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1. Introduction

The goal of this paper is to look at strong theorems relating the
differential geometry of vector bundles to their stability in an algebraic
sense and start to see how these theorems might be extended to more
refined notions of stability. Bridgeland stability is in particular defined
for objects in the derived category D(X) = Db(Coh(X)) for a variety
X. We will show in Corollary 9.1 that, at least when X is an elliptic
curve, there is a heart of a bounded t-structure in D(X) which is
equivalent to a category of vector bundles on a non-commutative torus
related to X based on a description of this latter category by Polishchuk
and Schwarz [17]. Under this equivalence, Bridgeland stable objects
correspond to bundles with special connections.

This paper is outlined as follows: Section 2 recalls the Hermitian-
Yang-Mills equation, and Section 3 describes the relation between this
equation and Mumford stability. Section 4 recounts the extension
of this to Gieseker stability. Then Section 5 gives background on t-
structures and tilting, which is used in Section 6 to describe Bridge-
land stability in general and Section 7 which specializes to Bridgeland
stability on an elliptic curve. Using a rapid introduction to complex
non-commutative geometry in Section 8, the aforementioned equiva-
lence is described in Section 9.

2. Hermitian-Yang-Mills Equation

To introduce the topic, it is useful to recall the workings of Hodge
theory, as there are sharp analogies between Hodge theory and the
types of questions with which we are presently concerned. Let X be a
complex Kahler manifold of real dimension n and let [α] ∈ Hp,q

∂
(X) be

a Dolbeault cohomology class. We define a norm on the space Ap,q(X)
of (p, q)-forms by first defining an inner product on ΛkV for a vector
space V as 〈v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk〉 = det(〈vi, wj〉) and extending
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sesquilinearly. Then define, by integrating over X, the norm

|φ|2 =

∫
X

〈φ(x), φ(x)〉dx.(2.1)

The Hodge theorem in particular states that there is a unique repre-
sentative α0 ∈ {φ|[φ] = [α]} which minimizes |φ|2. We find that α0

is the unique solution to the Euler-Lagrange equation of the action
(2.1), which is ∂

∗
φ = 0, where ∂

∗
is the adjoint of ∂ with respect to

this inner product. Since ∂φ = 0 by assumption, as we are looking at
representatives of cohomology classes, this turns out to be equivalent
to ∆φ = 0 where ∆ = ∂∂

∗
+ ∂

∗
∂ is the Hodge Laplacian. Thus we get

some topological conditions giving a minimum possible value among
all representatives of a topological class, and a differential equation
which picks out the unique representative of this class which satisfies
this bound.

A similar thing happens with the curvature of some vector bundles.
Let E be a vector bundle over X. Given a hermitian metric h on E then
there is a unique connection ∇E compatible with this metric and the
complex structure on X and∇E has curvature R∇ which is a (1, 1)-form
with values in End(E), i.e. a section of Λ2T ∗X ⊗ End(E). Using the
previously given metric on (1, 1)-forms along with an invariant metric
(in the Lie algebra sense) on End(E) we define an action functional on
such curvatures:

SYM(RE) =

∫
X

〈RE, RE〉dx

Given a complex vector bundle E, is there a metric h on E whose
compatible connection minimizes this functional? The Euler-Lagrange
equation in this case is

√
−1ΛRE − c Id = 0(2.2)

where Λ = (ω∧)∗ is the adjoint of wedging with ω, the Kahler form,
and where c is some constant and Id is the identity endomorphism of E
(for this computation, see [12]). Equation (2.2) is called the Hermitian-
Yang-Mills equation. Such connections are called Hermitian-Yang-
Mills connections and vector bundles which admit such connections
are called Hermitian-Einstein bundles.
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3. Mumford Stability and Hermitian-Yang-Mills
Connections

There is a beautiful result, due to Narasimhan and Seshadri in di-
mension 1, due to Donaldson in dimension 2, and Uhlenbeck and Yau
in higher dimensions, which states that Hermitian-Einstein bundles are
precisely those which are semistable. Semistability is a simple algebraic
condition on vector bundles due to Mumford which arises when one is
trying to construct moduli spaces of bundles by forming moduli spaces
of marked bundles and then forming a quotient by some group through
a general process called forming the GIT (Geometric Invariant The-
ory) quotient. Semistability has a natural definition in terms of GIT
and it is usually required to restrict to semistable bundles in order to
produce separated moduli spaces. If ω is the Kahler form on X and
degω(E) =

∫
X
c1(E) ∧ ωn−1 then we define

µ(E) =
degω(E)

rk(E)
(3.1)

and finally say that

Definition 3.2. the bundle E is semistable if and only if for every
subbundle F ⊂ E we have µ(F ) ≤ µ(E). Further E is stable if and
only if for every F ⊂ E we have µ(F ) < µ(E).

To see the usefulness of this condition for the construction of moduli
spaces, consider the family of rank 2 bundles over P1 parametrized by
λ ∈ Ext1(O(1),O(−1)), which is one dimensional, such that Eλ is the
corresponding extension

0→ O(−1)→ Eλ → O(1)→ 0

. For λ 6= 0 we have that Eλ ' O⊕2
P1 but the trivial extension is

of course the direct sum O(−1) ⊕ O(1). So if we wanted to rep-
resent the functor Y 7→ {vector bundles over P1 parametrized by Y},
the representing space couldn’t be separated. The issue here is that
E = O(−1)⊕O(1) is not semistable because µ(O(1)) > µ(E).

Then we have the following theorem:

Theorem 3.3 ((Donaldson-Uhlenbeck-Yau) [8, 19]). A vector bundle
E is semistable if and only if it admits a metric whose compatible con-
nection is Hermititan-Yang-Mills.

It should be noted that in this case the value of c in equation (2.2)
is determined by the topology of the vector bundle by taking the trace
of (2.2) and integrating. Normalizing the volume to 1 and using the
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fact that c1(E) = [tr(
√
−1

2π
RE)] we get

2π

∫
X

√
−1

2π
tr(ΛRE) ∧ ωn =

∫
X

c tr(IdE) ∧ ωn

2π

∫
X

c1(E) ∧ ωn−1 = rk(E)c

c = 2π
degω(E)

rk(E)
.

One key feature of the theory of stability is the fact that every vector
bundle can be formed by a finite number of extensions of semistable
bundles, and we can break any bundle into its constituent semistable
factors in a unique way. This is contained in the following theorem:

Theorem 3.4 (Harder-Narasimhan filtration). Let E be any vector
bundle, then there is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that the composition factors E1/E0, E2/E1, . . . , En/En−1 of this
filtration are all semistable and µ(Ei/Ei−1) > µ(Ei+1/Ei) for all i.

4. Gieseker Stability and Almost Hermitian-Yang-Mills
Connections

Although Mumford stability of vector bundles over higher dimen-
sional varieties is enshrined in the illustrious Donaldson-Uhlenbeck-Yau
theorem, there are several ways in which there is a better notion of
stability for such vector bundles, called Gieseker stability, which arises
in studying moduli spaces of vector bundles over higher dimensional
varieties using GIT. Mumford stability will turn out to be a sort of lin-
earization of Giesker stability. Luckily, there is a version of Theorem
3.3 in this case.

To give the proper definition, first recall that given a coherent sheaf
E on X and an ample line bundle L, the Hilbert polynomial of E is
defined to be

PE(n) = χ(E ⊗ Ln).(4.1)

Using this, we define

Definition 4.2 (Gieseker Stability). A coherent torsion free sheaf E is
called Gieseker semistable if for any subsheaf F of rank 0 < rk(F ) < r
the inequality

PF (n)

rk(F )
≤ PE(n)

rk(E)
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holds for all n� 0. Likewise E is called Gieseker stable if we have the
strict inequality

PF (n)

rk(F )
<
PE(n)

rk(E)
(4.3)

for all n� 0.

The appropriate version of (2.2) in this case is a system of differential
equations for k ∈ Z≥0 defined for the curvature RE of a holomorphic
vector bundle E called the almost Hermitian-Einstein equations :

[e
i

2π
RE+kω IdE Td(X)]2n =

PE(k)

rk(E)

ωn

n!
IdE(4.4)

where [ ]2n represents the projection onto the top degree of cohomology.
The main result of Leung in [13] and [14] is a proof that Giesker stability
is equivalent to the existence of a solution to the almost Hermitian
Einstein equation (4.4) for k � 0.

Theorem 4.5 ( [14]). A vector bundle E is Gieseker semistable if and
only if it admits a hermitian metric whose compatible connection has
curvature which satisfies (4.4) for all k � 0.

5. Necessary background on t-structures and tilting

Before arriving at our final notion of stability, it is necessary to
discuss a technique called tilting, and the related notions of t-structures
and torsion pairs. The key reference in this area is [11].

A torsion pair in an abelian category lets us break any object in half
in a unique way. Explicitly, if A is an abelian category then

Definition 5.1. A torsion pair is a pair (T ,F) of full subcategories
of A such that

• Hom(T ,F) = 0
• For any X ∈ A there exists a short exact sequence

0→ TX → X → FX → 0

where TX ∈ T and FX ∈ F .

The analogous and intimately related definition, when we replace A
by a triangulated category D is the following:

Definition 5.2. A bounded t-structure on D is a pair (C≤0, C≥0) of
full subcategories such that if C≤n = C≤0[−n] and C≥n = C≥0[−n]
then

• · · · ⊂ C≤n−1 ⊂ C≤n ⊂ C≤n+1 ⊂ · · ·
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• · · · ⊂ C≥n+1 ⊂ C≥n ⊂ C≥n−1 ⊂ · · ·

• Hom(C≤0, C≥1) = 0
• For any X ∈ D there exists an exact triangle

X≤0 → X → X≥1 → X≤0[1]

where X≤0 ∈ C≤0 and X≥1 ∈ C≥1

• (boundedness) D =
⋃
m,n∈Z(C≤n ∩ C≥m).

If we remove the last condition then we are left with just the def-
inition of a t-structure. The boundedness condition can be thought
of as a generalization of the fact that every element in the bounded
derived category has cohomology in only a finite number of degrees.
To make this analogy with cohomology precise, we define the heart of
a t-structure to be the full subcategory C≤0 ∩ C≥0.

It turns out that we can recover a bounded t-structure from its heart.
If H is the heart of a bounded t-structure then if C≤0

H is the cate-
gory generated by extensions from ∪n≥0H[n] and C≥0 is the category
generated by extensions from ∪n≤0H[n], we can define the bounded
t-structure (C≤0

H , C≥0
H ) whose heart is H. This construction is only re-

ally useful if we have independent conditions by which we can check
whether or not an abelian subcategory H ⊂ D is a heart of a bounded
t-structure. This is provided by Proposition (5.3), which some authors
(such as [15]) simply take as the definition of the phrase ”heart of a
bounded t-structure”. Better yet, we only need a priori an additive
structure on the category we intend to prove is a heart.

Proposition 5.3. A full additive subcategory H ⊂ D is the heart of a
bounded t-structure if and only if

• Hom(A,B[i]) = 0 for A,B ∈ H and i < 0.
• To any E ∈ D we can associate a collection of triangles

0 = Ek−1 Ek · · · El−1 El = E

Ak Ak+1 · · · Al

such that Ai[i] ∈ H.

The filtration given is precisely what can be thought of as a gen-
eralization of providing cohomology sheaves of an element of the de-
rived category, and if H = Coh(X) we have the bounded t-structure
called the standard t-structure and the objects Ai are really cohomol-
ogy sheaves. In general we will denote Ai[i] by H i

H(E).
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Proof. Let H satisfy the conditions of the claim. We will show that
(C≤0
H , C≥0

H ) as defined above is a bounded t-structure. Let E be any
element of D. The first two conditions of Definition 5.2 are trivially
satisfied.

To prove the third, let B ∈ C≤0
H and B′ ∈ C≥1

H and we need to show
that Hom(B,B′) = 0. Write out the filtrations on B and B′ which we
get from the assumptions:

0 = B0 → · · · →Bn = B

0 = B′0 → · · · →B′n = B

By assumption on B and B′, we have H i
H(B) = 0 for i > 0 and

H i
H(B′) = 0 for i ≤ 0. Associated to the exact triangle

B′i−1 → B′i → H i(B′)[−i]→ B′i−1[1]

there is a long exact sequence

Hom(A,B′i−1)→ Hom(A,B′i)→ Hom(A,H i(B′)[−i])→ Hom(A,B′i−1[1])→ · · ·

and supposing Hom(A,H i(B′)[−i]) vanishes for any i > 0 then we can
prove by induction on i that Hom(A,B′) = 0 using the exactness of
the given sequence. By the assumptions of the claim this holds for
A ∈ H, and also A ∈ H[i] for i ≥ 0 for in this case Hom(A,B′) =
Hom(A[−i], B′[i]) = 0. Now using this fact we can also show that it
holds for A = B. This time we will take the exact triangles

Bi−1 → Bi → H i(B)[−i]→ Bi−1[1]

giving the long exact sequences

Hom(Bi−1, B
′)← Hom(Bi, B

′)← Hom(H i(B)[−i], B′)← Hom(Bi−1, B
′)

and since B0 = 0 and Hom(H i(B)[−i], B′) = 0 for all i, it follows by
induction that for each i we have Hom(Bi, B

′) = 0 and in particular
that Hom(B,B′) = 0.

Now we prove the fourth axiom of a t-structure. Writing out the
filtration on any element E given by the second condition which we
assume, and stopping at the 0th degree gives E≤0 which is generated
by extensions by H i

H[i] for i ≥ 0 so E0 lies in C≤0
H . If we complete this

to a triangle

E≤0 → E → E≥1 → E≤0[1]

then E≥1 is generated up to extension by the other objects in the
filtration, which are all H i

H[i] for i < 0 and so E≥1 resides in C≥1
H .

Since boundedness is trivial by the finiteness of the filtration, we have
proven that our heart H gives a t-structure.
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Going the other direction, if (C≤0, C≥0) is a bounded t-structure with
heart H then the first required property is trivial. To prove the second,
we cite the fact that the inclusions ι : C≤0 → D and ι′ : C≥0 → D admit
a right adjoint τ≤0 and a left adjoint τ≥0 respectively [3]. If we define

H i
H := [−i] ◦ τ≥0 ◦ τ≤0 ◦ [i]

then we can construct the filtration as follows: given E ∈ D let i be the
smallest integer such that E[i] ∈ C≤0 then τ≥0 ◦ τ≤0(E[i]) = τ≥0(E[i])
and we get a map E[i]→ τ≥0(E[i]) from the fact that τ≥0 is left adjoint
to the inclusion so the map f comes from an isomorphism

Hom(E[i], ι′(τ≥0(E[i]))) ' Hom(τ≥0(E[i]), τ≥0(E[i]))

f ←→ Id .

Completing this to an exact triangle and shifting back gives

E ′ → E → H i
H(E)[−i]→ E ′[1]

which is the rightmost triangle in the filtration. Then E ′[i + 1] ∈ C≤0

and we repeat the argument with E ′. The boundedness assumption
shows that this process will eventually terminate. �

We can also show using Proposition (5.3) that given a torsion pair
(T ,F) on the heart of a bounded t-structure H we can produce a new
heart, called the tilt of H with respect to the torsion pair (T ,F). The
construction is encoded in the following claim:

Proposition 5.4. Let (T ,F) be a torsion pair of H the heart of a
bounded t-structure. Then

H\ = {E ∈ D|H−1
H (E) ∈ F , H0

H(E) ∈ T , other H i
H(E) = 0}

is the heart of a bounded t-structure.

Proof. For ease of notation, we will denote the H cohomology simply
by H i without a subscript. Now we will show Hom(X, Y [i]) = 0 for
i < 0 for X, Y ∈ H\. Produce the filtrations

X−2 X−1 X0 = X

H−1(X)[1] ∈ F [1] H0(X) ∈ T
and likewise for Y [i]:

Y−2[i] Y−1[i] Y0[i] = Y [i]

H−1(Y )[i+ 1] ∈ F [i+ 1] H0(Y )[i] ∈ T [i]
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We know that for any pair of choices ofA ∈ {H−1(X)[1], H0(X), X−2}
and B ∈ {H−1(Y )[i + 1], H0(Y )[i], Y−2[i]} we have Hom(A,B) = 0 by
either the assumption that Hom(T ,F) = 0 or by the assumption that
the cohomology sheaves lie in the heart of a t-structure and the first
claim of Proposition 5.3. Then the fact that Hom(X, Y [i]) = 0 follows
from the argument using induction on several long exact sequences
given when proving the third step of that proposition.

To give the required filtration into H i
H\ cohomology objects, first

take any E ∈ D and write, for each i, the short exact sequence

0→ Ti → H i(E)→ Fi → 0

with Ti ∈ T and Fi ∈ F which we can do because (T ,F) is a torsion
pair. To produce the required filtration, the argument is almost iden-
tical to the argument in Proposition 6.2 which produces a filtration in
the derived category based on filtrations on every element in the heart.
Starting with the H cohomology filtration E0 → E1 → · · · → E on
E ∈ D, the argument there is modified in the following way: first we
replace the filtration on the heart with this one: Ti ⊂ H i(E). This
produces a filtration of E with twice as many elements

0 = Ẽ0 → E0 → Ẽ1 → E1 → · · · → Ẽn → En = E

and then we make the filtration more coarse by forgetting the objects
in the original filtration, giving:

0 = Ẽ0 → Ẽ1 → · · · → Ẽn → E = E

it is not hard to see that the cohomology objects in this case will be
elements of H\. �

6. Bridgeland Stability Conditions

Douglas [9, 10] defined a notion of stability for D-branes, called
Π-stability which was intended to provide the proper analogue of a
Hermitian-Einstein bundle in the context of string theory. Tom Bridge-
land [5] gave a notion of stability putting these ideas on firm mathe-
matical footing which allows one, for example, to construct moduli
spaces of objects in a derived category of coherent sheaves. The ba-
sic situation is this: consider the natural cohomology filtration 0 =
E0 → E1 → · · · → En = E on a bounded complex whose successive

objects fit into exact triangles

Ej−1 Ej

Hj(E)[j]

giving the
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cohomology of the complex. Then this filtration can be refined by us-
ing a Harder-Narasimhan filtration on the cohomology objects H i to
produce a finer filtration on whole complexes E which will break any
object E ∈ D(X) into the semistable factors of its cohomology sheaves,
which don’t depend on the particular representation of E as a complex.
The interesting feature of Bridgeland stability is that we will actually
produce filtrations which don’t split the complexes into their cohomol-
ogy sheaves, but semistable objects will actually be complexes, or more
accurately objects in the derived category, in a non-trivial way. The
semistable objects will however be shifts of objects of some abelian
category A ⊂ D(X), which is a heart of a t-structure on D(X). Thus
in this picture D(X) can be thought of as mediating between different
abelian categories A with objects in one being complexes of objects in
another and vice versa.

We now give the axioms which are required to define such stable
objects.

Definition 6.1 ( [5]). A (numerical) stability condition (Z,P) on a
triangulated category D is a linear map from the Grothendieck group
Z : K(D) → C called the central charge, together with a collection
of full additive subcategories P(φ) ⊂ D for all φ ∈ R (the value φ
is called a phase, think of it as tan−1 of a slope) which satisfy the
following properties:

(1) (Numerical condition) The central charge Z factors through
numerical equivalence.

(2) if 0 6= E ∈ P(φ) then Z(E)/|Z(E)| = eiφ.
(3) P(φ+ 1) = P(φ)[1].
(4) If φ1 > φ2 and E1 ∈ P(φ1), E2 ∈ P(φ2) then Hom(E1, E2) = 0.
(5) (Harder-Narasimhan filtration) For any 0 6= E ∈ D there exists

a sequence of exact triangles fitting into the diagram

0 = E0 E1 · · · En−1 En = E

A1 A2 · · · An
where Aj ∈ P (φj) for a decreasing sequence of real numbers

φ1 > φ2 > · · · > φn.

There is also a technical notion of being locally finite, which we will
assume for all of our stability conditions, which in particular implies
that semistable objects have a finite filtration whose factors are stable.
For details see [5].
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Objects in the subcategories P (φ) are called semistable, and simple
objects in P (φ) are called stable. Because of the fact that the cen-
tral charge factors through the K theory of the derived category and
property (3) once we know the value of the central charge on coherent
sheaves we can recover its value on any object E ∈ D(X).

Thus we can recover the whole stability condition from the morphism
Z : K → C where K is the Grothendieck group of Coh(X) and a
description of which coherent sheaves are semistable. Generalizing by
replacing Coh(X) by the heart of any bounded t-structure on D(X)
and we have that

Proposition 6.2 ( [5], Proposition 5.3). A stability condition on D(X)
can equivalently be given by the following data:

(1) A is the heart of a bounded t-structure on D(X)
(2) Z : K(A)→ C is a stability function, that is a group morphism

such that
• 0 6= E ∈ K(A) =⇒ Z(E)/|Z(E)| = eiφE for φE ∈ (0, 1]

and
• every E ∈ K(A) has a Harder-Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that successive quotients Ei/Ei−1 have decreasing phases
and are semistable.

In the context of this proposition, F being semistable means that if
F ′ ⊂ F is a non-zero subobject then φF ′ ≤ φF .

Proof. Here and throughout, we denote by P (I) for an interval I the
extension closed subcategory generated by the P (φ) for φ ∈ I. Then
given a stability condition (Z, P ) the category P (0, 1] is the heart of
a bounded t-structure on D(X). We will show that is satisfies the
conditions of Proposition 5.3. To show that Hom(X, Y [i]) = 0 for
X, Y ∈ P (0, 1] and i < 0, we note that X is generated by exten-
sions of semistable objects of phase φ ∈ (0, 1] and Y is generated by
semistable objects of phase φ ∈ (i, i + 1] and by using induction on
the length of extension required to produce X and Y and the fact that
Hom(X ′, Y ′) = 0 for X ′ ∈ P (φ) for φ ∈ (0, 1] and Y ′ ∈ P (φ′) for
φ′ ∈ (i, i+ 1] since i < 0.

Now to produce the filtration required by Proposition 5.3, we simply
take the Harder-Narasimhan filtration of any element and forget some
of the elements to give a coarser filtration, all of whose factors are
extensions of semistable objects whose phases have the same integral
parts.



12 SAMUEL DEHORITY

Going the other direction, given a heart A and a stability function
Z : A → C with the Harder-Narasimhan property we form the stability
condition (Z̃, P ) where Z̃ : K(X)→ C is given by

Z̃(E) =
∑
i∈Z

(−1)iZ(H i
A(E))

which is the alternating sum of the charge on its cohomology sheaves
with respect to the t-structure associated to the heart, and we produce
a slicing where P (φ) consists of semistable objects of A of phase φ
when φ ∈ (0, 1] and if φ ∈ (i, i+ 1] is just defined to be P (φ− i)[i]. We
produce the Harder-Narasimhan filtration on any object in the derived
category by first taking the filtration of Proposition 5.3 and refining
by taking the Harder-Narasimhan filtration on the cohomology objects
which we have by assumption: Let

Ei−1 → Ei → H i
A(E)→ Ei−1[1]

be a triangle in the cohomology filtration and let

0 = H0 ⊂ H1 ⊂ · · · ⊂ Hk = H i
A(E)

be the Harder-Narasimhan filtration on the cohomology object with
composition factors denoted by Ak = Hk/Hk−1. Taking the composi-
tion

Ei → H i
A(E)→ H i

A(E)/Hk−1 = Ak

and we complete to an exact triangle

Ei,k−1 Ei

Ak
. To continue the filtration, we note that the composition (in A)

τ≥iτ≤iEi,k−1 → τ≥iτ≤iEi,k
f−→ Hk → Ak

is 0. Thus the image of f lies in Hk−1, so we can compose with the
quotient Hk−1 → Ak−1 to give

τ≥iτ≤iEi,k−1 → Hk−1 → Ak−1

but since τ≥i is left adjoint to the inclusion of A[−i] ⊂ C≥i ↪→ D(X)
this gives a unique map

Ei,k−1 = τ≤iEi,k−1 → Ak−1

continuing in this fashion we produce the required Harder-Narasimhan
filtration, which terminates because eventually A0 = 0. �
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7. Stability conditions on an elliptic curve

Bridgeland gave a complete description of the space of stability con-
ditions on an elliptic curve. The first example, which we will call the
standard stability condition on an elliptic curve, is given by the cen-
tral charge Z(E) = deg(E) + i rk(E). For a vector bundle, the value
tan(φ) really is a slope and stability is just Mumford stability. All
remaining examples are obtained from this one by acting with some
element of the universal cover of GL+

2 (R), the orientation preserving
linear automorphisms of R2 ' C which acts on the target of the central
charge.

What do these look like in light of Proposition 6.2? Let (Z0, P0) be
a stability condition on an elliptic curve X. Shift enough times so that
this stability condition satisfies Z0(E) = g−1 ◦ Z(E) = g−1(deg(E) +
i rk(E)) for g ∈ GL+

2 (R) and P0(0, 1] ⊂ P (0, 2). Then P0(0, 1] =
P (θ, θ + 1] where g−1(1) = reπiθ for θ ∈ [0, 1) and for r ∈ R>0. Then
Aθ := P0(0, 1] = P (θ, θ + 1] is the heart of a bounded t-structure and
Z0 : Aθ → C is a stability function.

Proposition 7.1. The category Aθ is the tilt of the standard t-structure
on D(X) associated with the torsion pair (T ,F) where F consists of
torsion-free sheaves E of slope µ(E) ≤ θ and T consists of sheaves
whose torsion free part have slope > θ. That is

Aθ = {E ∈ D(X)|H0(E) ∈ T , H−1(E) ∈ F , other H i = 0}

Proof. Let E ∈ Aθ. Take its Harder-Narasimhan filtration with respect
to the standard stability condition on X. Let E1 be the last object in
the filtration such that E1 has all semistable factors of phase φ > 1.
Then E1 ∈ P (1, 1 + θ] = (P (0, θ])[1], which are shifts of elements of F .
Then we have an exact triangle

E1 E

E2

where the semistable factors of E2 have phase ≤ 1, so E2 ∈ P (θ, 1] =
T and thus E is in this tilt. In the other direction, if E is in the specified
tilt, then its Harder-Narasimhan filtration with respect to the standard
stability condition has semistable factors with phases in (θ, θ + 1] and
since it is formed by extensions of its semistable factors, it lies inAθ. �

The key point is that this category has been proven by Polishchuk
and Schwarz to be equivalent to the category of holomorphic vector
bundles on a complex non-commutative two-torus when θ is irrational.
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8. Complex Geometry of Non-commutative Tori

One standard way of introducing non-commutative geometry seems
to be to first describe classical physics as existing on cotangent bundles
T ∗M with position coordinates xi and momentum coordinates pi = dxi,
which of course commute with each other as they are just smooth
functions. Then one recalls the famous commutation relation from
quantum physics

[x, p] = i~

and imagines how nice it would be if one were able to do geometry
where these x and p were coordinate functions.

There are several approaches to defining the notion of a non-commutative
space. Over and over again we learn that we should think of a space
as the same thing as the collection of functions on it, and a reason-
able way to proceed is to start with some (mildly) non-commutative
algebra of functions and see how much of geometry we can salvage.
This procedure works quite well over mildly non-commutative versions
of tori, called non-commutative tori, and the groundbreaking work in
this area described them extensively [7]. This section will introduce the
complex geometry of non-commutative tori following papers of Schwarz
and coauthors [17,18]. .

Every smooth function f on a torus T d = Rd/Zd can be represented
by a Fourier series

f(x) =
∑
n∈Zd

f~nU~n(x)

where if ~n = (n1, . . . , nd) then U~n(x) = eis
∑
nkxk = ei~n·x and the f~n are

Fourier coefficients. We will now extend this to the non-commutative
case by replacing these U~n with non-commutative versions. Gener-
alizing the previous definition of U~n we will now define an algebra of
functions C∞(T dθ ,C) = C∞(T dθ ) on a non-commutative torus, (ignoring
the obvious subterfuge that this is not actually C∞(X) for any space
X) as consisting of series

f =
∑
~n∈Zd

f~nU~n

where the coefficients f~n ∈ C vanish faster than any power of the |~n|.
To give the multiplicative structure, let e1, . . . , ed be the standard basis
for Zd, the U~n will be multiplicatively generated by the Uei and their
conjugates subject to the relations

UeiUej = e2πiθijUejUei



BRIDGELAND STABILITY AND NON-COMMUTATIVE TORI 15

where θ is a d× d anti-symmetric matrix. More concisely we can write

U~nU~m = e2πi~nθ~mU~n+~m

where U~n = e−iπ~nθ~nUn1
1 · · ·U

nd
d where we write Ui = Uei .

The next step is to describe vector bundles over non-commutative
tori. It is well known that a the space of sections of a vector bundle
over a smooth space X is a projective C∞(X) module. Generalizing
this, we define a (finite dimensional) vector bundle over Tθ to be a
finite dimensional projective module over C∞(T dθ ). The first examples
are of course the free modules, which are the trivial vector bundles.
Over a two-torus the form θ can be specified by a single real number
(abusively also denoted θ) and we have the following classification of
modules:

Theorem 8.1 ( [17]). Every finite dimensional right projective module
over C∞(Tθ) is isomorphic to some En,m(θ) where n,m ∈ Z, n+θm 6= 0

and En,0(θ) = A
|n|
θ while for m 6= 0 we have En,m(θ) is the Schwartz

space

S(R× Z/mZ) = {(f1, . . . , fm)| sup
a,b,x,i

|xa d
b

dxb
fi(x)| <∞}

with action of the functions given by

fU1(x, a) = f(x− n+mθ

m
, a− 1)

fU2(x, a) = e2πi(x−an
m

)f(x, a).

If n and m are relatively prime then En,m(θ) is called basic. Further,
it can be shown that in this case Edn,dm(θ) = En,m(θ)⊕d.

The next step is to define complex versions of these spaces and com-
plex vector bundles. Recall that a complex structure on a space X
gives a decomposition of the complexified tangent space TX ⊗ C =
T 1,0X ⊕ T 0,1X into holomorphic and antiholomorphic parts which are
complex conjugate to each other. On a torus modeled on a vector
space we only have to give a decomposition at the origin because we
have a canonical isomorphism between the tangent space at any point
and that at the origin. Returning again to any d = 2n dimensional
non-commutative torus, the space L ' Rd generated by δ1, . . . , δd acts
by derivations on T dθ by defining δiUj = 2πiδijUj and extending us-
ing linearity and the Leibniz rule. Of course in the commutative case
we recover ordinary differentiation of Fourier series. Then a complex
structure on T dθ is a decomposition L ⊗ C = L1,0 ⊕ L0,1 into complex
conjugate subspaces. Write δ̄1, . . . , δ̄n for a basis of L0,1.
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Then we are interested in holomorphic vector bundles over these
spaces. Let Ap,q(X) be the space of holomorphic (p, q)-forms. Recall
that a holomorphic vector bundle can equivalently be given as a com-
plex vector bundle E with connection ∇ : Γ(E)→ Γ(E)⊗A1(X) such
that if we write ∇ = ∇′ +∇′′ where ∇′ : Γ(E)→ Γ(E)⊗A1,0(X) and
∇′′ : Γ(E) → Γ(E) ⊗ A0,1(X) then ∇′′ ◦ ∇′′ = 0 where we extend ∇
and its decomposition to (p, q)-forms by linearity and Leibniz as usual.
In this case ∇′′ = ∂̄. Proceeding in the direction this analogy proposes,
if E is a vector bundle over T dθ with complex structure given by the
notation above, then a holomorphic structure on E is given by a set of
operators ∇̄1, . . . , ∇̄d : E → E such that

∇̄i(e · f) = ∇̄i(e) · f + e · δ̄i(f)

for any function f on T dθ .
Let us again restrict to a real two dimensional non-commutative

torus Tθ. Then a complex structure is given by a complex number τ
with im(τ) 6= 0 and the corresponding δ̄τ is defined by

δ̄τ (U
n1
1 Un2

2 ) = 2πi(n1τ + n2)(Un1
1 Un2

2 )

and following Schwarz we will denote the torus with this complex struc-
ture Tθ,τ . A holomorphic structure on a vector bundle E is just a map
∇̄ : E → E such that

∇̄(e · f) = ∇̄(e) · f + e · δ̄τ (f)

and then we define a map of holomorphic vector bundles to be holomor-
phic if the action of Tθ commutes with the ∇̄. Now we will define what
is called a standard holomorphic structure on one of the E = En,m(θ)
of Theorem 8.1 for m and n relatively prime. Let µ(E) = m/(n+mθ)
and define

∇̄z(f)(x, a) =
∂f

∂x
(x, a) + 2πi(τµ(E)x+ z)f(x, a)(8.2)

for any z ∈ C. Holomorphic bundles (E,∇z) will be called standard
holomorphic bundles.

9. Equivalence of the categories

Culminating in [16], there is a proof that every holomorphic vector
bundle on Tθ,τ is generated up to extension by standard ones and that
further, the category C(Tθ,τ ) of holomorphic vector bundles on Tθ,τ is
equivalent to the previously defined tilted category Aθ formed by tilting
Coh(X) for X and elliptic curve C/Z+τZ where bundles with standard
holomorphic structures are sent to simple bundles. Using Proposition
7.1 it follows that
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Corollary 9.1. The category C(Tθ,τ ) for θ irrational is equivalent to
P (0, 1] for a stability condition (Z, P ) on the elliptic curve Xτ , and
under this equivalence standard bundles are sent to stable bundles.

It is worthwhile to give some indication of where this equivalence
comes from, to see the relationship between this equivalence and the
Fourier-Mukai transform. Briefly recalling the latter, given an abelian
variety X and its dual X̂, the points of X̂ correspond to topologically
trivial line bundles on X and there is a universal line bundle P over
X × X̂ called the Poincare line bundle. Let π1, π2 be the left and right
projections from X × X̂. Then the Poincare line bundle is such that if
l ∈ X̂ corresponds to the line bundle L, then L ' π1∗(π

∗
2(k(l)) ⊗ P ).

Replacing these functors with their derived functors (without changing
the notation) we get a functor, studied by Mukai,

ΦP : D(X̂)→ D(X)

ΦP (E) = π1∗(π
∗
2(E)⊗ P )

which is called the Fourier-Mukai transform with kernel P . The key
result is that ΦP is actually a triangulated equivalence between the two
derived categories.

The equivalence between C(Tθ,τ ) and Aθ is constructed in a similar
fashion. Let us define an element

S((E, ∇̄)) ∈ D(Xτ )

for any holomorphic vector bundle (E, ∇̄). We will construct a length
two complex

· · ·0→ SE
d∇̄−→ SE → 0 · · ·(9.2)

where SE is constructed by starting with a vector bundle S̃E over C
which is just a trivial bundle with fiber E and a map

d̃∇̄ : S̃E → S̃E

such that on the fiber over z we have

d̃∇̄,z(f) = ∇̄(f) + 2πizf.(9.3)

The goal is now to show how to descend by acting by translations
by 1 and τ in C to produce a vector bundle over the elliptic curve
Xτ = C/Z + τZ. Translations by 1 correspond to

f(z) 7→ f(z + 1)U2

and by τ correspond to

f(z) 7→ e−2πiθzf(z + τ)U1
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it follows from the fact that U1 and U2 are unitary operators on E
that SE is a vector bundle over the elliptic curve and to prove that we
actually produce a complex from the differential d∇̄ defined by (9.3),
we compute that under translation by 1

d∇̄f(z) 7→ (d∇̄f)(z + 1)U2

= ∇̄(f(z + 1))U2 + 2πi(z + 1)f(z + 1)U2

= ∇̄(f(z + 1))U2 + f(z + 1)δ̄τU2 + 2πizf(z + 1)U2

= ∇̄(f(z + 1)U2) + 2πizf(z + 1)U2

= d∇̄(f(z + 1)U2)

and under translations by τ the parallel computation gives

d∇̄f(z) 7→ e−2πizθ(d∇̄f)(z + τ)U1

= d∇̄(e−2πizθf(z + τ)U1)

and so the complex (9.2) is actually a complex over the elliptic curve
Xτ .

10. What about higher dimensional tori?

The results in this paper say that for an elliptic curve we can think
of rotating the standard stability condition by an irrational angle θ
consists of rotating through non-commutative versions of the elliptic
curve where we introduce a non-commutativity factor e2πiθ. And if
we continue rotating (ignoring the rather important fact that we can’t
actually rotate past rational values of θ) all the way until we hit θ = 1
then we return to our original elliptic curve except we have just shifted
the derived category by the translation [1] : D(X) → D(X). Future
work will attempt to carry this description over to higher dimensional
abelian varieties.

It is a hard problem to produce stability conditions on higher-dimensional
varieties. Focusing still on only abelian varieties, in the case of surfaces
there is Bridgeland’s construction:

Theorem 10.1 ( [6]). Let X be an abelian surface, ω ∈ Amp(X)⊗ R
an ample class and β ∈ NS(X)⊗ R Then

Z(E) =

∫
X

e−β−iω ch(E)

is a central charge on a heart of a bounded t-structure Aβ,ω which sat-
isfies the requirements of Proposition (6.2).
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It should be noted that the heart in question is formed by tilting with
respect to a torsion pair constructed by breaking off at a certain slope.
There are also various extensions of this result to three dimensional
abelian varieties in [1, 2] and many other places.

There are also extensions of the results of Polishchuk and Schwarz
which provide non-commutative analogues of the Fourier-Mukai trans-
form for higher dimensional abelian varieties, rather than just on ellip-
tic curves. This was predicted by the aforementioned authors and this
program seems to have been carried out in [4].

In general we get an equivalence between a category of modules on a
complex non-commutative torus associated to the 2-form θ and a cat-
egory of B-twisted modules over a commutative abelian variety where
B is a gerbe associated with θ. It would be interesting to consider
whether similar constructions would provide relations between Bridge-
land stability on abelian varieties of dimension two and higher and with
holomorphic vector bundles on non-commutative tori.
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