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ABSTRACT  
 

Mathew Copeland Simon:  Evaluating Conservation Assessments  
in the Sandhills of North Carolina  

(Under the direction of Aaron Moody) 
 

Conservation assessments are spatially explicit techniques that assign value to areas 

based on their ability to protect natural resources such as species, habitat and environmental 

processes.  These may be spatially congruent thereby providing value-added conservation 

opportunities, or incongruent, representing trade-offs that should be considered with full 

knowledge in the conservation planning process.  However, little attention has been given to 

the congruency of multiple conservation assessment criteria, or to how a multi-criteria 

framework might be used to improve the conservation planning process.  My thesis presents 

a comparison of commonly employed conservation assessment techniques in the Sandhills 

surrounding Fort Bragg, North Carolina; biodiversity hotspots, habitat connectivity for the 

red-cockaded woodpecker (Picoides borealis), and ecosystem services (carbon storage).  My 

research shows that priority areas can be identified even when overall congruence among 

assessment criteria is low.  I also discuss the difficulty of comparing assessments and present 

a novel approach to comparing conservation assessments criteria.  
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Chapter 1: Introduction 

1.1 Problem statement and purpose 

Natural resource conservation is implemented at various levels by public and private 

land managers.  It is often a struggle for managers to determine which properties should be 

purchased, protected and managed.  Conservation assessments are spatially explicit 

techniques that assign value to areas based on their ability to protect natural resources such as 

species, habitat and environmental processes (Knight et al. 2008, Noss 2002).  Assessments 

reflect organization-specific goals, objectives and mission statements, and have become an 

integral part of the conservation planning process to help inform the placement of new 

reserves.  Although goals vary from case to case, conservation assessments often assign 

value to those elements in the landscape that if preserved will protect or restore biodiversity 

(Brooks et al. 2006, Clark and Slusher 2000, Egoh et al. 2007).   

For regional scale conservation planning, different assessment criteria will result in 

the prioritization of different parcels for land conservation. Yet it is difficult to gain 

consensus among land-management practitioners, funding organizations, NGOs and other 

stakeholders on which assessment criteria to use for conservation planning (Mace 2000).  

Assessments based on different criteria may be spatially congruent, providing value-added 

conservation opportunities, or incongruent, presenting trade-offs among different 

conservation criteria that may need to be considered simultaneously.  Little attention has 

been given, however, to the geographic congruency of different conservation assessment 
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criteria, or to how a multi-criteria framework might be used to improve the conservation 

planning process.  Explicitly examining the tradeoffs and value-added opportunities in a 

multi-assessment framework may lead to better conservation assessment models and 

facilitate consensus-building among stakeholders, while increasing the efficiency and 

efficacy of conservation management.   

According to Pimm et al. (1995) species extinction rates are as much as 1000 times 

higher than background, pre-human levels.  In response to this unprecedented species loss, 

conservation assessments often prioritize land with high biodiversity value in the form of 

endangered species habitat or biodiversity hotspots (McNeely et al. 1990, Myers 1988).  

More recently, other conservation criteria such as maintenance of habitat connectivity or 

provision of ecosystem services are increasingly used for conservation priority setting. These 

different criteria may compete for the scarce resources available for land conservation. 

Conservation planning can benefit from information regarding the trade-offs and 

value-added opportunities related to different conservation assessment criteria.  For example, 

areas of congruence, where high priority status coincides across multiple conservation 

criteria, are locations where multiple conservation goals can be accomplished simultaneously 

and arguably should be given highest conservation priority.  In a multi-criteria framework we 

can locate the congruencies and tradeoffs between different assessment criteria.  My thesis 

presents a comparison of multiple conservation assessments based on biodiversity hotspots, 

habitat corridors, and ecosystem services in the Sandhills surrounding Fort Bragg, North 

Carolina and shows that win-win areas can be identified even when overall congruence 

among assessment criteria is low. 
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1.2 Past research attempts 

Recent research on conservation assessments often emphasize the integration of 

ecosystem-service values into conservation planning (Chan et al. 2006, Egoh et al. 2007), 

incorporating socio-ecological models (Tallis and Kareiva 2006), and translating the 

recommendation of conservation research into action (Knight et al. 2008, Opdam et al. 

2008).  Efforts have also been focused on development of software tools to assist land 

managers through Geographic Information System (GIS) driven decision-support tools 

(Appendix A).  However, to date only a few studies have compared the prescribed outcomes 

of different assessment criteria in a spatially explicit manner (Chan et al. 2006, Naidoo et al. 

2008) despite recognition of the value in understanding the degree of concordance amongst 

assessments (Balvanera et al. 2001).  Unlike previous work analyzing biodiversity and 

ecosystem service congruence at global scales (Naidoo et al. 2008), this study integrates 

habitat connectivity, biodiversity hotspots and carbon storage in a finer scale-analysis of 

congruence in an 8 county area containing the Sandhills ecoregion and surrounding Fort 

Bragg, North Carolina.  This work results in specific recommendations for conservation 

within the study region.  

1.3 Research Objectives 

My research goals were 1) to implement a multi-assessment framework for 

conservation land prioritization in the North Carolina Sandhills, 2) to quantify and map 

conservation value, trade-offs and priority hotspots, and 3) to compare the multi-assessment 

framework to other conservation assessment models.  To do this I modeled conservation 

priority according to multiple conservation assessment criteria, and analyzed the spatial 

congruence (priority hotspots) and tradeoffs among them.  The different assessment models 
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included 1) biodiversity hotspots, 2) habitat connectivity for Picoides borealis (red-cockaded 

woodpecker) and 3) carbon storage as an ecosystem service (Figure 1).  In my research I 

attempted to answer the following questions: 

1. Where is the top 10% of the landscape based on each assessment? 

2. Where are the priority hotspots throughout the Sandhills region? 

3. What are the rates of congruence among the different assessment models? 

4. How effective is a priority hotspot approach relative to individual models and the 
current conservation landscape? 
 

5. Where are the tradeoffs among assessment criteria?  For example, how much of 
one criterion, like biodiversity, do you give up if you prioritize another criterion, 
such as ecosystem services? 



 

5
 

 

 

Chapter 2: Background 

2.1 Overview 

Conservation assessments are spatially explicit techniques that assign value to areas 

based on their ability to protect natural resources such as species, habitat and environmental 

processes (Knight et al. 2008, Noss 2002). Typically, conservation assessments assign value 

to those elements in the landscape that if preserved will protect or restore biodiversity 

(Brooks et al. 2006, Clark and Slusher 2000, Egoh et al. 2007) but conservation objectives 

are expanding to include many other possible assessment criteria, including ecosystem 

services, ecosystem representation, habitat connectivity, and others.   The basic conservation 

assessment approach can be used to assign value to any landscape on the basis of any of the 

above criteria.  The resulting information can be used to help identify priority areas for 

conservation.  In this way, conservation assessments supply support and information to the 

conservation planning process.   

Conservation planning and conservation assessments are often confused with one 

another, though they are two distinct areas of conservation science (Knight et al. 2006).  The 

process of conservation planning has been described as involving six distinct stages: 1) 

measure and map biodiversity, 2) identify conservation goals for the planning region, 3) 

review existing reserves, 4) select additional reserves, 5) implement conservation actions, 

and 6) management and monitoring of reserves (Margules and Pressey 2000).  Note that in 

their scheme, Margules and Pressey (2000) assumed that biodiversity would be the primary 

msimon
Oval
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prioritization criteria.  Conservation assessments occur in stages 1-4 of this scheme, and 

involve mapping the value of the landscape according to the prioritization criteria.  The key 

distinction is that conservation assessments are a subset of the planning process and do not 

include an implementation and management/monitoring strategy.   

2.2 History of conservation’s theoretical debate  

Conservation sentiment first expressed during the late 1800’s reflected a desire to 

preserve nature’s intrinsic value; that we have an ethical obligation to preserve nature and 

wilderness for its own sake as described in the writings of such naturalists as Henry Thoreau, 

John Muir, and Aldo Leopold (Kareiva and Marvier 2007).  However, Leopold also 

advocated for management in a manner beneficial to both humans and nature (Callicott 

1990).  In the early 1990’s, conservation practices shifted to sustainable landscape 

management which eventually coalesced into ecosystem management (Christensen et al. 

1996b).  Some have argued that the push for sustainable management devalued wilderness in 

its attempt to integrate humans into the ecology of conservation (Noss 1991).  Today 

attention is still largely focused on the global biodiversity crisis and the creation of protective 

nature reserves (McNeely et al. 1990), although momentum is shifting to conservation of 

ecosystem function and ecosystem services, the benefits to humans provided by natural 

systems (McCauley 2006).   

What has historically been an ad-hoc, opportunistic approach to nature reserve design 

has grown in the direction of systematic conservation plans that are science-based, objective 

driven, and where geospatial modeling is often used to prioritize areas for conservation 

(Knight and Cowling 2007).  However, Knight and Cowling (2007) claim that systematic 

conservation assessments are flawed, because they do not account for the complex social, 
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economic and political factors that stakeholders must negotiate in order to develop an 

actionable conservation strategy.  The current paradigm in conservation has also been 

criticized as operating under a binary logic that has created protected areas that are “islands 

of nature surrounded by an inimical matrix with little conservation value (Wiens 2007).”   

2.3 Conservation assessments in the context of land management 

The preservation of biodiversity is often accomplished through a single-species 

approach using an umbrella, flagship, keystone or indicator species as a shortcut (Simberloff 

1998).  By contrast, ecosystem management blends social, physical, economic and biological 

needs to sustain ecosystem composition, structure, and function (Christensen et al. 1996a).  

Empirical evidence in support of corridors includes positive relationships with plant species 

richness (Damschen 2006), preferential dispersal for many plants and animals (Haddad et al. 

2003) and enhanced movement for some habitat specialists (Gillies and St. Clair 2008).  

These studies reinforce the notion that land management decisions should also consider 

ecosystem and habitat connectivity.  However further empirical support for positive corridor 

effects on populations and communities remains ambiguous (Haddad and Tewksbury 2006).   

Currently there is significant momentum in land management planning to integrate 

ecosystem services that will provide for human natural resource needs under increasing 

population demands (Mooney et al. 2004).  The Millennium Ecosystem Assessment, a five-

year study involving nearly 1,400 experts worldwide, assessed the effects of ecosystem 

change on human well-being and identified opportunities to enhance the conservation and 

sustainable capacity of ecosystems critical for human well-being (MA 2005).   However, 

skeptics worry that valuing the landscape in terms of its ecological services will only 

perpetuate a conservation dichotomy of defining nature as being either economically 
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valuable or valueless and only worth conserving if it can be made profitable (McCauley 

2006, Wiens 2007).   

Reflecting conservation’s varied objectives, multiple conservation assessment models 

are in use.  Three main criteria for assessing conservation value include biodiversity hotspots, 

habitat connectivity, and ecosystem services.  

Biodiversity Hotspots 

A 2007 review of conservation assessments published between 1998 and 2005 found 

that 99% of studies used some measure of biodiversity (Egoh et al. 2007).  One popular and 

widespread assessment of biodiversity is the “biodiversity hotspots” approach (Myers 1988).  

This method targets areas that harbor the greatest variety of endemic (geographically 

restricted) species that are under threat.  Since most species depend directly or indirectly on 

plants for habitat or resources, endemic plants were chosen as a surrogate for total taxonomic 

diversity (Myers 1988). The idea of a biodiversity hotspot combines two distinct concepts.  

The first is biodiversity, which is distributed unevenly across the globe.  According to Myers 

et al. (2000) 1.4% of the Earth’s land surface contains 44% of all plant species and 35% of all 

vertebrates worldwide.  The second concept is the degree of threat faced by a landscape: 

certain areas are under more intense or imminent threat than others.  Based on these two 

principles, areas with the highest level of plant endemism and highest degree of threat are 

ranked highest and targeted for conservation.   

The hotspots approach is used conservation practitioners to invest scarce funds 

efficiently (Mittermeier et al. 1999) and is employed in regional analysis to prioritize areas 

particularly high in species richness and at risk of development (Reid 1998).  For example, 

the National GAP analysis program has been implemented state by state across the entire 
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United States aiming to identify ‘gaps’ in protected areas using biodiversity hotspots (Scott et 

al. 1993).  Because it promotes efficient conservation of biodiversity, the hotspots approach 

is the principal conservation assessment strategy of several large transnational conservation 

organizations including Conservation International and the World Wildlife Fund 

(Mittermeier et al. 1999, Myers 1988).   

 The hotspots approach is criticized by many and is not universally accepted as 

appropriate (Kareiva and Marvier 2003, Lombard 1995, Reid 1998).  The most prominent 

criticism is that hotspots based on different measures of rarity or different taxa may not 

overlap.  According to Lombard’s (1995) study of six different vertebrate taxa in South 

Africa, hotspots among the different species were not spatially congruent.  Studies have also 

found that hotspots of endemism, species richness and rare species occurrences are not 

congruent (Lombard 1995, Orme et al. 2005).  These studies indicate that multiple hotspot 

indices need to be used when setting hotspot priorities, not just endemic flora and brings 

attention to the fact that there are many ecological, evolutionary and anthropogenic 

mechanisms responsible for biogeographic patterns (Orme et al. 2005).  Based on all these 

critiques, assigning value based on a single index will exclude much of the world’s 

biodiversity.   

Another critique of hotspots is they are difficult to apply at the scale at which 

conservation and management decisions are made thus making regional hotspot assessments 

limited in value (Reid 1998).  A final critique, is that public support for biodiversity 

conservation can be hard to garner (Abbot and Thomas 2001), partially explaining why 

conservation campaigns are often anchored by flagship species capable of capturing the 

public’s interest or sympathy (Simberloff 1998). 
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Habitat connectivity 

Habitat connectivity and movement ecology are fast-growing areas in conservation 

biology (Holden 2006).  These research areas have their foundation in theories developed 

from island biogeography, metapopulation biology, and graph theory.  The current 

prominence of connectivity studies is due, in large part, to increases in human-induced 

landscape fragmentation (Saunders et al. 1991), leading to the wide-spread recognition that 

the degree to which the habitats are linked or connected by dispersal needs to be quantified 

(Calabrese and Fagan 2004).  The development of freely available software to quantify 

habitat fragmentation, resistance to dispersal, and landscape structure has facilitated the 

increased use of connectivity measures in resource management and conservation 

assessments (McGarigal and Marks 1995).   

Techniques for assessing connectivity vary because connectivity can be defined in 

terms of its structure or function, both of which can be measured at the habitat patch scale or 

at the landscape scale (Minor and Urban 2008).  Connectivity can also be defined and 

measured differently depending on the data available and the scale of analysis (Calabrese and 

Fagan 2004).  Structural connectivity is a landscape measure that refers to the spatial 

arrangement (size, shape, location) of habitat while functional connectivity is a measure of 

the behavioral response (in the case of animals) to the physical structure of the landscape 

(Theobald 2006).   

In the most general sense, landscape connectivity has been defined by Taylor (1993) 

as “the degree to which the landscape facilitates or impedes movement among resource 

patches.”  Some measures of landscape connectivity are extremely simple, and include those 

physical features in the landscape that influence the degree of connectedness such as the 
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amount and spatial distribution of suitable habitat (Hutchinson and Vankat 1998).  Just as 

habitat is species-specific (Hall et al. 1997), habitat connectivity should be used when 

referring to the connectivity for a single species at either the landscape or patch-scale.  

Perhaps the clearest conceptual representation of connectivity is presented by 

Calabrese and Fagan (2004).  In this paper, connectivity is conceptualized in terms of: 1) 

structural connectivity, 2) potential connectivity and 3) actual connectivity.  Structural 

connectivity commonly describes the size, shape, or location of habitat patches, like the 

example given above.  Potential connectivity combines structural with limited dispersal 

information or movement behavior.  Actual connectivity relates measured individual 

movements to the landscape.  From a cost-benefit perspective actual connectivity is the most 

difficult or costly to measure while structural connectivity is readily quantified in a GIS.  

However the relationship between structural and actual connectivity remains ill-defined and 

requires further empirical support (Calabrese and Fagan 2004).  Potential connectivity is 

commonly analyzed using graph analysis, discussed below in further detail.  

Increasingly, conservation biology and planning research is relying on graph theory to 

better understand the effects of fragmentation on the landscape (Urban et al. 2009).  Graph 

theory presents conservation planners with a concise spatial data structure that represents 

habitat patches as nodes (points) connected by edges (lines) (Urban and Keitt 2001).  In this 

framework it is relatively easy to analyze the connectivity of a landscape under different 

development scenarios or conservation plans.  For example, nodes can be removed or added, 

or edges can be thinned, and the effects on the overall connectivity of the graph can be 

assessed.  Graphs are commonly recognized as having the best benefit-to-effort ratio for 

characterizing connectivity at large scales (Calabrese and Fagan 2004) and providing a 
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concise, unifying solution to evaluating multiple aspects of connectivity at various scales 

(Minor and Urban 2008).   

Likely the most common application of connectivity research is in the design and 

implementation of corridors.  While studies have found positive corridor effects on species 

movement (Haddad et al. 2003, Gillies and St. Clair 2008) and richness (Damschen 2006), 

empirical support for positive corridor effects on populations and communities remains 

ambiguous (Haddad and Tewksbury 2006).  Enhancing connectivity alone is not a panacea 

for conservation as there must be “movement with consequences” (Wiens 2006).  That is, 

species movement is only important as it relates to population dynamics, gene flow and 

genetic diversification of populations and predator prey-dynamics (Crooks and Sanjayan 

2006).  It has also been shown that there are costs to increasing connectivity.  For example, 

corridors could facilitate the spread of invasive species (Hutchinson and Vankat 1998) and 

disease (Jules et al. 2002) and promote disturbance (With 2004).   

Ecosystem services 

In many cases throughout the world, conservation reserves have forced people from 

their land.  In the process, local inhabitants have been deprived of their sources of food, 

shelter and income resulting in resentment and backlash against the notion of preserving 

‘biodiversity’ and ‘habitat’ (Kareiva and Marvier 2007).  Partly in response to this backlash, 

the need to reframe the motivations and goals of conservation were recognized, and the 

concepts of community-based conservation and conservation of ecosystem services have 

emerged.  It is recognized that many of the traditional mechanisms employed to curb species-

loss, ensure functioning ecosystems, and protect natural resources remain inadequate 

(Balmford et al. 2005, MA 2005, Sec. CBD 2006).  By assigning a monetary value on the 
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services that healthy ecosystems provide to human populations, conservationists are now 

turning to market forces to safeguard ecosystems (Aldhous and Holmes 2007).   

Ecosystem services are defined as the human benefits obtained from ecological 

systems (Costanza et al. 1998).  An early conception of ecosystem services describes indirect 

and direct services from nature (McNeely et al. 1990).  Indirect services include watershed 

protection, photosynthesis, regulation of climate, and production of soil.  Direct ecosystem 

services can be broken down into non-commercial (firewood, fodder, game meat) and 

commercially harvested (timber, fish, ivory, medicinal plants).  The Millennium Ecosystem 

Assessment (2005) identified four categories of ecosystem services: 1) supporting (e.g., 

nutrient cycling, soil formation, primary production, crop pollination, pest and disease 

control), 2) provisioning (e.g., food, fresh water, wood and fiber, fuel), 3) regulating (e.g., 

climate, flood, disease, water purification, carbon sequestration), and 4) cultural (e.g., 

aesthetic, spiritual, educational, recreation, ecotourism, inspirational).  A fifth ecosystem 

service category is preservation, or the conservation of options that ensures genetic diversity 

for future use (Daily et al. 2000).  This fifth ecosystem service is also referred to as 

biodiversity.   

Being a relatively new area of inquiry, ecosystem service research has largely focused 

on efforts to quantify and map ecosystem values.  The Natural Capital Project (NCP) is a 

joint venture launched in October 2006 between The Woods Institute for the Environment at 

Stanford University, The Nature Conservancy and the World Wildlife Fund.  The NCP aims 

to “align economic forces with conservation by developing tools that make incorporating 

natural capital into decisions easy (NCP 2006).”  Part of this project has involved the 

development of a set of GIS tools called Integrated Valuation of Ecosystem Services and 
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Tradeoffs (InVEST).  This toolset helps stakeholders model and map the economic and 

biological implications of various land-use decisions including carbon storage and 

sequestration, water resources (drinking, irrigation, power), flood mitigation, native 

pollination, commodity production, biodiversity, recreation and tourism, and cultural and 

aesthetic-use.   

The strength of an ecosystem service approach is its broad public appeal and holistic 

landscape and ecosystem approach to conservation, which is similar to ecosystem 

management.  Ecosystem management has essentially laid the groundwork for linking 

ecosystem health with human health (Christensen et al. 1996a).  Ecosystem services also 

have the benefit of valuing the function of the entire ecosystem and not just the requirements 

of a single-species such as an umbrella species that requires large tracts of land (Simberloff 

1998).   

Much progress has been made in estimating the economic value of a particular 

landscape, however the valuation is far from perfect.  These efforts represent a ‘second-best’ 

strategy of attempting to assign value to ecosystem services greater than their current market 

value of zero (Troy and Wilson 2006).  Ecosystems are complex, both dynamic and adaptive 

systems which are subject to internal changes such as natural succession and external forces 

such as climate variability (Arrow et al. 2000).  As a result, the amount and quality of service 

that a particular ecosystem provides can vary widely.  It has therefore proven difficult to 

assign accurate service-values in these complex systems.  

With these uncertainties it is not surprising that, although ecosystem services are 

often mentioned in conservation planning, they are rarely explicitly included (Egoh et al. 

2007).  A significant challenge of integrating ecosystem services into conservation 
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assessments is the lack of available empirical economic valuation studies (Troy and Wilson 

2006).  There is also resistance to the notion of trading aspects of an ecosystem as a 

commodity (Robertson 2006) and potentially devaluing wilderness preservation in the pursuit 

of sustainable ecosystem management (Noss 1991).  However, there is some market 

momentum in the regulating services of water quality in the form of wetland mitigation 

banking, and in carbon sequestration and storage in the form of carbon-trading. 

Currently there are only two established carbon offset markets that allow for trading 

credits from sequestration: the Chicago Climate Exchange (CCX) and the European Climate 

Exchange (ECX).  Financial incentives to dissuade the release of carbon through 

deforestation practices are being integrated into a follow-up agreement on the Kyoto 

Protocol, but are currently not established (Angelsen 2008, Miles 2008).  However, the 

volatility of the markets represents a potential pitfall in applying market principles to 

conservation.  Currently sequestered carbon is trading at around $USD 20 per metric ton of 

CO2 off from its peak of $USD 74 in June 2008 (CCX 2009).   

2.4 Thesis Aim 

The three conservation assessment approaches described above are potentially 

divergent and in a field where funds are scarce it is important to avoid duplicate efforts.  To 

determine if there are synergies or gaps, this study will evaluate the most commonly 

employed conservation assessment techniques.  This study compares assessments based on 

biodiversity hotspots, habitat connectivity for the red-cockaded woodpecker (Picoides 

borealis), and carbon storage as an ecosystem service.  This is followed by a comparative 

analysis of each assessment and comparison with several commonly used statewide 

assessments.  Habitat loss and fragmentation in the ecologically rich Sandhills ecoregion of 
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North Carolina provides an interesting and timely system for this case study.  My research 

provides an analysis of this landscape and identifies areas of highest conservation value.   



 

 
 

 

 

Chapter 3: Protecting the hotspots of hotspots: A study of congruency in conservation 
 

3.1 Introduction 

There are different criteria on which to assess the conservation value of landscape 

parcels.  These may be spatially congruent thereby providing value-added conservation 

opportunities, or incongruent, representing trade-offs that should be considered with full 

knowledge in the conservation planning process.  However, little attention has been given to 

the congruence of multiple conservation assessment criteria, or to how a multi-criteria 

framework might be used to improve the conservation planning process.   

The conservation of biodiversity hotspots has been one of the dominant paradigms of 

conservation planning for the past decade.  However, the paradigm is shifting to protection of 

lands that enhance or promote habitat connectivity.  Conservation trends are also increasingly 

relying on market-forces and the human-derived benefits ecosystems provide.  In this thesis I 

present a comparison of multiple conservation assessments for the sandhills surrounding Fort 

Bragg, North Carolina.  This work was conducted in four stages: 1) assemble a spatial 

database with the capacity to support multiple conservation assessment models; 2) implement 

the conservation assessment models to construct multiple land protection scenarios for the 

eight county sandhills area; 3) analyze the congruencies and trade-offs among these 

assessments and some of the more commonly implemented assessments in the region; and 4) 

assess the value of the current conservation network within the study area. 
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3.2 Study Area 

Physical landscape and context 

The Sandhills Region lies between the Piedmont and Coastal Plain of North Carolina 

and Georgia and ranges in elevation from below sea level to 946 feet above sea level (Figure 

2).  The characteristic deep and porous sandy soils are thought to be remnants of the advance 

and retreat of ancient seas and eroded Piedmont clays washed downstream and deposited 

over time (U.S. Fish and Wildlife Service 2007).  This heterogeneous landscape of rolling, 

sandy hills and valleys formed by wind and water erosion hosts a diverse group of plant 

communities (U.S. Fish and Wildlife Service 2007).  The unusually high species richness is 

attributed to the spatial and temporal variation in site conditions coupled with a fire regime of 

frequent low-intensity burns that creates an open park-like understory (Landers 1995, 

Mitchell et al. 2006).  This region is often referred to as the center of southeastern 

biodiversity (Gilliam et al. 2006).  A comprehensive inventory of vascular flora in 2006 

identified over 1,200 species representing 143 families and 490 genera on Fort Bragg and 

Weymoth Woods alone, an area covering approximately 74,000 hectares (Sorrie 2006).  

Remarkably the plant species diversity per square meter in the longleaf pine (Pinus palustris) 

ecosystems is one of the highest outside of the tropics (Peet and Allard 1993).   

Longleaf pine forests once occupied over 90 million acres from Virginia to Florida 

and westward to Texas (Ft. Bragg ESB 2007).  It is estimated that the current range of this 

ecosystem still spans the same geographic extent but is highly fragmented with only 2.7 

million acres or approximately 2.4% to 4% remaining (Jose et al. 2007, The Nature 

Conservancy 2007).  Old-growth longleaf is now considered to be completely extirpated 

from its historic range (Gilliam et al. 2006). 
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Sandhills delineation; stakeholders and interested parties 

The Sandhills region is defined differently by the numerous land management and 

conservation organizations who work in the area.  The Environmental Protection Agency 

delineates ecoregions which represent similar ecosystems based on type, quality and quantity 

of environmental resources (EPA Western Ecology Division 2007). The level IV ecoregion, 

“Sand Hills,” covers just over one million acres (405,000 hectares) in nine North Carolina 

counties (Figure 2).  The Nature Conservancy (TNC) has historically used this to define the 

Sandhills Region, but also has partnered with numerous organizations in the area to help 

form The North Carolina Conservation Partnership (NCSCP), whose mission is to preserve 

the longleaf pine ecosystem and its dependent species in the N.C. Sandhills.  This partnership 

includes most of the key stakeholders in natural resource management in the area including 

the N.C. Division of Forest Resources, N.C. Wildlife Resources Commission, TNC, 

Sandhills Area Land Trust, Sandhills Ecological Institution, U.S. Army Environmental 

Command (Ft. Bragg), and the U.S. Fish and Wildlife Service.  The NCSCP defines the 

Sandhills as an eight-county area including Cumberland, Harnett, Hoke, Lee, Montgomery, 

Moore, Richmond, and Scotland counties (Figure 2).  This definition of the Sandhills was 

adopted as the study area for this project. 

Military Stewardship; Ft. Bragg 

However contradictory “conservation” and “military” may seem, the United States 

Department of Defense has an important role to play as the third largest land holder in a 

federal government (Goodman 1996) which manages over 670 million acres of land or 

roughly 1/3 of the land area of the United States (National Atlas 2007).  Perhaps the most 

prominent feature of the Sandhills is Fort Bragg, a military installation occupying around 
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63,000 hectares, approximately 15% of the Sandhills and home to the largest expanse of 

intact healthy longleaf pine as well as the U.S. Army’s 82nd Airborne and Special Operations 

Force.  Ecosystem and wildlife management are central to land-stewardship activities on 

many military installations.  However, development pressures and land fragmentation around 

military installations undermine efforts to manage on-base ecosystems and the wildlife that 

they support. On Fort Bragg, land management has focused primarily on the recovery of the 

red-cockaded woodpecker (Picoides borealis, here after referred to as RCW), a federally 

endangered species whose historical range covered the Piedmont and Coastal plain from New 

Jersey to Texas and inland to Tennessee, Kentucky, Oklahoma and Missouri (AOU 1983).  

This species now occupies only a fraction of its range and is restricted to small patches of 

longleaf pine forest in coastal states (Walters 1991).  

Habitat management of RCW is one of the most extensive management programs for 

a fragmented population in the world (Crooks and Sanjayan 2006).  Ft. Bragg met the U.S. 

Fish and Wildlife recovery goals for RCW on base in June 2006.  However there remains a 

need to assess the effectiveness of ecosystem management as well as the value of RCW as an 

umbrella species.  Ft. Bragg hosts multiple federally endangered species and each has 

different habitat requirements (Appendix B).  Moreover, Ft. Bragg is interested in expanding 

their land holdings to enhance the habitat connectivity of the endangered species on base.  

However the region surrounding the base is quickly becoming fragmented by residential and 

commercial development further isolating the remaining longleaf pine forest in the area 

(Figure 3).  It is precisely this threat which motivated this study of trade-offs and congruency 

in conservation assessment models and to identify high priority lands for conservation in the 

Sandhills. 
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3.3 Methods 

Conducting the conservation assessments involved four steps.  The first step was to 

compile the necessary data to carry out the assessments (sec. 3.3.1).  This also included 

preparation of the data layers and evaluating the available software packages capable of this 

type of analysis.  The next step involved three distinct methods to assess the conservation 

value of the landscape; biodiversity hotspots, connectivity and carbon storage (sec. 3.3.2).  

The three assessments were compared to each other and the One NC Naturally Conservation 

Planning Tool’s Biodiversity and Wildlife Habitat Assessment (BWHA), and GAP modeled 

vertebrate diversity (sec. 3.3.3, (McKerrow et al. 2006)).  Finally the existing conservation 

network of protected lands was described in terms of species richness, connectivity, carbon 

storage, GAP vertebrate diversity, and the BWHA (sec. 3.3.4). 

3.3.1 Data Description and Software  

 When considering the data needs for the conservation assessments one goal was to 

use data that was readily available, free, and that had statewide coverage (Appendix C).  In 

some cases data was excluded from use if it wasn’t available for the entire project study area.  

National Wetlands Inventory (NWI) was considered for use as these data are commonly used 

in conservation assessments.  In my previous work, NWI boundaries were found to be very 

inaccurate when compared to actual on-the-ground delineation and was therefore excluded 

from modeling efforts.  However, NWI is part of the Conservation Planning Tool’s Wildlife 

and Biodiversity Assessment which is used for comparison. 

The first step in data preparation was to decide on a minimum mapping unit (mmu) 

and projection.  To meet the goal of using readily available data that could be obtained free 

of cost, I chose the 30 meter mmu standard.  The Multi-Resolution Land Characteristics 
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Consortium (MRLC) has developed the 2001 National Land Cover Database (NLCD) at a 

spatial resolution of 30 meters for the entire United States.  This categorical data is projected 

in Albers NAD 83 (m) and it was determined that projecting this dataset would result in the 

greatest amount of information loss.  Since another goal of the project was to expand the 

study area extent beyond the state, Albers NAD 83 was adopted for the projection of all data.  

After all necessary data was projected to Albers it was clipped to the project extent area. 

A second preparatory step involved exploring the software available to land managers 

and researchers to conduct conservation assessments and planning.  There are many GIS 

tools available for conservation planning and the list is growing (Appendix A).  To choose 

appropriate software for this analysis I had two criteria; functionality and compatibility.  

Future analysis would require a reassessment of available software.  Software packages that 

were in beta release (e.g. CircuitScape) were avoided unless they were the only option 

(InVEST).  Since the analysis was spatially explicit, a raster approach was taken.  A 

visualization component was also a criterion, which excluded Portfolio.  Tools that worked in 

ESRI’s ArcGIS environment were also preferred as it is the industry standard for GIS 

analysis.   

To model species richness I used a statistical distribution model based on maximum 

entropy (Maxent) for its simplicity, interpretability, processing efficiency and open-source 

access.  Maxent has been shown to perform well in comparison with alternative approaches 

to prediction of species’ distributions (Elith et al. 2006).  To map connectivity, I used 

FunConn since it models functional connectivity and maps multiple pathways between all 

patches, not just adjacent patches.  This is an improvement upon traditional least-cost 

approaches and produces a graph that can be analyzed through a variety of landscape metrics.  
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Another software package, CorridorDesigner, is primarily used to connect blocks of wildlife 

habitat, not to model the connectivity of the entire landscape.  Since the Natural Assets 

Information System is a proprietary piece of software, InVEST was used to map carbon 

storage (Nelson et al. 2009).   

3.3.2 Analytical Methods 

Biodiversity Hotspots 

A modification of the classic biodiversity hotspots approach was implemented to 

identify regional Sandhills hotspots.  This approach identified areas with the highest 

concentration of endemic, endangered, threatened or rare (EETR) vascular plant species 

habitat under the greatest threat of development.  This was achieved in two phases; modeling 

EETR habitat and creating a development threat proxy.  

Modeling EETR habitat 

There were three distinct process steps to modeling rare species habitat; 1) 

preparation of sample data, 2) collection and creation of environmental variables, and 3) 

Maxent ecological niche modeling.  To identify EETR species present in the Sandhills I 

supplemented the International Union for Conservation of Nature (IUCN) Red List of 

Threatened Species with the Natural Heritage Program (NHP) Natural Heritage Element 

Occurrence (NHEO) coverages.  Environmental variables were either used as provided or 

developed from a digital elevation model (Appendix C).  Detailed process steps and 

descriptions of each variable can be found in Appendix D.  These data were supplied as 

predictive surfaces to Maxent, a maximum entropy model for predictive mapping of species 

potential geographic distributions using species occurrence data and environmental variables 

(Phillips 2006, 2008).   
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Preparation of sample data 

The NHEO data contain polygons delineating known populations of plants, animals, 

exemplary or unique natural communities and important animal assemblages for all of North 

Carolina and range in size from 38 m2 to over 30,000 ha.  For the purpose of this analysis 

only vascular plant species were used.  The NHEO coverage includes endangered, 

threatened, special concern, significantly rare and endemic species.  The species occurrence 

data was obtained from the NHP on November 20th 2008 with Misty Buchanan’s assistance, 

a Natural Heritage Program botanist.   

A systematic filtering process was undertaken first to ensure accurate representation 

of species occurrences.  All records with an estimated accuracy of very low or low and with 

uncertainty distances greater than 100 meters were deleted.  Element occurrence records 

classified as destroyed or historic were excluded from this analysis and spatially redundant 

records were omitted.  The final outcome from the above filtering was a single polygon 

coverage with 1686 records for 131 vascular plant species. 

Maxent requires species presence localities to be geolocated.  Since the NHEO 

polygons represent patches of habitat where a species has been found, a strategy to populate 

the polygons with sample points was developed.  I used a stratified random sampling scheme 

within each polygon based on area, accuracy and polygon shape, and enforced a minimum 

distance of 30 meters between samples points (Table 1, Appendix E, (Beyer 2004)).  I 

referred to the NHP Guidelines for Determining Representation Accuracy to determine the 

density of sample points for features.  
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Environmental variable collection and creation 

The next step was to gather appropriate environmental variables for modeling 

potential rare vascular plant species distribution (Table 2).  Detailed descriptions and process 

steps for the creation of the environmental grids can be found in Appendix C and D.  Aspect, 

elevation, slope, relative slope position (rsp, (Wilds 1996)), solar radiation, topographic 

relative moisture index (trmi, (Parker 1982)), and wetness index (Beven and Kirkby 1979) 

were all derived from the digital elevation model (DEM).  This DEM was created by the 

NCDOT GIS department from LiDAR data collected by the North Carolina Floodplain 

Mapping Program.  The NCDOT compiled the data to a 20 foot cell size and is distributed by 

county.  Using ArcInfo Workstation all 100 counties were merged together.  The resulting 

grid was resampled using cubic convolution and reprojected from North Carolina State Plane 

NAD 83 ft to Albers NAD 83 m, at a 30 meter spatial resolution.  ArcInfo Workstation was 

then used to derive aspect, rsp and trmi.  ArcToolbox was used to create the solar radiation 

index.  The Wetness Index was created using the Terrain Analysis System (TAS) (Lindsay 

2005).  Precipitation and temperature were obtained from an 18-year annual average 

produced by Daymet (Thornton et al. 1997).  The National Land Cover Database 2001 

provided both land use/land cover and canopy cover data produced by the Multi-Resolution 

Land Characteristics Consortium.  

Maxent Ecological Niche Modeling and Richness Maps 

Potential EETR plant species distribution was modeled based on the principle of 

maximum entropy (Maxent) using species presences only (Phillips et al. 2004, Phillips 

2006).  Phillips et al. (2006) provides a concise mathematical definition of Maxent and its 

application to species distribution modeling in their paper introducing the model.  Maxent is 
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a machine learning, presence only species distribution model and has been shown to be 

effective with sample sizes as low as five (Pearson et al. 2007).  It also performs well in 

comparison with alternative models such as GARP, BIOCLIM and commonly used 

generalized additive models (Elith et al. 2006).  For my analysis only species with at least 10 

occurrence records were used.   

Unlike typical approaches to habitat modeling that are discriminative and distinguish 

habitat from non-habitat, Maxent characterizes habitat samples in themselves, without 

reference to other absence samples (Urban 2008).  The optimal probability distribution based 

on a set of environmental constraints is sought.  This approach attempts to map the 

probability distribution of maximum entropy, that which is closest to uniform, subject to the 

constraint that the expected value of each environmental variable under this estimated 

distribution matches its empirical range (Phillips et al. 2004, Phillips 2006).   

In order to use the Maxent model all that is needed are species occurrence records 

along with a set of environmental variables that are thought to influence the suitability of the 

environment for the species in question.  Maxent was run with the environmental variables in 

Table 2 and the presence locations derived from the NHP data described above.  The model 

was implemented using version 3.2.19 of the software developed by S. Phillips and 

colleagues (for free download at: http://www.cs.princeton.edu/~schapire/maxent/).  

Recommended default values were used for the convergence threshold (0.001%) and 

maximum number of iterations (500).  The maximum number of background points was 10 

000 and 25% of occurrence samples were withheld randomly for testing the output model.  

See Appendix F and G for the screen shot of the GUI and the Maxent log.   
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 Species range maps were created for each species based on the balanced logistic 

threshold.  This threshold is simply the logistic cutoff value that distinguishes habitat from 

non-habitat.  Richness maps were created by running a script (see Appendix H) that took the 

output ascii grids from Maxent and converted them to binary range maps.  The ascii grids 

were converted to ArcGIS grids and summed up to get a total number of potential species per 

pixel.   

Development Threat Proxy – SLI 

 Areas are defined as hotspots based on both degree of threat and richness.  For areas 

of high richness, the degree of threat is analyzed.  In Myers et al. (2000), if less than 70% of 

the “primary vegetation” remains in an area then it qualifies as a biodiversity hotspot on the 

risk dimension.  I assessed the degree of threat using the Strategic Lands Inventory (SLI). 

The second release of the SLI was carried out by The Conservation Fund and North Carolina 

Center for Geographical Information and Analysis based on work initially conducted by the 

Sustainable Sandhills Partnership and the BRAC Regional Taskforce.  This release was 

completed in November 2008 (TCF and NCCGIA 2008).   

The SLI ranks the suitability of each 30 m pixel for each of six types of land use 

using a scale from 1-9 based on landscape attributes relating to infrastructure, site location 

preference, and known land constraints. Three of the six land uses are relevant for 

development; commercial, industrial and residential.  These three SLI land use models were 

used to develop a proxy for development threat.  

From these data I determined, for each pixel, the suitability for residential, 

commercial, or industrial development.  I then created a composite development risk index 

(CDRI) for each pixel based on its priority level in the three development categories 
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(Appendix I & J).  For example, a grid value of 60 indicates those pixels which were 

classified as highly suitable (7-9) for industrial, residential and commercial development.  A 

value of 20 indicates areas which are highly suitable (7-9) for industrial development only.  

The three CDRI maps represent highest risk, high risk and moderate risk for development.  

The SLI model was then re-classified in a number of ways in order to create binary maps that 

depict areas of highest risk (value = 60), high-moderate risk (values = 40-70), and moderate 

risk (values = 20, 30, 80).  Summing the three models together also created a continuous 

development model. 

Producing Hotspot Maps 

 Biodiversity hotspots are typically defined as ecoregions containing at least 0.5% of 

the world’s 300,000 plant species as endemics which translates as 1500 total (Myers et al. 

2000).  The most recent statewide inventory for North Carolina recorded 18 endemics and 

4242 vascular plant species (Buchanan and Finnegan 2008). There were 1715 total plant 

species in the eight county area according to the USDA plants inventory, only one of which 

is endemic (USDA and NRCS 2009).  However, in a study compiling vascular flora data 

surveys from 1965 to 2003 of Fort Bragg and Weymouth Woods Sandhills Nature Preserve 

five endemics were recorded (Sorrie 2006).  By using the traditional mechanism of defining a 

hotspot, 0.5% of the total number of vascular plant species in an area, a statewide hotspot 

(4242 plant species) would have to contain 21 endemics and a regional Sandhills hotspot 

(1715 plant species) would have to contain 9 endemics.  Since these thresholds exceed the 

total number of endemics in the state and likely the region, the traditional definition of a 

hotspot was amended to include endangered, threatened and rare (ETR) species.  The 

inclusion of ETR species also addresses one of the common criticisms of incongruence of 
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hotspots among rare and endemic species (Lombard 1995, Orme et al. 2005).  Species cutoffs 

of 21 (statewide), 15 (halfway in between scales), and 9 (regional) were used as three degrees 

of hotspot priorities.   

Hotspot maps were produced in two ways.  Three binary hotspot maps were created 

by multiplying the binary richness map (n >= 21, 15 and 9) by the three CDRI maps 

described above (highest, high, moderate).  Another way to conceptualize these three binary 

maps is as inclusive, moderate, and stringent.  A continuous hotspot index was also created 

by constraining (normalizing) the value of the richness and development models between 0-

100.  Assuming equal weight, the two models were multiplied together to obtain a continuous 

hotspot index.  The final step for both binary and continuous models was to mask out land 

not at risk of being developed that is already in the conservation network; lands managed for 

conservation, open space, state parks, conservation easements, and other managed areas.   

Habitat connectivity for the RCW 

The first step in modeling habitat connectivity was preparation of a land use/land 

change map.  The next step was to model habitat connectivity using the FunConn toolset for 

ArcGIS. (Theobald 2006, Theobald et al. 2006).  I used FunConn to produce a landscape 

network that was analyzed using minimum spanning trees to describe the most efficient path 

of connecting all patches in a network. 

Land Use/Land Cover reclassification 

The landscape characterization (Appendix K) was devised based on review of the 

USFW RCW Recovery Plan (U.S. Fish and Wildlife Service 2003), relevant literature 

describing the habitat affinities for RCW (Walters 1991), and similar studies which defined 

relevant RCW land classes (Bruggeman and Jones 2008).  The land classes that were deemed 
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important for RCW movement and habitat selection are longleaf pine, other pines, hardwood, 

open and urban.  Longleaf pine is the preferred habitat for RCWs, offering the least 

resistance to movement.  Sub-optimal habitat is assumed to offer more resistance.  As 

described in the recovery plan RCWs avoid moving through open areas or areas with a dense 

hardwood understory.  

Once the land use types were determined, NLCD and GAP land cover data were 

combined and reclassified (Appendix K).  In order to map longleaf pine the land cover data 

created by the Southeast GAP Analysis Program was used.  Those NLCD cells classified as 

evergreen or mixed forest were grouped and then classified as longleaf pine if they were 

mapped as any form of longleaf in the GAP data.  The remaining classes were mapped by 

collapsing similar classes together (Appendix K).   

Functional connectivity and FunConn 

In order to map functional connectivity for the RCW, a landscape network was 

created and analyzed using FunConn tools for ArcGIS (Theobald et al. 2006).  A landscape 

network is similar to the traditional graph analyzed in graph theory (Urban and Keitt 2001) 

which stores both the topology of the graph and the topology of the nodes and edges 

(Theobald 2006).  The landscape network represents habitat patch connectivity and contains 

nodes, patches, edges, linkages, corridors and relationship tables (Figure 4).   

Connectivity was modeled and then analyzed with FunConn in two stages.  The first 

stage built the landscape network by creating a habitat quality raster and then defining 

functional patches.  Functional patches are based on the species’ minimum foraging 

requirements and its minimum home range.  The second stage involved analysis of the 

landscape network by calculating the minimum spanning tree and thinning edges.  
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Implementing FunConn required estimation of the following parameters; 1) minimum patch 

size, 2) patch/foraging radius, 3) habitat quality values per land class, 4) habitat quality 

threshold and 5) the resistance to movement through each land class.   

Estimating Parameters  

The first step in estimating parameters was a literature review (Appendix L).  Many 

methods have been used to estimate RCW home-range (patch) size with results that range 

from 40.5 to 161.9 ha (U.S. Fish and Wildlife Service 2003).  This study used the 

recommendations from the U.S. Fish and Wildlife Recovery Plan that stipulates a minimum 

of 49 ha of good quality habitat (U.S. Fish and Wildlife Service 2003).  The foraging radius 

is also given in the recovery plan as 800 meters. 

Habitat quality values are often determined through expert opinion.  To take a more 

objective approach, I implemented a maximum entropy approach to species modeling with 

binary land classes (longleaf pine, other pine, hardwood, urban, and open) as the 

environmental variables (Phillips et al. 2004).  The lambda values are used in the logistic 

output and their relative magnitudes describe the weight or importance of each variable in 

creating the potential distribution.  These values were re-scaled from 0-100 to get habitat 

quality values for each land class (Appendix M).   

The resource quality threshold typically lies near 75-80 (Theobald et al. 2006) but for 

the RCW a lower threshold was used.  According to research conducted by Walters et al. 

(2002) defining quality of red-cockaded woodpecker foraging habitat in the Sandhills of 

North Carolina, of the 30 groups studied 13 contained no habitat that met their definition of 

high quality habitat .  However, this does lend support to the idea that the red-cockaded 

woodpecker has the capacity to occupy patches of forest that are sub-optimal or medium 
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quality.  Therefore a habitat quality threshold of 60 was used, meaning that there has to be at 

least one pixel classified as longleaf pine (100) per nine-cell neighborhood (Appendix M).   

To assign resistance values, the dispersal behavior preferences of RCW modeled by 

Bruggeman and Jones (2008) were adopted.  In this research old-growth longleaf pine was 

twice as attractive (permeable) for dispersal movement as restored second-growth longleaf 

pine, second growth longleaf pine was 2.5 times as attractive as pine-hardwood, and pine-

hardwood was 4 times as attractive as the non-forested cells.  In my study longleaf pine (old-

growth above) is twice as attractive as other pine (second-growth).  Other pines are 2.5 times 

as attractive as hardwood and hardwood is 4 times more permeable than open areas 

(Appendix M).   

Graph Analysis 

Graph theory presents conservation planners with a concise spatial data structure that 

represents habitat patches as nodes (points) connected by edges between nodes (Urban and 

Keitt 2001).  A landscape network is analyzed using traditional graph theory and has four 

prominent characteristics (Theobald 2006).  First, landscape networks store both the topology 

of the graph and the topology of the nodes and edges (Figure 4).  Second, nodes represent 

functionally defined habitat patches.  Third, edges are weighted by the relative representation 

of land cover types using cost-weighted distance.  Finally, landscape networks employ planar 

graph algorithms (2-D space, edges do not cross one another) and recognize stepping stone 

movement (Theobald 2006).   

Three landscape networks were created and analyzed.  All parameters were held 

constant except the cost threshold (qn = 5, 10, 25) which resulted in different edges, linkages 

and corridors.  Next the minimum spanning tree was calculated based on linkage resistance.  
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The minimum spanning tree represents the least resistant set of linkages that connects all 

nodes.  Since FunConn produces multiple corridors between patches only those corridors that 

made up the minimum spanning tree were used.  Three binary grids were then produced 

which contained the patches and corridors for the different least-cost path thresholds.  

Finally, edges were thinned to the median dispersal distance to measure how connected 

populations were.   

Ecosystem Services; carbon storage  

 The InVEST carbon tool quantifies carbon storage based on the sizes of four pools: 

aboveground biomass, belowground biomass, soil and dead organic matter.  The first step to 

mapping carbon stores was to determine which land cover classes the average carbon storage 

would be summarized for.  Next, a literature search was conducted to determine the amount 

of carbon stored in each pool for each cover class.  Finally, the InVEST model was run and 

the results were analyzed. 

Land cover classification 

 Local field estimates for detailed land cover classes are the ideal data source, however 

these were not available.  Therefore, land cover classes were reclassified into six broad land-

use categories set forth by the Intergovernmental Panel on Climate Change (IPCC) for 

consistent representation of lands; forestland, grassland, cropland, wetland, settlement and 

other (Appendix K).   

Estimating carbon pools 

 Since local field estimates were not available, estimates were drawn from a literature 

review of the available economic valuation studies.  Where appropriate estimates could not 

be found the IPCC default values were used or the InVEST defaults (IPCC 2006).  The most 
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accurate source of data was The Carbon Online Estimator (COLE) which provided carbon 

characteristics of forested land in the aboveground, belowground, soil and dead carbon pools.  

COLE draws upon the available Forest Inventory Analysis (FIA) data and can be 

summarized for individual counties.  COLE was used to generate report 1605(b) for North 

Carolina for the 8-county project study area on October 28, 2008.  The estimates and their 

sources are summarized in Table 3.   

InVEST carbon modeling 

 Inputs to the InVEST carbon model included the reclassified land cover discussed 

above and the carbon pool estimates in Table 3.  The model output for carbon storage is a 

single raster surface totaling the amount of carbon from all four pools combined.  Mapping 

carbon sequestration requires a future land cover map and was not available for this study.  

Refer to Appendix G for an image of the model. 

3.3.3 Comparative Analysis 

Two analyses were conducted to compare the conservation assessments; pixel based 

and parcel/area based.  First the three binary assessments were compared in a congruence 

table (Table 4). This was created by combining the grids and analyzing the area of overlap 

between assessments.  The congruence table answers the question; If you preserve the entire 

area of one binary assessment how much of the other two assessments are you also 

preserving?  Next a parcel analysis was conducted whereby different measures of the 

conservation value were calculated for each tax parcel.  Parcels that were smaller than two 

acres were excluded from this analysis (8100 m2, a nine-cell neighborhood).  The mean, 

median, standard deviation and sum was calculated for the rare plant habitat, hotspots index, 

and total carbon within each parcel.  The total area of patch and corridor (qn = 10) were also 
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calculated per parcel.  Conservation value was summarized for private and 

protected/managed land separately.  Parcels were then ranked based on different conservation 

values to determine the top 10% of the landscape for each assessment.   

Parcels were ranked based on two different priorities; per-unit area and area-

weighted.  In this scenario, those parcels with the highest density of rare species habitat and 

total carbon per hectare were ranked highest.  The area-weighted ranking was implemented 

by multiplying the mean habitat score, mean carbon, and mean hotspot index by the area of 

each parcel.  This technique favored larger parcels.  To rank parcels based on connectivity 

those parcels with the highest proportion of patch and corridor were ranked highest.   

After parcels were ranked the conservation value of each assessment was 

accumulated to get a running sum of total habitat score, carbon, hectares of corridor and 

patch and accumulated mean index.  To compare the assessments the accumulated 

conservation value was scaled from 0-1 and plotted against accumulated area to simulate 

building the reserve by adding parcels.  

The assessments were then compared to the Southeast GAP Analysis Project 

vertebrate predicted distribution maps, hereafter referred to as GAP richness (McKerrow et 

al. 2006).  The GAP richness data is a compilation of habitat models for 606 species. 

Comparisons were also made to the Biodiversity and Wildlife Habitat Assessment (BWHA).  

The BWHA is part of the Conservation Planning Tool created by ONE North Carolina 

Naturally and ranks pixels from 0-10 based on ecosystem function; aquatic and terrestrial 

habitat, landscape function and connectivity.  Values of -1 are assigned to pixels of 

impervious surface.  The final comparative analysis examined the intersection of all parcels 

that made up the top 10% of the landscape for each assessment.   
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3.4 Results 

Rare Plant Species Habitat 

 Of the 66 plant species distributions modeled in Maxent, 10 were discarded as the 

model predictions were no better than a random model.  This resulted in 56 range maps being 

overlaid.  Since Maxent predicts the probability of suitable habitat and not the actual species 

occurrence this overlay resulted in an index of rare plant species habitat.  This habit index 

showed a clear concentration of rare habitat in the Sandhills ecoregion especially within Ft. 

Bragg, Camp Mackall and the Sandhills Gamelands (Figure 5).  The average habitat score 

per pixel was 15.1 on protected areas, 12.8 on private lands (Table 5).   

 To validate the richness model a comparison was made to the Carolina Vegetation 

Survey (CVS) database.  There were 389 plot locations in the project study area and 341 with 

a location accuracy of 100 meters or less. The CVS database tracks ALL plant species in 10 

by 10 meter plots.  The correlation coefficient for CVS total richness and rare habitat was 

0.137 and -0.066 for rare habitat and the 56 EETR species modeled.  By limiting the CVS 

plots to only those with the highest spatial accuracy (<= 100m), plots that were 100 m2, and 

only occurred in the Sandhills the correlation coefficient was 0.430.  These results indicate 

that there is very little correlation between the rare plant species habitat model and the CVS 

data.  However, as stated before, Maxent maps the probability of suitable environmental 

conditions for the species in question and does not predict the actual occurrence of a species 

being present.   

Biodiversity Hotspots 
 
 The three different richness (rare habitat) and development thresholds created three 

very different hotspots maps (Figure 6).  The statewide hotspots were sparse, occupying only 

1.7% of the landscape with the highest concentration occurring northeast of Ft. Bragg.  On 
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the other hand, the regional hotspot definition classified 28% of the landscape as a hotspot 

(Figure 6).  Land surrounding Ft. Bragg, Camp Mackall and the Gamelands would all be a 

high priority to protect if preserving for biodiversity hotspots (Figure 7).   

Habitat Connectivity for RCW  

 The three landscape networks created depicting habitat connectivity for RCW appear 

similar (Figure 8-A).  However, the three different corridor scenarios prioritize different 

portions of the landscape.  When the cost threshold is low (qn= 5), linkages between patches 

are only made in the least-costly manner.  Movement is therefore tightly constricted as 

evident by the narrow corridors (Figure 8-B).  When the cost threshold is high (qn = 25) the 

linkages can be made across more of the landscape.  Corridors are thus wider and 

connections are made through areas that are likely not permeable for the RCW, such as 

through Fayetteville in the southern part of the study area.   

There were a total of 131 unique patches with an average size of 764.7 ha, and 

median patch size of 217.8 ha.  The largest five patches make up over half of the entire patch 

network.  The largest patch is over 19,000 ha, 95% of which is contained within the 

boundaries of Ft. Bragg. The second largest patch is 10,400 ha, 60% within Ft. Bragg 

boundaries.  In fact, 50% of all patches are contained within protected lands and lands 

managed for conservation.  However, only 4.5% of the total corridor (qn = 10) land area that 

makes up the minimum-spanning tree is currently under protection.  When the median 

dispersal distance for RCW is used to thin the edges it is shown that the landscape is largely 

connected (Figure 9).   
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Carbon Storage 

 According to InVEST, the total standing stock of carbon stored in the study area is 

166,015,119 metric tons.  If this service had the same value as a ton of sequestered carbon it 

would be worth $3.3 million.  The highest concentration of carbon is found in wetland soils 

and aboveground forest biomass (Table 3).  The carbon storage mapping highlights 

forestlands and wetlands in dark green concentrated within the Ft. Bragg boundaries, to the 

Uwharrie National Forest Area and the Cumberland County Carolina Bay area in the 

southeast (Figure 10).  The average carbon storage per pixel on private and protected lands is 

roughly the same though the vast majority of carbon is stored on private land (Table 5), 

which makes up over 87% of the landscape and hold 80% of the standing stock of carbon.   

Comparative Analysis 

Overall there was very low congruence amongst the highest value assessments (Table 

4).  The lowest congruence occurred between high value carbon storage (wetlands) and the 

other two assessments.  The cutoffs for the binary assessments showed a large influence on 

the congruence as the more inclusive assessments prioritized a greater portion of the 

landscape and increased overall congruence amongst assessments.  If conservation priorities 

are set to protect the highest risk hotpots, then 2.6% of the land valued for connectivity and 

0.6% of the most carbon rich areas are also conserved.  This illustrates a very low 

congruence.  However, if land is conserved based on the highest value land for connectivity, 

16.5% of the hotspots and 6.9% of the Carbon are also conserved, a modest improvement.  

Conserving a comparable amount of land based on carbon rich areas only preserves 3.8% and 

6.1% of the hotspots and connectivity respectively.     
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The existing conservation network makes up 12.7% of the entire landscape (129,007 

ha).  Parcels in this network are on average 100 times larger than privately owned parcels.  

Protected parcels also have higher plant species richness and a higher Biodiversity and 

Wildlife Habitat Assessment value per pixel (Table 5).  The mean sum of these two 

assessments per parcel is also more than 100 times greater as the area difference would 

suggest.  However the average carbon storage value and GAP vertebrate richness were 

roughly the same on protected vs. private land.  This relationship can also be seen when 

looking at the frequency distribution of conservation values on protected and private land 

(Figure 11).  However, these distributions also show that protected lands are carbon rich or 

carbon poor, a pattern not discernable from the table alone. 

Though the congruence amongst assessments was low, parcels which were in the top 

10% of all six assessments were still identified on the landscape when using an area-

weighted selection algorithm (Figure 12).  These parcels can be considered win-win 

opportunities for conservation since they are important for all six conservation assessments.  

Ranking parcels by their per unit area conservation value favors smaller more homogenous 

parcels.  However, there are no shared parcels between all six assessments when using this 

prioritization scheme (Figure 13).  

Conservation value was accumulated most quickly by ranking and protecting parcels 

based on their proportion of corridor area (Figure 14).  If parcels are ranked and then 

protected according to the area-weighted hotspot index or BWHA score, conservation value 

accumulates the slowest.  Accumulating carbon and rare plant habitat appears to be a linear 

relationship with area. 
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3.5 Discussion 

Land conservation remains under-funded, with inadequate resources to curtail the 

currently high rates of habitat loss and species extinction (Balmford et al. 2005).  In North 

Carolina, the population is expected to increase by 50% to over 12 million by the year 2030 

(U.S. Census Bureau 2005).  This population growth and subsequent land-use change will 

cause further land degradation and habitat fragmentation.  With the increased pressure placed 

on natural lands due to anthropogenic change, as well as limited funding for conservation, 

conservation practitioners need to be efficient and effective in choosing which land to 

conserve.   

There are numerous ways to value the landscape; biodiversity, ecosystem services, 

habitat connectivity, and others.  This research has shown that there is strength in 

diversifying conservation efforts as each technique prioritizes different parts of the 

landscape.  However, if the three assessment criteria considered here are assumed to be of 

equal importance, and if only one criterion can be used in the Sandhills, corridor protection 

would be prioritized because it picks up the highest percentage of land from the other 

assessments and at the highest rate.  Based on the rate of conservation value accumulation, 

those assessments with higher rates were spatially clumped whereas the other assessments 

were more evenly disbursed spatially.  Even with low congruence, win-win parcels can be 

identified on the landscape that are important for all six assessments implemented in this 

study.  Though limited in geographical scope, the same framework can be applied in any 

setting or at any scale.   

 The geographic scope of this study could be expanded to include an assessment of the 

entire state of North Carolina to determine whether the same congruence patterns hold.  It 

would also be wise to examine if the resolution of modeling affects patterns of conservation 
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value by re-sampling the input data to 100 m, 250 m, and 1 km since research has shown that 

there is dependence between species range maps and the scale of input data (Hurlbert and 

Jetz 2007).  Conducting the assessments at this scale would also allow for the inclusion of 

other remote sensing data such as those available from MODIS. 

 To improve upon the hotspots modeling several additional environmental variables 

could be included.  One valuable source of data that was not used but would likely enhance 

the results of the species niche models is the Soil Survey Geographic (SSURGO) Database 

soils dataset.  The Natural Resource Conservation Service (NRCS) is in the process of 

digitizing the county soil surveys and will likely be available for all 100 North Carolina 

counties by the end of the 2009.  Additionally, all of the elevation-derived variables could be 

produced at a finer resolution (20 ft.) that could possibly result in a more robust species 

model.  An additional source for plant species locations that should be used in future analysis 

is the Carolina Vegetation Survey (CVS) database.  Finally, both InVEST and NatureServe’s 

conservation planning tool VISTA map and model biodiversity and should be considered for 

future analysis.  Field validation of the species richness model would also make this study 

more robust.  To validate the species richness model, vegetation plots could be randomly 

sampled to record the total number of rare species occurrences. 

 Past work has shown that high quality RCW habitat consists of intermediate pine 

density, abundant herbaceous ground cover, scattered midstory low in density and height and 

abundant old-growth pines (James et al. 2001, Walters et al. 2002) and that the structure and 

quality of foraging habitat is directly related to fitness and habitat selection.  However, such 

detailed data on forest structure for the entire 8-county project study area were not readily 

available.  Therefore this study assumed equal quality within a longleaf pine pixel.  Future 
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analysis should attempt to incorporate forest structure into habitat quality estimates for the 

RCW as well as differentiate forest types and quality of longleaf pine. 

By definition, habitat connectivity is species-specific.  This study examined the 

connectivity for a species that could be considered both the flagship and umbrella species for 

the Sandhills region.  However, future analysis should examine multiple species in a multiple 

scale framework.  For example, a landscape network for the endangered amphibians (ETS, 

CGF) on Ft. Bragg and Camp Mackall using known breeding sites could be created and 

analyzed relatively easily.  However, very little is known on the movement preferences of 

these species and additional data is needed to parameterize accurate movement models. 

The first step to more accurately mapping the standing stock of carbon is to further 

distinguish between land-use types and to differentiate age class within forest types.  To 

improve upon the carbon storage estimates obtained from the literature, local field estimates 

of the fundamental carbon pools should be incorporated.  Sample plots could be established 

in each of the broad land-use categories or a more detailed classification could be used.   

 There are also many assumptions in the InVEST carbon storage model that simplify 

the carbon cycle and dilute the precision and utility of the results.  Therefore future analysis 

should focus on sequestration and implementation of the second tier of InVEST models that 

incorporate more complexity in the carbon modeling.  More empirical research is also needed 

to quantify ecosystem services, especially wetland carbon pools and sequestrations rates.  

This could be collected in the field and would be especially useful if part of a LTR.   

 However, the actual value that the ecosystem service of storing and sequestering 

carbon is still debated.  In a 2007 congressional testimony to the Committee on Natural 

Resources, Dr. William Schlesinger concluded that growing forests to store carbon will not 
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contribute significantly to reducing concentrations of carbon dioxide in the atmosphere.  

Furthermore, administrative costs including audits to measure the carbon uptake of a forest 

and costly fire insurance would reduce the modest financial gains expected from this form of 

carbon trading.  In the Longleaf Pine Ecosystem, which is adapted to frequent low-intensity 

burns, fire could potentially reduce the amount of carbon stored in the understory.  However, 

fires in this landscape would likely not affect storage and sequestration rates in the largest 

pool, wetland soils.  In the 8-county Sandhills area, carbon storage will likely not be a 

realistic conservation goal but carbon storage does become a publicly traded commodity, the 

large amounts of carbon currently stored in private land will likely play a big part.   

InVEST also models other ecosystem services such as pollination, timber, water 

quality (sedimentation and pollution control), and biodiversity.   Future work should examine 

the relationship between multiple ecosystem services, biodiversity and connectivity.  Finally, 

as Hartig (2009) argues, the spatial relationship amongst different assessments deserves 

further examination as ecological values based solely on quality and size ignores the 

fundamental rule of geography that spatial context matters.   

Much of the current focus in conservation planning research is on bridging the 

research-implementation gap by translating conservation plans into action through effective 

land management (Knight et al. 2008, Opdam et al. 2008).  Further research is needed to 

determine the degree to which this gap can be closed and to identify the key components of a 

successful plan (Ferraro and Pattanayak 2006).  However, it is clear that if conservation 

actions are to be effectively implemented they should: 1) follow an “informed opportunism” 

when possible (Knight and Cowling 2007, Noss 2002), 2) practice systematic conservation 

planning that embraces social science research and integrates it with economic and political 



 

44 
 

imperatives  (Groves 2003, Margules and Pressey 2000) and 3) manage the matrix between 

reserves (Wiens 2007).   

No matter which assessment criteria are implemented, our land use decisions leave an 

almost indelible imprint on the landscape.  This research has shown that even with low 

congruence amongst criteria, parcels can be identified which represent win-win opportunities 

for multiple conservation values.  These parcels would likely be a good place to start when 

looking to expand the existing conservation network and when building consensus amongst 

stakeholders. 
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3.7 Tables 

Table 1. Natural Heritage Program Element Occurrence 
sampling strategy based on estimated accuracy and feature area. 

Accuracy Uncertainty Radius (m) One sample per; (m2) 
Round Polygons 

Medium 100 31,146
High 50 9,864

Very High -- 900
 

Irregular Polygons 
Medium 50 9,864

High 25 1,968
Very High -- 900

Table 2. Environmental Grids used for species modeling. 
Data Grid Name Date Description 

Digital Elevation Model Derived 
Aspect asp_cos 2000-2003 Direction of maximum rate of change in z value from each 

cell.  Cosine was taken so that variable was not circular 
Elevation dem 2000-2003 Elevation above sea level at center of cell – LiDAR derived 

from NC Floodplain Mapping 
Slope slp 2000-2003 Rate of maximum change in z value from each cell – percent 

rise. 
Relative Slope 

Position 
rsp 2000-2003 A measure of the cell position along a slope in relationship 

to the nearest ridge and drainage 
Topographic 

Relative Moisture 
Index 

trmi 2000-2003 Combines aspect, slope, slope configuration (curvature) and 
relative slope position 

Solar Radiation 
Index 

sol 2000-2003 Derived incoming solar radiation (insolation) in watt hours 
per square meter (WH/m2) 

Wetness Index wi 2000-2003 Topographic index calculated as ln A/B where A is the 
catchment area and B is the slope. 

Environmental Data 
Land Use/Land 

Cover 
nlcd 2001(2006) MRLC – National Land Cover Database  

Canopy cover ccov 2001(2006) MRLC, NLCD percent canopy cover 
Precipitation prec 1980-1997 Daymet - 18 year annual average
Temperature temp 1980-1997 Daymet - 18 year annual average
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Table 3. Final Carbon Pools for InVEST model.  Units are metric tons of carbon per hectare.  Aboveground, belowground, soil and dead carbon pools 
estimates were derived from numerous sources.  References to tables were found in IPCC report on greenhouse gas inventories (2006). 

Class C_above Source C_below Source C_soil Source C_dead Source 

Forestland 103.4 COLE1 24.8 COLE1 70.6 COLE1 18.7 COLE1 
Cropland 63.0 Table 5.1 40.0 Table 6.4 48.7 Table 2.3 & 5.5 6.0 InVEST 
Grassland 2.7 Table 6.4 5.1 Table 6.4 67.1 Table 2.3 & 6.3 4.0 InVEST 
Wetland 54.9 Birdgham 2006 45.0 Birdgham 2006 162.0 Birdgham 2006, table 2.3 1.0 InVEST 
Settlement 15.0 InVEST 5.0 InVEST 15.0 InVEST 2.0 InVEST 
Other2 27.3 InVEST 25.6 InVEST 27.3 InVEST 11.1 InVEST 

             1 Carbon Online Estimator (COLE) was used to generate report 1605(b) for North Carolina for the 8-county project study area on October 28, 2008. 
             2 The Other class is 82% shrub/scrub and 18% barren land (rock/sand/clay).  A weighted average of the InVEST default values for shrub/undergrowth and open/urban was used 
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Table 4. Binary Congruence Table.  Stringent – highest value and risk assessment were as follows; richness 
>=21, development suitability high for all three models, Carbon > 25, Connectivity q = 5.  The table is read as 
follows; For the first row, Hotspots – If you conserve the landscape for the highest risk hotpots, you are also 
conserving 2.6% of the land valued for connectivity and 0.6% of the most carbon rich areas, a very low 
congruence.     

  Hotspots  Connectivity  Carbon    Total Area (ha) 
Stringent ‐ Highest Value and Risk 

Hotspots  ‐‐‐  2.6  0.6    17,261 
Connectivity  16.5  ‐‐‐  6.9    126,339 

Carbon  3.8  6.1  ‐‐‐    111,360 
           

Moderate 

Hotspots  ‐‐‐  5.3  4.5    64,519 
Connectivity  10.4  ‐‐‐  17.5    127,358 

Carbon  40.0  79.0  ‐‐‐    574,490 
           

Inclusive 

Hotspots  ‐‐‐  19.7  24.3    279,465 
Connectivity  10.3  ‐‐‐  16.8    146,102 

Carbon  59.2  78.2  ‐‐‐    680,520 
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Table 5 Conservation Assessment values for protected land and private land.  Parcels under protection are on 
average 100 larger than private land parcels.  Notably, only 4.5% of modeled corridor is already under 
protection highlighting the need to preserve and/or restore suitable lands for RCW connectivity.   The mean 
value refers to the mean pixel value per parcel.  

 
Assessment Model  Private     Protected 
                    

Average Parcel Size (ha)  9.05    926.74 
Total Area (ha)  796,611    129,008 

             

    ha 
% of 
total     ha 

% of 
total 

RCW Connectivity           
  Patch 47,104.4 47.0%    50,095.1  50.0% 
  Corridor 23,592.6 86.7%    1,236.0  4.5% 
  TOTAL  70,697.0 55.5%    51,331.1  40.3% 

             

    Mean  SD     Mean  SD 

Plant Species Niche Model 
Score (0 to 41) 

12.8 3.41    15.1  3.83 
         

             

Total Carbon Storage  
(Tons C per pixel, 3‐24) 

13.7 4.68    13.8  4.74 
     

         

GAP Vertebrate Richness 
Model (4 to 176) 

84.0 16.32    83.9  19.52 
       

             
Biodiversity Wildlife 
Habitat Assessment  

(‐1 to 10) 

0.7 0.78    2.9  1.78 
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3.8 Figures 

 

 

Figure 1:  This concept map illustrates the spatial relationship of different methods of quantifying the ecological 
value of the landscape.  A.) The umbrella species concept presumably protects multiple aspects of the 
ecosystem  B.) For hydrologic services and connectivity there is likely high concordance but what about other 
water services and RCW connectivity? C.) Could show the highest concordance and one to one mapping for 
some species rich areas BUT certain low-diversity sites will also provide ecosystem services. D.) Where does 
this occur on the landscape? Why? What is characteristic of these areas? 
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Figure 2: Sandhills 8-County Project Study Area.  The Uwharrie National Forest and Sandhills Game Lands are 
the largest areas managed for conservation.  Counties are labeled in white and major municipalities are labeled 
in black. The historic range of the longleaf pine ecosystem is shown in the lower right map. 
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Figure 3.  2001 Land use and land cover (NLCD).  The fragmentation and loss of longleaf pine forest (Evergreen) is clearly evident as the largest contiguous 
tracts remain on base.  Development in the form of industry, residential, commercial and agriculture dominate south of Ft. Bragg.  
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Figure 4.  The landscape network depicts the habitat connectivity for the RCW.  The top image shows the entire 
network including patches, corridors and links.  The image on the bottom only includes the nodes and edges. 
Both images illustrate the concept of multiple pathways in analyzing landscape connectivity.   
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Figure 5.  The rare plant species habitat score  was modeled using Maxent.  The results of 56 species models were converted to binary range maps and then 
combined.  
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Figure 6.  Three classes of hotspots were classified based on species richness and development thresholds.  Map A is the continuous hotspots index.  Map B 
identifies those pixels with a potential species richness >= 21 and where three of the development suitability models classify a pixel as highly suitable.  Map C 
species richness >= 15 and two development models are high.  Map D richness >= 9 and one development model is highly suitable.  . 
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Figure 7.  Continuous Hotspots index with municipal boundaries and protected lands masked out.  A concentration of hotspots surrounds both base boundaries. 
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Figure 8.  The landscape network was analyzed by extracting the minimum spanning tree which represents the most efficient way to move through the landscape, 
connecting all patches at different cost thresholds (qn).   
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Figure 9.  The above network(qn = 10) represents the potential connectivity of the network.  All patches which less than 1500 meters apart (median RCW home 
range estimate) are grouped together and displayed in the same color.  The green patch in the middle represents the potential connectivity if all corridors linking 
patches less than 1500 meters apart were preserved.  There are 25 different groups of patches in this scenario.   
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Figure 10.  Carbon storage mapping.  (A) A continuous estimate of the carbon pool, from 3.33 to 23.58 metric tons of carbon per pixel.  (B)-(D) The largest 3 
carbon pools in the study area. 
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Figure 11.  The frequency distribution of conservation values for Private (blue bars) and Protected (green bars) per parcel.  Note that the y-axis depicts the 
percent of total (frequency/total parcels) and is not consistent across graphs.   
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Figure 12.  Win-Win parcels (area-weighted) held in common amongst all conservation assessments (biodiversity hotspots, rare plant habitat, RCW connectivity, 
carbon storage, vertebrate diversity, and BWHA.  
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Figure 13.  Top 10% of the landscape for all six assessments.  Note there are no parcels held in common amongst all assessments. 
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Figure 14.  Accumulated relative conservation value as a total area increases.  Parcels were ranked after 
multiplying the mean conservation value by the area of the parcel.  Conserving parcels with the highest 
proportion of corridor results in the quickest accumulation of corridor value (ha). Conserving parcels based on 
Biodiversity Hotspots or the Biodiversity Wildlife Habitat Assessment (BWHA) results in the slowest rate of 
accumulation.  Accumulated value is in total number of species, habitat score, carbon, hectares of corridor and 
patch, and accumulated mean index for hotspots and the BWHA. 
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3.9 Appendices 

Appendix A 
GIS driven decision support systems 

 
Geographic Information System (GIS) driven conservation assessment and planning tools. 
Bold tools indicate the software implemented in this study and those in italic were used to 
compare against.  

TOOL NAME DESCRIPTION OF APPLICATION 
Decision Support Systems for Planning and Species Distribution 

FragStats spatial pattern analysis for categorical maps 
GreenGrowthToolbox NC DSS to guide ‘nature friendly growth’ 
LINK analyze habitat patterns across a landscape 
Marxan decision support for reserve system design 
Maxent potential species distribution modeling 
NatureServe VISTA DSS integrates conservation information with land use patterns 
One NC Naturally 
Conservation Planning 
Tool 

DSS to assess biodiversity and wildlife habitat, open space and 
conservation lands, water services, agricultural lands, forestry 
lands and marine and estuarine resources 

Portfolio Nature reserve design – ranks sites to create a Portfolio 
Landscape and Habitat Connectivity 

CircuitScape predict patterns of movement, gene flow, and genetic 
differentiation using circuit theory 

CorridorDesigner wildlife corridor design 
FunConn habitat modeling and landscape network connectivity 

Ecosystem Services 
InVEST models and maps natural capital: the delivery, distribution, 

and economic value of ecosystem services 
Natural Assets     
Information System 

Spatially explicit - quantifies environmental assets 
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Appendix B 
 

Federally endangered species of concern and threatened species habitat requirements 
on Fort Bragg Military Installation in North Carolina. 

Common Name Scientific Preferred Habitata Statusb 
E. Tiger 
Salamander 

Ambystoma tigrinum 
tigrinum 

NOT YET ASSESSED G5T5, 
NNR?. 

Roughleaf 
Loosestrife 

Lysimachia asperulaefolia Ecotones between longleaf 
pine uplands and pond pine 
pocosins 

G3, N3, S3 

St. Francis Satyr Neonympha mitchellii 
francisci 

Sedge wetlands G1T1, N1, 
S1 

Red-cockaded 
woodpecker 

Picoides borealis Open, mature pine 
woodlands 

G3, N3,S2 

Carolina Gopher 
Frog 

Rana capito Primary xeric upland 
habitats, breeding occurs in 
ephemeral wetlands 

G3,N3,S2 

Michaux’s Sumac Rhus michauxii Sandy or rocky open woods G2, N2, S2 
Chaffseed Schwalbea americana Open pine flatwoods G2, N2, S2 

a As determined by NatureServe {{187 NatureServe 2007; }}. b-Status refers to the species’ 
conservation status as designated by NatureServe, the U.S. Endangered Species Act (ESA) and the 
International Union for the Conservation of Nature (IUCN) ranging from critically imperiled (G1) to 
demonstrably secure (G5). Status is assessed and documented at three distinct geographic scales-
global (G), national (N), and state/province (S) {{187 NatureServe; }}.  State status above is only for 
North Carolina.   
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Appendix C 

Geographic Information Systems (GIS) data available for conservation assessments. 
Data Geographic Extent Date Source 

ETR Species 
NHP occurrences Statewide Current N.C. Natural Heritage Program (NHP) 

CVS database NC, SC Various N.C. Vegetation Survey Database 
ESB rare species Ft. Bragg Current Ft. Bragg ESB 

Environmental 
SSURGO Soils County-wide Varies Natural Resource Conservation Service 

(NRCS) 
Hydrology Statewide 1998 NCGIA BasinPro 8 

Wetlands Nationwide 1980’s NWI – National Wetlands Inventory 
Elevation Data Ft. Bragg July 2006 Airborne 1, 1m LiDAR derived 

Elevation Data Statewide 2006 NC Floodplain Mapping - 20’ LiDAR 
derived 

Land Use/Land 
Cover 

Nationwide 2001(2006) MRLC – National Land Cover Database  

Land Use/Land Cover Statewide 2001 (2007) NC GAP Analysis, and SE GAP  
Forest Stands Ft. Bragg 2005 Ft. Bragg ESB 

Biodiversity/Wildlife Statewide 2008 NCDENR – Conservation Planning Tool 
Socioeconomic 

Tax parcels County Varies County tax assessors 
Census County 2000 US Census Bureau 
Zoning County Varies Individual counties 
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Appendix D 

Environmental Variables for Maxent Model 
 

1. Elevation (dem_30m_cc); elevation above sea level at cell center in feet.  30 meter 
DEM compiled from NC Floodplain Mapping Program LiDAR data (2000-2003).  
Original data set is in NC Stateplane NAD 83, Survey Feet with a 20 foot cell size.  
Data was resampled using ArcGIS and a cubic convolution interpolation and 
reprojected to Albers NAD 83 meters.  Z values are in feet. 

 
2. Aspect (asp, asp_cos); GRID function aspect and GRID function cos. 

 
3. Slope (slp_pr); GRID function slope with percentrise. 

 
4. Relative Slope Position (rsp); a measure of the cell position along a slope in 

relationship to the nearest ridge and drainage.  RSP (Wilds 1996) uses (1) a threshold 
level of flow accumulation to represent slope bottom, (2) the difference between 
mean elevation and highest elevation in a moving window to represent ridges, and (3) 
flowlength to calculate distance. 

XX add Script XX 
 

5. Landform Classification (Pennock et al. 1987); Calculated in TAS, the classification 
scheme is based on Pennock, Zebarth and deJong.  The scheme classifies individual 
cells based on local (3 x 3 roving window) measures of slope and curvature coding 
each cell as one of the following; 

1. Convergent Footslope 
2. Divergent Footslope 
3. Convergent Shoulder 
4. Divergent Shoulder 
5. Convergent Backslope 
6. Divergent Backslope 
7. Level 

 
6. Wetness Index or topographic index (Beven and Kirkby 1979) Notice that the normal 

range for wetness index is approximately 0-20; however, if your DEM contains flat 
areas (even if they are corrected for flow) the wetness index image will contain very 
large values because of the very small values slopes. The numerical values for these 
gently sloped areas are not meaningful, but they can be thought of as being extremely 
likely to be saturated because of their gentle slopes. Topographic wetness index 
(TWI) can quantify the control of local topography on hydrological processes and 
indicate the spatial distribution of soil moisture and surface saturation. 

 
7. Topographic Relative Moisture Index (TRMI) based on the weighted scalar 

developed by Parker (1982).  TRMI combines aspect, slope, slope configuration 



 

76 
 

(curvature) and relative slope position.   
 

8. Solar Radiation Index (sol); derived incoming solar radation (insolation) in watt hours 
per square meter (WH/m2).  creates a viewshed for every 200 by 200 cell window for 
each cell and calculates both direct and diffuse radiation  

 
9. Percent Canopy Cover (NLCD 2001) 

 
10. Precipitation - 18 year annual average (Daymet - resampled to 30 meters using cubic 

convolution from 1000) 
 

11. Temperature - 18 year annual average (Daymet - resampled to 30 meters from 1000) 
 
 
Mask Creation:  
mask = [asp_cl] | [c_lf_cl] | [ccov_cl] | [dem_cl] | [pa_cl5] | [rsp_cl] | [slp_cl] | [sol_cl] | 
[taa_cl2] | [trmi_cl] | [wi_clf] 
 
mask2 = [asp] | [c_lf] | [ccov] | [dem] | [ncgap_9cnty] | [nlcd_9cnty] | [prec] | [rsp] | [slp] | 
[sol] | [tmpr] | [trmi] | [wi] 
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Appendix E 

Screen Shot of Hawth’s Tool, Generate Random Points 
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Appendix F 

Final Maxent Run 
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Appendix G 

Maxent log 
Tue Feb 17 11:38:46 EST 2009 
MaxEnt version 3.2.19 
Checking header of N:\maxent\ascii\asp_cos.asc 
Checking header of N:\maxent\ascii\ccov.asc 
Checking header of N:\maxent\ascii\dem.asc 
Checking header of N:\maxent\ascii\nlcd.asc 
Checking header of N:\maxent\ascii\prec.asc 
Checking header of N:\maxent\ascii\rsp.asc 
Checking header of N:\maxent\ascii\slp.asc 
Checking header of N:\maxent\ascii\sol.asc 
Checking header of N:\maxent\ascii\tmpr.asc 
Checking header of N:\maxent\ascii\trmi.asc 
Checking header of N:\maxent\ascii\wi.asc 
Reading samples from nheo_FINAL2_arc11_FINAL.csv 
Read samples: max memory 1352663040, total allocated 71135232, free 28932016, used 42203216, increment -
2323728 
Extractor: max memory 1352663040, total allocated 71135232, free 6450496, used 64684736, increment 
22481520 
Extracting random background and sample data 
Time since start: 24.438 
12805937 points with values for all grids 
Adding samples to background in feature space 
Command line: -X 25 -t c_ -J -K -P 
Species: Amorpha_georgiana_var._georgiana Amorpha_schwerinii Astragalus_michauxii Baptisia_albescens 
Boltonia_asteroides Cardamine_dissecta Carex_canescens_ssp._disjuncta Carex_decomposita Carex_emmonsii 
Carex_impressinervia Carex_jamesii Carex_sp._4 Cirsium_carolinianum Cladium_mariscoides 
Crocanthemum_rosmarinifolium Danthonia_epilis Desmodium_fernaldii Dichanthelium_sp._9 
Dionaea_muscipula Eleocharis_robbinsii Enemion_biternatum Eupatorium_resinosum Euphorbia_mercurialina 
Eurybia_mirabilis Fothergilla_major Gaillardia_aestivalis_var._aestivalis Galactia_mollis 
Helianthus_laevigatus Helianthus_schweinitzii Ilex_amelanchier Iris_prismatica Liatris_squarrulosa 
Lilium_pyrophilum Lindera_melissifolia Lindera_subcoriacea Luziola_fluitans Lysimachia_asperulifolia 
Matelea_decipiens Oldenlandia_boscii Parnassia_caroliniana Phacelia_covillei Polygala_grandiflora 
Potamogeton_confervoides Pseudognaphalium_helleri Pyxidanthera_brevifolia Rhexia_aristosa 
Rhus_michauxii Rhynchospora_crinipes Rhynchospora_macra Ruellia_ciliosa Salvia_azurea 
Schoenoplectus_etuberculatus Schoenoplectus_subterminalis Schwalbea_americana Scleria_reticularis 
Sedum_pusillum Solidago_plumosa Solidago_verna Stylisma_pickeringii_var._pickeringii 
Symphyotrichum_georgianum Tridens_chapmanii Trifolium_reflexum Vaccinium_virgatum Viola_walteri 
Xyris_chapmanii Xyris_scabrifolia 
Layers: asp_cos ccov dem nlcd prec rsp slp sol tmpr trmi wi 
Layertypes: Continuous Continuous Continuous Categorical Continuous Continuous Continuous Continuous 
Continuous Continuous Continuous 
Linear: true, Quadratic: true, Product: true, Threshold: true, Hinge: true, Auto: true 
Species file: N:\maxent\csv\nheo_FINAL2_arc11_FINAL.csv 
Environmental variables directory: N:\maxent\ascii 
Output directory: N:\maxent\outputs\20090217_66Species_arc11_25_FINALFINAL 
Projection layers directory:  
Output format: Logistic 
Output file type: .asc 
Maximum iterations: 500 
Convergence threshold: 1.0E-5 
Remove duplicates: false 
Number of background points: 10000, Bias file: Random test percentage: 25 
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Appendix H 
Script for converting .asc text files to binary 

 
#!/usr/bin/perl 
# toBinary.plx 
#Written by Dr. Todd Jobe 
# Converts an ASCII grid of continuous values to a binary grid using a cutoff. 
# We're going to assume that you're running the program from the location of the ASCII 
grids. 
# Usage: toBinary.plx [spfile] [outpath] [inpath] 
# speciesfile: A comma separated file with "species,cutoff".  No header. 
#              Defaults to "Cutoffs.csv" 
# outpath: Path to the output folder.  Defaults to  
 
use warnings; 
use strict; 
my $spfile = shift @ARGV || "Cutoffs.csv"; 
my $outpath = shift @ARGV || "../binary"; 
$outpath =~ s|/$||; 
 
$| = 1; 
#turns off the cmd line buffer, so that the processing can be viewed, lines totalled  
 
# Get the cutoff and species lists 
open SP, $spfile or die "Can't read on file $spfile:$!\n"; 
my %sp; 
while (<SP>) { 
  my @sp = split(',',$_); 
  chomp($sp[1]); 
  $sp{$sp[0]} = $sp[1]; 
} 
# Compute the new ascii grids 
for my $key (keys %sp) { 
  open IN, "$key.asc" or die "Can't read on file $key.asc:$!\n"; 
  open OUT, ">$outpath/$key.asc" or die "Can't write on file $outpath/$key.asc:$!\n"; 
  my $counter = 0; 
  while(<IN>){ 
    if($_ =~ /^\s*[\d\-]/) { 
      my @rec = split /\s/; 
      for my $i (@rec){ 
 $i = ($i > $sp{$key}) ? 1 : 0 unless $i == -9999; 
      } 
      print OUT "@rec\n"; 
    }else{ 
      print OUT; 
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    } 
    print "\r$counter lines of $key calculated." if (not ++$counter % 100); 
  } 
  print "\r$counter lines of $key calculated.\n"; 
  close IN; 
  close OUT; 
} 
close SP; 
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Appendix I 

Strategic Lands Inventory (SLI) development suitability model. 
Value Description 

10 none (0-6) 
20 industrial only (7-9) 
30 commercial only (7-9) 
40 industrial and commercial (14-18) 
50 residential and industrial (14-18) 
60 residential, commercial, industrial (21-27) 
70 residential and commercial (14-18) 
80 residential only (7-9) 
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Appendix J 
Conditional Statement used on LEAM model 

to create Development Suitability Model 
 

##Conditional loop to combine the three development suitability models 
##com – commercial development model 
## ind – industrial development model 
##res – residential development model 
#10 - none (0-6) 
#20 - industrial only (7-9) 
#30 - commercial only (7-9) 
#40 - industrial and commercial (14-18) 
#50 - residential and industrial (14-18) 
#60 - residential, commercial, industrial (21-27) 
#70 - residential and commercial (14-18) 
#80 - residential only (7-9) 
 
if (com < 7 && res < 7 && ind < 7) then dev_mdl = 10 
else if (ind >= 7 && com < 7 && res < 7) then dev_mdl = 20  
else if (ind < 7 && com >= 7 && res < 7) then dev_mdl = 30  
else if (ind < 7 && com < 7 && res >= 7) then dev_mdl = 80  
else if (ind >= 7 && com >= 7 && res < 7) then dev_mdl = 40 
else if (ind < 7 && com >= 7 && res >= 7) then dev_mdl = 70 
else if (ind >= 7 && com < 7 && res >= 7) then dev_mdl = 50 
else if (ind >= 7 && com >= 7 && res >= 7) then dev_mdl = 60 
else dev_mdl = 2000 
endif 



 

84 
 

 
 

Appendix K 
 
National Land Cover Data 2001 (NLCD) reclassification for the Red-cockaded woodpecker 
(RCW) habitat mapping and reclassification for carbon storage in compliance with the six 
broad land-use categories set forth by the Intergovernmental Panel on Climate Change 
(IPCC) for consistent representation of lands. 

NLCD RCW land classes IPCC land classes 
Value Description Value Description Value Description 
11 Open Water 205 Open 4 Wetland 
21 Developed, Open Space 204 Urban 5 Settlement 

22 
Developed, Low 
Intensity 204 Urban 5 Settlement 

23 
Developed, Medium 
Intensity 204 Urban 5 Settlement 

24 
Developed, High 
Intensity 204 Urban 5 Settlement 

31 
Barren Land 
(Rock/Sand/Clay) 205 Open 6 Other 

41 Deciduous Forest 203 Hardwood 1 Forestland 
42 Evergreen Forest 212 Forest 1 Forestland 
43 Mixed Forest 212 Forest 1 Forestland 
52 Shrub/Scrub 205 Open 6 Other 
71 Grassland/Herbaceous 205 Open 3 Grasslands 
81 Pasture/Hay 205 Open 3 Grasslands 
82 Cultivated Crops 205 Open 2 Cropland 
90 Woody Wetlands 203 Hardwood 4 Wetland 

95 
Emergent Herbaceous 
Wetlands 205 Open 4 Wetland 
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Appendix L 

RCW literature review for connectivity parameters. 
Parameter Estimate Sources Method Population  

Minimum 
Patch Size 

103 (60.7-168.8) Convery and Walters 2004 minimum convex polygon Camp Lejeune, NC - 23 groups 

  49 ha USFS 2003 Federal Guidelines of Recovery Plan various - Walters et al. 2000, 
2002a, James et al. 2001, Engstrom 
and Sanders 1997 

  80.2 (39-145.4) Convery and Walters 2004 fixed kernel esimtator Camp Lejeune, NC - 23 groups 

  83.6 avg (56.3-128.7) ha Walters et al 2002 fixed kernel esimtator North Carolina Sandhills - 30 groups 

  91.9 avg Franzreb 2006 fixed kernel esimtator Savanah River Site, SC - 7 groups 

  70.3 (30-195) ha Hooper et al. 1982 modified minimum convex polygon Francis Marion NF, Coastal SC - 24 
groups 

     
Patch/Foraging 
Radius 

300-500 m Schiegg et al. 2005 territorial radius   

  1500 m SERDP annual report year 2008 based on two years of telemetry survey medians SERDP annual report year 2008 

  800 m James et al. 2001, USFW 2003 Federal Guidelines of Recovery Plan   

          

Resource 
Quality 
Threshold 

site index >= 60 USFS 2003 Federal Guidelines of Recovery Plan site idex is a measures quality of 
site (for growing trees using tree 
height at given ages as indicators) 

  75-80 FUNCONN default     

Patch Size: the smallest biologically significant patch size - may be based on known home range sizes.   
Patch/Foraging Radius; The distance than an animal moves on the landscape seeking out forage - influenced by the organism's perceptual ability.  
Resource Quality Threshold; the minimum habitat quality value acceptable to the target organism to define patches - typically near 75-80.
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Appendix M 

RCW parameters used in the FunCONN model and permeability values 
Parameter Value  

Resource Quality Threshold 60  
Minimum Patch Size 49 ha  

Patch/Foraging Radius 800 m  
 

Land Class Habitat Quality (0-100) Permeability (0-1) 
Longleaf Pine 100.00 1.00 

Other Pine 55.86 0.50 
Hardwood 0.00 0.20 

Urban 53.03 0.05 
Open 16.81 0.05 
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