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ABSTRACT 
 

SOPHIA T. PAPADEAS: Relationship of ERK1/2 Phosphorylation to D1 Dopamine 
Receptor Activation, Behavioral Sensitization, and Structural Plasticity in the 

Neonate 6-Hydroxydopamine-Lesioned Rat 
 

(Under the direction of George R. Breese, Ph.D.) 
 
 

Repeated administration of the D1-dopamine receptor agonist SKF-38393 to adult 

rats lesioned with 6-hydroxydopamine (6-OHDA) as neonates results in increasingly 

greater behavioral responsiveness with each dose, a phenomenon known as “priming of 

D1 receptor sensitivity.” This dissertation examines the role of the extracellular signal-

regulated kinase 1/2 (ERK), an intracellular mediator of signal transduction, in D1-

dopamine receptor activation, priming of behavioral sensitivity, and structural plasticity 

in the neonate-lesioned rat. Using immunohistochemistry, I found that repeated 

administration of SKF-38393 produced a prolonged increase in phosphorylated 

(phospho-) ERK in the medial prefrontal cortex (mPFC) of neonate-lesioned rats. A 

corresponding increase in the phosphorylation of CREB (cyclic AMP-response element 

binding protein), a downstream target of ERK signaling, implied a functional 

consequence for the prolonged ERK activation in mPFC. Pretreatment with the D1 

antagonist SCH-23390, but not the 5-HT2 antagonist ketanserin, prior to each dose of 

SKF-38393 blocked the persistently increased phospho-ERK. The competitive and non-

competitive NMDA receptor antagonists MK-801 and CGS-19755, which inhibit the 

induction of behavioral sensitization in neonate-lesioned rats, also blocked the increased 
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phospho-ERK. In addition, intracerebroventricular (ICV) and systemic administration of 

SL327 or PD98059, inhibitors of the upstream ERK activator MEK (mitogen-activated 

protein kinase/extracellular signal-regulated kinase kinase 1/2), prior to each SKF-38393 

treatment eliminated mPFC phospho-ERK. Computer-monitored activity chambers and 

visual observation both revealed that the global MEK inhibition increased horizontal 

behavior and decreased certain stereotyped behaviors after an additional sensitizing dose 

of SKF-38393. In addition, intra-mPFC infusions with PD98059 only decreased 

stereotyped behaviors in primed animals. Finally, using immunohistochemistry for 

MAP2 combined with recombinant adenovirus (AAV) transduction of green fluorescent 

protein (GFP) in mPFC neurons, I found that repeated administration of SKF-38393 

produces robust, long-lasting changes in the morphology of dendrites in mPFC of 

neonate-lesioned rats. Pretreatment with SL327 and PD98059 prevented these changes, 

suggesting that the alterations in dendritic morphology require ERK pathway activation. 

Collectively, these results demonstrate that D1 and NMDA receptors cooperatively 

produce prolonged ERK pathway activation in mPFC of primed neonate-lesioned rats, 

and suggest that persistent ERK phosphorylation in mPFC plays a pivotal role in long-

lasting behavioral and structural adaptations in these animals.  
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CHAPTER I.  BACKGROUND AND SIGNIFICANCE 
 

The Neonate 6-Hydroxydopamine (6-OHDA)-Lesioned Rat Model 

Administration of the neurotoxicant 6-hydroxydopamine (6-OHDA), with 

desmethylimipramine pretreatment, to adult and neonate rats results in the selective 

destruction of dopamine-containing neurons (Smith et al., 1973), and enhances the 

behavioral effects of dopamine agonists (Ungerstedt, 1971a,b; Uretsky and Schoenfeld, 

1971; Hollister et al.,1974, 1979; Creese and Iversen, 1973). Rats lesioned with 6-OHDA 

as neonates (neonate-lesioned) have increased susceptibility for aggression, 

hyperexcitability, and self-injurious behavior in response to mixed D1/D2 receptor 

agonists L-DOPA and apomorphine (Breese et al., 1984a,b). These behaviors are similar 

to those observed clinically with Lesch-Nyhan syndrome (LNS), a developmental 

disorder characterized by reduced brain DA, choreoathetoid movements, and compulsive 

self-injurious behavior (Lesch and Nyhan, 1964). The susceptibility for self-injurious 

behavior observed in neonate-lesioned rats is not present in rats lesioned with 6-OHDA 

as adults, the latter of which mimic Parkinson’s disease (Breese et al., 1984a,b; Marsden, 

1984). Thus, the neonatal rat brain must retain sufficient plasticity to allow for the 

development of compensatory mechanisms that attenuate, to some degree, the debilitating 

effects of dopamine depletion.   

 

 



D1 Receptor-Mediated Priming of Neonate 6-OHDA-Lesioned Rats 

 The administration of the partial D1 receptor agonist SKF-38393 to neonate-

lesioned rats leads to a profound increase in locomotor activity at doses which have no 

effect in unlesioned animals. Breese and colleagues (1984a) made the initial observation 

that multiple treatments with SKF-38393 leads to progressively greater locomotor 

responses in neonate-lesioned rats (a priming effect). Criswell et al. (1989) further 

investigated the enhanced sensitivity of D1 receptors following repeated agonist 

administration to these animals. These researchers found that the priming effect could 

still be seen as a drug-induced locomotor increase 6 months after the final dose in the 

repeated SKF-38393 treatment. Additionally, the progressive increase in sensitivity to 

repeated SKF-38393 treatments occurred not only with respect to increased locomotor 

activation, but also increased the incidence of stereotyped behaviors. These included 

sniffing, licking, grooming, digging, rearing, head nodding, paw-treading, and taffy 

pulling (coordinated movement of front paws toward the mouth and then away from the 

body). From studies involving intraaccumbens and intrastriatal antagonist-induced 

suppression of behaviors, enhanced locomotor effects could be attributed mainly to 

activation of D1 receptors in the accumbens, and stereotypies to activation of D1 receptors 

in either the accumbens or the striatum (Breese et al., 1987). Further experiments found 

that a classical conditioning phenomenon, whereby drug effects are conditioned to a 

particular environment, was not responsible for the priming phenomenon. Rats that 

received initial SKF-38393 treatments in either the same or a different environment from 

the one used for testing locomotor activity displayed the same degree of sensitization 

(Criswell et al., 1989). 
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 Administration of a D2 agonist to neonate-lesioned rats produced little or no 

reflection of a priming mechanism, in that repeated systemic administration of the D2 

agonist quinpirole had no notable effects on locomotor and stereotyped activities in 

neonate-lesioned animals (Criswell et al., 1989; Brus et al., 2003). Repeated D2 agonist 

treatment, however, did result in slightly higher behavioral responses on a subsequent 

administration of SKF-38393 (Criswell et al., 1989; Brus et al., 2003). In addition, 

Criswell et al., (1989) showed that co-administration of the D2 receptor antagonist, 

haloperidol, with repeated doses of SKF-38393 did not alter the priming response, while 

co-administration of the D1 receptor antagonist SCH-23390 fully prevented the priming 

of D1 receptor-mediated behavioral responses. These results led to the conclusion that the 

abnormal behaviors observed in this animal model were exclusively due to the actions of 

the D1 receptor. Moreover, it was concluded from these data that D1 receptors are 

essential for the action of D2 receptors, a phenomenon called “coupling” of receptor 

function. 

 

N-methyl-D-aspartate (NMDA) Receptor Involvement in D1 Receptor-Mediated 

Priming of Neonate-Lesioned Rats 

 The long-lasting nature of D1 receptor-mediated priming of neonate-lesioned rats 

led to the hypothesis that this form of sensitization involves neural and behavioral 

adaptive mechanisms similar to other forms of plasticity (i.e. memory and drug addiction) 

in the central nervous system (CNS) (Criswell et al., 1989). It has been known for some 

time that several forms of learning and behavioral plasticity depend on glutamatergic 

mechanisms, which are in large part mediated by the NMDA receptor-subtype of 
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glutamate receptors (Kelley, 2004). For instance, NMDA receptor antagonists interfere 

with classical long-term potentiation (LTP), an in vitro model of learning and memory 

formation (Lynch et al., 1983; Davis et al., 1992, for review, see Riedel et al., 2003), and 

NMDA receptor activation is critical for development of psychomotor stimulant-induced 

behavioral sensitization (Karler et al., 1989; Wolf and Jeziorski, 1993; Stewart and 

Druhan, 1993). Criswell et al. (1990) demonstrated that co-administration of the non-

competitive NMDA receptor antagonist MK-801 along with priming doses of SKF-38393 

blocked sensitization of neonate-lesioned rats to repeated D1 agonist administration. 

Subsequently, it was found that the competitive NMDA receptor antagonist CGS-19755 

produced a similar effect. Since previous work demonstrated that the D1 antagonist SCH-

23390 blocked priming (Criswell et al., 1989), the concomitant activation of D1 and 

NMDA receptors appear necessary for priming to occur. The indication that NMDA 

receptor activation is also a necessary prerequisite for other responses that convey long-

term neural message suggest that these phenomena and D1 receptor-mediated priming 

may share a common biochemical mechanism. 

 

5-HT2 Receptor Involvement in D1 Receptor-Mediated Priming of Neonate-Lesioned 

Rats 

 Proliferative sprouting of serotonin (5-HT) fibers occurs in the striatum of rats 

lesioned with 6-OHDA as neonates, resulting in 5-HT fiber hyperinnervation (Breese et 

al., 1984a; Stachowiak et al., 1984; Berger et al., 1985; Luthman et al., 1987; Towle et 

al., 1989). In a study by Towle et al., (1989), 5-HT neurons did not appear to have a 

major influence on D1 agonist-induced locomotor activity and stereotyped behaviors in 
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these animals. More recent studies, however, suggested otherwise by demonstrating 

changes in striatal 5-HT2 receptor function after neonatal dopamine depletion (el Mansari 

et al., 1994; Basura and Walker, 1999; Gresch and Walker, 1999), including increased 

striatal 5-HT2A mRNA levels (Numan et al., 1995; Laprade et al., 1996; Basura and 

Walker, 1999). Laprade and colleagues (1996) showed that 5-HT2A upregulation in the 

striatum of neonate-lesioned rats was abolished after chronic treatment with the 

dopamine agonists apomorphine or SKF-38393, suggesting that D1 receptor activation 

participates in the regulation of the expression of the 5-HT2A receptor. Moreover, 

behavioral hyperactivity accompanying neonatal dopamine loss and elevated oral 

dyskinesia induced by ventral striatal infusions of SKF-38393 was blocked by 5-HT2A/2C 

receptor antagonists (Luthman et al., 1991; Gong et al., 1992; Plech et al., 1995). More 

recently, it has been demonstrated that hyperlocomotor activity induced by systemic or 

intrastriatal infusion of D1 agonist can be suppressed by co-administration with the 5-HT2 

receptor antagonist ketanserin (Breese et al., 2005; Walker et al., 2004) or the 5-HT2A 

receptor antagonist M100907 (Walker et al., 2004), but not by the 5-HT2C antagonist 

RS102221 (Walker et al., 2004). Collectively, these studies suggest that 5-HT2 receptors, 

particularly of the 5-HT2A subtype, may play a critical role in mediating striatal dopamine 

signaling and contribute to the mechanism of D1 sensitization that develops in response to 

neonatal dopamine depletion. 
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Neurobiological Mechanisms Previously Thought to Underlie D1 Receptor-Mediated 

Priming of Neonate 6-OHDA-Lesioned Rats 

 Several mechanisms potentially responsible for the priming phenomenon in 

neonate-lesioned rats have been explored (Breese et al., 1994). Results from these 

studies, however, have mostly proven to be negative. Initial efforts focused on whether an 

increase in dopamine receptor number could explain the functional supersensitivity of D1 

agonists in neonate-lesioned rats. Early investigations of [3H] spiperone binding to striatal 

tissue from neonate-lesioned rats failed to demonstrate an increase in receptor number 

(Mailman et al., 1981). Subsequent studies showed that binding characteristics (Kd or 

BBmax) for [ H] spiperone and [ H] SCH-23390 were not altered in primed neonate-

lesioned rats compared with controls (Breese et al., 1987; Duncan et al., 1987; Luthman 

et al., 1991; Dewar et al., 1990). Additional studies revealed that levels of D

3 3

1 receptors in 

striatum and nucleus accumbens measured autoradiographically (Simson et al., 1992), as 

well as D1 receptor mRNA levels, measured by in situ hybridization, were unaltered by 

neonatal lesioning (Duncan et al., 1993). Thus, alterations in D1 and D2 receptors are not 

responsible for the sensitization seen in neonate-lesioned rats repeatedly dosed with D1 

agonist. 

 The lack of any change in receptor number or agonist affinity led to speculation 

that perhaps enhanced intraneuronal second messenger levels or efficiency likewise 

accompanied D1 receptor-mediated priming of neonate-lesioned rats. It is well-known 

that D1 receptors are linked to activation of adenylyl cyclase (Kebabian and Calne, 1979). 

Adenylyl cyclase activity is stimulated by aluminum tetrafluoride (AlF4)¯ and forskolin, 

which specifically act on the stimulatory guanine nucleotide regulatory protein and 
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catalytic subunit of the enzyme, respectively (Rodbell et al., 1980; Seamon et al., 1981). 

Gong et al. (1994) demonstrated that dopamine-stimulated enzyme activity was not 

altered in the striatum of neonate-lesioned rats. Repeated SKF-38393 treatment failed to 

affect basal and dopamine-stimulated adenylyl cyclase activity in the striatum of both 

unlesioned and neonate-lesioned rats. Simson et al. (1992) also reported that SKF-38393 

stimulated adenylyl cyclase activity was not altered in the striatum of D1 agonist-primed, 

neonate-lesioned rats. Thus, D1 receptor-linked adenylyl cyclase is not a major 

determinant of the enhanced behavioral responses of neonate-lesioned rats to repeated D1 

agonist administration.  

 Finally, because earlier studies had linked the protooncogene c-fos to behavioral 

supersensitivity to L-DOPA or D1 agonists in rats either unilaterally or bilaterally 

lesioned with 6-OHDA as adults, c-fos expression was examined in neonate-lesioned rats 

after D1 agonist treatment. Expression of c-fos occurred only after a dose of D1 agonist 

that was much higher than the behaviorally active dose, and was not increased to a 

greater extent following repeated D1 agonist treatments (Johnson et al., 1992). In 

addition, NMDA receptor antagonists did not block c-fos expression in these animals 

(Johnson et al., 1992). Thus, it was concluded that c-fos was not a critical component in 

the priming phenomenon. Accordingly, the exact neurobiological mechanisms underlying 

D1 receptor-mediated priming of neonate-lesioned rats remain uncertain. 

 

Extracellular Signal-Regulated Kinase 1/2  

 Mitogen-activated protein kinases (MAPKs) are intracellular mediators of signal 

transduction that are activated in response to a variety of extracelluar stimuli (Johnson 
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and Lapadat, 2002; Pearson et al., 2001). There are three major classes of MAPKs: 

extracellular signal-regulated kinases (ERKs) (Sweatt JD, 2001), p38 (Johnson and 

Lapadat, 2002), and stress-activated protein kinase/c-Jun amino-terminal kinase 

(SAPK/JNK) (Davis, 2000). Among these, the most well-studied are the closely related 

extracellular signal regulated kinases 1 and 2 (ERK1/2). Biological processes involving 

ERK1/2 include stimulation of cell proliferation and survival, neoplastic transformation, 

neuronal differentiation and plasticity (Seger and Krebs 1995; Paul et al., 1997). Thus, 

ERK1/2 is a likely candidate for a specific neurobiological substrate of adaptive 

change(s) that might accompany the enduring behavioral responsiveness of neonate-

lesioned rats to repeated D1 receptor stimulation. 

 

D1 Receptor Activation of Extracellular Signal-Regulated Kinase 1/2 

 Activation of ERK1/2 by D1 receptors is a complex process that may involve 

multiple mechanisms (Brami-Cherrier et al., 2002; Liu et al., 2002; Gerfen et al., 2002; 

Zhen et al., 2001). Fig. 1-1 demonstrates how ERK1/2 is potentially linked to D1 

receptors with priming of D1 receptor function. Recent studies show that D1 receptor 

activation of ERK1/2 occurs via a Gs/adenylyl cyclase/protein kinase A (PKA)-

dependent pathway that causes activation of the small GTPase, Rap1 (Vossler et al., 

1987; Schmitt and Stork; 2002), and the subsequent activation of B-Raf isoform (Vossler 

et al., 1997; Yao et al., 1998; York et al., 1998). B-Raf then activates MAPK-kinase 

(MAPKK), or MEK1/2, by dual Ser/Thr phosphorylation, which then activates ERK1/2 

by dual phosphorylation within a conserved Thr-Glu-Tyr (TEY) motif in its activation 

loop (Grewal et al., 1999). A further alternative path (not shown in Fig. 1-1) is provided 
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by D1 receptor coupling to Gq/11 protein which is linked to phosphoinositide (PI) 

hydrolysis (Wang et al., 1995b; Jin et al., 2001). 

 Another possible intermediate between D1 receptors and ERK1/2 activation could 

be calcyon, a D1 receptor-interacting protein that stimulates intracellular calcium (Ca2+) 

release, a process which is known to activate the ERK1/2 signaling pathway (Lev et al., 

1995). Lev et al. (1995) showed that D1 receptors and calcyon localize to pyramidal cell 

dendritic spines, the site of excitatory amino acid input. Therefore, other 

neurotransmitters could facilitate the D1 receptor-stimulated intracellular Ca2+ release 

(Lev et al, 1995). Several electrophysiological as well as molecular models of plasticity 

require both D1 receptor activation and NMDA receptor-mediated glutamate transmission 

(Cepeda et al., 1992; Konradi et al., 1996). In fact, activation of NMDA receptors on 

their own phosphorylate ERK1/2 (Sgambato et al., 1998; Mao et al., 2004), probably via 

a signaling mechanism involving several Ca2+-sensitive kinases (Fig. 1-1) (Perkinton et 

al., 1999, 2002). Therefore, the necessary activation of NMDA receptors during D1 

receptor-mediated priming of neonate-lesioned rats (Criswell et al., 1990) might provide 

a strong contribution to ERK1/2 activation in these animals.  

As mentioned previously, 5-HT2 receptors, particularly of the 5-HT2A receptor 

subtype, appear to play a critical role in the hyperlocomotor responsiveness of neonate-

lesioned rats to D1 receptor stimulation. Although 5-HT2A receptors seem to couple to 

signaling pathways that exert long term neuronal changes (Denton and Tavare, 1995), 

very little is known about the pathway for receptor coupling to ERK1/2 in neurons. 

Quinn et al. (2002) recently demonstrated 5-HT2A receptor activation of ERK1/2 in a 

neuronal cell line through a PKA- and protein kinase C (PKC)-independent pathway 
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requiring activation of Ca2+/calmodulin/tyrosine kinases. Cross-talk between 5-HT2A, D1, 

and presumably NMDA receptors could converge upon ERK1/2 to facilitate long-term 

adaptative change(s) with priming of neonate-lesioned rats (see Fig. 1-1). 

 

Downstream Targets of Extracellular Signal-Regulated Kinase 1/2 Activation 

Potentially Involved in D1 Receptor-Mediated Priming  

 ERK1/2 targets include several cytosolic and membrane-bound proteins 

(Schaeffer and Weber 1999). Upon translocation from the cytoplasm into the nucleus, 

ERK1/2 can phosphorylate different transcription factors and thus regulate gene 

transcription (Schaeffer and Weber 1999). Both in vitro and in vivo studies have 

demonstrated that ERK1/2 has both a transient (< 60 min) and a sustained activation (> 

60 min), and that the difference in the kinetics of ERK1/2 activation corresponds to the 

distinct regulatory functions of this kinase (for review, see Marshall, 1995). The best-

studied example of this is demonstrated in PC12 cells, in which prolonged NGF-induced 

activation of ERK1/2 causes its long-lasting nuclear translocation and neuronal 

differentiation, whereas short, EGF-induced activation of ERK1/2 is unable to trigger an 

efficient nuclear translocation and instead, causes cell proliferation. A major goal of this 

dissertation was to define the time course of ERK1/2 activation in the major dopamine-

terminal regions of forebrain after repeated D1 agonist administration to neonate-lesioned 

rats.  

The most well-characterized nuclear target of ERK1/2 is the transcription factor 

cyclic AMP-Response Element Binding protein (CREB; for review, see Lonze and Ginty, 

2002). CREB can be activated by phosphorylation at Ser-133 in an ERK1/2-dependent 
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manner via stimulation of the CREB kinase Ribosomal S6 Kinase-2 (RSK2; Xing et al., 

1996) (see Fig. 1-1). The phosphorylation of CREB controls transcriptional expression 

via the cAMP and calcium response element (CRE) present in the promoter regions of 

various immediate early genes (IEGs), i.e. c-fos, junB, zif268, and Arc (for review, see 

Herdegen and Leah, 1998). CREB is thought to play a key role in regulating the 

induction of gene expression-dependent LTP (Impey et al., 1998; Roberson et al., 1999; 

Sweatt, 2001), and is involved in initiating downstream molecular events that underlie 

psychostimulant-induced behavioral sensitization (Berke and Hyman, 2000). In this 

dissertation, CREB phosphorylation was measured as a functional ‘readout’ for ERK1/2 

activation following D1 receptor-mediated priming of neonate-lesioned rats. The 

examination of ERK1/2-dependent changes in CREB after priming provided further 

evidence that ERK translocated to the nucleus to cause long-term gene transcription and 

subsequent enhancement of enduring plasticity-associated changes in these animals. 

It is also worth noting that typical transcriptional targets of ERK1/2 are genes 

encoding MAP kinase phosphatases (MKPs) (Farooq and Zhou, 2004). MKPs are dual-

specificity phosphatases, which include MKP-1 and MKP-2, localized in the nucleus, and 

MKP-3, localized in the cytoplasm. The binding of active ERK1/2 to MKPs activates 

their phosphatase catalytic domain, thus causing the dephosphorylation, or inactivation, 

of ERK1/2. This direct coupling of inactivation of ERK1/2 to activation of MKPs 

provides a tightly controlled regulation that enables these two enzymes to keep each other 

in check, thus guaranteeing fidelity and temporal control of ERK1/2 signaling. 

  Active ERK1/2 that does not translocate to the nucleus can be retained in the 

cytoplasm by association with the microtubule cytoskeleton (Reszka et al., 1995). 
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Microtubule-associated protein-2 (MAP2) is mainly found in soma and dendrites and 

plays a key role in maintaining neuronal architecture (Sanchez et al., 2000). MAP2 is also 

involved in cellular differentiation and in structural and functional plasticity (Sanchez et 

al., 2000). It is postulated that the association of ERK1/2 with microtubules is mediated 

through MAP2, and modulated by phosphorylation of MAP2 by ERK1/2 (Morishima-

Kawashima and Kosik, 1996; Reszka et al., 1997). By destabilizing MAP2-microtubule 

interactions, ERK1/2 can regulate the dynamics and organization of the neuronal 

cytoskeleton. 

 

Extracellular Signal-Regulated Kinase 1/2 and Behavioral Sensitization  

 As with priming of neonate-lesioned rats, psychostimulant-induced behavioral 

sensitization in normal rats is thought to involve alterations in the sensitivity of 

postsynaptic D1 receptors (Pierce and Kalivas, 1997a). Recent evidence suggests that 

ERK1/2 signaling plays a major role in behavioral responses related to psychostimulant-

induced behavioral sensitization (Valjent et al., 2000), and D1 receptors participate in 

ERK1/2 activation in this model (Valjent et al., 2004). For instance, blockade of ERK1/2 

signaling with SL327, a systemic inhibitor of MEK1/2, inhibits cocaine-induced 

hyperlocomotor activity in rats (Valjent et al., 2000). Likewise, ERK1/2 activation 

elicited by cocaine administration can be blocked by SCH-23390 in dorsal striatum, 

nucleus accumbens, and cingulate or prefrontal cortex. These regions are particularly 

relevant in processes involving long-term behavioral alterations (see below) (Pierce and 

Kalivas, 1997b). With respect to this data, ERK1/2 signaling in these regions could play 
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an important role in the behavioral sensitization of neonate-lesioned rats to repeated D1 

agonist treatment. 

 

Neuronal Circuitry Potentially Involved in Behavioral Sensitization of Neonate 6-

OHDA-Lesioned Rats to D1 Receptor Agonist 

Particular neuronal circuitry involved in the priming phenomenon has yet to be 

elucidated. The mapping of ERK1/2 activation following priming of neonate-lesioned 

rats will likely reveal clues as to which neuronal circuits are involved in this 

phenomenon. The following sections highlight the major circuits potentially altered by 

neonatal 6-OHDA lesioning and involved in sensitization of neonate-lesioned rats to 

repeated D1 agonist treatment. 

 

The Basal Ganglia Circuit 

The ‘classic’ model of the basal ganglia circuit proposes that basal ganglia input 

neurons in the striatum project to basal ganglia output neurons in the globus pallidus (GP) 

and substantia nigra pars reticularis (SNr) by way of direct and indirect pathways (Albin 

et al., 1989; DeLong, 1990) (Fig. 1-2A). Neurons in direct and indirect pathways exert 

inhibitory and excitatory influences, respectively, on GP/SNr neurons and regulate their 

inhibitory effect on thalamo-cortical and brainstem neurons involved in motor circuitry. 

The substantia nigra pars compacta (SNc) dopamine neurons differentially influence the 

basal ganglia system by activating D1 and inhibiting D2 receptors on striatal neurons that 

give rise to the direct and indirect pathways (Gerfen, 2000). 
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 According to this model, neonatal dopamine depletion would result in a net 

increase in the firing rate of GP/SNr neurons, in turn leading to excessive inhibition of 

thalamo-cortical projection neurons (Fig. 1-2B). Ordinarily, this would produce 

parkinsonian like motor features, as exhibited by rats with 6-OHDA-induced dopamine 

lesions in adulthood (Olanow, 2004). However, neonate-lesioned rats exhibit normal if 

not hyperactive behavior, indicating that some compensatory mechanism overcomes the 

loss of nigrostriatal dopamine in development. It is possible that this mechanism lies 

within the hyperinnervation of 5-HT fibers in dorsal striatum (Breese et al., 1984a; 

Stachowiak et al., 1984; Berger et al., 1985; Luthman et al., 1987; Towle et al., 1989), 

along with the overexpression of 5-HT2A receptors at this site (Numan et al., 1995; 

Laprade et al., 1996; Basura and Walker, 1999). 

 Exactly how the microcircuitry of the basal ganglia act in concert after repeated 

D1 agonist treatment to neonate-lesioned rats has yet to be determined. We hypothesize 

that excessive activation of direct pathway neurons, induced by repeated D1 receptor 

stimulation, amplifies the firing rate of GP/SNr neurons to an extent such that “dis-

inhibition” of inhibition of thalamo-cortical projection neurons occurs (Fig. 1-2C). 

Accordingly, an over-excitation of cortical motor regions in neonate-lesioned rats 

administered repeated doses of D1 agonist could lead to potentiated behavioral responses 

in these animals. 

  

The ‘Motive Circuit’ 

 We speculate that in neonate-lesioned rats, various neuronal circuits become 

activated in response to repeated D1 agonist treatment as a result of chronic exposure to 
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the drug. The ‘motive circuit’ is likely one of these, since it has a consequential role in 

translating biologically relevant stimuli into adaptive behavioral responses (Pierce and 

Kalivas, 1997b). The motive circuit is regarded as a ‘gain control’ mechanism, whereby it 

can regulate both the threshold and intensity of behavioral responses to a given stimulus. 

Importantly, the motive circuit is thought to play a critical role sensitization processes 

that underlie drug abuse and schizophrenia.  

 The main nuclei of the motor circuit include the prefrontal cortex (PFC), medial 

dorsal thalamus (MD), ventral pallidum (VP), nucleus accumbens (NA), and ventral 

tegmental area (VTA) (see Fig. 1-3A & B). Reciprocal connections between these nuclei 

allow the flow of information from limbic nuclei to both pyramidal and extrapyramidal 

motor systems (Pierce and Kalivas, 1997b). Dopamine arises solely from the VTA and 

innervates nuclei within the motive circuit. Glutamate inputs emanate from the thalamus 

and limbic nuclei (i.e., amygdala, hippocampus, and PFC) and widely innervate the 

motive circuit. There are reciprocal γ-amino-butyric acid (GABA) projections between 

the NA and VP. In addition, the VP is a source of GABAergic innervation to the VTA 

and MD.  

 Following neonatal dopamine lesions with 6-OHDA, there is sparing of 

dopaminergic neurons within the VTA (Snyder-Keller, 1991). These dopaminergic 

neurons may somehow overcompensate for the loss of nigrostriatal dopamine during 

development of these animals (van Oosten and Cools, 2002; van Oosten et al., 2005). In 

this respect, sensitization in neonate-lesioned rats to repeated D1 agonist treatment might 

occur because of a distributed change in neurotransmission resulting from overactive 

VTA dopaminergic neurons, which could alter the gain of the motive circuit such that a 
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greater behavioral response would be elicited by subsequent agonist treatments (see Fig. 

1-3B). 

 

Research Goals 

Dysfunction of the dopamine system has been implicated in a number of 

developmental and other disorders including LNS (Lesch and Nyhan, 1964), 

schizophrenia (Goldman-Rakic et al., 2004), and drug abuse (Hummel and Unterwald, 

2002). Sensitization processes that are thought to underlie these disorders appear to be 

dependent upon D1 receptor function (Breese et al., 1985a; Goldman-Rakic et al., 2004; 

Hummel and Unterwald, 2002). The neonate-lesioned rat provides an excellent model to 

study D1 receptor function, given that these rats, unlike normal rats, demonstrate a 

functional “uncoupling” of D1 and D2 receptors throughout development (Breese et al., 

1994). If ERK1/2 proves to be a key mediator of adaptive change in these animals, this 

system could provide regionally specific molecular targets for the development of novel 

treatments for symptoms involved in disorders related to dopamine dysregulation and 

altered D1 receptor signaling. 

The studies presented in this dissertation will explore the activation of ERK1/2 

along with its molecular and behavioral consequences in neonate-lesioned rats primed 

with repeated doses of D1 agonist. Chapter II describes the time course of ERK1/2 

phosphorylation in selected cortical and subcortical regions of the mesolimbic and 

nigrostriatal dopamine systems at acute and extended time points after repeated D1 

agonist treatment. This chapter also examines phosphorylation of transcription factor 

CREB as a functional output for ERK1/2 phosphorylation. Furthermore, this chapter 
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explores the role of neurotransmitter receptors previously established as critical for 

priming (i.e., D1, NMDA, and 5-HT2) in the phospho-ERK1/2 response. Chapter III 

determines the role of phosphorylated ERK in the behavioral sensitivity of neonate-

lesioned rats to repeated D1 agonist treatment. Chapter IV examines dendritic structure in 

these animals, and explores whether any changes in dendrites produced by repeated D1 

agonist treatment are dependent on ERK1/2 phosphorylation. Chapter V presents a 

summary of the major findings and suggestions for future research. 
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Figure 1-1: ERK1/2 integration of diverse cell-surface signaling mechanisms. AC, 

adenylyl cyclase; PLC, phospholypase C; DAG, diacylglycerol; CaM, calmodulin; 

CaMKII, calcium/calmodulin-dependent protein kinase II (Adapted from Sweatt, 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 18



 

Figure 1-2: Classic model of the basal ganglia circuit in (A) normal rats, (B) 

neonate-lesioned rats, and (C) D1 agonist-treated neonate-lesioned rats. Thickened 

lines indicate increases in neurotransmission. SNc, substantia nigra pars compacta; GP, 

globus pallidus; STN, subthalamic nucleus;  EP/SNr, entopeduncular nucleus/substantia 

nigra pars reticularis; Th, Thalamus. (Adapted from Olanow et al., 2004) 
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Figure 1-3: Simplified model of the ‘motive’ circuit in (A) normal rats and (B) D1 

agonist-sensitized (primed) rats. Thick lines indicate increases, while dotted lines 

represent decreases in neurotransmission. PFC, prefrontal cortex; MD, medial dorsal 

thalamus; VP, ventral pallidum; NA, nucleus accumbens; VTA, ventral tegmental area; 

Hipp, hippocampus; BLA, basolateral amygdala. (Adapted from Pierce and Kalivas, 

1997b and Wolf, 2002) 

 

 20



CHAPTER II. SUSTAINED EXTRACELLULAR SIGNAL-REGULATED  
   KINASE 1/2 PHOSPHORYLATION IN NEONATE 6-  
   HYDROXYDOPAMINE-LESIONED RATS AFTER   
   REPEATED D1-DOPAMINE RECEPTOR AGONIST   
   ADMINISTRATION: IMPLICATIONS FOR NMDA   
   RECEPTOR INVOLVEMENT. 
 
 
A. Introduction 
 
 Administration of the neurotoxicant 6-hydroxydopamine (6-OHDA), with 

desmethylimipramine pretreatment, results in the selective destruction of dopamine-

containing neurons (Smith et al., 1973). Rats bilaterally lesioned with 6-OHDA as 

neonates have increased susceptibility for aggression, hyperexcitability, and self-injurious 

behavior in response to dopamine (DA) receptor agonists (Breese et al., 1984a). These 

behaviors are similar to those observed clinically with Lesch-Nyhan syndrome (LNS), a 

developmental disorder characterized by reduced brain DA, choreoathetoid movements, 

and compulsive self-injurious behavior (Lesch and Nyhan, 1964). The susceptibility for 

self-injurious behavior observed in neonate-lesioned rats is not present in rats lesioned 

with 6-OHDA as adults, the latter of which mimic Parkinson's disease (Breese et al., 

1984a; Marsden, 1984). Thus, the neonatal rat brain must retain sufficient plasticity to 

allow for the development of compensatory mechanisms that attenuate, to some degree, 

the debilitating effects of DA depletion. 

 Repeated dosing with the D1-dopamine receptor agonist SKF-38393 (2,3,4,5-

tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl) to neonate-lesioned rats 

results in long-lasting behavioral sensitization, which is seen as an agonist-induced 



increase in locomotor activity for at least 6 months after the sensitization (Breese et al., 

1984a; Criswell et al., 1989). Treatment with D1 receptor antagonists blocks the 

increasing motor responsiveness (Breese et al., 1985a,b; Criswell et al., 1989, 1990), a 

finding that demonstrates a requirement for D1 receptor activation in SKF-38393-

mediated sensitization of these animals. Studies have shown that the sensitization is not 

dependent on contextual cues associated with SKF-38393 administration (Criswell et al., 

1989), nor is it related to changes in density or binding affinity of D1 receptors in striatum 

(Breese et al., 1987). 

 Central to the notion that SKF-38393-mediated sensitization of neonate-lesioned 

rats relates to behavioral and neural plasticity is the discovery that pretreatment with the 

noncompetitive NMDA receptor antagonist MK-801 ((+)-5-methyl-10,11-dihydroxy-5H-

dibenzo(a,d)cyclohepten-5,10-imine) abolishes this sensitization (Criswell et al., 1990). It 

is well established that NMDA receptor activation is critical for development of 

psychomotor stimulant-induced behavioral sensitization (Karler et al., 1989; Stewart and 

Druhan, 1993; Wolf and Jeziorski, 1993) and that NMDA receptor antagonists interfere 

with long-term potentiation, a model of learning and memory formation (Lynch et al., 

1983; Davis et al., 1992; for review, see Riedel et al., 2003). These findings have 

established a critical role for NMDA receptor-dependent mechanisms that can lead to 

persistent cellular and behavioral adaptive changes. Thus, the finding that MK-801 

antagonizes SKF-38393-mediated sensitization in neonate-lesioned rats supports 

consideration of this model as a type of "neuronal learning" (Criswell et al., 1989). 

 The discovery of specific neurobiological substrates of adaptive change(s) that 

accompany the enduring hyper-responsiveness of neonate-lesioned rats to repeated D1 
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receptor stimulation might provide insight into developmental and other disorders 

involving permanent DA-mediated sensitization, such as schizophrenia and 

psychostimulant abuse. A likely candidate, extracellular signal-regulated kinase (ERK) 

1/2, is a cell-signaling molecule thought to be critical for various forms of neuroplasticity. 

Stimulation of D1 and NMDA receptors can recruit several second messenger systems to 

activate ERK (Xia et al., 1996; Sweatt, 2001). In this respect, Gerfen et al. (2002) 

demonstrated enhanced striatal ERK phosphorylation after acute SKF-38393 

administration in unilateral adult 6-OHDA-lesioned rats. Furthermore, immediate-early 

gene transcription in DA-depleted striatum was ERK dependent, a finding that suggests 

ERK pathway involvement in adaptive changes occurring in these animals (Gerfen et al., 

2002). Neuronal ERK phosphorylation has been linked to a number of other cellular 

signaling processes (for review, see Adams and Sweatt, 2002). Among these, activation 

of the transcription factor cAMP response element-binding protein (CREB) has emerged 

as a major regulatory mechanism for activity-dependent neuroplasticity (Lonze and 

Ginty, 2002). 

 The aim of the present study was to investigate whether repeated SKF-38393 

administration to neonate-lesioned rats would result in enhanced ERK activation in the 

primary DA-terminal fields of the forebrain. Immunostaining for phosphorylated 

(phospho)-ERK revealed distinct temporal patterns in dorsal striatum (striatum), nucleus 

accumbens (accumbens), and cortex. The medial prefrontal cortex (mPFC) was unique in 

that it demonstrated remarkably sustained phospho-ERK that was accompanied by 

increased phospho-CREB immunostaining. Moreover, the prolonged mPFC phospho-

ERK immunostaining was dependent on D1 and NMDA receptor coactivation. Our data 
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strongly suggest that the sustained ERK phosphorylation observed in mPFC reflects a 

neuroadaptive change that occurs with D1 agonist-induced sensitization of neonate-

lesioned rats. 

B. Materials and Methods 

Preparation of neonate 6-OHDA-lesioned rats 

 Pregnant Sprague Dawley rats obtained from Charles River Laboratories were 

individually housed, with Wayne Lab Blox laboratory chow and water available ad 

libitum. On day 3 after delivery, male and female rat pups were anesthetized with ether 

and then administered 100 µg (free base) of 6-OHDA intracisternally (i.c.), 60 min after 

desipramine (20 mg/kg, i.p.), to protect noradrenergic neurons (Breese et al., 1984a). The 

bilateral lesion causes >90% loss of dopamine innervation into the striatum and disrupts 

basal ganglia-cortical system circuits (Smith et al., 1973). Some rats received desipramine 

(20 mg/kg, i.p.) and saline (i.c.) and served as unlesioned (sham-lesioned) controls. Rats 

treated with 6-OHDA or saline neonatally were weaned at day 30 and testing began at 40-

60 d of age. All animal use procedures were in strict accordance with the Institutional 

Animal Care and Use Committee (2003), and all efforts were made to minimize the 

number of animals used. 

 Although several lines of evidence implicate gender differences in the activation 

of ERK and CREB (Cardona-Gomez et al., 2002; Bi et al., 2003; Wade and Dorsa, 2003), 

no significant SKF-38393-dependent differences in phospho-ERK or phospho-CREB 

immunoreactivity were found between male and female rats, regardless of neonatal 

lesioning (data not shown). Thus, SKF-38393-induced phospho-ERK, ERK, phospho-
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CREB, or CREB immunoreactivity was examined in the striatum, accumbens, mPFC, and 

other selected cortical regions of both male and female rats. 

 The following sections describe all adult drug treatments, dosing regimens, and 

times of killing for animals used in this study. Data in supplemental Figure 2-1S are 

provided as an additional guide for the experimental paradigm. 

Single SKF-38393 treatment to neonate-lesioned adult rats 

  To assess the acute effects of a single dose of SKF-38393, naive neonate-lesioned 

and sham-lesioned rats were injected with 3 mg/kg SKF-38393 at 40-60 d of age and 

killed at 15 min (n = 4 per treatment group), 30 min (n = 4), 60 min (n = 4-5), 120 min (n 

= 5-12), and 360 min (n = 2) after agonist treatment. A separate group of adult neonate-

lesioned or sham-lesioned rats were administered saline, rather than agonist, and killed at 

15, 60, and 120 min to serve as controls (n = 2). Neonate-lesioned and sham-lesioned rats 

were also killed at 3 d (n = 4) and 7 d (n = 4-6) after this treatment regimen to examine 

the long-term effects of a single dose of agonist to these animals. 

Repeated SKF-38393 treatment to neonate-lesioned adult rats 

  Neonate-lesioned rats do not show maximal sensitivity to D1
 agonists unless 

exposed repeatedly to such agonists (Breese et al., 1985b; Criswell et al., 1989). 

Therefore, beginning at 40-50 d of age, neonate-lesioned rats in this treatment group 

received repeated treatments with SKF-38393 sufficient to allow the animals to reach a 

plateau of maximal behavioral supersensitivity (Criswell et al., 1989, 1990). To 

accomplish this sensitization process, lesioned animals were administered a total of 12 
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mg/kg SKF-38393, divided into three doses as follows: 6, 3, and 3 mg/kg, each spaced 1 

week apart as described previously (Breese et al., 1985a,b; Criswell et al., 1989). A 

separate group of sham-lesioned rats received the same agonist-dosing regimen. To assess 

acute effects of repeated SKF-38393 administration, animals were killed at 15 min (n = 4-

5 per treatment group), 60 min (n = 4-5), 120 min (n = 4), and 360 min (n = 2) after 

agonist treatment. To serve as controls, groups of neonate-lesioned and sham-lesioned 

rats were administered three consecutive injections of saline at weekly intervals and 

killed at 15 min (n = 2-4), 60 min (n = 2), 120 min (2-3), and 360 min (n = 2) after the 

final saline administration. To examine the chronic effects of repeated SKF-38393 

administration, animals were killed at 3 d (n = 4-6), 7 d (n = 10-15), 14 d (n = 5-8), 21 d 

(n = 6-7), or 36 d (n = 5-6) after the final agonist or saline treatment. At 36 d, a separate 

group of previously treated neonate-lesioned and sham-lesioned rats were administered 

an additional dose of SKF-38393 (3 mg/kg) or saline and killed 7 d later (n = 5-6). 

 Immediately after the final dose of SKF-38393 or saline to neonate-lesioned or 

sham-lesioned rats, behavioral activity was assessed to assure maximal responsiveness of 

neonate-lesioned rats to the agonist. Rats were placed in clear 17 x 17 inch computer-

monitored activity chambers (Med Associates, St. Albans, VT), and horizontal, vertical, 

and stereotypical activity was recorded in 5 min bins over a 3 hr testing period. ANOVA 

F test of model fit for motor activity between treatment groups yielded F(3,206) = 54.90, p 

< 0.0001 for horizontal activity, F(3,206) = 17.68, p < 0.0001 for vertical activity, and 

F(3,206) = 11.94, p < 0.0001 for stereotypical activity. As determined by post hoc analysis 

using Fisher's PLSD test (mean ± SEM), neonate-lesioned rats receiving multiple SKF-

38393 treatments demonstrated 120,486.24 ± 10,641.87 total horizontal counts, 2348.51 
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± 263.30 total vertical counts, and 15,167.80 ± 535.27 total stereotypical counts compared 

with 20,681.32 ± 2357.34 total horizontal counts (p < 0.0001), 799.09 ± 77.84 total 

vertical counts (p < 0.0001), and 11,646.37 ± 476.32 total stereotypical counts (p < 

0.0001) observed for neonate-lesioned rats injected with saline, 20,389.82 ± 2751.24 total 

horizontal counts (p < 0.0001), 1040.34 ± 118.37 total vertical counts (p < 0.0001), and 

12,371.19 ± 772.15 total stereotypical counts (p = 0.0026) observed for sham-lesioned 

rats dosed repeatedly with SKF-38393, and 20,579.15 ± 1648.53 total horizontal counts 

(p < 0.0001), 965.13 ± 71.12 total vertical counts (p < 0.0001), and 10,864.39 ± 579.04 

total stereotypical counts (p < 0.0001) observed for sham-lesioned rats injected with 

saline. The novelty of the testing environment unlikely affected our results, because no 

significant differences were found in motor activity between the SKF-38393-sensitized 

neonate-lesioned animals and a separate group of neonate-lesioned animals (not used in 

this study) that were placed in activity chambers after each of four weekly treatments 

with SKF-38393 (supplemental Table 2-1S) (p = 0.4229, horizontal activity; p = 0.3034, 

vertical activity; p = 0.5824, stereotypical activity indicating no difference with Fisher's 

PLSD test). This finding is consistent with previous data accumulated in neonate-lesioned 

rats showing that behavioral sensitization results in comparable levels of activity in 

response to SKF-38393 when the rats are repeatedly dosed in the same or a different 

environment from that in which the rats are finally tested (Criswell et al., 1989). 
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Pretreatment with the MEK inhibitor SL327 before repeated SKF-38393 

administration to neonate-lesioned rats 

 For this experimental series, SL327 ( -[amino[(4-aminophenyl)thio]methylene]-

2-(trifluoromethyl) benzeneacetonitrile) (100 mg/kg), a selective inhibitor of the upstream 

ERK activator MEK, was administered to neonate-lesioned rats 30 min before each of 

three weekly doses of SKF-38393 (3 mg/kg), with the fourth weekly treatment consisting 

of only dimethylsulfoxide (DMSO) vehicle followed by SKF-38393 (n = 5). Control 

treatment groups included (1) four weekly treatments of DMSO followed by SKF-38393 

(n = 4) and (2) four weekly treatments of DMSO followed by saline (n = 4). All rats thus 

received DMSO before the fourth and final dose of SKF or saline and were killed 7 d 

later. 

Pretreatment with the D1 antagonist SCH-23390 or the 5-HT2 receptor antagonist 

ketanserin before repeated SKF-38393 administration 

 Groups of neonate-lesioned and sham-lesioned rats each received four doses of 

SCH-23390 ((R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-

7-OL maleate; 0.3 mg/kg), ketanserin (3-[2-[4-(4-fluorobenzoyl)-1-piperidinyl]ethyl]-

2,4(1H,3H)-quinazolinedione tartrate; 2 mg/kg), or saline 15 min before each of four 

weekly doses of SKF-38393 or saline. The primary treatment groups were as follows: (1) 

SCH-23390 followed by SKF-38393 (n = 6-10) and (2) ketanserin followed by SKF-

38393 (n = 4). Control treatment groups included (1) saline followed by SKF-38393 (n = 

2-10), (2) SCH-23390 followed by saline (n = 2-10), and (3) saline followed by saline (n 

= 4-5). Rats were killed 7 d after the final drug treatment. 
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Pretreatment with NMDA receptor antagonist MK-801 or CGS-19755 before 

repeated SKF-38393 administration  

 For the noncompetitive NMDA receptor antagonist MK-801, male rats were 

dosed with 0.3 mg/kg, whereas females received 0.14 mg/kg because female rats have 

much greater responsiveness to the motor effects of MK-801 (Fleischmann et al., 1991; 

Blanchard et al., 1992; Honack and Loscher, 1993; Haggerty and Brown, 1996; Frantz 

and Van Hartesveldt, 1999). MK-801, the competitive NMDA receptor antagonist CGS-

19755 (cis-4-(phosphonomethyl)-2-piperidinecarboxylic acid; 10 mg/kg), or saline was 

administered 15 min before four weekly doses of SKF-38393 (3 mg/kg) or saline. The 

two primary treatments were (1) MK-801 followed by SKF-38393 (n = 13 per treatment 

group) and (2) CGS-19755 followed by SKF-38393 (n = 6-18 per treatment group). 

Control treatments included (1) saline followed by SKF-38393 (n = 5), (2) MK-801 

followed by saline (n = 6-8), (3) CGS-19755 followed by saline (n = 6-15), and (4) saline 

followed by saline (n = 7-10). Rats were killed 7 d after the final drug treatment. 

Drugs 

  6-OHDA hydrobromide (ICN Biochemicals, Irvine, CA) was dissolved in saline 

containing 0.5% ascorbic acid and administered intracisternally. Desipramine 

hydrochloride (Sigma, St. Louis, MO), SKF-38393 (Sigma), SCH-23390 (Schering 

Corporation, Bloomfield, NJ), ketanserin (Sigma), MK-801 (a gift from Merck, Rahway, 

NJ), and CGS-19755 (a gift from CIBA-GEIGY Corporation, Summit, NJ) were 

dissolved in saline and administered intraperitoneally. The MEK inhibitor SL327 (kindly 

provided by DuPont Pharmaceuticals Company, Boston, MA) was dissolved in 100% 
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DMSO and administered intraperitoneally (2 ml/kg) (Atkins et al., 1998; Selcher et al., 

1999; Yamagata et al., 2002). 

Immunohistochemistry: tissue preparation and immunostaining 

 Rats were deeply anesthetized with an overdose of sodium pentobarbital (100 

mg/kg), perfused transcardially for 4 min with PBS (150 mM NaCl, 100 mM sodium 

phosphate, pH 7.4) followed by 7 min of 4% phosphate-buffered paraformaldehyde (100 

mM sodium phosphate), and their brains were collected and postfixed for 24 hr at 4°C. 

Forty-micrometer-thick sections were then cut with a vibrating microtome for the 

immunohistochemistry. Standard avidin-biotin-horseradish peroxidase methods were 

used as described previously (Knapp et al., 1998, 2001). After rinsing in fresh PBS three 

times (10 min each), free-floating tissue sections were blocked in 10% normal goat serum 

and 0.2% Triton X-100 in PBS for 1 hr. Affinity-purified polyclonal tyrosine hydroxylase 

(TH) (1:4000; Calbiochem, La Jolla, CA), phospho-ERK [phospho-p44/42 MAP kinase 

(thr202/tyr204); 1:500; Cell Signaling Technology, Beverly, MA], phospho-CREB, and 

CREB (both 1:500; Cell Signaling Technology) were used to detect protein expression. 

All sections were incubated in 3% normal serum, 0.2% Triton X-100, and antisera for 48-

72 hr at 4°C with agitation. An antibody-blocking peptide to phospho-ERK containing 

phosphorylated amino acid residues threonine 202 and tyrosine 204 (Santa Cruz 

Biotechnology, Santa Cruz, CA) was used to verify specificity of the antibody. A 10-fold 

higher concentration of the blocking peptide was incubated with phospho-ERK primary 

antibody at room temperature for 30 min and then incubated with selected brain tissue as 

described above. Tissue sections were further processed using Vectastain Elite ABC kits 
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(Vector Laboratories, Burlingame, CA) per the manufacturer's instructions with 

immunochemical detection using nickel-cobalt intensification of the diaminobenzidine 

reaction product. For analysis, great care was taken to match sections through the same 

region of brain at the same level. All visible positive nuclei or cell bodies within a 10 x 10 

eyepiece reticule field were counted and expressed as number of cells per square 

millimeter of tissue for each brain site. For a single brain site, counts were averaged from 

three sections from each animal. 

Western blot analysis: tissue preparation and immunoblotting 

 For Western blotting, rats were killed by decapitation, their brains were rapidly 

removed from the skulls, and the mPFC and striatum were dissected on ice and stored at -

80°C until use. Tissues were homogenized by sonication in solubilization buffer (10 mM 

Tris-Cl, 50 mM NaCl, 1% Triton X-100, 30 mM sodium pyrophosphate, 50 mM NaF, 5 

nM ZnCl2, 100 µM Na3VO4,1mM DTT, 5 nM okadaic acid, 2.5 µg aprotinin, 2.5 µg 

pepstatin, and 2.5 µg leupeptin). Insoluble material was removed by centrifugation 

(13,000 rpm for 20 min at 4°C), and protein concentration was determined using a BCA 

protein assay kit (Pierce, Rockford, IL). Samples were mixed with Novex 2x Tris-glycine 

SDS sample buffer (San Diego, CA) containing 5% 2-mercaptoethanol and heated to 

90°C for 3 min. Aliquots of 20 µg of protein per lane were separated on 8-16% gradient 

Tris-glycine gels (Novex) under reducing conditions using the Novex Xcell II minicell 

apparatus. Proteins were transferred to polyvinylidene difluoride membranes (Immobilon-

P, Millipore, Bedford, MA). Membranes were incubated in PBS with 0.05% Tween 20 

(PBS-T), containing 1% milk powder for 2 hr at room temperature to block non-specific 
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binding. Blots were probed with an antibody corresponding to the inactive form of ERK 

(p44/42 MAPK; 1:1000; Cell Signaling Technology) or to phospho-ERK (1:1000; Cell 

Signaling Technology), followed by goat anti-rabbit IgG conjugated with horseradish 

peroxidase (Chemicon, Temecula, CA) at a 1:20,000 dilution in blocking solution for 60 

min. Membranes were then washed three times with PBS-T. Bands were detected using 

enhanced chemiluminescence (Pierce) apposed to x-ray film under nonsaturating 

conditions and analyzed by densitometric measurements using NIH Image 1.57 (public 

domain software developed by the National Institutes of Health and available at 

http://rsb.info.nih.gov/nih-image). Data are representative of four animals per treatment 

group and normalized on the basis of estimates obtained in the samples from sham-

lesioned, saline-treated controls. 

Quantification and statistical analysis 

 Details of brain region identification and cell counting strategy have been reported 

previously in our laboratory (Knapp et al., 1998). Average counts for a specific brain 

region for each animal were grouped by treatment and averaged for each time point to 

obtain the mean counts per square millimeter ± SEM for that brain site. Average cell 

counts for each defined brain region were compared within and between treatment groups 

using ANOVA. Statistical comparisons between control groups versus lesioned groups 

administered either SKF-38393 or saline were followed by post hoc tests. A more 

conservative significance level was set at p = 0.01 for all time-course experiments to 

correct for multiple comparisons, whereas the significance level for all other experiments 
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was set at the traditional 0.05 level. The Fisher's PLSD test was performed when 

comparing combinations of means. 

C. Results 

Assessment of dopamine-containing neuronal destruction in neonate-lesioned adult 

rats 

 Previous studies (Smith et al., 1973; Breese et al., 1985a,b) documented that DA 

content within the striatum, accumbens, and cortex is drastically reduced in adult rats 

lesioned as neonates with 6-OHDA. Such loss of DA-containing terminals in the striatum 

of neonate-lesioned rats is illustrated in Fig. 2-1 by the >90% reduction in TH 

immunoreactivity compared with the TH level in a sham-lesioned control animal. 

Because TH is the rate-limiting enzyme in the biosynthesis of dopamine (Nagatsu et al., 

1964), TH immunoreactivity was determined for all lesioned and control animals in this 

investigation to establish that the neonate 6-OHDA lesioning induced an adequate loss of 

DA-containing neurons. 

Acute effects of single and repeated D1 agonist SKF-38393 administration on 

phospho-ERK immunoreactivity in neonate-lesioned rats 

 Phospho-ERK was evaluated in the primary forebrain DA-terminal regions (i.e., 

striatum, accumbens, and mPFC) of neonate-lesioned rats at various time points after D1 

agonist administration. The initial 15 min time point was chosen on the basis of Gerfen et 

al. (2002), who demonstrated maximum phospho-ERK immunoreactivity in striatum of 

unilateral adult-lesioned rats 15 min after a single SKF-38393 administration. In the 
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present study, distinctive patterns of time-dependent ERK phosphorylation were observed 

across these brain regions in response to SKF-38393. 

Striatum and nucleus accumbens 

 In the striatum, both single and repeated SKF-38393 treatments to neonate-

lesioned rats produced acute, transient increases in phospho-ERK that peaked at 15 min 

after drug administration (Fig. 2-2A,D,E). Although slightly more phospho-ERK-positive 

cells were observed at 15 min in naive neonate-lesioned rats compared with rats 

sensitized with the agonist, the difference was not significant (p = 0.2096). ERK 

activation was absent in the striatum by 60 min in neonate-lesioned rats administered a 

single dose of SKF-38393; however, phospho-ERK immunoreactivity remained 

significantly elevated at this time point in rats administered repeated doses of SKF-38393 

(p < 0.0001). This prolongation of ERK phosphorylation appeared to occur most 

prominently in the dorsomedial and dorsolateral quadrants of the striatum, with lighter 

staining occurring ventrally (Fig. 2-2B). Phospho-ERK was no longer detected at 120 min 

in striatum of SKF-38393-treated neonate-lesioned rats. No phospho-ERK 

immunoreactivity was detected in striatum of neonate-lesioned rats treated with saline or 

in sham-lesioned rats treated with single or repeated doses of SKF-38393 or saline at any 

of the time points examined (Fig. 2-2A,C,F). 

 In accumbens, a single dose of SKF-38393 to drug-naive neonate-lesioned 

animals or controls failed to produce significant change in phospho-ERK at any time 

point (Fig. 2-3A,C,E,F). Neonate-lesioned rats administered repeated doses of SKF-

38393, however, exhibited significant phospho-ERK immunoreactivity at acute time 
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points before 120 min (Fig. 2-3A,B,D) compared with neonate-lesioned animals 

administered saline (p < 0.0001, 15 min; p < 0.0001, 60 min). This enhanced ERK 

phosphorylation was observed specifically in the rostral pole of the accumbens and was 

not present in the caudal shell or core of neonate-lesioned rats receiving repeated doses. 

Although the time course of accumbens phospho-ERK immunoreactivity was similar to 

that of striatum, total phospho-ERK-positive cell counts in the accumbens were 20-40% 

of striatum, and the intensity of phospho-ERK immunostaining in the accumbens was 

much lower. It is unlikely that these effects were artifacts of tissue processing, because 

representative sections of the striatum and accumbens were always stained concurrently.   

Medial prefrontal cortex 

 A baseline of 18-25 phospho-ERK-positive cells per square millimeter was 

observed consistently in mPFC and did not significantly differ among the sham or saline-

treated lesioned groups (Fig. 2-4A). Neonate-lesioned rats that received a single dose of 

SKF-38393 demonstrated a transient (0-60 min) increase in ERK phosphorylation over 

baseline in mPFC, which was similar in profile and duration to the striatum of these 

animals (compare Figs. 2-2A, 2-4A). Phospho-ERK immunoreactivity in this treatment 

group was significantly elevated over control groups only at 15 min after agonist 

administration (p < 0.0001 for Lesioned SKF vs control groups). 

 Among the dopamine-rich regions, mPFC displayed a unique, highly prolonged 

increase in phospho-ERK in neonate-lesioned rats previously administered repeated doses 

of SKF-38393. In these animals, phospho-ERK-immunoreactive cell counts were 

increased four- to sixfold, primarily within layers II-III of the mPFC. These phospho-
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ERK-positive counts remained elevated over the course of the examination (up to 360 

min) (Fig. 2-4A-H) (p = 0.0085 at 15 min, p = 0.0015 at 60 min, p < 0.0001 at 120 min 

for Lesioned R-SKF vs Lesioned SKF groups; p < 0.01 at 15, 60, and 120 min, and p < 

0.02 at 360 min for Lesioned R-SKF vs other control groups). The conspicuous 

persistence of ERK hyperphosphorylation in mPFC, but not in striatum or accumbens, 

suggests that different processes of neuroadaptation occur among these brain regions and, 

furthermore, that the adaptive changes occurring in the mPFC are more enduring.  

Sustained duration of ERK phosphorylation in mPFC of neonate-lesioned rats after 

repeated SKF-38393 administration 

 Because the persistent increase in ERK phosphorylation was observed for up to 

360 min in mPFC of neonate-lesioned rats sensitized with SKF-38393, an additional 

evaluation of the time course of the sustained ERK response in this region was 

performed. As shown in Table 2-1, control groups did not significantly differ from each 

other across time points, with phospho-ERK-positive cell counts remaining at the 

baseline level of 18-25 cells per square millimeter. Neonate-lesioned rats sensitized with 

repeated doses of SKF-38393 demonstrated a sustained increase in phospho-ERK 

immunoreactivity in mPFC that was significantly elevated over neonate-lesioned rats 

injected with saline (as well as sham-lesioned control groups) across all extended time 

points (p < 0.0001 at 3, 7, and 14 d; p = 0.0109 at 21 d; p = 0.0025 at 36 d comparing R-

Saline and R-SKF groups). Prominent phospho-ERK in mPFC of these animals persisted 

for >7 d after the final agonist treatment (Table 2-1). Beyond 7 d, sensitized phospho-

ERK immunoreactivity began to diminish, yet remained significantly elevated from that 
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observed in saline-treated neonate-lesioned and sham-lesioned rats for up to 36 d (p < 

0.01 for all comparisons). 

 As shown in Table 2-1, an additional dose of SKF-38393 administered at 36 d to 

previously sensitized neonate-lesioned rats resulted in significantly elevated levels of 

phospho-ERK immunoreactivity 7 d later (i.e., at 42 d) compared with levels observed at 

36 d (p = 0.0001). Phospho-ERK-positive cell counts in these animals were nearly 

identical to those found in neonate-lesioned rats killed 3 and 7 d after the initial SKF-

38393 dosing regimen (p  0.1110, indicating no significant difference). In neonate-

lesioned rats injected repeatedly with saline, an additional dose of saline at 36 d did not 

result in elevated phospho-ERK immunoreactivity at 7 d after injection (data not shown), 

nor did a single dose of SKF-38393 to neonate-lesioned or sham-lesioned rats (Table 2-

1). Sham-lesioned rats that received saline treatment at 36 d also did not exhibit a 

significant increase in phospho-ERK immunoreactivity at 7 d after injection (data not 

shown). 

 To ascertain that the observed immunohistochemical staining was phospho-ERK 

and not another phosphoprotein or nonspecific reaction, immunoblotting was performed 

with protein isolated from mPFC of lesioned rats administered repeated doses of SKF-

38393 or injected with saline (data not shown). Blots probed with the same concentration 

of phospho-ERK antibody used for immunohistochemistry revealed the typical doublet of 

bands near 42 and 44 kDa related to phospho-ERK1 and phospho-ERK2, respectively. 

No other bands were visualized, a finding that provides strong evidence that the elevated 

immunohistochemical staining observed in mPFC of rats dosed repeatedly with SKF-

38393 was specific for phospho-ERK. 
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 A plausible explanation for our findings with sustained phospho-ERK would be 

that total ERK protein levels were elevated chronically in the neonate-lesioned animals 

after repeated exposure to SKF-38393. Therefore, we examined whether sensitization of 

neonate-lesioned rats to SKF-38393 would produce long-lasting changes in total ERK 

protein in mPFC. Because immunohistochemistry for unphosphorylated ERK failed to 

produce a consistent signal, total ERK protein was analyzed by SDS-PAGE and 

immunoblotting of equally loaded total proteins from mPFC and striatum (blot not 

shown). No significant differences were found for optical density measurements (mean ± 

SEM) of total ERK levels among neonate-lesioned rats repeatedly dosed with SKF-38393 

(mPFC, 101.86 ± 5.42; striatum, 91.0 ± 5.59), sham-lesioned rats repeatedly dosed with 

SKF-38393 (mPFC, 95.60 ± 4.75; striatum, 91.56 ± 1.96), saline-treated neonate-lesioned 

rats (mPFC, 105.30 ± 3.30; striatum, 94.00 ± 1.12), or saline-treated sham-lesioned rats 

(mPFC and striatum standardized to 100%) at day 7 after the final injection of agonist 

(ANOVA F test of model fit: F(3,12) = 1.040, p = 0.4102 for mPFC; F(3,12) = 1.865, p = 

0.1893 for striatum). Because total ERK levels were not changed by the repeated D1 

agonist treatments in neonate-lesioned rats, the sustained increase in phospho-ERK 

immunoreactivity in mPFC could not be attributed to a sustained increase in total ERK 

protein. 

Sustained duration of ERK phosphorylation in other cortical regions of neonate-

lesioned rats after repeated SKF-38393 administration 

 Because of the extraordinarily sustained phospho-ERK response observed in 

mPFC, we examined other cortical areas of neonate-lesioned rats dosed repeatedly with 
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agonist to determine whether ERK phosphorylation was prolonged in these regions. (Fig. 

2-5, Table 2-2). Phospho-ERK immunostaining was elevated in ventrolateral orbital 

cortex (VLOC) and in layer II-III cells of cingulate (CgC), motor (MC), somatosensory 

(SSC) and piriform (PirC) cortices when examined at day 7 after the final agonist 

treatment. As shown in Table 2-2, levels of phospho-ERK immunoreactivity for each 

cortical region were significantly higher at day 7 than levels observed at days 14-21 and 

36 after the agonist treatment (p < 0.01 for all comparisons). Levels at day 7 after agonist 

treatment were also significantly higher than levels observed at all time points in saline-

treated neonate-lesioned rats and sham-lesioned controls for each cortical region 

examined (Fig. 2-5) (p < 0.01 for all comparisons). Although apparent phospho-ERK-

positive cell counts were still elevated (although not statistically significant) at 14-21 d 

after repeated agonist treatment, phospho-ERK in these cortical regions was clearly 

reduced by day 36. An additional dose of SKF-38393 at day 36 restored some phospho-

ERK immunoreactivity in these cortical regions when examined 7 d later, but these levels 

were not significantly different from levels observed at day 36 before the additional dose 

(Table 2-2). Likewise, these levels were not different from those observed in saline-

treated neonate-lesioned rats killed at day 36 or in saline-treated neonate- or sham-

lesioned rat groups administered a single dose of SKF-38393 at day 36 and killed 7 d 

after injection (data not shown). In contrast to cortex, neither the striatum nor the 

accumbens of SKF-38393-sensitized rats exhibited phospho-ERK immunoreactivity at 7 

d after the final sensitizing dose of agonist (Fig. 2-5).  

 Together, these data demonstrate that sustained phospho-ERK immunoreactivity 

occurs in multiple areas of the cortex, but not in the striatum or accumbens, of D1 agonist-
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sensitized neonate-lesioned rats. These changes are most remarkable in mPFC, where 

ERK phosphorylation lingers longest and remains most sensitive to full reinstatement 

with an additional dose of agonist. That the ERK pathway could respond to repeated D1 

agonist stimulation in such a prolonged and regionally selective manner suggests that 

specific neuroadaptive changes accompany D1 sensitization in the neonate-lesioned rat. 

With respect to the mPFC, neuroadaptive changes in this region are thought to play a role 

in diseases related to dopaminergic dysfunction such as schizophrenia, attention-deficit-

hyperactivity disorder, and drug abuse (Laruelle, 2000; Vanderschuren and Kalivas, 2000; 

Steketee, 2003; Sullivan and Brake, 2003). Because behavioral alterations in the neonate-

lesioned rat have been suggested to model each of these diseases (Schwarzkopf et al. 

1992; Stevens et al., 1996; Fahlke and Hansen 1999; Moy and Breese 2002; Davids et al., 

2003), we chose to focus most of the remainder of our study on exploring this 

phenomenon in the mPFC.  

Sustained CREB phosphorylation in mPFC associated with prolonged phospho-

ERK in neonate-lesioned rats after repeated SKF-38393 administration 

 Phosphorylation of ERK can activate the transcription factor CREB to affect long-

term gene expression (Lonze and Ginty, 2002). Thus, phosphorylated CREB potentially 

represents a functional product of the sustained ERK response after repeated dosing with 

SKF-38393 to neonate-lesioned rats. When sections from the same animals were 

immunostained concurrently, we observed a robust increase in phospho-CREB 

immunoreactivity accompanying phospho-ERK in mPFC at day 7 after repeated SKF-

38393 administration (Fig. 2-6A). To our surprise, however, increased phospho-CREB 
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immunoreactivity was observed not only in layers II-III, but throughout all mPFC layers 

(Fig 2-6B,F). When quantified across all mPFC layers, neonate-lesioned animals 

repeatedly dosed with SKF-38393 demonstrated approximately a four- to fivefold 

increase in phospho-CREB-positive cell counts (mean ± SEM; 795.07 ± 137.81) 

compared with neonate-lesioned rats injected repeatedly with saline (146.50 ± 40.28; p < 

0.0001) and sham-lesioned rats treated repeatedly with SKF-38393 (127.13 ± 12.21; p = 

0.0002) or saline (226.42 ± 78.00; p < 0.0003). Cell counts specifically in layers II-III in 

the agonist-sensitized rats exhibited nearly a ninefold increase in phospho-CREB-positive 

cell counts compared with control animals (Fig. 2-6A)(p < 0.0001 for Lesioned R-SKF vs 

Lesioned R-Saline, Sham R-SKF, or Sham R-Saline). The elevation in number of 

phospho-CREB-positive cells was not reflective of increased total CREB protein 

expression (mean values ± SEM were 343.75 ± 8.68 for Lesioned R-SKF, 319.67 ± 8.56 

for Lesioned R-Saline, and 329.38 ± 16.55 for Sham R-Saline; ANOVA F test of model 

fit: F(2,13) = 1.475; p = 0.265). Notably, only scattered phospho-CREB-positive cells were 

noted throughout the striatum and accumbens at day 7, regardless of drug treatment (Fig. 

2-6H,I). Sustained CREB phosphorylation was not observed in any other cortical regions 

examined (ANOVA F test of model fit: F(3,19) = 1.181, p = 0.345 for VLOC; F(3,19) = 

0.575, p = 0.639 for CgC; F(3,19) = 1.086, p = 0.380 for MC; F(3,19) = 1.051, p = 0.394 for 

SSC; and F(3,19)
 = 0.506, p = 0.683 for PirC). Thus phospho-CREB immunolabeling, 

unlike phospho-ERK, was restricted to mPFC. Furthermore, the multilamellar expression 

of phospho-CREB did not mirror the predominant appearance of phospho-ERK in layers 

II-III, suggesting that some, although perhaps not all, of the phospho-CREB 

immunolabeling was caused by mechanisms other than activation of ERK. 
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 Effect of MEK-inhibitor (SL327) pretreatment on sustained ERK and CREB 

phosphorylation in mPFC of neonate-lesioned rats after repeated administration of 

SKF-38393 

 The involvement of MEK in sustained ERK phosphorylation was demonstrated 

using systemic injections of SL327, a MEK inhibitor that crosses the blood-brain barrier 

(Atkins et al., 1998; Selcher et al., 1999; Yamagata et al., 2002). Phospho-ERK 

immunoreactivity was suppressed in neonate-lesioned rats pretreated with SL327 before 

each SKF-38393 administration, compared with those pretreated with vehicle (Fig. 2-7A-

C)(p < 0.0001). The number of phospho-ERK-positive cells in SL327-pretreated rats did 

not differ significantly from rats treated with vehicle alone. These data provide further 

evidence that the elevated immunostaining of mPFC cells observed in SKF-38393-

sensitized neonate-lesioned rats is indeed represented by MEK-dependent ERK 

phosphorylation.   

 We also examined the effects of SL327 pretreatment on phospho-CREB 

immunolabeling in mPFC. Phospho-CREB immunoreactivity was reduced to some extent 

throughout all layers of mPFC by pretreatment with SL327 (Fig. 2-7D,F)(p = 0.0238 for 

SL R-SKF vs R-SKF). The most dramatic suppression of phospho-CREB 

immunoreactivity by the MEK inhibitor, however, was produced in layers II-III (Fig. 2-

7D-F)(p < 0.0001 for SL R-SKF vs R-SKF), in which cell counts did not significantly 

differ from rats that were not given the agonist-sensitizing regimen. These findings are 

consistent with direct involvement of both MEK and ERK activation in sustained CREB 

phosphorylation in layers II-III, but perhaps indirect, if any, involvement in CREB 

phosphorylation in deeper layers. 
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Inhibition of sustained SKF-38393-induced ERK phosphorylation in mPFC of 

neonate-lesioned rats after pretreatment with the D1 antagonist SCH-23390 

 To determine whether the sustained phospho-ERK observed in mPFC of neonate-

lesioned rats sensitized with SKF-38393 was dependent on D1 receptors, rats were 

pretreated with the D1 antagonist SCH-23390. As shown in Fig. 2-8A and C, SCH-23390 

pretreatment to neonate-lesioned rats abrogated phospho-ERK immunoreactivity at this 

brain site (p < 0.0001 compared with Lesioned R-SKF group). The number of phospho-

ERK-positive cells for this treatment group did not differ significantly from neonate-

lesioned rats administered repeated saline injections or from sham-lesioned control 

groups. Moreover, repeated SCH-23390 treatment on its own did not enhance phospho-

ERK immunoreactivity in either neonate-lesioned or sham-lesioned rats. 

 Rats were also pretreated with the 5-HT2 receptor antagonist ketanserin to control 

for the antagonist binding properties of SCH-23390 at 5-HT2 receptors (Fig. 2-8A) 

(Bischoff et al., 1988; McQuade et al., 1988). Ketanserin was ineffective at reducing the 

persistently increased levels of phospho-ERK (p = 0.578 compared with Lesioned R-SKF 

group), indicating that the prolonged phospho-ERK observed in mPFC of SKF-38393-

sensitized neonate-lesioned rats is dependent on activation of D1 receptors. 

NMDA receptor blockade prevents the sustained ERK phosphorylation in mPFC 

induced by repeated doses of SKF-38393 to neonate-lesioned rats 

 Previous work in our laboratory has demonstrated that MK-801 inhibits SKF-

38393-induced behavioral sensitization of neonate-lesioned rats, a finding that implicates 

NMDA receptor function in adaptive processes underlying repeated SKF-38393 treatment 
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to these animals (Criswell et al., 1990). In the present study, administration of MK-801 or 

CGS-19755 to neonate-lesioned and sham-lesioned animals before repeated injections of 

saline had no effect on basal phospho-ERK immunoreactivity (Fig. 2-9E). On the other 

hand, pretreatment with MK-801 or CGS-19755 before repeated doses of SKF-38393 to 

neonate-lesioned rats resulted in marked inhibition of sustained phospho-ERK 

immunoreactivity in mPFC (Fig. 2-9A,C) (p < 0.0001 for Lesioned MK-801 R-SKF 

group vs Lesioned R-SKF group, and for Lesioned CGS R-SKF group vs Lesioned R-

SKF group). Consequently, these data point to an involvement of NMDA receptors in the 

sustained phospho-ERK response in mPFC of neonate-lesioned animals. 

D. Discussion 

 This study demonstrates the remarkably protracted course of ERK 

phosphorylation in mPFC and other cortical regions of neonate 6-OHDA-lesioned rats 

behaviorally sensitized to the effects of a D1 agonist in adulthood. Our observations 

suggest that prolonged mPFC phospho-ERK is a neurobiological substrate of long-lasting 

adaptive change in these animals, as indicated by several key findings. First, mPFC is 

unique among cortical and striatal regions, in that sustained ERK phosphorylation 

observed primarily in layers II-III declined gradually, yet remained significantly above 

control levels for at least 36 d. Second, maximal levels of phospho-ERK were restored 

fully in mPFC, but not significantly in other cortical areas, on day 42 after an additional 

dose of agonist on day 36. Furthermore, an analogous increase in phospho-CREB in 

layers II-III of mPFC, but not other cortical regions, at 7 d after the initial sensitizing 

regimen was MEK dependent. This finding suggests that a functional effect of sustained 

mPFC ERK phosphorylation is activation of CREB-dependent gene transcription. Finally, 
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the development of sustained phospho-ERK in mPFC requires both NMDA and D1 

receptor stimulation, a pattern of dependence resembling that identified in several cellular 

and behavioral neuroadaptive paradigms that have been described in cortical and striatal 

systems (for review, see Kelley and Berridge, 2002). These findings, together with the 

proposed contribution of the mPFC in the progressive and enduring behavioral effects of 

drugs of abuse (Castner and Goldman-Rakic, 2003; Steketee 2003), schizophrenia 

(Laruelle, 2000; Tzschentke, 2001), and learning and memory (Castner et al., 2000; 

Elzinga and Bremner, 2002), suggest that the D1 agonist-sensitized neonate-lesioned rat 

presents an excellent model for the study of dopamine-dependent neuroadaptations and 

their functional consequences. 

 Several studies have demonstrated that activation of D1 receptors, via a protein 

kinase A (PKA)-dependent mechanism, can phosphorylate ERK to produce adaptive 

changes in brain (Vossler et al., 1997; Yao et al., 1998; York et al., 1998; Valjent et al., 

2000). In unilateral adult 6-OHDA-lesioned rats, Gerfen et al. (2002) demonstrated 

transient ERK activation in striatum after acute D1 agonist administration, an effect 

attributed to sensitized D1 receptor-dependent responses. Consistent with this finding, the 

present study demonstrates a transient phosphorylation (<60 min) of ERK induced by a 

single dose of SKF-38393 in drug-naive neonate-lesioned rat striatum and mPFC. 

Notably, the pattern and duration of ERK phosphorylation in striatum of naive neonate-

lesioned rats administered a single dose of SKF-38393 were similar to that published by 

Gerfen et al. (2002) in unilateral adult 6-OHDA-lesioned rats. In agreement with the 

transient ERK phosphorylation, previous work has shown that a single dose of SKF-

38393 can induce Fos expression in striatum of neonate-lesioned rats (Johnson et al., 
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1992). Together with the findings of Sgambato et al. (1998) and Gerfen et al (2002), it 

appears that transient ERK activation can drive immediate-early gene induction in 

striatum. It remains a question whether transient phospho-ERK observed in the striatum 

and mPFC of neonate-lesioned rats after a single dose of SKF-38393 is sufficient to drive 

long-term gene regulation. 

 Several lines of evidence suggest that prolonged ERK activation (>60 min) is 

necessary to allow sufficient time for translocation of ERK to the nucleus, long-term gene 

transcription, and subsequent enhancement of enduring plasticity-associated changes in 

brain (for review, see Marshall, 1995). Repeated D1 agonist administration prolonged 

striatal phospho-ERK immunoreactivity nearly twofold. Conversely, in accumbens, ERK 

activation was absent with a single dose of agonist and was observed only after repeated 

treatment with SKF-38393. These findings, together with the prolonged presence of ERK 

phosphorylation in the mPFC and various other regions of cortex (VLOC, CgC, MC, 

SSC, and PirC), point to differing mechanisms of adaptation among these regions. 

Furthermore, the reinstatement of ERK phosphorylation that occurs only in mPFC 

supports a unique mechanism of adaptation in this region that can trigger rapidly the 

previous level of ERK activation on reexposure to the agonist. 

 A well characterized nuclear target for ERK action is the transcription factor 

CREB (Bourtchuladze et al., 1994; Yin et al., 1994), which is thought to play a central 

role in long-term plastic changes in brain by controlling the transcriptional expression of 

several genes (for review, see Curtis and Finkbeiner, 1999). In the present study, 

immunostaining for phospho-CREB was measured initially as a functional endpoint for 

sustained ERK activation in mPFC. Surprisingly, although phospho-CREB emerged in 
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parallel with ERK phosphorylation in layers II-III, the population of immunolabeled cells 

was more dense and widespread than those labeled with anti-phospho-ERK. In fact, 

phospho-CREB immunoreactivity appeared throughout all layers of mPFC. At this time, 

we can only speculate as to the reasons for this seeming incongruence. One obvious 

possibility is that mechanisms independent of ERK drive CREB phosphorylation. 

Although phospho-CREB in layers II-III was sensitive to the MEK (and thus ERK) 

activation state, labeling in the deeper layers of mPFC was less responsive to MEK 

inhibition. Because CREB is a common substrate of multiple kinase pathways in cell 

model systems (for review, see Herdegen and Leah, 1998; Curtis and Finkbeiner, 1999), 

other pathways, such as the PKA, CaM kinase, and stress-activated protein kinase 

cascades, might be responsible for the phospho-CREB effect. Another possibility could 

be related to functional integration of phospho-ERK-expressing neurons with 

nonexpressing cells, whereupon ERK-dependent activity in a small population of mPFC 

layer II-III neurons could influence activation, signaling, and appearance of phospho-

CREB in cortical and subcortical cells beyond simply those that contain phospho-ERK. 

The mild reduction in phospho-CREB immunoreactivity observed throughout all mPFC 

layers after MEK inhibition would seem to support a mechanism involving intercellular 

integration. Nevertheless, additional studies are necessary to resolve these complex 

issues. 

 Several lines of evidence suggest that sustained ERK activation may be indicative 

of neuronal insult, possibly leading to cell death (Stanciu et al., 2000; Kulich and Chu, 

2001). Prolonged ERK activation in neurodegenerative processes has been linked to 

decreased CREB activation (Lee et al., 2002; Trentani et al., 2002). In the present study, 
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sustained ERK phosphorylation in mPFC was accompanied by increased, rather than 

decreased, CREB phosphorylation. On the opposite end of the spectrum, prolonged ERK 

activation accompanied by an increase in CREB has been linked to a continuum of 

processes that include cell survival and plasticity (Shen et al., 2001; Sweatt, 2001; 

Dawson and Ginty, 2002). Thus, it appears that the precise kinetics of ERK and CREB 

phosphorylation can ultimately determine the fate of a cell within a given region. 

Although neurodegenerative processes cannot be ruled out, we speculate that the 

sustained increases in ERK and CREB phosphorylation observed herein are likely to be 

indicative of cell survival and plasticity in mPFC. 

 The sustained increase in phospho-ERK was dependent on D1 receptor function, 

because SCH-23390 antagonist pretreatment blocked the prolonged response to repeated 

administration of the D1-selective partial agonist SKF-38393. It is unlikely that SCH-

23390 inhibited prolonged ERK phosphorylation through its interaction with 5-HT2
 

binding sites (Bischoff et al., 1988; McQuade et al., 1988), because systemic injections of 

the nonselective 5-HT2 antagonist ketanserin, before repeated doses of SKF-38393, had 

no effect on the sustained phospho-ERK response in mPFC. In addition, the results with 

ketanserin further support the notion that long-lasting ERK phosphorylation does not 

drive expression of locomotor responsiveness to D1 agonists in SKF-38393-sensitized 

animals. The spontaneous hyperactive behavior of neonate-lesioned animals has been 

linked to serotonergic mechanisms (Bishop et al., 2004), and ketanserin blocks the 

locomotor sensitization observed in these animals (our unpublished data), without 

affecting the sustained activation of ERK in mPFC. 
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 Studies have demonstrated that pharmacological stimulation of NMDA receptors 

leads to activation of ERK in cortical neurons (Bading and Greenberg, 1991; Xia et al., 

1996; Arvanov et al., 1997; Vanhoutte et al., 1999; Wang and O'Donnell, 2001). In this 

investigation, both the competitive NMDA antagonist MK-801 and the noncompetitive 

antagonist CGS-19755 eliminated sustained ERK phosphorylation in mPFC, a finding 

suggestive of NMDA dependence for the ERK phosphorylation. Thus, mPFC of neonate-

lesioned rats sensitized with repeated doses of SKF-38393 might undergo persistent 

biochemical adaptations similar to other biological substrates of neuroplasticity such as 

long-term potentiation (Impey et al., 1998) and memory processing (Adams and Sweatt, 

2002). In addition, accumulated evidence demonstrates an interaction of D1 and NMDA 

receptor functions (Konradi et al.; 1996, Pei et al., 2004) (for review, see Adriani et al., 

1998; Salter, 2003) and dopamine modulation of glutamate neurotransmission within the 

prefrontal cortex (Goldman-Rakic and Selemon, 1997; Gonzalez-Islas and Hablitz, 2003; 

Otani et al., 2003; Sesack et al., 2003). The present findings further illustrate the presence 

of a dopamine-glutamate interaction in the mPFC, whereby repeated D1 agonist 

administration maintains NMDA receptor-mediated responses in cells as reflected in ERK 

phosphorylation. 

 The neuromolecular mechanisms underlying sustained ERK 

hyperphosphorylation remain to be determined. Recent studies have established a critical 

role for protein phosphatases in coordinating neurotransmitter signaling (for review, see 

Greengard, 2001). Because phosphatases are presumed to rapidly deactivate 

phosphorylated proteins in brain, the measured increase in cells exhibiting phospho-ERK 

after SKF-38393 treatment could be related to altered phosphatase activity. Mitogen-
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activated protein kinase phosphatases (MKPs) 1-3 can directly control nuclear 

accumulation and persistent activation of ERK (for review, see Pouyssegur et al., 2002). 

Interestingly, MKP1 and MKP3 expression in frontal cortex and other brain regions is 

differentially altered by acute and chronic methamphetamine administration to rats 

(Takaki et al., 2001). Thus, a reduction in MKP1-3 or a related phosphatase might be a 

means by which ERK phosphorylation could be sustained for an extended period. The 

answer to this puzzle will have to be resolved in future experiments that examine 

sustained ERK phosphorylation after SKF-38393-mediated sensitization of neonate-

lesioned animals. 
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Fig. 2-1: Immunohistochemistry for tyrosine hydroxylase. Immunohistochemistry for 

tyrosine hydroxylase (1:5000; Calbiochem) in coronal sections representing the striatum, 

accumbens, and mPFC in sham-lesioned and neonate 6-OHDA-lesioned (Lesioned) adult 

rats. 
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Fig. 2-2: Administration of the partial D1 agonist SKF-38393 to neonate 6-OHDA-

lesioned rats transiently activates ERK in striatum. A, Time-dependent ERK 

phosphorylation in striatum (0-120 min). Treatment groups are represented by ( ) 

Lesioned SKF = single dose of SKF-38393 to neonate-lesioned rats; ( ) Lesioned R-SKF 

= repeated doses of SKF-38393 to neonate-lesioned rats; ( ) Lesioned Saline = saline 

treatment to neonate-lesioned rats; ( ) Sham SKF = single dose of SKF-38393 to sham-

lesioned rats; ( ) Sham R-SKF = repeated doses of SKF-38393 to sham-lesioned rats; (

) Sham Saline = saline treatment to sham-lesioned rats. Phospho-ERK-positive cell 

counts did not significantly differ between rats receiving single or multiple injections of 
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saline; thus these data were collapsed for each time point examined. Symbols remain 

consistent throughout this paper to represent each treatment group. ANOVA F test of 

model fit: F(19,74) = 9.890; p < 0.0001. B, C, At 15 min after SKF-38393 treatment to 

neonate-lesioned rats, abundant phospho-ERK immunoreactivity is observed in striatum 

(B) but is not present in striatum of neonate-lesioned rats administered saline treatments 

(C). D, Representative low-magnification (100x) image of phospho-ERK-expressing cells 

at 15 min in neonate-lesioned rats administered repeated doses of SKF-38393. E, 

Neonate-lesioned rats administered a single dose of SKF-38393. F, Neonate-lesioned rats 

injected with saline. 
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Fig. 2-3: Repeated administration of the partial D1 agonist SKF-38393 to neonate 6-

OHDA-lesioned rats transiently increases phospho-ERK in accumbens. A, Time-

dependent phospho-ERK immunoreactivity in accumbens (0-120 min). ANOVA F test of 

model fit: F(19,74) = 27.335; p < 0.0001. B, C, At 15 min, phospho-ERK immunostaining 

is observed in accumbens of neonate-lesioned rats administered repeated doses of SKF-

38393 (B) but is not present in accumbens of neonate-lesioned rats administered only a 

single dose of SKF-38393 (C). D, Representative low-magnification (100x) image of 

phospho-ERK-expressing cells at 15 min in neonate-lesioned animals administered 

repeated doses of SKF-38393. E, Neonate-lesioned rats administered a single dose of 
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SKF-38393. F, Neonate-lesioned rats injected with saline. *p < 0.01 with Fisher's PLSD 

test. Scale bar, 250 µm. 
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Fig. 2-4: Repeated administration of the partial D1 agonist SKF-38393 to neonate-

lesioned rats produces a sustained increase in ERK phosphorylation in mPFC. A, 

Time-dependent phospho-ERK immunoreactivity (0-360 min). ANOVA F test of model 

fit: F(23,79) = 12.943; p < 0.0001. B, Neonate-lesioned rats administered repeated doses of 

SKF-38393 demonstrated robust phospho-ERK immunostaining at 120 min. C, C', 
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Representative low-magnification (100x)(C) and high-magnification (400x) (C') images 

of phospho-ERK-expressing cells (120 min) in neonate-lesioned rats administered 

repeated doses of SKF-38393. D, Increased phospho-ERK immunostaining was not 

present at 120 min in mPFC of neonate-lesioned rats administered a single dose of SKF-

38393. E, E', Representative low-magnification (100x)(E) and high-magnification 

(400x)(E') images of phospho-ERK-expressing cells (120 min) in neonate-lesioned rats 

administered a single dose of SKF-38393. F, Neonate-lesioned rats administered repeated 

saline injections. G, Sham-lesioned rats administered repeated doses of SKF-38393. H, 

Corresponding blocking peptide inhibited sustained phospho-ERK immunoreactivity in 

neonate-lesioned rats repeatedly dosed with SKF-38393. *p < 0.01 with Fisher's PLSD 

test. Scale bar, 250 µm. 
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Fig. 2-5: Photomicrographs depicting ERK phosphorylation in various cortical 

regions, striatum, and accumbens of neonate-lesioned rats at day 7 after repeated 
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SKF-38393 administration (R-SKF) or saline treatment. VLOC, Ventrolateral orbital 

cortex, orbitofrontal cortex; CgC, Cg1, and Cg2, cingulate cortex; MC, M1, and M2, 

motor cortex; SSC, S1, somatosensory cortex; PirC, piriform cortex; STR, striatum; 

NAC, accumbens. Scale bar, 100 µm. 
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Fig. 2-6: Repeated administration of SKF-38393 to neonate-lesioned rats produces 

long-lasting CREB phosphorylation in mPFC. A, Graphic representation of layers II-

III phospho-CREB-positive cell counts in mPFC at day 7 after repeated SKF-38393 or 
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saline treatment to neonate-lesioned (solid bars) or sham-lesioned (striped bars) rats. 

*p<0.05 with Fisher's PLSD test. R-SKF, Rats administered repeated doses of SKF-

38393; R-Saline, rats injected repeatedly with saline. ANOVA F test of model fit: F(3,28) 

= 82.148; p<0.0001. B,C, Robust phospho-CREB immunostaining is observed only in 

mPFC of neonate-lesioned rats at day 7 after repeated SKF-38393 administration (B) but 

not in mPFC of neonate-lesioned rats treated with saline rather than the agonist (C). D, E, 

Only scattered phospho-CREB-positive cells were noted in striatum and accumbens of 

neonate-lesioned rats administered repeated SKF-38393 administration (D) and neonate-

lesioned rats injected with saline (E). F,G, Representative low-magnification (100x) 

images of phospho-CREB-immunoreactive cells in mPFC of neonate-lesioned rats dosed 

repeatedly with SKF-38393 (F) or saline (G). Scale bar, 250 µm. H, I, Representative 

high-magnification (200x) images of phospho-CREB immunoreactive cells in striatum of 

neonate-lesioned rats dosed repeatedly with SKF-38393 (H) or saline (I). Scale bar, 

50µm. 
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Fig. 2-7: Sustained ERK and CREB phosphorylation is blocked by pretreatment 

with MEK inhibitor SL327 before each weekly dose of SKF-38393. A, Graphic 

representation of phospho-ERK-positive cell counts in mPFC at day 7 after drug 
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treatment. Vehicle, Neonate-lesioned rats pretreated with vehicle (DMSO) before weekly 

saline injections; R-SKF, neonate-lesioned rats administered vehicle before SKF-38393 

treatment; SL R-SKF, neonate-lesioned rats pretreated with SL327 before SKF-38393 

treatment. ANOVA F test of model fit: F(2,10) = 40.604; p < 0.0001. B, C, Representative 

low-magnification (100x) images of phospho-ERK-immunoreactive cells in R-SKF (B) 

and SL R-SKF (C) treatment groups. D, Graphic representation of phospho-CREB-

positive cell counts across all layers (solid bars) and only layers II-III (striped bars) of 

mPFC after pretreatment with SL327 before each weekly dose of SKF-38393. ANOVA F 

test of model fit: F(2,10) = 35.82; p < 0.0001. E, F, Representative low-magnification 

(100x) image of phospho-CREB immunoreactive cells in R-SKF (E) and SL R-SKF (F) 

treatment groups. Note that SL327 pretreatment appeared to reduce phospho-CREB-

positive cell counts primarily in layers II-III of mPFC, where sustained phospho-ERK 

immunoreactivity is most prominent. *p < 0.05 with Fisher's PLSD test. Scale bar, 250 

µm. 
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Fig. 2-8: Sustained ERK phosphorylation is blocked by pretreatment with D1 

antagonist SCH-23390 but not with 5-HT2 antagonist ketanserin. A, Graphic 

representation of phospho-ERK-positive cell counts in mPFC of neonate-lesioned (solid 

bars) and sham-lesioned (striped bars) treatment groups at day 7 after drug treatment. R-

SKF, Rats administered saline before SKF-38393; SCH R-SKF, rats pretreated with 

SCH-23390 before SKF-38393; Ketanserin R-SKF, rats pretreated with ketanserin before 

SKF-38393; SCH R-Saline, rats pretreated with SCH-23390 before saline injection; R-
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Saline, rats pretreated with saline (vehicle) before saline injection. ANOVA F test of 

model fit: F(8,44) = 22.434; p < 0.0001. B, C, Representative low magnification (100x) 

images of phospho-ERK immunoreactive cells in R-SKF (B) and SCH R-SKF (C) 

neonate-lesioned rat groups. *p < 0.05 with Fisher's PLSD test. Scale bar, 250 µm. 
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Fig. 2-9: Sustained ERK phosphorylation is blocked by pretreatment with NMDA 

receptor antagonists MK-801 and CGS-19755 before each repeated weekly dose of 

SKF-38393. A, Graphic representation of phospho-ERK-positive cell counts in neonate-

lesioned (solid bars) and sham-lesioned (striped bars) treatment groups at day 7 after drug 

treatment. R-SKF, Rats administered saline before SKF-38393; MK-801 R-SKF, rats 

pretreated with MK-801 before SKF-38393; CGS R-SKF, rats pretreated with CGS-

19755 before SKF-38393; MK-801 R-Saline, rats pretreated with MK-801 before saline 
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injection; CGS R-Saline, rats pretreated with CGS-19755 before saline injection; R-

Saline, rats pretreated with saline (vehicle) before saline injection. ANOVA F test of 

model fit: F(11,100) = 10.206; p < 0.0001. B-E, Representative low-magnification (100x) 

images of phospho-ERK immunoreactive cells in R-SKF (B), in MK-801 R-SKF(C), in 

CGSR-SKF (D), and in MK-801 R-Saline (E) neonate-lesioned rat groups. *p<0.05 with 

Fisher's PLSD test. Scale bar, 250 µm. 
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Table 2-1: Chronic time course of ERK phosphorylation in mPFC following 
repeated doses of SKF-38393 or saline to neonate- and sham-lesioned rats (mean ± 
SEM) 
A. ERK phosphorylation at extended time points following SKF-38393 treatment                     

                          
Treatment groups 

 
                           
Time of 
Sacrifice†

 
Lesioned R-Saline 

 
Lesioned R-SKF 

 
Sham R-Saline 

 
Sham R-SKF 

 

3 days 

7 days 

14 days 

21 days 

36 days 

 

18.42 ± 7.29 

19.90 ± 5.95 

19.30 ± 5.95 

22.78 ± 3.10 

17.10 ± 3.70 

 

94.38 ± 4.63*,a 

114.40 ± 13.37*,a 

53.59 ± 4.30*,b 

42.43 ± 7.24*,b 

37.25 ± 2.55* 

 

30.08 ± 4.77 

18.15 ± 5.60 

19.17 ± 3.06 

25.42 ± 2.64 

15.00 ± 4.00 

 

27.50 ± 5.38 

16.80 ± 2.70 

----- 

----- 

----- 

 
B. ERK phosphorylation following reinstatment dose of SKF-38393 at 36 days          
                        
      

 
Lesioned R-Saline 

 
Lesioned R-SKF 

 
Sham R-Saline 

 
Sham R-SKF 

7 days following 
additional 
treatment§

 
28.08 ± 4.88 

 
96.10 ± 2.36*,a

 
18.50 ± 10.26 

 
----- 

 
ANOVA F-test of model fit: F(19,117) = 16.057, p < 0.0001. 

Cells counted at 100X magnification. 

† Interval between repeated SKF-38393 or saline treatment and sacrifice. 

§ Rats were sacrificed at day 42, 7 days following an additional dose of SKF-38393 at 36 days. 

*Indicates that counts are significantly different from all other counts (across all treatment groups 

and time points) at the p = 0.01 significance level with Fisher’s PLSD test. 

a,b Indicates that counts within a treatment group (column) significantly differ from each other at the 

p = 0.01 significance level with Fisher’s PLSD test. 
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Table 2-2: Chronic time course of ERK phosphorylation in various cortical regions 
following repeated doses of SKF-38393 to neonate-lesioned rats (mean ± SEM) 
 

Time of sacrifice†

 
 
Brain region 

 
 
7 days 

 
 
14-21 days║

 
 
36 days 

7 days following 
additional dose at 
36 days (42 days)§

VLOC 

CgC 

MC 

SC 

PirC 

53.21 ± 14.86* 

50.58 ± 10.28* 

106.08 ± 20.05* 

113.96 ± 23.44* 

135.5 ± 28.75* 

29.53 ± 7.49 

19.91 ± 4.18 

49.44 ± 9.60 

37.19 ± 7.99 

53.84 ± 7.82 

16.50 ± 7.27 

7.90 ± 3.30 

15.10 ± 3.80 

25.50 ± 8.86 

28.90 ± 9.82 

39.83 ± 17.32 

28.00 ± 9.88 

47.07 ± 18.06 

62.07 ± 23.23 

64.07 ± 15.91 

 
ANOVA F-test of model fit: F(7,65) = 2.863, p = 0.0115, VLOC; F(7,65) = 5.551, p < 0.0001, CingC; 

F(7,65) = 5.681, p < 0.0001, MC; F(7,65) = 6.960, p < 0.0001, SSC; F(7,65) = 6.090, p < 0.0001, PirC. 

Cells counted at 100X magnification for each region.   

† Interval between repeated SKF-38393 or saline treatment and sacrifice. 

║Values at 14-21 days did not significantly differ within treatment groups for each cortical region 

examined and thus collapsed. 

§ Rats were sacrificed at day 42, 7 days following an additional dose of SKF-38393 at 36 days. 

* Counts within a given cortical region are significantly different from all other counts in that 

region at the p = 0.01 significance level, except for Lesioned R-SKF 7 days vs. Lesioned-R-SKF 42 

days in VLOC. 

VLOC = ventrolateral orbital cortex, orbitofrontal cortex; CgC = Cg1 and Cg2, cingulate cortex; 

MC = M1 and M2, motor cortex; SSC = S1, somatosensory cortex; PirC = piriform cortex. 
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Fig. 2-1S: Experimental paradigm. (1) SKF-38393 dosing regimen and time of 

sacrifice for neonate-lesioned and sham-lesioned rats used in the acute and chronic time 

course experiments. * Sham-lesioned rat group not represented at these time points. (2) 

Pretreatment with SL327 prior to repeated doses of SKF-38393 to neonate-lesioned rats. 

SL, SL327; SKF, SKF-38393; Veh., Vehicle (DMSO); (3) Pretreatment with SCH-23390, 

ketanserin, MK-801, or CGS-19755 prior to repeated doses of SKF-38393 or saline. 

Antag., antagonist = SCH-23390, ketanserin, MK-801, or CGS-19755. 
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Table 2-1S: Behavioral activity at dose 1 and dose 4 following repeated weekly 
administration of SKF-38393 (3 mg/kg)  to neonate 6-OHDA-lesioned rats 

 
A. Horizontal Activity                        

 Adult Treatment 

Neonatal Treatment Saline      Dose 1 SKF-38393            Dose 4 SKF-38393 

6-OHDA-Lesioned 

Sham-Lesioned 

18,511.09 ± 7,029.31 

14,987.91 ± 4,958.53 

28,161.54 ± 12,579.79 

16,792.35 ± 4,403.79 

98,927.95 ± 29,997.72* 

12,352.40 ± 4,728.40 

 

B. Vertical Activity 

   

Neonatal Treatment           Saline Dose 1 SKF-38393 Dose 4 SKF-38393 

6-OHDA-Lesioned 

Sham-Lesioned 

503.88 ± 174.57 

584.88 ± 106.18 

1,100.00 ± 261.84* 

517.75 ± 205.38 

1,645.00 ± 286.78* 

495.75 ± 290.16 

 

C. Stereotypical Activity 

   

Neonatal Treatment           Saline Dose 1 SKF-38393 Dose 4 SKF-38393 

6-OHDA-Lesioned 

Sham-Lesioned 

11,629.50 ± 2,091.58# 

6,545.38 ± 893.04 

11,363.75 ± 1,858.50# 

7,440.75 ± 543.45 

16,324.50 ± 2,266.11*,# 

8,347.00 ± 779.68 

 

Anova F-test for model fit yielded F(5,26) = 8.19, p < 0.0001 for horizontal activity; F(5,26) = 6.03, p = 0.0008 

for vertical activity, and F(5,26) = 6.67, p = 0.0004 for stereotypical activity. 

*Indicates values within a measured activity that are significantly different at the p = 0.05 significance level 

determined by Fisher’s PLSD test. In B, values with astericks are also significantly different from each 

other. 

In C, # indicates values that are significantly different than the Sham-Lesioned Saline treated group at the p 

< 0.05 significance level determined by Fisher’s PLSD test. 
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CHAPTER III. A ROLE FOR EXTRACELLULAR SIGNAL-REGULATED  
   KINASE 1/2 IN THE SUPERSENSITIVE MOTOR   
   RESPONSE TO REPEATED D1 RECEPTOR AGONIST  
   ADMINISTRATION IN THE NEONATE 6-OHDA-  
   LESIONED RAT 
 
 
A. Introduction 
 

Rats given selective lesions of dopamine (DA)-containing neurons as neonates 

later show a unique profile of behavioral responsiveness to D1 dopamine receptor 

activation (Breese et al., 1985a,b). For example, neonate 6-hydroxydopamine (6-OHDA)-

lesioned rats demonstrate increased locomotor and stereotypic activity following 

treatment with the partial D1 receptor agonist SKF-38393 at doses that have a minimal 

impact on control rats (Breese et al., 1985a,b; Criswell et al., 1989; Papadeas et al., 

2004). Repeated treatment with D1 agonists can lead to extremely high rates of behavioral 

activity in lesioned rats, and this sensitization, or “priming”, effect can still be observed 6 

months after the chronic agonist treatment (Breese et al., 1985b; Criswell et al., 1989). 

Supersensitivity of D1 receptors in neonate 6-OHDA-lesioned rats has also been linked to 

stereotyped responses and self-injurious behavior (SIB) after treatment with apomorphine 

or L-DOPA, suggesting that these animals can provide a valuable model for the self-

injurious behavior and DA loss associated with Lesch-Nyhan syndrome (Breese et al., 

1984a,b), a metabolic disorder primarily observed in male children (Lesch and Nyhan, 

1964). 



Although the behavioral consequences of repeated D1 agonist treatment to 

neonate-lesioned rats has been well studied, little is known about the underlying 

neurobiological mechanisms or brain sites responsible for priming of the behavioral 

responsiveness in these animals. Recently, we found a sustained increase in the 

phosphorylation of extracellular signal-regulated kinase 1/2 (ERK), a signaling molecule 

thought to play a role in neuronal adaptive responses (English and Sweat, 1996; 1997; 

Martin et al., 1997; Davis et al., 2000) as in well as memory formation (Atkins et al., 

1998), in various cortical regions of neonate-lesioned rats behaviorally primed to the 

effects of repeated D1 agonist exposure (Papadeas et al., 2004). Of all of the cortical 

regions examined, increased ERK phosphorylation was most remarkable in the medial 

prefrontal cortex (mPFC), where it lingered longest and remained most sensitive to full 

reinstatement with an additional dose of D1 agonist given 36 days after the last D1 agonist 

treatment.  

The persistent nature of ERK phosphorylation, particularly in the mPFC, 

suggested that this response might facilitate priming of the behavioral responsiveness in 

neonate-lesioned rats to repeated D1 agonist exposure. The development of specific 

inhibitors of the upstream ERK kinase MEK (mitogen-activated protein 

kinase/extracellular signal-regulated kinase kinase 1/2) has made it possible to examine 

the function of ERK phosphorylation in behaving animals (Sweatt, 2001). For example, it 

has been shown that blockade of ERK activity following systemic administration of the 

MEK inhibitor SL327 to normal rats impairs behavioral sensitization and the rewarding 

properties induced by cocaine (Valjent et al., 2000). Therefore, we investigated how 

inhibition of the ERK pathway by SL327 and the structurally dissimilar MEK inhibitor 
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PD98059 affects priming of the behavioral responsiveness of neonate-lesioned rats to 

repeated D1 agonist treatment. Moreover, we performed microinjections with PD98059 

into the mPFC to determine the precise contribution of increased mPFC phospho-ERK in 

the sensitized behavioral response. Ultimately, inhibitors of the ERK pathway could be 

valuable tools to obliterate this long-lasting D1 receptor-induced molecular change and 

perhaps deepen our understanding of Lesch-Nyhan syndrome and other DA-

dysfunctional states. 

 

B. Materials and Methods 

Lesioning of dopamine-containing neurons in neonate rats 

 The animal protocol was conducted in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals. Pregnant Sprague Dawley 

rats obtained from Charles River Laboratories were individually housed, with Wayne Lab 

Blox laboratory chow and water available ad libitum. On day 3 after delivery, male and 

female rat pups were anesthetized with ether and then administered 100 μg (free base) of 

6-OHDA (ICN; Irvine, CA) intracisternally (i.c.), 60 min after desipramine (20 mg/kg), 

intraperitoneally (i.p.) to protect noradrenergic neurons (Breese et al., 1984a,b). Some 

rats received desipramine (20 mg/kg, i.p.) and saline (i.c.) to serve as unlesioned (sham-

lesioned) controls. The bilateral lesion causes over 90% loss of dopamine innervation in 

the striatum and disrupts basal ganglia-cortical system circuits (Smith et al., 1973). Rats 

treated with 6-OHDA or saline neonatally were weaned at day 30 and testing began at 

35-40 d of age. 
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Intracerebroventricular (ICV) infusion of MEK inhibitors 

 Neonate 6-OHDA-lesioned and sham rats were anaesthetized with sodium 

pentobarbital (50 mg/kg, i.p.) and placed in a Kopf stereotaxic apparatus. Using aseptic 

conditions, the scalp was cleared and a small burr hole was made through which a 

cannula was lowered into the right lateral ventricle (from bregma; anteroposterior, -0.8 

mm; mediolateral, -1.5 mm; dorsoventral, -2 mm; according to Paxinos and Watson, 

1998). The animals were allowed 7 d to recover from the implant before any testing was 

initiated.  

Prior to ICV infusion, the MEK inhibitors SL327 (α-[amino[(4-

aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrole) (kindly provided 

by Bristol-Myers-Squibb Company, Princeton, NJ) and PD98059 (2-(2'-amino-3'-

methoxyphenyl)-oxanaphthalen-4-one) (Calbiochem, La Jolla, CA) were dissolved in 

dimethylsulfoxide (DMSO) at a concentration of 10 mg/kg, from which a solution 

containing 0.1 mg/kg with 1% DMSO was prepared in sterile saline (Choe and McGinty, 

2001; Gu et al., 2001). Using a Sage infusion pump, SL327 (0.3 μg), PD98059 (0.3 μg), 

or vehicle (1% DMSO in saline) was infused through the cannula in a volume of 2 μl 

over a 5 min time period, as previously described (Gu et al., 2001). The injection needle 

remained in place for 1 min to reduce backflow of the solution along the injection track. 

Thirty minutes later, rats received an injection of SKF-38393 (2,3,4,5-tetrahydro-7,8-

dihydroxy-1-phenyl-1H-3-benazepine HCl; Sigma, St. Louis, MO) (3 mg/kg, i.p.). These 

drug combinations were given for a total of 3 treatments at weekly intervals. Once this 

regimen was completed, all rats were given an additional injection of SKF-38393 (3 
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mg/kg, i.p.), with vehicle pretreatment, to establish whether the rats infused with MEK 

inhibitor demonstrated primed behavioral activity induced by the repeated D1 agonist 

treatment. In order to test the effects of a single dose of SKF-38393 on behavior, a 

separate group of rats were given vehicle prior to each of 3 weekly injections of saline, 

with the fourth treatment consisting of vehicle followed by SKF-38393. Another group of 

rats were given vehicle prior to saline injections, once per week for 4 weeks, in order to 

serve as injection controls. PD98059 or SL327 was also infused ICV prior to each of 4 

weekly injections of saline, to determine any non-specific effects of repeated MEK 

inhibitor treatment on behavior. Table 3-1 is provided as an additional guide for the 

experimental paradigm. Tests for behavioral activity were performed following the fourth 

weekly injection of SKF-38393 or saline to neonate-lesioned and sham rats.  

Systemic injection of MEK inhibitor  

SL327 was dissolved in 100% DMSO vehicle at 2 ml/kg (Atkins et al., 1998; 

Selcher et al., 1999; Yamagata et al, 2002) and administered i.p. to neonate-lesioned rats 

30 min prior to injection of SKF-38393 (3 mg/kg, i.p.). Another group of neonate-

lesioned rats received vehicle (100% DMSO) rather than SL327 with the SKF-38393. 

These combinations were given for a total of 3 treatments at weekly intervals. Once this 

regimen was completed, all rats were given an additional injection of SKF-38393, with 

only vehicle pretreatment, to assess the effects of systemic MEK inhibitor pretreatment 

on priming of motor activity induced by the repeated D1 agonist treatment (see Table 3-

1). A separate group of rats received vehicle prior to each of 3 weekly injections of 

saline, with the fourth injection consisting of vehicle followed by SKF-38393 in order to 
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assess the effects of a single dose of SKF-38393 on behavior. Tests for behavioral 

activity were performed following the fourth weekly SKF-38393 treatment to neonate-

lesioned rats. The rats did not receive i.p. injections with PD98059, because this 

compound is unable to cross the blood-brain barrier and thus can only be administered 

intracranially (Alessi et al., 1995). 

Microinjection of MEK inhibitor into the mPFC 

 Neonate-lesioned rats were anaesthetized with sodium pentobarbital (50 mg/kg, 

i.p.) and implanted with bilateral guide cannulas aimed at the mPFC prelimbic area (from 

bregma; anteroposterior, +3.2 mm; mediolateral, ±0.6 mm; dorsoventral, -2 mm; 

according to Paxinos and Watson, 1998). The rats were allowed to recover from surgery 

in their home cages for 10-12 d. During infusion, the injection needles extended 1.4 mm 

beyond the tips of the guides, yielding a total depth of 3.4 mm below the dura. Through 

the infusion cannulae, animals received bilateral 1 μl infusions of PD98059 (made of 

10% PD98059 at 2 mg/ml, 40% DMSO, and 50% saline) or vehicle (made of 50% 

DMSO and 50% saline) over a 2 min period (Hugues et al., 2004; Blum et al., 1999). An 

additional 1 min period was allowed for diffusion of the drug. Thirty minutes later, rats 

received an injection of SKF-38393 (3 mg/kg, i.p.). These drug combinations were 

administered for a total of 3 cycles at weekly intervals, at which time the SKF-38393 was 

administered alone (see Table 3-1). Priming of behavioral activity to the D1 agonist was 

determined during the fourth cycle, when all subjects received only SKF-38393. 

Behavioral activity was assessed as described below.  
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Evaluation of motor activity and behavior   

 To measure motor activity, rats were placed in clear 17” x 17” (43.2 cm x 43.2 

cm) open field computer-monitored activity chambers (Med Associates, Inc., St. Albans, 

VT). Each chamber was surrounded by a 16 x 16 infrared photocell array interfaced with 

a computer that ran accompanying Open Field Activity software (Med Associates, Inc., 

St. Albans, VT). The software tabulated and processed a number of variables related to 

motor behavior. For the present experiment, the variables collected in 5 min bins over a 3 

h testing period were horizontal counts (number of beam breaks counted across the 

photocell array), stereotypic counts (number of beam breaks counted at the same 

photocell array), vertical counts (number of periods of continuous beam breaks reported 

by the ‘z-plane’ photocell array), and vertical time (total time spent breaking beams in the 

‘z-plane’ photocell array). On testing days, rats were placed in the activity chambers for 

30 min before injections commenced. It is important to note that in neonate-lesioned rats, 

sensitization results in comparable levels of activity in response to SKF-38393 whether 

the rats are repeatedly dosed in the same or a different environment from that in which 

the rats are finally tested (Papadeas et al., 2004; Criswell et al., 1989). 

Various behaviors were also quantified by observing whether a behavior was seen 

during a 1 min period at 10 min intervals, 60 min after the challenge dose of agonist was 

administered as previously described (Breese et al., 1985a; Criswell et al., 1988, 1989). 

Each 1 min period was divided into four 15 sec intervals, and behaviors from a checklist 

were scored for occurrence in each of the 15 sec periods. Each behavior had a maximum 

score of 4 for the 1 min period x 7 observation periods, for a total of 28. the behaviors 

that were monitored were grouped as follows: (1) horizontal behavior, e.g. running, 
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walking, trotting, chasing tail; (2) vertical behavior, e.g., rearing, climbing, jumping; (3) 

paw-fixation behavior, e.g., patting, treading, shaking paws, taffy pulling; (4) 

investigatory behavior, e.g., sniffing, checking, digging, (5) mouth-fixation behavior, e.g. 

licking, vacuous chewing, self-biting, self-injurious behavior; (6) head behavior, e.g., 

head shaking, head bobbing, head weaving, head jerking, head tilt; and (7) grooming 

behavior, e.g., grooming, scratching, licking self. Behavior was reported as a percentage 

of the total possible. 

 

Histology  

 Following the completion of the behavioral tasks, animals were deeply 

anesthetized with an overdose of sodium pentobarbital (100 mg/kg) and transcardially 

perfused with 4% paraformaldehyde in PBS. Brains were removed, post-fixed in 

perfusant, and sectioned 40 μm thick with a vibrating microtome. Histological analysis 

was performed using cresyl violet staining and immunohistochemistry for tyrosine 

hydroxylase (TH) (1:4000, Calbiochem, La Jolla, CA), the rate-limiting enzyme in the 

biosynthesis of dopamine (Nagatsu et al., 1964). Immunohistochemical procedures were 

carried out as described previously (Papadeas et al., 2004). Placements of the cannulae 

were found to be correct in all animals (see Fig. 3-1B). Immunoreactivity for TH further 

established that the neonatal lesioning produced an adequate loss of DA-containing 

neurons. Lesioned rats that did not demonstrate a >90% reduction in TH 

immunoreactivity compared with sham control rats were eliminated from the study. 
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Statistical Evaluation 

  Previous work has shown that there are no significant behavioral differences 

between male and female 6-OHDA-lesioned rats (Breese et al., 1984a; Papadeas et al., 

2004). Therefore, data were collapsed across sexes for analysis. Open field activity data 

and observer-scored behaviors were analyzed by 1-way ANOVA with treatment as a 

between subjects factor. For observer-scored behaviors, the scores analyzed were the 

percentage of 15 sec observation periods during which a given behavior occurred (Breese 

et al., 1984a; Criswell et al., 1988, 1989). When appropriate, post hoc comparisons were 

made using the Fisher PLSD test. The level of significance was set at p < 0.05.  

  

C. Results 

 
Representative Histology 

 Fig. 3-1A illustrates the injection site for ICV infusion of MEK inhibitor on a 

coronal section of rat brain. Upon histological examination, placement of the cannula into 

the right lateral ventricle was found to be correct in all animals. Fig. 3-1B shows a 

schematic representation of a coronal brain section (Paxinos and Watson, 1998) located 

3.00 mm anterior to bregma illustrating placements (shaded ovals) for 10 randomly 

selected 6-OHDA-lesioned rats included in the experiment involving microinjections of 

MEK inhibitor into the mPFC. All rats analyzed were found to have injector placements 

within the prelimbic area of this region.  
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Effects of ICV and systemic MEK inhibition on D1 receptor-mediated priming of 

behavioral responses in neonate-lesioned rats  

 As shown in Fig. 3-2A, a significant main effect of treatment (F(11,47) = 9.795, p < 

0.05) was found on total horizontal counts measured in the open field. Consistent with 

previous studies (Papadeas et al., 2004), post hoc testing demonstrated that four weekly 

repeated treatments with 3 mg/kg of SKF-38393 induced a sensitized locomotor response 

in neonate-lesioned rats compared to saline-treated lesioned rats and sham controls (p < 

0.05). More importantly, both SL327 and PD98059 compounds, when infused ICV prior 

to each of three of the four weekly injections with SKF-38393 in neonate-lesioned rats, 

augmented this effect (p < 0.05 for vs. SKF group). As shown in Fig. 3-2B, a disparate 

effect was found on measures of stereotypic counts (F(11,47) = 6.184, p < 0.05). Priming-

induced stereotypic activity in lesioned rats (p < 0.05 vs. all other groups) was reduced by 

SL327 and PD98059 pretreatment (both p < 0.05).  

 Analysis of total vertical counts (Fig. 3-2C) also revealed a significant main effect 

of treatment (F(11,47) = 2.938, p < 0.05). Post hoc testing showed that the repeated SKF-

38393 treatment enhanced vertical activity in the neonate-lesioned rats (p < 0.05 

compared with saline-treated lesioned rats and sham controls). However, neither SL327 

nor PD98059, when infused prior to each of three of the four weekly treatments with 

SKF-38393, altered this effect. Although pretreatment with these compounds had no 

effect on priming-induced vertical counts in lesioned rats, measures of vertical time 

(F(11,47) = 2.578, p < 0.05) revealed that both SL327 and PD98059 reduced the amount of 

time that the primed rats spent performing behaviors in the vertical plane (p < 0.05 for 

both compared with SKF group).  Rats that received systemic pretreatment with SL327 
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prior to each of three of the four weekly SKF-38393 treatments demonstrated similar 

behavioral effects to rats pre-treated with SL327 intraventricularly (see Fig. 3-2). No 

behavioral effects were observed after repeated administration of PD98059 or SL327 

alone (p > 0.05 vs. Veh-lesion group and SKF-sham group), nor after a single dose of 

SKF-38393 to neonate-lesioned rats (p > 0.05 vs. Veh-lesion group and SKF-sham 

group). 

 In a select group of neonate-lesioned animals, observations of specific locomotor 

and stereotypic behaviors associated with D1 receptor-mediated priming (Breese et al., 

1985a; Criswell et al., 1989) were scored by hand. As shown in Fig. 3-3A, a significant 

main effect of treatment was found for observer-scored horizontal behavior (F(5,20) = 

16.884, p < 0.0001). Similar to the open field activity data, post hoc testing revealed that 

pretreatment with SL327 or PD98059 produced augmented horizontal behavior in 

neonate-lesioned rats in response to an additional sensitizing dose of SKF-38393 (p < 

0.05 vs. the Veh group). On the other hand, post hoc testing of a significant main effect 

of treatment for vertical behavior (i.e., rearing, climbing, jumping) (F(5,20) = 12.742, p < 

0.05) and paw-fixation behavior (i.e., patting, treading, shaking paws, taffy pulling) 

(F(5,20) = 12.742, p < 0.05) revealed that priming of these behaviors to repeated injections 

of SKF-38393 was blocked by pretreatment with both MEK inhibitors (p > 0.05 for both 

vs. Veh group) (Fig. 3-3B,C). No significant main effects of treatment were found for 

observer-scored investigatory behavior (i.e., sniffing, checking, digging) (F(5,20) = 1.816, 

p = 0.1554), mouth-fixation behavior (i.e., licking, vacuous chewing, self-biting) (F(5,20) = 

0.855, p = 0.5279), head behavior (i.e., head shaking, head bobbing, head weaving, head 
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jerking, head tilt) (F(5,20) = 0.954, p = 0.4687), or grooming behavior (i.e., grooming, 

scratching, licking self) (F(5,20) = 0.697, p = 0.6316) among the treatment groups. 

   

Effects of intra-mPFC MEK antagonism on D1 receptor-mediated priming of 

behavioral responses in neonate 6-OHDA-lesioned rats  

Analysis of open field total horizontal counts (Fig. 3-4A), total stereotypic counts 

(Fig. 4B), and total vertical counts (Fig. 3-4C) revealed no significant main effects of 

treatment (F(1,10) = 0.009, p = 0.9248, F(1,10) = 3.058, p = 0.1109, and F(1,10) = 0.032, p = 

0.8625, respectively). As shown in Fig. 3-4D, however, post-hoc comparisons of a 

significant main effect of treatment for total vertical time (F(1,10) = 9.959, p > 0.05) 

revealed that intra-mPFC infusions of PD98059 prior to each of three of the four weekly 

SKF-38393 treatments to neonate-lesioned rats reduced the amount of time that the rats 

spent performing behavior in the vertical plane (p < 0.05 vs. Veh group).  

As shown in Fig. 3-5A, horizontal behavioral observations did not reveal any 

significant main effects of treatment in mPFC microinfused rats (F(1,6) =  0.006, p = 

0.9417), similar to that observed with the computer-generated horizontal counts. Post hoc 

comparisons of a significant main effect of treatment for vertical behavior (F(1,6) =  9.657, 

p = 0 < 0.05) and paw-fixation behavior (F(1,6) =  39.562, p = 0 < 0.05) revealed that the 

intra-mPFC infusions of PD98059 inhibited the priming effect of these behaviors to 

repeated D1 agonist treatment. No significant main effects of treatment were found for 

observations of investigatory behavior (F(1,6) = 0.352, p = 0.5747), mouth-fixation 

behavior (F(1,6) = 0.038, p = 0.8523), or head behavior (F(1,6) = 0.602, p = 0.4672). 

Grooming behavior was not observed in any of the rats tested. 
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D. Discussion 

  The present study demonstrates a role for ERK signaling in the sensitization, or 

priming, of various locomotor and stereotyped behaviors associated with repeated D1 

agonist treatment to neonate-lesioned rats. More importantly, enhanced ERK signaling in 

the mPFC was found to contribute to the sensitized vertical and paw-related behaviors 

seen in these animals. 

 Consistent with previous studies (Breese et al., 1985b, Criswell et al., 1989; 

Papadeas et al., 2004), neonate-lesioned rats primed to D1 agonist demonstrated an 

increase in horizontal, stereotypic, and vertical open field activity compared with intact 

rats. These rats also demonstrated an increase in time spent performing behaviors in the 

vertical plane. Visual observations similarly showed a priming effect in the D1 agonist-

treated neonate-lesioned rats, in that the rats displayed exaggerated horizontal, vertical, 

and paw-fixation behaviors in response to a fourth weekly dose of SKF-38393. Some of 

the rats also showed sensitized investigatory, mouth-fixation, head, and grooming 

behaviors. Global inhibition of ERK signaling by ICV or systemic administration of 

MEK inhibitors altered the supersensitive motor responsiveness induced by the repeated 

D1 agonist exposure. Horizontal open field activity was significantly increased during the 

fourth challenge dose of SKF-38393 given in the absence of MEK inhibitor, while 

stereotypic open field activity and vertical time were diminished. Visual observations 

similarly revealed that the MEK antagonism augmented horizontal behavior but inhibited 

vertical and paw-related behaviors. Our finding that MEK inhibitor pretreatment blocked 

the sensitization of vertical behavior is remarkably similar to what has been observed in 

mice receiving SL327 pretreatment prior to cocaine (Valjent et al., 2000). Together, these 
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data indicate that the persistent increase in forebrain ERK phosphorylation induced by 

repeated D1 agonist treatment to neonate-lesioned rats (Papadeas et al., 2004) is not 

responsible per se for all priming-induced behaviors, but it does contribute to specific 

sensitized responses. 

 There are two possible explanations as to why global MEK inhibition 

differentially modifies motor behaviors in neonate-lesioned rats repeatedly treated with 

D1 agonist. One could hypothesize that the locomotor behavior is modified by the 

concomitant expression of other motor behaviors (Bernardi et al., 1986; Chinen et al., 

2005). More specifically, the enhanced locomotor behavior seen in the MEK inhibitor 

pre-treated rats could lead to the inhibition of rearing and paw-fixation behaviors in these 

animals. On the other hand, the opposite effects of MEK inhibitor on locomotor and 

stereotyped behavior might occur because these behaviors are driven by the activation of 

different neural systems. Microinjection of MEK inhibitors into different brain sites 

where phospho-ERK is persistently elevated could help determine precise regions and 

circuitry responsible for ERK pathway driven responses in primed neonate-lesioned rats. 

 In fact, microinjection of the MEK inhibitor PD98059 into the mPFC, where ERK 

phosphorylation is most robust and longest-lasting compared with other regions 

(Papadeas et al., 2004), specifically inhibited time spent vertical in the open field. Visual 

observations indicated that this inhibitory effect coincided with an actual reduction in 

vertical and paw-fixation behaviors. Interestingly, these stereotyped behaviors are 

believed to mirror psychostimulant-induced psychosis in humans and certain aspects of 

positive symptoms associated with schizophrenia (Robinson and Becker, 1986; Ujike 

2002). Given the possible role of mPFC phospho-ERK in adaptations associated with 
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these DA-mediated disorders (Kyosseva, 2004; Valjent et al., 2004), it is not surprising 

that increased phospho-ERK in this region facilitates these types of behaviors in our 

model.  

 Studies have shown that 5HT2A receptors contribute to the locomotor 

responsiveness caused by D1 agonism in neonate-lesioned rats (Walker et al., 2004; 

Breese et al., 2005), and that the mechanism associated with the action of this receptor 

subtype on locomotor behavior occurs primarily within the striatum (Bishop and Walker, 

2003; Walker et al., 2004). Moreover, our previous studies showed that pretreatment with 

the 5-HT2A-preferring receptor antagonist ketanserin fails to block persistently elevated 

phospho-ERK in the mPFC of these animals. Together, these findings agree with our 

current observation that microinjection of PD98059 into the mPFC does not affect 

priming of locomotor behavior in neonate-lesioned rats to D1 agonist, and suggest that the 

sensitized locomotor response is driven by mechanisms independent of ERK signaling. 

 We have previously demonstrated that ICV and systemic pretreatment with the 

MEK inhibitors SL327 or PD98059 at doses used in this study inhibits the 

phosphorylation of ERK in our model when compared with simultaneously treated 

vehicle controls (Papadeas et al., 2004; Papadeas et al., 2006). Moreover, we have shown 

that the phosphorylation of a related mitogen-activated protein kinase, c-Jun N-terminal 

kinase, remains unaffected (Papadeas et al., 2006). Although recent studies report that 

these compounds have no effect on a variety of other kinases, including cyclic AMP-

dependent protein kinase A, Ca2+/phospholipid-dependent kinase C, or calcium-

calmodulin-dependent protein kinase (Atkins et al., 1998; Blum et al., 1999; Selcher et 

al., 1999; Valjent et al., 2000), this study cannot rule out the possibility that SL327 or 
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PD98059 might nonspecifically inhibit other kinases that have not been directly 

examined. Nonetheless, these MEK inhibitors have been found to be highly selective 

(Alessi et al., 1995; Favata et al., 1998; Davies et al., 2000). 

 In summary, the present results reveal that ERK signaling plays an important role 

in some of the behavioral responses exhibited by neonate-lesioned rats to repeated D1 

agonist exposure. These findings provide a new mechanism to explain aspects of priming 

behavior mediated by D1 receptor pharmacology. 
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Fig. 3-1: Schematic representations of coronal sections of the rat brain depicting the 

ICV injection site (A) and the distribution of mPFC microinfusion sites (B). The 

sections were taken from Paxinos and Watson (1998). For (A), drugs were infused 

unilaterally into the right lateral ventricle. CPu, Caudate-Putamen; LGP, Lateral Globus 

Pallidus; CC, corpus callosum. For (B), shadded ovals denote placements within the 

striatum for selected neonate 6-OHDA-lesioned rats. M1, primary motor cortex; M2, 

secondary motor cortex; IL, infralimbic cortex; VO, ventral orbital cortex. 
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Fig. 3-2: ICV administration of SL327 or PD98059 alters sensitized locomotor 

activity in neonate-lesioned rats administered repeated D1 agonist treatment. Graphs 

denote averages of thirty-six 5 min measurement periods for total horizontal counts ± 

SEM (A), stereotypic counts ± SEM (B), vertical counts ± SEM (C), and vertical time ± 

SEM (D) recorded by computer-monitored activity chambers. Data shown reflects 

behavioral activity following the additional dose of SKF-38393 (x-axis) to lesioned and 

sham rats at week 4. Veh indicates rats that were infused with vehicle prior to 4 weekly 

injections with saline. SKF indicates rats that were infused with vehicle prior to 4 weekly 

injections with SKF-38393. SLSKF, PDSKF indicate rats that were infused with SL327 

or PD98059 prior to each of 3 of the 4 weekly injections with SKF-38393. Note that 
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lesioned rats receiving systemic pre-treatment with SL327 prior to each of 3 of the 4 

weekly SKF-38393 treatments (sSLSKF) (striped bars) demonstrated similar behavioral 

effects to rats pre-treated with SL327 intraventricularly (p > 0.05). Not shown, lesioned 

rats that received a single SKF-38393 treatment demonstrated 4,718 ± 616 total 

horizontal counts, 7,868 ± 677 total stereotypic counts, 436 ± 79 total vertical counts, and 

17 ± 8 total vertical time (min), similar to what was recorded for the Veh-lesion group 

and sham control groups (p > 0.05 for each comparison). Statistical differences were 

determined by 1-way ANOVA analyzing treatment effects. Significant post hoc 

differences are denoted by the following symbols: * p < 0.05 vs. Lesion-Veh and Sham-

SKF, # p < 0.05 vs. Lesion-SKF.  
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Fig. 3-3: ICV administration of SL327 or PD98059 alters D1 receptor-mediated 

priming of behavioral responses in neonate-lesioned rats. Graphs denote average 

percentage of 15 sec observation periods during which horizontal behavior, e.g. running, 

walking, trotting  (A), vertical behavior, e.g. rearing, climbing, jumping  (B), and paw-

fixation behavior, e.g. patting, treading, taffy pulling  (C) occurred in lesioned rats. 

Vehicle, lesioned rats infused with vehicle prior to each of 3 weekly doses of SKF-38393; 

SL327, lesioned rats infused with SL327 prior to each of three weekly doses of SKF-

38393; PD98059, lesioned rats infused with PD98059 prior to each of 3 weekly doses of 

SKF-38393. Data shown reflects behavioral responses after the additional dose of SKF-

38393 at week 4 (indicated by SKF on x-axis). Lesioned rats administered a single dose 

of SKF-38393 or those infused with vehicle prior to each of 4 weekly injections with 

saline did not demonstrate any significant behavioral activity over the course of the 

testing period, nor did any of the sham control groups (average percentage of time spent 

for each behavior measured was <1%). Statistical differences were determined by 1-way 

ANOVA analyzing treatment effects. Significant post hoc differences are denoted by the 

following symbols: * p < 0.05 vs. Veh group. 
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Fig. 3-4: Intra-mPFC infusions with PD98059 reduces vertical time in neonate-

lesioned rats administered repeated D1 agonist treatment. Graphs denote averages of 

thirty-six 5 min measurement periods for total horizontal counts ± SEM (A), stereotypic 

counts ± SEM (B), vertical counts ± SEM (C), and vertical time ± SEM (D) recorded by 

computer-monitored activity chambers. Vehicle, lesioned rats microinjected with vehicle 

prior to each of 3 weekly doses of SKF-38393; PD98059, lesioned rats microinjected 

with PD98059 prior to each of 3 weekly doses of SKF-38393. Data shown reflects 

behavioral activity following the additional SKF-38393 treatment at week 4 (indicated by 

SKF on x-axis). Statistical differences were determined by 1-way ANOVA analyzing 

treatment effects. Significant post hoc differences are denoted by the following symbols: 

* p < 0.05 vs. Veh group. 
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Fig. 3-5: Intra-mPFC infusion with PD98059 inhibits priming of vertical and paw-

fixation behavior in neonate-lesioned rats administered repeated doses of SKF-

38393. Graphs denote averages of the percentage of 15 sec observation periods during 

which horizontal behavior, e.g. running, walking, trotting  (A), vertical behavior, e.g. 

rearing, climbing, jumping  (B), and paw-fixation behavior, e.g. patting, treading, taffy 

pulling  (C) occurred. Data shown reflects behavioral responses after the additional dose 

of SKF-38393 at week 4 (indicated by SKF on x-axis). Statistical differences were 

determined by 1-way ANOVA analyzing treatment effects. Significant post hoc 

differences are denoted by the following symbols: * p < 0.05 vs. Veh group. 
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  Number of Rats______

Table 3-1: Experimental Paradigm 

Experiment____________________________________ 
ICV MEK Inhibitor Infusion 
PD-SKF→PD-SKF→PD-SKF→Veh-SKF 
SL-SKF→SL-SKF→SL-SKF→Veh-SKF 
Veh-SKF→Veh-SKF→Veh-SKF→Veh-SKF 
Veh-Sal→Veh-Sal→Veh-Sal→Veh-SKF 
PD-Sal→PD-Sal→PD-Sal→PD-Sal 
Veh-Sal→Veh-Sal→Veh-Sal→Veh-Sal (injection control) 

Lesioned 

5 
5 
6 
3 
5 
5 

Sham 

4 
3 
4 
0 
2 
4 

Systemic MEK Inhibitor Injection   

SL-SKF→SL-SKF→SL-SKF→Veh-SKF 

Veh-SKF→Veh-SKF→Veh-SKF→Veh-SKF* 

Veh-Sal→Veh-Sal→Veh-Sal→Veh-SKF* 

5 

4 

4 

0 

0 

0 

Intra-mPFC Infusion   

PD-SKF→PD-SKF→PD-SKF→SKF§ 

Veh-SKF→Veh-SKF→Veh-SKF→SKF 

4 

4 

0 

0 

PD, PD98059; SL, SL327; Veh, Vehicle, SKF, SKF-38393, Sal, Saline. 

(-) = 30 min between treatments 

(→) = 1 week between treatments 

*Behavioral data from these two treatment groups did not significantly differ from that of similar treatment 

groups in the ICV MEK Inhibitor experiment. Thus, data collected from these two groups were collapsed 

into the corresponding treatment groups in the ICV MEK inhibitor experiment.  
§SKF-38393 was administered on its own to prevent any additional damage induced by the injector within 

the mPFC. 
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CHAPTER IV. PHOSPHORYLATED ERK1/2 MODIFIES APICAL   
   DENDRITIC STRUCTURE OF MEDIAL PREFRONTAL  
   CORTEX PYRAMIDAL NEURONS IN A RAT MODEL OF  
   DOPAMINE D1 RECEPTOR AGONIST SENSITIZATION 

 

A. Introduction 

Dendrites receive multiple and diverse synaptic inputs, processing and integrating 

them into signals that convey information to the soma and axon. Neuronal identity largely 

dictates basic dendrite structure, but environmental signals further shape dendrites during 

development and in adulthood (Miller and Kaplan, 2003). Reciprocally, dendritic 

morphology impacts spatial and temporal neurotransmission by affecting the propagation 

and patterning of action potentials (Mainen and Sejnowski, 1996; Vetter et al., 2001). 

This interdependence of form and function advances the notion that dendritic 

morphological changes accompany neuroadaptation and plasticity (Greenough et al., 

1990; Kolb and Wishaw, 1998). Accordingly, the structural remodeling of dendrites and 

their spines is thought to coordinate with physiological processes such as learning and 

memory (Lamprecht and LeDoux, 2004) and behavioral sensitization to psychostimulants 

(Robinson and Kolb, 1997; 1999). While recent discoveries have elucidated many of the 

signaling mechanisms that regulate dendritic spine plasticity and the formation of 

dendrites during development, relatively little is known about the capacity and 

mechanisms of maintenance and resculpting of the mature dendritic tree. 



Microtubule-associated protein 2 (MAP2), a neuron-specific cytoskeletal protein, 

affects the shape, polarity and plasticity of dendrites by controlling assembly and stability 

of microtubules (Aoki and Siekevitz, 1985; Matus, 1988; Johnson and Jope, 1992). The 

phosphorylation of MAP2 by several kinases, including Ca2+/calmodulin-dependent 

protein kinase II (CaMKII), cyclic AMP-dependent protein kinase (PKA), 

Ca2+/phospholipid-dependent kinase (PKC), and extracellular signal-regulated kinases 1 

and 2 (ERK1/2), modulates its binding to microtubule protofilaments (Sanchez et al., 

2000; Hirokawa et al., 1988; Audesirk et al., 1997). Typically, activated ERK 

translocates to the nucleus, where it phosphorylates transcription factors to control 

biological processes such as cell proliferation, survival and plasticity (Seger and Krebs, 

1995; Sweatt, 2004). Through interaction with MAP2 however, phosphorylated ERK1/2 

may be retained in the cytoplasm in association with the microtubule cytoskeleton 

(Morishima-Kawashima and Kosik, 1996; Reszka et al., 1995). 

Recently, we demonstrated the persistent phosphorylation of ERK1/2 in neurons 

of the medial prefrontal cortex (mPFC) of neonate 6-OHDA-lesioned rats behaviorally 

sensitized in adulthood to the effects of a dopamine D1 receptor-selective agonist 

(Papadeas et al., 2004). In these D1-sensitized animals, doses of the partial D1 agonist 

SKF-38393 that are ineffective in controls stimulate profound activation of locomotor 

and stereotypical behaviors. Furthermore, while the behavioral response abates within a 

few hours, sensitivity to a subsequent agonist challenge lasts at least 6 months (Breese et 

al., 1984a; Criswell et al., 1989), suggesting that long-lasting neuroadaptive changes have 

occurred that mediate this behavioral sensitivity. In this study, we sought to determine 

whether MAP2 dendritic immunostaining is altered by the prolonged presence of 
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phospho-ERK in D1-sensitized rat mPFC. We found that D1 sensitization produces robust 

and long lasting changes in MAP2 that reflect radical reshaping of dendrites. Most 

significant, we show that these changes are prevented by pretreatment with 

pharmacological inhibitors of mitogen-activated protein kinase kinase 1/2 (MEK1/2), the 

obligate upstream activator of ERK1/2.  

 

B. Materials and Methods 

Drugs  

 6-OHDA hydrobromide (ICN; Irvine, CA) was dissolved in saline containing 

0.5% ascorbic acid. Desipramine HCl  (Sigma, St. Louis, MO) and SKF-38393 (2,3,4,5-

tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl; Sigma, St. Louis, MO), were 

dissolved in saline. SL327 (α-[Amino[(4-aminophenyl)thiomethylene]-2-

(trifluoromethyl)benzene-acetonitrile; a gift from Bristol-Myers-Squibb Company, 

Princeton, NJ) and PD98059 (2-(-Amino-3-methoxyphenyl)-4H-1benzopyran-4-one; 

Calbiochem, La Jolla, CA) were dissolved in dimethylsulfoxide (DMSO) at a 

concentration of 10 mg/kg, from which a solution containing 0.1 mg/kg with 1% DMSO 

was prepared in sterile saline (pH 7.3) prior to intracerebroventricular (ICV) infusion 

(Choe and McGinty, 2001; Gu et al., 2001). For intraperitoneal (i.p.) administration, 

SL327 was dissolved in DMSO at 2 ml/kg (Atkins et al., 1998; Selcher et al., 1999; 

Yamagata et al, 2002). Kainic acid (1 ml/kg) (Sigma, St. Louis, MO) was dissolved in 

saline. 
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Preparation and sensitization of neonate 6-OHDA-lesioned rats 

  Neonate-lesioned and sham-lesioned rats were prepared at postnatal day (PND)3-

4 as described previously (Papadeas et al., 2004). The bilateral lesion causes over 90% 

loss of dopamine innervation into the striatum and disrupts basal ganglia-cortical system 

circuits (Smith et al., 1973). All animals were treated and used in accordance with the 

NIH Guide for the Care and Use of Laboratory Animals with approval from the 

University of North Carolina School of Medicine Institutional Animal Care and Use 

Committee.  

Neonate-lesioned rats do not show maximal sensitivity to the partial D1 agonist 

SKF-38393 unless repeatedly exposed to this agonist (Breese et al., 1985; Criswell et al., 

1989). Therefore, beginning at PND40-50, neonate-lesioned rats in this treatment group 

received repeated treatments with the partial D1 agonist SKF-38393, sufficient to allow 

the animals to reach a plateau of maximal behavioral supersensitivity (Criswell et al., 

1989, 1990). To accomplish D1 sensitization, lesioned rats were administered a total of 12 

mg/kg SKF-38393, divided into 4 doses of 3 mg/kg; each spaced one-week apart as 

previously described (Lesioned R-SKF, D1-sensitized) (Papadeas et al., 2004). A separate 

group of sham rats received the same agonist dosing regimen (Sham R-SKF). Additional 

groups of neonate- and sham-lesioned rats received saline vehicle (Lesioned R-Sal and 

Sham R-Sal, respectively) and served as injection controls. To assess the effects of a 

single dose of SKF-38393, lesioned and sham rats were injected with a single 3 mg/kg 

dose of SKF-38393 following weekly doses 1-3 of saline. 

In the neonate-lesioned rat, D1 agonist sensitization is characterized by augmented 

behavioral responses to the locomotor and stereotypical effects of a sub-threshold dose of 
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selective D1 agonists. Importantly, control animals do not display these behaviors in 

response to SKF-38393 administration, nor do they sensitize with repeated dosing. 

Therefore, upon dosing on weeks 1 through 4, behavioral activity was assessed to assure 

maximal responsiveness of lesioned rats to the D1 agonist. Rats were placed in clear 17 × 

17 inch computer-monitored activity chambers (Med Associates, St. Albans, VT) and 

their behavioral activity was recorded as previously described (Papadeas et al., 2004). 

Neonate-lesioned rats included in this study exhibited >80,000 total horizontal locomotor 

counts/180 min following the final SKF-38393 treatment. All rats were euthanized either 

7 or 21 d after the final SKF-38393 treatment (i.e., weeks 5 or 7, respectively). Three 

replicates of each experiment were done, and a representative experiment is shown in 

each figure. 

 

Intracerebroventricular (ICV) Infusion of MEK1/2 Inhibitors 

 At PND35-40, neonate- and sham-lesioned rats were anesthetized with sodium 

pentobarbital (50 mg/kg, i.p.) and placed in a Kopf stereotaxic apparatus. Using aseptic 

conditions, the scalp was cleared and a small burr hole was made through which a 

cannula was lowered into the right lateral ventricle (from bregma; anteroposterior, -0.8 

mm; mediolateral, -1.5 mm; dorsoventral, -2 mm; according to Paxinos and Watson, 

1998; supplemental Fig. 4-1SC). The animals were allowed 7 d to recover from the 

implant before any testing was initiated. Using a 32-gauge stainless steel microinjector 

needle and Sage syringe pump (Thermo Electron Corporation, Beverly, MA), vehicle 

(1% DMSO in saline), PD98059 or SL327 was infused through the cannula in a volume 

 99



of 2 μl over 5 min, as previously described (Gu et al., 2001). The needle was allowed to 

remain in place for 1 min to reduce backflow of the solution along the injection track.  

Groups of neonate- and sham-lesioned rats received four ICV infusions with 

SL327 or PD98059 30 min prior to each dose of SKF-38393 (3 mg/kg) or saline. Some 

rats received vehicle prior to doses 1 through 3 of agonist, followed by SL327 or 

PD98059 prior to the fourth and final dose of SKF-38393. All rats were euthanized 7 d 

after the final dosing.  

 

AAV-GFP Vector Infusions  

 Preparation and infusion of the adeno-associated viral (AAV) vector construct 

were described previously (McCown et al., 1996). Briefly, neonate- and sham-lesioned 

rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.), and placed in a 

stereotaxic frame. Using the method described above, 2.0 μl of a recombinant AAV 

vector (titer, 1 × 1013 viral particles/ml) was microinfused over a 20 min period into the 

mPFC (from bregma; anteroposterior, 3.2 mm; mediolateral, -0.6 mm; dorsoventral, -2.0 

mm; according to Paxinos and Watson, 1998), where expression of green fluorescent 

protein (GFP) was driven by a hybrid chicken beta-actin promoter. The injector was left 

in place for 3 min post-infusion to allow diffusion from the site and to prevent backflow 

of solution. The animals were allowed 12 d to recover from the infusions before any 

testing was initiated and to allow transduction and expression. AAV-GFP-transduced 

cells continue to express GFP for months (Klein et al., 2002). Expressed GFP was 

visualized using confocal microscopy (see below) revealing predominant labeling in 

neuronal somata and dendrites (McCown et al., 1996). Labeling of GFP-positive somata 
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demonstrated that most of the microinjections were centered in layer V of the prelimbic 

cortex, however a few injections labeled somata in layer II/III. 

 

Immunohistochemistry: tissue preparation and immunostaining  

 Standard immunohistochemical methods were employed as previously described 

(Papadeas et al., 2004). Tyrosine hydroxylase immunoreactivity was determined with 

affinity-purified polyclonal anti-tyrosine hydroxylase (1:4000; Calbiochem, San Diego, 

CA) to establish that the neonate 6-OHDA-lesioning induced an adequate loss of DA-

containing neurons (Papadeas et al., 2004). Monoclonal anti-MAP2 (1:500; Chemicon, 

Temecula, CA) recognizes the high molecular weight isoforms MAP2A and MAP2B, 

and is insensitive to phosphorylation state. MAP2 is considered a suitable marker for 

dendrites based on evidence that closely correlates dendritic growth with an increase in 

MAP2 immunostaining (Philpot et al., 1997; Sanchez et al., 2000; Bury and Jones, 2002). 

Anti-phospho-ERK1/2 (phospho-p44/42 MAP Kinase (Thr202/Tyr204)) (1:500, Cell 

Signaling Technology, Beverly, MA) primary antibodies were used and quantified as 

previously described (Papadeas et al., 2004). Tissue sections were further processed using 

Vectastain Elite ABC kits (Vector Laboratories, Burlingame, CA) per the manufacturer's 

instructions with immunochemical detection using nickel-cobalt intensification of the 

3,3'-diaminobenzidine (DAB) reaction product. Immunoreactivity was observed under a 

light microscope. 
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Double-label fluorescence   

 Free-floating tissue sections representative of the mPFC of AAV-GFP-injected 

rats were incubated with anti-MAP2 antibody (1:500), followed by incubation in 

AlexaFluor 594-conjugated goat anti-mouse secondary antibody (1:500; Invitrogen, 

Carlsbad, CA) for 45 min at 4ºC with agitation. The intensity of the GFP and labeled 

secondary antibodies were visualized by fluorescence microscopy with FITC, rhodamine 

and dual pass filters. Confocal microscopy, digital imaging, and accompanying software 

manipulation are described below.  

 

Morphological analysis of MAP2 immunoreactive dendrites  

 A strategy was devised to analyze MAP2 positive dendrites in processed sections 

using NIH Image (ImageJ software version 1.34s, http://rsb.info.nih.gov/ij/). Within 

layers II/III and V of mPFC and visual cortex (VC), 12 samples per layer were chosen 

that consisted of three samples from each of four sections, spaced approximately 250 µm 

apart. Each sample was digitized to 657 pixels × 516 pixels in 8-bit grayscale images 

using an Olympus BX50 microscope outfitted with a Sony DCX-390 video camera. Light 

levels were normalized to preset values to ensure fidelity of the data acquisition. Nissl-

stain was performed on adjacent tissue sections for estimation of laminar thickness 

(supplemental Fig. 4-3S). Laminar thickness was measured using a method similar to the 

technique of Wang et al. (1995c). Using a grayscale morphology plugin created for 

ImageJ (available at http://rsb.info.nih.gov/ij/plugins/gray-morphology.html) a closing 

operator with an arbitrary radius of 6 pixels was applied to each of the digitized images, 

enabling us to omit MAP2-stained somata without disturbing the MAP2-positive 
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dendritic processes in the image. The images were then consistently thresholded such that 

all MAP2-stained dendrites were black and the background was white. Threshold levels 

were individually set to ensure all MAP2-stained dendrites were identified. Image 

analysis was performed using the ‘Analyze Particles’ function in Image J and the 

software was calibrated to ensure that all staining was included in surface area fraction 

determinations while background staining was excluded. The percent difference in area 

fraction of MAP2-stained dendrites between treatment groups was calculated using 

saline-injected sham-lesioned rats as the control group. Values obtained from layers II/III 

and V in each section were averaged for each animal, and a mean was determined across 

all animals within each treatment group. Statistical comparisons between treatment 

groups were carried out with ANOVA. Where appropriate, post-hoc comparisons 

between groups were performed using a Fisher's PLSD test. A probability of < 0.05 was 

accepted as significant.  

 

Laser Scanning Confocal Microscopy 

 For GFP-labeled dendrites, sections were imaged with a Zeiss Axiovert LSM510 

laser confocal microscope equipped with argon (488 nm) and HeNe (543) lasers, using a 

40x objective. Qualitative analysis was performed using Zeiss LSM Image Browser and 

Adobe Photoshop software. Thirty images through a Z-series were taken at 

approximately 1 μm intervals through each mPFC section, and the images were merged 

to obtain an image as close as possible to a complete dendritic tree. To calculate the 

length of dendrites, three dendrites were selected from one section that appeared to 

extend from the cell body to the tip of the dendrite. As described in detail by Harada et al. 
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(2002), lengths of representative dendrites were measured and averaged within each of 

the treatment groups.  

For double-label immunofluorescence, dually labeled GFP and MAP2 

immunoreactive neurons identified with the fluorescence microscope were confirmed 

using laser scanning confocal microscopy. Cells were considered double-labeled when 

expression of GFP and phospho-ERK1/2 or MAP2 were co-localized in a minimum of 

three consecutive steps in a Z-series taken at 1 μm intervals through the section of interest 

using a 40x objective.  

 

SL327 Effects on JNK Phosphorylation Elicited by Kainic Acid-Induced Seizures 

 During the preparation of this manuscript, a report by Bjorkblom et al. (2005) 

described an enhanced role for cJun N-terminal kinase (JNK) relative to ERK1/2 in 

modifying cortical dendritic architecture. We thus investigated whether MEK inhibitors 

administered in vivo affect JNK phosphorylation, a possibility that might suggest that our 

observations were phospho-JNK-dependent. Unlesioned rats were administered SL327 

(100 mg/kg, i.p.) or DMSO vehicle (100%) 30 min prior to injections with kainic acid 

(KA, 12 mg/kg). Control treatment groups included SL327 followed by saline and 

DMSO vehicle followed by saline. Following KA administration, rats were monitored 

continuously for 3 h for the onset and extent of seizure activity and seizures were rated 

according to a previously defined scale (Racine et al., 1972). All rats included in the 

study exhibited seizures. Three hours after KA administration (Jeon et al., 2000), animals 

were decapitated and their brains processed for Western blotting with antibodies to stress-

activated protein kinase (SAPK)/JNK and phospho-SAPK/JNK as described below. 
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Average integrated signal intensity measurements revealed that pretreatment with SL327 

did not alter the immunoreactive density of phosphorylated JNK or total JNK protein in 

hippocampus compared to saline-pretreated controls (phospho-JNK ANOVA: F(1,7) = 

0.028, p = 0.8708; total JNK ANOVA: F(1,7) = 0.068, p = 0.4373; blots not shown). 

 

Western blot analysis: tissue preparation, immunoblotting, and quantification  

 For Western blotting, brains were rapidly removed immediately following 

decapitation, and the mPFC and hippocampus were dissected on ice and stored at -80°C 

until use. Tissues were homogenized by sonification in solubilization buffer (10 mM 

Tris-HCl, 50 mM NaCl, 1% Triton X-100, 30 mM sodium pyrophosphate, 50 mM NaF, 5 

nM ZnCl2, 100 μM Na3VO4, 1 mM DTT, 5 nM okadaic acid, 2.5 ng/ml aprotinin, 2.5 

ng/ml pepstatin, and 2.5 ng/ml leupeptin). Insoluble material was removed by 

centrifugation (13,000 rpm for 20 min at 4°C), and protein concentration determined 

using a BCA protein assay kit (Pierce, Rockford, IL). Samples were mixed with Novex 

2X Tris-glycine SDS sample buffer (San Diego, CA) containing 5% 2-mercaptoethanol 

and heated to 90°C for 3 min. Aliquots of 20 μg of protein/lane were separated on Novex 

8-16% gradient Tris-glycine gels under reducing conditions. Proteins were transferred to 

polyvinylidene difluoride membranes (Immobilon-P, Millipore, Bedford, MA), rinsed 3 

times in PBS for 5 min, and incubated with one of the following: monoclonal anti-MAP2 

antibody (1:500; Chemcion, Temecula, CA); polyclonal anti-phospho-SAPK/JNK 

antibody (1:500, Cell Signaling Technology, Beverly, MA); anti-SAPK/JNK antibody 

(1:500, Cell Signaling Technology); or polyclonal β-actin antibody (1:5000; Sigma, St. 

Louis, MO). Antibodies were diluted 1:1 in Odyssey Blocking Buffer (LI-COR 
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Biosciences, Lincoln, NE) in PBS containing 0.1% Tween-20. Binding of the primary 

antibodies to proteins was detected using either IRDye800 goat anti-rabbit (1:5000; 

Rockland Immunochemicals, Gilbertsville, PA) or AlexaFluor 680 goat anti-mouse  

secondary antibodies (Invitrogen, Carlsbad, CA). Fluorescent signals were detected using 

the Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE). Average 

integrated signal intensity measurements for MAP2 were calculated using Odyssey image 

analysis software after normalization to β-actin. 

 

C. Results 

D1-sensitized rats exhibit altered MAP2 immunostaining in medial prefrontal but 

not in visual cortex 

 Previously, we demonstrated the persistent (>36 d) phosphorylation of ERK1/2 in 

mPFC of D1-sensitized rats (Papadeas et al., 2004). In an effort to identify potential 

downstream signaling effects of sustained ERK activation in this region, we examined 

the immunohistochemical profile of an ERK1/2 target protein, MAP2. In rat brain 

coronal sections, apical dendrites of layers II/III and V pyramidal neurons were stained 

intensely throughout the cortex with anti-MAP2A/B. In agreement with descriptions by 

Gabbot and Bacon (1996), Figs. 4-1A, B, and C demonstrate that first-order MAP2-

immunoreactive dendritic shafts in mPFC of sham control and saline-injected lesioned 

rats were long and straight, traversing from deeper layers of the cortex to the pial surface 

in well-delineated bundles (region of interest depicted in supplemental Fig. 4-1SA). In 

contrast, repeated SKF-38393 treatments to neonate-lesioned rats resulted in mPFC 

apical dendritic processes that appeared short and bent, and bundling was far less 
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prominent at day 7 (Lesioned R-SKF, Fig. 4-1D). Bundles containing at most 2 to 3 

visible shafts were observed, suggesting a loss of normal dendritic fasciculation. The 

altered pattern of MAP2 immunostaining persisted for at least 21 days after repeated 

agonist treatment (Figure 4-1E), thus coinciding temporally with the sustained presence 

of phosphorylated ERK1/2 in these animals (Papadeas et al., 2004). Quantitative analysis 

of the MAP2-stained dendritic profiles revealed that the surface area fraction was 

decreased by 40 to 50% in mPFC of D1-sensitized rats at both time points (p < 0.0001 

compared to Lesioned R-Saline, Sham R-SKF, and Sham R-Saline treatment groups) 

(Fig.4-1F). On the other hand, a single dose of SKF-38393 administered to neonate-

lesioned rats caused no significant change in mPFC MAP2 immunostaining compared to 

saline-treated rats (p > 0.05) (Fig. 4-1F).  

Relative to mPFC, dopaminergic innervation in the visual cortex (VC) is 

relatively low (Descarries et al., 1987). MAP2-stained dendritic profiles in VC were long 

and relatively straight and exhibited well-delineated bundling in all groups (supplemental 

Figs. 4-1SB and 4-2SA). In contrast to mPFC, surface area fraction of apical dendrites in 

VC did not differ among any of the treatment groups at the time points examined (day 7 

after treatment, ANOVA: F(4,16) = 1.469, p = 0.2578; day 21 after treatment, ANOVA: 

F(4,16) = 0.6690, p = 0.6227). Correspondingly, phospho-ERK was not present in visual 

cortex after treatment with the D1 agonist (supplemental Fig. 4-2SB). Together, these 

results are consistent with the hypothesis that the altered appearance of MAP2 

immunostaining in mPFC of neonate-lesioned rats sensitized to a D1 agonist is related to 

the presence of persistent ERK1/2 phosphorylation in this region.   
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Decreased expression of MAP2 protein is not involved in the altered appearance of 

immunostaining in D1-sensitized mPFC 

Despite the profound effects on MAP2 immunostaining, the cytoarchitecture of 

D1-sensitized rat mPFC was similar to controls in Nissl-stained sections (supplemental 

Fig. 4-3S). This result seemed to reduce the likelihood that neurodegenerative effects 

were responsible for the decrease in visible MAP2. We thus considered whether MAP2 

protein expression might be diminished, either by reduced transcription/translation or by 

calpain-mediated proteolysis (Buddle et al., 2003). Alternatively, the dendrites might 

have undergone extensive pruning, with subsequent depletion of MAP2 due to significant 

loss of dendritic elaboration. Immunoblotting of mPFC homogenates with anti-MAP2 

identified a high molecular weight protein as MAP2A/B with the characteristic, broad 

band or closely associated doublet of approximately 300kD (Fig. 4-2A). Fainter bands of 

increased electrophoretic mobility were presumably MAP2 degradation products 

(Quinlan and Halpain 1996a). Similar intensities of the 300kD and lighter bands appeared 

across lanes containing samples from each of the neonate- and sham-lesioned groups 

treated with SKF-38393 or saline. Quantitative analysis revealed that the MAP2 

immunoreactive band intensities were not significantly different among these groups 

(Fig. 4-2B, p > 0.05). These results suggest that normal expression levels of MAP2 

protein are preserved in D1-sensitized rat mPFC. They furthermore make improbable the 

conclusion that the depleted appearance of MAP2 was brought about by proteolysis or 

extensive dendritic retraction, and thus a qualitative, rather than quantitative adaptation to 

D1 sensitization seems likely. 
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AAV-GFP transduction of mPFC neurons reveals abnormal morphology of apical 

dendrites in mPFC of D1-sensitized rats 

To further explore qualitatively the nature of the MAP2 changes in D1-sensitized 

rat mPFC, a recombinant AAV vector with GFP as the transgene was microinjected 

bilaterally for visualization of the neurons and their processes. Overlapping patterns of 

MAP2-stained profiles and GFP-labeled dendrites were observed using double-label 

fluorescence for expressed GFP and MAP2 immunohistochemical staining (Fig. 4-3). By 

adjusting the focal plane of the microscope, the soluble, cytosolic GFP and MAP2 

immunoreactive staining could be observed along the length of dendrites in mPFC 

sections from all groups. This colocalization thus suggests that MAP2 is not redistributed 

into specific dendritic domains, as has been described in synaptically stimulated 

hippocampal laminae (Steward and Halpain, 1999), but remains dispersed along the 

entire dendritic shaft. Rather, the meandering course of thinner- and thicker-appearing 

apical dendritic segments gives the perception of shortened dendrites with MAP2 

immunohistochemistry and light microscopy (Fig. 4-3).  

GFP-expressing neurons were assessed qualitatively in detail using confocal 

images of single 1 μm optical sections, and images reconstructed from stacks of 

approximately 30 optical sections. Apical dendrites of sham controls were relatively 

straight and thick and were present in distinct bundles (Fig. 4-4A). These dendrites 

typically extended to the marginal zone and could be traced from the soma to pial surface 

in single optical sections or stacked projections, indicative of outgrowth in a straight path 

(Fig. 4-4A.a, A.b, A.c). This was not the case with the apical dendrites observed in 

sections prepared from D1-sensitized rats (Fig. 4-4B). The dendrites of these animals also 
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reached the marginal zone, but could only be followed from the soma to the pial surface 

in stacked projections (i.e., by focusing through several different focal planes) (Fig. 4-

4B.a, B.b, B.c). These dendrites were not only wavier, but dendritic length measurements 

indicated that they were also approximately 25% longer in D1-sensitized mPFC than in 

controls (Table 4-1), despite no change in laminar thickness (Nissl stain, ANOVA:  F(3,12) 

= 1.206, p = 0.3494; p > 0.05 compared with Sham R-Saline group with Fisher’s PLSD 

test). Finally, consistent with the MAP2 immunohistochemical results, apical shafts of 

GFP-expressing dendrites displayed smaller, infrequent bundles in D1-sensitized mPFC. 

The waviness and loss of bundling were most readily apparent in dendrites extending 

from deeper layers to layer I, although these aspects could be visualized in layer II/III 

neurons when AAV-GFP microinjections were centered closer to this layer (not shown). 

These data indicate that despite the appearance of short discontinuous segments of MAP2 

immunostained apical dendrites in mPFC of D1-sensitized animals, the dendrites actually 

plunged into and out of the plane of the tissue section in a tortuous fashion. A similar 

dendritic phenomenon has been described in mPFC of D1 receptor knockout mice 

(Stanwood et al., 2005) and following prenatal cocaine exposure in rodents (Jones et al., 

1996, 2000; Stanwood et al., 2001a,b).  

 

Inhibition of ERK1/2 phosphorylation prevents the development of morphological 

dendritic changes in mPFC of rats sensitized to a D1 agonist 

While an established role for ERK1/2 in neuronal plasticity is evolving rapidly, 

the influence of ERK activity on dendritic architecture has been appreciated only recently 

(reviewed by Miller and Kaplan, 2003). MAP2 is a widely recognized substrate for 
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phosphorylation by ERK1/2, and this modification regulates MAP2 interaction with the 

cytoskeleton (Sanchez et al., 2000). To determine whether sustained activation of 

ERK1/2 is involved in the altered morphology of dendrites in D1-sensitized mPFC, we 

utilized two structurally and mechanistically dissimilar inhibitors of MEK1/2, the 

upstream kinase activator of ERK1/2. In neonate-lesioned rats infused with either 

PD98059 or SL327 prior to each sensitizing dose of D1 agonist, phospho-ERK1/2-

positive cell counts were similar to background when observed on day 7 following the 

final treatment (Fig. 4-5A, C, D) (p > 0.05 compared with R-Saline). Consistent with our 

previous results (Papadeas et al., 2004), D1-sensitized rats pretreated with vehicle 

demonstrated robust ERK phosphorylation at this time point (Fig. 4-5A, B). On the other 

hand, when MEK inhibitors were infused prior only to the final dose of agonist, 

inhibition of phospho-ERK1/2 immunostaining was incomplete (Fig. 4-5A). No 

differences in phospho-ERK1/2 were found in visual cortex among treatment groups 

(ANOVA: F(11,36) = 0.4340, p = 0.9299).  

  We next examined the effect of MEK1/2 inhibitor pretreatment on MAP2 

immunostaining in sections adjacent to those stained for ERK1/2. ICV infusions with 

either PD98059 or SL327 prior to each weekly D1 agonist injection in neonate-lesioned 

rats inhibited the alterations in dendritic immunostaining of MAP2 in mPFC (Figure 4-

6A, B, C; see also cannula placement, supplemental Fig. 4-1SC). Quantification of the 

MAP2-stained dendritic profiles showed that preinfusions of MEK1/2 inhibitors 

prevented the change in area fraction of apical dendrites in D1-sensitized rats (p < 0.0001 

for both Lesioned R-PDSKF and Lesioned R-SLSKF groups compared with Lesioned R-

SKF) (Fig. 4-6E). Interestingly, incomplete recovery of normal dendritic bundling and 
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length were observed when a single infusion of PD98059 or SL327 was administered 

only prior to the final dose of SKF-38393 (Fig. 4-6D), consistent with the partial 

inhibition of phospho-ERK in the same animals (Fig. 4-5A). The decrease in surface area 

fraction of dendritic MAP2 in rats challenged with one dose of MEK inhibitor was half 

that of D1-sensitized animals receiving no inhibitor treatment (Lesioned R-SKF, PDSKF 

challenge, approximately 20% decrease from Sham R-SKF control vs. Lesioned R-SKF, 

40% decrease from Sham R-SKF control; p < 0.001; Fig. 4-6E). Infusion of PD98059 

alone had no effect on MAP2-stained dendritic profiles (Fig. 4-6E) and area fraction was 

not altered in visual cortex following ICV infusion with either PD98059 or SL327 

(ANOVA: F(12,41) = 0.7420, p = 0.7035).  

 In a separate group of animals, GFP-positive mPFC neurons were examined for 

the effect of MEK1/2 inhibitor pretreatment on apical dendritic architecture. Similar to 

our results with MAP2 immunostaining, systemic administration of SL327 prior to each 

dose of SKF-38393 prevented the loss of bundling and tortuous course of dendrites in 

mPFC of D1-sensitized rats (Fig. 4-7). In addition, SL327 blocked the lengthening of 

dendritic processes seen in these animals (p > 0.05 for Lesioned R-SL327 compared with 

Sham R-SKF group) (Table 4-1).  

 

D. Discussion 

 The results presented here demonstrate in vivo that mature dendrite morphology 

in mPFC may be modified by the degree of ERK1/2 activation, a finding that strengthens 

recent in vitro studies proposing a role for ERK in regulation of dendritic structure and 

plasticity (reviewed by Sanchez et al., 2000, Miller and Kaplan, 2003, Chen and Ghosh, 

 112



2005). Apical dendrite remodeling in pyramidal neurons of mPFC coincided with 

persistent ERK1/2 phosphorylation after rats lesioned as neonates with 6-OHDA were 

behaviorally sensitized to D1 agonists. The lengthening, waviness and decreased bundling 

of affected dendrites in these animals were reflected immunohistochemically as sparse 

short and bent profiles with an antibody to the somatodendritic marker MAP2. Finally, 

the robust dendritic alterations found in D1-sensitized mPFC persisted for at least 21 days 

after the final agonist treatment and were not found in the phospho-ERK-negative and 

relatively D1 receptor-deficient visual cortex. Together, these results suggest that a long-

lasting and regionally specific structural adaptation occurred because of the repeated 

SKF-38393 exposure.  

Subcellular fractionation and immunocytochemistry have revealed that a 

considerable portion of cellular ERK associates with the cytoskeleton (Fiore et al., 1993; 

Reszka et al., 1995). Furthermore, in primary neuronal cultures and tissue slices ERK1/2 

mediates changes in dendrite structure that are dependent upon neuronal activity (Quinlan 

and Halpain, 1996b; Wu et al., 2001; Vaillant et al., 2002), neurotrophins (Miller and 

Kaplan, 2003) and extracellular matrix and adhesion proteins (Mantych and Ferreira, 

2001; Karasewski and Ferreira, 2002). Both increased phosphorylation of cytoskeletal 

proteins by ERK1/2 (Holzer et al., 2001), and enhanced dendritic length and complexity 

(Alpar et al., 2003) are characteristics found in cortical pyramidal neurons of transgenic 

mice expressing a constitutively active form of the upstream MEK/ERK activator p21H-

ras. Among the cytoskeletal proteins phosphorylated by activated ERK1/2, MAP2 binds 

to and stabilizes microtubule bundles (Sanchez et al., 2000). Phosphorylation of MAP2 

by ERK1/2, CaMKII and other kinases decreases its affinity for microtubules, thus 
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altering microtubule stability and increasing neural plasticity (Quinlan and Halpain, 

1996a,b; Redmond et al., 2002). Together, these studies provide significant evidence 

supporting a role for ERK1/2 in the modulation of dendrite morphology. Although our 

data do not allow us to conclude that the specific phospho-ERK1/2-positive cells that 

were identified immunohistochemically in mPFC drive directly the modifications in 

MAP2 and dendritic morphology, the disruption of these modifications by MEK 

inhibitors strongly suggests that ERK is by some means involved in their genesis. 

Calculating the surface area fraction of MAP2 immunostaining disclosed a 

significant reduction of dendritic MAP2 in mPFC of D1-sensitized vs. control rats, 

whereas immunoblotting suggested that total MAP2 protein did not differ across groups. 

These seemingly conflicting results were resolved by virally transducing mPFC neurons 

with GFP. These experiments revealed an undulating pattern of pyramidal apical 

dendrites in D1-sensitized mPFC, which we have subsequently confirmed using Golgi-

Cox histochemical staining (unpublished observations). By confocal reconstruction of 

GFP-labeled dendrites, we illustrated that this waviness likely contributed to the MAP2 

immunohistochemical appearance of short dendritic segments when viewed within a 

single microscopic plane, and to the reduction in surface area fraction of D1-sensitized 

mPFC dendrites. Whether multi-dimensional effects account for the difference in area 

fraction in its entirety, however, is unclear. For example, some of the apparent loss might 

be related to the phospho-ERK1/2-dependent disassembly of MAP2-microtubule bundled 

complexes described above. Consequently, either dispersion of MAP2 monomers within 

the neurons, or altered availability of specific epitopes in situ could account for the 

apparent loss of MAP2 immunostaining selectively in tissue sections but not with 
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immunoblotting. Studies underway are investigating the phosphorylation state of MAP2 

at extended time points following D1 sensitization, and investigating additional kinase 

and phosphatase pathways that may bring about these modifications.  

Although the involvement of ERK1/2 in neuronal injury (Stanciu et al., 2000; Pei 

et al., 2002; Chu et al., 2004) and neuroprotection (Kaplan and Miller, 2000; Troadec et 

al., 2002; Zhu et al., 2005) is widely appreciated, we hypothesize that the structural 

modifications observed herein may be more closely reflective of a reversible, perhaps 

even beneficial adaptation to an altered signaling environment in the mPFC than to 

pathological indications of toxicity. For example, the apical dendritic alterations persist 

for at least 21 days, yet overt changes in the spontaneous behavior of D1 sensitized rats 

are absent over time except for a heightened locomotor sensitivity to D1 agonist challenge 

(Breese et al., 1985b). In addition, the morphological effects were significantly 

ameliorated by a single dose of a MEK inhibitor administered at the end of the dosing 

sequence. The latter finding suggests that continuous MEK1/2 activity may be required to 

maintain the condition over time, consistent with our observation that MEK-driven 

phosphorylation of ERK is also sustained in mPFC. Stable changes in cellular signaling 

and the maintenance of constant MAP2 protein levels imply that the neurons retain at 

least the ability to synthesize proteins and orchestrate signaling processes. As further 

support for the idea that neurodegenerative changes are minimal, we note elongated, 

rather than retracted apical dendrites, absence of dendritic swelling or beading, and no 

changes in laminar thickness or cellular architecture in Nissl-stained sections. In addition, 

histological and immunochemical analyses of Fluoro-Jade neurodegenerative marker 

(Schmued and Hopkins, 2000), phospho-JNK, p38-MAPK, JunD, glial fibrillary acidic 

 115



protein (GFAP) and Bcl-2 were negative in mPFC of D1-senstized animals (unpublished 

observations). 

Our results show that non-specific effects on JNK phosphorylation are absent 

with SL327 administered in vivo, corroborating previous studies showing that PD98059, 

SL327 and its structural analog, U0126 are selective inhibitors of MEK1/2 (Alessi et al., 

1995; Seger and Krebs, 1995; Favata et al., 1998; Blum et al., 1999; Davies et al., 2000; 

Valjent et al., 2000; Pearson et al., 2001; Kohno and Pouyssegur, 2003). Furthermore, we 

employed two structurally dissimilar MEK inhibitors with distinct mechanisms of action 

(Davies et al., 2000), lessening the possibility that the two inhibitors would have similar 

nonspecific effects. Nonetheless, it was recently reported that PD98059 prevents 

activation of ERK5, a related MAPK family member (Kamakura et al., 1999). Since there 

is negligible expression of ERK5 in adult rat brain however (Liu et al., 2003), neither 

ERK5 nor JNK are likely to mediate the dendritic effects observed. 

The wavy, disorganized character of mPFC pyramidal apical dendrites in D1-

sensitized rats bears a remarkable morphological similarity to lengthening and tortuous 

dendritic alterations described by the Levitt group in the frontal cortices of D1 receptor 

knockout mice and animals exposed prenatally to cocaine (Jones et al., 1996, 2000; 

Murphy et al., 1997; Stanwood et al., 2001a, b; Lloyd et al., 2003). In these 

developmental models of dopaminergic system dysfunction, the anomalous morphology 

appears to develop endogenously from birth, rather than arise from drug exposure during 

adulthood as found in the present study. In other studies, D1 receptor stimulation has been 

linked to decreased MAP2 phosphorylation, spontaneous neurite outgrowth, and dendrite 

length and branching (Lankford et al., 1988; Todd, 1992; Spencer et al., 1996; Reinoso et 
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al., 1996, Song et al., 2002), although there are some exceptions (Schmidt et al., 1996). In 

agreement with these findings, evidence from the prenatally cocaine-exposed and D1 

receptor-null animals suggests that reduced D1 receptor coupling to Gαs mediates the 

observed dendritic structural effects (Wang, et al., 1995a; Jones et al., 2000). Together, 

these data would seem to support the notion that insufficient signaling through D1 

receptors is responsible for the lengthening and waviness of mPFC apical dendrites.  

Superficially, our observations in the D1-sensitized rat model, in which repeated 

D1 agonist treatments induce similar morphological changes, would seem to conflict with 

such a mechanism. Why would these animals, made dopamine-deficient from PND3, 

develop effects similar to those found in D1 receptor insufficiency only upon repeated 

dosing with a D1 agonist? Part of the answer may lie in the fact that the agonist treatment 

is intermittent (i.e., weekly), whereas throughout postnatal development and during the 

periods in between doses, D1 receptor stimulation in mPFC presumably is precluded 

because dopaminergic afferents have been lesioned. It is likely to be during these 

intervening periods between doses that adaptive changes in other neurotransmitter 

receptor systems (e.g., glutamate, GABA, serotonin), neurotrophic factors, and 

intracellular signaling pathways occur that profoundly influence the structural outcome.  

Unlike the signs of Parkinsonism that develop in animals lesioned with 6-OHDA 

as adults, neonate-lesioned rats exhibit normal spontaneous motor behavior in adulthood, 

suggesting that neuroadaptive changes compensate for the early loss of dopamine (Breese 

et al., 2005). Repeated D1 agonist dosing to neonate-lesioned rats may induce additional 

changes to a system already delicately counterbalancing the loss of D1 stimulation, thus 

resulting in malfunction of the compensatory system. The alterations in dendritic 
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morphology observed in the present study may serve to dampen these malfunctioning 

signals, providing a protective, beneficial effect. Alternatively, the changes may merely 

reflect reduced or excessive levels of critical neuronal signals. In any case, the periods of 

adaptation that occur between agonist exposures in neonate-lesioned rats are perhaps 

when a radically altered signaling environment in mPFC provides the force that drives 

these changes in dendritic morphology, with the loss of D1 receptor activity assuming a 

facilitating role. 
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Fig. 4-1: Repeated administration of SKF-38393 to neonate-lesioned rats produces 

long-lasting alterations in the appearance of MAP2 immunoreactivity in mPFC 

relative to controls. A-E, Representative high magnification (400×) photomicrographs of 

MAP2 immunoreactivity in the mPFC of neonate-lesioned (Lesioned) or sham-lesioned 
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(Sham) rats administered repeated injections of either saline (R-Saline) or SKF-38393 (R-

SKF) and euthanized at day 7 (7d) or day 21 (21d) after the final injection. Roman 

numerals (I, II/III, and V) underneath E represent approximate laminar boundaries for all 

five photomicrographs. Black arrows identify MAP2-stained apical dendrites. Scale bar, 

100 µm. F, Graph depicting the average percent difference ±SEM of MAP2 dendritic 

area fraction (compared to Sham R-Saline group) in rats euthanized at days 7 or 21 after 

the final agonist treatment (Lesioned SKF, neonate-lesioned rats administered a single 

dose of SKF-38393). ANOVA, 7d after treatment: F(4,16) = 10.936, p = 0.0002; ANOVA, 

21d after treatment: F(2,17) = 18.409, p < 0.0001. *p < 0.05 compared with saline-

injected sham rats with Fisher’s PLSD test.  
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Fig. 4-2: MAP2 total protein levels in mPFC homogenates from D1 sensitized rats 

are not significantly different from controls.  A, Immunoblot of MAP2A/B (upper 

band) and β-actin (lower band) 7d after the final agonist or saline treatment: Lane 1, 

Sham R-Saline; Lane 2, Lesioned R-SKF; Lane 3, Lesioned R-Saline; Lane 4, Sham R-

SKF. Treatment groups abbreviated as described in legend, Fig. 4-1. Note the small but 

consistent amount of MAP2 degradation product across all samples. B, Average 

integrated signal intensity measurements for MAP2 were calculated after normalization 

to β-actin and are represented as percent difference vs. Sham R-Saline. ANOVA: F(3,14) 

= 0.359, p = 0.7836.  
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Fig. 4-3: Double fluorescence labeling of MAP2 immunostaining and GFP in apical 

dendrites of D1-sensitized rat mPFC. Photomicrographs are representative of neonate-

lesioned rats systemically pre-treated with SL327 prior to each repeated dose of SKF-

38393. Representative confocal images of A, GFP (green); B, MAP2 

immunofluorescence (red); C, GFP + MAP2 overlay. Note that the morphological pattern 

of MAP2 immunolabeling is identical to that of GFP-labeled apical dendrites (yellow). 

mPFC layers depicted are similar to those indicated in Fig. 4-1E. Scale bar, 50 µm.  
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Fig. 4-4: Repeated administration of SKF-38393 to neonate-lesioned rats produces 

long-lasting alterations in apical dendrites of mPFC. A, B, Representative projected 

images of GFP-labeled dendrites in mPFC of A, Sham R-Saline and B, Lesioned R-SKF 

rats. Lowercase letters, serial 1 µm optical sections representing those used to reconstruct 

the corresponding projection (spanning 30 μm) on the left. Note that whereas GFP-

labeled dendrites in Sham R-Saline mPFC are visible across nearly the entire length of 

A.a, A.b and A.c, the Lesioned R-SKF apical dendrite indicated by white arrows in B.a, 

B.b and B.c appears alternately to descend into and emerge from the optical section. Scale 

bar, 50 µm. 
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Fig. 4-5: Pretreatment with the MEK1/2 inhibitors PD98059 and SL327 prevents 

sustained ERK1/2 phosphorylation in mPFC of neonate-lesioned rats administered 

repeated SKF-38393 treatments. A, Graphic representation of phospho-ERK1/2-

positive cell counts in neonate-lesioned and sham-lesioned rat mPFC. ICV infusions of 

vehicle (R-Saline; R-SKF) or MEK inhibitor (R-PDSKF; R-SLSLKF) were administered 

30 min prior to systemic saline or SKF-38393 for 4 consecutive weeks and were 

euthanized 7 days later. Separate groups of rats received preinfusions of vehicle prior to 

SKF-38393 or saline for the first 3 doses, followed by a challenge dose of either 

PD98059 or SL327 prior to SKF-38393 (R-SKF, PDSKF challenge; R-SKF, SLSKF 

challenge) or saline (R-Saline, PDSaline challenge) on week 4, then euthanized 7 days 
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later. * p < 0.05 compared with Sham R-Saline group, # p < 0.05 compared with 

Lesioned R-SKF and Sham R-Saline groups with Fisher’s PLSD. ANOVA: F(12,41) = 

10.589, p < 0.0001. B-D, Representative low magnification (100×) photomicrographs of 

phospho-ERK1/2 immunoreactive cells in R-SKF (B), R-PDSKF (C), and R-SLSKF (D) 

neonate-lesioned rat groups. Scale bar, 200 µm.  
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Fig. 4-6: Pretreatment with PD98059 or SL327 prior to SKF-38393 prevents long-

lasting alterations in the morphology of MAP2 immunoreactive apical dendrites. A-

C, Representative high magnification (400×) images of MAP2 immunoreactivity in 

neonate-lesioned rats infused with vehicle (Lesioned R-SKF) or MEK inhibitor (Lesioned 
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R-PDSKF; Lesioned R-SLSKF) prior to each repeated systemic SKF-38393 injection. D, 

A single preinfusion of PD98059 prior to the fourth, final dose of SKF-38393 (Lesioned 

R-SKF, PDSKF challenge) results in limited MAP2 immunoreactive changes (compare D 

to A). Black arrows indicate MAP2-stained apical dendrites. Scale bar, 100 µm. E, Mean 

percent difference ±SEM of dendritic MAP2 surface area fraction in various treatment 

groups compared to Sham R-SKF. Data from animals receiving ICV PD98059 or ICV 

SL327 on the fourth, final dose (R-SKF, PD/SLSKF challenge; grey and black stripes) 

were collapsed together. Note that area fraction of dendritic MAP2 from a separate group 

of rats challenged with systemic SL327, rather than ICV infusion (R-SKF, SLSKF 

challenge (i.p.); stippled), was virtually identical to that of rats receiving ICV MEK 

inhibitor. All rats were euthanized 7d after the final drug treatment.  ANOVA: F(12,41) = 

6.729, p < 0.0001. * p < 0.05 compared with Sham R-Sal. # p < 0.05 compared with 

Lesioned R-SKF and Sham R-Sal groups with Fisher’s PLSD. 
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Figure 4-7: SL327 prevents long-lasting alterations in the morphology of apical 

dendrites in mPFC of neonate-lesioned rats administered repeated doses of SKF-

38393. A, B, Projected images of GFP-labeled apical dendrites after mPFC infection with 

AAV-GFP in A, neonate-lesioned rats repeatedly treated with SKF-38393 (Lesioned R-

SKF), and B, a neonate-lesioned rats pre-treated with systemic (i.p.) injections of SL327 

prior to each SKF-38393 treatment (Lesioned R-SLSKF). Lowercase letters, serial 1 µm 

optical sections representing those used to reconstruct the 30 μm spanning projection on 

the left. White arrows in A.a, A.b and A.c indicate a single apical dendrite. Note that loss 

of bundling and increased waviness of apical dendrites typical of Lesioned R-SKF mPFC 

is prevented in Lesioned R-SLSKF mPFC. Scale bar, 50 µm. 
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Fig. 4-1S:  Schematic diagrams of regions of interest adapted from Paxinos and 

Watson (1998). A, Area of medial prefrontal (prelimbic) cortex depicted in 

photomicrograps and the site of AAV-GFP infusion; B, Visual cortex depicted in 

photomicrographs; and C, Placement of intracerebroventricular cannulae. 
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Fig. 4-2S:  Repeated administration of SKF-38393 to neonate-lesioned rats has no 

effect on MAP2 or phospho-ERK1/2 immunoreactivity in the visual cortex. 

Representative A, high magnification (400×) photomicrograph of MAP2 immunoreactive 

dendrites (scale bar, 100 µm) and B, low magnification (100×) photomicrograph of 

phospho-ERK1/2 immuno-positive cells (scale bar, 200 µm) at day 7 after repeated SKF-

38393 treatment to neonate-lesioned rats.  
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Fig. 4-3S: Repeated administration of SKF-38393 to neonate- or sham-lesioned rats 

does not alter cytoarchitecture in the mPFC. A-D, representative low magnification 

(100X) photomicrographs of Nissl-stained sections of a A, neonate-lesioned rat dosed 

repeatedly with saline, Lesioned R-Saline; B, neonate-lesioned rat dosed repeatedly with 

SKF-38393 (D1-sensitized), Lesioned R-SKF; C, sham-lesioned rat dosed repeatedly with 

saline, Sham R-Saline; D, sham-lesioned rat dosed repeatedly with SKF-38393, Sham R-

SKF. Scale bar, 30 μm. 
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Table 4-1: SL327 prevents increased dendritic length in 
mPFC of neonate-lesioned rats administered repeated 
doses of SKF-38393 

 RAT TREATMENT 
GROUPP

¶
AVERAGE DENDRITIC 

LENGTH (µm)‡

Lesioned R-SKF 206.506 ± 8.539* 

Lesioned R-SLSKF 164.667 ± 4.926 

Sham R-SKF 165.492 ± 5.810 

 
 
 
 
 
 
 

ANOVA F-test of model fit: F(2,11) = 9.309, p = 0.0043 
¶Corresponding treatment groups are as follows: Lesioned R-SKF, 

neonate-lesioned rats administered repeated weekly doses of SKF-

38393; Lesioned R-SLSKF, neonate-lesioned rats pretreated with 

SL327 prior to each weekly repeated dose of SKF-38393; Sham R-

SKF, sham-lesioned rats administered repeated weekly doses SKF-

38393. 
‡Data are presented as mean ± SEM 

*p < 0.05 compared with Sham R-SKF using Fisher’s PLSD 

test 
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CHAPTER V. CONCLUSIONS 

 
A. Summary of Major Findings 

 The goal of this dissertation was to determine whether the activation of ERK, a 

well known regulator of gene expression, occurs as a result of repeated D1 receptor 

stimulation in neonate-lesioned rats, and to establish whether active ERK plays a role in 

behavioral priming and structural plasticity in these animals.  To further knowledge of the 

ERK pathway and its role in D1 receptor-mediated behavioral and structural adaptations 

in our model, three research objectives were formulated. First, to examine the 

phosphorylated (active) form of ERK after both single and repeated (i.e., sensitizing) 

doses of the partial D1 receptor agonist SKF-38393 to neonate-lesioned rats; Second, to 

show the involvement of active ERK in the sensitization, or priming, of various motor 

behaviors characteristic of neonate-lesioned rats administered repeated D1 agonist 

treatment; and Third, to determine if changes in dendritic morphology occur with priming 

and whether ERK plays a role in the changes. The findings based upon these objectives 

are summarized below. 

 

Examination of Phosphorylated ERK  

Using immunohistochemical techniques, a prolonged increase in phospho-ERK 

that accumulated primarily in layers II-III of the mPFC was found, where it declined 

gradually yet remained significantly elevated for at least 36 d after repeated SKF-38393 



treatment to neonate-lesioned rats. A sustained (≥7 d) increase in phospho-ERK was 

observed for shorter periods in various other cortical regions, i.e., VLOC, CgC, MC, 

SSC, and PirC, but was not detectable in the striatum or nucleus accumbens. Total ERK 

protein levels remained unchanged in all brain regions examined. At 36 d, an additional 

injection of SKF-38393 to D1-sensitized rats restored phospho-ERK to maximal levels 

only in the mPFC when examined 7 d later. Moreover, the phosphorylated form of 

transcription factor CREB, examined 7 d after the sensitizing regimen, was observed 

exclusively in the mPFC, where it was abundant throughout all layers. Systemic 

injections of SL327, an inhibitor of the upstream ERK activator MEK, attenuated both 

ERK and CREB phosphorylation in layers II-III of the mPFC, suggesting that the 

increased phospho-CREB likely represents a functional product of persistently elevated 

phospho-ERK in this brain region. 

In addition, pretreatment with the D1 antagonist SCH-23390 inhibited the 

prolonged increase in mPFC phospho-ERK, whereas the 5-HT2 receptor antagonist 

ketanserin was ineffective. The NMDA receptor antagonists MK-801 and CGS-19755 

also blocked the sustained increase in ERK phosphorylation. Collectively, these results 

demonstrate a coupling of D1 and NMDA receptor function that is reflected by a 

sustained activation of the ERK signaling pathway in the mPFC of neonate-lesioned rats 

administered repeated SKF-38393 treatment. The long-lasting phosphorylation of ERK 

and CREB in the mPFC could play a pivotal role in any permanent adaptive change(s) in 

these animals.   

 

Involvement of Phosphorylated ERK in Behavioral Priming 
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 MEK inhibitors were used as a tool to show the involvement of active ERK in the 

priming of various motor behaviors characteristic of neonate-lesioned rats administered 

repeated SKF-38393 treatment. Intracerebroventricular or systemic pretreatment with 

SL327, and the structurally dissimilar PD98059, prior to each of three of four weekly 

sensitizing doses of SKF-38393 altered the character of the supersensitive motor response 

elicited by D1 agonism. In particular, priming-induced horizontal behaviors (i.e., running, 

walking, and trotting) were augmented, while stereotyped behaviors (i.e., rearing, 

climbing, jumping, patting, treading, and taffy pulling) were inhibited. Intra-mPFC 

infusions of PD98059 prior to SKF-38393 treatments inhibited stereotyped behaviors, but 

did not affect horizontal behaviors. Together, these data indicate that forebrain ERK 

activation contributes to some but not all of the sensitized motor responses seen with D1 

agonist priming of neonate-lesioned rats, and furthermore, that mPFC ERK activation is 

crucial for the sensitization of specific stereotyped behaviors demonstrated by these 

animals. 

 

Involvement of Phosphorylated ERK in Dendritic Alterations with Priming 

Quantitative measures of dendritic processes immunoreactive for MAP2 as well 

as confocal rendering of pyramidal neurons locally expressing GFP by viral vector-

mediated gene transfer were used to reveal dendritic remodeling in the mPFC of primed 

neonate-lesioned rats. Long apical dendrites of layer V neurons exhibited decreased 

bundling and wavy, irregular patterns as they advanced through layer II-III toward the 

pial surface; these modifications persisted for at least 21 days after dosing. Meanwhile, 

MAP2 dendritic profiles in the visual cortex were unchanged. Pretreatment with SL327 
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or PD98059 before the final sensitizing dose SKF-38393 resulted in diminished effects 

on dendritic morphology, whereas administration of these agents prior to each repeated 

treatment completely prevented these changes. These data reveal that dendritic 

remodeling emerges simultaneously with sustained ERK phosphorylation in the mPFC of 

rats deprived of dopamine in development and administered sensitizing doses of a D1 

agonist. Together, these findings implicate phospho-ERK in guiding dopaminergic 

effects on pyramidal neuron morphology, and demonstrate for the first time in vivo that 

inhibition of the ERK pathway reverses a profound structural reorganization of mature 

cortical dendrites.  

 

B. Future Directions 

 The findings from my research have raised a number of exciting and interesting 

questions that can be pursued. In addition to the points mentioned in the previous 

chapters, the following sections provide some additional lines of future investigation: 

 

Phosphatase Studies 

 In Chapter II, a persistent elevation in phospho-ERK immunoreactivity in the 

mPFC following repeated D1 agonist treatment to neonate-lesioned rats was found. The 

persistent phosphorylation of ERK in the mPFC of D1-sensitized rats could conceivably 

result from downregulation of phosphatase(s) that normally inactivate ERK, rather than 

plastic changes in specific receptor mechanisms. It is known that MAP kinase 

phosphatases (MKPs) are enriched throughout the brain (Stoker and Dutta, 1998) and 

play an essential role in the regulation of ERK activity. MKPs are dual specificity protein 
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phosphatases that dephosphorylate and inactivate ERK by removal of phosphate groups 

from both tyrosine and/or threonine residues of phosphorylated ERKs (Keyse, 1998). It is 

thus of interest to investigate whether MKPs are altered after neonatal 6-OHDA lesioning 

and whether this contributes to the persistent phosphorylation of ERK in response to 

repeated D1 receptor stimulation. As an initial approach to assessing this possibility, 

mPFC MKP-1, -2, and -3 levels were measured and found not to differ between D1-

sensitized rats and controls (unpublished observations). This data suggested that the 

persistent mPFC phospho-ERK results from adaptations at the level of specific 

neurotransmitter receptor-signaling mechanisms. Nevertheless, because protein level, but 

not activity, was measured, and other phosphatases could be involved in the 

dephosphorylation of ERK, activity assays for MKPs should be performed in future 

studies along with examination of other ERK-specific phosphatases (e.g., protein 

phosphatase 2A) to confirm our findings. 

 

siRNA Studies 

 In Chapters III and IV, MEK inhibitors SL327 and PD98059 were used to 

demonstrate the involvement of persistent phospho-ERK in behavioral sensitization and 

dendritic morphogenesis following repeated D1 agonist treatment to neonate-lesioned 

rats. Because the specificity of these compounds may not be absolute, a more direct 

approach would involve the use of small interference RNA (siRNA) targeting ERK1 and 

ERK2. This technique would provide extremely important information as to whether 

these priming-induced phenomena are strictly dependent on long-lasting ERK activation. 

With regard to the behavioral studies, however, this technique could prove to be labor 
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intensive because ERK1/2 siRNA would have to be injected into the mPFC and a number 

of other brain regions demonstrating elevated phospho-ERK. 

 It should also be mentioned that there are a number of caveats to the use of 

siRNAs in vivo. For example, there are problems with the stability of siRNAs in vivo, for 

the half-life of the knockdown effect is at best 2-4 days (Bonetta, 2004). Moreover, there 

exists the possibility that the siRNAs could knock down or induce genes other than the 

intended targets (Bonetta, 2004). Regardless, with the commercial availability of custom 

siRNAs little effort or skill is required to test whether an siRNA is effective in vivo, and 

thus the benefits of using ERK1/2 siRNA in our model outweigh any possible problems 

of using this technique.  

 

Further morphology studies 

 In Chapter IV, repeated doses of D1 agonist to neonate-lesioned rats produced 

altered morphology of apical dendrites in the mPFC, and this change was shown to 

involve activation of the ERK pathway. In future studies, it will be important to extend 

our observations to dendritic spines and branches, since these are the primary sites of 

excitatory input and synaptic integration (for review, see Harris and Kater, 1994; Yuste 

and Tank, 1996). Experiments to test this would involve the use of MEK inhibitor 

followed by infusion of AAV-GFP into the mPFC, or alternatively, the use of ERK1/2 

siRNA followed by rapid Golgi-Cox staining. Recent in vitro studies have highlighted a 

necessity for ERK in stabilizing morphological changes in dendritic spines and branches 

(Wu et al., 2001; Goldin and Segal, 2003), and suggest that this mechanism is relevant in 

triggering long-lasting changes in neuronal circuit structure. Accordingly, persistent 

 138



ERK-dependent changes in dendritic spines and branches might disrupt normal synaptic 

transmission in the mPFC, impairing mPFC function and perhaps contributing to some to 

the long-lasting behavioral effects of repeated D1 agonist treatment to neonate-lesioned 

rats. Collectively, these experiments could provide further insight into the role of ERK in 

the maintenance and reorganization of dendrites in our model. 

 

C. Final Reflections 

The research that I have conducted for this dissertation has been extremely 

rewarding. I have explored many avenues of research and continue to gain experience in 

techniques for laboratory science.  My findings themselves have raised several questions 

and future research based upon this dissertation can follow many paths. Future 

experiments and ideas suggested represent what I believe to be the most important based 

upon my research, and should provide valuable insight into neurobiological mechanisms 

that underlie the permanence of behavioral responses following priming of D1 receptor 

function. Furthermore, results from such studies could have implications for identifying 

mechanisms that support the behavioral sensitization that accompanies repeated 

psychostimulant drug exposure, and for identifying the basis of symptoms in disorders 

involving dopamine dysfunction such as LNS and schizophrenia. 
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