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ABSTRACT

BUMJEAN SOHN: Cross-Section of Equity Returns:
Stock Market Volatility and Priced Factors.

(Under the direction of Eric Ghysels.)

We discuss the nature of risk valid factors should represent. The Campbell’s

(1993) ICAPM extended with heteroskedastic asset returns guides us to identify the

risk; we show that many of empirically well-established factors contain information

about the future changes in the investment opportunity set and that is why these

factors are strongly priced across assets. Specifically, we show that size, momentum,

liquidity (trading strategy based factors), industrial production growth, and inflation

(macroeconomic factors) factors as well as both short- and long-run market volatility

factors are significantly priced because they all have information about the changes

in the future market volatility which characterizes the future investment opportunity

set in our model. The time-series studies show that the above-mentioned factors do

predict the market volatility and the cross-sectional studies show that these factors

are priced due to their predictability on the future market volatility. Both studies are

consistent and strongly support the relationship between the stock market volatility

and the priced factors. By revealing the nature of risk the empirically well-established

factors represent, we provide an explanation why we observe so many empirically strong

factors in the literature.
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1 Introduction

We discuss and show the nature of risk empirically well-established factors represent.

Specifically, we show that size, momentum, liquidity (trading strategy based factors),

industrial production growth, inflation (macroeconomic factors) factors as well as both

short- and long-run aggregate market volatility factors represent the same systematic

risk.1 Within a theoretical framework of intertemporal CAPM, we identify the risk these

factors should represent; these factors are priced because they predict either future

market return or future market volatility. It is very well known that future market

returns, especially over a short horizon like a month, are very hard to predict and is

indeed true for our data. Hence, our main research interest in the paper is to examine

the relations between stock market volatility and the priced factors. We first show, in our

time-series studies, that the factors mentioned contain information about future market

volatility. Then, we show, in our cross-sectional studies, that these factors are priced

across assets due to their predictability on future market volatility, thereby showing

that these factors are not inherently different from one another when it comes to pricing

assets. Consequently, we provide an explanation why asset pricing literature has reported

to find so many seemingly-unrelated but empirically valid factors. It’s hard to believe

all these different factors are valid factors; we will show that they are not different.

To develop a theoretical framework to characterize the nature of risk the factors

represent, we extend Campbell (1993) to accommodate heteroskedasticity in asset

returns and consumption growth. The extension introduces an additional hedge-

1For papers proposing aggregate market volatility risk as a systematic risk factor, see Ang, Hodrick,
Xing, and Zhang (2006) and Adrian and Rosenberg (2008). This view is different from the traditional
risk-return tradeoff between stock return and volatility in time-series sense.



demand-driven risk premium involving stock market volatility to those in Campbell

(1993). This discrete-time analogue of Merton’s (1973) intertemporal CAPM suggests

that the variables that forecast either future stock market return or future stock market

volatility should show up as valid factors. As was mentioned earlier, the key relation in

this framework is the one between stock market volatility and the variables/factors of

interests, and it also characterizes the relations among the empirically well-established

factors; e.g. momentum factor and industrial production growth seem fairly unrelated,

but we show that they both contain information about the future market volatility for

which they are priced across assets. This key relation sheds new light on a branch of

finance literature that attempts to provide risk-based explanations to trading strategy

based factors; e.g. Liu and Zhang (2008) show that industrial production growth is the

underlying risk of momentum profits, but we argue that their empirical finding is due

to our finding that both of these factors represent the same systematic risk rather than

industrial production growth being a true underlying risk for the momentum profits.

Despite their empirical success in explaining the cross-section of equity returns,

most of trading strategy based factors lack theoretical foundations leaving us puzzled

as to what systematic risk they represent. In response, incuding Liu and Zhang (2008),

a group of papers has sought to offer risk-based explanations to these traded factors

by linking the traded factors to more intuitive macroeconomic risks.2 However, most

papers in this group also lack theoretical foundations. They don’t show, theoretically and

empirically, how the traded factors or even macroeconomic factors are linked to a pricing

kernel. They just assume that key macroeconomic variables should be able represent

states of an economy. Hence, their arguments are vulnerable to the so-called “fishing

license” critique of Fama (1991).3 With regard to this matter, Cochrane (2001) points

2See He and Ng (1994), Liew and Vassalou (2000), Vassalou (2003), Hahn and Lee (2006), Kelly
(2003), Griffin, Ji, and Martin (2003), Vassalou and Xing (2004), Petkova (2006), Aretz, Bartram, and
Pope (2007), and Liu and Zhang (2008).

3Although the ICAPM does not tell us the identity of the state variables, many authors use the
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out that one could do a lot to show the chosen state variables actually do comply with

theoretical requirements. One of his suggestions is to check that investment-opportunity-

set state variables actually do forecast something, and it is exactly what we’re doing

in our time-series studies; using the extended Campbell (1993) model, we explicitly

show how conventional factors relate to a preference-based asset pricing equation, and

examine the theoretical restriction on valid factors. Within this context, we examine the

relations between stock market volatility and empirically successful factors lacking risk-

based explanations, and this is the main theme of this paper. We consider size (SMB),

value (HML), momentum (WML), and liquidity (LIQ) factors for trading strategy based

factors, and industrial production growth (MP), producer price index inflation (PPI),

term spread (UTS), and default premium (UPR) for macroeconomic factors.4 We try

to understand these factors within the framework of intertemporal CAPM.

For empirical implementation, we first estimate stock market volatility. We adopt

the GARCH-MIDAS framework proposed by Engle, Ghysels, and Sohn (2008) for

this purpose. The GARCH-MIDAS model provides a decomposition of stock market

volatility into two parts; one (short-run g-component) relates to short-lived factors and

the other (long-run τ -component) relates to state of economy. Our motivation for taking

the two-component volaility model of the GARCH-MIDAS framework is threefold. First,

many have proposed two-component volatilty models and shown that these models

benefit from their two-component structure.5 Especially, Chernov, Gallant, Ghysels,

and Tauchen (2003) examine an exhaustive set of diffusion models for the stock price

dynamics and conclude quite convincingly that at least two components are necessary

ICAPM as an obligatory citation to theory on the way to justify their inclusion of any factor of their
choice. This practice leads Fama (1991) to characterize the ICAPM as a fishing license. See also
Cochrane (2001) for details.

4We use ‘trading strategy based factors’ and ‘traded factors’ interchangeably within this paper.

5See Engle and Lee (1999), Ding and Granger (1996), Gallant, Hsu, and Tauchen (1999), Alizadeh,
Brandt, and Diebold (2002) and Chernov, Gallant, Ghysels, and Tauchen (2003), among many others.

3



to adequately capture the dynamics of volatility. Second, we expect to have a clearer

picture of the relationship between stock market volatility and the variables/factors

of interest when we focus on the long-run component of volatility free of short-lived

factors. Our variables of interest in this paper are the empirically well-established

factors in the asset pricing literature; they are low-frequency (monthly) variables and

supposed to represent the state of an economy. Third, one of the advantages of the

GARCH-MIDAS model is that we can directly link the variables of our interest to the

long-run volatility component. Hence, by using the GARCH-MIDAS framework, we

can investigate predictability relations between long-run volatility component and other

variables.

We include both short- and long-run volatility component estimates as well as

market return in the VAR factor model of Campbell (1993). Under the assumption

of heteroskedastic stock returns, inclusion of volatility components in the VAR system

enables us to make the same Campbell’s (1993) argument, with regard to the relation

between future market returns and priced factors, as to the relation between future

market volatility and priced factors. In other words, innovations to the VAR variables

that predict future long-run volatility component should be priced across assets; these

innovation factors are valid factors in a standard linear factor model. Our predictability

analyses using the GARCH-MIDAS and a VAR framework indicate that the momentum

factor, as well as short- and long-run components, strongly forecasts the future long-run

volatility component. This empirical finding relates to Guo and Savickas (2006) and

Guo (2006). Both Guo and Savickas (2006) and Guo (2006) use a rough measure of

stock market variance: quarterly realized variance. Using simple regressions, they find

the momentum strategy is closely related to the dynamics of stock market variance.

However, they find stock market variance predicts the momentum factor while we find

the reverse relationship to be strongly significant using a VAR model with the long-run

volatility component as a market volatility measure. In addition to these variables, we

4



find SMBt, LIQt, MPt, and PPIt contain good amounts of information about future

stock market volatility. Then, the extended Campbell (1993) model suggests that

innovations to the size, momentum, and liquidity factors among the traded factors,

industrial production growth and inflation among macroeconomic factors, and both

short- and long-run volatility components should be significantly priced across assets

due to their common predictability on future market volatility.

Due to the persistent feature of stock market volatility, the best predictor of the

long-run volatility component is naturally the lags of its own series. Being the best

predictor of future market volatility, the long-run volatility component τt is supposed to

generate innovations that are most relevant to the pricing of assets. The predictability

analyses in the time-series studies and the extended Campbell (1993) model imply

the following: If these market-volatility-predicting factors (SMBt, WMLt, LIQt, MPt,

and PPIt) are priced due to their predictability on the future market volatility, the

pricing information of these factors should be well summarized by the τt innovation

factor. Within this context, we expect the τt innovation factor would contain the pricing

information of SMBt, WMLt, LIQt, MPt, and PPIt, and examine the information content

of τt innovation factor by running cross-sectional regressions of various specifications.

These cross-sectional studies will verify the idea that the information about the future

market volatility contained in these factors is the source of their pricing abilities for

assets.

We are interested in the pricing of three groups of factors: volatility component

factors, trading strategy based factors, and macroeconomic factors. We follow Fama

and MacBeth (1973) procedure to test the pricing of these factors on 40 test portfolios

consisting of four different decile portfolios sorted by size, book-to-market ratio,

momentum, and liquidity measure.6 To examine the information content of the τt

6The momentum and liquidity decile portfolios are the ones used in Liu and Zhang (2008) and Pástor
and Stambaugh (2003), respectively.
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innovation factor as well as others, we look into cross-sectional regressions of these

factors in three different ways. First, we run Fama and MacBeth (1973) regressions of

three sets of factors separately. Our choice of test assets allows us to decompose pricing

errors, in terms of sum of squared errors, into four parts that belong to each of the decile

portfolios. By looking at the pricing error decomposition of a set of factors or a certain

factor, we can evaluate what pricing information such factors contain. Second, we run a

horse race of factors among the three groups of factors. By running a horse race, we can

directly compare the explanatory power of these factors over cross-sectional variation of

mean asset returns and therefore examine the information content of the factors. Third,

we extend Griffin, Ji, and Martin (2003) and Liu and Zhang (2008) to see how much of

the profits from various trading strategies a set of factors can explain. All these results

from three different approaches consistently verify the implications of the results in the

predictability analyses. The τt innovation factor does contain the pricing information of

SMBt, WMLt, LIQt, MPt, and PPIt. In fact, a single factor model of the τt innovation

factor explains 35% of cross-sectional variation of mean returns of 40 test assets. The

overall performance of this single factor model is on par with four traded factor models

that consist of any combination of three traded factors and the market factor. Also, the

single factor model of the τt innovation explains 73%, 65%, and 46% of size, liquidity,

and momentum profits, respectively.

The rest of this paper is organized as follows. In Section 2, we develope a simple

extension of Campbell (1993) to explicitly show how stock market volatility and priced

factors are related. Section 3 explains the empirical methodologies used to generate

relevant factors in this paper. Section 4 discusses our test portfolios as well as other

dataset. We also present results from GARCH-MIDAS and VAR models; predictability

analyses and statistical properties of estimated factors. Section 5 covers all the cross-

sectional regression results. Finally, Section 6 concludes.

6



2 Theoretical Motivation

Campbell (1993) presents a discrete-time analogue of Merton’s (1973) ICAPM. A

VAR factor model was proposed to implement the theoretical ideas into empirical work.

An interesting result of Campbell (1993) is that he shows the asset pricing equation,

which is derived from Epstein and Zin (1991) utility function, of the discre-time ICAPM

can be represented as a standard linear factor pricing model via the VAR factor model.

The linkage between utility-based asset pricing equation and the linear factor model

puts theoretical restrictions on the priced factors:

. . . the intertemporal model suggests that priced factors should be found not
by running a factor analysis on the covariance matrix of returns (e.g Roll and
Ross 1980), nor by selecting important macroeconomic variables (e.g Chen,
Roll, and Ross 1986). Instead, variables that have been shown to forecast
stock-market returns should be used in cross-sectional asset pricing studies.

In the context of “fishing license” critique of Fama (1991), this theoretical restriction

on valid priced factors can potentially guard us against such claims. Cochrane (2001)

also points out that one could do a lot to show the chosen state variables actually do

comply with theoretical requirements while few papers have actually done the validity

check. One of his suggestions is to check that investment-opportunity-set state variables

actually do forecast something. Campbell (1993) suggests that we should check if these

state variables forecast market returns. The problem is that, as is well known in the

literature, market returns over the short horizon like a month is hard to predict while

we have a rich set of factors empirically shown to have significant explanatory power for

cross-sectional variation of mean asset returns. Moreover, even if some variables, say

term spread, show significant prediction power over market returns, the incremental R2



for market return is very slim when such a variable is added to a VAR system.

Chen (2003) shows that allowing heteroskedastic asset returns in Campbell (1993)

introduces a new hedge-demand-driven risk premium involving stock market volatility,

by which he suggests variables that predict either future stock market returns or future

stock market volatility should be priced across assets. For empirical implementation, he

estimates the return process using a VAR model to describe the conditional means and

a multivariate GARCH (MGARCH) model to describe the conditional variances. The

VAR-MGARCH methodology allows Chen (2003) to investigate his full specification

model in a unified and consistent way.7 However, in the VAR-MGARCH framework,

stock market volatility needs to be left out of the VAR system, and this feature of the

empirical methodology does not allow Chen (2003) to examine predictability relations

between stock market volatility and the variables in the VAR model. The variables in

the VAR system in Chen (2003) are supposed to forecast future stock market return,

but these variables have little to do with dynamics of stock market volatility captured

by the MGARCH. Rather, the volatilities of these variables should be able to predict

stock market volatility since MGARCH framework jointly models conditional variances

of the variables in the VAR. Hence, we cannot make the same Campbell’s (1993)

argument, with regard to the relations between future stock market returns and the

priced VAR variables, to those between future market volatility and the priced VAR

variables. Moreover, Chen (2003) focuses only on book-to-market effect.8

We are interested in the left-out link in Chen (2003) and focus on the relationship

between stock market volatility and already-well-established priced factors such as

7The full specification model of Chen (2003) includes a term which is tricky to estimate and also
hard to interpret.

8The estimates of his model indicate that the book-to-market effect cannot be explained as a factor
that conveys information about future market returns. However, the analytical derivation of Viν,t

estimate under VAR-MGARCH framework in Chen (2003) contains an error at (B.12) in his paper and
the robustness of his empirical results to this error is unknown.
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aggregate volatility factor, trading strategy based factors, and macroeconomic factors.9

To examine these relations, we let the theoretical framework of Campbell (1993) to allow

heteroskedasticity of asset returns and consumption growth. However, we do not take

any ad hoc assumptions to substitute out consumption process from the implied asset

pricing equation. Chen (2003) put restrictions on the higher moments of stock market

returns to substitute out consumption process from the asset pricing equation in the

heteroskedastic environment.10 Although the ad hoc assumption is successful in driving

out the consumption from the equity premium equation, it introduces a term hard to

interpret. With no additional assumptions to those made in Campbell (1993), we can

derive the following asset pricing equation:11

Et[ri,t+1 − rf,t+1] = −Vii,t

2
+ γVim,t + (γ − 1)Vih,t −

(γ − 1)2

2(σ − 1)2
Viη,t (1)

where γ, σ, ri,t+1 and rf,t+1 are the coefficient of relative risk aversion, the elasticity of

intertemporal substitution, log return of asset i and risk-free asset, respectively. And,

Vii,t=V art(ri,t+1), Vim,t=Covt(ri,t+1, rm,t+1), in particular,

Vih,t = Covt(ri,t+1, rh,t+1) = Covt

(

ri,t+1, (Et+1 − Et)

∞
∑

j=1

ρjrm,t+1+j

)

(2)

and

Viη,t = Covt(ri,t+1, rη,t+1) (3)

= Covt(ri,t+1,
[

Et+1 − Et

]

∞
∑

j=1

ρjV art+j [∆ct+j+1 − σrm,t+j+1])

9For empirical studies of market volatility risk, see Ang, Hodrick, Xing, and Zhang (2006) and Adrian
and Rosenberg (2008).

10Chen (2003) assumes the covariance between shocks to aggregate wealth portfolio return,
rm,t+1 (and powers of these shocks) and the changes in the forecasts of future variances, (Et+1 −
Et)V art+s+1(rm,t+s+1), are constants for all s.

11See Appendix A for brief summary of derivation.
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where ρ is a constant that comes from log-linearization of the budget constraint. The

first term on the right hand side of equation (1) is from a Jensen’s inequality effect in

taking expectation of log-normal returns, the second relates to CAPM, and the third is

the covariance of asset i’s return with good news about future returns on the market (i.e.

upward revisions in expected future returns). Upto the third term, the risk premium

equation is identical to that in Campbell (1993) except that Vii,t is a constant in Campbell

(1993) due to the assumption in homoskedastic asset returns. Also, Campbell (1993)

and Campbell (1996) point out that the equation (1) without the fourth term still

holds in heteroskedastic environment when the elasticity of intertemporal substitution σ

equals one. It is when we allow heteroskedasticity in asset returns and consumption and

σ 6= 1 that the fourth term involving second moments of market return and consumption

growth is introduced to risk premium equation (1).12 It is interesting to see that the

elasticity of intertemporal substitution σ plays a role in risk premium determination. In

Campbell (1993) and Chen (2003) in which consumption is completely substituted out,

σ does not enter into the asset pricing equation.

Expanding the conditional variance term in Viη,t, we can represent Viη,t as a sum of

three covariance terms. The first is the covariance between return on asset i and the

revision in future consumption growth volatility. However, majority of macroeconomic

literature reports that the evidence of heteroskedasticity in consumption growth is very

weak, and hence we can quite strongly argue that the first covariance term is zero.

The second covariance term invloves covariance between consumption growth and stock

market return. Duffee (2005) provides evidence that the conditional covariance between

stock market return and consumption growth varies substantially over time. He also

12The macroeconomic evidence on the value of σ for the U.S. is conflicting. Calibrated dynamic
models require a value close to one of the EIS to match the data. In contrast, direct estimates of
the EIS from the first order conditions for the solution of the consumer’s intertemporal optimization
problem deliver much lower values: Hall (1988) argues that the EIS is very close to zero and subsequent
literature has provided further supports to this evidence. (e.g. Campbell and Mankiw (1989) and Yogo
(2004))
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reports that both the conditional covariance and correlation are high when stock market

wealth is high relative to consumption. However, the impact of this covariance term on

cross-section of asset returns will be further studied in Sohn (2008) since our current

focus is on the relation between stock market volatility and asset returns. Hence, we

ignore first two terms in Viη,t and we assume

Viη,t ≈ Viη̃,t = Covt(ri,t+1, rη̃,t+1) (4)

≈ σ2 Covt

(

ri,t+1,
[

Et+1 − Et

]

∞
∑

j=1

ρjV art+j [rm,t+j+1]
)

≈ σ2 Covt

(

ri,t+1,
[

Et+1 − Et

]

∞
∑

j=1

ρj ĥt+j+1

)

where ĥt is stock market volatility estimates. Chen (2003) uses a MGARCH model

to capture dynamics of second order moments of VAR variables and estimate the

corresponding covariance terms in the risk premium equation. On the contrary, we

will estimate stock market volatility beforehand and treat it as an observable variable.

This makes Viη̃,t in the same format as Vih,t, or rη̃,t+1 in the same format as rh,t+1. Hence,

including both stock market return and stock market volatility estimates in the VAR

system, we can use the VAR factor model of Campbell (1993) to estimate both rη̃,t+1

and rh,t+1, and rewrite the asset pricing equation (1) in linear factor pricing model of

VAR innovations. Both terms involving Vih,t and Viη,t represent hedge-demand-driven

risk premia and they imply that the variables that predict either stock market return or

stock market volatility should show up as priced factors.
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3 Econometric Methodology

We introduce econometric methodologies that will be used in our time-series

analyses: the GARCH-MIDAS class of models proposed by Engle, Ghysels, and Sohn

(2008) and the VAR factor model adapted to accommodate the extension in Campbell

(1993). Both the GARCH-MIDAS model and the VAR factor model allow us to examine

the predictability of stock market volatility. We use the GARCH-MIDAS model to

estimate two volatility components. Including these volatility components, we construct

a VAR factor model. The VAR factor model generates the factors that will be used in

our cross-sectional studies.

3.1 GARCH-MIDAS Class of Models

Different news events may have different impacts on financial markets, depending on

whether they have consequences over short or long horizons. A conventional framework

to analyze this is the familiar log linearization of Campbell (1991) and Campbell and

Shiller (1988) which states that:

rm,δ/t −Eδ−1/t[rm,δ/t] = [Eδ/t −Eδ−1/t]
∞

∑

j=0

%j∆dδ/t+j − [Eδ/t −Eδ−1/t]
∞

∑

j=1

%jrm,δ/t+j (5)

where we deliberately write returns in terms of days of the month, namely rm,δ/t is the

log market return on day δ during month t, dδ/t the log dividend on that same day and

Eδ/t[ ] the conditional expectation given information at the same time. Following Engle

and Rangel (2008), the left hand side of equation (5), or unexpected returns, can be



rewritten as follows:

rm,δ/t − Eδ−1/t[rm,δ/t] =
√

τδ/t · gδ/t ζδ/t (6)

where volatility has at least two components, namely gδ/t which accounts for daily

fluctuations that are assumed short-lived, and a secular component τδ/t. The main idea

of equation (6), is that the same news, say better than expected dividends, may have a

different effect depending on the state of the economy. For example, unexpected poor

earnings, should have an impact during expansion different from that during recessions.

The component gδ/t is assumed to relate to the day-to-day liquidity concerns and possibly

other short-lived factors (see e.g. recent work by Chordia, Roll, and Subrahmanyam

(2002) documents quite extensively the impact of liquidity on market fluctuations). In

contrast, the component τδ/t relates, first and foremost, to the future expected cash

flows and future discount rates, and macro economic variables are assumed to tell us

something about this source of stock market volatility.

With this motivation in the background, Engle, Ghysels, and Sohn (2008)

introduced the GARCH-MIDAS class of models with many variants. The name comes

from the features that it uses a mean reverting unit daily GARCH process, similar to

Engle and Rangel (2008), and a MIDAS filter as in Ghysels, Santa-Clara, and Valkanov

(2005). The distinct feature of the new class is that the mixed data sampling allows us

to link volatility directly to economic activity (i.e. data that is typically sampled at the

different frequency than daily returns). We start with introducing the GARCH-MIDAS

with rolling window RV. We assume that daily conditional expectation of market return

is constant, namely

rm,δ/t = µ +
√

τδ/t · gδ/t ζδ/t (7)

where ζδ/t | Φδ−1/t ∼ N(0, 1) with Φδ−1/t is the information set up to day (δ − 1) of

period t. Following Engle and Rangel (2008), we assume the volatility dynamics of the

13



component gδ/t is a (daily) unit GARCH(1,1) process, namely:

gδ/t = (1 − α − β) + α
(rm,δ−1/t − µ)2

τδ−1/t

+ βgδ−1/t (8)

To capture dynamics of long-run volatility component, we adopt MIDAS filter or

MIDAS regression framework.13 The first natural candidate to be placed in the filter

is realized variance since this conforms with long tradition from Schwert (1989). One

can choose to plug monthly (fixed window) RV or monthly rolling window RV into the

MIDAS filter.14 Depending on the choice of RV, we call it GARCH-MIDAS with (fixed

span/rolling window) RV. Engle, Ghysels, and Sohn (2008) report that, for the monthly

horizon forecasts, the GARCH-MIDAS with rolling window RV outperforms that with

fixed span RV in almost every measure and, hence, we introduce the GARCH-MIDAS

with rolling window RV here:15

τδ/t = m + θ
J

∑

j=1

ϕj(ω1, ω2)RVδ/t−j (9)

where

RVδ/t =

N ′

∑

n′=1

r2
m,δ/t−n′ (10)

When N ′ = 22, we call it monthly rolling window RV, while N ′ = 65 and N ′ = 125,

amount to respectively, quarterly rolling and biannual rolling window RV. The weighting

13For theoretical background of MIDAS regression, see Ghysels, Santa-Clara, and Valkanov (2002),
Ghysels, Sinko, and Valkanov (2007). Also, see Ghysels, Santa-Clara, and Valkanov (2005) and Ghysels,
Santa-Clara, and Valkanov (2006) among many others for empirical applications.

14Adrian and Rosenberg (2008) report that their long-run volatility component is closely related
with the trend component of Hodrick and Prescott (1997) filtered daily squared returns. Although
not verified empirically, our long-run volatility component would highly correlate with that of Adrian
and Rosenberg (2008) since ours is also modeled by passing squared returns into low-frequency filter of
MIDAS.

15See Engle, Ghysels, and Sohn (2008) for empirical comparison on these models.
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function is defined as

ϕj(ω) =

(

j/J
)ω1−1(

1 − j/J
)ω2−1

∑J
i=1

(

i/J
)ω1−1(

1 − i/J
)ω2−1 (11)

where the weights in the above equation sum up to one. The weighting function or

smoothing function in equation (11) is the “Beta” lag structure discussed further in

Ghysels, Sinko, and Valkanov (2007). The Beta lag, based on the beta function, is very

flexible to accommodate various lag structures. It can represent monotonically increasing

or decreasing weighting scheme. It can also represent a hump-shaped weighting scheme

although it is limited to unimodal shapes.16 Due to the small number of parameters

and structural flexibility of the weighting function, we can handle large number lags

with only a handful of parameters. The GARCH-MIDAS model with RV has parameter

space of Θ={µ, α, β, θ, ω1, ω2, m} and the number of parameters is fixed regardless of

the choice of J and N ′.

We introduce another GARCH-MIDAS class of models to accommodate a wider

choice of variables for modelling the long-run volatility component. One of attractive

features that GARCH-MIDAS class of models offer is that we can directly link various

variables to long-run volatility component τ , and examine whether the chosen variable

help predicting long-run volatility component. If a variable does not contain any

information about future market volatility, estimation procedure shuts down τ process

by setting θ ≈ 0 and making τδ/t ≈ m. Then, τ only works as a scaling factor for unit

GARCH(1,1) process gδ/t to fit unconditional mean of conditional variance τ · g.

Since we are interested in wide variety of variables, the model should be able to

accommodate variables that have negative relations with stock market volatility. To

make it easy to implement these variables, we consider modeling log τ instead of τ as in

16See Ghysels, Sinko, and Valkanov (2007) for further details regarding the various patterns one can
obtain with Beta lags.
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the GARCH-MIDAS model with RV:17

log τδ/t = m + θ

J ′

∑

j=1

ϕj(ω1, ω2)Xt−j (12)

where Xt is the monthly variable of our interests. Although τ still has daily time

subscript, δ, τ is a constant during each calendar months since the regressor Xt is

of monthly frequency.

For both of our time-series and cross-sectional studies that follow, we work with

monthly frequency data and hence we time aggregate τδ/t and gδ/t. For time aggregation,

we add up daily τδ/t’s and gδ/t’s within a month to construct a monthly τ and g. Then,

we take averages of the τ and g volatility components within each month and multiply

by the average number of trading days within months over the whole sample period.

This procedure ensures that market risk is not affected by the variation in the number

of trading days per months. The resulting monthly τ and g components are denoted

with τt and gt without daily time subscript δ.

3.2 VAR Factor Model

We adopt a VAR factor model of Campbell (1993) and Campbell (1996) to link

hedge-demand-driven risk premia in the asset pricing equation (1) to those in the

standard linear factor pricing model. It also allows us to implement the theoretical

ideas developed in Section 2. Unlike Chen (2003), we first estimate the stock market

volatility components by the GARCH-MIDAS model with rolling window RV, and then

include these components in the vector for the VAR factor model. The VAR model

allows us to construct the innovation series of the variables in the VAR system, which

are the base factors for our cross-sectional studies. In addition to this, the VAR factor

17Note that the estimation process should impose positivity condition on equation (9). However, if
we model log τ , such condition need not be imposed.
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model offers two more advantages. One is that we can use the Granger causality tests

(F -tests) of the VAR model to investigate predictability relations between stock market

volatility and other well-established factors such as trading strategy based factors (SMB,

HML, WML, LIQ) and macroeconomic factors (MP, PPI, UTS, UPR). This issue is

particularly relevant to Section 2. We expect to find the evidence that these factors

contain information about the future stock market volatility.

As was previously discussed in Section 3.1, the predictability relations can also be

investigated with the GARCH-MIDAS framework. However, the predictability relations

that would be revealed by the GARCH-MIDAS framework and the VAR analysis are

different. The strength of the GARCH-MIDAS model is that it can handle many lags

of an independent variable with a handful of parameters. This feature allows us to look

at the predictability relations that requires many lags of an independent variable. This

comes at a cost of restricting the coefficients of regressors. One particular restriction

is that the signs of coefficients of regressors cannot differ across the lags; the signs

of the coefficients are all determined by θ. On the other hand, a VAR approach has

different strengths and weaknesses. A VAR framework, as is often called a “black box,”

has great flexibility in parameters, but cannot handle large number of lags due to the

curse of dimensionality. In sum, the GARCH-MIDAS framework will help us reveal

simple bivariate predictability relations that involve long lags of a predictor while a VAR

framework will allow us to look at predictability relations with other control variables

and great flexibility in parameters but with small number of lags.

The other advantage of adopting a VAR model relates to Campbell (1996).

Campbell (1996) argues that it is hard to interpret estimation results for a VAR factor

model unless the factors are orthogonalized and scaled in some way. In his paper the

innovations to the state variables are orthogonal to both the excess market return and

labor income. Following Campbell (1996) and Sims (1980), we can triangularize the VAR

system in a similar way. We can also scale all the innovations to have the same variance
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as that of the innovations to the market return. We provide the results of our cross-

sectional studies with scaled and orthogonalized factors as well as those with conventional

innovation factors. Petkova (2006) also adopts this methodology in investigating the

relations between the Fama-French factors (HML and SMB) and a set of variables that

describes investment opportunities.

We are interested in the relations among the aggregate volatility factors, the trading

strategy based factors, and the macroeconomic factors. The theoretical framework

introduced in Section 2 suggests that these factors are priced because they predict

either stock market return or stock market volatility. Hence, in addition to stock market

return and stock market volatility estimates, we will include these factors to examine the

predictability relations. We choose two sets of variables for two separate VAR systems

to examine these relations.18 Let
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With these two sets of variables, we estimate the following VAR system separately:

y
[•]
t+1 = B[•] y

[•]
t + ε

[•]
t (13)

where [•] can be either 1 or 2. The first-order VAR representation is not restrictive

18It would be interesting to have all the volatility components, traded factors, and macroeconomic
variables in one VAR system, but this will seriously exacerbate the curse of dimensionality problem.
Hence, we keep maximum of seven variables in each VAR system.
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since a higer-order VAR can always be stacked into first-order (companion) form in

the manner discussed by Campbell and Shiller (1988). The matrix B is known as the

companion matrix of the VAR. Following Campbell (1993), it is straight forward to

show that the VAR factor model of (13) can be used to estimate two terms involving

hedge-demand-driven risk premia as in (2) and (4):

(Et+1 − Et)

∞
∑

j=1

ρjrm,t+1+j = e′
1ρB(I − ρB)−1εt+1 (14)

= λ′εt+1

(Et+1 − Et)
∞

∑

j=1

ρj ĥt+1+j = e′
2ρB(I − ρB)−1εt+1 (15)

= ξ′εt+1

where e1 is a vector whose first element is one and whose other elements are all zero.

And, e2 is defined similarly. As was already pointed out in Section 3.1, τt relates to the

state of an economy while gt relates to short-lived factors. Hence, we assume ĥt = τ̂t in

the equation (15).19 Using these results, we can rewrite equation (1) as follows

Et[ri,t+1 − rf,t+1] = −Vii,t

2
+ γVim,t +

N
∑

n=1

[

(γ − 1)λn − (γ − 1)2

2(σ − 1)2
ξn

]

Vin,t (16)

where λn and ξn are the n th element of λ and ξ, respectively, and Vin,t =

Covt(ri,t+1, εn,t+1) where εn,t+1 is the n th element of the residual vector εt+1 in the

VAR system. The equation (16) shows that variables that have been known to forecast

either stock market return or stock market volatility should be used in cross-sectional

asset pricing studies. The elements of the vector λ and ξ measure the importance of

each variable in VAR system in forecasting future market returns and future market

19The predictability analyses in Section 4 show that no trading strategy based factor nor
macroeconomic factors contain information about the future gt. Also, our cross-sectional studies in
Section 5 show that innovations to gt is not priced when the common component with τt innovation is
eliminated.
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volatilities. If a particular element λn (ξn) is large and positive (negative), then a shock

to n th variable in y
[•]
t is an important piece of good news about future investment

opportunities.

Besides the time-series studies, we will also look into the cross-section of stock

returns to examine the information content of the factors investigated. For the purpose

of this cross-sectional study, it is convenient to have unconditional version of the asset

pricing equation (16):20

E[Ri,t+1 − Rf,t+1] = γσ2
ř,mβim̌ +

N
∑

n=1

[

(γ − 1)λn − (γ − 1)2

2(σ − 1)2
ξn

]

σ2
ε,nβin (17)

= Λm̌βim̌ +

N
∑

n=1

Λnβin (18)

where βim̌ = Cov(Ri,t+1, Řm,t+1)/σ
2
ř,m, βin = Cov(Ri,t+1, εn,t+1)/σ

2
ε,n, σ2

ř,m = V ar(Řm,t+1),

σ2
ε,n = V ar(εn,t+1), and Řm,t+1 = Rm,t+1 − Et[Rm,t+1]. For our cross-sectional studies,

we consider two different ways to construct factors. One is to construct conventional

innovation factors from the estimated residuals in the VAR model. The other is to follow

Campbell (1996); orthogonalize and rescale these innovation series. We let

f
τ [•]
t = e′

2ε
[•]
t (19)

f
g[•]
t = e′

3ε
[•]
t

f τ
t is an innovation series of τt and f g

t is an innovation series of gt. Similarly, we define

fMP
t =e′

4ε
[2]
t ,fPPI

t = e′
5ε

[2]
t ,fUTS

t =e′
6ε

[2]
t , fUPR

t =e′
7ε

[2]
t . On the other hand, for the trading

strategy based factors, we define fSMB
t = SMBt, fHML

t = HMLt, fWML
t = WMLt,

and fLIQ
t = LIQt. We collect the following set of factors, {Re

m,t,f
τ
t ,f g

t , fSMB
t , fHML

t ,

fWML
t , fLIQ

t , fMP
t , fPPI

t , fUTS
t , fUPR

t }, and call them ‘base factors’ to be differentiated

from ‘orthogonalized factors’ which will be introduced a bit later.

20See Appendix B for brief outline of derivation.
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It should be pointed out that traded factor themselves are taken as base factors

whereas innovations to macroeconomic variables are taken as base factors. Moreover, the

original factors from Chen, Roll, and Ross (1986) include unanticipated inflation (UIt)

and the change in expected inflation (DEIt) instead of producer price index (PPIt). Chen,

Roll, and Ross (1986) argue that their original factors are noisy enough to be treated

as innovations and hence they used these log growth rates or rate differences as their

factors. However, as shall be revealed by our VAR analysis, some of these series are highly

persistent and predictable. Hence, we take innovations to the relevant macroeconomic

variables from the VAR model as our base factors. In doing so, it is hard to interpret the

innovations to UIt and DEIt because they already take expectations in them and that’s

why we replace these with PPIt. In addition, macroeconomic innovation factors with

PPIt perform far better than the original model specification of Chen, Roll, and Ross

(1986) with UIt and DEIt. On the contrary, as will be shown in our VAR results, trading

strategy based factors are hardly persistent and predictable, which is consistent with the

fact that innovation/residual series of these factors from VAR estimation highly correlate

(at least 95% of correlation) with their original factors. The traded factors themselves

are good proxies for the innovations associated with these variables.

Once we have estimated the ε̂t series, we can estimate covariance matrix and

orthogonalize the shock, ε̂t. As a result, we can compute ‘orthogonalized factors.’ To

differentiate it from the base factors (fX
t ) we denote the orthogonalized factors with uX

t

where X refers to the original variable from which the factor is derived (e.g. X can be

SMB, MP, etc.). It is very important to recognize that ordering of variables matters

in orthogonalized factors. Note that the ordering of variables in yt does not make any

differences in estimates of εt. However, Sims (1980) orthogonalization makes ordering

of variables in yt have great impact on estimated ut. If the variables in y
[1]
t are ordered

as they are shown, we have um,t = e′
1u

[1]
t = e′

1ε
[1]
t ; the innovation to the market return is

unaffected. However, the orthogonalized innovation in τt (u
τ [1]
t ) is the component of the
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original τt innovation, ε
τ [1]
t = e′

2ε
[1]
t , orthogonal to the market return, and so on. The

orthogonalized innovation to τt is a change in the τt component with no change in the

excess market return; therefore it can be interpreted as a shock to the τt. Similarly, the

orthogonalized innovation to g
[1]
t (u

g[1]
t ) is the component of the original g

[1]
t innovation

orthogonal to both market return and τt. Following Campbell (1996), we also scale all

the orthogonalized innovations to have the same variance as the market return.
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4 Data and Time Series Analysis

This section describes the data used in the empirical studies. In particular, we

describe the statistical properties of test assets used in the cross-sectional studies, and

discuss the advantages from our choice of test portfolios. Also, it presents empirical

results of our time-series studies; the predictability relations between stock market

volatility and the variables of our interest are examined using the GARCH-MIDAS

model and a VAR model.

4.1 Data

In order to estimate the GARCH-MIDAS model with rolling window RV, we use

daily value-weighted cum-dividend stock market return (NYSE/AMEX/NASDAQ) data

from CRSP. Once we construct monthly-aggregated volatility components, τt and gt, we

use VAR framework to estimate innovation factor series. In the process, we have a

chance to look at the predictability relations among stock market return and stock

market volaility, and other variables of our choice. Our choice of variables include

trading strategy based factors (SMB, HML, WML, LIQ) and macroeconomic factors

(MP, PPI, UTS, UPR). We include these factors in the VAR model to investigate the

theoretical implications of the extended Campbell (1993), i.e some of these empirically-

well-established factors are priced due to their prediction power on the future stock

market volatility.

The monthly returns on market portfolio, risk-free rate, SMB, and HML are from

Prof. Kenneth French’s website. LIQ is the original value-weighted traded liquidity



factor used in Pástor and Stambaugh (2003) and available at ‘Fama French, Momentum,

Liquidity’ dataset in WRDS.21 WML is the momentum factor used in Liu and Zhang

(2008) and available at Prof. Xiaolei Liu’s website. Note that these are all ‘traded’

factors and this common feature allows us to examine the link between these factors and

others by looking at how much of the profits of these trading strategies can be explained

by other factors. This issue is covered in Section 5.2 in detail.

In addition to the traded factors, we are also interested in macroeconomic factors as

in Chen, Roll, and Ross (1986) and their link with stock market volatility. We follow their

definitions on macroeconomic factors. MPt is the monthly log growth rate of industrial

production, MPt = log IP(t) - log IP(t−1), where IPt is the index of industry production

in month t from Federal Reserve Economic Data (henceforth FRED). Similarly, PPIt

is defined as log growth rate of producer price index also avaiable at FRED.22 UTSt is

the term premium defined as the yield spread between the long-term and the one-year

Treasury bonds from the Ibbotson database. Lastly, UPRt is the default premium, the

yield spread between Moody’s Baa and Aaa corporate bonds from FRED.

Table 1 shows summary statistics for the variables included in the VAR system. As

was previously mentioned in Section 3.2, traded factors themselves are base factors and

hence they are denoted with f •
t . Autocorrelations marked with an asterisk are beyond

two standard deviations from zero. Table 1 shows that there is a drastic difference in

autocorrelation structure between traded factors and macroeconomic factors. Traded

factors show very low autocorrelation while macroeconomic factors show large and

persistent autocorrelations. This evidently shows that one of assumptions made in Chen,

Roll, and Ross (1986) is not correct; they assume that the macroeconomic factors are

21The LIQ here is the one denoted with LIQv in Pástor and Stambaugh (2003) and it is the payoff
on the 10-1 spread constructed using value-weighted decile portfolios sorted on predicted liquidity beta.
This should be distinguished from the innovation in aggregate liquidity, Lt.

22Chen, Roll, and Ross (1986) use unanticipated inflation (UIt) and changes in expected inflation
(DEIt) instead of PPIt. However, we chose PPIt for the reasons given in Section 3.2.
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noisy enough to be treated as innovations. Thus, we choose to take traded factors

themselves as base factors whereas VAR innovations of macroeconomic factors are taken

as base factors. Table 1 also shows mean returns of traded factors; 0.15% for SMB,

0.31% for HML, 0.84% for WML, and 0.33% for LIQ. These are monthly rates. The

WML trading strategy generates the biggest profits in our sample from July, 1966

to December, 1999. However, return on WML strategy also shows high kurtosis and

standard deviations.

We run cross-sectional regressions with the base/orthogonalized factors constructed

from the variables in Table 1 using a VAR factor model. Our test assets used in

the cross-sectional studies in Section 5 consist of 40 portfolios. We use four single-

sorted decile portfolios; size-, BM-, momentum-, and liquidity-sorted decile portfolios.

Size and BM decile portfolios are from Prof. Kenneth French’s website. Momentum

portfolios are from Liu and Zhang (2008) and also available at Prof. Xiaolei Liu’s

website.23 Liu and Zhang (2008) follow Jegadeesh and Titman (1993) and sort all stocks

(NYSE/AMEX/NASDAQ) at the beginning of every month on the basis of their past

six-month returns and hold the resulting ten portfolios for the subsequent six months.

All stocks are equal-weighted within each portfolio. To avoid potential microstructure

biases, they skip one month between the end of the ranking period and the beginning

of the holding period. Pástor and Stambaugh (2003) sort stocks on the basis of their

predicted values of sensitivity of the corresponding stocks’ returns to the innovation in

aggregate liquidity measure and form 10 portfolios. The postformation returns on these

portfolios during the next 12 months are linked across years to form a single return series

23Momentum factor and momentum portfolios are also avaiable at Prof. Kenneth French’s website.
However, Liu and Zhang (2008) follows Jegadeesh and Titman (1993) more closely in forming portfolios
and the factor in the sense that they allow overlapping holding periods. Also, the first and the last
momentum portfolios from Prof. Kenneth French’s website show signs of outliers. The mean returns
of these portfolios are so far distanced from that of the next (#2 and #9) portfolios. For our sample
from 1966 to 1999, the spread of these two end portfolios generates monthly 1.68%. In fact, we do have
stronger results with our volatility factors on test assets with momentum portfolios and factor from
Prof. Kenneth French’s website.
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for each decile portfolios. These are our liquidity portfolios.24

In our cross-sectional studies, we expect to benefit from using these four one-way

sorted decile portfolios in many ways. It has been a sort of norm in this field to use,

as test assets, 25 Fama French portfolios two-way sorted by size and book-to-market

ratio.25 However, in addition to SMB and HML, we are also interested in WML and

LIQ and their relations to market volatility. Thus, we might as well include momentum-

and liquidity-sorted decile portfolios. Alternatively, we can consider portfolios four-way

sorted by size, book-to-market ratio, momentum, and liquidity, but this will drastically

increase the number of test assets while drastically decrease the number of firms included

in each portfolio, which will exacerbate error-in-variable problem for which the portfolio

formation for test assets was devised in the first place. Say, forming quintile portfolios for

each criteria will result in 625 test portfolios. By using 4 one-way sorted decile portfolios,

we are able to keep many firms in a portfolio, which will help reducing idiosyncratic

shocks for a given test asset. More importantly, our choice of test assets allows us

to decompose pricing errors, in terms of sum of squared pricing errors (henceforth

SSPE), into parts that belong to each decile portfolios since this measure of pricing

errors is additive. Although it is not a formal test, we can get a sense of what pricing

information a certain set of factors contain by looking at the pricing error decomposition;

e.g. most of pricing errors on the forty test assets for the Fama-French three factor model

are expected to come from momentum and liquidity decile portfolios.26 Besides these

24We are very much grateful to Prof. Ľuboš Pástor for providing us with the decile portfolios data.

25Since its introduction in Fama and French (1993), these 25 portfolios have been a challenge for
many asset pricing models. However, it is also true that many have claimed that they have succeeded
in explaining size and B/M effects; the recent list includes, but restricted to Campbell and Vuolteenaho
(2004), Brennan, Wang, and Xia (2004), Petkova (2006), Jagannathan and Wang (1996), Bansal,
Dittmar, and Lundblad (2005), Parker and Julliard (2005), Hansen, Heaton, and Li (2008), Lettau
and Ludvigson (2001), etc. In fact, nowdays it is almost deemed to be very easy fit 25 Fama French
portfolios. Our volatility factors are also strongly priced in this set of test assets and achieve very high
R2. By using 40 test assets, we are putting our models in a bigger challenge.

26All of these traded factors take form of spread between two end portfolios although this spread
might not be from the decile portfolios.
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advantages over the conventional 25 Fama French portfolios, the increased number of

test assets alone will be more challenging to any asset pricing models. Bansal, Dittmar,

and Lundblad (2005) and Liu and Zhang (2008) also use one-way sorted decile portfolios

for their cross-sectional asset pricing studies although they do without liquidity-sorted

decile portfolios.

Table 6 shows the average returns of our test portfolios. For each set of decile

portfolios, we sorted portfolios in order of their average returns over our sample from

1966 to 1999. Their original portfolio numbers are also listed. If a certain sorting criteria

is relevant in cross-sectional dispersion of average returns, the portfolio numbers should

be monotonically increasing or decreasing from left to right in Table 6. Momentum

portfolios show perfect match between their original portfolio numbers and the order

of their average returns. Also, BM- and liquidity-sorted portfolios show pretty good

match. For these decile portfolios, the order ranked by their average returns doesn’t

exactly match with the portfolio numbers. However, the portfolios with number 1-5 at

least stay at the first half group and the rest at the latter half group. Lastly, size-sorted

decile portfolios show particulary many displacements. Moreover, size-sorted portfolios

show the smallest spread between the maximum and minimum average returns: 0.21%

for size-, 0.43% for BM-, 0.84% for momentum-, and 0.36% for liquidity-sorted portfolios.

Since Banz (1981) reported size effect on mean asset returns, many have provided

empirical evidence and several potential explanations.27 However, in recent studies,

many have also reported the disappearance of the size effect. Dichev (1998) and

Horowitz, Loughran, and Savin (2000) find no evidence of a size effect in the 1981-1995

and 1979-1995 periods, respectively. Also, Hirshleifer (2001) suggests 1984 as the year

in which the disappearance of the size effect first materialized. Our test asset data as

shown in Table 6 and results in the cross-sectional studies seem to support these results.

However, Hou and Van Dijk (2007) argue that the conclusion that the size effect has

27See Van Dijk (2006) for a survey of the literature to date.
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gone away is premature by showing the reduction in the observed size premium can be

attributed to profitability shocks to small and large firms.

4.2 Volatility Components Estimation

We estimate daily volatility components, τδ/t and gδ/t, using daily stock market

returns from January 3, 1966 to December 31, 1999. The GARCH-MIDAS model with

rolling window RV consists of equations (7)-(11) introduced in Section 3.1 and it is fitted

to daily stock market return series using QMLE. For the empirical implementation, we

also need to choose J , the number of RV lags in our MIDAS filter, and N ′, spanning

period for rolling window RV. Our choices are J = 125 and N ′ = 22. This choice ensures

efficient use of RV information and high log-likelihood value among other choices. Note

that J = 252 doesn’t mean that τ process is necessarily a function of all 252 lags of

rolling window RV. Typical optimal weighting function for the GARCH-MIDAS with

RV has monotonically decreasing structure (i.e. ω2 = 1) and might not put any weights

beyond a certain number of lags.

The first row of Table 2 shows the parameter estimates of the GARCH-MIDAS

with rolling window RV. Optimal weights ϕj(ω1, ω2) for the GARCH-MIDAS with RV

are monotonically decreasing over the lags so we fixed ω2 = 1 for these models and

left blank at the Table. Note that α + β measures persistence of gδ/t process and

the estimates are 0.9216, which is far lower than the standard GARCH model. This

finding is also consistent with Engle, Ghysels, and Sohn (2008) and Engle and Rangel

(2008). The resulting conditional market volatility and its long-run component are

shown in Figure 1. The dashed line in the first panel represents annualized conditional

volatility (
√

252 τδ/t gδ/t) and the solid line annualized long-run component (
√

252 τδ/t).

The τδ/t component in the figure appears to capture very well the long-run persistent

component, free of short-lived shocks, of conditional volatility dynamics. To compare
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with a nonparametric measure of stock market volatility, we aggregate these components

to make them quarterly estimates and show them with quarterly RV in the second panel.

When aggregated over a quarter, short-lived shocks gδ/t averages out to one, and we

can confirm this in the second panel of Figure 1; τq · gq and τq share almost the same

dynamics.28 Both of them also fit well with quarterly RV.

For both of our VAR analyses and cross-sectional regressions, we time aggregate

our daily volatility components (τδ/t, gδ,t) to monthly components (τt, gt). The summary

statistics of these time aggregated components are shown in Table 1. The autocorrelation

structure of τt process shows that τt is quite persistent, but autocorrelations are

substantially reduced by 6th lag and dies out beyond 9th lag. On the other hand,

the autocorrelation of gt at the first lag is 0.30 and that is the only significant one. Note

that E[gδ/t] = 1 and the way we time aggregate gδ/t makes the average of monthly gt

very close to the average number of trading days (21 days) in a month for our sample.

4.3 Long-Lag Predictability (GARCH-MIDAS Results)

The GARCH-MIDAS model allows us to directly link wide choice of variables to

long-run component τδ/t. All the variables that we are going to consider in this section

are monthly, which means that τδ/t is fixed at given month t. To accommodate a variety

of variables, we adopt equation (12) for modeling τδ/t process instead of equation (9).

Using our GARCH-MIDAS framework, we investigate whether conventional factors such

as trading strategy based factors (SMB, HML, WML, LIQ) and macroeconomic factors

(MP, PPI, UTS, UPR) contain information about future stock market volatility.

In the context of Section 2, we examine the predictability of stock market volatility.

Section 2 adopts a VAR framework to link predictability of stock market volatility and

priced factors. If we are able to estimate a VAR model of any order with high precision,

28Since gδ/t is a unit GARCH(1,1) process, unconditional expectation of gδ/t is one, i.e. E[gδ/t] = 1.
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a VAR approach might be the best way to analyze the relevant predictability relations.

However, as we specify the VAR variables in Section 3.2, we have 7 variables for both y
[1]
t

and y
[2]
t and the number of parameters to be estimated will increase in the order of 49

as we increase the VAR order. The predictability relations in a VAR model depend on

a choice of variables in the system. On the other hand, the GARCH-MIDAS framework

looks at bivariate relations between long-run component τ and a chosen independent

variable, and is able to handle a large number of independent variable lags with a small

number of parameters. In fact, the number of parameters doesn’t depend on the number

of lags used to model the long-run component. However, it comes with the cost of a

restrictive structure in coefficients of independent variable lags. Beta function based

weighting scheme is quite flexible to accommodate various structures, but it should be

pointed out that the sign of all the coefficients to the lags are governed by θ and therefore

they have all the same signs. These restrictions call for caution when interpreting the

impact of the independent variable on the stock market volatility. In a way the MIDAS

filter can be looked upon as a low-frequency filter and, in this sense, the predictablity

relations revealed by the GARCH-MIDAS might match better with those by VAR with

low-frequency data, say quarterly or biannual data. For an empirical implementation,

J ′ = 36 (months) is chosen, but actual number of lags used in τ modeling will be

determined by the optimal weighting function.

Table 2 shows the results. First of all, θ’s of the GARCH-MIDAS with SMB, WML,

LIQ, MP, and PPI turned out to be significant, which implies that these variables do

predict the long-run component of stock market volatility. Among these, WML stands

out as a best predictor in terms of log-likelihood value (henceforth LLF).29 The GARCH-

MIDAS(WMLt) achieves LLF = 29760.64, which is far higher than that achieved by

other models. This can also be verified in Figure 2. It shows that WML captures the

29Note that LLF’s of these models cannot be directly compared with that of GARCH-MIDAS with
rolling window RV since we do have different specification for τ .
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long-run component of stock market volatility amazingly well. Among the variables

that don’t contain significant information about the future stock market volatility, HML

offers the worst fit by LLF = 29735.59. Figure 4 also confirms this. τ(HML) in Figure

4 is flat when compared with τ(WML) in Figure 2. If a candidate predictor in the

MIDAS filter does not contain much information about the future market volatility,

the estimation procedure sets θ, ω1, and ω2 such that τ process becomes essentially a

constant and works only as a scale factor to the g process, a unit GARCH(1,1).

To measure how much τ of a certain variable explains the variation of conditional

variance estimates (τ · g), we compute the ratio: V ar(log[τδ/t(•)])/V ar(log[τδ/t(•)gδ/t])

where • refers to a specific variable. We call it a variance ratio and these numbers are

also reported in Table 2. It is not suprising to find out that τ(RV ) explains 43% of

market volatility variation. τ(WML) and τ(LIQ) also perform quite well with 31% and

22% of variance ratios. The other variables shown to predict market volatility achieve

mere 15-16%. Figure 3 also confirms this finding. An interesting observation is that

τ(SMB) seems to capture dynamics of long-run component of market volatility pretty

well up until 1984, but it decouples from conditional volatility in 1985. Variance ratio

also supports the observation: var ratio = 0.2187 (1966-1984) and 0.0495 (1985-1999).

Although not reported here, τ(MP ) and τ(PPI) show similar behavior. Regrading

SMB, this might have something to do with the argument of Hirshleifer (2001) who

suggests 1984 as the year in which the disappearance of the size effect first materialized.

4.4 Short-Lag Predictability and Base Factor Estimation (VAR

Results)

Now that we have monthly volatility component series, τt and gt, we can conduct

the VAR analyses discussed in Section 3.2. For a given set of variables in either y
[1]
t or

y
[2]
t in Section 3.2, we estimate the VAR model. The order of the VAR was determined

31



on the basis of the likelihood and the Schwarz’s information criterion (SIC). The optimal

order for the VAR with y
[1]
t is 3 and that with y

[2]
t is 4.

Table 3 and Table 4 show the VAR estimation results. For both of the tables,

Panel A shows the VAR results with y
[1]
t and Panel B with y

[2]
t . Table 3 shows p-

values for the F-tests on each variable. The F-tests reflect the incremental ability of

the column variable to predict the respective row variables, given the other variables

in the model.30 The asset pricing equation (17) suggests that variables that forecast

either rm,t or τt should be priced. The results in Panel A shows that lags of τ , g, fWML

strongly predict the long-run market volatility component and the factors generated from

these variables are expected have strong explanatory power on cross-sectional variations

of mean asset returns. Although not significant at 5% level, fLIQ weakly predicts τ .

Also, fSMB weakly predicts rm. As was discussed previously, the predictability relations

in a VAR model are affected by the choice of variables in the system. However, the

forecasting ability of τ , g, and fWML on the long-run stock market volatility component

are robust to various choices of VAR variables and various VAR orders. For some choices

of VAR variables and VAR orders, fSMB and fLIQ predict τ quite strongly. However, for

the current specification, fSMB weakly predicts rm and strongly predicts fWML which

strongly predicts τ while fSMB does not predict τ directly. The far right column shows

R2 of each equation. R2’s of the equations for fSMB, fHML, fWML, and fLIQ are

very low suggesting that the correlations between these and corresponding εSMB, εHML,

εWML, and εLIQ should be very high; at least 95%.

Panel B of Table 3 shows the VAR F-test results with macroeconomic variables.

As in the case with traded factors, τ and g are strong predictors of future τ . In

addition to these variables, MP and PPI weakly predicts future stock market volatility.

30In a part, these F-tests investigate which variable predicts stock market volatility. These results
partly answer the main research question that Schwert (1989) answered about two decades ago.
However, Schwert (1989) looks at predictability relations between

√
RV and macroeconomic variables

while Table 3 shows the results between τt and other variables. Note that τt · gt is a forecasts of RVt

and not of
√

RVt.
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These predictability relations are also consistent with those revealed by the GARCH-

MIDAS model in Table 2. Many have reported that term spread UTS predicts market

return and our results also support this finding. We expect MP, PPI, and UTS to be

priced across assets. One notable differences in Panel A and Panel B are that R2’s of

equations for the last four variables are higher in Panel B and naturally there are many

significant predictors for these variables. Especially, consistent with autocorrelations

shown in Table 1, variations of term spread UTS and default premium UPR are explained

92-95%. These results suggest that MP, PPI, UTS, and UPR cannot be deemed as

innovations as asserted by Chen, Roll, and Ross (1986). On the contrary, traded factors

themselves seem to be good proxies for innovations. Hence, these results support our

decision that traded factors themselves are taken as base factors while innovations (ε•)

of macroeconomic variables are taken as base factors.

One concern with regard to the generated factors from the VAR model is that the

VAR system may not, in fact is highly unlikely to contain the full information set used

by investors. Also, since the VAR system with y
[1]
t and one with y

[2]
t contain different

set of variables, τt and gt innovation factors from these two different VAR systems might

differ much. First of all, the correlation between ε
τ [1]
t =f

τ [1]
t from the VAR model with

y
[1]
t and ε

τ [2]
t =f

τ [2]
t from that with y

[2]
t is 0.90 and correlation between similarly defined

f
g[1]
t and f

g[2]
t is 0.98; the innovation factors from two different systems are strongly

correlated. Secondly, we check if macroeconomic variables in y
[2]
t should be added to

y
[1]
t ; we add macroeconomic variables to y

[1]
t one by one to see if the added variable

becomes a significant predictor of any variables in y
[1]
t . We do the same for the y

[2]
t .

For both robustness checks, in some cases, added variable turns out to be significant in

predicting either the added variable itself or market return. However, the increase in R2

of market return equation is marginal. Hence, we conclude that the benefit of adding

y[2] (or y[1]) variables to y[1] (or y[2]) is very limited while innovations to volatility

components from two different VAR specifications are essentially the same.
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Table 4 shows parameter estimates for τt equation for both VAR models with y
[1]
t and

y
[2]
t . For both specifications, most of τ and g lags are significant. Note that the variables

(HML, UTS, and UPR) that are not significant in the GARCH-MIDAS results in Table

2 don’t have any significant lags in Table 4, either. For those significant at Table 2, the

sign of θ coincide with the sign of coefficient to the significant lag of the corresponding

variable in Table 4 except for fLIQ.31 One might think these seemingly consistent

positive/negative relations between stock market volatility and variables of our interest

would determine the sign of price of risk of the variable. However, it is not that simple.

The asset pricing equation (17) guides us on how prices of risk should be determined. The

price of risk of a certain base factor, say f
g[1]
t =e′

3ε
[1]
t , is determined by two part; one that

relates to forecasting future market returns and the other future market volatility. Also,

since λn and ξn are determined as in equation (14)-(15), it is not only the coefficient of one

significant lag, but all the parameters in the VAR model that affect the determination of

the price of risk of the factor. Lastly, the structural parameters such as γ and σ should

be known beforehand or jointly estimated to determine the price of risk. It is not our

interest in this study to recover these structural parameters. Moreover, cross-sectional

regressions give us only the price of risk as a whole (i.e. Λn as in equation (18)), but not

a break down of future market return part and future market volatility part. Hence, it

is beyond the scope of this paper to examine the theoretical values of prices of risk.

We estimate both VAR specifications and collect the base factors. Table 5 shows the

correlation structure of the base factors. It shows the contemporaneous relations among

innovations (base factors) to the VAR variables whereas we’ve been so far looking at the

time-series relations of VAR variables themselves. Within each group of volatility-based

factors, traded factors, and macroeconomic factors, some factors are highly correlated.

However, most of factors across the groups show fairly low correlations. Low correlations

31For SMB, there is no significant lag, but the sign of θ in GARCH-MIDAS(SMB) coincides with
that of the first SMB lag which has the largest t-stat among three lags.
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do not necessarily mean that two factors are irrelevant in the cross-sectional studies. In

principle, the fact that two factors are strongly correlated does not mean these two

factors have similar correlation strucutres with various assets. In other words, even if

a factor A explains the cross-section of various mean asset returns and another factor

B is strongly correlated with the factor A, we cannot argue for sure that the factor B

would do the same unless we look at the joint distribution of factor A, B and all the

assets. Also, Lewellen, Nagel, and Shanken (2006) show that it is not the correlations

between two sets of factors (say F and P), but zero correlations of residuals of time-series

regression of one set of factors (F) on the asset returns and the other factors (P) that

matters in cross-sectional regressions.
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5 Cross-Section of Equity Returns

The asset pricing equation (17) is an extension of the theoretical framework in

Campbell (1993). However, unlike its empirical work in Campbell (1996) where the

GMM is adopted, we use the Fama and MacBeth (1973) procedure for testing the cross-

sectional explanatory power of factors. The idea of equation (17) is that the innovations

of the variables that forecast either market return or market volatility should be priced.

In other words, the variables that forecast either of these two very well should also

generate factors that are strongly priced across assets. This approach is somewhat

different from conventional asset pricing models where a true model is assumed. To

test such a conventional model, we conduct specification tests by adding other factors

to the true model and see if the added factor turns out to be significant. Although

it may seem the same empirically, we run a horse race of various factors discussed so

far; volatility-based factors, trading strategy based factors, and macroeconomic factors.

However, our perspective on this horse race is not a specification test because we don’t

have a true model. The idea behind the horse race is the prediction of our model in

(17); the more strongly a variable predicts either market return or market volatility, the

better explanatory power over cross-section of equity returns the factor generated from

the variable will have.

Adopting the Fama-MacBeth procedure gives us some disadvantages and some

advantages. First of all, the Fama-MacBeth procedure allows us to estimate Λ’s in

equation (18), but it does not allow us to recover structural parameters such as γ and σ

or breakdown of λn’s and ξn’s. Also, by taking a two-step approach of first generating

the factors by the VAR estimation and secondly running the Fama-MacBeth regressions,



we run into a generated-regressors problem in standard errors. On the other hand, if

one-step estimation using the GMM as in Campbell (1996) is used, the standard errors

for the parameters are adjusted to reflect the fact that factors are generated from the

VAR model. Although we make corrections to the standard errors using a method

proposed by Jagannathan and Wang (1998), this does not take care of generated-factor

problem in the time-series regression. However, as pointed out by Pagan (1984), the

OLS estimates of the parameters’ standard errors will still be correct if the generated

regressor represents the unanticipated part of a certain variable. On the other hand,

if the factors are only noisy proxies for the true surprises in the state variables, then

the estimates of the factor loadings in the regression will be biased downward, which in

turn would bias the results against finding a relation between the innovations and asset

returns.

The GMM comes with its own problems. The GMM with estimated optimal

weighting matrix suffers from the small-sample problem especially when there is a

large number of test assets; we use 40 test portfolios. When cross-sectional sample

size is large and time-series sample size is relatively small, the optimal GMM weighting

matrix of Hansen (1982) are likely to be poorly estimated. In this case, Cochrane

(2001) recommends using the GMM with the identity weighting matrix as a robustness

check. Also, Altonji and Segal (1996) show that the first-stage GMM estimates using the

identity matrix are far more robust to small-sample problems than the GMM estimates in

which the criterion function has been weighted with an estimated matrix. And, it turns

out that, as Cochrane (2001) pointed out, the Fama-MacBeth methodology is practically

the same as the first-stage GMM, where the identity weighting matrix is used. In this

sense, the Fama-MacBeth methodology is more robust than the second-stage GMM.

We use four decile portfolios, each of which is sorted by size, book-to-market

ratio, momentum, and liquidity. These were chosen carefully to represent economically

interesting characteristics. However, when an estimated weighting matrix is used in the
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GMM estimation, test portfolios become linear combinations of the original portfolios,

which can be difficult to interpret economically and can even imply implausible long and

short positions in the original assets.32 The Fama-MacBeth methodology or the first-

stage GMM with the identity weighting matrix allows us to focus asset pricing tests

on the original test portfolios constructed carefully based on economically interesting

characteristics.

5.1 Cross-Sectional Regression

There are three groups of factors that we are interested in; volatility based factors,

trading strategy based factors, and macroeconomic factors. For traded factors, we

consider SMB, HML, WML, and LIQ. The volatility factors are motivated by Chen

(2003). Ang, Hodrick, Xing, and Zhang (2006) and Adrian and Rosenberg (2008)

empirically show that the aggregate volatility risk is strongly priced across assets. We

use two component volatility model, the GARCH-MIDAS model with rolling window

RV, to estimate short- and long-run volatility components. From the innovations to

these series, we construct short- and long-run volatility factors.

Chen, Roll, and Ross (1986) proposed a linear factor model of macroeconomic

variables. The macroeconomic variables investigated as factors are of MP, UI, DEI,

UTS, and UPR.33 They argue that these macroeconomic variables as they are defined

in the paper are noisy enough to be treated as innovations. However, our VAR analysis

show that these variables are quite predictable, and hence we take innovations to these

variables from the VAR model as our base factors rather than the variables themselves.

Shanken and Weinstein (2006) revisit the model and raise concerns about the lack of

32See Cochrane (2001) for more detail arguments.

33Chen, Roll, and Ross (1986) argue that, since IPt is the flow of industrial production during month
t, MPt measures the change in industrial production lagged by at least a partial month. To make this
variable contemporaneous with other series, their statistical work lead it by 1 month and we folllow this
convention.
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robustness of the results in Chen, Roll, and Ross (1986). Chen, Roll, and Ross (1986) use

20 size-sorted portfolios as their test assets, but Shanken and Weinstein (2006) find that

their results are surprisingly sensitive to the specific way in which the portfolio returns

are generated and β’s are estimated. Also, Shanken and Weinstein (2006) obtain strong

evidence of pricing only for MP and market factor. Our results confirm their concerns

and results.

The predictability analyses in Section 4.3 and 4.4 imply that f τ , f g, fWML, and

fUTS should be strongly priced among all the factors since the variables that generated

first three are very strong predictors of stock market volatility and UTS predicts

future market return very strongly. SMB, LIQ, MP, and PPI seem to contain fair

amount of information about future market volatility and SMB future market return.

However, HML and UPR seem to have no link to either future market returns or future

market volatility. The implications from these predictability analyses will be thoroughly

investigated in the following horse race of the factors. However, before we get into the

horse race, we would like to check how each of these three factor groups performs on our

40 test assets in the first place.

To test the explanatory power of factors chosen, we use the Fama and MacBeth

(1973) cross-sectional regression. Our test assets are four different decile portfolios

sorted by size, book-to-market ratio, momentum, and liquidity. The monthly returns

on these portfolios from July, 1966 to December 1999 are used for the cross-sectional

studies. Section 4.1 discusses these portfolios as test assets in detail.

First, we specify a time-series regression that provides estimates of the assets’

loadings:

Ri,t = ai +
S

∑

s=1

βi,sF
s
t + ei,t ∀i ∈ {1, . . . , I} (20)

where Ri,t is the simple return of asset i at the end of month t, and {F s}s=1,...,S is a

group of factors chosen from base factors or orthogonalized factors. We obtain full-

39



sample β’s by running the above time-series regression for the full sample. The second

step of the Fama-MacBeth procedure is to run a cross-sectional regression with estimated

full-sample β’s:

Re
i,t =

S
∑

s=1

Λsβ̂i,s + αi,t ∀t ∈ {1, . . . , T} (21)

where Re
i,t is the return on asset i in excess of the risk-free rate at the end of month

t and Λs’s are the prices of risk for the factor s. A couple of things should be noted.

One is that we impose the null that average pricing error is zero by not including a

constant in equation (21). The other is that we are running time-series regressions with

simple returns on assets while cross-sectional regressions with excess returns on assets.

Since risk-free rates are predetermined ahead of time (and that’s why they are risk-free

rate), β’s of returns on the risk-free asset should be all zero. However, if we run time-

series regression with asset returns in exess of risk-free rate, the estimated β’s will be

contaminated from the spurious non-zero βi,f ’s.
34

5.1.1 Volatility Component Factors

We start with a set of market and volatility factors, {Re
m,t, f

τ
t , f g

t }. Table 6 and Table

7 show these results. The volatility factors can be generated from the VAR models; one

with y
[1]
t and the other y

[2]
t . The results of the former is presented at Table 7 (i), and

those of the latter at Table 7 (ii). For a both variable choices, the estimated prices

of risk show huge differences across factors in magnitude.35 This can be understood

by looking at the estimated β’s in Table 6 where βτ ’s are big and βg’s are very small;

the volatility risk premiums calculated as β · Λ will be in comparable magnitude with

those from market risk. All the prices of risk estimated are turned out to be significant

in terms of t-stats computed with Jagannathan and Wang (1998) corrected standard

34For detailed arguments, see Appendix C.

35Prices of risk are expressed as percentage of month.

40



errors.36 To obtain asymptotic covariance matrix of Jagannathan and Wang (1998), we

also used Newey and West (1987) adjustment for autocorrelation.

For overall performance measures for a given choice of factors, we provide three

statistics; cross-sectional R2, root mean squared pricing error (henceforth RMSPE), and

pricing error decomposition. When full-sample β’s are used in the Fama-MacBeth cross-

sectional regression, the estimated prices of risk are identical to those obtained from

cross-sectional OLS regression where mean asset returns are regressed on β’s. Hence,

we report cross-sectional R2 as defined in a cross-sectional OLS regression since it is an

informative summary statistic which reflects how well the model fits the data. Although

it is a very intuitive measure, it should be interpreted with caution. Jagannathan and

Wang (1996) point out that a low R2 does not necessarily indicate that a particular

specification is bad in any absolute sense. Also, Lewellen, Nagel, and Shanken (2006)

warn that the high R2’s reported in the literature aren’t nearly as impressive as they

might appear. With simulated artificial factors, Lewellen, Nagel, and Shanken (2006)

show that the power of the test is extremely small for three or five factors; the sampling

distribution of the adjusted R2 is almost the same when the true R2 is zero and when it

is as high as 70% or 80%.

RMSPE is defined as
√

∑

i(α̂
i)2/I where α̂i =

∑

t α̂i,t and α̂i,t is the fitted error from

cross-sectional regression in (21). It measures how big the average pricing errors are.

The advantage of using this measure of pricing errors and four different decile portfolios

as test assets is that we can compute the pricing error decomposition (henceforth PED)

as shown in Table 7. The numbers shown as pricing error decomposition are the ratios of

sum of squared pricing errors (henceforth SSPE,
∑

i(α̂
i)2) that belong to a certain decile

portfolios to the total SSPE. Hence, the numbers in pricing error decomposition always

36Shanken (1992) shows how to take into account the sampling errors in the β’s obtained in the
first stage under the assumption that, given the realization of factors, asset returns show conditional
homoskedasticity. Jagannathan and Wang (1998) extend Shanken (1992) and derive asymptotic
distribution of the estimators without assuming conditional homoskedasticity.
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sum up to one. Hence, we can recover SSPE for any decile portfolios. Say, SSPE(size)=

RMSPE2 × I× PED(size).

Back to Panel A of Table 7, all the measures for the performance of two volatility

factor models are very close showing that f
τ [1]
t and f

g[1]
t are essentially the same as f

τ [2]
t

and f
g[2]
t . Note that prices of risk for f τ and f g are both significant and both negative,

supporting the empirical results of Adrian and Rosenberg (2008). The estimated β’s

from model (ii) of Table 7 are listed in Table 6 and βτ ’s are especially well-aligned

with average asset returns of momentum- and liquidity-sorted decile portfolios. In case

of momentum portfolios, βτ ’s are monotonically decreasing except for the #9 and #10

portfolios. Except for #5, #7, and #8 portfolios, βτ ’s are also well lined up with liquidity

portfolios.

Figure 5 and 6 plot expected returns fitted by volatility factor model as specified

in (ii) of Table 7 against their realized average returns. Figure 5 and 6 present the

same thing. However, since we use four different one-way sorted decile portfolios,

we can plot fitted expected returns against realized average returns on each decile

portfolios separately as in Figure 6 and we call it a ‘disaggregative view.’ These figures

also show fitted pricing errors, α̂i, in very intuitive way; for each portfolio plotted,

the vertical distance to the 45 degree line is the average pricing error. Pricing error

decomposition in Table 7 and Figure 6 give us very intuitive ideas about how the given

factor model performs over a certain decile portfolios sorted by economically interesting

characteristics. The pricing error decomposition shows that our volatility factor model

performs poor on a decile portfolios sorted by book-to-market ratio because almost the

half (46%) of total SSPE comes from these portfolios. Figure 6 confirms this. The

pricing error decomposition also suggests that the volatility factor model performs fairly

poor on momentum portfolios. However, Figure 6 tells us a different story. It turns out

that most of the pricing errors come from extreme portfolios on the right (#10). The

squared pricing errors of #10 momentum portfolio ((α̂10)2) is more than the double the
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sum of the squared pricing errors of all the rest (#1-#9). In fact, the volatility model

prices momentum portfolios very well except for the portfolio #10.

Various specifications in Panel B of Table 7 are to compare f τ
t and f g

t .37 Although

both factors are significantly priced in Panel A, Panel B shows interesting results. t-stat

for f g
t in model (iv) of Table 7 is fairly strong, but R2 is near zero and RMSPE soars

up to 0.00164. On the contrary, one factor model of f τ
t in (v) shows very impressive

performance. In every measure, the one factor model performs very close to three factor

model in (i) and (ii). Figure 7 presents this result. Figure 7 and Figure 6 are essentially

the same showing that even pricing errors are similarly distributed.

The Orthogonalized factor specifications in Panel C in Table 7 show many of

observations in Panel A and B more clearly. As was discussed in Section 3.2, the order

of variables in the VAR model do matter in the construction of orthogonalized factors,

and hence we report the order as well in the table. For model (vi) and (vii), the first

three variables in y
[2]
t are ordered as they are shown in Panel C of Table 7 whereas the

rest are ordered in the same way as y
[2]
t in Section 3.2. Then, we follow Campbell (1996)

and Sims (1980) and triangularize the VAR system so that innovations are orthogonal

to one another. In the model (vii) of Table 7, the orthogonalization doesn’t affect the

market factor in the sense that um,t is still identical to the first element of ε
[2]
t . However,

u
τ [2]
t is the corresponding component of the ε

[2]
t without the common component with

um,t = e′
1ε

[2]
t . Similarly u

g[2]
t is the corresponding component of ε

[2]
t orthogonal to both

the market return and the long-run volatility component, and so on. Since these factors

are orthogonalized, they might be quite different from the corresponding base factors.

This is especially true for uτ
t and ug

t because f
τ [2]
t and f

g[2]
t are faily correlated (0.55 in

Table 5). However, three orthogonalized factors in (vi) and (vii) as a group do span

about the same space as in (ii) and hence all the performance measures are similar;

this is a common feature in all orthogonalized factor specifications. In addition to the

37f τ and fg in Panel B are estimated from VAR model with y
[2]
t .
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orthogonalization, we rescaled the factors to have the same variance as the innovations to

the market return (um,t) and this resolves the problem of drastically varying magnitudes

in estimated prices of risk in (i) and (ii). The model (vi) and (ii) of Table 7 are from the

same VAR specification including the same ordering of variables in y
[2]
t , but the factors

in (vi) are orthogonalized while those in (ii) are not. And, this makes a large difference

in t-stats of estimated prices of risk. Although f g
t is significantly priced in (ii), it loses

its significance when it is orthogonalized to the market return and long-run volatility

component factor. On the contrary, when the order of τt and gt is reversed in y
[2]
t as

in Table 7 (vii), i.e. common shocks to τt and gt have been elminated from f τ
t but not

from f g
t , the long-run volatility component factor loses some of its explanatory power in

cross-sectional variation of mean asset returns but still fairly priced unlike f g
t in Table 7

(vi). This is consistent with our VAR predictability results; although p-values for both

τt and gt are far less than 0.01, that for τt is smaller than that for gt. Being the better

predictor, τt generates a factor that encompasses the pricing information of gt innovation

factor.

To further examine the information content in f τ
t , or what pricing information

(among SMB, HML, WML, and LIQ) f τ
t captures, we run the Fama-MacBeth regressions

with one factor model of f τ
t on each of decile portfolios separately. For comparison, we

also run cross-sectional regressions with the market factor and the corresponding traded

factors that are directly related to the decile portfolios. Note that these traded factors

take a form of a spread between two end portfolios (say, #10 and #1), and they are

designed to explain the cross-sectional variation of the corresponding decile portfolios.

Table 8 shows these results. In terms of R2 and RMSPE, one factor model of f τ
t performs

close to the two factor model with the corresponding traded factors in case of size- and

liquidity-sorted decile portfolios.38 For the momentum portfolios, one factor model of

38When we add market factor to f τ
t , they get even closer to the two factor models on the left hand

side of the Table 8.
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f τ
t achieves R2 = 0.80, but RMSPE is huge when compared with that achieved by

the corresponding two factor model. As is pointed out previously, this is due to the

large mispricing of #10 momentum portfolio; if we eliminate #10 portfolio, and test on

remaining 9 portfolios, RMSPE of two traded factor model reduces to 0.0003574 while

that of f τ
t model drastically reduces to 0.0004866 from 0.0011503. These results are

also consistent with pricing error decomposition for model (i) and (ii) in Table 7. All

these empirical evidences suggest that our f τ
t factor summarizes pricing information in

SMB, WML, and LIQ. In a similar sense, we have to conclude that we cannot link HML

to stock market volatility.39 These results are largely consistent with our results in the

predictability tests shown in Table 2 and 3; each of {τt, f
SMB
t , fWML

t , fLIQ
t } is shown

to predict future stock market volatility. The asset pricing equation (17) implies that

these factors should be priced across assets. Moreover, since τt is the strongest predictor

of future stock market volatility (τt+1), we won’t be surprised to find out that f τ
t wins

the horse races against these factors. In this context, it is also reasonable to find out f τ
t

contains pricing information of these traded factors in the set. What is also interesting

in Table 8 is that the prices of risk for single f τ
t factor model estimated over each of

decile portfolios are strikingly similar to one another although they are all estimated

separately. This explains why one factor model of f τ
t performs well over total test assets

of 40 portfolios.

5.1.2 Trading Strategy Based Factors

Table 9 shows results of cross-sectional regressions with trading strategy based

factors. Panel A of Table 9 present the results with base factors. Note that the base

factors of traded factors are by no means modified or corrected; they are in their original

39The predictability results show that HML does not contain the information about the future market
volatility, and the our cross-sectional studies show that the volatility factor does not contain pricing
information of HML as well. It is possible that the linkage to HML got lost in the simplification of Viη,t

in (4). HML might relate to the covariance of consumption growth and market return although this
link is not examined in the paper.
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form from the data decribed in Section 4.1. Model (i) in Table 9 follows Fama and French

(1993) three factor model specification and miserably fails to explain cross-sectional

variation of mean asset returns with majority (93%) of SSPE incurred by momenum

and liquidity decile portfolios; note that the momentum and the liquidity factors are

missing from the model. Three factor models of the market factor and two of any

traded factors (SMB, HML, WML, LIQ) show performance that are not significantly

different from (i) in Table 9; {Re
m,t, f

HML
t , fWML

t } performs the best among those with

R2 = 0.19 and RMSPE=0.001506. All the configurations of the three factor models

share a common feature that most of SSPE incurred by two decile portfolios which are

related to the other two missing traded factors.

Carhart (1997) suggests a four factor model as specified in (ii) in Table 9. Table 9

(iii) adopts fLIQ
t instead of fWML

t . In fact, these two models are the best performers

among other possible configurations of four traded factor models and these models

perform roughly similar to the one factor model of f τ
t . As in three traded factor models,

it is interesting to see that most (61% in (ii) and 80% in (iii)) of SSPE incurred by

the decile portfolios that are related to the missing factor (LIQ in (ii) and WML in

(iii)). It is only when all four traded factors in addition to the market factor are added

that performance measures jump to a different level; roughly R2 doubles and RMSPE

halves when compared with any four traded factor models. However, Lewellen, Nagel,

and Shanken (2006), with simulated artificial factors, show that the power of the test is

extremely small for three or five factors; the sampling distribution of the adjusted R2 is

almost the same when the true R2 is zero and when it is as high as 70% or 80%. We are

also very skeptical about the performance measures for the five factor model in Table 9

(iv). One of the empirical evidence that supports this skepticism is that most of SSPE

is incurred by the decile portfolios that are related to the traded factors mising from the

specified model. This implies that, in order to correctly price a certain decile portfolios,

one needs to include the traded factor that is generated from the spread of that decile
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portfolios; a traded factor seems to correctly price only the decile portfolios, the spread

of which generated the factor.

Although we do not report in Table 8, we run cross-sectional regressions of various

configurations of two traded factor model, a market factor and one of traded factors, on

one of four decile portfolios. These results shed light on the characteristics of the traded

factors. What is surprising is that these two factor models perform quite well even on the

decile portfolios which are irrelevant to the added traded factor. However, the problem

is that the estimated price of risk varies drastically depending on the choice of test

decile portfolios. For an example, when we run cross-sectional regressions of two factor

model, {Re
m,t, f

WML
t }, on size-, BM-, and liquidity-sorted decile portfolios separately,

the estimated prices of WML risk are 0.0008 (0.11), -0.0199 (-1.93), 0.0150 (2.05) with

very high R2’s regardless of a choice of decile portfolios.40 This is a common feature

in most of the two factor models investigated in the same way. This implies that the

loadings on any traded factor, say fWML
t , can potentially fit the cross-sectional variation

of mean returns in all four decile portfolios. However, a two traded factor model, say

{Re
m,t, f

WML
t }, cannot fit mean returns of all four decile portfolios together because the

prices of the factor risk (WML in this case) that will fit each of decile portfolios differ

so much. When we include all four traded factors in addition to the market factor as

in Table 9 (iv), loadings of a traded factor (e.g fWML
t ) for the corresponding decile

portoflios (e.g. momentum portfolios) are far larger than loadings of the same factor

for other decile portfolios. This is quite reasonable since a traded factor and the decile

portfolios that generated this factor should be highly correlated and Table 10 confirms

this idea.41 Table 10 presents factor loadings for five factor model of Table 9 (iv) averaged

40The numbers in the parenthesis are the t-stats computed with Jagannathan and Wang (1998)
corrected standard errors. The price of WML risk is 0.0088 for momentum decile portfolios (See Table
8).

41In Table 10, the average loadings of fWML
t on momentum portfolios show a different bahavior when

compared with loadings on other factors for their corresponding decile portfolios. This is partly because
the loadings of fWML

t on momentum portfolios switch sign from (-) to (+) and partly because it seems
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over each decile portfolios. This allows the model to fit the mean returns of a decile

portfolio fitted by the corresponding traded factor; essentially, a traded factor needs

to price only the corresponding decile portfolio. For an example, the mean returns of

size-sorted decile portfolios are dominantly determined by the SMB since factor loadings

of fSMB
t are far larger than those of other traded factors and at the same time the prices

of risks shown in Table 9 (iv) are in comparable magnitude. Hence, we suggest that the

performance measures of the five factor model in Table 9 (iv) should be interpreted with

caution and are not as impressive as they appear.

Panel B of Table 9 presents the results for the same set of model specifications

in Panel A, but with orthogonalized factors. The VAR variables for construction of

orthogonalized factors in Table 9 are ordered as y
[1]
t in Section 3.2. Hence, although

f τ
t and f g

t are not included in the examined factor specifications in Panel B of Table 9,

all the orthogonalized traded factors such as uSMB
t are orthogonal to f τ

t and f g
t as well

as rm,t. However, orthogonalizing the traded factors with respect to f τ
t and f g

t will not

drive the traded factors far away from their base factor form since Table 5 shows that

all the traded factors have very low correlations with f τ
t and f g

t . On the other hand,

Table 5 shows the traded factors are fairly correlated with one another and market factor

and these correlation structure will take much effect in the factor orthogonalization. As

was observed in Table 7, the performance measures in Panel A and Panel B are very

close for the matching specifications. An interesting observation is that there are only

a few significantly priced traded factors in Panel A while HML, WML, and LIQ are

consistently priced in Panel B. Also, in consistence with many articles reporting that

the size effect is not significant from early 1980’s, the t-stats for the price of size risk are

near zero even in the orthogonalized factor specifications.

fSMB
t is indeed related to fWML

t ; Table 5 shows that fSMB
t and fWML

t are faily correlated and Table
3 shows that fSMB

t strongly predicts future fWML
t .
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5.1.3 Macroeconomic Factors

Chen, Roll, and Ross (1986) suggest a linear factor model of macroeconomic

variables. Unlike the trading strategy based factors, the macroeconomic factors represent

very intuitive macroeconomic risks. This is why many have tried to link less intuitive

trading strategy based factors to macroeconomic factors to offer risk-based explanations

for the strong explanatory power of the traded factors in cross-sectional variation of

mean asset returns. However, Shanken and Weinstein (2006) re-examine Chen, Roll,

and Ross (1986) model and find it is surprisingly sensitive to reasonable alternative

procedures for generating size portfolio returns and estimating betas. In Table 11, we

also test macroeconomic factor models on our 40 test assets.42

Unlike Chen, Roll, and Ross (1986) where they treat macroeconomic variables

themselves as innovations, we explicitly model innovations to these macroeconomic

variables using a VAR model as specified in Section 3.2 and use these innovations

as our base factors. The factors of our interest are fMP
t , fPPI

t , and fUTS
t . Table 2

shows MPt and PPIt strongly predict future long-run volatility component. Table 3 also

confirms this finding although in much weaker degee. It also shows that UTSt stongly

predict future market return although R2 of market return equation stays at 5%. We

are interested to see how innovations to these macroeconomic variables are priced across

our test assets.

Table 11 (i) shows the results for our full specification model of macroeconomic

factors. The overall performance measures of R2 and RMSPE of the five macroeconomic

42Although we do not report in the table, we examined various specifications of macroeconomic factor
model starting from the original Chen, Roll, and Ross (1986) specification of MPt, DEIt, UIt, UTSt,
and UPRt where the macroeconomic variables themselves are taken as innovation factors. We tested
them on Fama-French 25 portfolios and various combinations of decile portfolios and our results show
that the estimated prices of risk lack robustness (switch signs although significant) and sensitive to the
choice of variables in the model and test assets. Our VAR innovation factor model of macroeconomic
variables as in Table 11 (i) is far more robust and it is consistent with Shanken and Weinstein (2006)
in the sense that value-weighted market index and industrial production growth factor turn out to be
significantly priced.
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factor model tell us that it shows performance similar to four traded factor models in

(ii) and (iii) of Table 9 and one factor model of f τ
t in (iv) of Table 7. It turns out that

only fPPI
t , among our factors of interest, is significantly priced. When fPPI

t is left out

of the model as in Table 11 (ii), fMP
t becomes a significantly priced factor. Although

RMSPE increases as fPPI
t is eliminated, pricing error decomposition shows that the

SSPE portion due to momentum portfolios halves implying that fMP
t might have good

explanatory power in cross-sectional variations of mean returns of momentum portfolios.

This relates to Liu and Zhang (2008) in which they argue that MPt risk is the underlying

risk of momentum profits. Liu and Zhang (2008) show that the combined effect of MPt

loadings and risk premiums accounts for more than half of momentum profits. However,

it seems that fMP
t is not a good factor overall since the overall performance measures

for specification without fMP
t in Table 11 (iii) hardly get worse when compared with

Table 11 (i). Panel B of Table 11 shows the results for the same set of specifications as

in Panel A but with the orthogonalized factors.

5.1.4 Volatility Factor versus Other Factors

The predictability tests we examined in Section 4.3 and 4.4 indicate that {τt, gt,

SMBt, WMLt, LIQt, MPt, PPIt} predict future market volatility and {SMBt, UTSt}

predict future market return. Moreover, among these variables, τt and UTSt are

the strongest predictors of future stock market volatility and future market return,

respectively. However, there is a large gap between the prediction power of these two

predictors; in VAR analysis, R2’s of τt equation and rm,t equation are 99% and 12%.

The asset pricing equation (17) implies that innovations to the variables that predict

either future market return or future market volatility should be priced across assets.

In this sense, our predictablity analyses indicate that innovations to {τt, gt, SMBt,

WMLt, LIQt, MPt, PPIt, UTSt} should be priced. Moreover, since τt and UTSt are the
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strongest predictors, we expect f τ
t and fUTS

t to be the strongest factors of all. Being

the innovations to the strongest predictor of future market volatility, f τ
t is also expected

to contain pricing information of other factors that are the innovations to the variables

that also forecast market volatility; {f g
t , fSMB

t , fWML
t , fLIQ

t , fMP
t , fPPI

t }.

Our cross-sectional studies with each of factor groups from Section 5.1.1 to 5.1.3

confirm many of the implications of predictability analyses in Section 4.3-4.4. It turns

out that f τ
t is indeed strongly priced. One factor model of f τ

t explains 35% of cross-

sectional variation of mean test asset returns. Pricing error decompositions in Table 7

and the results for cross-sectional regressions in Table 8 indicate that f τ
t contains pricing

information of {fSMB
t ,fWML

t ,fLIQ
t }. Also, the results for the cross-sectional regression in

Table 9 and 11 suggest that {fHML
t , fWML

t , fLIQ
t , fMP

t , fPPI
t } are significantly priced.

To our disappointment, fUTS
t is not priced across our test assets.

In the current section, we are going to directly test the information content of f τ
t

by running a horse race of f τ
t and other priced factors which are innovations to the

variables that are shown to predict future market volatility. Table 12 and 14 show the

one to one horse race of f τ
t and one of other factors. Panel A of both tables show

the results for base factors whereas Panel B for the orthogonalized factors. For the

results in Panel B, the variable orders in the VAR models are also presented. The

orthogonalized factors in Table 12 are generated from y
[1]
t with the first three variables

ordered as shown in the table and those in Table 14 are generated from y
[2]
t with the

first three variables also ordered as shown in the table. With only one exception, both

Re
m,t and f τ

t are strongly priced while the prices of risk for the remaining factor are

all insignificant. The exception is Table 14 (iv) where t-stat for uτ
t is 1.93. Since the

specification in Table 14 (iv) indicates MPt is the first element of the vector in VAR

model, we have uMP
t = fMP

t while common component of f τ
t and fMP

t is eliminated

from f τ
t to construct uτ

t . The empirical finding that long-run volatility component

factor loses some explanatory power when it is orthogonalized to fMP
t implies that fMP

t
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carries somewhat significant pricing information of f τ
t . This seems to have some relation

to Adrian and Rosenberg (2008) in which they show close relation between long-run

volatility component factor and industrial production growth; Adrian and Rosenberg

(2008) show that time series correlation between prices of long-run volatility risk and that

of industrial production growth is -98%. They also show that cross-sectional correlation

between loadings of long-run volatility factor and that of industrial production growth

is -94%.

While we run one to one horse races in Table 12 and 14, we investigate in Table

13 information content of f τ
t and test explanatory power of f τ

t by looking at the t-

stats for the price of long-run volatility component risk as we add traded factors. All

the previous results in Table 7-9 suggest that f τ
t contains pricing information of fSMB

t ,

fWML
t , and fLIQ

t , but not fHML
t ; f τ

t is unlikely to lose its explanatory power (in terms

of t-stat) in cross-sectional variations in mean asset returns when any combinations of

fSMB
t , fWML

t , and fLIQ
t are added to the model, but might lose the power when fHML

t is

added. Although Table 13 (i) shows the specification where fWML
t and fLIQ

t are added

to {Re
m,t, f

τ
t }, the results for all the configurations of models to which two of any traded

factors are added are the same in the sense that t-stats for the added traded factors are

insignificant whereas those for {Re
m,t, f

τ
t } are both significant. Table 13 (ii) and (iii)

show that t-stat for price of f τ
t -risk gets insignificant when fHML

t is also added in addition

to fWML
t and fLIQ

t possibly because a set of four factors, {Re
m,t, fHML

t , fWML
t , fLIQ

t },

spans a larger space than f τ
t and better explains cross-sectional variations in mean asset

returns. This is consistent with the empirical finding that f τ
t does not contain pricing

information of fHML
t .

It becomes more clear when you look at the results with the orthogonalized factors.

The orthogonalized factors in Panel B of Table 13 are constructed from the VAR model

with variables as in y
[1]
t of Section 3.2 and the order of the variables are as they are in

y
[1]
t . Since all the orthogonalized factors in (iv)-(vi) are from exactly the same y

[1]
t and
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the orthogonalized factors are orthogonal to one another, the loadings of a factor are

identical across the specifications in Table 13 (iv)-(vi). For the same reason, loadings

of a factor in Table 13 (iv)-(vi) are identical to the loadings of the factor in Table 9

(v)-(viii). This feature allows us to compare the explanatory power of various factors

more intuitively because regressors (loadings or β’s) in cross-sectional regressions do not

change as the factor specifications change. For an example, βWML’s estimated from

time-series regressions and used as regressors in cross-sectional regressions in models

specified in Table 9 (vi) and (viii) and Table 13 (iv)-(vi) are all identical. When we

run the Fama-MacBeth regressions with the base factors, loadings of a factor change in

general depending on the covariance structure of that factor and other factors included

in the model specification. Since loadings of a factor changes (i.e. the regressors in

the cross-sectional regression changes) when another factor is added, it’s not easy to

interpret the results of the horse races of the base factors. The results in Panel B

confirm the results shown in Panel A. τt innovation factor stands strong in Table 13 (iv)-

(v) while added traded factors are all insignificant. The long-run volatility component

factor becomes insignificant in (vi) while all the traded factors including HML suddenly

become significant. These results are consistent with the previous empirical finding that

the long-run volatility component factor does not contain pricing information of HML.

Another advantage we expect from utilizing the orthogonalized factors is that

the prices of risk estimated using the orthogonalized factors should be more close to

theoretical values implied by the asset pricing equation (17) than those estimated with

the base factors.43 This is because the beta’s in the equation (17) is defined as univariate

betas as was discussed in Jagannathan and Wang (1998). However, there is also a

downside. The space spanned by a set of base factors and the space spanned by the

set of the corresponding orthogonalized factors can differ very much. For an example,

43This advantage is not exploited in our paper since we don’t compare the prices of risk implied by
the time-series studies and those estimated from the cross-sectional studies.
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in the model specification of Table 13 (iv), uWML
t is not only orthogonal to rm,t and f τ

t

but also to {fSMB
t , fHML

t }, and uSMB
t and uHML

t are not included in the factor model

specification of {um,t, uτ
t , uWML

t , uLIQ
t }. Hence, the space spanned by {Re

m,t, f τ
t , fWML

t ,

fLIQ
t } is not the same as {um,t, uτ

t , uWML
t , uLIQ

t }. This can be easily verified by the big

differences in overall performance measures in Panel A and Panel B.

5.2 Explaining Profits of Trading Strategy Based Factors

In an effort to reveal underlying macroeconomic risk of momentum profits, Griffin,

Ji, and Martin (2003) examine how much of the momentum profits can be explained

by the macroeconomic variable model of Chen, Roll, and Ross (1986) and conclude

that macroeonomic risk variables can not explain the momentum effect. On the other

hand, using a similar empirical framework, Liu and Zhang (2008) show that their basic

inferences can be overturned with two changes in the test design. First, Liu and Zhang

(2008) use 30 portfolios based on one-way sorts on size, book-to-market, and momentum

to replace Griffin, Ji, and Martin’s (2003) 25 two-way sorted size and book-to-market

portfolios as testing assets in estimating risk premiums. Second, Liu and Zhang (2008)

robustify their results by using various ways to estimate loadings of factors; rolling-

window, extending-window, and full-sample regressions in the first stage of risk premium

estimation.

We use 40 test portfolios one-way sorted by size, book-to-market, momentum, and

liquidity. For the estimation of betas, we use full-sample regressions as in Section 5.1.

We extend the framework used in Griffin, Ji, and Martin (2003) and Liu and Zhang

(2008) in two ways. First, since SMBt, HMLt, and LIQt are all traded factors, we can

apply the methodology to these factors as well. Second, since our primary purpose is

not to link traded factors to macroeconomic variables, we can apply all our three basic

factor models (volatility, trading-strategy based, and macroeconomic factor model) and
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the variants to price each traded factors and see how much of profits generated by various

trading strategies these models or a certain factor can explain.

Our basic test design follows Griffin, Ji, and Martin (2003) and Liu and Zhang

(2008). We regress one of the traded factors, F = {SMBt, HMLt, WMLt, LIQt}, on our

choice of factors as in time-series regression (20):44

F•
t = a• +

S
∑

s=1

β•
sF

s
t + e•t (22)

Then, the expected profits, E[F•], are estimated as:

E[F•] =
S

∑

s=1

Λ̂sβ̂
•
s (23)

where β̂•
s is estimated from the full-sample time-series regressions in (22) and the prices

of risk, Λ̂s, are estimated from two-stage Fama and MacBeth (1973) regressions using

the 40 test assets. In fact, we already have the prices of risk estimates from results in

Section 5.1 (Table 7, 9, and 11).

Table 15 (i) shows the observed mean profits from various trading strategies. How

much of these profits our choice of factor models can explain will be explored in Table

(15) (ii)-(vii). A couple of things should be noted before we interpret the results in the

table. For each model specifications in Table 15 (ii)-(vii), the table and the specification

that show the corresponding prices of risk are noted in the top left corner of each table.

Also, the numbers shown in each column of factors are the risk premium as measured

by (Λ̂s · β̂•
s ). The far right column of each table shows ratio of expected over observed

profits, i.e E[F•]/ET [F•] where E[F•] is as defined in equation (23) and ET represents

the sample average operator.

The results shown in Table 15 confirm many of empirical findings from the previous

44Note that these traded factors are not included in 40 test assets.

55



cross-sectional regressions especially with regard to the pricing error decomposition. We

start with Table 15 (iv)-(v), which present the results with traded factor models. For

these traded factor models, the prices of risk should be, in theory, equal to expected

return of the traded factors themselves. However, we do not impose these restrictions in

either cross-sectional regressions in (21) and (23). If we run a time-series regression as

in (22) of F•
t on {F}s=S

s=1 where F•
t ∈ {F}s=S

s=1 , the beta of the corresponding factor (i.e.

F s
t = F•

t ) would be one and other betas zeros. Hence, the expected profits of a traded

factor (F•
t ) in Table 15 (iv)-(v) are if F•

t itself is included in the factor set, identical

to the prices of risk for that traded factor estimated from the cross-sectional regression

referred in the top left corner in each table. Table 15 (v) shows that the prices of risk

for four traded factors and the market factor come very close to the mean returns of the

corresponding factors as predicted by the theory. This success seems to be due to good

match between test assets and the factor specification as was already carefully discussed

in Section 5.1. Consistent with the cross-sectional regression results in Table 9 (i), the

Fama-French three factor model in Table 15 (iv) fails miserably by predicting negative

mean returns for WMLt and LIQt, and barely explaining HMLt profits (17%) yet HMLt

is included in the factor set.45 On the other hand, a single factor model with the long-

run volatility component factor shows impressive results; one factor of f τ
t explains 73%,

65%, and 46% of size, liquidity, and momentum trading strategy profits but only 12% of

value profits. These results are also largely consistent with the cross-sectional regression

results in the sense that f τ
t contains pricing information of SMBt, WMLt, and LIQt, but

not HMLt. Addition of the market factor in Table 15 (iii) doesn’t help increasing the

explanatory power for all the trading strategy based profits except for SMBt.

Lastly, Table 15 (vi)-(vii) show the results with macroeconomic factors allowing us

to examine the relations between macroeconomic factors and traded factors; this was

45The expected profits for SMBt and HMLt are equal to the prices of risk of these factors in Table 9
(i).
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the major interests of Griffin, Ji, and Martin (2003) and Liu and Zhang (2008). Our

approach differs from these papers in that our macroeconomic factors are taken from

the corresponding innovations of the VAR with macroeconomic variables as defined in

Chen, Roll, and Ross (1986) while these macroeconomic variables themselves are taken

as factors in Griffin, Ji, and Martin (2003) and Liu and Zhang (2008). Also, we adopt

PPIt as a macrovariable of our interest while both of Griffin, Ji, and Martin (2003) and

Liu and Zhang (2008) take DEIt and UIt instead. The results with two specifications

in Table 15 (vi) and (vii) suggest that macroeconomic factors can be related to WMLt

and SMBt. Although the specification in Table 15 (vi) explains far less of the cross-

sectional variations in mean returns than (vii), macroeconomic factor specification with

innovations to industrial production growth better explains size profits yet not value or

liquidity profits. Similar to robust findings of Liu and Zhang (2008), macroeconomic

factor model explains roughly half of momentum profits. Our empirical results seem to

support Liu and Zhang (2008) in the sense that large portion of expected momentum

trading profits are due to fMP
t although Λ̂MP β̂MP/ET [FWML] ratio is less than what is

typically shown in Liu and Zhang (2008). When fMP
t is absent, fUPR

t takes the role and

explains about the same portfion of the momentum profits.

Industrial production growth seems to be quite robustly priced. The original work of

Chen, Roll, and Ross (1986) and follow-up work of Shanken and Weinstein (2006) both

report MPt is strongly priced across 20 size portfolios. In fact, in Shanken and Weinstein

(2006) where 5 years of post-ranking returns are used to estimate betas, only the market

factor and MPt turn out to be significantly priced.46 Our results are consistent with these

studies in the sense that our macroeconomic factor specification in Table 15 (vi) explains

size profits quite well. Also, the corresponding cross-sectional regression results in Table

11 (ii) show that innovations to industrial production growth are significantly priced.

However, the results in Table 11 (i)-(iii) cast doubts in the robustness of industrial

46Chen, Roll, and Ross (1986) use 5 years of pre-ranking returns to estimate betas.
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production growth factor when producer price index inflation rate is also included in

the model. With regard to the linkages of industrial production growth to other factors,

Liu and Zhang (2008) suggest MPt represents the underlying macroeconomic risk of

the momentum factor. Adrian and Rosenberg (2008) show that time series correlation

between prices of long-run volatility risk and that of industrial production growth is

-98%. They also show that cross-sectional correlation between loadings of long-run

volatility factor and that of industrial production growth is -94%. Our predictability

analyses in Section 4.3-4.4 indicate that these variables (long-run volatility component,

MPt, and momentum factor) share common information about the future stock market

volatility. Furthermore, innovations to the long-run stock market volatility component,

a strongest predictor of future stock market volatilty, works great in summarizing pricing

information of MPt innovation factor and the momentum factor as was discussed in detail

in Section 5.1. Our view and empirical findings on the relations among these variables

might shed new light on the empirical findings of Adrian and Rosenberg (2008) and Liu

and Zhang (2008).

5.3 Discussion

Due to the empirical sucess of trading strategy based factors in explaining the cross-

sectional variation of mean asset returns, it has been interests of many researchers to

find out what sort of risk these traded factors represent. Because of their intuitive nature

concerning state of an economy, macroeconomic factors are potentially very appealing

candidates to which the traded factors is supposed to link. For this reason, many have

tried to explain trading strategy based profits with macroeconomic variables. SMB

and HML are related to innovations in economic growth expectations (e.g. Liew and

Vassalou 2000, Vassalou 2003, Kelly 2003), default risk (e.g. He and Ng 1994, Vassalou

and Xing 2004, Hahn and Lee 2006, Petkova 2006), term spread (e.g. Hahn and
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Lee 2006, Petkova 2006), and inflation (e.g. Kelly 2003). As for WML, although Griffin,

Ji, and Martin (2003) report that unconditional model based on the Chen, Roll, and

Ross (1986) factors cannot explain momentum profits, Liu and Zhang (2008) show quite

extensively that MPt explains more than half of momentum profits. Also, Chordia and

Shivakumar (2002) show that momentum profits can be explained by macroeconomic

variables that are related to the business cycle (e.g. dividend yield, default spread, yield

on three-month T-bills, and term spread). Pástor and Stambaugh (2003) report that

their liquidity risk factor accounts for half of the momentum profits. To the best of our

knowledge, the links between liquidity factor and macroeconomic variables has not been

investigated yet.

It looks like there are much evidence that various trading strategy profits are

compensations for bearing specific macroeconomic risks. However, as was already

pointed out by Shanken and Weinstein (2006), the pricing of macroeconomic risks lack

robustness. Moreover, macroeconomic factors, although they represent more intuitive

risks regarding the state of an economy than traded factors, are not free from “fishing

license” critique of Fama (1991) unless one can show how the macroeconomic variables

can be linked to a pricing kernel both theoretically and empirically. Cochrane (2001)

also emphasizes that the ICAPM really is not quite such an expansive license and it

gives tighter restrictions on state variables than are commonly checked: State variables

should forecast something. Campbell (1993) suggests that investment opportunity set

state variables should forecast the market returns. However, the problem is that the

market return is very hard to predict especially over a short horizon like a month and

the R2 is very low even when the well-known predictors of the market return are added.

On the other hand, Liew and Vassalou (2000) show that SMB and HML contain

significant information about the future GDP growth. The follow-up work of Vassalou

(2003) suggests that SMB and HML appear to contain mainly news related to future

GDP growth by showing that SMB and HML lose much of their ability to explain the
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cross-section when news related to future GDP growth is present. No one will argue that

GDP growth news is not included in the investors’ information set. No one will argue

that GDP growth is not an important piece of information in asset pricing. However,

we do not know how GDP growth news is going to affect the pricing kernel or the

MRS of investors. We are not even sure that GDP growth news is linearly related to

MRS. For an another exmaple, Petkova (2006) chooses short-term T-bill, term spread,

aggregate dividend yield, and default spread as state variables to model two aspects

of the investment opportunity set, the yield curve and the conditional distribution of

asset returns. Petkova (2006) argue that her results can avoid “fishing license” critique

by choosing these variables since they have forecasting power for future investment

opportunities. However, Petkova (2006) is vague about exactly what the variables of

her choice forecast, and how these variables are related to MRS, and does not explicitly

show the prediction ability of these variables.

This paper differs from the previous studies in that (i) we explicitly present the

pricing kernel that our empirical work is based on and hence we explicitly show how

the state variables and the corresponding factors are related to the pricing kernel, (ii)

we clearly show the predictability analyses on stock market return and stock market

volatility. Within this context, Chen (2003) comes close to our paper. Although Chen

(2003) derives an asset pricing equation which shows that an asset may command risk

premia because it forecasts future volatilities, VAR-MGARCH approach doesn’t allow

Chen (2003) to examine the predictability relations between stock market volatility and

variables in the VAR model as those between the market return and variables in the

VAR model. Moreover, Chen (2003) focuses only on the book-to-market effect. We

examine this missing link between the stock market volatility and other well-established

factors. We find strong link between stock market volatility and the priced factors. The

empirical work of Ang, Hodrick, Xing, and Zhang (2006) and Adrian and Rosenberg

(2008) can also be understood in this framework.
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Schwert (1989) investigates macroeconomic sources of stock market volatility.

Although he obtains mixed results, Schwert (1989) reports a close relation between

NBER recession indicator and stock market volatility; stock market volatility is higher

during recessions. Quite possibly this might be the reason why many have found

that trading strategy based factors are linked to business cycle related macroeconomic

variables. Also, there have been research that hinted this link between the stock

market volatility and the factors investigated in this paper. Engle, Ghysels, and

Sohn (2008) report that PPI and MP contain significant information about the future

market volatility and especially over long-horizon. Guo (2006) and Guo and Savickas

(2006) show that the momentum strategy is closely related to the dynamics of stock

market volatility. Chordia, Roll, and Subrahmanyam (2001) and Chordia, Sarkar, and

Subrahmanyam (2005) create various liquidity series and investigate their short-run

dynamics. The former finds that the daily variation in liquidity is influenced by factors

such as market returns, volatility, order flow, and interest rates. The latter finds that

order flow, volatility, mutual fund flow are important drivers of liquidity. After all, we’ve

been watching the evidence of the link between the stock market volatility and the priced

factors piled up.
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6 Conclusion

We allow heteroskedasticity of asset returns in Campbell (1993) and investigate

its implications on linear factor pricing models. The extended model implies that the

variables that forecast either stock market return or stock market volatility should show

up as valid factors. Within this context, we examine the relationship between stock

market volatility and the empirically-well-established factors. First, we examine the

predictablity relations between stock market volatility and the priced factors. Our results

show that the momentum factor as well as short- and long-run volatility component

strongly predict future market volatility. Also, SMB, LIQ, MP, and PPI contain fair

amount of information about the furue market volatility. In addition to the time-series

studies, we examine the information content of τt innovation factor by using the Fama-

MacBeth cross-sectional regressions. Being the strongest predictor of stock market

volatility, the long-run volatility component should generate a factor that encompasses

other factors generated from the variables that also predict future market volatility.

Consistent with the time-series results, the long-run volatility component factor contain

pricing information of SMB, WML, LIQ, MP, and PPI.



Table 1: Summary Table for VAR Variables

Summary statistics for the variables (January, 1966 - December, 1999) included in VAR factor models of
(13) are presented. rm,t is monthly market log return. τt and gt are monthly volatility components time-
aggregated from the daily components estimated from the GARCH-MIDAS model with rolling window
RV as specified in (7)-(11). The factors shown in Panel B are size, value, momentum, and liquidity
factors. The Panel C presents the summary statistics for industrial production growth, producer price
index inflation rate, term spread, and default premium. ρn is the autocorrelation with n-th lag. The
autocorrelations marked with ∗ are beyond the two standard deviations from zero.

mean std skewness kurtosis ρ1 ρ2 ρ3 ρ6 ρ12

Panel A: Market Return and Monthly Aggregated Volatility Component

rm,t 0.0056 0.0453 -0.50 5.30 0.05 -0.04 -0.03 -0.04 0.03
τt 0.0014 0.0010 5.15 37.95 0.90* 0.72* 0.53* 0.17* 0.05
gt 21.3558 16.8644 12.56 205.79 0.30* 0.01 -0.04 0.03 -0.01

Panel B: Trading Strategy Based Factors

SMBt 0.0015 0.0297 0.21 3.85 0.16* 0.03 -0.04 0.12* 0.19*
HMLt 0.0031 0.0272 -0.11 3.85 0.20* 0.07 0.02 0.06 0.12*
WMLt 0.0084 0.0443 -1.53 10.06 -0.04 -0.06 -0.03 0.03 0.29*
LIQt 0.0033 0.0448 0.02 3.70 0.05 0.01 -0.04 0.01 0.07

Panel C: Macroeconomic Factors

MPt 0.0024 0.0075 -0.86 6.54 0.36* 0.26* 0.24* 0.06 -0.02
PPIt 0.0033 0.0071 1.88 13.23 0.32* 0.27* 0.28* 0.25* 0.31*
UTSt 0.0095 0.0139 -0.35 2.99 0.95* 0.89* 0.84* 0.71* 0.57*
UPRt 0.0107 0.0044 1.27 4.26 0.96* 0.92* 0.88* 0.79* 0.62*
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Table 2: GARCH-MIDAS Model Estimates

The GARCH-MIDAS models with various regressors are fitted over daily market returns from Jan. 3,
1966 to Dec. 31, 1999 by QMLE. The GARCH-MIDAS model with rolling window RV is specified as in
(7)-(11) with ω2 fixed at 1 for monotonicaly decreasing weighting function. J = 125 and N ′ = 22 are
chosen. The rest of the GARCH-MIDAS specifications follow (7)-(8) and (11)-(12) with J ′ = 36. Due
to the limited availability of LIQt data, the GARCH-MIDAS(LIQt) are fitted over daily market returns
from Jan. 2, 1969 to Dec. 31, 1999 and it explains the noticeably small log-likelihood fundtion value
(LLF) when compared with others. BIC is Bayesian Information Criterion and the numbers shown in
the parenthesis are robust t-stats computed with HAC standard errors. Variance ratio is calculated as
V ar(log[τδ/t(•)])/V ar(log[τδ/t(•)gδ/t]) where • refers to a specific regressor.

α β θ ω1 ω2 m LLF/BIC var ratio

Rolling RV 0.10412 0.81748 0.16403 1.85513 0.00514 29742.22 0.43
(8.71) (37.72) (15.13) (3.42) (11.67) -6.9420

SMBt 0.08277 0.89267 -0.32821 1.94741 1.23420 -9.54066 29741.79 0.17
(8.32) (65.17) (-2.89) (1.35) (2.13) (-75.37) -6.9408

HMLt 0.08053 0.90099 -0.12908 22.41781 3.42036 -9.51647 29735.59 0.06
(8.25) (49.15) (-1.44) (0.82) (1.13) (-60.90) -6.9394

WMLt 0.08305 0.88381 0.56600 1.24584 1.13119 -10.10900 29760.64 0.31
(9.49) (44.50) (6.37) (6.25) (5.75) (-92.04) -6.9452

LIQt 0.07863 0.89681 0.32150 1.41969 1.52295 -9.64859 27029.87 0.22
(8.19) (41.39) (3.62) (2.05) (0.92) (-70.17) -6.8944

MPt 0.08440 0.89293 -0.82063 3.66275 1.00000 -9.39545 29742.20 0.15
(10.43) (37.12) (-3.95) (0.31) (0.29) (-65.92) -6.9409

PPIt 0.08351 0.89453 0.62253 8.87842 6.52780 -9.78843 29738.59 0.15
(8.18) (43.20) (3.48) (1.41) (0.84) (-64.30) -6.9401

UTSt 0.08179 0.89707 -0.11676 6.50885 1.00000 -9.46958 29736.17 0.06
(8.03) (36.71) (-0.66) (0.03) (0.02) (-50.46) -6.9395

UPRt 0.08485 0.89122 0.86386 17.98284 1.00000 -10.15661 29741.46 0.15
(7.77) (12.64) (0.10) (0.05) (0.06) (-28.54) -6.9407
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Table 3: VAR Predictability Tests (F-test): p-values

This table presents the Granger causality tests of the VAR model with two chosen sets of variables. The
VAR order chosen for Panel A is 3 and that for Panel B is 4. The numbers in the table are p-values for
the F-tests. The F-tests reflect the incremental ability of the column variable to predict the respective
row variables, given the other variables in the VAR system. The definitions of variables involved follows
the ones explained in Table 1.

Panel A: VAR with Trading Strategy Based Factors
Dependent

Variable rm,t τt gt fSMB
t fHML

t fWML
t fLIQ

t R2

rm,t 0.69 0.64 0.79 0.07 0.66 0.84 0.94 0.05
τt 0.38 0.00 0.00 0.55 0.77 0.01 0.11 0.99
gt 0.01 0.98 0.00 0.56 0.91 0.51 0.99 0.15
fSMB

t 0.00 0.29 0.05 0.51 0.88 0.49 0.32 0.14
fHML

t 0.78 0.21 0.44 0.61 0.01 0.75 0.48 0.08
fWML

t 0.47 0.19 0.47 0.01 0.50 0.13 0.11 0.10

fLIQ
t 0.30 0.19 0.58 0.55 0.93 0.81 0.86 0.04

Panel B: VAR with Macroeconomic Factors
Dependent
Variable rm,t τt gt MPt PPIt UTSt UPRt R2

rm,t 0.95 0.98 0.53 0.48 0.32 0.00 0.25 0.12
τt 0.01 0.00 0.00 0.09 0.06 0.51 0.98 0.99
gt 0.00 0.94 0.00 0.54 0.61 0.58 0.74 0.16
MPt 0.14 0.77 0.74 0.00 0.24 0.03 0.38 0.27
PPIt 0.57 0.55 0.90 0.05 0.00 0.01 0.79 0.22
UTSt 0.01 0.70 0.73 0.00 0.00 0.00 0.68 0.92
UPRt 0.01 0.43 0.22 0.01 0.33 0.00 0.00 0.95
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Table 4: VAR Estimates for τt Equation

The VAR parameter estimates for τt equation in two VAR specifications are shown. The order for the
VAR model with the traded factors (Panel A) is 3 and that for the VAR model with the macroeconomic
variables (Panel B) is 4. The numbers in the parenthesis are t-stats.

Panel A: VAR with Trading Strategy Based Factors

rm,t τt gt SMBt HMLt WMLt LIQt

Lag 1 0.0000 1.3054 0.0000 -0.0003 0.0001 -0.0001 0.0002
(-0.23) (22.92) (57.38) (-1.42) (0.48) (-1.32) (1.16)

Lag 2 0.0002 -0.5196 0.0000 0.0001 -0.0002 0.0003 -0.0003
(1.70) (-6.06) (-5.25) (0.31) (-0.93) (3.00) (-2.04)

Lag 3 0.0000 0.0601 0.0000 0.0001 0.0001 0.0001 0.0000
(-0.05) (1.45) (3.58) (0.26) (0.51) (1.28) (-0.32)

Panel B: VAR with Macroeconomic Factors

rm,t τt gt MPt PPIt UTSt UPRt

Lag 1 -0.0002 1.1453 0.0000 -0.0008 -0.0003 0.0006 0.0023
(-1.61) (20.13) (60.43) (-1.20) (-0.47) (0.48) (0.49)

Lag 2 0.0003 -0.2960 0.0000 0.0006 0.0004 0.0005 -0.0014
(3.08) (-3.27) (-2.62) (0.90) (0.59) (0.33) (-0.21)

Lag 3 0.0002 -0.2086 0.0000 -0.0003 0.0014 0.0003 0.0005
(1.36) (-2.44) (2.16) (-0.37) (2.02) (0.18) (0.08)

Lag 4 0.0001 0.1458 0.0000 -0.0015 0.0011 -0.0009 -0.0016
(1.13) (3.68) (5.84) (-2.21) (1.51) (-0.77) (-0.37)
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Table 5: Base Factor Correlations

This table presents the correlation structure of the base factors as defined in Section 3.2. f
τ [•]
t and f

g[•]
t with • = {1, 2} are the innovations to τt

and gt in the VAR model with the traded factors and the VAR model with the macroeconomic variables, respectively. As we explained in Section
3.2, the trading strategy based factors themselves are taken as base factors, and hence {fSMB

t , fHML
t , fWML

t , fLIQ
t } are size, value, momentum, and

liquidity factors. On the other hand, {fMP
t , fPPI

t , fUTS
t , fUPR

t } are innovations to industrial production growth, producer price index inflation rate,

term spread, and default premium, respectively, in the VAR model as specified with y
[2]
t in Section 3.2.

Re
m,t f

τ [1]
t f

τ [2]
t f

g[1]
t f

g[2]
t fSMB

t fHML
t fWML

t fLIQ
t fMP

t fPPI
t fUTS

t fUPR
t

Re
m,t 1 -0.12 -0.15 -0.33 -0.32 0.32 -0.41 0.00 -0.34 0.00 -0.12 0.02 0.08

f
τ [1]
t -0.12 1 0.90 0.52 0.51 -0.03 -0.01 -0.07 -0.04 -0.04 0.02 0.08 0.05

f
τ [2]
t -0.15 0.90 1 0.54 0.55 -0.06 0.03 -0.08 -0.02 -0.08 0.01 0.08 0.08

f
g[1]
t -0.33 0.52 0.54 1 0.98 -0.19 0.08 -0.04 0.14 -0.02 0.03 0.06 0.01

f
g[2]
t -0.32 0.51 0.55 0.98 1 -0.19 0.08 -0.06 0.12 -0.03 0.03 0.06 0.03

fSMB
t 0.32 -0.03 -0.06 -0.19 -0.19 1 -0.17 -0.24 -0.55 0.02 0.00 0.12 -0.02

fHML
t -0.41 -0.01 0.03 0.08 0.08 -0.17 1 -0.21 -0.09 0.03 0.06 0.18 0.04

fWML
t 0.00 -0.07 -0.08 -0.04 -0.06 -0.24 -0.21 1 0.27 0.06 0.02 -0.14 0.03

fLIQ
t -0.34 -0.04 -0.02 0.14 0.12 -0.55 -0.09 0.27 1 0.00 0.08 -0.18 -0.08

fMP
t 0.00 -0.04 -0.08 -0.02 -0.03 0.02 0.03 0.06 0.00 1 0.07 -0.11 -0.27

fPPI
t -0.12 0.02 0.01 0.03 0.03 0.00 0.06 0.02 0.08 0.07 1 -0.08 -0.14

fUTS
t 0.02 0.08 0.08 0.06 0.06 0.12 0.18 -0.14 -0.18 -0.11 0 1 0.23

fUPR
t 0.08 0.05 0.08 0.01 0.03 -0.02 0.04 0.03 -0.08 -0.27 -0.14 0.23 1
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Table 6: Test Portfolios and Estimated Betas

Our test assets for the cross-sectional studies are 40 test portfolios consist of four different decile portfolios sorted on size, book-to-market ratio,
momentum, and liquidity. The size and BM portfolios are from Prof. Kenneth French’s website. The momentum portfolios are the ones used in
Liu and Zhang (2008) and the liquidity portfolios are from Pástor and Stambaugh (2003). The average monthly returns of these portfolios covering
January 1966 - December 1999 are shown in the table. The betas are from time-series regressions, as specified in (20), of monthly test portfolio returns
on a factor set of {Re

m,t, f
τ
t , fg

t } which is the same as Table 7 (ii). The numbers in the parenthesis are t-stats.

Size-Sorted Decile Portfolios

portfolio # 9 10 8 1 6 2 7 4 3 5
mean 0.01089 0.01090 0.01143 0.01157 0.01161 0.01206 0.01215 0.01233 0.01243 0.01295
βτ 2.82 -7.70 6.19 27.52 7.25 19.43 11.53 5.29 14.52 12.15

(0.38) (-1.05) (0.66) (0.97) (0.53) (0.87) (1.06) (0.29) (0.74) (0.79)
βg 0.00000 0.00008 -0.00002 -0.00029 -0.00007 -0.00023 -0.00009 -0.00017 -0.00017 -0.00017

(-0.05) (2.02) (-0.39) (-1.82) (-0.94) (-1.82) (-1.45) (-1.72) (-1.56) (-2.00)

BM-Sorted Decile Portfolios

portfolio # 1 5 4 2 3 6 8 7 9 10
mean 0.01032 0.01034 0.01086 0.01105 0.01131 0.01157 0.01218 0.01223 0.01355 0.01459
βτ -5.67 6.97 -2.86 16.06 -0.60 5.69 2.42 -11.72 -21.68 28.03

(-0.38) (0.58) (-0.24) (1.66) (-0.06) (0.46) (0.17) (-0.84) (-1.32) (1.26)
βg 0.00014 -0.00014 -0.00003 -0.00007 -0.00008 -0.00009 -0.00002 0.00017 0.00008 -0.00016

(1.67) (-2.13) (-0.50) (-1.27) (-1.46) (-1.36) (-0.19) (2.12) (0.85) (-1.25)

Table continued on next page ...
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Table 6 continued

Momentum-Sorted Decile Portfolios

portfolio # 1 2 3 4 5 6 7 8 9 10

mean 0.00889 0.00927 0.01083 0.01166 0.01207 0.01297 0.01345 0.01442 0.01575 0.01724

βτ 61.22 52.30 39.87 33.84 30.40 21.30 11.47 6.32 8.93 27.81

(1.41) (1.77) (1.65) (1.63) (1.62) (1.22) (0.65) (0.35) (0.43) (0.97)

βg -0.00018 -0.00019 -0.00016 -0.00021 -0.00025 -0.00027 -0.00026 -0.00027 -0.00025 -0.00026

(-0.74) (-1.18) (-1.22) (-1.77) (-2.38) (-2.80) (-2.61) (-2.67) (-2.14) (-1.61)

Liquidity-Sorted Decile Portfolios

portfolio # 1 5 2 3 4 10 7 6 8 9

mean 0.00851 0.00975 0.01056 0.01059 0.01087 0.01177 0.01179 0.01192 0.01206 0.01211

βτ 55.31 3.15 33.85 7.11 3.26 -8.36 10.77 -11.63 -0.38 -12.56

(2.29) (0.31) (1.83) (0.49) (0.28) (-0.58) (1.09) (-1.22) (-0.04) (-1.17)

βg -0.00011 -0.00006 -0.00009 0.00002 -0.00004 0.00013 -0.00004 0.00002 -0.00003 0.00002

(-0.79) (-1.00) (-0.87) (0.23) (-0.68) (1.64) (-0.71) (0.46) (-0.62) (0.40)
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Table 7: Cross-Sectional Regression with Volatility Factors

This table presents the estimated prices of risk, presented as percentage per month, and the
corresponding t-stats, shown in the parenthesis, computed with Jagannathan and Wang (1998) corrected
standard errors. These are estimated following Fama and MacBeth (1973) procedure on 40 test portfolios
consist of four different decile portfolios sorted on size, BM, momentum, and liquidity; the full-sample
time series regressions as in (20) and cross-sectional regressions as in (21) for the sample from July 1966
to December 1999. For each factor specifications, three overall performance measures are provided;
intuitive R2, root mean squared pricing error (RMSPE), and the pricing error decomposition. The
R2 is identical to the one in the cross-sectional OLS regression with average returns as dependent
variables. The pricing error decomposition shows the portion of sum of squared pricing errors (SSPE)
that belongs to each decile portfolios. The orthogonalized factors in Panel C are constructed following
Campbell (1996), and the VAR variable orders are also shown in the table since they do matter in the
orthogonalized factors. See Section 3.2 for more details.

Panel A: Two VAR System Factors

(102) (10−2) pricing error decomposition
Re

m,t f τ
t fg

t R2 RMSPE size BM momentum liquidity

Volatility Factors from VAR w/ Traded Factors

(i) 0.6276 -0.0092 -12.0848 0.33 0.1376 0.09 0.43 0.31 0.16
(2.84) (-2.62) (-1.96)

Volatility Factors from VAR w/ Macro Factors

(ii) 0.6203 -0.0091 -11.8936 0.38 0.1321 0.13 0.46 0.27 0.13
(2.82) (-2.91) (-1.94)

Panel B: Volatility Component Factors

(102) (10−2) pricing error decomposition
Re

m,t f τ
t fg

t R2 RMSPE size BM momentum liquidity

(iii) 0.6450 -0.0092 0.36 0.1356 0.09 0.42 0.35 0.13
(2.60) (-2.98)

(iv) 0.5615 -9.8680 0.04 0.1640 0.08 0.34 0.32 0.26
(2.42) (-1.77)

(v) -0.0079 0.35 0.1367 0.08 0.40 0.37 0.15
(-1.97)
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Table 7 continued

Panel C: Orthogonalized Factors

(10−2) pricing error decomposition

variable order R2 RMSPE size BM momentum liquidity

(vi) um,t uτ
t ug

t

0.6607 -4.7443 -1.2207 0.38 0.1320 0.13 0.45 0.29 0.13

(2.51) (-2.93) (-0.51)

(vii) um,t ug
t uτ

t

0.6607 -3.4288 -3.4992 0.38 0.1320 0.13 0.45 0.29 0.13

(2.51) (-1.73) (-1.65)
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Table 8: Separate Cross-Sectional Regressions on Each Decile Portfolios

This table presents the estimated prices of risk, presented as percentage per month, and the
corresponding t-stats, shown in the parenthesis, computed with Jagannathan and Wang (1998) corrected
standard errors. These are estimated following Fama and MacBeth (1973) procedure separately on each
of four decile portfolios; size-, BM-, momentum- and liquidity-sorted decile portfolios. First, we run the
full-sample time series regressions as in (20) to estimate loadings on factors, and then cross-sectional
regressions as in (21) for the sample from July 1966 to December 1999. For each of four decile portfolios,
one factor model of τt innovation and two factor model of excess market return and the relevant traded
factor are examined. For each factor specifications, two overall performance measures are provided;
intuitive R2 and root mean squared pricing error (RMSPE). The R2 is identical to the one in the
cross-sectional OLS regression with average returns as dependent variables.

Test on size-sorted decile portfolios

(i) Re
m,t fSMB

t R2 RMSPE (10−2) (ii) f τ
t R2 RMSPE (10−2)

0.5926 0.1208 0.67 0.0365 -0.0099 0.46 0.0467
(2.70) (0.64) (-1.86)

Test on BM-sorted decile portfolios

(iii) Re
m,t fHML

t R2 RMSPE (10−2) (iv) f τ
t R2 RMSPE (10−2)

0.5848 0.1812 0.80 0.0594 -0.0105 -1.02 0.1868
(2.60) (1.08) (-1.14)

Test on momentum-sorted decile portfolios

(v) Re
m,t fWML

t R2 RMSPE (10−2) (vi) f τ
t R2 RMSPE (10−2)

0.9665 0.8776 0.98 0.0347 -0.0133 0.80 0.1150
(3.42) (4.64) (-1.76)

Test on liquidity-sorted decile portfolios

(vii) Re
m,t fLIQ

t R2 RMSPE (10−2) (viii) f τ
t R2 RMSPE (10−2)

0.6023 0.3983 0.51 0.0785 -0.0098 0.34 0.0912
(2.76) (1.68) (-1.95)
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Table 9: Cross-Sectional Regression with Trading-Strategy Based Factors

This table presents the estimated prices of risk, presented as percentage per month, and the corresponding t-stats, shown in the parenthesis, computed
with Jagannathan and Wang (1998) corrected standard errors. These are estimated following Fama and MacBeth (1973) procedure on 40 test
portfolios consist of four different decile portfolios sorted on size, BM, momentum, and liquidity; the full-sample time series regressions as in (20)
and cross-sectional regressions as in (21) for the sample from July 1966 to December 1999. For each factor specifications, three overall performance
measures are provided; intuitive R2, root mean squared pricing error (RMSPE), and the pricing error decomposition. The R2 is identical to the one in
the cross-sectional OLS regression with average returns as dependent variables. The pricing error decomposition shows the portion of sum of squared
pricing errors (SSPE) that belongs to each decile portfolios. The orthogonalized factors in Panel B are constructed following Campbell (1996), and
the VAR variable orders are also shown in the table since they do matter in the orthogonalized factors. See Section 3.2 for more details.

Panel A: Base Factors

(10−2) pricing error decomposition

Re
m,t fSMB

t fHML
t fWML

t fLIQ
t R2 RMSPE size BM momentum liquidity

(i) 0.5963 0.0864 0.0523 -0.14 0.1787 0.01 0.06 0.62 0.31
(2.69) (0.46) (0.35)

(ii) 0.5715 0.2092 0.1495 0.7255 0.44 0.1254 0.11 0.06 0.21 0.61
(2.56) (1.13) (0.96) (3.92)

(iii) 0.6272 0.0888 0.1792 0.5717 0.36 0.1344 0.05 0.07 0.80 0.08
(2.85) (0.47) (1.17) (2.57)

(iv) 0.6010 0.1976 0.2486 0.7111 0.4224 0.80 0.0743 0.32 0.20 0.29 0.19
(2.70) (1.05) (1.57) (3.91) (1.89)

Table continued on next page ...
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Table 9 continued

Panel B: Orthogonalized Factors

(10−2) pricing error decomposition

um,t uSMB
t uHML

t uWML
t uLIQ

t R2 RMSPE size BM momentum liquidity

(v) 0.6116 -0.0761 0.3854 -0.11 0.1770 0.02 0.06 0.62 0.31

(2.71) (-0.24) (1.47)

(vi) 0.5872 0.1328 0.5432 0.9566 0.44 0.1259 0.10 0.06 0.23 0.62

(2.58) (0.43) (1.99) (4.28)

(vii) 0.6355 -0.0864 0.5824 1.0224 0.24 0.1461 0.04 0.06 0.85 0.05

(2.82) (-0.27) (2.19) (4.40)

(viii) 0.6112 0.1234 0.7423 0.9693 1.0395 0.80 0.0756 0.31 0.19 0.30 0.20

(2.68) (0.39) (2.70) (4.42) (4.44)
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Table 10: Average Factor Loadings for Each Decile Portfolios

The characteristics of betas of the five factor model as in Table 9 (iv) are explored. First, we run
full-sample time series regressions of 40 test portfolios on market return, size, value, momentum, and
liquidity factors as in (20) for the sample covering July 1966 - December 1999. Then, the loadings for
each factor are averaged over each decile portfolios. For an example, the first element of the table,
1.0039, is the average of market factor betas for 10 size-sorted portfolios.

Decile Portfolio Re
m,t fSMB

t fHML
t fWML

t fLIQ
t

Size 1.0039 0.5279 0.0883 0.0014 -0.0387
BM 1.0076 0.0195 0.2411 -0.0001 -0.0463
Momentum 0.9347 0.9056 0.2240 -0.1678 0.0000
Liquidity 1.0227 -0.0156 0.0292 -0.0144 -0.1048
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Table 11: Cross-Sectional Regression with Macroeconomic Factors

This table presents the estimated prices of risk, presented as percentage per month, and the corresponding t-stats, shown in the parenthesis, computed
with Jagannathan and Wang (1998) corrected standard errors. These are estimated following Fama and MacBeth (1973) procedure on 40 test
portfolios consist of four different decile portfolios sorted on size, BM, momentum, and liquidity; the full-sample time series regressions as in (20)
and cross-sectional regressions as in (21) for the sample from July 1966 to December 1999. For each factor specifications, three overall performance
measures are provided; intuitive R2, root mean squared pricing error (RMSPE), and the pricing error decomposition. The R2 is identical to the one in
the cross-sectional OLS regression with average returns as dependent variables. The pricing error decomposition shows the portion of sum of squared
pricing errors (SSPE) that belongs to each decile portfolios. The orthogonalized factors in Panel B are constructed following Campbell (1996), and
the VAR variable orders are also shown in the table since they do matter in the orthogonalized factors. See Section 3.2 for more details.

Panel A: Base Factors

(10−2) pricing error decomposition
Re

m,t fMP
t fPPI

t fUTS
t fUPR

t R2 RMSPE size BM momentum liquidity

(i) 0.5993 -0.0649 0.6638 -0.0359 0.0952 0.41 0.1292 0.05 0.24 0.46 0.25
(2.13) (-0.21) (2.32) (-0.30) (1.36)

(ii) 0.6159 0.6397 -0.0351 0.0218 0.13 0.1560 0.03 0.23 0.24 0.51
(2.60) (2.37) (-0.35) (0.40)

(iii) 0.5988 0.6974 -0.0340 0.0987 0.40 0.1293 0.06 0.23 0.48 0.23
(2.09) (2.66) (-0.27) (1.48)

Panel B: Orthogonalized Factors

(10−2) pricing error decomposition
um,t uMP

t uPPI
t uUTS

t uUPR
t R2 RMSPE size BM momentum liquidity

(iv) 0.6322 -1.2403 5.3412 -0.0822 5.2986 0.44 0.1259 0.06 0.24 0.49 0.22
(2.05) (-0.50) (2.29) (-0.05) (1.63)

(v) 0.6465 3.9512 0.1816 2.8454 0.13 0.1561 0.02 0.19 0.25 0.53
(2.57) (2.17) (0.15) (1.08)

(vi) 0.6345 4.6999 -0.1025 5.0908 0.43 0.1268 0.05 0.24 0.44 0.27
(2.15) (2.50) (-0.07) (1.83)
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Table 12: Cross-Sectional Regression: Volatility Factors vs. Trading-Strategy Based Factors (I)

This table presents the estimated prices of risk, presented as percentage per month, and the corresponding t-stats, shown in the parenthesis, computed
with Jagannathan and Wang (1998) corrected standard errors. These are estimated following Fama and MacBeth (1973) procedure on 40 test
portfolios consist of four different decile portfolios sorted on size, BM, momentum, and liquidity; the full-sample time series regressions as in (20)
and cross-sectional regressions as in (21) for the sample from July 1966 to December 1999. For each factor specifications, three overall performance
measures are provided; intuitive R2, root mean squared pricing error (RMSPE), and the pricing error decomposition. The R2 is identical to the one in
the cross-sectional OLS regression with average returns as dependent variables. The pricing error decomposition shows the portion of sum of squared
pricing errors (SSPE) that belongs to each decile portfolios. The orthogonalized factors in Panel B are constructed following Campbell (1996), and
the VAR variable orders are also shown in the table since they do matter in the orthogonalized factors. See Section 3.2 for more details.

Panel A: Base Factors
(10−2) pricing error decomposition

Re
m,t f τ

t fSMB
t fHML

t fWML
t fLIQ

t R2 RMSPE size BM momentum liquidity

(i) 0.6245 -0.0103 0.2133 0.34 0.1367 0.13 0.42 0.31 0.15
(2.86) (-3.04) (1.04)

(ii) 0.6356 -0.0087 0.1720 0.33 0.1372 0.05 0.26 0.49 0.20
(2.64) (-2.20) (0.99)

(iii) 0.6593 -0.0091 0.2884 0.26 0.1442 0.06 0.37 0.41 0.16
(2.88) (-2.33) (0.76)

(iv) 0.6371 -0.0099 0.0339 0.28 0.1418 0.08 0.36 0.37 0.20
(2.85) (-2.67) (0.08)

Table continued on next page ...
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Table 12 continued

Panel B: Orthogonalized Factors

(10−2) pricing error decomposition

Variable Order A Variable Order B R2 RMSPE size BM momentum liquidity

(v) uτ
t uSMB

t um,t uSMB
t uτ

t um,t

-5.2961 0.1090 -0.1586 0.3304 -5.2860 -0.1385 0.33 0.1370 0.13 0.41 0.31 0.15

(-2.98) (0.26) (-0.38) (0.77) (-2.97) (-0.34)

(vi) uτ
t uHML

t um,t uHML
t uτ

t um,t

-4.4428 0.3453 0.1683 0.3141 -4.4460 0.1731 0.34 0.1366 0.05 0.25 0.49 0.21

(-2.14) (1.15) (0.32) (1.06) (-2.15) (0.33)

(vii) uτ
t uWML

t um,t uWML
t uτ

t um,t

-4.5793 -0.1685 0.0297 0.3499 -4.5713 0.0302 0.26 0.1444 0.06 0.37 0.41 0.16

(-2.28) (-0.29) (0.07) (0.72) (-2.24) (0.08)

(viii) uτ
t uLIQ

t um,t uLIQ
t uτ

t um,t

-5.1092 -0.0685 -0.1062 0.0632 -5.1098 -0.1171 0.28 0.1420 0.08 0.35 0.37 0.20

(-2.63) (-0.14) (-0.23) (0.13) (-2.62) (-0.25)
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Table 13: Cross-Sectional Regression: Volatility Factors vs. Trading-Strategy Based Factors (II)

This table presents the estimated prices of risk, presented as percentage per month, and the corresponding t-stats, shown in the parenthesis, computed
with Jagannathan and Wang (1998) corrected standard errors. These are estimated following Fama and MacBeth (1973) procedure on 40 test
portfolios consist of four different decile portfolios sorted on size, BM, momentum, and liquidity; the full-sample time series regressions as in (20)
and cross-sectional regressions as in (21) for the sample from July 1966 to December 1999. For each factor specifications, three overall performance
measures are provided; intuitive R2, root mean squared pricing error (RMSPE), and the pricing error decomposition. The R2 is identical to the one in
the cross-sectional OLS regression with average returns as dependent variables. The pricing error decomposition shows the portion of sum of squared
pricing errors (SSPE) that belongs to each decile portfolios. The orthogonalized factors in Panel B are constructed following Campbell (1996), and
the VAR variable orders are also shown in the table since they do matter in the orthogonalized factors. See Section 3.2 for more details.

Panel A: Base Factors

RMSPE pricing error decomposition

Re
m,t f τ

t fSMB
t fHML

t fWML
t fLIQ

t R2 (10−2) size BM momentum liquidity

(i) 0.6352 -0.0093 0.3863 -0.0305 0.29 0.1409 0.08 0.34 0.34 0.24
(2.82) (-2.27) (1.49) (-0.10)

(ii) 0.6280 -0.0086 0.2445 0.5087 0.1404 0.38 0.1320 0.17 0.48 0.20 0.15
(2.82) (-2.15) (1.28) (2.62) (0.58)

(iii) 0.6320 -0.0073 0.1732 0.3711 -0.0561 0.36 0.1344 0.05 0.21 0.45 0.28
(2.79) (-1.81) (1.03) (1.57) (-0.19)

Table continued on next page ...

79



Table 13 continued

Panel B: Orthogonalized Factors

RMSPE pricing error decomposition

um,t uτ
t uSMB

t uHML
t uWML

t uLIQ
t R2 (10−2) size BM momentum liquidity

(iv ) 0.6859 -2.3160 0.3793 0.5694 0.39 0.1305 0.10 0.45 0.31 0.14

(2.56) (-2.15) (1.12) (1.88)

(v) 0.6388 -2.9868 0.2423 0.4325 0.5329 0.48 0.1209 0.22 0.48 0.17 0.13

(2.57) (-2.04) (0.64) (1.36) (1.71)

(vi) 0.6362 0.8247 0.8114 1.0337 1.1487 0.78 0.0794 0.18 0.20 0.43 0.19

(2.69) (0.50) (2.41) (4.79) (3.91)
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Table 14: Cross-Sectional Regression: Volatility Factors vs. Macroeconomic
Factors

This table presents the estimated prices of risk, presented as percentage per month, and the
corresponding t-stats, shown in the parenthesis, computed with Jagannathan and Wang (1998) corrected
standard errors. These are estimated following Fama and MacBeth (1973) procedure on 40 test portfolios
consist of four different decile portfolios sorted on size, BM, momentum, and liquidity; the full-sample
time series regressions as in (20) and cross-sectional regressions as in (21) for the sample from July 1966
to December 1999. For each factor specifications, three overall performance measures are provided;
intuitive R2, root mean squared pricing error (RMSPE), and the pricing error decomposition. The
R2 is identical to the one in the cross-sectional OLS regression with average returns as dependent
variables. The pricing error decomposition shows the portion of sum of squared pricing errors (SSPE)
that belongs to each decile portfolios. The orthogonalized factors in Panel B are constructed following
Campbell (1996), and the VAR variable orders are also shown in the table since they do matter in the
orthogonalized factors. See Section 3.2 for more details.

Panel A: Base Factors

RMSPE pricing error decomposition
Re

m,t f τ
t fMP

t fPPI
t R2 (10−2) size BM momentum liquidity

(i) 0.6305 -0.0090 0.3891 0.44 0.1250 0.11 0.51 0.20 0.17
(2.59) (-2.25) (0.82)

(ii) 0.6159 -0.0094 0.2312 0.49 0.1195 0.18 0.48 0.25 0.08
(2.70) (-2.96) (0.71)

Panel B: Orthogonalized Factors

RMSPE pricing error decomposition
Variable Order R2 (10−2) size BM momentum liquidity

(iii) uτ
t uMP

t um,t

-4.6842 2.3262 0.0493 0.44 0.1250 0.11 0.51 0.20 0.17
(-2.26) (0.66) (0.09)

(iv) uMP
t uτ

t um,t

2.7582 -4.4394 0.0498 0.44 0.1250 0.11 0.51 0.20 0.17
(0.82) (-1.93) (0.09)

(v) uτ
t uPPI

t um,t

-4.8334 1.6956 0.1866 0.49 0.1195 0.18 0.48 0.25 0.08
(-2.79) (0.72) (0.29)

(vi) uPPI
t uτ

t um,t

1.6781 -4.8382 0.1863 0.49 0.1195 0.18 0.48 0.25 0.08
(0.71) (-2.80) (0.29)
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Table 15: Expected vs. Observed Profits from Various Trading Strategies

We extend Griffin, Ji, and Martin (2003) and Liu and Zhang (2008) to other traded factors. We regress
one of the traded factors, F = {SMBt, HMLt, WMLt, LIQt}, on our choice of factors as in time-series

regression (20): F•
t = a• +

∑S
s=1 β•

sF s
t + e•t . Then, the expected profits, E[F•], are estimated as

E[F•] =
∑S

s=1 Λ̂sβ̂
•
s where β̂•

s is estimated from the full-sample time-series regressions and the prices of

risk, Λ̂s, are estimated from two-stage Fama and MacBeth (1973) regressions using the 40 test assets.
In fact, we already have the prices of risk estimates from results in Section 5.1 (Table 7, 9, and 11).
The numbers shown in (i) are the observed profits from various trading strategies averaged over a
period from July 1966 to December 1999. The numbers shown in (ii)-(vii) are expected profits and the
corresponding ratios are computed as expected profits over observed profits.

(i) [Trading Strategy] Mean Profit (ii) [Table 7(v)] f τ
t Ratio

SMB 0.15 SMB 0.11 72.77%
HML 0.31 HML 0.04 12.09%
LIQ 0.33 LIQ 0.21 64.53%

WML 0.84 WML 0.38 45.54%

(iii) [Table 7(iii)] Re
m,t f τ

t Ratio
SMB 0.14 0.05 118.70%
HML -0.16 0.10 -19.59%
LIQ -0.23 0.37 44.45%

WML 0.00 0.38 44.44%

(iv ) [Table 9(i)] Re
m,t fSMB

t fHML
t Ratio

SMB 0.00 0.09 0.00 56.60%
HML 0.00 0.00 0.05 17.00%
LIQ -0.18 -0.07 -0.03 -83.08%

WML -0.01 -0.04 -0.02 -7.95%

(v) [Table 9(iv)] Re
m,t fSMB

t fHML
t fWML

t fLIQ
t Ratio

SMB 0.00 0.20 0.00 0.00 0.00 129.46%
HML 0.00 0.00 0.25 0.00 0.00 80.88%
LIQ 0.00 0.00 0.00 0.00 0.42 129.53%

WML 0.00 0.00 0.00 0.71 0.00 85.15%

(vi) [Table 11(ii)] Re
m,t fMP

t fUTS
t fUPR

t Ratio
SMB 0.13 0.04 -0.04 -0.05 52.30%
HML -0.17 0.16 -0.04 0.03 -8.59%
LIQ -0.20 -0.10 0.07 -0.01 -76.64%

WML 0.04 0.29 0.06 0.07 55.42%

(vii) [Table 11(iii)] Re
m,t fPPI

t fUTS
t fUPR

t Ratio
SMB 0.13 0.14 -0.04 -0.22 2.20%
HML -0.16 0.08 -0.04 0.09 -10.96%
LIQ -0.20 0.14 0.07 -0.02 -4.16%

WML 0.04 0.12 0.06 0.27 59.64%
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Figure 1: GARCH-MIDAS with Rolling Window RV

The GARCH-MIDAS model with rolling window RV (J = 125, N ′ = 22) as specified in (7)-(11) is fitted
over daily stock returns from January 3, 1966 to December 31, 1999 by QMLE. The first panel shows the
estimated conditional volatility and its long run component in standard deviation and annualized scale.
In the second panel, these daily-varying conditional volatility and its long run component series are
summed over a quarter to show quarterly aggregated conditional volatility and its quarterly aggregated
long run component. Quarterly RV’s are also shown for comparison. As in the first panel, these are
shown in standard deviation and annualized scale.

1970 1975 1980 1985 1990 1995

0.1

0.2

0.3

0.4

0.5
conditional volatility and its long run component of stock market returns

year

a
n

n
u

a
liz

e
d

 v
o

la
til

ity

(ann.) conditonal volatility (τ*g)1/2

(ann.) secular component (τ)1/2

1970 1975 1980 1985 1990 1995

0.1

0.2

0.3

0.4

0.5
quarterly aggregation of τ*g / τ and quarterly RV

year

a
n

n
u

a
liz

e
d

 v
o

la
til

ity

(ann.) quarterly RV1/2

(ann.) quarterly aggregated τ*g1/2

(ann.) quaterly aggregated τ1/2

83



Figure 2: GARCH-MIDAS with Momentum Factor

The GARCH-MIDAS(momentum factor) model as specified in (7)-(8) and (11)-(12) with J ′ = 36 is
fitted over daily stock returns from January 3, 1966 to December 31, 1999 by QMLE. The figure shows
the estimated conditional volatility and its long run component in standard deviation and annualized
scale. For comparison, the long-run component from the GARCH-MIDAS model with rolling window
RV is also plotted.
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Figure 3: GARCH-MIDAS with Size Factor

The GARCH-MIDAS(size factor) model as specified in (7)-(8) and (11)-(12) with J ′ = 36 is fitted
over daily stock returns from January 3, 1966 to December 31, 1999 by QMLE. The figure shows the
estimated conditional volatility and its long run component in standard deviation and annualized scale.
For comparison, the long-run component from the GARCH-MIDAS model with rolling window RV is
also plotted.
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Figure 4: GARCH-MIDAS with Value Factor

The GARCH-MIDAS(value factor) model as specified in (7)-(8) and (11)-(12) with J ′ = 36 is fitted
over daily stock returns from January 3, 1966 to December 31, 1999 by QMLE. The figure shows the
estimated conditional volatility and its long run component in standard deviation and annualized scale.
For comparison, the long-run component from the GARCH-MIDAS model with rolling window RV is
also plotted.

1970 1975 1980 1985 1990 1995
0.05

0.1

0.15

0.2

0.25

0.3
conditional volatility and its long run component of stock market returns

year

a
n

n
u

a
liz

e
d

 v
o

la
til

ity

(ann.) conditonal volatility (τ*g)1/2

(ann.) secular component (τ)1/2

(ann.) τ1/2 from GM−RollRV

86



Figure 5: Expected Returns with Volatility Factors

Realized average returns versus fitted expected returns of our 40 test portfolios consist of four different
decile portfolios sorted on size, BM, momentum, and liquidity are shown. The expected returns
are estimated by Fama and MacBeth (1973) procedure on our test assets with volatility factors,
{Re

m,t, f
τ
t , fg

t }, as specified in Table 7 (ii). Each plot represents one portfolio. The first character
denotes the sorting crieteria for the decile portfolios; ‘s’ for size, ‘b’ for BM, ‘m’ for momentum, and ‘l’
for liquidty. The number next to the character represents the portfolio number.
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Figure 6: Expected Returns with Volatility Factors: Disaggregative View

This figure presents the same pricing errors as in Figure 5, but in a different format. The pricing errors
that belong to each decile portfolios are separately shown. As in Figure 5 and Table 7 (ii), we follow
Fama and MacBeth (1973) procedure to estimate prices of risk of the factor set, {Re

m,t, f
τ
t , fg

t }, fitted
over our 40 test portfolios. The numbers present the portfolio numbers.
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Figure 7: Expected Returns with Single Long-Run Volatility Component
Factor: Disaggregative View

This figure shows the pricing errors of one factor model with τt innovation as shown in Table 7 (v).
The pricing errors that belong to each decile portfolios are separately shown. We follow Fama and
MacBeth (1973) procedure to estimate the price of long-run volatility component risk fitted over our
40 test portfolios. The numbers present the portfolio numbers.

5 6 7 8 9 10

x 10
−3

5.5

6

6.5

7

7.5

8

8.5

9
x 10

−3

 1

 2  3

 4

 5

 6
 7

 8

 9

10

Size / SSPE ratio= 8.362% / SAPE ratio= 15.98%

realized average returns

fit
te

d
 e

xp
e

ct
e

d
 r

e
tu

rn
s

5 6 7 8 9 10

x 10
−3

5

6

7

8

9

10
x 10

−3

 1
 2

 3
 4

 5
 6

 7 8

 9

10

BM / SSPE ratio= 39.7% / SAPE ratio= 33.48%

realized average returns

fit
te

d
 e

xp
e

ct
e

d
 r

e
tu

rn
s

2 4 6 8 10 12

x 10
−3

2

4

6

8

10

12
x 10

−3

 1 2  3
 4

 5

 6

 7

 8  9
10

Momentum / SSPE ratio= 36.63% / SAPE ratio= 31.5%

realized average returns

fit
te

d
 e

xp
e

ct
e

d
 r

e
tu

rn
s

3 4 5 6 7

x 10
−3

3

4

5

6

7
x 10

−3

 1

 2 3

 4 5

 6

 7

 8
 9

10

Liq / SSPE ratio= 15.31% / SAPE ratio= 19.04%

realized average returns

fit
te

d
 e

xp
e

ct
e

d
 r

e
tu

rn
s

89



Appendix A

Simple Extension of Campbell (1993) with Heteroskedasticity

Campbell (1993) succeeds in substituting out consumption growth from risk

premium equation. He achieves this goal by (i) log-linearizing the budget constraint and

(ii) assuming asset returns and consumption are jointly conditionally homoskedastic and

log-normally distributed. Following Campbell (1993), Epstein and Zin (1991), and many

others, we assume stock market is a good proxy for total wealth portfolio. Since we are

interested in a case in which heteroskedasticity is allowed, we introduce implications of

Campbell (1993) when heteroskedasticity is allowed.

One of major constributions of Campbell (1993) is log-linearization of the budget

constraint, which allows us to solve the consumption and portfolio-choice problem in

closed form. Using a trivial identity concerning the log total wealth growth and log

consumption growth, the resulting budget constraint becomes difference equation of log

consumption-wealth ratio:

ct+1 − wt+1 =
1

ρ
(ct − wt) + ∆ct+1 − rm,t+1 − k (A-1)

where ct, wt, and rm,t are log of consumption, total wealth, and market return at time

t, respectively. ρ and k are constants from the Taylor expansion. Then, by a set of

procedures that involve solving it forward and taking conditional expectation of it, he

obtains,

ct+1 − Et[ct+1] =
[

Et+1 − Et

]

∞
∑

j=0

ρjrm,t+1+j −
[

Et+1 − Et

]

∞
∑

j=0

ρj∆ct+1+j (A-2)

So far heteroskedasticity did not get involved in any of the steps, but it does so from

the next step. We can explicitly solve Euler equation for the market return when we
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assume market return and consumption growth are jointly conditionally log-normally

distributed:

Et[∆ct+1] = µm,t + σEt[rm,t+1] (A-3)

where

µm,t = σ log β +
1

2

( θ

σ

)

V art[∆ct+1 − σrm,t+1] (A-4)

where 0 < β < 1, σ is the elasticity of intertemporal substitution, θ = (1−γ)/[1−(1/σ)],

and γ is the coefficient of relative risk aversion. Note that µm,t has a time subscript.

When homoskedasticity is assumed it becomes a constant, which enables us to substitute

out consumption completely from equation (A-2) by using equation (A-3). This

eventually allow us to write risk premium equation solely in terms of market returns.

However, we can still substitute out consumption growth in equation (A-2) using

equation (A-3). Although it doesn’t allow us to substitute out consumption completely,

it introduces interesting variables into the consumption (growth) innovation process.

∆ct+1 − Et[∆ct+1] = (ct+1 − ct) − Et[ct+1 − ct]

= ct+1 − Et[ct+1]

= rm,t+1 − Et[rm,t+1] (A-5)

+ (1 − σ)
[

Et+1 − Et

]

∞
∑

j=1

ρjrm,t+1+j

−
[

Et+1 − Et

]

∞
∑

j=1

ρjµm,t+j

The following is the equation (18) in Campbell (1993).

Et[r
e
i,t+1] +

Vii

2
=

θ

σ
Vic + (1 − θ)Vim (A-6)
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where Vii = V ar(ri,t), Vic = Cov(ri,t, ∆ct), and Vim = Cov(ri,t, rm,t). Since Campbell

(1993) assume homoskedasticity, the above is written accordingly. However, when

heteroskedasticity is allowed for stock return and consumption growth, the above relation

still holds if we put time subsripts onto all the second moments. Hence, we can rewrite

it as follows;47

Et[r
e
i,t+1] +

Vii,t

2
=

θ

σ
Covt(∆ct+1, r

e
i.t+1) + (1 − θ)Covt(rm,t+1, r

e
i.t+1) (A-7)

We can substitute consumption growth for equation (A-5). Finally, we can expand µm,t

and obtain

Et[r
e
i,t+1] +

Vii,t

2
(A-8)

=
θ

σ
Covt(∆ct+1 − Et[∆ct+1], r

e
i,t+1) + (1 − θ)Covt(rm,t+1, r

e
i,t+1)

= (1 − θ +
θ

σ
) Covt(rm,t+1, r

e
i,t+1)

+ θ
1 − σ

σ
Covt

(

[

Et+1 − Et

]

∞
∑

j=1

ρjrm,t+1+j , r
e
i,t+1

)

− θ2

2σ2
Covt

(

[

Et+1 − Et

]

∞
∑

j=1

ρjV art+j [∆ct+j+1 − σrm,t+j+1], r
e
i,t+1

)

47Note that risk-free rate for t + 1 is known at time t and subtracting risk-free rate from a return in
conditional covariance term doesn’t affect any other terms.
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Appendix B

Conditioning Down the Asset Pricing Equation

Without any additional assumptions, we follow Campbell and Vuolteenaho (2004)

to replace Et[ri,t+1] - rf,t+1 + Vii,t/2 with simple expected returns, Et[Ri,t+1 − Rf,t+1].

In the lognormal model, both expectations are identical, and by using simple returns,

we make our results easier to compare with previous empirical studies. Then, we need

to condition down equation (16). However, in general, unconditional expectation of

conditional covariance and unconditional covariance of two random variables are not the

same. Hence, we need a little trick on Vim,t. Note that Vim,t = Covt(ri,t+1, rm,t+1) =

Covt(ri,t+1, řm,t+1) where řm,t+1 = rm,t+1 - Et[rm,t+1]. Also, note that εn,t+1’s are already

innovations to information set at time t. Then, we take unconditional expectations on

both sides of equation (16) and obtain

E[Ri,t+1 − Rf,t+1] = γVim̌ +

N
∑

n=1

[

(γ − 1)λn − (γ − 1)2

2(σ − 1)2
ξn

]

Vin (B-1)

where Vim̌ = Cov(ri,t+1, řm,t+1) and Vin = Cov(ri,t+1, εn,t+1). Note that we dropped

time subscript t from covariance notation. Furthermore, we can show by first-order

Taylor expansion with respect to Ri,t+1 = 1 that ri,t+1 = log Ri,t+1 ≈ Ri,t+1 − 1. This

approximation works well as long as Ri,t+1 is not far off 1. We use monthly returns for

our cross-sectional studies and average returns of our test assets range from 1.00851 to

1.01724 in terms of simple return and the approximation is expected work well around

this range. Hence, equation (B-1) can be rewritten as

E[Ri,t+1 − Rf,t+1] = γσ2
ř,mβim̌ +

N
∑

n=1

[

(γ − 1)λn − (γ − 1)2

2(σ − 1)2
ξn

]

σ2
ε,nβin (B-2)

= Λm̌βim̌ +
N

∑

n=1

Λnβin (B-3)
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where βim̌ = Cov(Ri,t+1, Řm,t+1)/σ
2
ř,m, βin = Cov(Ri,t+1, εn,t+1)/σ

2
ε,n, σ2

ř,m = V ar(Řm,t+1),

σ2
ε,n = V ar(εn,t+1), and Řm,t+1 = Rm,t+1 − Et[Rm,t+1].
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Appendix C

Cross-Sectional Regression with Portfolio Returns in Excess of

Risk Free Rate

Much empirical work in finance is cast in terms of expected return-beta

representations of linear factor pricing models of the form

E(Ri) = γ + βi
aλa + βi

bλb + · · · (C-1)

The β terms are defined as the coefficients in a multiple regression of returns on factors,

Ri
t = ai + βi

afa,t + βi
bfb,t + · · ·+ εi

t (C-2)

The central idea of cross-sectional regression comes from the observation that the drift

term in (C-1) is constant. Exploiting this, we have the following relation:

E(Ri − Rj) = (βi
a − βj

a)λa + (βi
b − βj

b )λb + · · · (C-3)

⇔ E(Rie) = βie
a λa + βie

b λb + · · · (C-4)

where Rie represents the return of asset i in excess of that of asset j. Note two things

from here; one is that now drift term is gone and the other is that estimates of βie
a , βie

b , . . .

can be obtained from time-series regression of

Rie
t = aie + βie

a fa,t + βie
b fb,t + · · ·+ εie

t (C-5)

and these β estimates are identical to the differences of β’s obtained from separate time-

series regressions of Ri
t and Rj

t on the same set of factors. However, a problem arises

when we set Rj
t = Rf

t . The crucial difference between risk-free rate, Rf
t and all other
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equity returns is that Rf
t is pre-determined and that’s why it’s called risk-free rate. For

this reason, Rf
t must equal to zero-beta rate and it means

γ = E(Rf ) (C-6)

(Cochrane (2001) states that γ = Rf , but I think there is no reason that Rf
t should be

constant over time.)

Now, if we set Rie
t = Ri

t − Rf
t and use (C-5) to estimate β’s, these estimates are

contaminated by sprurious non-zero βf
a and βf

b . Recognize that βf
a = βf

b = . . . = 0

because risk-free rates are predetermined ahead of time. However, if you run time-series

regression of

Rf
t = af + βf

afa,t + βf
b fb,t + · · ·+ εi

t (C-7)

you’re actually treating that Rf
t ’s are NOT known at the beginning of investment horizon

and β estimates will not be zero in general. Hence, if we are to set Rj
t = Rf

t , we should

recognize that

E(Rie) = βie
a λa + βie

b λb + · · · (C-8)

= βi
aλa + βi

bλb + · · · (C-9)

and, βie’s used in cross-sectional regression should be estimated by (C-2).
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