is applied.

4.3 Individual-level fit and prediction

A number of the interesting features of LLPA are illuminated when considering the

model in terms of inference at the individual level. In particular, the individual RMSR as

presented by Coffman and Milsap (2006) offers two different types of conclusions about

the relative fit of all models considered. The RMSRCi, which compares each individual’s

observed trajectory to the one that would be predicted from that individual’s posterior prob-

ability of belonging to each class, indicates that in general the LLPA-RE yields predicted

trajectories for each individual that are closest to his or her observed data. When covari-

ates are included in the model, the LLPA-RE is still the closest fit to the data; however

this difference in fit is somewhat attenuated. The second individual fit statistic consid-

ered, RMSRMi, represents something different from the RMSRCi: in conditioning on

covariate-based prior probabilities, it indexes how closely the covariates predict the ob-

served trajectory for each individual in the sample. Despite the fact that there were rel-

atively few differences between any of the models in findings at the aggregate level with

respect to covariates, both the LLPA-RE and the GMM had considerably lower values of

RMSRMi than any of the other models, suggesting the possibility that models allowing

the most flexible representation of inter-individual differences will also provide the closest

covariate-based prediction.
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Comparing the individual RMSR scores – bothRMSRCi andRMSRMi – to a number

of covariates can theoretically be an informative way to differentiate what features charac-

terize individuals with particularly close or less close fit to the model. However, in the

current analysis, all RMSR values were generally correlated with general health, college

attendance, and race, with models fitting more closely to white college attendees in better

overall health. The discrepancy between these individual-level results and the aggregate-

level covariate effects – i.e., the fact that RMSR values were related to these covariates,

even in the absence of these covariates having an effect in the model – is likely due to the

fact that covariate effects in the aggregate model were partial statistics, whereas zero-order

correlations were examined here. Another possibility for this discrepancy is the differ-

ence in the relationship that the RMSR and covariates have to the time-varying indicators.

RMSR is a measure of variability, but covariates predict mean levels of the time-varying

indicator – if mean levels of an indicator vary little according to the covariates but certain

values of the covariates are associated with greater variance of the indicator, values of the

RMSR may still be associated with that covariate.

Interestingly, however, values of both RMSRCi and RMSRMi were correlated with

the number of missing CES-D scores in all of the models except for the LLPA and LLPA-

RE. This may suggest these models may be particularly helpful in fitting to individual data

under conditions of missingness; conversely, it may suggest that LLPA-based models over-

fit to whatever data points are present as opposed to obtaining a maximally generalizable

solution in the presence of missing data.

Whether LLPA-RE’s close fit to individual data is a strength or a weakness is an open

question. As with findings at the aggregate level, concern over whether these models pick

up on signal vs. noise is at the crux of this question. However, unlike the measures of

interest in the whole-sample analysis (predominantly the BIC), the measure of interest here,

RMSR, does not incorporate measures of model parsimony. Thus there is less conclusive
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evidence within the scope of this analysis to inform questions of individual level findings’

generalizability, and further examination is required.

However, regardless of the ambiguity over whether LLPA-RE’s close fit to the data is

generally a strength or a weakness, in fitting more closely to individual data points, LLPA-

RE can at least be said to incorporate more information about each individual’s path into the

final analysis. Thus, it may be that LLPA-RE is more consistent with the goal of building

psychological science from the ”bottom-up” (Molenaar and Campbell, 2009). Whereas

psychological research has tended to be guided by the goal of finding trends that apply

to everyone in a given population, there are many processes for which whole-sample and

individual-level patterns of change are not able to be equated with one another (i.e., non-

ergodic processes; Molenaar, 2004). Perhaps, thus, a method such as LLPA-RE, which

allows a great deal of individual variation to be taken into account in the fitting of the

model for the whole sample, represents a good option for examining data under conditions

in which individual and whole-sample level trajectories cannot be equated.

The examination of model-predicted trajectories for each individual can provide some

insight into these processes at the individual level. Given that LLPA and LLPA-RE both

allow individuals to vary according to a greater number of shapes than a parametric mixture

model or a latent curve model, individual-level prediction may be more interesting and

informative in the LLPA framework.

As with many other individual-level analyses, it is important to consider how to make

a scientifically useful inference based on predictions for individuals, each of whom rep-

resents a very small fraction (in the current analysis, 1/1686) of the sample, which itself

is a small fraction of the population (e.g., Castro-Schilo and Ferrer, 2013). In the current

analysis, individuals were chosen for examination based on individual-level fit; however,

individuals can be chosen for examination as representative cases on the basis of whatever

is of interest to the researcher. In some cases, a relatively rare condition – for instance,
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hard drug use in a sample of young adolescents – may be of interest to the researcher; thus

one might want to plot the individual predicted plots of the few individuals who meet that

condition, and compare them to the overall sample mean trajectory. Additionally, it may be

of interest to examine the model-predicted trajectories of cases who are known to exert a

high degree of influence on the overall model (Pek and MacCallum, 2010; Sterba and Pek,

2012), in order to determine what sorts of trajectories particularly influential cases tend to

follow.

Furthermore, predicted individual trajectories based on prior probabilities of class mem-

bership given values of the covariates may be of particular interest. Methods for making

inferences about predicted trajectories based on covariate values have been developed in

the latent curve modeling literature (Preacher, Curran, and Bauer, 2006; Curran, Bauer,

and Willoughby, 2006), and it could be particularly interesting to compare predicted tra-

jectories for hypothetical individuals in LLPA based on a vector of covariates. The use of

bootstrapping can approximate confidence intervals around predicted trajectories to help

determine the point at which individuals with different values of covariates become signifi-

cantly different from one another; this can help in understanding the complicated interplay

between covariates and the outcome of interest over time.

4.4 Limitations and future directions

The current thesis introduces LLPA and LLPA-RE and compares these models to a

number of widely-used models only in their fit to one dataset. Specifically, the current

dataset represents a large, diverse group of individuals (N=1686) measured using an instru-

ment with relatively coarse gradations (with possible CES-D scores ranging from 0 to 20).

It will thus be of interest to examine the relative performance of all of these models when

either sample size is small, measurement is more precise, or both. Furthermore, in the cur-

rent study there were relatively few significant covariate effects in any model considered.

Thus, the relative power of the LLPA-based methods to detect meaningful between-person
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differences based on values of covariates remains to be seen.

A more systematic examination of the issues facing the interpretation of LLPA could

be answered using a simulation study. However, it is difficult to establish a valid sim-

ulation condition that meaningfully examines the differences between LLPA, LLPA-RE,

and comparable models. If one were to simulate data in which a mixture of trajectories

existed, mixture models would almost definitely fit better than models without a mixture

component; similarly, if one simulated data in which observations followed non-parametric

growth patterns, models which did not impose a functional form would necessarily fit bet-

ter.

What may be of interest is to compare LLPA to a variable-based method of examin-

ing trajectories according to multiple freely-estimated growth factors. In particular, it may

be interesting to examine LLPA in relation to Tuckerized curves (Tucker, 1958), or ex-

ploratory latent growth curve models, a new extension of Tuckerized curves in the SEM

framework (Grimm, Steele, Ram, and Nesselroade, 2013). In disaggregating the overall

trajectory into multiple, non-parametric growth curves, this method allows for a similarly

flexible representation of growth to LLPA: whereas these methods decompose variability

into multiple latent variables, LLPA decomposes variability into cases. Comparing these

two approaches may be particularly interesting given the equivalency between a K-class

model and a K+1-variable factor analysis (Bartholomew and Knott, 1999). However, this

equivalency does not hold for higher-order moments, which also factor into the overall

likelihood of the data (Bauer and Curran, 2004). Thus, it may be interesting to alter the

skewness and kurtosis the multivariate distribution, and see under which other conditions

– e.g., sample size, measurement, distribution of the dependent variable – each of these

models provides a better fit to the data.

Despite these limitations and need for future research, the current thesis represents the

introduction of a model which may be particularly useful for making both whole-sample
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and individual-level inferences in longitudinal data. By disaggregating the indicators of a

latent profile analyis into time-invariant level and time-varying shape, the LLPA obtains the

most flexible representation of inter- and intra-individual difference. Further, the random-

level extension of LLPA, the LLPA-RE, allows even more flexibility in inter-individual

differences. These data were applied to an empirical dataset, and assessments of fit at

the aggregate and individual levels demonstrated the advantage of LLPA and LLPA-RE

over comparable models. By examining the relative strengths and weaknesses of these

methods systematically, we can establish guidelines by which researchers can choose the

best method for their data, sample, and research goals.
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5 FIGURES AND TABLES

Table 1: Summary of models under consideration

Treatment of Growth Parameters
Functional Form of
Growth Continuous

Continuous +
Categorical

Categorical

Specified
Standard latent

curve model (LCM)
Growth mixture
model (GMM)

Semiparametric
growth model

(SPGM)

Unspecified Latent basis model
Random-effects

LLPA

Longitudinal latent
profile analysis

(LLPA)



Table 2: Percent CES-D scores present at each time point

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6
Time 1 95.8
Time 2 92.1 95.0
Time 3 86.7 86.3 89.9
Time 4 84.5 84.3 80.8 88.4
Time 5 84.1 83.9 79.8 81.2 88.0
Time 6 83.6 83.1 79.2 79.2 80.7 87.3

Note. * indicates p <.05; ** indicates p<.01; t indicates p<.10.
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Table 3: Frequency of each response at all time points, in percentage points

How often has respondent felt depressed in the past month
1 2 3 4

Time 1 3.1 7.9 53.0 36.1
Time 2 3.4 11.8 59.0 25.9
Time 3 2.9 8.2 49.5 39.4
Time 4 2.5 7.4 49.6 40.4
Time 5 3.5 10.0 52.3 34.1
Time 6 2.3 6.8 48.0 42.9

How often has respondent been a happy person in the past month
1 2 3 4

Time 1 10.1 48.2 36.5 5.2
Time 2 9.0 44.7 40.6 5.6
Time 3 8.0 50.8 35.7 5.4
Time 4 7.6 51.2 37.7 3.6
Time 5 6.6 48.7 40.4 4.2
Time 6 8.6 50.7 36.2 4.5

How often has respondent felt down or blue in the past month
1 2 3 4

Time 1 3.4 10.8 55.3 30.5
Time 2 3.3 11.0 58.4 27.3
Time 3 2.1 8.2 55.6 34.1
Time 4 1.6 7.9 54.7 35.8
Time 5 2.3 9.4 54.9 33.4
Time 6 1.9 7.0 51.3 39.9

How often has respondent felt calm or peaceful in the past month
1 2 3 4

Time 1 15.0 54.0 28.2 2.8
Time 2 13.5 53.5 30.5 2.5
Time 3 13.1 55.9 28.4 2.6
Time 4 11.9 58.3 27.5 2.3
Time 5 10.2 56.3 31.2 2.3
Time 6 12.5 56.7 29.0 1.8

How often has respondent been a nervous person in the past month
1 2 3 4

Time 1 2.0 6.1 26.2 65.7
Time 2 2.0 4.7 30.2 63.1
Time 3 0.7 4.4 25.5 69.4
Time 4 1.0 3.5 23.9 71.5
Time 5 1.3 3.9 24.8 70.0
Time 6 0.7 3.4 23.7 72.1
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Table 4: Comparative fit of all unconditional models

Latent Curve Latent Basis
– BIC Rank – BIC Rank

Equal var. 39776.508 42 Equal var. 39766.271 40
Non-equal var. 39793.388 43 Non-equal var. 39776.027 41

SPGM LLPA
Num. Classes BIC Rank Num. Classes BIC Rank

2 40432.253 50 2 40411.58 49
3 39971.609 47 3 39994.823 48
4 39836.793 44 4 39841.244 46
5 39750.211 38 5 39763.247 39
6 39705.782 35 6 39729.795 37
7 39671.196 30 7 39692.754 33
8 39662.26 29 8 39661.558 26
9 39662.218 28 9 39642.824 23

10 39661.706 27 10 39626.002 21
11 39660.285 25 11 39615.559 20
12 – 12 39604.157 16
13 – 13 39609.26 17

GMM LLPA with Freed Level
Num. Classes BIC Rank Num. Classes BIC Rank

2 39717.107 36 2 39678.352 31
3 39613.785 19 3 39588.703 14
4 39559.662 11 4 39841.244 46
5 39551.931 10 5 39470.409 9
6 39563.825 12 6 39433.466 8
7 39577.347 13 7 39406.201 7
8 39595.423 15 8 39389.746 6
9 39612.414 18 9 39374.63 3

10 39640.866 22 10 39370.838 2
11 39656.083 24 11 39359.839 1
12 39689.338 32 12 39375.843 4
13 39705.761 34 13 39384.591 5

Note. ”Equal variance” refers to homogenous residual variances for all time points; ”non-
equal variance” refers to heterogeneous residual variances across time points.
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Table 5: Comparative fit for all conditional models

Latent Curve Latent Basis
– BIC Rank – BIC Rank

Equal var. 35178.851 18 Equal var. 35139.109 13
No equal var. 35195.42 23 No equal var. 35154.36 15

SPGM LLPA
Num. Classes BIC Rank Num. Classes BIC Rank

2 35705.636 30 2 35686 29
3 35351.405 27 3 35371.517 28
4 35267.417 25 4 35278.115 26
5 35189.623 20 5 35208.934 24
6 35155.907 16 6 35182.172 19
7 35156.673 17 7 35190.611 21
8 – 8 35193.938 22

GMM LLPA with Freed Level
Num. Classes BIC Rank Num. Classes BIC Rank

2 35143.525 14 2 35099.074 12
3 35063.002 10 3 35025.469 8
4 35002.98 6 4 34993.725 5
5 35023.218 7 5 34968.272 4
6 35051.545 9 6 34954.296 3
7 35078.534 11 7 34947.11 1
8 – 8 34947.11 2

Note. ”Equal variance” refers to homogenous residual variances for all time points; ”non-
equal variance” refers to heterogeneous residual variances across time points.
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Table 6: Covariate effects for the conditional analyses

SPGM – Reference Class = 2
Male Gen. Health College White

1 −1·197∗∗(0·422) 0·069 (0·168) −1·309t (0·791) 0·217 (0·303)
3 −0·571∗∗(0·21) −0·036 (0·112) −0·225 (0·238) −0·053 (0·211)
4 0·358 (0·463) −0·004 (0·245) −1·493∗ (0·688) −0·459 (0·522)
5 −0·724t (0·405) −0·357 (0·252) −0·443 (0·394) −0·476 (0·391)
6 0·705∗∗(0·223) −0·284t (0·166) −0·31 (0·257) −0·597∗∗(0·216)

GMM – Reference Class = 4
Male Gen. Health College White

1 −1·636∗∗(0·416) 0·23 (0·162) −1·008∗ (0·499) 0·291 (0·287)
2 0·146 (0·417) 0·192 (0·21) −1·232∗ (0·547) −0·343 (0·49)
3 −0·838∗ (0·384) −0·08 (0·221) −0·542 (0·349) −0·184 (0·322)

LLPA – Reference Class = 5
Male Gen. Health College White

1 −1·163∗∗(0·388) 0·074 (0·168) −1·274 (0·779) 0·183 (0·306)
2 −0·776t (0·413) −0·376 (0·265) −0·44 (0·45) −0·493 (0·417)
3 −0·539∗∗(0·208) −0·051 (0·113) −0·196 (0·243) −0·04 (0·201)
4 0·182 (0·542) 0·013 (0·271) −1·684∗ (0·659) −0·363 (0·496)
6 0·704∗∗(0·224) −0·293t (0·164) −0·301 (0·249) −0·585∗∗(0·217)

LLPA-RE – Reference Class = 7
Male Gen. Health College White

1 −0·523 (0·603) 0·161 (0·291) −1·497∗ (0·68) 0·435 (0·527)
2 −1·498t (0·84) −0·112 (0·261) −0·791 (0·711) −0·851 (0·836)
3 −0·944∗ (0·368) 0·136 (0·209) −1·249∗∗(0·426) 0·157 (0·403)
4 −0·633 (0·382) −0·029 (0·247) −0·249 (0·404) −0·203 (0·394)
5 0·308t (0·585) 0·364 (0·221) −1·795t (1·086) −0·553 (0·487)
6 0·096 (0·513) 0·157 (0·283) −1·306∗ (0·651) −0·81 (0·691)

Note. * indicates p <.05; ** indicates p<.01; t indicates p<.10.
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Table 7: Individual RMSRCi values: Unconditional analysis

Correlation coefficients of covariates
Mean SD Female Genhealth College White Num. Missing

Latent Curve 1.37 0.687 0.006 0.088** -0.197** -0.140** 0.067**
Latent Basis 1.45 0.725 0.010 0.080** -0.197** -0.146** 0.067**
SPGM 1.47 0.666 0.033 0.108** -0.197** -0.158** 0.057*
LLPA 1.39 0.561 0.034 0.094** -0.180** -0.149** 0.009
GMM 1.44 0.641 0.028 0.090** -0.189** -0.151** 0.064**
RE-LLPA 1.23 0.455 0.051* 0.067** -0.147** -0.125** -0.022

Note. * indicates p <.05; ** indicates p<.01; t indicates p<.10.
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Table 8: Individual RMSRCi values: Conditional analysis

Correlation coefficients of covariates
Mean SD Female Genhealth College White Num. Missing

Latent Curve 1.409 0.698 0.010 0.090 -0.193** -0.136** 0.057*
Latent Basis 1.420 0.705 0.007 0.084 -0.192** -0.141** 0.053*
SPGM 1.520 0.680 0.027 0.105 -0.168** -0.121** 0.043t

LLPA 1.506 0.673 0.028 0.102 -0.160** - 0.125** 0.035
GMM 1.446 0.651 0.050t 0.080 -0.168** - 0.131** 0.057*
RE-LLPA 1.306 0.526 0.071** 0.047t -0.119** - 0.101** 0.000

Note. * indicates p <.05; ** indicates p<.01; t indicates p<.10.
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Table 9: Individual RMSRMi values: Conditional analysis

Correlation coefficients of covariates
Mean SD Female Genhealth College White Num. Missing

Latent Curve 2.245 1.018 -0.016 0.054* -0.161** -0.101** 0.041
Latent Basis 2.253 1.017 -0.023 0.052* -0.157** -0.106** 0.038
SPGM 2.245 1.017 -0.017 0.055* -0.162** -0.103** 0.041
LLPA 2.238 1.018 -0.016 0.053* -0.160** -0.104** 0.040
GMM 1.669 0.932 -0.003 0.074** -0.179** -0.116** 0.035
LLPA-RE 1.553 0.772 0.019 0.080** -0.183** -0.133** 0.050t

Note. * indicates p <.05; ** indicates p<.01; t indicates p<.10.
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Table 10: Model fit for proof-of-concept simulation

Model Num. classes BIC
Latent curve model, intercept only, equal time variances – 49679.473
Latent curve model, intercept and slope, equal time variances** – 49694.045
LLPA-RE 1 49715.123
Latent curve model, intercept only, unequal time variances – 49721.7
Latent basis model – 49744.691
LLPA-RE 2 49750.754
LLPA-RE 3 49787.871
LLPA 5 49927.437
LLPA 6 49949.162
LLPA 4 50025.623
LLPA 3 50270.141
LLPA 2 50993.47
LLPA 1 53814.501

Note: ** Denotes that the solution is not trustworthy due to probable convergence at a
local maximum.
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Figure 1: Whole-sample predicted trajectories under all unconditional models
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Figure 2: Whole-sample predicted trajectories under all conditional models
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Figure 3: Predicted trajectories for subjects at the 50th percentile of RMSR
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Figure 4: Predicted trajectories for subjects at the 75th percentile of RMSR
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Figure 5: Predicted trajectories for subjects at the 25th percentile of RMSR
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Figure 6: Predicted trajectories given gender and college attendance
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Figure 7: Predicted trajectories for proof-of-concept simulation
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