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Thrombin-promoted release of UDP-glucose from
human astrocytoma cells

SM Kreda, L Seminario-Vidal, C van Heusden and ER Lazarowski

Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA

Background and purpose: The P2Y14 receptor is activated by UDP-sugars, most potently by UDP-glucose, but not by free
nucleotides, suggesting that UDP-glucose is the cognate agonist for this receptor. However, evidence for regulated release of
UDP-glucose is scarce. In the present study, the occurrence of receptor-promoted release of UDP-glucose was investigated,
using 1321N1 human astrocytoma cells.
Experimental approach: UDP-glucose release and hydrolysis were measured using HPLC-based techniques. Phospholipase C
activation and actin cytoskeleton reorganization were assessed by measuring inositol phosphate formation and fluorescence
confocal microscopy, respectively.
Key results: Thrombin and the protease-activating receptor-1 (PAR1) peptide TFLLRNPNDK (PAR1-AP) evoked the release of
UDP-glucose and ATP, which was accompanied by enhanced inositol phosphate formation. Although carbachol promoted
fourfold greater inositol phosphate formation than thrombin, it failed to promote nucleotide release. Thrombin-promoted
nucleotide release was inhibited by BAPTA-AM, brefeldin A and cytochalasin D, and was insensitive to Pertussis toxin and
PI3-kinase inhibitors. Thrombin, but not carbachol, induced actin cytoskeleton reorganization, a hallmark of Rho activation
in 1321N1 cells. However, PAR-promoted UDP-glucose release was not affected by Rho kinase inhibition.
Conclusions and implications: PAR1-evoked UDP-glucose release reflected a Ca2þ -dependent mechanism, engaging
additional signalling independently of Gi and Rho kinase activation and requiring a functional actin cytoskeleton and Golgi
structures. Our study demonstrates the occurrence of Ca2þ -dependent release of UDP-glucose from astrocytoma cells in
response to a physiologically relevant stimulus, that is, a G-protein-coupled receptor agonist. Given the presence of P2Y14

receptors in astrocytes, UDP-glucose may have important autocrine/paracrine functions in the brain.
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Introduction

ATP and other nucleotides are released from cells in a

regulated manner to accomplish extracellular signalling

functions through activation of P2X and P2Y purinergic

receptors (Burnstock and Williams, 2000; Burnstock, 2006).

P2X receptors, comprising seven species (P2X1–P2X7), are

ATP-gated ion channels. P2Y receptors belong to the super-

family of G-protein-coupled receptors. At least eight P2Y

receptor species have been identified, seven of which are

activated by adenine and/or uridine nucleoside di- and

triphosphates. The P2Y1, P2Y12 and P2Y13 receptors are

activated by ADP. The P2Y2 receptor is activated by both ATP

and UTP, and the P2Y4 (human) and P2Y6 receptors are

activated by UTP and UDP, respectively. Unlike other P2

receptors, the P2Y14 receptor is activated by UDP-sugars,

most potently by UDP-glucose, and is not activated by di- or

triphosphonucleotides (Chambers et al., 2000).

Studies using heterologously expressed P2Y14 receptor

have revealed a previously unnoticed accumulation of

endogenous receptor agonist in extracellular solutions.

Taking advantage of the selectivity of UDP-glucose pyropho-

phorylase in catalyzing the UDP-glucose-dependent conver-

sion of pyrophosphate to UTP, UDP-glucose was identified

and quantified with nanomolar sensitivity in the extra-

cellular medium of many tissues and cell lines, including

1321N1 human astrocytoma cells (Lazarowski et al., 2003b).

However, whether extracellular accumulation of UDP-

glucose reflects a regulated mechanism of nucleotide release
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is not well defined. With the exception of nerve terminals

and other specialized tissues that release ATP from secretory

granules through Ca2þ -regulated exocytosis, how nucleo-

tides are released from most cell types is poorly understood.

A major limitation in this understanding was, until recently,

the paucity of pharmacological tools to induce nucleotide

release in a regulated manner.

Thrombin and other serine proteases activate a family of

four G-protein-coupled receptors, referred to as protease-

activated receptors (PAR1–PAR4). Recently, Joseph et al.

(2003) illustrated that activation of 1321N1 cells with

thrombin resulted in enhanced release of ATP in a Ca2þ -

dependent manner. Subsequently, we observed that addition

of thrombin to 1321N1 cells resulted in enhanced extra-

cellular accumulation of UDP-glucose, in addition to ATP

release (Lazarowski, 2006). However, whether thrombin-

increased UDP-glucose accumulation reflected PAR-promoted

UDP-sugar release and whether the signalling pathways were

potentially involved in such a release were not addressed. In

the present study, we investigated potential mechanisms

involved in thrombin-elicited UDP-glucose release in

1321N1 cells. As the P2Y14 receptor is abundantly expressed

in brain astrocytes (Moore et al., 2003), illustration of the

regulated release of UDP-glucose by 1321N1 astrocytoma

cells would provide support for the physiological signifi-

cance of the P2Y14 receptor in the brain.

Methods

Cell culture

1321N1 Human astrocytoma cells were grown in 5% calf

serum-supplemented Dulbecco’s modified Eagle’s medium

for 5 days to near confluence (B5 to 8�105 cells cm�2) on

either 35 mm (9.6 cm2) plastic dishes for real-time ATP

measurements or 24-well plastic plates (1.8 cm2) for UDP-

glucose and inositol phosphate measurements, as described

previously (Lazarowski et al., 2003b). For confocal micro-

scopy studies, cells were grown to subconfluence on eight-

well Lab-Tek II glass chamber slides (Nalge Nunc Int.,

Naperville, IL, USA). Cells were used within passages 3–12;

a gradual decline in PAR1-promoted second messenger

production was noted during subsequent passages.

UDP-glucose release

Cultures were rinsed and preincubated in serum-free mini-

mum essential medium for 2 h to allow recovery from

mechanical stress during medium changes (Lazarowski

et al., 2003b). Incubations were initiated by the addition of

drugs, and aliquots (200 ml) were removed at the indicated

times. Collected samples were heated (95 1C, 2 min) to

inactivate potentially secreted nucleotidases, and stored

at �20 1C for nucleotide analysis. UDP-glucose was assayed

based on the UDP-glucose pyrophosphorylase-catalyzed

conversion of [32P]pyrophosphate to [32P]UTP, followed by

HPLC analysis of the resulting [32P]species, as described

previously (Lazarowski et al., 2003b).

Measurement of UDP-[3H]glucose metabolism

Cells were rinsed and preincubated as above, and subse-

quently incubated for the indicated times in 0.3 ml mini-

mum essential medium in the presence of 0.1 mCi UDP-

[3H]glucose. The resulting species were analyzed by HPLC as

described previously (Lazarowski et al., 2003b).

ATP release

ATP measurements were performed in real time, as described

recently (Okada et al., 2006). Briefly, 1321N1 cells were

rinsed twice with Hanks’ balanced salt solution supplemen-

ted with 1.2 mM CaCl2, 1.2 mM MgCl2 and 25 mM HEPES (pH

7.4). Cultures were preincubated for 1 h at 37 1C in 1 ml

Hanks’ balanced salt solution and transferred to a Turner

TD-20/20 luminometer (Turner Biosystems, Sunnyvale, CA,

USA). Luciferase (4mg ml�1; 15 to 30�106 light units mg�1)

and luciferin (60 mM) were added, and luminescence mea-

sured every 30 s. To minimize ATP hydrolysis, the nucleoti-

dase inhibitor b,g-methylene ATP (b,g-metATP; 300 mM) was

added to the cells 5–10 min before the administration of

drugs. Calibration curves using known concentrations of

ATP were calculated at the end of each assay.

Inositol phosphate accumulation

The cells were incubated overnight in 0.5 ml of inositol-free

HEPES-buffered Dulbecco’s modified Eagle’s medium (pH

7.4) containing 0.5 mCi of myo-[3H]inositol. At the end of the

labelling period, cells were preincubated for 10 min in the

presence of 10 mM LiCl, followed by the addition of either

vehicle or agonist. [3H]Inositol phosphates were isolated on

Dowex anion exchange columns and quantified as described

previously (Lazarowski et al., 2003b).

Reverse transcription-PCR analysis of PARs

Total RNA was prepared from 1321N1 cells using the RNeasy

mini kit (Qiagen Inc., Valencia, CA, USA) after RNAlater

treatment (Ambion, Austin, TX, USA). Genomic DNA

contamination was removed by DNase treatment and RNA

was reverse-transcribed using SuperScript II reverse tran-

scriptase. The resulting cDNA was used as a template, and

PCR was performed at the University of North Carolina CF

Center Molecular Biology Core Lab (Chapel Hill, NC, USA)

according to the following protocol: 4 min at 94 1C, 1 min at

72 1C, 45 s at 94 1C, 1 min at 55 1C and 1 min at 72 1C for 36

cycles, followed by an 8-min incubation at 72 1C. PAR1

(GenBank M62424) primers, kindly provided by Dr JoAnn

Trejo (Department of Pharmacology, UNC, NC, USA), were as

follows: forward primer, CAGTTTGGGTCTGAATTGTGTCG;

reverse primer, TGCACGAGCTTATGCTGCTGAC. Amplified

products (predicted size, 591 bp) were sequenced at the UNC

Genome Analysis Facility.

Confocal microscopy studies

Cells were incubated with agonists and/or inhibitors, as

indicated in the figure legends. At the end of the incubation,

cells were fixed in 4% paraformaldehyde at 37 1C for 5 min,
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rinsed and permeabilized with 100% cold methanol for

2 min. The actin cytoskeleton was labelled with Alexa 488-

phalloidin (70 nM, 60 min at room temperature; Molecular

Probes, Eugene, OR, USA). The Golgi was stained with

N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-

3-pentanoyl)sphingosine (NBD C6-ceramide; 1mM, 30 min at

4 1C; Molecular Probes). Cell preparations were mounted

under a coverslip with Vectashield medium containing 4,6-

diamidino-2-phenylindole (DAPI) (Vector Labs Inc., Burlin-

game, CA, USA). Confocal microscopy analysis was per-

formed in a Leica SP2 AOBS system, using a �63 PlanApo

lens and two independent laser sources (351 nm UV and

488 nm argon); parameters were saved in a file and used

throughout the analyses.

Data analysis

UDP-glucose decay data and agonist concentration–effect

relationships were analysed using SigmaPlot 8.01 (SPSS Inc.,

Chicago, IL, USA). Differences between means were deter-

mined by Student’s t-test and were considered significant

when Po0.01.

Reagents

[g32P]ATP (3000 Ci mmol�1) and myo-[3H]inositol

(20 Ci mmol�1) were purchased from Amersham Pharmacia

Biotech (Piscataway, NJ, USA). UDP-glucose pyrophosphor-

ylase from baker’s yeast and b,g-metATP were obtained from

Sigma (St Louis, MO, USA). Human a-thrombin was

purchased from Enzyme Research Laboratories (South Bend,

IN, USA). The PAR1-activating peptide TFLLRNPNDK (Da-

miano et al., 1999), hereafter referred to as PAR1-AP, was

synthesized at Tufts University Peptide Synthesis Core

Facility (Sommerville, MA, USA). Alexa 488-phalloidin and

the fluorescent Golgi marker NBD C6-ceramide were pur-

chased from Molecular Probes. Rho-associated kinase

(Rho-kinase, ROCK) inhibitors Y27632 and H-1152P were

purchased from Calbiochem (La Jolla, CA, USA). Other

chemicals, of the highest purity available, were obtained

from sources previously reported (Lazarowski et al., 2003b,

2004).

Results

Stability of extracellular UDP-glucose

Studies of nucleotide release have been complicated by the

presence of nucleotidase activities flanking the nucleotide

release site (Joseph et al., 2003). In addition, nucleoside

diphosphokinase and adenylate kinase transfer the terminal

phosphate of NTP to NDP or NMP, respectively, creating

additional artifacts. Although free nucleotides (that is, NTPs

and NDPs) are substrates for most of these activities, UDP-

sugars are not metabolized by ecto-apyrases (NTPDases),

nucleoside diphosphokinase or adenylate kinase. However,

ecto-NTP pyrophosphatases (E-NPP), which hydrolyze free

nucleotides as well as cyclic nucleotides, dinucleotides and

nucleotide-sugars, are expressed on many cell types, includ-

ing 1321N1 cells (Lazarowski et al., 2000; Joseph et al., 2004).

Indeed, we have previously illustrated that radiolabelled

UDP-glucose was steadily, although relatively slowly, hydro-

lyzed on 1321N1 cells (Lazarowski et al., 2003b).

To optimize conditions that would minimize UDP-glucose

metabolism during measurements of UDP-glucose release,

we examined the effect of the E-NPP inhibitor b,g-metATP

(Joseph et al., 2004) on the stability of UDP-[3H]glucose,

added as a radiotracer to 1321N1 cells. In the absence of

b,g-metATP, UDP-[3H]glucose was gradually hydrolyzed with

first-order rate constant (k) and half-life (t1/2) values of

0.0329 min�1 and 21 min, respectively (Figure 1a). [3H]Glu-

cose-1P was the [3H]-labelled product of UDP-[3H]glucose

hydrolysis on 1321N1 cells (data not shown), as previously

described (Lazarowski et al., 2003b). b,g-metATP effectively

inhibited UDP-glucose hydrolysis. Figure 1a indicates

that UDP-[3H]glucose remained essentially unchanged on

1321N1 cells after 30 min in the presence of 300 mM b,g-

metATP. The concentration–effect relationship for b,g-me-

tATP inhibition of UDP-[3H]glucose hydrolysis is illustrated
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Figure 1 b,g-methylene ATP is an effective inhibitor of hydrolysis of
UDP-glucose. (a) Confluent 1321N1 cells were incubated in the
absence (control) or presence of 300mM b,g-metATP and 0.1 mCi
UDP-[3H]glucose for the indicated times. Single exponential decay
parameters k and t1/2 were calculated as described previously
(Lazarowski et al., 2000). (b) UDP-[3H]glucose hydrolysis was
assessed after a 5-min incubation with the indicated amount of
b,g-metATP or UMP; inset, HPLC tracing (absorbance at 260 nm)
illustrating the conversion of UMP (100mM) to uridine (URID) after
5 min. (c) Effect of b,g-metATP (300mM) on the release of UDP-
glucose in response to 20 nM thrombin (5 min). (d) Calibration curve
for the UDP-glucose assay in the absence or presence of 300mM

b,g-metATP. The data represent the mean±s.d. from at least
two experiments performed in duplicate (a, b and d) or quad-
ruplicate (c).
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in Figure 1b. In the absence of an inhibitor, approximately

17% UDP-[3H]glucose was hydrolyzed within 5 min

(Figure 1b). Hydrolysis of UDP-[3H]glucose was inhibited by

approximately 50% with 10 mM b,g-metATP, and was abol-

ished with 300 mM b,g-metATP (Figure 1b). UMP, the nucleo-

tide product of E-NPP-catalyzed UDP-sugar hydrolysis, also

inhibited UDP-[3H]glucose breakdown, although less effec-

tively than b,g-metATP (Figure 1b). However, the magnitude

of UMP inhibition on UDP-glucose hydrolysis could not

be fully appreciated, because UMP itself was considerably

hydrolyzed upon its addition to cells (Figure 1b, inset).

Previously, we reported that stimulation of 1321N1 with

thrombin resulted in enhanced extracellular accumulation

of UDP-glucose (Lazarowski, 2006), suggesting that

thrombin promoted UDP-glucose release from these cells.

To further corroborate this observation, extracellular UDP-

glucose concentrations were measured in resting and

thrombin-stimulated cells, in the absence or presence of

b,g-metATP. In resting, untreated cells, the concentration

of UDP-glucose in the extracellular bulk medium was

3.7±0.3 nM (Figure 1c). This UDP-glucose concentration

reflected steady state where the rates of hydrolysis and

constitutive release are equal (Lazarowski et al., 2000). Based

on the k value obtained above (Figure 1a), the rate (v) of

release of UDP-glucose from resting cells was calculated as

v¼ kS¼40 fmol min�1, where S represents UDP-glucose con-

centration at steady state (Lazarowski et al., 2000, 2003b).

Thus, in the absence of hydrolysis, that is, in the presence of

b,g-metATP, UDP-glucose concentrations in the 300 ml

medium bathing a 12 mm culture would be predicted to

increase at a pace of 0.09 nM min�1 (or 0.45 nM after 5 min), a

minor increase. Indeed, average UDP-glucose concentration

after the addition of b,g-metATP to the cells for 5 min

(3.9±1.0 nM) was not significantly higher than control

values (Figure 1c). However, levels of extracellular UDP-

glucose increased to up to approximately 8 nM after the

addition of 20 nM thrombin, and to approximately 14 nM

when thrombin and b,g-metATP were added in combination

(Figure 1c). b,g-metATP itself did not interfere with the

measurement of UDP-glucose mass (Figure 1d). The most

parsimonious explanation for the results in Figure 1 is that

thrombin enhances the rate of release of UDP-glucose from

1321N1 cells. The data also suggest that, in the absence of

inhibitors, E-NPP efficiently hydrolyses UDP-glucose at the

site of release, as previously suggested for ATP (Joseph et al.,

2003).

PAR1 promotes Ca2þ -dependent release of UDP-glucose and ATP

The time course for thrombin-elicited UDP-glucose release

was examined in the presence of 300 mM b,g-metATP.

Addition of 20 nM thrombin to 1321N1 cells resulted in

enhanced accumulation of extracellular UDP-glucose (3- to

4-fold increase within 1–5 min; Figure 2a). The PAR1-AP
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(100 mM; Figure 2b) caused a robust increase in UDP-glucose

release, consistent with the notion that PAR1 is the major

thrombin receptor expressed in 1321N1 cells (Majumdar

et al., 1998). Reverse transcription-PCR analysis (and sub-

sequent sequencing of products) verified that PAR1 tran-

scripts were expressed in these cells (data not shown). As

predicted from previous studies (Joseph et al., 2003),

thrombin and PAR1-AP also caused enhanced ATP release

from 1321N1 cells (Figures 2d and e). Changes in ATP

concentration in response to thrombin were five times

greater than that in UDP-glucose (D[ATP] B50 nM, D[UDP-

glucose] B10 nM). However, whereas UDP-glucose was

measured offline in diluted bulk medium, the ATP-sensing

luciferin–luciferase protocol (Figures 2a–c) was optimized to

assess ATP release near the cell surface (Okada et al., 2006).

Both UDP-glucose and ATP release in response to thrombin

were inhibited by incubating the cells with O,O0-Bis(2-

aminophenyl)ethyleneglycol-N,N,N0,N0-teraacetic acid, tetra-

acetoxymethyl ester (BAPTA-AM) to chelate intracellular

Ca2þ (Figures 2c and f). Unlike PAR1 agonists, the muscarinic

receptor agonist carbachol (300mM, 5min) failed to elicit UDP-

glucose and ATP release from 1321N1 cells (Figures 2b and e).

The above-mentioned results indicated that thrombin-

elicited UDP-glucose and ATP release reflects a Ca2þ -

dependent mechanism. However, the lack of effect of

carbachol on nucleotide release was intriguing. We have

previously shown a robust presence of Gq/PLC-b/Ca2þ -

coupled muscarinic receptors in 1321N1 cells (Lazarowski

et al., 1997). To investigate the possibility that differences

in magnitude of Gq-mediated second messenger production

between PAR-1 and muscarinic receptor activation

accounted for differences in nucleotide release, concentra-

tion–response curves for agonist-promoted UDP-glucose

release and inositol phosphate formation were generated.

Thrombin promoted UDP-glucose release and inositol

phosphate formation with EC50 values of 0.7 and 1.0 nM,

respectively (Figure 3). PAR1-AP-elicited UDP-glucose

release also occurred with a potency (EC50¼1.1 mM) similar

to that of PAR1-AP-promoted phosphoinositide breakdown

(EC50¼ 0.7mM). At maximal concentrations, both thrombin

and PAR1-AP increased UDP-glucose release and inositol

phosphate formation by 7- to 9- and 4-folds, respectively

(Figure 3). Carbachol promoted a robust (12-fold) increase in

inositol lipid hydrolysis (Figure 3b) but elicited negligible

UDP-glucose release at all concentrations tested (Figure 3a).

These results suggest that receptor-promoted Gq/PLC-b
activation is not sufficient to elicit nucleotide release from

1321N1 cells.

UDP-glucose release is independent of Gi, PI3-kinase and Rho

kinase

In addition to Gq, PAR1 couples to G12/13 and Gi families of

heterotrimeric G proteins (Majumdar et al., 1998; Ellis et al.,

1999). In 1321N1 cells, PAR-promoted activation of G12/13

leads to the activation of Rho GTPases. Among them, RhoA

and its effector ROCK have been linked to actin cytoskeleton

reorganization and changes in cell shape in 1321N1 cells

(Majumdar et al., 1998). We investigated the effect of

thrombin on cytoskeleton reorganization by confocal micro-

scopy analysis of cells stained with fluorescently labelled

phalloidin, which binds to F-actin. Resting 1321N1 cells

displayed a fusiform and star-like shape (stellation), with

long and thin cellular projections (usually contacting other

cells) as well as short spine-like projections. The cells were

flat and well attached to the substrate with actin stress fibres

organized mainly along the longitudinal axes (Figure 4a).

Incubation of 1321N1 cells with thrombin resulted in

marked changes in cell shape and organization of the actin

cytoskeleton. Most noticeable were the rounding and

retraction of the cell body, loss of cell projections (reverse-

stellation) and clustering of cells in bunches. Cell height

increased notably, as indicated by xz laser-scanning analysis

(data not shown). Intense actin-associated fluorescence was

identified in the subplasma membrane compartment as a

cortical ring (Figure 4a), as previously described (Coleman

and Olson, 2002). Actin stress fibres decreased greatly. After

30 min of thrombin addition, many cells displayed blebbing-

containing actin (Figures 4a, centre). In contrast to these

effects of thrombin, no changes in cell shape/height were
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observed in response to carbachol (data not shown).

Preincubation of 1321N1 cells with the ROCK inhibitor

Y27632 nearly abolished the effect of thrombin on cell

rounding, reverse-stellation and cell blebbing (Figure 4a).

These results are consistent with the notion that PAR1

activates G12/13, which in turn promotes activation of the

guanine nucleotide exchange factor (GEF) RhoGEF, upstream

of Rho/ROCK (Trejo, 2003). However, Y27632, as well as

H-1152, another selective ROCK inhibitor, failed to affect the

magnitude of UDP-glucose release in thrombin-stimulated

cells (Figure 4b).

Pertussis toxin, which ADP-ribosylates and inhibits Gai/o

proteins, also failed to affect thrombin-promoted UDP-

glucose release. Consistent with these results, PI3-kinase

(which is activated downstream of Gi) was not involved in

UDP-glucose release, as judged by the absence of effect of

wortmannin on thrombin-elicited UDP-glucose release

(Figure 4b).

Exocytotic vs transport/conductive mechanisms

UDP-sugars are synthesized in the cytosol and transported to

the lumen of the endoplasmic reticulum (ER) and the Golgi

apparatus via UDP-sugar/UMP antiporters. These transpor-

ters translocate UDP-sugars from the cytosol to the lumen of

the Golgi, using luminal UMP as the antiporter substrate

(Hirschberg et al., 1998; Ishida and Kawakita, 2004).

Although all known UDP-sugar transporters are ER/Golgi

resident proteins, the possibility that an unknown UDP-

glucose/UMP antiporter was expressed in the plasma

membrane of 1321N1 cells, thereby exchanging cytosolic

UDP-glucose for extracellular UMP, has not been formally

examined. Preliminary experiments in our lab (performed in

the absence of b,g-metATP) suggested that UMP enhanced

thrombin-promoted UDP-glucose release (data not shown).

However, this effect was related to the inhibitory action

of UMP on UDP-glucose hydrolysis (Figure 1b). As illustrated

in Figure 5b, addition of exogenous UMP to the cells

caused no changes in either basal or stimulated release of

UDP-glucose (measured in the presence of b,g-metATP).

These results argue against the possibility that UDP-glucose

release occurred via a plasma membrane UDP-sugar/UMP

antiporter.

Alternatively, UDP-glucose release may reflect an exocyto-

tic process (Lazarowski et al., 2003a). The fungal metabolite

brefeldin A (BFA) disrupts retrograde movements along the

secretory pathway, disassembling the Golgi network (Dinter

and Berger, 1998; Shinotsuka et al., 2002). Incubation of

1321N1 cells with 3mM BFA for 60 min provoked profound

changes in Golgi morphology, as illustrated by the striking
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promoted cell rounding and actin cytoskeleton changes. 1321N1 cells were incubated for 30 min with vehicle or 20 nM thrombin in the
absence or presence of 10mM Y27632. Actin cytoskeleton was labelled with fluorescent phalloidin and visualized by confocal microscopy, as
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relative to control (vehicle), and represent the mean±s.d. from two independent experiments, each performed in quadruplicate.
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decrease in fluorescence attained with the Golgi marker NBD

C6-ceramide (Figures 5a and b). Treatment with BFA did

not affect the overall cell morphology, as visualized by

the actin fluorescent dye phalloidin (Figures 5c and d),

and differential interface contrast images (data not shown).

We have shown that BFA reduced basal UDP-glucose

levels, consistent with the hypothesis that UDP-sugar release

from resting cells is associated with the export of glycocon-

jugates to the cell surface, via the constitutive pathway

(Lazarowski et al., 2003a). In our present experiments, BFA

almost completely blocked thrombin (20 nM)-promoted

UDP-glucose release (Figure 5e). Brefeldin A caused only

partially inhibited thrombin-promoted [3H]inositol

phosphate formation (control, 4790±360 cpm; BFA,

4610±280 cpm; 20 nM thrombin, 12 770±1680 cpm; throm-

bin plus BFA, 9050 ±1187 cpm; Po0.001; n¼4), which

was consistent with the relatively rapid cell surface turn-

over of PAR1 (Trejo, 2003). BFA did not affect carbachol-

elicited phosphoinositide breakdown (300 mM carbachol,

68 730±9880 cpm; carbachol and BFA, 66 870±2130 cpm;

n¼4), indicating that Gq-promoted signalling was preserved

in BFA-treated cells. Thus, thrombin-evoked second

messenger production, although diminished by BFA, was

still robust. The partial (44%) reduction of PAR1-elicited

signalling in the presence of BFA could not account for

the dramatic reduction in PAR1-evoked UDP-glucose release

observed under the same conditions. Furthermore, disrup-

tion of the cytoskeleton with cytochalasin D, a condition

that inhibited vesicle exocytosis as well as ATP release in

epithelial cells (Kreda et al., 2007), decreased (430% inhibi-

tion) thrombin-elicited UDP-glucose release (Figure 5e) with-

out affecting thrombin-evoked [3H]inositol phosphate for-

mation (data not shown). Altogether, the results in Figure 5

suggest that the secretory pathway was involved, at least in

part, in both basal and in PAR-evoked UDP-glucose release

from 1321N1 cells.
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Discussion and conclusions

The major finding of the present study is that UDP-glucose

release from 1321N1 astrocytes reflects a receptor-regulated,

Ca2þ -dependent event, which requires the integrity of the

secretory pathway. It was previously observed that 1321N1

cells release UDP-glucose constitutively (Lazarowski et al.,

2003b), and that addition of thrombin to these cells resulted

in increased accumulation of this nucleotide-sugar in the

extracellular medium (Lazarowski, 2006). Our present work

demonstrates that increased UDP-glucose accumulation in

the medium of thrombin-stimulated cells reflected receptor-

promoted release of this UDP-sugar rather than inhibition of

nucleotide hydrolysis (Figure 1). We illustrated that throm-

bin promoted both UDP-glucose release and second messen-

ger production with a potency consistent with this protease

acting on PAR1 (Trejo, 2003). We also demonstrated that the

PAR1-selective peptide TFLLRNPNDK elicited second mes-

senger production and UDP-glucose release in 1321N1 cells

with an efficacy similar to that of thrombin (Figure 3).

Finally, Reverse transcription-PCR analysis confirmed ex-

pression of PAR1 transcripts in these cells. Our data strongly

suggest that thrombin-promoted UDP-glucose release in

1321N1 cells was mediated by activation of PAR1.

Recently, we illustrated that elevation of Ca2þ (with

ionomycin) was enough to induce nucleotide release from

airway epithelial goblet cells, an event associated with Ca2þ -

triggered exocytosis of mucin granules (Kreda et al., 2007).

Consistent with the involvement of Ca2þ in nucleotide

release, thrombin-evoked UDP-glucose release from 1321N1

cells was inhibited by BAPTA (added to cells as BAPTA-AM;

Figure 2). However, a surprising finding of our current study

was that agonist-promoted nucleotide release inversely

correlated with the receptors’ ability to evoke Gq/PLC

signalling. The muscarinic M3 receptor is abundantly

expressed on 1321N1 cells (Stephan and Sastry, 1992), and

activation of these Gq-coupled/Ca2þ -mobilizing receptors

did not result in UDP-glucose release. These results are in line

with previous studies illustrating that carbachol evoked only

minor ATP release from 1321N1 cells, relative to thrombin

(Joseph et al., 2003). One possible explanation for our data is

that UDP-glucose release in thrombin-stimulated 1321N1

cells reflected signalling downstream of PAR1/Gq that

differed, spatially and/or temporally, from M3-receptor-

evoked Gq signalling. Alternatively, as PAR1 couples to Gq,

G12/13 and Gi in 1321N1 cells, whereas muscarinic receptors

on 1321N1 cells couple only to Gq (Majumdar et al., 1998),

G12/13 and/or Gi effectors may participate in thrombin-

promoted nucleotide release from these cells. Our data do

not support the involvement of Gi in PAR-stimulated UDP-

glucose release. Pertussis toxin, which inhibits Gi signalling

in 1321N1 cells (Parr et al., 1994), and wortmannin, an

inhibitor of PI3-kinase (PI3-kinase-g isoform is activated by

Gi (Rickert et al., 2000)), had no effect on PAR1-stimulated

UDP-glucose release (Figure 4b). It is well established that

PAR1 coupling to G12/13 leads to RhoGEF-mediated activa-

tion of Rho GTPases. A well-characterized downstream

effector of Rho in 1321N1 cells is ROCK, which regulates

morphologic changes. In 1321N1 cells, thrombin (but not

carbachol) promotes myosin light change phosphorylation

and cell shape changes, for example, cell rounding

(Majumdar et al., 1998; Coleman and Olson, 2002).

Although thrombin-elicited cell rounding was abolished in

the presence of the ROCK inhibitor Y27632 (Figure 4a),

thrombin-promoted UDP-glucose release was not affected by

ROCK inhibitors (Figure 4b). Possibly, PAR-promoted nucleo-

tide release could reflect involvement of effectors down-

stream of G12/13 other than ROCK, for example, TKs,

A-kinase anchoring protein, Ras GTPase activating protein,

cadherin and PLC-e (Kurose, 2003).

Apart from the signalling involved, regulated release of

nucleotides is considered to occur in the following two

possible modes: (i) cytosolic nucleotide release through

channels or transporters and (ii) exocytotic release of

nucleotide-enriched vesicles (Lazarowski et al., 2003a; Kreda

et al., 2007). Candidate transporters mediating UDP-glucose

release from the cytosol of 1321N1 cells are SLC35 translo-

cators, which transport nucleotide-sugars across subcellular

membranes (Hirschberg et al., 1998; Ishida and Kawakita,

2004). SLC35 translocators transport UDP-glucose and other

UDP-sugars from the cytosol to the ER/Golgi, using luminal

UMP as the antiporter substrate (Hirschberg et al., 1998;

Ishida and Kawakita, 2004). However, UDP-sugar/UMP

translocators does not appear to be expressed/inserted in

the plasma membrane of 1321N1 cells, as addition of UMP

to the extracellular medium failed to increase UDP-glucose

release (Figure 5). Moreover, the robust ecto-50-nucleotidase

activity present on 1321N1 cells (Figure 1b) makes it unlikely

that endogenous UMP (for example, generated from released

UTP; Lazarowski et al., 1997) accumulates on 1321N1 cell

surfaces. Furthermore, the fact that UDP-glucose release from

thrombin-stimulated 1321N1 cells was accompanied by

enhanced ATP release suggests that a non-selective mechan-

ism was involved. We cannot rule out that channels or

transporters, other than SLC35, facilitated cytosolic nucleo-

tide release from 1321N1 cells. For example, connexin and

pannexin hemichannels have been proposed as ATP chan-

nels in several types of cells (Cotrina et al., 1998; Stout et al.,

2002; Bao et al., 2004; De Vuyst et al., 2005; Eltzschig et al.,

2006; Pelegrin and Surprenant, 2006; Huang et al., 2007).

The potential contribution of connexin hemichannels to

nucleotide release from astrocytes is unclear (Scemes et al.,

2000; Coco et al., 2003; Bowser and Khakh, 2007).

Neurons, chromaffin cells, platelets, mast cells and

pancreatic acinar cells package ATP in synaptic vesicles,

chromaffin granules or dense core granules, which, upon

stimulation with, for instance Ca2þ mobilizing agonists, fuse

with the plasma membrane and release their contents into

the extracellular space, a process commonly referred to as

regulated exocytosis (Dean et al., 1984; Evans et al., 1992;

Gualix et al., 1999; Sorensen and Novak, 2001). Coco et al.

(2003) have illustrated that an ATP-rich fraction from

astrocyte homogenates co-sedimented with secretogranin

II-containing vesicles on sucrose density gradients, and

that mechanically induced ATP release was Ca2þ -dependent

and was inhibited by tetanus neurotoxin and the v-ATPase

inhibitor bafilomycin A1. These findings support the hy-

pothesis that ATP release in mechanically stimulated astro-

cytes occur via regulated exocytosis (Coco et al., 2003). Our

observation that UDP-glucose is released concomitantly with
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ATP from PAR-stimulated 1321N1 astrocytoma cells supports

the involvement of vesicles in nucleotide release from

astrocytes. UDP-glucose is utilized in the lumen of the ER

and Golgi for quality control of glycoproteins. UDP-glucose

is the glucose donor substrate for glucosylation of denatured

domains of newly synthesized glycoproteins (Hirschberg

et al., 1998). Like UDP-sugars, ATP is also transported to and

used as an energy source within the ER/Golgi (Hirschberg

et al., 1998). Nucleotides imported to the lumen of the ER

and Golgi reach concentrations up to 20-fold higher than

their cytosolic levels, and are not transported back to the

cytosol (Hirschberg et al., 1998). Therefore, they are likely to

be delivered as cargo molecules and released from cells

during glycoprotein secretion. Our data illustrating that

UDP-glucose release was inhibited by BFA (Figure 5b) further

suggest (although do not prove) that nucleotides were

released from the secretory pathway.

However, the hypothesis that nucleotide release is asso-

ciated with agonist-promoted vesicle exocytosis has been

difficult to test in 1321N1 cells, using styryl fluorophores, for

example, FM 1-43 (Kreda et al., 2007; Tatur et al., 2008).

Unlike most cells, 1321N1 cells displayed a steady, robust

increase of FM 1-43- (or its analogues FM 2-10 or FM 1-64)

associated fluorescence in the absence of stimuli, which

precluded using these protocols to assess thrombin-pro-

moted exocytosis in these cells (Kreda SM, unpublished

data). Lowering the temperature has been used to assess the

contribution of exocytosis to nucleotide release in several

cell types. However, incubating 1321N1 cells at 16 1C

markedly inhibited agonist-promoted [3H]inositol phos-

phate formation (495% inhibition, data not shown),

discouraging us from assessing the effect of temperature

changes on agonist-evoked UDP-glucose release.

Regardless of the cellular pathways and mechanism(s)

regulating UDP-glucose release from astrocytes, an under-

standing of the physiological processes regulated by the

UDP-glucose-sensing P2Y14 receptor in glial cells and astro-

cytes is now emerging (Fumagalli et al., 2003; Lee et al., 2003;

Moore et al., 2003; Skelton et al., 2003; Bianco et al., 2005;

Abbracchio and Verderio, 2006; Kobayashi et al., 2006).

P2Y14 receptor transcripts (Chambers et al., 2000), as well as

P2Y14 receptor-associated immunoreactivity (Moore et al.,

2003), are abundantly detected through several regions of

the brain. Immunohistochemistry analysis of post-mortem

human brain suggests that P2Y14 receptor localizes specifi-

cally to astrocytes. Functional evidence of P2Y14 receptor

expression in astrocytes has been suggested by studies

illustrating UDP-glucose-promoted Ca2þ mobilization in

primary cultures of rat glial cells and cortical astrocytes

(Fumagalli et al., 2003; Bianco et al., 2005). Expression of

P2Y14 receptor mRNA in the rat brain is upregulated by

immunological challenge (Moore et al., 2003; Bianco et al.,

2005), suggesting that the receptor is involved in reactive

astrogliosis.

PAR-activated astrocytes (Wang and Reiser, 2003) may be

an additional source of regulated release of UDP-glucose. The

interstitial fluid volume in the brain has been estimated to be

approximately 200 ml g�1 (Friden et al., 2007). As there are

1–5 trillion cells in the adult human brain (B1.4 kg weight),

a conservative estimation of the volume of the interstitial

fluid surrounding the cells would yield 200 nl per 106 cells.

UDP-glucose released to the bulk medium following throm-

bin stimulation represented approximately 3 pmol per 106

cells (Figure 2). Therefore, on the basis of these assumptions,

UDP-glucose concentration in the undiluted extracellular

milieu of PAR-stimulated astrocytes could approach a value

of 10–20 mM, which is in the range for promoting robust

P2Y14 receptor activation (Chambers et al., 2000; Lazarowski

et al., 2003b).

In summary, our study illustrates, for the first time, the

occurrence of Ca2þ -dependent release of UDP-glucose in

receptor-stimulated 1321N1 astrocytes. Thus, UDP-glucose

release reflects a physiologically regulated mechanism of

nucleotide release, as opposed to nucleotide leakage from

damaged cells. Demonstration of the regulated release of

UDP-glucose, the most potent and selective naturally

occurring P2Y14 receptor agonist, provides compelling

evidence that, in addition to its well-established role in

metabolic reactions, this nucleotide-sugar plays important

roles in intercellular signalling.
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