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ABSTRACT 
 

ANGELA YARNELL BONINO: The Effect of Signal-Temporal Uncertainty during 
Childhood 

(Under the direction of Lori J. Leibold, Ph.D.) 
 
Children are more susceptible to interference from competing background sounds 

than adults. In the laboratory, children’s increased susceptibility to interference from 

competing sounds is evident for both tone detection and speech recognition tasks. For both 

types of stimuli, this age effect is pronounced when the background sounds are complex 

and/or unpredictable. In light of children’s increased susceptibility to interference from 

competing sounds, this dissertation tested the hypothesis that performance would improve if 

children were provided a cue indicating when in time to listen for target signals. This 

hypothesis was tested for both tone detection and word recognition in the presence of 

competing tones or speech, respectively. Parallel studies tested the hypothesis that similar 

factors affect performance for the two different types of stimuli. 

For both the tonal and the speech experiments, performance was measured for five to 

13 year old children and a group of adult controls (20 to 34 years). In the first experiment, 

listeners were asked to detect a 1000-Hz pure-tone signal embedded in a continuous 

background that was a random-frequency, two-tone masker. Two conditions were tested: (1) 

temporally-defined, with the listening interval defined by a light cue and (2) temporally-

uncertain, with no light cue. Thresholds estimated from psychometric functions fitted to the 

data indicated that both children and adults benefited from access to the light cue (mean = 
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11.2 dB). Similar benefit was observed across the three listener age groups of children and 

adults. In the second experiment, listeners were asked to repeat target monosyllabic words 

presented in two different backgrounds: a two-talker masker or speech-shaped noise. Target 

words were presented at three different delays relative to the illumination of an interval light: 

(1) a fixed delay of 0.5 s, (2) a fixed delay of 5.5 s, or (3) a randomly selected delay. In 

contrast to Experiment 1, a clear benefit of a defined listening interval was not seen for word 

recognition or phoneme identification scores. However, examination of the types of phoneme 

errors produced provided insight into the factors that may be responsible for differences in 

performance across the two backgrounds.  
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1. CHAPTER 1 

INTRODUCTION 
 

Compared to adults, children are more susceptible to interference from competing 

background sounds (referred to as auditory masking). In the laboratory, children’s increased 

susceptibility to auditory masking is commonly reported until about eight years of age for 

both tone detection and speech recognition tasks in steady-state noise maskers (e.g., Allen & 

Wightman, 1994; Elliott & Katz, 1980; Nishi et al., 2010; Nittrouer & Boothroyd, 1990). In 

comparison to steady-state noise maskers, a more prolonged time course of development has 

been reported for tasks using complex and/or unpredictable maskers (e.g., Lutfi et al., 2003b; 

Wightman et al., 2003). Moreover, greater child-adult differences have been reported for 

maskers that are complex and unpredictable compared to noise maskers (e.g., Hall et al., 

2002; Leibold & Neff, 2007; Lutfi et al., 2003b; Oh et al., 2001). Children’s increased 

susceptibility to masking appears to reflect immature central auditory processes, rather than 

immaturities in the peripheral auditory system (reviewed by Werner & Leibold, 2004). 

Prolonged development of the central auditory system may increase children’s difficulty in 

perceptually parsing the target signal from the background or attending to the target signal 

while ignore irrelevant sounds.  

In light of children’s difficulties in noise, studies have attempted to determine if 

children can use acoustic cues that improve adults’ ability to hear and recognize target 

signals presented in complex backgrounds (e.g., Hall et al., 2005; Wightman et al., 2003; 
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Wightman & Kistler, 2005). However, the results are mixed in terms of which specific cues 

children use and the degree to which children benefit compared to adults. Moreover, the 

relative benefit for some or all cues might change with maturation and listening experience. 

Understanding the developmental course of susceptibility to auditory masking and 

determining cues that improve hearing in noise is important because children learn language 

in natural listening environments that are noisy and unpredictable. 

The specific objective of this dissertation was to determine if children benefited from 

a cue indicating when in time to listen. Additionally, a wide age range of children (5 to 13 

years) were tested to examine changes in performance during childhood. These objectives 

were evaluated for two studies using different stimuli; tones (Chapter 3) and speech (Chapter 

4). The central hypothesis for both experiments was that, like adults, children would benefit 

from a cue that indicated when in time to listen for the signal in the presence of a spectro-

temporally complex masker. Furthermore, consistent with other studies (e.g., Leibold & 

Bonino, 2009; Leibold & Neff, 2007; Lutfi et al., 2003b; Wightman et al., 2010), it was 

expected that age-related differences in susceptibility to masking would be apparent. It was 

expected that young children would be more susceptible to masking under complex listening 

conditions than older children or adults. This dissertation work increases our knowledge of 

how children listen in natural settings where multiple and unpredictable sound sources are 

often present, such as classrooms.  

The specific aims of this dissertation were:  

(1) To establish the degree to which children benefited from a cue indicating 

when in time to listen for signals embedded in complex maskers. Knowing when in time 



   

3 
 

to listen for relevant sounds may be an important cue in natural listening environments which 

contain multiple sound sources that can occur at unpredictable times. Recent evidence 

suggests that defining the listening interval provides a release from masking for adults when 

the task is to detect a tone in the presence of a multi-tonal masker (Bonino & Leibold, 2008; 

for exception see Richards et al., 2011). Although school-age children do not benefit from all 

of the same cues shown to benefit adults (e.g., Hall et al., 2005; Wightman et al., 2003; 

Wightman & Kistler, 2005), they are able to use other cues from an early age (e.g., Hall et 

al., 2005; Leibold & Bonino, 2009; Leibold & Neff, 2007). For complex maskers, it was 

predicted that providing a cue indicating when in time to listen for a signal would improve 

children’s tone detection (Chapter 3) and word recognition (Chapter 4). Knowing when to 

listen may be particularly beneficial to children in light of their increased susceptibility to 

interference from complex maskers. 

(2) To characterize susceptibility to interference from complex maskers across 

childhood. Consistent with previous developmental studies (e.g., Hall et al., 2002; Leibold & 

Neff, 2007; Lutfi et al., 2003b; Oh et al., 2001), we expected that children would be more 

susceptible to masking than adults for both tone detection (Chapter 3) and word recognition 

(Chapter 4) when target signals were presented in complex maskers. Furthermore, it was 

predicted that younger children would be more susceptible to masking than older children 

(e.g., Leibold & Bonino, 2009; Leibold & Neff, 2007). For the tone detection task, our 

approach was to examine changes in masker effectiveness across three age groups of children 

(5- to 7-year-olds, 8- to 10-year-olds, and 11- to 13-year-olds). Using this approach we were 

able to delineate the time course of development for tone detection in a continuous, random-

frequency, two-tone masker.  For the speech study, performance was examined for children 
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who were 5 to 13 years of age. Performance differences between age groups of children were 

not evaluated in the second experiment. 



 

 

 

2. CHAPTER 2 

REVIEW OF THE LITERATURE 
 

The goal of the following review is to develop the central hypothesis for this research 

which is that children can benefit from a cue indicating when in time to listen for the signal 

in complex listening conditions. This literature review is divided into four sections. First, this 

chapter reviews the findings from previous developmental studies of auditory masking, for 

both tone detection and speech recognition tasks. The second section attempts to explain 

children’s increased susceptibility to masking as a consequence of immature central auditory 

processes, including sound source segregation and selective attention. The third section 

develops the hypothesis that a cue indicating when in time to listen for a signal improves 

performance for both children and adults. In the final section, the strengths and limitations of 

using the same theoretical framework for tonal and speech stimuli are elaborated upon. These 

sections are intended to provide the reader a succinct overview of the literature pertaining to 

this dissertation. Please note that both studies (Chapter 3 and Chapter 4) also include a 

literature review, which is more specific to the particular study. 

2.1. Development of the Ability to Listen in Noise 

A prolonged time course of development has been observed for detecting a pure-tone 

signal embedded in noise or in other pure-tone complexes. Preschoolers’ thresholds are 

elevated compared to adults’ for detecting a pure-tone signal in quiet or in the presence of 
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wide-band noise maskers (e.g., Allen & Wightman, 1994; Jensen & Neff, 1993). For 

example, Allen and Wightman (1994) reported that 3- and 4-year-olds’ average detection 

threshold was 13 dB worse than adults’ for detecting pure-tone signals in Gaussian noise. 

Child-adult threshold differences are exacerbated as the masker becomes more complex. For 

example, an increased child-adult difference was observed for detecting a fixed-frequency 

pure-tone signal embedded in Gaussian noise with an additional single, fixed-level, random-

frequency pure tone that was remote in frequency from the signal (Allen & Wightman, 

1995). Allen and Wightman (1995) reported that the average child-adult difference for this 

task was at least 25 dB for the same group of 3- and 4-year-olds reported in the earlier study 

(Allen & Wightman, 1994). However, thresholds could not be obtained for half of the 

children when the random masker tone was present. In addition to larger child-adult 

differences, complex maskers have been associated with a prolonged course of auditory 

development (e.g., Lutfi et al., 2003b; Wightman et al., 2003). For example, substantial 

masking has been observed for detecting pure-tone signals in the presence of a multi-

frequency tonal masker, with frequency components that vary randomly on each presentation 

(e.g., Neff & Green, 1987). This stimulus manipulation often results in substantial masking 

for all age groups, but child-adult differences can be more than 50 dB (e.g., Oh et al., 2001). 

Moreover, differences between younger and older children suggest that the ability to perform 

these tasks is being refined during childhood (e.g., Hall et al., 2005; Leibold & Neff, 2007; 

Oh et al., 2001; Wightman et al., 2003) and continues to develop until at least 13 to 16 years 

of age (Lutfi et al., 2003b; Wightman et al., 2003). This type of background creates 

substantial masking even though experimental controls are employed to minimize the overlap 

in peripheral excitation between the response to the signal and the response to the masker. 
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Thus, the term “informational masking” has been used to distinguish these effects from 

peripheral or “energetic” masking (reviewed by Kidd et al., 2007).  

A similar trend has been observed for children’s speech-in-noise performance. 

Children require a more favorable signal-to-noise ratio for relatively simple tasks in which 

listeners are asked to recognize words presented in filtered noise (e.g., Elliott et al., 1979; 

Nittrouer & Boothroyd, 1990). Compared to filtered noise, larger child-adult differences have 

been reported for speech maskers that contain a limited number of talkers (e.g., Bonino et al., 

in press; Hall et al., 2002; Wightman & Kistler, 2005; Wightman et al., 2010). For example, 

Hall et al. (2002) had 5- to 10-year-olds identify spondee words in the presence of a 

continuous masker using a four-alternative, forced-choice picture pointing task. In the 

continuous speech-shaped noise condition, thresholds were approximately 2 dB greater for 

children than for adults. In contrast, the difference in mean thresholds for children and adults 

was 7 dB for the continuous two-talker masker condition. This difference indicates that child-

adult difference in susceptibility to masking is larger for speech maskers that are perceptually 

more complex. Additionally, Wightman and Kistler (2005) found that children as old as 13 to 

16 years of age performed more poorly than adults. In that closed-set task, listeners identified 

key items in target sentences in the presence of a contextually-similar distracter sentence 

simultaneously presented to the same ear. Across studies, speech maskers with a limited 

number of talkers often produce perceptual masking, in addition to energetic masking, for 

children and adults. The term perceptual masking was originally used by Carhart et al. (1969) 

to explain the poorer performance observed for the speech masker condition than for the 

noise masker condition. Carhart et al. proposed that perceptual masking may be a result of 

the central auditory system being unable to perceptually parse apart the speech signal from 
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the competing masker. The effect of perceptual masking appears to be greatest for a two-

talker masker and is minimal once the masker contains 10 talkers for adults (Freyman et al., 

2004). Recently, it has been suggested that perceptual and informational masking may be 

closely related or may be the same phenomenon (e.g., Brungart, 2001; Freyman et al., 2004; 

Wightman & Kistler, 2005).  

2.2. Potential Mechanisms for Children’s Increased Susceptibility to Informational 

Masking 

The underlying mechanisms responsible for children’s increased susceptibility to 

informational (or perceptual) masking are not clear. However, the mechanisms do not appear 

to be at the level of the peripheral auditory system. The cochlea and auditory nerve appear to 

be capable of providing the brain a fairly precise representation of the auditory input by six 

months of age (reviewed by Werner & Leibold, 2004). Instead, children’s increased 

susceptibility to masking appears to be result of immature central auditory processes 

(reviewed by Leibold, 2012). Two central auditory processes that appear to experience a 

prolonged developmental trajectory are sound source segregation and selective auditory 

attention. Sound source segregation is the ability to perceptually parse the target signal from 

the competing background sounds. After the incoming auditory information has been 

segregated, the brain needs to be able to attend to the auditory input of interest and ignore 

competing sounds. This process is referred to as selective attention. Although presented as 

separate processes here, it is difficult to determine their individual contributions to children’s 

immature performance on behavioral measures used in the laboratory.  
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2.2.1. Sound Source Segregation 

One likely central auditory process that is developing during childhood is the ability 

to perceptually parse the target signal from the competing background sounds. This 

dissertation will refer to this process as sound source segregation, but a more generalized 

definition of this process is auditory scene analysis (Bregman, 1990). One method commonly 

used to assess adults’ auditory scene analysis abilities is to manipulate the stimulus to affect 

the number of perceived auditory streams. Results from this method indicate that adults are 

able to use segregation cues such as spatial location, onset/offset timing, timbre, and how 

sound change over time (reviewed by Bregman, 1993; Yost, 1991). Modified streaming 

studies suggest that infants are able to use frequency, intensity, timbre and spatial cues 

(Demany, 1982; Fassbender, 1993; McAdams & Bertoncini, 1997). However, it is not clear 

how precisely infants use these cues (Demany, 1982; Fassbender, 1993; McAdams & 

Bertoncini, 1997). Few developmental data are available with this method for school-aged 

children because young children would have a difficult time reporting the number of 

perceived streams (for exception see Sussman et al., 2007). 

Informational masking paradigms have been used to study sound source segregation, 

because it is believed that informational masking occurs when the listener is unable to 

perceptually parse the signal from the masker. This claim has been supported by the 

observation that introducing cues believed to promote sound source segregation often 

provide a release from informational masking (or improved performance) (e.g., Kidd et al., 

1994; Neff, 1995). Developmental studies using informational masking paradigms indicate 

that sound source segregation is developing during childhood. To date, researchers have 

examined whether children are able to benefit from the introduction of the following 
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segregation cues that have shown to result in a release from masking for adults: spatial 

separation (Garadat & Litovsky, 2007; Litovsky, 2005), dichotic presentation of the signal 

and the masker (Hall et al., 2005; Wightman et al., 2003; Wightman & Kistler, 2005; 

Wightman et al., 2010), asynchronous temporal onset of the signal compared to the masker 

(Hall et al., 2005; Leibold & Neff, 2007), spectro-temporal coherence (Bonino et al., in press; 

Hall et al., 2005; Leibold & Bonino, 2009), and visual access to a talker’s face (Wightman et 

al., 2006). Interestingly, findings from these studies indicate that children as young as five 

years are able to use some cues as effectively as adults (Bonino et al., in press; Garadat & 

Litovsky, 2007; Hall et al., 2005; Leibold & Bonino, 2009; Leibold & Neff, 2007; Litovsky, 

2005). In contrast to those findings, immature performance has been reported for other cues, 

even into adolescence (Hall et al., 2005; Wightman et al., 2003; Wightman & Kistler, 2005; 

Wightman et al., 2006; Wightman et al., 2010). Furthermore, differences in the ability to use 

some of these cues have been reported across childhood (e.g., Wightman & Kistler, 2005). 

Findings from these studies suggest, that at least for some cues, (1) children are unable to use 

them as effectively as adults, and (2) that the degree to which a cue improves performance 

changes over childhood.  

2.2.2. Selective Auditory Attention 

A related mechanism that is likely also developing during childhood is selective 

attention. To examine infants’ ability to selectively listen in the frequency domain, Bargones 

and Werner (1994) measured infants’ and adults’ detection of pure-tone signals presented at 

expected and unexpected frequencies. Infants detected unexpected frequencies with the same 

consistency as they did expected frequencies. In contrast, adults seldom detected the presence 
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of unexpected signals. Findings from this study suggest that infants do not listen selectively 

like adults. Rather it is likely that infants are “broadband listeners,” monitoring many 

auditory filters. Unselective listening in the frequency domain may explain infants’ and 

children’s increased susceptibility to auditory masking compared to adults (e.g., Leibold & 

Neff, 2011; Lutfi et al., 2003b; Werner & Bargones, 1991).  

In contrast to evidence of infants’ unselective listening in the frequency domain, 

infants appear to be able to form temporal expectations for sounds. Werner et al. (2009) 

showed that like adults, infants had better sensitivity to signals presented at the expected 

delay than when their presentation time was delayed in the unexpected condition. The 

discrepancy in results between the frequency and temporal domain may reflect methodology 

differences or the fact that development trajectory for selective auditory attention is domain 

specific. 

2.3. The Importance of Knowing When in Time to Listen 

Of specific interest for this dissertation is the effect of signal-temporal uncertainty, 

which is operationally defined here as the benefit observed when listeners have a temporally-

defined listening interval compared to performance in a temporally-uncertain listening 

interval. The effect of signal-temporal uncertainty appears to be small (2 to 3 dB) for tone 

detection in noise (e.g., Egan et al., 1961; Green & Weber, 1980). Compared to these 

previous studies, a larger effect of signal-temporal uncertainty was observed by Bonino and 

Leibold (2008).  

Bonino and Leibold measured detection thresholds for a 125-ms, 1000-Hz signal 

embedded in a random-frequency, multi-tonal masker. The maskers were continuous and 
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were either random-frequency, two-tone complexes or broadband noise samples. Due to a 

programming error, signals were not synchronized with the onset of one burst of a train of 

130-ms masker bursts as was originally reported. Rather, signals occurred 80 ms after the 

onset of a masker burst. Four trained adults were tested in separate conditions with a 

temporally-defined or a temporally-uncertain listening interval for each masker. Figure 2-1 

shows the average effect of signal-temporal uncertainty (± 1 S.E.) for both maskers. Data 

from individual listeners are provided as well. Data points above the horizontal dashed line 

indicate a benefit from the cue. The average effect of signal-temporal uncertainty for the 

random two-tone masker condition was 9 dB, whereas the effect was 2 dB in broadband 

noise.  

Results from Bonino and Leibold (2008) suggest that effects of signal-temporal 

uncertainty are larger for conditions that produce substantial informational masking. This 

interpretation is also supported by findings from Best et al. (2007) and Varghese et al. 

(2012). In their studies, listeners could more accurately identify a target birdsong embedded 

in other birdsongs when provided with a cue indicating the time interval that contained the 

target. In contrast to these studies, Richards et al. (2011) reported no effect of signal-

temporal uncertainty for detecting a tone in a random-frequency, multi-tonal masker. In that 

study, performance was compared between a continuous masker (temporally-uncertain) and a 

masker gated for each interval (temporally-defined). Thresholds were substantially better in 

the continuous masker, despite the condition being considered temporally-uncertain. 

Methodology differences used to create the temporally-defined condition may explain the 

contrast in results. Richards et al. (2011) manipulated the masker to define the listening 
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interval, whereas the other studies used a light cue to define the listening interval (Best et al., 

2007; Bonino & Leibold, 2008; Varghese et al., 2012).  

2.4. Considerations for Applying the Same Theoretical Framework to Tonal and Speech 

Stimuli 

 In this dissertation, the same theoretical framework has been applied to two different 

types of auditory stimuli, tones and speech. One of the primary reasons for applying the same 

framework to this research is that similar developmental trajectories for auditory masking 

have been reported or both tonal and speech stimuli. As was reviewed above, by seven to 

eight years of age, children appear to be adult-like for both detecting tones (e.g., Elliott & 

Katz, 1980) and recognizing speech (e.g., Elliott et al., 1979; Nittrouer & Boothroyd, 1990) 

in maskers expected to produce primarily energetic masking. However, increased child-adult 

differences in performance and a prolonged trajectory of development have been reported for 

maskers expected to produce substantial informational (or perceptual) masking. Specifically, 

this trend has been reported for tone detection in random-frequency, multi-tonal maskers 

(e.g., Hall et al., 2005; Leibold & Neff, 2007; Lutfi et al., 2003b; Oh et al., 2001) and for 

speech tasks using a masker with a limited number of competing talkers (e.g., Bonino et al., 

in press; Hall et al., 2002; Wightman & Kistler, 2005; Wightman et al., 2010).  Similar 

developmental patterns for multi-tonal and speech maskers are consistent with the idea that 

the underlying mechanisms for children’s increased susceptibility to masking are either the 

same or are closely related for the two stimulus sets.  

This rationale is further strengthened by the mounting evidence that listeners appear 

to make masker confusions under complex listening situations for both tonal and speech 
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stimuli. In the classic simultaneous informational masking paradigm (Neff & Green, 1987), 

experimental controls are employed to reduce overlap of peripheral excitation patterns for the 

signal and the masker. Therefore, elevated thresholds in this condition are attributed to 

listeners failing to either perceptually separate the signal from the masker and/or selectively 

attend to the signal (reviewed by Kidd et al., 2007). In addition to observed threshold 

changes for these conditions, listeners’ psychometric functions tend to have a reduced upper 

asymptote (e.g., Lutfi et al., 2003a). Lutfi et al. (2003a) suggested that, even at supra-

threshold levels, listeners are confusing the masker for the signal on some proportion of 

trials. Error patterns for speech tasks also suggest that listeners make masker confusions 

(e.g., Brungart et al., 2001; Wightman & Kistler, 2005; for exception see Helfer & Freyman, 

2009). For example, Wightman and Kistler (2005) asked 4- to 16-year-olds and adults to 

identify key items in the target message in the presence of a contextually-similar distractor 

message simultaneously presented to the same ear. For this closed-set task, very few errors 

were randomly selected responses. Rather, incorrect responses were items presented in the 

distractor message. The same error pattern was observed for both children and adults. 

Confusing the masker for the signal suggests that listeners were unable to either perceptually 

separate or attend to the target word in the presence of the competing speech (e.g., Brungart, 

2001; Wightman & Kistler, 2005).  

The last line of support for a similar underlying mechanism for susceptibility to 

masking is that tone detection and speech recognition can be improved with the provision of 

auditory grouping cues. One such example of successfully applying the same framework to 

both tonal and speech studies comes from our own recent work. Based on the theoretical 

framework used for the multi-tonal work (Leibold & Bonino, 2009), a speech study was 
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designed to examine the improvement for word recognition with a carrier phrase (e.g., “say 

the word ____”). For this study (Bonino et al., in press), it was predicted that listeners would 

benefit from a carrier phrase prior to the target word for conditions of high perceptual 

masking. This prediction was based on the observation that children are better at segregating 

a tonal signal when multiple bursts of the signal were provided in a random-frequency, multi-

tonal masker (Hall et al., 2005; Leibold & Bonino, 2009). This finding is thought to be 

because the signal is spectrally-fixed across time while the masker is spectrally-uncertain. 

Results from Bonino et al. (in press) are also consistent with the carrier-phrase promoting 

spectro-temporal coherence of the target speech stream. In the continuous two-talker masker 

condition, the average carrier-phrase benefit was 17% for 5- to 10-year-old children. In this 

line of research, it has been helpful to use the same framework for both tonal and speech 

stimuli. Similarly, Wightman and his colleagues have used the same framework for dichotic 

listening with good agreement between the two stimulus sets (Wightman et al., 2003; 

Wightman & Kistler, 2005; Wightman et al., 2010). 

Mounting evidence supports the application of the same theoretical framework to 

both speech and non-speech stimuli, but there are a couple of caveats to consider. First, 

studies using tonal stimuli can rigorously control spectral and temporal properties, whereas 

natural speech is dynamic. These parameter differences may affect the benefit of a particular 

grouping cue. Secondly, speech maskers will generate energetic masking in addition to 

perceptual masking. In contrast to the protected region imposed for most multi-tonal 

experiments, the voices of the masker and signal will have some frequency overlap. (For a 

speech paradigm that eliminates simultaneous masking see Kidd et al. (2008).)  
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The last caveat is that additional linguistic-cognitive factors may affect performance 

on speech recognition tasks. For example, listeners can use contextual information from 

preceding words in the sentence to improve performance (e.g., Fallon et al., 2002; Nittrouer 

& Boothroyd, 1990). Also, listeners recognize speech despite wide variation of vocal 

properties and articulation patterns across speakers. This process is referred to as talker 

normalization (e.g., Ladefoged & Broadbent, 1957). Moreover, both children and adults have 

better word recognition when words are presented by the same talker across trials than when 

the talker is varied (e.g., Mullennix et al., 1989; Ryalls & Pisoni, 1997). These effects tend to 

be large for conditions in speech-shaped noise; however, there are limited data on these 

effects from adults in speech maskers (e.g., Brungart et al., 2001; Helfer & Freyman, 2009; 

Kidd et al., 2008). It would not be surprising if developmental effects for cognitive-linguistic 

factors were greater for a two-talker masker than for speech-shaped noise.  
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2.5.  Figures 
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Figure 2-1.  Individual and mean effect of signal-temporal uncertainty from Bonino and 

Leibold (2008) 

The mean (±1 S.E.) and individual benefit associated with having a defined listening interval, 

or the effect of signal-temporal uncertainty, in a broadband noise or a random, two-tone 

masker as reported by Bonino and Leibold (2008). Data points above the dash line indicate a 

benefit from the cue.  

 



 

 

 

3. CHAPTER 3 

EFFECT OF SIGNAL-TEMPORAL UNCERTAINTY DURING CHILDHOOD: 
DETECTION OF A TONAL SIGNAL IN A RANDOM-FREQUENCY, TWO-TONE 

MASKER 

3.1. Introduction 

This study examined the degree to which children benefit from a cue indicating when 

in time to listen for a tonal signal. This effect of signal-temporal uncertainty was 

operationally defined as the difference between listeners’ thresholds for a 1000-Hz pure-tone 

signal when provided a temporally-defined listening interval compared to a temporally-

uncertain listening interval. In the current study, the signal was embedded in a continuous, 

random-frequency, two-tone masker. Frequency components for the random-frequency 

masker were varied on each presentation, a manipulation that often produces substantial 

masking (e.g., Neff & Green, 1987). In this paradigm, experimental controls are employed to 

reduce energetic masking, produced as the result of overlapping excitation patterns in the 

peripheral auditory system (e.g., Fletcher, 1940). Rather, listeners’ elevated thresholds in this 

paradigm appear to be the result of limited or ineffective central auditory processes, 

including separating the signal from the masker and selectively attending to the signal (e.g., 

Durlach et al., 2003). This type of masking has been termed “informational” (reviewed by 

Kidd et al., 2007). Previous studies have found relatively small effects of signal-temporal 

uncertainty for the detection of a pure tone in a noise masker expected to produce primarily 

energetic masking (e.g., Egan et al., 1961; Green & Weber, 1980). However, recent studies 
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suggest a larger effect of signal-temporal uncertainty in the presence of maskers believed to 

produce informational masking (Best et al., 2007; Bonino & Leibold, 2008; Varghese et al., 

2012; for exception see Richards et al., 2011). These findings suggest that a cue indicating 

when in time to listen for a target sound may assist adults in conditions in which they have 

difficulty segregating and/or attending to the target signal in the presence of complex 

maskers. Given children’s increased susceptibility to informational masking relative to 

adults’ (e.g., Leibold & Neff, 2007; Oh et al., 2001; Wightman et al., 2003), a cue indicating 

when in time to listen may be particularly beneficial for children. 

This work was motivated by multiple observations across laboratories that children 

are more susceptible to auditory masking than adults (e.g., Allen & Wightman, 1995; Elliott 

& Katz, 1980; Hall et al., 2005; Werner & Bargones, 1991). Although child-adult differences 

have been observed for children under about eight years of age for conditions thought to be 

dominated by energetic masking (e.g., Allen & Wightman, 1994; Elliott & Katz, 1980; 

Jensen & Neff, 1993), more pronounced and prolonged child-adult differences have been 

observed for complex maskers believed to produce substantial informational masking (e.g., 

Allen & Wightman, 1995; Leibold & Neff, 2007; Lutfi et al., 2003b; Oh et al., 2001; 

Wightman et al., 2003). In the “simultaneous multi-tonal masker paradigm” introduced by 

Neff and Green (1987), the listener’s task is to detect a fixed-frequency pure-tone signal 

presented simultaneously with a random-frequency multi-tonal masker. Using this paradigm, 

substantial masking has been observed for both children and adults, with child-adult 

differences as large as 50 dB (e.g., Oh et al., 2001). Moreover, results from studies 

employing these types of maskers have demonstrated improved performance with increased 

age during childhood (Leibold & Bonino, 2009; Leibold & Neff, 2007; Lutfi et al., 2003b; 
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Wightman et al., 2003). For example, Leibold and Neff reported significantly higher 

thresholds for 5- to 7-year-old compared to 8- to 10-year-old children for the detection of a 

1000-Hz tone in the presence of two-tone maskers with either fixed or random spectra. 

Despite improvements in performance with increasing age during childhood, significant 

child-adult differences have been observed in adolescents for detection of a pure-tone signal 

embedded in a random-frequency, multi-tonal masker (Lutfi et al., 2003b; Wightman et al., 

2003).  

Mounting evidence suggests that children’s greater susceptibility to informational 

masking compared to adults is due to immature central auditory processes, rather than 

peripheral immaturity (reviewed by Werner & Leibold, 2004). Although the specific central 

auditory mechanisms responsible for children’s increased susceptibility to informational 

masking are not fully known, immature sound source segregation and/or selective attention 

processes may be responsible for children’s difficulties (reviewed by Leibold, 2012). Sound 

source segregation is the process by which a listener perceptually parses apart sounds of 

interest from the competing background sounds. Features that assist adults in performing 

sound source segregation include spatial separation, asynchronous onset, incoherence of 

dynamic stimulus properties, and differences in sound quality or timbre (reviewed by 

Bregman, 1993). Results are mixed from the limited studies examining children’s ability to 

use sound source segregation cues. Young children appear to be effective in their use of some 

cues, such as onset asynchrony (Hall et al., 2005; Leibold & Neff, 2007). In contrast, the 

ability to use other cues appears to follow a slower developmental time course (e.g., Hall et 

al., 2005; Wightman et al., 2003; Wightman & Kistler, 2005). For example, Hall et al. (2005) 
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reported that school-aged children (6 to 10 years of age) were not adult-like in their ability to 

use a lateralization cue based upon interaural intensity differences under headphones. 

Related to the ability to segregate sounds, it has also been suggested that infants and 

children have immature selective auditory attention (e.g., Bargones & Werner, 1994; 

Wightman et al., 2010). Selective attention is the process of focusing on the auditory 

information of interest while disregarding irrelevant sounds. Results from studies of adults 

have been interpreted as indicating that their sensitivity to target signals can be improved by 

forming expectations about the signal. Stimulus features that adults can use to form 

expectations include frequency (e.g., Dai et al., 1991; Greenberg & Larkin, 1968), temporal 

position (e.g., Chang & Viemeister, 1991; Egan et al., 1961), duration (e.g., Dai & Wright, 

1995), and spatial position (e.g., Arbogast & Kidd, 2000). Many of these studies used the 

probe-signal method (Greenberg & Larkin, 1968) to measure a listener’s sensitivity. In this 

method, the listener is “set up” to listen for the primary signal either through training or 

because it is presented with a greater probability, thus it is thought of as the “expected” 

signal. In some trials the primary signal is then replaced by a probe signal. Probe signals are 

considered the “unexpected” signals. For probe-signal studies which have measured selective 

attention in the frequency domain (e.g., Greenberg & Larkin, 1968), detection thresholds are 

first measured for each of two signals alone.  Then, signal levels are normalized relative to 

those single-signal thresholds.  For these conditions, adults are more likely to detect expected 

than unexpected signals. Thus, adults are able to use stimulus features to selectively attend to 

a signal and to form expectations about the features of subsequent stimuli.  

Infants’ selective attention abilities appear not as refined as those of adults in the 

frequency domain. Using the probe-signal paradigm, Bargones and Werner (1994) reported 
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that infants were equally sensitive at detecting signals at expected and unexpected 

frequencies. In contrast to the data from infants, Bargones and Werner (1994) and others 

(e.g., Dai et al., 1991) have reported that adults have better sensitivity for the expected 

frequency tone. It is possible that the ability to listen selectively in the frequency domain 

continues to develop well into childhood. Greenberg et al. (1970) measured children’s 

abilities to selectively attend based on signal frequency for a group of five children (6 to 8 

years) and six adults (20 to 25 years). Mean results were interpreted by Greenberg et al. 

(1970) to indicate that 6- to 8-year-olds are able to listen selectively like adults. However, 

individual data suggest that some of the children tested were not as selective in the frequency 

domain as the adult listeners were.   

One consequence of unselective listening in the frequency domain is that children are 

more susceptible to auditory masking. For example, a remote-frequency broadband noise that 

produces little or no masking for adults results in elevated threshold for most infants and 

some 4- to 6-year-olds (Leibold & Neff, 2011; Werner & Bargones, 1991). This finding is 

consistent with the idea that infants and children monitor a wider range of auditory filters 

than adults. Monitoring a wide frequency range may also explain why infants and children 

are often more susceptible than adults to masking produced by random-frequency, multi-

tonal maskers (Lutfi et al., 2003b). For example Lutfi et al. (2003b) measured tone detection 

thresholds for children (4 to 16 years) and adults using a two-interval, force-choice 

procedure. In this task listeners detected a 1000-Hz tone embedded in a random-frequency 

masker. The number of masker components was manipulated across conditions, resulting in 

maskers thought to produce different amounts of informational masking. Results from a 

principal component analysis of the data suggest that children and adults use the same 
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listening strategy. Lutfi et al. (2003b) suggested that the variability seen between age groups 

and within age groups is explained by less selective auditory attention to the signal 

frequency. Less selective auditory attention may be the result of children monitoring a 

greater number of independent auditory filters.  

In contrast to unselective listening in the frequency domain, limited data suggest that 

infants can form temporal expectancies under some conditions. Using the probe-signal 

method, Werner et al. (2009) measured infants’ detection thresholds for a 150-ms, 1000-Hz 

pure-tone signal in a continuous broadband noise. On 75% of the trials the signal was 

presented at 500 ms following a brief increase in masker level. In the remaining trials the 

signal was presented either at 200 ms or 800 ms. Both infants and adults showed better 

sensitivity to the expected delay of 500 ms than for the unexpected delay of 800 ms. 

However, infants may not be able to use this information to improve tone detection. In an 

additional experiment presented by Werner et al. (2009), infants’ sensitivity was measured in 

the no cue condition and in two cue conditions, in which the listening interval was 

temporally-defined with a brief increment or decrement in the noise level. Unlike adults, who 

showed improved sensitivity in the cue conditions, infants’ sensitivity was similar for the no-

cue and cue conditions. Thus, although infants are able to form temporal expectation, the 

most appropriate way to provide the cue and the degree to which they can use this 

information remains to be clarified.  

Of specific interest for this study is to determine if children can use a visual cue 

indicating when in time to listen for a pure-tone signal in a random-frequency, two-tone 

masker. Relatively small effects of signal-temporal uncertainty have been reported for tone 

detection in noise for adults, for which the masker is thought to primarily produce energetic 
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masking (e.g., Egan et al., 1961; Green & Weber, 1980; Watson & Nichols, 1976). For 

example, Green and Weber (1980) measured detection thresholds in a two-interval, forced-

choice task. The temporal position of the 50-ms, 1000-Hz pure-tone signal was varied within 

a sequence of 10 bursts of a broadband noise masker. Each masker burst was 50 ms in 

duration with a silent interval of 100 ms between masker bursts. Listeners were more 

sensitive to the signal when it always coincided with the fifth masker burst compared to 

when the temporal position was randomized to coincide with any of the 10 masker bursts. 

However, the average effect of signal-temporal uncertainty was less than 3 dB. In contrast to 

these findings, recent studies indicate a larger effect of signal-temporal uncertainty with 

maskers thought to produce substantial informational masking (Best et al., 2007; Bonino & 

Leibold, 2008; Varghese et al., 2012). For example, Best et al. (2007) found that listeners 

could more accurately identify a target birdsong embedded in other birdsongs when they 

were provided with a cue indicating the time interval that contained the target. In a related 

study, Bonino and Leibold (2008) measured detection thresholds for a 1000-Hz tone 

embedded in either a random-frequency, two-tone masker or broadband noise. Adults 

demonstrated an average improvement of 9 dB for the two-tone masker when the listening 

interval was defined compared to the temporally-uncertain condition. Similar to previous 

investigations, a small average improvement of 2 dB was observed for the broadband noise 

condition. These results suggest that the effect of signal-temporal uncertainty is larger for 

conditions that produce substantial informational masking.  

In order to measure the effect of signal-temporal uncertainty during childhood, the 

current study measured detection thresholds for children who were five to 13 years old. 

Following Bonino and Leibold (2008), listeners were asked to detect a 120-ms, 1000-Hz 
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signal presented in a continuous random-frequency, two-tone masker. This masker was 

selected because it was thought to produce substantial informational masking (e.g., Bonino & 

Leibold, 2008; Neff & Dethlefs, 1995). Results of this study were examined for both age-

related changes in susceptibility to masking and effects of signal-temporal uncertainty. It was 

predicted that susceptibility to masking would decrease with age. However, that all age 

groups would have substantial benefit from the visual cue indicating when in time to listen 

for the signal.  

3.2. Methods 

3.2.1. Listeners 

Listeners were 35 children and 10 adults. Children were recruited in three age groups: 

5- to 7-year-olds (n=11), 8- to 10-year-olds (n=13), and 11- to 13-year-olds (n=11). The 

average age was 6.79 years (SD=0.83 years) for the 5- to 7-year-old group, 9.44 years 

(SD=0.94 years) for the 8- to 10-year-old group, and 12.56 years (SD=0.79 years) for the 11- 

to 13-year-old group. The rationale for recruiting within these three age ranges was to 

broadly examine whether the ability to benefit from the temporal cue improved with 

increasing age throughout childhood. A group of 10 adults was also tested (20 to 34 years; 

mean=26.68 years; SD=6.2 years). An additional six listeners did not complete testing. Two 

children (6.7 and 7.3 years) were unable to complete training. A 7.3-year-old’s testing 

session was terminated early because of a consistently high false alarm rate (>75%) during 

phrase 2 of testing. Finally, three listeners (11.5, 12.2, and 31.4 years) withdrew from the 

study prior to completion. All listeners had thresholds in quiet of ≤20 dB HL bilaterally for 

octave frequencies from 0.25 to 8 kHz (ANSI, 2004). The sole exception was a 7.7-year-old, 
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who had two thresholds of 25 dB HL in the non-test ear. Listeners had no known history of 

chronic ear disease. Listeners were tested individually in a double-walled, sound-attenuated 

booth (IAC). Adults were tested in a single 2-hour visit. Children were tested over 2 or 3, 1-

hour test sessions with regular breaks. This research was approved by the institutional review 

board at The University of North Carolina at Chapel Hill. 

3.2.2. Stimuli   

Thresholds were measured for a 1000-Hz pure-tone that was 120-ms in duration 

(including 5-ms, cos2 onset/offset ramps). The signal was embedded in a masker train 

composed of bursts of a random-frequency, two-tone masker. Each two-tone masker burst 

was 120 ms, including 5-ms, cos2 onset/offset ramps. During the plateaus of each masker 

burst, the overall level was 50 dB SPL (47 dB/component). The train of masker bursts was 

presented continuously in each block of trials, with no temporal overlap between successive 

bursts. The two frequency components making up the masker were independently selected on 

each 120-ms burst, one drawn at random from a uniform distribution with a range of 300 to 

920 Hz and the other from a uniform distribution of 1080 to 3000 Hz. A protected region of 

920 to 1080 Hz was used to reduce the contribution of energy-based masking within a 

presumed auditory filter centered at the signal frequency (Moore & Glasberg, 1983). The 

1000-Hz signal, when present, was gated simultaneously with a single burst of the two-tone 

masker. 

Stimuli were generated at a 25-kHz sampling rate. The signal and masker were 

attenuated digitally, played out of a real-time processor (TDT, RP2), routed through separate 

programmable attenuators that were set to 0 (TDT, PA5), mixed (TDT, SM3), and passed 
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through a headphone buffer with 3 dB of attenuation (TDT, HB7). Stimuli were presented to 

the listener’s right ear through an insert earphone (Etymotic, ER1). 

3.2.3. Conditions and Procedure 

Listeners completed testing for two separate conditions: (1) temporally-defined and 

(2) temporally-uncertain. In the temporally-defined condition, a light cue consisting of five 

LED lights on a handheld unit defined the listening interval. A schematic of the temporally-

defined condition is provided in Figure 3-1, with the light cues indicated by the gray boxes. 

A signal trial (bold dash) is shown in the left-hand box and a no-signal trial is shown in the 

right-hand box. The onset of the 600-ms light cue was synchronous with the onset of the 

second masker burst following the initiation of each trial.  The signal, when present, always 

occurred 240 ms after the activation of the light cue. The temporally-uncertain condition was 

identical to the temporally-defined condition, except that the listener was not provided a light 

cue. Thus, the listener was not aware of when the trial was initiated by the experimenter in 

the temporally-uncertain condition.  

Listeners sat inside the sound booth and responded with a hand raise. An 

experimenter sitting outside of the booth initiated each trial with a key press when the 

listener was judged to be “ready.” In the temporally-defined condition, trials were initiated 

only if the experimenter judged the listener to be looking at the handheld device. When a trial 

was initiated, listeners had 4 s to indicate that they heard a signal. A failure to respond during 

that observation window was coded as a “miss” if a signal was present.  

For each condition, the testing protocol consisted of one training phase and two 

testing phases. During training and both phases of testing, the signal/no-signal probability 
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was 0.5. The signal was presented at a clearly audible level in the training phase, based on 

results for adults from Bonino and Leibold (2008), and results for both children and adults 

from extensive pilot testing. The training period concluded when listeners were able to 

correctly identify 4/5 signals and 3/5 no-signals for a block of 10 training trials for each 

condition. After finishing training, listeners completed two testing phases.  

Because individual variability tends to be large in the presence of multi-tonal maskers 

(e.g., Neff & Dethlefs, 1995), adaptive thresholds were measured in phase 1 of testing in 

order to determine the signal levels for each listener in phase 2 of testing. Adaptive 

thresholds were measured for both temporal conditions using a single-interval, one-up, one-

down, adaptive procedure to estimate the 50% point on the psychometric function (Levitt, 

1971). An initial step size of 4 dB was used, decreasing to 2 dB after the second reversal. The 

track only changed direction on signal-present trials. Testing concluded after six reversals, 

with threshold being the average signal level of the last four reversals. A minimum of three 

tracks was completed for each condition. For eight listeners whose threshold estimates varied 

more than 5 dB across tracks, additional tracks were conducted. The three tracks with the 

closest agreement were used to determine the mean threshold, except for three children. For 

these three children, only the last two tracks were used because the initial thresholds 

estimates were different than threshold estimates from subsequent tracks by ≥10 dB. Testing 

order for the temporal conditions was randomized across the six threshold tracks. 

The average threshold across tracks was used to select the signal levels for phase 2 of 

testing. Based on this average threshold, signals were presented at five levels during phase 2 

of testing. The method of constant stimuli with a single-interval, Yes/No procedure was used. 

A run consisted of 40 trials across five signal intensities, with a 0.5 a priori signal/no-signal 
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probability, as in phase 1 of testing. Each track contained four signal and four no-signal trials 

at each of five levels, with trials presented in random order. The mid-point of the five signal 

levels was the average threshold corresponding to 50% correct signal detection from phase 1. 

The remaining four signal levels were +8, +4, -4 and -8 dB relative to the mid-point. The 

mid-point and/or level spacing were adjusted for most listeners across runs. Specifically, the 

mid-point was adjusted for approximately 80% of functions, either because asymptotic 

performance was not observed at the +8-dB level in the first run or because a hit rate of ≤ 

20% was not observed at the -8-dB level.  For approximately 20% of functions, spacing was 

reduced to collect more data near the middle of the listener’s psychometric function. Each 

listener completed four runs for each temporal condition. The temporal condition was 

randomized across the eight runs, although it was held constant within a run. If time 

permitted, one additional run was completed for listeners judged to have variable 

performance by the experimenter. An additional run was completed for five children, in one 

condition each, who had one run with a false alarm rate that was higher than their other runs. 

For these children, the run with the highest false alarm rate, pooled across all five signal 

levels, was omitted from further analysis.  

3.2.4. Procedure for Fitting Psychometric Functions 

Individual psychometric functions were fitted to listener data from 160 trials collected 

during phase 2 of testing for each condition. Prior to fitting the data, individual ����� scores 

were calculated for each signal level. ����� is the percent correct score corrected for bias. 

Fits were made using the procedure described by Dai (1995), modified to allow upper 

asymptote to be a free parameter of the fit (Dai & Micheyl, 2011). This procedure is based on 
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a chi-squared goodness of fit test, weighted by the number of observations at each level. 

Individual psychometric functions were assumed to have a form of: 

����� �  �
	 
 � �1 � 
�Ф ���

√	�   (1) 

where λ relates to upper asymptote �1 � �
	 �, and Ф is the cumulative Gaussian probability 

function. The first term represents the proportion of trials where the listener’s performance 

was at chance, whereas the second term reflects the listener’s performance for the proportion 

of trials where the listener was attending to the signal. The detectability index �� was defined 

as: 

 �� � ��
��

�
 (2) 

where x is signal strength, α is threshold, and β is psychometric function slope. Both α and β 

are free parameters, and α is the signal strength at �� = 1. Permissible parameter values were 

restricted for both slope (0.05 ≤ β ≤ 3.0) and upper asymptote (0.001 ≤ λ ≤ 0.5). Functions 

were considered to be poorly fitted if R2 < 0.5.  

3.3. Results 

Fitting psychometric functions to child data is challenging for a variety of reasons. 

First, the number of trials is often limited. Second, auditory masking data are often more 

variable across individual children than across individual adults, especially for younger 

children (e.g., Allen & Wightman, 1995; Lutfi et al., 2003b; Oh et al., 2001). Third, children 

may show lower upper asymptote performance than adults (e.g., Allen & Wightman, 1994), 

necessitating the inclusion of a parameter to estimate upper asymptote (λ) in the fitting 
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procedure. This reduced upper asymptote indicates some degree of general inattentiveness to 

the task or that children do not hear the signal on some portion of the trials, even at supra-

threshold levels. Asymptotic performance can also be reduced if on some trials the listener 

“confuses” the masker for the signal (e.g., Lutfi et al., 2003a), which may be the result of a 

segregation failure. This is particularly evident in data that are collected in maskers expected 

to produce substantial informational masking. Psychometric functions for multi-tonal masker 

conditions exhibit increased between-subject variability compared to those collected with 

broadband noise for both children and adult listeners (e.g., Durlach et al., 2005; Lutfi et al., 

2003a).  

Mean estimates for the fitting parameters (threshold, slope and upper asymptote �1 �
�
	 �), R2 and criterion are provided in Table 3-1 for each listener age group based on temporal 

condition. Examples of individual psychometric function fits are provided in Figure 3-2. This 

figure includes data from three 5- to 7-year-olds in the temporally-uncertain condition. The 

observed data are indicated by the squares. The grayscale indicates the number of trials for a 

particular signal level, with white being the minimum (n=8) and black being the maximum 

(n=32) for these three listeners. The fitted functions are indicated by the solid black lines, 

where upper asymptote is a free-parameter of the model. For comparison, fits are also 

provided with the upper asymptote fixed to 1.0,1 indicated by the dashed line.  

3.3.1. Goodness of Fit 

Functions were considered to have acceptable fits if R2 
≥ 0.5. Of the 45 listeners 

tested in the current study, 32 met this R2 criterion in both the temporally-uncertain and 

temporally-defined conditions. Thirteen listeners (12 children and 1 adult) failed to achieve 



   

32 
 

this criterion. However, no listener had fits of R2 < 0.5 for both conditions. Of the 12 

functions with an R2 < 0.5 for the child data, eight were in the temporally-defined condition 

and four were in the temporally-uncertain condition. Children with fitted functions with an 

R2 < 0.5 were not concentrated in one age group: three were 5 to 7 years of age, five were 8 

to 10 years of age, and four were 11 to 13 years of age. One adult (31.1 years of age) had a fit 

with an R2 < 0.5 in the temporally-uncertain condition. Further analyses, reported below, 

were restricted to data from the 32 listeners who had fits of R2 
≥ 0.5 in both conditions. 

Psychometric functions were also examined for non-monotonicity. It has been 

reported in the literature that listeners’ performance can be worse than anticipated near a 0 

dB signal-to-noise ratio (SNR; e.g., Brungart, 2001; Wightman & Kistler, 2005).  Non-

monotonic performance for these studies is thought to be the result of listeners’ access to a 

level difference cue between the signal and the masker for levels below and above 0 dB 

SNR. At a 0-dB SNR this cue is not available to the listener, thus, exacerbating informational 

masking. For each listener, residuals were calculated by finding the difference between the 

predicted and observed ����� values. Individual listener’s residuals were compiled as a 

function of signal level. Visual inspection of these data indicated that the mean and the 

spread of residuals were consistent as a function of signal level. In particular, there was no 

evidence that thresholds were consistently underestimated at 0-dB SNR or overestimated at 

other SNRs. 

3.3.2. Threshold Estimates and the Effect of Signal-Temporal Uncertainty 

Group differences. Mean estimates of masked threshold (±1 SE), based on a ��=1, 

are provided in Figure 3-3 for the four listener age groups. Thresholds are represented by 
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filled squares for the temporally-uncertain condition, and by open circles for the temporally-

defined condition. In the temporally-uncertain condition, mean thresholds were 47.7 dB SPL 

for 5- to 7-year-olds, 49.4 dB SPL for 8- to 10-year-olds, 49.5 dB SPL for 11- to 13-year-

olds, and 48.7 dB SPL for adults. All four listener age groups demonstrated lower mean 

thresholds in the temporally-defined compared to the temporally-uncertain condition. Mean 

thresholds in the temporally-defined condition were 38.3 dB SPL for 5-to 7-year-olds, 38.2 

dB SPL for 8- to 10-year-olds, 35.4 dB SPL for 11- to 13-year-olds, and 37.9 dB SPL for 

adults.  

In order to examine the benefit of having a defined listening interval (the effect of 

signal-temporal uncertainty), the threshold for the temporally-defined condition was 

subtracted from the threshold for the temporally-uncertain condition for each listener. The 

effect of signal-temporal uncertainty is shown in Figure 3-4 for the group mean (± 1 SE) and 

individual data, plotted as a function of listener age group. A positive score, above the dotted 

horizontal line, indicates that the listener benefited from the cue. All listeners appeared to 

benefit from defining the listening interval, except for one child (7.8 years of age). The 

average benefit was 9.3 dB for 5- to 7-year-olds, 11.2 dB for 8- to 10-year-olds, 14.1 dB for 

11- to 13-year-olds, and 10.8 dB for adults.  

A repeated measures analysis of variance (ANOVA) of threshold was performed to 

assess developmental effects for susceptibility to masking and signal-temporal uncertainty. 

This analysis included the within-subjects factor of Condition (temporally-defined, 

temporally-uncertain) and the between-subjects factor of Age Group (5- to 7-year-olds, 8- to 

10- year-olds, 11- to 13-year-olds, and adults). The main effect of Condition was significant 

[F(1,28)=138.87, p<0.001]. This result confirms the trend in Figure 3-4, indicating that all 
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listener age groups benefited from the cue. However, neither the main effect of Age Group 

[F(3,28)=0.04, p=0.99] nor the Condition × Age Group interaction [F(3,28)=1.02, p=0.40] 

was significant. The lack of any significant age-related effects, confirms similar performance 

across the four age groups, both in terms of susceptibility to masking and the effect of signal-

temporal uncertainty.  

Individual differences. Consistent with other studies of informational masking 

involving both children and adults (e.g., Lutfi et al., 2003a; Oh et al., 2001), there was 

considerable between-subjects variability. In Figure 3-5, individual thresholds are plotted as 

a function of age for the temporally-uncertain (filled squares) and the temporally-defined 

(open circles) conditions. The black vertical lines indicate the effect of signal-temporal 

uncertainty for each listener. The gray symbols indicate results for the 13 listeners who had 

fits of R2 
≥ 0.5 in only one of the two conditions. For listeners with fits of R2 

≥ 0.5 in both 

conditions, shown in black, masked thresholds in the temporally-uncertain condition ranged 

from 25.5 (20.2-year-old) to 59.7 dB SPL (12.9-year-old). Masked thresholds in the 

temporally-defined condition ranged from 5.7 dB SPL (11.3-year-old) to 48.8 dB SPL (34.3-

year-old). Despite large between-subjects variability in susceptibility to masking, nearly all 

listeners benefited from the listening interval being defined in time. The average effect of 

signal-temporally uncertainty was 11.2 dB, although seven listeners showed more than a 15-

dB effect. Only one listener, a 7.8-year-old, showed less than a 4-dB effect of signal-

temporal uncertainty (a 0.3 dB effect).  

One possible limitation of the current study is that 13 listeners were excluded because 

of a poorly fitted psychometric function. It is possible that these listeners performed 

differently than those with well-fitted functions. Recall that all listeners with fits of R2 < 0.5 
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in one condition had fits associated with R2 
≥ 0.5 in the other condition. All but two of these 

threshold estimates were within two standard deviations of the range of performance 

obtained for listeners who had well-fitted functions for both conditions. The two outlier 

thresholds were lower than the mean data, and both were from children: a 12.3-year-old in 

the temporally-defined condition and a 5.8-year-old in the temporally-uncertain condition. 

However, there were two listeners (a 11.3- and a 20.2-year-old), with good fits for both 

functions, who also had similarly low thresholds. 

3.3.3. Response Bias 

In the single-interval procedure used in the current study, listeners were asked to 

indicate when they heard a signal, and trials were recorded as no responses when the listener 

did not respond within the allotted time. Previous findings indicate that adults tend to adopt a 

conservative (strict) response criterion for indicating that a signal is present in this type of 

paradigm (e.g., Lucluyse & Meddis, 2009; Marshall & Jesteadt, 1986). In order to examine 

the effect of bias on threshold, Marshall and Jesteadt (1986) compared adults’ thresholds 

measured in quiet for the standard clinical procedure and for two psychophysical methods: a 

two-interval, forced-choice (2IFC) adaptive procedure and a Yes/No procedure with 

undefined observation intervals. Marshall and Jesteadt (1986) reported that the average 

threshold obtained with the clinical procedure was 6.5 dB greater than for the 2IFC 

procedure. Response bias had a minimal effect (1.2 dB) on threshold differences between the 

procedures, despite listeners being more conservative for Yes/No procedures.  

In order to examine age-related differences in response bias for the two temporal 

conditions in the current study, criterion estimates were calculated for the 32 listeners for 
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whom data fits in both conditions were associated with R2 
≥ 0.5. Responses for all signal 

levels were pooled for each listener by temporal condition (temporally-defined or 

temporally-uncertain). The criterion ��� was defined as (Snodgrass & Corwin, 1988): 

� �  � �
	 ����� � ����        (3) 

with ���� and ���� being the z-scores associated with the hit rate and false-alarm rate, 

respectively. For listeners who did not produce any false alarms, a value of 0.5 was used as 

the number of false alarm trials, resulting in a false alarm rate of 0.6%.2 An unbiased listener 

would have a criterion of 0. For a biased listener, a negative value indicates the listener is 

more liberal in their decision to indicate a signal is present, and a positive value indicates the 

listener is more conservative. 

 Individual estimates of criterion are provided in Figure 3-6, with open circles 

indicating estimates in the temporally-defined condition and open squares representing the 

temporally-uncertain condition. Mean bias estimates (± 1 SE) are represented by filled 

symbols and are provided for each listener age group to the left of the individual data. 

Listeners were more conservative in the temporally-uncertain listening condition than when 

the listening interval was defined. Mean data are similar across the four age groups. Across 

all listener age groups, the mean criterion was 0.91 (SE = 0.06) for the temporally-uncertain 

condition and 0.07 (SE = 0.006) for the temporally-defined condition. Note that individual 

differences appeared to be larger in the temporally-uncertain condition (range: 0.16 to 1.31) 

than in the temporally-defined condition (range: 0.01 to 0.12).  

To test these trends, a repeated measures ANOVA was conducted with the within-

subjects variable of Condition (temporally-defined, temporally-uncertain) and the between-
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subjects variable of Age Group (5- to 7-year-olds, 8- to 10-year-olds, 11- to 13-year-olds, 

and adults).  The main effect of Condition was significant [F(1,28)=217.37, p<0.001]. 

However, neither the main effect of Age Group [F(3,28)=0.30, p=0.83] nor the Condition × 

Age Group interaction [F(3,28)=0.33, p=0.81] was significant. Thus, listeners of all ages 

were more conservative in their response of “yes” when the listening interval was uncertain 

compared to when it was defined.   

3.3.4. Other Estimated Parameters of the Psychometric Function 

Although threshold was the primary psychometric function parameter of interest in 

the current study, upper asymptote and slope were also estimated for each listener during the 

fitting process. Mean estimates of these parameters are provided in Table 3-1 for each of the 

listener age groups. However, upper asymptote and slope estimates should be interpreted 

with care. During data collection, most listeners had a limited number of trials which resulted 

in ≥90% ����� scores. This resulted in upper asymptote estimates of the current study to be 

reduced compared to those in the published literature (e.g., Lutfi et al., 2003a).Across 

listeners, the average upper asymptote was 93.1% (SE=0.8%) in the temporally-uncertain 

condition and 86.8% (SE=1.1%) in the temporally-defined condition. However, the effect of 

upper asymptote did not appear to have a large effect on threshold estimates in the current 

study. Fixing the upper asymptote at 100% (λ=0) still resulted in the same overall pattern of 

results for this experiment.  
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3.4. Discussion 

This study measured tone detection in a continuous random-frequency, two-tone 

masker. The signal was presented at either defined or uncertain listening intervals to test the 

main hypothesis that children would benefit from a visual cue indicating when in time to 

listen. Previous studies have shown that children’s performance can improve when auditory 

grouping cues are provided. Like adults, children are able to use asynchronous onset of the 

signal and masker (Hall et al., 2005; Leibold & Neff, 2007) and multiple presentations of the 

signal burst (Hall et al., 2005; Leibold & Bonino, 2009) to improve thresholds. However, 

other studies have reported that children are unable to use some auditory grouping cues that 

adults can use. For example, presenting the masker and signal to separate ears results in 

substantial improvement for adults, whereas children appear to have minimal benefit (e.g., 

Hall et al., 2005; Wightman et al., 2003). For the current study, it was predicted that children 

would benefit from the visual cue. This hypothesis was based on the observation that infants 

were able to form temporal expectations (Werner et al., 2009) and that school-aged children 

have a release from informational masking when other temporal cues are provided (e.g., Hall 

et al., 2005; Leibold & Neff, 2007).  

One qualification of this hypothesis, however, was that a robust effect of signal-

temporal uncertainty would only be observed for maskers expected to produce substantial 

informational masking. Findings from this study do indeed suggest that the random-

frequency, two-tone masker produced substantial informational masking for listeners of all 

ages. Specifically, masked thresholds were greater than predicted by overlapping patterns of 

excitation along the basilar membrane. An excitation-based model of loudness (Moore et al., 

1997) has been successfully used to predict masked thresholds in previous studies (e.g., Van 



   

39 
 

Der Heijden & Kohlrausch, 1994), based on the partial loudness of the signal. Applying this 

model to the current stimuli, the predicted amount of energetic masking produced varies 

widely depending on the two frequency components selected for each masker. Using a 

criterion partial loudness of 2 phons, the model predicts a threshold of 41.6 dB for a masker 

composed of 920 Hz and 1080 Hz and 6.3 dB for a masker composed of 300 and 3000 Hz.  

In comparison to these predictions, thresholds in the temporally-uncertain condition ranged 

from 25.5 dB SPL to 59.7 dB SPL, with a mean threshold of 48.8 dB SPL across all listeners. 

The observed thresholds are consistent with this masker producing substantial informational 

masking.  

3.4.1. Effect of Signal-Temporal Uncertainty 

As predicted, all three age groups of children (5 to 7, 8 to 10 and 11 to 13 years of 

age) and the group of adults benefited from the light cue indicating when in time to listen for 

the target signal. Moreover, no developmental differences in the effect of signal-temporal 

uncertainty were observed. The average effect of signal-temporal uncertainty was 11.2 dB 

across all listeners, and the group average thresholds varied from 9.3 to 14.1 dB across the 

four age ranges. These results are consistent with the average effect of 9 dB (range of 5 to 15 

dB) for four trained adult listeners reported by Bonino and Leibold (2008). Bonino and 

Leibold (2008) used similar stimuli to the current study with two exceptions: (1) there was a 

temporal asynchrony between the onset of the signal and the masker burst and (2) the 

listening interval in that study was defined by having the listener initiate the start of the trial. 

Defining the listening interval either through a visual cue or allowing the listener to initiate 
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the trial appears to result in a similar benefit of knowing when to listen for the 1000-Hz 

signal. 

The effect of signal-temporal uncertainty is larger in this study than the 2- to 3-dB 

effect typically reported for testing in quiet or in noise (e.g., Egan et al., 1961; Green & 

Weber, 1980; Watson & Nichols, 1976). Additional pilot data collected in the laboratory are 

consistent with a small effect of signal-temporal uncertainty in broadband noise. Using 

procedures similar to the current study,3 detection thresholds in broadband noise were 

measured for an additional 6.7-year-old and five adults (21 to 31 years of age). Comparing 

thresholds for the temporally-uncertain and the temporally-defined conditions, the 6.7-year-

old showed an effect of 3.0 dB. The effect for adults ranged from 1.6 to 3.8 dB, with a mean 

effect of signal-temporal uncertainty of 2.5 dB (SD=1.0 dB). The relatively large effect (11.2 

dB) seen for the current study in the random-frequency, two-tone masker supports the idea 

that the effect of signal-temporal uncertainty is greater for conditions resulting in high rather 

than low informational masking.  

The current findings are in general agreement with recent studies which have 

examined the effect of knowing when to listen in conditions believed to produce substantial 

informational masking (Best et al., 2007; Bonino & Leibold, 2008; Varghese et al., 2012). As 

described above, Bonino and Leibold (2008) observed a larger effect for the same group of 

adult listeners in a random-frequency, two-tone masker than in a broadband noise. A similar 

pattern of results has also been reported for bird song stimuli (Best et al., 2007; Varghese et 

al., 2012). Varghese et al. (2012) asked listeners to detect a target bird song presented in 

either a chorus of novel bird songs or in a noise masker which had the same long-term 

spectral characteristics. When the target and competing bird song chorus were perceived as 
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originating from the same spatial location, listeners were better able to identify the target 

when a temporal light cue was provided. The temporal cue did not improve performance in 

noise for this spatial configuration. In contrast to these studies, Richards et al. (2011) 

reported that listeners did not benefit from a defined listening interval. In that study, adults 

were asked to detect a signal comprised of series of three 60-ms, 1000-Hz tone bursts. 

Listeners were tested in two masker conditions, “continuous” and “pulsed.” In the continuous 

condition, a series of 60-ms random-frequency, masker bursts, with no temporal gap, was 

continuously played for a run of trials. In the “pulsed” condition, the masker was a series of 

five bursts, which was only presented during the listening interval. If listeners benefited from 

a defined listening interval, it was expected that thresholds would be better in the pulsed 

condition than when the listening interval was not defined in the continuous condition. 

However, the opposite result was found. Thresholds were 11.7 dB better in the continuous 

condition than the pulsed condition. One explanation for the lack of an effect of signal-

temporal uncertainty compared to the other three studies (Best et al., 2007; Bonino & 

Leibold, 2008; Varghese et al., 2012) is methodology differences. Whereas Richards et al. 

(2011) gated the masker to define the listening interval, the current study and other three 

published studies (Best et al., 2007; Bonino & Leibold, 2008; Varghese et al., 2012) did not 

manipulate the masker, but rather provided a light cue in the temporally-defined condition.  

3.4.2. Decision Strategy 

All listener age groups were conservative in the temporally-uncertain condition. The 

average response bias was 0.91 in the temporally-uncertain condition across all listeners. 

This finding is consistent with conservative bias estimates, which are commonly seen for 
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adult listeners tested in the modified observer-based paradigm (e.g., Leibold & Werner, 

2006; Werner & Marean, 1991; Werner et al., 2009). In this paradigm, the listening interval 

is not defined for the listener, but it is defined for the experimenter judging the listener’s 

behavior. Werner et al. (2009) reported that mean bias was 1.15 for a group of adult controls 

for tone detection in broadband noise. In contrast to adults, data collected from infants in the 

observer-based paradigm consistently indicate no response bias (e.g., Leibold & Werner, 

2006; Werner & Marean, 1991; Werner et al., 2009). Although infants appear to be unbiased 

listeners, the school-aged children tested in the current study showed a conservative decision 

strategy similar to adults in the temporally-uncertain condition.  

In contrast to the conservative strategy used by listeners in the temporally-uncertain 

condition, both children and adults adopted an unbiased decision strategy with the provision 

of the light cue. The average response bias in the temporally-defined condition was 0.07 

across all listeners. Werner et al. (2009) also observed that adult listeners adopted a less strict 

criterion when the listening interval was defined by a level increment cue compared to the 

temporally-uncertain condition. Thus, in the current study, listeners adopted an unbiased 

listening strategy in the temporally-defined condition as is thought to be case for the two-

interval, forced-choice procedure. Furthermore, it has been suggested that the differences in 

adults’ threshold estimates in quiet between a Yes/No procedure and a two-interval, forced-

choice procedure may be a result of signal-temporal uncertainty (Lucluyse & Meddis, 2009; 

Marshall & Jesteadt, 1986). One explanation for why a defined listening interval results in 

listeners becoming unbiased is that it allows them to take advantage of their knowledge of 

the signal/no-signal ratio. In the current study the ratio was 0.5, and listeners were reminded 

of this probability before the start of each temporally-defined run. Regardless of the 
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underlying reason, differences in decision strategy are apparent across the two temporal 

conditions. Although the effect of bias appears to be small (1.2 dB) for conditions in quiet 

(Marshall & Jesteadt, 1986), it may be larger in the presence of random-frequency, multi-

tonal masker. The current findings highlight the importance of controlling for bias, since it 

may differ across conditions.  

3.4.3. Susceptibility to Masking  

Although masking was observed for both children and adults, developmental 

differences in susceptibility to masking were not observed in the current study. This result 

was unexpected. Previous studies have consistently reported increased susceptibility to 

informational masking for children compared to adults (e.g., Lutfi et al., 2003b; Oh et al., 

2001), as well as age-related improvements during childhood (e.g., Leibold & Bonino, 2009; 

Leibold & Neff, 2007). The surprising result of similar thresholds for children and adults 

raises the question of whether adults’ thresholds in the current study are poorer than in 

previous studies, whether children’s thresholds are better than in previous studies, or whether 

the data of both children and adults differ from those in previous studies.  

The current threshold estimates for adult listeners appear to be generally consistent 

with other adult data in the literature. In the current study, adults’ mean threshold was 49 dB 

SPL (-1 dB SNR) in the temporally-uncertain condition. The average threshold across four 

trained adult listeners tested with similar stimuli by Bonino and Leibold (2008) was 28.3 dB 

SPL (or -21.7 dB SNR) in the temporally-uncertain condition. Thresholds reported by 

Bonino and Leibold (2008) are likely better than those reported in the current study, because 

there was a temporal asynchrony of the signal and masker of 80 ms. Recent results in our 
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laboratory from three different trained adults, indicate that the average thresholds was 49.2 

dB SPL (or -0.8 dB SNR) in the temporally-uncertain condition when the onset of the signal 

and masker were synchronized and all other procedures were identical to that of Bonino and 

Leibold (2008). Richards et al. (2011), as described earlier, measured adults’ detection of a 

signal composed of series of three 60-ms, 1000-Hz tone bursts presented in a continuous 

random-frequency masker at an overall level of 63 dB SPL. Thresholds in that study were 55 

dB SPL (-8 dB SNR). This mean threshold is 7 dB better in SNR than the current study’s 

adult mean threshold. Leibold and Werner (2006) also tested a control group of adults in a 

continuous random-frequency, two-tone masker at an overall level of 60 dB SPL. Unlike the 

current study and Richards et al. (2011), Leibold and Werner inserted a 300-ms silent interval 

between each of the 300-ms masker bursts. Using a single-interval adaptive procedure, 

Leibold and Werner (2006) reported that the mean threshold for detecting a 300-ms, 1000-Hz 

pure-tone signal was approximately 60 dB SPL (0 dB SNR). Although the methodology 

differences between these studies make a direct comparison difficult, thresholds for adults in 

the current study appear to be consistent with those of Leibold and Werner (2006) and 

slightly elevated compared to those of Richards et al. (2011). Furthermore, considering the 

size of child-adult differences typically reported for random-frequency, multi-tonal maskers, 

the differences seen in threshold estimates for this group of adults compared to previous 

studies does not adequately account for the lack of a child-adult difference.  

Previous studies have reported substantially higher thresholds for children in the 

presence of random-frequency, multi-tonal maskers than observed in the current study (e.g., 

Leibold & Bonino, 2009; Leibold & Neff, 2007; Lutfi et al., 2003b; Oh et al., 2001). For 

example, in Leibold and Bonino (2009) the average threshold was 84.5 dB SPL (or 24.5 dB 
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SNR) for 5- to 7-year-olds and 66.4 dB SPL (or 6.4 dB SNR) for 8- to 10-year-olds. In 

comparison, the average adult threshold was 50.5 dB SPL (or -10 dB SNR). In Leibold and 

Bonino (2009) the task was to detect a two-burst, 50-ms, 1000-Hz signal in a masker 

sequence of 10 two-tone, 50-ms bursts at an overall level of 60 dB SPL. In contrast to these 

thresholds, estimates in the current study are substantially lower for children. For example, 5- 

to 7-year-olds had an average threshold of 47.7 dB SPL (or -2.3 dB SNR) in the temporally-

uncertain condition and 38.3 dB SPL (or -11.7 dB SNR) in the temporally-defined condition. 

Thus, the similar masked thresholds observed across age in the current study appear to 

largely reflect relatively better performance for children compared to previous developmental 

work. 

3.4.4. Methodology Differences 

In light of children’s relatively low thresholds in the current study it is worth 

considering the influence of methodology differences between the current and previous 

studies. The first difference is that supra-threshold signals were presented frequently 

throughout testing in the current study. These supra-threshold trials (e.g., those associated 

with +4 or +8 dB) were distributed uniformly over the trials in phase 2 of testing. In contrast 

to adaptive procedures used in previous studies, five signal levels were presented during a 

block of 40 trials, with level being randomly assigned across trials. It is possible that 

exposure to supra-threshold signal levels may have reminded the listener about the features 

of the signal. Research with adult listeners for a two-interval task indicate that detection 

thresholds for a pure tone embedded in a multi-tonal masker can improve by as much as 20 

dB when provided a pre-trial “reminder” of the signal in quiet (Richards & Neff, 2003). This 
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frequent reminder of the signal may have allowed the listener to more selectively monitor 

auditory filters in the frequency region of the signal. However, there are three considerations 

that cast doubt on this interpretation for the current study. First, it is not clear how effective 

this type of cue would be considering the long delay between trials. Secondly, while clearly 

audible signals may have reminded the listener what the signal sounds like, they might have 

also increased the listener bias; that is, the inclusion of high-level signals could have reduced 

the listener’s probability of responding to less clearly audible signals. Thirdly, previous 

developmental studies which used a pre-trial reminder cue have reported large child-adult 

differences for susceptibility to multi-tonal maskers (Leibold & Neff, 2007; Lutfi et al., 

2003b; Oh et al., 2001).  

The other primary methodology difference is that this experiment used a continuous, 

random-frequency, two-tone masker with no temporal offset between masker bursts. In 

contrast, other developmental studies that used a random-frequency, two-tone masker have 

typically used either a single brief masker burst (Lutfi et al., 2003b; Oh et al., 2001; 

Wightman et al., 2003) or a brief masker train (Bonino & Leibold, 2008; Hall et al., 2005) 

played during each interval. One exception is Leibold and Werner (2006), who used a 

continuous masker to assess the effects of informational masking for infants. In that study, 

infants and a control group of adults detected a 300-ms, 1000-Hz pure-tone signal that, when 

present, was gated with the onset of a 300-ms masker burst. Although the masker was on 

continously during a block of trials, there was a 300-ms silent interval between each 300-ms 

masker burst.  

Although highly speculative, three possible explanations are considered for why a 

continuous masker could result in equivalent thresholds for children and adults. The first 
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possible explanation is that a continuous masker may provide listeners with a better 

opportunity to learn the statistics of the masker compared to a gated masker. Recent findings 

from Richards et al. (2011), as discussed earlier, indicate that playing the masker 

continuously resulted in better tone detection (of 11 dB on average) and less individual 

variability than when a gated interval paradigm was used. Results from additional 

experiments by Richards et al. (2011) indicate that thresholds improved when additional 

masker bursts were provided before the signal in the pulsed condition. One interpretation of 

the findings in Richards et al. (2011) is that listeners are better able to detect a signal in the 

continuous condition because they notice a change in the features (or statistics) of the masker 

when they are exposed to the masker alone before the signal interval. In the current study, 

listeners may be able to learn features of the masker, including its level and frequency 

parameters. However, doubt is cast on this possible explanation because a listener should be 

able to learn the statistics from a large number of disjointed trials, not necessarily requiring 

the masker to be on continuously. Furthermore, it is not clear why children would perform 

like adults in the current study and not for other developmental studies which have presented 

the same masker frequencies over disjointed trials (e.g., Leibold & Neff, 2007), unless there 

are developmental differences in the ability either to form or to use the statistics in that 

condition. 

A second possible explanation is that the masker’s temporal regularity and spectral 

restrictions could be weak cues for streaming in the current study. Findings from studies that 

examined the number of perceived auditory streams suggest that the time period required to 

build up an auditory stream is at least on the order of several seconds for adult listeners (e.g., 

Anstis & Saida, 1985; Bregman, 1978; Carlyon et al., 2001). Furthermore, listeners are 



   

48 
 

biased towards maintaining two separate streams once they are formed; however, introducing 

several seconds of silence or unpatterned noise can reduce this bias (Bregman, 1978). Thus, 

one explanation for reduced thresholds in in the current study is that children are able to build 

up a masker stream given the long listening opportunity afforded by the continuous masker. 

However, if that was the case, adults should show benefit as well, provided they are not at 

floor already. 

The last possible explanation is that children may perform more poorly than adults 

when the masker is gated because they are more prone to the distracting effects of onsets than 

adults. Compared to a continuous noise masker, gated maskers are associated with both 

elevated thresholds (e.g., Green, 1969) and poor frequency-selective listening (e.g., Dai & 

Buus, 1991). Specifically, Dai and Buus (1991) measured adults’ sensitivity for target and 

probe signals in a band of noise (630 to 1470 Hz) using the probe-signal method (Greenberg 

& Larkin, 1968). Similar to previous studies of frequency-selective listening (e.g., Greenberg 

& Larkin, 1968), Dai and Buus (1991) observed that four adults selectively listened for the 

1000-Hz target signal when the masker was on continuously. In contrast, when the masker 

was gated for each interval, listeners detected the probe signals with equal or greater 

probability compared to the target signals. Thus, a gated masker impaired listeners’ abilities 

to selectively listen in the frequency domain. As proposed by Dai and Buus (1991), these 

data suggest that a gated masker results in either listeners monitoring several bands or in a 

widening of the auditory filter (e.g., Green, 1969). It is possible that there would also be 

differences in listeners’ abilities to selectively listen in a gated versus continuous random, 

two-tone masker. A continuous masker may be particularly beneficial for children, because it 
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has been suggested that their increased susceptibility to informational masking is a result of 

monitoring a greater number of independent auditory filters (Lutfi et al., 2003b).  

3.5. Conclusions 

 In the current study, listeners benefited from a visual cue indicating the timing of the 

listening intervals for a signal presented in a random-frequency masker. Furthermore, the 

benefit associated with presenting the visual cue was similar across the four listener age 

groups (5- to 7-year-olds, 8- to 10-year-olds, 11- to 13-year-olds and adults) tested. This 

average effect was 11.2 dB, which is substantially larger than previous reports of the effect of 

signal-temporal uncertainty in quiet or broadband noise conditions (e.g., Egan et al., 1961; 

Green & Weber, 1980). This finding is consistent with the idea that knowing when in time to 

listen is particularly beneficial under conditions expected to produce substantial 

informational masking, and that the ability to benefit from temporal cues is adult-like in 

school-aged children for the conditions tested here.  
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3.6.  Endnotes 

1 Fixing the upper asymptote to 100% (λ=0) still resulted in the same overall pattern 
of threshold results for this experiment.  

2 There were 13 cases in which the total number of false alarms was zero. The 0.6% 
false alarm rate was calculated by using the 0.5 correction divided by the number of no-
signal trials (n=80).  

3 The masker was a continuous stream of 120-ms broadband noise bursts (300 to 3000 
Hz). All other methods were identical to the current study for the 6.7-year-old child. Two 
modifications were made for adult listeners compared to the current study: only three runs of 
40 trials were conducted for each condition, and signal intensities were +4 dB, +2 dB, 0 dB,  
-2 dB and -4 dB relative to the threshold values obtained during the adaptive threshold 
procedure (phase 1 of testing).   
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3.7. Tables 

 

    Temporally-Defined       Temporally-Uncertain 

Age 
Group Threshold Slope 

Upper 
Asymptote 

 

R2 Bias Threshold Slope 
Upper 

Asymptote 

 

R2 Bias 

5-7 
yrs 

38.34 
(2.41) 

1.78 
(0.38) 

0.84 
(0.02) 

0.79 
(0.03) 

0.08 
(0.01) 

47.66  
(1.90) 

0.94 
(0.32) 

0.92 
(0.01) 

0.88 
(0.03) 

0.99 
(0.12) 

8-10 
yrs 

38.19 
(1.58) 

0.60 
(0.11) 

0.86 
(0.02) 

0.76 
(0.05) 

0.06 
(0.01) 

49.36  
(2.03) 

0.67 
(0.25) 

0.95 
(0.02) 

0.79 
(0.06) 

0.91 
(0.12) 

11-13 
yrs  

35.38 
(5.48) 

0.75 
(0.23) 

0.90 
(0.01) 

0.78 
(0.05) 

0.06 
(0.01) 

49.50  
(3.80) 

1.04 
(0.33) 

0.93 
(0.02) 

0.78 
(0.04) 

0.90 
(0.13) 

Adults 37.95 
(2.68) 

1.38 
(0.33) 

0.87 
(0.02) 

0.70 
(0.03) 

0.07 
(0.01) 

48.72  
(3.15) 

1.25 
(0.34) 

0.93 
(0.01) 

0.86 
(0.03) 

0.83 
(0.11) 

 

 

Table 3-1.  Mean parameter estimates from the fitted psychometric functions by 

listener age group and temporal condition 

Mean estimates of threshold (dB SPL), slope (log !′/dB), and upper asymptote �" � #
$ � are 

provided from the fitted psychometric functions in the temporally-defined and temporally-

uncertain listening conditions by listener age group. Values of R2 show the proportion of 

variance in the data accounted for on average by individuals’ fitted functions. The standard 

error is provided for each estimate in parenthesis.  These values are from the 32 listeners who 

had fits associated with R2 
≥ 0.5 for both conditions. 
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3.8. Figures 

 

 

Figure 3-1.  Stimuli schematic 

Schematic of the temporally-defined condition, in which the signal was embedded in the 

middle of a 600-ms light cue. The 1000-Hz pure-tone signal (bold, black dash) was presented 

in a continuous two-tone, random-frequency masker (black dash). The shaded gray box 

represents the light cue, with the left box being a signal trial and the right box being a no-

signal trial. Each run was 40 trials, with a minimum delay of 4 s between trials. The 

signal/no-signal probability was 0.5. In the temporally-uncertain condition (not shown), all 

other stimulus parameters were the same expect the light cue was not provided.  
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Figure 3-2.  Examples of psychometric function fits 

Examples of three psychometric function fits are provided with the upper asymptote as either 

a fixed or free parameter in the fitting model. All fits shown here are in the temporally-

uncertain condition, and each panel shows data from a different listener from the 5- to 7-

year-old age group. Observed %&'() scores are represented by the squares, with the number 

of trials indicated by the grayscale intensity. For example, signal levels with only eight trials 

are represented by white-filled squares and levels with 32 trials are black-filled squares. The 

solid black line represents the fit with lapse rate as a free parameter in the model. The dashed 

line is the fitted function with the upper asymptote equal to 1.0. The R2 values for each fit are 

provided. 
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Figure 3-3.  Mean threshold estimates for the temporally-uncertain and temporally-

defined conditions 

Mean threshold estimates (±1 SE) for the temporally-uncertain (filled square) and the 

temporally-defined (open circle) listening conditions are provided as a function of listener 

age group. 
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Figure 3-4.  Individual and mean benefit scores 

Benefit of the temporal cue, or effect of signal-temporal uncertainty, was defined as the 

difference between threshold in the temporally-uncertain and temporally-defined conditions. 

Mean benefit scores (±1 SE) are indicated by the filled square for each listener age group. 

Data for individual listeners are represented by the diamond symbols. Data points above the 

horizontal dashed line, or positive scores, indicate that the listeners benefited from a cue 

indicating when in time to listen for the signal. 
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Figure 3-5.  Threshold estimates in the temporally-uncertain and temporally-defined 

condition for individual listeners 

Individual performance is shown as a function of listener age in the temporally-uncertain 

(filled square) and temporally-defined (open circle) listening conditions. The vertical line 

between each individual’s data points indicates the amount of benefit for the cue. The 

absence of a vertical line indicates no benefit with a defined listening interval or missing data 

due to failure to meet the R2 criterion. Data from listeners who were excluded from data 

analysis, because of a poorly fitted function (R2<0.5), are represented by the gray symbols. 

For these listeners, estimates from their well-fitted functions are shown.    
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Figure 3-6.  Individual and mean estimates of criterion 

Individual criterion estimates are provided for the four listener age groups for the temporally-

defined (open circles) and temporally-uncertain (open squares) conditions. Mean criterion 

estimates are indicated by the filled symbol to the left of the individual data; error bars are ± 

1 SE.  

 

 



 

 

 

 

4. CHAPTER 4 

LISTENING AT FIXED OR RANDOM DELAYS: WORD RECOGNITION IN A 
TWO-TALKER OR A SPEECH-SHAPED NOISE MASKER FOR CHILDREN A ND 

ADULTS 

4.1. Introduction  

This study measured monosyllabic word recognition in a two-talker or a speech-

shaped noise masker for children and adults. Target words were presented at either a fixed or 

a random delay in relationship to the interval light, the illumination of a response box. The 

purpose of this study was to test the hypothesis that a cue indicating when in time to listen for 

a target word improves children’s and adults’ masked word recognition. This hypothesis was 

based on recent findings that a cue indicating when in time to listen can result in substantial 

benefit for both tone detection and birdsong identification tasks when the signal is embedded 

in a complex non-speech masker (Best et al., 2007; Bonino & Leibold, 2008; Bonino et al., 

Chapter 3; Varghese et al., 2012; for exception see Richards et al., 2011). These recent 

studies have reported larger benefits than previously observed for tone detection tasks in 

broadband noise (e.g., Egan et al., 1961; Green & Weber, 1980). Differences across these 

maskers suggest that a cue indicating when in time to listen is particularly beneficial for 

listening conditions in which it is difficult to perceptually parse the signal from the masker 

and/or attend to the signal while ignoring the masker. Based on this interpretation, the 

prediction for the current study was that compared to a random delay, listeners would benefit 
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from a fixed delay between the onset of the interval light and the onset of the target word. 

We predicted that this benefit would be larger for the two-talker masker than for speech-

shaped noise. Furthermore, it was predicted that school-aged children would be able to use 

this cue as well as adults.  

Recent results demonstrated that 5- to 13-year-old children had a mean tone detection 

threshold improvement of 11 dB when provided a visual cue indicating when in time to listen 

for the signal (Bonino et al., Chapter 3). Bonino et al. measured tone detection thresholds for 

a 120-ms, 1000-Hz pure-tone signal presented in a continuous random-frequency, two-tone 

masker. The masker was composed of a sequence of 120-ms bursts, with no silent interval 

between subsequent bursts. Each burst contained a pair of randomly selected tones, with one 

drawn from 300 to 920 Hz and the other from 1080 to 3000 Hz. The protected region around 

the signal was used to reduce energetic masking (Moore & Glasberg, 1983), produced as the 

result of overlapping excitation patterns in the peripheral auditory system (e.g., Fletcher, 

1940). Despite these experimental controls to reduce energetic masking, a random-frequency, 

two-tone masker can substantially elevate thresholds (e.g., Neff & Dethlefs, 1995; Neff & 

Green, 1987). This type of masking is referred to as informational masking, and it appears to 

be the result of limited and/or ineffective central auditory processes, including separating the 

signal from the masker and selectively attending to the signal while disregarding the masker 

(e.g., Durlach et al., 2003).  

The 11-dB effect reported by Bonino et al. (Chapter 3) in the presence of the random-

frequency, two-tone masker was larger than for previous studies that examined the benefit of 

a defined listening interval for tone detection tasks in broadband noise (e.g., Egan et al., 

1961; Green & Weber, 1980; Watson & Nichols, 1976). Similar to these older studies, a 2-
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dB effect in broadband noise was observed in an earlier study conducted in our lab using a 

similar approach (Bonino & Leibold, 2008). In contrast, the same group of adults showed a 

7-dB benefit of a defined listening interval in the random-frequency, two-tone masker. 

Further support for a larger benefit of a temporal cue for conditions that result in 

informational masking comes from Best et al. (2007) and Varghese et al. (2012). In those 

studies, listeners were more accurate at identifying a target birdsong embedded in novel 

competing birdsongs when they were provided a cue indicating the time interval that 

contained the target. Thus, the benefit of knowing when in time to listen for the signal 

appears to be large for conditions expected to produce substantial informational masking. 

Given the previous results using non-speech stimuli, the prediction for the current 

study was that presenting target words at a fixed temporal position within a 6.1-s listening 

window would likewise improve recognition of the word. One qualification of this 

hypothesis, however, was that a substantial benefit would only be observed for conditions in 

which the listener had difficulty attending to and/or segregating the signal from the 

competing background. The approach used in the current study was to compare performance 

across speech-shaped noise and a two-talker speech masker. Performance is generally poorer 

for a two-talker masker for both children and adults than for a speech-shaped noise masker 

with the same long-term average spectrum (e.g., Bonino et al., in press; Brungart et al., 2001; 

Hall et al., 2002). For example, Brungart (2001) used a closed-set task to measure adults’ 

recognition of two target words embedded in either a same-sex, two-talker masker or a 

modulated speech-shaped noise masker. At a 0-dB signal-to-noise ratio (SNR), average 

performance was almost perfect for the speech-shaped noise condition, yet was less than 60% 

for the two-talker condition. On open-set, word recognition tasks, listeners appear to also 
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perform more poorly in two-talker masker than for the speech-shaped noise condition (e.g., 

Bonino et al., in press; Freyman et al., 2004). For example, Bonino et al. (in press) reported 

that adults’ mean word recognition of monosyllabic words in isolation at a 0-dB SNR was 

18% worse in the presence of a two-talker masker than in speech-shaped noise. Large 

variability in susceptibility to perceptual masking has been reported both within and between 

age groups (e.g., Bonino et al., in press; Brungart et al., 2001; Hall et al., 2002). Furthermore, 

child-adult differences are more pronounced for a two-talker masker than for speech-shaped 

noise (e.g., Bonino et al., in press; Hall et al., 2002). Children’s and adults’ increased 

difficulty with a two-talker masker appears to be the result of central factors. Carhart et al. 

(1969) were the first to use the term perceptual masking and proposed that it was the result of 

limited or ineffective central auditory processing in the ability to perceptually parse the 

speech target from the competing speech masker. It has recently been suggested that 

perceptual masking observed for speech stimuli and informational masking observed for 

tonal stimuli are exactly the same phenomenon or are closely related (e.g., Brungart, 2001; 

Freyman et al., 2004; Wightman & Kistler, 2005).  

Listeners’ error patterns also suggest substantial perceptual masking when the masker 

contains a limited number of talkers. Several studies (e.g., Brungart, 2001; Brungart et al., 

2001; Wightman & Kistler, 2005) have reported error patterns collected for the coordinated 

response measure (CRM; Moore, 1981). For this closed-set task, sentences are presented in 

the format of “Ready (call sign) go to (color) (number) now.” For many experiments using 

the CRM approach, listeners’ ability to correctly identify two key words (color and number) 

was measured in the presence of a speech masker or speech-shaped noise. Of particular 

interest for the current paper is the pattern of errors observed for listeners in the monaural 
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condition, in which a target and masker CRM sentence are simultaneously presented to the 

same ear by talkers of the same sex. Because the possible responses are limited and are 

dissimilar words, if a listener hears only a portion of the target word he/she should be able to 

guess it correctly. Thus, it was expected that when energetic masking resulted in the word 

being inaudible, listeners would randomly guess from the remaining three colors and seven 

numbers. However, Brungart (2001) reported that nearly all incorrect responses were 

coordinates from the masker for adults tested at a 0 dB SNR. Similar error patterns have also 

been reported for children in the same condition (Wightman & Kistler, 2005). Thus, error 

patterns for both children and adults suggest that errors are a result of intrusions from the 

competing speech masker.  

Because a two-talker masker appears to produce substantial perceptual masking, it 

was predicted that a cue indicating when in time to listen for a target word would be 

particularly beneficial for both children and adults. In order to test this hypothesis, masked 

word recognition was measured in two fixed delay conditions (short and long) and one 

random delay condition relative to the activation of the interval light. Word recognition and 

phoneme identification scores in the fixed delay conditions were compared to performance in 

the random delay condition. It was expected that performance would be similar for the two 

fixed delay conditions. However, in the two-talker masker condition, it was predicted that 

scores from the fixed delay conditions would be higher than those from the random delay 

condition. In contrast, little or no benefit of a fixed delay was expected in the speech-shaped 

noise conditions. In addition to analyzing word and phoneme level performance, listeners’ 

error patterns were examined. Consistent with the error patterns reported for the CRM (e.g., 

Brungart, 2001; Brungart et al., 2001; Wightman & Kistler, 2005), it was expected that 
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listeners would also have incorrect responses in the two-talker masker conditions which were 

due to masker intrusions in the current study. However, it was also expected that providing a 

cue indicating when in time to listen in the fixed delay conditions would reduce listeners’ 

susceptibility to masker intrusions.  

4.2. Methods 

4.2.1. Listeners 

A total of 12 children and seven adults participated in this experiment. Children were 

between five and 13 years of age. The mean age was 9.31 years (range=5.7 to 13.2 years, 

SD= 2.62 years). The mean age of adults was 25.53 years (range=20.1 to 31.8 years, 

SD=5.69).1 All listeners had thresholds in quiet of ≤20 dB HL bilaterally for octave 

frequencies from 0.25 to 8 kHz (ANSI, 2004). All listeners were native speakers of English 

and had no known history of chronic ear disease. An additional three adults were excluded 

because of experimenter error, in which the incorrect program was conducted for one run. 

Adults and a 12.9-year-old were tested individually in a sound-attenuated booth in a single, 

2-h visit, including regular breaks. The remaining children were tested in two or three, 1-h 

sessions, including regular breaks. An experimenter sat inside of the booth with all of the 

children during testing and entered their responses.   

4.2.2. Stimuli and Conditions 

Speech target words. Word recognition performance was measured for monosyllabic 

words. A corpus of words familiar to young children was developed based on children’s 

reading lists for kindergarten and first grade (Enchanted Learning, 1998a; 1998b). Five adults 
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reviewed the initial corpus to identify homophones and confirm that young children would be 

familiar with the words. All of the adults were hearing or speech pathology graduate students 

and were native speakers of American English. After omitting homophones and potentially 

ambiguous or unfamiliar words, there were 842 items in the corpus. These speech targets 

were recorded by a male native speaker of American English in a double-walled booth 

(IAC). A condenser microphone (AKG-C1000S) was placed approximately six inches from 

the speaker’s mouth using a microphone stand. The single-channel recordings were amplified 

(TDT MA3) and digitized at a resolution of 32 bits and a sampling rate of 44.1 kHz 

(CARDDELUXE). Each target word was recorded twice, with the carrier phrase “say the 

word” prior to the target word. Audacity sound editing software (v 1.2.6) was used to 

manually isolate target words, which were then saved as individual wav files. Wav files were 

scaled to equivalent root mean square (RMS) level and resampled at a rate of 24.414 kHz 

using MATLAB. The first recording of the target word was used unless undesirable sound 

quality characteristics (e.g., distortion, peak clipping, or irregular speaking rate) were noted.  

To verify the sound quality of the recordings, an open-set word recognition task in 

quiet was performed. The listeners were the same five adults described above. The 842 target 

words were presented at 60 dB SPL to the right ear through an ER1 Etymotic insert 

earphone. No listener missed more than a total of 11 words (>98% correct). A total of 18 

target words were re-edited either because they were missed by at least one listener or were 

noted for having undesirable sound qualities. After re-editing was completed, the listening 

check was repeated by two adults for the full corpus. Following the same presentation 

procedure as above, one new adult and one adult from above listened to all of the words. One 

listener missed two target words and the other listener missed four target words. In addition 
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to removing one word due to distortion, 145 words were removed from the target word 

corpus because they were present in the two-talker masker created for this experiment. Any 

word that appeared in both the target word corpus and in the PBK word lists was removed 

from the target word corpus for this experiment. The end result was 696 words in the corpus 

that could be drawn during the experiment as target words.2 

Maskers. Listeners were tested in each of two separate continuous backgrounds: a 

two-talker or a speech-shaped noise masker. The two-talker masker consisted of two streams 

of concatenated monosyllabic words. Each stream was composed of a different adult male’s 

productions of the 150 Phonetically-Balanced Kindergarten words (PBK; Haskins, 1949). 

These two talkers were only used to present masker words. The masker words were recorded 

following the same procedure described above for the target words. Audacity sound editing 

software (v1.2.6) was used to manually isolate target words, which were then saved as 

individual wav files. All files were scaled to equal RMS levels. The 150 individual wav files 

for each talker were concatenated head-to-tail into blocks of 10 to 15 words, without 

replacement. These blocks were then concatenated head-to tail, with each masker stream 

following a different order. The stream from one talker was 82 s in duration, and the stream 

from the other talker was 86 s. The two masker streams were summed and then looped to 

create a 28-min sample of the two-talker masker. The spectrum of the speech-shaped noise 

masker was matched to the spectrum of the two-talker masker. This was achieved by 

calculating the power spectrum from an 86-s sample of the two-talker masker and then 

applying the same spectral shape to the noise to create an 86-s sample. This sample was then 

looped to create a 28-min sample. Each masker was recorded on a CD. Throughout testing, 

the masker was presented continuously at a fixed level of 60 dB SPL.  
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Stimuli generation. Custom MATLAB software controlled the presentation of target 

words. The software randomly selected target words from the corpus, without replacement 

during a run. The masker was played by a CD player, passed into the real-time processor 

(TDT RP2).  The target and masker streams were digitally attenuated separately, mixed, 

played out of the real-time processor, routed to the headphone buffer (TDT HB7), and 

presented to the listener’s right ear through an insert earphone (Etymotic, ER1). A custom 

MATLAB script controlled the timing of target word presentation and the illumination of 

lights on a handheld device, indicating the listening interval. 

Delay conditions. Listeners completed three delay conditions for each masker. Delay 

conditions were defined relative to the illumination of the interval light, three LED lights on 

a hand-held device. The interval light was activated 0.5 s after the listener initiated the start 

of a trial by pressing a button on the same device. The interval light remained illuminated for 

a total duration of 6.1 s, an interval referred to as the listening window. A schematic of the 

three conditions is depicted in Figure 4-1. In the figure, the illumination of the interval light 

is represented by the gray boxes. The black boxes indicate the onset time of the target word 

for each condition. In the two fixed delay conditions the target word was always presented at 

the same delay after the activation of the interval light, either 0.5 s for the short fixed delay 

condition or 5.5 s for the long fixed delay condition. In contrast, in the random delay 

condition, the target word was presented at a randomly selected delay, drawn from a uniform 

distribution of 0.5 to 5.5 s, after the activation of the interval light. The condition (short fixed 

delay, long fixed delay, or random delay) was held constant across a run of trials.  
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4.2.3. Testing Procedure 

Listeners were tested in a double-walled, sound-attenuating booth (IAC). Listeners 

initiated all trials by pressing a button. Listeners were instructed to repeat the target word 

after the interval light turned off. The experimenter, located inside of the booth, entered 

children’s responses via a keyboard. After entering the response, the target word was 

displayed on the computer monitor, and the experimenter was prompted to score the response 

as correct or incorrect. Adult listeners entered and scored their responses independently, and 

the experimenter initiated the start of runs from the adjacent control room.  

Listeners completed a familiarization phase followed by two stages of testing. During 

the familiarization phase, listeners completed 50 target words in quiet. Target words were 

played at 60 dB SPL. In order to reduce testing time for this phase, the interval light was 

reduced to 2.2 s and the words were presented randomly between 0.5 and 2 s. All listeners 

were able to achieve the required criterion of ≥80% accuracy in the familiarization phase. 

Data from this phase were analyzed in the same way as the stage 2 data (discussed below) to 

evaluate word recognition and phoneme identification in quiet for listeners with this corpus 

of target words.  

After the familiarization phase, each listener completed two stages of testing.  

Because individual variability tends to be large in the presence of a two-talker masker (e.g., 

Bonino et al., in press; Hall et al., 2002), adaptive thresholds were measured in stage 1 of 

testing in order to obtain individual estimates of the SNR used in stage 2 of testing. In stage 

1, two adaptive threshold tracks were completed in the random-delay condition for each 

masker type. A single-interval, adaptive threshold procedure was used. The level of the 
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masker was fixed at 60 dB SPL, and the level of the target words was adapted using a one-

up, one-down rule to estimate a threshold corresponding to 50% on the psychometric 

function (Levitt, 1971). An initial step size of 4 dB was used, decreasing to 2 dB after the 

second reversal. Testing concluded after eight reversals, with threshold being computed as 

the mean signal level at the last six reversals. If threshold estimates for a given masker 

condition varied more than 5 dB across the two blocks an additional threshold run was 

completed. Four listeners completed three runs for a condition: two listeners for the two-

talker masker and two different listeners for speech-shaped noise. For these listeners, the two 

runs with the greatest agreement were used to calculate their threshold estimates.  

In stage 2, a total of two runs of 25 target words were completed in each delay 

condition at a fixed presentation level. Specifically, the presentation level of the target words 

was the average of the thresholds estimated in stage 1. In order to verify that this level 

resulted in performance that was <70% correct, the first run in this stage was always the 

random-delay condition. If performance was ≥70% correct, the level of the signal was 

decreased until performance was <70% for a run of 25 words. The level adjustment was 

based on individual performance, but in most situations the signal was decreased in 4 dB 

steps for the two-talker masker and 2 dB steps for the speech-shaped noise masker. The 

presentation level of the target words was decreased for three children in the two-talker 

masker and six children in the speech-shaped noise condition. Additionally, the signal level 

was decreased for two adults in the speech-shaped noise condition.  

After the presentation level was verified for a run in the random delay condition, 

listeners completed the five remaining runs over two blocks. Block 1 consisted of a run for 

each of the fixed delay conditions. Block 2 consisted of a run for each of the delay 
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conditions. Testing order was randomized within each of these blocks. Results were summed 

across the two runs for each condition, thus, performance was calculated based on 50 trials. 

Listeners were assigned, in a counterbalanced order, to complete either the speech-shaped 

noise or two-talker masker condition first. All stages of testing were completed for a given 

masker before the masker was changed. 

The spoken productions of the listeners were recorded throughout testing, allowing 

responses to be scored offline by two blinded coders. A condenser microphone (AKG-

C1000S) was fixed in position approximately six inches from the speaker’s mouth. The 

microphone was connected to a laptop computer. This computer was located inside of the 

booth during the testing of children, but was external to the booth for adults. Using Audacity 

(version 1.3 Beta), the recordings were digitized at a resolution of 32 bits and a sampling rate 

of 44.1 kHz. Recordings were then spliced by hand in Audacity (version 1.3 Beta) and 

responses were saved as individual WAV files.  

4.2.4. Offline Scoring Procedure 

The spoken responses for all children and adults were phonetically coded offline. 

Two coders were recruited, both having previous experience with similar transcription using 

the International Phonetic Alphabet (IPA). Prior to coding responses, the two coders 

independently transcribed the target words from the corpus using a computer-readable 

phonemic transcription system (i.e., Klattese). Transcriptions followed the conventions 

described by Storkel and Hoover (2010). Transcriptions were then compared to those 

available from a phonotactic probability and neighborhood density calculator developed from 

child corpora of spoken American English (Storkel & Hoover, 2010). If a target word was 
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not located in the calculator, even after the removal of affixes, then dictionary transcriptions 

from Longman (1983) were adopted. 

A custom program was developed in MATLAB to assist in the coding of responses. 

For each coder, a coding order was randomly generated which contained the 247 runs 

collected from all of the listeners. Coders completed all trials of a given run in the same order 

that trials occurred during testing. For each response, coders were provided with an 

oscilloscopic view of the waveform and were able to play the response as many times as 

desired. Coders were then prompted to enter an orthographic representation of the response. 

Based on the entry, the program searched through the corpus of both target and masker words 

to determine if a phonemic transcription was available. If so, the transcription was provided 

on the screen and the response was scored automatically as correct or incorrect. If a 

transcription was not found, coders were able to enter the phonemic representation of the 

response and were prompted to score the response manually. If the listener did not provide a 

response for a trial, coders could indicate ‘no response’. The coders’ responses were then 

saved to a record file for later analysis. By using this coding process, coders were blind to the 

delay condition, masker, target word played, and the listener’s performance in other 

conditions.  

Calculation of reliability. A primary coder scored all runs. In order to calculate 

reliability, a secondary coder scored 14.6% of the runs (n=36). Runs were randomly selected: 

two of these runs were in quiet (50 words per run) and 34 runs were masked (25 words per 

run). Thus, the secondary coder scored a total of 950 trials. A percent agreement score was 

calculated for two comparisons: correct/incorrect score of response and phonetic 

transcription. The correct/incorrect reliability score required a perfect match to qualify as an 
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agreement. To calculate percent agreement for this comparison, the total number of 

agreements across trials was divided by the total number of trials that were examined by both 

coders. To determine the coder reliability for the phonetic transcriptions, the number of 

phonemes in the primary coder’s entry that were also present in the secondary coder’s entry 

was computed; the order of the phonemes was not incorporated in this statistic. Thus, 

comparisons were made for a total of 3,046 phonemes across the 950 trials. In order to 

calculate percent agreement for the phoneme analysis, the number of matched phonemes was 

divided by the total number of phonemes entered by the primary coder.  

4.3. Results 

4.3.1. Adaptive Thresholds 

Thresholds were measured adaptively in stage 1 of testing, corresponding to the SNR 

at which listeners achieved 50% correct performance. Figure 4-2 presents the mean 

thresholds (± 1 SE) by age group for both masker conditions in the random delay condition. 

Thresholds for individual listeners are provided to the right of the mean data, represented by 

open symbols. Thresholds in the speech-shaped noise are represented by circles and 

thresholds in the two-talker masker are represented by triangles. The average threshold in the 

speech-shaped noise was 62.3 dB SPL for children (range: 56.4 to 67.5 dB SPL) and 57.8 dB 

SPL for adults (range: 54.3 to 60.5 dB SPL). Elevated thresholds were seen for both age 

groups in the two-talker compared to the speech-shaped noise masker. Average thresholds in 

the two-talker masker were 68.5 dB SPL for children (range: 63.0 to 75.5 dB SPL) and 62.2 

dB SPL for adults (range: 60.6 to 64.0 dB SPL). To quantify this difference, the amount of 

perceptual masking was calculated. Perceptual masking was operationally defined as the 
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difference in threshold for the two-talker masker and speech-shaped noise. The mean 

perceptual masking effect was 6.2 dB for children and 4.5 dB for adults.  

A repeated measures analysis of variance (ANOVA) was used to test the statistical 

significance of the trends observed in Figure 4-2. The analysis included the within-subjects 

factor of Masker (two-talker, speech-shaped noise) and the between-subjects factor of Age 

Group (child, adult). Both of the main effects were significant: Masker [F(1,17)=30.88, 

p<0.001] and Age Group [F(1,17)=23.29, p<0.001]. However, the Masker × Age Group 

interaction was not significant [F(1,17)=0.78, p=0.39]. These results confirm the observation 

in Figure 4-2, that children were more susceptible to masking than adults in both conditions. 

Additionally, results confirmed that thresholds were higher in the two-talker masker than the 

speech-shaped noise for both children and adults. Thus, although children’s thresholds were 

higher than adults for both maskers, the amount of perceptual masking was similar for 

children and adults, as confirmed by a non-significant Masker × Age Group interaction. 

4.3.2. Word Recognition  

For the estimates of word level performance, a response was scored as correct only if 

it was an identical match to the target word. Percent correct scores were based on 50 trials for 

each condition. These scores were transformed to rationalized arcsine units for all statistical 

analyses, to counteract non-uniformity of variance (Studebaker, 1985). Scores are provided 

in percent correct for both the text and figures.  

Coder reliability. Across the 36 runs (950 total words) that both coders examined, 

average coder agreement was 96.5% for scoring the trials as either correct or incorrect.  
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Word recognition in quiet. Children’s mean word recognition in quiet for the 

familiarization phase was 91.2% (SE=1.3%). Performance ranged from 84% (6.7-year-old) to 

98% (12.6-year-old), with only three children having word recognition scores that were 

<90%. Mean word recognition in quiet was 97.1% (SE=1.4%) for adults. One adult had a 

score of 90% correct, whereas all other adults scored ≥96%. In order to examine age-related 

differences for word recognition in quiet, a one-way ANOVA was conducted, with Age 

Group (child, adult) as the between-subjects factor. Results confirmed that adults had better 

word recognition scores in quiet than children for this corpus [F(1,17)=11.39, p=0.004]. 

Furthermore, results from a Pearson product-moment correlation suggested that word 

recognition scores improved with age for children (r(12)=0.59, p=0.04). However, all 

children were able to meet the familiarization criterion of ≥80% correct in quiet. 

 Word recognition scores across delay and masker conditions. Mean word 

recognition scores (± 1 SE) from stage 2 of testing are presented in the top panel of Figure 

4-3. The three delay conditions (short, long, and random) are grouped by masker type, with 

two-talker data on the left and speech-shaped noise data on the right. Mean word recognition 

scores are represented by open squares for children and filled squares for adults.  

As expected based on the individual levels chosen for each listener in stage 1 of 

testing, performance in stage 2 appears to be equated for the random delay condition across 

masker type and listener age group. For the random delay condition, adults’ mean word 

recognition score was 53.7% in the speech-shaped noise and 57.7% in the two-talker masker. 

Similar performance was seen for children, with a score of 55% for both masker conditions. 

In order to test this trend, a pair of one-way ANOVA was conducted, one for the speech-

shaped noise masker and the other for the two-talker masker. Results confirmed that word 
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recognition scores were equivalent across the two listener age groups in the random delay 

condition for both speech-shaped noise [F(1,17)=0.09, p=0.77] and the two-talker masker 

[F(1,17)=0.33, p=0.58].  

The main goal this study was to test the hypothesis that compared to the random 

delay condition the fixed delay conditions would result in greater word recognition 

improvement for the two-talker masker than for the speech-shaped noise masker. In order to 

test this hypothesis, benefit scores were computed for the fixed delay conditions. Because 

performance was equivalent across listener age groups in the random delay condition, word 

recognition scores in the random delay condition were subtracted from both the short and 

long delay conditions. Across all conditions, the benefit score was small (close to 0%) for 

most children and adults. For the two talker masker conditions, the average benefit scores 

were 1.3% (short delay) and 4.5% (long delay) for children and 3.1% (short delay) and 2% 

(long delay) for adults. For the speech-shaped noise conditions, the average benefit scores 

were −1.7% (short delay) and 2% (long delay) for children and 2.3% (short delay) and 6.9% 

(long delay) for adults.  

A repeated measures ANOVA was conducted in order to examine the benefit of a 

fixed delay across the two masker types. The benefit score (in RAU) was compared between 

two within-subjects variables, Delay (short, long) and Masker (speech-shaped noise, two-

talker), and the between-subjects variable of Age Group (children, adults). None of the main 

effects nor the interactions were significant: main effect of Delay [F(1,17)=2.55, p=0.13], 

main effect of Masker [F(1,17)=0.02, p=0.88], main effect of Age Group [F(1,17)=1.83, 

p=0.19], Delay × Masker interaction [F(1,17)=1.27, p=0.28], Delay × Age Group interaction 

[F(1,17)=0.32, p=0.58], Masker × Age Group interaction [F(1,17)=0.70, p=0.41], and Delay 



   

75 
 

× Masker × Age Group interaction [F(1,17)=0.91, p=0.35]. Thus, in contrast to the 

hypothesis for this experiment, the benefit of providing a fixed delay was not significantly 

greater in the two-talker compared to the speech-shaped noise masker. Indeed, a visual 

inspection of the data shows little benefit of a fixed delay for either masker type.  

4.3.3. Phoneme Identification  

Phoneme level performance was evaluated to examine whether the types of errors 

listeners make differ across masker type or across delay conditions. The number of phonemes 

that were in both the target word and the response were determined. This analysis did not 

control for phoneme order within the response or account for the possibility that a response 

could include additional phonemes, not contained in the target word. As was done above, 

scores are presented in percent correct for the text and figures, however all statistical 

analyses were conducted in RAUs (Studebaker, 1985). 

Coder reliability. For the 950 trials that both coders examined, the primary coder 

transcribed a total of 3,046 phonemes. Ninety-six percent of the total phonemes coded by the 

primary coder were in agreement with the transcriptions from the secondary coder.  

Phoneme identification scores in quiet. The mean phoneme identification score in 

quiet from the familiarization phase was 96.9% (SE=0.53%) for children. Individual 

children’s scores ranged from 93.8% (8.1-year-old) to 99.4% (12.6-year-old) correct. The 

mean phoneme identification score in quiet was 99.2% (SE=0.35%) for adults. Adult scores 

ranged from 97.5% to 100% correct. In order to examine age-related differences in 

performance in quiet, a one-way ANOVA was conducted with Age Group (child, adult) as 
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the between-subjects factor. Results confirmed significant child-adult differences for 

phoneme identification scores in quiet [F(1,17)=11.29, p=0.004].  

Mean phoneme identification scores across delay and masker conditions. Mean 

phoneme identification scores (± 1 SE) are provided in the bottom panel of Figure 4-3. For 

all conditions, phoneme identification scores were greater than those reported for word 

recognition (top panel of Figure 4-3). In the above word recognition analysis, scores in the 

random-delay condition were similar for the two age groups across the two maskers. 

However, for this analysis, scores in the random delay condition appear to be higher in the 

speech-shaped noise conditions than for the two-talker conditions. In order to confirm the 

statistical reliability of this trend, a repeated measures ANOVA was conducted with the 

within-subjects factor of Masker (speech-shaped noise, two-talker masker) and the between-

subjects factor of Age Group (child, adult). The main effect of Masker was significant 

[F(1,17)=12.76, p=0.002]. Neither the main effect of Age Group [F(1,17)=0.10, p=0.75] nor 

the Masker × Age Group interaction [F(1,17)=0.01, p=0.92] was significant. Thus, phoneme 

identification scores in the random delay condition were equivalent across the two listener 

age groups, but not across the two masker conditions.  

The other trend seen in Figure 4-3 is that there appears to be a small benefit for 

phoneme identification with a fixed delay in the two-talker masker. Across all listeners, the 

benefit of a fixed delay in the two-talker masker was 5.3% in the short delay condition and 

4.9% in the long delay condition. For speech-shaped noise, the benefit was -1.0% in the short 

delay condition and 1.2% for the long delay condition. Using a repeated measures ANOVA, 

the phoneme benefit score (in RAU) was compared between two within-subjects variables, 

Delay (short, long) and Masker (speech-shaped noise, two-talker), and the between-subjects 
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variable of Age Group (children, adults). None of the main effects nor the interactions were 

significant: main effect of Delay [F(1,17)=0.56, p=0.47], main effect of Masker 

[F(1,17)=3.50, p=0.08], main effect of Age Group [F(1,17)=4.2, p=0.64], Delay × Masker 

interaction [F(1,17)=1.42, p=0.28], Delay × Age Group interaction [F(1,17)=0.01, p=0.91], 

Masker × Age Group interaction [F(1,17)=0.65, p=0.43], and Delay × Masker × Age Group 

interaction [F(1,17)=0.31, p=0.58]. Thus, the differences in the phoneme identification 

scores between the fixed temporal delay conditions and the random delay condition were not 

significantly different across the two masker conditions. 

Individual differences. The individual data are generally consistent with the group 

data reported above. In Figure 4-4, performance is plotted as a function of fixed-delay benefit 

for individual listeners by age. Benefit scores were calculated by subtracting performance in 

the random delay condition from performance in either the short or the long delay condition. 

Positive scores, above the horizontal hashed line, indicate a benefit for either the short delay 

condition (filled circle) or the long delay condition (open squares). Data are separated into 

two panels by masker type; the top panel shows the benefit scores for the speech-shaped 

noise condition and the bottom panel shows the benefit scores for the two-talker masker 

condition. Although most listeners had little or no benefit of a fixed delay, there were a few 

listeners with benefit scores of approximately 10% in both masker conditions. Furthermore, a 

12.9-year-old showed substantial benefit of a fixed delay in the two-talker masker condition: 

39% in the short delay condition and 34% in the long delay condition.  
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4.3.4. Error Patterns 

 Error patterns were compared across both delay condition and masker type for 

children and adults. Trials scored as incorrect were subsequently coded into one of three 

mutually-exclusive categories. The three categories were: (1) no response, (2) response 

unrelated to the target word and (3) response related to the target word. No response trials 

were indicated by the coder during the offline scoring procedure. To determine if a response 

was related or unrelated to the target word, the phonemes in the target word and response 

were compared. If ≥50% of phonemes in the target word were contained in the response, the 

trial was coded as “related.” However, if <50% of the target word’s phonemes were provided 

in the response, the trial was coded as “unrelated.” The proportion of each error category was 

then determined based on the number of incorrect trials (out of 50 trials) for a given 

condition for each listener.  

Mean error patterns are shown in Figure 4-5. Errors are separated by masker type, 

with the right panel showing patterns for the speech-shaped noise condition and the left panel 

showing patterns for the two-talker masker condition. Within a panel, error patterns are 

shown for the three delay conditions, grouped by listener age group. The three left-most 

columns are mean data for children and the three right-most columns are mean data for 

adults. Each column shows the proportion of errors for no response (‘NR,’ bottom, gray), 

unrelated to the target word (middle, white), and related to the target word (top, hashed). 

Additionally, the thin black boxes represent the proportion of incorrect trials in which the 

listeners’ responses were an identical match to one of the words used to create the two-talker 

masker. 
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For the speech-shaped noise condition, mean error patterns appear to be similar 

across both age group and condition. The rate of no responses was small in the speech-

shaped noise masker, accounting for 3% or less of errors for both children and adults. The 

majority of errors were responses that were related to the target word. For example, in the 

random delay condition, 70.4% (SE = 5.9%) of adult errors were related to the target word.  

A different pattern of errors was seen for the two-talker masker conditions. First, the 

proportions in the ‘no response’ category for children tended to be higher in the two-talker 

masker than in the speech-shaped noise conditions. The highest rate of no response for 

children in the two-talker masker was in the random delay condition, accounting for 17.8% 

(SE = 4.0%) of errors. Another trend seen in Figure 4-5 was that incorrect responses were 

less likely to be partially correct in the two-talker than the speech-shaped noise masker. 

However, the probability of producing a related response in the two-talker masker was higher 

in the fixed delay conditions than in the random delay condition. For example, 31.1% (SE = 

3.9%) of adult errors were related to the target word in the random delay, two-talker 

condition. Adults’ proportion of related errors increased in the fixed delay conditions: 44.4% 

(SE = 3.6%) for the short delay and 42.7% (SE = 2.8%) for the long delay. For children, the 

mean proportion of related errors in the two-talker maskers was 56.6% (SE = 5.8%) for the 

short delay condition and 49.6% (SE = 5.5%) for the long delay condition. In comparison, 

the average proportion of related errors for children was 41.5% (SE = 4.0%) in the random-

delay, two-talker masker condition. This observation suggests that listeners were more likely 

to hear at least part of the target word presented in the two-talker masker when the delay was 

fixed compared to when the delay was random.  
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Errors related to target words. A multivariate analysis of variance (MANOVA) for 

repeated measures was conducted on the proportion of related errors (in RAUs) to determine 

the effect of condition, Masker (two-talker, speech-shaped noise) and Delay (random, short, 

long), across one level, Age Group (children, adults). The assumption that variance-

covariance matrices are equal across the cells formed by the between-subjects effects was 

met [Box’s M test; F(21,577.41)=1.15, p=0.29]. Additionally, variance ratios were similar 

for the within-subject variables for each age group. Two significant effects were reported for 

this analysis: the effect of Masker [F(1,17)=43.44, p<0.001] and the Masker × Delay 

interaction [Wilk’s Λ = 0.0.51, F(2,16)=7.56, p=0.005]. None of the other effects nor 

interactions were significant: Delay [Wilk’s Λ = 0.91, F(2,16)=0.78, p=0.47], Age Group 

[F(1,17)=2.08, p=0.17], Delay × Age Group [Wilk’s Λ = 0.96, F(2,16)=0.35, p=0.71], 

Masker × Age Group [F(1,17)=1.91, p=0.18], or Masker × Delay × Age Group [Wilk’s Λ = 

0.98, F(2,16)=0.13, p=0.88]. 

A pair of repeated measures ANOVA was conducted to follow up the significant 

Masker × Delay interaction. With data collapsed across the two age groups, the proportion of 

related errors significantly differed across delay condition for the two-talker masker 

[F(2,36)=8.68, p=0.001] but not for speech-shaped noise [F(2,36)=1.31, p=0.28]. Pairwise 

comparisons, based on the estimated marginal means with Bonferroni adjustments, were then 

conducted to examine performance across the delay conditions for the two-talker masker. For 

the two-talker masker, both the short (p=0.007) and the long (p=0.047) delay conditions were 

more likely to have errors related to the target word than the random delay condition. The 

proportion of related errors was similar across the two fixed delay conditions (p=0.28).  
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Masker intrusions. One explanation for the decrease in errors related to the signal in 

the two-talker conditions is that listeners’ incorrect responses were related to masker words, 

either in part or in entirety, rather than being related to the target word. In order to examine 

this possibility, the proportion of masker intrusions was calculated by determining the 

number of incorrect trials in which the response was an exact match to one of the 150 masker 

words. For this analysis, the short and long delay conditions were collapsed into one variable, 

weighted by the number of errors, to represent the fixed conditions. This score, as well as the 

score for the random delay condition, were then transformed to RAUs (Studebaker, 1985). 

A MANOVA for repeated measures was conducted on the proportion of masker 

intrusions to determine the effect of condition, Masker (two-talker, speech-shaped noise) and 

Delay (random, fixed), across one level, Age Group (children, adults). The assumption that 

variance-covariance matrices are equal across the cells formed by the between-subjects 

effects was met [Box’s M test; F(10,723.3)=2.28, p=0.012].3 Additionally, variance ratios 

were similar for the within-subject variables for each age group. For the MANOVA, all three 

main effects were significant: Delay [F(1, 17)=7.38, p=0.015], Masker [F(1, 17)=92.42, 

p<0.001], and Age Group [F(1, 17)=38.85, p<0.001]. Additionally, both the Masker × Age 

Group [F(1, 17)=20.23, p<0.001] and the Masker × Delay [F(1, 17)=14.05, p=0.002] 

interactions were significant. The Delay × Age Group interaction was not significant [F(1, 

17)=1.45, p=0.25], nor was the Masker × Delay × Age Group interaction [F(1, 17)=2.51, 

p=0.13]. This analysis confirmed the trend seen in Figure 4-6 that masker intrusions were 

more likely in the two-talker masker conditions than in the speech-shaped noise conditions. 

For speech-shaped noise, the average proportion of masker intrusions appears to be similar 

across the three delay conditions, as well as across the two age groups (11.1% to 17.2%). In 
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addition to a greater occurrence of masker errors, masker intrusions were more likely in the 

random delay than the fixed delay conditions for the two-talker masker conditions. In the 

random delay, two-talker masker condition, 66.4% (SE = 3.1%) and 27.6% (SE = 5.2%) of 

incorrect responses matched a masker word for adults and children, respectively. The last 

trend confirmed was that children were less likely to have masker intrusions than adults in 

the two-talker masker conditions. However, children’s error patterns were similar to adults’ 

in the speech-shaped noise condition. 

Individual differences. Substantial individual variability was seen for error patterns 

across children in the two-talker masker. Figure 4-6 provides error patterns for individual 

children, rank ordered by age. Error patterns are shown in three panels based on delay 

condition: top panel is the short delay, middle panel is the long delay, and the bottom panel is 

the random delay. Adults showed little between-subjects variability. Adults’ mean error 

patterns are provided on the far right of each panel. 

4.4. Discussion 

4.4.1. Age Effects in Susceptibility to Masking 

In order to account for within and between age group variability in susceptibility to 

masking, thresholds were measured adaptively in stage 1 of testing for both maskers. 

Consistent with studies that have examined masked speech recognition (e.g., Allen & 

Wightman, 1992; Bonino et al., in press; Hall et al., 2002; Nishi et al., 2010; Wightman & 

Kistler, 2005), significant age effects were observed for both masker conditions. In the 

current study, the average child-adult difference was 4.5 dB for speech-shaped noise and 6.3 

dB for the two-talker masker.  
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The perceptual masking effect, defined as the difference in threshold between the two 

masker conditions, was similar for children and adults. The lack of a significant child-adult 

difference in perceptual masking is inconsistent with results from a spondee recognition task 

in a continuous masker by Hall et al. (2002). In that study, a perceptual masking effect of 6.7 

dB was seen for children and an effect of 2.3 dB was observed for adults. Children’s 

perceptual masking effect of 6.2 dB in the current study is similar to that of Hall et al. (2002). 

However, the adults in the current study showed a perceptual masking effect of 4.5 dB. This 

effect is larger than the 2.3 dB effect reported by Hall et al. (2002) but less than the 6.6 dB 

effect reported by Carhart et al. (1969) for spondee words.  

4.4.2. Benefit of a Cue Indicating When in Time to Listen 

The primary goal of this work was to test the hypothesis that a cue indicating when in 

time to listen would be associated with greater improvement in speech recognition 

performance for conditions of high perceptual masking than of low perceptual masking. 

However, word recognition and phoneme identification analyses indicated little or no benefit 

associated with presenting words at a fixed delay relative to a random delay in the presence 

of either masker. The lack of substantial word recognition or phoneme identification score 

improvement with the provision of the cue in the two-talker masker condition is in contrast to 

findings from non-speech stimuli (Best et al., 2007; Bonino et al. (Chapter 3); Varghese et 

al., 2012).  

Methodology differences may explain the inconsistent findings between the current 

study and those of Bonino et al. (Chapter 3), the multi-tonal study which motivated this 

work. The first difference is that the current study was an open-set word recognition task. In 
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contrast, Bonino et al. (Chapter 3) used a detection task. There were also differences in how 

temporal uncertainty was created between the two studies. In the current study, the 6.1-s 

listening window was defined for all conditions, and the position of the word within that 

window was manipulated. In contrast, Bonino et al. (Chapter 3) only defined the listening 

window in the temporally-defined condition. A 600-ms light cue defined the listening 

interval for each trial in that condition. In the temporally-uncertain condition, listeners were 

given no indication of when a trial was initiated, apart from hearing the signal, and were not 

provided trial-by-trial feedback. There was a minimum interval of 4 s between trials, but this 

delay could be substantially longer for the listener if multiple no-signal trials were presented 

in a row or he/she did not hear the signal during a trial. Thus, the listening window varied 

across a run of trials in the temporally-uncertain condition and could be rather long given the 

briefness of the signal (120 ms). A third related difference is the length of the temporal 

window. It is possible that a random delay of 5 s, as used in the current study, is not long 

enough to result in substantial temporal uncertainty for monosyllabic words. If temporal 

conditions were created which were more similar to those used by Bonino et al. (Chapter 3), 

the effect of knowing when in time to listen might be more consistent for tone detection and 

word recognition.  

In contrast to the word recognition and phoneme identification scores, error patterns 

in the two-talker masker were different between the random delay condition and the fixed 

delay conditions. Compared to the random delay condition, both children and adults were 

significantly more likely to provide incorrect responses that were classified as related to the 

target word in the fixed delay conditions. Consistent with this finding, the proportion of 

incorrect responses which were matches to the masker word also decreased in the fixed delay 
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conditions. These observations are consistent with the interpretation that the provision of a 

fixed delay assists the listener in hearing at least part of the target word and thus, reducing 

masker intrusions.  One explanation for why a benefit of the fixed delay was seen for the 

error pattern data and not for the phoneme level analysis is that different coding schemes 

were used. Recall that individual phonemes were compared between the target and response 

to calculate the phoneme identification score, whereas errors were classified by using a 50% 

phoneme matching criterion in the error pattern analysis. It may be that these analyses would 

be in better agreement if a more sophisticated coding system was used to calculate phoneme 

identification scores. For example, a coding scheme that took into consideration the position 

of the phoneme within the word. 

4.4.3. Error Patterns 

Differences in error patterns across maskers. Although error pattern data should be 

interpreted with care, these data suggest that error patterns are different across the two 

maskers tested. In the speech-shaped noise conditions, nearly 70% of errors were classified 

as related errors, suggesting that listeners were able to hear at least part of the target word on 

most trials. In contrast to speech-shaped noise, listeners were less likely to have errors that 

were related to the target word in the two-talker masker condition. One interpretation of this 

finding is that listeners were more likely to have intrusions from the masker in the two-talker 

masker condition. Although it is not possible to know which masker words were played on a 

given trial, an overall increase in the number of masker words provided as responses was 

seen for the two-talker masker conditions compared to the speech-shaped noise conditions. 

This finding is consistent with studies using a closed-set task with the CRM corpus which 
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have shown that incorrect responses tend to be intrusions from the masker for both children 

and adults (e.g., Brungart, 2001; Brungart et al., 2001; Wightman & Kistler, 2005; Wightman 

et al., 2010).  

Results from the speech-shaped noise conditions provide an estimate of the baseline 

probability of producing a response which is a match to a masker word. Across delay 

conditions in speech-shaped noise, 13% of listener errors were matches to the masker word. 

This value is a reflection of the similarity between the target and masker words. On average, 

a masker word shares at least half of the phonemes with 52.5 target words (range: 3 to 199 

words; SD = 46.7 words) or 7.5% of the target words in the corpus. One factor that could 

influence the rate of masker intrusions in the speech-shaped noise condition is previous 

experience with the two-talker masker. However, the examination of the number of masker 

intrusions in the speech-shaped noise condition based on masker testing order did not suggest 

this was a factor for this study [F(1,17)=0.63, p=0.44]. Thus, regardless of previous 

experience, on some proportion of incorrect trials, listeners appear to guess a masker word 

because it is available to them in their lexicon, not necessarily because it is a direct result of a 

masker intrusion. 

Age-related differences in error patterns. The only significant child-adult difference 

in error patterns was that children were less likely than adults to provide masker words as a 

response in the two-talker masker conditions. However, examination of the individual error 

patterns for the child data (Figure 4-6) suggests that there may be differences across 

childhood. For example, the four youngest children were more likely to provide responses 

related to the target word than most of the older children and all of the adults for the two-

talker conditions. Additionally, these younger children appear to be less likely to provide 
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masker words as responses compared to older children or adults. One possible explanation is 

that these younger children required a more advantageous SNR for testing which may have 

provided a level difference cue between the target word and masker. In order to examine this 

possibility, individual listener’s proportion of masker intrusions in the random delay, two-

talker condition was plotted as a function of SNR in Figure 4-7. Adults’ data are represented 

by the filled circles and children’s data are the open squares. To the right of children’s data 

points are their ages (in years). Data from four older children are inconsistent with the 

explanation that the rate of masker intrusions is related to SNR. These children were tested at 

a comparable SNR as adults (+3 dB SNR) and they all had fewer masker intrusions than the 

adult listeners. Furthermore, a 12.9-year-old who had a high rate of masker intrusions (53%) 

was tested at +8 dB SNR, a SNR greater than any of the adult listeners. Regardless, the 

pattern of performance for the limited data set does not discount the possibility that the 

higher signal levels used for younger children is related to their decreased likelihood of 

masker confusions. An alternative explanation is that there may be a relationship between no 

response errors and masker intrusions errors. It may be that when adults do not hear the 

target word they guess a masker word that they recently heard, whereas children may be 

more likely to not provide a response. Thus, future research is needed to examine the rate of 

masker intrusions and how it is affected by age and SNR.  

4.5. Conclusions 

The primary purpose of this experiment was to test the hypothesis that listeners would 

show greater benefit from a cue indicating when in time to listen for a target monosyllabic 

word embedded in a two-talker masker than in speech-shaped noise. However, word and 
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phoneme level analyses did not provide evidence of a benefit for either masker condition. An 

exploratory analysis of error patterns suggests differences in the types of errors made by 

listeners in the two-talker masker between the random and fixed delay conditions. This 

discrepancy in error patterns was observed for both children and adults. Future research is 

needed to determine if the results found here extend to longer windows of temporal 

uncertainty.  
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4.6. Endnotes 

1 Two of the adults (31.2 and 31.8 years) had previously participated as trained 
listeners in studies using multi-tonal stimuli. Their performance in the current study was 
similar to the naïve adults.  

2 Using the on-line calculator developed by Storkel and Hoover (2010), word 
frequency, neighborhood density and phonotactic probability estimates were calculated for 
each target word. These estimates were based on child corpora. Across the 696 target words, 
mean estimates were the following: word frequency (in log base 10) was 2.97 (SD=0.97), 
neighborhood density was 11.4 (SD=6.87), average positional segment frequency was 0.05 
and average biphone frequency was 0.005.  

3 An α level of 0.001 was used to determine significance for the Box’s M test, due to 
oversensitivity of this analysis, as recommended by Tabachnick and Fidell (2007).  

  



   

90 
 

4.7. Figures 

 

 

 

Figure 4-1. Schematic of delay conditions 

Schematic of the three delay conditions, in which the target was embedded in a 6.1-s light 

cue. The length of the shaded gray box represents the duration of the light cue, and the black 

box represents the relative onset of the target word. The top two panels represent the fixed 

delay conditions. In these conditions, the onset of the target word was delayed by 0.5 s (short 

delay, top panel) or 5.5 s (long delay, middle panel) relative to the onset of the light. The 

bottom panel represents the random delay condition, in which the onset of the target word 

was delayed by some random period, between 0.5 and 5.5 s, relative to the onset of the light.  



 

 

Figure 4-2. Individual and m

Mean (± 1 SE) and individual masked threshold estimates obtained during the adaptive 

testing in stage 1 are provided for children (left) and adults (right) in the random

condition. Threshold estimates for the two

triangles and for the speech-shaped noise condition by circles. Mean thresholds are indicated 

by filled symbols, and individual data are indicated by open symbols.
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Individual and mean masked threshold estimates 

Mean (± 1 SE) and individual masked threshold estimates obtained during the adaptive 

testing in stage 1 are provided for children (left) and adults (right) in the random

condition. Threshold estimates for the two-talker masker condition are represent

shaped noise condition by circles. Mean thresholds are indicated 

and individual data are indicated by open symbols. 

 

 

Mean (± 1 SE) and individual masked threshold estimates obtained during the adaptive 

testing in stage 1 are provided for children (left) and adults (right) in the random-delay 

talker masker condition are represented by 

shaped noise condition by circles. Mean thresholds are indicated 
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Figure 4-3. Mean word recognition and phoneme identification scores by condition 

Mean word recognition scores (± 1 SE) are provided in the top panel and mean phoneme 

identification scores (± 1 SE) in the bottom panel. Performance is provided by condition for 

children (open squares) and adults (filled squares). Scores are presented for the three delay 

conditions by masker type, with two-talker on the left and speech-shaped noise on the right.   
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Figure 4-4. Change in individual listener’s phoneme identification scores associated 

with a fixed delay 

The difference in phoneme recognition scores between the random delay condition and the 

fixed delay conditions are provided for individual listeners plotted by age. Benefit scores in 

the speech-shaped noise are provided in the top panel and benefit scores in the two-talker 

masker are provided in the bottom panel. Data points above the horizontal dashed line 

indicate that the listeners had improved scores for the short delay condition (filled circle) or 

the long delay condition (open square) compared to the random delay condition.  
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Figure 4-5. Mean error patterns for children and adults by condition 

Mean error patterns are provided across conditions for both age groups. Error patterns for the 

two-talker masker conditions are in the left panel and for the speech-shaped noise conditions 

in the right panel. Within a panel, delay conditions are grouped by age, with children on the 

left and adults on the right. For each condition, the proportion of errors was calculated for 

three categories: no response (“NR;” gray), unrelated to the target word (white), and related 

to the target word (hashed). Also, the proportion of incorrect trials in which the response was 

an exact match to a masker word is indicated by the vertical extent of the black box.  
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Figure 4-6. Individual error patterns for children in the two-talker  masker conditions 

Separate panels are provided for each of the three delay conditions. Errors were classified 

into three categories: no response (“NR;” gray), unrelated to the target word (white), and 

related to the target word (hashed). The black box represents the proportion of incorrect trials 

in which the response was a masker word. For comparison, mean adult error patterns are also 

provided for each condition on the far right-hand side of each panel.  
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Figure 4-7. Proportion of masker intrusions as a function of signal-to-noise ratio 

The proportion of masker intrusions in the random delay, two-talker condition is provided as 

a function of signal-to-noise ratio (dB SNR). Individual data are provided for children (open 

squares) and adults (filled circles). For children, each listener’s age (in years) is provided to 

the right of his/her data point.  

 

 



 

 

 

5. CHAPTER 5 

CONCLUSIONS 

5.1. Summary of Findings 

The primary purpose of this dissertation was to test the hypothesis that a cue 

indicating when in time to listen for a signal would be a beneficial cue for children when 

listening in complex maskers. This hypothesis was based on the observation that larger 

effects of signal-temporal uncertainty have been reported for maskers expected to produce 

substantial informational masking (Best et al., 2007; Bonino & Leibold, 2008; Varghese et 

al., 2012) than the 2 to 3 dB effect typically reported for noise maskers (e.g., Egan et al., 

1961; Green & Weber, 1980).  In order to test this hypothesis, the effect of signal-temporal 

uncertainty was measured for two different stimuli, tones (Chapter 3) and speech (Chapter 4).  

In the first experiment (Chapter 3), based on Bonino and Leibold (2008), 35 children 

and 10 adults detected a 1000-Hz pure-tone signal presented in a random-frequency, two-

tone masker. Thresholds were measured in two conditions, temporally-defined or temporally-

uncertain. Across all three age groups of children (5 to 7, 8 to 10, and 11 to 13 years of age) 

and adults, the average benefit was 11 dB when listeners were provided a defined listening 

interval. This finding was consistent with the other published studies which have reported 

substantial benefit of a cue indicating when in time to listen for conditions expected to 

produce informational masking (Best et al., 2007; Bonino & Leibold, 2008; Varghese et al., 

2012).  
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In the second study (Chapter 4), word recognition was measured for 12 children (5 to 

13 years of age) and seven adults in a two-talker masker or speech-shaped noise. In each 

masker, listeners completed three delay conditions, in which the delay of the target word was 

either random or controlled relative to the onset of a 6.1-s interval light. Inconsistent with our 

hypothesis and the results from Chapter 3, neither word recognition or phoneme 

identification scores improved for the fixed delay conditions compared to the random delay 

condition for either children or adults. However, a preliminary analysis of error patterns 

suggests possible differences between the fixed delay conditions and the random delay 

condition in the two-talker masker. Additionally, differences in error patterns were reported 

between the speech-shaped noise conditions and the two-talker masker conditions for this 

study.  

As discussed in Chapter 4, methodology differences may explain the inconsistent 

findings between the two studies reported in this dissertation. One key difference between the 

two experiments was in how temporal uncertainty was created. In the multi-tonal study 

(Chapter 3), a light cue indicated the listening window in the temporally-defined condition. 

In contrast, listeners were only aware of a trial occurring if they heard the signal in the 

temporally-uncertain condition. Listeners often had a long listening window because a 

minimum 4-s delay was imposed between trials, plus 50% of trials did not contain a signal. 

Thresholds in the temporally-uncertain condition were then compared to the temporally-

defined condition, in which a light cue defined a 600-ms listening window. In contrast, the 

6.1-s listening window was always defined for the speech study (Chapter 4) and the 

comparison was across conditions in which the target words were presented at a fixed versus 

a random delay within the defined listening window. It may be that a variable and/or a longer 
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listening window is required in order to observe a sizeable effect of signal-temporal 

uncertainty for conditions expected to produce substantial informational/perceptual masking. 

Another consideration is that the 120-ms tonal signal was brief in duration compared to 

monosyllabic words. It may be that a larger effect of signal-temporal uncertainty would be 

observed for shorter speech stimuli, such as a consonant identification task.  

5.2. Unresolved Questions for Future Work 

Based on the findings in this dissertation, four questions are presented here to be 

addressed by future research: 

Why do children and adults have similar thresholds for a tone detection task in a 

continuous, random-frequency, two-tone masker? An unexpected finding in Chapter 3 

was that children did not show greater susceptibility to the random-frequency, two-tone 

masker than adults. This result is inconsistent with previously published studies which have 

used brief stimuli in a two-interval, forced-choice task (e.g., Hall et al., 2005; Leibold & 

Bonino, 2009; Lutfi et al., 2003b; Oh et al., 2001). The use of a continuous masker in the 

current study may explain the improved thresholds reported for children in the current study. 

Future research is needed to test the hypothesis that children are more prone to the distracting 

effects of onsets. Of particular interest would be to compare tone detection thresholds for a 

gated versus a continuous multi-tonal masker. It would be expected that both children and 

adults would have similar thresholds in the continuous masker based on findings in Chapter 

3. Furthermore, thresholds should be elevated in the gated condition compared to the 

continuous condition (Richards et al., 2011). However, a substantial child-adult difference 

may be observed in the gated masker condition. This pattern of results would be consistent 
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with previously reported findings (e.g., Lutfi et al., 2003b; Oh et al., 2001). If these 

hypotheses were confirmed, the next step would be to parametrically manipulate the 

continuous masker to provide insight into the specific features that are responsible for 

eliminating the large child-adult difference reported by other studies that used a gated 

random-frequency, multi-tonal masker.   

Would a benefit of knowing when in time to listen for the target word be 

observed if conditions were more temporally uncertain than those used in Chapter 4? In 

contrast to the multi-tonal work presented in Chapter 3, no significant improvement in word 

recognition or phoneme identification scores were reported when words were presented at 

fixed delays compared to a random delay. One possible explanation for the lack of observed 

benefit in Chapter 4 was that that temporal window of 6.1 s was not long enough to result in 

substantial temporal uncertainty for monosyllabic words. Instead of presenting words at 

either fixed or random delays within a defined temporal window, a future study should 

evaluate the effect of having a defined versus an uncertain listening window. This 

manipulation would be more analogous to the approached used for the multi-tonal study 

(Chapter 3) and should result in greater temporal uncertainty.   

Are there developmental differences in the likelihood that listeners have masker 

intrusions when listening for target words presented in a two-talker masker? Results 

from the preliminary error pattern analysis (Chapter 4) suggest that children are less likely to 

have masker intrusions than adult listeners in the two-talker masker conditions. Further 

examination of data for individual children suggests that younger children may be less likely 

to make masker intrusions than older children. Additional data need to be collected from 

children to determine if these developmental trends are reliable. One challenge with 
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interpreting these effects is that listeners were tested at different signal-to-noise ratios 

(SNRs). Furthermore, younger children tended to be tested at more advantageous SNRs than 

older children or adults. In order to better understand the effect of SNR on error patterns, 

collecting data from adults at a range of SNRs would be helpful. 

Do lexical properties of the target words influence word recognition scores in a 

two-talker masker? Krull et al. (2010) examined five to 12 year old children’s word 

recognition in speech-shaped noise. Word lists varied on two parameters: lexical density (i.e., 

the number of similar sounding words or “neighbors” to a target word) and word frequency 

(i.e., how often a word is used in the language). As predicted by the Neighborhood 

Activation Model (NAM; Luce & Pisoni, 1998), listeners had poorer word recognition for 

target words that were classified as low-frequency words from dense neighborhoods than if 

the target words were classified as high-frequency words from sparse neighborhoods. The 

effect of lexical properties of the signal has not been evaluated for maskers that create 

substantial perceptual masking. One possible outcome may be that lexical effects are larger 

for the two-talker masker than for the speech-shaped noise condition. However, it may also 

be possible that these effects are no longer apparent because more errors are related to 

masker intrusions than being related to the target word. A preliminary evaluation of these 

effects will be conducted with the data collected in the fixed delay conditions to determine if 

future research is warranted.  
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