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ABSTRACT
Katherine Anne MogaRAPIDLY DISSOLVABLE PRINT MICRONEEDLES FOR THETRANSDERMAL
DELIVERY OF THERAPEUTICS
(Under the direction of Joseph M. DeSimone)

In reent years, meroneedle devicelsavebecome an attractive method to overcome the
diffusion-limiting epidermis and effectively transport therapeutics to the bddyoneedles are
arrays of microrsized projections that pierce the skin to administer drmgapallycreating
channels for the passage of a therapeutic. Biodegradable orsehtele microneedles are of
high interest due to thesafety,low devicecomplexity,andability to deliveragentof nearly
any size. Thenain limitation of biodegradablaicroneedles is their arduous manufacturing
requiring longvacuum and centrifugation steps to fill a mdltie fabrication omicroneedles
via thehighly scalable andeproducibleParticle Replication in Nowetting Templates
(PRINT®) platform has greatrpmise to expand this growing field by eliminating these obstacles
to clinical translation.

Herein, the fabrication of 100% watsoluble PRINT microneedles on flexible substrates
is demonstrated. Théidity of these devicet® load therapeutics of nemrhny size, shape, and
surface chargeé while maintaining the function of the cargo throughiobias beershown
through the encapsulation of small molecule dyes, proteins, and hydrogel nanopBRIREEE.
microneedle devices were seerpierce skin andansport cargo in botkex vivoandin vivo
studiesUtilizing optical coherence tomography, it was seen that flexible microneedle patches

increase the depth and reproducibility of needle penetrations (as compared to rigid patches). The



permeation kineticef the small molecule, protein, and particulate drug surrogfatesgh full
thickness murine skiwere investigatednicroneedles greatly increased the delivered dose of
small moleculesvhen compared to topical formulatioi&oth proteins andan@atrticles were
seen to deposit in the skin after apation with PRINT microneedles, biet permeation
kinetics throughhistissueslowed as cargo size increasB@RINT microneedle device
applicationin vivowas optimized on nude murine models, and it was shbatthese devices
efficaciously deliver small molecule drug surrogates to living tiskbe.ability of the PRINT
microneedles pierce excised human skin was shown, highlighting the capability of the
technology to transition into a clinicallglevant prduct Finally, PRINT microneedlelevices
were adapted tawo therapeuticallyelevantsystemsthedelivery of hutyrylcholinesterasas a
countermeasuragainst nerve gas overexposwed the treatment of skinvading breast
cancers by intducing chemdterapeutics via microneedldherefore gfficacious watesoluble
microneedle devices habeenmadereproducibly and quicklyia PRINT technology,

advancing the field of transdermal drug delivasya whole.
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CHAPTER 1 MICRONEEDLE TECHNOLOGY FOR THE ADVANCEMENT OF TRANSDERMAL
DRUG DELIVERY

1.1 Challenges in Drug Delivery

Every year, research laboratories in corporations and universities aim to create new
prescription drugs, ovehe-counter medications, canceeatmentsand gene therapy agents,
many of which are novel, unique molecules. Before a drug can be implemealieitcgacross
the country, it must be rigorously tested to assure its safety and effectiveness. Of the thousands
of newly developed drugs each year, less than fifty, on average, are fit to apply for approval from
the Food and Drugdministration (FDA)! Each of these represents a unique innovation, the
time and manpower of many, and often hundreds of millions of dollars. In recent history, from
2006 to 2010as few as eighteen (seen in 2007) and as many as taigr{seen in 2009, see

Figurel.1) havebeenapproved:

NME Approvals
30

25

20 B — B B =
15

10

0 - o == —

2006 2007 2008 2009 2010

Number Approved
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Figure 1.1 FDA New Molecular Entitie§NME) approved from 200@010?



However, thalelivery routeof every new drug, as well as the thousands tieg
medications, greatly impadits effectivenessinfluencing dose, biodistribution,
pharmacokinetics, and pharmacodynamidany promising new therapeutics are large
biomolecules, such as peptides, proteins, antibodies)anieic acid$ These moleules can be
too large, fragile, or insoluble for delivery by traditional routes of introduétfarhey may be
unable to overcome biological barriers, disassociate before they reach their target, or be difficult
to formulate in necessary solveRtsTherefore, large volumes of these drugs are usually
required to be effective, significantly raisingsts>* Additionally, highly cytotoxic drugs, such
as cancer therapies, can lead to harsh side effecteesecases|ower drug dosagesould be
preferral for treatment; howevethe amountequired remainguite highin order to achieve a
clinically-relevant therapeutic effect. In spite of the high levels of administered therapeutic, as

little as1% of the dosetherapy reaches soltdmors by standardgystemicdeliveryalone®

Standard delivery of drugs can be focused in four main categories: oral, inhaled,
hypodermic injection, and transdermal application. Oral drugs, commonlypplitpids are
very familiar to patients and agenerallylow cost. Fbwever, the harsh environment of the
gastrointestinal tract and likelihood of first pass metabolism by the liver limit the selection of
drugs delivered orall§Inhaled therapies allow the localized delivery of medication to the lungs
with minimal side efécts, but these generally are more costly than oral formulations.
Additionally, the technique of administratiohd ect s t he drugbds effecti ve
inhaled medications are administered by the patient otnagmed personnélHypodermic
injection (including intravascular, intramuscular, etc.) enables the delivery of sensitive
therapeutics, but they induce pain, provide opportunities for accidental needlersticks

contribute to the spread of infectious disease produce sharp, biohazandwaste>?°



Furthermoreintramuscular injections common for vaccinet do not deliver doses to the
optimum location to elicit an immune response; they penetrate into muscle, a region known to
have a lower density of immunologically sensitive céintskin®1*1® Therefore, a large

volume ofactive agenis used, leading to higher co$tansdermal patches are effective for
select timereleased drugs (like nicotine and motion sickness medications), but the epidermis
(specifically the stratum cornen) limits the diffusion of most drugs through the skifClearly,

the ability to transport therapeutics effectively into the body remains a significant challenge.

1.2 Transdermal Drug Delivery

While there are limitations to traditional transdermal diativery, which typically relies
on the passive diffusion of therapeutics through the skin, this route of administration remains
very promising. First, the gastrointestinal tract and first pass metabolism would be avoided by
introducing the therapy transaeally 21°Drug peak plasma levelarereducedcompared to
intravascular deliveryigading to decreased side effetfdso, drugs with short biological half
lives or narrow therapeutic windows could be introduced effectively within the Biially, by
introducing drugsgo the skintherapeutic exposure at the poineotrywould allow for the
treatment of local aliment8ue to the structure of the skin itsedfjstemic exposure through
lymphatic drainage via Langerhans or dermal dendritic cellslgfugion into the blood system

could be achieved.

The skin is the largest organ of the body, and is its first shield against microbial or viral
invasion?**Seen inFigure1.2, it is composed primarily of three layetise epigrmis dermis,
and subcutaneous fat® The epidermiss the outer protective barrier of the skiapproximately
150-200 pm thick? The top epidermal layer, the stratum corneum or nonviable epidEdris

pm), is comprised mainly of deakleratinrichk i n cel | s, corneocyt es;
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barrier of diffusion. Due to the densadackel, lipophilic cells layered 2d5¢e m t hi ¢ k ,
molecules larger than 5@altons Da) cannot passively breach this la§ér%14Directly below

the stratum corneuns ithe viable epidermis. While not vascularized, this layer is composed of

live skin cells and Langerhans cells, the immune cells of the epidermis. The dermal layer is much
more robust than éhepidermis, functioning as tleennective tissue between thedsimis and
subcutaneous fathe junction between the epidermal and dermal tissue is a complex

glycoprotein structure, forming a 50 nm mechanical support that anchors the twé layers.
therapeutic must pass through this structure to reach the ricbrkeifvcapillaries

approximately 200 um below the skin surface; it has been shown that therapeutic dermal reach is
indicative of systemic exposure and absorpfitnaddition, the dermal layer also houses

lymphatics, hair folliclessweat glandsand is rch in dendritic immunostimulatory cells.

Encapsulated nerve endings do reach the upper dermal layer of the skin, but it has been shown
that these receptors respond to gentle pressure, nctPain.receptors are located much deeper

in the skin, at theunction of the dermal and subcutaneous layers.
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Figure 1.2 The anatomy of the skih.



The transdermal route, therefore, has become a focus of innovative research in drug
delivery after the approval of thedt transdermal medication in 1981 (patches for the delivery
of the motion sickness drug scopolamifi&jnce then, more than thirfive transdermal
products have been approved in the URsearch labs across the country have been focusing on
how to ovecome the passive diffusion limit of the skin and widen the scope of medications that

can be delivered transdermally.

While many approaches have been published and mepleed, transdermal enhancement
methods fall into three major categories: formulati@eed, electricalhbased, andtructure
basedTablel.1). Formulatiorbased and electricallyased methods are generally described as
nonrinvasive methods of enhancemé&hfdding a chemical permeability enhancer, such as a
fatty acid or surfactant, to the drug formulation allows for lipophilic molecules to be carried
through the skin by disrupting the bilayer structure of the epidérffiBven though this method
is nortinvasive, the excipients used can irreversibly damage idereis and cause high levels

of skin irritation.

Table 1.1 Methods of enhancing transdermal delivery

Method Formulation- | Electrically- | Structure-
Based Based Based
ChemicalEnhancers X
Ultrasound X
lontophoresis X
Electroporation X
Skin Ablation X
Jet Injection X
Microneedles X




Electrically-based methods increase the permeability of the skin by exposing it to a
focused current or energy, but they are generally associated with complensiere device$.
lontophoresis drives charged or neutral drugs across the skin by applying a small, constant
electric potential to a reservoir of drug in contact with the skin. Charged drugs penetrate the skin
via electrophoretic mobility, while the elesbsmotic flow of water molecules carries in weakly
or uncharged drug molecul®8This method can be used to transport molecules up to a few
thousandDathrough the stratum corneuSkin irritation can still occur becaugmtophoresis
is not localize to this upper epidermal layer. Ultrasound increasepdhmeability of the skin
by applying a pressure wave at a frequency much highemthanis detectible by the human
ear® This disrupts the lipid structure of the stratum cornealtowing larger nelecules to
passively diffuse through the skin (up to a fimwusand Da Again, damage to the lower layers
of the skin is possible due to the heat generated from weeses. Finally, electroporation
utilizes high voltage pulses to form small, transiesreg in theskin. After undergoing
electroporation treatment, macromolecule therapies up to 40 kDdéavesuccessfully
delivered transdermalRWhile the high electrical resistance of the strattmmeum protects
deeper tissue through one treatmergetions of the therapy can cauwdmmage to the lower

tissue.

Structurebased approaches, alternately, are considered minimally invasive. Skin ablation
methods aim to physically change the structure of the skin by removing the stratum corneum,
exposing e viable epidermis and applying a drug to this layer. This can be done in a variety of
ways, from cosmetic microdermabrasion to sanding with emery papkile these methods
have shown enhanced delivery, they do leave the skin without a protective dgairest

infection after application that could invite the invasion of pathagstanjection physically



interrupts the stratum corneum by delivering a liquid or powdered drug with high pressured
compressed gas.’ A supersonic flow of gas (with a velity ranging from 10200 m/s)

penetrates deep into the dermis; when the therapeutic of interest is introduced to the stream, it is
deposited into the skin. Such needleless injections have been successful in delivering vaccines
and lidocaine, but requiresgensive equipment and show high variability in dosing accifracy.
Presently, microneedle devices are considered the most promisugjstructurebased

enhancement, demonstrating the successful delivery of small to large therapeutics both locally

and sygemically; such devices are the focus of this research

1.3 Microneedles

Microneedles are arrays of micregized projections for localized and systemic drug
delivery.Considered minimallnvasive, these devicggerce the skin,ike hypodermic needles,
creatng channels for the passage of a therapg¢sieFigure1.3).%128However thesmall size
of the microeprojectiong(typically 257 2000 um in length) allowthem to enter the skin
painlessly, for they only reach encapsulatedse endings that serve as pressure recephors.
fact, a number of studies involving human subjects have confirmed the painless nature of
microneedle devices when administered to the foréafit.Depending on their physical
geometrymicroneedlegantransporipharmaceutical agents virtually any size, from small
molecules to nanand microparticle$?2’ Tuning the lengthstrength, and geometoj the
microneedles allows them to selectividyget regions of the skin; for exampilee viable
epidermis rich in Langerhans cellgould be targeted by shorter microneedles, while longer
microneedles may deliver therapeutics todbemal vasculature and lymphattosfacilitate
systemic exposuré A dose sparing effect for the therapeutic itself iesn observed compared

to traditional transdermal patch&sAdditionally, the low complexity of microneedle devices



may enable inexpensive fabrication and patientadthinistration. Therefore, an optimized
microneedle device could offer the efficacyadfiypodermic needle with the advantages of

transdermal delivery.

Applied Formulation

Micro
Needles

Figure 1.3 Transdermal drug delivery via microneedle devices.

1.3.1 Types ofMicroneedles

While hundrels of microneedles technologies have been proposed since their first
successful use in 1998ese devicesan be grouped intwur mainconfigurations solid and
uncoated, solid and coated, hollow, and biodegrad&igere1.4).1%°In the first Figure1.4A),
described as t he h @uagseohbarehobdmicpretdehade useg tp piesca ¢ h ,
skin to create microsized holes in the epidermis; a topical drug formulation is then applied ove
the treated area to passively diffuse through the $kia.second configation Figurel.4B),
termed ficoat t thesensolid mikreaneedlenatadpostfabyicationwith a
formulationcontaining active dru§Theassembled device is theppliedto the epidermisleft
in the skin until thecoatingdissolves, and remove8hown inFigurel.4C, biodegradable
microneedles encapsulate the drug of interest into the needle matrikegrad/loads released
when the device dissolves in the skii Finally, hollow microneedles have been developed for

the introduction of a liquid drug matrix while the device remains in the skin. After application of



a hollow needle array, a pump drsdrug froman external reservoir through the skin; the device

would be removedfter dosingas shown irFigure1.4D.
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Figure 1.4 Schematics othe application strategies for themur mainconfigurations of microneedle devices. (A)
solid and uncoated, (B) solid andated(C) biodegradablgD) hollow.°

To these aims, microneedles have been made from a wide variety of materials in
numerous shapes, sizes, lengths, and configurati8f$Z-3! Predominately, the fabrication of
microneedle arrays employs manufacturing technigoasmon to the microelectronics industry,
such as injection molding, isotropic etching, bulk machining, reactive ion etching,
photolithography, and twphoton polymeration?21%32% The device material, desired
geometry, and intended therapeutic payload influences which specific fabrication technology
may be selected for device assembigure 1.5 illustrates four microneedle devices reddom
common materials (metals, silicon, and biodegradaibleatersoluble polymers) that represent

recent advances in the fieletal microneedles with an-plane geography, in which the



microneedles are fabricated via laser etchinglame with thébacking then bent to be oat-

plane for application, can be seerfFigure1l.5A. Solid silicon microneedled={gure1.5B) are
commonly made via deep reactive ion etching through a chromium?a$kn Figure1.5C, a

silicon wafer, first etched with an array of holes via deep reactive ion etching, was processed to
create a microneedle around each hole via subsequent etching, resulting in an array of hollow
silicon microneedlesrders of magnitude smaller than a hypodermic ne€dtelymeric
microneedles (carbxymethyl cellulose), made via molding technologies after the fabrication of a

master template with traditional photolithography, are showwgare1.5D.

Figure 1.5 Recent advances in microneedle technologies. (A) Metal microneedles made from etched al@minum.
(B) Solids silicon microneed|&§(C) Hollow microneedles (50am tall) shown nextd ahypodermicneed|e®® (D)
Polymeric microneedles via molding technolodfies.

Each microneedle technology is associated with its own advantages and disadvantages.
The fabrication techniques for solid metal and silicon microneedles are highly established

reproducible, but they do result in sharp, biohazardous waste after administration and have the
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potential to fragment in the body, posing immunogenic consequéttashile hollow
microneedle arrays allow the most control over dose and reduce pagitatility, they also
require removal, more sophisticated fabrication, and require pumps that raise the complexity
and cosi of the device$:*?Biodegradable and watspluble microneedle arrays eliminate the
sharp, biohazardous waste created witidsaohd hollow microneedles, eradicating potential
immunogenicity concerns and extensive dispb$di Due to the promise of biodegradable and

watersoluble microneedles, this work focuses exclusively on the development of such devices.

1.3.2 Biodegradable/Wder-soluble Microneedles

Biodegradable or watesoluble microneedles have been of great interest to the
mi croneedle community since the early 200006s,
microneedle products were reported by multiple gréfiffsThe nonbiodegradable and nen
biocompatible nature of metal and silicon have been postulated to limit the regulatory
acceptability of such devices by the FBA&here is much interest in creating microneedles made
out of materials the FDA classifies @enerdly Regarded As Safe (GRAShe reduction in
immunoinflammatory response provided by such needles, coupled with their low cost, may lead
to an easier path to marketherefore, the ideal microneedle product for market may be a
biocompatible device. Su@n apparatus is envisioned to be strong enough to penetrate the
stratum corneum effectively, inexpensive, and compatible with a wide range of drug substances.
The material should be dissolvable in aqueous environments to release its payload without
posingimmunogenic consequences. Healthy skin is only seen to-B8%Chydrated, so the
release kinetics of the encapsulatiedgdepends on the solubility of the material in such an
environment! Finally, manufacturing reproducible devices on a relevant ségdeoduction is

paramount for the success of the ideal biocompatible microneedle device.
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In recent years, this generation of microneedle devices has utilized a number of materials
to efficaciously deliver small molecules, biomolecules, and particudagmdn preclinical ex
vivo andin vivostudies. For example, tlirausnitz group has pioneered many technologies with
polymeric microneedles, such as the polyvinylpyrrolidone (PVP) devices shdviguie1.6 for
the delivery ofred fluorescent bovine serum albumin (BSARAnother watessoluble polymer,
poly(methylvinyletherco-maleic anhydride) (PVME/MA), has been used by Donretligl. to
mold microneedles for the delivery of theophylline, a hydrophilic drug with a molagalght
of 180 Da* The use of other materialsncluding carboxymethyl cellulose (CMC), poly(lactic
co-glycolic acid), and other constituenitere common for the delivery of small molecules, large
proteins, and nanoparticléBable1.2 summarizes recent advances in biodegradable and-water
soluble microneedles, demonstrating the chemical and pharmaceutical diversity of this promising
field. While such devices have shown great promise in animal miodetkiding mice, rats,
guinea pigs, and nehuman primates dissolving microneedles have only beésmnslated to
human testing with a limited number of technologfe®:4%4#*4 Hirobeet al. have applied
microneedles made fromsadium hyaluronatdextranPovidoneblend (withouttherapeutic
cargo) to the forearms of the patients to assess dissolution kinetics, skin irritability, pain, and
epidermal water loss; findings concluded that the optimized devices did not cause significant
adverse reactions in any of the test subjects tla@ group aims to begin vaccination studies as
Phase | clinical trial$! MicroCor, a dissolving microneedle patch developed by Corium
International, Inc., has progressed through Phase | safety clinical trials; they began testing these

devices for the divery of parathyroid hormone in 20£34°
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Figure 1.6 Polymer microneedle array manufactured by the Prausnitz gfoup.

Table 1.2 Recent advances in biodegsadde and watesoluble microneedles

Material Therapeutic Therapeutic Size Reference
(Cargo) (Small, Medium, Large)
PVP BSA Medium 3,6
PVME/MA Theophylline Small 42,46
Maltos Nicardiapine HCL Small 40
Human immunoglobulin G Large 44,47
CMC Litocaine HCL Small 48
CMC/PVP Ovalbumin Medium 26
Galactose BSA Medium 39
PLGA BSA Medium 49
Calcein Small 38
CMC nanoparticles Large 50
Dextran Insulin Medium 51
Human growth hormone Medium 52
Interferonalpha Medium 53
Desmopressin Large 54
Amylopedin Lysozyme Medium 11
Poly(methylvinylether] Ibuprofen Small 55
maleic acid)
Poly(acrylic acid) PLGA microparticles Large 56

The highex vivoandin vitro success of biodegradable and watgluble microneedles,

such as those developed by @ar, has led other companies such as 3M, Merck, Nano&ass,

TheraJet tset sights to commercialize this technoldd¥**°"However, due to the seemingly

low dose delivered by the patch; long, arduous manufacturing; and lack of reproducibility across

the patches, these devices are currently in the research stage only, and nho commercial
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biodegradable microneedles are currently sold on the nffk&> " Without the ability to

produce a clinicallyrelevant number of patches that maintain a reprodeisizke, shape, dose,

and configuration, these elegant devices may remain in the lab. By utilizing an inexpensive, fast,
reproducible manufacturing technology, biodegradable microneedle devices could be applied to
a number of disease models, opening the érgpainless vaccines, routine injections, and novel

cancer treatments.

1.4 Particle Replication In Non-wetting Templates (PRINT®) Technology

One way to overcome the limitations of current biodegradable microneedle fabrication
technologies (discussed ietdil in Chapter 2) may be afforded via Particle Replication In-Non
wetting Templates (PRINT) technology. The DeSimone Group developed the PRINT technique
inthemd20006s, | eading to the founding of Liquid
technology® PRINT combinesithographictechniques common ie semiconductor industry
with flexible, fluorinatedmolds, allowing for nanomaterials with precisely controlled size,
shape, chemical composition, and surface characteristics to be manuf&etftddhe PRINT
process employs a nonwetting, nonswelling mold, made from perfluoropolyether (PFPE); this
photocurable polymer has a highly fluorinated surface, which provides a nonwetting interface
that allows for organic materials to be removed cleanly. Iddaliparticles on the micrand
nanoscale can be fabricated and isolated using PRINT, adapted easily to a wide variety of
matrices**#%2 The mild conditions required allow biologic cargo to maintain its function
throughout the proce$s®® Furthermoe, PRINT s a highly scalablegurrent good

manufacturing practic§ggGMP) compliant manufacturing technology.
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Figure 1.7 Scheme depicting the PRINT procels; delivery sheet casting?) particle fabriation;(3) particle
collection;(4) particle harvesting.

A brief description of the PRINT process for nanofabrication folld®®®INT begins
after the fabrication of a master template, a silicon wafer patterned with the feature size and
shape of interestsingtraditionalphotolithayraphytechniquesPFPE(mixed with photoinitiator)
is then applied to the silicon master template and chemically-lintiesi undetultraviolet V)
light to create an elastomeric mold with cavities of the desired shape anth&dew surface
energy of the PFPE allows for it to wet the entire surface of etched silicon wafer, resulting in

faithful reproduction of the master template.

With the desired mold in hanthe process begins, as showrkigurel.7. A pre-particle
solution (red)s mixed, containing host of naterialsincluding polymers, monomers, drugs,
nucleic acids, or any additional agent of interébe preparticle solution is then dispersed onto
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polyethylene terephthalate (PET), formia thin film. Residual solvent is removed by heating
the thin film, leaving a solidtate film that serves as the delivery sheet for the mold. The
uniformity of the thin film allows for particles with controlled size, shape, and chemical

composition.

Next, particle fabrication takes place, adhering the delivery sheet (red) Ré-Btemold
(green).The PFPE mold is mated to the delivery sheet and passed through a laminator; for
matricesthat require increased thermal conditions to fill, the laminatoratelde As the sheet
(red) leaves the laminator, the mold is then split from the sheet. The cavities in the mold have
been filled via capillary action with the particle matithe highly fluorinated surface of the
PFPE leads to high chemical resistanceygméing the deformation of the PRINT mold when
exposed to any residual organic solutions used wpartcle films and assuring the fidelity of
the produced patrticles to the original master template; no interconnecting or flash layer is
observed? For trermally crosdinked particles made using the heated laminator, the solution

solidifies as the mold cools to room temperaffre.

To remove the particles for use, the mold (green) is then laid on a harvesting film
(yellow) and once again passed throughléineinator. Thenharvesting filmis made from a
sacrificial adhesive, such as cyanoacrylate or low molecular weight polymers, which adhere the
particles to the harvesting surfddeds the particles are removed from the mold, they maintain
their shape andrmsgularity. The particles on the harvesting film are then treated to remove the

adhesive layer, creating a suspension of individual particles.
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1.5 Summary and Hypothesis

Employing the PRINT technique, novel microneedle devices could be made to overcome
the manufacturing, cost, and reproducibility limitations of biodegradable and-salidle
microneedles discussed above. After the creation of a master template with the ideal features of a
microneedle patch, PRINT can be optimized for a wide variety of raafraanenable to many
cargos due to the mild conditions required. Microneedle devices made from an adapted PRINT
platform could be applied to vaccine delivery, preventative medicine, cancérs;>éfelerein,
we outline the fabrication of PRINT micrordtes loaded with small molecules, proteins, and
nanoparticle drug surrogates and therapeutics. An investigation of the efficacy of these
microneedles to pierce skin (both murine and human) and transport cargo is describedethrough
vivo andin vivostudies. The determination of the kinetic parameters for drug surrogate delivery
from PRINT microneedles is investigated by varying their size, charge, and loading. Finally, two
therapeuticallyrelevant cargos are studied to outline the promise of PRINT miatlendevices:
the delivery of ntyrylcholinesterasas a countermeasure against nerve gas overexposure and the
treatment of skinnvading breast cancers by introducing chemotherapeutics (namely docetaxel)

via microneedles.

17



1.6
(1)

(2)

3)
(4)

(5)

(6)
(7)

(8)
9)
(10)

(11)

(12)

(13)
(14)

(15)

(16)

(17)

References

Food and Drug Aministration. How are drugs developed and approved?
http://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandAp
provedflefault.ntm (accessed Apr 8, 2012).

Donnelly, R. F.; Singh, T. R. R.; Morrow, D. I. J.; Woolfson, ANDicroneedle
maliated Transdermal and Intradermal Drug Delivedphn Wiley & Sons, Ltd. 2012.

Sullivan, S. P.; Murthy, N.; Prausnitz, M. Rdv. Mater.2008 20, 933938.

Enlow, E. M.; Luft, C.; Napier, M. E.; DeSimone, J. Nano Letters2011, 11(2), 808
813.

Sedhcek,H.; SeemannG.; Hoffmann,D.; CzechJ.; Lorenz,P.; Kolar, C.; BossletK.
Antibodes as Carriers of Cytotoxicit)karger. 1992.

Prausnitz, M. R.; Langer, Rlature Biotechnology2008 26, 12611268.

Asthma Attacks Treatment. http://www.asthneatmentreport.corfaccessed Apr 10,
2012).

Kim, Y.; Prausnitz, M. RDrug Deliv. and Transl. Re2011, 1, 7-12.
Kumar, R.; Philip, A. JTrop.J. Phar. Res2007, 6, 633644.

EscobaiChavez, J. J.; BonilMartinez, D.; VillegasGonzalez, M. A.; MohaTrinidad,
E.; Casashlancaster, N.; Revilld/azquez, A. LJ. Clin. Pharmacol2011, 51, 964977.

Lee, J. W.; Park, J. H.; Prausnitz, M.BRomaterials.2008 29, 21132124.

Sullivan, S. P.; Koutsonanos, D. G.; Del Pilar Martin, M.; Lee, J. W.; BamiV.;
Choi, S:0.; Murthy, N.; Compans, R. W.; Skountzou, |.; Prausnitz, MN&. Med.
201Q 16, 915920.

Lee, J. W.; Choi, SO.; Felner, E. I.; Prausnitz, M. Bmall.2011, 7, 531-539.

The Skin. http://www.technicon.ac.il/~mdcourse/274203.lfgotessed Mar 2, 2012).

Anatomy of the Skinhttp://www.woundsl1.com/news/mainstory.cfm/13/1 (accessed Mar
2, 2012).

Claudy, A. L.Annals de Dermatologie et de Venereolat§86 113 11611166.

Roberts, L. K.; Barr, L. J.; Fuller, D. H.; McMahon, C.:\Weese, P. T.; Jones, S.
Vaccine 2005 23, 4867#4878.

18



(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

Georgia Institute of Technology. Laboratory for Drug Delivery.
http://drugdelivery.chbe.gatech.edu/gallery_microneedles (aitckssed Jan 7, 2015).

Neha, A.; Kamaljit, S.; Ajay, B.; Tarun, Gt. Res. J. Pharmac012 3, 102104.

Gill, H. S.;DensonD. D.; Burris, B. A.; PrausnitzM. R. Clin. J. Pain. 2008 24, 585
594.

Hirobe, S.; Azukizawa, H.; Matsuo, K.; Zhai, Y.; Quan, Y.; Kamiyama, F.; Suzuki, H.;
Katayama, I.; Okada, N.; Nakagav@Pharm. Res2013 30, 22642674.

Coulman, SA; Anstey, A.; Gateley, CMorrissey, A.; McLoughlin, P.; Allender, C.;
Birchall, J. C.International journal of pharmaceutic2009 366, 190-200.

Lee, S. H.; Lee, H. H.; Choi, S. Korean J. Chem. En@011, 28, 19131917.

Chandrasekh&s.; lyer, L. K.; PanchalJ. P.;Topp,E. M.; CannonJ. B.;RanadeV. V.
Expert Opin. Drug Deliv2013 10, 11551170.

Zaric, M.; Lyubomska, O.; Touzelet, O.; Poux, C.:Zdhrani, S.; Fay, F.; Wallace, L.;
TerhorstD.; Malissen, B.; Henri, S.; Power, U. F.; Scott, C. J.; Donnelly, R. F.;
Kissenpfennig, AACS Nano2013 7, 20422055.

Bediz, B.; Korkmaz, E.; Khilwani, R.; Donahue, C.; Erdos, G.; Falo, L. D.; Ozdoganlar,
O. B.Pharm. Res2014 31, 117135.

Srinivas, P.; Shanthi, C. L.; Sadanandam ifernational Journal of Pharmacy
Technology201Q 2, 329344.

Davis, S. P.; Landis, B. J.; Adams, Z. H.; Allen, M. G.; Prausnitz, MoRrnal of
biomechanics2004 37, 115563.

BASF. Strategies for skin perntem enhancemenhttp://www.skincare
forum.basf.com/en/articles/skin/strategfes-skin-penetration
enhancement/2004/08/12?id=5b9a983484d66bd846df76bd6d111&mode=Detail
(accessdJan 8, 2015).

Henry, S.; McAllister, D. V.; Allen, M. G.; PrausajtM. R.J. Pharm. Sci1998 87, 922
925.

Raphael, A. P.; Prow, T. WCrichton, M. L.; Chen, X.; Fernando, G. J. P.; Kendall, M.
A. F.Small,201Q 6, 17851793.

Han,M.; Lee,W.; Lee,S. K.;Lee,S. S.Sensors and Actuators A: PhysicaD04 111,
14-17.

19



(33) Ami, Y.; Tachikawa, H.; Takano, N.; Miki, Nl. Micro/Nanolith.2011, 10, 011503.
(34) Li, B.; Liu, M.; Chen, QJ. Microlith. Microfab. Microsys2005 4, 043008.
(35) Kim, J. L.,;Allen, M. G.;Yoon,Y. K. J. Microcech. Microeng2011, 21, 035003.

(36) McAllister, D. V.; Wang P. M.; Davis S. P.; Park J. H.; CanatellaP. J.; Allen, M. G;
PrausnitzM. R. Proc. Natl. Acad. Sci. U S. 2003100, 13755 13760.

(37) Prausnitz, M. RAdv. Drug. Deliver. Re\2004 56,581-587.
(38) Park, J. H.; Allen, M. G.; Prausnitz, . Pharm. Res2006 23, 10081019.

(39) Donnelly, R. F.; Morrow, D. I. J.; Thakur, R. R. S.; Migalska, K.; McCarron, P. A,;
O6Mall ey, C. ; Drwdevl lidsPbarm2008 35, 12121254,

(40) Miyano, T.; Tobinaga, Y.; Takahiro, K.; Matsuzaki, Y.; HigsT.; Makoto, W.;
Katsumi, H.System. Biomed. Microdevic@805 7, 185188.

(41) Choi, J. W.; Kwon, S. H.; Huh, C. H.; Park, K. C.; Youn, S.3kin Res. Tecl2013 19,
349-355.

(42) Donnelly, R. F.; Garland, M. J.; Morrow, D. I. J.; Migalska, K.; ThakuiRRS.;
Majitjiya, R.; Woolfson, A. D.J. Control. Releas®01Q 147, 333341.

(43) Schoellhammer, C. M.; Blankschtein, D.; LangerERpert Opin. Drug Deliv2014 11,
393407.

(44) Bariya, S. H.; Gohel, M. C.; Mehta, T. A.; Sharma, QJ Pharm. PharmacoR012 64,
11-29.

(45) Corium. Technologyhttp://www.coriumgroup.com/Tech_MicroCor.htf@ccessed Jan
12, 2015).

(46) Donnelly, R. F.; Majitjiya, R.; Singh, T. R.; Morrow, D. |.; Garland, M. J.; Demir, Y. K,;
Migalska, K.; Ryan, E.; Gillen, D.; Scott, C. J.; Wison, A. D.Pharm. Res2011, 28,
41-57.

(47) Li, G.; Badkar, A.; Kalluri, H.; Banga, Al. Pharm. Sci201Q 99. 19311941,

(48) Vajragupta, O.; L&Ong, S.Drug Dev. Ind. Pharm1994 20, 26712684.

(49) Park, J. H.; Allen, M. G.; Prausnitz, M. R.Control. Relase.2005 104, 51-66.

20



(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

JaeHo, O.; Park, H. H.; kivoung, D. O.; Han, M.; Hyun, D. H.; Kim, C. G.; Kim, C.
H.; Lee, S. S.; Sundoo, H.; Shin, S. C.; Cho, C. lur. H. Pharm. Biopharn2008 69,
10401045.

Ito, Y. H.; Eiji, H.; Atsushi, S.; Nobuyuki,.SKanji, T.Eur. J. Pharm. Sck00§ 29, 82
88.

Ito, Y.; Ohashi, Y.; Shiroyama, K.; Sugioka, N.; TakadaBKl. Pharm. Bull.2008 31,
16311633.

Ito, Y.; Saeki, A.; Shiroyama, K.; Sugioka, N.; Takada,JKDrug. Target2008§ 16,
243-249.

Fukushima, K.; Ise, A.; Morita, H.; Hasegawa, R.; Ito, Y.; Sugioka, N.; Takada, K.
Pharm. Res2011, 28, 7-21.

McCrudden, M. T. C.; Alkilani, A. Z.; McCrudden, C. M.; McAlister, E.; McCarthy, H.
O.; Woolfson, A. D.; Donnelly, R. F. Control. Releas€014 180, 71-80.

DeMuth, P. C.; Garcieltran, W. F.; AiLing, M. L.; Hammond, P. T.; Irvine, D. J.
Adv. Funct. Mater2013 23, 161-172.

Vaxxas.http://www.vaxxas.com/nanopattbchnology(accessed Jan 18, 2015).

Rolland, J. P.; Maynor, B. W.; Euliss, L. Exner, A. E.; Denison, G. M.; DeSimone, J.
M. J. Am. Chem. So2005,127, 1009610100.

Merkel, T. J.; Jones, S. J.; Herlihy, K. P.; Kersey, F. R.; Shields, A. R.; Napier, M. E.;
Luft, J. C.; Wu, H.; Zamboni, W. C.; Wang, A. W.; Bear, J. E.; DeSim&né, Proc.
Natl. Acad. Sci. U. S..R011 108 586:591.

Canelas, D. A.; Herlihy, K. P.; DeSimone, J.Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol2009 1, 391-404.

Herlihy, K. P.; Nunes, J.; DeSimone, J. Mangmuir.2008 24, 84218426

Perry J. L.; Reuter, K. G.; Kai, M. P.; Herlihy, K. P.; Jones, S. W.; Luft, J. C.; Napier,
M.; Bear, J.E.; DeSimone, J. Mano Lett2012 12, 53045310.

Gratton, S. E. A; Ropp, P. A; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.;

DeSimone, JM. Proc. Natl. Acad. Sci. U. S. 2008 105, 11613 11618.

Moga, K. A.; Bickford, L. R. ; Geil, R. D.; Dunn, S. S.; Pandya, A. A.; Wang, Y.; Fain, J.

H. : Archul et a, C. F. : Addvdterj2013 25, 58605066.

21

De Si



CHAPTER 2 FABRICATION AN D CHARACTERIZATION OF PRINT MICRONEEDLE PATCHES

2.1 Introduction

In assessing the limitations of watasluble or biodegradable microneedles across the
field, it is apparent that many devices are manufactured in a way that fundamentally restricts the
advancenent of the field as a whole. Traditionallyptegradable microneedles are made by
filling a mold with a matrix containing the drug of interest; generally, multiple vacuum and
centrifugation steps are required to completely fill the molds, arduous k&tpsad to lengthy
fabrication times and pose issues to segenanufacturing® A thick substrate, or backing
layer, is attached to the array of microneedles to form a patien.preparing microneedle
patches, they generally are administered as showigure2.1A. Conventionally, the
microneedle patch is applied topically to pierce the skin and penetrate into the viable epidermis
ordermisdepending on the physical dilasgcoulitiesns of
the entirety of the needle does not enter the $Kime needles are left in the skin for the duration
of the treatment period, from minut@sin) to hours(h), and the substrate is then removed,
extracting all parts of the needle thav@anot yet dissolved (usuallyZ0% of each
microneedle):*>° Consequently, a portion of the drug contained in the patch is removed, leading

to a lower delivered dose than what was intended for the device.
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Figure 2.1 Schematics of the applications of traditional biodegradable microneedles made using PRINT. (A) The
needles and substrate (red) are inserted into the skin (top layer = epidermis, middle layer = dermis, bottom layer =
subcutaneous fat). THecking is then removed. (B) The needles (red) and substrate (yellow) are inserted into the
skin. The backing is then dissolved with tap water.

To overcome the barriers in fabrication of microneedles seen previously, we have created
microneedle arrays gy Particle Replication In Newetting Templates (PRIN®) technology,
as described in Chapterl.n summary, this t-dotwvndgmet hodbobhe:
lithography with traditional polymerization to create reproducible features on thearaho
micro-scale with precise control of size, shape, and chemical compdsifinwide range of
materials, including biodegradable and waeluble polymers, sugars, and pure drug could be
used, and the mild conditions required allow biologic cargo totaiaiits function throughout
the process. While the process was first utilized for the fabrication of aadamicroparticles
less than 8 um, the press is aranable to the creation ofuch largemicrostructures (30400
um in height) after the fabricain of mastersn this size range via traditional photlithograpty.
PRINT allows for arrays to be made very quickly; after the desired mold is created, it can be

used to make a microneedle patch in less than 5 min for batch processes. It can be mdapted o
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any scale of production; this particular advantage will allow for patches of virtually any size to

be made affordably and quickly.

A schematic of a microneedle device made using PRINT can be seiguia2.1B.
Through this process, an array of discrete microneedles would be manufactured and collected on
a flexible,waters ol ubl e substrate. Traditional mi cr one
nail so effect, 1 n whi c butet &cmss the arrayeresolting ikthec h n e e
inability of all needles to overcome the elasticity of the epidermis and pierce tHerkin.
flexibility of the substrate allows the array of higlugnse microprojections to avoid this effect
and break the stratucorneum more efficientl§/After application, the needle patch remains in
the skin long enough to allow the polymer to dissolve or degrade, releasing its drug cargo. The
substrate would then be dissolved, leaving the entire microneedle array in the g8ks.
configuration, the entire payload of drug in the patch would be delivered. While this has been
suggested, to our knowledge, no such patches have been created to date. Herein, we demonstrate
the fabrication of 100% watesoluble microneedles on fible substrates and their ability to
load drug surrogates of nearly any size, shape, and surface charge while maintaining the function

of the cargo after manufacturing.

2.2 Results and Discussion

To adapt the PRINT process to the higloughput manufactirg of microneedle
patches, a new mold shape must be created. Initially, a master template with the features of
interest must be made. However, due to the unique shape of the intended micropréjeetions
high aspectatio square pyramids that come tsharp tipi traditionalphotolithographic
proceduresould not be utilized to create the structures, for they are not equipped to make high

aspectratio or tapered structuresinglight field masks'®’ By employing a tilted, rotated
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approach, the inteled structures can be made accurately. Unlike the master templates employed
to make PRINT nancand microparticles, though, the microneedle master templates are negative
features; a positive replicate must be made as an intermediate before ideal mbkisreated.

These polydimethylsiloxane (PDMS) replicas, showing identical dimensions to the master
templates, can be used to make perfluoropolyether (PFPE) molds, for the low surface energy of
the polymer allows it to spread across and wet the replitavasild a silicon wafet?4The

mold is then used to create PRINT microneedtegure2.2 shows Environmental Scanning

Electron Microscopy (ESEM) images of each component of the development of the PRINT

microneedle patches masters, replicas, molds, and needles.
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Figure 2.2 ESEM images of S8 Master template (A & B), PDMS template (C & D) and PFPE mold (E & F) and
PVP microneedles (G & H) made from R2 -8Unaster (200 pm squares, 200 pm spacing). Needles show
comparable lengths and tipdii. Scale bars on A, C, E, and G are 500 pum. Scale bars for B, D, F, and H are 200
pm.

2.2.1 Master Template Fabrication

Mastertemplates were first prepared using a tHtethied photolithography approach
adapted from Hagt al®181%Briefly, a polished silicon wafer was coated with an-aetiective
layer; it was seen that this layer significantly reduced backside reflections and greatly increased

the resolution of the reking master template$-igure2.3). A thick layer of negative photoresist
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(SU-8) was applied to the wafer via spin coating. Next, a mask with 200 pm x 200 pm squares
and 200 um spacing (base to base) was placedtbe SU8, and the complex was exposed to
ultra-violet (UV) light at incidence angles of 4&° (Figure2.4). Both the mask dimensions and

the incident angle of UV light determine the depth of the mold, andatkiy) the length of the
microneedled® !’ The wafer was then rotated 90° about the surface normal and exposed again; a
total of four exposures led to female master templates with sgyeamidal cavities. These
templates were imaged via ESEM to detewrtime length and tip radii of curvature that would be
achieved through replication. SeenFigure2.2A-B, the template used for this study was 360

pm in length and had tip radii of curvature under 10 pm. Thistfewgs selected based on the

desire to reach the viable epidermis after piercing the stratum corneum.

Figure 2.3 Effect of the antreflection chrome layer on a silicon wafer after UV exposi#e ESEMimage
confirming the occurrence of backside reflections without the presence of aafldion coating(B) ESEM
image showing the absence of these reflections by adding theflettion coating.

| M — aasea

Figure 2.4 Inclined, rotated photolithography schematic for making microneedle master templates-8Atoateéd

wafer is placed on a tilted stage {28°) and exposed. The substrate was then rotated 90° about the surface normal
and exposed once more. Aftetagal of four exposures, the wafer is pesposure baked (PEB) and developed,
leaving a negative master template.
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2.2.2 PDMS Replica Fabrication

A positive replica of the master template was made as an intermediate. The replicas were
fabricated using commeatdly available PDMS due to its low surface energy, ease of use, high
flexibility, and low cosf The replicas showed notable reproducibility of the master templates,

having comparable needle lengths and tip radii of curvature via EEEMr¢2.2C-D).

2.2.3 PFPE Mold Fabrication

The positive replica was then used to make PRéNMpatible molds from a
photocurable PFPE elastomer. PFPE iswetting and norswelling, resulting in molds with a
highly fluorinated surfacéhat allow for microneedles of diverse chemical compositions to be
made” ! The PFPE dimethacrylate utilized for PRINT molds of this dimension (i.e. considerably
thicker than those utilized to manufacture nanoparticles) was made in house. In summary, PFPE
dimethacrylate (M = 4 kDa) was synthesized as outlinedrheme.1 from ZDOL 4000 and

diazabicycloundecenéDBU) precursors.

CHa
H0—CHQ—CFQ—o—Echcchszoi——CFz—CHzmon HzC:T
a b + c—o
L]
ZDOL , M,, = ca. 4,000 g/mol r!)
H,C
DBU |
Pentafluorobutane H,C
40°C, 1h |
NCO
CH; o o CHy

CH3C—i:—0—-CH;_-CHE-—ﬁ—-C—'0'-CH:-CF::'O‘(CFZCFEGHCFgﬂ}‘CFz"CHz'-O—C—H—CHg—CHz—O-—C—C—CH,
a b

o

=)

*
Values of "a" and "b" depend on the Mw of the PFPE-diol; commaercially

sold by Solvay as product line "ZDOL", ZDOL has 2 terminal "OH" per
chain and can be functionalized,
Scheme2.1 Synthesis of PFPHImethacrylate
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The elastomer was cast over the replica and cured under UV light to create molds for
microneedle manufacturing. The PRINT molds are consistent with the dimensions of the
replicas, reproducibly mimicking the S®Imaster templates (seen via ESEMjure2.2E-F). It
should be noted that, based on laboratory findings, each master template can be used to make
hundreds of PDMS replicas, and each replica can be used to make f#tyeB&PE molds.

Each PFPE mdlcan be used to create at ldastmicroneedle arrays via PRINT processifg.

2.2.4 Microneedle Fabrication
2.2.4.1Substrate Development

The substrate for the microneedle backing was designed to be flexible andolaibde.
This is desirable for two reasons: 1¥aacilitate improved penetration of the stratum corneum by
avoiding the Abed of nailso effect, and 2)
to eliminate sharp, hazardous biowdst®A matrix of Luvitec VAG4, a
polyvinylpyrrolidone/polyvnylacetate blend, was selected due to its high water solubility and
biocompatibility for topical usé! Thick films of this polymer cast in methanol were not
sufficiently flexible; therefore, multiple plasticizers were studied to lower the glass transition
temperature (J) of the film to impart flexibility. In particular, triethyl citrate and trimethyl
citrate in 23 weight percentwt%) loadings showed promise for use as substrates; these films
were analyzed by thermal gravimetric analysis (TGA) and @iffigsl scanning calorimetry
(DSC). TGA studies were done to determine the 95% degradation temperature of the materials to

avoid decomposition in the DSChe DSC scans can be foursdFegure2.5.
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Figure 2.5 DSC traces for harvesting layers investigated for the flexible, vgatable harvesting layers. (A) VAG4,
(B) VA64+2% triethyl citrate (C) VA64+2%triethyl citrater0.5% fluorescein dye.

A glass transitionedmperature around 2& was seen for the triethyl citrate films with
loadings of 13%; this Ty allowed for optimal flexibility and thermal stability at room
temperatur€RT). Therefore, the blend of Luvitec VA64 in methanol and 2 wt% loading of

triethyl citrate was selected for the fabrication of optimal substrates.

2.2.4.2 PRINT Microneedle Fabrication

While PRINT can be applied to fabricate microneedles out of a wide variety of chemical
compositions, polyvinylpyrrolidone (PVP) was selected as the first matrstdidy. This
polymer was chosen because it is highly water soluble, has a high tensile strength, and is a
biocompatible, FDA approved pharmaceutical exciptepecifically,PVP with a molecular
weight(Mw) of 10 kDa was used because it has been shioatnmtasses less than 20 kDa are
cleared efficiently from the kidney after subcutaneous injection and, therefore, are safe for

human use PVP microneedles were fabricated using the PRINT proasssptimized for the
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fabrication of structures over 1@@n (i.e. microneedles), previously unexplored through this
platform (Figure2.6). A solution of PVP in water (20 wt% total solids) was used for film

casting; the solution was cast onto plastic sheets and left ford2$-48 h The film was then

mated to the PRINPFPE microneedle mold and passadugh a heated niRue to the non

wetting characteristic of the PFPE molds, excess PVP was wicked away after passage through
thenip, leaving arrays of discrete micron&sithat were harvested onto the flexible substrates.
Fabricated patches contained approximab@§-700 needles; however, the PRINT process is
highly scalable for costffective manufacturing, enabling patches of virtually any size to be

created affordalyland quickly*®

Figure 2.6 Schematic of the PRINT process for making microneedles, including the fabrication of individual
microneedles and harvesting onto the flexible, watduble substrate. (A) Alm of PVP (red) is mated to a
perfluoropolyether mold (green) and passed through a heated niid8698. The filled mold is then separated
from the film. (B) The filled mold is mated to a flexible, waseduble substrate (yellow) for harvesting argged
through a heated nip at 88. After separation, a microneedle array on the substrate remains.

The microneedles wetbencharacterized by ESEMF(gure2.2G-H). Microneedles

demonstrated remarkable reprodiidyy with bases measuring 195.1 + 4.4 um, lengths of 361.4
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+ 5.7 um, and tip radii of curvature of 9.93 £ 1.7 une(b5). These dimensions also closely
mimic the master template, indicating that the microneedles retained their original shape and
sharpnas throughout processing. The flexibility of the array can be sde@gune2.7. The rigid
microneedles remained intact after the gentle bending of the array by hand. Both the
microneedles and the substrate werensto dissolve rapidly in the presence of a few drops of
water; after Gnin, the device was completely dissolved. Therefore, novel 100%-saltdyle
microneedle patches on flexible substrates can be made quickly and reproducibly via PRINT

processing.

Figure 2.7 Array of PRINTed PVP microneedles harvested on engineered flexible substrate.

2.2.5 Drug Surrogate Loading into Microneedles

To explore the versatility of the PRINT microneedle platforaes well aghe
fundamentaéx vivokinetic release profiles and vivo biodistribution of possible therapeutics
a number of Adrug surrogateso were | oaded int
dyes to proteins to nanoparticles also made via PRINT. Ais@d, the size of the cargo
delivered via microneedles is determined by the size of the channels created by the needles
themselves? Since PRINT microneedles serve as both a means to physically create channels
through the skin as well as the method aylpad delivery, any cargo that can be incorporated
into the PRINT microneedles can, in concept, be delivered via the devices. We have established
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