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ABSTRACT

Cass Sherman: Weight Stretching in Moduli of Parabolic Bundles and
Quiver Representations

(Under the direction of Prakash Belkale)

In their 2004 paper [KTT04], King et al. consider the effect of stretching each parameter in a

Littlewood-Richardson coefficient by a positive integer N . When the L-R coefficient corresponding

to N = 1 is small (0, 1, 2, or 3), they conjecture simple polynomial formulas determining the

L-R coefficient for all N ≥ 1. In this thesis, we consider generalizations of their conjectures to

parabolic vector bundles and representations of quivers. In each instance, there is a polarized moduli

space (M,L) with the property that dimH0(M,L⊗N ) scales in the same way as the corresponding

(generalized) L-R coefficient. The “simple polynomial formulas” then translate to simple geometric

descriptions of (M,L). We prove that these descriptions hold in many cases.
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INTRODUCTION

One of the oldest problems in the representation theory of linearly reductive groups G, going

back to at least Littlewood-Richardson in the 1930s, is the question of tensor product multiplicities.

This question asks if V , W , and U are irreducible representations, then how many direct summands

of U appear in the decomposition of V ⊗W into irreducibles? For certain G, combinatorial formulas

are known. For instance, when G = GLrC, the Littlewood-Richardson rule computes tensor product

multiplicities by counting the number of “reverse lattice words” on a certain skew Young diagram

determined by V,W,U . Such formulas prove useful for computer calculations, but they do not tell

the full story on the theory of tensor product multiplicities. Many interesting theoretical questions

have only been answered recently by non-combinatorial (e.g. geometric) methods, and still more

remain open. The proceedings [Kum10] provides a nice survey.

Our point of view on this problem begins with the trivial observation that by Schur’s lemma,

the multiplicity of U is the same as the dimension of the space of G-invariants of V ⊗W ⊗ U∗.

Symmetrizing, one then recasts the multiplicity problem as a special case of the invariant theory

computation of

cλ1,...,λs = dim(Vλ1 ⊗ ...⊗ Vλs)G.

Here λ1, ..., λs indicate the dominant weights corresponding to the irreducible representations

Vλ1 , ..., Vλs . Scaling a dominant weight by a positive integer N produces another dominant weight.

This gives rise to the saturated multiplicity question, in which one considers P (N) := cNλ1,...,Nλs

for arbitrary N > 0 and its relationship to cλ1,...,λs (P (1)). For G = SLrC, the behavior of P has

been studied extensively and many celebrated results produced. Several of these appear among

the conjectures of King, Tollu, and Toumazet on P (stated for s = 3, but this is not expected to

matter).

Conjecture. [KTT04] For G = SLrC, if λ1 + ... + λs is in the root lattice of G (a necessary

condition for P (1) 6= 0), we have:
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• (Polynomiality) P is a polynomial in N with rational coefficients.

• (Positivity) The coefficients of P are nonnegative.

• (Saturation) If P (1) = 0, then P (N) = 0 for all N ≥ 1.

• (Fulton) If P (1) = 1, then P (N) = 1 for all N ≥ 1.

• (KTT) If P (1) = 2, then P (N) = N + 1 for all N ≥ 1.

• (KTT 2) If P (1) = 3, then P (N) = 2N + 1 or P (N) = 1
2N

2 + 3
2N + 1.

The polynomiality conjecture was proven by Derksen and Weyman [DW02]. After a further GIT

translation of the question, one can also deduce polynomiality from Teleman’s higher cohomology

vanishing [Tel00], in view of which P is the Hilbert polynomial of an ample line bundle on a

projective variety. We shall pursue this point of view later. Several different proofs of saturation are

known: combinatorial by the honeycomb model due to Knutson-Tao when s = 3 [KT99], algebraic

by way of quiver representations due to Derksen-Weyman [DW00], and geometric through Schubert

calculus due to Belkale [Bel06]. Additionally, Kapovich-Millson [KM04] deduce the saturation

conjecture for SLrC from a saturation-type result which holds for any simple G.

The Fulton conjecture also has several proofs, the first combinatorial due to Knutson-Tao-

Woodward [KTW04] when s = 3. Later geometric proofs appeared from Belkale [Bel07] (for arbitrary

s) and Ressayre [Res11]. A non-obvious generalization (the obvious generalization is false) of the

Fulton conjecture to connected reductive groups G was given by Belkale-Kumar-Ressayre [BKR12].

Fulton’s conjecture holds additional interest beyond the behavior of P . It can be used to show that

a certain set of linear inequalities in the components of the weights are irredundant (as well as

necessary and sufficient) in describing the cone {(λ1, ..., λs) : cλ1,...,λs 6= 0} ⊆ (Rr)×s [DW11].

The KTT conjecture was proven combinatorially by Ikenmeyer [Ike12] for s = 3 and geometrically

by the author [She15] for arbitrary s. To the best of the author’s knowledge, no attempts at the

positivity conjecture or the second KTT conjecture exist in the literature. Some progress will be

made toward these later in the thesis.

From the theory of Borel-Weil-Bott, each irreducible representation Vλ of G = SLrC can be

realized as the space of sections of an ample G line bundle Lλ on a flag variety Xλ (actually it is
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conventional for the sections of Lλ to give the dual of Vλ). Thus, taking the GIT quotient of the

product
∏s
p=1Xλp by the diagonal G action, with linearization L̃λ := Lλ1 � ...� Lλs , one obtains

a (projective, irreducible, normal) moduli space Mλ parametrizing classes of semistable s-tuples

of flags. Since L̃λ descends to an ample Lλ on Mλ, one has dimH0(Mλ,Lλ) = cλ1,...,λs , and more

generally dimH0(Mλ,L⊗Nλ ) = P (N). The above conjectures therefore have translations in terms

of the polarized variety (Mλ,Lλ).

Conjecture. For G = SLrC, if λ1 + ...+ λs is in the root lattice of G, we have:

• (Saturation) If Mλ is nonempty, then dimH0(Mλ,Lλ) is nonzero.

• (Fulton) If dimH0(Mλ,Lλ) = 1, then Mλ is a point.

• (KTT) If dimH0(Mλ,Lλ) = 2, then (Mλ,Lλ) = (P1,O(1)).

• (KTT 2) If dimH0(Mλ,Lλ) = 3, then (Mλ,Lλ) = (P1,O(2)) or (Mλ,Lλ) = (P2,O(1)).

Taking this geometric approach to the conjectures as our jumping off point, we pursue general-

izations in two directions. The first is to moduli of quiver representations. A quiver is simply a

directed graph, and a representation is a collection of finite-dimensional vector spaces, one over

each vertex, with linear maps over each arrow. As with s-tuples of flags, discrete weight data

defines a notion of semistability for quiver representations. Again, one has a moduli space M

parametrizing semistable quiver representations, and there is a line bundle L on M whose sections

give semi-invariant functions on a certain space of quiver-representations, these being analogous

to invariant vectors in a tensor product. Indeed, for well-chosen quivers and discrete weight data,

the polarized space (M,L) for quiver representations is naturally isomorphic to (Mλ,Lλ) as above.

Thus, even if one is only interested in Littlewood-Richardson numbers, it may still be worthwhile to

consider the corresponding quiver generalization, for, in the author’s view, quiver representations

are “more linear” and easier to work with. This point of view is supported by the early 2000s

work of Derksen and Weyman cited above, in which e.g. polynomiality was proven first for quiver

semi-invariants and then deduced for Littlewood-Richardson numbers.

The second direction in which the conjectures can be generalized is to moduli of parabolic

bundles on P1. For our purposes, given a collection of marked points S = {p1, ..., ps} on P1, a

parabolic bundle is the data (V,F , I) of a vector bundle V on P1, a full flag in V|p for each marked
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point p, and weights of an appropriate level attached to each vector space in the flags determined

by I. For fixed degree, rank, and weight+level data I, there is again a moduli space M =M(I)

of classes of I-semistable parabolic vector bundles (V,F , I), and a natural ample line bundle L

on M whose gloabal sections have dimension 〈I〉 (we prove this in Section 2.8). Here 〈I〉 denotes

the quantum Schubert calculus number associated to I, a count of certain maps from P1 into a

Grassmannian. Since their discovery by Mehta-Seshadri [MS80] (in studying unitary representations

of Fuchsian groups), parabolic bundles have been studied by many and for diverse reasons, including

Narasimhan-Ramadas [NR93] (to establish fundamental properties of (M,L)), Pauly [Pau96] (to

compare with the physicists’ spaces of conformal blocks), Boden-Hu [BH95] (in the context of

variation of stability in GIT), Laszlo-Sorger [LS97] (to describe line bundles on the moduli stack of

quasi-parabolic bundles), Belkale [Bel04a] (to solve a “recognition problem” for products of matrices

in SU(n)), Crawley-Boevey [CB04] (to partially solve the same problem for GLnC), and many

others. The connection to conformal blocks will be discussed in more detail later.

Note that for vector bundles of degree 0 and certain choices of I, one recovers the moduli space

of semistable s-tuples of flags from the previous set of conjectures. So once again, one can deduce

facts about Littlewood-Richardson numbers from more general facts about moduli of parabolic

bundles. However, unlike with quivers, it is more difficult to work in full generality with parabolic

bundles.

The goal of this thesis is to describe the pairs (M,L) above, especially under the hypotheses of

the Fulton and KTT conjectures. Our main result is the following.

Theorem 1. Let (M,L) be a moduli space of either semistable quiver representations or semistable

parabolic bundles as above.

1. If M is a moduli space of semistable parabolic bundles, and h0(M,L) = 1, then M is a point.

2. If M is a moduli space of semistable quiver representations, and h0(M,L) = 2, then (M,L) =

(P1,O(1)).

3. If M is a moduli space of semistable parabolic bundles of rank 2 or 3, then L is basepoint-free.

We remark that item 1 is already known, as well as its quiver analogue. Indeed, in the quiver

case, we do not even include a proof of item 1, as a proof using our methods would not differ
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significantly from the existing proof of [DW11]. In the parabolic bundle case, we include a proof of

item 1. The existing proof by Belkale-Kumar [BK16] involves the multiplicative eigencone for SU(n).

The inequalities defining facets of this cone are known to correspond to certain non-null quantum

Schubert states I, and Belkale-Kumar prove that one need only retain the inequalities with 〈I〉 = 1

and that every such inequality is needed (i.e. the set is irredundant). In the earlier paper [Bel04a],

Belkale observes that quantum irredundancy implies our item 1, which in his terminology is the

Quantum Fulton Conjecture. Thus, item 1 follows. However, the main argument of [Bel04a] actually

goes the other way: Belkale shows that assuming QFC one can deduce quantum irredundancy. So

our proof of item 1, which is independent of eigencone problems and considerations of redundancy,

validates Belkale’s original approach.

A second result relates to the positivity conjecture and has implications for KTT 2. We consider

again the classical moduli space (Mλ,Lλ).

Proposition 2. If (Mλ,Lλ) is a moduli space of λ-semistable complete flags, and if in addition

Mλ contains a point corresponding to a stable flag, then the Weil divisor class −KM is effective

(note: Mλ is normal, so KM makes sense). In particular, if Mλ is also smooth, then it is Fano.

Note that the complete flag assumption was imposed for convenience. We have not seen this

result to fail in the case of partial flags (and we do not expect it to).

Let us now draw some easy consequences. For degree 0 parabolic bundles, Pauly shows

that dimH0(M,L) is the rank of the conformal block associated to the data I defining semista-

bility [Pau96]. Item 1 in Theorem 1 shows in particular that if dimH0(M,L) = 1, then

dimH0(M,L⊗N ) = 1. Since (M,L⊗N ) is the polarized moduli space associated to the data

NI, we have:

Corollary. Let Vλ1,...,λs,` be an slr conformal block vector space of level ` and weights λp associated

to the stable curve (P1, p1, ..., ps). Let P ′(N) := dim VNλ1,...,Nλs,N` for N ≥ 1. If P ′(1) = 1, then

P ′(N) = 1 for all N ≥ 1.

A similar result is implied by item 3 of Theorem 1. If dimH0(M,L) = 2 and L is basepoint-free,

then dimM≤ 1 because L is ample. It follows from normality and rationality of M [BH95] that

(M,L) = (P1,O(1)). Therefore, P ′ behaves like the global sections of O(1).
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Corollary. Notation as in the previous corollary, and assume that r = 2 or r = 3. If P ′(1) = 2,

then P ′(N) = N + 1 for all N ≥ 1.

Thanks to Belkale-Gibney-Kazanova [BGK15], the scaling results above have further implications

for the conformal blocks divisors on the moduli space M0,s of stable curves. We give an easy

application of their work in Section 2.12.

As for item 2 in Theorem 1, it can be used to deduce the “classical” KTT conjecture.

Corollary. If dim(Vλ1 ⊗ ...⊗ Vλs)SLr = 2, then dim(VNλ1 ⊗ ...⊗ VNλs)SLr = N + 1 for all positive

integers N .

The analogous item 2 for moduli of parabolic bundles also appears to be true. The author has

not been able to prove it as of this writing, because of technical difficulties that arise when dealing

with parameter spaces of vector bundles (whereas parameter spaces of vector spaces as in [She15]

had been much more manageable). Thus, we state item 2 for parabolic bundles as a conjecture.

Conjecture. (Quantum KTT) If (M,L) is a moduli space of semistable parabolic bundles as

above, and dimH0(M,L) = 2, then (M,L) = (P1,O(1)).

Proposition 2 provides the first evidence towards the positivity conjecture of King et al. Indeed,

it follows from the proposition and Nakai’s criterion for ampleness that:

Corollary. Assumptions as in Proposition 2. The coefficient of NdegP−1 in P (N) = h0(Mλ,L⊗Nλ )

is positive.

Observe also that positivity of the second coefficient gives a weak variant of KTT 2. For suppose

the second coefficient is positive and h0(Mλ,Lλ) = 3. Suppose further that Lλ is basepoint-free.

This will be the case when r = 2 or r = 3 by Item 3 in Theorem 1 (it also seems likely to be the

case for any r, provided an argument similar to the one in [She15] generalizes). It follows that

dimMλ = 1 or dimMλ = 2. In the former case, it is easy to see that (Mλ,Lλ) = (P1,O(2)). In

the latter case, the Hilbert polynomial P of Lλ has the form P (N) = (a/2)N2 + (b/2)N + 1 for

some positive integers a, b such that a/2 + b/2 + 1 = 3. This leaves only three possiblities for (a, b),

namely (1, 3), (2, 2), and (3, 1). The corresponding moduli spaces are (Mλ,Lλ) = (P2,O(1)) or |Lλ|

defines a generically 2:1 (resp. 3:1) morphism Mλ → P2.
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We conclude this introduction with some remarks on the techniques. The starting point for

our analysis of both the parabolic bundle and quiver representation moduli (M,L) is a simple

description for the sections of L. IfM parametrizes parabolic bundles (resp. quiver representations)

associated to some data ∂, then some sections of L are defined by parabolic bundles (resp. quiver

representations) associated to complementary data ∂c, and these sections together span H0(M,L).

The vanishing locus of such a section admits a particularly nice description. If W is a parabolic

bundle (resp. quiver representation) for the data ∂c, then the section sW of L defined by W vanishes

at precisely the V ∈M for which there exists a nonzero morphism V →W .

We use the above description to analyze the basepoints of L - particularly with the intention of

showing that there are none in the cases we consider. If V ∈M is a basepoint of L, then sW vanishes

at V for all W associated to ∂c, whence Mor(V,W ) 6= 0 for all such W . To derive a contradiction

to the existence of the basepoint V , we show that Mor(V,W ) is in fact 0 for a general W . The

argument is inductive in flavor. The idea is to relate Mor(V,W ) to Mor(S,W ) where S is the kernel

of a general morphism V → W . Since by assumption a general morphism is nonzero, S will be

strictly smaller than V . If the pair (S,W ) is comparable to (V,W ), we can say whatever we wanted

to say about (V,W ) about (S,W ) by induction. The desired contradiction then follows. Note that

in this overview, we have suppressed the role of semistability of V , which plays an important part

in the actual proofs.

The relationship between Mor(V,W ) and Mor(S,W ) may be of independent interest. The

statement of the relationship for quiver representations resembles similar statements of Schofield

[Sch92]. Our results, obtained by dimension counting, are presented below.

Proposition. Fix a representation V of a quiver Q. Let W be generic of its dimension vector with

respect to V . If S denotes the kernel of a general morphism V →W , then the canonical surjection

ExtQ(V,W ) � ExtQ(S,W ) is an isomorphism.

Proposition. Fix a parabolic bundle Ṽ = (V,F , I). Let Q̃ = (Q,G, Ic) be a parabolic bundle which

is generic with respect to Ṽ. If S̃ denotes the kernel of a general morphism Ṽ → Q̃, then the

canonical surjection H1(ParHom(Ṽ, Q̃)) � H1(ParHom(S̃, Q̃)) is an isomorphism.

See Sections 1.7 and 2.9 for more precise statements (in a slightly different notation in the

parabolic bundle case).
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as a C vector space or, in the case of quiver representations, a collection of C vector spaces, one over

each vertex of the quiver. Also, by “vector space,” we only mean finite-dimensional C vector spaces.

Finally, the word “subbundle” should be understood as a locally free subsheaf whose corresponding

quotient is locally free.
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CHAPTER 1

Representations of Quivers

For α, β dimension vectors of a cycle-free quiver Q with Ringel product 0, the dimensions

of the spaces of σβ-semi-invariant functions SI(Q,α)σβ on Rep(Q,α) appear to exhibit the same

behavior under stretching as the Littlewood-Richardson numbers (see Section 1.1 for notation

and generalities on quiver representations). Thus, one has the familiar assertions for the function

P̃ (n) := dim SI(Q,α)σnβ .

• (Polynomiality) P̃ is a polynomial with rational coefficients.

• (Saturation) If P̃ (1) = 0, then P̃ (n) = 0 for all n ≥ 1.

• (Fulton) If P̃ (1) = 1, then P̃ (n) = 1 for all n ≥ 1.

All of the above were proven by Derksen and Weyman in the papers [DW02], [DW00], and [DW11],

respectively, the last of these being a reconstruction of a proof given by Belkale. The main object of

this chapter is to establish the corresponding quiver generalization of the KTT Conjecture. That is,

we prove:

Theorem 1.0.1. Let α, β be dimension vectors of Q, a quiver without oriented cycles, such that

〈α, β〉Q = 0. If dim SI(Q,α)σβ = 2, then dim SI(Q,α)σnβ = n+ 1 for all positive integers n.

Our approach proceeds through geometric invariant theory, following similar proofs in [Bel07],

[She15]. Along the way, we prove by dimension counting a result of general interest, Proposition

1.3.1. It has the flavor of results from Schofield’s paper [Sch92], in that it equates ExtQ(V,W ) with

ExtQ(S,W ), where S is a certain subrepresentation of V .

In the last section, we show how to deduce the main result of the author’s paper [She15] (restated

as Corollary 1.8.4 here) from Theorem 1.0.1.
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1.1 Preliminaries and Notation on Quiver Representations

A quiver Q consists of the data of a pair finite sets Q0 and Q1 of vertices and arrows between

vertices, respectively, along with maps h, t : Q1 → Q0, where the head map h associates to each

arrow the vertex of its pointer, and the tail map t associates to each arrow the vertex of its base.

We will assume moreover that a quiver has no oriented cycles when regarded as a digraph.

A dimension vector α is a function α : Q0 → N∪{0}. A representation of Q of dimension vector

α is defined to be an element V of the set:

Rep(Q,α) :=
∏
a∈Q1

Hom(Cα(ta),Cα(ha))

We will frequently regard Rep(Q,α) as an affine variety, by the obvious identification with AN for

N =
∑

a α(ta)α(ha).

If V and W are representations of Q of dimension vectors α and β, respectively, then a morphism

φ : V →W of quiver representations is, for each x ∈ Q0, a homomorphism of vector spaces φ(x) :

Cα(x) → Cβ(x), where these must satisfy the commutativity property φ(ha) ◦ V (a) = W (a) ◦ φ(ta)

for every a in Q1. The vector space HomQ(V,W ) of all morphisms of quiver representation is then

the kernel of the map

dVW = ⊕x∈Q0Hom(Cα(x),Cβ(x))→ ⊕a∈Q1Hom(Cα(ta),Cβ(ha))

which sends {φ(x)}x∈Q0 to the element {W (a) ◦ φ(ta)− φ(ha) ◦ V (a)}a∈Q1 .

Let Rep(Q) denote the category with representations of Q (of any dimension vector) as objects

and the above notion of morphism. It is an abelian category. For representations V and W , one

has Ext1(V,W ) = coker(dVW ), and there is no higher Ext in this category, so we simply denote this

cokernel by ExtQ(V,W ).

The (in general, nonsymmetric) Ringel form on the abelian group of functions Q0 → Z is the

bilinear form:

〈α, β〉Q =
∑
x∈Q0

α(x)β(x)−
∑
a∈Q1

α(ta)β(ha) (1.1)

It is clear that if moreover α and β are dimension vectors, then 〈α, β〉Q is the difference of the
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dimensions of the domain and codomain of dVW , whence

〈α, β〉Q = dim HomQ(V,W )− dim ExtQ(V,W ) (1.2)

for any representations V,W of dimensions α, β. In particular, the right hand side of (1.2) does not

depend on V and W beyond their dimension vectors.

The affine variety Rep(Q,α) has a natural action of

GL(Q,α) :=
∏
x∈Q0

Aut(Cα(x))

given by conjugation: g = (A(x))x sends V = (V (a))a to gV = (A(ha)V (a)A(ta)−1)a. Let the

subgroup SL(Q,α) of GL(Q,α) be the product of the determinant 1 subgroups of each factor in the

product defining GL(Q,α). We are interested in the rings of semi-invariants

SI(Q,α) = (H0(Rep(Q,α),O))SL(Q,α),

where O is the structure sheaf. These decompose into direct sums of weight spaces, called spaces of

σ semi-invariants:

SI(Q,α)σ = {f ∈ H0(Rep(Q,α),O) : g · f = σ(g)f for all g ∈ GL(Q,α)},

for σ a multiplicative character of GL(Q,α). Such a character must be a product over Q0 of integral

powers of the determinant characters on each factor of GL(Q,α). A character σ may therefore

be identified with a function or weight (also called σ) Q0 → Z. Each such σ defines a notion of

semistability on Rep(Q,α).

Definition 1.1.1. Given two weights σ, γ : Q0 → Z, one defines the evaluation of σ at γ to be

σ(γ) =
∑
x∈Q0

σ(x)γ(x).

A representation V of Q which satisfies σ(dimV ) = 0 is said to be σ-semistable if for every nonzero

subrepresentation S of V , one has σ(dimS) ≤ 0. The representation V is σ-stable if the inequality
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is always strict.

To complete the notation for Theorem 1.0.1, we introduce the following definition.

Definition 1.1.2. For a dimension vector β of Q, we define the function σβ : Q0 → Z by

σβ(x) = −β(x) +
∑

a:ta=x β(ha).

Remark 1.1.1. Clearly σnβ = nσβ for any positive integer n. Notice also that if α : Q0 → Z is a

function, one has σβ(α) = −〈α, β〉.

1.2 Translation via GIT

The goal of this section is to prove Proposition 1.2.1, which in turn gives Proposition 1.2.2, the

latter translating the main theorem 1.0.1 into a form more adaptable to our geometric approach.

Parts of 1.2.1 are known from the literature (and are credited suitably below), but the author could

not find a reference for the descent of the line bundle Lσβ , hence its full proof here.

Proposition 1.2.1. Let α, β be dimension vectors for a quiver Q without oriented cycles, such

that 〈α, β〉Q = 0. Let σβ : Q0 → Z be the associated weight (Definition 1.1.2). If RSS denotes

the open set of σβ-semistable points of Rep(Q,α), then there is a good quotient π : RSS → Yα,β,

where Yα,β is an integral, projective C-variety with rational singularities (in particular, is normal).

If Lσβ denotes the trivial line bundle Rep(Q,α)× C with GL(Q,α)-equivariant structure provided

by g · (V, z) = (g · V, σβ(g−1)v) (now viewing σβ as a character, as in section 1.1), then there

exists an ample line bundle LY on Yα,β such that π∗LY = Lσβ |RSS . Moreover, one has a canonical

isomorphism H0(Yα,β, L
⊗n
Y ) = SI(Q,α)σnβ . It follows from the saturation theorem of Derksen and

Weyman [DW00] that Yα,β = ∅ if and only if SI(Q,α)σβ = 0.

The next proposition paves the way for our geometric proof of Theorem 1.0.1. It follows from

1.2.1 by a simple argument which appears in [She15, Theorem 2.5].

Proposition 1.2.2. Theorem 1.0.1 is equivalent to the following statement. If SI(Q,α)σβ has

dimension 2, then Yα,β has dimension 1.

To prove 1.2.1, we begin with some generalities for a reductive group G acting on the left on an

affine C-variety V = SpecA. Let σ : G→ C∗ be a character. Define a linearization L of the action
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of G on V by letting the underlying bundle of L be V × C and defining the action on L such that

g · (v, z) = (gv, σ(g−1)z). Writing L−1 (also a trivial bundle) as SpecA[x], one obtains from the

induced action a rational representation of G on A[x] by g · (fxn) = (σ(g−n))(f ◦ g−1)xn; here we

regard f ∈ A as an algebraic function on V . Also, one has an action on global sections s : V → L

by g · s = g ◦ s ◦ g−1. This gives rise to a grade-preserving action on R = ⊕∞n=0H
0(V,L⊗n).

Lemma 1.2.3. With the above actions, one has a G-equivariant, graded A-algebra isomorphism

A[x]→ R given by sending x to the constant section 1 of L in R1.

Proof. The polynomial fxn goes to the section s : v 7→ (v, f(v)) in Rn. The polynomial g · (fxn)

goes to to the section v 7→ (v, σ(g−n)(f ◦ g−1)(v)), which is g · s.

Remark 1.2.1. Since G acts rationally on A[x], by the theorem of Hilbert/Nagata, RG is a finitely

generated C algebra.

Now, let Q be a quiver without oriented cycles, and fix dimension vectors α, β with 〈α, β〉Q = 0,

and suppose σβ is as in Definition 1.1.2. Define a GL(Q,α)-equivariant line bundle Lσβ on Rep(Q,α)

as above.

Lemma 1.2.4. For any n ∈ N, we have H0(Rep(Q,α), L⊗nσβ )GL(Q,α) = SI(Q,α)σnβ .

Proof. A section f of L⊗nσβ is simply a regular algebraic function on Rep(Q,α). It is GL(Q,α)

invariant if and only if f(gV ) = (σβ(g−1))nf(V ) for all V, g. This happens if and only if g−1 · f =

σnβ(g−1)f for all g, i.e. if and only if f is a σnβ semi-invariant.

Let Rα,β := ⊕∞n=0H
0(Rep(Q,α), Lnσβ )GL(Q,α) = ⊕∞n=0SI(Q,α)σnβ be the homogeneous coordinate

ring of Yα,β := Proj(Rα,β). Note that

• (Rα,β)0 = C since Q has no oriented cycles [Sch08, Exercise 1.5.1.28].

• Yα,β is a finite dimensional projective scheme over Spec((Rα,β)0) = SpecC by Remark 1.2.1.

• Yα,β is a good quotient of Rep(Q,α)SSLσβ
by GL(Q,α) [Kin94]. Thus, Yα,β is integral with

rational singularities (in particular, is normal).

• The notion of Lσβ GIT semistability agrees with the σβ-semistability defined by inequalities;

that is, Rep(Q,α)SSLσβ
= Rep(Q,α)σβ−SS [Kin94, Proposition 3.1].
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Following closely the proof of Pauly [Pau96, Theorem 3.3] of the analogous fact for moduli of

parabolic bundles, we will now show that the line bundle Lσβ |Rep(Q,α)
σβ−SS descends to an ample

line bundle on Yα,β . To do this, we recall the descent lemma below due to Kempf [DN89, Theorem

2.3].

Lemma 1.2.5. Let G be a reductive linear algebraic group acting on a C-variety X. Let f : X → Y

be a good quotient of X by G and E a G-equivariant vector bundle on X. Then E descends to Y if

and only if for each closed point x ∈ X whose orbit is closed, one has that the stabilizer of x in G

acts trivially on the fiber E|x.

Let V be a σβ-semistable representation whose orbit is closed in Rep(Q,α)σβ−SS . The stabilizer

SV of V in GL(Q,α) is the group of invertible elements of HomQ(V, V ). If V is stable, then we claim

SV = C∗·Id, by the following simple argument. If g : V → V is an automorphism ofQ representations,

then choosing some x for which V (x) is nonzero, the isomorphism g(x) : V (x) → V (x) has a

nonzero eigenvalue λ. Thus, g − λ · Id has a nontrivial kernel. By stability of V and general

nonsense for abelian categories with stability structure [Rud97], it follows that g − λ · Id = 0,

whence the claim. The automorphism λ · Id acts on the fiber in Lσβ over V by λ to the power of

−
∑

x∈Q0
α(x)σβ(x) = 〈α, β〉Q = 0, as desired.

Now consider the general case where V may not be strictly stable. By [Kin94, Propostion

3.2], we can assume V is a direct sum of σβ-stable representations V = m1V1 ⊕ ... ⊕mtVt which

satisfy σβ(dimVi) = 0. Here Vi is not isomorphic to Vj if i 6= j. The stabilizer SV of V is the

group of invertible elements of HomQ(V, V ), which, arguing as above via [Rud97], is isomorphic to

GL(m1)× ...×GL(mt). Here we identify GL(m1)× ...×GL(mt) with the subgroup of GL(Q,α)

consisting of g such that g(x), taking an appropriate basis for the direct sum, is represented by

a block diagonal matrix diag(A1(x), ..., At(x)), where Ai(x) is a mi · dim(Vi(x))×mi · dim(Vi(x))

block matrix, with m2
i -many scalar matrix blocks of size dim(Vi(x))× dim(Vi(x)). The scalars that

appear in these blocks do not depend on x ∈ Q0.

Since a 1-dimensional representation of the general linear group must be given by a power

of the determinant, the action of (g1, ..., gt) ∈ SV on the fiber of Lσβ over V is multiplication

by
∏t
i=1 det(gi)

ai for some integers ai. For i = 1, .., t, define 1-parameter subgroups hi of SV by

hi(λ) = (Id, ..., Id, λ · Id, Id, ..., Id), where the λ appears in the ith factor. On the one hand, hi acts
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on Lσβ |V by λmiai . On the other hand, regarding SV as a subgroup of GL(Q,α) as above, we see

that hi acts on Lσβ |V by λyi where

yi = −
∑
x∈Q0

mi · dim(Vi(x))σβ(x) = −mi · σβ(dimVi) = 0.

Therefore, ai = 0 for all i = 1, ..., t and SV acts trivially on Lσβ |V , as desired.

1.3 Useful Inductive Structure

The following proposition allows us to complete the proof of Theorem 1.0.1 by an induction

argument. It may be of independent interest outside of this proof. For example, it can be used to

simplify the existing proof of the quiver-generalized Fulton conjecture [DW11], although we do not

do this here.

Proposition 1.3.1. Fix V ∈ Rep(Q,α). Let UV be a dense open subset of Rep(Q, β) with the

following properties:

i. dim HomQ(V,W ) does not depend on W ∈ UV .

ii. There is a dimension vector γ such that for every W ∈ UV , a dense open subset of HomQ(V,W )

consists of morphisms φ of rank γ.

Now, fix some W in UV . If φ ∈ HomQ(V,W ) has rank γ and kerφ = S ∈ Rep(Q,α− γ), then the

canonical surjection ExtQ(V,W ) � ExtQ(S,W ) is an isomorphism.

Proof. Let

H = {(W ′, φ′) ∈ UV ×HomQ(V,W ′) : φ′ has rank γ}

Note that H is an open subset of the total space of a vector bundle over UV , hence irreducible of

dimension

dim H = dim(Rep(Q, β)) + dim HomQ(V,W ). (1.3)

Denote by Gr(α− γ, V ) the space of (α− γ)-dimensional subrepresentations of V . Then we have a

map H→ Gr(α− γ, V ) which sends (W ′, φ′) to kerφ′. The fiber over a point S′ is an open subset

of the space of points (W ′, φ′), where φ′ ∈ HomQ(V/S′,W ′).
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Define an intermediate space H′ with H→ H′ → Gr(α− γ, V ) such that the fiber in H′ over

S′ ∈ Gr(α− γ, V ) is given by the open subset of
∏
x∈Q0

Hom((V/S′)(x),Cβ(x)) consisting of φ′ such

that φ′(x) is injective for all x. Clearly, H′ → Gr(α− γ, V ) is smooth (H′ is an open subset of a

vector bundle over Gr(α− γ, V )) and

reldim(H′ → Gr(α− γ, V )) =
∑
x∈Q0

γ(x)β(x). (1.4)

Next observe that the fiber in H over (S′, φ′) ∈ H′ is given by the space of all W ′ ∈ UV such that

φ′ is an injective morphism of representations V/S′ →W ′. The condition imposed on each arrow a

in W ′ is that φ′(ha) ◦ (V/S′)(a) = W ′(a) ◦ φ′(ta). Regarding W ′(a) as a β(ta)× β(ha) matrix with

respect to appropriately chosen bases, this equation determines γ(ta)β(ha) coordinates of W ′(a).

Thus, we obtain:

reldim(H→ H′) = dim(Rep(Q, β))−
∑
a∈Q1

γ(ta)β(ha). (1.5)

Therefore combining (1.3), (1.4), and (1.5) we obtain:

dim HomQ(V,W ) ≤ dim(Gr(α− γ, V ) at S) + 〈γ, β〉Q, (1.6)

where the first summand on the right hand side of (1.6) is the dimension of the largest irreducible

component of Gr(α − γ, V ) passing through the point S. This is at most the dimension of the

scheme-theoretic tangent space to Gr(α− γ, V ) at S, which is HomQ(S, V/S) [Sch92, Lemma 3.2].

From (1.6), it now follows that

dim HomQ(V,W ) ≤ dim HomQ(S, V/S) + 〈γ, β〉Q. (1.7)

The given map φ : V →W with kernel S induces an injection HomQ(S, V/S) ↪→ HomQ(S,W ). It

follows that

dim HomQ(V,W ) ≤ dim HomQ(S,W ) + 〈γ, β〉Q. (1.8)

Since 〈γ, β〉 = 〈α, β〉 − 〈α − γ, β〉, the inequality (1.8) can be rewritten as dim ExtQ(V,W ) ≤

dim ExtQ(S,W ). The proof is complete.
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1.4 Outline of the Proof of Theorem 1.0.1 by Way of Proposition 1.2.2

Let Q be a quiver without oriented cycles, α, β dimension vectors with 〈α, β〉Q = 0. Assume

dim SI(Q,α)σβ = 2. By Proposition 1.2.2, it suffices for the proof of Theorem 1.0.1 to show that

dimYα,β = 1. This will be done by contradiction in Section 1.6. If dimYα,β ≥ 2, it forces LY to have

a base locus. Take an irreducible component of the inverse image of the base locus in Rep(Q,α)σβ−SS

and let Z be its closure in Rep(Q,α). Now for a general point of (V,W ) of Z × Rep(Q, β), we

have HomQ(V,W ) 6= 0 (that is, the semi-invariant det d�W vanishes at V ). This statement is to be

contradicted.

Indeed, the assumption 〈α, β〉Q = 0 ensures that dim HomQ(V,W ) = dim ExtQ(V,W ), so it

suffices for the contradiction to show that ExtQ(V,W ) = 0. By Proposition 1.3.1, this is equivalent

to ExtQ(S,W ) = 0, where S is the kernel of a general morphism V → W . The tricky part is to

show that (S,W ) is generic enough in a closed subset of Rep(Q,dimS)× Rep(Q, β) to apply 1.3.1

again. For this, we need a better understanding of Z. We show that Z is actually the image in

Rep(Q,α) of a natural map from a certain irreducible scheme H∗, constructed in Section 1.5. The

simple description (1.10) of H∗ allows us to show that indeed (S,W ) is generic enough for continued

application of 1.3.1. After applying 1.3.1 enough times, using the semistability of V , one finds a

subrepresentation S′ of S (hence of V ) such that

0 = ExtQ(S′,W ) ∼= ExtQ(S,W ) ∼= ExtQ(V,W ).

This gives our contradiction.

Before proceeding to the detailed proof, we isolate a basic principle from linear algebra which

proves very useful in the work to follow. In fact, we’ve already used it once to get equation (1.5).

Basic Principle. Let V1 and V2 be finite dimensional vector spaces. Given two subspaces i1 :

S1 ↪→ V1 and i2 : S2 ↪→ V2 and a morphism φ : S1 → S2, the space of linear maps ψ : V1 → V2

such that i2 ◦ φ = ψ ◦ i1 is a closed nonempty subvariety of Hom(V1, V2) isomorphic to AM , where

M = dimV1 dimV2 − dimS1 dimV2.
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1.5 Construction of H∗

For dimension vectors α and δ, we will say δ ≤ α if for all x ∈ Q0, δ(x) ≤ α(x). Choose

dimension vectors α, δ, ε with ε ≤ δ ≤ α. We will first construct a smooth, irreducible scheme

Uα,δ,ε = {(V, S, S′, T ) : V ∈ Rep(Q,α), S, S′ ∈ Gr(δ, V ), T = S ∩ S′ ∈ Gr(ε, V )}. (1.9)

To begin the construction, recall from [She15, Appendix A] the space Arf,f,g of triples of subspaces

S, S′, T = S ∩ S′ of Cr with dimensions f , f , and g, respectively. It is shown there that this space

is smooth and irreducible. Define

A1 :=
∏
x∈Q0

A
α(x)
δ(x),δ(x),ε(x).

We will denote points in A1 by (S, S′, T ), where S = (S(x))x∈Q0 , a collection of δ(x) dimensional

subspaces of Cα(x) and similarly for S′ and T .

For each x in Q0, let T (x) be the appropriate rank ε(x) universal subbundle of OA1 ⊗Cα(x). Let-

ting a1,...,a|Q1| denote the arrows in Q, form the total space A1
1 of the bundle Hom(T (ta1), T (ha1))

over A1. Over A1
1, form the total space A2

1 of the bundle Hom(T (ta2)|A1
1
, T (ha2)|A1

1
). Continue

in this fashion until all the arrows are expended. Call the resulting space A2, which is evidently

irreducible and smooth over A1. It can be described as follows:

A2 = {(S, S′, T, {ϕ(a)}) : (S, S′, T ) ∈ A1 and {ϕ(a)} ∈
∏
a∈Q1

Hom(T (ta), T (ha))}.

Now we will attach morphisms to the arrows of S so that T with the arrows {ϕ(a)} gives a

subrepresentation of S with the attached morphisms.

To do this, the idea is to apply the Basic Principle of Section 1.4 at each point of A2, once

for each arrow in Q1. More formally, let S(x) be the appropriate rank δ(x) universal subbundle

of OA2 ⊗ Cα(x). For each a ∈ Q1, let Φ(a) ∈ HomOA2
(T (ta), T (ha)) be the universal morphism.

The inclusion of bundles T (x) → S(x) allows us to view Φ(a) as a section of the total space of

Hom(T (ta),S(ha)). Let A1
2 be the inverse image of ImΦ(a1) under the smooth, surjective restriction

map of total spaces Hom(S(ta1),S(ha1))→ Hom(T (ta1),S(ha1)) over A2. Thus, A1
2 is a smooth
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and surjective over A2 and closed in Hom(S(ta1),S(ha1)). Moreover, since the restriction map

is smooth with irreducible fibers (each isomorphic to an AM as in the Basic Principle), we have

that A1
2 is irreducible. Similarly, build A2

2 over A1
2, etc. until all arrows are expended. Repeat the

procedure for S′ to finally obtain

A3 = {(S, S′, T, {ϕ(a)}, {ψ(a)}, {ψ′(a)}) : (S, S′, T, {ϕ(a)}) ∈ A2,

{ψ(a)} ∈
∏
a∈Q1

Hom(S(ta), S(ha)), {ψ′(a)} ∈
∏
a∈Q1

Hom(S′(ta), S′(ha)),

and ψ(a)|T (ta) = ψ′(a)|T (ta) = ϕ(a) for all a ∈ Q1}.

It is irreducible, surjective, and smooth over A2.

Finally, we construct Uα,δ,ε as an irreducible, surjective, and smooth scheme over A3 by a

procedure similar to the construction of A3 itself. The idea is to create a scheme A1
3 over A3

whose fiber over a point (S, S′, T, {ϕ(a)}, {ψ(a)}, {ψ′(a)}) is the inverse image of (ψ(a1), ψ
′(a1))

under the restriction Hom(Cα(ta1),Cα(ha1)) to Hom(S(ta1),Cα(ha1)) ⊕ Hom(S′(ta1),Cα(ha1)). Be-

cause ψ(a1), ψ
′(a1) restrict to the same morphism on T (ta1), this fiber is irreducible of dimension

independent of the point of A3. Hence A1
3 is irreducible, surjective, and smooth over A3. As above,

build an appropriate scheme A2
3 over A1

3, and so on, until the desired Uα,δ,ε is reached.

Now define

Hα,β,δ,ε = {(V,W,W ′, φ, φ′) : V ∈ Rep(Q,α),W,W ′ ∈ Rep(Q, β),

φ ∈ HomQ(V,W ), φ′ ∈ HomQ(V,W ′),

kerφ, kerφ′ ∈ Gr(δ, V ), (kerφ) ∩ (kerφ′) ∈ Gr(ε, V )} (1.10)

This can be constructed as an irreducible, smooth scheme over Uα,δ,ε as follows. Letting V(x), S(x),

and S ′(x) denote the appropriate universal bundles on U∗ for x ∈ Q0, form the total space of the

bundle ∏
x∈Q0

(Hom((V/S)(x),Cβ(x) ⊗O)×Hom((V/S ′)(x),Cβ(x) ⊗O)).

A point of this total space over (V, S, S′, T ) ∈ U∗ is given by finite collections of linear maps

19



{φ(x) : V/S(x) → Cβ(x)} and {φ′(x) : V/S′(x) → Cβ(x)}. Let H′α,β,δε denote the open locus of

the total space where each of these linear maps is injective. It is clearly irreducible, surjective ,

and smooth over U∗. We build an irreducible H∗ smoothly over H′∗ by attaching spaces of maps

Cβ(ta) → Cβ(ha), so that {φ(x)} and {φ′(x)} become morphisms of representations.

To do this, the idea is again repeat applications of the Basic Principle with, for each arrow a,

the vectors spaces “V1,” “V2,” “S1,” and “S2” given by Cβ(ta), Cβ(ha), (V/S)(ta), and (V/S)(ha)

respectively, and “φ” given by (V/S)(a) (and similarly with S′ in place of S). The formal argument

mirrors the construction of A3 over A2.

1.6 Proof of Theorem 1.0.1

We proceed by contradiction via Proposition 1.2.2. That is, we suppose

2 = dim SI(Q,α)σβ ,

and we assume to the contrary that dimYα,β ≥ 2. Recall from Proposition 1.2.1 the ample line

bundle LY on Y . Let Z ⊆ Rep(Q,α) be the closure of an irreducible component of the preimage

of the base locus of LY . This base locus is nonempty by the dimension assumption on Y . For

a general element (W,W ′) ∈ Rep(Q, β)×2, the semi-invariants det d�W ,det d�W ′ form a basis for

SI(Q,α)σβ = H0(Y,LY ) (see Section 1.1 and [DW11, Section 2]). In particular, it follows that for a

general element (V,W ) ∈ Z × Rep(Q, β), one has:

HomQ(V,W ) 6= 0, (1.11)

i.e. dVW is noninjective. Let δ < α be the dimension vector of the kernel of a general morphism of

quiver representations V →W , equivalently such a morphism has rank γ := α− δ. Also let ε be a

dimension vector such that given a general element (V,W,W ′) ∈ Z ×Rep(Q, β)×2 and general pair

of quiver morphisms (φ, φ′) ∈ HomQ(V,W )×HomQ(V,W ′), the intersection of kerφ and kerφ′ has

dimension ε.

Constructed in Section 1.5, we have the irreducible smooth scheme Hα,β,δ,ε, whose closed points
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are given by (V,W,W ′, φ, φ′) which satisfy:

V ∈ Rep(Q,α), W,W ′ ∈ Rep(Q, β), φ ∈ HomQ(V,W ), φ′ ∈ HomQ(V,W ′),

kerφ, kerφ′ ∈ Gr(δ, V ), (kerφ) ∩ (kerφ′) ∈ Gr(ε, V ).

This scheme controls the base locus Z in the sense of the following proposition, whose proof is

virtually identical to [She15, Proposition 5.2].

Lemma 1.6.1. The morphism

Hα,β,δ,ε → Rep(Q,α)× Rep(Q, β)× Rep(Q, β) : (V,W,W ′, φ, φ′) 7→ (V,W,W ′) (1.12)

factors through a dominant map pr to Z × Rep(Q, β)× Rep(Q, β).

Now, there is an irreducible space Zδ,ε describing all pairs (S, T ) consisting of a δ-dimensional

representation S of Q with an ε-dimensional subrepresentation T ↪→ S (to see this, note that Zδ,ε is a

fiber bundle over Rep(Q, ε)). Fix (S, T,W ) a general element of Zδ,ε×Rep(Q, β). Since W is general,

it follows from Lemma 1.6.1 that W has a γ-dimensional subrepsentation W ′ (which is the image of

V
φ−→W for some V in Z), and W ′ has a (δ−ε)-dimensional subrepresentation W ′′ (which is the image

of S′
kerφ′−−−→ V

φ−→W ). Let V0 := S⊕W ′ (an α-dimensional representation) and let φ0 : V0 →W be the

obvious map which has rank γ and kernel S. Observe that S′ := T ⊕W ′′ is a second δ-dimensional

subrepresentation of V0 which intersects S in the ε-dimensional representation T . Therefore,

(V0, S, S
′, T ) ∈ Uα,δ,ε. By the Basic Principle of Section 1.4, one can construct a β-dimensional

representation W ′ and a morphism φ′0 : V0 →W ′ with kernel S′. Thus, (V0,W,W
′, φ0, φ

′
0) is a point

of Hα,β,δ,ε, where (S = kerφ0, T = (kerφ0 ∩ kerφ′0),W ) is a general element of Zδ,ε × Rep(Q, β).

Thus, Hα,β,δ,ε dominates Zδ,ε × Rep(Q, β), and we have the Lemma below.

Lemma 1.6.2. Let (V,W,W ′, φ, φ′) be a general element of Hα,β,δ,ε, with S := kerφ, S′ := kerφ′,

T := S∩S′. Then (S, T,W ) is a general element of Zδ,ε×Rep(Q, β) (e.g. the pair (S,W ) is suitable

for application of Proposition 1.3.1).

Now take a general element of (V,W,W ′, φ, φ′) ∈ Hα,β,δ,ε with S := kerφ, S′ := kerφ′, T := S∩S′.

The above discussion shows that we may assume:
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i. V is σβ-semistable.

ii. (V,W ) is a general element of Z × Rep(Q, β).

iii. (S, T,W ) is a general element of Zδ,ε × Rep(Q, β).

By ii and Proposition 1.3.1, we have ExtQ(V,W ) ∼= ExtQ(S,W ). By i, every subrepresentation R

of S satisfies 〈dimR, β〉 ≥ 0. By iii, we may apply Proposition 1.7.1 to (S, T,W ) and conclude that

ExtQ(V,W ) = 0. Hence,

dim HomQ(V,W ) = 〈α, β〉Q + dim ExtQ(V,W ) = 0 + 0 (1.13)

This contradicts (1.11).

1.7 Vanishing of Ext for S

We now ignore the previous context and prove Proposition 1.7.1 independent of the foregoing

discussion. Let ε ≤ δ be dimension vectors. Let Zδ,ε be the irreducible space consisting of a

δ-dimensional representation S with an ε-dimensional subrepresentation T . The following is a

variant of [DW00, Theorem 3] (see also [She15, Proposition 6.2]).

Proposition 1.7.1. Suppose (S0, T0,W0) ∈ Zδ,ε×Rep(Q, β) is a general element. Suppose moreover

that every subrepresentation R of S0 satisfies the inequality 〈dimR, β〉 ≥ 0. Then ExtQ(S0,W0) = 0.

Proof. We proceed by induction on the number Mδ :=
∑

x∈Q0
δ(x). If Mδ = 0, then the conclusion

holds trivially. Assume Mδ ≥ 1. Let δ̃ ≤ δ be a dimension vector such that if (S, T,W ) is a general

point of Zδ,ε × Rep(Q, β), then a general morphism of representations ψ : S → W has kernel of

dimension δ̃. If δ̃ = δ, then for a general (S, T,W ), one has HomQ(S,W ) = 0. On the other hand,

by assumption

0 ≤ 〈δ, β〉 = dim HomQ(S0,W0)− dim ExtQ(S0,W0),

so the conclusion follows in this case. We may as well assume then that Mδ̃ < Mδ.

Suppose also that for a general (S, T,W ), the δ̃-dimensional kernel S̃ of a general morphism

ψ : S → W meets T in an ε̃-dimensional subreprsentation T̃ . Let Uδ,ε,δ̃,ε̃ be the irreducible

smooth scheme whose points are (S, T, S̃, T̃ ) of the corresponding dimensions such that S ⊇ T ,
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S ⊇ S̃, and T̃ = T ∩ S̃ (the construction is identical to that of Section 1.5). Build over Uδ,ε,δ̃,ε̃

the smooth, irreducible scheme Hδ,β,ε,δ̃,ε̃ whose fiber over (S, T, S̃, T̃ ) is the space of (W,ψ) where

W is a β-dimensional representation and ψ : S → W has kernel S̃. By choice of δ̃, ε̃, the map

π : Hδ,β,ε,δ̃,ε̃ → Zδ,ε × Rep(Q, β) is dominant.

Let (S̃, T̃ ,W ) be a general element of Zδ̃,ε̃ × Rep(Q, β). Since W is general, it possesses a

(δ− δ̃)-dimensional subrepresentation W ′, which in turn has a (ε− ε̃)-dimensional subrepresentation

W ′′ (see the argument preceding Lemma 1.6.2). Now consider S := S̃ ⊕ W ′ and the obvious

morphism ψ : S →W with kernel S and rank δ − δ̃. If T := T̃ ⊕W ′′, then (S, T, S̃, T̃ ,W, ψ) is an

element of Hδ,β,ε,δ̃,ε̃. Since (S̃, T̃ ,W ) is generic, this proves the map π̃ : Hδ,β,ε,δ̃,ε̃ → Zδ̃,ε̃×Rep(Q, β)

is also dominant. In particular, if ψ0 is a general element of the fiber in Hδ,β,ε,δ̃,ε̃ over the general

element (S0, T0,W0), we can assume that the induced element (S̃0 := kerψ0, T̃0 := S̃0 ∩ T0,W0) of

Zδ̃,ε̃ × Rep(Q, β) is generic.

Now by Proposition 1.3.1, ExtQ(S0,W0) ∼= ExtQ(S̃0,W ). Clearly every subrepresentation of

S̃0, being also a subrepresentation of S0, satisfies the appropriate inequality. By genericity of

(S̃0, T̃0,W0), the inductive hypothesis now completes the proof.

1.8 Connection to Invariants of Tensor Products

We now show how Theorem 1.0.1 gives the main theorem of [She15] as a corollary. Indeed, the

relationship between semi-invariants of so-called triple flag quivers and SLr invariants of three-fold

tensor products is well-known [DW00, Section 3 Proposition 1]. We prove a geometric generalization,

namely that the polarized moduli space of semistable representations is isomorphic to the polarized

moduli space of semistable parabolic vector spaces, where in both cases semistability is determined

by given Young diagrams λ1, ..., λs.

For p = 1, ..., s with s ≥ 3, let λp be a partition with at most r − 1 nonzero parts and no part

greater than `. Assume also the partitions satisfy the “codimension condition:”

r`−
s∑

p=1

r−1∑
a=1

λpa = 0 (1.14)

Note that there must be some such ` if the tensor product corresponding to λ1, ..., λs is to have
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invariants.

Let 0 < δp1 < ... < δpC(λp) < r be the distinct column lengths in λp and suppose that there are

b(λp)i-many columns of length δpi . Let Xp be the partial flag variety of flags

0 ⊂ F p
δp1
⊂ F p

δp2
⊂ ... ⊂ F p

δp
C(λp)

⊂ Cr,

where subscripts denote dimensions. We have Pic(Xp) = ⊕C(λp)
i=1 Z[Li], where Li is the pullback of

the ample generator of Pic(Gr(δpi ,Cr)) ∼= Z along the canonical projection from Xp [Bri05]. Each Li

has a canonical SLr-equivariant structure compatible with the usual SLr action on Xp, so that every

line bundle on Xp obtains such a structure. In the sequel, we will take this equivariant structure as

implicit.

With the above description of Pic(Xp), one has an SLr-equivariant line bundle

L̃λ =

s∏
p=1

(b(λp)1, ..., b(λ
p)C(λp))

on X :=
∏s
p=1X

p (for SLr acting diagonally). The semistable points with respect to this linearization

are those F = {F p• }sp=1 ∈ X such that if S is an r′ dimensional subspace of Cr, then

s∑
p=1

C(λp)∑
i=1

b(λp)i dim(F p
δpi
∩ S) ≤ r′`. (1.15)

There is an integral, projective good quotient ρ : XSS →Mλ for the action of SLr, where Mλ has

rational singularities. The line bundle L̃λ descends to an ample line bundle Lλ on Mλ. Moreover,

one has a natural isomorphism for each positive integer n:

H0(Mλ,L⊗nλ ) = (V ∗nλ1 ⊗ ...⊗ V
∗
nλs)

SLr .

See [She15, Section 2] for a summary with appropriate references.

We saw similarly in Section 1.2 that for a cycle-free quiver Q and dimension vectors α, β of Q,

one has a moduli space with an ample line bundle (Yα,β, LY ), where sections of tensor powers of

LY give σβ semi-invariants of Rep(Q,α). The goal now is to show that for the right of choice of

Q,α, β, the polarized moduli spaces (Yα,β, LY ) and (Mλ,Lλ) are actually the same. To this end, let
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Q be the s-partial flag quiver of vertices labeled 1p, 2p, ..., C(λp)p for p = 1, ..., s and one additional

vertex r = (C(λ1) + 1)1 = ... = (C(λs) + 1)s, with arrows ip → (i + 1)p for all p = 1, ..., s and

i = 1, ..., C(λp). Let α be the dimension vector given by α(ip) = δpi and α(r) = r. For example, if

r = 4, ` = 5, s = 3, λ1 = 5 ≥ 2 ≥ 1, λ2 = λ3 = 4 ≥ 2, an element of Rep(Q,α) is depicted below.

C C2 C3

C C2 C4

C C2

φ11 φ12

φ13

φ21 φ22

φ31

φ32

Let β be the dimension vector β(ip) = `−
∑C(λp)

i=1 b(λp)i. Then 〈α, β〉Q = 0 because of (1.14). As in

Section 1.1, we have an associated weight σβ , given in this case by σβ(ip) = b(λp)i and σβ(r) = −`.

Let G =
∏s
p=1

∏C(λp)
i=1 Aut(Cδ

p
i ), so that GL(Q,α) = G×Aut(Cr). Denote by Rep(Q,α)inj the

open locus of φ ∈ Rep(Q,α) such that φpi is injective for all p = 1, ..., s and i = 1, ..., C(λp). One

has a map f : Rep(Q,α)inj →
∏s
p=1X

p which sends φ to the s-tuple of flags whose pth flag F p• is

given by F p
δpi

= Im(φpC(λp) ◦ ... ◦ φ
p
i+1 ◦ φ

p
i ).

Lemma 1.8.1. The map f is a geometric quotient of Rep(Q,α)inj by G× {Id}.

Proof. The case s = 1, X = Gr(a,Cr) is standard (see e.g. [Muk03, Section 8.1]). The general case

proceeds much the same way. Linearize the action of G×{Id} on Rep(Q,α) by the character which

takes (gx)x∈Q0−{r} to
∏
x∈Q0−{r} det(gx). It is easy to see that with respect to this linearization,

we have Rep(Q,α)SS = Rep(Q,α)S = Rep(Q,α)inj. Therefore, one has a geometric quotient Y

of Rep(Q,α)inj. Clearly f is constant on G × {Id} orbits, so f descends to f̃ on the geometric

quotient of Rep(Q,α)inj. Now f̃ is surjective (because f is), and f̃ is injective by the following

simple argument. If φ =
∏s
p=1(φp1, ..., φ

p
r−1) and φ′ =

∏s
p=1(φ′p1 , ..., φ

′p
r−1) have the same image in X,

then in particular, φpr−1 and φ′pr−1 have the same image in Cr. Thus, there is a gpr−1 ∈ GLr−1 such

that φ′pr−1 = φpr−1 ◦ (gpr−1)
−1. Similarly, we have ψpr−2 := φpr−1 ◦ φ

p
r−2 equals ψ′pr−2 defined likewise,

whence there is gpr−2 ∈ GLr−2 such that ψ′pr−2 = ψpr−2 ◦ (gpr−2)−1. Expanding this out and canceling

φpr−1 on opposite sides, we obtain φ′pr−2 = gpr−1 ◦ φ
p
r−2 ◦ (gpr−2)

−1. Continuing in this fashion, we see

that φ and φ′ are in the same orbit. By Zariski’s main theorem, f̃ is an isomorphism.
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Now consider a σβ-semistable point φ ∈ Rep(Q,α)σβ−SS . If for some 1 ≤ i0 ≤ r− 1, 1 ≤ p0 ≤ s,

the component φp0i0 has a kernel containing a nonzero vector v ∈ Cδ
p0
i0 , then φ has a subrepresentation

of dimension vector (dimψ)(ip) = 0 for ip 6= ip00 and (dimψ)(ip00 ) = 1. It is given by the map C→

Cδ
p0
i0 which sends 1 to v. In this case we have σβ(dimψ) = b(λp0)i0 , which is strictly positive, violating

semistability of φ. Thus, Rep(Q,α)σβ−SS ⊆ Rep(Q,α)inj. Now an easy calculation comparing the

inequalities (1.15) to those of σβ-semistability shows that f−1(XSS) = Rep(Q,α)σβ−SS . Therefore,

by Lemma 1.8.1, the variety XSS is the good quotient Rep(Q,α)σβ−SS//(G × {Id}). Since a

morphism from Rep(Q,α) is GL(Q,α) invariant if and only if it is G× SLr invariant, one has:

Yα,β = Rep(Q,α)σβ−SS//(G× SLr) = (XSS)//SLr =Mλ.

It now remains to prove that the line Lλ and LY agree under this identification. We will need

some lemmas.

Lemma 1.8.2. A section s in H0(Rep(Q,α), Lσβ ) is GL(Q,α) invariant if and only if it is G×SLr

invariant.

Proof. Necessity is immediate. For sufficiency, suppose ḡ ∈ GL(Q,α). We may write this element

as ḡ =
(
×sp=1 ×

C(λp)
i=1 ḡpi

)
× ḡr. Let t be an rth root of det ḡr and write

ḡ1 =
(
×sp=1 ×

C(λp)
i=1 t · Id

Cδ
p
i

)
× (t · IdCr) and ḡ2 =

(
×sp=1 ×

C(λp)
i=1

ḡpi
t

)
× ḡr

t
,

so that ḡ = ḡ1 · ḡ2. Since ḡ2 ∈ G× SLr and ḡ1 acts trivially on sections of Lσβ (by (1.14)), if s is

G× SLr invariant, we have ḡ · s = s, as desired.

Lemma 1.8.3. Let 0 < δ1 < ... < δC < r be integers, let

H = Hom(Cδ1 ,Cδ2)× ...×Hom(CδC−1 ,CδC )×Hom(CδC ,Cr),

and Hinj the locus where φ1, ..., φC are all injective. Observe that Hinj has a natural conjugation

action of G × SLr where G :=
∏C
i=1 Aut(Cδi). For i = 1, ..., C, let G act trivially on Gr(δi,Cr) and

its ample generator O(1), and let SLr act in the usual way on both of these. If fi : Hinj → Gr(δi,Cr)

is the G × SLr-equivariant map sending (φ1, ..., φC) to Im(φC ◦ ... ◦ φi), then the pullback along fi of
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O(1) is G×SLr equivariantly isomorphic to Li on Hinj. Here we denote by Li the G×SLr equivariant

bundle whose underlying bundle is trivial and whose action is given by g · (φ, z) = (g · φ, (det gi)
−1z).

Proof. Let Si be the universal subbundle on Gr(δi,Cr), endowed with an equivariant structure

by allowing G to act trivially and SLr to act in the obvious way. Endow also the trivial rank i

bundle Hinj ×Ci with the action g · (φ, v) = (g · φ, giv). One has a G × SLr equivariant isomorphism

ρ : Hinj × Ci → f∗Si which sends (φ, v) to (φC ◦ ... ◦ φi)(v) in S|fi(φ). Thus, det ρ is a G × SLr

equivariant isomorphism of Hinj × C (action given by g · (φ, z) = (g · φ, (det gi)z)) with f∗i O(−1).

The assertion follows.

From Lemma 1.8.3, one deduces f∗L̃⊗nλ is G×SLr equivariantly isomorphic to L⊗nσβ . Thus, using

1.8.2 in the first step below, we have:

H0(Yα,β, L
⊗n
Y ) = H0(Rep(Q,α)σβ−SS , L⊗nσβ )G×SLr = H0(XSS , L̃⊗nλ )SLr = H0(Mλ,L⊗nλ ). (1.16)

It follows that LY = Lλ.

Corollary 1.8.4. [She15] If dim(V ∗λ1 ⊗ ...⊗ V
∗
λs)

SLr = 2, then dim(V ∗nλ1 ⊗ ...⊗ V
∗
nλs)

SLr = n+ 1

for all positive integers n.

Proof. The left hand side of (1.16) is SI(Q,α)σnβ by Proposition 1.2.1 while the right hand side is

(V ∗nλ1 ⊗ ...⊗ V
∗
nλs)

SLr . The corollary now follows from Theorem 1.0.1.
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CHAPTER 2

Parabolic Vector Bundles

For a Schubert state I, the quantum Schubert calculus number 〈I〉 appears to exhibit the same

behavior under stretching as the Littlewood-Richardson numbers (see Section 2.1 for notation and

generalities on quantum Schubert calculus). Thus, one has the familiar assertions for the function

P ′(N) := 〈NI〉.

• (Polynomiality) P ′ is a polynomial with rational coefficients.

• (Saturation) If P ′(1) = 0, then P ′(N) = 0 for all N ≥ 1.

• (Fulton) If P ′(1) = 1, then P ′(N) = 1 for all N ≥ 1.

Polynomiality follows from work of Teleman [Tel00] and the relationship, apparently due to Witten,

but formulated in the math literature by Belkale [Bel08], [BGM15, Theorem 3.3], equating 〈I〉

with the dimension of the space of global sections of the canonical theta line bundle on the moduli

space of I-semistable parabolic bundles. See Section 2.8 for a partial proof. Saturation is proven by

Belkale in [Bel08], and the quantum Fulton conjecture is proven by Belkale and Kumar in [BK16]

(see also [Bel04a]).

In this chapter, we give a different proof of the quantum Fulton conjecture, validating the initial

approach of Belkale in [Bel04a] to “quantum irredundancy.”

Theorem 2.0.1. (Quantum Fulton) Let I be a Schubert state. If 〈I〉 = 1, then 〈NI〉 = 1 for all

positive N .

The proof proceeds by showing that the theta sections on M(I) are basepoint free if 〈I〉 = 1.

Since the theta bundle is ample and has an 〈I〉-dimensional space of sections, it follows thatM(I) is

a point, whence stretching (i.e. taking tensor powers of the theta bundle) does not change anything.

We also show, with no hypothesis on 〈I〉, the following theorem.
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Theorem 2.0.2. If (M(I),Θ) is a nonempty moduli space of I-semistable, rank r parabolic bundles

on P1, and r = 2 or r = 3, then the sections of the canonical line bundle Θ on M(I) have no base

points.

This chapter can be viewed as having roughly three parts. The first and longest part establishes

the theory of parabolic vector bundles and their moduli, using an approach which emphasizes a

connection to quantum Schubert calculus in the genus 0 case. We construct the moduli space of

parabolic bundles as a GIT quotient of a modified quot scheme, and then prove properties of its

canonical ample line bundle Θ. The results in this first part are well-known to the experts. They

are included in the interest of clarity and consistency, particularly because there is no one source

that assembles all of them, and notation for these objects tends to differ by author (ours will follow

Belkale).

The second part is devoted to proving an inductive structure on the space of parabolic morphisms,

analogous to the structure 1.3.1 for quiver representations. This says very roughly that to compute

the dimension of the space of parabolic morphisms Ṽ = (V,F , I)→ Q̃ = (Q,G, Ic) (here c denotes

a “complementary” Schubert state: we will not actually use this notation in formal statements),

it suffices to compute the dimension of the space of parabolic morphisms S̃ → Q̃, where S̃ is

the kernel of a general morphism Ṽ → Q̃. The statement is of some interest independent of this

thesis, because for instance it can be used to give a simple proof of the quantum Horn conjecture

(see [She15, Appendix B] for the classical counterpart). We state it here as a proposition.

Proposition 2.0.3. Let KV be the sheaf on P1 of parabolic morphisms Ṽ → Q̃ as above. If (Q,G)

is generic with respect to (V,F), and a general morphism Ṽ → Q̃ has kernel S̃, then the canonical

surjection H1(KV) � H1(KS) is an isomorphism.

See Section 2.9 for a more precise statement of 2.0.3. From the above proposition, we deduce

Theorem 2.0.2 as a fairly straightforward application.

The last part of the chapter concerns the proof of the quantum Fulton conjecture discussed

above. As an epilogue, we combine our results with those of Belkale-Gibney-Kazanova [BGK15] to

give a proposition on conformal blocks divisors on M0,s.

Convention. For the rest of this chapter, we fix a smooth, projective, irreducible curve X with

a subset S = {p1, ..., ps} of s-many distinct closed points on X. The italicized capital S denoting
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a subset of X is not to be confused with the calligraphic S, which will always be a subbundle of a

bundle V. In Section 2.1 and from Section 2.6 on, X will be the projective line P1. See Remark

2.6.1 for why not much is lost in assuming the genus to be 0.

2.1 Quantum Schubert Calculus

Given an n-dimensional vector space W , classical Schubert calculus is concerned with the number

of subspaces of W of given dimension satisfying some property. In particular, given an increasing

complete flag E• in W and a subset I of [n] := {1, ..., n}, say of cardinality r, one defines the

associated Schubert cell Ω◦I(E•) to be the smooth, locally closed subvariety of the Grassmannian

whose pointwise description is

Ω◦I(E•) = {S ∈ Gr(r,W ) : dim(S ∩ EIa) = a}.

Here Ia is the ath largest integer in I. One is often interested in the Schubert intersection⋂s
p=1 Ω◦Ip(E

p
•), where for each p = 1, ..., s, the set Ip is again a subset of [n] of cardinality r. We

will use the notation Ip ∈
(
[n]
r

)
to indicate such an index set in the future.

Similarly, given a vector bundle W on P1, quantum Schubert calculus is concerned with the num-

ber of subbundles of given rank and degree satisfying some property (this is actually a generalization

of the usual quantum Schubert calculus, where W is taken to be W ⊗O). The quantum Schubert

intersection is defined in much the same way, but we must first make sense of the Grassmannian.

If W has rank n and degree −D, given integers d, r with 0 ≤ r ≤ n, there is a quot scheme

parametrizing coherent quotients of W with Hilbert polynomial f(t) = (n− r)t+ (d−D + n− r)

with respect to O(1) on P1. This quot scheme has an open subscheme corresponding to locally free

quotients, for which the kernel is a subbundle of W of degree −d and rank r. This open subscheme

shall be denoted by Gr(d, r,W) (it may be empty). Note that Gr(d, r,W) parametrizes degree minus

d, rank r subbundles of W. The minus sign appears so that degree d Gromov-Witten invariants

may be computed by intersection theory on Gr(d, r,O⊕n).

To define the quantum Schubert intersection, let Ip ∈
(
[n]
r

)
for each p ∈ S, so that I := {Ip}p∈S

is an s-tuple of index sets. We call the data I = (d, r,D, n, I) of integers d, r,D, n with 0 ≤ r ≤ n

and an s-tuple of index sets I (with each index set in
(
[n]
r

)
) a quantum Schubert state or often just a
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Schubert state. We also define

FlSW := {{Ep•}p∈S : Ep• is an increasing complete flag in the fiber Wp}. (2.1)

Elements of FlSW will be indicated by a calligraphic letter E . If πp : Gr(d, r,W) → Gr(r,Wp)

denotes the restriction to the fiber at p, the quantum Schubert intersection is then

Ω◦I(E) :=
⋂
p∈S

π−1p (Ω◦Ip(E
p
•)). (2.2)

Observe the shorthand notation: no intersection sign appears, but rather the intersection should be

understood from the Schubert state following the Ω◦.

The scheme theoretic tangent space to Gr(d, r,W) at a point V ↪→W is the same as the tangent

space to the quot scheme at that point, which is Hom(V,W/V). The subspace which is tangent to

the intersection Ω◦I(E) is given by:

T(V↪→W)(Ω
◦
I(E)) = {φ ∈ Hom(V,W/V) : φ(Ep(V)a) ⊆ Ep(W/V)Ipa−a for p ∈ S, a = 1, ..., r}. (2.3)

Note that Ep(V)a denotes the a-dimensional space in the flag on Vp induced by the flag Ep• on Wp.

Similarly, Ep(W/V)Ipa−a.

For arbitrary choices of parameters, the schemes Gr(d, r,W) and Ω◦I(E) may be very bad. For

instance, they may be nonreduced, or different components may have different dimensions. But

when the parameters are nice, so too are the schemes. In this case, a “nice” vector bundle W on

P1 is one that is evenly split. This means that there exist integers a and 0 < b ≤ n such that

W = O(a)⊕b⊕O(a+ 1)⊕(n−b). For every pair (D,n) consisting of an integer D and natural number

n, there is a unique evenly split bundle of degree −D and rank n up to isomorphism. It is denoted

ZD,n. Evenly split bundles are the generic bundles of their rank and degree. That is, in a family of

vector bundles on P1 parametrized by T , there is an open set (possibly empty) of t ∈ T such that

the bundle corresponding to t is evenly split.

What makes evenly split bundles so nice for Schubert calculus is first that Gr(d, r,ZD,n) is

smooth and integral, with a dense open subset of V ↪→ ZD,n such that V and ZD,n/V are both

evenly split. Moreover, we can apply Kleiman’s theorem to infer that for generic E ∈ FlS(ZD,n),
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the intersection Ω◦I(E) is smooth and equidimensional of its expected dimension, which is:

Expected Dimension of Ω◦I = r(n− r) + d(n− r) + r(d−D)−
∑
p∈S

r∑
a=1

(n− r + a− Ipa). (2.4)

In particular, if (2.4) is zero, then for some open dense subset U of FlS(ZD,n), the intersection

Ω◦I(E) is a reduced finite set of points and the number of points does not depend on E ∈ U . We call

this number 〈I〉. For proofs of the above assertions, see [Bel08].

Finally, we remark that for I = (d, r, 0, n, I) (in other words, I is a Schubert state forW = O⊕n),

〈I〉 gives the familiar Gromov-Witten number 〈ωIp1 , ..., ωIps 〉d.

2.2 An Important Vector Space

The tangent space in (2.3) can be abstracted from its context. This abstractified tangent space

turns out to be central to our computations. For instance, the theta sections on the polarized

moduli space of parabolic bundles will be described in terms of these spaces.

Definition 2.2.1. Let I = (d, r,D, n, I) be a Schubert state, V a vector bundle on X of rank r, Q

a vector bundle on X of rank n− r, F ∈ FlSV, and G ∈ FlSQ. We define

HomI(V,Q,F ,G) = {φ ∈ HomOX (V,Q) : φp(F
p
a ) ⊆ Gp

Ipa−a
for p ∈ S, a = 1, ..., r},

a finite dimensional vector space over C.

Later (Remark 2.7.1), we will see that HomI(V,Q,F ,G) can be viewed as the space of parabolic

morphisms from (V,F) to (Q,G) with appropriate weights determined by I.

Now, let the assumptions be as in Definition 2.2.1. For each p in S, denote by A(p) the sheaf on

the point p whose sole fiber is the vector space

Hom(Vp,Qp)
{φ : φ(F pa ) ⊆ Gp

Ipa−a
, a = 1, ..., r}

.

If ip denotes the inclusion {p} ↪→ X, then we have an exact sequence of coherent sheaves on X:

0→ KV → Hom(V,Q)→
⊕
p∈S

ip∗A(p)→ 0
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The kernel KV is locally free. Its global sections are HomI(V,Q,F ,G). Thus, it is commonly referred

to as the sheaf of parabolic morphisms (V,F)→ (Q,G) (with appropriate weights determined by

I).

Let K = (d′, r′, d, r,K) be another Schubert state. Let S be a subbundle of V such that

S ∈ Ω◦K(F) ⊂ Gr(d′, r′,V). For each p ∈ S, denote by B(p) the sheaf on p whose sole fiber is the

vector space:

Hom(Sp,Qp)
{φ : φ(F pa (S)) ⊆ Gp

(Ip
K
p
a
−Kp

a)
, a = 1, ..., r′}

.

Call C(p) the kernel of the natural map A(p)→ B(p), so that C(p) is the sheaf whose sole fiber is

the vector space

Hom(Vp/Sp,Qp)
{φ : φ(F pa (V/S)) ⊆ Gp

(Ip
H
p
a
−Hp

a)
, a = 1, ..., r − r′}

Here Hp is the complement of Kp in [r]. We now have a commutative diagram with exact rows and

columns:

0 0 0y y y
0 −−−−→ KV/S −−−−→ KV −−−−→ KS −−−−→ 0y y y
0 −−−−→ Hom(V/S,Q) −−−−→ Hom(V,Q) −−−−→ Hom(S,Q) −−−−→ 0y y y
0 −−−−→

⊕
p∈S

ip∗C(p) −−−−→
⊕
p∈S

ip∗A(p) −−−−→
⊕
p∈S

ip∗B(p) −−−−→ 0y y y
0 0 0

(2.5)

The sheaf KV of course depends on the flags F and G. However, its Euler characteristic depends

only on the Schubert state I = (d, r,D, n, I). We have:

χ(KV) = χ(I) = r(n− r)(1− g) + d(n− r) + r(d−D)−
∑
p∈S

r∑
a=1

(n− r + a− Ipa). (2.6)

Compare with (2.4) when g = 0. Similarly, let Ĩ be the Schubert state (d′, r′, D−d+d′, n−r+r′, Ĩ),

where Ĩpa = Ip
Kp
a
− Kp

a + a for p ∈ S and a = 1, ..., r′. Just as with KV , we have H0(KS) =

33



HomĨ(S,Q,F(S),G). Once again, the Euler characteristic is determined by the Schubert state Ĩ.

χ(KS) = χ(Ĩ) = r′(n− r)(1− g) + r′(d−D) + d′(n− r)−
∑
p∈S

r′∑
a=1

(n− r +Kp
a − I

p
Kp
a
) (2.7)

Finally, let I ′ = (d− d′, r − r′, D − d′, n− r′, I ′), where (I ′)pa = Ip
Hp
a
−Hp

a + a, so that H0(KV/S) =

HomI′(V/S,Q,F(V/S),G) and χ(KV/S) = χ(I ′) = χ(I)− χ(Ĩ).

2.3 Quantum Hom Data and Genericity

Fix V and Q vector bundles on X of degrees −d and d −D, ranks r and n − r, respectively.

Given elements F , G in FlSV, FlSQ, and a morphism φ : V → Q in HomI(V,Q,F ,G), we can

discuss the morphism’s configuration in terms of the discrete quantities K = (d′, r′, d, r,K) the

Schubert state of S = kerφ with respect to F , the set theoretic map ε : S → Z≥0 which gives at

each point p in S the dimension of the kernel of φ̄p : Vp/Sp → Qp, and J = {Jp}p∈S the Schubert

positions of B(p) = kerφ̄p in Vp/Sp with respect to the induced flags F p(V/S). Let

HomI(V,Q,F ,G,K, ε, J)

denote the constructible locus in HomI(V,Q,F ,G) of morphisms in the configuration specified by

the last three parameters. Clearly, these loci disjointly stratify the vector space HomI(V,Q,F ,G).

Moreover, only finitely many strata are nonempty. This follows from the fact that for any map

V → Q, the degree of the kernel is bounded above by a number depending on V and below a number

depending on Q. It follows that there are only finitely many possible d′. Finiteness of the remaining

choices of parameters is immediate. In particular, we conclude that exactly one choice of K, ε, J is

such that HomI(V,Q,F ,G,K, ε, J) contains a dense open subset of HomI(V,Q,F ,G).

The above shows that for fixed V,Q,F ,G there is a generic configuration in which most elements

of HomI(V,Q,F ,G) lie. Let us define the set theoretic map hdqI on FlSV × FlSQ which assigns to

(F ,G) the quadruple (R,K, ε, J), where R is the rank of HomI(V,Q,F ,G) and the other entries

comprise the generic configuration of elements in HomI(V,Q,F ,G). The tuple hdqI(F ,G) will be

called the quantum data of (F ,G).
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Definition 2.3.1. Let (F ,G) ∈ FlSV × FlSQ, and suppose hdqI(F ,G) = (R,K, ε, J). Then, we will

say φ ∈ HomI(V,Q,F ,G) is a general element if its configuration is described by (K, ε, J).

2.4 Parabolic Vector Bundles

We will use a (cosmetically) different notion of parabolic bundles than appears in the standard

references [MS80], [Pau96]. In particular, we prefer complete flags to partial flags. It will however

be useful to go back and forth between them. Thus, the relationships to the standard notions of

parabolic vector bundles are explained in the remarks following each definition.

Definition 2.4.1. A parabolic bundle (V,F , I) consists of a vector bundle V on X of degree −d

and rank r, an element F ∈ FlS(V), and a Schubert state I = (d, r,D, n, I) with Ip1 6= 1 for all

p ∈ S.

Remark 2.4.1. We note that to each parabolic bundle (V,F , I) as above, we may associate a

parabolic bundle in the sense of [MS80]. The procedure is as follows. Define temporary weights

wpa =
n−a+1−Ipr−a+1

n−r for a = 1, ..., r, p ∈ S and define weights W p
a inductively by the prescription

W p
1 = wp1 and W p

i = wp
bpi

where bpi = 1 + max{a : wpa = W p
i−1}. In other words, the weights are

determined from the temporary weights by discarding repeats. Let lp be −1 plus the number of

distinct weights W p
i (the −1 is introduced to agree with the notation of [Pau96]). Define multiplicities

by mp
i = |{a : wpa = W p

i }|. Finally, define (descending) partial flags F̃ p from the full flags F p by

setting

F̃ pi = F p
r−

∑i
j=1m

p
j

for i = 0, 1, ..., lp + 1. It is easy to check that the data (V, F̃ , {W p
i ,m

p
i }) defines a parabolic vector

bundle in the sense of Mehta and Seshadri. We call this parabolic bundle the induced MS parabolic

bundle of type I.

We have a corresponding notion of parabolic subbundles.

Definition 2.4.2. A parabolic subbundle (S,F(S), Ĩ) of (V,F , I) with

Ĩ = (d′, r′, D − d+ d′, n− r + r′, Ĩ)
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consists of a degree −d′, rank r′ subbundle S ↪→ V such that, for all p ∈ S, the full flags F p• of Vp meet

Sp in the full flags F p• (S) and such that Sp ∈ Ω◦Kp(F p) ⊆ Gr(r′,Vp) and where I(K)pa = Ip
Kp
a
−Kp

a +a.

Note in particular that a parabolic subbundle of (V,F , I) is uniquely determined by the inclusion

S ↪→ V.

Remark 2.4.2. The induced MS parabolic bundle of type Ĩ from (S,F(S), Ĩ) (see Remark 2.4.1) is

precisely the canonical MS parabolic subbundle of (V, F̃ , {W p
i ,m

p
i }) induced by S ↪→ V.

We have also the corresponding notions of parabolic degree, slope, and semistability.

Definition 2.4.3. The parabolic degree of the parabolic vector bundle (V,F , I) is given by

pardeg(V) = −d+
∑
p∈S

r∑
a=1

n− r + a− Ipa
n− r

,

and the parabolic slope is given by

µ(V) = pardeg(V)/rk(V).

The weight of a parabolic subbundle S ↪→ V in Schubert state K of a parabolic bundle (V,F , I) is

given by

wt(S,V) =
1

n− r
∑
p∈S

∑
a∈Kp

(n− r + a− Ipa).

It is easy to see that if (S,F(S), Ĩ) is the induced structure, then

pardeg(S) = degS + wt(S,V).

A parabolic bundle (V,F , I) is called semistable if µ(S) ≤ µ(V) for all parabolic subbundles S ↪→ V ,

and stable if this inequality is always strict.

Remark 2.4.3. Mehta-Seshadri define the parabolic degree of (V, F̃ , {W p
i ,m

p
i }) to be

−d+
∑
p∈S

lp+1∑
i=1

mp
iW

p
i ,

with slope and semistability defined analogously to Definition 2.4.3. The above quantity equals
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pardeg(V) as defined in Definition 2.4.3. Moreover, since taking induced MS parabolic bundles is

compatible with subbundles (Remark 2.4.2), we have (V,F , I) is semistable in the sense of Definition

2.4.3 if and only if (V, F̃ , {W p
i ,m

p
i }) is semistable in the sense of Mehta and Seshadri.

To close this section, we define for a Schubert state I = (d, r,D, n, I) the stretched Schubert

state

〈NI〉 = (d, r,N(D − d) + d,N(n− r) + r, C) (2.8)

where Cpa = N(Ipa − a) + a. This may seem like an unusual definition, but it is certainly the right

one. For, the MS weights and multiplicites (Remark 2.4.1) defined by NI are the same as those

defined by I, and a parabolic bundle (V,F , I) is (semi)stable if and only if (V,F , NI) is semistable.

We will see in Section 2.8 another reason to be happy with this definiton: namely that taking tensor

powers of theta functions on M(I) is compatible with stretching I by N .

2.5 Moduli Space of Parabolic Bundles of Fixed Degree

Fix a point y not among the marked points of X and set O(1) := O(y). The next lemma is well

known (see, e.g. Lemma 2.3.2 of [Agn95]).

Lemma 2.5.1. Let I = (d, r,D, n, I) be a Schubert state. There is an integer k = k(I) depending

only on I such that if (V,F , I) is parabolic semistable, then V(k + j) is globally generated and

H1(V(k + j)) = 0 for all j ≥ 0.

We will now construct the coarse moduli space of parabolic semistable bundles (up to grade

equivalence) corresponding to the Schubert state I = (d, r,D, n, I). Choose k = k(I) large enough

as in Lemma 2.5.1. Let QI be the quot scheme of coherent quotients of ON with Hilbert polynomial

f(t) = rt− d+ rk+ r(1− g), where N = −d+ rk+ r(1− g). Then QI is projective and irreducible.

Choose m = m(I) large enough so that for every q ∈ QI represented by a quotient q : ON →

V(k) where V has degree −d and rank r, one has H0(O(m)N ) � H0(V(k + m)) surjective and

H1(V(k + m)) = 0. Note that such an m exists and we have a closed immersion of QI into the

Grassmannian of −d+ r(k +m) + r(1− g) dimensional quotients of H0(O(m)N ) by [Gro61].

Let Q denote the universal quotient sheaf on QI × X. The group SLN acts on QI × X by

g · (q, x) = (q ◦g−1, x) where we view g−1 as an automorphism of ON = O⊗CN . The fiber of Q over
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(q : ON � V(k), x) is the quotient vector space q|x of ON |x. The group SLN acts on Q by sending

the point v of q|x to the point gv of (q ◦ g−1)|x. Thus Q has the structure of an SLN -equivariant

bundle over QI ×X.

For each marked point p ∈ S, let Rp → QI×{p} denote Grothendieck’s full, locally free quotient

flag bundle of Q|QI×{p} and similarly Rp,MS the flag bundle of type Ip (see [GD71, Section 9.9]).

Using the projections from QI × {p} to QI , form the fiber products

RI :=
∏
p∈S
Rp and RI,MS :=

∏
p∈S
Rp,MS .

The action of SLN on Q induces actions on RI and RI,MS . A point of RI,MS is given by a quotient

bundle q : ON � V(k) of degree −d+ rk, rank r, and for each p ∈ S, a flag of the appropriate type

determined by I in V|p (clearly equivalent to giving such a flag in V(k)|p). By the above, we obtain

an SLN equivariant embedding of RI,MS into G , where

G := Gr−d+r(k+m)+r(1−g)(H0(O(m)N ))×∏
p∈S
{Grm

p
1(O(−k)N |p)×Grm

p
1+m

p
2(O(−k)N |p)× ...

×Grm
p
1+m

p
2+...+m

p
lp (O(−k)N |p)×Grr(O(−k)N |p)}. (2.9)

This is given of course by sending (q : ON � V(k), F̃) to H0(O(m)N ) � H0(V(k + m)) in the

first factor of G and in the subsequent factors take the quotients V|p/F̃ pi defined by the tuple of

flags F̃ . The above embedding allows us to linearize the action of SLN on RI,MS by selecting an

SLN -equivariant line bundle on G .

The Picard group of G is given by a product of Z’s, each generated by the determinant bundle of

the universal quotient on the corresponding Grassmannian factor. Since each of these determinants

has a canonical structure of an SLN -equivariant line bundle, every line bundle on G can be endowed

with an SLN -equivariant structure. In particular, we linearize the action of SLN on RI,MS by the

pullback of the element

LG := M · ((`+ k(n− r))/m,
∏
p∈S
{dp1, ..., d

p
lp+1}) ∈ Pic(G ) (2.10)
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where (taking W p
lp+2 = 1) we set dpi = (n− r)(W p

i+1 −W
p
i ), ` is the rational number defined by the

equation

r` = (−d+ r(1− g))(n− r)−
∑
p∈S

lp+1∑
i=1

dpi {
i∑

j=1

mp
j}, (2.11)

and M is a positive integer chosen so that M(`+ k(n− r))/m is an integer. We may suppose that

k was chosen large enough that the first coordinate of LG is positive, and hence LG is ample. Then,

it can be shown (Proposition 2.3.3 in [Agn95], Appendix A in [NR93] in the rank 2 case) that the

GIT (semi)stable points

(q : ON � V(k), F̃)

of (RI,MS ,LG ) are precisely those such that V is locally free, H0(ON )→ H0(V(k)) is an isomorphism,

and (V, F̃ , {W p
i ,m

p
i }) is MS parabolic (semi)stable. The semistable locus RSSI,MS is connected and

can be seen to be smooth by Lemma 2.5.1. The GIT quotient

M(I) := Proj((⊕∞j=0H
0(RI,MS ,L⊗jG ))SLN ) (2.12)

of (RI,MS ,LG ) is thus a projective, integral, normal scheme parametrizing MS parabolic semistable

bundles up to an equivalence relation [MFK94, Remarks following Amplification 1.11]. In fact,

M(I) has rational singularities [Bou87].

Note that the choice of M does not affect the GIT quotient (2.12) since a nonnegative integer

graded ring S has the same Proj as any of its Veronese subrings ⊕∞k=0Sdk. Further, the SLN

equivariant, smooth, projective surjective map

RI → RI,MS : (q : ON � V(k),F) 7→ (q, F̃)

has geometrically connected and reduced fibers, all isomorphic to ×p∈SP p/B where P p is the

parabolic in SLr corresponding to the partial flag at p and B is a standard Borel of SLr. So the

pullback of LG to RI has the same space of global sections as LG (see Chapter 28 of the online

notes [Vak13]). Hence M(I) can be viewed as a quotient of RI . By Remark 2.4.3, the semistable

points are precisely the (q : ON � V(k),F) such that V is locally free, H0(ON )→ H0(V(k)) is an

isomorphism, and (V,F , I) is parabolic semistable.
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2.6 Descending Line Bundle

If a numerical condition is satisfied, a canonical ample line bundle Θ̃ on the semistable locus

RSSI,MS descends to an ample line bundle on M(I). Note that expanding out the summation on the

right hand side of (2.11), we obtain:

∑
p∈S

lp+1∑
i=1

dpi {
i∑

j=1

mp
i } = r(n− r)|S| −

∑
p∈S

r∑
a=1

n− r + a− Ipa (2.13)

So ` will be guaranteed to be an integer provided r divides

−d(n− r) +
∑
p∈S

r∑
a=1

(n− r + a− Ipa). (2.14)

We make the following convention.

Convention. From this point onward, assume g = 0 (X = P1) and that r divides (2.14).

Note that for any g there is a descending Θ̃ for moduli of parabolic bundles of fixed determinant

rather than fixed degree. For P1 of course these notions are the same. We will try to point out

where the genus 0 assumption is used.

Remark 2.6.1. Also note that the restriction to genus 0 is very mild in light of the problems

considered in this thesis. We consider the problem of computing h0(M,Θ⊗N ) when h0(M,Θ) is

very small (1, 2, or 3). Boysal [Boy08] gives a lower bound for h0(M,Θ) in positive genus, from

which it follows that (a) h0(M,Θ) is never 0 in positive genus, and (b) h0(M,Θ) is at least 4 when

g ≥ 2, except in a small finite number of cases. Thus, g = 0 is indeed the main case of interest for

the problems considered here.

Let πRI,MS
: RI,MS ×X → RI,MS be the projection. We have a family of parabolic bundles

on RI,MS ×X given as follows. The forgetful map ρ : RI,MS ×X → QI ×X which discards the

flags gives a bundle V on RI,MS ×X by pulling back Q(−k) along ρ; here Q(−k) is the universal

quotient of O(−k)N of Hilbert polynomial rt− d+ r(1− g). Also we get bundles {Qp
i }
p∈S
1≤i≤lp+1 on

RI,MS by pulling back the universal quotients on the Grassmannian factors after the first in G (see

(2.9)). Note Qp
lp+1 = V |RI,MS×{p}.
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For a point x ∈ X and a bundle M on RI,MS ×X, abbreviate M |RI,MS×{x} by M |x. Define

the line bundle Θ̃ on RI,MS by the formula:

Θ̃ := (detRπRI,MS∗V )n−r ⊗ {⊗p∈S ⊗l
p+1
i=1 (det Qp

i )
dpi } ⊗ (det V |y)`. (2.15)

The first factor of detRπRI,MS∗V is the so-called determinant of cohomology of V . It is a bundle

whose fiber over a point (q : ON � V(k), F̃) is the line detH0(X,V)−1 ⊗ detH1(X,V).

We first remark that {⊗p∈S ⊗l
p+1
i=1 (det Qp

i )
dpi } is the pullback of the line bundle

δ := (0,
∏
p∈S
{dp1, ..., d

p
lp+1}) ∈ Pic(G ) (2.16)

Next, observe that the immersion

QI ↪→ Gr−d+r(k+m)+r(1−g)(H0(O(m)N ))

of Section 2.5 is given by the quotient bundle π∗V (k +m) (guaranteed to be a bundle by the choice

of m and the theorems of cohomology and base change) of the trivial bundle ON ⊗H0(O(m)). The

determinant of this bundle is detRπRI,MS∗(V (k +m))−1. An easy long exact sequence argument

shows that

detRπRI,MS∗V (k +m) = (detRπRI,MS∗V (k))⊗ (det V |y)−m.

Now we may write the polarization

LG = (detRπRI,MS∗V (k))−M(`+k(n−r))/m ⊗ (det V |y)M(`+k(n−r)) ⊗ δM

Similarly, rewrite

Θ̃ = (detRπRI,MS∗V (k))n−r ⊗ δ ⊗ (det V |y)`+k(n−r)

Since X = P1, and ON → V(k) induces isomorphisms on H0 and H1 for semistable V (Lemma

2.5.1), the line bundle detRπRSSI,MS∗
V (k) is trivial on the semistable locus. We conclude: On the

semistable locus, Θ̃ is an M th root of polarization defining the GIT quotient.
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If λ ∈ C∗ ∩ SLN , then λ acts on the fibers of δ by multiplication by λα where

α =
∑
p∈S

lp+1∑
i=1

dpi {
i∑

j=1

mp
j}.

Also, λ acts on the fibers of RπRI,MS∗V (k) by multiplication by λ to the power −χ(V(k)) = −N

(hence acts trivially). Combining with the action of λ on the fibers of det(V |y) (by λr), one sees

that scalars in SLN act trivially on the fibers of Θ̃, so that Θ̃ is a PSLN equivariant bundle.

We will say that a G-equivariant line bundle Θ̃ on a G-eqivariantly polarized space (R,L)

descends to the GIT quotient R//G if there exists a line bundle Θ on R//G such that the pullback

of Θ to RSS agrees with the restriction of Θ̃ to RSS .

Proposition 2.6.1. The SLN -equivariant bundle Θ̃ on RI,MS descends to an ample line bundle Θ

on M(I).

Proof. By Lemma 1.2.5, for descent it suffices to show the stabilizer of each point of RSSI,MS with

closed orbit acts trivially on the fibers of Θ̃. The stabilizer of a stable point of RI,MS consists of

the scalars in SLN [Ses82, Troisiéme Partie], which we have already seen act trivially on the fibers.

In the more general case of a point of RSSI,MS −RSI,MS with closed orbit, calculate as in [Pau96] or

the descent proof in Section 1.2, which was modeled on Pauly’s argument. Thus, Θ̃ descends to a

line bundle Θ on M(I).

By [MFK94, Theorem 1.10], some power of the polarization descends to an ample line bundle

on M(I). Since Θ̃ is an Mth root of the polarization on the semistable locus, Θ must too be

ample.

2.7 Theta Sections

Fix Q a vector bundle on X of rank n − r and let G ∈ FlSQ. It will be useful to connect

Definition 2.2.1 to the partial flag notation we have been using up to this point.

Lemma 2.7.1. With the notation as in Remark 2.4.1, if φ ∈ HomOX (V,Q), we have φ(F pa ) ⊂ Gp
Ipa−a

for a = 1, ..., r if and only if φ(F̃ pi ) ⊆ Gp
(n−r)(1−W p

i+1)
for i = 0, ..., lp.
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Proof. It is clear from Remark 2.4.1 that

W p
i+1 = wp

1+
∑i
j=1m

p
j

=
1

n− r
(n−

i∑
j=1

(mp
j − I

p

r−
∑i
j=1m

p
j

)) (2.17)

So, using the above and the fact that F̃ pi = F p
r−

∑i
j=1m

p
j

, the Lemma amounts to the claim that

φ(F pa ) ⊆ Gp
Ipa−a

for all a = 0, 1..., r if and only if

φ(F p
(r−

∑i
j=1m

p
j )

) ⊆ Gp
Ip
(r−

∑i
j=1

m
p
j
)
−(r−

∑i
j=1m

p
j )

for all i = 0, 1, ..., lp. One implication is immediate. For the other, suppose a is strictly between

r −
∑i+1

j=1m
p
j and r −

∑i
j=1m

p
j for some i = 0, ..., lp − 1. Then, by definition of multiplicity,

wpr−a+1 = W p
i+1. Examining the formula for wp in Remark 2.4.1 and equation (2.17), we obtain the

equation

Ipa − a = Ip
(r−

∑i
j=1m

p
j )
− (r −

i∑
j=1

mp
j ).

It follows that

φ(F pa ) ⊆ φ(F p
(r−

∑i
j=1m

p
j )

) ⊆ Gp
Ip
(r−

∑i
j=1

m
p
j
)
−(r−

∑i
j=1m

p
j )

= Gp
Ipa−a

,

as needed.

Remark 2.7.1. If (Q,G) is given an MS parabolic structure with multiplicities m̃p
j = (n− r)(W p

j −

W p
j−1) for j = 1, ..., lp+ 1, then by Remark 2.4.1, G̃pi = Gp

(n−r)(1−W p
i )

. If the MS parabolic weights of

(Q,G) are W̃ p
i = W p

i−1 for i = 1, ..., lp+1, then Lemma 2.7.1 shows that HomI(V,Q,F ,G) is precisely

the set of MS parabolic morphisms (see [MS80, 1.5]) from (V, F̃ , {W p
i ,m

p
i }) to (Q, G̃, {W̃ p

i , m̃
p
i }).

We now define a sheaf H omI(Q,G) on RSSI,MS×X with the following property. For each q := (q :

ON � V(k),F) in RSSI with image (also denoted q) (q, F̃) in RSSI,MS , the sheaf H omI(Q,G)|{q}×X

has global sections isomorphic to HomI(V,Q,F ,G). This is a “family” version of the construction

given in 2.2.

To this end, note that V is locally free on RSSI,MS ×X, as it has constant fiber dimension on a

smooth scheme. For each p ∈ S, let ip : RSSI,MS × {p} → RSSI,MS ×X denote the inclusion. One has
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a surjective map of sheaves

Hom(V |RSSI,MS×X
, π∗XQ) � ⊕p∈Sip∗Hom(V |RSSI,MS×{p}

, π∗X(Q|p)).

For convenience, denote V |RSSI,MS×{p}
by V |p. For i = 1, ..., lp, let F̃ p

i denote the (locally free) kernel

of V |p � Qp
i |RSSI,MS

→ 0, and set F̃ p
0 = V |p. Then we have a map

Hom(V |p, π∗X(Q|p))→ ⊕l
p

i=0Hom(F̃ p
i , π

∗
X(Q|p/Gp(n−r)(1−W p

i+1)
)).

Let K p denote the kernel. We then have a composite surjection:

Hom(V |RSSI,MS×X
, π∗XQ) � ⊕p∈Sip∗

Hom(V |p, π∗X(Q|p))
K p

(2.18)

Denote the kernel of (2.18) by H omI(Q,G). Then H omI(Q,G) is locally free (Proposition 2.7.2)

and is easily seen to have the desired property (Lemma 2.7.1).

We now record the important properties of H omI(Q,G). Similar results appear in [Pau98]

and [Gav04].

Proposition 2.7.2. H omI(Q,G) is locally free on RSSI,MS × X of rank equal to the rank of

Hom(V |RSSI,MS×X
, π∗XQ).

Proof. Denote R := RSSI,MS . We shorthand H omI(Q,G) and Hom(V |R×X , π∗XQ) by H and

H, respectively. Let (q, x) be a point of R × X. Clearly we have an isomorphism of stalks

H(q,x) → H(q,x) when x is not among the points of S. It suffices then to show that for each marked

point p ∈ S that the stalk H(q,p) is free.

By the local criterion for flatness, we will be done if we can show that

Tor
OR×X,(q,p)
1 (H(q,p), k(q, p)) = 0.

Passing to (q, p) stalks in (2.18) and taking the Tor sequence, we see that the condition above is

equivalent to

0 = Tor
OR×X,(q,p)
2 ((ip∗H|p/K p)(q,p), k(q, p)) = Tor

OR,q
2 ((H|p/K p)q, k(q)).
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This holds, since by Lemma 2.7.4, the sheaf H|p/K p is locally free on R.

Proposition 2.7.3. Assume g = 0 (X = P1), I satisfies the codimension condition (2.22), and

degQ = d−D. Then, detRπRSSI,MS∗
H omI(Q,G) and Θ̃|RSSI,MS

are canonically isomorphic.

Proof. We will omit reference to the semistable locus for convenience. Also we will use the shorthand

H and H for H omI(Q,G) and Hom(V , π∗XQ), respectively. By the defining expression (2.18), we

have

detRπ∗H = detRπ∗H ⊗⊗p∈S(detRπ∗(ip∗H|p/K p))−1 (2.19)

Since ip∗H|p/K p is only supported on RSSI,MS × {p}, we have:

detRπ∗(ip∗H|p/K p) = (det(H|p/K p))−1.

Equation (2.19) can now be rewritten:

detRπ∗H = detRπ∗H ⊗⊗p∈S(det(H|p/K p)). (2.20)

Use Lemma 2.7.4 to write:

det(H|p/K p) = (det V |p)−(n−r)(W
p
1 )−(

∑lp

i=1 d
p
i ) ⊗ {⊗lpi=1(det Qp

i )
dpi }.

It is easy to see from the definitions that the first tensor factor above can be rewritten as

(det Qp
lp+1)

dp
lp+1 ⊗ (det V |p)−(n−r). Substituting into (2.20), we obtain:

detRπ∗H = detRπ∗H ⊗ δ ⊗ {⊗p∈S(det V |p)−(n−r)}. (2.21)

By Mumford’s Seesaw Theorem, we have det V |p canonically isomorphic to det V |y for any p ∈ X.

By Serre duality, detRπ∗H = detRπ∗(V ⊗π∗X(Q∨⊗KX)). From [Pau98, Lemme 3.5] it follows that

the right hand side of this equation is canonically isomorphic to (detRπ∗V )n−r⊗(det V |y)d−D+2(n−r).

Combine this with (2.21) and the codimension condition (2.22), and compare with definitions (2.15),

(2.16), and (2.11) to complete the proof.

Remark 2.7.2. The condition g = 0 was necessary to identify the various det V |x line bundles via
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the Seesaw Theorem. In higher genus, since we consider bundles V of fixed degree but not fixed

determinant, the line bundles det V |x will depend a priori on x.

Proposition 2.7.3 gives a way of producing a SLN invariant sections of Θ̃|RSSI,MS
and hence

of Θ. With assumptions as in 2.7.3, let Q be a vector bundle of rank n − r, degree d − D,

with flags G ∈ FlSQ such that there exists a semistable parabolic vector bundle (V0,F0) with

HomI(V0,Q,F0,G) = 0 (we will produce such (Q,G) in Section 2.8). Using the assumptions, one

computes χ(H omI(Q,G)|q) = 0 for any q ∈ RSSI,MS .

We proceed as in the det/div theory of [KM76], see [Pau98, Section 3] for the relevant aspects.

Suppose f : L0 → L1 is a map of locally frees on RSSI,MS such that

ker f = π∗H omI(Q,G), cokerf = R1π∗H omI(Q,G).

By cohomology and base change, at a point q0 such that H i(H omI(Q,G)|q0
) = 0 for i = 0, 1, the

map f is an isomorphism. Any preimage of (V0,F0) ∈ M(I) will do for such a q0. In particular,

L0 and L1 have the same rank, so we obtain a map det(f) of their determinant bundles. Tensoring

both sides of det(f) by detL−10 , we obtain a section of Rπ∗H omI(Q,G). Up to a nonzero complex

scalar, it does not depend on the choice of L0, L1, or f , so we denote the (scalar class of the) section

θ(Q,G). The vanishing locus of θ(Q,G) is the set of q such that f fails to be surjective on the q

fiber, equivalently R1π∗H omI(Q,G)|q 6= 0. Using the trivial Euler characteristic of H omI(Q,G)

and the theory of cohomology and base change, one sees that this is precisely the set of q such that

if the image of q in M(I) is (V,F) then HomI(V,Q,F ,G) 6= 0.

All of the above works equally well in families (see e.g. [Pau98, Section 5]) so θ(Q,G) descends

to a section of Θ. It is clear in any case from our construction that the divisor of θ(Q,G) is SLN

invariant.

We now prove a technical lemma that was needed above.

Lemma 2.7.4. Let V be a vector bundle on a scheme R with a filtration by subbundles

V = F̃0 ⊇ F̃1 ⊇ ... ⊇ F̃l ⊇ F̃l+1 = 0
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Let Q be a vector space with a filtration

Q ⊇ Gα0 ⊇ Gα1 ⊇ ... ⊇ Gαl .

Consider the map:

Hom(V, Q⊗O)→ ⊕li=0Hom(F̃i, Q/Gαi ⊗O).

Denote its image by H/K . Then, after choosing a splitting of the vector space

Q = Q/Gα0 ⊕Gα0/Gα1 ⊕ ...⊕Gαl ,

one has a canonical isomorphism

H/K = ⊕li=0(F̃∨i ⊗Gαi−1/Gαi),

where we take Gα−1 = Q.

Proof. We induct on l. The case l = 0 is clear. Assume l ≥ 1 and assume that the image of

Hom(F̃1,Gα0 ⊗O)
φ−→ ⊕li=1Hom(F̃i, Gα0/Gαi ⊗O)

is isomorphic to ⊕li=1(F̃∨i ⊗Gαi−1/Gαi). Now consider the commutative diagram

Hom(V, Gα0 ⊗O)
a−−−−→ ⊕li=1Hom(F̃i, Gα0/Gαi ⊗O)

b

y yc
Hom(V, Q⊗O)

d−−−−→ ⊕li=0Hom(F̃i, Q/Gαi ⊗O).

We would like to compute Im(d). An easy diagram chase shows that ker(d) = b ◦ ker(a). Thus, we

get an inclusion Im(a)→ Im(d) whose cokernel, by the snake lemma, is isomorphic to the cokernel

of b. We then have an exact sequence:

0→ Im(a)→ Im(d)→ coker(b)→ 0.

It is easy to see that Im(a) = Im(φ) and that coker(b) = V∨ ⊗Q/Gα0 (or equivalently coker(b) =
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F̃∨0 ⊗ Gα−1/Gα0). So by the inductive hypothesis, we have written Im(d) as an extension of the

desired form. Using the splitting of Q, we have a section coker(b)→ Hom(V, Q⊗O), which then

splits the extension Im(d).

2.8 Basis of Theta Sections in Genus 0

Convention. From this point onward, assume I = (d, r,D, n, I) satisfies the codimension condition:

0 = r(n− r) + d(n− r) + r(d−D)−
∑
p∈S

r∑
a=1

(n− r + a− Ipa) (2.22)

Now, recall from Section 2.7 that for each pair (Q,G) consisting of a rank n−r, degree d−D vector

bundle Q on P1 and an element G ∈ FlSQ, one has a (possibly zero) section θ(Q,G) in H0(M(I),Θ)

whose vanishing locus is precisely the set (V,F) in M(I) such that HomI(V,Q,F ,G) 6= 0. The

proposition below is a straightforward modification of Theorem 4.3 in [Bel04b].

Proposition 2.8.1. The theta sections θ(Q,G) span H0(M(I),Θ), as (Q,G) range over all degree

d−D rank n− r bundles Q equipped with flags G ∈ FlSQ. Moreover, one can take a theta basis of

H0(M(I),Θ) of the form θ(Q,G1), ..., θ(Q,G〈I〉) (same Q for all of them) where Q = ZD−d,n−r is

evenly split and the Gj are general elements of FlSQ.

Proof. Let W = ZD,n be the evenly split bundle of degree −D and rank n and choose a general

element E ∈ FlSW. The Schubert intersection Ω◦I(W, E) ⊆ Gr(d, r,W) is a reduced, finite set of

〈I〉-many points. Label the points V1, ...,V〈I〉. We may assume all of the (Vj , E(Vj)) define semi

stable bundles with respect to I since E is generic. For the same reason, we may assume that each

quotient pair (W/Vj , E(W/Vj)) consists of an evenly split vector bundle and a general s-tuple of

flags on it. [Bel08, Lemma 4.5].

Now the tangent space to Ω◦(W, E) at the point Vj is HomI(Vj ,W/Vj , E(Vj), E(W/Vj)), which

is 0 by the transversality of the intersection. Thus, we get sections θj := θ(W/Vj , E(W/Vj)) such

that θj does not vanish at (Vj , E(Vj)) in M(I). On the other hand, for k 6= j, the morphism Vk →

W →W/Vj defines a nonzero element of HomI(Vk,W/Vj , E(Vk), E(W/Vj)), hence θj does vanish

at (Vk, E(Vk)). It follows that the θj are 〈I〉-many linearly independent elements of H0(M(I),Θ).

It is known from the work of Witten [Wit95] and Agnihotri [Agn95] (more accessible references
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are [Bel08, Section 3] and [BGM15, Theorem 3.3]) that 〈I〉 = dimH0(M(I),Θ). This is the

quantum generalization of the better known fact (when d = D = 0) that the ordinary Schubert

product ωI1 · ... · ωIs in H∗(Gr(r, n),Z) is dim(V ∗I1 ⊗ ...⊗ V
∗
Is)

SLr times the class of a point [Ful00].

The proposition now follows.

We note that if I is replaced by NI (defined at the end of Section 2.4), the codimension condition

(2.22) remains satisfied, the MS parabolic weights and multiplicities stay the same, and the same

quot scheme can be used to parametrize NI semistable bundles (which are precisely I-semistable

bundles). However, the numbers n − r, dpi (2.10), and ` (2.11) are multiplied by N , so that the

corresponding tilde theta bundle (2.15) for NI is Θ̃⊗N . The lemma below now follows from 2.8.1.

Lemma 2.8.2. For all positive integers N , we have h0(M(I),Θ⊗N ) = 〈NI〉.

2.9 A Useful Inductive Structure

Convention. For this section, we fix V a vector bundle on P1 of rank r, degree −d, F ∈ FlSV,

and Q = ZD−d,n−r. Let K = (d′, r′, d, r,K) be a Schubert state, and for p ∈ S, let Hp denote the

complement of Kp in [r].

The purpose of this section is to prove Proposition 2.9.2. This gives our main computational

trick. The proposition says roughly that in order to compute the dimension of the space of parabolic

morphisms (V,F) → (Q,G) (what we have been calling HomI(V,Q,F ,G), see Remark 2.7.1),

where G is generic, it suffices to compute the dimension of the space of parabolic morphisms

(S,F(S))→ (Q,G) where S is a certain proper subbundle of V . To prove this, we need the following

calculation.

Lemma 2.9.1. Let φ : V → Q be a morphism such that kerφ is in Schubert state K with respect to

F and such that the fiberwise maps at the marked points (V/ kerφ)p → Qp have kernels of dimension

ε(p) and lie in the Schubert cells Ω◦Jp(F
p(V/ kerφ)). Then, the number

dim FlSQ+
∑
p∈S

ε(p)∑
a=1

(n− r +Hp
Jpa
− IHp

J
p
a

) +
∑
p∈S

r′∑
a=1

(n− r +Kp
a − I

p
Kp
a
)

−
∑
p∈S

r∑
a=1

(n− r + a− Ipa)
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is the dimension of the space of G ∈ FlSQ such that φ ∈ HomI(V,Q,F ,G), if this space is nonempty.

Proof. Assume the space (call it Y ) is nonempty. It is clear that Y can be constructed by building

first the space of Gp1 with the property that φ(F p1a ) ⊆ Gp1
I
p1
a −a

for a = 1, ..., r, building over this

the space of Gp2 with the appropriate property, etc. So it suffices to verify the Lemma in the case

where S has only one point (and hence we will omit reference to p).

Set `a = IHa − Ha for a = 1, ..., r − r′. The condition that φ(Fa) ⊂ GIa−a for a = 1, ..., r is

equivalent to the condition that φ(Fa(V/S)) ⊆ G`a for a = 1, .., r − r′. To build the appropriate

flag space, start by building the space of (n− r − 1)-dimensional subspaces Gn−r−1 of Q such that

Gn−r−1 contains φ(Fa(V/S)) whenever `a ≤ n− r − 1. If ct = max{a : `a ≤ t}, this will happen if

and only Gn−r−1 contains φ(Fcn−r−1(V/S)). The space of all such Gn−r−1 is then the Grassmannian

of n− r− 1−dimφ(Fcn−r−1(V/S)) dimensional subspaces of Q/φ(Fcn−r−1(V/S)), a projective space

of dimension n− r− 1−dimφ(Fcn−r−1(V/S)). Now over each point Gn−r−1 in this projective space,

we build the space of all (n− r − 2)-dimensional subspaces of Gn−r−1 which contain φ(Fa(V/S))

whenever `a ≤ n−r−2, equivalently, contain φ(Fcn−r−2(V/S)). We obtain a projective space bundle

over the previously constructed space, which has relative dimension n− r−2−dimφ(Fcn−r−2(V/S)).

Continue in this way until obtaining the desired flag space Y . In total, we see that Y has dimension:

n−r−1∑
t=1

(n− r − t− dim(φ(Fcn−r−t(V/S)))) = dim Fl(Q)−
n−r−1∑
t=1

dimφ(Fct(V/S)). (2.23)

We now compute the sum on the right hand side of (2.23).

Clearly ct = a if t ∈ [`a, `a+1 − 1] for a = 1, ..., r − r′ (here we define `r−r′+1 = n − r). Thus,

viewing the sum in (2.23) as a sum over t in [1, `1 − 1] plus a sum over t in [`1, `2 − 1] and so on, we

obtain:
n−r−1∑
t=1

dimφ(Fct(V/S)) =
r−r′∑
a=1

(`a+1 − `a) dimφ(Fa(V/S)).

Let 0 ≤ b(a) ≤ ε be the unique integer such that Jb(a) ≤ a < Jb(a)+1. Then,

n−r−1∑
t=1

dimφ(Fct(V/S)) =
r−r′∑
a=1

(`a+1 − `a)(a− b(a)).

The sum
∑r−r′

a=1 a(`a+1−`a) is easily seen to equal (r−r′)(n−r)−
∑r−r′

a=1 `a. The sum
∑r−r′

a=1 b(a)(`a+1−
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`a), breaking up into a sum over a such that b(a) = 0 plus a sum over a such that b(a) = 1 and so

forth, is seen to equal

(`J2 − `J1) + 2(`J3 − `J2) + ...+ ε((n− r)− `Jε) = ε(n− r)−
ε∑

a=1

`Ja

=

ε∑
a=1

(n− r +HJa − IHJa ).

Combining these results with (2.23), we get

dimY = Fl(Q) +

ε∑
a=1

(n− r +HJa − IHJa )− (r − r′)(n− r) +

r−r′∑
a=1

`a.

It is easy to see that

−(r − r′)(n− r) +

r−r′∑
a=1

`a =

r′∑
a=1

(n− r +Kp
a − I

p
Kp
a
)−

r∑
a=1

(n− r + a− Ipa).

So the proof is complete.

Proposition 2.9.2. Let (FlSQ)V,F be a nonempty Zariski open subset of FlSQ such that the quantum

hom data hdqI(V,F ,G) is constant (R,K, ε, J) over G ∈ (FlSQ)V,F . Now fix some G ∈ (FlSQ)V,F

and let φ ∈ HomI(V,Q,F ,G) be a general element (2.3.1) with kernel S. Then the canonical

surjection H1(KV)→ H1(KS) coming from the diagram 2.5 is an isomorphism.

Proof. Let H be the irreducible scheme over (FlSQ)V,F whose fiber over a point G′ is the subset

HomI(V,Q,F ,G′,K, ε, J) of HomI(V,Q,F ,G′), which by assumption is a dense subset whose

dimension does not vary with G′ ∈ (FlSQ)V,F . We thus have

dim HomI(V,Q,F ,G) = dim H− dim FlSQ (2.24)

We now compute an upper bound for dim H by fibering H over Ω◦K(F). Let H′ be the scheme whose

closed points are given by morphisms φ′ : V → Q with kernel S ′ in Schubert position K such that

φ̄′p : (V/S ′)p → Qp has kernel in Schubert position Jp in Gr(ε(p), (V/S ′)p) for all p ∈ S. We have
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an obvious morphism H→ H′ given by discarding the FlSQ component. By Lemma 2.9.1, we have:

dim(Fiber(H→ H′)) = dim FlSQ+
∑
p∈S

ε(p)∑
a=1

(n− r +Hp
Jpa
− Ip

Hp

J
p
a

)

+
∑
p∈S

r′∑
a=1

(n− r +Kp
a − I

p
Kp
a
)−

∑
p∈S

r∑
a=1

(n− r + a− Ipa). (2.25)

Let B be the scheme over Gr(d′, r′,V) whose fiber over a closed point S ′ is the product (over

Spec(k(S ′))) of the ordinary Schubert cells Ω◦Jp(F
p(V/S ′)) as p runs through the marked points.

Its points can be described by tuples (S ′, (B(p))p∈S). We have an obvious map H′ → B which takes

a point φ′ of H′ to (kerφ′, (ker φ̄′p)p∈S) in B. I claim that if the fiber over a point (S ′, (B(p))p∈S) is

nonempty, then:

dim(Fiber(H′ → B)) = (r − r′)(n− r) + (d− d′)(n− r)

+ (r − r′)(d−D)−
∑
p∈S

ε(p)(n− r). (2.26)

Indeed, the fiber over (S ′, (B(p))p∈S) can be identified with the space of injective morphisms

φ′ : V/S ′ → Q with kernel at a marked point p given by B(p). By [Bel08, Appendix A], this is

an open subset of the space of morphisms Ṽ/S ′ → Q where Ṽ/S ′ is the shift of V/S ′ along B(p).

This has the same rank r − r′ as V/S ′, but has degree deg(V/S ′) +
∑

p∈S ε(p). Thus, the fiber has

dimension:

dimH0(P1, Hom(Ṽ/S ′,Q)) = χ(Hom(Ṽ/S,Q)) +H1(P1, Hom(Ṽ/S ′,Q))

= (n− r + d−D)(r − r′) + (d− d′ −
∑
p∈S

ε(p))(n− r) +H1(P1, Hom(Ṽ/S ′,Q)).

The claim will be proven once we show that the H1 term is 0. To see this, we note that nonemptiness

of the fiber in H′ over (S ′, (B(p))p∈S) implies the existence of an injective morphism Ṽ/S ′ → Q

by [Bel08, Lemma A.2(3)]. Since Q is evenly split, say Q = O(a − 1)t ⊕ O(a)n−r−t, the bundle

Ṽ/S ′ has only summands O(b) where b ≤ a in its Grothendieck decomposition. It follows that

the Grothendieck decomposition of Hom(Ṽ/S ′,Q) has only summands O(c) where c ≥ −1. Such

summands have no H1.
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Now it easy to see that:

dim(Fiber(B→ Gr(d′, r′,V))) =
∑
p∈S

ε(p)∑
a=1

Jpa − a. (2.27)

If Im(H) denotes the (irreducible) image of H in Ω◦K(F) ⊆ Gr(d′, r′,V), then:

dim H ≤ dim Im(H) + dim(Fiber(B→ Gr(d′, r′,V)))

+ dim(Fiber(H′ → B)) + dim(Fiber(H→ H′))

= dim Im(H) + dim FlSQ+ (r − r′)(n− r) + (d− d′)(n− r) + (r − r′)(d−D)

+
∑
p∈S

r′∑
a=1

(n− r +Kp
a − I

p
Kp
a
)−

∑
p∈S

r∑
a=1

(n− r + a− Ipa) +
∑
p∈S

Disc(p), (2.28)

where the “local discrepancy” Disc(p) is defined as

Disc(p) =

ε(p)∑
a=1

(Hp
Jpa
− Ip

Hp

J
p
a

+ Jpa − a).

The same quantity appears in [Bel08, Section 9.1]. As there, Disc(p) ≤ 0 by the following simple

argument. Since the given φ is such that for all m = 1, ..., r − r′, one has

φ̄p(F
p
m(V/S)) ⊆ Gp

Ip
H
p
m
−Hp

m
,

the dimension of the left hand side when m = Jpa must be less than or equal to the dimension of the

right hand side for the same m. The former is Jpa −a, while the latter is Ip
Hp

J
p
a

−Hp
Jpa

, which completes

the simple argument. Recalling the formulas (2.6) and (2.7) for χ(KV) and χ(KS) respectively, one

obtains from (2.28):

dim H ≤ dim Im(H) + dim FlSQ+ χ(KV)− χ(KS). (2.29)

Combining with (2.24) and recalling that H0(KV) = HomI(V,Q,F ,G), we find the inequality

h1(KV) ≤ dim Im(H)− χ(KS), (2.30)
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Finally, we note that Im(H) is an irreducible subscheme of Ω◦K(F) which contains the point S,

so certainly its dimension does not exceed the dimension of the tangent space to S in Ω◦K(F),

which is HomK(S,V/S,F(S),F(V/S)). Under the injection Hom(S,V/S)→ Hom(S,Q) induced

by φ, the subspace HomK(S,V/S,F(S),F(V/S)) maps into H0(KS). Inequality (2.30) now gives

h1(KV) ≤ h1(KS), and the proposition follows.

2.10 Analysis of the Cases r = 2 and r = 3

Here we explore simple applications of Proposition 2.9.2 to the cases where r = 2 or r = 3.

Suppose first that I = (d, 2, D.n, I) is a Schubert state with 〈I〉 6= 0.

Proposition 2.10.1. For r = 2, the line bundle Θ on M(I) is base point free.

Proof. Suppose to the contrary that Z 6= ∅ denotes an irreducible component the base locus. By

the description of the theta sections in Section 2.8, for each (V,F ,G) ∈ Z × FlS(Q), the general

element φ ∈ HomI(V,Q,F ,G) is nonzero. The rank r′0, degree −d′0, and Schubert position K0 of

the kernel of such a φ will be constant over an open subset U0 of Z × FlSQ. Since r′0 equals 0

or 1, there is a unique bundle S0 of rank r′0 and degree −d′0, and FlSS0 consists of a single point

F(S0). Therefore, shrinking U0 if necessary, we can assume that for every (V,F ,G) ∈ U0, we have

G ∈ (FlSQ)V,F ∩ (FlSQ)S0,F(S0), an intersection of nonempty open subsets as described in 2.9.2.

Now choose (V,F ,G) ∈ U0, and let φ ∈ HomI(V,Q,F ,G) be a general element. Then kerφ ∼= S0,

and we have h1(KV) = h1(KS0) by 2.9.2. If r′0 = 0, then h1(KV) = 0 follows. In the case where

r′0 = 1, we observe that a general element of HomĨ(S0,Q,F(S0),G) = H0(KS0) is injective or

zero. If the general element is injective, then use the construction of U0 to apply 2.9.2 again,

obtaining 0 = h1(KS0) = h1(KV). If the general element is zero, then we have h0(KS0) = 0. But by

semistability of (V,F), we also have χ(KS0) ≥ 0. Again, 0 = h1(KS0) = h1(KV) follows.

Since in all cases h1(KV) = 0, and χ(KV) = 0 by (2.22), we have HomI(V,Q,F ,G) = 0. This

contradicts the fact that φ is nonzero. It must be that the base locus is empty.

Now suppose I = (d, 3, D, n, I) is a Schubert state for SL3 with 〈I〉 6= 0.

Proposition 2.10.2. For r = 3, the line bundle Θ on M(I) is base point free.
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Proof. As in 2.10.1, suppose contrariwise that Z is an irreducible component of the base locus.

The isomorphism class S0 and Schubert position K0 = (d′0, r
′
0, d, r,K) of the kernel of a general

φ ∈ HomI(V,Q,F ,G) remain constant over an open subset U0 of Z ×FlSQ. Choose a general point

(V,F ,G) ∈ U0 and a general element φ ∈ HomI(V,Q,F ,G) with kernel S0 in Schubert position K0.

We have r′0 = 0, 1, or 2. If r′0 = 0, 1, derive a contradiction exactly as in 2.10.1.

If r′0 = 2, a different argument is required. Consider the exact sequence coming from (2.5):

0→ H0(KV/S0)→ H0(KV)→ H0(KS0)→ H1(KV/S0)

Note that V/S0 has rank 1 and that the space FlS(V/S0) is a point. We can therefore assume that

U0 was chosen sufficiently small such that the G component of each element of U0 lies in the open

set (FlSQ)V/S0,F(V/S0) where hdqI′ is constant. Since by assumption, one has an injective morphism

φ ∈ HomI′(V/S0,Q,F(V/S0),G), applying Proposition 2.9.2, we obtain H1(KV/S0) = 0. On the

other hand, by semistability of (V,F), we have χ(KV/S0) ≤ 0. The only possibility then is that

0 = H0(KV/S0) = HomI′(V/S0,Q,F(V/S0),G), a contradiction.

Corollary 2.10.3. If r = 2, 3, the moduli space M(I) has dimension at most 〈I〉−1. In particular,

if 〈I〉 = 1, then (M(I),Θ) = (Pt,O). If 〈I〉 = 2, then (M(I),Θ) = (P1,O(1)). Therefore, the

quantum Fulton and KTT conjectures hold when r = 2, 3.

Proof. If dimM(I) were greater than or equal to 〈I〉, then the 〈I〉 independent sections of 2.8.1

would have a common vanishing locus, contradicting 2.10.1 or 2.10.2. Thus, we have the inequality.

The first “in particular” statement follows. Assume 〈I〉 = 2. By the construction in Section 2.5,

M(I) is an integral, rational, normal, projective scheme. The inequality imposes the condition

dimM(I) ≤ 1, and Θ has a 2 dimensional space of sections. The only possibility is then (M(I),Θ) =

(P1,O(1)).

Remark 2.10.1. In Propositions 2.10.1 and 2.10.2, we use critically that either S0 or V/S0 has rank

1. This allows us to say that certain induced structures will be generic, since the resulting flag space

is a single point. The author encountered serious technical difficulties trying to prove the KTT

conjecture for arbitrary r precisely because it did not appear obvious that the induced structures

would be generic enough for continued application of 2.9.2 (neither the approach of [She15] in the

55



classical case, nor that of Section 1.6 in the quiver case seemed to generalize easily to the quantum

setting).

2.11 Proof of Quantum Fulton Conjecture

We now prove the quantum analogue of Fulton’s conjecture for any r using Proposition 2.9.2.

The general structure resembles Belkale’s proof [Bel07] of the “classical” Fulton conjecture, where

d = D = 0. Fix again Q = ZD−d,n−r and let K be the Schubert state (d′, r′, d, r,K). To begin, we

will need the following technical lemma. The construction in its proof is a relative version of the

construction given in the proof of 2.9.2.

Lemma 2.11.1. Consider quadruples of the form (q,F ,G, φ), where q : ON � V(k) is a quotient

bundle on P1 of rank r and degree −d+ rk (here k and N are as in Section 2.5), the flags F and G

are elements of FlSV and FlSQ, respectively, and φ is an element of HomI(V,Q,F ,G) whose kernel

is in Schubert state K with respect to (V,F) and such that the maps φ̄p : (V/ kerφ)p → Qp have

kernels of dimension ε(p) and lie in the Schubert cells Ω◦Jp(F
p(V/ kerφ)). If there is even one such

quadruple, then an irreducible, smooth scheme HI,K,ε,J parametrizing such quadruples exists. It

admits a morphism HI,K,ε,J → RI ×FlSQ by forgetting φ. See Section 2.5 for the relevant notation.

Proof. Form the partial flag quot scheme QI,K parametrizing quotient coherent sheaves q1 : ON �

V(k), q2 : V(k) � (V/S)(k) on P1, where V has Hilbert polynomial rt+ r − d and S has Hilbert

polynomial r′t+ r′− d′. Such a space exists as a smooth, projective, irreducible scheme (see [Kim95]

and the related [KP01]). Let V be the twist of the first universal quotient on QI,K × P1 by

pr∗P1O(−k). Let S ↪→ V be the kernel of the second universal quotient twisted by pr∗P1O(−k). Let

Q′I,K be the largest open subscheme of QI,K with points corresponding to quotients where both V

and V/S are locally free. Over Q′I,K × P1, the map S ↪→ V is an inclusion of a vector subbundle.

For each p ∈ S, let F(S )p denote the complete quotient flag bundle of S |Q′I,K×{p}, and let

F(S ) denote the fiber product of these over Q′I,K as p runs through the points of S. Then closed

points of F(S ) are given by (q1, q2,F(S)) where q1 : ON � V(k), q2 : V(k) � (V/S)(k) are locally

free quotients on P1 and F(S) is an element of FlSS (here we identify a complete quotient flag with

a complete subspace flag by taking kernels). The scheme F(S ) is smooth and irreducible since it is

relatively smooth with irreducible fibers over the smooth and irreducible scheme Q′I,K.
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Over F(S ), one can build a relatively smooth, irreducible scheme UK, whose fiber over

(q1, q2,F(S)) consists of all of F ∈ FlSV such that S ∈ Ω◦K(V,F) and such that the flag in-

duced on S by F is F(S). A classical analogue of this scheme (of the same name) appears in [Bel06].

Indeed, the same proof as there, by successive applications of [Bel06, Lemma A.3] can be used to

show its existence, smoothness, and irreducibility (see also [She15, Lemma A.1]). The quotient

bundle on UK × P1 obtained by pulling back the first universal quotient on Q′I,K × P1 along with

the universal flag bundles of V |Q′I,K×{p} define a morphism UK → RI which on closed points sends

(q1, q2,F) to (q1,F) (note we may ignore the F(S) coordinate of points of UK, since it is determined

by the F coordinate).

To complete the proof, it suffices to build a relatively smooth scheme over UK whose fiber

over (q1, q2,F) as above is the set of all G in FlSQ and φ ∈ HomI(V,Q,F ,G) such that the

kerφ = ker(q2(−k)), and it has the required properties at the marked points. By assumption, there

is a quadruple (q0,F0,G0, φ0) of the asserted form. Suppose φ̄p : (V/ kerφ0)p → Qp has kernel B0(p)

for p ∈ S.

Now, let B be the relatively smooth scheme over UK whose fiber over a point (q1, q2,F) as

above is the (irreducible) product of the ordinary Schubert cells Ω◦Jp(F
p(V/S)) as p ranges through

S. As an intermediate step on the way to HI,K,ε,J , we build a scheme H′′ over B whose fiber over

(q1, q2,F , (B(p))p∈S) is the set of homomorphisms φ : V → Q with kernel equal to ker(q2(−k)) and

ker(φ̄p) = B(p). To this end, for p ∈ S, consider the tautological subbundle B(p) of (V /S )|B×{p}

whose fiber over (q1, q2,F , (B(p))p∈S)× {p} is the vector space B(p). Using the theory developed

in [Bel08, Appendix A], we can shift (V /S )|B×P1 along B to obtain a vector bundle (V /S )shift on

B× P1 which has the property that for any vector bundle A on B× P1 and point

b = (q1 : ON � V(k), q2 : V(k) � (V/S)(k),F , (B(p))p∈S) ∈ B,

the space Hom((V /S )shift|b, A|b) is canonically isomorphic to the space of φ ∈ Hom(V/S, A|b)

with B(p) ⊆ ker(φ̄p), and injective elements map to injective elements under the isomorphism. By

semicontinuity, there is an open subset B′ of B whose points b′ satisfy

H1({b′} × P1, Hom((V /S )shift|b′ ,Q)) = 0;
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here we shorthand pr∗P1Q|b′ by Q. This open set is nonempty, since the point

b′0 = (q0, Im(φ0(k)),F0, (B0(p))p∈S)

has this property, which one sees by exactly the argument used to show H1 vanished in the proof of

Proposition 2.9.2. Over B′, by cohomology and base change, the sheaf prB∗(Hom((V /S )shift,pr∗P1Q))

is a vector bundle. Form its total space H′ over B′.

The space H′ parametrizes pairs (b′, φ) where b′ ∈ B′ and φ ∈ Hom(Vb′ ,Q) is such that kerφ

contains Sb′ , and ker(φ̄p) contains B(p)b′ . Let H′′ be the open subset where all of these containments

are equalities. Again, H′′ is nonempty, since (b′0, φ0) ∈ H′′. It is now easy to obtain the desired

space HI,K,ε,J as a relatively smooth scheme over H′′ by doing the procedure of the proof of Lemma

2.9.1 over each point of H′′ (indeed the number computed in the lemma is the relative dimension of

HI,K,ε,J → H′′).

We proceed to the proof of the Quantum Fulton Conjecture.

Proof. (Theroem 2.0.1) Suppose h0(M(I),Θ) = 1 and suppose to the contrary that M(I) is not a

point. Then, if G is a general element of FlSQ, the section θ(Q,G) 6= 0 gives a basis of H0(M(I),Θ).

Since dimM(I) ≥ 1 and Θ is ample, this section must have a nonempty vanishing locus Z ′, which

is then the base locus of Θ. Fix once and for all the closure Z of an irreducible component of the

preimage of Z ′ in RI (see Section 2.5). Let Ū be a dense open subset of Z × FlSQ over which the

quantum hom data hdqI is constant, say (R,K, ε, J) where K = (d′, r′, d, r,K). Note that r′ < r,

since HomI(V,Q,F ,G) is nonzero for general (q : ON � V(k),F ,G) ∈ Z × FlSQ.

Claim 2.11.2. The map π : HI,K,ε,J → RI × FlSQ of Lemma 2.11.1 factors through a dominant

morphism to Z × FlSQ.

Proof. By construction, Ū is contained in the image of π. On the other hand, if (q : ON �

V,F ,G) ∈ RI × FlSQ has a nonempty fiber in HI,K,ε,J , then (q,F) is in the vanishing locus of

θ(Q,G) (since r′ < r), and hence (q,F) is in the inverse image of Z ′ (denote this inverse image by

Z ′|RI ). So Im(π) is irreducible, contained in Z ′|RI × FlSQ, and contains a dense open subset of

the irreducible component Z × FlSQ of Z ′|RI × FlSQ. The claim follows.
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Choose a general point (q : ON � V(k),F ,G, φ) in HI,K,ε,J and let kerφ = S. By 2.11.2, this

lies over a general point of Z × FlSQ, so in particular (V,F , I) is semistable.

Claim 2.11.3. We may assume that S ∼= Zd′,r′ is evenly split and that (F(S),G) is a general

element of FlSS × FlSQ.

Proof. The degree of S is bounded above (by semistability of V) and bounded below (by virtue of

being the kernel of a map to Q) where both bounds depend only on the fixed data of the Schubert

state I. Thus, we can assume that k = k(I) from Section 2.5 was chosen sufficiently large that the

numbers δ1 = −d′ + r′k + r′ and δ2 = (d′ − d) + (r − r′)k + (r − r′) are both positive. Let (S(k))ES

be the unique evenly split bundle of rank r′, degree −d′ + r′k, and let ((V/S)(k))ES be the unique

evenly split bundle of rank r − r′ and degree (d′ − d) + (r − r′)k. It is easy to see that (S(k))ES

admits a surjection from Oδ1 , and ((V/S)(k))ES admits a surjection from Oδ2 . Since N = δ1 + δ2,

we have a surjection ON � (S(k))ES ⊕ ((V/S)(k))ES. It follows that there exists an element of the

partial flag quot scheme QI,K (see the proof of Lemma 2.11.1) whose S coordinate corresponds to

an evenly split bundle. The set US,ES of all such elements is open by [Bel08, Lemma 12.1].

Now let HS,ES be the (open, dense) inverse image of US,ES in HI,K,ε,J . On P1 ×HS,ES, there is

a universal kernel S . Choosing arbitrarily an isomorphism ψx of S with pr∗P1Zd′,r′ over one point

x of HS,ES, we can extend this to an isomorphism ψ over an open neighborhood H′S,ES [loc. cit.].

Then, we have a map σ : H′S,ES → FlS(Zd′,r′)×FlS(Q) which sends (q,F ,G, φ) to (F(S),G), where

F(S) is identified with a tuple of flags on Zd′,r′ by ψ.

It follows from the Claim 2.11.2 that σ composed with the projection to FlSQ is dominant. Let

G be a general element of FlSQ and let (q : ON � V(k),F ,G, φ) be any fixed element of H′S,ES|G .

To complete the proof of Claim 2.11.3, we will show that the map σ|q,G,φ : H′S,ES|q,G,φ → FlS(Zd′,r′)

is dominant.

To this end, for p ∈ S, consider the subgroup Gp of Aut(Vp) which sends Sp to itself and acts

trivially on (V/S)p. Then, G := ×p∈SGp acts on H′S,ES|q,G,φ such that (gp)p∈S sends (q,F ,G, φ)

to (q, {gpF p}p∈S ,G, φ). The map σ|q,G,φ is equivariant with respect to the given action of G on

H′S,ES|q,G,φ and its obvious action on FlS(S) ∼=ψ FlS(Zd′,r′). The latter action is transitive, so we

have the desired dominance.
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Now by Proposition 2.9.2, for the chosen general point (q,F ,G, φ), we have:

H1(KV) ∼= H1(KS) (2.31)

By Claim 2.11.3, S is evenly split and the flags F(S),G are mutually generic, so we can use the

quantum Horn conjecture [Bel08, Theorem 2.8] to compute the right hand side to be zero.

Indeed, suppose N = (d′′, r′′, d′, r′, N) is a non-null Schubert state with 0 < r′′ < r′. Let

Y ∈ Ω◦N (F(S)). Then, using the inclusion Y ↪→ S ↪→ V, we see that Y ∈ Ω◦KN (F), where

KN = (d′′, r′′, d, r,KN ), (KN )pa = Kp
Np
a
. Semistability of (V,F , I) now gives the inequality

1

r′′
(−d′′ + 1

n− r
∑
p∈S

r′′∑
a=1

(n− r +Kp
Np
a
− Ip

Kp

N
p
a

)) ≤ 1

r
(−d+

1

n− r
∑
p∈S

r∑
a=1

(n− r + a− Ipa)).

Use the codimension condition (2.22) to rewrite the right hand side as 1
n−r (n−r+d−D). Multiplying

both sides of the resulting inequality by r′′(n− r), we obtain

−d′′(n− r) +
∑
p∈S

r′′∑
a=1

(n− r +Kp
Np
a
− Ip

Kp

N
p
a

) ≤ r′′(n− r) + r′′(d−D).

This is easily seen to be the Horn inequality [loc. cit., Theorem 2.8b] for Y with respect to the

Schubert state Ĩ = (d′, r′, D − d + d′, n − r + r′, Ĩ), where Ĩpa = Ip
Kp
a
− Kp

a + a. Therefore, the

Schubert state Ĩ is non-null. It now follows from [loc. cit., Proposition 5.5] that H0(KS) has its

expected dimension, which is the same as saying H1(KS) = 0. Thus, by (2.31) the same is true

of KV . We conclude that HomI(V,Q,F ,G) has its expected dimension, which is zero because of

the codimension condition. This contradicts the fact that φ was nonzero (its kernel was the proper

subbundle S). So the proof is complete.

2.12 Application to Vector Bundles of Conformal Blocks

Given a stable s-pointed curve of arithmetic genus 0 along with a non-null Schubert state

I = (0, r,D, n, I) (here I is an s-tuple of index sets), one can associate a nonzero finite dimensional

vector space VI , called a conformal block, coming from the representation theory of affine Lie

algebras. These fit together into a vector bundle VI over the space of such stable curves, M0,s.
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From [Pau96], one knows that for each smooth curve x ∈ M0,s, there is a natural isomorphism

V∗I |x ∼= H0(M(I),Θ). In the paper [BGK15], the question is taken up as to whether points on the

boundary ∂ := M0,s −M0,s also admit such geometric interpretations, i.e. for all x ∈ ∂, is there a

projective variety Mx and ample line bundle Θx such that V∗I |x ∼= H0(Mx,Θx), and if so, what are

the implications of this? It turns out that nice things happen when (M(I),Θ) = (Pn,O(1)), and

one has a simple criterion for whether geometric interpretations exist.

Proposition 2.12.1. Let I = (0, r,D, n, I) be a Schubert state with 〈I〉 = 2 and suppose the

quantum KTT conjecture holds for r (known to be so when r = 2, 3 by Section 2.10), then geometric

interpretations for VI exist at almost all boundary points. Consequently, one has the Chern class

identity:

c1(VI [N ]) =
N(N + 1)

2
c1(VI)

for all positive integers N .

Proof. We check the criteria (1), (2), (3), (4) of [BGK15, Theorem 7.1]. Since we assume the

quantum KTT conjecture, VI has projective space scaling, and (1) holds. Now let J = {j1, ..., jt}

be a subset of [s], with complement K = {k1, ..., ks−t}. The factorization property of conformal

blocks gives:

∑
µ∈Pn−r(slr)

rkV(slr, λ
j1 , ..., λjt , µ, n− r)rkV(slr, λ

k1 , ..., λks−t , µ∗, n− r) = rkVI = 2.

At most two summands on the left hand side can be nonzero. The criteria (2) and (3) follow

immediately. For (4), any socle must have rank 2, and hence satisfies projective space rank scaling

by the assumed KTT conjecture.
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CHAPTER 3

Classical Moduli and Positivity

Consider a nonempty moduli space M(I) of parabolic vector bundles, with δ := dimM(I) and

resolution of singularities π : M̃ →M(I). By Grothendieck-Riemann-Roch and the cohomology

vanishing of Teleman [Tel00] (calling also by Θ the associated Cartier divisor):

h0(M(I),Θ⊗N ) =

∫
M̃(π∗Θ)δ

δ!
N δ +

∫
M̃(π∗Θ)δ−1.c1(TM̃)

2 · (δ − 1)!
N δ−1 + ...+ χ(OM̃). (3.1)

Also, we have used above that M(I) has rational singularities [Bou87]. Note that since Θ is ample,

the lead coefficient must be positive. The rationality of the moduli spaces M(I) established by

Boden and Hu [BH95] shows the constant term to be 1.

In the classical case where d = D = 0, the left hand side of (3.1) is dim(VNλ(I1)⊗ ...⊗VNλ(Is))SLr ,

also known as the Littlewood-Richardson number cNλ(I1),...,Nλ(Is). Also, in this case, one need not

go through the quot scheme construction of Section 2.5. The moduli space can be realized as a

quotient of a product of flag varieties, see the Introduction and [She15] for more details. We will

now denote the classical polarized moduli space by (M,L).

When s = 3, King, Tollu, and Toumazet [KTT04, Conjecture 3.1] conjecture that all of the

coefficients in (3.1) are nonnegative (although one does not expect the assumption on s to matter).

We will show that under some conditions for λ(I1), ..., λ(Is), the coefficient of N δ−1 is positive. In

particular, if in addition M is a surface, their Conjecture 3.1 holds.

The key point is that the anticanonical divisor −KM = c1(TM) on the moduli space should be

effective. This follows from the naive argument that since M is a GIT quotient of Fl(V )×s, and the

anticanonical bundle on Fl(V )×s possesses invariant sections (Lemma 3.1.1), one ought to obtain

sections of the line bundle corresponding to −KM. This is essentially correct, although there are

some delicate points to be ironed out. Indeed, these remarks implicitly assume M is smooth with

many stable points, which is less than the generality we want.
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Proposition 3.0.1. If d = D = 0, Ipa+1 6= Ipa + 1 for any p ∈ S and a = 1, ..., r− 1 (equivalently, if

for each p ∈ S the Young diagram associated to Ip has no repeat rows), and if M contains a point

corresponding to a stable orbit on Fl(V )×s, then the coefficient of N δ−1 in the polynomial (3.1) is

positive.

Positivity of the second coefficient has implications for KTT 2, as discussed in the introduction.

3.1 Proof of Proposition 3.0.1

For the proof, we recall for a good quotient q : X → X//G, one has an invariant direct image

functor qG∗ which associates to a G-equivariant quasi-coherent sheaf N the sheaf whose sections over

U ⊆ X//G are N (q−1U)G. See [Tel00, Section 3] for details.

Proof. We must show
∫
M̃(π∗L)δ−1.c1(TM̃) > 0. Note that c1(TM̃) = −KM̃, the anticanonical

divisor on M̃, and that

∫
M̃

(π∗L)δ−1.(−KM̃) =

∫
M
π∗((π

∗L)δ−1.(−KM̃)) =

∫
M
Lδ−1.(π∗(−KM̃)),

where we use the projection formula in the last step. Since L is ample, it suffices by Nakai’s criterion

to prove that π∗(−KM̃) is effective.

To this end, let j : U :=M−MSing →M be the inclusion of the nonsingular locus. SinceM is

normal, the complement of U has codimension 2, and therefore it suffices to show that j∗π∗(−KM̃)

is effective. By standard push-pull formulas [Ful98, Proposition 1.7], this divisor is the same as

π′∗(−KM̃|π−1U ), where π′ is the restriction of π to π−1U . The latter will be effective provided

Hom(ωM̃,O)|π−1U has a nonzero section. Since π′ is an isomorphism onto U , we are reduced to

proving that Hom(ω◦M|U ,OU ) is nonzero.

Under the hypotheses of the theorem, by Lemma 3.1.2, for q : (Fl(V )×s)I−SS →M, the invariant

direct image of the canonical bundle qSLr∗ ωFl is the dualizing sheaf ω◦M. A nonzero invariant section

of ω−1Fl (which exists by Lemma 3.1.1) defines a nonzero invariant morphism ωFl|q−1U → OFl|q−1U .

Applying qSLr∗ to this, we obtain a nonzero element of Hom(ω◦M|U ,OU ), as desired.

For the proof, we needed the lemmas below, which will be proven in the sections that follow.
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Lemma 3.1.1. The space of invariants H0(Fl(V )×s, ω−1Fl )SLr is nonzero for the diagonal action of

SLr on Fl(V )×s.

Lemma 3.1.2. Under the hypotheses of Proposition 3.0.1, the invariant direct image preserves

dualizing sheaves. That is, qSLr∗ ωFl = ω◦M.

3.2 Invariant Sections of the Anticanonical Bundle on Fl(V )×s

The anticanonical bundle on the full flag variety Fl(V ) = SLr/B is the ample equivariant line

bundle L2ρ associated to the dominant weight 2ρ, where ρ is half the sum of the positive roots. It

follows that the anticanonical bundle ω−1Fl on Fl(V )×s is the tensor product of the pullbacks of L2ρ

on each of the factors. With this, we prove Lemma 3.1.1.

Proof. By the Küneth formula and the theorem of Borel-Weil [Ful97, Section 9.3], the space of

invariants in Lemma 3.1.1 is isomorphic to (V ⊗s2ρ )SLr . To show that the latter is nonzero, it

suffices to show that in the sum decomposition of V2ρ ⊗ V2ρ into irreducible SLr representations,

the representations V2ρ and the trivial representation both appear with nonzero multiplicity. The

appearance of the trivial representation follows from the fact that V2ρ is a self-dual SLr representation.

As for the appearance of V2ρ in the sum, we will prove this using the Littlewood-Richardson

rule [Ful97, Section 5.2].

We must show that there exists a Littlewood-Richardson skew tableau of content ρ on the shape

• • • •
• • • •

• • • •
• • • •

• • • •

That is, the skew shape with r-many rows, each of length r − 1, such that row i has exactly two

boxes which do not lie over any boxes in row i + 1 for i = 1, ..., r − 1 (the above shows the case

r = 5). We exhibit this explicitly in the cases r = 4, r = 5, and r = 6, trusting the reader will
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discern the pattern.

1 1 1
1 2 2

1 2 3
1 2 3

1 1 1 1
1 2 2 2

1 2 3 3
1 2 3 4

1 2 3 4

1 1 1 1 1
1 2 2 2 2

1 2 3 3 3
1 2 3 4 4

1 2 3 4 5
1 2 3 4 5 (3.2)

This completes the proof.

Remark 3.2.1. We remark that rearranging the bottom two rows in the skew diagrams of (3.2) gives

in fact many summands of V2ρ in V2ρ ⊗ V2ρ.

3.3 Invariant Direct Image of the Canonical Bundle on Fl(V )×s

We prove a proposition of general interest from which Lemma 3.1.2 follows. Teleman uses this

result implicitly in [Tel00], and we thank him for an email communication in which he affirmed its

validity.

Proposition 3.3.1. Let G be a connected, complex, reductive group. Let X be a smooth, irreducible,

affine G-variety. Suppose

• There exists a point x0 in X such that the orbit Gx0 is closed, and the stabilizer Gx0 is finite,

i.e. x0 is G-stable.

• The stabilizer of any point with closed orbit in Y is abelian.

Then the set Y := {y ∈ X : dimG0
y > 0} has codimension at least 2 in X.

Let us now deduce Lemma 3.1.2 from Proposition 3.3.1. We first claim that SLr acting on

(Fl(V )×s)I−SS has abelian stabilizers for points with closed orbits. Let F be an s-tuple of flags

defining a parabolic I-semistable vector space (V,F , I). The latter has a Jordan-Hölder filtration

by parabolic vector subspaces, such that successive quotients in the filtration (Vj ,Fj , Ij) are stable

with respect to the weights induced by I. It is known [Ses82, Troisiéme Partie] that if F has a

closed SLr orbit, then (V,F , I) is isomorphic to its so-called grade decomposition, that is, the direct

sum ⊕j(Vj ,Fj , Ij). Note that no summand is parabolically isomorphic to any other summand.

This is because the weights of the direct sum at p ∈ S are given by the union of the weights on the
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factors. Since the weights λ(Ip) on (V,F) at p are assumed to contain no repeats, the weights at p

on the summands are distinct from one another, and hence no two summands can be isomorphic.

Nonisomorphic stable parabolic vector spaces admit only the zero parabolic morphism between

them. Therefore, the stabilizer Aut((V,F , I))det=1 ⊂ SLr is isomorphic to the product of the

automorphism groups of the (Vj ,Fj , Ij). But these are stable, so each such automorphism group is

isomorphic to C∗, giving us the desired abelian stabilizer condition. We may now apply Propostion

3.3.1 to deduce that locus of s-tuples of flags with positive dimensional stabilizer has codimension

at least 2 in (Fl(V ))I−SS . This is the condition needed to apply [Kno89, Korollar 2], which gives

the conclusion of Lemma 3.1.2.

To prove Proposition 3.3.1, we will need some lemmas. The first is a résumé of results which

appear in Drézet’s notes [Dre04] on Luna’s slice theorem. The results there are more general; we

only quote what we need.

Lemma 3.3.2. Let G be an reductive linear algebraic group acting on a smooth (not necessarily

irreducible) affine variety X. Let x0 ∈ X have a closed G orbit. Then there exists a smooth, affine,

Gx0-invariant closed subvariety (again not necessarily irreducible) V of X containing x0, and of

these objects, the following are true.

1. Gx0 is reductive. [Dre04, 2.19]

2. Let X ′ := G ×Gx0 V have the left G-action given by g′ · (g, v) = (g′g, v). The image of the

equivariant multiplication ψ : X ′ → X is a saturated open subset U of X. [Dre04, 5.3.iii]

3. The restriction of ψ to ψ−1U is strongly étale. [Dre04, 5.3.iv]

4. The stabilizer of a point (g, v) ∈ X ′ is g(Gx0 ∩Gv)g−1. [Dre04, 4.9.3]

5. There is a linear Gx0 representation Z, and a Gx0 equivariant morphism φ : V → T whose

image is a saturated open subset W of Z. [Dre04, 5.4.vi]

6. The restriction of φ to φ−1W is strongly étale. [Dre04, 5.4.vii]

7. A point (g, v) ∈ X ′ has closed G orbit if and only if v has closed Gx0 orbit, in which case

G · (g, v) = G×Gx0 Gx0v. [Dre04, 4.9.5] [Dre04, 4.9.3]
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8. A strongly étale H-equivariant morphism ϕ (for H an algebraic group) has the property that z

has closed H-orbit if and only if ϕ(z) has closed H-orbit. Moreover, the stabilizers z and ϕ(z)

are the same. [Dre04, 4.15.3]

Lemma 3.3.3. Let G be a linear algebraic group acting on an affine variety X. If x is G-stable,

then it is G0-stable, where G0 is the identity component.

Proof. Since Gx is closed in X, it suffices to prove that G0x is closed in Gx. In other words, we

may assume that X = Gx. By [Spr09, 2.3.3], G0x−G0x is the union of G0-orbits of strictly smaller

dimension than that of G0x. But the G0 stabilizer of any point in Gx is finite, so every G0 orbit

has the same dimension, and we conclude that G0x−G0x = ∅.

We now proceed to the proof of Proposition 3.3.1. The idea is to prove it in the most basic case

of a torus acting linearly on a vector space. Then we use the results above to reduce the general

case down to this basic one.

Lemma 3.3.4. Proposition 3.3.1 is true when G = T is a torus and X a linear representation of

T .

Proof. There exist characters λ1, ..., λn of T and linear coordinates for X such that t · (x1, ..., xn) =

(λ1(t)x1, ..., λn(t)xn). Since the generic point of X is stable, we may take x0 = (x01, x
0
2, ..., x

0
n) to be

a stable point with no coordinate equal to 0. It follows that
⋂n
i=1 kerλi is a finite subgroup of T ,

and therefore every point with no coordinate equal to 0 has finite stabilizer. It suffices now to show

that the hyperplanes Hj = {xj = 0} each contain points whose stabilizers are finite (in which case,

a generic point of the hyperplane will have this property).

Suppose to the contrary that Hj is a hyperplane all of whose points have positive dimensional

stabilizer; for convenience, suppose j = 1. Then, in particular, x00 = (0, x02, ..., x
0
n) has a positive

dimensional stabilizer H :=
⋂n
i=2 kerλi. Let µ be a nontrivial one parameter subgroup of H. Then,

µ(z) · x0 = (zαx01, x
0
2..., x

0
n) for some nonzero integer α (since x0 has finite stabilizer). Thus, either

limz→0 µ(z) · x0 = x00 or limz→∞ µ(z) · x0 = x00, depending on whether α is positive or negative.

In either case, we have x00 in the orbit closure of x0. But the orbit of x0 is closed, so x00 ∈ Tx0

and thus x00 has finite stabilizer, a contradiction.
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Proof of Proposition 3.3.1. It suffices to find a finite open cover of {Ui} of X with the property

each set in the cover is met by Y in codimension at least 2 (hereafter “codimension 2+”). Let U0

be the open set of stable points. Pick a point y1 of Y with closed orbit in X. Lemma 3.3.2 (2)

produces a G-invariant open subset U1 of X containing y1, which we will call a “slice neighborhood

of y1”.Therefore, Y2 := Y − U1 is a G-invariant closed subset of X. So there exists a point y2 of Y2

with closed orbit in X. Let U2 be a slice neighborhood in X of y2, and set Y3 := Y − (U1 ∪ U2).

Continue in this fashion. After finitely many steps, the sequence Y1 ⊃ Y2 ⊃ Y3 ⊃ ... of proper

containments of closed subsets terminates in the empty set, and we have a cover U1, U2, ... of X −U0

by slice neighborhoods in X of points in Y with closed orbit. Thus it suffices to prove that any slice

neighborhood through a point of Y is met by Y in codimension 2+.

To this end, pick a point y0 ∈ Y with closed orbit. We obtain ψ, X ′, and U as in 3.3.2(2). Let

Y ′ := {(g, v) ∈ X ′ : Stabilizer in G of (g, v) has positive dimension}

By 3.3.2(3) and 3.3.2(8), we have ψ−1(Y ∩ U) = Y ′. Since ψ is étale, Y ∩ U has codimension 2+

in U if and only if Y ′ has codimension 2+ in X ′. Also, since U meets the stable locus in X, there

exists a stable point in X ′ (3.3.2(8)), which - by 3.3.2(7) - we can take to be of the form (e, v0)

where v0 is a Gy0 stable point of V . We have reduced to proving the proposition for G acting on X ′.

Now we further reduce to proving the proposition for G0
y0 acting on V (note that G0

y0 is

reductive by 3.3.2(1)), although observe that V may not be irreducible. In any case, we have

already proven that V contains Gy0-stable points and hence G0
y0-stable points (Lemma 3.3.3). Let

YV := {v ∈ V : dim(Gy0 ∩Gv) > 0}. From 3.3.2(4), we have (g, v) ∈ Y ′ if and only if v ∈ YV . It

suffices to prove that YV has codimension 2+ in V .

Finally, 3.3.2(5) and 3.3.2(6) give a strongly etale morphism φ : V →W ⊆ Z, where Z is a G0
y0

representation. Note that G0
y0 = T is a torus acting linearly on Z, which has T -stable points by

3.3.2(8). From Lemma 3.3.4, the set of points YZ with positive dimensional stabilizers in Z has

codimension 2+. Since φ−1(YZ ∩W ) = YV , the proof is complete.
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de l’Institut des Hautes Études Scientifiques 100 (2004), 171–207.

[DN89] Jean-Marie Drezet and Mudumbai Seshachalu Narasimhan, Groupe de Picard des variétiés
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