
UTILIZING ULTRAFAST SPECTROSCOPY TO STUDY CHARGE SEPARATION FOR 
SOLAR ENERGY CONVERSION 

Melissa Katherine Gish 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 

of Chemistry. 

Chapel Hill 

2018 

Approved by: 

John Papanikolas 

Yosuke Kanai 

Joanna Atkin 

Jillian Dempsey 

Marcey Waters 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2018 

Melissa Katherine Gish 

ALL RIGHTS RESERVED



iii 
 

ABSTRACT 

Melissa Katherine Gish: Utilizing Ultrafast Spectroscopy to Study Charge Separation for Solar 

Energy Conversion 

(Under the Direction of John Papanikolas) 

The ever-increasing demand for useable energy coupled with the depletion of fossil fuels 

require a shift to renewable energy resources. The dye-sensitized photoelectrosynthesis cell 

(DSPEC) takes inspiration from photosynthesis. The DSPEC is a tandem cell where a series of 

photon absorption and electron transfer events lead to water oxidation at a photoanode and CO2 

reduction at a photocathode to store energy in chemical bonds (solar fuels). While overall 

efficiencies can be determined through electrochemistry, these methods fail to reveal information 

about underlying charge separation dynamics that may inhibit performance. To develop a fully 

realized picture of these dynamics, we need to utilize time-resolved transient absorption 

spectroscopy.  

This dissertation presents several systematic studies of charge separation dynamics on 

surfaces and in solution.  We explored the thickness dependent interfacial dynamics of dye-

sensitized core/shell films and how those dynamics change upon annealing these films. Next, we 

investigated the effects of immobilizing the dye on the surface with thin layers of a conductive 

metal oxide. Finally, we examined the length-dependent dynamics of a donor-acceptor system 

incorporating a thiophene oligomer donor and naphthalene diimide acceptors in solution. This 

work was made possible through extensive collaborations with the groups of Dr. Thomas J. 

Meyer and Dr. Kirk Schanze.
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Chapter 1: Introduction 

1.1. Overview. 

The growing dependence on hydrocarbon-based energy around the world, especially in 

developing economies, cannot be sustained long-term. According to the Department of Energy 

(DOE), global energy consumption is expected to increase from 5.7x1020 J in 2012 to 8.1x1020 J 

in 2040.1 Fossil fuels are predicted to make up 80% of this energy consumption, despite the 

continued depletion of our reserves. At current and predicted rates of consumption, fossil fuel 

reserves will not last through the next 1000 years.2-4 Additionally, the burning of fossil fuels 

continues to create problems for the environment through the steady increase of global 

temperatures. 

As global warming concerns rise, the race to develop viable fossil fuel alternatives is heating 

up. The global amount of carbon dioxide (CO2) in the atmosphere eclipsed 400 ppm in 2015 and 

according to the National Oceanic and Atmospheric Administration (NOAA), the CO2 levels in 

the atmosphere increased at a record pace for the second consecutive year in 2017.5 The effects 

of global warming are increasingly visible. Rising sea levels, melting glaciers, and severe storms 

highlight the necessity for carbon-neutral energy sources to slow the rate of atmospheric CO2 

growth. 

Solar energy is by far the most prominent carbon-neutral, renewable energy resource. 

Collecting sunlight from just 2% of the earth’s surface for 8 hours using a solar energy 

conversion device with 12% efficiency would provide enough energy to power the globe for 2 
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weeks.6 Current photovoltaic devices convert sunlight directly to electricity;7-8 however, this 

presents a problem for periods of high power usage like nighttime and cloudy days. In order to 

shift our source of global power to the sun, we need to be able to appropriately store this solar 

energy for use at all times.  

1.2. Artificial Photosynthesis. 

Artificial photosynthesis implements a similar strategy to natural photosynthesis in plants, 

which uses sunlight to reduce CO2 into sugar using water: 

6CO2 + 6H2O + 48hν → C6H12O6 + 6O2      (1.1) 

In biological systems, such as photosystem II, an assembly of light-harvesting compounds (i.e. 

chromophores) work together to funnel light energy across the solar spectrum to reaction centers, 

where catalysis occurs.9 Successful completion of the chemical reaction in equation 1.1 involves 

a complicated series of photon absorptions, electron transfer and catalytic events that has evolved 

over the course of billions of years.10 Artificial photosynthesis looks to simplify the natural 

photosynthetic process to convert sunlight into carbon-based fuels.7 One strategy for artificial 

photosynthesis is the dye-sensitized photoelectrosynthesis cell (DSPEC) (Figure 1.1).11 In the 

DSPEC, two separate photoelectrodes are connected in tandem: a photoanode for water 

oxidation, and a photocathode for CO2 reduction.  

 



 

3 
 

 

Figure 1.1. Schematic of the tandem dye-sensitized photoelectrosynthesis cell (DSPEC) for 

water oxidation (photoanode) and CO2 reduction (photocathode). The events at the photoanode 

are (1) light absorption by the chromophore, (2) electron injection into the conduction band of 

the semiconductor, (3) transport of the electron through the semiconductor to the transparent 

conducting oxide (TCO) for transfer to the photocathode, (4) intra-assembly hole transfer from 

the chromophore to the catalyst, (5) repetition of steps 1-4 four times to catalytically oxidize 

water to oxygen and 4 protons (H+) that assist in CO2 reduction at the photocathode. At the 

photocathode, (1) light absorption by the chromophore is followed by (2) hole injection into the 

valence band of the semiconductor. The hole is (3) transported through the semiconductor to the 

TCO. (4) Intra-assembly electron transfer from the chromophore to the reduction catalyst occurs 

and (5) CO2 reduction to CO occurs. 
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1.3. The Dye-Sensitized Photoelectrosynthesis Cell (DSPEC). 

Each electrode in the DSPEC starts with a wide band-gap semiconductor transparent in the 

visible region of the solar spectrum, such as titanium dioxide (TiO2, 3.2 eV),6  and tin oxide 

(SnO2, 3.6 eV).12 The position of the conduction band (CB) of the n-type semiconductor (e.g. 

TiO2, SnO2) at the photoanode and valence band (VB) of the p-type semiconductor at the 

photocathode (e.g. NiO) must be sufficient to accept electrons or holes from photoexcited 

chromophores adsorbed to the surface (Figure 1.1, Step 2). The oxidized or reduced 

chromophore transfers an equivalent out to a catalyst (Figure 1.1, Step 4), resetting the 

chromophore to absorb another photon. These photoinduced electron transfer processes repeat 

multiple times on either side prior to catalysis. The bulk of this dissertation focuses on 

characterization of the photoanode, therefore, the following discussion focuses on the events 

occurring at the photoanode.  

The photoinduced processes at the photoanode are illustrated as a series of four 

photoactivation steps in Figure 1.2. Each photoactivation step includes a light absorption event 

followed by electron injection into the semiconductor CB and oxidative equivalent transfer to the 

catalyst. The thermodynamic driving force and, thus, the rate, for oxidative equivalent transfer 

decreases with each subsequent photoactivation step. Additionally, changes at the activation site 

of the catalyst as it moves through the catalytic cycle are rate limiting, in particular, the O-O 

bond formation between the 3rd and 4th photoactivation steps. Deleterious charge recombination, 

or back electron transfer (BET), can occur between the injected electrons and the oxidized 

chromophore, or catalyst at any step in the process. BET becomes increasingly competitive at 

higher photoactivation steps, and as such, the first photoactivation step is the best characterized 

under open circuit conditions. Because the processes in the first step occur on the picosecond 
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time scale, we must utilize femtosecond transient absorption spectroscopy (fsTA) to fully realize 

these dynamics. Chapter 2 details the fsTA setup used in these experiments including a home-

built optical parametric amplifier (OPA) that generates a range of wavelengths for our excitation 

pulse. 

 

Figure 1.2. Illustration of the kinetic scheme of the four photoactivation steps involved in water 

oxidation at a DSPEC photoanode. 

A well-studied chromophore that can act as the light absorber is a ruthenium tris(bipyridine) 

(RuII(bpy)3)
2+) derivative, [RuII(bpy)2(4,4’-(PO3H2)2bpy)]2+ (RuP2+) (Figure 1.3B). The excited-

state oxidation potential of RuP2+ (E°’(Ru3+/2+*) = -0.52 V vs NHE)13 is appropriately positioned 

to inject electrons into the CB of TiO2 or SnO2, which lie at -0.1 V vs. NHE and +0.3 V vs. 

NHE, respectively.14 Excited-state electron injection from RuP2+* (Figure 1.1, Step 2) can occur 
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via three pathways: direct, ultrafast, and picosecond.  In a direct injection mechanism, the 

electron is photoexcited from the ground state directly into the CB of the semiconductor.15 

 

 

Figure 1.3. (A) Illustration of the ultrafast and picosecond injection processes from photoexcited 

RuP2+ (RuP2+*) into the conduction band of TiO2. (B) Chemical structure of [RuII(bpy)2(4,4’-

(PO3H2)2bpy)]2+ (RuP2+). 

Ultrafast and picosecond injection are step-wise mechanisms (Figure 1.3A), where 

photoexcitation of the RuP2+ creates a singlet metal-to-ligand charge transfer (1MLCT) state. 

The 1MLCT can inject into the CB or undergo rapid intersystem crossing (ISC) to a triplet 

MLCT state (3MLCT) within ~100 fs. Electron injection on the picosecond time scale is 

competitive with vibrational relaxation through the 3MLCT excited state manifold. The rate of 

electron injection depends on the overlap between the excited-state manifold and the density of 
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states of the semiconductor CB.16 Injection from vibrationally “hot” 3MLCT state occurs on the 

10s ps time scale, while injection in conjunction with vibrational relaxation continues through 

the 100s ps time scale.  

Oxidative equivalent (hole) transfer (Figure 1.1, Step 4) from the oxidized chromophore 

(RuP3+) to a water oxidation catalyst (Rucat
2+) is fast and efficient. The first photoactivation step 

of three chromophore-catalyst assemblies were thoroughly characterized by the Papanikolas 

group, where chromophore and catalyst are attached via a peptide backbone, an alkyl bridge, and 

in a bilayer configuration via a zirconium (Zr4+) bridge. The time scale for hole transfer is 380 

ps,17 145 ps,18 and 170 ps19 for the peptide, alkyl, and bilayer configurations, respectively with 

100% efficiency.  Despite the assembly configuration, however, charge recombination between 

the oxidized catalyst and the injected electron is fast, where τ = 1 μs,17 6.7 μs,18 760 ns19 for 

peptide, alkyl, and bilayer, respectively.   

1.4. Core/Shell Advantage. 

Synthetic strategies to extend the lifetime of the charge separated state between the injected 

electrons and oxidized surface species have had limited success.17-21 Instead, efforts have turned 

to manipulating the semiconductor surface to physically separate the injected electrons and holes 

via an energetic barrier. In particular, a core/shell strategy demonstrates significant improvement 

in device performances over simple nanocrystalline films.22-29 Core/shell films are constructed 

via atomic layer deposition (ALD), where a thin layer of a metal oxide is deposited on a 

mesoporous nanocrystalline film followed by dye sensitization. The core and shell are chosen 

based on the relative positions of their CB edges to allow excited state injection into the shell, 

followed by electron transfer to the core, but recombination from electrons in the core is slowed 

by a thermodynamic barrier introduced by the shell.30-31 In SnO2/TiO2 core/shell films (Figure 
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1.4A), for example, the SnO2 CB edge lies more positive than that of TiO2, where electrons 

localized in the core must surmount a 0.4 eV barrier or tunnel through the shell to recombine 

with an oxidized chromophore or catalyst.24-25  

Devices incorporating core/shell films perform significantly better as photoanodes than TiO2 

or SnO2 alone; however, faradaic efficiencies and oxygen production in these devices remain 

low.22-23 Chapter 3 of this dissertation explores the interfacial dynamics of dye-sensitized 

SnO2/TiO2 core/shell films (SnO2/TiO2|RuP2+) as deposited, i.e., an amorphous TiO2 shell (a-

TiO2), and Chapter 4 reveals the changes in these dynamics upon annealing the core/shell films, 

producing a nanocrystalline shell (n-TiO2).  

 

Figure 1.4. (A) Illustration of photoinduced processes occurring at the SnO2/TiO2|RuP2+ 

interface. (B) Illustration of photoinduced processes occurring in “buried” photoanodes, where 
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RuP2+ is covered in ~2 nm of ALD TiO2 (TiO2|RuP2+|a-TiO2). 
1MLCT = singlet metal-to-ligand 

charge transfer state; 3MLCT = triplet metal-to-ligand charge transfer state; ISC = intersystem 

crossing; e‒ inj = electron injection; CR= charge recombination. 

1.5. “Buried” Chromophores. 

In addition to issues with fast recombination, surface instability of the adsorbed chromophores 

is a substantial problem in DSPECs, particularly in basic conditions where water oxidation is 

more efficient.13 A thin layer of ALD TiO2 protects the dye from desorption and degradation, 

enhancing surface stability both in the dark and under illumination. Thicker layers of ALD, 

completely burying the chromophore (~2 nm), allows for facile construction of chromophore-

catalyst assemblies, where the catalyst is loaded onto the ALD surface and protected with a few 

extra layers of ALD.32-33 The systematic effects of burying the chromophore on the surface has 

not been extensively studied. In Chapter 5, transient absorption spectroscopy is used to 

understand the effects of different overlayer thicknesses on the interfacial dynamics and its 

impact on DSPEC design.  
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Figure 1.5. Thiophene (nT, top) and thiophene oligomer donors end-capped with naphthalene 

diimide acceptors (nT-NDI, bottom), where n = 2(y+1) and y = 1, 2, 3, 4, or 5. 

1.6. Donor-Acceptor Oligomers. 

Chapter 6 of this dissertation focuses on a different aspect of solar cell design: light-

harvesting. Ruthenium chromophores absorb only a small portion of the solar spectrum, limiting 

the potential efficiencies of DSPECs and other solar energy devices. Polymers, such as poly(3-

hexyl)thiophene (pT) have a significant amount of π-conjugation, which allows them to absorb a 

wider range of the solar spectrum.34 These π-conjugated polymers are effective electron donors; 

however, the heterogeneity of polymer size and composition complicates quantifying rates and 

mechanisms of charge separation when incorporated into a donor-acceptor system. Synthesis of 

oligomers is controlled and precise making them powerful model systems for understanding 

larger-scale dynamics. Additionally, these oligomers are often integrated into molecular-wire 

like systems and utilized in solar energy conversion devices themselves.35-36 The charge 

separation and recombination dynamics of thiophene oligomers (nT) end-capped with NDI 
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acceptor units (nT-NDI) as a function of length with 4, 6, 8, 10, and 12 (Figure 1.5) thiophene 

units were studied using transient absorption spectroscopy.  
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Chapter 2: Instrumentation 

2.1. Transient Absorption Description. 

Transient absorption spectroscopy is a pump-probe technique that is used to follow the 

dynamics of a system on time scales ranging from femtoseconds through milliseconds. The bulk 

of the work in this dissertation utilizes a femtosecond transient absorption spectroscopy (fsTA) 

setup shown in Figure 2.1 and described previously.1-3 Using this setup, we can monitor the 

photophysical phenomena of charge separation and recombination on surfaces and in solution 

from femtoseconds through 1.2 ns.  

The pump and probe in this fsTA setup are derived from the same laser source: a 1 kHz Ti-

Sapphire chirped-pulse amplifier (Clark-MXR, CPA-2001). The output of the CPA-2001 is 775 

nm with a 150 fs pulse width, measured through autocorrelation (~240 fs FWHM). The layout of 

our experimental setup is illustrated in Figure 2.1. At the output, the beam is split by a 90:10 

beamsplitter (BS), where 90% of the beam travels to the optical parametric amplifier (OPA, 

Section 2.2) to generate the pump pulse. The pump pulse is chopped at 500 Hz and sent through 

a half-wave (λ/2) plate and neutral density wheel to control the polarization and power, 

respectively.   

The remaining 10% of the 775 nm output is used to generate the white light probe pulse and a 

small portion (5%) of this 10% is split off to monitor the autocorrelation width.  To delay the 

probe in time relative to the pump pulse, the beam is sent through a computer-controlled 

mechanical delay stage. The 775 nm beam is focused into a translating CaF2 window and 
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undergoes spectral broadening through supercontinuum generation. The white light probe 

extends from 325 nm through 750 nm and set to horizontal polarization. The pump polarization 

is set to magic angle (54.7°) relative to the probe pulse using the half-wave plate. Pump and 

probe beams are focused to ~150 μm spots and spatially overlapped at the sample. A fiber optic-

coupled multichannel spectrometer with a CMOS sensor coupled detects the pulse-to-pulse 

changes in the white light probe before and after pump excitation as the delay stage moves from 

negative delays through 1.2 ns. The instrument response is ~150 fs with 0.1 mOD resolution. 

 

Figure 2.1. Simplified illustration of the femtosecond transient absorption experimental setup. 

BS = beamsplitter; CaF2 = Calcium fluoride. 



 

17 

 

2.2. Optical Parametric Amplifier Description 

In order to produce the visible pump wavelengths used in the fsTA experiments, the 775 nm 

output of our laser must be sent through a near-IR optical parametric amplifier (OPA) and one or 

two β-barium borate (BBO) crystals, depending on the desired wavelength. The OPA is a home-

built system (Figure 2.3) based on a two crystal arrangement as described by Cerullo and De 

Silvestri.1 The input pulse is sent through a 90:10 beamsplitter (BS1). The front reflection of BS1 

(90% of the input beam) will be used as the amplifier beam in the second crystal for power-

amplification. The unused portion is sent through another 90:10 beamsplitter (BS2) and used in 

the pre-amplifier pass. 

Optical parametric amplification is a second-order nonlinear optical process that allows us to 

take our fixed CPA output at 775 nm and produce a tunable excitation pulse that is varied to 

meet our experimental needs. In our OPA, the 775 nm pulse is used as the high-powered, fixed 

frequency pump beam that transfers energy to a variable energy signal beam at lower powers. An 

even lower frequency idler beam is also generated to satisfy energy conservation laws, 

depending on the generated signal beam (ħωpump = ħωsignal + ħωidler, Figure 2.2). This process is 

similar to difference frequency generation (DFG) where interaction between two input beams 

creates a third lower frequency beam (ħω2 = ħω3 – ħω1); however, in the DFG case, ω3 and ω1 

are of similar intensities.5 

 

Figure 2.2. Illustration of optical parametric amplification. 
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Another requirement of successful amplification is satisfaction of the phase matching 

condition, where Δk = kpump + ksignal + kidler = 0. This ensures that the input waves are of the same 

phase along the propagation direction through the nonlinear crystal and maximizes the 

interaction between them. The phase matching can be tuned through changing crystal angles in 

the OPA to maximize amplification. 

Prior to building the OPA shown in Figure 2.3, our experimental setup had a single-crystal 

arrangement where pre- and power- amplification steps occur within the same nonlinear crystal. 

This configuration complicated the alignment and tunability of the output wavelengths as the 

power output was very sensitive to the crystal angle. The two-crystal configuration in Figure 2.3 

simplifies alignment and allows us to control the crystal angles separately. The crystal angles can 

be iterated to select the desired signal frequency in the pre-amplification pass and maximize 

power amplification in the second crystal (BBO2). The OPA displayed in Figure 2.3 expanded 

our wavelength range and significantly minimized alignment time. 
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Figure 2.3. (A) Schematic of the home-built optical parametric amplifier. (B) Photograph of the 

home-built optical parametric amplifier with important components labeled. BS = beamsplitter; 

M = mirror; L = lens; R = 775 nm reflector; BBO = β-Barium Borate crystal; DS = delay stage; 

WL = white light. 



 

20 

 

2.2.1. Pre-Amplifier Pass.  

The front reflection of BS2 (90% of the unused portion) is sent through an manual delay stage 

(DS1) and travels through M5 and M6 where it is focused through a 300 mm plano-convex lens 

on an optical rail to change the focus through BBO1. After this lens, the pump beam travels to 

M7 and reflects off of a 775 nm reflector (R1) into BBO1. The focus of this beam should be on 

the verge of generating continuum in BBO1. This works best when the beam reaches the focal 

point after BBO1. An iris before the lens attenuates the pulse power hitting the crystal.  

The 10% of the pulse that passed through BS2 generates white light in a Sapphire window. 

The beam hits M1 and passes through a 75 mm plano-convex lens where it is focused into the 

Sapphire window and generates a white light (WL) continuum. The window is rotated and the 

beam is attenuated using an iris until this continuum is stable. This continuum passes through a 

30 mm plano-convex achromatic lens and travels to M2, M3, and M4. After M4, the IR portion 

of the continuum passes through the 775 nm reflector to become the seed pulse. The IR seed and 

775 nm pump pulse come together and travel collinearly into BBO1. 

The temporal and spatial overlap is very important to producing the seed pulse for power 

amplification. Spatial overlap can be achieved visibly using M3 and M4 for the IR seed and M7 

and R1 reflector to place these beams in the center of BBO1. The temporal overlap is adjusted 

using DS1. When this overlap is achieved, the lower intensity, lower frequency seed is amplified 

by the more intense, higher frequency pump beam. The amplified seed, known as the signal, is 

selected by the angle of the BBO1. The idler beam is generated due to energy conservation laws 

where ωidler<ωsignal< ωpump. The efficiency of the pre-amplification pass is maximized by 

changing the focus of the pump/seed lenses and the iris attenuation of the pump pulse. When 
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maximum spatial and temporal overlap is achieved, we observe a flash of visible radiation due to 

the sum frequency mixing of the signal and pump beams. 

2.2.2. Power Amplifier Pass.  

After BBO1, the signal, idler and pump beams are collimated in a 775 nm plano-convex lens 

then guided through M8 and M9, where the signal and idler, the IR wavelengths, pass through 

another 775 nm reflector (R2). The unused pump is reflected into a beam dump. Simultaneously, 

the front reflection from BS1 is sent down a long path through a telescope to decrease and 

collimate the beam size, then reflected off M10 and into DS2. Here, the temporal overlap of this 

pump with the IR beams amplified in BBO1 can be maximized through BBO2. After DS2, the 

pump travels to M11 and M12 before meeting up with the pre-amplifier pass at the 2nd 775 nm 

reflector. The signal, idler, and pump beams travel collinearly through BBO2 where 

amplification of the signal and idler occurs. A similar flash appears in this pass that is maximized 

by adjusting spatial and temporal overlap.  



 

22 

 

 

Figure 2.4. Maximum power (mW) for OPA-generated pump wavelengths. 

2.2.3. fsTA Pump Generation.  

To generate the visible pump pulse, the residual 775 nm is separated from the generated 

signal and idler pulses using a third 775 nm reflector (R3). The signal and idler pass through R3 

and travel to BBO3 through M14 and M15.  The residual 775 nm travels through DS3 and is 

directed into BBO4 via M17. Through changing crystal angles, and choosing beams to mix and 

match, we can create a variety of pump wavelengths ranging from 388 nm through 600 nm. A 

selection of wavelengths and their maximum powers are shown in Figure 2.3. To generate 388 

nm, we simply frequency double the 775 nm output through second harmonic generation (SHG) 

in BBO4. For wavelengths, such as 420 nm, SHG of the idler (1800 nm to 900 nm) in BBO3 is 

mixed with residual 775 nm via sum frequency generation (SFG). In SFG, two pulse of different 
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frequencies are added together in a nonlinear crystal (ħω3 = ħω1 + ħω2, Figure 2.5) in a process 

opposite that of DFG. For 490 nm, the signal output from the OPA (~1300 nm) is mixed with 

775 nm in BBO4. We can also utilize the fourth harmonic of the idler to produce 450 nm in 

BBO4.  

 

Figure 2.5. Illustration of Sum Frequency Generation in BBO4. 

The excitation pulse tunability afforded through optical parametric amplification expands our 

capabilities to study the dynamics of a wide variety of systems from transition metal complexes 

to organic systems.  
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Chapter 3: Ultrafast Recombination Dynamics in Dye-Sensitized SnO2/TiO2 Core/Shell 

Films 

This chapter previously appeared as an article in the Journal of Physical Chemistry Letters. The original 

citation is: Gish, M. K.; Lapides, A. M.; Brennaman, M. K.; Templeton, J. L.; Meyer, T. J.; Papanikolas, 

J. M. J. Phys Chem. Lett. 2016, 7, 5297. 

 

3.1. Introduction. 

Dye-sensitized photoelectrosynthesis cells (DSPECs) combine the photon-harvesting and 

charge separation properties of dye-sensitized solar cells (DSSC) with molecular catalysis to 

convert sunlight into chemical fuels. Central to the DSPEC operation is a photoanode that 

consists of a molecular chromophore/catalyst assembly adsorbed onto a mesoporous metal oxide 

(MOx) film. Together, these functional elements act to absorb solar photons, separate charge and 

use the photogenerated redox equivalents to drive the catalytic cycle for water oxidation through 

four separate photoactivation steps.1-2  In the first photoactivation step, the photoexcited 

chromophore injects an electron into the conduction band (CB) of the semiconductor, and the 

newly formed oxidative equivalent is transferred to the catalyst, returning the chromophore to its 

ground state. While this initial step is fast, occurring within a few hundred picoseconds,3-5 the 

latter steps, which include the O-O bond formation, take place on time scales ranging from 

microseconds to milliseconds.2 These slow reaction steps place significant demands on the 

chromophore-semiconductor interface to maintain a long-lived charge separated state (CSS) 

between the oxidized dye and reduced semiconductor. Commonly used metal oxides (e.g. TiO2, 

SnO2) functionalized with Ru(II) dyes exhibit CSS lifetimes (~μs) adequate for efficient DSSC 
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operation,6 but far too short to achieve water oxidation with catalysts whose turn-over 

frequencies are less than 103 s-1.2 

There are several strategies available to extend CSS lifetimes. Molecular-based approaches 

have shown modest success in increasing the lifetime of the CSS by moving the oxidative 

equivalent away from the surface.7-10  However, the greatest improvements have been realized 

thus far with core/shell heterostructures.11-16 For example, recombination is delayed significantly 

at the surfaces of SnO2/TiO2 core/shell nanoparticles formed by encasing a mesoporous SnO2 

film with a conformal shell of amorphous TiO2 (a-TiO2). The conduction band alignment 

between the two oxides in the resulting heterostructure serves to localize the injected electrons 

within the core material. Recombination of electrons in the core with oxidized dyes bound to the 

shell must occur by either surmounting the 0.4 eV energetic barrier introduced by the shell, or by 

tunneling through it. The resulting CSS state decays primarily by a tunneling mechanism, and 

exhibits lifetimes that approach a 1000-fold improvement over TiO2 or SnO2 alone.17 Even 

though recombination is significantly slowed, DSPEC device efficiencies remain low.15, 18  

We report here the interfacial electron transfer dynamics of nanocrystalline SnO2/a-TiO2 

core/shell films sensitized with [RuII(2,2’-bpy)2(4,4’-(PO3H2)2bpy)]2+ (RuP, Figure 3.1C, bpy = 

bipyridine). Our transient absorption experiments reveal that electron injection into the a-TiO2 

shell is fast (10s-100s ps), indicating that the poor device efficiencies are not the result of slow 

injection. Instead, kinetics measurements performed on time scales ranging from ps to ms 

suggest that the low efficiencies stem from a rapid recombination process involving the a-TiO2 

shell. A substantial fraction of the photoinjected electrons (~60%) recombine within a few 

hundred picoseconds after photoexcitation (τ~220 ps), presumably from sites near the oxidized 
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chromophore. The remaining electrons pass through the a-TiO2 shell into the SnO2 core, 

exhibiting recombination times that extend into the millisecond time regime.  

 

Figure 3.1. (A) Illustration of a band diagram describing the photoinduced processes for 

SnO2|RuP. (B) Illustration of a band diagram describing the photoinduced processes for a 

core/shell photoanode (SnO2/a-TiO2|RuP). (C) Chemical structure of [RuII(2,2’-bpy)2(4,4’-

(PO3H2)2bpy)]2+ (RuP). (D) TEM image of core/shell configuration of SnO2/a-TiO2 (1.3 nm). 

The interface between SnO2 and a-TiO2 is highlighted in red. CR = Charge Recombination; CB 

= Conduction Band; VB = Valence Band; ISC = Intersystem Crossing; MLCT = Metal-to-

Ligand Charge Transfer; e- inj = electron injection.
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The SnO2/a-TiO2 films were obtained by growing a thin, conformal TiO2 shell via atomic 

layer deposition (ALD) on top of 2 μm thick mesoporous SnO2 (15-20 nm diameter particles) 

films through a series of successive reaction cycles of tetrakis(dimethylamido) titanium 

(TiTDMA) and H2O.  Shell thickness (Δ) was controlled by the number of ALD reaction cycles 

and varied between 1.3-2.3 nm. Transmission electron microscopy (TEM) confirmed the 

presence of a nanocrystalline SnO2 core and a conformal a-TiO2 shell (Figure 1D).  The films 

were dye-loaded by immersion in a methanol solution (~1 mM dye) followed by soaking in pure 

methanol to remove unadsorbed dyes. Prior to transient absorption experiments, the films were 

submerged in 0.1 M HClO4 aqueous solution and degassed with argon for 45 minutes. Under the 

acidic conditions, the phosphonate linkage to the metal oxide surface is stable and no detectable 

desorbed RuP dye is observed in the solution by UV/Vis spectroscopy following the transient 

experiments. 

Transient absorption measurements were performed on time scales ranging from 

femtoseconds to milliseconds using a combination of instruments3-4, 19 that access three different 

time regimes: 0-1 ns, 500 ps-400 μs, and 10 ns-10 ms. Femtosecond measurements utilized a 1 

kHz Ti:sapphire chirped pulse amplifier (Clark-MXR CPA-2001) and optical parametric 

amplifier (OPA) with a broad-band white-light continuum probe. Measurements on the 

picosecond to microsecond time scale were accomplished using the same pump pulse as the 

femtosecond instrument, but the probe pulse was formed by continuum generation in a diode-

laser-pumped, photonic crystal fiber and electronically delayed relative to the pump pulse.  

Access to millisecond time scales was achieved using a transient absorption apparatus based on a 

Q-switched nanosecond Nd:YAG and optical parametric oscillator (OPO) with a continuous arc-

lamp probe. The energies of the excitation pulse in each instrument were adjusted to 1 mJ/cm2. 
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Orientation effects were avoided by using a magic angle polarization configuration in the 

femtosecond instrument and depolarized probe light in ns-ms measurements.  

3.2. Experimental Methods. 

3.2.1. Materials and Molecular Synthesis.  

Deionized water was further purified using a Milli-Q Ultrapure water purification system. 

Perchloric acid (99.999%) was purchased from Sigma-Aldrich and used as received. 

Nanoparticle films of tin oxide (SnO2) were constructed according to literature procedures. 18,20 

Thin shells of titanium dioxide (a-TiO2) were deposited on SnO2 using atomic layer deposition 

(ALD). The molecular chromophore, [RuII(bpy)2(4,4’-(PO3H2)2bpy)]2+[Cl]2 (RuP), was 

synthesized according to a literature procedure.21-22 Dye-sensitization of electrodes for transient 

absorption spectroscopy were made by soaking the nanoparticle films in a methanol solution of 

RuP (~1 mM) in the dark overnight (~14 hours). After the soak period, the electrodes were 

rinsed with methanol and dried under a stream of air. The electrodes were stored in the dark.  

3.2.2. Atomic Layer Deposition.  

Atomic layer deposition (ALD) was performed using a Cambridge NanoTech Savannah S200 

ALD system located in the Chapel Hill Analytical and Nanofabrication Lab (CHANL) 

cleanroom. The reaction chamber was set to 150 °C. The cylinder containing the TiO2 precursor, 

tetrakis(dimethylamido)titanium(IV) (TiTDMA), was heated at 75 °C. The reaction chamber and 

the precursor cylinder were both heated at temperature for a minimum of 1 hour prior to use. 

Samples were added to the reaction chamber such that the nanoparticle film was near the center 

of the chamber and in-line with the precursor inlet and outlet ports. Samples were placed under 

dynamic vacuum with a continuous nitrogen purge (99.999%, further purified using an Entegris 

GateKeeper Inert Gas Purifier) at temperature (150 °C) for a minimum of 10 minutes prior to 
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deposition. Deposition was performed in “exposure mode” in which the chamber containing 

precursor is isolated from vacuum. For a typical deposition cycle, TiTDMA was pulsed for 2 

seconds, isolated in the chamber for 20 seconds, and purged from the chamber for 60 seconds. 

Water was introduced under identical conditions except a 20-ms pulse was used. One cycle 

consisted of TiTDMA followed by water, and the number of cycles was used to control the 

thickness of the deposited layer. Thickness of the deposited oxide layer was quantified by 

performing ellipsometry (J. A. Woollam Variable Angle Spectroscopic Ellipsometer; located in 

CHANL) on a piece of planar, witness Si present in the reactor during ALD on the nanoparticle 

films. 

3.2.3. UV-Visible Absorption.  

UV-Visible absorption spectra were collected using a UV-Visible-NIR absorption 

spectrophotometer (Agilent Technologies, model 8453A) operated with tungsten and deuterium 

lamps lit. Air was used as the baseline and samples were placed perpendicular to the beam path. 

An integration time of 0.5 s was used. 

3.2.4. Sample Preparation for TA.  

Samples for transient absorption were prepared by submerging films into 0.1 M HClO4 

aqueous solutions in 10 mm path length cuvettes at a 45○ angle. The cuvette was fitted with an 

O-ring seal and Kontes valve inlet to purge the sample with argon for at least 45 min prior to TA 

measurements.  

3.2.5. Femtosecond Transient Absorption.  

Femtosecond transient absorption (fsTA) measurements were taken in a pump-probe 

configuration using a 1 kHz Ti:Sapphire, chirped pulse amplifier (Clark-MXR CPA-2001). The 

425 nm pump pulse was produced through sum-frequency generation of a portion of the 775 nm 
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regenerative amplifier output and the 940 nm frequency doubled output of a home-built Optical 

Parametric Amplifier (OPA). The 480 nm pump pulse was generated using the same OPA 

through mixing 775 nm and the generated signal (~1200 nm) beam.  The pump beam was 

chopped at 500 Hz and a power of 100 nJ/pulse was used. The white light probe has a spectral 

range of 340-800 nm and is generated by focusing a portion of the 775 nm output into a CaF2 

window that was continuously translating. The probe polarization is set to horizontal and the 

pump is set to ~54.7○ (magic angle) relative to the probe. A computer-controlled optical delay 

line was used to delay the probe pulse relative to the pump. Pump and probe beams were focused 

to ~150 μm and spatially overlapped at the sample. Pulse-to-pulse changes in the probe beam via 

pump excitation were collected using a fiber optic-coupled multichannel spectrometer with a 

CMOS sensor. The sample is raster scanned throughout the experiment. The instrument response 

is ~250 fs and the sensitivity of the detector is 0.1 mOD. 

3.2.6. Nanosecond-Microsecond Transient Absorption (1 nsec-400 μs).  

Nanosecond pump-probe transient absorption measurements were taken with the same pump 

pulse as fsTA. The probe pulse was created through continuum generation in a diode-laser 

pumped photonic crystal fiber and electronically delayed relative to the pump pulse with a 500 

ps time resolution.  

3.2.7. Nanosecond-Millisecond Transient Absorption (10 ns-10 ms).  

Transient absorption measurements from 10 ns to 10 ms were carried out by using an 

Edinburgh Instruments, Inc., model LP920 laser flash photolysis instrument. Nanosecond laser 

pulses were provided by a pulsed Nd:YAG (5-7 ns FWHM; Spectra-Physics model Quanta-Ray 

LAB-170-10) / OPO (VersaScan-MB) laser combination tuned to 1 mJ, 480 nm laser pulses at 1 

Hz.  Experiment timing was PC-controlled via Edinburgh software (L900).  The white light 
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output of a 450W Xe lamp was focused, passed through two 380 nm, long pass color filters, and 

overlapped with the laser pulse within the photoanode films.  Once through the sample, the probe 

beam passed through a color filter to reject laser scatter into a monochromator (bandwidth < 

5 nm), and was detected by a Hamamatsu R928 photomultiplier tube (PMT) in a non-cooled 

housing.  The instrument response was found to be ~10 ns FWHM. Kinetic data were the result 

of averaging 25-200 sequences of pump, probe, and pump-probe.  Transient data were analyzed 

using Origin Pro 2015 (OriginLab, Inc.), or L900 v7 (Edinburgh, Inc.) software.  Data were 

collected at room temperature (22 ± 2 °C). 

3.2.8. Overlaying Kinetics from Different TA Measurements.  

Comparing of transient absorption results collected using ns and fs laser pulse was made 

possible by performing transient absorption measurements at the same photon excitation flux. 

Repeated experiments demonstrated the reproducibility of the kinetic measurements from each 

experimental setup. Kinetic traces were normalized to the same time points for each instrument 

and smoothed using a 3-pt moving average. 
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3.3. Results and Discussion. 

 

Figure 3.2. UV-Visible Absorption Spectra of bare films of SnO2, SnO2/a-TiO2 (1.3 nm), and 

dye-sensitized slides SnO2|RuP and SnO2/a-TiO2 (1.3 nm)|RuP in deaerated 0.1 M HClO4 (aq). 

Although Figure 3.1 depicts the a-TiO2 shell grown by ALD as having well-defined band 

structure, this is most likely an over-simplification. Steady state absorption spectra of the bare 

SnO2 and SnO2/a-TiO2 films suggest that, unlike nanocrystalline TiO2, which is transparent for 

λ>400 nm, the a-TiO2 layer has a low energy absorption out to ~500 nm (Fig. 3.2). This 

absorption is likely the result of a large defect density in the a-TiO2 layer that gives rise to 

localized states within the band gap.23  
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Figure 3.3. fsTA spectra of bare SnO2/a-TiO2(1.3 nm) in deaerated 0.1 M HClO4 (aq) excited at 

480 nm (100 nJ/pulse). 

Photoexcitation of the RuP complex between 400-500 nm promotes an electron from the Ru 

center to one of the polypyridyl ligands, forming a metal-to-ligand charge transfer (MLCT) state. 

The SnO2|RuP films were excited at 425 nm, near the MLCT absorption maximum. The SnO2/a-

TiO2|RuP films, on the other hand, were excited at 480 nm to minimize direct excitation of the 

a-TiO2 shell. Transient absorption experiments on undyed SnO2/a-TiO2 films photoexcited at 

480 nm do not exhibit transient spectral features (Fig. 3.3), implying that band-gap excitation of 

the a-TiO2 shell does not contribute to the TA spectra of the sensitized films. Furthermore, 

photoexcitation of SnO2|RuP at 425 nm and 480 nm show no differences in the transient 

absorption spectra, or kinetics, indicating the excited state dynamics are insensitive to the choice 

of excitation wavelength (Fig. 3.4). 
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Figure 3.4. (A) Transient absorption spectra of SnO2|RuP in deaerated 0.1 M HClO4 (aq) 1 ps 

after excitation at 425 nm (red) and 480 nm (black) (100 nJ/pulse) (B) Normalized transient 

absorption kinetics of SnO2|RuP for ESA (λprobe = 376 nm) and GSB (λprobe = 450 nm) in 

deaerated 0.1 M HClO4 (aq) excited at 425 nm (red traces) 480 nm (black traces) (100 nJ/pulse). 
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Figure 3.5. (A) Transient absorption spectra of SnO2|RuP in deaerated 0.1 HClO4 (aq) at 1 ps 

(dark blue), 5 ps, 10 ps, 200 ps, 500 ps, 1 ns (light blue) after 425 nm laser excitation. The 

spectrum in grey is the 1 ps transient absorption spectrum of ZrO2|RuP after 425 nm excitation 

and is scaled to the GSB of the SnO2|RuP at 1 ps. (B) Transient absorption spectra of SnO2/a-

TiO2 (1.3 nm)|RuP in deaerated 0.1 HClO4 (aq) at 1 ps, 25 ps, 75 ps, 100 ps, 200 ps, 500 ps, 1 ns 

after 480 nm excitation with spectra ≤ 75 ps in blue and ≥ 100 ps in red. (C) Normalized 

transient absorption kinetics for SnO2|RuP (blue) and SnO2/a-TiO2 (1.3 nm)|RuP (green) at 376 

nm. Biexponential fits are shown as solid lines with results in Table 1. (D) Normalized transient 

absorption kinetics for SnO2|RuP (blue) at 450 nm and SnO2/a-TiO2 (1.3 nm)|RuP (green) at 

430 nm. Fits are shown as solid lines.  



 

37 

 

The transient absorption spectra of RuP on SnO2 at early times are similar to those observed 

for many Ru(II) dyes exhibiting the characteristic excited state absorption (ESA) in the near UV 

that arises from a π-π* transition on the reduced ligand (Fig. 3.5A).24 Decay of this excited state 

feature without loss of the ground state bleach (GSB) amplitude is a signature of electron 

injection.2-5, 24  A qualitative estimation of the injection efficiency can be made from analysis of 

the relative amplitudes of the transient spectral features. Based on intensities of the ESA on SnO2 

compared to ZrO2 (Fig. 3.5A, grey), where no charge injection occurs (Fig. 3.6), we estimate that 

~35% of the RuP* undergo electron injection within the instrument response. Furthermore, the 

complete disappearance of this band (Fig. 5A), along with kinetic analysis of the decay (Fig. 

3.5C, blue), indicate injection from the remaining 65% of the RuP* occurs on multiple time 

scales (τ1=3.8 ps, τ2=25 ps) with nearly unit efficiency. These time scales are consistent with 

previous observations from similar Ru dyes on SnO2,
25-29 and about a factor of two shorter than 

on TiO2.
24  
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Figure 3.6. Normalized transient absorption kinetics of ZrO2|RuP (black), SnO2/a-TiO2(1.3 

nm)|RuP (green), and SnO2|RuP (blue) (λprobe = 376 nm) in deaerated 0.1 M HClO4 (aq) excited 

at 480 nm a (100 nJ/pulse). 

The spectral evolution following femtosecond excitation of RuP on the core/shell 

heterostructures is notably different from the SnO2 case (Fig 3.5B). We do observe both the ESA 

and GSB for RuP adsorbed onto core/shell particles (Δ=1.3 nm), and during the first 75 ps, the 

ESA decays with no loss of the GSB (Fig. 3.5B, blue spectra), similar to SnO2|RuP. However, 

for longer pump-probe delays, the GSB decays together with the ESA (Fig. 3.5B, red spectra), in 

contrast to what is observed on SnO2.  Kinetic analysis shows that the ESA is lost with both fast 

(τ=22 ps) and slow (τ=280 ps) time components (Fig 3.5C). We attribute the fast component to 

electron injection into the a-TiO2 shell, consistent with observations made via time-resolved 

terahertz spectroscopy (TRTS).30-31 Electron injection rates are independent of shell thickness 

(Eq. 3.1, Table 3.1) suggesting that the electron is injected into the a-TiO2 shell and does not 

tunnel through the shell to the SnO2 core. 
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𝑦 = 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝐴1𝑒
−𝑥/𝜏1 + 𝐴2𝑒

−𝑥/𝜏2     (3.1) 

Table 3.1. Results of biexponential fits for loss of ESA (λprobe = 376 nm). 

 Offset A1 A2 τ1, ps τ2, ps 

SnO2 -0.4 59% 41% 3.8 25 
SnO2/a-TiO2 (1.3 nm) -0.06 32% 67% 22 280 
SnO2/a-TiO2 (1.8 nm) -0.008 40% 60% 28 299 
SnO2/a-TiO2 (2.0 nm) 0.08 36% 64% 23 249 
SnO2/a-TiO2 (2.3 nm) -0.07 55% 45% 18 312 

 

The slower component coincides with a rapid decay component of the GSB (τ=220 ps) that 

represents ~60% loss of the total GSB signal amplitude (Fig. 3.5D). The ultrafast decay of both 

the GSB and ESA features is unique to the core/shell system and is not observed in SnO2|RuP or 

TiO2|RuP. The ~220 ps time constant is much shorter than the lifetime of the MLCT state (τ ~ 

450 ns),2-5, 24 indicating that this decay component is not the result of excited state relaxation. A 

similar ultrafast recombination component (τ = 218 ps) is observed for ALD grown TiO2 on 

ZrO2 (i.e. ZrO2/a-TiO2|RuP), where the injected electrons must remain in the shell (Fig. 3.7). We 

note that while both SnO2/a-TiO2 and ZrO2/a-TiO2 exhibit the same fast time components, the 

ultrafast recombination in the ZrO2 case represents just 30% of the total decay, suggesting that 

the microscopic structure, and perhaps defect density, of the TiO2 grown by ALD is affected by 

the underlying substrate (e.g. SnO2 vs ZrO2). The amplitude and time constants associated with 

this fast recombination process are independent of shell thickness (Fig. 3.8A), implying that it 

involves localized states in the a-TiO2 layer near the oxidized dye. Based on the similarity in 

time scales for the loss of the ESA and GSB, we attribute this kinetic component to slow 

injection into the shell followed by rapid interfacial electron transfer to reform the Ru(II) ground 

state. The fast time scale (220-280 ps) suggests this process involves either the injected electron 

(i.e. geminate recombination), or occurs through non-geminate electron transfer from filled mid 

gap states that result from the high defect density of the amorphous TiO2 shell.23 Regardless of 
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its origin, the presence of this ultrafast loss pathway underscores the functional differences 

between ALD-grown TiO2 shells and nanocrystalline TiO2 in DSSC and DSPEC devices.  

 

Figure 3.7. Normalized transient absorption kinetics of SnO2/a-TiO2(1.3 nm)|RuP (blue), 

ZrO2/a-TiO2(1.3 nm)|RuP (red), TiO2|RuP (green) (λprobe = 430 nm) in deaerated 0.1 M HClO4 

(aq) excited at 480 nm. 
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Figure 3.8. (A) Transient absorption kinetics over 10 decades of time for SnO2|RuP (darker 

blue), SnO2/a-TiO2 (1.3 nm)|RuP (dark blue), SnO2/a-TiO2 (1.8 nm)|RuP (blue), SnO2/a-TiO2 

(2.0 nm)|RuP (light blue) and SnO2/a-TiO2 (2.3 nm)|RuP (lighter blue) at a probe wavelength of 

430 nm. Kinetic traces have been offset for clarity.  Each transient is fit to a quad-exponential, 

which are shown as black solid lines. Fits have been extended to illustrate the complete decay of 

the signal to zero intensity. The fit extension is to demonstrate the amount of signal left at our 

last observation point and is not meant to imply that there is no other physical process occurring 

beyond our observation window. Amplitudes and time constants are summarized in Table 3.2. 

(B) Plot of the slowest time component (k4 = 1/τ4) vs thickness of the a-TiO2 shell. 
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𝑦 = 𝐴1𝑒
−𝑥/𝜏1 + 𝐴2𝑒

−𝑥/𝜏2 + 𝐴3𝑒
−𝑥/𝜏3 + 𝐴4𝑒

−𝑥/𝜏4    (3.2) 

Table 3.2. Results of multiexponential fits for GSB recovery (λprobe = 430 nm). 

 A1 A2 A3 A4 τ1 τ2 τ3 τ4 

SnO2 27% 42% 30%  3.4 ns 44 ns 28 μs  
SnO2/a-TiO2 (1.3 nm) 56% 22% 14% 8% 222 ps 4.6 ns 139 μs 1.87 ms 
SnO2/a-TiO2 (1.8 nm) 57% 13% 6% 24% 222 ps 10.5 ns 42 μs 6.6 ms 
SnO2/a-TiO2 (2.0 nm) 60% 15% 7% 18% 247 ps 20 ns 45 μs 10.7 ms 
SnO2/a-TiO2 (2.3 nm) 67% 7% 5% 21% 174 ps 225 ns 10 μs 15.4 ms 
ZrO2/a-TiO2 (1.3 nm) 29% 28% 43%  218 ps 8.9 ns 213 ns  

 

The oxidized chromophores remaining at 1 ns recombine with injected electrons on multiple 

timescales, ranging from a few nanoseconds to milliseconds (Fig. 3.8A).The ns-μs time constants 

are similar to those observed in other metal oxides32 and likely corresponds to a transport-limited 

mechanism in which the injected electron hops from one discrete site in the a-TiO2 shell to 

another before recombination with the oxidized dye. The presence of both the ultrafast and 

slower ns-μs recombination times suggest significant spatial variation in the quality of the a-

TiO2 layer. Regions with a high defect density give rise to the ps recombination, while other 

portions of the layer have a quality that is comparable to nanocrystalline TiO2, resulting in the 

ns-μs recombination. The longest time component exceeds that observed on either SnO2 or TiO2 

by two orders of magnitude (τ = 1.87-15.4 ms).2, 32 This rate exponentially decreases with 

increasing shell thickness (Fig. 3.8B), suggesting that this millisecond component corresponds to 

tunneling recombination between electrons residing in the SnO2 core and oxidized dyes at the 

shell surface.17, 33  
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3.4. Conclusions. 

The interfacial dynamics of a series of dye-sensitized SnO2/TiO2 core/shell films with varying 

shell thickness were investigated from femtoseconds through milliseconds. Electron injection 

from the chromophore into the TiO2 shell occurs within a few picoseconds after photoexcitation. 

Loss of the oxidized dye through recombination occurs across time scales spanning 10 decades 

of time. The majority (60%) of charge recombination events occur shortly after injection with a 

time constant of 220 ps, while a small fraction (≤ 20%) persists for milliseconds. The lifetime of 

long-lived CSSs depends exponentially on shell thickness, suggesting that the injected electrons 

reside in the SnO2 core and must tunnel through the TiO2 shell to recombine with oxidized dyes.  

The formation of a CSS with a millisecond lifetime is sufficient for water oxidation, and in 

this respect the core/shell architecture is successful. However, the fraction of oxidized 

chromophores persisting into the millisecond time regime is only about 20%. The loss of over 

60% of the oxidized chromophores within the first nanosecond may be the origin of the low 

water oxidation efficiencies observed in DSPEC devices even with core/shell photoanodes.    
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Chapter 4: Effects of Annealing on Ultrafast Recombination Dynamics of Dye-Sensitized 

SnO2/TiO2 Core/Shell Films 
 

4.1. Introduction. 

The need to develop a method of storing solar energy to replace fossil fuels is becoming 

increasingly important. Dye-sensitized photoelectrosynthesis cells (DSPECs) utilize artificial 

photosynthesis to perform light-induced water oxidation catalysis at a photoanode, and CO2 

reduction catalysis at a photocathode to produce storable, carbon-based “solar fuels.”1-2 At the 

photoanode, a molecular chromophore-catalyst assembly is adsorbed to a metal oxide 

semiconductor, like SnO2 or TiO2. Photon absorption by the chromophore leads to electron 

injection into the conduction band of the metal oxide, followed by hole transfer out to the 

catalyst. This process must repeat four times for appreciable water oxidation catalysis to occur. 

Unfortunately, under open circuit conditions, charge recombination between the injected electron 

and oxidized species on the surface is too fast, despite assembly configurations.2-5 Recently, a 

core/shell strategy for prolonging the lifetime of the charge separated state has shown 

considerable improvement over nanocrystalline films alone.6-10 Understanding the fundamental 

dynamics at the interface of these core/shell films is essential to the continued development of 

DSPEC devices. 

To construct core/shell films, a thin layer of a metal oxide semiconductor is deposited via 

atomic layer deposition (ALD) onto an existing nanocrystalline metal oxide film. Core/shell 

films utilize mismatched conduction band edges to funnel injected electrons to a lower energy 
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core, where they must tunnel through the shell to reach the oxidized species on the surface, 

thereby increasing the lifetime of the charge separated state.11-12 In SnO2/TiO2 core/shell films, 

the SnO2 conduction band is 0.4 V positive of that of TiO2, allowing for a cascading mechanism 

of electron injection into the TiO2 shell, followed by electron transfer into the core. As described 

in the previous chapter, transient absorption experiments on unannealed SnO2/TiO2 core/shell 

films sensitized with a ruthenium dye ([RuII(bpy)2(4,4’-(PO3H2)2bpy)]2+, RuP), where the TiO2 

is used as deposited and is, therefore, amorphous (a-TiO2), revealed a deleterious recombination 

pathway on the picosecond time scale not present in the nanocrystalline TiO2 or SnO2 cases 

(Figure 4.1). It was hypothesized that defect states in the amorphous shell contributed to this loss 

and, therefore, could potentially be removed upon annealing, i.e. transforming the shell to 

nanocrystalline (n-TiO2).
11  
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Figure 4.1. (A) Illustration of a band diagram describing photoinduced processes for an 

amorphous core/shell film (SnO2/a-TiO2|RuP). The hypothesized discrete shell states are shown 

as black lines. (B) Illustration of a band diagram describing the photoinduced processes of an 

annealed core/shell film (SnO2/n-TiO2|RuP). CR = Charge Recombination; e- inj = electron 

injection. 

Herein, we describe the interfacial dynamics of a dye-sensitized SnO2/TiO2 film with an 

amorphous shell (SnO2/a-TiO2|RuP) and upon annealing (SnO2/n-TiO2|RuP) using transient 

absorption spectroscopy. Time scales for electron injection and picosecond recombination are the 

same whether the shell is amorphous or nanocrystalline; however, the magnitude of these 

changes differ significantly. In the amorphous case, rapid recombination from the a-TiO2 shell 

occurs in ~50% of charge separated states, where upon annealing, this fraction drops to 30% 

with the n-TiO2 shell. While this decrease is beneficial for DSPEC device performance, when we 
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extend the time window through μs, we observe faster overall recombination in the SnO2/n-

TiO2|RuP films (τ~310 μs) compared to SnO2/a-TiO2|RuP (τ~900 μs). 

4.2. Experimental Methods. 

4.2.1. Materials and Molecular Synthesis. 

Deionized water was further purified using a Milli-Q water purification system. Perchloric 

acid (99.999%) was purchased from Sigma-Aldrich and used as received. Nanoparticle films of 

tin oxide (SnO2) and zirconium oxide (ZrO2) were constructed according to published 

procedures.6, 13 Thin shells of titanium dioxide (TiO2) were deposited using atomic layer 

deposition (ALD) and used as deposited (a-TiO2) or after annealing (n-TiO2). [RuII(bpy)2(4,4’-

(PO3H2)2bpy)]2+[Cl]2 (RuP) was synthesized according to literature procedures14-15 and 

dissolved in methanol (~1 mM) for electrode sensitization. Unannealed and annealed films were 

dye-loaded for transient absorption spectroscopy by soaking the films in the RuP methanol 

solution overnight (~14 hours). To remove unadsorbed dye, films were rinsed with methanol and 

dried under a stream of air. These films were stored in the dark. 

4.2.2. Atomic Layer Deposition. 

Atomic layer deposition (ALD) was performed using a Cambridge NanoTech Savannah S200 

ALD system located in the Chapel Hill Analytical and Nanofabrication Lab (CHANL) 

cleanroom. The reaction chamber was set to 150 °C. The cylinder containing the TiO2 precursor, 

tetrakis(dimethylamido)titanium(IV) (TiTDMA), was heated at 75 °C. The reaction chamber and 

the precursor cylinder were both heated at temperature for a minimum of 1 hour prior to use. 

Samples were added to the reaction chamber such that the nanoparticle film was near the center 

of the chamber and in-line with the precursor inlet and outlet ports. Samples were placed under 

dynamic vacuum with a continuous nitrogen purge (99.999%, further purified using an Entegris 
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GateKeeper Inert Gas Purifier) at temperature (150 °C) for a minimum of 10 minutes prior to 

deposition. Deposition was performed in “exposure mode” in which the chamber containing 

precursor is isolated from vacuum. For a typical deposition cycle, TiTDMA was pulsed for 2 

seconds, isolated in the chamber for 20 seconds, and purged from the chamber for 60 seconds. 

Water was introduced under identical conditions except a 20-ms pulse was used. One cycle 

consisted of TiTDMA followed by water, and the number of cycles was used to control the 

thickness of the deposited layer. Thickness of the deposited oxide layer was quantified by 

performing ellipsometry (J. A. Woollam Variable Angle Spectroscopic Ellipsometer; located in 

CHANL) on a piece of planar, witness Si present in the reactor during ALD on the nanoparticle 

films. Annealed core/shell films were annealed under ambient conditions at 450°C for 30 

minutes with a 45 minute ramp to temperature and left to cool for multiple hours. 

4.2.3. Sample Preparation for Transient Absorption. 

Samples for transient absorption were placed in 10 mm path length cuvettes at a 45° angle 

filled with 0.1 M HClO4 aqueous solution. The cuvette was fitted with an O-ring seal and Kontes 

valve inlet to purge the sample with argon for at least 45 minutes prior to TA measurements to 

prevent effects from oxygen. 

4.2.4. UV-Visible Absorption. 

UV-Visible absorption spectra were collected using a UV-Visible-NIR absorption 

spectrophotometer (Agilent Technologies, model 8453A) operated with tungsten and deuterium 

lamps lit. Air was used as the baseline and samples were placed perpendicular to the beam path. 

An integration time of 0.5 s was used. 
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4.2.5. Femtosecond Transient Absorption. 

Femtosecond transient absorption (fsTA) measurements were performed in a pump-probe 

configuration using a 1 kHz Ti:Sapphire, chirped pulse amplifier (Clark-MXR CPA-2001). The 

CPA output is 775 nm with a ~150 fs pulse width. The 480 nm pump pulse was created through 

sum-frequency generation of a portion of the 775 nm regenerative amplifier output and a 

generated signal (~1200 nm) output beam from a home-built optical parametric amplifier (OPA). 

The pump beam was chopped at 500 Hz and a power of 100 nJ/pulse was used. The white light 

probe (λ = 340-800 nm) is generated through super continuum generation by focusing a portion 

of the 775 nm output into a CaF2 window that is continuously translating. The probe polarization 

is set to horizontal and the pump is set to ~54.7° (magic angle) relative to the probe. A computer-

controlled optical delay line was used to delay the probe pulse relative to the pump. Pump and 

probe beams were focused to ~150 μm and spatially overlapped at the sample. Pulse-to-pulse 

changes in the probe beam through pump excitation were collected using a fiber optic-coupled 

multichannel spectrometer with a CMOS sensor. The sample is raster scanned throughout the 

experiment. The instrument response is ~250 fs and the sensitivity of the detector is 0.1 mOD. 

4.2.6. Nanosecond-Microsecond Transient Absorption (1 ns-400 μs) 

Nanosecond-microsecond transient absorption measurements were taken using the same 

pump pulse as fsTA, while the probe pulse was generated through continuum generation in a 

diode-laser pumped photonic crystal fiber. Pump-probe delay was electronically controlled with 

a time resolution of 500 ps. 
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4.2.7. Overlaying Kinetics from Different TA Measurements. 

Transient absorption measurements with different ranges of pump-probe delay were taken 

with the same photon flux and kinetic traces were normalized to the same time points for each 

instrument. Repeated experiments demonstrated the reproducibility of the kinetic measurements. 

4.3. Results and Discussion. 

Photoexcitation of RuP creates a singlet metal-to-ligand charge transfer state (1MLCT) that 

undergoes rapid (< 100 fs) intersystem crossing to a triplet MLCT state (3MLCT). The 3MLCT 

manifests in the transient absorption spectrum as a ground state bleach (GSB) around 460 nm 

and an excited state absorption (ESA) around 380 nm corresponding to π-π* transitions on the 

bipyridine radical anion (bpy●‒).16 The excited state lifetime of surface-bound RuP is on the 

order of hundreds of nanoseconds, as measured on ZrO2,
2 where electron injection cannot occur. 

On SnO2|RuP, the ESA decays rapidly, while the GSB amplitude is maintained. This behavior is 

a signature of electron injection into the SnO2 CB.  

The loss of the ESA is biexponential and describes the electron injection dynamics. Electron 

injection rates depend on the overlap between the density of states in the semiconductor 

conduction band and the excited state manifold of the chromophore.16 Vibrational cooling of the 

3MLCT competes with injection leading to this biexponential behavior in the bpy●‒ loss at 380 

nm. As described in Chapter 3,11 the time scale for electron injection SnO2|RuP is 3.8 ps and 25 

ps. In the previous study, the unannealed core/shell films behaved unexpectedly, where the decay 

in the ESA (τ = 22 ps, 280 ps) is accompanied by a decay in the GSB (τ = 220 ps) independent of 

shell thickness. The lack of thickness dependence indicates the electron injection is occurring 

into the a-TiO2 shell, rather than tunneling through the shell. Likewise, the loss of the GSB is 

occurring from the shell, though the exact mechanism is still unclear. The transient absorption 
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spectra of SnO2/a-TiO2 (0.87 nm)|RuP presented in Figure 4.2A display similar kinetics where 

the ESA decays with time constants of 28.1 ps and 311 ps (Table 4.1) and 49% of the GSB 

decays in 207 ps (Table 4.2). 

 

Figure 4.2. (A) Transient absorption spectra of SnO2/a-TiO2(0.87 nm)|RuP and (B) SnO2/n-

TiO2|RuP after 490 nm (100 nJ/pulse) photoexcitation in 0.1 M HClO4 (aq) at pump-probe 

delays of -6 ps (black), 1 ps (dark blue), 25 ps, 75 ps, 200 ps, 500 ps, and 1100 ps (light blue). 

(C) Normalized transient absorption kinetics for SnO2/a-TiO2(0.87 nm)|RuP (black) and SnO2/n-

TiO2(0.87 nm)|RuP (blue) at 380 nm. Biexponential fits are shown as solid lines with results in 

Table 4.1. (D) Normalized transient absorption kinetics for SnO2/a-TiO2(0.87 nm)|RuP (black) 

and SnO2/n-TiO2(0.87 nm)|RuP (blue) at 450 nm. Fits are shown as solid lines. 
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Annealing these films to change the shell from amorphous (a-TiO2) to nanocrystalline (n-

TiO2) minimizes some of the amplitude loss in the GSB. Interestingly, the loss of the ESA occurs 

with a fast (τ1 = 23.3 ps) and slow (τ2 = 237 ps) component, on the same time scale as the 

unannealed film. Similarly, the GSB decays with a time constant of 206 ps. The differences 

between amorphous and annealed SnO2/TiO2 films lie in the magnitude of the amplitude changes 

of the ESA and GSB. In particular, we observe an increase in the loss of the ESA and a decrease 

in loss of the GSB from 49% in SnO2/a-TiO2(0.87 nm)|RuP to 31% in SnO2/n-TiO2(0.87 

nm)|RuP. It is difficult to determine if the increase in the loss of the ESA is due to an increased 

injection yield or simply from the decrease in GSB loss, as these two bands are related by the 

spectrum of the oxidized chromophore (RuP3+), and they decay together as recombination 

occurs.16  

𝑦 = 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝐴1𝑒
−𝑥/𝜏1 + 𝐴2𝑒

−𝑥/𝜏2     (4.1) 

Table 4.1. Results of biexponential fit (eq. 4.1) to ESA loss (λprobe = 380 nm).  

 SnO2/a-TiO2|RuP SnO2/n-TiO2|RuP ZrO2/a-TiO2|RuP ZrO2/n-TiO2|RuP 

Offset 0% 17.5% 18% 20% 

A1 35% 42% 36% 38% 

τ1 28.1 ps 23.3 ps 18.2 ps 15.4 ps 

A2 65% 40.5% 46% 42% 

τ2 311 ps 237 ps 188 ps 170 ps 
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Figure 4.3. (A) Transient absorption spectra of ZrO2/a-TiO2(0.87 nm)|RuP and (B) ZrO2/n-

TiO2|RuP after 490 nm (100 nJ/pulse) photoexcitation in 0.1 M HClO4 (aq) at pump-probe 

delays of -6 ps (black), 1 ps (dark red), 25 ps, 75 ps, 200 ps, 500 ps, and 1100 ps (light red). (C) 

Normalized transient absorption kinetics for ZrO2/a-TiO2(0.87 nm)|RuP (black) and ZrO2/n-

TiO2(0.87 nm)|RuP (red) at 380 nm. Biexponential fits are shown as solid lines with results in 

Table 4.1. (D) Normalized transient absorption kinetics for ZrO2/a-TiO2(0.87 nm)|RuP (black) 

and ZrO2/n-TiO2(0.87 nm)|RuP (red) at 450 nm. Fits are shown as solid lines. 
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The ZrO2/TiO2|RuP films exhibit the same ESA at 380 nm and GSB at 460 nm characteristic 

of the RuP excited state. On ZrO2|RuP, where electron injection cannot occur, no significant 

decay in the transient absorption spectra within 1 ns is observed, so the dynamics observed in the 

ZrO2/TiO2 core/shell films are from interactions with the TiO2 shell only.  The bpy●‒ bands in 

unannealed (ZrO2/a-TiO2(0.87 nm)|RuP) and annealed (ZrO2/n-TiO2(0.87 nm)|RuP) films 

undergo a biphasic decay with time constants of 18.2 ps and 188 ps, and 15.4 ps and 170 ps, 

respectively (Table 4.1). The difference in time scale between ZrO2/a-TiO2 and ZrO2/n-TiO2 is 

insignificant, and though the magnitude of the ESA decay is slightly larger in the annealed films, 

it is minor compared to the large disparity in that of the SnO2/TiO2 films. The GSB decay for the 

ZrO2/TiO2 core/shell films (Figure 4.3) show no change after annealing with a 50% loss with 

time constants of ~250 ps (Table 4.2). 

 To get the full picture of the GSB recovery, we must expand our time window from 

picoseconds through 100s of microseconds. Figure 4.4 displays the full GSB decay of SnO2/a-

TiO2(0.87 nm)|RuP (black) and SnO2/n-TiO2(0.87 nm)|RuP. These kinetics are complex and 

multiexponential, requiring four exponential components for SnO2/TiO2 films and three for 

ZrO2/TiO2 films (Table 4.2). The unannealed SnO2/a-TiO2(0.87 nm)|RuP film exhibits behavior 

similar to those described in Chapter 3 of this dissertation, where there is an ultrafast decay (τ1 = 

207 ps) representing a 50% loss of the CSS and a small portion of extremely long-lived CSSs (τ4 

= 900 μs). The time constant for the long-lived CSSs in the unannealed films, including SnO2/a-

TiO2(0.87 nm)|RuP is exponentially dependent on shell thickness, indicating that the electron is 

tunneling through the a-TiO2 shell from the SnO2 core to recombine with the oxidized 

chromophore.11-12, 17 Once annealed, SnO2/n-TiO2(0.87 nm)|RuP, the portion of ultrafast decay 
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decreases from 50% to 30%; however, the longest lifetime measured is 311 μs, almost three 

times faster than the unannealed film.  

 

Figure 4.4. (A) Transient absorption kinetics of SnO2/a-TiO2(0.87 nm)|RuP (black) and SnO2/n-

TiO2(0.87 nm)|RuP (blue) at a probe wavelength of 450 nm. Each transient is fit to a quad-

exponential (Eq. 4.2), shown as black solid lines. Amplitudes and time constants are summarized 

in Table 4.2. (B) Transient absorption kinetics of ZrO2/a-TiO2(0.87 nm)|RuP (black) and 

ZrO2/n-TiO2(0.87 nm)|RuP (red) at a probe wavelength of 450 nm. Each transient is fit to a tri-

exponential function (Eq 4.3), shown as black solid lines. Amplitudes and time constants are 

summarized in Table 4.2. 

The GSB of RuP on the ZrO2/TiO2 films decay a lot faster than SnO2/TiO2 with time 

constants of 250 ps, 53 ns and 8 μs, and 250 ps, 44.5 ns, and 12 μs on ZrO2/a-TiO2(0.87 

nm)|RuP and ZrO2/n-TiO2(0.87 nm)|RuP, respectively (Table 4.2). In both amorphous and 

nanocrystalline ZrO2/TiO2 cases, 50% of the decay occurs within 1 ns, while the rest gradually 

return back to baseline on the nanosecond/microsecond time scale. This is expected as electrons 

will not inject into the ZrO2 core, speeding up the GSB recovery dynamics. 
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𝑦 = 𝐴1𝑒
−𝑥/𝜏1 + 𝐴2𝑒

−𝑥/𝜏2 + 𝐴3𝑒
−𝑥/𝜏3 + 𝐴4𝑒

−𝑥/𝜏4    (4.2) 

𝑦 = 𝐴1𝑒
−𝑥/𝜏1 + 𝐴2𝑒

−𝑥/𝜏2 + 𝐴3𝑒
−𝑥/𝜏3     (4.3) 

 

Table 4.2. Results of multiexponential fits for GSB recovery at λprobe = 450 nm. 

 SnO2/a-TiO2|RuP SnO2/n-TiO2|RuP ZrO2/a-TiO2|RuP ZrO2/n-TiO2|RuP 

A1 49% 31% 51% 50% 

τ1 207 ps 207 ps 250 ps 250 ps 

A2 25% 13% 26% 25% 

τ2 3.2 ns 37.6 ns 53 ns 44.5 ns 

A3 10% 35% 23% 25% 

τ3 83 μs 7.1 μs 8 μs 12 μs 

A4 16% 21%   

τ4 900 μs 311 μs   

 

The stark contrast between the GSB decay kinetics of SnO2/a-TiO2(0.87 nm)|RuP and 

SnO2/n-TiO2(0.87 nm)|RuP is indicative of a change in the TiO2 shell upon annealing. The 

ultrafast recombination component, though still present, is diminished in the annealed film. This 

suggests that the annealing process rids the TiO2 shell of some of the states that are responsible 

for this ultrafast loss of oxidized chromophores. While the smaller percentage of ultrafast 

recombination is an advantage for annealed films, that gain is counteracted by τ4, which is three 

times faster in SnO2/n-TiO2(0.87 nm)|RuP than the amorphous film.  

As deposited, the amorphous TiO2 shell is likely a compilation of discrete empty and filled 

states, rather than a typical band structure found in a nanocrystalline film. These discrete states 

have varying energies with evidence for filled states in the “mid-gap” region in the a-TiO2 film 

capable of transporting holes.18 The mechanism of ultrafast recombination in SnO2/a-TiO2(0.87 

nm)|RuP may be geminate or non-geminate in nature.11 In a geminate mechanism, the injected 
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electron recombines with the oxidized chromophore it originated from, while in a non-geminate 

case, the oxidized chromophore is reduced by filled mid-gap states in the a-TiO2 shell. Ultrafast 

recombination in the annealed core/shell film, SnO2/n-TiO2(0.87 nm)|RuP, is diminished, but 

not completely eradicated. This suggests a transformation from discrete states in a-TiO2 to a 

more band-type structure in n-TiO2; however, some of these discrete trap states are likely still 

present in n-TiO2 as observed by the loss in the GSB.  

The major loss in the lifetime of the long-lived charge separated state in SnO2/n-TiO2(0.87 

nm)|RuP compared to SnO2/a-TiO2(0.87 nm)|RuP is also an effect of annealing. The longest 

lifetime of SnO2/a-TiO2(0.87 nm)|RuP is consistent with tunneling from the SnO2 core through 

the TiO2 shell as it follows the exponential dependence of τ4 on thickness established in Chapter 

3. The faster τ4 observed for SnO2/n-TiO2(0.87 nm)|RuP suggests a possible change in the 

barrier height introduced by the shell, or a change in the interface between core and shell. Knauf 

and coworkers observed a loss in the thickness dependence of recombination upon annealing in 

dye-sensitized SnO2/TiO2 core/shell films.12 The lack of thickness dependence implies a loss of 

the tunneling efficacy observed in the unannealed, amorphous films. It is possible that states at 

the interface of the core and shell may be affected through annealing via mixing or delamination. 

Evidence for mixing of states in SnO2/TiO2 core/shell films have been observed 

electrochemically.19  

On ZrO2/TiO2 core/shell films, where the shell dynamics are isolated, the recombination 

dynamics are not significantly affected upon annealing. This suggests that the underlying 

substrate may dictate how the ALD TiO2 deposits on the surface. The size of the nanoparticles 

and pores in the nanocrystalline film may cause the TiO2 to grow in a way that is not 

significantly affected when annealed. It may also suggest that annealing in the SnO2/TiO2 films 
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does electronically alter the states at the interface. If the changes were isolated in the TiO2 film, 

we would expect to see similar changes on ZrO2/TiO2 upon annealing, as well. 

4.4. Conclusions 

The interfacial dynamics of dye-sensitized SnO2/TiO2 and ZrO2/TiO2 core/shell films were 

investigated as deposited (amorphous) and after annealing (nanocrystalline) using transient 

absorption spectroscopy. Annealing the SnO2/TiO2 lessens the contribution of ultrafast 

recombination compared to an amorphous TiO2 shell; however, the longest lifetime is 3x longer 

in the amorphous core/shell case. This suggests that annealing the film changes fundamental 

properties of the core/shell films, though, it is difficult to tell if the core and shell states are 

mixing or if delamination is occurring and communication is diminished. The changes in 

behavior also indicate a shift from discrete states in the amorphous shell to a more band-like 

nanocrystalline structure in the annealed films. To determine the origin of these changes, 

structural, and electrochemical characterization must be performed. A temperature dependence, 

where the films are annealed at different temperatures, might be useful in characterizing the 

nature of the interaction between core and shell. 
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Chapter 5: Evidence for a Time-Resolved Stark Effect in “Buried” Dye-Sensitized 

Photoanodes 
This chapter presents work for a manuscript in preparation with co-authors M. Kyle Brennaman, 

Alexander M. Lapides, Joseph L. Templeton, Thomas J. Meyer, and John M. Papanikolas. 

 

5.1. Introduction. 

Dye-sensitized photoelectrosynthesis cells (DSPECs) incorporate light-harvesting dyes, 

molecular catalysts, and a wide band gap metal oxide semiconductor working together in concert 

to convert sunlight into “solar fuels” from H2O and CO2.
1-3 At a DSPEC photoanode, where 

water oxidation occurs, chromophores are typically surface-bound to a metal oxide, such as 

titanium dioxide (TiO2), through phosphonate (‒PO3H2)
4 or carboxylate (‒COOH) linkages.5 

Photon absorption by the chromophore leads to electron injection into the conduction band (CB) 

of the semiconductor, followed by hole transfer out to the catalyst. The photoactivation process 

is repeated four times to build up the required equivalents to drive water oxidation. The 

complexity of the overall process requires molecules that are stable on the surface under 

illumination that have the ability to form long-lived charge separated states (CSS) between the 

electrons in the CB and the oxidized species on the surface.2 

Chromophore-catalyst assemblies have been synthesized with covalent bonds prior to 

attachment,6-10 or created on the surface through co-loading,11-12 layer-by-layer,13-15 or 

electropolymerization16-17 techniques. The high demands placed on these molecules in repetitive 

light absorption and electron transfer events lead to significant issues with surface stability and 

degradation, particularly, under aqueous conditions at higher pH where the rate of water 
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oxidation is enhanced by added bases.18-19 Under these conditions, even with robust surface 

binding groups such as carboxylates or phosphonates, the linkages are readily hydrolyzed under 

basic conditions leading to desorption from semiconductor surfaces.19 One strategy to combat 

surface instability is deposition of a protective, metal oxide overlayer, such as aluminum oxide 

(Al2O3) or TiO2, following dye adsorption, by atomic layer deposition (ALD).20 

Thin ALD overlayers have been shown to significantly increase stabilities for surface-bound 

chromophores under illumination and at high pH.2 ALD has also been used to create and 

stabilize non-bonding chromophore-catalyst assemblies (Figure 5.1A) in which long-range 

electronic coupling provides a basis for integrating electronic interactions and pathways for 

multiple electron transfers.20 In this strategy, surface-bound chromophores are embedded or 

“buried” in ~1-2 nm of an amorphous metal oxide layer by ALD followed by surface-binding of 

the catalyst to the deposited overlayer with the catalyst further stabilized by addition of a few 

monolayers of metal oxide. In earlier experiments, these highly stabilized, “mummy” assemblies 

have been shown to provide high degrees of surface stability through multiple oxidation states 

based on electrochemical measurements.20 Nonetheless, little is known about the effects of these 

overlayers on fundamental interfacial dynamics between the metal oxide, chromophore, and 

overlayer under open circuit conditions. 
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Figure 5.1. (A) A crosswise view of a “mummy” assembly with [RuII(bpy)2(4,4’-

(PO3H2)2bpy)]2+ (RuP2+) surface-bound to a nanocrystalline TiO2 film, protected with a-TiO2 

deposited by ALD. The water oxidation catalyst, [RuII(2,6-bis(1-methyl-1H-benzo[d]imidazole-

2-yl)pyridine)(4,4’-dpcbpy)(OH2)]
2+, Rucat, was loaded on the a-TiO2 overlayer and protected 

with a thin layer of a-TiO2 deposited by ALD. (B) Schematic energy level diagram illustrating 

relative energy levels in the a-TiO2 overlayers in a DSPEC “mummy” chromophore-catalyst 

assembly, where step (1) is photoexcitation, (2) is electron (e‒) injection into the CB of TiO2, (3) 

is transport through TiO2 to a transparent conducting oxide (TCO), and (4) is sequential hole (h+) 

transfer to the a-TiO2, transporting the oxidative equivalent to the catalyst. 

Here, we focus on the effects of an amorphous TiO2 (a-TiO2) overlayer on the model 

chromophore, RuP2+ ([RuII(bpy)2(4,4’-(PO3H2)2bpy)]2+), adsorbed to a nanocrystalline metal 

oxide semiconductor. The a-TiO2 film was prepared from the precursor 

tetrakis(dimethyl)titanium (TiTDMA) with hole conductivity properties in the resulting oxide 

that, if properly exploited in DSPEC applications, could assist in the catalytic process (Figure 
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5.1B).21 In the hypothesized mechanism (Figure 5.1B, eq. 5.1-5.4), excitation of the 

chromophore, RuP2+ (Eq. 5.1) on the surface, gives the metal-to-ligand charge transfer (MLCT) 

excited state (RuP2+*).22 The excited state undergoes electron injection (Eq. 5.2) into the CB of 

TiO2, followed by sequential hole transfer through defect states in the a-TiO2 overlayer (Eq. 5.3) 

to the external catalyst (Rucat
2+) with the latter bound to a-TiO2 (Eq. 5.4). In catalytic cycles, the 

chromophore is returned to its ground state, resetting it for a following photoactivation step:  

TiO2|RuP2+|a-TiO2|Rucat
2+ + hν → TiO2|RuP2+*|a-TiO2|Rucat

2+ (5.1) 

TiO2|RuP2+*|a-TiO2|Rucat
2+→ TiO2(e

‒)|RuP3+|a-TiO2|Rucat
2+  (5.2) 

TiO2(e
‒)|RuP3+|a-TiO2|Rucat

2+→ TiO2(e
‒)|RuP2+|a-TiO2(h

+)|Rucat
2+ (5.3) 

TiO2(e
‒)|RuP2+|a-TiO2(h

+)|Rucat
2+→ TiO2(e

‒)|RuP2+|a-TiO2|Rucat
3+  (5.4) 

In exploiting these properties for DSPEC applications, the influence of local dynamics on the 

properties of the final assemblies play an important role. We report the effect of varying cycles 

the a-TiO2 overlayer (xc-a-TiO2) on injection by the surface-bound chromophore and subsequent 

recombination using ultrafast transient absorption spectroscopy. In this study, we explore 

photophysical dynamics on both TiO2 (TiO2|RuP|xc-a-TiO2) and ZrO2 (ZrO2|RuP|xc-a-TiO2) 

as the underlying nanocrystalline films (Figure 5.2). ZrO2 is commonly used as a control in 

studies of photoanodes because its CB energy lies sufficiently high to avoid appreciable electron 

injection from RuP2+*.22 The a-TiO2 overlayer in Figure 5.2 is drawn with fully realized 

conduction and valence bands although the amorphous nature of a-TiO2 suggests that it is more 

likely a collection of localized states with a defect density throughout its “band gap.” As such, it 

is important to note that electron injection into the a-TiO2 overlayer is energetically feasible.23 



 

69 
 

With ZrO2 as the electrode, it is possible to isolate and probe the interaction between RuP2+* and 

the a-TiO2 overlayer.  

The specific processes of interest for transient absorption measurements on TiO2|RuP|xc-a-

TiO2 are:  

TiO2|RuP2+|a-TiO2 + hν → TiO2|RuP2+*|a-TiO2   (5.5) 

TiO2|RuP2+*|a-TiO2 → TiO2(e
‒)|RuP3+|a-TiO2    (5.6) 

TiO2(e
‒)|RuP3+|a-TiO2 → TiO2(e

‒)|RuP2+|a-TiO2(h
+)   (5.7) 

In ZrO2|RuP|xc-a-TiO2, there is no interaction with the underlying nanocrystalline film resulting 

in these processes:  

ZrO2|RuP2+|a-TiO2 + hν → ZrO2|RuP2+*|a-TiO2   (5.8) 

ZrO2|RuP2+*|a-TiO2 → ZrO2|RuP3+|a-TiO2 (e
‒)    (5.9) 

ZrO2|RuP3+|a-TiO2 (e
‒) → ZrO2|RuP2+|a-TiO2 (e

‒-h+)   (5.10) 

With the electron and hole localized in the a-TiO2 overlayer in ZrO2|RuP2+|a-TiO2, an 

electric field forms around the re-reduced RuP2+ resulting in a Stark effect. The hole 

conductivity behavior of a-TiO2 has been observed electrochemically,21 but the mechanism for 

the appearance of these holes is still debated. Here, we describe the effect of the a-TiO2 

overlayers on interfacial dynamics for the light-harvesting chromophore, RuP2+, surface-bound 

to both TiO2 and ZrO2, and describe a the mechanism for photo-generated hole production in 

these overlayers. 
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Figure 5.2. (A) Illustration of the photon initiated excitation and competitive injection processes 

in TiO2|RuP2+|xc-a-TiO2. (B) Illustration of photon initiated processes in ZrO2|RuP2+|xc-a-

TiO2 without electron injection into ZrO2.  

5.2. Experimental Methods. 

5.2.1. Materials and Molecular Synthesis.  

The chromophore ([RuII(bpy)2(4,4’-(PO3H2)2bpy)](Cl)2: RuP2+) was synthesized by 

previously reported procedures,4 as were ZrO2
24 and TiO2

25 nanoparticle films. Nanoparticle 

films were soaked in a 1 mM solution of RuP2+ dissolved in methanol in the dark overnight then 

soaked in methanol to remove any aggregate dyes and dried under a stream of air. Thin 

overlayers of titanium dioxide (a-TiO2) were deposited on dyed TiO2 and ZrO2 films with atomic 

layer deposition (ALD). 
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5.2.2. Atomic Layer Deposition. 

 Atomic layer deposition (ALD) was performed by using a Cambridge NanoTech Savannah 

ALD system located in the Chapel Hill Analytical and Nanofabrication Lab (CHANL) 

cleanroom. The TiO2 precursor (tetrakis(dimethylamido)titanium(IV) (TiTDMA)) cylinder was 

heated at 75°C, while the reaction chamber was set to 150°C. The chamber and cylinder were 

heated at temperature for at least 1 hour prior to deposition. The dyed and undyed nanoparticle 

films were added to the center of the reaction chamber, in line with the precursor inlet and outlet 

ports. The samples were placed under dynamic vacuum with continuous nitrogen purge 

(99.999%, further purified using an Entegris GateKeeper Inert Gas Purifier) at temperature 

(150°C) for at least 10 minutes prior to deposition. Deposition was performed with the chamber 

containing precursor isolated from vacuum (“exposure mode”). TiTDMA was pulsed for 2 

seconds, isolated in the chamber for 20 seconds, purged from the chamber for 60 seconds. Water 

was pulsed for 20 ms, isolated for 20 seconds and purged for 60 seconds. A number of cycles 

were used to control the thickness of the deposited layer, where one cycle of TiTDMA was 

followed by water. A piece of planar, witness Si present in the reactor during ALD was used to 

determine the thickness of the deposited TiO2 layer through performing ellipsometry on an 

Angle Spectroscopic Ellipsometer. 

5.2.3. Sample Prep for Transient Absorption.  

Prior to transient absorption, films were submerged in 0.1 M HClO4 aqueous solutions in a 10 

mm path cuvette at a 45° angle. The cuvette was fitted with an O-ring seal and Kontes valve inlet 

to purge the sample with argon for at least 45 min prior to TA measurements to prevent effects 

from the presence of oxygen. 
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5.2.4. UV-Visible Absorption Spectroscopy.  

UV-Visible absorption spectra were collected by using a UV-Visible-NIR absorption 

spectrophotometer (Agilent Technologies, model 8453A) operated with tungsten and deuterium 

lamps. The baseline as the absorption spectrum of air. Absorption spectra of electrodes were 

collected by placing samples perpendicular to the beam path. The integration time was 0.5 s. 

5.2.5. Femtosecond Transient Absorption Spectroscopy.  

Femtosecond transient absorption spectra were collected in a pump-probe configuration with 

a 1 kHz Ti:Sapphire chirped pulse amplifier (Clark-MXR CPA-2001). The 388 nm pump pulse 

was generated via second harmonic generation of the 775 nm regenerative amplifier output. 

Alternatively, 490 nm pump pulses were generated via sum frequency generation of a portion of 

the 775 nm output and the signal (~1200 nm) generated from a home-built optical parametric 

amplifier (OPA). The white-light probe (340-800 nm) is created by focusing a portion of the 775 

nm output into a translating CaF2 window. The probe polarization is set to horizontal and the 

pump, chopped at 500 Hz, was set to magic angle (~54.7°). The probe was delayed relative to the 

pump by a computer-controlled optical delay line. Pump and probe beams were focused to ~150 

μm and spatially overlapped at the sample. White light difference spectra were collected by using 

a fiber optic-coupled multichannel spectrometer with a CMOS sensor. The sample was translated 

throughout the experiment by raster-scanning to ensure full relaxation between excitation pulses. 

The instrument response is ~250 fs FWHM with a detector sensitivity of 0.1 mOD. 

5.2.6. Nanosecond-Microsecond Transient Absorption. 

Nanosecond pump-probe transient absorption were taken with the same pump pulse as 

femtosecond transient absorption. Continuum generation in a diode-laser pumped photonic 

crystal fiber from Ultrafast Systems created the white light probe pulse. The probe is 
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electronically delayed relative to the probe pulse with a 500 ps time resolution and the maximum 

time delay is 400 μs. 

5.2.7. Steady State Illumination Experiments.  

Steady-state illumination experiments were conducted using a photostability apparatus 

previously reported.19 Briefly, a Cary 50 UV-Vis spectrometer was outfitted with a Thorlabs 

LED (M455L3) to allow for collection of absorption spectra before, during and following 

illumination. UV-Vis absorption spectra of ZrO2|RuP2+|40c-a-TiO2 in 0.1 M HClO4 were taken 

at 20 second intervals under 455 nm (475 mW/cm2) steady-state illumination. The baseline was 

the absorption spectrum of the electrode in the dark, before illumination. 

5.2.8. Transflectance Measurements. 

Transflectance measurements were performed using a Cary 5000 UV-Vis-NIR absorption 

spectrophotometer outfitted with an external diffuse reflectance accessory with clip-style, center-

mount insert and small-spot kit.  The system was operated in double-beam mode with all 

measurements, including the 100% baselines, recorded with uncalibrated PTFE reference plates 

installed at the reference and reflectance ports.  The zero-level baseline was established by 

removing the PTFE plate from the reflectance port.  Contributions from the metal-oxide-coated 

FTO electrode were subtracted from transflectance values recorded for electrodes derivatized 

with RuP2+.  Measurements were each the result of three scans averaged. 

5.3. Results and Discussion. 

5.3.1. Ground State Absorption Spectra.  

Ground state absorption profiles of nanocrystalline TiO2 are shown in Figure 5.3. 

Nanocrystalline TiO2 is transparent in the visible with a sharp absorption onset at ~380 nm 

corresponding to the CB energy. TiO2|40c-a-TiO2, where deposition of 40 cycles (40c) 
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corresponds to 2 nm of a-TiO2, has a low energy absorption feature through ~500 nm.23 

Simultaneous appearance of a sharp feature at ~400 nm suggests an increase in the number of 

transitions at varying energies due to filled defect states within the band gap. Adsorption of 

RuP2+ on the TiO2 surface results in a broad metal-to-ligand charge transfer (MLCT) band 

centered ~460 nm. With increasing cycles of the a-TiO2 overlayer, with 10 cycles and 20 cycles 

corresponding to 0.4 nm and 1 nm respectively, the RuP2+ absorption slightly red shifts and 

broadens on the red edge due to the overlayer presence. ZrO2 films exhibit a similar behavior 

with a larger red shift in the RuP2+ absorption maximum as the overlayer is increased. To avoid 

direct excitation of the a-TiO2 overlayer, and to selectively excite RuP2+, a pump wavelength of 

490 nm was used for transient absorption experiments. 

 

Figure 5.3. Normalized ground-state absorption spectra of: (A) TiO2 (grey), TiO2|40c-a-TiO2 

(light blue), TiO2|RuP2+ (blue), TiO2|RuP2+|10c-a-TiO2 (green), TiO2|RuP2+|20c-a-TiO2 (black), 

TiO2|RuP2+|40c-a-TiO2 (red) and B. ZrO2 (grey), ZrO2|40c-a-TiO2 (light blue), ZrO2|RuP2+ 

(blue), ZrO2|RuP2+|10c-a-TiO2 (green), ZrO2|RuP2+|20c-a-TiO2 (black), ZrO2|RuP2+|40c-a-TiO2 

(red) in degassed 0.1 M HClO4 (aq). 
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5.3.2. Excited State Decay vs. Electron Injection.  

Visible excitation of the dye, RuP2+, creates an MLCT excited state (RuP2+*) (Figure 5.4). 

The transient absorption spectrum of ZrO2|RuP2+* (Figure 5.4A), following 490 nm excitation, 

includes features characteristic of the MLCT excited state with a ground state bleach (GSB) at 

460 nm, and excited state absorptions (ESA) corresponding to π-π* transitions in the near-UV at 

380 nm, and at λ > 500 nm due to a low intensity dπ-dπ*absorption at Ru(II). No charge 

injection occurs in ZrO2|RuP2+* with the excited state decaying on the order of hundreds of 

nanoseconds.19 

The initial transient absorption spectrum for TiO2|RuP2+* is similar to ZrO2|RuP2+* at early 

times (Figure 5.4B). As pump-probe delay increases, the initial excited state decays rapidly 

without loss of the GSB amplitude, consistent with electron injection to give TiO2(e
‒)|RuP3+ 

with injection complete by 1.2 ns (Figure 5.4B, dark red).22-23 Following injection, back electron 

transfer occurs to give RuP2+ on a time scale of microseconds.26  

 

𝑦 = 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝐴1𝑒
−𝑥/𝜏1 + 𝐴2𝑒

−𝑥/𝜏2  (5.11) 

Table 5.1. Results of fit (eq. 5.11) to decay traces at 380 nm for TiO2|RuP|xc-a-TiO2. 

TiO2 No ALD (0c) 5c 10c 20c 40c 

Offset 32% 22% 21% 10% 14% 

A1 44% 28% 36% 18% 35% 

τ1, ps 12.8 0.95 2.7 1.2 1.8 

A2 24% 50% 43% 72% 51% 

τ2, ps 137 102 70 19 25 

 

We can qualitatively estimate the injection efficiency through analysis of the relative 

amplitudes of features in the transient spectra.22 Based on variations in amplitude differences at 
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380 nm in the bpy●‒ ESA of RuP2+* on ZrO2 and TiO2, we estimate that around ~45% of the 

injection events in TiO2 occur within 2 ps following photoexcitation with slower injection 

responsible for the remaining 55% of the excited state.. On the picosecond timescale, loss of the 

excited state is biexponential with time constants of 12.8 ps and 137 ps (Table 5.1). 

 

Figure 5.4. Transient absorption spectra of (A) ZrO2|RuP2+and (B) TiO2|RuP2+, following 490 

nm excitation (100 nJ/pulse) in degassed 0.1 M HClO4 (aq) at probe delays of -6 (black), 2 

(purple), 10 (blue), 50 (green), 200 (orange), 500 (red), and 1200 (dark red) ps. 

Control experiments on ZrO2|40c-a-TiO2 and TiO2|40c-a-TiO2 with no added dye excited at 

388 nm were used to explore possible contributions to the spectrum from the a-TiO2 overlayer 

(Figure 5.5). From the ground state absorption spectrum in Figure 5.3, excitation at 388 nm 

selectively excites the a-TiO2 overlayer without excitation of the nanocrystalline films. 

Excitation of the a-TiO2 layer results in a broad absorption throughout the visible with evidence 

for a collection of discrete states. The overall absorption manifold decays in 100s of picoseconds 

in ZrO2|40c-a-TiO2 and persists for over 1 nanosecond in the TiO2|40c-a-TiO2 case. The 

appearance of the absorption manifold is consistent with a broadly-based series of transitions in 

the near UV. Upon excitation, they result in the formation of transient, intermediate states that 
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are able to inject into the nanocrystalline TiO2 creating a CSS that is not thermodynamically 

feasible in ZrO2|40c-a-TiO2. This suggests that the broad absorption is due to holes in the mid-

gap region in the a-TiO2 films. It is important to note that 490 nm excitation of these undyed 

films does not induce any absorption changes in this region.23 

 

Figure 5.5. Transient absorption spectra of (A) ZrO2|40c-a-TiO2 and (B) TiO2|40c-a-TiO2 films 

photoexcited at 388 nm (400 nJ/pulse) in degassed 0.1 M HClO4 (aq) at pump-probe delays of 1 

(purple), 15 (blue), 50 (green), 125 (orange), 400 (red), 1100 (dark red) ps. 

5.3.3. Charge Separation Dynamics of TiO2|RuP2+|a-TiO2.  

As observed by transient absorption spectral changes, addition of a-TiO2 overlayers on films 

of TiO2|RuP2+ changes their photophysical behavior (Figure 5.6). With 5 cycles (0.2 nm) of a-

TiO2 (TiO2|RuP2+|5c-a-TiO2), the same RuP2+ excited state features appear but the ground state 

bleach decays on the picosecond time scale. The decay kinetics for TiO2|RuP2+|5c-a-TiO2 at 380 

nm (Table 5.1) are biexponential with rapid (τ1 = 0.95 ps) and slow (τ2 = 102 ps) components, 

which are slightly faster than TiO2|RuP2+ alone. This trend continues as more cycles of a-TiO2 

are added, where the ESA decay of TiO2|RuP2+|40c-a-TiO2 has time components of 1.8 ps and 
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25 ps. A faster injection rate is expected in these systems, as the a-TiO2 overlayer introduces 

additional acceptor states for the RuP2+ to inject into, consistent with observations from a 

systematic study of injection into TiO2 with varying Ru(II) dyes.22 

 

Figure 5.6. Transient absorption spectra of (A) TiO2|RuP2+|5c-a-TiO2, (B) TiO2|RuP2+|10c-a-

TiO2 (C) TiO2|RuP2+|20c-a-TiO2 and (D) TiO2|RuP2+|40c-a-TiO2 in 0.1 M HClO4 (aq) 

photoexcited at 490 nm (100 nJ/pulse) at pump-probe delays -6 (black), 2 (purple), 10 (blue), 50 

(green), 200 (orange), 500 (red), 1200 (dark red) ps. 
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Compared to TiO2|RuP2+, determination of the qualitative injection yield is more difficult 

because the loss of the GSB amplitude manifests in the near-UV, as the oxidized chromophore 

RuP3+ is lost. The decay of the GSB, monitored at 460 nm, in TiO2|RuP2+|5c-TiO2 is 

exponential with a lifetime of 215 ps (Table 5.2). The change in amplitude in the overall TA 

signal represents a loss of ~30% of the oxidized chromophores. The origin of this loss is likely 

due to reduction of the oxidized chromophores from filled defect states in the a-TiO2 shell 

(Eq.5.7, TiO2(e
‒)|RuP3+|a-TiO2 → TiO2(e

‒)|RuP2+|a-TiO2(h
+)). The injected electrons may still 

be in the nanocrystalline TiO2; however, because we are monitoring the transient absorption 

signal from just the chromophore, it is difficult to pinpoint the exact location of the injected 

electrons. This type of recombination is non-geminate as the electron reducing RuP3+ is not the 

same electron that has been injected into the CB of either the TiO2 or a-TiO2 overlayer. 

𝑦 = 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝐴1𝑒
−𝑥/𝜏1  (5.12) 

Table 5.2. Exponential fit (eq. 5.12) of GSB decay kinetics (λprobe = 460 nm) for TiO2/RuP/xc-a-

TiO2. 

TiO2 5c 10c 20c 40c 

Offset 77% 70% 56% 50% 

A1 23% 30% 44% 50% 

τ1, ps 215 305 208 175 

 

With increasing a-TiO2 overlayer thickness, the magnitude of the GSB loss increases from 

30% in TiO2|RuP2+|5c-a-TiO2 to 50% in TiO2|RuP2+|40c-a-TiO2. The time scale for this loss is 

independent of overlayer thickness at ~250 ps (Table 5.2). The film thickness result is consistent 

with observations made earlier on ultrafast recombination on SnO2/a-TiO2 films,23 where the a-

TiO2 was deposited as a shell on a nanocrystalline core with RuP2+ adsorbed to the a-TiO2 shell 

surface.  
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Additionally, there is a broad absorption in the red for TiO2|RuP2+|20c-a-TiO2 and 

TiO2|RuP2+|40c-a-TiO2, similar to the absorption observed for TiO2|40c-a-TiO2 (Figure 5.5B). 

The band shape is distinctly different from characteristic Ru(II) absorptions, and likely arises 

from holes in the a-TiO2 overlayer, consistent with reduction of oxidized chromophores 

occurring through filled defect states in the overlayer.  

5.3.4. Charge Separation Dynamics of ZrO2|RuP2+|a-TiO2.  

The transient absorption spectra of ZrO2|RuP2+|5c-a-TiO2 after 490 nm photoexcitation is 

shown in Figure 5.7A. Both the bpy●‒ ESA and the GSB decay on the picosecond time scale 

suggesting a mechanism other than excited state decay is occurring. The spectral features for 

ZrO2|RuP2+|10c-a-TiO2 include a growth of a positive signal in the red, and a shift in the bleach 

from 460 nm to 475 nm. This red shift is progressive, increasing with overlayer thickness, and 

reaches ~50 nm in ZrO2|RuP2+|40c-a-TiO2. This red shift is not present for the analogous TiO2 

film. 
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Figure 5.7. Transient absorption spectra of (A) ZrO2|RuP2+|5c-a-TiO2, (B) ZrO2|RuP2+|10c-a-

TiO2, (C) ZrO2|RuP2+|20c-a-TiO2, (D) ZrO2|RuP2+|40c-a-TiO2 photoexcited at 490 nm (100 

nJ/pulse) in 0.1 M HClO4 (aq) at pump-probe delays of -6 (black), 2 (purple), 10 (blue), 50 

(green), 200 (orange), 500 (red), 1200 (dark red) ps. 

The decay kinetics for the bpy●‒ band at 380 nm were fit to a single exponential for 

ZrO2|RuP2+|5c-a-TiO2 and to a biexponential equation for all other ZrO2|RuP2+|xc-a-TiO2 films 

to determine the time scales for injection into the a-TiO2 overlayer (Table 5.3). For 

ZrO2|RuP2+|5c-a-TiO2, it is clear that some injection is occurring with a time constant of 92 ps. 

This film is an outlier because only a small amount of injection is occurring and it is difficult to 
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resolve a fast and slow component in this case. With thicker overlayers, we observe typical 

biphasic injection kinetics that become faster as thickness increases from 10.3 ps and 278 ps in 

ZrO2|RuP2+|10c-a-TiO2 to 3.9 ps and 111 ps in ZrO2|RuP2+|40c-a-TiO2, consistent with an 

increase in a-TiO2 acceptor states.  

Table 5.3 Fit of ESA kinetics (λprobe = 380 nm) with eq. 5.11 for ZrO2|RuP2+|5c-a-TiO2  

ZrO2 5c 10c 20c 40c 

Offset 66% 3% 3% 2% 

A1 34% 44% 54% 39% 

τ1, ps 92 10.3 17.8 3.9 

A2  53% 43% 59% 

τ2, ps  278 237 111 

 

Loss of the ground state bleach at 460 nm (Table 5.4) occurs on a similar time scale as the 

loss of the bpy●‒ band. This similarity suggests that in these films recombination immediately 

follows the injection process. Additionally, the blue edge of the bleach (λ = 460 nm) decays 

faster than the red edge (λ = 525 nm), where for ZrO2|RuP2+|40c-a-TiO2, the fast and slow 

components for the red edge of the bleach are 52 ps and 472 ps, due to this progressive red shift 

that increases with increasing pump-probe delay.  

Table 5.4. Fit of GSB kinetics (λprobe = 460 nm) with eq. 5.11 for ZrO2|RuP2+|xc-a-TiO2 (10c-

40c) and eq. 5.12. for ZrO2|RuP2+|5c-a-TiO2 

ZrO2 5c 10c 20c 40c 

Offset 63% 33% 33% 40% 

A1 37% 22% 22% 20% 

τ1, ps 126 14.2 6.4 4.5 

A2  45% 45% 40% 

τ2, ps  283 190 163 
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5.3.5. Spectral Modeling in ZrO2|RuP2+|40c-a-TiO2. 

The shape and behavior of features in the ZrO2|RuP2+|xc-a-TiO2 transient absorption spectra 

are atypical of surface-bound RuP2+. To simulate the early time spectrum at 1 ps of 

ZrO2|RuP2+|xc-a-TiO2, we need a linear combination of spectral components (Figure 5.8A), 

including the 1st derivative of the ground state absorption using transflectance measurements to 

eliminate scatter, the excited state spectrum of surface bound RuP2+* (Figure 5.4A, 

ZrO2|RuP2+*), and the hole absorption in the a-TiO2 overlayer (Figure 5.5A). The late time 

spectrum at 1 ns of ZrO2|RuP2+|40c-a-TiO2 (Figure 5.7B) has a similar linear combination 

including the hole in the a-TiO2 overlayer, and some contribution from the excited state (for 

ZrO2|RuP2+*); however, the 1st derivative no longer adequately describes the spectrum. Instead, 

we collected UV-Vis spectra under 450 nm steady state illumination and used the difference 

spectrum between dark and light conditions in the simulated sum to accurately describe the 

transient absorption spectrum at 1 ns. Similar results are obtained by shifting the absorption 

spectrum ~30 nm and taking the difference between the original (measured) position and the 

shifted spectrum.  
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Figure 5.8. (A) Components and weighted simulated sum of the 1 ps transient absorption 

spectrum of ZrO2|RuP2+|40c-a-TiO2 (orange) where the first derivative spectrum of the ground 

state from transflectance measurements (red), excited state of surface-bound RuP2+* 

(ZrO2|RuP2+*, black), and the hole in the a-TiO2 film (green) are added together in a linear 

combination to produce the simulated spectrum (blue). (B) Components and weighted simulated 

sum of the 1 ns transient absorption spectrum of ZrO2|RuP2+|40c-a-TiO2 (orange) where the 

difference spectrum of the ground state and illuminated film (red), excited state of surface- 

bound RuP2+* (ZrO2|RuP2+*, black), and the hole in the a-TiO2 film (green) are added together 

in a linear combination to produce the simulated spectrum (blue).   

The 1st derivative is often used in modeling to describe the changes to a spectrum due to a 

Stark effect, or the effects due to an electric field.27 The electric field in the ZrO2|RuP2+|xc-a-

TiO2 films arises from injection from photoexcited RuP2+* into the CB-like states in the a-TiO2 

overlayer creating an oxidized RuP3+. The oxidized RuP3+ is reduced by a filled defect state in 

the a-TiO2 overlayer recreating RuP2+, and leaving a higher energy electron and a hole in the a-
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TiO2 overlayer, changing the environment around the RuP2+ and shifting its absorption to lower 

energies. Recalling equations 5.8-5.10: 

ZrO2/RuP2+/a-TiO2 + hν → ZrO2/RuP2+*/a-TiO2   (5.8) 

ZrO2/RuP2+*/a-TiO2 → ZrO2/RuP3+/a-TiO2 (e
‒)    (5.9) 

ZrO2/RuP3+/a-TiO2 (e
‒) → ZrO2/RuP2+/a-TiO2 (e

‒-h+)   (5.10) 

This process continues through the picosecond timescale, further perturbing the spectrum to 

lower energies. The relative contribution of the generated holes in the a-TiO2 overlayer increases 

with time, while excited state contributions (ZrO2|RuP2+*), decreases. Additionally, we would 

expect the electric field signal to simply increase in intensity as the concentration of RuP2+ 

increased; however, this continued red shift in the GSB with increasing pump-probe delay may 

be indicative of mobile electrons28 undergoing a random walk through localized states at 

differing energies in this amorphous overlayer.29 The magnitude of this electric field is larger for 

ZrO2|RuP2+|xc-a-TiO2 because all charges are localized in the a-TiO2 overlayer, where in the 

TiO2|RuP2+|xc-a-TiO2 case, the injected electron can move throughout the nanocrystalline TiO2 

film in addition to the a-TiO2 overlayer. 

The behavior on both ZrO2|RuP2+|xc-a-TiO2 and TiO2|RuP2+|xc-a-TiO2 point to an ultrafast 

loss of oxidized chromophores via reduction by filled defect states in the mid-gap region of the 

a-TiO2 overlayer. Our group has also observed a similar ultrafast loss from this amorphous TiO2 

on SnO2/a-TiO2 core/shell films; however, it was difficult to determine the origin.  The 

observations in this study suggest that the loss of oxidized chromophores we observed in the 

SnO2/a-TiO2 is, in fact, non-geminate in nature, where the injected electron is not the same 

electron reducing the oxidized chromophore. 
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5.4. Conclusions.  

The interfacial dynamics of dye-sensitized nanocrystalline films “buried” with varying 

thicknesses of an amorphous TiO2 overlayer were investigated using transient absorption 

spectroscopy. On TiO2|RuP2+|xc-a-TiO2 films, we observe an ultrafast loss component (τ~250 

ps) consistent with what has been measured for dye-sensitized SnO2/a-TiO2 core/shell films. On 

ZrO2|RuP2+|xc-a-TiO2, where the only path for electron injection is into the a-TiO2 overlayer, 

we observe a transient Stark effect from an electric field produced by reduction of oxidized 

chromophores via filled defect states in the a-TiO2 after injection into higher energy, empty a-

TiO2 states. We are able to simulate the spectrum using a linear combination of the hole 

absorption in the a-TiO2 film, the excited state of RuP2+*, and the difference spectrum of the red-

shifted ground state represented by the 1st derivative curve at early times and the difference 

spectrum under steady state illumination at 1 ns. The mechanism of chromophore regeneration 

uncovered in this study could be exploited successfully in DSPEC devices, where the holes in the 

a-TiO2 overlayer can be transported to a catalyst, while also resetting the chromophore to 

undergo the next light absorption/injection event.  
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Chapter 6: Role of Structure in Ultrafast Charge Separation and Recombination in 

Naphthalene Diimide End-Capped Thiophene Oligomers 
This chapter presents a manuscript in preparation with co-authors: Austin L. Jones, Kirk S. Schanze, and 

John M. Papanikolas.  

6.1. Introduction  

Understanding photoinduced charge separation in organic systems provides critical insight 

into solar cell performance as well as fundamental biological processes like photosynthesis.1-7 

Conjugated polymers, such as poly(3-hexyl)thiophene (pT) are often utilized as electron donors 

in organic photovoltaic cells;8 however, polymers inhibit precise synthetic control, and 

quantitative electron transfer (ET) studies often require a combination of experiment and 

expensive computational simulations.9 Oligomers have well-defined structures combined with 

tunable optical properties making them effective tools to study the dynamics of conformationally 

flexible organic systems.10-13 Here, we characterize the excited state and charge separation 

dynamics in a series of thiophene oligomers (nT, n = 4, 6, 8, 10, 12) with and without 

naphthalene diimide (NDI) end-caps (Figure 6.1) using transient absorption spectroscopy. 
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Figure 6.1. Thiophene (nT, Top) and donor-accepter oligomers (nT-NDI, Bottom) with donor 

colored in blue, acceptors colored in red and the phenyl bridge in black. n = 2(y+1) and y = 1, 2, 

3, 4, or 5. 

The π-conjugated nT oligomers have unique optoelectronic properties arising from the 

overlap of π-orbitals across the carbon-based chain.12-13 Breaks in the π-conjugation within an 

oligomer create subunits that are best described as chain-linked chromophores with energies 

determined by the length of the conjugated segment. This property, in particular, make nT 

oligomers and their polymeric counterparts useful light harvesters for solar cells as the various 

configurations absorb across a wide range of the visible spectrum. 

Incorporating the NDI end-caps with the thiophene oligomers to create acceptor-donor-

acceptor (ADA) assemblies allows us to study photoinduced charge separation and 

recombination, and how structure and delocalization in the thiophene segment influence the 

dynamics of these processes. Selective excitation of the thiophene donor leads to charge 
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separation (Eq. 1) creating an NDI radical anion (NDI●‒) and a thiophene cation (i.e. polaron, 

nT●+), e.g. 

NDI-nT-NDI + hν   NDI-1(nT)*-NDI  NDI-(nT)●+-NDI●‒     (6.1) 

NDI-(nT)●+-NDI●‒  NDI-nT-NDI        (6.2) 

The nT-NDI oligomers integrate an electron donor and acceptor connected through a 

phenylene bridge to create a molecular wire-like structure. Variations of these molecular wires, 

including altering donors,14 acceptors,15 and bridge length,16 are of great interest in solar energy 

conversion, but overlapping spectral features, and competitive energy and electron transfer 

pathways make the mechanism of charge separation and recombination difficult to quantify.17-20 

Understanding the effects of thiophene donor length on the charge separation and recombination 

dynamics is extremely beneficial for the continued development and implementation of these 

molecular wires in solar cell devices. 

Our previous work on this series determined that these electron transfer reactions are 

essentially activationless occurring on the ultrafast timescale.21 The current work, the second of 

two papers, delves into the mechanism and dynamics of the charge separation and recombination 

processes of the nT-NDI oligomers, and how that relates to the excited state dynamics of the nT 

oligomers. 
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6.2. Experimental Methods. 

6.2.1. Sample Preparation.  

The synthesis and structural characterization of the nT and nT-NDI oligomers are described 

elsewhere.21 Prior to transient absorption experiments, the solid samples were dissolved in 

CH2Cl2 and transferred to a 1mm path length cuvette with a peak absorbance of 0.1 monitored by 

UV-visible absorption spectroscopy. The samples were degassed with argon for approximately 

10 minutes to prevent any effects due to the presence of oxygen. Studies done at different 

concentrations and powers show no significant differences. Samples were stirred throughout the 

duration of the transient absorption experiment. 

6.2.2. UV-Visible Absorption Spectroscopy.  

UV-visible absorption spectra were collected using an Agilent 8453 diode array. The UV-Vis 

spectra were monitored before and after transient absorption experiments to ensure no 

photodegradation had occurred. 

6.2.3. Femtosecond Transient Absorption.  

Femtosecond transient absorption (fsTA) experiments were conducted with a mode-locked 

Ti:Sapphire laser (Clark-MXR 2001) in a pump-probe configuration. The generated 775 nm light 

(150 fs pulse) is split at the output with 90% of the beam dedicated to the pump pulse and 10% to 

the probe. The 425 nm (100 nJ/pulse) pump is generated in a home-built optical parametric 

amplifier (OPA) where the generated idler is frequency doubled to 940 nm and combined with 

residual 775 nm to undergo sum frequency generation. The probe pulse is sent through a 

mechanically controlled delay stage to control the distance between pump and probe. After the 

delay stage, the 775 nm is focused into a rotating CaF2 window to generate a white light probe (λ 

= 325-750) through supercontinuum generation. The polarization of the probe is vertical and the 
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pump is set to magic angle (54.7°) relative to the probe. The pump and probe beams are focused 

and spatially overlapped at the sample and changes of the white light probe with time are 

monitored by a CMOS sensor. 

6.3. Results and Discussion. 

6.3.1. Steady State Absorption Spectra and Photoexcitation. 

The steady state absorption spectra of the thiophene-only, the nT series, exhibit a broad, 

structureless π-π* absorption that red shifts with chain length (Figure 6.2, Table 6.1). The largest 

red shift occurs between 4T and 6T due to the extended conjugation length. The degree of red 

shifting decreases for the subsequent oligomers, suggesting that the effective conjugation length 

is ~8-10 thiophene repeats. Addition of the NDI end-caps introduces two vibronically-resolved 

absorption features in the near-UV, corresponding to the π-π* absorptions of the NDI units.22 

The absorption profiles of the nT-NDI oligomers are, qualitatively, a superposition of the 

structureless absorption bands of the nT series and the sharp NDI peaks. This superposition 

suggests weak coupling between donor and acceptor allowing for selective excitation of the 

thiophene donor. Note that the thiophene absorption maximum in 4T-NDI (and to a lesser extent, 

6T-NDI) is significantly perturbed relative to the corresponding nT oligomers by extended 

conjugation length introduced by the phenylene bridge that links the thiophene segments to the 

diimide N-atom. 

Table 6.1. Thiophene absorption peak wavelength from steady state absorption spectrum. 

n 4 6 8 10 12 

λmax, nm (nT) 378 412 429 436 440 

λmax, nm (nT-NDI) 409 428 433 439 440 
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Figure 6.2. Normalized UV-Visible absorption spectra of nT (red) and nT-NDI (black-dotted 

line) with A. n = 4, B. n = 6, C. n = 8, D. n = 10, E. n = 12 in CH2Cl2 at 25°C. 

The structureless thiophene absorption in the steady state arises from the conformational 

freedom these oligomers have in the ground state in solution.23 The structural disorder introduced 

by breaks in the π-conjugation increases with thiophene length. The small segments created by 

these breaks can absorb photons and undergo structural relaxation in the excited state to a 

quinoidal-like planar structure, resulting in a structured emission profile.10, 24 The shifts in the 
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spectra speak to the size of the exciton in the nT oligomers. The exciton created by 

photoexcitation likely extends across the entire chain in the smallest oligomer (4T), while the 

limiting nature of the spectral position suggest that for larger oligomers (n > 6), the excited state 

extends across 5-6 monomers.25  

 

Figure 6.3. Transient absorption spectra of (A) 4T, (B) 6T, (C) 8T, (D) 10T, (E) 12T, (F) pT in 

CH2Cl2 at 25°C after photoexcitation at 388 nm (100 nJ/pulse) at pump-probe delays of -6 

(black), 0.33 (purple), 1, 3, 5, 10, 20, 50, 100, 250, 500, 750, 1300 (dark red) ps. The pT spectra 

has been reproduced from REF 9. 
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6.3.2. Excited State Dynamics of nT Oligomers.  

The transient absorption spectra of the nT series and pT at 300 fs after 388 nm 

photoexcitation (Figure 6.3, A-E, purple) contains several characteristic features26 of thiophene 

excited states including a ground state bleach (GSB) in the blue, stimulated emission from the 

singlet excited state (SE) between 500-600 nm and a singlet excited state absorption (ESA) in the 

red. The SE rapidly red shifts in oligomers with n > 4, evolving from a broad, structureless band 

to a vibronically-resolved SE reminiscent of the steady state emission.21 The SE decays with 

time constants ranging from 249 ps in 4T to 585 ps in 12T (Table 6.2), similar to the lifetime 

(580 ps) reported for pT by Wang and coworkers.27 

Table 6.2. Results of fit of simulated emission decay for nT series. 

n 4 6 8 10 12 

τ1, ps  0.26 0.24 0.4 0.32 

τ2, ps 0.47  3  4  4.8 4.0  

τ3, ps 249  448 467 562 585 

 

The rapid red shifts of the SE bands in the longer oligomers (n ≥ 6) without significant loss of 

the GSB amplitude, reflects evolution of the exciton to lower energy states (i.e., longer 

conjugated segments). In pT, this relaxation is often attributed to a combination of exciton 

migration (i.e. energy transfer from a shorter, high-energy segment to longer segments with 

lower energies) and torsional relaxation to produce a more planar structure in the vicinity of the 

excitation, lowering the energy of the exciton.24-25, 28 The observation of the same behavior in 

oligomers with as few as 6 monomer units (6T) as that in pT suggests that the rapid SE band red 

shift is most likely a consequence of conformational relaxation, rather than exciton hopping. In 

addition to exhibit a significant shift in position, the SE band shows a substantial change in its 

spectral shape, evolving from a broad and featureless band at early times to a structured spectrum 
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with a clear vibronic progression. The emergence of the vibronic structure most likely reflects 

progression towards a narrow distribution of conformational states, combined with stronger 

electron-vibrational coupling to high frequency modes. 

While the spectral evolution observed in the 4 longest oligomers (6T-12T) qualitatively 

resembles that observed in pT, the spectral dynamics of the shortest oligomer (4T) is noticeably 

different. Unlike the longer chains, the SE in 4T contains vibronic structure at the earliest 

observation point, and shows no appreciable time-dependent red-shift. These observations 

suggest that the excited state produced by optical excitation is similar to the emitting state, and 

that 4T dynamics are free of the conformational relaxation processes taking place in the longer 

chains. 

The decay of the SE band reflects relaxation of the nT excited state back to the ground state. 

The lifetime of the relaxed singlet exciton also increases with length (Table 6.2) where the 

largest increase occurs between 4T and 6T (Δτ~200 ps). This is likely due to the significant 

increase in structural disorder with the addition of two thiophene rings causing a decrease in the 

Franck Condon factors and, therefore, decreasing the rate of radiationless deactivation of the 

singlet state.10, 29 Previously measured quantum yields show a significant increase between 4T 

and 6T,21 further supporting this increase in structural disorder. 

On longer timescales, intersystem crossing (ISC) occurs, as observed by the growth of the 

triplet state absorption at longer delay times in the red for λ > 600 nm (Figure 6.2). Although we 

observe the blue edge of this triplet-triplet absorption (TTA), the peak red-shifts out of the 

available observation window (λ > 700 nm) for 10T, 12T, and pT. The rise of the TTA 

absorption for 4T, 6T, and 8T (Figure 6.4) occurs with time constants of 337 ps, 1059 ps, and 

1220 ps, respectively. Not surprisingly, the rise of the TTA parallels the decay of the singlet 
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state, with the largest difference in triplet rise-time dynamics lying between 4T and 6T, while the 

growth rate levels off for 6T and 8T. The rise times for 6T and 8T are in good agreement with 

previous studies on the ISC dynamics of pT, where the measured ISC time constant was 1.2 ns.30 

Together, these observations suggest the behavior of 4T is molecular in nature while all longer 

oligomers are approaching the behavior of pT. 

 

Figure 6.4. Growth of TTA at probe wavelengths of 573 nm, 668 nm, and 672 nm for 4T, 6T, 

and 8T, respectively. Oligomers were photoexcited at 388 nm in CH2Cl2. 

6.3.3. Charge Separation and Recombination Dynamics in nT-NDI.  

The early time transient absorption spectra of the nT-NDI series (Figure 6.5, A-E), 

photoexcited at 425 nm to avoid direct excitation of NDI, has similar spectral features to that of 

the nT series: a GSB in the blue, SE in the mid-visible and a singlet ESA in the red. Using 8T-

NDI (Figure 6.5C) as an example, the magnitude of the SE signal is partially quenched relative 

to the same time point in 8T and quickly decays. Within 10 ps, new features appear including 

two sharp bleach features at 360 nm and 380 nm, a large positive peak at 490 nm, and a smaller 
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peak at 610 nm, consistent with bleaching of the NDI ground state and formation of the anion 

radical, NDI●‒.22 The absorption band increases slightly in intensity before decaying, signifying a 

change from the singlet excited state (18T) to a thiophene cation (8T●+).21 The features related to 

this charge separated state (CSS, 8T●+-NDI●‒) return nearly to baseline within 50 ps, much faster 

than the microsecond lifetime of 8T triplet state. 

 

Figure 6.5. Transient absorption spectra of (A) 4T-NDI (B) 6T-NDI (C) 8T-NDI (D) 10T-NDI 

(E) 12T-NDI photoexcited at 425 nm (100 nJ/pulse) at time delays of -6 (black), 0.2 (purple), 

0.85, 1.5, 2.3, 4.0, 5.0, 7.0, 11.4, 20.5, 27, 35, 50 ps (dark red) in CH2Cl2. 

The transient absorption spectra of the nT-NDI series as a whole reveal major differences in 

the charge separation and recombination dynamics with the length of the thiophene backbone. 
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Like the nT series, the same major features are present in all nT-NDI compounds, but the 

behavior varies from 4T-NDI through 12T-NDI.  

With the creation of the CSS, the spectral features are not static, suggesting conformational 

relaxation is occurring in conjunction with charge separation. Within 850 fs, the SE in 4T-NDI is 

completely quenched and evidence of the CSS is apparent. Some vibronic structure is present in 

the 4T-NDI SE, though it does not evolve prior to charge separation. With the addition of two 

thiophene units in 6T-NDI, the disappearance of the SE slows, but it does not shift. In the longer 

chains (8T-NDI-12T-NDI), however, there is a pronounced red shift in the SE as it decays. This 

is indicative of structural relaxation as charge separation occurs, though the lack of vibronic 

structure suggests charge separation is faster than complete structural relaxation. In addition to 

the SE, the NDI●‒ peak at 490 nm blue shifts and broadens as it decays implying structural 

relaxation continues through the charge separation process. 
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Figure 6.6. (A) Normalized transient absorption kinetics at 490 nm and (B) 380 nm after 425 nm 

excitation of 4T-NDI (red), 6T-NDI (orange), 8T-NDI (yellow), 10T-NDI (green), and 12T-

NDI (blue) in CH2Cl2 at 25°C. Fits are shown as black lines. 

To understand the dynamics and mechanism of charge separation and recombination, the 

kinetics were monitored at two wavelengths, 380 nm and 490 nm, corresponding to the NDI 

GSB and the NDI●‒, respectively (Figure 6.6). The traces were fit to a sum of four exponentials 

(eq. 6.3) simultaneously with shared time constants consisting of two growth and two decay 

components (Table 6.3). The biexponential rise in the signals correspond to the growth of the 

CSS, where τ1 is ultrafast and independent of length, while τ2 is dependent on the length of the 

thiophene segment. Likewise, recombination is biphasic with a fast (τ3) and slow (τ4) component; 
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however, both components are dependent on thiophene length. Similar recombination dynamics 

have been observed in wire-like31 and dendrimeric structures.15 

 

𝑦 = 𝐴1𝑒
−𝑥/𝜏1 + 𝐴2𝑒

−𝑥/𝜏2 + 𝐴3𝑒
−𝑥/𝜏3 + 𝐴4𝑒

−𝑥/𝜏4    (6.3) 

Table 6.3. Results of global fit at 380 nm and 490 nm for nT-NDI complexes. 

 τ1, fs τ2, ps τ3, ps τ4, ps 

4T-NDI 300 0.90 3.83 14.8 

6T-NDI 355 1.91 3.66 18.5 

8T-NDI 236 2.38 4.37 23.6 

10T-NDI 276 4.34 6.27 44.7 

12T-NDI 289 5.06 6.93 58.3 

 

The first time component, τ1 (Table 6.3), is ultrafast and independent of chain length. Because 

this time component is ~300 fs, it is likely that a portion of this ultrafast charge separation is 

occurring within our instrument response. The timescale for this process suggests ultrafast 

charge separation is more complicated than simple donor-acceptor dynamics. A possible 

mechanism for the ultrafast process (τ1) is shown in Figure 6.7A, where photoexcitation near the 

end of the chain creates a delocalized excited state across the phenylene bridge with partial 

positive character on the thiophene and partial negative on the NDI end-cap. Twisting of the 

bridge localizes the positive and negative charges creating the CSS. 
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Figure 6.7. Mechanism of charge separation and recombination in nT-NDI for photoexcitation 

(A) at end of thiophene chain (red pentagons), delocalized across phenylene bridge (green 

hexagon) (B) center of thiophene chain where energy transfer is followed by ET, (C) center of 

thiophene chain where long-range ET occurs. See text for description.  

Evidence for the production of this charge-transfer excited state lies in the transient absorption 

spectra. Interestingly, the nT-NDI series exhibit a blue shift in the NDI●‒ absorption at 490 nm 

(Figure 6.5). This blue shift is a result of the localization of the charges through the bridge 

twisting.32 The magnitude of this shift decreases with increasing chain length (Figure 6.8) with 

the largest shift occurring in 4T-NDI (Figure 6.8A). The minimal structural heterogeneity in 4T-

NDI allows this pathway towards charge separation to dominate. In the longer chains, structural 

relaxation and slow charge separation diminish this effect to the point where it is not present in 

12T-NDI. 
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Figure 6.8. Snapshot of the NDI●‒ band at ~490 nm in (A) 4T-NDI at pump probe-delays of 

1.77 (purple), 2.5, 5, 6, 10, 20 ps (dark red) (B) 6T-NDI at pump-probe delays of 2 (purple), 3, 

4.5, 8, 14, and 20 ps (dark red), (C) 8T-NDI at pump-probe delays of 4 (purple), 6, 9, 10, 14, and 

30 ps (dark red), (D) 10T-NDI at pump-probe delays of 9, 10, 12, 14,17, and 30 ps (dark red), 

and (E) 12T-NDI at pump-probe delays of 8 (purple), 11, 20, 30, 37, and 50 ps (dark red) in 

CH2Cl2 photoexcited at 425 nm, normalized to visualize the blue shift as a function of thiophene 

length. 

Slower charge separation, represented by τ2, ranges from 900 fs through 5 ps from 4T-NDI to 

12T-NDI, respectively. In this case, photoexcitation occurs in the center of the chain and there 

are two paths for charge separation (Figure 6.7, B-C): energy transfer or torsional relaxation 

followed by electron transfer (ET) (Figure 6.7B) and long-range ET (Figure 6.7C). In our 

previous paper, the charge separation process was determined to be activationless and 

nonadiabatic.21 Long range ET proceeds through a typical Marcus donor-acceptor interaction, 
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where the distance between the exciton created in the center of the chain and the NDI acceptor 

dictates the rate. However, a second mechanism is present where the exciton may undergo an 

energy transfer step to a chromophore closer to the NDI and then undergo ET to create the CSS.  

The behavior of the SE of the nT-NDI series points to the dominant mechanism for slow 

charge separation. In the short oligomers (4T-NDI, 6T-NDI), no apparent shift in the SE 

suggests that slow charge separation proceeds through long range ET. Longer oligomers (8T-

NDI‒12T-NDI) exhibit a red shift in the SE indicative of some torsional relaxation or energy 

trasnfer, as in the case of the nT series. Complete excited state structural relaxation does not 

occur in the nT-NDI series as there is no vibronic progression observed. Instead, this energy 

transfer/ET mechanism is occurring in conjunction with long range ET preventing full excited 

state relaxation in favor of CSS creation. 

The monitored kinetics exhibit a biexponential decay back to baseline, which is not surprising 

considering the proposed mechanism for charge separation in Figure 6.7. However, unlike 

charge separation, both recombination time components are dependent on the length of the 

oligomer. The fact that the timescale for recombination is under 100 ps in all nT-NDI 

compounds agrees with our previous thermodynamics calculations,21 which determined that for 

all of the oligomers recombination occurs in the Marcus inverted region. Physically, a 

distribution of thiophene cations (i.e. polarons) at different distances from the NDI●‒ leads to a 

length dependence in both τ3 and τ4. This is also further evidence for an energy transfer/ET 

mechanism in addition to long range ET. 
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6.3.4. Conclusions.  

We investigated the ultrafast excited state dynamics and charge separation/recombination 

dynamics of a series of nT and ADA nT-NDI oligomers, respectively. Photoexcitation of the nT 

oligomers creates a localized exciton somewhere along the chain that undergoes rapid structural 

relaxation via planarization and/or energy transfer (n = 10, 12) within 10s of picoseconds. 

Introduction of the NDI acceptor end-caps to produce the nT-NDI oligomers inhibits this 

structural relaxation in favor of rapid charge separation and recombination after selective 

excitation of the thiophene backbone. Timescales of electron transfer depend on the location of 

photoexcitation along the backbone, where excitations near the acceptor result in a 300 fs 

component, independent of length. An exciton created in the center of the chain must undergo 

long distance electron transfer to an NDI, or an exciton migration step, followed by electron 

transfer. The former mechanism is dominant in the shorter chains (n ≤ 8), while both are likely 

occurring in the longer chains (n = 10, 12). The lifetime of the charge separated state increases 

significantly between 4T-NDI and 12T-NDI from 14.8 ps to 58.3 ps. The observed dynamics 

present a clear mechanistic picture of charge separation and recombination in a donor-acceptor 

system incorporating π-conjugated thiophene oligomers. The information gained in this study 

provide a framework to improve the efficiencies of these molecular wire-like structures for use in 

solar cells. 
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