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ABSTRACT 

 

KATHRYN E DEKRAFFT:  Nanoscale Coordination Polymers for Biomedical Applications 

and Hybrid Materials for Solar Fuel Catalysis  

(Under the direction of Wenbin Lin) 

 

 

 

 This dissertation describes the design, synthesis, and characterization of hybrid 

materials and their evaluation for use in several biomedical and solar fuel applications. Most 

of the materials are nanoparticles based on coordination polymers (CPs), a class of highly 

tunable hybrid materials composed of organic bridging ligands linked together by metal ions. 

Nanoscale CPs (NCPs) have been developed for biomedical imaging contrast enhancement 

and for drug delivery. They have been designed to carry high payloads of diagnostic or 

therapeutic agents, and to overcome the disadvantages of conventional small-molecule agents 

by improved pharmacokinetics and biodistribution.  

NCPs containing elements with high X-ray attenuation have been developed for use 

as contrast agents for computed tomography (CT) imaging. NCPs based on an iodinated 

ligand or on Zr or Hf ions were synthesized, and their potential for CT contrast enhancement 

was demonstrated in phantom studies. The robust Hf-based NCPs were coated and 

functionalized to increase biocompatibility and performance, and were used for in vivo CT 

imaging. NCPs for drug delivery have been designed based on methotrexate, a molecular 

anticancer drug that is a first-line treatment for leukemia. The NCP approach to drug 
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formulations offers a potential way to target and deliver high payloads of methotrexate to 

cancer cells.  

Photocatalytic and electrocatalytic materials have been developed toward the goal of 

storing harvested solar energy in chemical fuels by water splitting. A new CP-templated 

method has been developed for the synthesis of a metal oxide nanocomposite with interesting 

photophysical properties. Fe-containing NCPs were coated with amorphous titania, then 

calcined to produce crystalline Fe2O3/TiO2 composite nanoparticles. This material enables 

photocatalytic hydrogen production from water using visible light, which cannot be achieved 

by either Fe2O3 or TiO2 alone or a mixture of the two. 

Molecular Ir and Ru complexes were directly and covalently grafted onto carbon 

electrodes, for electrocatalytic water oxidation. The catalysts had enhanced rates and stability 

when grafted and driven electrochemically compared to being chemically-driven in solution. 

This strategy provides a way to systematically evaluate catalysts under tunable conditions, 

potentially providing new insights into electrochemical water oxidation processes and water 

oxidation catalyst design.  
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CHAPTER 1 

 

Iodinated Nanoscale Coordination Polymers as Potential Contrast Agents for 

Computed Tomography 

 

(Portions of this chapter were adapted with permission from deKrafft, K.E.; Xie, Z.; Cao, G.; 

Tran, S.; Ma, L.; Zhou, O.Z.; Lin. Angew. Chem. Int. Ed. 2009, 48, 9901. Copyright 2009 

John Wiley and Sons.) 

 

 

1.1. Introduction 

1.1.1 Computed tomography 

X-ray computed tomography (CT) is a type of biomedical imaging that is capable of 

providing three-dimensional images with excellent spatial resolution.
1, 2

 Structures in the 

body can be rendered in three dimensions from a series of two-dimensional X-ray images 

taken from a single axis of rotation. CT is routinely used to image a wide range of structures 

throughout the entire body including organs, blood vessels, and bones. It is an important tool 

for diagnosing and monitoring diseases and abnormalities throughout the body, including 

tumors, calcifications, embolisms, aneurysms, and inflammation. CT is based on differences 

in X-ray attenuation, the ability of different materials to block X-rays to different degrees. 

Materials with high electron density appear bright while those with low electron density 

appear dark. A contrast agent with high X-ray attenuation is often used in CT imaging to 

provide better contrast between the tissue of interest and its surroundings.
3-6

 Materials with 

high electron density block X-rays more effectively, therefore elements with high atomic 

numbers, like iodine, gold, bismuth, and gadolinium, have been considered for use as 

contrast agents. However, the only CT contrast agents currently approved for clinical use are 
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iodinated aromatic molecules (Fig. 1.1), and barium sulfate for gastrointestinal tract imaging. 

CT imaging with small-molecule contrast agents is limited by their nonspecific distribution, 

rapid renal clearance, and fast extravasation from blood and lymphatic vessels.
3-6

 Due to 

these issues as well as the low sensitivity of this imaging modality, large doses (typically 30 

g of I or 70 g total material) must be administered to achieve adequate contrast,
5
 sometimes 

causing adverse reactions for the patients. 

 

 

Figure 1.1. Examples of clinically used molecular CT contrast agents. 

 

1.1.2. Nanoparticle contrast agents 

Nanoparticles bridge the gap between molecular and bulk materials, and are defined 

as particles that are 1-1,000 nm in at least one dimension.
7
 Scaling materials down to the 

nanometer-regime makes them suitable for biomedical applications. Organic nanomaterials 

like liposomes and polymer particles, as well as inorganic nanomaterials like iron oxide 
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nanoparticles, and quantum dots have been used for biological applications.
8-11

 Many of the 

limitations of molecular contrast agents can be overcome by nanoparticulate contrast agents 

that can carry a high payload and be functionalized to increase blood circulation times and to 

endow target specificity.
12

 Nanoparticles do not readily diffuse into extravascular space or 

undergo rapid renal clearance, thus allowing adequate time for accumulation at a disease site. 

These advantages could allow for a larger time window for imaging and enhanced image 

contrast at a lower dose. Several nanoparticle systems including Bi2S3,
13

 gold,
14, 15

 and 

iodinated organic nanoparticles,
16-18

 have recently been evaluated as next-generation CT 

contrast agents. However, it is challenging to formulate nanoparticles with high loadings for 

elements having high atomic numbers that are also nontoxic and able to be cleared from the 

body in a timely fashion. 

1.1.3. Nanoscale coordination polymers 

Most nanoparticles contain either only organic or only inorganic components. 

Coordination polymers (CPs) have recently emerged as hybrid materials composed of 

organic bridging ligands that are coordinatively bonded to metal ions or metal ion clusters.
19-

22
 When CPs are crystalline and three-dimensional, they are often referred to as metal-

organic frameworks (MOFs), depicted schematically in Fig. 1.2. CP composition is highly 

tunable due to an infinite number of possible metal and ligand combinations. There is also 

much structural diversity depending on coordination modes of the metals and steric or 

geometric constraints imposed by the ligands. The building blocks can assemble into one-

dimensional chains, two-dimensional sheets, or three-dimensional networks with uniform 

pores and channels. The synthesis and development of a new class of nanomaterials has 

recently been demonstrated by scaling down CPs to the nanoregime.
23, 24

 These nanoscale 
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CPs (NCPs) and nanoscale MOFs (NMOFs) have already shown great potential in 

biosensing,
25

 magnetic resonance imaging,
26, 27

 and drug delivery.
28

 NCPs possess some 

potential advantages over existing nanoparticles because their composition, structure, and 

chemical properties are highly tunable and diverse. The labile metal-ligand bonds make 

NCPs intrinsically biodegradable, allowing clearance from the body after use. Given the 

clinical utility of iodinated aromatic molecules in CT imaging, it was surmised that iodinated 

NCPs could have potential applications as CT contrast agents owing to their ability to carry a 

very high payload of iodine. This has been demonstrated by synthesizing new iodinated 

coordination polymers and scaling them down to the nano-regime. The ability of iodinated 

NCPs to attenuate X-rays has been demonstrated in phantom studies. 

 

 

Figure 1.2. Schematic showing the self-assembly of metal-organic frameworks. 

 

There are many methods of synthesizing NCPs and NMOFs, mostly by taking 

advantage of the reduced solubility of the particles compared to that of the individual 

components. Methods include simple mixing of precursor solutions,
29

 precipitation by rapid 

addition of a poor solvent,
30

 solvothermal synthesis,
31

 reverse microemulsion,
26

 and high-

temperature surfactant-assisted synthesis.
32

 Properties of the nanoparticles, like size and 

shape, can be tuned by varying many reaction parameters. Choice of solvent, metal and 
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ligand concentrations, metal to ligand ratio, temperature, and duration of the reaction can all 

affect the resulting particles. For the microemulsion and surfactant-assisted syntheses, other 

important parameters include choice of surfactant, pH of the aqueous phase, and W value 

(water to surfactant molar ratio). A reverse microemulsion, shown in Fig. 1.3, is a 

thermodynamically stable isotropic mixture of water droplets dispersed throughout a 

continuous immiscible organic phase, with the droplets stabilized by micelles, made of 

interfacial surfactant molecules. The W value and surfactant concentration determine the size 

and number of micelles. Reactants dissolved in the aqueous phase of two separate 

microemulsions can be combined so that they react in the microdroplets of water, which 

continuously exchange their contents through collision, coalescence, and division, resulting 

in a precipitate. In the high-temperature surfactant-assisted method, the microemulsion 

breaks down as the temperature is elevated, and the surfactant acts to stabilize particles 

against aggregation during synthesis. Nanoparticles can be isolated from their reaction 

mixtures by centrifugation and can be washed several times to remove impurities. Crystalline 

NCPs usually adopt well-defined, non-spherical morphologies because crystal lattice energy 

is the most influential factor in their growth. On the other hand, amorphous NCPs are usually 

spherical because this morphology minimizes interfacial free energy between the particles 

and solvent during their formation.
23

 The crystallinity, size, and shape of particles are 

dependent on the rates of nucleation and growth, two kinetic phenomena that respond 

differently to reaction conditions. 
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Figure 1.3. Schematic showing the synthesis of a NCP or a NMOF in a reverse 

microemulsion. 

 

1.2. Results and Discussion 

 1.2.1. Synthesis and characterization of iodinated coordination polymers 

As shown in Fig. 1.4, five new coordination polymers were synthesized using 2,3,5,6-

tetraiodo-1,4-benzenedicarboxylate (I4-BDC) bridging ligands and Cu
2+

 or Zn
2+

 metal 

connecting points. The reaction of I4-BDC-H2 and Cu(NO3)2 in N,N-dimethylformamide 

(DMF) at 80 ºC for 3 days led to blue rectangular plate-like crystals of [Cu(I4-BDC)(DMF)2] 

(I-CP 1) in 28% yield. Similar crystal growth in N,N’-diethylformamide (DEF) and in H2O 

led to bluish-green rodlike crystals of [Cu(I4-BDC)(DEF)2(H2O)] (I-CP 2) in 58% yield and 

green rod-like crystals of [Cu(I4-BDC)(H2O)2]·2H2O (I-CP 3) in 69% yield, respectively. To 

demonstrate the generality of this synthetic approach, we have also synthesized iodinated 

coordination polymers with Zn
2+

 metal connecting points. Colorless rod-like crystals of 

[Zn(I4-BDC)(DMF)2.5] (I-CP 4) were obtained in 55% yield by the reaction of I4-BDC-H2 

and Zn(NO3)2 in DMF at 60 ºC for 4 days. Colorless rod-like crystals of [Zn(I4-
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BDC)(EtOH)2]·2EtOH (I-CP 5) were obtained in 28% yield by slow evaporation of a 

solution of I4-BDC-H2 and Zn(NO3)2 in ethanol. The synthesis of coordination polymers in 

H2O and in ethanol (I-CP 3 and I-CP 5) demonstrates the ability to obtain iodinated 

coordination polymers that contain nontoxic solvents, thus making them more relevant for 

potential biological and biomedical applications. 

 

 

Figure 1.4.  Scheme for the synthesis of iodinated coordination polymers (I-CPs) 1-5. 

 

 Single-crystal X-ray diffraction studies of I-CPs 1–5 revealed one-dimensional 

polymeric structures for all five coordination polymers (Fig. 1.5). Table 1.1 contains unit cell 

parameters and other detailed crystallographic data. In I-CP 1, Cu
2+

 ions coordinate to two 

chelating carboxylate groups of the I4-BDC ligand and two molecules of DMF in the axial 

positions to form a one-dimensional polymeric network (Fig. 1.6). In I-CP 2, both 

carboxylate groups of the I4-BDC ligand are monodentate (Fig. 1.7). The Cu
2+

 ions adopt a 

square pyramidal geometry by coordinating to two monodentate carboxylate groups as well 

as one water and two DEF molecules. The structure of I-CP 3 is ladder-like with one 

carboxylate group of the ligand acting in a monodentate fashion, while the other adopts the 

ɳ
1
, μ2 bridging mode (Fig. 1.8). Each Cu

2+
 center thus coordinates to three carboxylate 

oxygen atoms and two water molecules in a square pyramidal geometry. The I4-BDCs on 
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each side of the ladder polymer chain are offset by 2.25 Å along the a axis, while the distance 

between a pair of I4-BDCs is 4.06 Å. In I-CP 4, one I4-BDC ligand has both monodentate 

carboxylate groups whereas the other I4-BDC ligand has one monodentate and one chelating 

carboxylate group (Fig. 1.9). The adjacent Zn
2+

 centers in the zigzag polymeric chain adopt a 

tetrahedral geometry by coordinating to two monodentate carboxylate groups and two DEF 

molecules, and a distorted octahedral geometry by coordinating to one monodentate and one 

chelating carboxylate groups and three DEF molecules, respectively. I-CP 5 has a simpler 

zigzag polymeric chain structure with all the Zn
2+

 centers adopting tetrahedral geometry by 

coordinating to two monodentate carboxylate groups and two ethanol molecules (Fig. 1.10). 

Importantly, the steric bulk of the iodine atoms forces the carboxylate groups of the I4-BDC 

ligand to be perpendicular to the tetraiodobenzene ring in all of these structures. We believe 

that the steric bulk of iodine atoms also discourages the carboxylate groups of the I4-BDC 

ligands from adopting the bridging coordination mode (except in I-CP 3), which can lead to 

the formation of coordination polymers of higher dimensionality. The thermogravimetric 

analyses (TGA) of bulk crystals of I-CPs 1–5 show solvent and organic weight loss that 

correspond closely to the formulas obtained from X-ray diffraction data (Table 1.2, Fig. 1.12-

1.14). Heating the crystals to 600 ºC causes the solvents and organic ligands to burn away, 

leaving behind CuO for I-CPs 1-3 and ZnO for I-CPs 4-5. For most, there is slightly less 

weight loss than the theoretical loss calculated from the formula due to evaporation of some 

of the solvent. For example, for I-CP 4, if it is assumed that DMF is gone by 230 C (20.0% 

theoretical loss, 12.6% observed), theoretical weight loss due to I4-BDC decomposition (by 

600 °C) should be 88.9%, which matches the observed weight loss.  
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Table 1.1.  Crystal data and structure refinement for I-CPs 1-5. 
 

Compound I-CP 1 I-CP 2 I-CP 3 I-CP 4 I-CP 5 

Empirical 

Formula 

C14H14N2O6-

CuI4 

C18H22N2O7-

CuI4 

C8H8O8CuI4 C31H35N5O13-

Zn2I8 

C16H22O8ZnI4 

Formula 

Weight 

877.41 949.52 803.28 1831.58 915.31 

Temperature 

(K) 

258 100 296 223 243 

Wavelength 

(Å) 

1.54178 1.54178 1.54178 1.54178 1.54178 

Crystal 

System 

Orthorhombic Monoclinic Monoclinic Orthorhombic Monoclinic 

Space 

Group 

Cmc21 P21 P21/c P212121 C2/c 

Unit cell 

dimensions 

a = 10.928(1) a = 11.175(1) a = 11.020(1) a = 10.387(1) a = 11.433(1) 

b = 21.668(2) b = 10.114(1) b = 9.690(1) b = 11.758(1) b = 14.879(1) 

c = 9.579(1) c = 12.246(1) c = 15.937(1) c = 38.819(2) c = 15.438(1) 

α = 90.00 α = 90.00 α = 90.00 α = 90.00 α = 90.00 

β = 90.00 β = 107.293 β = 105.164 β = 90.00 β = 95.718 

γ = 90.00 γ = 90.00 γ = 90.00 γ = 90.00 γ = 90.00 

Volume 

(Å
3
) 

2268.1(3) 1321.5(1) 1642.5(2) 4740.9(3) 2613.16(9) 

Z 4 2 4 4 4 

Density  

(calcd. 

g/cm
3
) 

2.569 2.386 3.248 2.566 2.327 

Absorption 

coeff.    

(mm
-1

) 

44.39 38.196 61.23 42.676 38.723 

F (000) 1604 882 1444 3376 1696 

Crystal size 

(mm) 

0.11x0.11x 

0.06 

0.19x0.17x 

0.12 

0.10x0.10x 

0.10 

0.15x0.12x 

0.08 

0.18x0.18x 

0.05 

Crystal 

color and 

shape 

blue 

rectangular 

plate 

bluish-green 

rod 

green rod colorless rod colorless rod 

θ data 

collection 

4.08-65.32 3.78-68.10 4.16-66.27 2.28-66.34 4.89-69.34 
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Limiting 

indices 

-12< h <11 -13< h <13 -13< h <12 -12< h <12 -12< h <13 

-21< k <25 -11< k <11 0< k <11 -13< k <12 -18< k <16 

-10< l <10 -14< l <14 0< l <18 -46< l <45 -18< l <18 

Reflections 

collected 

3939 6111 2802 36860 8117 

Independent 

reflections 

1676 3786 2802 8134 2401 

Refinement 

Method 

Full-matrix least-square on F
2
 

Data/ 

restraints/ 

parameters 

1676/127/1 3786/258/1 2802/192/47 8134/297/0 2401/135/0 

Goodness-

of-fit  

on F
2
 

0.999 0.910 1.011 1.048 1.042 

(0.998, 

restrained) 

(0.910, 

restrained) 

(1.005, 

restrained) 

(1.048, 

restrained) 

(1.042, 

restrained) 

Final R 

indices 

[I>2σ(I)]
a,b

 

R1 = 0.0666 R1 = 0.0288 R1 = 0.0560 R1 = 0.0456 R1 = 0.0340 

wR2 =0.1665 wR2 =0.0627 wR2 =0.1304 wR2 =0.0958 wR2 =0.0838 

R indices 

(all data) 

R1 = 0.0932 R1 = 0.0306 R1 = 0.0771 R1 = 0.0536 R1 = 0.0386 

wR2 =0.1847 wR2 =0.0636 wR2 =0.1388 wR2 =0.0988 wR2 =0.0866 

Flack 0.434(4) 0.020(7) - 0.018(8) - 
a
R(F) =Σ||Fo| - |Fc||/Σ|Fo|.  

b
RW(F

2
) = [Σ{w(Fo

2
 - Fc

2
)
2
}/Σ{w(Fo

2
)
2
}]

0.5
; w

-1
 = σ

2
(Fo

2
) + (aP)

2
 + 

bP, where P=[Fo
2
 + 2Fc

2
]/3 and a and b are constants adjusted by the program. 

 



11 
 

 

Figure 1.5. Stick models showing the one dimensional polymeric structure of (a) Cu(I4-

BDC)(DMF)2 (I-CP 1), (b) Cu(I4-BDC)(DEF)2(H2O) (I-CP 2), (c) [Cu(I4-

BDC)(H2O)2]∙2H2O] (I-CP 3), (d) Zn(I4-BDC)(DMF)2.5 (I-CP 4), and (e) [Zn(I4-

BDC)(EtOH)2]·2EtOH] (I-CP 5).  Grey, blue, red, purple, aqua and green colors represent C, 

N, O, I, Cu, and Zn atoms, respectively. 
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Figure 1.6. Packing diagrams of I-CP 1 as viewed along (a) the a axis, and (b) the c axis. 

Grey, red, blue, purple, and aqua colors represent C, O, N, I, and Cu atoms, respectively. 

 

 

a) 

a) 

b) 
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Figure 1.7. Packing diagram of I-CP 2 as viewed along (a) the a axis, and (b) the b axis.  

Grey, red, blue, purple, and aqua colors represent C, O, N, I, and Cu atoms, respectively. 

 

 

a) 

b) 
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Figure 1.8. Packing diagram of I-CP 3 as viewed along (a) the a axis, and (b) the b axis. 

Grey, red, purple, and aqua colors represent C, O, I, and Cu atoms, respectively. 

 

 

 
 

Figure 1.9.  Packing diagram of I-CP 4 as viewed along (a) the a axis, and (b) the b axis. 

Grey, red, blue, purple, and aqua colors represent C, O, N, I, and Zn atoms, respectively. 

 

b) 

a) 

b) 
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Figure 1.10. Packing of the zig-zag 1-D polymeric chains in I-CP 5 as viewed along the a 

axis. Grey, red, purple, and aqua colors represent C, O, I, and Zn atoms, respectively. 

 

Table 1.2. TGA weight loss from I-CP 1-5. 

Compound I-CP 1 I-CP 2 I-CP 3 I-CP 4 I-CP 5 

Observed wt% loss, 

25-600 ºC 

89.7 89.8 90.8 90.3 90.7 

Theoretical wt% loss, 

25-600 ºC 

90.9 91.6 89.6 91.1 91.1 

 

 1.2.2. Synthesis and characterization of iodinated nanoscale coordination polymers  

We were able to synthesize nanoscale coordination polymers of both a Cu
2+

 and a 

Zn
2+

-containing phase, with coordinating H2O and ethanol molecules, respectively. Plate-like 

nanoparticles of I-CP 3 (I-NCP 3a) were synthesized in 75% yield by stirring a 

microemulsion of 0.3 M Triton X-100 and 1.5 M 1-hexanol in cyclohexane with a water to 

surfactant ratio of 15 (W value), which contained equal molar amounts of Na2(I4-BDC) and 

Cu(NO3)2 at room temperature for 2 h. The I-NCP 3a particles were isolated by 
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centrifugation and washed with ethanol. Scanning electron microscopy (SEM) images 

showed that plate-like particles of I-NCP 3a have a diameter of 300 nm and are 50 nm thick 

(Fig. 1.11a). Powder X-ray diffraction (PXRD) studies indicate that the I-NCP 3a particles 

are crystalline and have the same structure as the bulk phase of I-CP 3 (Fig. 1.11c). 

Interestingly, nanoparticles of I-CP 3 with a rod-like morphology (I-NCP 3b) were obtained 

in 60% yield when the same reaction was carried out in a microemulsion of 0.1 M 

cetyltrimethylammonium bromide (CTAB) and 0.5 M 1-hexanol in isooctane (W=15). SEM 

images show that I-NCP 3b particles are about 1.5 μm in length and 200 nm in width (Fig. 

1.11b), and PXRD studies indicate that the particles are crystalline and also have the same 

structure as the bulk phase of I-CP 3. Slight peak shifts in the PXRD patterns can be 

attributed to differences in the temperatures at which data were acquired and the degree of 

solvent loss from the sample, both of which can slightly change the size of the unit cell. 

Many of the diffraction peaks are missing in the PXRD patterns of the NCPs because of the 

preferential growth along certain crystallographic faces. The composition of I-NCPs 3a and 

3b was also confirmed by TGA (Fig. 1.12) and energy dispersive X-ray spectroscopy (EDS) 

results (Fig. 1.16a-b). The ready loss of solvents from NCPs complicates the TGA data 

analysis for I-NCPs 3a and 3b. If it is assumed that all H2O solvent molecules are gone by 

190 C, theoretical weight loss due to I4-BDC decomposition (by 600 °C) should be 89.1%. 

The observed weight loss from 190 to 600 °C is 89.5% (+0.45% difference) for bulk crystals 

of I-CP 3, 79.3% (-11.4% difference) for I-NCP 3a, and 85.6% (-4.4% difference) for I-

NCP 3b. The slightly reduced organic weight loss for I-NCPs 3a and 3b in the 190-600 °C 

temperature range could be attributed to the presence of small amounts of amorphous copper 

oxide/hydroxide due to the high pH conditions for their synthesis.  
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Figure 1.11. (a) SEM images of I-NCP 3a and (b) I-NCP 3b.  (c) Simulated PXRD pattern 

of I-CP 3 (black), and experimental PXRD patterns of bulk crystals of I-CP 3 (green), I-

NCP 3a (red), and I-NCP 3b (blue). 

 

 

Figure 1.12.  TGA of bulk crystals of I-CP 3 (green), I-NCP 3a (blue), and I-NCP 3b (red). 
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Figure 1.13. TGA of bulk crystals of I-CP 5 (green), I-NCP 5a (red), and I-NCP 5b (blue).   

 

 

Figure 1.14. TGA of bulk crystals of I-CP 1 (green), I-CP 2 (blue), and I-CP 4 (red).   

 



19 
 

 We synthesized microparticles of I-CP 5 using a rapid precipitation procedure.
28

 A 

dilute aqueous solution of Na2(I4-BDC) and Zn(NO3)2 in an equal molar ratio was added to 

ethanol with rapid stirring. SEM and PXRD studies showed that the resulting particles (I-

NCP 5a) were crystalline rods less than a μm in width and 10–30 μm in length (Fig. 1.15a, 

c). Smaller particles I-NCP 5b could be obtained by addition of a more concentrated aqueous 

precursor solution (pH 6.6) to ethanol. The resulting white cloudy dispersion was stirred at 

room temperature for 1 hour. The I-NCP 5b nanoparticles were isolated in 82% yield by 

centrifugation and washed with ethanol. SEM images show that the I-NCP 5b particles have 

a truncated cube morphology with a diameter of 200–600 nm (Fig. 1.15b). PXRD studies 

show that they match the bulk phase of I-CP 5 (Fig. 1.15c), but the very broad peak indicates 

a large degree of disorder in the structure of these partially crystalline particles. The 

composition of I-NCP 5a and I-NCP 5b was also confirmed by TGA (Fig. 1.13) and EDS 

results (Fig. 1.16c,d). As with I-NCP 3a and 3b, the ready loss of solvents from NCPs 

complicates the TGA data analysis for I-NCP 5a and 5b.  If it is assumed that all ethanol 

molecules are lost by 190 C, theoretical weight loss due to I4-BDC decomposition (by 600 

°C) should be 88.9%. The observed weight loss from 190 to 600 °C is 88.6% (-0.34% 

difference) for I-CP 5, 83.7% (-5.8% difference) for I-NCP 5a, and 87.5% (-1.6% 

difference) for I-NCP 5b. The slightly reduced organic weight loss for I-NCPs 5a and 5b in 

the 190-600 °C temperature range could be attributed to the presence of small amounts of 

amorphous zinc oxide/hydroxide. 
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Figure 1.15. (a) SEM images of I-NCP 5a and (b) I-NCP 5b. (c) Simulated PXRD pattern 

of I-CP 5 (black), and experimental PXRD patterns of bulk crystals of I-CP 5 (green), I-

NCP 5a (red), and I-NCP 5b (blue). 
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Figure 1.16. EDS spectra of (a) I-NCP 3a, (b) I-NCP 3b, (c) I-NCP 5a, and (d) I-NCP 5b. 

 

 1.2.3. Phantom computed tomography studies  

b) 
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Phantom studies were conducted on I-NCP 3a and I-NCP 5b to evaluate their 

potential for use as CT contrast agents. Scans were done on ethanol dispersions with 

corresponding iodine concentrations of 0.075–0.3 M (Fig. 1.17a, b). For comparison, samples 

of aqueous solutions of Iodixanol, a clinically used iodinated contrast agent, were also 

scanned at the same iodine concentrations (Fig. 1.17c). Both I-NCP 3a and I-NCP 5b 

contain 63 wt% iodine, while Iodixanol contains only 49 wt% iodine. The amount of iodine 

that can be incorporated in small-molecule agents is limited by the need for side chains that 

increase hydrophilicity and decrease osmolality, viscosity, and toxicity.
5
 Higher iodine 

content can be achieved in the iodinated NCPs because it is not necessary for the I4-BDC 

ligand to have these side chains. The theoretical iodine payload is 63.2 and 55.3 wt% for I-

NCP 3a and 5b, respectively, based on the formulas determined by X-ray diffraction data. 

The higher than predicted iodine payload for I-NCP 5b is due to ready loss of ethanol 

molecules from the nanoparticles as shown in the TGA. For comparison, a recently reported 

polymer-stabilized lipid nanoparticle contains only 19 wt% iodine in the core, and iodine 

loading is even lower when the polymer shell is taken into consideration.
16

 The Hounsfield 

unit (HU)
33

 value is an indicator of the ability of a material to attenuate X-rays with respect 

to water (0 HU). The intensity of transmitted energy is logarithmically dependent on 

attenuation. The measured value (HU) is an indicator of attenuation, which is linearly 

dependent on concentration. The slopes of the lines produced by plotting HU values against 

iodine concentrations for I-NCP 3a, I-NCP 5b, and Iodixanol are 4653±520, 4513±408, and 

3840±560 HU/M, respectively (Fig. 1.17d). The nanoparticles thus show X-ray attenuation 

coefficients comparable to that of the molecular contrast agent. The slightly higher X-ray 

attenuation of the NCPs can be attributed to the contribution from Cu and Zn, calculated to 
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be approximately 5% based on the weight% of these metals in the materials and the 

attenuation of the metals compared to that of iodine. 

 

Figure 1.17. CT phantom images of (a) I-NCP 3a and (b) I-NCP 5b dispersed in ethanol, 

and (c) Iodixanol in aqueous solution. From the top, clockwise, the slots have [I]=0, 0.075, 

0.150, 0.225, and 0.300 M. (d) X-ray attenuation as a function of [I] for I-NCP 3a at 40 kVp 

(red), I-NCP 5b at 50 kVp (black), and Iodixanol at 40 kVp (blue).  

 

 1.2.4. Degradation behavior and silica coating 

The biodegradable nature of NCPs makes them attractive candidates for imaging 

applications, because it is important that a diagnostic agent be cleared from the body after 

use.
23, 27

 This is an advantage over many purely inorganic nanoparticles that are used for 

biomedical applications and are not readily cleared from the body. However, it is important 

that the particles be stable enough to perform their function before degrading significantly. 

To determine the dissolution (degradation) behavior of the iodinated NCPs in a biologically 

relevant environment, 0.6 mg of I-NCP 3a was dialyzed against 250 mL of 8 mM phosphate 
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buffered saline (PBS; pH 7.4) at 37 ºC. Inductively coupled plasma mass spectrometry (ICP-

MS) was used to measure I concentration in aliquots taken at various time points. The 

particles were completely dissolved after approximately 46 hours, with a half-life of about 

1.5 hours (Fig. 1.18). This result demonstrates the biodegradable nature of the NCPs while 

they are still stable enough to allow for longer circulation time as compared to molecular 

iodinated contrast agents (<10 min). 

 

 

Figure 1.18. Release profile for I-NCP 3a, obtained by plotting the % I released against 

time.  

  

In order for iodinated NCPs to be used in vivo, the particles would need to be 

modified for increased stability and biocompatibility. Silica coating makes NCPs more 

biocompatible and has been shown to slow their dissolution under physiological conditions, 

due to slow diffusion of the constituents through the pores of the shell.
25

 Functionalization of 

nanoparticles with passivating moieties is often needed to prevent rapid uptake by cells of the 

mononuclear phagocyte system (MPS), which is responsible for removing debris and foreign 

materials from the bloodstream.
7
 A silica coating can facilitate attachment of silyl-derived 

functional molecules such as passivating moieties. I-NCP 3a was coated with a layer of 
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poly(vinylpyrrolidone) (PVP) to reduce aggregation and make the particles more dispersible 

(Fig. 1.19) so that they could be coated with silica by a sol-gel method. Tetraethyl 

orthosilicate (TEOS) was added to a dispersion of I-NCP 3a@PVP in ethanol with 

ammonium hydroxide to catalyze the hydrolysis and condensation of TEOS to coat the 

particles with a layer of amorphous silica (I-NCP 3a@SiO2). A silica coating can be seen on 

the resultant particles by SEM (Fig. 1.20a) and confirmed by Si peaks in the EDS spectrum 

(Fig. 1.20b). However, the particles are severely etched under the basic coating conditions 

and a large amount of the iodinated ligand is lost, as evidenced by a lowered I to Cu ratio 

according to EDS after coating. The Zn-based NCPs are even less stable than the Cu-based 

NCPs, as they dissolve in water alone. The one-dimensional nature of the polymer chains in 

the iodinated CPs is one reason for their instability. CPs of higher dimensionality are 

expected to be more robust and therefore more tolerant of reaction conditions used to modify 

and functionalize them for in vivo use. 

 

 

Figure 1.19. SEM image of I-NCP 3a@PVP. 
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Figure 1.20. (a) SEM image and (b) EDS spectrum of I-NCP 3a@SiO2. 

 

1.3. Conclusion 

Novel iodinated coordination polymers have been synthesized as well as their 

corresponding nanoparticle phases with controllable morphologies, and their potential for CT 

contrast enhancement has been demonstrated. These new nanomaterials are capable of 

carrying high payloads of iodine and offer a new strategy for designing efficient CT contrast 

agents that do not suffer from the inherent drawbacks of small-molecule agents. While these 

NCPs based on an iodinated ligand are not stable enough to tolerate further functionalization 

or exposure to biological conditions, the NCP approach can be taken in different directions to 

achieve practically useful CT contrast agents. NCPs with more robust framework structures 

or stronger metal-ligand bonds may provide a solution to this problem. Metal connecting 

points with high X-ray attenuation may also be considered as the active component of an 

NCP contrast agent. These possibilities are explored in Chapter 2. 

 

1.4. Experimental Details 

 1.4.1 Materials and methods 
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Zinc nitrate, copper nitrate, 1-hexanol, TEOS, and all solvents were purchased from 

Fisher. TritonX-100, CTAB, and PVP were purchased from Aldrich. All starting materials 

were used without further purification. Thermogravimetric analysis (TGA) was performed 

using a Shimadzu TGA-50 equipped with a platinum pan, and all samples were air-dried and 

heated at a rate of 4 °C per minute under air. Scanning electron microscopy (SEM) was used 

to image the particles, using a Hitachi 4700 field emission scanning electron microscope. A 

Cressington 108 Auto Sputter Coater equipped with a Au/Pd (80/20) target and an MTM-10 

thickness monitor was used to coat the samples with a conductive layer before taking SEM 

images. Each SEM sample was prepared by first suspending the nanomaterial in ethanol, 

then a drop of the suspension was placed on a glass slide and the solvent was allowed to 

evaporate. Energy dispersive X-ray spectroscopy (EDS) was used to determine elemental 

composition of the particles, using an Oxford 7200 IncaPentaFET-x3 energy dispersive X-

ray spectrometer. The EDS data was processed with the Inca Microanalysis Suite. Each EDS 

sample was prepared by placing a drop of an ethanol suspension of the nanomaterial on a 

strip of carbon tape affixed to an aluminum sample holder, and the ethanol was allowed to 

evaporate. A Varian 820-MS Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) was 

used to measure I concentration during the release profile. Powder X-ray diffraction (PXRD) 

analyses were carried out using a Bruker SMART Apex II diffractometer using Cu radiation. 

The PXRD patterns were processed with the Apex II package using the phase ID plugin.   

Single crystal X-ray diffraction experiments were carried out on a Bruker SMART 

Apex II CCD-based X-ray diffractometer system equipped with a Cu –target X-ray tube ( = 

1.54178 Å) and operated at 1600 W. The frames were integrated with the Bruker SAINT
©

 

built in Apex II software package using a narrow-frame integration algorithm, which also 
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corrects for the Lorentz and polarization effects. Absorption corrections were applied using 

SADABS. All of the structures were solved by direct methods and refined to convergence by 

the least squares method on F
2
 using the SHELXTL software suite. All non-hydrogen atoms 

are refined anisotropically, except some solvent molecules and some of the ligand atoms in 

compounds I-CP 2 and I-CP 4.   

Computed tomography (CT) phantom images and X-ray attenuation data were 

obtained using a micro-computed tomography scanner equipped with a carbon nanotube 

based field emission micro-focus X-ray source.
34, 35

 All CT scans were done at either 40 or 

50 kVp, 0.7 mA, 0.5 mm Al filtration, and 100 msec (for 40 kVp) or 50 msec (for 50 kVp) 

exposure per projection. A higher peak voltage was used for I-NCP 5b than for I-NCP 3a 

and Iodixanol (50 kVp vs 40 kVp) because the X-ray tube needed to be replaced between the 

dates that these experiments were conducted, and the two X-ray tubes required operation at 

different peak voltages. X-ray attenuation is slightly lower at the higher peak voltage, but the 

difference is not large enough to significantly affect the results. Four hundred projections 

were used over a circular orbit of 200° at a step angle of 0.5° and were reconstructed at 76 

µm isotropic voxel spacing. 

1.4.2. Synthesis of iodinated ligand and coordination polymers. 

Synthesis of 2,3,5,6-tetraiodo-1,4-benzene dicarboxylic acid (I4-BDC-H2):  

Tetraiodobenzene dicarboxylic acid was synthesized and purified by using a procedure 

previously described.
36

 In brief, 1,4-benzenedicarboxylic acid (20 g, 0.12 mol) was dissolved 

in sulfuric acid (90 mL, fuming, 30%) at 80 °C. Iodine (80 g, 0.315 mol) was added in six 

portions over 2 h. The reaction mixture was heated to 175 °C and stirred for another 3 h. 

After cooling, it was treated with NaOH (2 M) solution to a pH of 9. The precipitate was 
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filtered out, and the filtrate was acidified with concentrated HCl to a pH of 4. The crude 

product was collected by filtration, and then heated to reflux in methanol with several drops 

of concentrated sulfuric acid overnight. After removing the solvent, the crude product was 

dissolved in water (200 mL) and treated with NaOH (2 M) solution to a pH of 9. After 

filtration, the filtrate was acidified with concentrated HCl to a pH of 3. The precipitate 

obtained by filtration was recrystallized in acetic acid to give the white crystalline product. 

Yield: 7.4 g (9.2 %) 

 

Figure 1.21. Scheme for the synthesis of I4-BDC. 

 

Synthesis of Cu(I4-BDC)(DMF)2 (I-CP 1): Tetraiodobenzene dicarboxylic acid 

(4.02 mg, 6.00 mmol) and Cu(NO3)2·3H2O (1.45 mg, 6.00 mmol) were dissolved in a 

mixture of DMF (670 mL) and H2O (34 mL) with HCl (1 equiv, 6.00 mmol). The vial 

containing the resulting clear solution was capped and placed in an 80 ºC oven. After 3 days, 

blue rectangular plate-shaped crystals were obtained. Yield: 1.46 mg (27.7%). 

Synthesis of Cu(I4-BDC)(DEF)2(H2O) bulk crystals (I-CP 2): Tetraiodobenzene 

dicarboxylic acid (5.32 mg, 7.94 µmol) and Cu(NO3)2·3H2O (1.92 mg, 7.94 µmol) were 

dissolved in a mixture of 260 µL DEF and 44 µL H2O. The vial containing the resulting clear 

solution was capped and placed in an 80 °C oven. After 1 day, bluish-green rod-shaped 

crystals were obtained. Yield:  4.33 mg (57.3%) 
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Synthesis of [Cu(I4-BDC)(H2O)2]·2H2O bulk crystals (I-CP 3): Tetraiodobenzene 

dicarboxylic acid (3.00 mg, 4.48 µmol) and Cu(NO3)2·3H2O (1.08 mg, 4.48 µmol) were 

dissolved in 1.23 mL of water. The vial containing the resulting clear solution was capped 

and placed in an 80 °C oven. After 1 day, green thin rod-shaped crystals were obtained. 

Yield: 2.54 mg (68.7%) 

Synthesis of Zn(I4-BDC)(DMF)2.5 bulk crystals (I-CP 4): Tetraiodobenzene 

dicarboxylic acid (8.87 mg, 13.2 µmol) and Zn(NO3)2·6H2O (3.93 mg, 13.2 µmol) were 

dissolved in a mixture of 1.4 mL DMF and 88 µL H2O. The vial containing the resulting 

clear solution was capped and placed in a 60 °C oven. After 4 days, colorless rod-shaped 

crystals were obtained. Yield: 6.68 mg (55.3%) 

Synthesis of [Zn(I4-BDC)(EtOH)2]·2EtOH bulk crystals (I-CP 5): 

Tetraiodobenzene dicarboxylic acid (2.75 mg, 4.11 µmol) was dissolved in 2.0 mL of ethanol 

in a vial. Zn(NO3)2·6H2O (1.22 mg, 4.11 µmol) was added as 41 µL of a 0.1 M aqueous 

solution. The vial containing the resulting clear solution was capped with a septum pierced 

by a syringe needle to allow for slow evaporation of the solvent. After 12 h at room 

temperature, colorless thin rod-shaped crystals were obtained. Yield: 0.94 mg (28%) 

Synthesis of I-NCP 3a: Two microemulsions with W=15 were prepared by the 

addition of 1.215 mL of an aqueous solution of I4-BDC sodium salt (0.1 M, pH 9.6) and 

1.215 mL of a 0.1 M Cu(NO3)2 aqueous solution to separate 15 mL aliquots of a 0.3 M 

Triton X-100 and 1.5 M 1-hexanol in cyclohexane. The separate microemulsions were stirred 

vigorously for 10 min at room temperature before the two microemulsions were combined, 

and the resultant 30 mL microemulsion with W=15 was stirred for an additional 2 h at room 

temperature. The nanoparticles were isolated by centrifugation at 13,000 rpm for 10 min. 
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After the removal of the supernatant, the particles were washed twice using 10 mL of ethanol 

each time. For each wash, the particles were re-dispersed by sonication and then recovered 

by centrifugation at 13,000 rpm for 10 min. Yield: 69.9 mg (75.0%). 

Synthesis of I-NCP 3b: Two microemuslsions with W=15 were prepared by the 

addition of 135 µL of an aqueous solution of I4-BDC sodium salt (0.2 M, pH=9.5) and 135 

µL of a 0.2 M Cu(NO3)2 aqueous solution to separate 5 mL aliquots of a 0.1 M CTAB/0.5 M 

1-hexanol/isooctane mixture. The separate microemulsions were stirred vigorously for 10 

min at room temperature, after which the two microemulsions were combined, and the 

resultant 10 mL microemulsion with W=15 was stirred for an additional 2 h at room 

temperature. The product was isolated and washed as described above for I-NCP 3a. Yield: 

12.5 mg (60.3%) 

 Synthesis of I-NCP 5a: A 300 µL aqueous precursor solution of 16.7 mM Na2(I4-

BDC) and 16.7 mM Zn(NO3)2 was quickly pipetted into 1.4 mL of ethanol in a vial with 

rapid stirring. This resulted in the formation of a white cloudy dispersion after several 

minutes, which was stirred at room temperature for 1 h. The product was isolated and washed 

as described above for I-NCP 3a. Yield: 2.09 mg (50.5%) 

Synthesis of I-NCP 5b: A 200 mL aqueous precursor solution of 0.05 M Na2(I4-

BDC) and 0.05 M Zn(NO3)2 was prepared and its pH was adjusted to 6.6 with NaOH. This 

precursor solution was quickly transferred into 25 mL of ethanol in a 50 mL round bottom 

flask with rapid stirring. This resulted in the immediate formation of a white cloudy 

dispersion, which was stirred at room temperature for 1 h. The product was isolated and 

washed as described above for I-NCP 3a. Yield: 6.35 mg (81.5%) 
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Synthesis of I-NCP 3a@PVP: PVP (MW 40,000) (168.7 mg, 4.22 µmol) was added 

to an ethanol dispersion containing 80 mg of I-NCP 3a. The total volume was then raised to 

40 mL with additional ethanol. The mixture was stirred for 18 h at room temperature. The 

product was isolated and washed as described above for I-NCP 3a. Yield:  62.9 mg (78.6% 

based on initial mass of I-NCP 3a) 

Synthesis of I-NCP 3a@SiO2: I-NCP 3a@PVP (9.0 mg) was dispersed in 15 mL of 

ethanol. This dispersion was added to a solution of 810 L ammonium hydroxide (14.8 M, 

12 mmol) in 14.18 mL of ethanol, then TEOS (12 L, 54.1 μmol) was added. The final 30-

mL reaction mixture contained 0.3 mg of particles/mL with 0.4 M NH4OH and 1.8 mM 

TEOS. The reaction was stirred at room temperature for 21 h.  The product was isolated and 

washed as described above for I-NCP 3a. Yield: 6.39 mg (71.0% based on initial mass of I-

NCP 3a@PVP) 
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CHAPTER 2 

 

Hf-Based Metal-Organic Framework as a Contrast Agent for Computed Tomography 

 

 

 

2.1. Introduction 

2.1.1 Hf- and Zr-based nanoscale metal-organic frameworks 

Background information on X-ray computed tomography (CT), nanoparticle contrast 

agents, and coordination polymers (CPs) is given in the Chapter 1 Introduction. Chapter 1 

presented several iodinated nanoscale CPs (NCPs) as potential CT contrast agents. While 

these NCPs had several properties that gave them advantages over molecular contrast agents 

and other types of nanoparticles, they were not stable enough to be further functionalized or 

used in vivo. The steric bulk of the I atoms on the bridging benzene rings forced the CPs to 

adopt structures of one-dimensional chains. Structures with higher dimensionality may have 

greater stability, making them more feasible for in vivo use.  

In this work, crystalline nanoscale metal-organic frameworks (NMOFs) with three-

dimensional network structures are synthesized and characterized. Instead of incorporating 

the element with a high atomic number into the bridging ligand of the structure, as with the 

iodinated NCPs, in this case the heavy elements (hafnium and zirconium) are incorporated 

into NMOFs in the secondary building units. While clinically-used contrast agents are 

iodinated molecules, iodine is not the best choice for a contrast agent in terms of X-ray 

attenuation efficiency, but is used mainly due its low toxicity and low cost.
1
 Elements with 

higher attenuation at relevant X-ray photon energies could provide adequate contrast at a 



36 
 

lower dose and decrease the amount of radiation to which a patient must be exposed. Hf- and 

Zr-based NMOFs were evaluated for X-ray attenuation and were further functionalized to 

make them suitable for in vivo CT imaging. 

UiO-66 is a metal-organic framework (MOF) composed of the Zr-carboxylate cluster 

Zr6(μ3-O4)(μ3-OH)4(CO2)12, which serves as a secondary building unit, bridged by 

benzenedicarboxylate linkers.
2
 UiO-66 is more chemically, thermally, and mechanically 

stable compared to other MOFs, owing mainly to the strength of the Zr-carboxylate bond. 

The MOF structure stays intact under aqueous conditions, even when exposed to HCl (pH 

1).
3
 Since it was first reported in 2008, UiO-66 has been used for a wide variety of 

applications including catalysis, photochemical reactions, and molecule separations.
4
 While 

Zr has an atomic number of 40, which may make it useful as a component of a CT contrast 

agent, Hf shows similar chemical behavior and has an even higher atomic number (72). 

Therefore, a Hf analog of the Zr UiO-66 MOF has been made, and has been evaluated as a 

CT contrast agent. 
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Figure 2.1. Framework structure of UiO-66 as determined from powder X-ray diffraction 

data. Blue, red, gray, and white colors represent Zr, O, C, and H atoms, respectively. 

Reprinted from reference 3 with permission (copyright 2008 American Chemical Society). 

 

2.1.2. Physiological response to nanoparticles 

Sufficient blood circulation time of nanoparticles is necessary for imaging 

applications, especially if the nanoparticles are targeted, as they need to circulate long 

enough to allow accumulation at a targeted site.
5, 6

 When nanoparticles are used in vivo, they 

need to be modified with passivating moieties to prevent rapid clearance from the 

bloodstream.
7-10

 Proteins in the bloodstream adsorb onto the surface of bare nanoparticles, 

causing them to be easily recognized by the immune system as foreign material. The 

mononuclear phagocyte system (MPS) is part of the immune system and includes phagocytic 

macrophages that are responsible for removing bacteria, debris, and foreign materials from 

the bloodstream. The MPS quickly clears recognized nanoparticles from the bloodstream, 

and they are taken up by organs that are rich in macrophages, like the liver and spleen.  
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Particle size is an important parameter to consider when nanomaterials are used in 

vivo. Large nanoparticles (>500 nm) tend to be taken up more readily by macrophages,
11

 

while nanoparticles larger than about 200 nm tend to accumulate in the spleen due to 

filtration from the bloodstream.
10

 Even if smaller nanoparticles are used, aggregation must be 

prevented to limit the effective size of the nanoparticles under biological conditions. 

Nanoparticles tend to aggregate in media with high ionic strength, such as blood plasma, due 

to charge shielding.
10

 Large aggregates (>5 μm) can clog blood vessels, causing pulmonary 

embolism or myocardial infarcation.
11, 12

 Poly(ethylene glycol) (PEG) is a hydrophilic 

polymer commonly used as an antibiofouling agent to coat nanoparticles and prolong their 

residence time in the bloodstream.
8, 9, 13, 14

 PEG is a popular choice due to its low toxicity and 

its unsurpassed ability to prevent protein adsorption and aggregation, thereby masking 

nanoparticles from the immune system. 

 

2.2. Results and Discussion 

 2.2.1. Synthesis and characterization of metal-organic frameworks  

 An NMOF with the formula Zr6O6(OH)4(BDC) (BDC = 1,4-benzenedicarboxylate) 

(Zr-NMOF) was synthesized by the solvothermal method reported in the literature.
2
 Equal 

molar amounts of ZrCl4 and benzene dicarboxylic acid (H2BDC) were dissolved in N,N’-

dimethylformamide (DMF) and heated at 120 ºC in a sealed vessel for 24 h. The resulting 

particles were observed by scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) to be ~50 nm cubes, many intergrown to form clusters up to ~200 nm in 

size (Fig. 2.2a,b). The reported crystal structure of UiO-66 was solved using powder X-ray 

diffraction (PXRD) data.
2
 The PXRD pattern of Zr-NMOF matches the UiO-66 simulated 
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pattern based on structural data, confirming that Zr-NMOF is indeed Zr6O6(OH)4(BDC) and 

has the UiO-66 structure (Fig. 2.3a). The extra peak at 12º is due to guest solvent molecules.  

The Hf analog of Zr-NMOF was also synthesized by a solvothermal method, but 

using the same conditions as for Zr-NMOF resulted in poorly crystalline particles 

intergrown into clusters as large as 3 μm, with a large size distribution. In order to obtain 

more monodisperse smaller particle clusters with better crystallinity, small adjustments in the 

conditions were made and a modulator was used. Hf-NMOF (Hf6O6(OH)4(BDC)) was 

synthesized by heating a solution of equal molar HfCl4 and H2BDC with 0.85 equivalents of 

acetic acid in DMF at 100 ºC in a sealed vessel for 48 h. Addition of ligands with only one 

coordination site has recently been introduced as a way to control NMOF growth.
15, 16

 Acetic 

acid competes with BDC for coordination with the metal cations of Hf-NMOF and 

presumably also modulates growth by binding with soluble Hf
4+

 species in solution. The 

resulting particles were observed by SEM and TEM to be 50-200 nm clusters of intergrown 

~30 nm cubes (Fig. 2.2c,d). The clusters of Zr-NMOF and Hf-NMOF appear larger by SEM 

than by TEM due to some aggregation upon solvent evaporation on the substrate used for 

SEM imaging. The PXRD pattern of Hf-NMOF is very similar to that of Zr-NMOF, 

indicating that Hf can replace Zr in the UiO-66 structure (Fig. 2.3a). Thermogravimetric 

analysis (TGA) of Zr-NMOF and Hf-NMOF shows 50.2% and 32.4% weight loss, 

respectively, due to dehydroxylation from 250-300 ºC and decomposition of BDC from 420-

520 ºC to leave behind ZrO2 and HfO2 (Fig. 2.3b). The expected weight losses calculated 

from the formulas are 55.6% and 43.3% for Zr-NMOF and Hf-NMOF, respectively. The 

lower weight loss observed could be due to some Zr/Hf oxides formed during synthesis and 

trapped in the pores of the NMOF.  
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Figure 2.2. (a, c) SEM and (b, d) TEM images of (a, b) Zr-NMOF and (c, d) Hf-NMOF. 

The scale bars represent 500 nm. 

 

 

Figure 2.3. (a) Experimental PXRD patterns of Zr-NMOF and Hf-NMOF, along with the 

simulated pattern for Zr-NMOF. (b) TGA of Zr-NMOF and Hf-NMOF. 
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 2.2.2. Phantom computed tomography studies  

 Phantom studies were conducted with Hf-NMOF and Zr-NMOF to evaluate their X-

ray attenuation properties. Aqueous dispersions of each type of NMOF underwent CT scans 

with concentrations ranging from 0.05-0.20 M Hf or Zr. For comparison, samples of aqueous 

solutions of Iodixanol, a clinically used iodinated contrast agent, were also scanned 

containing the same concentrations of I. Hf-NMOF contains 57.3 wt% Hf and Zr-NMOF 

contains 37.0 wt% Zr, while Iodixanol contains 49 wt% I. The Hounsfield unit (HU)
17

 value 

is an indicator of the ability of a material to attenuate X-rays with respect to water (0 HU). 

For images taken at 50 kVp (peak voltage), the slopes of the lines produced by plotting HU 

values against Hf/Zr/I concentrations for Hf-NMOF, Zr-NMOF, and Iodixanol are 

10740±390, 5600±180, and 5390±230 HU/M, respectively (Fig. 2.5d).  

The attenuation coefficient of a material is typically expressed in units of cm
-1

. Fig. 

2.5e shows attenuation coefficients of Hf, Zr, and I on a per mol basis vs the X-ray photon 

energy, derived from reported mass attenuation coefficient data.
18

 The X-ray source produces 

photons with a wide energy distribution, with the kVp being the maximum, and the lowest 

energy photons are removed by filtration.
19

 In this case, with a kVp of 50 keV, the photon 

energy distribution is centered around 22 keV. Attenuation coefficients increase sharply at 

the K shell electron binding energy (K edge) of a particular element. K edge energy is higher 

for heavier elements, and the K edge energies for Zr, I, and Hf, are 18.0, 33.2, and 65.4 keV, 

respectively. While Zr has higher attenuation than I in the 18.0-33.2 eV range, the higher 

attenuation of I below and above this range makes the overall attenuation of Zr and I very 

similar on a per mol basis. Hf has higher attenuation than both Zr and I by about a factor of 

two. The enhancement in attenuation compared to these lighter elements would be even more 
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pronounced at the higher kVp values (typically 120 kVp) used clinically for imaging human 

patients, due to the higher energy of the K edge. A Hf-based CT contrast agent could provide 

superior contrast at a lower dose compared to an I-based agent, and could decrease the 

amount of radiation to which the patient must be exposed. 

 

 
 

Figure 2.4. CT phantom images of (a) Hf-NMOF, (b) Zr-NMOF, and (c) Iodixanol 

dispersed in water. From the top, counterclockwise, the slots have [Hf/Zr/I] = 0, 0.05, 0.10, 

0.15, and 0.20 M. (d) X-ray attenuation as a function of [Hf/Zr/I] for Hf-NMOF, Zr-NMOF, 

and Iodixanol at 50 kVp. (e) Attenuation coefficient on a per mol basis vs photon energy for 

Hf, Zr, and I. 

 

 2.2.3. Modification of Hf-NMOF 
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For in vivo use, Hf-NMOF must be modified to increase biocompatibility and to 

avoid quick uptake by the RES. PEG was modified to be terminated with a carboxylate group 

on one end, and it was grafted onto Hf-NMOF by stirring the particles at room temperature 

in an aqueous solution of HO2C-PEG2000-OCH3. The resulting PEGylated Hf-NMOF@PEG 

particles appear similar to the bare particles by SEM (Fig. 2.5a). TGA shows an additional 

weight loss step from 220-350 ºC due to PEG loss (Fig. 2.6), which corresponds to particles 

that are 6.9 wt% PEG. The zeta potential increases from -24.6 mV for the bare particles to -

2.0 mV, due to the presence of a neutral polymer coating. It was found that the PEG was lost 

from the particles after exposure to phosphate buffered saline (PBS) due to phosphate 

competing with coordinated PEG to form Hf(PO4)x. In fact, after prolonged sonication of Hf-

NMOF in PBS, all of the organic ligand is replaced by phosphate, with retention of particle 

morphology (Fig. 2.5d). The transformation to Hf(PO4)x was established by TGA,  energy 

dispersive X-ray spectroscopy (EDS), and infrared (IR) spectroscopy.  

In order to avoid the loss of PEG in the presence of phosphate, Hf-NMOF was coated 

with a silica shell, which can facilitate attachment of siloxy-derived molecules. Tetraethyl 

orthosilicate (TEOS) was added to a dispersion of Hf-NMOF in ethanol with ammonium 

hydroxide to catalyze the hydrolysis and condensation of TEOS to coat the particles with a 

layer of amorphous silica (Hf-NMOF@SiO2). A siloxy-terminated version of PEG 

((OEt)3Si-PEG2000-OCH3) was then synthesized and grafted onto Hf-NMOF@SiO2 by 

stirring the particles in a solution of (OEt)3Si-PEG2000-OCH3 in ethanol under basic 

conditions (NH4OH) to produce Hf-NMOF@SiO2@PEG. Both Hf-NMOF@SiO2 and Hf-

NMOF@SiO2@PEG look similar to the bare particles by TEM (Fig. 2.5b,c). The presence 

of silica is indicated by the appearance of a Si-O band in the IR spectrum of Hf-
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NMOF@SiO2 at 1051 cm
-1

 (Fig. 2.7). TGA shows an increase in weight remaining, 

corresponding to 13.2 wt% SiO2, while Hf-NMOF@SiO2@PEG has an additional weight 

loss step corresponding to 8.0 wt% PEG. The zeta potential becomes more negative, from -

24.6 mV for the bare particles to -32.8 mV for the silica-coated particles, due to deprotonated 

surface silanol groups. As in the case of Hf-NMOF@PEG, PEG grafting raises the zeta 

potential closer to neutral, at -17.3 mV.  

It is important that nanoparticles for in vivo use not aggregate under physiological 

conditions, in order to avoid rapid clearance, filtration by the spleen, or pulmonary 

embolism. Hf-NMOF@SiO2@PEG showed no signs of aggregation by dynamic light 

scattering (DLS) done in 10 mM PBS. The average size of Hf-NMOF@SiO2@PEG was 

measured by DLS to be 246 nm, somewhat larger than then 175 nm and 169 nm average 

sizes for Hf-NMOF@SiO2 and Hf-NMOF, respectively. 
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Figure 2.5. SEM images of (a) Hf-NMOF@PEG, (b) Hf-NMOF@SiO2, (c) Hf-

NMOF@SiO2@PEG, and (d) Hf-NMOF after exposure to PBS. The scale bars represent 

100 nm. 

 

 
 

Figure 2.6. TGA of Hf-NMOF, Hf-NMOF@PEG, Hf-NMOF@SiO2, and Hf-

NMOF@SiO2@PEG. 
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Table 2.1. Hf-NMOF and its modifications: weight %, zeta potential, and size. 

Sample  Weight %
a
 Zeta potential 

(mV)
b
 

Average size 

(nm)
c
 

 Hf SiO2 PEG   

Hf-NMOF 57.3 - - -24.6 169 

Hf-NMOF@PEG 51.6 - 6.9 -2.0 - 

Hf-NMOF@SiO2 50.4 13.2 - -32.8 175 

Hf-NMOF@SiO2@PEG 46.4 12.2 8.0 -17.3 246 

a
Determined by TGA. 

b
Measured in 1 mM aq. KCl. 

c
Measured in 10 mM PBS. 

 

 

Figure 2.7. IR spectra of Hf-NMOF and Hf-NMOF@SiO2. The arrow indicates the peak 

coming from SiO2. 
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Figure 2.8. Size distribution by number obtained by DLS of Hf-NMOF, Hf-NMOF@SiO2, 

and Hf-NMOF@SiO2@PEG in 10 mM PBS. 

 

 2.2.4. In vivo computed tomography studies 

In vivo CT imaging was performed on mice using a micro-CT with a carbon nanotube 

X-ray source, which could be synchronized and gated with physiological signals.
20, 21

 Mouse 

respiration and electrocardiography (ECG) traces were monitored to allow respiratory-gated 

and cardiac-gated scans that minimize image blurriness caused by the animal’s motion. A 20 

g anesthetized mouse was administered 6.5 mg Hf-NMOF@SiO2@PEG (46.4 wt% Hf, 3.0 

mg Hf) dispersed in 10 mM PBS via tail vein injection. In general, a change in HU of 10-15 

units is detectable, while ten times this is desirable for optimal contrast enhancement.
22

 

Without a contrast agent, most organs have HU values in the range of 40-60 HU. The 3.0 mg 

dose of Hf was expected to cause a change of about +95 HU in the blood pool, based on the 

attenuation data from the phantom studies. It was found, however, that the contrast agent was 

cleared from the bloodstream and accumulated in the spleen and liver within 15 min after 
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injection (Fig. 2.9a-d). The attenuation of the spleen and liver increased by 131 and 86 HU, 

respectively, while there was no attenuation enhancement in the heart (blood) (Fig. 2.9e-f). 

Based on the sizes of the organs and the changes in attenuation, about 6% of the particles 

went to the spleen, while about 50% went to the liver. It is likely that the particles were too 

large to evade filtration by the tissue in the spleen and uptake by the MPS.   
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Figure 2.9. (a,b,e,f) Axial and (c,d) sagittal CT slices of a mouse (a,c,e) pre-contrast and 

(b,d,f) 15 min after injection of Hf-NMOF@SiO2@PEG (3.0 mg Hf). The labels are: 1-

spleen, 2-liver, 3-heart, 4-lungs. 

 

 2.2.5. Smaller Hf-NMOF particles 

 Smaller Hf-NMOF particles (Hf-NMOF’) were made in hopes that smaller particles 

would circulate longer and allow blood pool imaging, rather than accumulating quickly in the 

spleen and liver. Hf-NMOF’ was synthesized by heating a solution of equal molar HfCl4 and 

H2BDC in DMF at 100 ºC in a sealed vessel for 48 h. This is the same method as used for 

Hf-NMOF, but the concentration of starting materials was lowered and the acid modulator 

was eliminated in order to decrease the size of the particles. The resulting spherical particles 

are about 50 nm in diameter by SEM (Fig. 2.10). TGA showed that Hf-NMOF’ has the same 

Hf content as Hf-NMOF (57.3 wt%), but PXRD showed that the smaller particles are 

amorphous. Hf-NMOF’ was coated with silica and then PEGylated, in a manner similar to 

Hf-NMOF, to result in Hf-NMOF@SiO2@PEG’ particles that contain 9.1 wt% SiO2, 10.8 

wt% PEG, and 46.5 wt% Hf, as determined by TGA. DLS in 10 mM PBS showed an average 

size of 102 nm, compared to 246 nm for the corresponding larger PEGylated particles (Fig. 

2.11a). A test for non-specific protein adsorption was done to determine how Hf-

NMOF@SiO2@PEG’ may behave in the bloodstream. Bovine serum albumin (BSA) was 
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added to Hf-NMOF@SiO2@PEG’ in a 5:1 ratio (by weight) and particle size was monitored 

by DLS over 95 min. Particles tend to aggregate when proteins adsorb to the surface, which 

would be apparent by an increasing Z-average (an intensity-weighted measurement of 

particle size) and a decreasing signal intensity due to sedimentation of large aggregates. The 

Z-average stayed within a small range (192-200 nm) over the course of the experiment, and 

the signal intensity (counts) remained fairly constant, indicating the stability of Hf-

NMOF@SiO2@PEG’ against aggregation in the presence of BSA (Fig. 2.11b).  

 

 

Figure 2.10. SEM image of Hf-NMOF@SiO2@PEG’. The scale bar represents 500 nm. 
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Figure 2.11. DLS in 10 mM PBS. (a) Size distribution by number of Hf-

NMOF@SiO2@PEG and Hf-NMOF@SiO2@PEG’. (b) Stability test of Hf-

NMOF@SiO2@PEG’ in the presence of BSA. 

 

 In vivo CT imaging was done using Hf-NMOF@SiO2@PEG’. A 20 g anesthetized 

mouse was administered 6.5 mg Hf-NMOF@SiO2@PEG’ (46.5 wt% Hf, 3.0 mg Hf) 

dispersed in 10 mM PBS via tail vein injection. This is the same Hf dose used in the previous 

study with the larger particles. The mouse died immediately, and a CT scan revealed 

accumulation of particles in the lungs, with an increase in attenuation of 258 HU (Fig 2.12). 

Apparently, this dose was too high to avoid pulmonary embolism caused by particle 

aggregation, so a smaller dose of 4.3 mg particles (2.0 mg Hf) was used. In this case, the 

mouse survived, and a scan taken 15 min after injection revealed that the particles 

accumulated in the spleen and liver, with attenuation increases of 101 and 41 HU, 

respectively. There was no increase in attenuation in the bloodstream, as measured in the 

heart. A scan was also taken of a mouse that was administered 5.6 mg of Hf-NMOF’ (57.3 

wt% Hf, 3.2 mg Hf), 15 min after injection. Again, increases in attenuation are seen in the 

spleen (117 HU) and liver (63 HU) (Fig. 2.13), while no increase in seen in the bloodstream, 

as expected for bare nanoparticles. The clearance of the contrast agents from the blood is 

rapid, as similar results are seen for both types of particles just ~3-5 min after injection. The 

CT results obtained using Hf-NMOF@SiO2@PEG’ compared to larger Hf-

NMOF@SiO2@PEG and compared to non-PEGylated Hf-NMOF’ are quite similar. It is 

possible that these smaller particles form aggregates in the bloodstream that are big enough 

to be filtered by spleen or taken up by the MPS, or that the PEGylation is ineffective at 

preventing protein adsorption. 
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Figure 2.12. Axial CT slices of a mouse (a) pre-contrast and (b) 15 min after injection of Hf-

NMOF@SiO2@PEG’ (3.0 mg Hf). The labels are: 3-heart, 4-lungs. 

 

 

Figure 2.13. Axial CT slices of a mouse (a) pre-contrast and (b) 15 min after injection of Hf-

NMOF@SiO2@PEG’ (2.0 mg Hf). The labels are: 1-spleen, 2-liver. 

 

Table 2.2. Changes in X-ray attenuation in vivo 

Contrast agent mg Hf Organ Δ avg HU
a
 

Hf-NMOF@SiO2@PEG 3.0 Spleen +131 

Hf-NMOF@SiO2@PEG 3.0 Liver +86 

Hf-NMOF@SiO2@PEG’ 3.0 Lungs +258 

Hf-NMOF@SiO2@PEG’ 2.0 Spleen +101 

Hf-NMOF@SiO2@PEG’ 2.0 Liver +41 

Hf-NMOF’ 3.2 Spleen +117 

Hf-NMOF’ 3.2 Liver +63 

a
15 min after injection 
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2.3. Conclusion 

Nanoscale metal-organic frameworks with Zr or Hf metal connecting points have 

been synthesized and evaluated for their potential as CT contrast agents. Hf-NMOFs were 

coated with silica and then functionalized with PEG to make the particles suitable for in vivo 

CT imaging. As-synthesized and PEGylated Hf-NMOFs of different sizes could be used as 

contrast agents for imaging the spleen or liver. While these particles were intended to be 

long-circulating and to increase attenuation in the blood pool, they were cleared quickly from 

the blood by spleen filtration and/or by the MPS. This could be due to particle aggregation or 

ineffective PEGylation. Despite the difficulties encountered with Hf-NMOFs, the NMOF 

platform provides a promising strategy for incorporating high loadings of heavy elements 

into nanoparticles that can be surface-functionalized for enhanced biocompatibility and in 

vivo performance.  

 

2.4. Experimental Details 

 2.4.1 Materials and methods 

All starting materials were purchased from Fisher or Aldrich and used without further 

purification. Proton nuclear magnetic resonance spectroscopy (1
H NMR) spectra were recorded 

on a Bruker NMR 400 at 400 MHz and referenced to the proton resonance resulting from 

incomplete deuteration of deuterated chloroform (CDCl3, δ 7.26) or deuterated dimethyl 

sulfoxide (DMSO-d6, δ 2.50). Thermogravimetric analysis (TGA) was performed using a 

Shimadzu TGA-50 equipped with a platinum pan, and all samples were air-dried and heated 

at a rate of 4 °C per minute under air. Scanning electron microscopy (SEM) was used to 
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image the particles, using a Hitachi 4700 field emission scanning electron microscope.  A 

Cressington 108 Auto Sputter Coater equipped with a Au/Pd (80/20) target and an MTM-10 

thickness monitor was used to coat the samples with a conductive layer before taking SEM 

images. Each SEM sample was prepared by first suspending the nanomaterial in ethanol, 

then a drop of the suspension was placed on a glass slide and the solvent was allowed to 

evaporate. Transmission electron microscopy (TEM) was obtained on a JEOL 100CX-II 

Transmission Electron Microscope using carbon-coated copper grids to hold samples. 

Nitrogen adsorption experiments were performed with a Quantachrome Autosorb-1C. Size 

and zeta potential information was obtained on a Malvern ZetaSizer dynamic light scattering 

instrument. Infrared spectroscopy (IR) was performed using a Bruker Alpha-T Fourier 

Transform Infrared Spectrometer in attenuated total reflectance (ATR) mode. Powder X-ray 

diffraction (PXRD) analyses were carried out using a Bruker SMART Apex II diffractometer 

using Cu radiation.  The PXRD patterns were processed with the Apex II package using the 

phase ID plugin.   

Computed tomography (CT) phantom and in vivo images and X-ray attenuation data 

were obtained using a micro-computed tomography scanner equipped with a carbon 

nanotube based field emission micro-focus X-ray source. All CT scans were done at 50 kVp, 

0.7 mA, 0.5 mm Al filtration, and 50 msec exposure per projection. Four hundred projections 

were used over a circular orbit of 200° at a step angle of 0.5° and were reconstructed at 76 

µm isotropic voxel spacing. In vivo imaging was carried out using protocol approved by 

University of North Carolina Institutional Animal Care and Use Committee. The animals 

were anesthetized with 1–2% isoflurane at a flow rate of 1.5–2 L min
−1

 from a vaporizer. The 

anesthetized animals were placed over the pressure sensor in the mouse sample holder and 
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secured with adhesive restraints. The animals were put in the prone position such that the 

respiration sensor was approximately in the position of the abdomen to achieve maximum 

sensor coupling. To obtain the cardiac signals, ECG electrodes were taped to the footpads. 

With the camera running at 1 frame per second, the scan time was typically 15–20 min 

depending on the mouse respiration and heart rates. 

2.4.2. Synthesis of PEG and metal organic frameworks 

Synthesis of carboxy-poly(ethylene glycol)2000 (HO2C-PEG2000-OCH3): 1.00 g 

(0.50 mmol) of poly(ethylene glycol)-2000 monomethylether was dried under vacuum at 100 

ºC for 5 h. After cooling the PEG to room temperature, it was dissolved in 25 mL dry 

tetrahydrofuran. 108 mg (4.50 mmol) of sodium hydride was added under N2, and the 

dispersion was stirred vigorously for 1 h under N2. 295 μL (2.00 mmol) of tert-butyl 

bromoacetate was then added, and the reaction was stirred at room temperature for 12 h. The 

reaction was filtered to remove NaBr, and the filtrate was concentrated by evaporation under 

vacuum. The (CH3)3O2C-PEG2000-OCH3 product was precipitated by addition of diethyl 

ether, then filtered and dried under vacuum. The carboxy groups were deprotected by stirring 

the product in 60 mL of 70/30 (v/v) dichloromethane/trifluoroacetic acid at room temperature 

for 2 h. The resulting solution was concentrated by evaporation under vacuum, and HO2C-

PEG2000-OCH3 was precipitated by the addition of diethyl ether. 
1
H NMR (CDCl3, 400 

MHz): 3.36 (s, 3H), 3.62 (s, 172H), 3.74 (t, 2H), 3.80 (t, 2H). 

Synthesis of triethoxysilylpropyl carbamoyl-poly(ethylene glycol)2000 ((OEt)3Si-

PEG2000-OCH3): 1.00 g (0.50 mmol) of poly(ethylene glycol)-2000 monomethylether was 

dried under vacuum at 100 ºC for 5 h. After cooling the PEG to room temperature, it was 

dissolved in 4 mL anhydrous dimethyl sulfoxide (DMSO). 0.124 mL (0.50 mmol) of distilled 
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(3-isocyanatopropyl)triethoxysilane was then added, followed by 1 μL (0.742 mg, 5.7 μmol) 

of diisopropylethylamine (Hünig’s base). The reaction was stirred at room temperature under 

N2 for 12 h. The DMSO was removed under vacuum at 60 ºC. 
1
H NMR (DMSO-d6, 400 

MHz): 0.51 (t, 2H), 1.14 (t, 9H), 1.43 (t, 2H), 2.92 (q, 2H), 3.35 (s, 3H), 3.50 (s, 174H), 3.73 

(q, 6H), 4.03 (t, 2H), 7.22 (t, 1H). 

Synthesis of Zr-NMOF: Zr-NMOF was synthesized using a reported procedure.2 

1,4-benzene dicarboxylic acid (37.7 mg, 0.227 mmol) and ZrCl4 (52.9 mg, 0.227 mmol) were 

dissolved in 26.4 mL DMF. This solution was sealed in a Teflon-lined autoclave and heated 

in an oven at 120 ºC for 24 h. After cooling to room temperature, the resulting solid was 

isolated be centrifugation at 10,000 rpm for 10 min. After removing the supernatant, the solid 

was washed three times, once using 20 mL of DMF, then twice using 10 mL of ethanol each 

time. For each wash, the particles were redispersed by sonication and then recovered by 

centrifugation at 10,000 rpm for 10 min. Yield: 48.8 mg (76.9%) 

Synthesis of Hf-NMOF: Hf-NMOF was synthesized by a modification of the 

procedure for Zr-NMOF. 1,4-benzene dicarboxylic acid (45.1 mg, 0.272 mmol) and ZrCl4 

(63.3 mg, 0.272 mmol) were dissolved in 26.4 mL DMF, and acetic acid (13.2 μL, 0.231 

mmol) was added. This solution was sealed in a Teflon-lined autoclave and heated in an oven 

at 100 ºC for 48 h. After cooling to room temperature, the resulting solid was isolated and 

washed as described for Zr-NMOF. Yield: 77.6 mg (78.2%) 

Synthesis of Hf-NMOF@PEG: Hf-NMOF (60.0 mg) was dispersed in 10 mL H2O, 

then added to a solution of HO2C-PEG2000-OCH3 (12.0 mg, 5.87 μmol) in 10 mL H2O. The 

reaction was stirred at room temperature for 18 h, then the resulting particles were isolated by 
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centrifugation and washed with H2O and methanol, as described for Zr-NMOF. Yield: 52.1 

mg (80.8%) 

Synthesis of Hf-NMOF@SiO2: Hf-NMOF (60.0 mg) was dispersed in 10 mL of 

ethanol. This dispersion was added to a solution of 2.03 mL ammonium hydroxide (14.8 M, 

30.0 mmol) in 137.95 mL of ethanol, then TEOS (18.0 L, 81.2 μmol) was added. The final 

150-mL reaction mixture contained 0.4 mg of particles/mL with 0.2 M NH4OH and 0.406 

mM TEOS. The reaction was stirred at room temperature for 2 h, then the resulting particles 

were isolated by centrifugation and washed with ethanol, as described for Zr-NMOF. Yield: 

52.8 mg (76.4%) 

Synthesis of Hf-NMOF@SiO2@PEG: Hf-NMOF@SiO2 (45.0 mg) was dispersed in 

a 10-mL solution of (OEt)3Si-PEG2000-OCH3 (15.0 mg, 6.76 μmol) in ethanol. This 

dispersion was added to a solution of 0.305 mL ammonium hydroxide (14.8 M, 4.51 mmol) 

in 4.695 mL of ethanol. The final 15-mL reaction mixture contained 3 mg of particles/mL 

with 0.3 M NH4OH and 0.45 mM PEG. The reaction was stirred at room temperature for 21 

h, then the resulting particles were isolated by centrifugation and washed with H2O and 

methanol, as described for Zr-NMOF. Yield: 40.5 mg (71.8%) 

Synthesis of Hf-NMOF’: 1,4-benzene dicarboxylic acid (21.9 mg, 0.132 mmol) and 

ZrCl4 (30.7 mg, 0.132 mmol) were dissolved in 26.4 mL DMF. This solution was sealed in a 

Teflon-lined autoclave and heated in an oven at 100 ºC for 48 h. After cooling to room 

temperature, the resulting solid was isolated and washed as described for Zr-NMOF. Yield: 

41.6 mg (86.4%) 

Synthesis of Hf-NMOF@SiO2’: Hf-NMOF’ (60.0 mg) was dispersed in 10 mL of 

ethanol. This dispersion was added to a solution of 1.52 mL ammonium hydroxide (14.8 M, 
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22.5 mmol) in 138.47 mL of ethanol, then TEOS (9.0 L, 40.6 μmol) was added. The final 

150-mL reaction mixture contained 0.4 mg of particles/mL with 0.15 M NH4OH and 0.203 

mM TEOS. The reaction was stirred at room temperature for 1 h, then the resulting particles 

were isolated by centrifugation and washed with ethanol, as described for Zr-NMOF. Yield: 

56.4 mg (94.0%) 

Synthesis of Hf-NMOF@SiO2@PEG’: The same procedure as for Hf-

NMOF@SiO2@PEG was used, except Hf-NMOF@SiO2’ was used instead of Hf-

NMOF@SiO2. Yield: 45.0 mg (100%) 
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3.1. Introduction 

3.1.1. Nanoparticles for drug delivery 

Chemotherapeutic drugs can kill tumors and halt the progression of cancer, but the 

drugs are typically small molecules with undesirable pharmacokinetic profiles and severe 

side effects. Nanoparticles can be used as drug delivery vehicles in vivo with several 

potential advantages over small molecule therapeutic agents.
1-3

 Molecular drugs cannot be 

easily targeted to a specific site and typically must be given in large doses with the potential 

for systemic toxicity. Nanoparticles can provide a better way to administer therapeutic agents 

that minimizes the death of healthy cells while eradicating diseased cells. Nanoparticles can 

be designed to target only a specific area in the body, such as a tumor (Fig 3.1). One way this 

can be achieved is by passive accumulation of nanoparticles in a particular area due to the 

enhanced permeability and retention (EPR) effect. Blood vessels in tumors are leaky 

compared to those in healthy tissues, and lymphatic drainage is poor in the tumor tissue. 

Therefore, nanoparticles of an appropriate size are able to leak out of defective vasculature 

and accumulate in a tumor site.
4
 Pores in the defective vessels within a tumor typically have 

a diameter of 40-80 nm, but can be as large as 1 μm, while pores in normal vasculature are 

typically no larger than 8 nm.
5
 Nanoparticles can also be made to actively target a specific 
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tissue by conjugation of affinity molecules to the surface of the particles.
6
 Binding of 

targeting moieties to certain receptors that are overexpressed by cancer cells further improves 

tumor uptake of nanotherapeutics.
7
 For example, sigma receptors are overexpressed on a 

number of different human cancer cell lines, including lung, colorectal, breast, and others.
8
 

These sigma receptors can be targeted by small benzamides, such as anisamide.
9-11

 

Nanoparticles can also be designed to evade the immune system and release 

therapeutic agents in a controlled manner. These desirable properties can often be achieved 

by encapsulating or coating nanoparticles with a suitable material that improves stability, 

biocompatibility, and ease of functionalization. The physiological response to nanoparticles 

is described in Chapter 2 (section 2.1.2), and many of the same issues must be considered 

with nanoparticle formulations of drugs as with nanoparticulate contrast agents. Therapeutic 

nanoparticles must have a long circulation time in the bloodstream to allow accumulation at a 

target, and they must not release a significant amount of their active agent until they have 

reached the target.  
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Figure 3.1. Schematic representation of drug delivery to a tumor by nanocarriers. Passive 

targeting is achieved by the EPR effect, while active targeting is achieved by functionalizing 

the nanocarrier surface with ligands that recognized specific cells. Reprinted from reference 

3 with permission (copyright 2007 Nature Publishing Group). 

 

3.1.2. Nanoscale coordination polymers for drug delivery 

Several types of nanocarriers have been devised for delivery of chemotherapeutic 

agents to diseased tissue, resulting in improved pharmacokinetics and significant decreases in 

system toxicity.
1, 12

 These carriers include liposomes, micelles, dendrimers, biomolecules, 

polymer particles, colloidal precipitates, and porous materials like mesoporous silica 

nanoparticles.
2, 13

 For example, liposomes are lipid bilayer vesicles that are useful as drug 

carriers because they have low immunogenicity and can be taken up by cells.
14

 Doxil is a 
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liposomal formulation of an anticancer drug that has significantly less toxicity in clinical 

tests compared to the small molecule drug.
15, 16

   

Nanoscale coordination polymers (NCPs) are hybrid materials that can serve as drug 

carriers with several advantages over other types of nanoscale carriers. Background 

information on coordination polymers (CPs) and the usefulness of NCPs for biomedical 

applications is given in Chapter 1. There are several ways that drugs can be incorporated into 

NCPs. Cystalline NCPs with a framework structure can have high internal void volume, and 

the pores can be loaded with drugs. For example, the delivery of chemotherapeutics loaded 

into the pores of the MIL family of NCPs has been demonstrated.
17, 18

 Alternatively, a drug 

can be directly incorporated as a component of the framework. Functionalities can also be 

included in the framework that allow post-synthetic covalent attachment of drug molecules. 

For example, cisplatin prodrugs have been successfully delivered by NCPs in which they 

were either directly incorporated or covalently attached after NCP synthesis.
19, 20

 In this 

work, a different direct incorporation strategy was used to synthesize NCPs for delivery of an 

organic antifolate chemotherapeutic possessing functional groups that can bridge metal-

connecting points in NCP formulations.
21, 22

 

3.1.3. Methotrexate 

Methotrexate (MTX) is a small molecule chemotherapeutic agent. As an antifolate 

drug, it works by inhibiting the enzyme dihydrofolate reductase, thereby preventing DNA 

synthesis.
23

 While MTX is toxic to many cancer cells and is the first-line treatment for acute 

lymphoblastic leukemia (ALL), its efficacy is compromised by an array of drawbacks, 

including poor pharmacokinetics, low tolerated doses, and resistance.
24

 Large doses of MTX 

are required as a result of its non-specific distribution and rapid renal clearance, which can 
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lead to systemic toxicity. Prolonged MTX treatment of cancer patients can result in numerous 

side effects such as mucositis, hematological toxicity, and secondary cancer. MTX delivery 

with nanoparticulate carriers can overcome many of the drawbacks of conventional 

chemotherapy, as nanoparticles can carry a large payload to a tumor and reduce systemic 

toxicity.
6
 Although several nanoparticle systems have been examined for MTX delivery, 

relatively low drug loadings were achieved in these studies.
25-30

 It was hypothesized that 

MTX could be incorporated into NCPs as a bridging ligand since it contains two carboxylate 

groups which can coordinate to metal connecting points (Fig. 3.2). Such a strategy could 

allow for very high loadings of MTX to be achieved in such NCP formulations. Several 

MTX-based NCPs were synthesized and characterized, and attempts were made to stabilize 

them.  

 

 

Figure 3.2. Structure of MTX. 

 

3.2. Results and Discussion 

 3.2.1. Synthesis of Mn-, Cu-, and Zn-MTX NCPs  

New NCPs were synthesized using MTX as the bridging ligand and either Mn
2+

, 

Cu
2+

, or Zn
2+

 ions as the metal-connecting points. The properties of the NCPs, especially 

stability, can be tuned by the choice of metal ion. While conventional heating can be used to 
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synthesize NCPs, microwave heating has recently been demonstrated to be a particularly 

useful method of synthesizing NCPs. Surfactant-assisted microwave synthesis has been used 

to make Mn-BDC (BDC = benzene dicarboxylate) NCPs,
31

 while a simple solvothermal 

microwave synthesis method has been used to make Fe-BDC particles with the MIL-101 

structure.
20

 Microwave heating creates uniform seeding conditions that typically result in 

rapid formation of nanoparticles with controllable sizes and shapes.
32

 Temperature and 

heating rate are important parameters that can be varied to control NCP particle nucleation 

and growth.  

NCPs containing MTX and either Mn
2+

, Cu
2+

, or Zn
2+

 were synthesized by 

surfactant-assisted microwave heating. Mn-MTX and Cu-MTX were prepared in 78% and 

18% yield, respectively, by first preparing two microemulsions of 0.1 M CTAB (CTAB = 

cetyltrimethylammonium bromide) and 0.5 M 1-hexanol in isooctane with a water-to-

surfactant ratio (W) of 5. The aqueous phase that was added to the organic phase contained 

[CH3NH3]2(MTX) in one microemulsion and MnCl2 or Cu(NO3)2 in the other. After mixing 

the two microemulsions together, the final microemulsion was heated by microwave in a 

sealed vessel at 120 
◦
C for 10 min, with stirring. The particles were isolated by centrifugation 

and washed with ethanol. Scanning electron microscopy (SEM) showed that Mn-MTX and 

Cu-MTX particles both had a twisted ribbon morphology, with ribbons about 1 μm long, 100 

nm wide, and 50 nm thick (Fig. 3.3a-c). Zn-MTX 1 particles with similar size and shape 

(Fig. 3.3d) were synthesized using Zn(NO3)2 as the metal precursor by the same procedure, 

except using a higher W value (15). These ribbon-like particles are not useful for drug 

delivery because they are too long in one dimension and their shape would likely make it 

difficult to encapsulate them or to functionalize them while maintaining high drug loading. 
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Smaller spherical Zn-MTX particles (Zn-MTX 2) could be made in 84% yield by using 

similar conditions as for Zn-MTX 1, but raising the pH of the [CH3NH3]2(MTX) solution 

from 8.2 to 10.6 by addition of methylamine before adding it to the isooctane. Both SEM and 

transmission electron microscopy (TEM) showed that particles of Zn-MTX 2 are spherical 

with a diameter between 40 and 100 nm (Fig. 3.4). Dynamic light scattering (DLS) in ethanol 

gives a number distribution with an average particle size of 161 nm, slightly larger than the 

size observed by microscopy due to slight aggregation in this medium (Fig. 3.5).  

 

 

Figure 3.3. SEM images of (a-b) Mn-MTX, (c) Cu-MTX, and (d) Zn-MTX 1. 
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Figure 3.4. (a) SEM and (b) TEM images of Zn-MTX 2. 

 

 

Figure 3.5. DLS of Zn-MTX 2 in EtOH. 

 

3.2.2. Characterization of Mn-, Cu-, and Zn-MTX NCPs  

Mn-MTX, Cu-MTX, and Zn-MTX 2 were shown by thermogravimetric analysis 

(TGA) to contain 87.0, 89.0, and 79.1 wt% MTX based on the organic weight loss that 

occurred between 200-500 °C (Fig. 3.6). If the metal-to-ligand ratio were 1:1, the MTX 

content would be 87-89 wt% of these NCPs. This corresponds well to the MTX content of 

Mn-MTX and Cu-MTX, while the lower MTX content of Zn-MTX 2 is likely due to the 

formation of some Zn oxides or hydroxides at the higher pH used for its synthesis. The 
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powder X-ray diffraction (PXRD) patterns of Mn-MTX and Cu-MTX contain several weak 

peaks indicating that they have a low degree of crystallinity, and they share the same 

structure (Fig. 3.7). These peaks do not match pure MTX or any metal oxides that could be 

present in the particles as impurities. Attempts were made to grow single crystals of MTX-

containing coordination polymers for structural determination by single crystal X-ray 

diffraction, however, all attempts were unsuccessful. The extremely broad peak and the lack 

of sharp peaks in the Zn-MTX 2 PXRD pattern indicate a high degree of structural disorder. 

Raising the pH of the aqueous phase tends to increase the rate of particle formation, leading 

to less long-range order. The crystallinity, size, and shape of particles are dependent on the 

rates of nucleation and growth, two kinetic phenomena that respond differently to reaction 

conditions.
33

 Crystalline NCPs usually adopt well-defined, non-spherical morphologies, as 

seen for Mn-MTX and Cu-MTX, because crystal lattice energy is the most influential factor 

in their growth. On the other hand, amorphous NCPs are usually spherical, as seen for Zn-

MTX 2, because this morphology minimizes interfacial free energy between the particles and 

solvent during their formation.  

 

 

Figure 3.6. TGA of Mn-MTX, Cu-MTX, and Zn-MTX 2. 
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Figure 3.7. PXRD patterns of Mn-MTX, Cu-MTX, and Zn-MTX 2. 

 

3.2.3. Release profile of Zn-MTX NCP  

The stability of Zn-MTX 2 under biological conditions was evaluated by dialyzing 

the particles against phosphate buffered saline (PBS) (pH = 7.4) at 37 °C (Fig. 3.8). The 

concentration of dissolved MTX was measured by the UV-vis absorbance at 305 nm. The 

absorption spectrum obtained from dissolved Zn-MTX 2 matched that of MTX, indicating 

that MTX remains unchanged under the conditions used to synthesize the particles (Fig. 3.9). 

A solution of MTX alone took a significant amount of time to diffuse out of the dialysis bag. 

After 2.0 h, 50% of the MTX had diffused from the bag into the surrounding media. It took 

6.6 h for 50% of the MTX from Zn-MTX 2 to be released into solution, indicating that Zn-

MTX 2 has a half-life of about 4.6 h. However, DLS and SEM reveal that Zn-MTX 2 

particles quickly agglomerate into larger particles (>1 μm) in aqueous media (Fig. 3.10a), 

rendering them unsuitable for in vivo use. In order to improve stability and biocompatibility 

in biological media, several attempts were made to coat Zn-MTX 2 with a silica shell, 
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however, the basic conditions used for coating caused severe erosion and fusion of the 

particles (Fig. 3.10b).  

 

 

Figure 3.8. Release profiles for Zn-MTX 2 and MTX alone dialyzed in PBS (pH = 7.4) at 

37 °C. 

 

 

Figure 3.9. A UV-vis absorption spectrum of MTX compared to a spectrum of dissolved Zn-

MTX 2. 
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Figure 3.10. SEM images of Zn-MTX 2 after exposure to (a) water and (b) silica-coating 

conditions. 

 

3.2.4. Synthesis and characterization of Zr-MTX NCPs  

It was hypothesized that more robust NCPs could be synthesized using Zr
4+

 in place 

of Zn
2+

 metal connecting points, due to the strength of the Zr-carboxylate bond.
34

 Zr-MTX 

was synthesized in 54% yield by microwave heating of a solution of MTX and ZrCl4 in N,N-

dimethylformamide (DMF) at 60 
◦
C for 5 min in a sealed vessel. The resulting spherical 

particles had a diameter of 70 to 180 nm by both SEM and TEM (Fig. 3.11), and DLS 

showed an average particle size of 136 nm in 1 mM aq. KCl (Fig. 3.12). Zr-MTX contains 

78.7 wt% MTX, based on the organic weight loss seen by TGA (Fig. 3.13), and is amorphous 

by PXRD. 
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Figure 3.11. (a) SEM and (b) TEM images of Zr-MTX. 

 

 

Figure 3.12. DLS of Zr-MTX and Zr-MTX@SiO2 in 1 mM aq. KCl. 
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Figure 3.13. TGA of Zr-MTX. 

 

3.2.5. Silica coating of Zr-MTX NCPs  

Zr-MTX particles were coated with amorphous silica by base-catalyzed hydrolysis 

and condensation of tetraethylorthosilicate (TEOS) in ethanol to afford Zr-MTX@SiO2. 

TEM showed that the particles remained discreet and retained their morphology during 

coating. There was no shell visible by TEM, but energy-dispersive X-ray spectroscopy (EDS) 

showed the presence of Si, with a Si/Zr atomic ratio of 4.1 (Fig. 3.14). DLS showed an 

increase in average particle size from 136 to 164 nm after coating, with no sign of Zr-

MTX@SiO2 particle aggregation in aqueous solution. The zeta potential, as measured by 

DLS in 1 mM aq. KCl, changed from -27.2 to -38.6 mV after coating, consistent with a layer 

of silica on the surface of the particles. TGA showed an increase in weight remaining at 600 

°C, corresponding to a silica content of 50.6 wt% in the particles. The amount of silica 

deposited could be tuned by adjusting reaction parameters like the amount of TEOS, the base 

concentration, and the duration of the reaction. While particles with thinner silica coatings 



75 
 

(down to 3 wt%) could be synthesized, the heavily coated particles were chosen for stability 

testing.  

3.2.6. Release profile of Zr-MTX NCP  

Unlike Zn-MTX 2, Zr-MTX particles were stable in pure water. The stability of Zr-

MTX under biological conditions was evaluated by dialyzing the particles against PBS (pH = 

7.4) at 37 °C (Fig. 3.15). It took 2.8 h for 50% of the MTX from Zr-MTX to be released into 

solution, indicating that Zr-MTX has a half-life of about 0.8 h (after correcting for MTX 

diffusion time). The silica coating was expected to slow MTX release from the particles due 

to slow diffusion of MTX through the porous shell. Zr-MTX@SiO2 particles were dialyzed 

under the same conditions, and it was found that silica coating extended the half-life of the 

particles to 2.1 h. Although Zr-MTX is more stable than Zn-MTX 2 in water, the short half-

life of Zr-MTX in PBS is due to fast formation of zirconium phosphate. The silica shell 

provides only a modest delay of this process due the extremely high driving force of Zr-

MTX to form Zr3(PO4)4 in the presence of phosphates. This hypothesis is reasonable as the 

solubility product (Ksp) of Zr3(PO4)4 is 10
-134

, which is dramatically smaller than that of 

Zn3(PO4)2 (10
-34

).  

There may be other coating materials that would allow for slower controlled release 

of MTX from Zr-MTX or protect the particles from exposure to phosphate. The negative 

zeta potential of Zr-MTX particles, along with their stability in water, should allow for 

coating of these particles with a cationic lipid bilayer (liposome) to provide biocompatibility 

and stabilization in physiologically relevant media.
35-37
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Figure 3.14. (a) TEM image and (b) EDS spectrum of Zr-MTX@SiO2. 

 

 

Figure 3.15. Release profiles for Zr-MTX, Zr-MTX@SiO2, and MTX alone dialyzed in 

PBS (pH = 7.4) at 37 °C.  

 

 

3.3. Conclusion 

Several methotrexate-containing NCPs have been synthesized and evaluated for their 

potential as drug delivery vehicles. While MTX NCPs with Zn
2+

 and Zr
4+

 metal ion 

connecting points had sizes and shapes suitable for in vivo applications, the Zn-based NCP 

was too unstable for further functionalization, and the silica-coated Zr-based NCP was not 
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adequately stabilized due to the driving force for zirconium phosphate formation. 

Considering the challenges encountered with these NCPs, it seemed possible that a MTX 

NCP formulation containing a metal less labile than zinc, but with a phosphate Ksp much 

greater than that of Zr3(PO4)4, would prove easier to stabilize. For example, trivalent 

lanthanide ions have much greater phosphate Ksp values (10
23

 for Gd(PO4)) and would 

provide a good balance between particle stability and stabilization toward lanthanide 

phosphate formation. Silica-coating is an attractive method of stabilizing particles because a 

silica surface allows for attachment of silyl-derivatives of passivating molecules and 

targeting molecules. Other types of coatings, like lipid bilayers, may also be able to stabilize 

NCPs while allowing for further functionalization.  

Gd-MTX particles were successfully synthesized, stabilized, and targeted to cancer 

cells in vitro; these results will be described in Rachel Huxford-Phillip’s dissertation. Briefly, 

Gd-MTX nanoparticles containing 71.6 wt% MTX were synthesized and encapsulated in a 

lipid bilayer that allowed for controlled release of MTX, extending the half-life of the 

particles from 2 to 23 h under biological conditions. A molecule was conjugated to the lipid 

bilayer that targets receptors overexpressed on leukemia cancer cells, and the targeted 

particles were shown to have superior efficacy in in vitro cytotoxicity assays compared to the 

as-synthesized particles and the free drug. The NCP approach to formulation of MTX 

nanoparticles offers a potential way to target and deliver high payloads of MTX to cancer 

cells. This strategy is general and could be applied to design many other nanoparticle 

formulations of organic anticancer drugs. 

 

3.4. Experimental Details 
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 3.4.1 Materials and methods 

All chemicals, unless otherwise noted, were purchased from Fisher or Sigma Aldrich 

and used without further purification. Methotrexate was purchased from TCI America. 

Microwave reactions were carried out in a CEM Discovery microwave or a CEM MARS 5 

microwave. Scanning electron microscopy (SEM) was performed with a Hitachi 4700 Field 

Emission Scanning Electron Microscope, and transmission electron microscopy (TEM) was 

performed with a JEM 100CX-II Transmission Electron Microscope. A Cressington 108 

Auto Sputter Coater equipped with a Au/Pd (80/20) target and MTM-10 thickness monitor 

was used to coat samples before SEM imaging. SEM micrographs were obtained on glass 

slides, and TEM micrographs were obtained on carbon-coated copper grids.  

Thermogravimetric analysis (TGA) was done on a Shimadzu TGA-50 equipped with a 

platinum pan, and samples were heated at a rate of 3°C/min under air. Powder x-ray 

diffraction (PXRD) data was gathered on a Bruker SMART APEX II diffractometer using Cu 

radiation, and powder patterns were analyzed with the APEX II package using the phase ID 

plugin. UV-vis absorption spectra were obtained using a Shimadzu UV-2401 PC UV-Vis 

recording spectrophotometer. Size and zeta potential information was obtained on a Malvern 

ZetaSizer dynamic light scattering instrument. 

3.4.2. Synthesis of MTX-containing NCPs 

Synthesis of Mn-MTX. Ribbon-shaped NCPs containing Mn
2+

 and MTX were 

synthesized by a high-temperature surfactant-assisted method. Two microemulsions with 

W=5 were prepared by the addition of 90 L of an aqueous solution of MTX 

dimethylammonium salt (0.10 M) and 90 L of an aqueous solution of MnCl2·4H2O (0.10 

M) to separate 10 mL aliquots of a 0.1 M CTAB/0.5 M 1-hexanol/isooctane mixture. The 
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separate microemulsions were stirred vigorously for 10 min at room temperature, then the 

two microemulsions were combined, and the resultant 20 mL microemulsion with W=5 was 

transferred to a sealed microwave vessel. The reaction was rapidly heated to 120 °C, and held 

at this temperature for 10 min with stirring. After cooling, the nanoparticles were isolated by 

centrifugation at 13,000 rpm for 10 min. After the removal of the supernatant, the particles 

were washed twice, using 10 mL of ethanol each time. For each wash, the particles were re-

dispersed by sonication and then recovered by centrifugation at 13,000 rpm for 10 min.  

Yield: 3.57 mg (78.2 %). 

Synthesis of Cu-MTX. Ribbon-shaped NCPs containing Cu
2+

 and MTX were 

synthesized by the same method as Mn-MTX, but using Cu(NO3)2·2.5H2O instead of 

MnCl2·4H2O. Yield: 0.84 mg (18.1 %). 

Synthesis of Zn-MTX 1. Ribbon-shaped NCPs containing Zn
2+

 and MTX were 

synthesized by a high-temperature surfactant-assisted method. Two microemulsions with 

W=15 were prepared by the addition of 270 L of an aqueous solution of MTX 

dimethylammonium salt (0.05 M) and 270 L of an aqueous solution of Zn(NO3)2·6H2O 

(0.05 M) to separate 10 mL aliquots of a 0.1 M CTAB/0.5 M 1-hexanol/isooctane mixture. 

The separate microemulsions were stirred vigorously for 10 min at room temperature, then 

the two microemulsions were combined, and the resultant 20 mL microemulsion with W=15 

was transferred to a sealed microwave vessel. The reaction was heated, cooled, and the 

nanoparticles were isolated as described for Mn-MTX.  Yield:  2.88 mg (41.2 %). 

Synthesis of Zn-MTX 2. Spherical NCPs containing Zn
2+

 and MTX were 

synthesized by the same method as Zn-MTX 1, but using higher concentrations of aqueous 

solutions of MTX dimethylammonium salt (0.10 M) and M Zn(NO3)2·6H2O (0.11 M). The 
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pH of the MTX solution was raised from 8.2 to 10.6 by addition of CH3NH2 before adding it 

to the isooctane. Yield: 11.9 mg (85.1 %). 

Synthesis of Zr-MTX. ZrCl4 (6.99 mg, 0.03 mmol) was dissolved in 6 mL N,N-

dimethylformamide (DMF), followed by 13.67 mg (0.03 mmol) methotrexate. The clear 

yellow solution was placed in a sealed microwave vessel and heated at 60 °C for 5 minutes 

(300 W, 200 psi) without stirring. The product was isolated from the resulting yellow 

dispersion by centrifugation at 13,000 rpm for 15 min, washed by sonication and 

centrifugation, with H2O then EtOH, and dispersed in EtOH. Yield: 8.88 mg (54.4%). 

Synthesis of Zr-MTX@SiO2. Silica-coated Zr-MTX particles were made by treating 

Zr-MTX with tetraethylorthosilicate (TEOS) under sol-gel conditions. 6.0 mg of Zr-MTX 

particles suspended in 2 mL of ethanol were placed in a round-bottom flask. 405 L of 

ammonium hydroxide was diluted with 12.6 mL ethanol and added to the particle 

suspension, resulting in 15 mL of 0.4 M NH4OH in ethanol with 0.4 mg particles/mL. 24 L 

TEOS (3.76:1 TEOS:particles w/w) was then added and the reaction was stirred at room 

temperature in darkness for 20 h. The nanoparticles were isolated by centrifugation at 13,000 

rpm for 10 min. After the removal of the supernatant, the particles were washed twice, using 

10 mL of ethanol each time. For each wash, the particles were re-dispersed by sonication and 

then recovered by centrifugation at 13,000 rpm for 10 min.  

3.4.3. Release profile procedure 

Release profiles were obtained by dialyzing small amounts of samples (1-3 mg) 

against large volumes (~300 mL) of 8 mM PBS (pH = 7.4) at 37 °C with stirring. The sample 

was dispersed in ~1 mL of media, then placed inside of dialysis tubing with a molecular 

weight cut off of 3500. The tubing was sealed and submerged in the media. Aliquots from the 
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solution outside of the dialysis bag were taken periodically and UV-vis was used to 

determine the concentration of MTX by measuring absorbance at 305 nm. A calibration 

curve was made for 0.5-50 μm MTX in the same media used for dialysis. 
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CHAPTER 4 

 

Metal-Organic Framework Templated Synthesis of Fe2O3/TiO2 Nanocomposite for 

Hydrogen Production 

 

(Portions of this chapter were adapted with permission from deKrafft, K.E.; Wang, C.; Lin. 

Adv. Mater. 2012, DOI: 10.1002/adma.201200330. Copyright 2012 John Wiley and Sons.) 

 

 

4.1. Introduction 

4.1.1. Metal oxides 

Metal oxide nanomaterials are of great practical importance due to their stability, low 

cost, low toxicity, and useful photophysical properties.
1-4

 With the ability to excite electrons 

to the conduction band or to generate holes in the valence band, metal oxide nanomaterials 

can be used to perform photocatalytic reactions, such as degradation of organic pollutants
5
 or 

production of solar fuels like hydrogen.
6-8

 Large-band gap metal oxides such as TiO2 have 

suitable band positions for photocatalytic solar fuel production, but absorb only UV photons, 

which represent only about 5% of the energy in the solar spectrum. On the other hand, metal 

oxides with suitable band gaps for efficient absorption in the solar spectrum (e.g., Fe2O3) 

tend to have short carrier diffusion lengths (on the order of nanometers). This prevents 

reactions from taking place before charge recombination occurs, and makes these metal 

oxides ineffective in driving photocatalytic reactions. Catalytic metal oxide nanoparticles are 

often preferred over bulk materials due to the shorter distance that charger carriers must 

travel to reach the surface, thereby improving the quantum efficiency.
3, 4

 Additionally, 

nanoparticles have high surface areas and therefore more reaction sites per unit than bulk 
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materials. Identifying scalable and economic approaches to synthesize metal oxide 

nanomaterials that not only absorb visible light (>400 nm) but also have suitable band 

positions to drive reactions is a major scientific and technological challenge.  Mixed metal 

oxide nanocomposites offer a potential solution as a result of the synergy that is possible 

among the components.  

4.1.2. Nanocomposite materials 

There have been many reports of nanocomposite materials that perform better as 

photocatalysts under visible light compared to their individual components. The 

enhancement in activity is often due to one component acting as a trap for photogenerated 

carriers, allowing for better charge separation.
9, 10

 This is the case for water oxidation using 

Fe2O3 coated with CoOx, which extends the lifetime of photogenerated holes.
11

 Alternatively, 

one component can act as a visible-light sensitizer for a large-band gap catalyst, as in a 

CdS/TiO2 composite in which CdS absorbs visible light and transfers electrons to TiO2.
12

 

This mechanism is, in some cases, dependent on doping at the interfaces to adjust the band 

potentials to be suitable for charge transfer.
13

 For example, Fe2O3 can sensitize a SrTiO3 shell 

due to Ti doping in Fe2O3 raising its conduction band higher than that of SrTiO3.
14

  

Here we report a simple, inexpensive, tunable, and scalable metal-organic framework 

(MOF)-templated strategy for the synthesis of a mixed metal oxide nanocomposite with 

useful photophysical properties. Although MOFs have been explored for a wide range of 

applications such as nonlinear optics,
15, 16

 gas storage,
17-19

 catalysis,
20, 21

 chemical sensing,
22-

25
 and drug delivery,

26-28
 there have been a few reports on using MOFs as templates in the 

synthesis of silica nanoshells,
29

 nanoporous carbon,
30

 and metallic nanoparticles.
31

 In this 

work, we attempt to use nanoscale MOFs to prepare titania-based nanocomposites for 



87 
 

potential solar energy applications. Fe-containing nanoscale MOFs are coated with 

amorphous titania, then calcined to produce crystalline Fe2O3@TiO2 composite 

nanoparticles, which enable visible light-driven hydrogen production from water (Fig. 4.1). 

 

 

Figure 4.1. MOF-templated synthesis of Fe2O3@TiO2 by coating MIL-101 with TiO2 

followed by calcination, and its use for photocatalytic hydrogen production after depositing 

Pt particles. 

 

4.2. Results and Discussion 

 4.2.1. Synthesis and characterization of Fe2O3@TiO2 

Nanoscale MOFs with the MIL-101
32

 structure and the formula Fe3OCl(H2O)2(BDC)3 

(BDC = benzene dicarboxylate) were synthesized by microwaving a solution of benzene 

dicarboxylic acid (H2BDC) and FeCl3·6H2O in N,N’-dimethylformamide (DMF) at 150 ºC.
33

 

The resulting octahedral nanoparticles had dimensions of 400-800 nm by transmission 
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electron microscopy (TEM) (Fig. 4.2a) and scanning electron microscopy (SEM) (Fig. 4.3a), 

and were confirmed to have the MIL-101 structure by powder X-ray diffraction (PXRD) 

(Fig. 4.4). MIL-101 materials are extremely porous and are composed of trivalent metal 

clusters linked together by BDC bridging ligands.  

 

 

Figure 4.2. TEM images of (a) MIL-101, (b) MIL-101@TiO2, (c) a tip of MIL-101@TiO2, 

and (d) Fe2O3@TiO2. The scale bars represent 200 nm for (a, b, and d), and 20 nm for (c). 
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Figure 4.3. SEM images of (a) MIL-101 and (b) MIL-101@TiO2. 
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Figure 4.4. PXRD patterns of MIL-101 (simulated and experimental) and MIL-101@TiO2. 

 

The MIL-101 particles were coated with an amorphous shell of titania by acid-

catalyzed hydrolysis and condensation of titanium(IV) bis(ammonium lactato)dihydroxide 

(TALH) in water.
34

 The coated particles were isolated by centrifugation and washed several 

times with water and ethanol. The thickness of the TiO2 coating could be controlled by 

adjusting the concentration of acid or the reaction time (Fig. 4.8). A typical sample used for 

photocatalysis was prepared by coating MIL-101 with titania for 2 h in 0.1 M HCl, resulting 
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in particles that appeared similar to the original MIL-101 particles by TEM (Fig. 4.2b-c), but 

contained Ti as shown by energy dispersive X-ray spectroscopy (EDS) (Fig. 4.5). 

Thermogravimetric analysis (TGA) showed 5.6% additional weight remaining at 600 ºC due 

to the titania coating (Fig. 4.6). Scanning TEM coupled with EDS (STEM-EDS) was used in 

an effort to measure the TiO2 shell thickness (Fig. 4.7). While Fe and Ti are both detected 

across the whole measured area of the particle, individual areas where a particular element 

dominates could not be delineated, due to low spatial resolution. Inductively coupled plasma 

mass spectrometry (ICP-MS) was used to precisely determine the Fe and Ti content, after 

digesting the particles in concentrated H2SO4. The atomic ratio of Ti to Fe (0.25) was used to 

calculate the thickness of the TiO2 layer, assuming an average MIL-101 edge length of 600 

nm and densities of 0.62 and 3.89 g/cm
3
 for MIL-101 and titania, respectively. The 

amorphous titania shell was estimated to be 1.2 nm thick, assuming it formed a contiguous 

shell on the MIL-101 particles. Although there is some loss of crystallinity indicated by 

PXRD, peaks from MIL-101 appear in the pattern for the coated particles, indicating that 

MIL-101 does not decompose under coating conditions (Fig. 4.4).  There were no additional 

peaks appearing in the PXRD pattern for the core-shell particles, suggesting that the titania 

shell was amorphous.  
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Figure 4.5. EDS spectra of (a) MIL-101@TiO2, (b) Fe2O3@TiO2, and (c) Fe2O3@TiO2/Pt. 

The Cu in (c) comes from the Cu grid sample holder.  
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Figure 4.6. TGA of MIL-101 and MIL-101@TiO2. 
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Figure 4.7. STEM-EDS line scans of (a) MIL-101@TiO2 (a tip of an octahedral particle) and 

(b) Fe2O3@TiO2/Pt.  

 

The core-shell particles were calcined at 550 ºC in air for 16 h, resulting in a color 

change from orange to dark red, due to conversion of the MIL-101 core into iron oxide. The 

calcined particles, like the core-shell particles, are dispersible in water, indicating that the 

particles remain discrete and do not fuse together. PXRD showed that both the core and shell 

were crystallized by calcination and the PXRD peaks matched those of the anatase phase of 

TiO2 and the hematite phase of Fe2O3 (α-Fe2O3) (Fig. 4.9). The amount of Fe and Ti, as 

determined by ICP-MS, corresponded to calcined particles containing 80 wt% Fe2O3 and 20 

wt% TiO2. TEM shows octahedral shells with no visibly distinct TiO2 and Fe2O3 regions 

(Fig. 4.2d). Due to the very large pore volume of MIL-101 (2.0 cm
3
/g), the non-porous Fe2O3 

particles formed by calcination of this template occupy much less volume, resulting in a 
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hollow particle. When uncoated MIL-101 particles were calcined, the resulting Fe2O3 did not 

remain in an octahedral structure, but formed irregular particles of ~50 nm fused into clusters 

(Fig. 4.10). This further confirms the presence of a TiO2 shell that acts as a support for Fe2O3 

particles as they are formed from MIL-101 during calcination. High-resolution TEM 

(HRTEM) was used to observe the individual crystallites of each metal oxide in the 

composite material. HRTEM reveals that each octahedral shell is composed of roughly 

spherical individual crystalline domains, with dimensions around 10 nm, of both TiO2 and 

Fe2O3, blended together (Fig. 4.11). The region shown in Fig. 4.11a is a tip of an octahedral 

particle shown in Fig. 4.2d at a much higher magnification. Lattice fringes are visible, and 

lattice d-spacings of both 0.354 and 0.251 nm were measured, corresponding to the {101} 

plane of anatase (d=0.352 nm) and the {110} plane of hematite (d=0.252 nm), respectively. 

Fig. 4.11b shows a crystallite of anatase, while Fig. 4.11c shows an area with several 

crystalline domains with identified regions of anatase and hematite in intimate contact. A 

nitrogen adsorption isotherm was acquired for Fe2O3@TiO2 at 77 K, resulting in a BET 

surface area of 11.6 m
2
/g (Fig. 4.12). 
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Figure 4.8. TEM images of Fe2O3@TiO2 with varying shell thickness. 
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Figure 4.9. PXRD patterns for Fe2O3@TiO2, hematite Fe2O3, and anatase TiO2. 
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Figure 4.10. TEM image of Fe2O3 made by calcination of uncoated MIL-101. 
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Figure 4.11. HRTEM images of Fe2O3@TiO2, both as-synthesized (a-c) and after Pt particles 

have been deposited (d). Lattice fringes can be seen for Fe2O3, TiO2, and Pt, and d-spacing 

measurements are shown in (b-d). The scale bars represent 10 nm. 

 

0.0 0.2 0.4 0.6 0.8 1.0

0

30

60

90

120

150

180

210

 

 

N
2
 u

p
ta

k
e

 (
c
m

3
/g

)

P/P
0

 adsorption

 desorption

 

Figure 4.12. N2 adsorption isotherm at 77 K for Fe2O3@TiO2, giving a BET surface area of 

11.6 m
2
/g. 

 

There are three peaks in the PXRD pattern of Fe2O3@TiO2 (at 17.8°, 45.4°, and 

59.1°) that do not match either anatase or hematite. These peaks are from the pseudobrookite 

mixed metal oxide phase (Fe2TiO5), which probably arises from the formation of an Fe-rich 

layer at the surface of TiO2.
35

 Fe2TiO5 shares the same pseudobrookite structure (and PXRD 

pattern) with FeTi2O5 and some phases of Ti3O5. These isostructural relationships can be 

represented by a line within an Fe2O3-Ti2O3-TiO2 phase diagram, which presents a range of 

possible Ti oxides and Fe-Ti mixed oxide solid solutions (Fig. 4.13). The structure that pure 

Ti3O5 adopts at room temperature is quite different from pseudobrookite, but there is a phase 

transition to a slightly monoclinically deformed version of the orthorhombic pseudobrookite 

structure (anosovite) around 120 ºC.
36

 This high-temperature structure is stabilized at room 

temperature by a small amount of Fe doping. While it seems possible that Fe-doped Ti3O5 



98 
 

could be formed during calcination, the black color characteristic of Ti3O5 was not observed 

experimentally. FeTi2O5 was also ruled out because it is not stable below 1135 ºC.
37

  

 

 

Figure 4.13. Fe2O3-Ti2O3-TiO2 phase diagram. 

 

4.2.2. Diffuse reflectance 

Diffuse reflectance spectroscopy was used to measure the UV-vis absorbance of MIL-

101, MIL-101@TiO2, Fe2O3@TiO2, a physical mixture of Fe2O3 and TiO2, Fe2O3 (hematite) 

alone, and TiO2 (anatase) alone (Fig. 4.14, 4.15). BaSO4 was used as a blank, and absorbance 

was expressed by treating the reflectance data with the Kubelka-Munk function (ƒ(R) = (1-

R)
2
/(2R), R = reflectance with the reflectance at 1000 nm set at 100%). The absorbance 

spectrum for MIL-101@TiO2 showed a combination of the spectral features of MIL-101 and 

TiO2 alone, with TiO2 absorbing mainly UV light while MIL-101 absorption extends into the 

visible range. Commercially available 32 nm anatase nanoparticles showed an absorption 
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edge at 390 nm, corresponding to a band gap of 3.18 eV (3.2 eV typically reported). 

Hematite Fe2O3 nanoparticles were made by calcining uncoated MIL-101, and showed an 

absorption edge at 585 nm, corresponding to a band gap of 2.12 eV (2.1 eV typically 

reported). The physical mixture was prepared by combining Fe2O3 and TiO2 together in the 

same ratio as found in the composite material, giving a spectrum with a combination of 

Fe2O3 and TiO2 features. While the composite material also displays the absorption edges 

seen for both Fe2O3 and TiO2 alone, it also shows increased absorption from 330-460 nm. 

This feature is not present in the physical mixture and indicates that some of the TiO2 is 

doped with Fe.
38, 39

 The band gap of Fe2TiO5 is 2.2 eV,
35

 so any contribution at the onset of 

absorption from this phase would overlap with Fe2O3 absorption. 
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Figure 4.14. UV-vis diffuse reflectance spectra of Fe2O3@TiO2, a physical mixture of Fe2O3 

and TiO2, Fe2O3 alone, and TiO2 alone. The inset shows a photograph of dispersions of MIL-

101 (1), MIL-101@TiO2 (2), Fe2O3@TiO2 (3), Fe2O3@TiO2/Pt (4), Fe2O3 (5), and TiO2 (6) 

in ethanol. 
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Figure 4.15. UV-vis diffuse reflectance spectra of MIL-101, MIL-101@TiO2, and TiO2. 

 

4.2.3. Photocatalytic Hydrogen Production 

No single material has been identified that is ideal for visible light-driven water 

splitting. The conduction band must be at higher energy (more negative reduction potential) 

than the H
+
/H2 couple (0 V vs NHE), and the valence band must be at lower energy (more 

positive reduction potential) than the H2O/O2 couple (1.23 V vs NHE), but the band gap must 

be less than 3 eV. TiO2 has been widely studied as a photocatalyst, and has suitable band 

positions, but absorbs only UV light.
40

 Fe2O3 absorbs visible light, but its conduction band is 

not at high enough energy to drive H2 generation.
41

 The photocatalytic activity of the 

Fe2O3@TiO2 material in combination with K2PtCl4 was tested by measuring photoinduced 

hydrogen production from water, with triethylamine (TEA) as a sacrificial reducing agent. A 

Xe-lamp was used as a light source, with a cut-off filter to allow only light above a particular 

wavelength to pass through. A co-catalyst such as Pt or RuO2 is typically needed to promote 

surface H2 formation.
42

 K2PtCl4 was reduced to form Pt nanoparticles during the reaction, 

causing a change in the color of the material from dark red to brown. The presence of Pt in 



101 
 

the material recovered after hydrogen production was confirmed by EDS and PXRD (Fig. 

4.5, 4.16). The additional peaks in the PXRD pattern at 39.7º and 46.4º are from Pt. HRTEM 

images show 2-4 nm Pt particles dispersed throughout that material (Fig. 4.2d, 4.16) with a 

lattice d-spacing of 0.228 nm, close to the 0.226 nm d-spacing expected for the {111} plane 

of Pt. STEM-EDS was also performed on this material, but again, the spatial resolution was 

too low to precisely delineate the Pt/TiO2/Fe2O3 boundaries. H2 was measured in the 

headspace over photodriven reactions by gas chromatography (GC). GC was performed at 

various time points over 48 h during a reaction with 0.5 mg Fe2O3@TiO2 in 20/1 v/v 

H2O/TEA, driven by visible light with a 420 nm cut-off filter (Fig. 4.18a, 4.19). The amount 

of H2 produced increases linearly during this entire time period, with a total of 30.0 µmol H2 

per mg of material produced after 48 h. Fe2O3@TiO2 is a heterogeneous catalyst that can be 

recovered from a reaction mixture and reused with a fresh solution. The same material was 

used three times to test for recyclability; it was recovered from the previous run and 

dispersed in fresh solution for runs 2 and 3. The catalyst produced 0.8 µmol of H2 after 3 h 

during the first use and showed no change in efficiency during the second or third use (Fig. 

4.18b, 4.20). While TEM images of the recovered material show that many of the octahedral 

shells break apart (Fig. 4.17), PXRD shows that the material remains unchanged with the 

same crystalline phases (Fig. 4.16). An intact particle is shown in Fig. 4.17a, while broken 

pieces are shown in Fig. 4.17b-d. In the absence of TEA, there is very little (<0.1 µmol) H2 

detected, indicating that a sacrifical reducing agent is necessary to balance the reduction half-

reaction of water splitting (Fig. 4.18c, 4.21).  
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Figure 4.16. PXRD patterns of Fe2O3@TiO2/Pt after catalysis, compared to Fe2O3@TiO2 

before catalysis.  
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Figure 4.17. TEM images of Fe2O3@TiO2/Pt recovered after catalysis. The Pt nanoparticles 

appear as dark spots in the bright field images (a-c), and as bright spots in the dark field 

image (d).  

 

 

 

Figure 4.18. The H2 peaks in GC traces of the headspace over photodriven reactions using 

0.5 mg of catalyst. (a) H2 produced by Fe2O3@TiO2 in 20/1 v/v H2O/TEA at various time 

points over 48 h, with a 420 nm filter. The inset shows the amount of H2 produced over this 

time period. (b) Reuse experiments with the same catalyst in fresh solution for 3 h each time. 

(c) Control experiments over 3 h using no reducing agent, Fe2O3 alone, TiO2 alone, a 

Fe2O3@ TiO2 mixture, or a 500 nm filter. 
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Figure 4.19. Full GC traces of the headspace over a photodriven reaction (420 nm cut off 

filter) with 0.5 mg Fe2O3@TiO2 in 20/1 v/v H2O/TEA at various time points over 48 h.  

 

 

Figure 4.20. Full GC traces of the headspace over photodriven reactions (420 nm cut off 

filter) with 0.5 mg Fe2O3@TiO2, used three times, in 20/1 v/v H2O/TEA after 3 h.  
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Figure 4.21. Full GC traces of the headspace over a photodriven reaction (420 nm cut off 

filter) with 0.5 mg Fe2O3@TiO2 in H2O, without any TEA, after 3 h.  

 

No pure component in the material is able to generate H2 using visible light. Fe2O3 or 

Fe2TiO5 alone can not catalyze H2 production because their conduction bands are below the 
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absorb visible light. Reactions were carried out using similar conditions, but with Fe2O3 

alone and TiO2 alone, to confirm that neither of these materials could catalyze the reaction. 

As expected, in both cases, no H2 was detected in the headspace after 3 h (Fig. 4.18c, 4.22). 
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conduction band of Fe2O3 is below that of TiO2 and the valence band of Fe2O3 is above that 
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the two.  

0 2 4 6

0

100

200

300

1.4 1.6 1.8

0

4

8

 

s
ig

n
a
l 
(a

.u
.)

time (min)

 no reducing agent

G on

O
2

N
2 CH

4

 

 

s
ig

n
a

l 
(a

.u
.)

time (min)



106 
 

 

 

Figure 4.22. Full GC traces of the headspace over photodriven reactions (420 nm cut off 

filter) with 0.5 mg Fe2O3, TiO2, or a Fe2O3/TiO2 mixture in 20/1 v/v H2O/TEA after 3 h. 

 

A reaction was carried out with Fe2O3@TiO2 using a 500 nm cut-off filter to 

determine if Fe-doped TiO2 could be responsible for the photocatalytic activity. Fe-doping in 

TiO2 raises the potential of the valence band, making the band gap of Fe-doped anatase 

between that of Fe2O3 and pure TiO2.
39, 43, 44

 This method of narrowing the band gap of TiO2 

by doping has been investigated extensively as a way of sensitizing TiO2 to visible light.
35, 40, 

45, 46
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Fe2O3, but may be too low in energy to be absorbed by Fe-doped TiO2. For example, TiO2 

doped with 6.7 atomic % Fe (based on Ti) is reported to have a band gap of 2.7 eV,
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 which 

would correspond to absorbance of light with wavelength <460 nm. Using similar conditions 

as the reaction that produces H2 from Fe2O3@TiO2 with a 420 nm filter, no H2 is detected 
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from MIL-101 is incorporated into TiO2 as it crystallizes while some turns into Fe2O3. Both 

Fe2TiO5 and Ti-doped Fe2O3 were ruled out as potential photocatalytically active 

components because their conduction bands are below the potential for proton reduction, and 

their small bandgaps (2.2 and 2.1 eV, respectively) would allow light absorption when a 500 

nm filter is used.
43

 

 

 

Figure 4.23. Full GC traces of the headspace over photodriven reactions (500 nm cut off 

filter) with 0.5 mg Fe2O3@TiO2 in 20/1 v/v H2O/TEA after 3 h.  
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Figure 4.24. Band structure of TiO2, Fe2O3, and Fe-doped TiO2 showing how Fe-doped TiO2 

is able to catalyze H2 production from H2O with the aid of Pt. 

 

4.3. Conclusion 

We have developed a novel MOF-templated approach to synthesize a mixed metal 

oxide nanocomposite material by first creating core-shell particles, then calcining to 

decompose the core. This facile method produces crystalline octahedral nanoshells composed 

of hematite Fe2O3 nanoparticles embedded in anatase TiO2 with some Fe doping. This 

material has interesting photophysical properties as it enables photocatalytic hydrogen 

production from water using visible light, while neither component alone is able to do so. 

The versatile MOF-templated nanocomposite synthesis procedure can be readily modified, 

by varying the type of MOF (both the metal ions and coordinating moieties) and the coating 

material, to prepare new nanocomposite materials with desirable synergistic properties. 

 

4.4. Experimental Details 
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 4.4.1 Materials and methods 

All chemicals were purchased from Fisher Scientific or Sigma Aldrich, except TiO2 

which was purchased from Alfa Aesar, and used without further purification. Microwave 

reactions were carried out in a CEM MARS 5 microwave. Scanning electron microscopy 

(SEM) was obtained on a Hitachi 4700 Field Emission Scanning Electron Microscope. A 

Cressington 108Auto Sputter Coater equipped with a Au/Pd (80/20) target and MTM-10 

thickness monitor was used to coat samples before SEM imaging. Energy dispersive X-ray 

spectroscopy (EDS) was used to determine elemental composition of the particles, using an 

Oxford 7200 IncaPentaFET-x3 Energy Dispersive X-ray Spectrometer. The EDS data was 

processed with the Inca Microanalysis Suite. Each EDS sample was prepared by placing a 

powder sample on carbon tape. Low-resolution transmission electron microscopy (TEM) was 

obtained on a JEOL 100CX-II Transmission Electron Microscope, and high-resolution TEM 

(HRTEM) and scanning TEM-EDS (STEM-EDS) was obtained on a JEOL 2010F-FasTEM. 

SEM micrographs were obtained on glass slides or carbon tape, and TEM micrographs were 

obtained on carbon-coated copper grids. Thermogravimetric analysis (TGA) was carried out 

on a Shimadzu TGA-50 equipped with a platinum pan, and samples were heated at a rate of 

4°C/min under air. Powder x-ray diffraction (PXRD) data was gathered on a Bruker SMART 

APEX II diffractometer using Cu radiation, and powder patterns were analyzed with the 

APEX II package using the phase ID plugin. Diffuse reflectance UV-Vis spectra were 

obtained using a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer. A BaSO4 plate was 

used as a blank to establish a baseline, and samples were ground onto BaSO4 plates to 

acquire diffuse reflectance spectra. A Varian 820-MS Inductively Coupled Plasma-Mass 

Spectrometer (ICP-MS) was used to measure Fe and Ti content. Nitrogen adsorption 
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experiments were performed with a Quantachrome Autosorb-1C. Amounts of H2 generated 

in the photocatalysis experiments were determined by gas chromatography (GC) using an 

SRI 8610C Gas Chromatograph.  

4.4.2. Synthesis of template and composite materials 

Synthesis of MIL-101: BDC (1.532 g, 9.22 mmol) and FeCl3·6H2O (2.492 g, 9.22 

mmol) were dissolved in 200 mL DMF. This solution was heated by microwave in sealed 

vessels at 400 W for 15 min at 150 ºC. The resulting particles were isolated by centrifugation 

at 11,000 rpm for 10 min, washed with ethanol and water several times by sonication 

followed by centrifugation, and then dispersed in water. Yield: 543.7 mg (94.7%).  

Synthesis of MIL-101@TiO2 and Fe2O3@TiO2: MIL-101 (200 mg) was dispersed 

in 96.725 mL 0.1 M HCl and TALH (3.275 mL of 50 wt% solution in water, 2.00 g TALH) 

was added. The dispersion was stirred at room temperature for 2 h.  The resulting coated 

particles were isolated by centrifugation as described above, and dried. Yield: 140.8 mg 

(70.4% based on MIL-101 used).  Dried MIL-101@TiO2 was calcined in a furnace at 550 ºC 

in air for 16 h. 

4.4.3. Procedure for hydrogen production experiments 

Samples for photoinduced hydrogen production were prepared in 8 mL septum-sealed 

glass vials. Typically, 0.5 mg of Fe2O3@TiO2 (5.0 µmol Fe, 1.25 µmol Ti) was dispersed in 

2 mL of H2O with 0.1 mL of TEA, and K2PtCl4 (3.70 µmol) was added. The sample vials 

were capped and deoxygenated by bubbling nitrogen through them for 15 min. 50 µL of 

methane gas (1 atm, room temperature) was added to each vial as an internal standard. The 

vials were placed in front of a 450 W Xe-lamp with a 420 nm cut-off filter (unless otherwise 

noted) and were stirred magnetically. The hydrogen evolution reaction lasted for 3 hours 
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except for the time-dependent experiments. 0.5 mL of the gas in the headspace of the vial 

was analyzed by GC to determine the amount of hydrogen generated. A valve rotation (G 

on/off) technique was used in the GC analysis of multiple gases in the headspace. Column 1 

was a 15 m Restek MXT-1 column, and column 2 was a 6‘ silica gel column. Helium carrier 

gas was used at 5 psi, and a helium ionization detector was used. In a typical run, the column 

temperature was kept at 40 
o
C for 4 min, raised to 80 

o
C over 2 min, kept at 80

 o
C for 1 min, 

then allowed to cool down. Under these operating conditions, the retention times were: 1.58-

1.66 min for H2, 2.29-2.44 min for O2, 3.09-3.29 min for N2, and 5.52-5.59  min for CH4. 

The detected O2 and N2 in these experiments came from residual air in the GC injector. 
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CHAPTER 5 

 

Electrochemical Water Oxidation with Carbon-Grafted Molecular Complexes 

 

(Portions of this chapter were adapted with permission from deKrafft, K.E.; Wang, C.; Xie, 

Z.; Su, X.; Hinds, B.J.; Lin, W. ACS Appl. Mater. Interfaces 2012, 4, 608. Copyright 2012 

American Chemical Society.) 

 

 

5.1. Introduction 

5.1.1. Water oxidation 

Large-scale production of clean energy from renewable sources is needed to meet the 

growing global energy demand.
1
 Among all the renewable energy sources, sunlight provides 

the most attractive long-term solution because of its vast abundance with an estimated solar 

radiation of 120,000 terawatts on the earth’s surface. However, the diurnal and diffuse nature 

of local solar radiation makes it imperative to develop cost-effective storage of harvested 

solar energy. A potential solution is to store solar energy in reactive chemical bonds in the 

form of chemical fuels such as hydrogen or hydrocarbons.
2
   

With the input of solar energy, hydrogen or hydrocarbons can be produced by water 

splitting or by CO2 reduction with water, respectively. In both processes, catalytic water 

oxidation constitutes a key half reaction. The complex process of removing four electrons 

and four protons from two water molecules with concomitant formation of an O-O bond in 

this half reaction (2H2O  O2 + 4H
+
 + 4e

-
) has made catalytic water oxidation a major 

challenge for several decades.
3-5

 A large number of homogeneous water oxidation catalysts 

(WOCs) have been developed based on Ru complexes,
4, 6-8

 Ir complexes,
9-11

 Fe complexes,
12, 
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13
 and polyoxometalates.

14-16
 Several heterogeneous WOCs such as cobalt oxide

17-19
 and 

iridium oxide nanoparticles
20, 21

 have been integrated into electrochemical or 

photoelectrochemical cells.
22-24

 Ir complexes have also been doped into metal-organic 

frameworks to serve as heterogeneous WOCs.
25

 All of these known WOCs, however, present 

many practical problems; molecular catalysts are prone to decomposition while inorganic 

catalysts lack tunability. The progress on water oxidation catalysis, in fact, significantly lags 

behind the development of catalysts for the proton reduction half reaction (2H
+
 + 2e

-
  H2) 

of water splitting.
22, 26-28

   

The efficacy of a homogeneous WOC is typically evaluated by carrying out water 

oxidation with an external oxidant (such as Ce
4+

, E°=1.72 V) under strongly acidic 

conditions (e.g., pH <1). Some of these oxidants possess excessive oxidation power 

compared to the thermodynamic potential of 1.17 V at pH 1 for water oxidation, and can lead 

to the decomposition of otherwise stable catalysts. In solution, it can be difficult to determine 

if the initial complex is responsible for all catalytic activity or if it is a precursor to other 

catalytic species formed in situ. Alternative strategies are needed to assess the WOC potential 

of molecular complexes, particularly those based on earth-abundant first-row transition 

metals which tend to be more susceptible to decomposition. To this end, molecular Ir and Ru 

complexes were grafted onto carbon electrodes via covalent attachment and evaluated for 

electrochemical water oxidation.   

5.1.2. Catalysts on surfaces 

Immobilization of molecular catalysts on electro-active surfaces is a key 

consideration in constructing solar water splitting devices. Placing the catalyst at an interface 

reduces the amount of catalyst needed and may enhance rates. Grafting WOCs onto 
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electrodes can also potentially stabilize active intermediates and limit the extent of oxidative 

degradation. When grafted, molecules are spatially separated and will not deactivate via 

intermolecular pathways. Several homogeneous and heterogeneous WOCs have been 

immobilized onto electrodes for electrochemical water oxidation, either by anchoring 

molecular WOCs to oxide electrodes through phosphonate groups
29

 or by deposition of 

nanoparticle or polyoxometalate WOCs onto electrodes.
17, 30

 We hypothesized that direct, 

covalent bonding of WOCs to the electrodes would allow enhanced catalytic rates and robust 

attachment, compared to existing immobilization strategies. Carbon electrodes are 

inexpensive and can be easily modified by chemical means.
31

 Diazonium grafting is a well-

established technique for covalent attachment of functional molecules to carbon electrodes.
32, 

33
 Diazonium salts with suitable substituent groups are typically employed and can be used 

for anchoring other molecules via standard amide or other coupling chemistry. A molecular 

proton reduction catalyst has been, for example, anchored to carbon electrodes by this two-

step grafting method through the formation of amide linkages.
27

 We attached molecular 

WOCs to carbon electrodes in a single step using diazonium-functionalized derivatives of Ir 

and Ru complexes; analogous complexes are known to be active for chemically-driven 

homogeneous water oxidation.
10

   

This grafting strategy may allow for systematic evaluation of different molecular 

WOCs under tunable conditions that are more relevant to those found in a functional water 

splitting device, as opposed to evaluation in solution with a chemical oxidant with a fixed 

redox potential. The catalytic activities can be accurately determined as the amount of grafted 

catalyst can be quantified, even when redox peaks are not present, which is often the case. 

Grafting also allows the electrochemical response of WOCs to be studied without 



118 
 

complications encountered in solution electrochemistry related to WOC adsorption, film 

formation, or insolubility. The grafting strategy also allows the measurement of WOC 

activities at various pH values which is not possible for Ce
4+

 and other inorganic oxidant 

driven water oxidation reactions. 

 

5.2. Results and Discussion 

 5.2.1. Molecular water oxidation catalysts  

 Five new WOCs with amine pendant groups were first synthesized. The Ir complexes 

[Cp*IrCl(4-NH2-bpy)]Cl (Cp* = pentamethylcyclopentadienyl, bpy = 2,2´-bipyridine) (A) 

and [Cp*IrCl(5-NH2-bpy)]Cl (B), a pair of isomers, were synthesized by allowing one half 

equivalent of [IrCp*Cl2]2 to react with 4-NH2-bpy or 5-NH2-bpy. The complex [Cp*IrCl(p-

NH2-ppy)] (ppy=2-phenylpyridine) (C) was synthesized similarly, but with p-NH2-ppy 

instead of bpy to result in a neutral complex. The Ru complexes [Ru(Mebimpy)(4-NH2-

bpy)OTf]OTf (Mebimpy = 2,6-bis(benzimidazol-2-yl)pyridine, OTf = triflate) (D) and  

[Ru(tpy)(4-NH2-bpy)Cl]Cl (tpy = 2,6-bis(2-pyridyl)pyridine) (E) were synthesized by 

allowing one half equiv. of [((Mebimpy)ClRu)2Cl2] or one equiv. of Ru(tpy)Cl3, respectively, 

to react with 4-NH2-bpy. These new complexes were characterized by nuclear magnetic 

resonance spectroscopy (NMR), mass spectrometry (MS), and cyclic voltammetry (CV). The 

structure of E was also established by single crystal X-ray diffraction. A-E all show catalytic 

currents by CV in aqueous solutions (pH=5), consistent with electrochemically-driven water 

oxidation (Fig. 5.1a-b). A-C were also shown to be active homogenous catalysts for water 

oxidation when driven chemically in aqueous solution (pH=1) with Ce
4+

 from cerium 

ammonium nitrate as the sacrificial oxidant (Fig. 5.2). Oxygen was detected in the headspace 



119 
 

over a 0.1 M HNO3 solution (pH = 1) containing 50 mM CAN and 25 µM catalyst. If all of 

the Ce
4+

 were reduced, the maximum turnover number (TON) in each case would be 500. 

The harsh conditions cause instability of the catalysts, limiting the TON. 

 

 

 

Figure 5.1. Solution CVs of A-E with a blank solution shown for comparison. (a) CVs of (a) 

2 mM A, 2 mM B, and <1 mM C (only slightly soluble), and (b) 0.5 mM D and 1 mM E in 

acetate buffer at pH 5. (c) CVs of 0.66 mM A, 0.66 mM B, and 0.58 mM C in acetonitrile 

containing 0.1 M tetrabutylammonium hexafluorophosphate. All CVs were done using glassy 

carbon with a scan rate of 100 mV/s. 
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Figure 5.2. Homogeneous chemically-driven water oxidation with A-C using Ce
4+

 as an 

oxidant. TON is based on oxygen detected in the headspace over the reaction. 

 

5.2.2. Catalysts grafted onto electrodes 

Each of the complexes was grafted onto glassy carbon electrodes by a direct, 

diazonium grafting method to lead to samples 1-5 (Fig. 5.3). Prior to grafting, the electrode 

was polished and oxidized by applying a potential of 1.6 V vs the normal hydrogen electrode 

(NHE) for 2 min to obtain a reproducible background current, which is due to a combination 

of water oxidation and carbon oxidation.
34

 The amino group of each complex was converted 

into a diazonium group in situ by addition of HCl and NaNO2 to an aqueous solution of the 

complex, and NaBF4 was added to stabilize the diazonium salt. The resulting solution was 

degassed and used for electroreduction of the diazonium salt by applying a potential of -0.4 

V vs NHE for 4 min. Grafting was done on a 1.13 cm
2
 area of the planar electrode. The 

grafted electrode was rinsed with water and methanol. Three samples were made identically 

for each catalyst in order to obtain averaged CV and catalyst loading data for determination 

of turnover frequencies (TOFs). The orientation of a complex relative to the surface is shown 
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for 1 in Fig. 5.3, which is modeled based on a published crystal structure for 

[Cp*IrCl(ppy)].
35

 

 

 

Figure 5.3. Molecular iridium WOCs have been covalently attached to carbon electrodes for 

efficient electrochemical water oxidation. Amino-functionalized derivatives (A-E) of WOCs 

were converted into diazonium salts, which were then grafted by electroreduction to result in 

functionalized glassy carbon electrodes 1-5, respectively (only 1 is shown). 

 

 5.2.3. Cyclic voltammetry  
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 We first examined the electrocatalytic water oxidation activity of 1-5 by CV. The CV 

scans were carried out in the 0.2 – 1.6 V range vs NHE with a scan rate of 100 mV/s in an 

acetic acid/sodium acetate buffer at pH 5. A platinum counter electrode and Ag/AgCl 

reference electrode were used for all electrochemical experiments. Catalytic currents from 

water oxidation at 1.6 V are 226±13, 16±5, 55±9, 50±7, and 48±21 µA/cm
2
 over the 

background for 1-5 respectively (Fig. 5.4). Compounds A-E thus retain their electrocatalytic 

activity toward water oxidation after being grafted on carbon electrodes. The background 

current was determined to be 93±6 µA/cm
2
 at 1.6 V using an electrode that underwent 

electroreduction with a blank solution that was otherwise identical to a catalyst solution, and 

was subtracted from the currents of samples 1-5. The effects on current due to the 

electroreduction process and physisorbed catalysts have been eliminated by performing ten 

CV scans after grafting, so that the reported currents represent only catalytic current from 

grafted molecules. 

 

 

Figure 5.4. Stabilized CVs for (a) 1-3 and (b) 4-5, compared to background, at 100 mV/s in 

acetate buffer (pH=5).  
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Figure 5.5. (a) CVs of a bare glassy carbon electrode at a scan rate of 100 mV/s in acetate 

buffer (pH=5). A scan was done before and after electroreduction using a blank solution 

identical to the catalyst solutions used to make 1-5 (but without any catalyst) then after 10 

more scans. (b) CVs of 1 initially after grafting and after the CV response has stabilized, at a 

scan rate of 100 mV/s in acetate buffer (pH=5). A CV of a bare electrode is shown for 

comparison. 

 

The Ir
3+

 and Ru
2+

 complexes must reach higher oxidation states before they are able 

to drive water oxidation. The only grafted electrode that shows any redox couple in water is 

5, with a small very broad pair of peaks with E1/2 = 0.9 V (Fig. 5.6). This redox couple is 

shifted to higher potential compared to the corresponding peaks in the solution CV (E1/2 = 

0.79 V) under otherwise similar conditions. The redox peaks in buffer become much broader 

and less prominent when the complex is grafted. The inhibited response seen for this couple 

as well as the lack of peaks in 1-4 is likely due to the slow proton migration rate of proton 

coupled electron transfer steps.
36

 The redox events that occur at the onset of water oxidation 

may also be obscured by the catalytic wave.
9
 Redox peaks are also seen for 5 in acetonitrile 

(E1/2 = 0.65 V), in which they are much more prominent and well-defined than they are in 

water. Fig. 5.7 shows CVs of 1 at different scan rates ranging from 20-400 mV, with the 

current (I) normalized by dividing by the square root of the scan rate. The normalized 
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catalytic current increases as scan rate decreases, indicating a catalytic process with a rate-

limiting chemical step before quick electron transfer.
36, 37

   

 

 
 

Figure 5.6. CVs of E in solution (1 mM) in acetate buffer (pH=5) and 5 in acetate buffer and 

acetonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate. All CVs were done 

with a scan rate of 100 mV/s.  

 

 

 

Figure 5.7. (a) Scan rate normalized CVs of 1 from 20-400 mV/s, with background 

subtracted. (b) The current at 1.6 V divided by the square root of the scan rate versus the scan 

rate for 1 and 4.  
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5.2.4. Catalyst turnover frequency 

Catalyst loadings in samples 1-5 were determined by inductively coupled plasma 

mass spectrometry (ICP-MS). The grafted complex was removed from the electrode using a 

piranha solution, and the amount of Ir or Ru was measured by ICP-MS. Catalyst loadings 

were quite different among A-E, with average loadings of 0.36, 0.091, 0.043, 0.039, and 

0.071 nmol/cm
2
, corresponding to surface coverages of A-E at 2.18, 0.55, 0.26, 0.23, and 

0.43 molecules/nm
2
 for 1-5, respectively. The coverage on 1 is estimated to be about a 

monolayer. The loading efficiency may be related to the solubility of the complex in the 

solution used for grafting, as charged Ir complexes A and B were completely soluble while 

neutral Ir complex C was only slightly soluble and resulted in lower loading. The loading 

efficiency is also likely dependent on the reduction potential needed to initiate the grafting 

reaction in each case. The reduction potential at which grafting occurs is not clear due to the 

overwhelming background reduction current at 0.2 to -0.4 V (Fig. 5.8). 

 

 

Figure 5.8. CVs of the catalyst solutions used for grafting to make 1-5, from 0.2 to -0.4 V at 

100 mV/s.   
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The TOF for each catalyst was calculated based on the current at 1.6 V and the 

catalyst loading as measured by ICP-MS. The TOF is the molecules of O2 produced per 

molecule of catalyst per unit time, assuming 100% Faradaic efficiency (which is justified 

below). The ability to measure the amount of catalyst on the grafted electrodes provides an 

advantage over studying these WOCs electrochemically in solution. The solution CVs of the 

Ir complexes lack observable redox peaks (for reasons explained above), so TOFs cannot be 

calculated and compared amongst various catalysts. The potential of 1.6 V corresponds to an 

overpotential of 0.66 V, as the thermodynamic potential for water oxidation at pH 5 is 0.94 V 

vs NHE. The TOFs were 1.67±0.25, 0.59±0.34, 3.31±0.27, 3.33±0.38, and 1.78±0.76 s
-1

 for 

1-5, respectively. The Cp*Ir complex with the more electron-donating ppy ligand, 3, is a 

more active WOC electrochemically than either of the Cp*Ir complexes with a bpy ligand, as 

is also observed in chemically-driven catalysis with Ce
4+

 as the sacrificial oxidant. It is 

apparent from the difference in TOF between 1 and 2 that the position of attachment on the 

pyridine ring affects the rate of water oxidation. Catalysis is significantly hindered when ppy 

is attached to the electrode at the 5 position, compared to the 4 position, presumably due to 

electronic effects or unfavorable interaction with the glassy carbon surface. Although 

unlikely, we cannot rule out the possibility that the carbon surface could mediate the catalytic 

reaction to cause different activity dependent on catalyst orientation. The overpotential used 

in Ce
4+

-driven water oxidation is 0.55 V, since the thermodynamic potentials for Ce
4+

 

reduction and H2O oxidation at pH 1 are 1.72 and 1.17, respectively. The TOF for A in Ce
4+

 

solution was only 0.0167 s
-1

 for the first hour, after which TOF decreased rapidly. At pH 5, a 

potential of 1.49 V would correspond to a 0.55 V overpotential, at which the TOF for 1 is 
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0.51 s
-1

. This comparison demonstrates that faster catalytic rates can be achieved by 

evaluating molecular catalysts electrochemically rather than by using a chemical oxidant. 

 

Table 5.1. Catalyst current, loading, and TOF
a
 

Sample Current
b
 

(µA/cm
2
) 

Loading 

(molecules/nm
2
) 

TOF 

(s
-1

) 

1 226 ± 13 2.18 ± 0.44 1.67 ± 0.25 

2 16 ± 5 0.55 ± 0.16 0.59 ± 0.34 

3 55 ± 9 0.26 ± 0.03 3.31 ± 0.27 

4 50 ± 7 0.23 ± 0.01 3.33 ± 0.38 

5 48 ± 21 0.43 ± 0.14 1.78 ± 0.76 

a
Averaged over three replicates. Error is standard deviation. 

b
At 1.6 V, with background 

subtracted. 

 

 5.2.5. Controlled potential electrolysis 

We further examined the stability of the carbon-grafted WOCs during 

electrochemical water oxidation reactions. A stability test was carried out on 1 over three 

hours (Fig. 5.9a). Five functionalized electrodes were prepared identically, and controlled 

potential electrolysis was done at 1.6 V with three of them for 1, 2, or 3 hours. The remaining 

two electrodes did not undergo electrolysis; one was only rinsed, and the other underwent ten 

CV scans. The sample that was only rinsed contained 4.83 molecules/nm
2
. Much of this was 

lost during the 10 CV scans that resulted in a stable response, to leave 1.97 molecules/nm
2
. 

The catalyst lost during the scans was likely not covalently bound. Most of the remaining 

bound catalyst is then lost more slowly over three hours of electrolysis, leaving 0.10 

molecules/nm
2
. The loss of catalyst is likely due to loss of carbon from the surface of the 

electrode, rather than catalyst decomposition, as carbon is oxidized at the potential used.  
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It is not possible to determine TOF from the CV for catalyst remaining after 

electrolysis, because the background current increases a great deal during electrolysis. This 

increase is probably due to an increase in surface hydrophilicity and surface roughening, as 

observed by scanning electron microscopy (SEM), resulting in increased surface area (Fig. 

5.9b-c). The electrode surface still appears smooth after 40 min, when most of the grafted 

catalyst remains on the electrode. The roughening of the surface becomes apparent after 10 

days of electrolysis, when no catalyst remains on the surface. Carbon oxidation, and thereby 

loss of grafted catalyst, is a potential problem when using glassy carbon at the oxidative 

potentials needed to drive water oxidation. However, this problem could be overcome by 

using a carbon electrode with a stable surface. Recently, a Ru-bis(tpy) complex was tethered 

to a conductive diamond electrode, and very little loss in electrochemical activity was 

observed after one million CV scans to 1.5 V vs NHE.
38

 The issue of catalyst loss due to 

carbon oxidation as seen in the present study could be alleviated with the use of a conductive 

diamond electrode. 

 

 

Figure 5.9. (a) Catalyst loading for 1 during controlled potential electrolysis in acetate buffer 

(pH=5) at 1.6 V. SEM images of glassy carbon electrode 1 after (b) 40 min of electrolysis 

and after (c) 10 days of electrolysis. 
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The current from 1 during one hour of electrolysis can be compared to the current 

from a bare electrode to determine sustained TOF during electrolysis as well as TON after 

one hour (Fig. 5.10a). This type of measurement is problematic with molecular WOCs in 

solution due to the deposition of films on the electrode that contain electroactive species 

different from the catalysts in the bulk solutions.
39

 After subtracting the background, the 

current at 1 h is 14.2 µA/cm
2
, resulting in a TOF of 0.113 s

-1
. The total charge passed by the 

catalyst in 1 h corresponds to 238 nmol of O2 and a TON of 644 in 1 h. TON could be limited 

by oxygen bubble formation on the electrode, which is observed during electrolysis. Bubbles 

would prevent diffusion of water to the surface-bound WOCs. Even considering this, the 

TON for 1 is much higher than the TON of ~150 obtained before the same catalyst is nearly 

deactivated after 7.5 hours of Ce
4+

-driven water oxidation. This comparison suggests that the 

surface grafting strategy might have significantly stabilized the WOC, presumably by 

shutting down the intermolecular decomposition pathways. The possibility of catalyzed 

oxidation of the carbon electrode by the Ir and Ru complexes was a concern; however, the 

background current increases nearly the same amount during an hour of electrolysis with 

both 1 and a blank electrode (Fig. 5.10c). If the complex were catalyzing carbon oxidation, a 

greater increase in background current would be expected for the grafted electrode. A rapid 

loss of the complex from the electrode would also be observed, as it is anchored by C-C 

bonds, but there is very little loss of catalyst during the first hour of electrolysis. The loss of 

the molecular WOCs from the carbon electrode due to carbon oxidation makes it difficult to 

determine TOF or TON beyond 1 h. Electrolysis was also done on 4 for 1 h (Fig. 5.10b) in 

order to compare the catalytic activity to that achieved by attaching a phosphonate derivative 
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of D to an electrode surfaces as reported by Meyer et al.
29

 The phosphonate derivative 

produced a sustained current of 14.8 µA/cm
2
 at a loading of 0.72 molecules/nm

2
 when 

electrolysis was performed at 1.85 V, giving a TOF of 0.36 s
-1

. In comparison, the amount of 

catalyst remaining on 4 after 1 h was 0.13 molecules/nm
2
, with a current of 8.8 µA/cm

2
 

(background subtracted) at 1 h, resulting in a TOF of 1.0 s
-1

. 

 

 

Figure 5.10. Current during 1 h of electrolysis in acetate buffer (pH=5) at 1.6 V for (a) 1 and 

(b) 4, and a bare electrode. (c) The CV current at 1.6 V for both a blank electrode and 1 at three 

different stages: after only rinsing the grafted electrode, after 10 CVs have been run to stabilize the 

current, and after 1 h of electrolysis has been performed at 1.6 V. 

 

 5.2.6. Oxygen detection 
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Oxygen was detected in solution during 1 h of electrolysis with 1 at 1.6 V using a 

luminescence-based sensor (Fig. 5.11). Since the amount of oxygen generated is quite small, 

the distribution of oxygen in the bubbles on the electrode surface, in the solution, and in the 

headspace makes it difficult to directly quantify the oxygen generation Faradaic efficiency. 

We resorted to an indirect determination by comparison with electrochemical water oxidation 

with IrO2 nanoparticles, which are known to produce O2 from H2O with 100% Faradaic 

efficiency.
21

 A similar amount of O2 is detected in the headspace when a similar amount of 

charge is passed by IrO2 nanoparticles over the same period of time. The Faradaic efficiency 

for 1 can be considered close to 100% by comparison with the oxygen detected during water 

oxidation with IrO2 nanoparticles. The background current has been subtracted when 

considering the amount of charge contributing to oxygen production. While there is a 

significant amount of charge passed while performing electrolysis with a bare electrode, 

there is virtually no O2 detected. Most of this background current is likely due to oxidation of 

the carbon electrode, but the amounts of generated gases are too small to be detected by 

common methods like gas chromatography. The O2 generation results confirm that the 

enhancement in current is not due to Ir-complex-catalyzed carbon oxidation. If much of the 

current from the grafted catalysts were coming from CO2 generation, the amount of O2 

detected would be significantly lower than that detected during water oxidation with IrO2. 

The same is true for CO2 generation from oxidation of the organic ligands of the complexes. 

In any case, only a small fraction of the current could be attributed to ligand oxidation due to 

the very small amount of catalyst used (0.41 nmol). Oxidation of the acetate buffer is not a 

contributing factor under the conditions used, as CV scans on blank and grafted electrodes 

performed in 0.1 M KNO3 (at pH 5) are similar to those performed in acetate buffer.  
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Figure 5.11. (a) Oxygen was detected in solution during 60 min of controlled potential 

electrolysis at 1.6 V, and for 100 min afterward, with a bare glassy carbon electrode, 1, and 

0.1 mM IrO2 solution. All experiments were done in buffer at pH 5. (b) The current during 

electrolysis.   

 

5.2.7. Active catalytic species 

Grafting of molecular WOCs also allows for the identification of active catalytic 

species by surface spectroscopic measurements and other studies, which will help 

understanding of the electrochemical water oxidation reactions. For example, there is some 

concern that the formation of a metal oxide under the conditions used for water oxidation 

could be responsible for the catalytic activity of some molecular WOCs.
40, 41

 X-ray 

photoelectron spectroscopy (XPS) was carried out on 1 to rule out the formation of IrO2 (Fig. 
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5.12a). The Ir 4f7/2 peak was located at 62.9 eV for the Ir
3+

 complex on 1 after grafting, 

before any water oxidation was performed. The peak stays at the same binding energy after 

40 min and even after 900 min of controlled potential electrolysis at 1.6 V. The Ir 4f7/2 peak 

for IrO2 occurs at 61.6±0.5 eV,
42

 therefore, the XPS data indicates that the Ir complex does 

not turn into IrO2 under the conditions used for water oxidation. The intensity of the Ir signal 

decreases over time due to loss of the complex from the surface, as discussed previously. 

Anchoring of the molecular WOCs also allows the water oxidation to be carried out at 

different pHs, providing further evidence against IrO2 formation. IrO2 is not stable at pH 1 

and becomes inactive after ~30 min, as demonstrated by performing water oxidation with 

Ce
4+

 at pH 1 (Fig. 5.13). Oxygen was detected in the gas phase over a 0.1 M HNO3 solution 

(pH=1) containing 101 mM cerium ammonium nitrate and 24 µM IrO2. If all of the Ce
4+

 

were reduced, the maximum TON would be 1050. Most catalytic activity is lost after about 

30 min, before all of the Ce
4+

 has been reduced. A sample of 1 was prepared and soaked in 

0.1 M HNO3 for 1 h, then 10 CVs were run from 0.2-1.8 V to stabilize the current (Fig. 

5.12b). The electrode was then soaked in 0.1 M HNO3 for 1 more hour and 10 more scan 

cycles were performed before acquiring a second CV. Bare glassy carbon was treated in a 

similar manner as 1 for background comparison. A strong water oxidation wave is present for 

1 and remains even after soaking at pH 1 for another hour. The retention of catalytic activity 

at pH 1 argues against the formation of IrO2 as the active catalyst.  Our results are in 

excellent agreement with a recent study by Crabtree, Brudvig, and co-workers using 

piezoelectric gravimetry to distinguish between homogeneous and heterogeneous catalytic 

water oxidation using molecular Ir complexes.
39

 

 



134 
 

 

Figure 5.12. (a) XPS Ir 4f peaks from 1 after 0, 40, and 900 min of electrolysis at 1.6 V. (b) 

CVs of 1 done in 0.1 M HNO3 (pH=1) from 0.4-1.8 V with a scan rate of 100 mV/s. 

 

 

Figure 5.13. Homogeneous chemically-driven water oxidation with IrO2 nanoparticles using 

Ce
4+

 as an oxidant. TON was based on oxygen detected in the gas phase over the reaction. 

 

 

5.3. Conclusion 

Grafting molecular Ir and Ru complexes directly and covalently to carbon electrodes 

demonstrates a new way to study molecular WOCs. As opposed to Ce
4+

-driven water 

oxidation, electrochemical water oxidation using grafted WOCs can be carried out under 

tunable conditions, which is more relevant to identifying typically less stable molecular 
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WOCs based on first-row transition metals. This method provides a more accurate way of 

assessing the true activity of a WOC without decomposition due to unnecessarily harsh 

conditions. Combining this new surface attachment strategy with newly developed molecular 

WOCs that are active and earth-abundant can lead to a potentially practical solution for 

storing solar energy in chemical fuels. 

 

5.4. Experimental Details 

 5.4.1 Materials and methods 

All starting materials were purchased from Aldrich and Fisher, unless otherwise 

noted, and used without further purification. 
1
H NMR, 

1
H-

1
H COSY NMR and 

1
H-

1
H 

NOESY NMR spectra were recorded on Bruker NMR 400 NB and 400 DRX Spectrometers 

at 400 MHz and referenced to the proton resonance resulting from incomplete deuteration of 

deuterated chloroform (CDCl3, δ 7.26), deuterated dimethyl sulfoxide (DMSO-d6, δ 2.50), 

deuterated methanol (MeOD, 3.34 δ). Mass spectrometric (MS) analyses were conducted 

using positive-ion electrospray ionization on a Bruker BioTOF Mass Spectrometer. A Varian 

820-MS Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) was used to determine Ir 

and Ru complex loading on electrodes. The complexes were removed from the electrode by 

soaking the electrode in a 3:1 v/v solution of concentrated H2SO4 and 30% H2O2 (piranha 

solution). After soaking for two hours, the piranha solution was diluted with H2O to prepare 

the samples for ICP-MS. X-ray photoelectron spectroscopy (XPS) was also used to 

characterize the grafted electrodes. A Kratos Axis Ultra DLD X-ray Photoelectron 

Spectrometer was used with a monochromatic Al X-ray source at 150 W. The pass energy 

used was 80 eV for the entire spectral region from 0-1200 eV, and 20 eV for the individual 
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element spectra. Scanning electron microscopy (SEM) was used to image the electrodes, 

using a Hitachi 4700 field emission scanning electron microscope. Cyclic voltammograms 

(CVs) and controlled potential electrolysis were done using a PAR Model 263A potentiostat. 

Most electrochemical data for the grafted electrodes was obtained in a CH3CO2H/CH3CO2Na 

buffer solution at pH 5 and 0.1 M ionic strength. Some experiments were done at lower pH in 

0.1 M HNO3 (pH=1). A Pt wire counter electrode and a Ag/AgCl reference electrode were 

used for all experiments, and iR compensation was used for all CVs. Oxygen was detected 

with a luminescence-based YSI Professional Optical Dissolved Oxygen (ProODO) sensor. 

All oxygen detection experiments were performed in airtight vessels that had been purged 

with Ar or N2 until the oxygen reading on the sensor was very close to zero. For oxygen 

detection in the gas phase, only the headspace was purged. For oxygen detection in solution, 

both the solution and headspace were purged. 

Calculations: The catalyst loading on the electrodes was determined by ICP-MS 

detection of Ir and Ru. The number of Ir or Ru sites was then used to calculate turnover 

frequency (TOF) based on the number of O2 molecules generated per catalyst molecule. The 

CV peak current at 1.6 V taken at 100 mV/s was used to determine the number of electrons 

transferred per unit time. Background current from a bare glassy carbon electrode was 

subtracted. This was converted to the amount of O2 being generated, based on 100% current 

efficiency and 4 electrons being produced for every O2 molecule. TOF was also calculated 

from stabilized current during electrolysis, reflecting sustained water oxidation rate. TON 

was determined for a time period of 1 h based on the total charge passed after background 

subtraction.   

5.4.2. Synthesis and characterization of complexes 
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Synthesis of 4-amino-2,2’-bipyridine (4-NH2-bpy) and 5-amino-2,2’-bipyridine 

(5-NH2-bpy).  Both NH2-bpy ligands were synthesized by following a published procedure.
43 

  

Synthesis of  2-(p-aminophenyl)pyridine (p-NH2-ppy).  p-NH2-ppy was 

synthesized by following a published procedure.
44

 

Synthesis of 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (Mebimpy).  2,6-

bis(benzimidazol-2-yl)pyridine (bimpy) was synthesized by following a published 

procedure.45  
Bimpy was used to synthesize Mebimpy by following a published procedure.

46
 

Synthesis of dichloropentamethylcyclopentadienyl iridium dimer.  [Cp*IrCl2]2 

was synthesized by following a published procedure.
47

   

Synthesis of trichloro(2,6-bis(1-methylbenzimidazol-2-yl)pyridyl)ruthenium(III).  

[Ru(Mebimpy)Cl3] was synthesized by following a published procedure.
48

 

Synthesis of [(Ru(Mebimpy)Cl)2Cl2].  [Ru(Mebimpy)Cl3] was prepared first, then 

used to synthesize [((Mebimpy)ClRu)2Cl2], both by following a published procedure.
48

 

Synthesis of Ru(tpy)Cl3.  Ru(tpy)Cl3 was synthesized by following a published 

procedure.
49

 

Synthesis of chloro(η
5
-pentamethylcyclopentadienyl)(4-amino-2,2’-bipyridine- 

N,N')iridium(III) chloride ([Cp*IrCl(4-NH2-bpy)]Cl , A).  A mixture of [Cp*IrCl2]2 (60 

mg, 0.075 mmol) and 4-amino-2,2’-bipyridine (26 mg, 0.15 mmol) in 5 mL of 

dimethylformamide (DMF) was stirred at room temperature under argon for 15 h.  Half of 

the solvent was then removed by distillation under vacuum.  Addition of diethyl ether (20 

mL) resulted in the precipitation of the complex as the chloride salt.  The solid was washed 

with diethyl ether and hexane to give the product.  Yield:  50 mg (64 %).  
1
H NMR (CDCl3):  
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8.92 (d, 1H), 8.32 (d, 1H), 8.25 (d, 1H), 8.17 (t, 1H), 7.75 (m, 1H), 7.51 (s, 1H), 6.86 (m, 

1H), 1.68 (s, 15H).  MS (ESI):  534.09 m/Z, expected 534.13 m/Z for [M]
+
. 

 

 

Figure 5.14. Synthesis of A. 

 

Synthesis of chloro(η
5
-pentamethylcyclopentadienyl)(5-amino-2,2’-bipyridine- 

N,N')iridium(III) chloride ([Cp*IrCl(5-NH2-bpy)]Cl , B).  A mixture of [Cp*IrCl2]2 (30 

mg, 0.038 mmol) and 4-amino-2,2’-bipyridine (13 mg, 0.075 mmol) in 2.5 mL of 

dimethylformamide (DMF) was stirred at room temperature under argon for 15 h.  Half of 

the solvent was then removed by distillation under vacuum.  Addition of diethyl ether (10 

mL) resulted in the precipitation of the complex as the chloride salt.  The solid was washed 

with diethyl ether and hexane to give the product.  Yield:  30 mg (71 %).  
1
H NMR (DMSO-

d6):  8.83 (d, 1H), 8.38 (d, 1H), 8.35 (d, 1H), 8.29 (d, 1H), 8.18 (t, 1H), 7.64 (t, 1H), 7.34 (dd, 

1H), 1.67 (s, 15H).  MS (ESI):  534.14 m/Z, expected 534.13 m/Z for [M]
+
. 

 

 

Figure 5.15. Synthesis of B. 
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Synthesis of chloro(η
5
-pentamethylcyclopentadienyl)(2-(p-

aminophenyl)pyridine-C
2
,N')iridium(III) ([Cp*IrCl(p-NH2-ppy)], C).  A mixture of 

[Cp*IrCl2]2 (100 mg, 0.13 mmol), NaOAc (21 mg, 0.26 mmol), and 2-(p-

aminophenyl)pyridine (44 mg, 0.26 mmol) in 5 mL of DMF was stirred at room temperature 

under argon overnight.  Half of the solvent was then removed by distillation under vacuum.  

Addition of diethyl ether (20 mL) resulted in the precipitation of the complex.  The solid was 

washed with diethyl ether and hexane to give the product.  Yield:  80 mg (62 %).  
1
H NMR 

(CDCl3):  8.55 (d, 1H), 7.57 (d, 1H), 7.50 (t, 1H), 7.45 (d, 1H), 7.08 (s, 1H), 6.87 (t, 1H), 

6.35 (d, 1H), 1.65 (s, 15H).  MS (ESI):  497.15 m/Z, expected 497.16 m/Z for [M-Cl]
+
. 

 

N

Ir

Cl

Cl

Cl
Ir

Cl

Ir

Cl

N

NH2

+

NH2

NaOAc
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Figure 5.16. Synthesis of C. 

 

Synthesis of triflato(2,6-bis(1-methylbenzimidazol-2-yl)pyridyl)(4-amino-2,2’-

bipyridine-N,N’)ruthenium(II) triflate ([Ru(Mebimpy)(4-NH2-bpy)OTf]OTf, D).  

[Ru(Mebimpy)(4-NH2-bpy)Cl]Cl was synthesized first, then converted into D.  

[((Mebimpy)ClRu)2Cl2] (100mg, 0.098 mmol) and 4-amino-2,2’-bipyridine (34 mg, 0.196 

mmol) were suspended in 15 mL 2:1 EtOH:H2O, and the mixture was degassed by nitrogen 

bubbling. The suspension was heated at reflux for 4 h, and 5 mL 20% aqueous LiCl solution 

was added. The solution was allowed to cool overnight. The brown microcrystalline solid 

formed was then isolated by filtration and washed with water and ether. Yield: 80 mg (60%). 

The resultant [Ru(Mebimpy)(4-NH2-bpy)Cl]Cl complexes were a pair of stereo-isomers (D'-
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1:D'-2 = 4:5). See the 
1
H NMR and 

1
H-

1
H COSY NMR (MeOD) spectra below. MS (ESI): 

647.05 m/Z, expected 647.11 m/Z for [M]
+
. 

 

Figure 5.17. Synthesis of D’. 
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Figure 5.18. 
1
H-NMR spectrum of D’. 
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Figure 5.19. 
1
H-

1
H COSY NMR spectrum of D’. 

 

Summary of COSY NMR correlations (cross peaks):  a–i , b–o , c/d–g , e–f , f–i , h–l , j–o , 

k–n , l–s , m–w , n–q , n–r , p–s , q–u , r–v , t–w 

These correlations give seven separate sets of coupled protons (all aromatic): a-i-f-e, w-t-m, 

b-o-j, h-l-s-p, k-n-q-u, k-n-r-v, c/d-g 

By combining the information of coupled protons with the chemical shifts of these protons, 

as well as the peak integration, all of the peaks were assigned. 

 



145 
 

 

Figure 5.20. Assignment of peaks in the 
1
H NMR spectrum for D’. 

 

D was prepared from D’ by a procedure published for [Ru(Mebimpy)(bpy)OTf]OTf.48  

[Ru(Mebimpy)(4-NH2-bpy)Cl]Cl (1 eq.) and AgOTf (2.1 eq; OTf = triflate anion) were 

dissolved in methanol and stirred under nitrogen at room temperature overnight. The silver 

chloride was then removed by filtration. Two drops of triethylamine was added to the filtrate 

and the solution was slightly heated to precipitate the excess Ag
+
. The cloudy solution was 

filtered through Celite and taken to dryness by rotary evaporation. Diethyl ether was added 

and the solid was filtered, washed with ether, and air-dried. The resultant complexes were 

also a pair of isomers (D-1:D-2 = 4:5). See the 
1
H NMR spectrum (MeOD) of the mixture 

below. MS (ESI): 761.0 m/Z, expected 760.08 m/Z for [M]
+
.  
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Figure 5.21. 
1
H-NMR spectrum of D. 

 

Synthesis of chloro(2,6-bis(2-pyridyl)pyridine)( 4-amino-2,2’-bipyridine-

N,N’)ruthenium(II) chloride ([Ru(tpy)(4-NH2-bpy)Cl]Cl, E).  E was synthesized by a 

modification of a procedure published for [Ru(tpy)(bpy)Cl]Cl.
49

  A 1.00 g quantity of 

Ru(tpy)Cl3 (2.27 mmol) and 0.39 g (2.27 mmol) of 4-amino-2,2’-bipyridine were heated at 

reflux for 4 h in 400 mL of 75% EtOH/25% H2O containing 0.2g (~25 mmol) of LiCl and 1 

mL of triethylamine as a reductant. After hot filtration, the solution volume was reduced to 

~100 mL under rotary evaporation. The pot contents were then chilled in a refrigerator for 24 

h. The solid was collected by filtration and was washed with 30 mL of acetone and 200 mL 

of anhydrous ether, then air-dried.  The resultant compounds are a pair of stereo-isomers.  

The solids have been recrystallized in hexane/chloroform several times in an effort to enrich 

one of the isomers. The final product contains the isomers in a 2:1 ratio of E-1 and E-2, 

based on integration of 
1
H NMR (MeOD) peaks (see below). 

1
H-

1
H COSY NMR and 

1
H-

1
H 

NOESY NMR spectra are also shown below. MS (ESI): 541.1 m/Z, expected 541.05 m/Z for 

[M]
+
. The structure of the complex was further confirmed by single crystal X-ray diffraction 

on one of the stereo-isomers (E-2). 
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Figure 5.22. Synthesis of E.
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Figure 5.23. 
1
H-NMR spectrum of E.
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Figure 5.24. 
1
H-

1
H COSY NMR spectrum of E. 

 

Summary of COSY NMR correlations (cross peaks): a–i (strong), a–f (weak), b–t (strong), 

b–m (weak), c–h (strong), d–f (strong), e–k (strong), e–r (weak), f–i (strong), g–o (strong), j–

q (strong), j–l (weak), k–r (strong), l–q (strong), m–t (strong), n–r (strong), o–u (strong), p–w 

(weak), s–u (strong), v–w (strong) 

These correlations give seven separate sets of coupled protons (all aromatic): a-i-f-d, v-w-p, 

b-t-m, s-u-o-g, e-j-q-l, e-k-r-n, h-c 

By combining the information of coupled protons with the chemical shifts of these protons, 

as well as the peak integration, all peaks were assigned. One feature of the complex structure 
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is that the s and v protons are inside the shielding region of the aromatic ring current of the 

tpy ligand. As a result, the 
1
H-NMR chemical shifts of these protons are in the high field 

region. 

 

 

Figure 5.25. Assignment of peaks in the 1H-NMR spectrum of E. 

 

The peak assignment was further confirmed by the 
1
H-

1
H NOESY NMR spectrum. The 

additional cross peaks between protons s and l, s and q, and u and q result from through-

space interactions between these protons in close proximity. 
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Figure 5.26. 
1
H-

1
H NOESY NMR spectrum of E. 

 

Table 5.2. Crystal data and structure refinements for E-2. 

Empirical formula C27H20Cl7N7O3Ru 

Formula weight 839.72 

Temperature (K) 100 

Wavelength (Å) 1.54178 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 8.4872(2) 

b = 20.0430(6) 

c = 19.7656(5) 

α = 90 

 = 97.157(2) 

 = 90 

Volume (Å
3
) 3336.11(15) 

Z 4 

Density (calcd. g/cm
3
) 1.672 

Absorption coeff. (mm
-1

) 9.321 

F(000) 1672 

Crystal size (mm) 0.81×0.06×0.06 

Crystal color & shape Purple, block 

 range data collection 3.15 – 56.47 

Limiting indices -8 < h < 7 

-19 < k < 21 

-21 < l < 18 

Reflections collected 8706 

Independent reflections 4196 

R(int) 0.0491 

Data/restraints/parameters 4196/1/381 
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Goodness-of-fit on F
2
 1.127 

Final R indices [I>2σ(I)] R1 = 0.1099 

wR2 = 0.2660 

R indices (all data) R1 = 0.1258 

wR2 = 0.2760 

 

 

Figure 5.27. Structure of E-2 as determined by single-crystal X-ray diffraction. 

 

5.4.3. Functionalization of electrodes 

This procedure is a modification of a published procedure.
50

 Planar glassy carbon 

electrodes were grafted with complexes A-E to produce functionalized electrodes 1-5, 

respectively. A solution of the complex was prepared by dissolving 1.35 mg of A, 1.35 mg of 

B, 1.26 mg of C, 2.16 mg of D, or 1.40 mg of E (2.38 µmol) in 1.46 mL of H2O. Then 15.5 

µL (188 µmol) of concentrated HCl was added to the solution. After cooling to 0 °C, a 
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solution of 0.328 mg (4.75 µmol) NaNO2 in 164 µL cold water was added dropwise to the 

solution containing the complex. The solution was kept at 0 °C with stirring for 1 h to allow 

for a complete reaction, as indicated by a color change. A solution of 0.522 mg (4.75 µmol) 

NaBF4 in 261 µL cold water was added to the solution to stabilize the diazonium salt. This 

final solution was purged with Ar and used to perform diazonium grafting of the complex 

onto glassy carbon by applying a potential of -0.4 V vs NHE for 4 min. The functionalized 

area of the glassy carbon was circular with a diameter of 12 mm. The electrode was rinsed 

thoroughly with methanol and water before using. 

 5.4.4. Elimination of background 

 For 1-5, the first scan right after grafting shows a large increase in peak current 

compared to the background scan taken before grafting. The peak current decreases during 

several subsequent scans, eventually stabilizing at a current significantly higher than the 

background. Some of the current from the first few scans can be attributed to changes to the 

electrode during the electroreduction process. Control experiments were carried out by 

performing electroreduction with a blank solution that was otherwise identical to a catalyst 

solution, and then performing CV on the electrode. The first scan done after the 

electroreduction process had significantly higher current than the scan taken before 

electroreduction. After about five scans, the current stabilizes at a level only slightly elevated 

(<10%) over the background scan obtained before electroreduction. The average peak current 

(at 1.6 V) obtained by this method over three runs was 93±6 µA/cm
2
. This background 

current has been subtracted from the catalytic currents for 1-5 for calculations of catalytic 

activities. Some of the initial current enhancement after grafting is likely attributable to 

catalyst that is physisorbed to the electrode. ICP-MS reveals a large drop in catalyst loading 
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between a grafted electrode that has only been rinsed and one that has undergone several 

scans to remove physisorbed catalyst. CV currents were stabilized by performing ten CV 

scans after grafting. 

 5.4.5. Oxygen detection 

Oxygen was detected in solution during 60 min of controlled potential electrolysis at 

1.6 V, and for 100 min afterward, with a bare glassy carbon electrode, 1, and 0.1 mM IrO2 

solution. Oxygen was also measured over the same period without electrolysis to 

demonstrate that the oxygen detected is due to catalytic activity, not a leak. All experiments 

were done in buffer at pH 5. The current during electrolysis, corresponding to total charges 

passed of 67.8 mC for the blank electrode, 182 mC for 1, and 204 mC for IrO2. Both of the 

blanks (with and without) electrolysis showed a small increase of 0.05 ppm in dissolved 

oxygen over 160 min. For the blank without electrolysis, the increase could either be due to a 

small leak of air into the system or instrument fluctuation. Since the blank with electrolysis 

shows the same increase, it appears that bare glassy carbon does not produce any O2. After 

subtracting background, if 100% of the charge passed during electrolysis went toward O2 

formation, the dissolved oxygen concentrations would be 1.57 ppm for 1 and 1.88 ppm for 

IrO2. The actual oxygen concentrations at the final data points are 0.42 ppm for 1 and 0.52 

ppm for IrO2, after subtracting background. This results in 27% Faradaic efficiency in both 

cases. Since IrO2 is known to produce O2 from H2O with 100% efficiency, the grafted 

catalyst in 1 must also be operating at close to 100% efficiency. Several experimental 

difficulties result in the observed efficiency being much lower than 100%. Bubble formation 

on the working electrode is observed during electrolysis, which is likely responsible for the 

delayed response in detecting oxygen. The dissolution of bubbles into solution appears to 
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account for the quick increases in oxygen concentration, while the decreases can be attributed 

to diffusion of O2 into the headspace of the reaction vessel, where the concentration is too 

low to be detected. The equilibrium between oxygen in the bubbles, solution, and headspace 

complicates the detection of oxygen in solution. However, the oxygen that is detected for 1 

can be considered to correspond to 100% Faradaic efficiency by comparison with the oxygen 

detected during water oxidation with IrO2. 
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