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ABSTRACT 

Andrew Joseph Monteith: Impaired lysosomal maturation in macrophages underlies pathogenesis in 

systemic lupus erythematosus 

(Under the direction of Barbara Vilen) 

 Defects in clearing apoptotic debris disrupt tissue and immunological homeostasis 

leading to autoimmune and inflammatory diseases.  We identified that macrophages from lupus-

prone MRL/lpr mice have impaired lysosomal maturation resulting in heightened ROS 

production and attenuated lysosomal acidification.  This diminishes their ability to degrade 

apoptotic debris contained within IgG-immune complexes (IgG-ICs) and promotes recycling and 

the accumulation of nuclear self-antigens at the membrane 72 hours after internalization.  

Diminished degradation of IgG-ICs prolongs the intracellular residency of nucleic acids leading 

to the activation of Toll-like receptors.  It also promotes phagosomal membrane permeabilization 

allowing dsDNA and IgG to leak into the cytosol and activate AIM2 and TRIM21.  Collectively, 

these underlying events promote the accumulation of nuclear antigens and activation innate 

sensors that drives IFNα production and heightened cell death.  These data identify a novel 

defect in lysosomal maturation that provides a mechanism for the chronic activation of 

intracellular innate sensors in systemic lupus erythematosus. 

 Current therapeutics either broadly suppresses the immune system or target one 

pathogenic factor in SLE (BAFF, IFNα, B cells).  Therefore, identifying the molecular 

mechanism preventing lysosomal maturation in lupus-prone macrophages could provide a 

targeted therapeutic addressing multiple SLE pathologies.  We identified that heightened mTOR 

activation (mTORC1 and mTORC2) and chronic localization to the cell membrane impairs 
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lysosomal maturation and underlies the accumulation of IgG-ICs on the membrane.  Furthermore 

treatment with Torin1 and not Rapamycin restored degradation of IgG-ICs implicating that 

mTORC2 activity contributed to impaired lysosome maturation.  In B6 MFs we found that 

regulation of the activity of mTORC2 allows cofilin to depolymerize actin filaments following 

phagocytic cup assembly.  Actin depolymerization initiated a localized caspase cascade that lead 

to the activation of caspase-1 in an inflammasome-independent manner.  Caspase-1 then cleaved 

Rab39a on the membrane of phagosomes containing IgG-ICs; a necessary step for lysosomal 

maturation.  In lupus-prone MFs, heightened mTORC2 activity phosphorylates cofilin, which 

prevents actin depolymerization and the caspase cascade, thus leaving Rab39a uncleaved.  As a 

result, the lysosome is unable to mature and degrade the phagocytosed IgG-ICs.  These findings 

identify a novel signaling pathway regulating lysosomal maturation and an underlying defect in 

basic cellular function that can lead to immunological activation.   
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CHAPTER 1: Introduction 

In a healthy individual the immune system is equipped with the tools to mount strong 

pro-inflammatory responses that are critical in combating infection from microorganisms 

(bacteria, viruses, parasites) while also limiting immune responses against self-antigens.   When 

tolerance mechanisms fail, the immune system can respond to self-antigens resulting in 

autoimmunity.  Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease with 

genetic and environmental components that promote the activation of the immune system against 

nuclear self-antigens (ie: dsDNA, histones, ribonucleoproteins)  This results in tissue-damaging 

inflammation that affects multiple organs (skin, joints, heart, CNS, kidney) (1).  The systemic 

nature of SLE leads to multiple different clinical presentations, making it difficult to diagnose 

and determine an underlying mechanism for disease.   

Observational studies have long associated SLE with the accumulation of apoptotic 

debris and immune complexes (ICs) containing apoptotic debris (IgG-ICs) in SLE (2-5).  The 

accumulation of apoptotic debris has been attributed to impaired clearance of apoptotic bodies 

rather than increased rates of apoptosis (6).  It has been demonstrated that human SLE patients 

have polymorphisms in, and decreased expression of, scavenger receptors, increased expression 

of FcγRs, and deficiencies in complement (7-12), though whether macrophages (MFs) harbor 

intrinsic defects that contribute to impaired clearance is highly debated (13, 14).  Murine models 

lacking MFGE8 and the complement proteins, opsonins thought to be important to the clearance 

of apoptotic bodies, have impaired clearance of apoptotic bodies and spontaneously develop 

autoimmunity (15, 16).  Furthermore, the opsonization of apoptotic bodies with autoreactive IgG 
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has been demonstrated to impair phagocytic uptake by MFs (17).  Interestingly, not all defects in 

apoptotic cell clearance seem to promote autoimmunity as murine models lacking mannose 

binding lectin and CD14 fail to develop autoimmunity despite having increased apoptotic debris 

in the tissues (18, 19).  This suggests that accumulation of apoptotic debris alone is not sufficient 

in promoting autoimmunity and that the manner in which apoptotic debris is cleared may provide 

a critical downstream immunomodulatory signal that can either prevent or promote 

autoimmunity. 

Fcγ receptors (FcγRs) clear of apoptotic debris, tolerize B cells to self-antigens, and 

transmit downstream immunomodulatory signals that control cellular activation.  FcγRs 

recognize the Fc portion of the antibodies that constitute the IgG-ICs.  Upon ligation, FcγRs on 

dendritic cells (DCs) and MFs promotes phagocytosis and signal transduction.  There are two 

types of FcγRs: immunoreceptor tyrosine-based activation motif (ITAM) -containing which 

activate the cell and immunoreceptor tyrosine-based inhibitory motif (ITIM) -containing which 

repress ITAM signaling.  Phagocytosis through ITAM-containing FcγRs (human: 

FcγRI/IIa/IIc/IIIa; mice: FcγRI/III/IV) recruit Syk, leading to the activation of the PI3k pathway 

(20-22) and trafficking of phagocytosed IgG-ICs to lysosomal structures for degradation (23, 

24).  Interestingly, polymorphisms that decrease the binding to IgG to human FcγRIIa (R/H131) 

and FcγRIIIa (158V/F) have been associated with lupus nephritis and are thought to diminish 

clearance of apoptotic debris (25).  In contrast to phagocytosis through ITAM-containing FcγRs, 

the ITIM-containing FcγRIIb represses ITAM-containing FcγRs by recruiting SHIP1 to 

dephosphorylate PI(3,4,5)P3 at the cellular membrane limiting, downstream signal propagation 

(26, 27).  Further, instead of trafficking IgG-ICs to lysosomes, FcγRIIb traffics IgG-ICs to 

recycling endosomes where they are re-expressed at the membrane to tolerize B cells (23).  Mice 
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lacking FcγRIIb develop lupus-like disease (28), while promotor polymorphisms reducing the 

expression of FcγRIIb has been associated with murine and human SLE (29, 30).  Strangely, 

complete loss of FcγR on the lupus-prone MRL/lpr background (FcγR-/-MRL/lpr) had no effect 

on disease pathology (31), while loss of FcγRs in lupus-prone NZB/W F1 (FcγR-/-NZB/W F1) 

mice have diminished disease (32).  It was later discovered that FcγR deficient mice maintain a 

partially functional FcγRI complicating the previous interpretations (33).  Despite this finding, 

it’s interesting that different murine models of SLE have varying dependencies on FcγRs, 

although how FcγRs are specifically contributing to disease remains unknown.  

Of the surface FcγRs, FcγRI has the highest affinity for IgG (10-8 M compared to 10-5-10-

7 M) (34) because of the third extracellular IgG-like domain (35).  Not only has this receptor 

been demonstrated to play an important role in protection against bacterial infections, but it also 

exacerbates multiple autoimmune diseases (36, 37).  Upon ligation, FcγRI internalizes large ICs 

through actin-dependent phagocytosis and small ICs through clatherin mediated endocytosis 

(38).  This is dependent on the relative levels of receptor cross-linking and the competition 

between PI3k and Cbl for binding to Syk (38).  During endocytosis, Cbl outcompetes PI3k and 

poly-ubiquitinates Syk leading to its degradation and mono-ubiquitinates FcγRI, targeting the 

forming endosome for lysosomal degradation (38, 39).  In contrast, when PI3k outcompetes Cbl, 

Syk remains phosphorylated and promotes the actin cup rearrangements integral to phagocytosis 

(38, 40, 41).  Although, there have been many studies in SLE implicating intrinsic defects in the 

phagocytosis of latex beads, apoptotic cells, IgG-ICs, bacteria, and yeast (6, 8, 42-44), no 

underlying mechanism has been identified.   

Regardless of the method of internalization, phagosomes and endosomes fuse to form an 

early phagosome (45).  The maturation status of the phagosome is controlled by two sets of 
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proteins: ESCRT complexes and Rab GTPases.  Although the exact function of ESCRT 

complexes are still debated, their association with the phagosome is critical to maturation and 

lysosomal degradation (46).  ESCRT-0 recognizes mono-ubiquitinated cargo at the membrane 

and facilitates the initial sorting of the phagosome (47).  This allows the ESCRT-I and -II 

complexes to associate with the phagosome, which also contain ubiquitin binding domains (48, 

49).  The recruitment of ESCRT-I and -II forms the nexus that bridges ubiquitinated cargo to the 

ESCRT-III complex, promoting the trafficking of the phagosome to lysosomal structures (50).  

While mono-ubiquitination is critical for the association of ESCRT complexes, PIP3 is critical 

for the Rab proteins to associate with the vesicle.  Rab5 associates with the early phagosome via 

PIP3 although inhibiting PI3k activity does not preclude Rab5 recruitment (51-53).  As the 

phagosome matures Rab5 is exchanged for Rab7 (53-56), an event thought to be mediated by 

Rab22a (57).  Rab7 recruits effector proteins that promote the association of the maturing 

phagosome with microtubules driving the phagosome towards lysosomal compartments (58).  

Interestingly, recruitment of Rab7 is insufficient to induce phagosome maturation and lysosomal 

degradation (53), suggesting that the order of recruitment is critical to phagosomal maturation.  

Elevated Rab4 (promotes recycling endosomes) and Rab5 have been found in CD4 T cells from 

SLE patients (59), though their effect on disease pathology is unclear. 

Concurrent with the recruitment of ESCRT complexes and Rab GTPases to the cytosolic 

side of the phagosome, the lumen of the phagosome evolves throughout its maturation.   The 

assembly of the NADPH oxidase (Nox2) on the early phagosomal membrane is a major 

antimicrobial effector as it produces high levels of superoxide (herein referred to as ROS) within 

the phagosomal lumen (respiratory burst).  Heightened ROS production by granulocytes and 

monocytes has been observed in SLE (60), though the role of ROS in disease progression is 
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unknown.  One attractive candidate for the production of ROS and source of autoantigen is the 

formation of neutrophil extracellular traps (NETs) by neutrophils (61, 62), mast cells (63), and 

eosinophils (64) in which DNA coated with antimicrobial proteins are extruded into the 

extracellular environment in a Nox2-dependent form of cell death termed “NETosis”.  It has 

been demonstrated that delivery of NET DNA to plasmacytoid dendritic cells (pDCs) results in 

type 1 interferon (IFN) production in a toll-like receptor (TLR) dependent manner (65, 66).  

Observational studies also have found DNA projections consistent with NET formation in the 

glomeruli of SLE patients (67, 68).  While these results were promising, Nox2 deficiency in 

lupus-prone mice had significantly exacerbated disease with severe golerulonephritis (69), while 

earlier anecdotal studies linked Nox2 deficiencies with increased SLE in humans (70-72).  This 

suggests that even though heightened NET formation may occur in SLE, its role may actually be 

protective and playing a role in reducing pathology.  This suggests that the heightened ROS 

levels seen as pathologic in SLE may be NET-independent and connected to the respiratory burst 

of non-NETosing cells. 

Termination of the respiratory burst must occur prior to phagosomal fusion with a 

lysosome to allow proper acidification of the phagolysosome (73).  Lysosomes contain 

proteolytic enzymes (proteases, DNases, RNases, Lipases, etc.) that require a low pH (pH≤4) to 

properly activate and degrade the phagocytosed cargo (74, 75).  To limit the lysosomal 

degradation of antigens, DCs utilize ROS production during the respiratory burst to alkalize the 

phagolysosome to maintain efficient antigen crosspresentation to T cells (76-78).  Conversely, 

MFs are specialized in proteolytically degrading internalized cargo and possess a capacity of 

lysosomal proteolysis that is 20- to 60-fold higher than DCs (79-81).  As a result, a prolonged 

respiratory burst has no alkalizing effect on lysosomal pH, but instead inhibits cysteine 
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cathepsins by modulating the local redox environment, which limits degradation (82).  

Interestingly, observational studies in SLE have found impairment of lysosomal acidification 

(43, 83), impaired DNase II activity (84, 85), and LAMP proteins localizing to the cell 

membrane (86, 87), which could implicate lysosome function in disease progression.  While this 

could explain the accumulation of IgG-ICs associated with SLE, there has been no mechanism 

connecting lysosome dysfunction to SLE pathology and as a result there’s no consensus in the 

field whether immune cells harbor defects in phagocytosis, lysosomal degradation, or both.   

Innate receptor activation has long been attributed with SLE pathogenesis, although the 

source of nuclear antigen and how the receptors are activated remains unknown.  The 

autoimmune response against nucleic acids depends on TLR7 and TLR9, and their correlation 

with SLE pathology has been highly studied (88-92).  TLR7 and TLR9 reside in the endoplasmic 

reticulum (ER) in the pro-form until UNC93B1 shuttles the TLRs to the Golgi (93-95).  TLRs 

are differentially trafficked from the Golgi, where TLR9 traffics to the membrane prior to 

arriving at the phagolysosome in an AP-2 dependent mechanism, while TLR7 traffics directly to 

the phagolysosome in an AP-4 dependent mechanism (96).  Upon arrival at the phagolysosome, 

TLR7 and TLR9 become proteolytically cleaved, allowing them to activate upon ligation to 

ssRNA (TLR7) and dsDNA (TLR9), although the exact mechanism for TLR7 cleavage is 

unknown (94, 97).  Interestingly, murine models expressing heightened TLR7 causes 

development of SLE-like disease (98-100).  Furthermore MRL/lpr lacking TLR9 had 

exacerbated disease, while TLR7-deficient mice had ameliorated disease (88).  This suggests that 

TLR7 and TLR9 might have contrasting roles in SLE, despite both being activated by nuclear 

antigens.   
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There is a subset of innate sensors that are free in the cytosol and activation of these 

cytosolic sensors by nuclear antigens has also been implicated in SLE.  The Nba2 locus is a 

major contributor to disease susceptibility in the NZB/W F1 murine model of lupus and contains 

2 cytosolic sensors that recognize dsDNA (p202 and Aim2).  NZB/W F1 mice have heightened 

expression of p202 (101) which binds to dsDNA and inhibits Aim2 inflammasome formation 

(102).  Furthermore, decreased Aim2 expression promotes decreased FcγRIIb expression, 

increased p202 expression, and heightened IFN production (103).  Overall, p202 prevents Aim2-

mediated pyroptosis and allows other cytosolic sensors to recognize nucleic acids and drive type 

I IFN production (104).  Identifying these other cytosolic sensors to nuclear antigen has proved 

to be difficult as studies in SLE patients and murine models of SLE have produced contradicting 

reports on the roles of NLRP3/NLRP1 (105-108) and STING (109-112) in autoimmunity.  The 

cytosolic sensor TRIM21 is the highest affinity Fc-receptor (113) and is responsible for 

recognizing opsonized pathogens in the cytosol and promoting their degradation and type 1 IFN 

production (114, 115).  In autoimmunity, a high frequency of patients across multiple 

autoimmune diseases have autoantibodies against TRIM21 with the highest frequency being SLE 

and Sjögren’s syndrome (116-118).  Furthermore, a polymorphism in TRIM21 (119) and 

heightened expression of TRIM21 (120) and its regulated genes (120, 121) has been identified in 

SLE patients.    

While a role for cytosolic sensors in autoimmunity has become apparent, how 

autoantigens reach the cytosol is unknown.  The P2X7 receptor (P2X7R) is an ATP-gated cell 

membrane receptor connected to the secretion of proinflammatory cytokines (122-124), cell 

death (125-127).  Further, its under-expression in T cells has been connected to murine models 

of lupus (128).  P2X7R is unique because in the presence of high levels of ATP, P2X7R forms a 
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pore in the cell membrane that allows large organic molecules to enter the cytoplasm (129).  This 

brings up the possibility that P2X7R may facilitate entry of extracellular autoantigens into the 

cytosol.  Interestingly, the P2X7R gene is located in an SLE susceptibility locus (SLEB4) (130) 

and polymorphisms in P2X7R have been identified with SLE (131).  A mechanisms linking 

membrane permeabilization, cytosolic sensor activation, and autoantigens has yet to be 

elucidated in autoimmunity.   

Herein we report that MRL/lpr MFs have impaired lysosomal maturation that prevents 

the degradation of phagocytosed IgG-ICs (Fig. 1, 1).  This defect is not unique to IgG-ICs as E. 

coli opsonized with IgG fails to be degraded.  Also, the defect is not ubiquitous to all internalized 

cargo because TNP-ICs (2,4,6-trynitrophenol opsonized by IgG) are degraded.  As a result, intact 

IgG-ICs recycle to the cell membrane and accumulate on the cell surface 72 hours after being 

phagocytosed (Fig. 1, 2).  The prolonged residency of nuclear antigen in the phagolysosome 

allows for the chronic activation of intracellular TLRs (Fig. 1, 3), and permeabilization of the 

phagolysosomal membrane (Fig. 1, 4) results in dsDNA and IgG to gain access to the cytosol 

and activate Aim2 (Fig. 1, 5) and TRIM21 (Fig. 1, 6).  This heightens cell death and promotes 

the secretion of IFNα in lupus-prone MRL/lpr MFs. 

The impaired lysosomal maturation in MRL/lpr MFs is the result of active mTOR and its 

mislocalization at the cell membrane (Fig. 2, 1) as treatment with Torin1 (mTORC1/C2 

inhibitor) removes mTOR from the membrane and allows for lysosomal acidification and 

degradation of IgG-ICs (Fig. 2, 2).  Impairing mTORC1 with Rapamycin is not sufficient in 

restoring lysosomal degradation suggesting a role for mTORC2.  The activation of mTORC2 

drives cofilin phosphorylation which prevents the depolymerization of actin following 

phagocytic cup assembly (Fig. 2, 3).  Actin depolymerization initiates a localized caspase 
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cascade (Fig. 2, 4) that allows activated caspase-1 to cleave Rab39a (Fig. 2, 5); a necessary step 

for lysosomal maturation.  MRL/lpr MFs fail to efficiently depolymerize actin and recruit 

caspase-11 on f-actin (Fig. 2, 6) and preventing caspase-1 mediated cleavage of Rab39 (Fig. 2, 

7). 
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Figure 1. Lupus-prone MFs fail to mature the lysosome and as a result activate 

intracellular sensors. 
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Figure 2. Signaling pathway regulating Rab39a mediated lysosomal maturation in lupus-

prone and healthy MFs. 
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CHAPTER 2: Defects in lysosomal maturation facilitate the activation of innate sensors in 

systemic lupus erythematosus 

Defects in clearing apoptotic debris disrupt tissue and immunological homeostasis 

leading to autoimmune and inflammatory diseases. Herein we report that macrophages from 

lupus-prone MRL/lpr mice have impaired lysosomal maturation resulting in heightened ROS 

production and attenuated lysosomal acidification. This diminishes their ability to degrade 

apoptotic debris contained within IgG-immune complexes (IgG-ICs) and promotes recycling and 

the accumulation of nuclear self-antigens at the membrane 72 hours after internalization. 

Diminished degradation of IgG-ICs prolongs the intracellular residency of nucleic acids leading 

to the activation of Toll-like receptors. It also promotes phagosomal membrane permeabilization 

allowing dsDNA and IgG to leak into the cytosol and activate AIM2 and TRIM21. Collectively, 

these underlying events promote the accumulation of nuclear antigens and activation innate 

sensors that drives IFNα production and heightened cell death. These data identify a novel defect 

in lysosomal maturation that provides a mechanism for the chronic activation of intracellular 

innate sensors in systemic lupus erythematosus. 

Introduction 

The disposal of apoptotic debris is initiated by membrane changes that facilitate the 

binding of IgM antibodies, acute phase proteins (CRP), and other serum opsonins to enhance 

phagocytosis (132, 133).  The disposal of apoptotic debris is crucial to immune homeostasis as 

the accumulation of apoptotic debris (2-4) and the formation of immune complexes (ICs) (5) 

have long been associated with systemic lupus erythematosus (SLE).  Similarly, impaired 
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clearance of apoptotic bodies in mice lacking scavenger receptors and complement proteins 

induces spontaneous autoimmunity (15, 16).  The idea that accumulated apoptotic bodies 

contributes to SLE is further supported in human studies describing polymorphisms or decreased 

expression of scavenger receptor, increased expression of FcγRs, or deficiencies in complement 

(7-12).  Despite these findings, it remains unclear whether macrophages harbor intrinsic defects 

that contribute to impaired clearance (13, 14).   

Apoptotic debris bound by IgG autoantibodies forms immune complexes (henceforth 

referred to as IgG-ICs) that heighten autoantibody production by chronically stimulating 

autoreactive B cell receptors (BCRs) and/or toll-like receptors (TLRs) upon delivery of nucleic 

acids to the endosome (89, 92).  In addition, the binding of IgG-ICs to FcγRs on myeloid cells 

stimulates IFNα (134) and BAFF (135) secretion.  In addition to stimulating surface receptors, 

the activation of cytosolic sensors also impacts the pathology of SLE.  Polymorphisms in the 

cytosolic sensor to IgG (TRIM21) (119) and heightened expression of TRIM21 (120) and its 

regulated genes (120, 121) have been identified in SLE patients, while two cytosolic sensors that 

recognize dsDNA (p202 and AIM2) have been implicated in Type 1 IFN production in murine 

lupus (101, 102).  The involvement of other cytosolic sensors including, NLRP3/NLRP1 (105, 

107) and STING (111, 112) have been more controversial.  Despite the mounting evidence 

implicating cell debris in the activation of innate sensors, a mechanism explaining how IgG-ICs 

gain access to the cytosol and chronically activate intracellular receptors/sensors has never been 

resolved.   

Herein we show that lupus-prone MFs fail to fully mature lysosomes causing diminished 

lysosomal acidification and the inability to degrade phagocytosed IgG-ICs.  As a result, intact 

IgG-ICs recycle back to the cell membrane promoting the accumulation of surface-bound nuclear 
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antigens.  The prolonged residency of intracellular IgG-ICs in the phagolysosome leads to 

membrane permeabilization allowing dsDNA and IgG to leak into the cytosol and activate 

cytosolic sensors AIM2 and TRIM21.  Furthermore, accumulation of undegraded nucleic acids 

inside the phagolysosome leads to the activation of TLR7 and TLR9.  The combined activation 

of these signaling pathways results in heightened cell death through inflammasome formation 

and IFNα secretion.  

Results 

IgG-ICs accumulate in multiple murine models of autoimmunity 

The accumulation of apoptotic debris has been identified in autoimmune diseases other 

than SLE, including apoptotic beta-cells in diabetes (136), and apoptotic synoviocytes in 

rheumatoid arthritis (137).  Recent studies show that prior to disease, MFs from lupus-prone 

mice (MRL/lpr and NZM2410) accumulate high levels of FcγR-bound IgG-ICs (Fig. 1A-B) (37).  

Similarly, SLE patients experiencing active disease accumulate nuclear antigens on peripheral 

blood mononuclear cells (37).  Therefore, we wanted to assess whether accumulation of IgG-ICs 

occurs in other autoimmune models by quantifying the levels of surface IgG and nuclear antigen 

on MFs from murine models of diabetes (NOD) and rheumatoid arthritis (K/BxN).  We found 

that the levels of surface IgG on MFs from NOD and K/BxN mice were elevated (Fig. 1B), and 

showed a punctate staining pattern similar to MRL/lpr MFs (Fig. S1).  Surface Sm levels on 

NOD MFs were slightly elevated, but absent on MFs from K/BxN mice.  This suggests that in 

other autoimmune diseases MFs accumulate IgG-ICs, but the antigen bound by IgG varies.  

Since NOD, MRL/lpr and NZM2410 mice are genetically unrelated, these findings also suggest 

that multiple distinct genetic defects could lead to the accumulation of IgG-ICs on the cell 
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membrane.  Therefore understanding the mechanism underlying the accumulation of IgG-ICs on 

the surface of MFs could elucidate a fundamental defect in autoimmunity. 

Lupus-prone MFs phagocytose IgG-ICs but exhibit defective phagolysosome maturation 

In SLE, the accumulation of apoptotic debris has been attributed to heightened cell death, 

impaired clearance, decreased complement and increased IgG levels (2-4, 6, 17, 43, 138).  

Whether lupus-prone MFs have intrinsic defects contributing to impaired clearance of apoptotic 

debris is debated because there are no defined mechanisms underlying diminished clearance (13, 

14).  To identify the mechanism(s) underlying the accumulation of IgG-ICs, we formed ICs 

using anti-nucleosome (PL2.3, IgG2a) bound to apoptotic blebs.  This allows B6 and MRL/lpr 

MFs to internalize physiologically relevant IgG-ICs and a means to compare phagocytosis, 

intracellular trafficking, and degradation in real time.  Using TIRF microscopy, we found that B6 

and MRL/lpr MFs had comparable diffusion coefficients prior to internalization, and they 

internalized IgG-ICs at similar rates (Fig. 2A-B).  Therefore, the accumulation of IgG-ICs on the 

surface of MRL/lpr MFs is not the result of impaired phagocytosis.   

Another possible explanation for accumulation of IgG-ICs on MRL/lpr MFs is improper 

trafficking to lysosomes.  However, cryo-electron microscopy showed that approximately 80% 

of gold-labeled IgG-ICs reached lysosomal structures in B6 and MRL/lpr MFs within 2 hours of 

phagocytosis (Fig. 2C-D).  This indicates that intracellular trafficking is not impaired.  

Impaired lysosomal degradation could promote membrane accumulation of IgG-ICs 

despite their arrival at lysosomal structures.  Lysosomes contain hydrolytic enzymes that degrade 

cargo entering through multiple receptors including FcγRs (24).  Activation of lysosomal 

enzymes requires the termination of ROS and activation of the vacuolar H+-ATPase (V-ATPase) 

to achieve a pH≤5 (82).  To determine the pH of maturing phagosomes, we introduced an 
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acidotropic ratiometric dye during phagocytosis of IgG-ICs.  In B6 MFs, real-time two-photon 

microscopy identified vesicular fusion events resulting in large acidic structures (pH=4.0) (Fig. 

3A-B).  In MRL/lpr MFs, large acidic structures were rarely evident and vesicles failed to 

sustain a pH below 5.5.  To analyze larger numbers of MFs, we used ratiometric flow cytometry 

to quantify the relative pH of the population.  Within 30 minutes of exposure to IgG-ICs, B6 

MFs reduced vesicular pH by 20% then de-acidified within 1 hour (Fig. 3C).  Conversely, 

MRL/lpr MFs showed an 8% drop in pH.  Concurrent with the inability to fully acidify, MRL/lpr 

MFs exhibited heightened and prolonged production of ROS (Fig. 3D).  These results 

demonstrate that MRL/lpr MFs are functionally impaired in lysosomal acidification, but the 

impairment is not absolute as seen in lysosomal storage disorders.  This is consistent with the 

idea that antigen processing and MHC presentation remain at least partially intact in lupus-prone 

mice (139, 140).    

The impaired acidification and heightened ROS production suggests that MRL/lpr MFs 

are not properly maturing the phagolysosome, thus preventing the degradation of IgG-ICs.  

Maturation of the phagolysosome and autophagosome requires membrane stabilization, achieved 

through the recruitment of lysosome-associated membrane proteins (LAMPs) and light chain 3 

(LC3).  To assess whether the phagolysosome fully matures, we quantified the levels of LAMP-1 

and LC3A to distinguish autophagosomes (LC3A+, LAMP-1-) and autophagolysosomes (LC3A+, 

LAMP-1+) from lysosomes (LC3A-, LAMP1+).  Using confocal microscopy, we found that 

MRL/lpr MFs showed a 2-fold reduction in the association of IgG-ICs with LC3A-, LAMP-1+ 

structures (Fig. 3E-F).  Since IgG-ICs arrive at lysosomal structures (Fig. 2C-D), the reduced 

association of LAMP-1 with vesicles containing IgG-ICs demonstrates that the impaired 

acidification of the lysosomes is consistent with defective phagolysosome maturation.  
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Lupus-prone MFs recycle IgG-ICs to the cell membrane   

Damaged membrane proteins traffic to the lysosome for degradation; however, impaired 

degradation promotes their recycling back to the cell membrane (141, 142).  We hypothesized 

that a similar mechanism might promote recycling and the accumulation of FcγR-bound IgG-

ICs, since they also target lysosomal structures following activation (24).  To test this, we co-

cultured MFs with fluorophore-conjugated IgG-ICs and monitored their localization over time. 

Both B6 and MRL/lpr MFs bound similar levels of IgG-ICs, which were rapidly phagocytosed, 

and evident within vesicular compartments at 24 hrs (Fig. 4A-B).  By 72 hours, MFs from the 

MRL/lpr mice recycled the IgG-ICs to the cell membrane, while B6 MFs retained them within 

the cell. The IgG-ICs appeared to remain intact and bound by FcγRs as both the antibody and 

apoptotic debris colocalized on the surface of the cell (Fig. S2) and the levels of surface FcγRI 

and IgG on MRL/lpr MFs increased proportionately (37).  Overall, this supports a model 

wherein impaired maturation of the lysosome in MRL/lpr MFs diminishes degradation of IgG-

ICs inducing their recycling back to the membrane.  

The levels of nuclear antigen on MFs from MRL/lpr mice lacking FcγRI (FcγRI-/-

MRL/lpr) are decreased 40% compared to cells from FcγRI+/+/MRL/lpr mice, and they remain 

disease-free (37).  This implicates the accumulation of IgG-ICs on FcγRI in SLE.  Despite 

FcγRI-/-MRL/lpr MFs binding 60% fewer IgG-ICs (Fig. 4A-B), they remain impaired in 

lysosomal acidification and recycle internalized IgG-ICs.  This demonstrates that FcγRI is not 

the only receptor that recycles of IgG-ICs, and that loss of FcγRI decreases the amount of IgG-

ICs that are internalized.   

To assess whether recycling is unique to ICs containing apoptotic debris, we bound anti-

LPS (IgG2b) to gentamicin-killed Escherichia coli (E. coli-ICs).  Even though MRL/lpr MFs 
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phagocytosed fewer E. coli-ICs (Fig 4C), 72 hours following phagocytosis the levels of LPS on 

the cell surface increased 3-fold compared to those on B6 MFs (Fig. 4D).  This indicates that E. 

coli-ICs also fail to be degraded by MRL/lpr MFs.  To assess whether all ICs were recycled in 

MRL/lpr MFs, we cultured MFs with ICs formed by binding TNP20KLH to anti-TNP IgG2a 

(TNP-ICs).  Surprisingly, both MRL/lpr and B6 MFs phagocytosed and degraded the TNP-ICs 

(Fig. 4E right).  These data demonstrate that MRL/lpr MFs degrade some IgG-ICs and that 

recycling is not unique to ICs containing apoptotic debris. 

To assess whether impaired lysosomal acidification is sufficient to induce recycling of 

IgG-ICs, we inhibited lysosome function in B6 MFs and assessed whether this induced IgG-ICs 

to recycle.  Concanamycin A prevents acidification and degradation of phagocytosed cargo by 

specifically inhibiting the lysosomal V-ATPase.  B6 MFs treated with concanamycin A recycled 

IgG-ICs to levels similar as MRL/lpr (Fig. 4F).  This indicates that diminished lysosomal 

acidification is sufficient to promote recycling and accumulation of IgG-ICs.  

Impaired lysosomal maturation permeabilizes the phagolysosomal membrane allowing 

dsDNA and IgG to leak into the cytosol 

Studies of microbial pathogens have shown that some intracellular bacteria prevent 

phagosomal maturation resulting in bacterial antigens accessing the cytosol (143, 144).  In a 

similar manner, impaired lysosomal maturation in MRL/lpr MFs might allow antigens from IgG-

ICs to gain access to the cytosol and activate innate sensors.  Therefore we selected two cytosolic 

sensors (AIM2 and TRIM21), which recognize different components from IgG-ICs (dsDNA and 

IgG), to determine whether the inability to mature the lysosome permeabilizes the 

phagolysosome allowing antigens to leak into the cytosol.  To assess whether nuclear antigens 

gained access to the cytosol, we stimulated B6 and MRL/lpr MFs with IgG-ICs containing 
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fluorescent dsDNA.  Immunoprecipitation of AIM2 from B6 and MRL/lpr MFs showed equal 

levels of AIM2 protein (Fig. 5A).  Despite equal amounts of protein, MRL/lpr MFs had a 2.5-

fold increase in the amount of dsDNA bound to AIM2 compared to B6 (Fig. 5B).  In contrast, 

AIM2 from FcγRI-/-MRL/lpr MFs bound the same level of dsDNA as B6.  This suggests that 

although FcγRI-/-MRL/lpr MFs recycle IgG-ICs (Fig. 4A-B), they leak fewer antigens into the 

cytosol.  This might reflect decreased internalization of IgG-ICs, or that FcγR-specific signals 

are necessary to permeabilize the phagolysosome.  

AIM2 initiates inflammasome formation by recruiting pro-caspase-1 through the linker 

molecule ASC.  This cleaves and activates caspase-1 (102).  To assess whether phagocytosis of 

IgG-ICs by MFs induces inflammasome formation, we quantified activate caspase-1, and 

enumerated cytosolic ASC foci (Fig. 5C-D).  In the resting state, the number of MRL/lpr MFs 

containing ASC foci was higher than B6, while in FcγRI-/-MRL/lpr mice they were comparable 

to B6.  However, 4 hours after co-culture with IgG-ICs, approximately 40% of the MRL/lpr MFs 

exhibited ASC foci compared to 20% in B6 and FcγRI-/-MRL/lpr MFs (Fig. 5D).  This was 

consistent with diminished binding of dsDNA to AIM2 in B6 and FcγRI-/-MRL/lpr MFs (Fig. 

5A-B).  In MRL/lpr MFs, heightened formation of ASC foci coincided with a 4.5-fold increase 

in activate caspase-1 compared to either B6 or FcγRI-/-MRL/lpr MFs (Fig. 5E).  Similarly, ex 

vivo splenic myeloid cells from MRL/lpr mice exhibited a 2-fold increase in active caspase-1 

compared to B6 (Fig. 5F).  Inflammasome formation was the consequence of lysosomal 

dysfunction as B6 MFs treated with concanamycin A had high levels of ASC foci and caspase-1 

activation (Fig. 5D-E).  Hence, impaired lysosomal degradation of IgG-ICs allows nuclear 

antigens to leak into the cytosol and activate innate sensors.   
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To corroborate the idea that diminished maturation of the lysosome promotes the 

permeabilization of the phagolysosome allowing antigens to leak into the cytosol, we assessed 

whether IgG from exogenous IgG-ICs activated TRIM21, a cytosolic sensor with high affinity 

for IgG (113).  We found that 4 hours after co-culture with IgG-ICs, MRL/lpr MFs showed a 2-

fold increase in fluorophore tagged IgG bound to TRIM21 when compared to B6 (Fig. 6A-B). 

The level of TRIM21-bound IgG in FcγRI-/-MRL/lpr MFs was not different from B6 indicating 

that similar to nuclear antigen, diminished internalization of IgG-ICs reduces the amount of IgG 

reaching the cytosol.  Similarly, co-culture of MRL/lpr MFs with IgG-ICs increased the levels of 

IgH/IgL bound by TRIM21 (Fig. 6A).  We don’t believe that the heightened levels of IgG bound 

to TRIM21 reflect the 8.8-fold increase in TRIM21 protein levels in MRL/lpr MFs because 

FcγRI-/-MRL/lpr MFs also exhibited heightened levels of TRIM21 (Fig. 6A,C) and their levels of 

IgG bound to TRIM21 were not different than B6 (Fig. 6A-B).  Thus, although elevated TRIM21 

may contribute to disease pathology, it alone is insufficient, unless diminished maturation of the 

lysosome provides heightened levels of IgG ligand.   

TRIM21 is an E3 ligase that possesses two unique functions. First, it inhibits type 1 

interferon production by diminishing IRF protein levels through ubiquitination and proteasomal 

degradation.  Second, the binding of IgG to TRIM21 stabilizes IRF proteins and activates NF-κB 

(114, 115).  This heightens TLR activation and type 1 interferon production.  To assess whether 

TRIM21 was activated, we co-cultured B6 and MRL/lpr MFs with IgG-ICs and quantified NF-

κB activation by the nuclear translocation of p65. Resting MRL/lpr MFs exhibited slightly 

elevated nuclear p65 levels; however, after co-culture with IgG-ICs, nuclear translocation of p65 

was increased 2.5-fold (Fig. 6D-E).  Loss of FcγRI in MRL/lpr MFs restored nuclear p65 levels 

to those in B6.  Further, p65 nuclear translocation was the consequence of failed lysosomal 
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acidification because concanamycin A treated B6 MFs stimulated with IgG-ICs induced a 2.5-

fold increase in nuclear p65 (Fig. 6D-E).  It’s possible that NF-κB activation in response to IgG-

ICs was the result of the apoptotic debris binding to intracellular TLRs.  To assess this 

possibility, we co-cultured MRL/lpr MFs with apoptotic blebs lacking IgG.  Like IgG-ICs, 

apoptotic blebs recycled in MRL/lpr MF (Fig. S3) likely because they are opsonization by C-

reactive protein (CRP) and enter cells via FcγRI (145).  Despite this, apoptotic blebs lacking IgG 

did not translocate p65 to the nucleus indicating that IgG was responsible for NF-κB activation 

(Fig. 6D-E).  Thus, the inability to mature the phagolysosome allows IgG from ICs to leak into 

the cytosol and activate TRIM21. 

The activation of TRIM21 by IgG induces poly-ubiquitination and proteasomal 

degradation (146).  To assess the levels of TRIM21 activity in vivo, we quantified ubiquitinated 

TRIM21 in ex vivo splenic myeloid cells from B6 and MRL/lpr mice.  We found that splenic 

myeloid cells from MRL/lpr mice had 85-fold more ubiquitinated TRIM21 compared to ex vivo 

B6 myeloid cells (Fig. 6F-G).  IgG was necessary for TRIM21 ubiquitination as comparable cells 

from age-matched AID-/-MRL/lpr mice (lack IgG) had significantly less ubiquitinated TRIM21 

(13.5-fold vs 85-fold) when compared to B6 myeloid cells.  Acute activation of TRIM21 

stabilizes IRF3, while chronic activation increases IRF7 levels by activating NF-κB (114, 115).  

In ex vivo myeloid cells from MRL/lpr mice, we found that ubiquitinated TRIM21 was 

coincident with nuclear translocation of p65 and heightened levels of IRF7 protein, but not with 

heightened IRF3 (Fig. 6H).  The finding that IRF7 protein levels are selectively increased 

suggests that TRIM21 activation in myeloid cells from MRL/lpr mice is not an acute event; but 

instead induced by chronic activation through IgG.    
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Impaired lysosomal maturation results in heightened intracellular TLR activation 

Diminished lysosomal maturation allows IgG and nuclear antigens to leak into the 

cytosol and activate innate sensors.  However, a large fraction of IgG-ICs remains inside the 

phagosome and is thus capable of activating TLRs. Coupled with heightened IRF7 levels from 

activated TRIM21 (Fig. 6H), phagosomal TLR ligands could heighten IFNα secretion through 

the activation of TLR7 and TLR9 (TLR7/9).  To assess whether the prolonged residency of 

nuclear antigens within the phagolysosome activates intracellular TLRs, we quantified IRAK1 

levels in MFs 24 hours after exposure to IgG-ICs.  This time point was sufficient for B6 MFs to 

degrade the IgG-ICs, but was prior to recycling in MRL/lpr MFs (Fig. 4A-B).  We found that 

MRL/lpr MFs exposed to IgG-ICs showed a 2.8-fold decrease in IRAK1 levels, consistent with 

TLR activation (Fig. 7A).  Chloroquine, an acidotropic molecule that binds double and single 

stranded nucleotides and sterically hinders their binding to TLRs (147) restored IRAK1 levels 

supporting that TLR7/9 are activated in MFs that fail to degrade IgG-ICs.  Further, impairing 

lysosomal acidification with concanamycin A prevents the degradation of IgG-ICs in B6 MFs 

(Fig. 4F) and reduced IRAK1 to levels found in MRL/lpr MFs (Fig. 7A).  Therefore, the 

impaired lysosomal acidification in MRL/lpr MFs is sufficient to heighten TLR activation in the 

presence of IgG-ICs.   

Formation of the TLR-MyD88-IRAK1 complex downstream of TLR7/9 promotes 

phosphorylation and nuclear translocation of IRF7 resulting in production of type 1 interferon 

(148).  To assess whether impaired degradation of IgG-ICs promotes nuclear translocation of 

IRF7, we co-cultured MRL/lpr MFs with IgG-ICs and found they exhibited a 2-fold increase in 

nuclear IRF7 levels (Fig. 7B-C) that was sustained for 24 hours.  IgG-ICs did not localize all IRF 

proteins to the nucleus as IRF3 remained cytoplasmic following exposure to IgG-ICs (Fig. 7C).  
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Reducing the lysosomal burden through loss of FcγRI also reduced the nuclear translocation of 

IRF7 in MRL/lpr MFs to levels comparable to B6.  These findings were not an artifact of 

BMMFs because ex vivo myeloid cells from MRL/lpr mice also showed a 2-fold increase in 

nuclear IRF7, while nuclear IRF3 was not elevated (Fig. 7D).  Collectively, the data support a 

model wherein impaired lysosomal maturation prolongs phagolysosomal residency of IgG-ICs 

facilitating chronic intracellular TLR activation.   

The inability to degrade IgG-ICs resulted in increased levels of IRF7 and heightened 

intracellular TLR activation.  Combined, these events could elevate IFNα secretion (148).  To 

assess this, we cultured MRL/lpr MFs with IgG-ICs (12 and 24 hours) and found they secreted 

2- and 3-fold more IFNα (Fig. 7E).  The production of IFNα was a consequence of FcγRI 

mediated internalization because IFNα levels secreted by FcγRI-/-MRL/lpr MFs were comparable 

to B6.  This is consistent with a model wherein the accumulation of IgG-ICs in the 

phagolysosome of MRL/lpr MFs drives heightened TLR activation and IFNα secretion as a 

consequence of diminished lysosomal maturation. 

Discussion 

The mechanism underlying the accumulation of IgG-ICs in the periphery of SLE patients 

has been highly debated.  Observational studies in SLE patients have shown that MFs have 

intrinsic defects in the phagocytosis of latex beads, apoptotic cells, IgG-ICs, bacteria, and yeast 

(6, 8, 43, 44).  Other studies have found that phagocytosis is intact, but the ability to degrade the 

internalized cargo was impaired (43, 83, 84).  We find that lupus-prone MRL/lpr MFs 

phagocytose and traffic IgG-ICs to lysosomal structures, but that the lysosomal structures are 

unable to mature and acidify.  As a result, the IgG-ICs are not degraded and recycle back to the 

cell membrane.  Hematopoietic cells from SLE patients have high levels of IgG and nuclear 
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antigens (37) and they express LAMP1/2 on the cell surface (86).  This supports the idea that the 

lysosomal compartment has been trafficked to the membrane and is consistent with our findings 

showing that macrophages from lupus-prone mice accumulate high levels of nuclear antigens 

(Fig. 1) as a consequence of recycling undegraded IgG-ICs from the lysosome (Fig. 4).  

Interestingly IgG-ICs, apoptotic blebs, and E. coli-ICs recycled to the cell membrane while TNP-

ICs were degraded.  This suggests that the size or content of the cargo impairs the lysosome.  

Alternatively, the opsonin coating the incoming apoptotic debris could impact lysosomal 

maturation.  Combined this could explain the variability of previous studies aimed at identifying 

phagocytic or lysosomal defects in SLE monocytes.   

Spontaneous SLE has been linked to alterations in expression (98) and activation of 

TLR7/9 (89, 92), dysregulation of the cytosolic sensors p202 and AIM2 (101, 102), and 

polymorphisms (119) and heightened expression in TRIM21 (120).  We now define that 

defective degradation of FcγR-bound cargo in the lysosome is a critical upstream event that 

overburdens phagolysosome.  The prolonged intracellular residency of IgG-ICs promotes the 

activation of TLRs and permeabilization of the phagolysosomal membrane allowing IgG and 

nuclear antigen to access the cytosol and activate innate sensors.  Other enzymes that are critical 

in degrading nuclear antigens independent of lysosome function include RNase H2 (149), DNase 

I (150, 151), and variants of DNase III (TREX1) (152).  These have been implicated in SLE and 

may operate in concert with impaired lysosomal maturation to promote autoimmunity.  

Collectively, these findings describe the underlying events promoting the accumulation of 

nuclear antigens and activation innate sensors that drive autoantibody, IFNα, and heightened 

apoptosis in SLE.  
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This study focused on defining how nuclear antigens accumulate on MFs, but since 

nuclear antigen accumulates on DCs, B, and T cells (37) it is possible that other cells might 

harbor defects in lysosomal maturation promoting other disease manifestations.  For example, 

diminished lysosomal maturation in pDCs could heighten secretion of IFNα (134).  In contrast, 

diminished lysosomal maturation in macrophages and neutrophils may heighten cell death (153).  

Further, the presence of nuclear self-antigens on the cell surface could impact B cell tolerance.  

For example, accumulation of nuclear antigens on the cell surface could provide a source of high 

avidity antigen that renews BCR signaling and activates autoreactive B cells (154), facilitates 

uptake of TLR ligands by BCR-mediated endocytosis (89), and positions autoreactive B cells to 

further differentiate into memory cells if T-help is available (155).  Thus, the same overarching 

lysosomal defect may contribute to the activation of multiple cell types in SLE. 

Overlapping autoimmune diseases are common in patients diagnosed with SLE including 

diabetes (156), rheumatoid arthritis (157), and Sjögren’s syndrome (158).  Recent GWAS studies 

have identified common genetic polymorphisms including the major histocompatibility complex, 

TNFAIP3, PTPN22 (159), STAT4 (160), and CD40 (161) that span multiple autoimmune 

diseases, although their functional role in breaking tolerance is unknown.  Our finding that 

punctate IgG accumulates on MFs from multiple murine models of autoimmunity including SLE, 

diabetes, and rheumatoid arthritis is interesting as it might reflect a defect common to multiple 

autoimmune diseases.  Further, the IgG did not colocalize with high levels of nuclear antigens, 

suggesting that the antigens contained in the IgG-ICs might be disease-specific, and as a result, 

activate the immune system in different ways.  Therefore the accumulation of punctate IgG on 

the surface of MFs from NOD and K/BxN mice raises the possibility that impaired lysosomal 

maturation underlies other autoimmune diseases.   
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Materials and Methods 

Mice  

C57BL/6 (B6) and MRL/MpJ-Tnfrs6lpr/J (MRL/lpr; JAX mice Stock # 000485) colonies 

were maintained in an accredited animal facility at University of North Carolina at Chapel Hill 

(UNC-CH). NZM2410 mice (162) were obtained from Dr. Gary Gilkeson, AID-/-MRL/lpr mice 

(163) from Dr. Marilyn Diaz, NOD mice from Roland Tisch, and K/BxN mice (164) from 

Christophe Benoist, and C57BL/6-Tg(UBC-GFP)30Scha/J (GFP-expressing) mice (165) from 

Bill Goldman. We generated FcγRI-/-MRL/lpr mice by backcrossing FcγRI-/-C57BL/6 mice to 

MRL/lpr mice for 10 generations. 

Reagents   

Antibodies specific for LAMP1 and CD11b were purchased from BD Biosciences, LC3A 

from Cell Signaling, goat anti-rabbit IgG and rabbit anti-goat IgG from Molecular Probes; 

AIM2, ASC, TRIM21, p65, IRAK1, IRF3, and IRF7 from Santa Cruz Biotechnologies, anti-IgG 

from Jackson ImmunoResearch, and anti- LPS (E. coli J5) from Thermo Scientific. 

Concanamycin A and chloroquine diphosphate salt were purchased from Sigma-Aldrich, 

Immunogold conjugate EM streptavidin from BB International, and TNP20KLH from Biosearch 

Technologies. Antibodies specific to Smith (Sm; 2.12.3), nucleosome (PL2-3) CD16/32 (2.4G2), 

and TNP (Hy1.2) were purified from hybridoma culture supernatant using protein G-Sepharose 

(GE Healthcare) then left unlabeled or conjugated with Alexa fluor according to the 

manufacturer instructions (Molecular Probes). Fluorescent molecules LysoSensor, 

dihydrorhodamine 123, and CellMask were purchased from Molecular Probes and FAM-FLICA 

caspase-1 assay kit from ImmunoChemistry Technologies. LI-COR blocking buffer and 
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IRDye680- and IRDy800-conjugated antibodies (anti-rabbit, anti-mouse, anti-goat) were 

purchased from LI-COR Biosciences.   

Bone Marrow-derived MF (BMMF) cultures 

Single-cell suspensions of bone marrow were prepared from the tibias and femurs of 

C57BL/6 mice. Mononuclear cells were isolated using Lympholyte Separation Medium 

(CEDARLANE Laboratories, Burlington, ON) plated in 60 mm petri dish with 6 mL 

macrophage differentiation media (DMEM with 10% FBS, 10% L-cell supernatant, 1 mM 

Sodium pyruvate, 50 μg/mL Gentamicin, 100 μg/mL Pen/Strep, 2mM L-Glutamine, 50 nM β-

ME and cultured overnight (37°C, 5% CO2). After the overnight culture, non-adherent cells were 

plated into non-tissue culture treated 100 mm petri dishes (0.75-1 mL cells/petri dish) and 7 mL 

fresh macrophage differentiation media was added to each dish. To promote macrophage 

differentiation, cells were incubated for 6 days (37°C, 5% CO2). On day 4, culture medium was 

replenished with an additional 5 mL of macrophage differentiation media. The resulting bone 

marrow derived macrophages were removed from the dish by washing with ice cold PBS. 

BMMF cultures were 98% CD11b+, I-Alo, and B7.2lo.  

Formation of Immune Complexes  

Apoptotic debris-containing immune complexes (IgG-IC): Single-cell suspensions of 

thymocytes were prepared from 5-8 week mice, irradiated (600 rads) and cultured 16-18 hours 

10 mL PBS (37°C, 5% CO2). Apoptotic thymocytes were centrifuged for 5 minutes (350 x g) 

and the supernatant containing apoptotic debris was incubated with autoantibodies (2.12.3 or 

PL2-3) on ice for 30 min (6.67 μg Ab/1 mL supernatant). Immune complexes were pelleted 

(160,000 x g) at 4°C for 45 min. Pelleted ICs were resuspended in 250 μL R10 media (RPMI 
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with 10% FBS, 1 mM Sodium pyruvate, 50 μg/mL Gentamicin, 100 μg/mL Pen/Strep, 2mM L-

Glutamine, 50 nM β-ME).  

TNP-containing immune complexes (TNP-ICs): To form TNP-ICs we incubated TNP20-

KLH with anti-TNP antibody (Hy1.2) on ice for 30 min (30 μg Ab/1 μg TNP-KLH). Immune 

complexes were pelleted (160,000 x g) at 4°C for 45 min then resuspended in 200 μL R10 media 

(as above).  

Escherichia coli-containing immune complexes (E. coli-ICs): To form E. coli-ICs we 

incubated GFP-expressing E. coli (166) with anti-LPS at room temperature for 2 hours (1.5 

μg/6.25x106 E. coli) in the presence of gentamycin (10 μg/1 mL). E. coli-ICs were cultured with 

BMMFs at a MOI of 25.   

Fluorescent Microscopy 

All confocal microscopy was conducted using a Zeiss 710 confocal microscope with a 63 

× 1.4 NA (oil) PLAN APO lens and Zeiss Zen software. All 2-photon microscopy was conducted 

using an Olympus FlouView FV1000MPE multiphoton microscope with a 25 × 1.05 NA (water) 

XLPlan N lens and Olympus FluoView software. Data was analyzed using ImageJ. 

IgG-IC/apoptotic bleb localization: BMMFs were cultured in the presence of apoptotic debris-

containing IgG-Alexa488 ICs or GFP-expressing apoptotic debris for 2 hours in R10 media (as 

above). After 2 hours the media was aspirated and cells were cultured in fresh R10 media. 

CellMask and Hoechst 33342 were introduced to BMMFs 15 minutes prior to fixation at 

indicated time points. Cells were fixed in room temperature with 2% paraformaldehyde and 

transferred to 4°C for 15 min. Cells were resuspended in FluorSave and loaded onto coverslips 

for imaging. The membrane localization of IgG-ICs or apoptotic debris was quantified by 
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calculating the Mander’s coefficient of colocalization (ratio of colocalized pixels/total 

fluorescent pixels). 

2-photon microscopy/pH quantification: Two hours prior to imaging, BMMFs were 

incubated (37°C, 5% CO2) on a glass bottom petri dish (MatTek Corp) in R10 media (rhodamine 

free RPMI with 10% FBS and pen/strep [as above]). Immediately after adding 40 μL of IgG-ICs 

and LysoSensor (2 mg/mL) cells were imaged for 1 hour. The dye was excited using two-photon 

excitation (710 nm) and emissions at 420-460 nm and 495-540 nm were quantitated. The ratio of 

the emission channels were used to determine the pH of the vesicles using a standard curve 

generated by exciting LysoSensor with medium of varying pH, then quantifying the ratio of the 

emission channels.   

ASC localization/caspase-1 activation: BMMF were cultured with FAM-FLICA caspase-

1 for 20 minutes, fixed with 2% paraformaldehyde at the indicated time points, then incubated at 

4°C for 15 min. Cells were blocked in 2.4G2 for 30 min at 4°C, stained with an anti-ASC 

antibody and Hoechst 33342 (1 μg/ml) in permeabilization buffer (PBS with 0.05% Saponin and 

0.5% BSA) for 30 min at 4°C. Cells were washed again, stained with goat anti-rabbit IgG-Alexa 

647 in permeabilization buffer for 30 min at 4°C, washed, co-stained with anti-CD11b in FACS 

media (2% FBS, 0.02% NaN3) for 30 min at 4°C, washed, resuspended in FluorSave and loaded 

onto coverslips for microscopic imaging. The number of cells with cytosolic ASC foci were 

counted and expressed as a percentage of the total cells. Total caspase-1 activation per cell was 

quantified, background fluorescence subtracted, and fluorescence was normalized by cell area.  

LAMP1/LC3A, IRF, and p65 localization: BMMFs, or splenic myeloid cells (CD11b+) 

purified by positive selection were prepared as described for ASC localization/caspase-1 

activation except cells were stained for LAMP1 and LC3A, IRF3, IRF7, or p65. The nuclear 
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localization of IRF or p65 was quantified by calculating the Mander’s coefficient of 

colocalization (ratio of colocalized pixels/total fluorescent pixels). 

Flow Cytometry 

All flow cytometry was conducted using an 18-color Becton Dickinson LSR II Flow 

cytometer and data were acquired using Becton Dickinson FACSDiva 8.0.1 software. 

Recycling flow: BMMFs were incubated (37°C, 5% CO2) with 40 μL Alexa488-labeled 

IgG-ICs in R10 media (as above). To quantify surface bound ICs at 0 hours, phagocytic uptake 

was impaired by culturing with IgG-ICs on ice for 2 hours. This was sufficient to allow the ICs 

to bind to the surface of the cell but not be phagocytosed. For all other time points, cells were 

incubated (37°C, 5% CO2) for 2 hours, then media was replaced to remove all unbound ICs. At 

indicated time points, cells were blocked in 2.4G2 for 30 min on ice, washed and split into 2 

samples. One sample was incubated with an anti-Alexa488 antibody (quenches Alexa488 

fluorescence), while the other sample was left in FACS media (as above) for 30 min on ice. Both 

samples were washed and fixed with 2% paraformaldehyde, and then incubated at 4°C for 15 

min. Cells were resuspended in FACS media and the levels of surface IgG-IC were quantified by 

flow cytometry. External IgG-ICs were calculated by subtracting the Alexa488 quenched sample 

(internal IgG-ICs) from the unquenched sample (total IgG-ICs). 

Ratiometric flow cytometry: BMMFs were incubated (37°C, 5% CO2) for 2 hours prior 

to the addition of 40 μL of IgG-ICs in R10 media (as above). Concanamycin A (20 ng/mL) was 

introduced to one sample from each cell type as a way to quantify an unacidified cell 2 hours 

prior to addition of IgG-ICs and left on the cells throughout the experiment. IgG-ICs and 

LysoSensor (2 mg/mL) were introduced for 30 min, aspirated, and replaced with fresh 

rhodamine free R10 media. Cells were incubated until indicated time points and analyzed by 
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flow cytometry. A UV laser (355 nm) was used to excite the dye and the MFI from the emission 

channels (450/20 nm, 585/42 nm) was ratioed to quantify relative pH. 

Ex vivo surface stain: Ex-vivo Splenic cells were fixed in room temperature 2% 

paraformaldehyde and incubated for 15 minutes at 4°C. Cells were blocked in 2.4G2 for 30 min 

at 4°C, washed, stained with anti-Sm (2.12.3) in FACS media (as above) for 30 min at 4°C, 

washed, stained with anti-CD11b in FACS media for 30 min at 4°C, and washed. Cells were 

resuspended in FACS media and the MFI of the surface Sm was determined by flow cytometry 

and normalized to an isotype control. 

Ex vivo caspase-1 activation: Ex-vivo splenic cells incubated with FAM-FLICA caspase-1 

(5 μM) 20 minutes prior to fixation in FACs media (as above) at room temperature. Cells were 

fixed in room temperature with 2% paraformaldehyde and transferred to 4°C for 15 min. Cells 

were then blocked in 2.4G2 for 30 min at 4°C, washed, stained with anti-CD11b in FACS media 

for 30 min at 4°C, and washed. Cells were resuspended in FACS media and caspase-1 activation 

was determined by quantifying the MFI by flow cytometry. 

Cryo-Electron Microscopy 

BMMFs were incubated with 40 μL of gold-labeled IgG-ICs for 2 hours (37°C, 5% CO2). 

Suspensions of macrophages were loaded into gold planchettes (model 16706897, well size 1.2 

mm x 200 µm), which were placed in high-pressure-freeze (HPF) holders and torqued to make a 

tight seal. Each sample was placed in the HPF chamber where the pressure was increased with 

cyclohexane to about 2000 bar just milliseconds before a blast of liquid nitrogen cooled the 

assembly at about 18,000 degrees/sec using a Leica EM PACT HPF. The pressure and cooling 

curves were recorded and examined after each run to ensure consistency. Frozen samples were 

transferred to liquid nitrogen for storage. The samples were then transferred to vials containing 
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2% osmium tetroxide in dry acetone cooled in liquid nitrogen. The vials were transferred cold to 

a chamber at -90 °C in a Leica EM AFS freeze substitution device, where samples remained for 

72 hours. The samples were warmed automatically using a program that increased the 

temperature to -20 °C at 4 degrees/hour, held at -20 °C for 10 hours, then warmed at 4°/hour to 

20°C. The warmed fixed samples were processed for transmission electron microscopy (TEM) 

by washing with fresh acetone and replacing the acetone with propylene oxide, then embedding 

in epon (EMS EMbed-812) and hardening at 60 °C. Thin sections, about 60-70 nm thick, were 

cut with a diamond knife on a Leica Ultracut UTC and stained with uranyl acetate and lead 

citrate. Stained thin sections were examined with an FEI Tecnai T12 G2 TEM at 80 kV using a 

Gatan 794 digital camera and Gatan Digital Montage software to prepare up to 5x5 montages of 

selected macrophages imaged at 6,000x to 30,000x.    

Immunoprecipitation and Western Blot 

Lysates were prepared by the addition of lysis buffer containing 1% CHAPS, 150 mM 

NaCl, 10 mM Tris (pH 7.5), 2 mM sodium orthovanadate, 1 mM PMSF, 0.4 mM EDTA, 10 mM 

NaF, and 1 μg/ml each of aprotinin, leupeptin, and α1-antitrypsin to cell pellets. Lysates were 

held on ice for 10 min followed by the removal of particulate material by centrifugation at 

12,000 × g for 10 min at 4°C.  

Antibodies used in the immunoprecipitations were conjugated to cyanogen bromide-

activated Sepharose 4B according to manufacturer’s instruction (Amersham Pharmacia Biotech). 

Approximately 2 μg of precipitating antibodies was incubated with 1.5×106 cell equivalents of 

cleared lysate for 1 hour at 4°C. Immunoprecipitates were washed twice with lysis buffer, 

resuspended in reducing SDS-PAGE sample buffer, and then fractionated by 10% SDS-PAGE.  

Separated proteins were transferred to Immobilon-FL membranes. Membranes were blocked in 
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Li-cor Blocking Buffer, then incubated with the various immunoblotting Abs followed by the 

appropriate fluorophore-conjugated secondary Abs. Immunoreactive proteins were detected 

using a LI-COR Odyssey infrared imaging system with Odyssey 3.0 software.  

Plate Reader 

All analysis was conducted using a Tecan M200 fluorescence plate reader. 

ROS Assay: BMMFs were incubated (37°C, 5% CO2) for 2 hours prior to the addition of 

40 μL of IgG-ICs in R10 media (as above) in an opaque 96 well plate. 30 minutes prior to 

indicated time points, dihydrorhodamine 123 (3 μg/mL) was added to each well. At the indicated 

time points cells were washed and fixed in room temperature with 2% paraformaldehyde and 

transferred to 4°C for 15 min. Wells were analyzed in FACS media (as above).  All fluorescent 

readings were normalized to the background fluorescence of non-DHR treated cells. 

Immunoprecipitation Assay: All beads from immunoprecipitation sample were added to a single 

well in a an opaque 96 well plate in PBS. Wells were analyzed for Hoechst labeled dsDNA 

(AIM2 immunoprecipitation) and Alexa647 labeled IgG (TRIM21 immunoprecipitation). All 

fluorescent readings were normalized to the background fluorescence of beads alone. 

WISH cell IFNα assay 

WISH cells, a human epithelial cell line (product no. CCL-25; American Type Culture 

Collection, Manassas, VA), were grown in minimum essential medium supplemented with L-

glutamine (2 mM), HEPES (20 mM), penicillin (100 units/ml), streptomycin (100 ug/ml), and 

10% fetal bovine serum (37°C, 5% CO2). To measure the levels of IFNα in the serum, we 

quantitated mRNA of interferon regulated genes as previously described (167). WISH cells were 

plated at a density of 0.5 x 105/0.1 ml in 96-well flat bottom plates and cultured with media 

alone, recombinant mouse IFNα (BioSource International, Camarillo, CA) at 100 units/ml, or 
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BMMF supernatant (200 μL). After 24 hours of incubation, WISH cells were lysed, RNA 

extracted (RNeasy Mini Kit; Qiagen, San Diego, CA) and cDNA prepared from 500 ng of RNA 

(iScript c-DNA Synthesis Kit; Bio-Rad Laboratories, Hercules, CA). The cDNA obtained from 

each sample was diluted 1:60, and 2 μl was amplified in a 20 μl real-time quantitative PCR 

reaction using 10 mM forward and reverse primers and the 2x iQ SYBR Green Supermix (Roche 

laboratories).   
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Figures 

 

Figure 1. Autoimmune-prone MFs have accumulated IgG-ICs on the cell membrane. 

Splenic CD11b+ cells were harvested from the indicated mice and analyzed for surface Sm and 

IgG by confocal imaging (Bar=2.5 μm); data represent 5 experiments, 5-7 mice, 55-75 cells (A) 

and flow cytometry; 4 experiments, 4-7 mice (B6≥12 wks, MRL/lpr≥12 wks, NZM2410≥12 

wks, NOD≥26 wks, K/BxN≥13 wks ) (B). Error bars indicate standard error of the mean (SEM). 

Student t test, *p≤0.05, **p≤0.01, ***p≤0.001. 
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Figure 2. MRL/lpr MFs phagocytose and traffic 

IgG-ICs to lysosomal structures. BMMFs from the 

indicated mice were cultured with fluorescently-labeled 

IgG-ICs and examined over time by total internal 

reflection fluorescence (TIRF) microscopy (Bar=1 μm); 

3 experiments, 3 mice, n=60-81 (A-B). The mean 

squared displacement (MSD) was calculated by 

tracking the displacement of IgG-ICs (arrows) on the 

surface of the cell until the IgG-IC was phagocytosed 

and left the plane of imaging. Each point is the average 

MSD of 10-20 IgG-ICs from 2-5 cells in the imaging 

plane (A). BMMFs from the indicated mice were 

cultured with gold-labeled IgG-ICs for 2 hours and 

examined by cryo-electron microscopy (Bar=1 μm); 2 

experiments, 2 mice,12-15 cells (C-D). IgG-ICs were 

found in phagosomes (single membrane, electron light), 

lysosomes (single membrane, electron dense), 

autophagosomes (double membrane), and on the cell membrane. Error bars=SEM. Student t test, 

*p≤0.05, **p≤0.01, ***p≤0.001.    
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Figure 3. MRL/lpr MFs fail to mature the lysosome. Bone marrow derived macrophages 

(BMMFs) stimulated with IgG-ICs and vesicles (arrow) were assessed for lysosomal pH by real 

time ratiometric 2-photon microscopy (Bar=5 μm); 3 experiments, 3 mice, 25-40 cells (A-B), 

and ratiometric flow cytometry; 6 experiments, 6-8 mice (C), intracellular ROS levels were 

quantified over time by fluorescence plate reader; 6 experiments, 6 mice and (D), and co-

localization of IgG-ICs with LAMP-1 and/or LC3A by confocal imaging (Bar=5 μm); 3 

experiments, 3 mice, 36-39 cells (E-F). Error bars indicate standard error of the mean (SEM). 

Student t test, *p≤0.05, **p≤0.01, ***p≤0.001.  
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Figure 4. IgG-ICs recycle and accumulate on the cell 

membrane of MRL/lpr MFs. BMMFs from the 

indicated mice were cultured with IgG-ICs and 

examined over time by confocal imaging (Bar=5 μm); 4 

experiments, 3-4 mice, 17-23 cells (A-B). BMMFs 

stimulated (1 hour) with dead GFP-expressing E. coli 

opsonized by IgG (E. coli-ICs) were analyzed by flow 

cytometry for relative amounts of phagocytosed E. coli-

ICs (C) and at indicated time points for extracellular 

LPS; 3 experiments, 3 mice (D). Flow cytometry 

localizing fluorescent IgG-ICs and TNP-ICs over time; 

left panel: 5 experiments, 5 mice; right panel: 2 

experiments 2 mice (E). BMMFs cultured in the 

presence or absence of concanamycin A (20 ng/ml) 

were exposed to fluorescently-tagged IgG-ICs for 72 

hours and then assessed for surface fluorescence by 

flow cytometry; 5-6 experiments, 5-6 mice (F). Error 

bars=SEM. Student t test, *p≤0.05, **p≤0.01, 

***p≤0.001.    

  



39 

 

 

Figure 5. Impaired lysosomal maturation allows dsDNA to leak into the cytosol and 

activate AIM2. BMMFs were stimulated for 4 hours with Hoechst-labeled IgG-ICs (A-B). 

Following AIM2 immunoprecipitation (5-8x106 cells), fluorescent DNA was quantified and 

expressed as fold increase relative to unstimulated B6. A representative AIM2 immunoblot of 

immunoprecipitated protein (A); Data are representative of 4 experiments, 4 mice. BMMFs were 

stimulated for 4 hours with IgG-ICs in the presence or absence of concanamycin A (20 ng/mL). 

Cells were examined by confocal imaging for the formation of ASC foci (Bar=5 μm); 10 

experiments; 2-10 mice, 63-364 cells (C-D), and the activation of caspase-1; 10 experiments; 2-

10 mice, 63-257 cells (E). Data are normalized to caspase-1 activation in unstimulated B6 MFs. 

Caspase-1 activation was measured in B6 and MRL/lpr splenic myeloid cells (CD11b+) by flow 

cytometry; 4 experiments, 5-9 mice (≥17 wks; active disease confirmed with kidney H&E) (F). 

Error bars=SEM. Student t test, *p≤0.05, **p≤0.01, ***p≤0.001. 
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Figure 6. Impaired 

lysosomal maturation 

allows IgG to leak into 

the cytosol and activate 

TRIM21. BMMFs were 

stimulated for 4 hours 

with IgG-ICs containing 

fluorescently tagged 

IgG. Following TRIM21 

immunoprecipitation (5-

8x106 cells), fluorescent IgG was quantitated and expressed as fold increase relative to 

unstimulated B6; 7 experiments, 7 mice (A-B) and IgH/IgL and immunoprecipitated TRIM21 

protein levels were immunoblotted (A) and quantitated by densitometry; 3 experiments, 3 mice 

(A,C). Nuclear translocation of the p65 subunit of NF-κB was quantified in BMMFs stimulated 

for 4 hours with IgG-ICs or apoptotic debris (lacking IgG) untreated or treated with 

concanamycin A (20 ng/mL) (Bar=5 μm); 6 experiments, 3-6 mice, 16-57 cells  (D-E). Ubiquitin 

was immunoprecipitated from splenic myeloid cells (CD11b+; 35x106 cells) and the levels of 

ubiquitinated TRIM21 were assessed by immunoblot; 2 experiment, 4-5 mice (≥17 wks; active 

disease confirmed with kidney H&E) (F-G). Splenic myeloid cells (CD11b+) were analyzed for 

IRF7 and IRF3 protein by confocal microscopy; 2 experiments, 2 mice, 10-28 cells (H). Error 

bars=SEM. Student t test, *p≤0.05, **p≤0.01, ***p≤0.001. 
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Figure 7. Impaired lysosomal maturation promotes 

intracellular TLR activation and IFNα secretion. 

BMMFs (1-1.5x106 cells) from B6 and MRL/lpr mice 

were stimulated for 24 hours with IgG-ICs in the 

presence or absence of hydroxychloroquine (50 μg/mL) 

or concanamycin A (20 ng/mL). IRAK1 levels were 

quantitated from cell lysates by immunoblot, a 

representative IRAK blot is shown with densitometry 

quantitation from 5 experiments, 3-5 mice (A). BMMFs 

from the indicated mice were stimulated with IgG-ICs 

for 4 hours. Nuclear translocation of IRF7 and IRF3 

were quantified by confocal microscopy (Bar=5 μm); 4 

experiments, 3-4 mice, 20-42 cells (B-C). Nuclear IRF7 

and IRF3 were quantified in ex vivo splenic myeloid 

cells (CD11b+) by confocal imaging. Data are displayed 

as fold increase relative to unstimulated B6; 2 experiments, 2 mice (≥17 wks; active disease 

confirmed with kidney H&E), 10-28 cells (D). BMMFs from the indicated mice were stimulated 

with IgG-ICs. Supernatants were collected at the various time points and cocultured with WISH 

cells for 24 hours. MX1 message levels were quantified by RT-PCR and displayed as fold 

increase relative to unstimulated B6. Error bars=SEM. Student t test, *p≤0.05, **p≤0.01, 

***p≤0.001. 
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Supplemental Figures 

 

 

 

Fig. S1. IgG and Sm staining is punctate on the surface of NOD myeloid cells.  Splenic myeloid 

cells (CD11b+) were purified from NOD mice and analyzed for surface levels of Sm and IgG by 

confocal microscopy (Bar=5 μm); 2 experiments, 2 mice, 15-20 cells. 
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Fig. S2. IgG and apoptotic debris remain colocalized upon recycling of IgG-ICs.  BMMFs from 

the indicated mice were cultured with fluorescently-labeled IgG-ICs and examined over time by 

confocal microscopy (Bar=5 μm); 2 experiments, 2 mice,15-20 cells.  IgG-ICs were formed 

using Alexa 647-labeled IgG and GFP-expressing apoptotic thymocytes. 
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Fig. S3. MRL/lpr MFs recycle apoptotic blebs.  BMMFs from the indicated mice were cultured 

with apoptotic blebs (no IgG) and examined over time by confocal imaging; 3 experiments, 3 

mice, 19-31 cells.  Apoptotic blebs were formed from GFP-expressing thymocytes. 
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CHAPTER 3: Chronic mTOR activation impairs lysosome maturation in lupus-prone 

macrophages 

Lysosomes contribute to immunological homeostasis by degrading biomolecules 

including apoptotic debris internalized by phagocytosis. In a model of systemic lupus 

erythematosus (SLE) where diminished lysosomal maturation promotes the accumulation of 

surface IgG-immune complexes, we find that mTOR plays a key role in lysosomal maturation by 

activating caspase-1 through an actin-dependent mechanism.  Cofilin acts as a key regulator in 

this process as its phosphorylation controls the levels of caspase-1 activation and hence the 

cleavage of Rab39a, a necessary step for lysosomal maturation.  These data identify a previously 

undescribed signaling pathway regulating lysosomal maturation and revealing potential 

therapeutic targets in restoring the clearance of apoptotic debris in SLE.    

Introduction 

Lysosomes contain proteases and lipases that play a critical role in cell homeostasis and 

metabolism by degrading macromolecules.  Degradation requires that intracellular and 

extracellular cargo traffic to the late endosomes, that late endosomes fuse with lysosomes 

promoting maturation, and that the hydrolases become activated through lysosomal acidification; 

a processes that requires Rab proteins, ESCRT complexes, ubiquitination, vacuolar H+-ATPase 

(V-ATPase), and LAMPs.  The signal transduction events that control the lysosomal 

environment are unknown; however, lysosomal defects are associated with cardiovascular 

disease, lysosomal storage disorders, cancer, and neurodegenerative disorders (168).  In addition, 

we recently reported that macrophages (MFs) from systemic lupus erythematosus (SLE)-prone 
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mice harbor a lysosomal maturation defect that diminishes lysososmal acidification.  As a 

consequence, FcγRs bound by immune complexes (ICs) composed of apoptotic debris bound by 

IgG autoantibody (IgG-ICs) recycle and accumulate on the cell surface.  They also leak into the 

cytosol heightening cell death, IFNα secretion (169), autoantibody production, and lupus 

nephritis (37).  Herein we identify a novel signal transduction pathway that regulates lysosomal 

maturation, and underlies the reduced ability of lupus-prone MFs to degrade apoptotic debris. 

Heightened and mislocalized mTOR activity impairs lysosomal maturation in lupus-prone 

MFs  

IgG-ICs, formed between apoptotic debris and autoantibody, are thought to play a central 

role in SLE.  We recently reported that macrophages from MRL/lpr mice fail to degrade IgG-ICs 

phagocytosed through FcgRs (37).  To assess whether this leads to chronic FcgR-mediated signal 

transduction that might impair lysosomal maturation, we quantitated the levels of phosphorylated 

signaling effectors coupled to ITAM-containing FcgRs.  Consistent with the findings in T cells 

(170, 171), bone marrow MFs (BMMFs) derived from lupus-prone MRL/lpr mice had 5-fold 

more pS6 compared to B6 (Fig 1A), indicating that MRL/lpr MFs have heightened mammalian 

target of rapamycin (mTOR) activity.  Furthermore, MRL/lpr MFs have 2.8-fold more pAktS473 

and 2.3-fold more pAktT308 compared to B6 (Fig 1A).  The activation of Akt was dependent on 

FcγR-signaling because pAkt was not significantly elevated in FcγRI-/-/MRL/lpr MFs; however 

the proportion of pS6 was reduced to 2-fold above B6 (Fig 1B) indicating that mTOR is in part 

activated by FcgRI, but a second pathway is also involved.  The heightened mTOR activity is not 

driven by AMPK since phosphorylated and total AMPK were not significantly elevated in 

MRL/lpr MFs (Fig 1C). Interestingly the addition of IgG-ICs induced heightened mTOR 
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activation but did not induce heightened AKT activation above basal levels (Fig 1C) indicating 

that AKT is chronically active in MRL/lpr MFs.   

The serine/threonine kinase mTOR senses amino acids and ATP to balance cell growth 

and nutrient availability (172).  The subcellular localization of mTOR to The subcellular 

localization of mTOR is critical for its function.  For example, localization of mTOR to the cell 

membrane is important for insulin signaling and cytoskeletal rearrangements, while localization 

to the membrane of lysosomal compartments is important in amino acid sensing (173).  

Therefore identifying the localization of mTOR in MRL/lpr MFs may elucidate its function.  

Strikingly, MFs from MRL/lpr mice localized 3.5-fold more mTOR to the cell membrane 

compared to B6 MFs (Fig 1C-D).  This difference in localization was not the result of heightened 

total levels of mTOR (Fig 1E).  Torin1 is a selective ATP-competitive inhibitor of mTOR that 

unlike rapamycin, inhibits both mTOR complex 1 (mTORC1) and mTORC2 (mTORC1/C2) 

(174) (Sup 2).  Treatment of MRL/lpr MFs with Torin1 reduced the colocalization of mTOR 

with the plasma membrane to levels similar to B6 (Fig 1C-D).  This indicates that activation of 

mTOR in MRL/lpr MFs, directly or indirectly promotes its chronic localization at the cell 

membrane.  

We’ve previously identified that 80% of internalized IgG-ICs traffic to secondary 

lysosomes, with less than 5% entering autophagosomal structures (169).  Since greater than 80% 

of internalized IgG-ICs traffic to secondary lysosomes and because mTOR localizes with 

lysosomal structures in sensing amino acid levels (175) it was possible that mTOR regulates the 

lysosomal environment.  One possibility is that lysosomal maturation requires mTOR, and that a 

vicious cycle is created in lupus-prone MFs because of diminished degradation of IgG-ICs.  The 

chronic, high level of ICs that remain bound to FcgRs chronically activates mTOR and its 
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mislocalization at the plasma membrane could perpetually impair lysosomal maturation.  Since 

acidification of the phagolysosomal compartment is an integral step in lysosome maturation and 

the activation of lysosomal hydrolases (73), we previously determined the relative pH of the 

maturing phagosome using an acidotropic ratiometric dye during phagocytosis of IgG-ICs.  

Ratiometric flow cytometry 30 minutes after exposure to IgG-ICs, MRL/lpr MFs showed an 8% 

drop in pH compared to a 22% decline in B6 MFs indicating significantly impaired vesicular 

acidification (169), Fig 1F).  Treatment of MRL/lpr MFs with Torin1 restored acidification to 

levels comparable to B6.  Cells remained acidified for the duration of Torin1 treatment (Fig 1F).  

Further, Torin1 of MRL/lpr MFs prevented the recycling and accumulation of fluorescently 

labeled-IgG-ICs (Fig 1G).  Interestingly, Torin1 treatment reduced the basal levels of IgG-ICs on 

B6 MFs suggesting that Torin1 enhances the degradative capacity of the lysosome (Fig 1G).  

Torin1 inhibits both mTORC1 and mTORC2 (174) while rapamycin inhibits only mTORC1 

(176) (Fig S1).  To determine which complex was impairing lysosomal acidification, we treated 

MRL/lpr MFs with rapamycin to determine whether it was sufficient in restoring acidification 

following internalization of IgG-IC.  Rapamycin treated MRL/lpr MFs did not acidify (Fig 1F), 

suggesting that inhibition of mTORC1 is not sufficient in restoring lysosomal acidification.  

Given the strong effect of Torin1, this implicates mTORC2 in lysosomal acidification. 

Heightened mTOR activity impairs lysosome maturation by driving the phosphorylation of 

cofilin 

One important function of mTORC2 is to regulate actin by activating Rho GTPases (176, 

177). Consistent with a role for the activation of mTORC2 in SLE, we found that MFs from 

MRL/lpr mice show impaired migration and membrane ruffling (Fig S2).  Actin dynamics have 

been associated with the integrity of the lysosome (178-180) although how this occurs is unclear.   
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Despite this, it raises the possibility that chronic activation of mTORC2 might impair lysosomal 

acidification through an actin-dependent mechanism.  mTORC2 activates Lim kinases (LIMKs) 

which in turn phosphorylate cofilin (Ser3).  Prior to the addition of IgG-ICs, the proportion of p-

cofilin in MRL/lpr MFs was 1.5-fold higher than B6 MFs (Fig 2A).  After 30 minutes of 

stimulation with IgG-ICs, the proportion of p-cofilin increased 2.4-fold in MRL/lpr MFs.  

Treatment with the LIMK inhibitor (LIMKi 3) reduced the proportion of p-cofilin in MRL/lpr 

MFs to levels comparable to B6.  Consistent with the idea that mTOR is upstream of LIMk, 

treatment with Torin1 also reduced p-cofilin in MRL/lpr MFs to levels comparable to B6, while 

treatment with rapamycin had no effect.  Therefore, chronic activation of mTORC2 promotes 

heightened phosphorylation of cofilin in MRL/lpr MFs. 

Cofilin depolymerizes F-actin by attaching to the minus-end, severing the actin filament, 

while phosphorylation of cofilin prevents its association with F-actin (181, 182).  In MRL/lpr 

MFs, the heightened mTOR activity at the membrane (Fig 1C-D) increased the proportion of p-

cofilin (Fig 2A).  This would prevent the association of cofilin with the phagocytic cup and 

vesicles containing IgG-ICs.  Following phagocytosis of IgG-ICs, B6 MFs localized 3.9-fold 

more cofilin to IgG-IC-containing vesicles compared to MRL/lpr (Fig 2B-C).  In B6 MFs the 

cofilin that localized to IgG-IC-containing vesicles was rarely phosphorylated.  Conversely, 

MRL/lpr MFs had 2.7-fold more p-cofilin colocalizing with vesicles containing IgG-IC.  This 

indicates that the reduced levels of cofilin that localized to vesicles containing IgG-ICs were 

phosphorylated, and hence ineffective at depolymerizing actin.    

If the depolymerization of F-actin were important in the maturation of the lysosome, we 

would expect that decreasing actin depolymerization by cofilin would restore acidification in 

MRL/lpr MFs.  Conversely, it would inhibit acidification in B6 MFs.  Jasplakinolide (JasP) binds 
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directly to F-actin and stabilizes actin filaments preventing depolymerization by cofilin. B6 MFs 

treated with JasP showed diminished lysosomal acidification only achieving a pH comparable to 

that found in MRL/lpr MFs (pH ~ 5.5).  In contrast, inhibiting LIMK (LIMKi 3) increases 

cofilin-mediated depolymerization of F-actin.  MRL/lpr MFs treated with LIMKi 3 restored 

acidification in MRL/lpr MFs, achieving pH levels comparable to B6 MFs (pH ~ 4) (Fig 2D).  

These data show that the depolymerization of F-actin by cofilin is integral to lysosomal 

acidification, and that this mechanism is defective in SLE.   

Phosphorylation of cofilin prevents the recruitment of caspase-11 to vesicles containing 

IgG-ICs 

Caspases have been strongly associated with driving cell death but recently caspases have 

been found to have alternative roles in the cell (183).  Caspase-11 associates with F-actin through 

Aip-1 and cofilin to facilitate actin depolymerization (184).  Since cofilin exhibits heightened 

phosphorylation and is mislocalized in MRL/lpr MFs (Fig 2A-C), the subcellular distribution of 

caspase-11 might also be altered.  We found that phagocytosis of IgG-ICs induced B6 MFs to 

localized 3-fold more caspase-11 with vesicles containing IgG-IC compared to MRL/lpr (Fig 

3A-B).  This was not the result of heightened total caspase-11 (Fig 3C).  Torin1 treatment was 

sufficient in restoring normal caspase-11 localization with vesicles containing IgG-ICs in 

MRL/lpr MFs, while rapamycin had no effect.  This implicates activation of mTORC2 in the 

phosphorylation of cofilin and the mislocalization of caspase-11.   

Since there is a heightened concentration of F-actin in the phagocytic cup, the recruitment 

of caspase-11 to the maturing phagosome may be integral in downstream acidification.  It has 

been demonstrated that caspase-1 and caspase-11 are important in promoting acidification of the 

lysosome following phagocytosis of certain bacteria (185, 186) but the underlying mechanism 
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has not been characterized and whether caspase activity are necessary following the phagocytosis 

of IgG-ICs is unknown.  We reasoned that if caspase-11 plays a role in lysosomal acidification 

following internalization of IgG-ICs, B6/casp11-/- MFs would show impaired acidification.  

Following phagocytosis of IgG-ICs, B6/casp11-/- MFs did not fully acidify, achieving a pH 

comparable to MRL/lpr MFs (Fig 3D). This demonstrates that caspase-11 is necessary for 

lysosomal acidification following the phagocytosis of IgG-ICs. 

Recruitment of caspase-11 activates caspase-1 

Caspase-11 physically interacts with, and activates, caspase-1 (185, 187).  This 

implicates caspase-11 as an upstream regulator of caspase-1, and raises the possibility that the 

localization of caspase-11 with vesicles containing IgG-IC activates caspase-1 upstream of 

lysosomal acidification.  To quantify caspase-1 activation, we stimulated MRL/lpr MFs with 

IgG-ICs in the presence of a FLICA probe specific to caspase-1.  This allowed us to quantify 

caspase 1 activation by flow cytometry.  We found that prior to the addition of IgG-ICs, 

MRL/lpr MFs show slightly elevated levels of basal caspase-1 activation compared to B6 MFs 

(Fig 3E).  After phagocytosis of IgG-ICs, B6 MFs increased the levels of caspase-1 activation 

2.1-fold.  In contrast, MRL/lpr MFs did not change their levels of active caspase-1.  The 

activation of caspase-1 in B6 MFs was dependent on caspase-11 because B6/casp11-/- MFs failed 

to activate caspase-1.  Furthermore, MFs from B6/pycard-/- (ASC-deficient) mice activated 

caspase-1 to levels similar to B6 MFs.  This indicates that during lysosomal acidification 

caspase-1 activation occurs independent of inflammasomes.   

Following phagocytosis of IgG-ICs, we show that the localization of caspase-11 to IgG-

IC-containing vesicles requires cofilin activity (Fig 3B).  Further, caspase-11 is necessary for the 

activation of caspase-1 following phagocytosis of IgG-ICs (Fig 3E).  To further assess whether 
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these events are linked, we altered the function of cofilin and assessed whether it impacted 

caspase-1 activation.  We found that inhibiting the depolymerization of actin (JasP) in B6 MFs 

reduced the activation of caspase-1 to levels similar to MRL/lpr (Fig 3F).  Conversely, inhibiting 

LIMK and the phosphorylation of cofilin allowed MRL/lpr MFs to activate caspase-1 to levels 

comparable to B6.  These results demonstrate that activation of caspase-1 is dependent on actin 

depolymerization. 

mTORC1 has multiple cellular functions including sensing amino acids and regulating 

translation (172), while mTORC2 is associated with AKT phosphorylation (S473) and activating 

Rac1 and RhoA (176, 177).  One possibility is that mTORC2 plays a previously unappreciated 

role in actin stabilization and lysosomal acidification.   This predicts that inhibiting mTORC2 

would restore activation of caspase-1 in MRL/lpr MFs.  Indeed, treatment of MRL/lpr MFs with 

Torin1 promoted a 2-fold increase in caspase-1 activation following phagocytosis of IgG-ICs 

(Fig. 3G) while rapamycin had no effect.  While this does not rule out a contribution from 

mTORC1 in inflammasome-independent caspase-1 activation, it does show that in MRL/lpr 

MFs, heightened caspase-1 activation and diminished lysosomal acidification require mTORC2. 

In B6 MFs, caspase-11 localizes to vesicles containing IgG-IC and activates caspase-1 

during their phagocytosis.  Thus, we would expect that activated caspase-1 would localize with 

IgG-ICs, an event that might be impaired in lupus-prone MRL/lpr MFs.  Upon phagocytosis of 

IgG-ICs, FLICA staining colocalizes with IgG-ICs in B6 MFs indicating that the activation of 

caspase-1 is localized to vesicles containing IgG-ICs (Fig 3H).  In MRL/lpr MFs, the 

colocalization of activated caspase-1 with IgG-ICs is reduced 3-fold (Fig 3H-I).  The 

mislocalization of activated caspase-1 following phagocytosis of ICs does not completely inhibit 

its activity as MRL/lpr MFs have heightened basal levels of activated caspase-1 (Fig. 3E) and 
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increased inflammasome formation as a consequence of diminished lysosomal maturation (169).  

Consistent with a dependence on mTOR, treatment of MRL/lpr MFs with Torin1 restored the 

localization of activated caspase-1 to levels comparable to B6 (Fig 3H-I).  This demonstrates that 

the activation of caspase-1 is localized to phagocytosed IgG-ICs and that mTOR activity in 

MRL/lpr MFs prevents caspase-1 activation.   

To determine whether the activation of caspase-1 is necessary for lysosomal acidification, 

we inhibited caspase-1 with VAD FMK and quantified the relative pH of MFs stimulated with 

IgG-ICs.  We found that inhibiting caspase-1 reduced acidification of B6 MFs (Fig 3J).  The role 

for caspase-1 activity in lysosomal acidification was not dependent on the formation of an 

inflammasome because MFs from ASC-deficient mice acidified to levels comparable to B6.  

This demonstrates that in normal mice, MFs require caspase-1 to fully acidify lysosomes, and 

that caspase-1 activation is independent of inflammasome formation.   

The process of lysosomal maturation is complex; however, a role for mTOR and 

caspases-1 this process has never been appreciated.  If caspase-1 activation were necessary for 

lysosomal maturation, inhibiting caspase-1 would prevent acidification in B6 MFs.  We found 

that B6 MFs treated with FAM-YVAD-FMK and stimulated with IgG-ICs failed to fully acidify 

(Fig 3J).  This demonstrates that caspase-1 activation is necessary for lysosomal acidification.  

Further, caspase-1 activation was not dependent on inflammasome formation as MFs from ASC-

deficient mice acidified to similar levels as B6.  Therefore, inflammasome-independent 

activation of caspase-1 is necessary for lysosomal acidification in normal MFs.  Inhibiting 

caspase-1 in B6 MFs created a phenotype much like that seen in MRL/lpr MFs.  Coupled with 

our findings that chronic activation of mTOR in MRL/lpr MFs results in diminished lysosomal 

acidification and their inability to activate or properly localize caspase-1 with vesicles containing 
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IgG-ICs, the data indicate a previously unappreciated role for caspase-1 in lysosomal 

degradation.   

Caspase-1 mediated cleavage of Rab39a is necessary for lysosomal maturation 

Rab GTPases associate with specific membranes and are integral in the phagocytosis, 

vesicular trafficking, and exocytosis pathways.  The function of Rab39a is relatively 

uncharacterized; however it localizes to phagosomes and functions in lysosomal acidification 

(188).  Furthermore, Rab39a contains a caspase-1 cleavage site and in vitro and in vivo studies 

have shown that caspase-1 cleaves Rab39a and that the expression of Rab39a is necessary for the 

secretion of IL1-β (189).  Thus, it is possible that phagolysosomal acidification requires caspase-

1 to cleave Rab39a.  To test this, we stimulated B6 and MRL/lpr BMMFs with IgG-ICs, and then 

immunoprecipitated Rab39a.  B6 MFs showed 9.6-fold more Rab39a N-terminal cleavage 

product compared to MRL/lpr (Fig 4A-C).  Although we could detect endogenous full length 

Rab39a, the detection of the N-terminal cleavage product was weak, while the C-terminus was 

undetectable.  To resolve this, we are currently designing a plasmid to overexpress Rab39a in 

BMMFs.  We will overexpress HA- and/or Flag-tagged (N- and C-terminus respectively) 

Rab39a in MFs to easily identify both cleavage products and full length Rab39a.  We also will 

generate a mutated form of Rab39a where the putative cleavage site (Asp148) was replaced by 

Ala (Rab39aD148A).  Finally, we will also generate both the Rab39a N-terminal and C-terminal 

cleavage products to determine if overexpression of either cleavage product is sufficient in 

restoring lysosomal acidification in MRL/lpr MFs. 

  While the new plasmids are being generated, we were able to compare the wild type 

Rab39a to the Rab39aD148A by transducing immortalized (v-Myc) B6 MFs and quantifying 

acidification.  Immortalized B6 MFs expressing wild type Rab39a acidified normally with a 15% 
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decrease in pH following IgG-IC exposure (Fig 4c).  In contrast, MFs expressing Rab39aD148A 

only experienced a 2% decrease in pH indicating that they were unable to acidify the lysosome in 

the presence of IgG-ICs.  This demonstrates that the cleavage of Rab39a at the caspase-1 

cleavage site is a necessary step in lysosomal acidification.  The new plasmids will allow to 

further probe the mechanism for Rab39a and lysosome acidification in BMMFs from B6 and 

MRL/lpr MFs. 

Discussion 

The process of lysosomal maturation and acidification is important in destroying 

pathogens and clearing cell debris internalized by phagocytosis.  This study defines a previously 

unappreciated role for actin-dependent caspase-1 activation in lysosomal acidification.  We show 

that MFs initiate lysosomal maturation when phagocytosed IgG-ICs (cell debris bound by 

autoantibody) enter the cell through FcγRs.  FcγR-mediated signal transduction activates and 

localizes mTOR to the plasma membrane (Fig. 5, 1) promoting heightened phosphorylation of 

cofilin (Fig. 5, 2).  In its un-phosphorylated state, cofilin associates with F-actin (Fig. 5, 3), 

which recruits and activates caspase-11 (Fig. 5, 4).  This in turn promotes the activation of 

caspase-1 (Fig. 5, 5) and cleavage of Rab39a (Fig. 5, 6), a critical event in lysosomal maturation.  

Thus, the polymerization of actin is key in phagocytic cup formation and internalization of cargo 

while cofilin and the depolymerization of actin are critical in the maturation of the phagosome 

and lysosomal acidification.   

An unexpected step in the sequence of events leading to lysosomal maturation is the 

activation of caspase-1, an enzyme normally associated with inflammasome formation and innate 

immune responses.  Activated caspase-1 cleaves pro-IL-1β and induces pyroptosis.  This study 

shows that caspase-1 also plays a central role in lysosomal maturation.  The activation of 



56 

 

caspase-1 in lysosomal maturation is independent of inflammasome formation because mice 

deficient in ASC undergo normal lysosomal maturation and acidification (Figure 3).  This 

reveals that pyroptosis and phagosomal maturation, two distinct cellular mechanisms, are the 

consequence of caspase-1 activation.   However, it raises the question of how caspase-1 

activation in B6 MFs internalizing IgG-ICs induces the maturation of lysosomes without 

promoting cell death.  One possibility is that varying levels of caspase-1 execute different 

functions.  For example, low levels of active caspase-1 might promote phagosomal maturation, 

while high levels may be required for pyroptosis.  In support of this graded caspase response, 

other studies have shown that low levels of caspase-3 or caspase-8 activation can regulate 

autophagic cell death, the differentiation and proliferation of T and B cells, and the maturation of 

DCs, while high levels of activation promote apoptosis (190).   A second influence on the 

outcome of caspase-1 activation may be location.  Restricting activated caspase-1 to maturing 

phagosomes (Figure 3) might require that caspase-1 act only on Rab39a localized to endosomal 

and lysosomal structures.  In contrast, localizing gasdermin D near the developing 

inflammasome (and not the phagosome) directs the cleavage by caspase-1 or caspase-11 during 

pyroptosis (191, 192).   

Why would caspase-1 be linked to basic cellular functions such as lysosomal maturation 

when elevated caspase activation results in irreversible cell death?  One possibility is that 

recruitment of caspase-1 to the phagosomal membrane is an evolutionary mechanism to heighten 

the “pyroptotic potential” when the integrity of the phagosomal membrane is compromised.  

Intracellular pathogens that escape the phagosome activate caspase-1 (193) and caspase-11 

(194).  Thus, localizing caspase-1 in close proximity to the phagosome may promote efficient 

immune activation if pathogens breach the lysosomal membrane.  In this scenario, cytosolic 
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sensors act to protect the host.  This example illustrates how two distinct functions of caspase-1 

(lysosomal maturation and pyroptosis) might have co-evolved as a means to safeguard the host 

during infection.   

An unfortunate consequence of this putative host survival mechanism could be that 

environmental or genetic defects that disrupt lysosomal maturation, such as heightened mTORC2 

activation as seen in lupus-prone MRL/lpr MFs, compromises the integrity of the phagosomal 

membrane allowing nuclear antigens to leak into the cytosol (169).  This allows cytosolic 

sensors, such as AIM2, to recognize nuclear antigen and promote pyroptosis and innate immune 

activation against self-antigens (169).  Thus, the inability to mature the lysosome in SLE may 

represent an example of how a mechanism intended to safeguard the host during infection turns 

against the host leading to immune dysregulation and autoimmune disease.  This also reveals that 

defects in basic cellular mechanisms may underlie the defects in the immune system associated 

with SLE.  Impaired lysosomal maturation can drive chronic activation of the internalizing 

receptors (ie: FcγRI) coupled with the acute activation of intracellular innate receptors (ie: 

cytosolic sensors, TLRs) that depending on the cell type can drive the pathologies associated 

with disease.  For example, diminished lysosomal maturation in pDCs could heighten secretion 

of IFNα (134), while diminished lysosomal maturation in macrophages and neutrophils may 

heighten cell death (153).  This in part might explain some of the more complex phenotypes seen 

during autoimmunity.   

Our study uses a lupus model to elucidate key steps in lysosomal maturation.  MFs from 

lupus-prone MRL/lpr mice fail to fully mature lysosomes and the un-degraded IgG-ICs remain 

bound to FcγRs and recycle back to the cell membrane (Fig. 5, 7).  Accumulation of un-degraded 

IgG-ICs promotes BAFF secretion and lupus nephritis (37).  It also prolongs the length of time 
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IgG-ICs reside in the endocytic pathway inducing TLR7 and TLR9 activation and autoantibody 

secretion (37, 169).  Prolonged residency in the phagosome and heightened levels of incoming 

cargo permeabilize the phagosomal membrane allowing nuclear antigens and autoantibody from 

the IgG-ICs to leak into the cytosol activating cytosolic sensors including AIM2 and TRIM21 

heightening IFNα levels (169).  Mechanistically the chronic activation of FcγRI heightens 

mTORC1/C2 activation, and chronically mislocalizes mTOR at the plasma membrane increasing 

the levels of p-cofilin (Fig. 5, 2), diminishing the association of cofilin and caspase-11 with F-

actin and preventing F-actin depolymerization and caspase-11 activation (Fig. 5, 8).  As a 

consequence caspase-1 is not activated, and does not associate with vesicles containing IgG-ICs 

(Fig. 5, 9).  This limits the cleavage of Rab39a (Fig. 5, 10), thereby preventing phagosomal 

maturation.  Thus, diminished lysosomal maturation in MFs from lupus-prone MRL/lpr mice 

creates a vicious cycle wherein undegraded IgG-ICs bound by FcγRs, recycle back to the cell 

surface leading to chronic activation of mTOR and continued loss of lysosomal maturation.  

These data identify a previously undescribed signaling pathway regulating lysosomal maturation 

and revealing potential therapeutic targets in restoring the clearance of apoptotic debris in SLE.    

Materials and Methods 

Mice  

C57BL/6 (B6) and MRL/MpJ-Tnfrs6lpr/J (MRL/lpr; JAX mice Stock # 000485) colonies 

were maintained in an accredited animal facility at University of North Carolina at Chapel Hill 

(UNC-CH). Casp1/11-/-/C57BL/6 (195), Casp11-/-/C57BL/6 (196), pycard-/-/C57BL/6 (197) mice 

were obtained from Dr. Edward Miao.  We generated FcγRI-/-MRL/lpr mice by backcrossing 

FcγRI-/-/C57BL/6 mice to MRL/lpr mice for 10 generations.   
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Reagents   

Antibodies specific for CD11b were purchased from BD Biosciences, pS6, S6, pAKT 

(ser), pAKT (thr), AKT, pAMPK, AMPK, mTOR, cofilin, p-cofilin, caspase-11, and tubulin 

from Cell Signaling, goat anti-rabbit IgG and rabbit anti-goat IgG from Molecular Probes, and 

Rab39 from ProteinTech. Concanamycin A was purchased from Sigma-Aldrich, Antibodies 

specific to Smith (Sm; 2.12.3), nucleosome (PL2-3) and CD16/32 (2.4G2) were purified from 

hybridoma culture supernatant using protein G-Sepharose (GE Healthcare) then left unlabeled or 

conjugated with Alexa fluor according to the manufacturer instructions (Molecular Probes). 

Fluorescent molecule LysoSensor Yellow/Blue was purchased from Molecular Probes and FAM-

FLICA caspase-1 assay kit from ImmunoChemistry Technologies. LI-COR blocking buffer and 

IRDye680- and IRDy800-conjugated antibodies (anti-rabbit, anti-mouse, anti-goat) were 

purchased from LI-COR Biosciences.   

Bone Marrow-derived MF (BMMF) cultures 

Single-cell suspensions of bone marrow were prepared from the tibias and femurs of 

C57BL/6 mice. Mononuclear cells were isolated using Lympholyte Separation Medium 

(CEDARLANE Laboratories, Burlington, ON) plated in 60 mm petri dishes with 6 mL 

macrophage differentiation media (DMEM with 10% FBS, 10% L-cell supernatant, 1 mM 

sodium pyruvate, 50 μg/mL gentamicin, 100 μg/mL Pen/Strep, 2mM L-glutamine, 50 nM β-ME. 

After the overnight culture (37°C, 5% CO2), non-adherent cells were plated into non-tissue 

culture treated 100 mm petri dishes (0.75-1 mL cells/petri dish) with 7 mL fresh macrophage 

differentiation media and incubated for 6 days to promote macrophage differentiation.  On day 4, 

culture medium was replenished with an additional 5 mL of macrophage differentiation media. 
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The resulting bone marrow derived macrophages were removed from the dish by washing with 

ice cold PBS.  BMMF cultures were 98% CD11b+, I-Alo, and B7.2lo.  

Formation of Immune Complexes  

Apoptotic debris-containing immune complexes (IgG-IC): Single-cell suspensions of 

thymocytes were prepared from 5-8 week mice, irradiated (600 rads) and cultured 16-18 hours in 

10 mL PBS (37°C, 5% CO2). Apoptotic thymocytes were centrifuged for 5 minutes (350 x g) 

and the supernatant containing apoptotic debris was incubated with autoantibodies (2.12.3 or 

PL2-3) on ice for 30 min (6.67 μg Ab/1 mL supernatant). Immune complexes were pelleted 

(160,000 x g) at 4°C for 45 min. Pelleted ICs were resuspended in 250 μL R10 media (RPMI 

with 10% FBS, 1 mM sodium pyruvate, 50 μg/mL gentamicin, 100 μg/mL Pen/Strep, 2mM L-

glutamine, 50 nM β-ME).  

Fluorescent Microscopy 

All confocal microscopy was conducted using a Zeiss 710 confocal microscope with a 63 

× 1.4 NA (oil) PLAN APO lens and Zeiss Zen software. Data were analyzed using ImageJ. 

mTOR localization: BMMFs were fixed with 2% paraformaldehyde, then incubated at 4°C for 

15 min.  Cells were blocked in 2.4G2 for 30 min at 4°C, stained with an anti-mTOR antibody 

and Hoechst 33342 (1 μg/ml) in permeabilization buffer (PBS with 0.05% Saponin and 0.5% 

BSA) for 30 min at 4°C. Cells were washed again and stained with anti-CD11b in FACS media 

(PBS with 2% FBS, 0.02% NaN3) for 30 min at 4°C, washed, resuspended in FluorSave and 

loaded onto coverslips for microscopic imaging. The membrane localization of mTOR was 

quantified by calculating the Mander’s coefficient of colocalization (ratio of colocalized 

pixels/total fluorescent pixels).  
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Cofilin, p-cofilin, caspase-11 localization: Two hours prior to imaging, BMMFs were 

incubated (37°C, 5% CO2) on a glass bottom petri dish (MatTek Corp) in R10 media (rhodamine 

free RPMI with 10% FBS and pen/strep [as above]). Cells were cultured in the presence of IgG-

ICs (apoptotic debris-containing IgG-Alexa 647), fixed at the indicated time points with 2% 

paraformaldehyde, then incubated at 4°C for 15 min. Cells were blocked in 2.4G2 for 30 min at 

4°C, stained with Alexa 568 phalloidin, or an anti-cofilin, p-cofilin, caspase-11 antibody, and 

Hoechst 33342 (1 μg/ml) in permeabilization buffer (as above) for 30 min at 4°C. Cells were 

washed again, stained with goat anti-rabbit IgG-Alexa 488 or goat anti-rat IgG-FITC in 

permeabilization buffer for 30 min at 4°C, washed, and 2 mL of FACs media was added to the 

dish.  The localization of cofilin, p-cofilin, or caspase-11 with actin and IgG-ICs was quantified 

by calculating the Mander’s coefficient of colocalization (ratio of colocalized pixels/total 

fluorescent pixels).  

Active caspase-1 localization: BMMFs were cultured in the presence of apoptotic debris-

containing IgG-Alexa647 ICs.  FAM-FLICA caspase-1 and Hoechst 33342 (1 μg/ml) was 

introduced to the cells 20 minutes prior to fixation, washed, and fixed with 2% paraformaldehyde 

at the indicated time points, then incubated at 4°C for 15 min. Cells were resuspended in 

FluorSave and loaded onto coverslips for microscopic imaging. The colocalization of active 

caspase-1 with IgG-ICs was quantified by calculating the Mander’s coefficient of colocalization.  

Flow Cytometry 

All flow cytometry was conducted using an 18-color Becton Dickinson LSR II Flow 

cytometer and data were acquired using Becton Dickinson FACSDiva 8.0.1 software. 

Recycling flow: BMMFs were incubated with 40 μL Alexa488-labeled IgG-ICs in R10 

media (as above). To quantify surface bound ICs at 0 hours, phagocytic uptake was impaired by 
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culturing with IgG-ICs on ice for 2 hours. This was sufficient to allow the ICs to bind to the 

surface of the cell but not be phagocytosed. For all other time points, cells were incubated (37°C, 

5% CO2) for 2 hours, and then media was replaced to remove all unbound ICs. At indicated time 

points, cells were blocked in 2.4G2 for 30 min on ice, washed and split into 2 samples. One 

sample was incubated with an anti-Alexa488 antibody (quenches Alexa488 fluorescence), while 

the other sample was left in FACS media (as above) for 30 min on ice. Both samples were 

washed and fixed with 2% paraformaldehyde, and then incubated at 4°C for 15 min. Cells were 

resuspended in FACS media and the levels of surface IgG-IC were quantified by flow cytometry. 

External IgG-ICs were calculated by subtracting the Alexa488 quenched sample (internal IgG-

ICs) from the unquenched sample (total IgG-ICs). 

Ratiometric flow cytometry: BMMFs were incubated (37°C, 5% CO2) for 2 hours prior 

to the addition of 40 μL of IgG-ICs in R10 media (as above) and in the presence or absence of 

indicated drugs. Concanamycin A (20 ng/mL) was introduced to one sample from each cell type 

as a way to quantify an unacidified cell 2 hours prior to addition of IgG-ICs and left on the cells 

throughout the experiment. IgG-ICs and LysoSensor (2 mg/mL) were introduced for 30 min, 

aspirated, and replaced with fresh rhodamine free R10 media. Cells were incubated until 

indicated time points and analyzed by flow cytometry. A UV laser (355 nm) was used to excite 

the dye and the MFI from the emission channels (450/20 nm, 585/42 nm) was ratioed to quantify 

relative pH. 

pS6, S6, pAkt (ser), pAkt (thr), Akt, pAMPK, AMPK, mTOR, p-cofilin, cofilin flow 

cytometry: BMMFs were cultured in the presence or absence of IgG-ICs and fixed at indicated 

time points with 2% paraformaldehyde, then incubated at 4°C for 15 min. Cells were blocked in 

2.4G2 for 30 min at 4°C, washed, and stained with anti-mTOR, -pS6, -S6, -pAkt (ser), -pAkt 
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(thr), -Akt, -pAMPK, -AMPK, -p-cofilin, -cofilin antibodies in permeabilization buffer (as 

above) for 30 min at 4°C. Cells were washed again, stained with goat anti-rabbit IgG-Alexa 647 

in permeabilization buffer for 30 min at 4°C, washed, and resuspended in FACs media (as 

above).  Relative levels of p-cofilin and cofilin were determined by quantifying the MFI by flow 

cytometry and ratioing to an isotype control.   

Caspase-1 activation: BMMFs were cultured in the presence or absence of IgG-ICs and 

incubated with FAM-FLICA caspase-1 (5 μM) 20 minutes prior to fixation in FACs media (as 

above) at room temperature. Cells were fixed in room temperature with 2% paraformaldehyde 

and transferred to 4°C for 15 min. Cells were resuspended in FACS media and caspase-1 

activation was determined by quantifying the MFI using flow cytometry. 

Immunoprecipitation and Western Blot 

Lysates were prepared by the addition of lysis buffer containing 1% CHAPS or 1% 

NP40, 150 mM NaCl, 10 mM Tris (pH 7.5), 2 mM sodium orthovanadate, 1 mM PMSF, 0.4 mM 

EDTA, 10 mM NaF, and 1 μg/ml each of aprotinin, leupeptin, and α1-antitrypsin to cell pellets. 

Lysates were held on ice for 10 min followed by the removal of particulate material by 

centrifugation at 12,000 × g for 10 min at 4°C. Lysates were then by 10% (S6 and Akt signaling) 

or 15% (Rab39a) SDS-PAGE.  Separated proteins were transferred to Immobilon-FL 

membranes. Membranes were blocked in LI-COR Blocking Buffer, then incubated with the 

various immunoblotting Abs followed by the appropriate fluorophore-conjugated secondary Abs. 

Immunoreactive proteins were detected using a LI-COR Odyssey infrared imaging system with 

Odyssey 3.0 software.  
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Figures 

Figure 1. Heightened and mislocalized 

mTOR activity impairs lysosomal 

maturation in lupus-prone MFs. Cell 

lysates from unstimulated BMMFs (1-

1.5x106 cells) were quantitated by 

immunoblot for the indicated proteins; 4 

experiments, 4 mice (A-B).  A 

representative blot is shown with 

densitometry quantification (A) and 

densitometry quantification of phospho-

proteins normalized to total protein (B).  

BMMFs were stimulated with IgG-ICs 

and analyzed for the indicated signaling 

effectors over time using flow cytometry  

5 experiments, 3-6 mice (C) Phospho-

proteins were normalized to total protein.  

BMMFs were stimulated with IgG-ICs ± 

Torin1 (250 ng/mL), and then examined by confocal imaging for the location of mTOR within 

the cell (Bar = 5 μm); 2-3 experiments, 2-3 mice, 10-29 cells (D-E), and by flow cytometry for 

the total levels of mTOR; 3 experiments, 3 mice (F).  BMMFs were stimulated with IgG-ICs ± 

Torin1 (250 ng/mL), or ± rapamycin (100 ng/mL) and assessed for lysosomal pH by ratiometric 

flow cytometry, 10 experiments, 10-12 mice (G).  BMMFs were stimulated with fluorescently-
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tagged IgG-ICs ± Torin1 (250 ng/ml), for 72 hours, and then assessed for surface fluorescence 

by flow cytometry; 5-6 experiments, 5-6 mice (H).  Error bars=SEM. Statistical analysis for all 

panels used Student t test, *p≤0.05, **p≤0.01, ***p≤0.001.    
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Figure 2. Heightened mTOR activity 

impairs lysosome maturation by 

driving the phosphorylation of cofilin. 

BMMFs were stimulated with IgG-ICs ± 

Torin1 (250ng/mL), rapamycin (100 

ng/mL), or LIMKi 3 (3 μM) and 

analyzed at indicated time points for 

levels of p-cofilin by flow cytometry; 10 

experiments, 3-10 mice (A).  p-cofilin 

levels are normalized to total cofilin 

levels.  BMMFs were stimulated with 

IgG-ICs for 15 minutes and examined 

by confocal imaging for the localization 

of p-cofilin and cofilin with actin and 

IgG-ICs, (Bar = 5 μm); 3 experiments, 3 

mice, 13-14 cells (B-C).  BMMFs were cultured with jasplakinolide (2 μM) or LIMKi 3 (3 μM) 

for one hour, and then stimulated with IgG-ICs and assessed for lysosomal pH by ratiometric 

flow cytometry, 4 experiments, 4 mice (D).  Error bars=SEM. Statistical analysis for all panels 

used Student t test, *p≤0.05, **p≤0.01, ***p≤0.001.    
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Figure 3: Phosphorylation of cofilin prevents a localized caspase cascade at the phagosome. 

BMMFs were stimulated with IgG-ICs for 15 minutes, and then examined by confocal imaging 

for the localization of caspase-11 with actin and IgG-ICs (Bar = 5 μm) ± Torin1 (250ng/mL), 

rapamycin (100 ng/mL), or LIMKi 3 (3 μM); 3 experiments, 3 mice, 10-16 cells (A-C).  BMMFs 

stimulated with IgG-ICs and assessed for lysosomal pH at indicated time points by ratiometric 

flow cytometry; 8 experiments, 5-8 mice (D).  BMMFs from the indicated mice were stimulated 

with IgG-ICs ± Torin1 (250ng/mL), ± rapamycin (100 ng/mL), ± jasplakinolide (2 μM), or ± 
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LIMKi 3 (3 μM).  Caspase-1 activation was measured by flow cytometry; 6 experiments, 2-6 

mice (E-G).  BMMFs were stimulated with IgG-ICs for 15 minutes, and then examined by 

confocal imaging for the localization of activated caspase-1 with IgG-ICs (Bar=5 μm); 3 

experiments; 3 mice, 30-45 cells (H-I).  BMMFs stimulated with IgG-ICs and assessed at 

indicated time points for lysosomal pH by ratiometric flow cytometry; 8 experiments, 2-8 mice 

(J).  Error bars=SEM. Student t test, *p≤0.05, **p≤0.01, ***p≤0.001.    
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Figure 4. Cleavage of Rab39a by caspase-1 is integral for lysosomal maturation.  BMMFs 

were stimulated for 1 hour with IgG-ICs.  Following Rab39a immunoprecipitation (13-15x106 

cells), Rab39a protein levels were immunoblotted (A) and full length and cleaved Rab39a was 

quantitated by densitometry; 3 experiments, 3 mice (A-C).  B6 v-Myc MFs were transduced with 

indicated retroviral constructs.  Once constructs were stably expressing, MFs were stimulated 

with IgG-ICs and MFs expressing GFP were assessed for lysosomal pH at indicated time points 

by ratiometric flow cytometry; 3 experiments (D).  Error bars=SEM. Student t test, *p≤0.05, 

**p≤0.01, ***p≤0.001.    
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Figure 5. Signaling pathway regulating Rab39a mediated lysosomal maturation in lupus-

prone and healthy MFs. 
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Supplemental Figures 

 

Fig. S1. Torin1 inhibits mTORC1/C2 while rapamycin inhibits mTORC1. BMMFs were 

stimulated with IgG-ICs for 60 minutes and analyzed for the indicated signaling effectors using 

flow cytometry; 3 experiments, 3 mice.  Error bars=SEM. Student t test, *p≤0.05, **p≤0.01, 

***p≤0.001. 
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Fig. S2. MRL/lpr MFs have impaired membrane ruffling and decreased migration. BMMFs 

were plated onto glass coverslips and after 48 hours where imaged for membrane ruffling (Bar = 

10 μm) (A).  A kymograph was generated for each cell and the persistence and average velocity 

for membrane extension and retraction was quantified; 3 experiments, 3 mice, 37-39 cells.  

BMMFs were plated onto fibronectin coated glass coverslips and after 24 hours where imaged 

for MF migration (Bar = 130 μm) (B). The percentage of migrating cells was quantified per field 

of view over a 2 hour time course.  Also, the average velocity and persistence of migration was 

quantified for each migrating cell; 3 experiments, 3 mice, 24-30 cells.  Error bars=SEM. Student 

t test, *p≤0.05, **p≤0.01, ***p≤0.001. 
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CHAP 
CHAPTER 4: Discussion 

With the advancement of genetics, genome wide association studies (GWAS) were 

thought to be the key to identifying the underlying mechanisms to autoimmune diseases.  It’s 

based on the common disease-common variant hypothesis where the allelic frequency of variants 

that cause common diseases are shared (common) across patients (198, 199).  Like many other 

autoimmune diseases, the SLE GWAS identified multiple polymorphisms, many of which had a 

low penetrance with an odds ratio less than 2 (160, 200-212).  One possible interpretation is that 

the acquisition of polymorphisms is additive and that acquiring multiple polymorphisms with a 

low odds ratio surpasses a predetermined threshold resulting in SLE pathogenesis.  They propose 

that larger studies and further parsing of the data would yield more insights into disease.  

Another possibility is that the results verify that the common disease-common variant hypothesis 

does not apply to complex human diseases (213).  Instead, disease-causing alleles might be rare 

with many allelic variants leading to common mechanistic defects.  For example, we see that 70-

80% of flaring SLE patients accumulate IgG-ICs on the surface of PBMCs.  In MRL/lpr mice, 

this accumulation is the result of heightened mTOR activity leading to impaired lysosomal 

maturation.  In SLE patients, there are many possible variants that can alter phagocytosis, 

vesicular trafficking, and lysosomal function that would lead to the same impaired degradation of 

IgG-ICs and accumulation at the membrane.  Therefore in the context of complex human 

diseases identifying common mechanisms underlying disease pathology will be more productive 

than high-powered GWASs.   
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Patients who have been diagnosed with an autoimmune disease tend to have an increased 

risk of acquiring secondary autoimmune diseases.  For example in patients diagnosed with SLE, 

overlapping autoimmune diseases such as diabetes (156), rheumatoid arthritis (157), and 

Sjögren’s syndrome (158) are common.  This suggests that there are fundamental 

defects/mechanisms in autoimmunity that permeate multiple diseases in addition to modulating 

factors that are unique to specific autoimmune diseases.  My thesis project has identified that 

lupus-prone MFs fail to properly mature the lysosome and as a result they do not fully acidify.  

Therefore phagocytosed IgG-ICs are not degraded and accumulate on the cell membrane.  The 

accumulation was not unique to the MRL/lpr background as genetically unrelated models of 

lupus (NZM2410) also accumulated high levels of IgG-ICs.  Furthermore the accumulation of 

IgG-ICs occurs in other models of autoimmunity including diabetes (NOD) and arthritis 

(K/BxN).  Since these murine models are genetically unrelated to lupus, impaired lysosomal 

degradation of internalized cargo (ie: IgG-ICs) could be a fundamental defect in autoimmunity, 

while the specific antigen contained in the cargo would modulate disease.   

In a pilot study I tested whether the impaired lysosomal degradation of IgG-ICs is 

fundamental to autoimmunity, while the accumulating antigen is unique to specific diseases.  If a 

lysosomal defect underlies diabetes then insulin could be the antigen accumulated on the surface 

since the antigen is specific to beta cells and autoantibodies are produced against insulin during 

autoimmunity.  We analyzed splenic MFs from diabetic NOD mice (≥ 26 weeks; blood glucose 

levels ≥ 500 pg/dL) for accumulation of IgG, Sm, and insulin.  Even though IgG and Sm was 

elevated and punctate on the surface of diabetic MFs, there was no detectable accumulation of 

insulin on the surface of the cells.  During diabetes it’s been demonstrated that the profile of 

autoantibodies changes over time and it’s possible that insulin-containing ICs are relatively low 
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when the mice are fully diabetic (blood glucose level ≥ 500 pg/dL).  In a separate study, I 

quantified IgG and Sm levels on the surface of PBMCs from NOD mice at different blood 

glucose levels.  Pre-diabetic mice (blood glucose levels < 100 pg/dL) had Sm levels comparable 

to B6 on the surface of monocytes.  As blood glucose levels rose, Sm on the surface of the 

monocytes also increased.  Interestingly, IgG levels on the surface of monocytes were bimodal 

with the highest in pre-diabetic and fully diabetic mice.  This could suggest that IgG-ICs in fully 

diabetic mice could consist of a higher proportion of apoptotic debris, while pre-diabetic mice 

could have IgG-ICs with a higher proportion of diabetogenic antigens.  Therefore, hematopoietic 

cells from pre-diabetic mice may need to be used to identify accumulated insulin (or other 

diabetogenic antigens) on the cell surface.  Furthermore, if impaired lysosomal degradation 

underlies multiple autoimmune disease, it’s possible that the antigen underlying the disease can 

evolve as the autoimmunity progresses.  

Nuclear antigens accumulate on the surface of multiple hematopoietic cells (B cells, T 

cells, MFs, and DCs) suggesting that the lysosomal maturation defect affects multiple cell types.  

In MFs and DCs the accumulated nuclear antigen was in the form of IgG-ICs bound primarily to 

FcγRI and FcγRIV.  B cells have one FcγR (FcγRIIb) and studies utilizing FcγRIIb deficient 

mice demonstrated that FcγRIIb only accounts for 10% of the nuclear antigen that accumulates 

on B cells.  The BCR is not a likely candidate for how nuclear antigen is displayed since all the 

B cells in MRL/lpr mice seem to accumulate nuclear antigen and it’s unlikely that every BCR 

shares an affinity for nuclear antigen.  I hypothesized that nuclear antigen accumulate on B cells 

due to mislocalized TLR7 and TLR9 (and in humans, TLR8) on the surface of the cell as a result 

of impaired lysosomal maturation.  TLR7 and TLR9 traditionally localize to the phagolysosome 

to interact with their ligands and signal intracellularly (214).  Prior to the activation of the BCR, 
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endosomal TLRs are localized to the ER and have limited access to ligand, which prevents 

aberrant TLR activation.  In a pilot study we found lupus-prone B cells do not acidify their 

lysosomes.  This suggests two possible mechanisms that could drive intracellular TLRs to the 

cell membrane and allow them to bind exogenous nuclear antigen.  First, apoptotic debris is 

internalized and trafficked to the phagolysosomal compartment where the nuclear antigen binds 

TLRs.  Since, the lysosome does not acidify, the nuclear antigen does not get degraded and the 

nuclear antigen bound to intracellular TLRs is recycled back to the cell membrane much like we 

saw in MFs where IgG-ICs bound by FcγRs are recycled.  The second possibility is that 

activation by cytokines (BAFF, IFNα) and/or the BCR promotes TLR translocation to the 

phagolysosome.  Since the phagolysosome does not acidify, empty TLRs can traffic to the cell 

membrane where they can bind to extracellular nuclear antigen.  In either scenario, it’s possible 

that the TLRs bound to nuclear antigen will be able to signal from the membrane which brings 

up an interesting situation.  Autoreactive B cells are either deleted or tolerized based on BCR 

specificity.  Therefore in peripheral B cells that are not tolerized, the BCR acts as the gate that 

spatially separates universal PAMPs (ie: DNA, RNA) from intracellular innate receptors.  If 

intracellular TLRs localize to the membrane and bind their ligands to elicit downstream 

signaling, this would essentially bypass BCR specificity and allow B cells to activate 

indiscriminately.  It’s been demonstrated that TLR7 and TLR9 play an important role in SLE 

pathogenesis but most of these studies were done with RF B cells and ICs, therefore the TLR 

activation was only addressed in the context of an autoreactive B cell (90, 215).  As a result, 

there has been no mechanistic explanation how intracellular TLRs remain chronically activated 

during autoimmunity in non-autoreactive B cells.  Impaired lysosomal maturation inducing 

intracellular TLRs to the cell membrane may provide a mechanism for the breakdown in B cell 
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tolerance through chronic activation of mislocalized/surface TLR7 and TLR9.  Current studies in 

the lab have identified that impaired lysosomal acidification drives heightened intracellular TLRs 

to the membrane, TLR9 is capable in binding DNA at the membrane, and B cells from MRL/lpr 

mice and SLE patients have heightened levels of TLR7 and TLR9 on the surface of the cell. 

While the mislocalization of intracellular TLRs may underlie the accumulation of nuclear 

antigens in B cells, this does not seem to be the case in T cells.  Furthermore, we have been 

unable to identify any receptors critical in the accumulation of nuclear antigens on T cells.  T 

cells are unique because the other hematopoietic cells (B cells, MFs, and DCs) accumulate low 

levels of nuclear antigen on the surface, but T cells do not.  Only lupus-prone T cells accumulate 

nuclear antigen.  This suggests that the mechanism for the accumulation of nuclear antigens on T 

cells is only present during autoimmunity.  Furthermore the other hematopoietic cells are antigen 

presenting cells and are capable of internalizing antigen via FcγRs or the BCR to process and 

present to T cells.  However, T cells have never been described to possess a similar 

internalization capacity.  It’s possible that lupus-prone T cells express a receptor during the 

disease state that is not present in healthy T cells.  Another possibility is that the T cells 

accumulate nuclear antigen through a process called trogocytosis, which involves the transfer of 

plasma membrane fragments from one cell to another.  Trogocytosis allows recipient cells to 

acquire molecules that they do not usually express and/or strips donor cells of molecules altering 

their function (216-220).  This interaction has been demonstrated to occur during MHC 

presentation of peptides on APCs to the cognate TCR on T cells (217, 221, 222).  Therefore, 

during autoimmunity when a DC has accumulated high levels of nuclear antigens on the surface, 

when it presents processed peptide antigens through the MHC to a T cell, the T cell is able to 

capture the entire MHC-peptide complex along with other molecules on the membrane of the 
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DC.  Since there are heightened levels of nuclear antigen on lupus-prone DCs compared to 

healthy, there is a higher probability that nuclear antigen will be transferred to the cognate T cell 

during antigen presentation, which may explain why healthy T cells do not show accumulated 

nuclear antigen.  It’s possible that the nuclear antigen and/or FcγRs are able to elicit downstream 

signaling in T cells, which could alter its activation state but further experiments will need to be 

performed to test this hypothesis.   

The observation that IgG-ICs recycle back to and accumulate on the surface of the cell is 

might be a normal cellular defense mechanism that is being applied incorrectly.  There is a 

subset of pathogens that upon phagocytosis are able to either escape the phagosome or halt 

phagosomal maturation so that they can replicate intracellularly.  In this scenario, it would be the 

in the host cell’s best interest to recycle the pathogen back to the surface of the cell.  First, 

intracellular pathogens typically utilize the host’s intracellular proteins for nutrients and 

replication.  Therefore by recycling the pathogen back to the cell surface it could impair the 

pathogen’s replication by spatially restricting it to the extracellular region.  Furthermore, the 

recycled pathogen could still be attached to the receptors that were critical in phagocytosis which 

would restrict the pathogen’s mobility.  Second, the accumulated pathogen on the surface of the 

cell could be used to initiate an immune response.  The accumulated pathogen on the surface of 

the cell creates a repeating high avidity substrate to crosslink the BCR on nearby B cells and 

initiates antibody secretion independent of T cell help.  If the accumulated pathogen on a host 

cell is recognized by a MF and it is unable to engulf the entire pathogen-host cell complex, this 

could initiate frustrated phagocytosis where a synapse would be formed between the host cell 

and the MF.  The MF would then release ROS, anti-microbial peptides, and proteolytic enzymes 

to destroy the pathogen-host cell complex.  Finally, the accumulated pathogen on the surface of 
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the cell could act as a danger signal that the host cell is potentially infected.  This could trigger 

nearby neutrophils to degranulate and kill the host cell, thereby preventing replication of the 

pathogen.  Lupus-prone MFs are unable to degrade phagocytosed IgG-ICs and this could be 

interpreted as a pathogen hindering lysosomal maturation.  As a result, IgG-ICs are recycled to 

the membrane which places high levels of nuclear antigen on the surface of the cells, priming an 

immune response against self-antigens.  

One unpublished experiment that I conducted might support this hypothesis.  B6 MFs 

that were cultured with live E. coli killed and degraded the bacteria and recycled only small 

amounts of LPS back to the cell surface at 12 hours and 72 hours post-infection (0.74-fold).  In 

contrast MRL/lpr MFs were unable to efficiently kill or degrade the bacteria and continuously 

accumulated LPS on the surface of the cell out to 72 hours (6.4-fold).  While these results are 

consistent with the recycling of pathogens as a cellular defense mechanism, further studies will 

need to be conducted to solidify these claims.  Currently it’s unknown whether the LPS seen on 

the surface of the cells was whole or pieces of partially degraded bacteria.  It would also be 

interesting to infect B6 MFs with a more virulent strain of E. coli (one that is resistant to 

lysosomal degradation or prevents this process) to see if this induces heightened recycling of 

LPS to the surface.   

If we assume that this mechanism exists in cells as a means of combating intracellular 

pathogens, it may also play an equally important role in establishing tolerance for B cells.  As 

mentioned previously, the intracellular bacteria might be localized to the cellular membrane to 

spatially restrict it from intracellular molecules necessary to its replication.  In this model, the 

receptor would still be crosslinked by the pathogen therefore the receptor would need to be 

modified in order to prevent reinternalization.  This could be achieved by ITAMi formation or 



80 

 

the conversion of a dually phosphorylated ITAM to monophosphorylation which prevents Syk 

activation and downstream signaling.  Therefore, when FcγRI internalizes IgG-ICs and the 

lysosome cannot degrade the cargo, this results in prolonged ITAM activation which could 

supply a signal to dephosphorylate one of the ITAM residues so that when the receptor recycles 

back to the membrane it no longer can elicit a downstream signal despite the receptors being 

crosslinked.  Unpublished data demonstrating that recycled IgG-ICs on MRL/lpr MFs are 

severely limited in their dynamics on the membrane and fail to reinternalize (compared to newly 

bound IgG-ICs) is consistent with this model.   

In B cells, this same mechanism can result in anergy.  Broadly speaking, there are two 

forms of tolerance: central tolerance and peripheral tolerance.  During central tolerance, when a 

B cell is identified as autoreactive in the bone marrow, the B cell goes through a series of 

receptor editing events until either the B cell is no longer autoreactive or the B cell is deleted 

from the repertoire.  In the periphery, when a B cell is chronically stimulated by antigen 

(typically self-antigens) the B cell becomes anergic where it is no longer active and has 

heightened basal calcium, p-ERK, and ITAMi formation (154, 223).  Just as impaired lysosomal 

degradation of phagocytosed pathogens could lead to prolonged FcγRI signaling and ITAMi 

formation, chronic activation of the BCR could lead to ITAMi formation and anergy.  In short, 

for a non-autoimmune B cell, recycling of BCRs could induce anergy.  It’s been commonly 

thought that a constant supply of exogenous self-antigens is necessary to renew the BCR 

signaling and maintain anergy, but I propose that once chronic BCR signaling passes a threshold, 

the BCR recycles back to the membrane bound to its cognate ligand and ITAMi formation is 

attained.  Therefore, once anergy is achieved a source of exogenous ligand is not necessary to 

maintain anergy because the BCR is already permanently bound to ligand.   
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