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ABSTRACT 

Manal Hamdan: Detecting Apical Radiolucencies Using Deep Learning Technology  

(Under the direction of Donald Tyndall) 

 

Objectives: To assess the effectiveness of the Denti.AI CAD system in assisting dentists 

with detecting apical radiolucencies on intraoral periapical radiographs.  

Methods: Using CBCT as the ground truth reference, (n=68) IO radiographs were 

randomly selected to serve as the testing subset. Twelve readers were asked to view the subset 

and to record their confidence about the presence of apical radiolucencies. Readers analyzed the 

same images under two conditions: with and without AI predictions shown. The readers' 

performance for both conditions was compared. AFROC was chosen as the main metric of 

performance measurement. 

Results: The AFROC-AUC metric showed a statistically significant improvement by 4.9 

or 5.8% compared to the unaided reading session. Subgroup performance analysis showed a 

statistically significant improvement in the detection of mandibular molar lesions, small lesions, 

and in endodontically-treated teeth. 

 Conclusion: Using a limited testing dataset, Denti.AI improved localization of apical 

radiolucencies. Further AI training is necessary to increase the sensitivity and specificity of 

apical radiolucency detection.  
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REVIEW OF THE LITERATURE 

 

 Introduction: 

Technological advances in Oral and Maxillofacial Radiology are no longer limited to 

imaging modalities and hardware. The age of deep learning is upon us, with several companies 

marketing their online CAD tools for various diagnostic problems and procedural planning. This 

advancement necessitates that proper research be conducted to provide the scientific community 

with evidence-based knowledge. To be able to understand the current study, it is imperative to 

understand the main concepts that artificial intelligence encompasses.  

Artificial intelligence, Machine Learning and Deep Learning: 

AI is classically defined as the ability of computer systems to perform tasks 

conventionally done using human intelligence (1). The term “artificial intelligence” was coined in 

1956, at a workshop that took place in Dartmouth College. A 17- page typescript was authored in 

August 31, 1955 by John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon 

proposing a summer research project on AI. Duplicates of the typescript are housed in the 

archives at Dartmouth College and Stanford University. The Dartmouth Project team proposed a 

simplified description of an otherwise complex problem. AI was explained as “making a 

machine behave in ways that would be called intelligent if a human were so behaving”. Those 

scientists hypothesized that a machine can be trained to learn through experimental “trial and 

error” much like humans do (2). Hence, this science is focused on engineering intelligent 

machines and computer systems that would primarily reduce time and effort spent on daily tasks. 
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The rapid advancement in AI in the past few decades was attainable largely due to the 

availability of “big data” or huge digital data sets as well as the jump in computational power, 

which doubles every two years per Moore’s law (3). The great eagerness for the development of 

AI systems in radiology is mirrored by the increase in publications on this topic. Pesapane et al. 

concluded in his review that publications on AI have drastically increased from about 100–150 

per year in 2007–2008 to 700–800 per year in 2016–2017 (4). Recent radiologic meetings, 

including the 2017 Annual Meeting of the Radiological Society of North America (RSNA), the 

2018 European Congress, and the 2020 Annual Meeting of the American Academy of Oral and 

Maxillofacial Radiology, have also proven the interest in AI applications with many AI-related 

talks. With the growing interest in AI applications in radiology, the Radiological Society of 

North America started a journal dedicated to AI research called Radiology: Artificial Intelligence 

(5). The aim of this journal is to highlight the emerging applications of AI in the field of imaging 

across multiple disciplines. 

Conventional machine learning and deep learning are subsets of AI (Figure 1.1). Machine 

learning is relatively limited compared to deep learning in that it requires engineering and 

domain expertise in order to design a “feature extractor” (Figure 1.3). A feature extractor 

transforms raw data into a suitable internal representation or feature vector. Features can 

represent pixels of an image for example. This enables the learning subsystem, which is often a 

classifier, to detect and/or classify patterns seen in the input.  

A key concept is that deep learning is a form of representation learning (Figure 1.3). 

Representation learning is defined as: “a set of methods that allows a machine to be fed with raw 

data and to automatically discover the representations needed for detection or classification”. In 

contrast to ML, layers of features are not designed by human engineers.  DL methods are 
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representation learning methods with multiple levels of representation. Those levels are obtained 

by composing simple but non-linear modules. Each module transforms the representation at one 

level, starting with the raw input, into a representation at a higher and slightly more abstract 

level. With multiple non-linear layers, very complex functions can be learned. 

In tasks such as classification, higher layers of representation amplify aspects of the input 

important for discrimination, whereas irrelevant variations are suppressed. For instance, images 

come in the form of an array of pixel values; the learned features in the first layer of 

representation can represent the presence/absence of edges at particular orientations and 

locations in the image. In the second layer, motifs or patterns are detected by spotting particular 

arrangements of edges irrespective of small variations in the edge positions. Furthermore, a third 

layer may assemble these motifs into larger combinations that correspond to parts of an object. 

Succeeding layers would detect objects as combinations of these parts. In summary, the key 

aspect of deep learning lies in that the layers of features are not designed by human engineers but 

are rather learned from data using a general-purpose learning procedure. Hence, the important 

features are extracted automatically from the input data for the purpose of interpreting previously 

unseen samples (6). 

Neural Networks: 

Artificial neural networks consist of connected nodes, inspired by biological nervous 

systems. An artificial neural network is composed of interconnected artificial neurons. Deep 

learning systems encode features by using an architecture of ANN. Each artificial neuron 

implements a simple classifier model, which outputs a decision signal based on a weighted sum 

of evidences. The weights of the network are adjusted via a learning algorithm where pairs of 

input signals and desired output decisions are presented. In addition to the weighted sum of 
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evidences, an activation function integrates signals from previous neurons subsequently 

outputting a decision signal.  Hundreds of these basic computing units make up an artificial 

neural network computing device (7). DL algorithms most relevant to radiology are called 

convolutional neural networks (CNNs), they are used mainly because of their effectiveness in 

image segmentation and classification (8, 9). In CNNs, lower level information inputs, similar to 

cutaneous sensory nerves, form synaptic connections to the next level or “layer” of neurons. 

Each neuron in this second layer can combine the inputs from lower level neurons to form a 

newer, more complex output. As the number of intermediate or hidden layers increases, so too 

does the accuracy of the output from the highest layer. CNNs capture the spatial features from an 

image. Spatial features are the relationship and arrangement of pixels in an image. They help us 

in identifying the object accurately, as well as its location and relation with other objects in an 

image (10).  

Applications of AI, ML and DL in Dental Radiology 

Today, there are several applications of AI in dental radiography. Studies have 

investigated the accuracy and efficiency of such tools in the various diagnostic dilemmas. 

Among the current applications is periodontal bone loss detection. In one study, A CNN trained 

on a limited set of radiographic image segments showed similar discrimination ability to dentists 

for assessing periodontal bone loss on panoramic radiographs (11). In another study utilizing a 

CNN called DeNTNet for detecting periodontal bone loss on panoramic radiographs, DeNTNet 

achieved an F1 score (harmonic mean of the precision and recall ) of 0.75 on the test set, while 

the average performance of annotating dentists was 0.69 (12). Moreover, a CNN was developed 

and used to predict periodontally-compromised teeth and need for extractions based on intraoral 

periapical radiographs. The CAD tool showed promising results, with the diagnostic accuracy 
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being 81.0% for premolars and 76.7% for molars. The accuracy of predicting extractions was 

82.8% for premolars and 73.4% for molars (13). 

In the literature, several CAD tools have emerged in the last decade to assist dentists in 

caries detection. Logicon Caries Detector (LCD), an automated caries detection program, was 

found in a study conducted on extracted teeth to be less accurate than human observers in 

detecting proximal carious lesions (14). A second study on extracted teeth compared observers’ 

performance aided and unaided by LCD, using Micro CT as the reference standard. The study 

concluded that there was no statistically significant difference in observers’ performance 

(between Az values) with and without the use of LCD when lesions of all depths were 

considered. Nonetheless, the study showed an improvement in the detection of proximal lesions 

that extended into the inner half of the enamel or into the dentine (15). On the other hand, in a 

clinical study the authors concluded that LCD enabled dentists found 20% more cases of caries 

penetrating into dentin than they were able to find without it, without impacting the specificity, 

i.e. treating healthy teeth (16). In a study conducted by Araki et al., results were consistent with 

the previous study’s conclusions, as the observers’ sensitivity doubled when detecting early 

caries that needed restoration, while specificity remained relatively constant (17).  Notably, this 

was the first diagnostic tool for caries detection purposes to be demonstrated efficacious in a 

clinical study and to be cleared by the FDA(16). Other commercially unavailable tools were 

developed mainly for research purposes. The list includes a pre-trained GoogLeNet Inception v3 

CNN network which was used for caries detection on periapical radiographs with experts’ 

opinions serving as the ground truth reference. The overall accuracy for caries detection in the 

premolar and molar sites was found to be nearly 82%, a considerably good result given the 

associated advantages of fast and accurate diagnosis (18). Furthermore, Valizadeh S et al. 
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designed a software application that was able to diagnose 60% of enamel caries and 97% of 

dentinal caries, when histological sectioning was used as a reference standard. The limitation in 

detecting enamel caries is somewhat predictable and in line with the literature since lesions are 

usually not radiographically visible until 30 - 40% of the enamel affected by the lesion has 

demineralized (19). 

Several CAD tools aimed at tooth detection and labeling have emerged lately. The 

inspiration behind the development of those tools relates mainly to the prospects of saving time 

and improving workflow by automatic filling of dental charts and in cases of large-scale 

disasters. Miki et al, investigated the accuracy of a tooth detection and labeling CNN method on 

cone-beam CT volumes. Results of the tooth detection and labeling accuracy were 77.4% and 

77.1%, respectively. However, the previous study used only 10 volumes for testing purposes, a 

very limited set (20).  In a study by Tuzoff et al. a CNN model was used for teeth identification, 

and numbering. This CAD technique had a mean sensitivity of 0.987 and precision of 0.9945, a 

result that matched dentists’ performance (21). Zhang et al., described the use of fast Regions with 

CNN features (fast R-CNN) in teeth recognition by relying on the label tree along with cascade 

network structure. The label tree was used to give each tooth several labels to address the low 

number of data. Whereas the use of cascade network structure was utilized to do automatic 

identification for the 32 teeth positions, using several CNNs as its basic module. The author 

claims that his method can address many complex cases such as radiographic images with tooth 

loss, decayed and restored teeth. Their results showed a precision and recall of 95.8% and 96.1%, 

respectively (22). In a study by Chen et al., faster regions with convolutional neural network 

features (faster R-CNN) was applied to detect and label teeth on 1,250 digitized dental periapical 

films. The model demonstrated a detection precision of 90% when compared with human 



7 

experts, and 71.5% precision in tooth numbering (23). Those studies demonstrate the possibilities 

of DL technologies, making it a convenient and efficient automatic aid for dentists in filling out 

their patients’ dental charts.  

In the field of Orthodontics and Orthopedics, AI advances have been applied for deciding 

if extractions are necessary prior to the orthodontic treatment as well as determining if a surgical 

or non-surgical approach is needed using the lateral cephalometric radiographs, automatic 

identification of cephalometric landmarks and in determining growth and development by 

cervical vertebrae stages (24). Using an ANN, Xie et al. reported 80 % accuracy in determining 

whether extraction or non-extraction treatment was best for malocclusion patients (25). In 

accordance with those results, Jung et al. reported a high accuracy (93%) for deciding on tooth 

extraction using cephalometric radiographs (26). These studies suggest that AI models can be used 

as aids in making decisions in clinical practice by predicting the need for extraction ahead of 

treatment initiation. Studies on identification of cephalometric landmarks showed promising 

results (27-30). Kunz et al. concluded that there were no statistically significant differences between 

human experts’ as the gold standard and the AI’s predictions in a study using a specialized 

artificial intelligence (AI) algorithm (29). Similarly, Huang et al. found that AI was as accurate in 

the identification of 80 cephalometric landmarks as were trained orthodontists, using the latest 

deep learning method based on the You-Only-Look-Once version 3 algorithm (YOLOv3) (30). 

Realizing that treatment planning is a crucial step in orthodontics and orthognathic surgeries, 

Choi et al. developed and tested an AI model deciding on surgical versus non-surgical treatment 

and for need of extractions determination. The model showed a success rate of 91% and 96% for 

the detailed diagnosis of surgery type and the extraction along with the need for surgery/non-
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surgery decisions (31). Those result suggest that machine learning could be applied for the 

diagnosis and planning of orthodontic and orthognathic surgery cases. 

In Endodontics, deep convolutional neural networks (CNNs) were applied to detect apical 

lesions on panoramic radiographs. In one study, a moderately deep CNN trained on a limited set 

of panoramic images, showed satisfactory ability to detect apical lesions on panoramic 

radiographs. With the consensus of six examiners serving as the reference standard, the AUC of 

the CNN was 85%. Sensitivity and specificity were 65% and 87%, respectively. Subgroup 

analysis for tooth type was also performed showing a significantly higher sensitivity in molars 

than in other tooth types, whereas specificity was lower (32). Thus, the application of neural 

networks may assist dentists in reliably and accurately detecting apical lesions. A second study, 

evaluated based on clinically validated ground truth, investigated the detection of periapical 

lucencies on panoramic radiographs. The periapical lucencies had a differential diagnosis that 

included infections, granuloma, cysts and tumors. Results demonstrated that the deep learning 

algorithm achieved a better performance than 14 out of 24 OMF surgeons within the cohort, 

exhibiting an average precision of 0.60, and an F1 score of 0.58, a PPV of 0.67 and TPR of 0.5. 

While not exceptionally high, the results of this study showed that the algorithm has a potential 

in aiding oral surgeons in detecting periapical lucencies on panoramic radiographs (33).  

A deep learning object detection technique was utilized in a study by Ariji et al. to automatically 

detect and classify radiolucent lesions in the mandible on panoramic radiographs. In this study, 

histologically-verified mandibular radiolucent lesions of 10 mm or greater were incorporated. 

The five types of lesions included ameloblastomas, odontogenic keratocysts, dentigerous cysts, 

radicular cysts and simple bone cysts. The detection sensitivity was 88% using two testing data 

sets, with 50 images in the first testing data set and 25 images in the second data set. The false-
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positive rate per image was 0.00 for the testing 1 data set, and 0.04 for the testing 2 data set, 

indicating that the learning model incorrectly predicted the presence of lesions in areas without 

lesion in 1 of 25 images from the testing 2 data set (34). Despite the limited validation data set size 

in group 2, this study demonstrated that radiolucent lesions of the mandible can be detected with 

high sensitivity using deep learning. In a study by Lee et al. three cystic lesions (odontogenic 

keratocyst, dentigerous cysts and periapical cysts) were evaluated using panoramic radiographs 

and cone beam computed tomographic images. The pre-trained model using CBCT images 

showed good diagnostic performance (AUC = 0.914, sensitivity = 96.1%, specificity = 77.1%). 

Those results were significantly greater than those achieved by other models using panoramic 

images (AUC = 0.847, sensitivity = 88.2%, specificity = 77.0%) (p=0.14) (35).  

Setzer et al. demonstrated excellent results in another study that aimed to use a DL algorithm for 

the automated segmentation of CBCT images and the detection of periapical lesions. Lesion 

detection accuracy was 0.93, specificity was 0.88, with a positive predictive value of 0.87 and a 

negative predictive value of 0.93(36). At an attempt to evaluate a CNN method for detecting 

apical pathosis on CBCT, Orhan et al. included 153 periapical lesions obtained from 109 

patients. The AI system was able to detect 142 of a total of 153 periapical lesions, which 

represents a sensitivity of 92.8 %( 37).  
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MANUSCRIPT 

Introduction 

The term “artificial intelligence” was coined in 1956, at a workshop that took place at 

Dartmouth College (1). The Dartmouth Research Project team proposed a simplified description 

of a complex problem. AI was explained as “making a machine behave in ways that would be 

called intelligent if a human were so behaving”. Scientists hypothesized that a machine can be 

trained to learn through experimental “trial and error” much like humans do (2).Since then, AI has 

been progressing very rapidly in the medical field where it serves as an aid to physicians in 

diagnostic and treatment decisions.  AI shows the most promise in providing non-specialists with 

easily accessible, expert-level predictions (3).  

In dentistry, multiple computer-aided softwares (CAD) and deep learning (DL) tools have 

emerged recently for the assessment of dental caries (4, 5, 6, 7). Additionally, neural networks and 

DL algorithms have been utilized in applications that include predicting dental pain, (8) teeth 

numbering and classification (9),in deciding if extractions are necessary prior to orthodontic 

treatment (10) and for detecting periodontal bone loss on panoramic radiographs. (11,12) In the field 

of Endodontics, deep convolutional neural networks (CNNs) were applied to detect apical 

lesions on panoramic radiographs (13, 14) and CBCT (15, 16, 17), root morphology assessment of the 

mandibular first molar (18) and vertical root fracture evaluation on panoramic radiographs (19). 

The need for AI and automation is largely linked to an anticipated need to increase 

accuracy and speed in order to improve workflow and efficient use of resources. While 

computer-assisted detection of apical radiolucencies might benefit both experienced radiologists 
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and general practitioners, we anticipate that this would be more relevant for the latter because of 

their greater number and need for efficient screening tools. In the current study, we aim to 

investigate the effectiveness of the (Denti.AI) CAD system for detecting apical radiolucencies on 

intraoral periapical radiographs. 

The apical radiolucency detection module is based on DL techniques, specifically deep 

convolutional neural networks (CNN). Deep learning is a class of artificial intelligence (AI) 

algorithms that allows a computer program to learn from input data for further interpretation of 

previously unseen samples. CNN architectures are commonly used for image recognition tasks. 

The CNNs exploit specific characteristics of an image data input to effectively represent and 

learn hierarchical image features using multiple levels of abstraction. The key aspect of deep 

learning is that these features are not designed by humans, but automatically extracted and 

learned from the raw data (such as pixels of images) (21,22). 

Aims and testable hypotheses  

The aims of the study are to:   

1. Assess the effectiveness of the Denti.AI CAD system in assisting dentists with 

detecting apical radiolucencies on intraoral periapical radiographs. 

2. Assess the effectiveness of DL in subgroups by location, extent, and treatment status of 

the tooth. 

3. Assess the effectiveness of DL by reader specialty training. 

The null hypotheses are:  

1. There is no mean change in the performance metrics of readers under the two reading 

scenarios (aided and unaided by the Denti.AI CAD system). 
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2. There is no mean change in the sensitivity performance metric under the two reading 

scenarios (aided and unaided by the Denti.AI CAD system) in different lesion characteristics 

(location, extent, treatment status of the tooth). 

3. There is no mean change in the performance metrics of readers under the two reading 

scenarios (aided and unaided by the Denti.AI CAD system) between radiologists and non-

radiologists. 

Materials and Methods  

Case Selection and Ground Truth 

Ethical approval was granted by the University Biomedical Institutional Review Board 

(#19-1430). The dental school’s OMR-CBCT referral database was searched for all CBCT 

volumes acquired for endodontic purposes between August-2014 and March-2019. The case 

selection was retrospective and sequential in nature. The endodontic CBCT referrals (n=367) 

were assessed for the presence of apical radiolucencies. The finalized radiology reports were 

analyzed for findings related to apical radiolucencies including: “apical rarefying osteitis” or 

“apical radiolucent lesions” or “apical widening of the PDL space”. All radiology reports were 

written by a board-certified oral and maxillofacial radiologist with at least 10 years of 

experience. If a report was found to contain any of the above findings, the accompanying CBCT 

volumes were downloaded and re-examined by the investigator (MH) to confirm the presence of 

a lesion at the specified location mentioned in the report. Measurements of the lesions were then 

recorded in all three dimensions; mesiodistal, buccolingual or buccopalatal and apico-coronal. 

Apical radiolucencies measuring less than 2 mm at their widest dimension were excluded to 

reduce the imperfect reference standard bias (22) and beam hardening artifacts resulting from 
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endodontic treatment fill-material. In addition, the exclusion criteria encompassed radiographs of 

patients under 18 years old.  

Once a case was considered eligible to be included in the sample, the patients’ records 

were searched for a corresponding, same-site IO periapical radiograph. The inclusion criteria for 

IO periapical radiographs comprised diagnostically acceptable IO radiographs acquired within a 

six-month window of the accompanying CBCT. If available, that periapical radiograph was 

included in this study. For control cases, periapical radiographs of teeth with CBCT-proven 

sound periodontium were uploaded in the negative subgroup. The intraoral images were all 

verified to have no evidence of apical radiolucencies on CBCT volumes and associated reports. 

 A total of 184 positive IO radiographs were collected and divided into a training subset 

(n=54) and a testing subset (n=130). A final set of 132 IO radiographs with sound apical 

periodontium was collected to serve as controls.  

The positive training, positive testing and control sets were de-identified and uploaded to 

Denti.AI (Toronto, CA).  The IO radiographs were annotated using the 

[Denti.AI](http://denti.AI) labeling tool. The annotation process included drawing a box around 

the borders of the apical radiolucencies on IO radiographs by utilizing the patient's reference 

CBCT. The AI model was pre-trained ahead of this study. However, the training subset (n=54) 

was utilized to further adapt the model to images acquired at the dental school’s clinics. The 

margins of the box or rectangle had to conform to the size of the radiolucency and not exceed 2 

mm from any side.      

Apical lesions were then divided based on their anatomic location and size into the 

following groups: 

1) By location: 
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 Incisors-canines (anterior teeth) 

        - Maxillary 

        - Mandibular 

 Premolars (posterior teeth) 

        - Maxillary 

        - Mandibular 

 Molars (posterior teeth) 

        - Maxillary 

        - Mandibular 

2) By extent: 

    - Small radiolucencies (2-5 mm) 

    - Large radiolucencies (≥ 5mm) 

3) By treatment status: 

    - Endodontically-treated teeth 

    - Untreated teeth 

Correspondent tags were added for each annotated lesion showing the location and extent 

of a lesion. The detailed annotation guide was provided to MH by Denti.AI with the description 

of the task and labeling interface features. For the purpose of this clinical study, 68 images were 

randomly selected with an equal distribution from the positive testing and control sets to serve as 

a testing subset.  

Devices and Imaging Instruments 

The 3D volumes were all acquired in the main Radiology clinic using either the 

Orthophos XG 3D, the Orthophos SL 3D (Dentsply Sirona, Charlotte, NC), the CS 9000 or the 
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CS 9300 (Carestream Dental, Atlanta, GA). Of the IO radiographs, 42 were obtained using 

photostimulable phosphor (PSP) plates scanned using the ScanX (Air Techniques, Hicksville, 

NY), 19 with PSP plates scanned using the Soredex Digora Optime (Kavo Dental, Charlotte, 

NC), three with the Sirona Schick33 Direct Digital Sensor (Dentsply Sirona, Charlotte, NC), one 

with the XDR Anatomic Sensor (Cyber Medical Imaging, Los Angeles, CA), and three where 

the sensor was unknown. The inclusion of multiple units and sensor types allowed for additional 

generalizability of the results. 

Cases Distribution 

Each periapical radiograph showed multiple teeth (mean = 3.9), and each positive case 

displayed 1-3 apical radiolucencies (mean = 1.5). All positive cases were obtained from unique 

patients. As for the negative cases, 1-3 images were taken for a patient (Table 2.1). Table 2.2 and 

Figure 2.1 show the distribution of cases by age groups. Table 2.3 shows the distribution of cases 

by gender. 

 The negative radiographs that were obtained from the same patients were taken from 

different sextants. Each periapical radiograph of the resulting testing collection was read 

independently and readers were not aware whether the case was taken from the same patient or 

not. All cases included in this study (both negative and positive) were selected randomly from a 

collection of approximately 260 images, so there was no exact order that might bias the reading 

results. 

AR Distribution Figures 

Figure 2.2 shows the distribution of AR by location, Figure 2.3 shows the distribution of 

AR by extent, and Figure 2.4 displays the distribution of cases by treatment status. Table 2.4 

provides the figures for each lesion cohort. 
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Readers 

Twelve readers took part in this clinical study, each reading the IO testing subset 

independently and under two scenarios. The qualifications of the readers comprised one or a 

combination of the following: general dentists, oral and maxillofacial radiologist, endodontist.  

The readers included residents of operative dentistry and biomaterials program (n=6) and 

a general dentist (n=1) with experience ranging from 3 to 30 years. In addition, two oral and 

maxillofacial radiology residents, two board certified radiologists and one board-certified 

endodontist, having experience ranging from 16 to 40 years. 

Reader Study Execution 

The 12 readers performed a cross-over reading scenario. Each reader analyzed the same 

testing subset collection of 68 images (full-crossed design) under two conditions; without and 

with the aid of AI predictions. The reading sessions were separated by a washout period of more 

than one month (~120 - 340 days, with an average of ~200 days). 

Prior to each of the two reading sessions, readers underwent a training conducted by the 

investigator (MH). The training included sample images and practice annotations. The sample 

images were not included in the main case collection. Additionally, a written interface manual 

containing the annotation guide was provided along with a detailed task description. For the 

conventional reading session, without the assistance of AI predictions, the readers were 

instructed to draw bounding boxes using the labeling tool around sites with suspected AR 

(annotate apical radiolucencies). Readers were then asked to ensure that each bounding box 

annotation covered the finding with the margin not exceeding 2 mm beyond any side of the AR. 

In addition, they were asked to add confidence score tags that reflected their confidence 

regarding the presence of their decision; a (1-5) Likert scale was used for this step. The tags were 
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as follows: “C1: not confident”, “C2: slightly confident”, “C3: somewhat confident”, “C4: 

moderately confident”, “C5: very confident”. It was emphasized that the tags only reflected 

confidence scores and did not have to match the severity or extent of the AR. 

For the second reading session the task was to review the same IO radiographs (n=68) 

and either confirm or modify the bounding box, add a new finding or delete the prediction 

generated by the CAD system. With each predicted annotation, the AI system provided a 

confidence score. Nonetheless, the readers were instructed to provide their own confidence tags 

for each of the final annotations using the abovementioned (1-5) confidence scale. 

Statistical Analysis 

RJafroc R-library (version 1.2.0) was used to evaluate the performance. Dorfman-

Berbaum-Metz with Hillis' improvements (DBMH) method of analysis was applied: a method 

for multi-reader multi-case (MRMC) analysis that uses the jackknife technique and conventional 

analysis of variance (ANOVA). The "Random-Reader Random Case" option of analysis was 

evaluated. With this analysis option, both cases and readers are considered as random factors. 

Thus, the results of the analysis can be applied to the general population of readers and cases. 

The following common definitions were applied: 

1) Lesion: an apical radiolucency that is shown on the image in the form of a bounding box; each 

lesion annotated by the reader is supported by a confidence score. 

2) Case: an image that is interpreted by the reader. The inferred ROC rating paradigm was 

applied to define a confidence rating for the case annotated by the reader: the highest rating was 

used in the case of multiple lesions shown. Alternative Free-Response Receiver Operating 

Characteristic (AFROC) AUC metric was evaluated as the primary endpoint for comparing the 

performance of the readers for the two reading scenarios. AFROC AUC measures the area under 
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the AFROC curve. This curve shows a tradeoff between lesion localization fraction (LLF) and 

the false positive fraction for the range of decision thresholds. The LLF shows how many ground 

truth lesions were correctly detected by the reader, i.e. sensitivity on the by-lesion basis. 

FPF shows how many actual negative cases were mistakenly classified as positive, i.e. 1 - 

specificity on a by-case basis. AFROC was chosen as the main metric of performance as it both 

provides aggregated measurement over different thresholds and accounts for localization 

accuracy.  

Secondary endpoint analysis included the following metrics: ROC AUC, sensitivity (by 

case), specificity (by case), sensitivity by lesion. 

Subgroup performance analysis was conducted to measure the effect of the CAD system 

for different characteristics of lesions. The analysis was stratified based on AR location, extent, 

and treatment status of the tooth (whether an affected tooth was endodontically treated or not).  

It is worth noting that the sensitivity metric was used for “by lesion” analysis, whereas 

the specificity metric was not calculated. This is mainly because this metric depends on true 

negatives and there is no meaningful way to calculate true negative lesions, as there is an 

undefined number of locations where the lesions might be shown on an image. Additionally, the 

AFROC AUC, ROC AUC, sensitivity by case, specificity by case, and sensitivity by lesion 

metrics were calculated for the different groups of readers stratified by readers' specialties. 

Results 

Primary Endpoint Analysis 

A statistically significant difference in AFROC (p = 0.023), with the AI-aided session 

showing a 5.8% improvement over the unaided reading session was found. Table 2.5 shows the 
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resulting metrics. Furthermore, Figure 2.5 shows the AFROC curves: the average performance 

for all 12 readers under both aided and unaided modalities.  

 

 

Secondary Endpoint Analysis 

Secondary endpoints results showed that there was no statistically significant difference 

in the performance between the two sessions in relation to the following metrics: ROC AUC, 

sensitivity and specificity on a “by case” basis or for sensitivity on a “by lesion” detection basis. 

The following p-values were obtained for the above metrics: 

- ROC AUC (p-value 0.440) 

- Sensitivity by case (p-value 0.780) 

- Specificity by case (p-value 0.180) 

- Sensitivity by lesion (p-value 0.065)  

Table 2.6 and Figure 2.6 provide the resulting figures and the plot of the ROC curve; 

respectively. 

Subgroup Analysis Stratified by Lesion Characteristics 

There was a statistically significant difference in the sensitivity by lesion between the two 

sessions for small ARs (p = 0.022), as well as for the detection of ARs in the mandibular molar 

region (p = 0.046) and for ARs associated with endodontically treated teeth (p = 0.009). The 

sensitivity for small lesions increased by 10.5%. The mandibular molar region showed a 

sensitivity increase of 9.7% and endodontically treated status increased the sensitivity by 10.8%. 

Table 2.7 shows the results by lesion extent. Table 2.8 shows the results for different tooth 

treatment status and Table 2.9 displays the results for different lesion locations.  
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Subgroup Analysis Stratified by Readers’ Specialty 

Subgroup performance analysis was conducted to measure the effect of the CAD system 

stratified by readers' specialization. Two groups were evaluated: radiologists and non-

radiologists, specifically general dentists, operative dentists, and endodontists. The same metrics 

were assessed that were included in the primary and secondary endpoints of the study: AFROC 

AUC, ROC AUC, sensitivity, specificity, and sensitivity on a by-lesion basis.  

For the non-radiologists group, the AFROC, specificity, and sensitivity-by lesion metrics 

showed a statistically significant difference between the first and second reads with p-values of 

0.005, 0.047 and 0.049, respectively (Table 2.10.) All three metrics showed an increase which 

ranged from 7.1 – 13.8 %.ROC AUC and sensitivity metrics were not statistically significant. 

For the radiologists group, there was no statistically significant difference found between 

the two reads in any of the metrics (AFROC AUC, ROC AUC, sensitivity, specificity, and 

sensitivity on a by-lesion basis), see Table 2.11. 

Discussion: 

            Dentists assume the responsibility of selecting the appropriate radiographic modality, 

acquiring the radiographs and interpreting the results, and making decisions based on the 

interpretation. If radiographs are inattentively read, this could potentially lead to over or under-

treating patients. By serving as adjuncts to dentists, diagnostic software and tools have the 

potential to reduce fatigue and diagnostic errors. (23)   

In endodontics, deep convolutional neural networks (CNNs) have been applied to tasks 

that include the detection of apical lesions on panoramic radiographs and CBCT. In one study, a 

moderately deep CNN trained on a limited set of panoramic images showed satisfactory ability 

to detect apical lesions. Based on the consensus of six examiners the AUC of the CNN was 85%. 
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Sensitivity and specificity were 65% and 87%, respectively. Subgroup analysis for tooth type 

was also performed showing a significantly higher sensitivity in molars than in other tooth types, 

whereas specificity was lower (13).Thus, the application of neural networks shows promise in 

assisting dentists in detecting apical lesions on panoramic radiographs with a reasonable 

accuracy. A second study, evaluated based on a clinically validated ground truth, investigated the 

detection of periapical radiolucencies on panoramic radiographs. The periapical radiolucencies 

included infections, granulomas, cysts and tumors. Results demonstrated that the deep learning 

algorithm achieved a better performance than 14 out of 24 participating OMF surgeons within 

the cohort, exhibiting an average precision of 0.60, and an F1 score of 0.58, a PPV of 0.67 and 

TPR of 0.5. While not exceptionally high, the results of this study showed that the algorithm has 

the potential to aid oral surgeons in detecting periapical lucencies on panoramic radiographs (14). 

Setzer et al. demonstrated excellent results in another study that aimed at using a DL algorithm 

for the automated segmentation of CBCT images and the detection of periapical lesions with 

lesion detection accuracy of 0.93 (16). At another attempt to evaluate a CNN method at detecting 

apical pathosis on CBCT, Orhan et al. included 153 periapical lesions obtained from 109 

patients. The AI system was able to detect 142 of a total of 153 periapical lesions with a 

reliability of correctly detecting a periapical lesion of 92.8 % (17). 

These studies were designed to assess the diagnostic efficacy of DL systems in detecting 

periapical lesions as a standalone system and compared to clinicians. The authors of this study 

posit that assessing the ability of the DL software to assist the clinician is of equal value to the 

readership. This was one of the chief aims of this investigation. 

For the average performance for all 12 readers, the results of this study showed a 

statistically significant difference in AFROC (p-value 0.023), with the AI-aided session showing 



26 

a 5.8% improvement over the unaided reading session. Those results reflect that the detection of 

AR lesions by clinicians can be improved using this tool. However, the results of the secondary 

endpoints results showed that there was no statistically significant difference in the performance 

between the two sessions in relation to ROC AUC, sensitivity and specificity on a by-case basis 

as well as sensitivity on a by-lesion detection basis. A possible explanation lies in the versatility 

and inhomogeneity in observers’ experiences and specialties. This is a plausible explanation 

since the results of the non-radiologists group showed a statistically significant difference 

between the first and second reads in the following metrics: AFROC, specificity, and sensitivity-

by lesion metrics. All three metrics showed an increase which ranged from 7.1 – 13.8%. 

Whereas in the radiologists group, there was no statistically significant difference found between 

the two reads in any of the metrics. This observation suggests that non-radiologists may benefit 

the most from CAD tools. 

Additionally, the results of the subgroup analysis by lesion characteristics showed a 

significant difference in the sensitivity by-lesion metric between the two sessions in the 

following subgroups: small extent lesions, mandibular molar sites and in AR lesions associated 

with endodontically-treated teeth. The sensitivity increased for small lesions by 10.5%. The 

mandibular molar region showed an increase of 9.7% and endodontically-treated teeth showed 

an increase in sensitivity of 10.8%.  

Hence, all three null-hypotheses are rejected. The results of the subgroup analysis by-

lesion characteristics follows the distribution characteristics within each subgroup with a larger 

sample of smaller lesions, mandibular molar lesions and endodontically-treated status. However, 

the sample size is too small to determine whether this finding is coincidental or not. 
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To the best of the authors’ knowledge, no study investigated the accuracy of detecting 

apical radiolucencies on periapical radiographs using CBCT as a gold standard. The sample was 

selected retrospectively with due diligence given to preventing selection bias by performing 

consecutive collection and randomization of the pilot sample. However, the sample was limited 

in number. Limitations also included the low number of observers in each subgroup and the 

variability of experiences in the observers as a whole body. Furthermore, another limitation in 

our study is that we did not attempt to correlate radiographic findings with clinical findings or 

patient symptoms relating to the apical radiolucencies detected. Hence, it is not known to what 

extent periapical lesions detected in our CBCT volumes reflect the histological status of the 

periapical tissues.   

Various observer studies have been conducted to evaluate the accuracy of periapical 

radiographs, panoramic radiographs, and CBCT imaging in the diagnosis of apical radiolucent 

lesions. While studies showed varying results, we decided to utilize CBCT volumes as a 

reference standard since it has been proven to have significantly higher diagnostic accuracy 

compared to 2D imaging modalities. In a study by Patel et. al, The ROC Az values were 0.79 and 

1.00 for IO and CBCT, respectively (24) .It’s also reported that (20%–39%) of AP radiolucencies 

are diagnosed with CBCT and missed with IO radiography (25). In a study by low et al., CBCT 

showed significantly more lesions (34%, p < 0.001) than periapical radiographs (26). The 

accuracy of detecting apical periodontitis with panoramic radiographs was evaluated by Nardi et 

al. who reported a low sensitivity of 34.2%, a diagnostic accuracy of 65% and a high specificity 

95.8% (27). A major advantage of using CBCT as the reference is the ability to detect apical 

radiolucencies in anatomically challenging areas such as the posterior maxilla, where anatomic 

overlap takes place in 2D images (28). A study by Uraba et al. showed that the overall periapical 
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lesion detection rates of periapical radiographs and CBCT imaging were 31.5% and 52.2%, 

respectively. Notably, the ability of CBCT imaging to identify periapical lesions that were not 

detected by PR was statistically significant for the maxillary incisors/canines and maxillary 

molars (29).  CBCT can display the details of the lesions and adjacent structures and provide 

correct clinical diagnosis as it shows destruction of cortical bone that couldn't detect by 

periapical radiography (30). Thus, CBCT could be considered too high of a standard and the 

impact of AI on a clinician’s diagnostic performance may be confounded by the choice of the 

gold standard. 

 Furthermore, the prevalence of apical pathology undetected on periapical radiographs is 

considerably high as 30-50% of mineral loss is needed to visualize the lesions.  Thus, the 

limitations of periapical radiographs as a diagnostic tool should not be disregarded, mainly to 

reduce false-negative results (31, 32). 

Conclusions: 

Using a limited testing dataset, Denti.Ai improved localization of apical radiolucencies. 

Further AI training is necessary to increase the sensitivity and specificity of apical radiolucencies 

detection. Statistically significant improvement in the performance of non-radiologists, detection 

of mandibular molar apical radiolucent lesions, small lesions, and in endodontically-treated teeth 

was observed in the current study. 
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APPENDIX I – FIGURES 

 

 

Figure 1.1. Venn diagram.  AI is a subfield of computer science devoted to creating systems to 

perform tasks that ordinarily require human intelligence. ML is a subfield of AI where humans 

engineer features by which a computer can learn to differentiate patterns of data. Representation 

learning is a type of ML where no feature engineering is used; instead, the computer learns the 

features by which to classify the provided data. DL is a type of representation learning where the 

learned features are hierarchical (7). 
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Figure 1.2. Comparison between Machine Learning and Deep Learning. 

(https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-

networks-in-deep-learning/) 

 

 

 

 

 

Figure 1.3. Types of Learning. Classic machine learning depends on carefully designed features, 

requiring human expertise and complicated task-specific optimization. Deep learning bypasses 
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feature engineering by taking advantage of large quantities of data and flexible hierarchical 

models. Blue boxes represent components learned by fitting a model to example data; deep 

learning allows learning an end-to-end mapping from the input to the output (7). 

 

 

 
 

Figure 2.1. Distribution of Cases by Age. 
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Figure 2.2. Distribution of Lesions by Location. 

 

 
Figure 2.3. Distribution of Lesions by Extent. 
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Figure 2.4. Distribution of Lesions by Treatment Status. 
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Figure 2.5. AFROC Plot: the average operating characteristics over 12 readers and 2 modalities 

(aided and unaided). 
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Figure 2.6. ROC Plot: the average operating characteristics over 12 readers and 2 modalities 

(aided and unaided). 
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APPENDIX II – TABLES 

 

 

 Number of periapical 
radiographs 

Number of 
teeth 

Number of 
lesions 

Number of 
unique patients 

Positive 
cases 

38 152 56 38 

Control 
cases 

30 116 0 19 

Total cases 68 268 56 57 

Table 2.1. General Statistics. 

 

Age group Number of cases 

18-30 3 

30-40 4 

40-50 18 

50-60 9 

60-70 18 

70-80 13 

80-90 2 

Table 2.2. Distribution of cases by age. 

 

Gender Number of cases 

Male 26 

Female 42 
Table 2.3. Distribution of cases by gender. 

 

Location Number of lesions 

Anterior/ Mandibular 4 

Premolar/ Mandibular 7 

Molar/ Mandibular 18 

Anterior/ Maxillary 8 

Premolar/ Maxillary 4 

Molar/ Maxillary 15 

Extent Number of lesions 

Small (2-5 mm) 31 

Large (>5 mm) 25 

Treatment status Number of lesions 

Endodontically treated  31 

Not endodontically 
treated  

25 

Table 2.4. Distribution of lesions by location, extent and treatment status. 
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By-Image Statistics (12 readers, 68 images), RRRC Scenario 

 
 

Read 2 (Aided by AI) 

AFROC CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.896 0.847 0.945  
0.049 

 
0.007 

 
0.092 

 
0.023 Read 1 0.847 0.784 0.910 

Table 2.5. Primary Endpoint Assessment: AFROC AUC metric. 

 

By-Image Statistics (12 readers, 68 images), RRRC Scenario 

 
 

Read 2 (Aided by AI) 

ROC AUC CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.930 0.888 0.972  
0.013 

 
-0.020 

 
0.046 

 
0.440 

Read 1 0.917 0.868 0.966 

 

 
 

Read 2 (Aided by AI) 

Sensitivity CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.930 0.876 0.983  
-0.007 

 
-0.053 

 
0.040 

 
0.780 

Read 1 0.936 0.888 0.985 

 

 
 

Read 2 (Aided by AI) 

Specificity CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.781 0.671 0.890  
0.075 

 
-0.038 

 
0.188 

 
0.180 

Read 1 0.706 0.566 0.845 

By-Lesion Statistics (12 readers, 56 images), RRRC Scenario 

 
 

Read 2 (Aided by AI) 

Sensitivity CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.876 0.809 0.944  
0.055 

 
-0.004 

 
0.114 

 
0.065 

Read 1 0.821 0.745 0.898 

Table 2.6. Secondary Endpoints assessment results: ROC AUC, Sensitivity, Specificity on the by-image 

basis, and Sensitivity on the by-lesion basis. 
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Small Extent (31 lesions) 

 
 

Read 2 (Aided 
by AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

0.847 0.755 0.939  
0.105 

 
0.015 

 
0.194 

 
0.022 

Read 1 0.742 0.619 0.865 

Large Extent (25 lesions) 

 
 

Read 2 (Aided 
by AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

0.913 0.835 0.992  
-0.007 

 
-0.052 

 
0.039 

 
0.768 

Read 1 0.920 0.849 0.991 

Table 2.7. Subgroup analysis stratified by lesion extent. 

 

Endodontically treated (31 lesions) 

 
 

Read 2 (Aided 
by AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI lower CI upper P-
value 

0.927 0.871 0.983  
0.108 

 
0.027 

 
0.188 

 
0.009 

Read 1 0.820 0.705 0.935 

Non-endodontically treated (25 lesions) 

 
 

Read 2 (Aided 
by AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI lower CI upper P-
value 

0.813 0.677 0.950  
-0.010 

 
-0.086 

 
0.066 

 
0.795 

Read 1 0.823 0.718 0.929 

Table 2.8. Subgroup analysis stratified by tooth treatment status. 
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Table 2.9. Subgroup analysis stratified by lesion location. 

 

 

Molar/Maxillary (15 lesions) 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

0.694 0.538 0.850  
0.039 

 
-0.112 

 
0.190 

 
0.613 

Read 1 0.656 0.479 0.832 

Molar/Mandibular (18 lesions) 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

0.958 0.908 1.000  
0.097 

 
0.002 

 
0.193 

 
0.046 

Read 1 0.861 0.746 0.976 

Premolar/Maxillary (4 lesions) 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

0.917 0.753 1.000  
0.104 

 
-0.101 

 
0.309 

 
0.318 

Read 1 0.813 0.445 1.000 

Premolar/Mandibular (7 lesions) 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

1.000 N/A N/A  
0.012 

 
-0.014 

 
0.038 

 
0.339 

Read 1 0.988 0.962 1.000 

Anterior/Maxillary (8 lesions) 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

0.979 0.937 1.000  
0.083 

 
-0.053 

 
0.219 

 
0.229 

Read 1 0.896 0.721 1.000 

Anterior/Mandibular (4 lesions) 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI upper Read 2 –
Read 1 

 

CI 
lower 

CI upper P-value 

0.729 0.499 0.959  
-0.104 

 
-0.330 

 
0.122 

 
0.365 

Read 1 0.833 0.696 0.970 
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General dentists, operative dentists and endodontists (8 readers, 68 images), RRRC Scenario 

 
 

Read 2 (Aided by 
AI) 

AFROC CI lower CI 
upper 

Read 2 –Read 
1 
 

CI lower CI 
upper 

P-
value 

0.892 0.833 0.951  
0.071 

 
0.022 

 
0.119 

 
0.005 

Read 1 0.822 0.749 0.894 

 

 
 

Read 2 (Aided by 
AI) 

ROC AUC CI lower CI 
upper 

Read 2 –Read 
1 
 

CI lower CI 
upper 

P-
value 

0.920 0.872 0.969  
0.024 

 
-0.016 

 
0.063 

 
0.231 

Read 1 0.897 0.841 0.953 

 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI 
upper 

Read 2 –Read 
1 
 

CI lower CI 
upper 

P-
value 

0.931 0.869 0.993  
-0.007 

 
-0.056 

 
0.043 

 
0.782 

Read 1 0.938 0.893 0.982 

 

 
 

Read 2 (Aided by 
AI) 

Specificity CI lower CI 
upper 

Read 2 –Read 
1 
 

CI lower CI 
upper 

P-
value 

0.733 0.599 0.867  
0.138 

 
0.002 

 
0.273 

 
0.047 

Read 1 0.596 0.461 0.731 

By-Lesion Statistics (4 readers, 56 images), RRRC Scenario 

 
 

Read 2 (Aided by 
AI) 

Sensitivity CI lower CI 
upper 

Read 2 –Read 
1 
 

CI lower CI 
upper 

P-
value 

0.888 0.812 0.965  
0.067 

 
0.0003 

 
0.134 

 
0.049 

Read 1 0.821 0.738 0.905 

Table 2.10. Subgroup analysis stratified by readers’ specialty: general dentists, operative dentists and 

endodontists. 
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Radiologists (4 readers, 68 images), RRRC Scenario 

 
 

Read 2 (Aided by AI) 

AFROC CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.904 0.849 0.960  
0.007 

 
-0.020 

 
0.035 

 
0.595 

Read 1 0.897 0.847 0.948 

 

 
 

Read 2 (Aided by AI) 

ROC AUC CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.949 0.907 0.990  
-0.009 

 
0.907 

 
0.990 

 
0.594 

Read 1 0.957 0.916 0.999 

 

 
 

Read 2 (Aided by AI) 

Sensitivity CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.928 0.843 1.000  
-0.007 

 
-0.083 

 
0.070 

 
0.854 

Read 1 0.934 0.855 1.000 

 

 
 

Read 2 (Aided by AI) 

Specificity CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.875 0.717 1.000  
-0.050 

 
-0.304 

 
0.204 

 
0.576 

Read 1 0.925 0.833 1.000 

By-Lesion Statistics (4 readers, 56 images), RRRC Scenario 

 
 

Read 2 (Aided by AI) 

Sensitivity CI lower CI upper Read 2 –Read 1 
 

CI lower CI upper P-value 

0.853 0.757 0.948  
0.031 

 
0.757 

 
0.948 

 
0.314 

Read 1 0.821 0.724 0.919 

Table 2.11. Subgroup analysis stratified by readers’ specialty: the radiologists group. 


