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ABSTRACT 

Joann Frances Gruber: Timing of rotavirus vaccination and incidence of severe rotavirus 

gastroenteritis among infants in low- and middle-income countries. 

(Under the direction of Michele Jonsson Funk) 

 

Rotavirus vaccines effectiveness is much lower in low- and middle-income countries 

(LMICs) than high-income countries. Some factors associated with decreased immune response, 

including interference by transplacental antibodies and the microbiota, may be mitigated by 

altering vaccine schedules. The purpose of this dissertation was to investigate when children in 

LMICs experienced severe rotavirus gastroenteritis (RVGE) and if the timing of rotavirus 

vaccine doses was associated with severe RVGE. 

We analyzed data from two clinical trials in LMICs. To understand the timing and 

predictors of severe RVGE, we estimated the rate, cumulative incidence, and age distribution of 

severe RVGE among unvaccinated infants. Cox proportional hazards models were used to 

estimate associations between baseline factors and severe RVGE. To estimate the association 

between rotavirus vaccine dose timing and severe RVGE incidence, we compared different 

schedules using the complement of the Kaplan-Meier estimator to estimate differences and ratios 

of cumulative severe RVGE risk at 6, 12, and 18 months of age and also used a Cox proportional 

hazards model to estimate hazard ratios. To obtain adjusted estimates, we used the associations 

observed in the placebo group, which should only differ from the null due to confounding, to 

calibrate the estimates within the rotavirus vaccinated groups.  
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The cumulative incidence of severe RVGE was 6 – 8 % at 20 months of age. The 

cumulative incidence increased steadily over the first two years of life and was low at 6 months 

of age. Antibiotic use was associated with about 1.4 to 2 times the rate of severe RVGE. There 

was a dose-response relationship between age at first pentavalent vaccine (RV5) dose and severe 

RVGE. Earlier administration of first RV5 dose was associated with an increased severe RVGE 

risk and that risk declined with increased age of first dose until approximately 8 – 9 weeks of 

age. An interval of 4 versus 6 weeks between monovalent vaccine (RV1) doses was associated 

with increased risk of severe RVGE when RV1 was administered on an approximately 10/14 

week schedule. This dissertation, in conjunction with previous scientific literature, indicates 

severe RVGE episodes may be prevented by altering rotavirus vaccine schedules in LMICs. 
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CHAPTER 1: SPECIFIC AIMS 

Prior to the global rollout of rotavirus vaccines, rotavirus was the leading cause of severe 

diarrhea in children worldwide [1, 2]. Each year there were 140 million cases of rotavirus 

infection in children under five with 26 million of cases requiring clinic visits or hospitalizations 

[3]. By the age of 3 – 5 years, every child in the world experienced rotavirus infection [4, 5] and 

about one in every 260 children died as a result of the infection annually [2]. Despite similar 

rates of infection, rotavirus-associated mortality disproportionately affected, and continues to 

affect, children in LMICs, where 80 – 90% of rotavirus-associated deaths occur [1, 6]. 

As of 2009, the World Health Organization (WHO) recommended rotavirus vaccination 

for all children [7]. Two live, oral rotavirus vaccines, the two dose monovalent (RV1; Rotarix™, 

GlaxoSmithKline Biologicals, Rixensart, Belgium) and three dose pentavalent vaccine (RV5; 

RotaTeq™, Merck & Co., Inc.; Kenilworth, NJ, USA), are available for use across the globe. 

While high protective one-year efficacy (96 – 98%) against severe RVGE has been reported in 

high-income countries (HICs) [8-10], the efficacy has been much lower (51 –64%) in trials 

conducted in African and Asian LMICs [11-13]. This lower vaccine efficacy reported in LMICs 

is similar for other live oral vaccines including oral poliovirus vaccine (OPV), cholera vaccine, 

and oral typhoid vaccine [14-16]. Reasons for lower effectiveness in LMICs compared to HICs 

have been investigated in recent years. While breastfeeding may not greatly affect rotavirus 

vaccine response [17-19], concomitant vaccination with OPV [20, 21], malnutrition [22, 23], 

interference by transplacental maternal antibodies [24, 25], and environmental enteropathy and 
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the infant microbiota [26, 27] all may contribute to the lower vaccine effectiveness observed in 

LMICs. 

Some of the factors shown to decrease rotavirus vaccine performance including 

interference by transplacentally acquired maternal antibodies [24, 25] and composition of the 

microbiota [26, 27] may be mitigated by altering rotavirus vaccine schedules. However, even if 

alterations in vaccine schedules could improve the vaccine performance, changing schedules 

may not be advantageous if children experience severe RVGE before vaccination. Therefore, it is 

essential to understand the age at which children are experiencing severe RVGE to ensure 

vaccination using any schedule will protect the most infants. Although it is well accepted 

children in LMICs experience  rotavirus infection very early in life (median approximate age of 

6 – 9 months) [28], it is less well understood exactly when infants experience severe RVGE. 

Severe RVGE is the most clinically relevant outcome prevented by rotavirus vaccines to 

reduce hospitalization and death. Also, rotavirus vaccines are highly effective at preventing 

severe RVGE in HICs, but much less effective at preventing RVGE of any-severity [10, 29]. 

Therefore, it is important to understand the natural history of severe RVGE to weigh 

any potential advantages and disadvantages of altering rotavirus vaccination schedules. 

The purpose of this dissertation was to investigate when children in LMICs experienced 

severe RVGE episodes, defined as a Vesikari or modified-Vesikari score of > 11, and if the 

timing of rotavirus vaccine doses was associated with risk of severe RVGE in these areas. We 

used data from two clinical trials: one of 4,939 randomized infants in the RV1 trial conducted in 

South Africa and Malawi (Clinical Trial Number: NCT00241644) and another of 7,504 

randomized infants in the RV5 trial conducted in Ghana, Kenya, Mali, Bangladesh, and Vietnam 

(Clinical Trial Number NCT00362648). Our specific research aims were the following: 
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Aim 1: To describe the natural history of severe RVGE among infants in the placebo groups of 

the rotavirus vaccine trials in LMICs.  

Aim 1a: To describe the timing of first episode of severe RVGE.   

Aim 1b: To estimate the association between incidence of first severe RVGE and 

baseline factors, including demographic information; breastfeeding and growth status; 

and concomitant infection, antibiotic use, and vaccination.  

Aim 2: To estimate the association between timing of rotavirus vaccine doses and incidence of 

severe RVGE among vaccinated infants in the rotavirus vaccine trials in LMICs. 

 The results of this research can help understand the benefits and harms of altering 

rotavirus vaccine schedules in LMICs. Ultimately, these data can inform administration 

strategies of rotavirus vaccines in LMICs to prevent the most cases of severe RVGE. 



4 

 

 

CHAPTER 2: BACKGROUND AND SIGNIFICANCE1 

Rotavirus Morbidity and Mortality 

Rotavirus was a leading cause of severe diarrhea in children worldwide before 

widespread use of new rotavirus vaccines licensed in countries in 2006. [1, 2]. Worldwide 

surveillance estimates in 2009 indicated the median prevalence of rotavirus among majority 

rotavirus unvaccinated children hospitalized for gastroenteritis was 36% (range among countries: 

12 – 68%) [30]. The high prevalence of rotavirus among hospitalized children across all 

countries makes this pathogen an important global health issue. 

Despite a similar prevalence of rotavirus worldwide, rotavirus-associated mortality 

differs greatly between LMICs and HICs. In 2008, 37% of diarrhea-associated deaths and 5% of 

all deaths in children less than five years of age were attributed to rotavirus [2]. About 1,200 

children die of rotavirus each day, and 82% of these rotavirus-associated deaths occur in the 

world’s poorest countries [1]. In particular, five countries accounted for greater than half the 

rotavirus-associated deaths: the Democratic Republic of the Congo, Ethiopia, India, Nigeria, and 

Pakistan [2]. In the United States (US) and Europe, there are only about 35 and 230 deaths per 

year due to rotavirus, respectively [31, 32]. The dramatic differences in rotavirus death rates 

make rotavirus a different public health issue in LMICs and HICs. 

                                                 
1 Part of this chapter have been published in the journal Open Forum Infectious Diseases. The citation is as follows: 

Gruber JF, Gruber LM, Weber RP, Becker-Dreps S, and Jonsson Funk M. “Rotavirus vaccine schedules and vaccine 

response among infants in low- and middle-income countries: a systematic review,” Open Forum Infectious 

Diseases, 2017, ofx066. doi: 10.1093/ofid/ofx066. 
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Rotavirus Virology and Infection 

Rotavirus is a segmented, double-stranded RNA, non-enveloped virus with three major 

protein structures: the outer capsid formed by proteins VP7 and VP4, the intermediate capsid 

formed by protein VP6, and inner core formed by VP2 and also containing proteins VP3 and 

VP1 [3, 33]. The VP6 protein largely determines the group and subgroup of the virus while the 

serotype is determined by the VP4 spike protein and VP7 glycoprotein [3]. The potential for 

mutation and reassortment of the segmented genome from mixed infections has led to great 

diversity among rotaviruses [34]. There are seven major groups (A to G) and two major 

subgroups (I and II) that have been identified [3, 33]. The serotype is defined by the G serotype, 

or the glycosylated protein VP7, and the P genotype, or the protease-cleaved protein VP4 [3, 33]. 

At least 10 G serotypes, 11 P genotypes, and 42 P-G combinations have been identified [34].  

Human rotavirus infections are primarily caused by group A rotaviruses of either 

subgroup with a number of serotypes [34, 35]. A review of 124 studies from 52 countries 

estimated 88% (N = 16,474) of worldwide serotype/genotype strains are P[8]G1 (65%), P[4]G2 

(12%), P[8]G4 (8%), and [P8]G3 (3%) [36]. However, the distribution of these 

serotype/genotypes varies greatly across geographic regions [36]. The relative occurrence of 

each strain can also change over time, and new strains can emerge with antigenic drift and shift 

[36]. 

Rotaviruses are spread primarily through the fecal-oral route [37]. Infection with 

rotavirus can occur by contact with contaminated persons, food, water, and surfaces [37] and 

lead to vomiting and fever followed by non-bloody diarrhea [28, 38-40]. The incubation period is 

short, usually 24-48 hours [38, 39], and vomiting typically occurs at the start of symptoms and 

lasts one to two days [37] while duration of other gastrointestinal symptoms is usually four to 
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seven days [38]. Severe infection, requiring a clinic or hospital visit, has been documented in 7% 

[41] to 36% [42] of infected children. Treatment for rotavirus is focused on the assessment and 

subsequent treatment and prevention of dehydration [37, 43]. Rehydration therapy is 

recommended for children with dehydration [43].  

Following infection, the immune response and subsequent immunity is thought to be 

mediated through localized, mucosal anti-rotavirus immunoglobulin A (IgA) antibodies [4]; 

however, immune response to wild-type infection or vaccination is not fully understood. 

Importantly, there is no known correlate of protection between RVGE and anti-rotavirus IgA 

antibody concentration [44, 45]. However, aggregate anti-rotavirus IgA antibody concentrations 

have been correlated with rotavirus vaccine efficacy and are often used as a surrogate for clinical 

endpoints [46]. In addition to IgA, anti-rotavirus immunoglobulin G (IgG) antibodies likely play 

a role in immune response, because transplacentally acquired anti-rotavirus IgG antibodies seem 

to largely protect neonates from symptomatic infection [47].  

Immunity from natural infection may vary depending on the number of acquired 

infections and geographic region. First infection is thought to generate a primarily homotypic 

antibody response whereas later infections are thought to generate a heterotypic response, 

conferring more broad protection [48]. In a birth cohort of Mexican infants (N = 200), two 

infections (symptomatic or asymptomatic) were shown to confer 100%, 75% (95% CI: 45%, 

89%), and 62% (95% CI: 34%, 79%) immunity to subsequent moderate-to-severe diarrhea, mild 

diarrhea, and asymptomatic infection, respectively [49]. In a birth cohort in India (N= 373), two 

infections with moderate to severe diarrhea, mild diarrhea or asymptomatic infection conferred 

57% (95% CI: 6%, 80%), 72% (95% CI: 58%, 81%), and 33% (95% CI: 16%, 46%) protection 

against moderate to severe diarrhea, mild diarrhea or asymptomatic infection, respectively [50]. 
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In Guinea-Bissau, a single rotavirus infection conferred 70% (95% CI: 29%, 87%) and 52% 

(95% CI: 16%, 73%) against rotavirus diarrhea and infection, respectively [51]. 

 

Rotavirus Vaccines 

Due to the high burden of RVGE and the potential immunizing effect of infection, the 

development of safe and effective vaccines has been a global priority. First generation vaccines 

used naturally attenuated animal strains of rotavirus and were generally unsuccessful at 

consistently preventing severe RVGE [52-54]. Second generation vaccines use either attenuated 

human or human-animal reassorted strains of rotavirus and have been much more successful than 

first generation vaccines [53, 55]. 

In 1998, a promising second generation, tetravalent rhesus-human reassortant rotavirus 

vaccine was licensed in the US (RotaShield®, Wyeth Lederle Vaccines) [53, 56-58]. This 

vaccine was withdrawn from the market after one year when increased risk of intussusception 

(intestinal obstruction when part of the intestine telescopes into an adjacent part) [59], was found 

to be associated with vaccination [60]. 

Currently, there are two live, oral rotavirus vaccines available broadly across the globe, 

RV1 and RV5. In addition, there are a few other vaccines licensed for use in national markets 

including: ROTAVAC® manufactured by Bharat Biotech International Limited and licensed for 

use in India in 2014, Rotavin-M1TM manufactured by the Center for Research and Production of 

Vaccines and licensed for use in Vietnam in 2007, and Lanzhou Lamb Rotavirus Vaccine (first 

generation vaccine) manufactured by Lanzhou Institute of Biological Products and licensed for 

use in China in 2000. Development of new vaccines is also taking place in Brazil, China, India, 

Indonesia, and the US. 
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RV5 is an oral pentavalent rotavirus vaccine that was first licensed for use in 2006 for 

infants 6 to 32 weeks of age [55]. Each 2 mL vaccine dose contains 5 live human-bovine 

reassortant rotaviruses (G1, G2, G3, G4, and P1A[8]) at a concentration of 2.0 – 2.8  x 106 

infectious units per dose, depending on the genotype. Vaccination is a three part series beginning 

at 6 to 12 weeks of age with subsequent doses given at 4 to 10 week intervals with the final dose 

administered before 32 weeks. The vaccine is contraindicated for those with history of 

intussusception, severe combined immunodeficiency disease, and hypersensitivity to the vaccine 

or its components. 

RV1 is an oral monovalent rotavirus vaccine that was first licensed for use in 2008 for 

infants 6 to 24 weeks of age [61]. Each 1mL vaccine dose contains live-attenuated human 

G1P[8] rotavirus at a median concentration of at least 106 Cell Culture Infective Dose. The two 

dose vaccine series begins at 6 to 20 weeks of age with a subsequent dose at least 4 weeks after 

the first dose and prior to 24 weeks of age. This vaccine is contraindicated for infants with 

history of intussusception, severe combined immunodeficiency disease, hypersensitivity to the 

vaccine or its components, and uncorrected congenital malformation of the gastrointestinal tract 

that would predispose the infant to intussusception. 

 

Use, Efficacy, and Effectiveness of Rotavirus Vaccines 

As of 2009, the WHO recommended rotavirus vaccination for all infants [7], and as of 

May 2016, 81 countries have introduced rotavirus vaccines into their national immunization 

schedules, including 38 Gavi-eligible countries [62]. Eight countries (Austria, Brazil, El 

Salvador, Luxembourg, Nicaragua, Panama, the US, and Venezuela), including one Gavi-eligible 

country (Nicaragua), were the first to introduce rotavirus vaccines in 2006.  Of the 81 countries 
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who have introduced rotavirus vaccines, 21 (26%) are low income (≤ $1,045 per capita gross 

national income (GNI), 23 (28%) are lower middle income ($1,045 – $4,125 GNI), 19 (23%) are 

upper middle income ($4,125 – $12,746 GNI), and 18 (22%) are high income (≥ $12,476 GNI). 

Of these 81 countries, 59 (73%) use RV1, 18 (22%) use RV5, and 4 (5%) use both RV1 and 

RV5. Among the 38 Gavi-eligible countries, 33 (87%) use RV1 and the remaining 5 (13%) use 

RV5. 

The one-year efficacies of RV1 and RV5 at preventing severe RVGE have been high in 

clinical trials in HICs (96 – 98%) [8-10], but lower (51 – 64%) in LMICs [11-13]. These 

estimates come from some of the first rotavirus vaccine trials conducted for RV1 and RV5 in 

these areas. The Rotavirus Efficacy and Safety Trial (REST) for RV5 was conducted in 11 

countries from 2001 to 2004 among about 70,000 infants of which a subset of about 5,700 were 

followed for efficacy [10]. Similarly, the clinical trial for RV1 took place from 2004 to 2006 in 6 

European countries and efficacy against wild-type rotavirus was determined for about 4,000 

infants who received 2 doses of vaccine/placebo [63]. A trial of RV5 was conducted in 5,225 

infants in Africa (Ghana, Kenya, Mali) [12] and 1,969 infants in Asia (Bangladesh, Vietnam) 

from 2007 to 2009 [13]. The trial of the RV1 was conducted from 2005 to 2007 in 4,939 infants 

living in South Africa and Malawi [11]. Other trials and studies have been conducted, but these 

were the first large scale trials for their respective vaccines/regions. The efficacies estimated in 

these trials are summarized in Table 2.1. 

Rotavirus vaccines have lower efficacy in LMICs when compared to HICs. The pooled 

efficacy of rotavirus vaccines in LMICs is 51% whereas in HICs, it is 85% [64]. The same 

pattern has continued in post-introduction effectiveness studies. Despite the success of these 
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vaccines at reducing health care encounters and hospitalizations [65-67], rotavirus vaccine 

effectiveness is lower in LMICs as compared to HICs [68, 69]. 

Several rotavirus vaccine experts have hypothesized and investigated reasons for lower 

rotavirus vaccine efficacy based on differences between rotavirus presentation in LMICs and 

HICs. There are three main factors that could influence the effectiveness of rotavirus vaccines: 1) 

rotavirus epidemiology, 2) vaccine availability after entry into the host (i.e., the ability to reach 

the epithelial cells of the gastrointestinal tract), and 3) the immune response of the infant [15].  

The epidemiology of rotavirus is different between LMICs and HICs. There is a large 

amount of diversity among the rotaviruses that are found in LMICs as compared to HICs [36]. In 

addition, rotaviruses tend to circulate year round in many LMICs, because there is not a strong 

seasonal pattern of rotavirus infections in tropical areas as compared to the winter peaks seen in 

temperate climates of most HICs [3, 4, 42, 70]. Also, the age of first severe RVGE is thought to 

be earlier in children in LMICs (median 6 – 9 months) compared to HICs (median 9 – 15 

months) [28]. 

Factors that may affect vaccine availability are transplacental antibodies, breast milk, and 

stomach pH [15]. There are high levels of circulating anti-rotavirus antibodies in adults living in 

LMICs compared to HICs [71], and some studies have reported high correlations (0.57 to 0.86) 

between anti-rotavirus IgG antibody levels in mothers and infants in LMICs [71, 72]. One study 

in India demonstrated the ability of pre-existing anti-rotavirus IgG antibodies in infant blood to 

neutralize the effect of a new rotavirus vaccine (ORV-116E) [73]. There is also some evidence 

that anti-rotavirus IgG antibodies inhibit the immune response in vaccinated infants. In Ghana, a 

trial investigating the impact of alternative RV1 vaccines schedules on seroconversion found 

seroconversion was higher among infants with the lowest compared to highest quartile of pre-
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vaccination IgG levels [25]. A similar result was also found in Pakistan and India [17, 24]. 

Although transplacentally acquired antibodies decay exponentially with a half-life of around 35 

to 40 days, there is considerable individual variability in the rate of clearance [74]. One study has 

examined the clearance rate of passively acquired anti-rotavirus antibodies in 54 Mexican infants 

and found a gradual decline until four months of age and then an increase, likely due to incident 

rotavirus infections [75]. In addition, the critical level at which maternally acquired antibody 

concentrations are low enough to elicit a robust immune response in infants is unknown. 

Consequently, these data suggest it is possible that passively acquired antibodies could interfere, 

or even entirely negate, the immunologic response to rotavirus vaccines given to infants at the 

same age or earlier in LMICs compared to HICs. Similarly, breast milk contains anti-rotavirus 

IgA antibodies as well as neutralizing immune factors that can inhibit vaccine availability [71, 

76] and these immune factors have been shown to be in higher concentration in women from 

LMICs compared with women from HICs [77-79]. However, a randomized trial of breastfeeding 

in South Africa (N = 204) found that withholding breastfeeding one hour before and after each 

dose of rotavirus vaccine had no effect on one-month IgA seroconversion status compared to 

unrestricted breastfeeding before/after vaccination [18]. Similarly, a randomized trial of 

withholding breastfeeding 30 minutes before/after each dose of vaccine compared to 

encouragement not to withhold breastfeeding did not have a significant impact on one-month 

IgA seroconversion status in Indian infants (N = 391) [17]. In addition, high levels of stomach 

acid can inactivate live vaccines [80]. Although the vaccine is administered with a buffer 

solution, stomach acid levels in children in LMICs could be higher resulting in a lower 

immunogenic dose of vaccine.  
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Factors that may affect the immune response to rotavirus vaccination are breastfeeding, 

malnutrition, co-infection and environmental enteropathy, the gut microbiota, and co-

administration of vaccines or medications [15]. While breast milk may provide factors that 

inhibit vaccine uptake, it can also provide components that result in a more robust infant immune 

system [81]. For example, exclusive breastfeeding in Bangladeshi infants was associated with 

higher antibody titers after OPV administration [82]. In addition, adequate nutrition and specific 

micronutrients are critical for proper immune function [83]. Consequently, malnutrition could be 

a reason for hyporesponsiveness to rotavirus vaccines in LMICs with high levels of malnutrition 

in mother and infants. A recent study in Bangladesh found children with wasting had 

significantly lower antibody titers following OPV administration compared to children without 

wasting [82]. Furthermore, infants in LMICs are exposed to high levels of co-infections (e.g., 

human immunodeficiency virus (HIV), malaria, diarrheal diseases, etc.) that may affect vaccine 

response [84]. In addition, the combination of undernourishment and repeated exposure to 

enteric pathogens can lead to chronic environmental enteropathy which can lead to altered 

enteric immunity [26]. Environmental enteropathy has been associated with lower rotavirus 

vaccine response in Bangladeshi infants [26]. Similarly, the composition of the microbiota itself 

is constantly evolving early in life and may influence the vaccine response. A randomized trial in 

India reported higher seroconversion rates among infants receiving RV1 with zinc or probiotics 

compared to the RV1 alone [85]. A case control study of 6 week old Ghanaian infants found 

RV1 vaccine responders (post-vaccination IgA antibody levels ≥ 20 IU/mL) had microbiotas 

more closely resembling Dutch infants than Ghanaian non-responders (post-vaccination IgA 

antibody levels ≥ 20 IU/mL) [27]. Additionally, infants in LMICs are administered OPV rather 

than the inactivated poliovirus vaccine (IPV) that is given in HICs, and OPV can interfere with 
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the immune response to rotavirus vaccines, particularly with the first doses of rotavirus vaccines 

[20, 21]. Finally, concomitant antibiotic or other vaccine use may also influence immune 

response to rotavirus vaccines [86]. 

 

Timing of Rotavirus Vaccine Doses and Immunologic Response 

Some of the factors shown to decrease rotavirus vaccine performance may be mitigated 

by altering rotavirus vaccine schedules. For example, interference by transplacental maternal IgG 

anti-bodies could potentially be reduced by increasing the age the first dose of rotavirus vaccine 

is given. Also, delaying the timing of first dose, and consequently subsequent doses, could 

provide more time for the infant immune system and microbiota to develop, which could result 

in a more robust immune response to vaccination. Therefore, alterations in rotavirus vaccine 

schedules could result in stronger immune responses to vaccines and ultimately prevent more 

episodes of severe RVGE among children in LMICs. 

There have been eight clinical trials that have assessed different RV1 vaccine schedules 

in LMICs (Table 2.2). There have been no randomized or observational studies assessing the 

effect of vaccine schedule on the efficacy/effectiveness of the RV5 in LMICs, nor have there 

been observational studies assessing different dosing schedules RV1. The one-month 

seroconversion proportions and geometric mean titer by trial, country, and schedule are 

summarized in Table 2.3. 

Differences in seroconversion proportions comparing 6/10 versus 10/14 week schedules 

and 6/10/14 versus 10/14 week schedules are presented in Figure 2.1. Generally, seroconversion 

proportions for the 6/10 week schedule were lower than for the 10/14 week schedule. By 

contrast, seroconversion proportions for the 6/10/14 week schedule were similar or slightly 
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higher than seroconversion proportions for the 10/14 week schedule. Differences in the less 

commonly used schedules are presented in Table 2.4. There was no difference in seroconversion 

proportions between the 6/10/14 and 6/10/14/18/22 week schedules in India [87]. However, there 

was a lower seroconversion proportion for the 8.8/13.2 week schedule compared to the 8.6/17.4 

week schedule in Vietnam [88]. The seroconversion proportion for the 6.5/15.1 week schedule in 

the Philippines was lower than the 10.6/15.2 week schedule [88]. 

The ratios of geometric mean concentration (GMC) levels comparing the 6/10 and 

6/10/14 week schedules to the 10/14 week schedule are presented in Figure 2.2. These ratios 

followed a similar pattern to the differences in seroconversion proportions. Generally, the GMCs 

were lower for the 6/10 versus 10/14 week schedules. Similar to the results for difference in 

seroconversion proportion, the GMCs were similar or slightly higher for 6/10/14 versus 10/14 

week schedules. For less commonly used schedules, the GMC was significantly lower for 

8.8/13.2 week schedule compared to the 8.6/17.4 week schedule in Vietnam [88]. The responses 

were similar or slightly higher for the 6/10/14 week schedule compared to the 6/10/14/18/22 

week schedule in India [87]. The responses were also similar or slightly higher for the 6.5/15.1 

week schedule compared to the 10.6/15.2 week schedule [88]. 

One trial, (NCT00241644 [11, 89-91]), conducted in South Africa and Malawi, has 

reported vaccine efficacies by schedule using clinical outcomes (Table 2.5). In South Africa, the 

6/10/14 week schedule had slightly higher efficacy when compared to the 10/14 week schedule. 

However, these efficacy estimates, particularly for the second year and cumulative two year 

efficacy, had large variability. In Malawi, the efficacy for the 6/10/14 week schedule was largely 

indistinguishable from the 10/14 week schedule for the first year efficacy, but the 6/10/14 week 
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schedule had a numerically higher efficacy compared to the 10/14 week schedule during the 

second year, though the estimates were very imprecise. 

Other than the trial conducted in Malawi and South Africa, the studies conducted have 

been limited to analysis of immunologic response, of which there is no known correlate of 

protection [44, 45]. This means despite compelling evidence that the 6/10/14 or 10/14 week 

schedule may be more immunogenic than the 6/10 week schedule, this may not relate to 

protection against severe RVGE. Further research is needed to determine if dose timing, 

particularly for RV5 and only two doses of RV1, which is as it is used in routine immunization, 

impacts the incidence of severe RVGE among children in LMICs. 

 

Dosing Schedule and Timing of Severe RVGE 

When considering the potential alteration of rotavirus vaccine schedules, it is important 

to consider when children are experiencing severe RVGE. This is because the vaccine must be 

given early enough to prevent severe RVGE and to avoid vaccination during the natural peak in 

incidence of intussusception in children, but late enough to elicit a robust immune response from 

infants. Understanding the timing of severe RVGE events is critical to weigh the potential 

benefits and harms of altering vaccine schedules. 

Although it is well accepted that infants in LMICs are experiencing early exposure to 

rotavirus (median age of infection in LMICs at 6 – 9 months of age compared to 9 – 15 months 

HICs), it is less understood exactly when infants experience their first episode of  severe RVGE. 

Severe RVGE is the most critical outcome prevented by rotavirus vaccines to reduce 

hospitalization and death. Therefore, it is important to understand the natural history of severe 

RVGE to weigh the potential advantages and disadvantages of altering vaccination schedules.  
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In LMICs, there have been a number of longitudinal, birth cohort studies describing the 

natural history of RVGE infections in young children. However, many of these studies have 

several limitations for determining when children experience their first episode of severe RVGE. 

First, several studies summarizing timing of infection do not differentiate between asymptomatic 

and symptomatic infections [49, 50] or severe or non-severe symptomatic infections [51, 92-97]. 

Second, many studies provide the number or proportion of symptomatic rotavirus infections 

rather than the rate of infection by age groups less than one year of age [49, 92-96, 98, 99]. Since 

there can be variable lengths of follow-up among cohort members, particularly in low-resource 

settings where implementation of research studies can be challenging, it is important to consider 

the length of follow-up in these age groups. Third, many studies do not provide descriptive 

statistics describing the distribution of timing of first RVGE [49, 51, 93-96, 98]. These data are 

important to better understanding the distribution and variability of timing of severe RVGE in 

LMICs. Ultimately, these limitations make it extremely difficult to use existing data to 

understand when children in LMICs are experiencing severe RVGE and how that may relate to 

potential alterations of rotavirus vaccine schedules. 

 

Summary 

Rotavirus is historically an important cause of severe diarrhea in children across the 

globe. Although rotavirus vaccines have been highly effective at preventing severe RVGE in 

HICs, these vaccines have not performed as well in LMICs, where the majority of rotavirus-

associated mortality occurs. Concomitant vaccination with OPV, malnutrition, interference by 

transplacental maternal antibodies, environmental enteropathy, and the infant microbiota may all 

contribute to the lower vaccine effectiveness observed in LMICs. Importantly, some of the 
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factors shown to decrease rotavirus vaccine performance, including interference by 

transplacentally acquired maternal antibodies and composition of the microbiota, may be 

mitigated by altering rotavirus vaccine schedules. However, even if alterations in vaccine 

schedules may improve the vaccine performance, changing schedules may not be advantageous 

if children experience severe RVGE before vaccination. Therefore, in addition to understanding 

if timing of rotavirus vaccine doses affects the incidence of severe RVGE, it is also important 

to understand the timing of severe RVGE in children in LMICs to weigh 

any potential advantages and disadvantages of altering vaccination schedules.  
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Table 2.1 Rotavirus vaccine efficacies against severe RVGE from select clinical trials. 

Vaccine Countries N 

Efficacy (%)  

(95% Confidence Interval (CI)) 

First Year Second Year 

RV5 US, Finland 4,512 98.0 (88.3, 100)  88.0 (49.4, 98.7)  

RV1 

Czech Republic, 

Finland, France, 

Germany, Italy, Spain 

3,848 95.8 (89.6, 98.7)  85.6 (75.8, 91.9) 

RV5 Ghana, Kenya, Mali 5,225 64.2 (40.2, 79.4)  19.6 (-15.7, 44.4)  

RV5 Bangladesh, Vietnam 1,969 51.0 (12.8, 73.3) 45.5 (1.2, 70.7) 

RV1 South Africa, Malawi 2,939 58.7 (35.7, 74.0)    

RVGE, rotavirus gastroenteritis
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Table 2.2 Characteristics of trials and trial populations that have investigated alternative RV1 schedules. 

Trial Number Phase Location Inclusion Exclusion Study Notes 

NCT00346892 

[100] 

II South 

Africa 
 Healthy infants 

 5 – 10 weeks at 

first dose 

 HIV-confirmed 

negative mother* 

 History of 1) allergic disease, 2) clinically significant 

chronic gastrointestinal (GI) disease, 3) serious medical 

condition 

 Confirmed or suspected immunosuppressive or 

immunodeficient condition 

 Receipt of treatment prohibited by protocol 

 Lyophilized formulation 

 Viral concentration: 1x105.6 

CCID50 

 EPI vaccines given 

 100% concomitantly received 

OPV (group 1) 

 100% concomitantly received IPV 

(group 2) 

 Breast feeding not restricted 

NCT00383903 

[101] 

II South 

Africa 
 Healthy infants 

 5 – 10 weeks at 

first dose 

 ≥ 36 weeks 

gestation at birth 

 HIV-confirmed 

negative mother 

 History of 1) allergic disease, 2) clinically significant 

chronic GI disease, 3) serious medical condition, 4) 

polio disease 

 Confirmed or suspected immunosuppressive or 

immunodeficient condition (including HIV) 

 Receipt of treatment prohibited by protocol 

 Lyophilized formulation 

 Viral concentration: 1x106.0 

CCID50 

 EPI vaccines given 

 100% concomitantly received 

OPV 

 Breast feeding not restricted 

NCT00345956 

[88] 

II Vietnam Healthy infants 

6 – 10 weeks 

 Birth weight > 

2,000g  

 History of allergic disease or suspected reaction 

 Chronic administration (since birth) of 

immunosuppressants or immune-modifying drugs 

 Planned vaccinations outside of protocol except DTPw, 

HBV and OPV vaccines within 14 days of each dose 

 Concurrent participation in another clinical study where 

an investigational product is used < 30 days of first dose 

or where any pharmaceutical product is used in study 

 Liquid formulation 

 Viral concentration: 1x106.0 

CCID50 

 EPI vaccines given 

 100% concomitantly received 

OPV 

 Breast feeding not mentioned 

NCT00432380 

[88] 

II Philippines  Healthy infants 

 5 – 10 weeks at 

first dose 

Birth weight > 

2,000g 

 History of allergic disease or suspected reaction 

 Chronic administration of immunosuppressants or 

immune-modifying drugs six months prior to first dose; 

confirmed or suspected immunosuppressive or 

immunodeficient condition; receipt of immunoglobulins 

or blood products since birth or planned use in study 

 Planned vaccinations outside of protocol except DTPw, 

HBV and OPV vaccines within 14 days of each dose 

and BCG at birth according to local EPI guidelines 

 Concurrent participation in another clinical study; use 

of investigational product < 30 days of first dose or 

planned use in study; Acute disease at enrollment 

 Liquid formulation 

 Viral concentration: 1x106.0 

CCID50 

 EPI vaccines given 

 100% concomitantly received 

OPV 

 Breast feeding not mentioned 



 

 

 

2
0
 

Trial Number Phase Location Inclusion Exclusion Study Notes 

NCT00241644 

[11, 89-91] 

III South 

Africa 

Malawi 

 Healthy infants 

 5 – 10 weeks at 

first dose 

 > 36 weeks 

gestation at birth† 

 Birth weight > 

2,000g or 

unknown† 

 Parents/guardian

s who 

investigators 

believe will 

comply with 

study 

requirements 

 History of 1) allergic disease, 2) clinically significant 

chronic GI disease, 3) serious medical condition, 4) 

neurologic disorders or seizures, 5) confirmed RVGE, 6) 

acute or chronic pulmonary, cardiovascular, hepatic or 

renal function abnormalities 

 Confirmed or suspected immunosuppressive or 

immunodeficient condition; receipt of 

immunosuppressants for > 14 days since birth; family 

history of congenital or hereditary immunodeficiency; 

receipt of immunoglobulins or blood products since 

birth or planned use in study 

 Previous routine vaccination except BCG, HBV, OPV 

at birth; planned receipt of vaccines not described in 

protocol within 14 days of each dose 

 Acute disease at enrollment or gastroenteritis within 7 

day preceding first dose 

 History of experimental rotavirus vaccine use; 

concurrent participation in another clinical study where 

an investigational product is used < 30 days of first dose 

or planned use in study 

 Lyophilized formulation 

 Viral concentration: 1x106.0 

CCID50 

 EPI vaccines given 

 ≥99% concomitantly received 

OPV 

 Breast feeding not restricted 

NCT01199874 

[24] 

IV Pakistan  Healthy infants 

 6 weeks 0 days 

to 6 weeks 6 days 

at enrollment 

 

 History of 1) intussusception, 2) abdominal surgery, 3) 

hypersensitivity to vaccine components 

 Use of immunosuppressants; receipt of 

immunoglobulins or blood products since birth or 

planned use in study 

 Concurrent participation in another trial; use of 

investigational product < 30 days of first dose or 

planned use in study 

 Birth weight < 1,500g or, if birth weight unknown, 

weight < 2,000g by 28 days of age 

 Lyophilized formulation 

 Viral concentration: 1x106. 

CCID50 

 EPI vaccines given 

 ≥99% concomitantly received 

OPV 

 Breast feeding not restricted 

CTRI-2012-

02-002454 

[87] 

IV India  Infants 

 < 7 weeks of age 

attending Well 

Baby Clinic for 

routine EPI 

immunization 

 36 – 42 weeks 

gestation at birth 

 History of 1) intussusception, 2) abdominal surgery, 3) 

congenital abdominal pain, 4) confirmed RVGE, 5) 

chronic diarrhea, 6) failure to thrive, 7) hypersensitivity 

to vaccine components 

 Confirmed or suspected impairment of immunological 

function; receipt of any intramuscular, oral, or 

intravenous corticosteroid treatments in past 30 days 

 Active gastroenteritis or fever (≥ 38.1°C) 

 Lyophilized formulation 

 Viral concentration: 1x106.0 

CCID50 

 EPI vaccines given 

 % concomitant OPV not reported‡ 

 Breast feeding not mentioned 
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Trial Number Phase Location Inclusion Exclusion Study Notes 

 Birth weight ≥ 

2,000g 

 Guardians 

available for 

follow-up 

 Prior rotavirus vaccination 

 Exclusion from routine EPI immunization 

NCT01575197 

[25] 

IV Ghana  Healthy infants 

 42 – 55 days at 

enrollment 

 Guardians able 

to follow study 

procedures 

 History of intussusception or abdominal surgery 

 Receipt of immunoglobulins or blood products since 

birth or planned use in study 

 Concurrent participation in another intervention trial or 

use of investigational product in study 

 Birth weight < 2,000g or < 36 weeks gestation at birth, 

if available 

 Prior rotavirus vaccination 

 Planned relocation prior to study completion 

 Another child living in same compound is already 

enrolled in study until vaccine is introduced in EPI 

system in Navrongo at which point a child in the same 

compound who is < 16 weeks of age can be enrolled 

 Lyophilized formulation 

 Viral concentration: 1x106.0 

CCID50 

 EPI vaccines given 

 100% concomitantly received 

OPV 

 Breast feeding not mentioned 

CCID50, Median Cell Culture Infective Dose 
*HIV status was only confirmed after 2002 rotavirus season 

†South Africa only 

‡ Exact percentage not reported; the recommended poliovirus vaccine schedule from the Indian Academy of Pediatrics Committee on Immunization is OPV 

(birth, 6 months and 9 months) and IPV (6, 10, 14 weeks). 
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Table 2.3 One-month seroconversion percent and GMC by trial and country for different 

schedules of RV1 administered concomitantly with routine vaccines, including OPV unless 

otherwise indicated. 
Trial Number 

Trial Month/Year 
Location Schedule N  

Seroconversion* 

% (95% CI) 

GMC (U/ml) 

 (95% CI) 

NCT00346892† South 

Africa 

6/10 64§  36 (23, 50) 28.1 (18.2, 43.2) 

Nov/2001 - Oct/2003 10/14 63§  61 (43, 76) 48.6 (29.9, 78.9) 

  6/10‡ 41§  43 (29, 58) 32.6 (20.7, 51.3) 

  10/14‡ 42§  55 (39, 70) 56.7 (32.5, 98.9) 

NCT00383903 South 

Africa 

6/10/14 133  44.4 (35.8, 53.2)¶ 30.7 (24.0, 39.3)¶ 

Sept/2003 - Feb/2004 10/14 131  44.3 (35.6, 53.2)¶ 29.3 (23.0, 37.3)¶ 

NCT00345956\\ Vietnam 8.8/13.2 130  56.2 (47.2, 64.8) 48.7 (36.1, 65.8) 

Sept/2006 - Mar/2007  8.6/17.4 119  81.5 (73.4, 88.0) 176.3 (123.8, 251.1) 

NCT00432380\\ Philippines 6.5/15.1 120  59.2 (49.8, 68.0) 75.6 (52.5, 109.0) 

Mar/2007 - Sept/2007  10.6/15.2 120  70.0 (61.0, 78.0) 68.0 (50.1, 92.1) 

NCT00241644 South 

Africa 

6/10/14 66  66.7 (54.0, 77.8) 94.3 (56.5, 157.4) 

Oct/2005 - July/2007 10/14 70  57.1 (44.7, 68.9) 59.4 (37.5, 93.9) 

 Malawi 6/10/14 83§  57.1 (42.2, 71.2) 51.2 (26, 102) 

  10/14 68§  47.2 (30.4, 64.5) 63.0 (36, 109) 

NCT01199874 Pakistan 6/10 46  29.7 (23.1, 37.3) 19.7 (16.2, 23.9) 

Apr/2011 - Sept/2012  6/10/14 62  36.7 (29.8, 44.2) 25.8 (20.5, 32.5) 

  10/14 60  38.5 (31.2, 46.3) 24.4 (19.5, 30.6) 

CTRI-2012-02-002454‡ India 6/10/14 15  46.7 (21.3, 73.4)** 72.9 (30.9, 172.3) 

Mar/2012 - Dec/2012  6/10/14/18/22 22  45.5 (24.4, 67.8)** 60 (35.3, 102.2) 

NCT01575197 Ghana 6/10 142  28.9 (22.1, 36.8) 22.5 (17.4, 28.2) 

Sept/2012 - Feb/2013  6/10/14 143  43.4 (35.5, 51.6) 32.6 (24.7, 43.2) 

  10/14 139  37.4 (29.8, 45.7) 26.5 (20.7, 34.0) 

* Percent of participants with post-anti-rotavirus IgA antibody concentrations of ≥ 20 U/ml  
† Vaccine with viral concentration of 1x105.6 CCID50  
‡ Concomitant IPV  
§ Exact sample size not reported; sample size estimated  
¶ Two-month seroconversion proportion/GMC 
\\ Liquid formulation of vaccine  
** Exact 95% CI estimated 
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Table 2.4 Seroconversion proportion difference and ratio of GMC by trial and country of 

RV1 for vaccine schedules less commonly reported. 

Trial Number 

Trial Month/Year 
Location Schedule 

Seroconversion 

proportion difference 

(95% CI) 

Ratio of GMCs 

(95% CI) 

CTRI-2012-02-002454* India 6/10/14  0.01 (-0.32,  0.34) 1.2 (0.4, 3.3) 

Mar/2012 - Dec/2012  6/10/14/18/22 (reference) (reference) 

     

NCT00345956† Vietnam 8.8/13.2 -0.25 (-0.36, -0.14) 0.3 (0.2, 0.4) 

Sept/2006 - Mar/2007  8.6/17.4 (reference) (reference) 

     

NCT00432380† Philippines 6.5/15.1 -0.11 (-0.23,  0.01) 1.1 (0.7, 1.8) 

Mar/2007 - Sept/2007  10.6/15.2 (reference) (reference) 
* Concomitant IPV 
† Liquid formulation of vaccine
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Table 2.5 Rotavirus vaccine efficacy against severe RVGE comparing different schedules 

from trial NCT00241644. 

Location Schedule N* One Year  

Efficacy (95% CI) 

Second Year  

Efficacy (95% CI) 

Cumulative Two Year 

Efficacy (95% CI) 

South Africa 10/14 971 72.2 (40.4, 88.3) 3 (-43, 82) 32 (-71, 75) 

 6/10/14 973 81.5 (55.1, 93.7) 76 (-143, 100) 85 (35, 98) 

      

Malawi 10/14 525 49.2 (11.1, 71.7) 2.6 (-101.2, 52.6) 34.0 (-2, 57.7) 

 6/10/14 505 49.7 (11.3, 72.2) 33.1 (-48.6, 70.9) 42.3 (8.8, 64.0) 
* Sample size in each arm for one year efficacy analysis. 
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* RV1 viral concentration 105.6           † Estimated sample size used  

‡ Concomitant IPV  § 2 month seroconversion difference 

 

Figure 2.1 One-month seroconversion proportion differences comparing different RV1 schedules 

from five trials conducted in LMICs with concomitantly administered OPV unless otherwise 

indicated. 

 

Seroconversion Proportion Difference (95% CI) 

6/10 vs. 10/14 6/10/14 vs. 10/14 
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* RV1 viral concentration 105.6 † Estimated sample size used 

‡ Concomitant IPV § 2 month seroconversion difference 

 

Figure 2.2 One-month ratios of GMCs comparing different RV1 schedules from five trials 

conducted in LMICs with concomitantly administered OPV unless otherwise indicated.

6/10 vs. 10/14 6/10/14 vs. 10/14 
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CHAPTER 3: RESEARCH METHODS 

Research Aims 

Aim 1: To describe the natural history of severe RVGE among infants in the placebo groups of 

the rotavirus vaccine trials in LMICs.  

Aim 1a: To describe the timing of first episode of severe RVGE.   

Aim 1b: To estimate the association between incidence of first severe RVGE and 

baseline factors, including demographic information; breastfeeding and growth status; 

and concomitant infection, antibiotic use, and vaccination.  

Aim 2: To estimate the association between timing of rotavirus vaccine doses and incidence of 

severe RVGE among vaccinated infants in the rotavirus vaccine trials in LMICs. 

 

Study Data & Design of Parent Studies 

This was an analysis of two randomized control trials of RV1 and RV5 in LMICs 

(Clinical Trial Number NCT00241644 (RV1) and NCT00362648 (RV5)).  

 

RV1 Trial in Malawi and South Africa 

The RV1 data came from a Phase III, double-blind, placebo-controlled, multicenter 

randomized trial conducted in order to determine the efficacy of two or three doses of RV1 

against severe RVGE [11, 90, 91]. The study was conducted from October 2005 through January 

2009 in South Africa and Malawi. 
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Healthy infants, as determined by medical history and clinical examination, with parents 

or guardians of legal age who provided written informed consent were eligible to participate in 

the trial. Infants were excluded if 1) parents or guardian could not or would not comply with the 

protocol requirements; 2) birth weight of South African infants was ≤ 2,000 grams or if the 

weight was unknown if the gestation age of the child at delivery was ≤ 36 weeks; 3) any 

investigational or non-registered product was used within 30 days preceding the first dose or 

during the study period; 4) a vaccine not foreseen by the study protocol was administered within 

14 days before or after each vaccine dose; 5) chronic (> 14 days) immunosuppressants were 

administered since birth; 6) there was a history of experimental rotavirus vaccine use; 7) 

previous routine vaccines were used, excluding BCG, HBV, and OPV at birth; 8) there was a 

clinically significant history of chronic gastrointestinal disease; 9) there was confirmed or 

suspected immunosuppressive or immunodeficient condition; 10) there was a history of allergic 

disease or reaction likely to be exacerbated by the vaccine; 11) there was acute disease at the 

time of enrollment; 12) there was gastroenteritis within 7 days preceding first vaccine dose; 13) 

there was previously confirmed occurrence of RVGE; 14) there was a family history of 

congenital or hereditary immunodeficiency; 15) immunoglobulins or blood product were 

administered since birth or there was planned administration during the study period; 16) there 

was a history of any neurologic disorders or seizures; 17) there was acute or chronic, clinically 

significant pulmonary, cardiovascular, hepatic or renal functional abnormality, as determined by 

physical examination or laboratory screening tests. 

Infants 5 – 10 weeks of age were randomly assigned to receive one of three treatment 

regimens: one dose of placebo at 6 weeks of age and two doses of RV1 at 10 and 14 weeks of 

age, three doses of vaccine at 6, 10, and 14 weeks of age, or three doses of placebo at 6, 10, and 
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14 weeks of age. Infants recruited after 6 weeks of age were given the treatment doses at the time 

of enrollment with approximately 4 weeks between all subsequent doses. There were 1,647 

randomized to receive two doses of RV1, 1,651 randomized to receive three doses of RV, and 

1,641 infants randomized to receive three doses of placebo. There were no restrictions on timing 

of breast feeding or administration of other pediatric vaccines. Each vaccine dose contained live 

human G1P[8] rotavirus at a median concentration of at least 106 Cell Culture Infective Dose. 

The placebo contained all elements except the viral antigens.  

There was active surveillance beginning with study enrollment for occurrence of 

gastroenteritis through weekly visits to parents or guardians to collect diary cards and through 

visits to health clinics that served the populations. Gastroenteritis was defined as three or more, 

looser than normal stools within a 24 hour period. Stool samples were collected during any 

episode of gastroenteritis occurring from the first vaccine dose to one year of age. A subset of 

infants was followed until two years of age. Stool samples were analyzed for the presence of 

rotavirus antigens using an enzyme-linked immunosorbent assay (ELISA) (Rotaclone, Meridian 

Bioscience). Reverse transcription polymerase chain reaction (RT-PCR) followed by reverse 

hybridization assay was used to confirm rotavirus and to determine rotavirus P and G genotypes.  

 

RV5 Trial in Ghana, Kenya, Mali, Bangladesh, and Vietnam 

The RV5 data came from a Phase III, double-blind, placebo-controlled, multicenter 

randomized trial conducted in order to determine the efficacy of three doses of RV5 against 

severe RVGE [12, 13]. The study was conducted from March 2007 through March 2009 in five 

sites in countries eligible for assistance from Gavi: medical facilities in rural Kassena-Nankana 
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district, Ghana; rural Karemo division, Siaya district, Nyanza province, western Kenya; urban 

Bamako, Mali; rural Matlab, Bangladesh, and urban and periurban Nha Trang, Vietnam. 

Infants were enrolled between 4 – 12 weeks of age. Infants were excluded if the infant 

had symptoms of active gastrointestinal disease, if the parents were unable to understand study 

procedures and give consent, or if they were currently or expected to participate in a study of 

investigational products during the 6 weeks after the final treatment dose. There were no 

restrictions on potential infections, including HIV, or on the administration of other pediatric 

vaccines. Enrolled infants were randomly assigned to receive three doses of RV5 or placebo at 

approximately 4 week intervals after enrollment (target schedule 6, 10, and 14 weeks of age). 

There were 3,751 infants randomized to receive three doses of RV5 and 3,753 infants 

randomized to receive three doses of placebo. Each vaccine dose contained approximately 2x107 

infectious units per reassortant rotavirus with the WC3 bovine strain as backbone and viral 

surface proteins from human rotavirus serotype G1, G2, G3, G4, and P1A[8] in 2ml of buffered 

liquid. The placebo contained all elements except the viral antigens. Vaccines were stored and 

transported according to the standard operating procedure. 

There was active surveillance at local clinics and hospitals for any occurrence of 

gastroenteritis occurring after study entry. Gastroenteritis was defined as three or more watery or 

looser than normal stools within a 24 hour period or forceful vomiting. Stool samples and patient 

histories were collected from infants presenting with symptoms of gastroenteritis. Parents or 

guardians of participants were visited monthly to remind them to bring their child to a medical 

facility if the infant developed any symptoms of gastroenteritis. Infants were followed for 

approximately two years following vaccination. Stool samples were analyzed for the presence of 
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enteric pathogens including rotavirus antigens using enzyme immunoassays. RT-PCR was used 

to confirm wild-type rotavirus and to determine rotavirus P and G genotypes. 

 

Aim 1 Methods 

Aim 1: To describe the natural history of severe RVGE among infants in the placebo groups of 

the rotavirus vaccine trials in LMICs.  

Aim 1a: To describe the timing of first episode of severe RVGE.   

Aim 1b: To estimate the association between incidence of first severe RVGE and 

baseline factors, including demographic information; breastfeeding and growth status; 

and concomitant infection, antibiotic use, and vaccination.  

 

Study Data 

 In this analysis, the objective was to describe the timing and predictors of severe RVGE 

among those not receiving the rotavirus vaccine; therefore, only the placebo groups of each trial 

were analyzed. There were 1,641 and 3,753 infants randomized to receive only the placebo 

treatment in the RV1 trial and the RV5 trial, respectively. From here onward, cohort 1 is used to 

describe the placebo group from the RV1 trial, and cohort 2 is used to describe the placebo group 

from the RV5 trial. In cohort 1, infants were excluded if they were not randomized, their 

randomization code was broken at the investigator site, the study vaccine dose was not 

administered according to the protocol, or they did not have at least one day of follow-up. In 

cohort 2, infants were excluded if they received any doses of RV5. Each cohort was analyzed 

separately, but the results are presented in parallel. 
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Statistical Analysis 

Prior to analysis, we categorized variables measured at enrollment including 

demographic information, breastfeeding and growth status, history of or current infection, history 

of or current antibiotic use, routine vaccinations, severe RVGE, and anti-rotavirus IgA 

seropositivity. Breastfeeding status was classified as exclusive versus non-exclusive. We 

classified relevant nutrition indicators by using underweight, stunted, and wasting cutoffs 

specified by the WHO [102]. Length of infants was not recorded in Bangladesh; therefore, 

stunted and wasting status were not determined for Bangladeshi infants. We also classified 

current or prior infections and antibiotic use using data collected in medical histories taken at 

baseline (e.g., enrollment). Topical antibiotics were not included in current or prior antibiotic 

use. Routine vaccines were also classified to determine the number of doses received prior to or 

at enrollment for all vaccines except Bacillus Calmette–Guérin vaccine (BCG), which was 

classified based on receipt before enrollment. Severe RVGE was defined as a Vesikari or 

modified-Vesikari score of > 11. For cohort 1, we summarized anti-rotavirus IgA antibody 

measures and considered participants seropositive if anti-rotavirus IgA antibody concentration 

was ≥ 20 U/ml. Antibody data were not available for cohort 2. We also determined the age at 

first severe RVGE episode. For cohort 1, age of enrollment was provided as weeks completed; 

therefore, age of severe RVGE may not be exact but within 6 days of the actual age the event 

occurred. 

To describe the timing of first severe RVGE episode among children in LMICs, we 

estimated the incidence rates, cumulative incidence, and age distribution of severe RVGE for 

overall and for each country. Specifically, rates and exact 95% CIs [103] were estimated as the 

number of first severe RVGE episodes from enrollment through 1 or 2 years of follow-up 
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divided by the person-time accumulated. To estimate the cumulative incidence and 95% CI of 

first severe RVGE episode, we obtained the complement of the extended Kaplan-Meier survival 

curve overall and stratified by country. Use of the extended Kaplan-Meier survival curve allowed 

for late entry on an age-specific time scale [104]. In cohort 1 and 2, follow-up began at 6 weeks 

of age and continued until the event occurred or infants were censored. Any infant who was 

recruited into either study before 6 weeks of age began accumulating person-time at 6 weeks of 

age. Follow-up time in cohort 1 was within 6 days of exact number of days followed from 6 

weeks of age, because age at enrollment was provided in weeks completed and follow-up was 

provided as days from enrollment. Finally, among those experiencing a severe RVGE episode, 

we described the age distribution of first episodes overall and by country. 

We estimated the association between baseline factors and rates of first severe RVGE 

using a Cox proportional hazards model with the exact method to analyze tied events. Baseline 

factors considered in both cohorts were sex (female/male), underweight status (yes/no), current 

or prior infection (yes/no) at enrollment, current or prior antibiotic use (yes/no) at enrollment, 

and timely routine vaccination [BCG receipt prior to enrollment (0 vs. ≥ 1), DTP-HB/HIB or 

DTaP and HBV receipt prior or at enrollment (0 vs. ≥ 1), and OPV receipt prior or at enrollment 

(≤ 1 dose vs. 2)]. Stunted (yes/no) and wasting (yes/no) were considered as potential predictors 

in cohort 1. Exclusive breastfeeding (yes/no) was considered as a potential predictor in cohort 2. 

Due to the low number of severe RVGE cases, we analyzed each cohort separately adjusted for 

country in the multivariable model rather fit individual models for each country in the cohorts. 

To be included as a potential predictor of first severe RVGE episode, there had to have been at 

least 10 severe RVGE events within each strata of each factor. To examine the proportional 

hazards assumption, we inspected the plot of log(time) and log(-log(Survival)) for each variable. 
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Similar to the methods described above, follow-up began at 6 weeks of age for both cohorts with 

late entry for those enrolled after 6 weeks of age. Crude and adjusted hazard ratios (HR) and 

95% CIs were estimated and were considered statistically significant at a cutoff of α = 0.05. As a 

sensitivity analysis, we determined the crude and adjusted HRs for cohort 2 excluding Mali and 

Kenya, because there were problems with gastroenteritis surveillance in those countries [105]. 

If more than 10% of participants in either cohort discontinued follow-up, we examined 

the potential for differential dropout (right censoring) within each level of each predictor to 

determine if censoring could be informative. 

 

Aim 2 Methods 

Aim 2: To estimate the association between timing of rotavirus vaccine doses and incidence of 

severe RVGE among vaccinated infants in the rotavirus vaccine trials in LMICs. 

 

Study Data 

We analyzed data from the placebo and vaccinated arms of the RV1 and RV5 trials. In 

the RV1 trial, we include infants randomized to receive three doses of placebo or one dose of 

placebo and two doses of RV1, respectively. Timing of doses in the RV1 trial referred to the 

timing of RV1 doses, meaning the first dose of the vaccine administered at 10 weeks, and not the 

placebo dose administered at approximately 6 weeks, was considered the first dose. Infants 

randomized to the arm to receive three doses of RV1 were excluded, because RV1 is 

administered as a two dose series, and we were interested in analyzing the association between of 

timing as the vaccine is administered and severe RVGE. Infants in the RV1 trial were excluded if 

the infant was not randomized, the randomization code was broken at the investigator site, the 
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study vaccine dose was not administered according to the protocol, or infants had less than one 

day of follow-up after 12 weeks of age. In the RV5 trial, we included infants randomized to 

receive three doses of placebo or three doses of RV5. We excluded infants who received a mixed 

series of placebo and RV5 doses or infants with less than one day of follow-up after 12 weeks of 

age. Each trial was analyzed separately, but the results are presented in parallel. 

 

Overview of Study Design 

 We used a novel study design to understand if timing of rotavirus vaccine doses affected 

risk of severe RVGE. We began by defining five different aspects of vaccine timing, specified 

below. For a specific aspect of timing (e.g., timing of first dose), we compared two or more 

predefined schedules related to that aspect of timing (e.g., first dose given at < 10 versus ≥ 10 

weeks). We compared the schedules by assessing the cumulative risk of severe RVGE on an age 

specific time scale beginning at the latest time any infant enrolled in either trial (i.e., 12 weeks of 

age). Using an age-specific time scale was essential, because we compared different timing of 

doses and needed to account for events that occurred early in age. Specifically, we did this by 

partitioning the follow-up time of infants such that infants could contribute person-time and 

severe RVGE events to more than one of the predefined schedules of interest to assess an aspect 

of dose timing. This meant that schedules with delayed vaccine doses had early events included 

in the estimates. Person-time for each infant was included in each schedule until that infant 

deviated from the predefined timing requirements allowed for each dose of that particular 

schedule. At that point, the infant was censored from that schedule. Figure 3.1 shows an example 

of five hypothetical infants and how the events and person-time for that infant were assigned for 

one aspect of timing. Once we had appropriately partitioned follow-up time and events from 12 
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weeks of age, we estimated the association between each schedule and incidence of severe 

RVGE.  

 To adjust the estimates, since timing was not randomized, we used the estimated 

associations observed in the in the placebo group, which should only differ from the null due to 

confounding, to calibrate the estimates within the rotavirus vaccinated group to obtain adjusted 

estimates. To verify that imbalances in covariates were similar between the rotavirus vaccinated 

and placebo groups, we calculated standardized mean differences to verify the assumption 

among measured covariates before calibrating estimates. Additional details of the approach are 

stated below. 

 

Defining Schedules for Aspects of Timing 

We classified the timing of doses a priori using five main aspects of dose timing: 1) 

whole schedules focused on timing of first dose holding interval(s) between doses constant; 2) 

timing of first dose; 3) timing of last dose; 4) length of interval(s) between doses; and 5) number 

of doses received at ≥ 10 weeks of age. For each aspect of timing, we developed two or more 

schedules to compare based that aspect of dose timing. Each of these schedule comparisons 

required infants to receive a complete series of RV1 or RV5 except for the last comparison, 

which was comparing the number of doses received at ≥ 10 weeks of age. We conducted a 

sensitivity analysis by excluding those without a full RV5 series from the analysis to ensure 

estimates were not due to receiving fewer vaccine doses. All predefined schedules were 

developed based on biologic plausibility, the potential for realistic interventions (e.g., alterations 

in rotavirus schedules that would fit at times routine vaccines are given as part of the Expanded 

Program on Immunization (EPI)), and the nature of the data. The schedules for each aspect of 
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timing are specified in Table 3.1. Due to the number of associations assessed, we a priori chose 

our primary aspect of timing to be the whole schedule focused on timing of the first dose holding 

interval(s) between doses constant at 4 – 6 weeks. Weeks of age completed were used for all 

schedule definitions (e.g., 6 weeks and 5 days of age was categorized as 6 weeks of age).  

 

Outcome 

We classified the outcome, first episode of severe RVGE, as infants experiencing RVGE 

with a Vesikari or modified-Vesikari score of > 11. For all analyses, we analyzed data on an age-

specific time scale with follow-up beginning at the latest time any infant enrolled in either trial 

(i.e., 12 weeks of age). As mentioned above, we partitioned the follow-up time of infants such 

that infants could contribute person-time and severe RVGE events to more than one schedule for 

each aspect of timing. This approach allowed us to account for any early severe RVGE events 

that occurred. Specifically, infants contributed person-time to each schedule for each aspect of 

timing from 12 weeks of age until the earliest of any of the following instances occurred: 1) the 

infant was lost to follow-up, 2) the infant experienced a severe RVGE event, or 3) the timing of 

the infant’s actual doses deviated from the predefined timing requirements allowed for that 

specific schedule. Appendix Table 1 includes detailed information on inclusion and censoring 

from each schedule, and Appendix Table 2 illustrates detailed examples of three hypothetical 

infants in each trial and the person-time contributed for each schedule for each aspect of timing. 

 

Covariates 

 We categorized covariate data on demographic information; breastfeeding and growth 

status; and concomitant infection, antibiotic use, and vaccination. Demographic data were 
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measured at enrollment. Breastfeeding status was measured at enrollment and the two 

subsequent study visits in the RV5 trial. Infants were classified as exclusively or non-exclusively 

breastfed. Growth status was classified as underweight, stunted, and wasting status at enrollment 

using the WHO cutoffs [102]. Stunted and wasting status could not be determined for 

Bangladeshi infants in the RV5 trial, because length of infants was not recorded. Current or prior 

infections and antibiotic use were classified using medical histories taken at enrollment and the 

two subsequent study visits in both the RV1 and RV5 trials. Antibiotic use did not include 

topical antibiotics. Concomitant vaccination was determined using the data collected at 

enrollment and the two subsequent study visits in both trials. 

 

Statistical Analysis 

To estimate the association between timing of rotavirus vaccine doses and incidence of 

severe RVGE, we estimated risk differences (RDs) and risk ratios (RRs) between different 

schedules for each aspect of timing at 6, 12, and 18 months of age using the difference or ratio of 

cumulative risk estimates obtained from the complement of the Kaplan-Meier function curve at 

those time points [106]. We a priori chose to focus on RDs and RRs at 12 months of age as our 

primary time point of interest. We did not estimate RDs and RRs at specific time points if any 

schedule had less than five severe RVGE events at that time point. We also estimated HRs using 

a Cox proportional hazard model with the exact method to account for tied events. 

There was potential for bias when estimating the association between dose timing and 

severe RVGE, because of informative censoring from specific schedules and confounding. We 

used data from the placebo groups to account for both potential sources of bias under the 

assumption any factors influencing the timing of receipt of doses in the placebo groups were the 
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same factors as those in the rotavirus vaccinated groups. Specifically, we accounted for bias by 

calibrating the estimates obtained among vaccinated infants with the estimates obtained among 

unvaccinated infants. Since the placebo doses should not influence the incidence of severe 

RVGE, any association of the timing of placebo doses on the incidence of severe RVGE was due 

to bias. Consequently, the association between the timing of placebo doses and incidence of 

severe RVGE provided a quantitative estimate of amount of bias for each comparison made 

within the vaccinated groups. These data were used to calibrate (i.e., adjust) the estimates among 

those in the vaccinated groups. 

Before calibrating estimates, we empirically verified that any imbalances in measured 

covariates between schedules were similar in the placebo and vaccinated groups. We did this by 

calculating the standardized mean differences (SMDs) between covariates in each schedule for 

each aspect of timing for the placebo and vaccinated groups. The SMD was calculated as (p1 − 

p2)/sqrt((p1(1 − p1) + p2(1 − p2))/2), where p1 was the proportion (or mean) of the binary 

covariate for a specific schedule (e.g., first dose at < 6 weeks) and p2 was the proportion in a 

different schedule (e.g., first dose at ≥ 6 weeks). We obtained a SMD for each covariate in the 

placebo and vaccinated groups and compared the SMDs between the estimates for the placebo 

and vaccinated groups. If the imbalance in covariates was similar between the placebo and 

vaccinated groups, we assumed calibration of the estimates in the vaccinated group would yield 

adjusted marginal estimates. 

To estimate the adjusted association of rotavirus vaccine dose timing and severe RVGE, 

we obtained difference and ratio measures comparing schedules for each aspect of timing, as 

described above, for both the placebo and vaccinated groups of each trial. We then calibrated the 

estimates obtained among those vaccinated with the estimates obtained among those in the 
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placebo groups by subtracting the difference measures and dividing the ratio measures (i.e., 

RDRV – RDPlacebo, 
𝑅𝑅𝑅𝑉

𝑅𝑅𝑃𝑙𝑎𝑐𝑒𝑏𝑜
, and 

𝐻𝑅𝑅𝑉

𝐻𝑅𝑃𝑙𝑎𝑐𝑒𝑏𝑜
). A nonparametric bootstrap with 2,000 sample draws 

with replacement was used to obtain the point estimates and 95% empirical CIs [107]. The 

median of the distribution of calibrated estimates was reported for the difference and ratio 

estimates and the 2.5th and 97.5th percentiles of the distribution were reported for the lower and 

upper bounds of the 95% empirical CIs. 
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Table 3.1 Description of predefined rotavirus vaccine schedules developed for each aspect 

of dose timing. Timing is in weeks of age unless otherwise indicated. The primary 

comparison of interest is bolded. 

NA, not applicable; wks, weeks 
‡ At least one interval between doses must be 5 weeks; § At least one interval between doses must be 6 weeks.  
‖ Other timing of doses resulting in the same number of doses received ≥ 10 are possible and are included in 

Appendix Table 1. 

  

Aspect of 

Timing 

RV 

Type 
Dose 1  Dose 2 Dose 3 

Whole 

Schedules 

RV5 3 – 6 4 – 6 wks after 1st dose 4 – 6 wks after 2nd dose 

RV5 7 – 9 4 – 6 wks after 1st dose 4 – 6 wks after 2nd dose 

RV5 10 – 12 4 – 6 wks after 1st dose  4 – 6 wks after 2nd dose 

RV1 10 – 12  4 – 6 wks after 1st dose  NA 

RV1 13 – 16  4 – 6 wks after 1st dose NA 

First Dose 

RV5 < 6  ≤ 10 wks after 1st dose ≤ 10 wks after 2nd dose 

RV5 ≥ 6  ≤ 10 wks after 1st dose ≤ 10 wks after 2nd dose 

RV5 < 10  ≤ 10 wks after 1st  dose ≤ 10 wks after 2nd dose 

RV5 ≥ 10  ≤ 10 wks after 1st  dose ≤ 10 wks after 2nd dose 

Last Dose 

RV5 ≤ 7  ≤ 11 ≤ 15 

RV5 ≤ 12 ≤ 10 wks after 1st dose > 15  & ≤ 10 wks after 2nd 

dose 

RV1 ≤ 11 ≤ 15 NA 

RV1 ≤ 16 > 15 & ≤ 10 wks after 2nd dose NA 

Interval 

between 

Doses 

RV5 ≤ 12 4 wks after 1st dose 4 wks after 2nd dose 

RV5 ≤ 12 4 or 5 wks after 1st dose 4 or 5 wks after 2nd dose 

RV5 ≤ 12 4, 5 or 6 wks after 1st dose 4, 5, or 6 wks after 2nd dose 

RV1 ≤ 16 4 wks after 1st dose NA 

RV1 ≤ 16 5 wks after 1st dose NA 

RV1 ≤ 16 6 wks after 1st dose NA 

Number of 

Doses ≥ 10 

Weeks of 

Age 

RV5 < 10  < 10 < 10 

RV5 < 10 < 10  ≥ 10 & ≤ 32 

RV5 < 10 ≥ 10 & ≤ 32 ≥ 10 & ≤ 32 

RV5 ≥ 10 ≥ 10 & ≤ 32 ≥ 10 & ≤ 32 
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Severe RVGE 

Schedule Last Dose: ≤ 15 weeks 

Schedule Last Dose: > 15 weeks 

 

 

 

 

 

  

 

 

Figure 3.1 Example of five infants and how events and person-time are assigned for the 

schedules for timing of the last dose.  

A: event at 14 weeks (counted in both groups). 

B: no event before 20 weeks; infant vaccinated with final dose > 15 weeks. 

C: no event before 13 weeks; infant dropped out at 13 weeks. 

D: no event before 20 weeks; infant vaccinated with final dose at 14 weeks. 

E: event at 18 weeks; infant vaccinated with final dose at 13 weeks. 
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CHAPTER 4: RESULTS AIM 1 

Background 

Prior to global roll-out of rotavirus vaccines, rotavirus was the leading cause of severe 

diarrhea in infants and children [1, 2]. Global surveillance estimates from 2009 indicated the 

median prevalence of rotavirus among children hospitalized for gastroenteritis was 36% (range 

among countries: 12 – 68%) [30]. In the pre-vaccine era, almost every child in the world was 

thought to experience rotavirus infection [4, 5] and about one in every 260 children would die as 

a result of the infection [2]. Although incidence of RVGE is similar in high-, middle-, and low-

income countries, 80 – 90% of rotavirus-associated deaths occur in the world’s poorest countries 

[1].  

As of 2009, the WHO recommended rotavirus vaccination for all infants [7]. There are 

two live, oral rotavirus vaccines used broadly across the globe: RV1 and RV5. The one-year 

efficacies of the RV1 and RV5 at preventing severe RVGE were high in clinical trials in HICs 

(96 – 98%) [10, 29, 108], but were much lower (51 – 64%) in LMICs [11-13]. The disparity in 

vaccine efficacy between HICs and LMICs is similar to results recorded for other live oral 

vaccines [109-111]. It remains unclear what are the most important causes of low efficacy of 

rotavirus vaccines in LMICs.  

One potential intervention that may increase the effectiveness of rotavirus vaccines in 

LMICs is altering the vaccine schedule (number or timing) of rotavirus vaccines doses.  Recent 

research suggests delaying the start of the rotavirus vaccine series may result in some gains in 

vaccine efficacy [11, 23, 25], possibly due to less interference from transplacental antibodies or 
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further development of the immune system. However, first RVGE episode is thought to occur 

early in children in LMICs (median 6 – 9 months)[28]. Consequently, delaying vaccination could 

result in severe RVGE occurring prior to administration of the vaccine.  

Although it is well accepted that infants in LMICs experience early exposure to rotavirus, 

it is less understood exactly when infants experience severe RVGE. Severe RVGE is the most 

clinically relevant outcome prevented by rotavirus vaccines to reduce hospitalization and death. 

Also, rotavirus vaccines are highly effective at preventing severe RVGE in HICs, but much less 

effective at preventing RVGE of any-severity [10, 29]. Therefore, it is important to understand 

the age when severe RVGE occurs to weigh the potential advantages and disadvantages of 

altering vaccination schedules. Although there have been studies investigating the natural history 

of rotavirus [49-51, 93, 94], these studies have not provided data on the cumulative incidence of 

severe RVGE over the first few years of life. Consequently, it is still unknown when in life 

children are experiencing severe RVGE episodes that could be prevented through vaccination. 

In this study, we analyzed the placebo groups of two large rotavirus vaccine trials 

conducted in LMICs to better understand the timing of first, severe RVGE and predictors of 

severe RVGE among unvaccinated children in LMICs. 

 

Methods 

Parent Study Data 

This was a secondary data analysis of the Phase III, placebo-controlled, multicenter 

randomized trials of RV1 and RV5 in LMICs (Clinical Trial Numbers: NCT00241644 (RV1) 

and NCT00362648 (RV5)). Each trial has been described previously [11, 12, 91]. A brief 

overview of each trial is below. 
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The RV1 trial was conducted from October 2005 through January 2009 in South Africa 

and Malawi. Infants, 5-10 weeks of age, were randomly assigned to receive doses of vaccine or 

placebo at approximately 6, 10, and 14 weeks of age. Infants recruited after 6 weeks of age were 

given the treatment doses at the time of enrollment with approximately 4 weeks between all 

subsequent doses. The placebo contained all elements of the vaccine except the viral antigens. 

Infants were excluded if they were not healthy. Baseline demographic and health information 

was collected for each participant. Beginning at enrollment, there was active surveillance of any 

gastroenteritis through weekly visits to parents or guardians to collect diary cards and through 

visits to health clinics that served the populations. Gastroenteritis was defined as three or more 

looser than normal stools within a 24 hour period. Stool samples were collected during any 

episode of gastroenteritis occurring from enrollment to 1 year of age, with a subset of infants 

followed to up to two years of age. Stool samples were analyzed for the presence of rotavirus 

antigens using an ELISA (Rotaclone, Meridian Bioscience). RT-PCR was used to confirm 

rotavirus infection and determine rotavirus P and G genotypes. Severity was defined using the 

20-point Vesikari clinical score for PCR-confirmed RVGE cases [112]. In addition, serum 

samples were collected from a random subset of infants at enrollment. These samples were 

analyzed for anti-rotavirus IgA concentrations (U/ml) using an ELISA (GlaxoSmithKline 

Biologicals) with a cutoff of 20 U/ml used to indicate seroconversion. 

The RV5 trial was conducted from March 2007 to March 2009 in medical facilities in 

rural Kassena-Nankana district, Ghana; rural Karemo division, Siaya district, Nyanza province, 

western Kenya; urban Bamako, Mali; rural Matlab, Bangladesh; and urban and periurban Nhas 

Trang, Vietnam. Enrolled infants, 4 – 12 weeks of age, were randomly assigned to receive either 

three doses of RV5 or placebo at approximately 6, 10, and 14 weeks of age. Infants recruited 
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after 6 weeks of age were given the treatment doses at the time of enrollment with approximately 

4 weeks between all subsequent doses. The placebo contained all elements of the vaccine except 

the viral antigens. Infants were excluded if the infant had symptoms of active gastrointestinal 

disease, if the parents were unable to understand study procedures and give consent, or if they 

were currently or expected to participate in a study of investigational products during the 6 

weeks after the final treatment dose. Baseline demographic and health information was collected 

for each participant. There was active surveillance at local clinics and hospitals for any 

occurrence of gastroenteritis occurring after study entry. Gastroenteritis was defined as three or 

more watery or looser than normal stools within a 24 hour period or forceful vomiting. Stool 

samples and patient histories were collected from infants presenting with symptoms of 

gastroenteritis. Infants were followed for approximately two years. Stool samples were analyzed 

for the presence of rotavirus antigens using an enzyme immunoassay. RT-PCR was used to 

confirm wild-type rotavirus and to determine rotavirus P and G genotypes. Severity of disease 

was determined using the 20-point modified Vesikari clinical score for infants with PCR 

confirmed RVGE [13, 112, 113]. 

 

Study Data 

 In this analysis, the objective was to describe the timing and predictors of severe RVGE 

among those not receiving the rotavirus vaccine; therefore, only the placebo groups of each trial 

were analyzed. There were 1,641 and 3,753 infants randomized to receive only the placebo 

treatment in cohort 1 and 2, respectively. In cohort 1, infants were excluded if they were not 

randomized, their randomization code was broken at the investigator site, the study vaccine dose 

was not administered according to the protocol, or they did not have at least one day of follow-
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up. In cohort 2, infants were excluded if they received at least one dose of RV5. Each cohort was 

analyzed separately, but the results are presented in parallel. 

 

Statistical Analysis 

Prior to analysis, we categorized variables measured at enrollment including 

demographic information, breastfeeding and growth status, history of or current infection, history 

of or current antibiotic use, routine vaccinations, severe RVGE, and anti-rotavirus IgA 

seropositivity. Breastfeeding status was classified as exclusive versus non-exclusive. We 

classified relevant nutrition indicators by using underweight, stunted, and wasting cutoffs 

specified by the WHO [102]. Length of infants was not recorded in Bangladesh; therefore, 

stunted and wasting status were not determined for Bangladeshi infants. We also classified 

current or prior infections and antibiotic use using data collected in medical histories taken at 

baseline (e.g., enrollment). Topical antibiotics were not included in current or prior antibiotic 

use. Routine vaccines were also classified to determine the number of doses received prior to or 

at enrollment for all vaccines except BCG, which was classified based on receipt before 

enrollment. Severe RVGE was defined as a Vesikari or modified-Vesikari score of > 11. For 

cohort 1, we summarized anti-rotavirus IgA antibody measures and considered participants 

seropositive if anti-rotavirus IgA antibody concentration was ≥ 20 U/ml. Antibody data were not 

available for cohort 2. We also determined the age at first severe RVGE episode. For cohort 1, 

age of enrollment was provided as weeks completed; therefore, age of severe RVGE may not be 

exact but within 6 days of the actual age the event occurred. 

To describe the timing of first severe RVGE episode among children in LMICs, we 

estimated the incidence rates, cumulative incidence, and age distribution of severe RVGE overall 
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and for each country. Specifically, rates and exact 95% CIs [103] were estimated as the number 

of first severe RVGE episodes from enrollment through 1 or 2 years of follow-up divided by the 

person-time accumulated. To estimate the cumulative incidence and 95% CI of first severe 

RVGE episode, we obtained the complement of the extended Kaplan-Meier survival curve 

overall and stratified by country. Use of the extended Kaplan-Meier survival curve allowed for 

late entry on an age-specific time scale [104]. In cohort 1 and 2, follow-up began at 6 weeks of 

age and continued until the event occurred or infants were censored. Any infant who was 

recruited into either study before 6 weeks of age began accumulating person-time at 6 weeks of 

age. Follow-up time in cohort 1 was within 6 days of exact number of days followed from 6 

weeks of age, because age at enrollment was provided in weeks completed and follow-up was 

provided as days from enrollment. Finally, among those experiencing a severe RVGE episode, 

we described the age distribution of first episodes overall and by country. 

We estimated the association between baseline factors and rates of first severe RVGE 

using a Cox proportional hazards model with the exact method to analyze tied events. Baseline 

factors considered in both cohorts were sex (female/male), underweight status (yes/no), current 

or prior infection (yes/no) at enrollment, current or prior antibiotic use (yes/no) at enrollment, 

and timely routine vaccination [BCG receipt prior to enrollment (0 vs. ≥ 1), DTP-HB/HIB or 

DTaP and HBV receipt prior or at enrollment (0 vs. ≥ 1), and OPV receipt prior or at enrollment 

(≤ 1 dose vs. 2)]. Stunted (yes/no) and wasting (yes/no) were considered as potential predictors 

in cohort 1. Exclusive breastfeeding (yes/no) was considered as a potential predictor in cohort 2. 

Due to the low number of severe RVGE cases, we analyzed each cohort separately adjusted for 

country in the multivariable model rather fit individual models for each country in the cohorts. 

To be included as a potential predictor of first severe RVGE episode, there had to have been at 
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least 10 severe RVGE events within each strata of each factor. To examine the proportional 

hazards assumption, we inspected the plot of log(time) and log(-log(Survival)) for each variable. 

Similar to the methods described above, follow-up began at 6 weeks of age for both cohorts with 

late entry adjustment for those enrolled later. Crude and adjusted HRs and 95% CIs were 

estimated and were considered statistically significant at a cutoff of α = 0.05. As a sensitivity 

analysis, we determined the crude and adjusted HRs for cohort 2 excluding Mali and Kenya, 

because there were problems with gastroenteritis surveillance in those countries. 

If more than 10% of participants in either cohort discontinued follow-up, we examined 

the potential for differential dropout (right censoring) within each level of each predictor to 

determine if censoring could be informative. 

This analysis was approved by the University of North Carolina at Chapel Hill 

Institutional Review Board. All analyses were performed using SAS Clinical Trial Data 

Transparency (Version 4.5.2; SAS Institute Inc., Cary, NC, USA). 

 

Results 

There were 1,614 and 3,752 children included in the analysis from cohort 1 and 2, 

respectively (Table 4.1). The median lengths of follow-up to censoring or first severe RVGE 

were 327 and 518 days for cohorts 1 and 2, respectively (Table 4.2). The majority of infants were 

African race and enrolled at 6 – 7 weeks of age. About 80% of infants in cohort 2 were 

exclusively breastfed at enrollment. In cohort 1, about 20% of children were stunted and about 

5% were underweight and 5% had wasting, whereas in cohort 2, about 10% were stunted, 10% 

were underweight, and about 20% had wasting. About 5% of children had a history of or a 

current infection at enrollment in cohort 1, whereas about 20% had reported a history of or a 
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current infection in cohort 2. History of or current antibiotic use at enrollment was reported in 

about 10% and 5% of cohort 1 and 2, respectively. Percentage of those receiving routine 

vaccinations was relatively high in cohort 1 whereas routine vaccination receipt was lower in 

cohort 2. About 10% of infants in cohort 1 were anti-rotavirus IgA seropositive at enrollment.  

There were 101 and 205 first episodes of severe RVGE in cohorts 1 and 2, respectively 

(Table 4.2). The overall incidence of severe RVGE was similar in both cohorts (~ 5 events per 

100 child-years). However, there was some variability in rates of first severe RVGE by country. 

Rates were highest in Bangladesh and Malawi (6.7 and 8.8 events per 100 child-years, 

respectively), and lowest in Kenya and Vietnam (2.1 and 2.7 events per 100 child-years, 

respectively). 

The cumulative incidence and 95% CI of severe RVGE from 6 week to 20 months of age 

was 79 (95% CI: 63, 95) severe RVGE events per 1,000 infants in cohort 1 and 63 (95% CI: 54, 

72) in cohort 2. There was variability in the cumulative incidence by country (Figures 4.1 and 

4.2). 

Among those experiencing an episode of severe RVGE, the age distribution of onset is 

summarized by country in Figure 4.3. There was variability in the age of onset across different 

countries. The largest and smallest variability in episode timing was in Ghana [median: 35.1 

weeks (interquartile range (IQR): 31.7, 69.1)] and South Africa [median: 28.6 weeks (IQR: 22.4, 

35.4)], respectively. 

Prior or current antibiotic use at enrollment was associated with about two times the rate 

of severe RVGE (adjusted HR: 2.03 (95% CI: 1.18, 3.48)) compared to those with no use in 

cohort 1 (Table 4.3). The direction of the association was consistent between the two cohorts 

with the rate of severe RVGE being about one and half times the rate in those with antibiotic use 
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(adjusted HR: 1.41 (95% CI: 0.80, 2.51)) compared to those with no use in cohort 2. No 

variables in cohort 2 were significant predictors of severe RVGE, but there was an relatively 

strong inverse association between no receipt of BCG before enrollment and receipt of ≥ 1 dose 

of BCG (adjusted HR: 0.65 (95% CI: 0.35, 1.21)). Results including and excluding Kenya and 

Mali in the analysis were similar (Appendix Table 3). 

In cohort 1, 17% of the study population dropped out or were lost to follow-up prior to 

the end of the study. In cohort 2, only 3.9% of participants discontinued follow-up. Additional 

information on lost to follow-up in cohort 1 can be found in Appendix Table 4. 

 

Discussion 

 We analyzed data from the placebo groups of two large trials conducted in seven LMICs 

to describe the timing and predictors of severe RVGE. The cumulative incidence of severe 

RVGE was 6 – 8 % at 20 months of age. The cumulative incidence increased steadily over the 

first two years of life and was low at 6 months of age. Antibiotic use was associated with about 

1.4 to 2 times the rate of severe RVGE. 

 Although every child under 5 years of age was thought to experience symptomatic or 

asymptomatic rotavirus infection prior to vaccine introduction [28, 49, 50], the cumulative risk 

of severe RVGE among unvaccinated infants is likely much lower and was about 6 to 8% at 20 

months of age among children in the LMICs included. In this study, we found the rates of severe 

RVGE in cohort 1 and 2 were similar or slightly higher than previously reported estimates. A 

study in India reported the incidence of severe RVGE in the first year of life to be 5 events per 

100 child-years [98], while another study in Pakistan reported approximately 2 events per 100 

child-years [114]. In cohort 1, almost all severe RVGE cases occurred in the first year of life. 
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This could be due to fewer cases occurring in the second year of life or because of decreased 

surveillance of gastroenteritis in that period. By contrast, several severe RVGE events occurred 

after 12 months of age in cohort 2.  

There were differences in the rates and cumulative incidence of severe RVGE in different 

LMICs. Rates of severe RVGE were highest in Malawi and Bangladesh. Rates of first severe 

RVGE episode were similar in Ghana and Mali. However, early surveillance measures were 

unsuccessful in Mali, which resulted in very few cases being observed in the first 12 months of 

life [105]. Actual rates of severe RVGE in Mali were likely higher. Kenya and Vietnam all had 

similar rates of first RVGE episodes. However, this was likely an artifact of data collection, 

because few cases were observed in Kenya during the second year of the study due to civil unrest 

that disrupted the study and surveillance for gastroenteritis. 

Severe RVGE occurred early among infants in LMICs with the cumulative incidence 

increasing steadily over the first one to two years of life and low incidence at 6 months of age. 

Although some studies have described age-specific rates of RVGE or the distribution of age of 

RVGE onset [50, 51, 93, 97], these studies have not differentiated episodes of severe and non-

severe RVGE or first versus subsequent episodes of RVGE. Therefore, due to different methods 

of presenting data, it is difficult to compare these estimates to those from prior studies.  

In both cohorts, we found that antibiotic use early in life was associated with severe 

RVGE. To our knowledge, antibiotic use has not been reported to be associated with severe 

RVGE, but has been linked to increased diarrheal incidence. Antibiotics reduce the diversity of 

the gut microbiota and can have a profound impact on the early development of the infant 

microbiota [115]. It is likely microbial colonization and diversification play a critical role in 

susceptibility to diarrheal diseases. Recent studies conducted in India found an increased risk of 
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diarrheal disease in children receiving antibiotics at < 6 months of age compared to those who 

did not [116] and a shorter time to subsequent diarrheal episode when the first episode was 

treated with antibiotics [117]. It is also possible that antibiotic use is an indication of children 

who are sicker and exposed to more pathogens, and are therefore, more likely to develop severe 

RVGE. 

In cohort 2, there was an inverse association between no receipt of BCG prior to 

enrollment compared to receipt of one or more doses. BCG is a single dose vaccine given to 

prevent tuberculosis and is recommended to be given to infants as soon as possible after birth 

[118]. Although it is a single dose vaccine, there were some infants in both cohorts with receipt 

of more than one dose of BCG recorded. It is unexpected that there was an inverse association 

between infants who are not vaccinated with BCG by the time they were recruited into the study 

(about 6 weeks of age) and incidence of severe RVGE. We expected to observe children with 

better routine healthcare, as indicated by receipt of routine immunization, to be the same or less 

likely than those without it to experience severe RVGE. This association merits further 

investigation as it is possible there were important unmeasured covariates responsible for 

inducing this association. 

There are some limitations to this research. First, these data were collected as part of 

clinical trials. Therefore, the participants may not be generalizable to the broader study 

population of infants in each country, because trials generally have strict inclusion and exclusion 

criteria. However, it should be noted that there were few exclusion criteria for the RV5 trial, and 

it seems plausible that the study population was relatively representative of all infants being 

vaccinated. Consequently, this limitation may not be concerning, because the rates and 

cumulative risk for first severe RVGE episode in the cohort 1 and 2 were similar, indicating the 
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RV1 trial cohort may, like the RV5 trial cohort, also be generalizable to the broader population 

of infants. However, these similarities could be due to differences in countries, region, or study 

timing and not due to the generalizability of the RV1 population. Second, the study inclusion and 

exclusion criteria for both cohort 1 and 2 did not specifically prohibit children who received the 

placebo or vaccine from being in the same household or neighborhood. If vaccinated and 

unvaccinated children were nearby, there may have been potential for herd protection, which 

would decrease the number of unvaccinated children with RVGE. As a result, the incidence of 

severe RVGE in this study would not represent a completely unvaccinated cohort. Third, we 

were unable to estimate severe RVGE risk from birth, because the trial recruited children around 

6 weeks of age. This means we have likely underestimated the incidence of severe RVGE in 

early childhood. Similarly, due to staggered enrollment by age, the earliest time period we had 

sufficient sample size to analyze the trial populations was at 6 weeks of age. This resulted in the 

exclusion of one severe RVGE episode from the cumulative incidence estimates and predictor 

analysis, because the event occurred prior to 6 weeks of age in cohort 1. Early events would be 

essential to include when weighing the option of beginning vaccination prior to 6 weeks of age. 

However, if vaccination will begin at 6 weeks of age or later, events prior to 6 weeks of age 

could not be prevented and are not essential to include in comparisons. Similarly, there was only 

active surveillance at local clinics and hospitals, and not households, for gastroenteritis in the 

RV5 trial, which likely resulted in underascertainment of severe RVGE episodes. Also, early 

surveillance measures were unsuccessful in Mali, which resulted in very few cases being 

observed in the first 12 months of life [105] and there was civil unrest in in Kenya in the second 

year of the study, which resulted in underascertainment of cases. The cumulative incidence 

estimates for these countries likely underestimate the true cumulative incidence. Fourth, limited 
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covariate data were collected, and as a result, we were restricted in our ability to identify 

predictors of severe RVGE. There are likely other unmeasured factors that predict the occurrence 

of severe RVGE. Fourth, there appeared to be differential dropout by some covariates in cohort 

1. This could have resulted in some factors not being identified as predictors, because these 

factors were associated with early dropout. 

There are several strengths of this analysis. The large sample size of infants prospectively 

followed allowed us to analyze severe RVGE events, which is often unfeasible in small studies. 

With these data, we could analyze the timing and predictors of first severe RVGE episodes, 

which are the most clinically relevant outcomes of interest. Having information on when severe 

events occur is essential for understanding the potential impact of altering vaccine schedules. 

Here, we were able to report the cumulative incidence over the first two years of life, so this 

information could be available when weighing the potential advantages and disadvantages of 

shifting vaccine schedules. In addition, the study participants came from a broad geographic area 

representing several different LMICs including both urban and rural areas. Also, severe RVGE 

outcomes were validated as wild-type PCR-confirmed cases of RVGE. Finally, we analyzed data 

focusing on the age of severe RVGE and used methods that allowed for late-entry into the study 

such that the time scale could be age, which is the most relevant time scale for understanding the 

timing of severe RVGE cases and the potential impact of altering vaccine schedules. 

In conclusion, the cumulative risk of severe RVGE from 6 weeks to 20 months of age in 

children in LMICs was about 6 to 8% and increased relatively steadily over the first one to two 

years of life with low incidence at 6 months of age. Early antibiotic use was associated with 

increased rates of first severe RVGE events. These data provide important insights on the 
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epidemiology of rotavirus in LMICs in the pre-vaccine era that can help inform the use of 

rotavirus vaccines in LMICs.  
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Table 4.1 Characteristics of the placebo groups of cohort 1 and 2 at enrollment. 

Baseline Characteristic 
Cohort 1 

N = 1,614 

Cohort 2 

N = 3,752 

Demographic   

     Age (weeks completed), Median (IQR) 6 (6, 7) 7 (6, 9) 

     Female Sex, % 48.5 49.6 

     African Race, % 97.0 72.8 

     Asian Race, % 0.0 27.1 

Exclusively Breastfed, % -- 81.3 

Growth Status   

     Stunted, %   22.1*   10.6† 

     Underweight, % 4.5 11.1 

     Wasting, %     4.2*     20.7†* 

Prior/Current Infection, % 4.2 19.4 

Prior/Current Antibiotic‡ Use, % 9.2 5.6 

Routine Vaccines   

     ≥ 1 BCG§, % 95.2 74.0 

     ≥ 1 DTP-HB/HIB or DTaP & HBV, % 99.8 68.6 

     OPV   

         0 Dose, % 0.0 8.3 

         1 Dose, % 11.8 47.9 

         2 Doses, % 87.6 37.6 

      ≥ 3 Doses, % 0.6 6.2 

Rotavirus IgA Sub-Cohort, N = 156   

     Seropositive, % 11.5 -- 

     IgA, GMC 13.3 -- 
* Missing 1 – 15 observations 
† Excluding Bangladesh  
‡ Excluding topical antibiotics 
§ Administered prior to enrollment 
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Table 4.2 Rate of severe RVGE by cohort and country. 

Cohort/Country N 
Median days 

of follow-up* 

Severe RVGE 

Events Child-Years Rate† (95% CI) 

Cohort 1 1,614 327 101 1,790 5.6 (4.6, 6.9) 

     Malawi 581 553 62    705 8.8 (6.7, 11.3) 

     South Africa 1,033 323 39 1,084 3.6 (2.6,  4.9) 

      

Cohort 2 3,752 518 205 4,876 4.2 (3.6, 4.8) 

     Ghana 1,102 527 57 1,431 4.0 (3.0, 5.2) 

     Kenya 651 483 15   700 2.1 (1.2, 3.5) 

     Mali 981 539 61 1,331 4.6 (3.5, 5.9) 

     Bangladesh 568 540 56 831 6.7 (5.1, 8.8) 

     Vietnam 450 480 16 583 2.7 (1.6, 4.5) 

RVGE, rotavirus gastroenteritis 
* From enrollment 
† Per 100 Child-Years 
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Table 4.3 Predictors of first severe RVGE episode in cohort 1 and 2. 

Characteristic 

Cohort 1* 

N = 1,613     Events = 100 

Cohort 2* 

N = 3,746 Events = 205 

Unadjusted† 

HR (95% CI) 

Adjusted† 

HR (95% CI) 

Unadjusted† 

HR (95% CI) 

Adjusted† 

HR (95% CI) 

Demographic     

     Female Sex vs. Male (ref) 1.44 (0.97, 2.15) 1.43 (0.96, 2.12) 0.86 (0.65, 1.13) 0.86 (0.65, 1.13) 

Exclusively Breastfed vs. Not (ref) -- -- 0.75 (0.48, 1.15) 0.75 (0.48, 1.16) 

Growth Status     

     Stunted vs. Not (ref) 0.78 (0.49, 1.26) 0.75 (0.46, 1.21) -- -- 

     Underweight vs. Not (ref) ‡ ‡ 0.82 (0.52, 1.30) 0.81 (0.51, 1.29) 

     Wasting vs. Not (ref) ‡ ‡ -- -- 

Current/Prior Infection vs. None (ref) ‡ ‡ 0.99 (0.64, 1.52) 0.89 (0.56, 1.40) 

Current/Prior Antibiotic‖ Use vs. None (ref) 1.97 (1.15, 3.36) 2.03 (1.18, 3.48) 1.40 (0.81, 2.41) 1.41 (0.80, 2.51) 

Routine Vaccines     

     BCG§; No Dose vs. ≥ 1 Dose (ref)  ‡ ‡ 0.63 (0.34, 1.17) 0.65 (0.35, 1.21) 

     DTP-HB/HIB¶; No Dose vs. ≥ 1 Dose (ref) ‡ ‡ 1.00 (0.71, 1.42) 1.08 (0.71, 1.66) 

     OPV; ≤ 1 Dose vs. ≥ 2 Doses (ref) 0.79 (0.45, 1.42) 0.80 (0.45, 1.43) 0.94 (0.70, 1.25) 0.95 (0.66, 1.36) 
* One infant in cohort 1 experienced an event prior to 6 weeks of age and six infants from cohort 2 entered and exited the study before 6 weeks of age. 
† Adjusted for country  
‡ < 10 events in each strata 
§ Excluding topical antibiotics 
‖ Administered prior to enrollment 
¶ Or DTaP & HBV, which were the standard vaccines given in Asian countries 
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South Africa 

Malawi 

Cohort 1 

        Malawi       540             487                        376                       322                          7 

South Africa   1,009              943                        489                       312                          0 

 

 

Figure 4.1 Cumulative incidence of severe RVGE from 6 weeks of age in cohort 1. Countries are 

labeled above gray lines; cohorts are labeled above black lines. Number at risk at start of follow-up and 

at 6 months intervals is labeled at corresponding time points for each country below the x-axises.   
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Figure 4.2 Cumulative incidence of severe RVGE from 6 weeks of age in cohort 2.  Countries 

are labeled above gray lines; cohorts are labeled above black lines. Number at risk at start of 

follow-up and at 6 months intervals is labeled at corresponding time points for each country 

below the x-axises.   

Cohort 2 

Ghana 

Mali 

Vietnam 

Kenya 

Bangladesh 

      Ghana 

       Kenya 

          Mali 

Bangladesh 

     Vietnam 

                

   568           564                        535                        380                       71 

1,102        1,066                        828                        726                       68 

   647           591                        427                        275                         0 

   979           913                        887                        658                         0 

   450           441                        430                        302                         0 
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Figure 4.3 IQR of age of first severe RVGE onset. First quartile, median, and third quartile are labeled with their numeric values. 

Mean values are represented by diamonds.  
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CHAPTER 5: RESULTS AIM 2 

Background 

Rotavirus was the leading cause of severe gastroenteritis in children under five years of 

age prior to the availability and introduction of rotavirus vaccines into routine immunization 

programs beginning in 2006 [1, 2]. In 2003, it was estimated rotavirus caused 111 million 

episodes of gastroenteritis, two million hospitalizations, and up to almost 500,000 deaths each 

year [1]. While severe rotavirus infections have led to hospitalizations in HICs, the majority of 

rotavirus-associated deaths have occurred in the world’s poorest countries [1]. 

Rotavirus vaccines, as of May 2016, are part of routine immunization programs in 81 

countries [62].  These countries mostly use RV1 and RV5 rotavirus vaccines [55, 61]. Despite 

the success of these vaccines at reducing health care encounters and hospitalizations [65-67], 

RV1 and RV5 effectiveness is lower in LMICs compared to HICs [68, 69]. Reasons for lower 

effectiveness in LMICs compared to HICs have been investigated in recent years. While 

breastfeeding appears to not have a large effect on rotavirus vaccination seroconversion [17-19], 

concomitant vaccination with OPV [20, 21], malnutrition [22, 23], interference by transplacental 

maternal antibodies [24, 25], and environmental enteropathy and the infant microbiota [26, 27] 

all may contribute to the lower vaccine effectiveness observed in LMICs. 

Some of the factors shown to decrease rotavirus vaccine performance may be mitigated 

by altering vaccine schedules. A few studies have investigated the influence of vaccine schedules 

on vaccine performance [24, 25, 119], but these studies have generally been restricted to 

immunologic endpoints. Since there is no known correlate of protection for anti-rotavirus IgA 
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levels [44, 45], there is still uncertainty about the effect alternative schedules have on clinical 

endpoints (i.e., severe RVGE). One trial in Malawi and South Africa compared a two versus 

three dose series of RV1 using clinical endpoints [11], but no data have been reported on the 

effect of timing of rotavirus vaccines as they are administered (i.e., two doses of RV1, three 

doses of RV5) using clinical endpoints. 

In this study, we analyzed data from two, large rotavirus vaccine trials to understand the 

association between timing of rotavirus vaccine doses and incidence of severe RVGE among 

children in LMICs. This is the first study to present data on the association between timing of 

two doses of RV1 or three doses of RV5 and severe RVGE. These data provide important 

information on determining the optimal timing of rotavirus vaccine doses to improve 

effectiveness of these vaccines in LMICs. 

 

Methods 

Parent Study Data 

 This analysis used data from two randomized Phase III placebo-controlled multicenter 

clinical trials of RV1 and RV5 (Clinical Trial Number: NCT00241644 and NCT00362648, 

respectively) conducted in LMICs. The trials have been described in depth elsewhere [11, 12, 

91], but a brief summary of each trial is below. 

 The RV1 clinical trial was conducted in South Africa and Malawi from 2005 – 2009. 

Healthy infants aged 5 – 10 weeks were enrolled and randomized to receive three doses of 

placebo, a dose of placebo followed by two RV1 doses, or three RV1 doses at approximately 6, 

10, and 14 weeks of age. Infants enrolled after 6 weeks of age were treated at the time of 

enrollment with about 4 weeks between all subsequent doses administered. Demographic and 
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health characteristics of infants was collected at enrollment and, in some cases, at each dose. 

Enrolled infants were actively followed for occurrence of gastroenteritis from time of enrollment 

until study conclusion at one year of age with a subset followed for up to two years of age. Study 

staff visited parents or guardians weekly to collect diary cards and also visited health clinics 

serving the study population. Stool samples were collected and tested for rotavirus using an 

ELISA (Rotaclone, Meridian Bioscience) followed by RT-PCR confirmation. Gastroenteritis 

was defined as three or more, looser than normal stools within a 24 hour period. Severity of 

RVGE was determined using the 20-point Vesikari clinic score [112]. 

 The RV5 study was conducted in Ghana, Kenya, Mali, Bangladesh, and Vietnam from 

2007 – 2009. Infants 4 – 12 weeks were enrolled and randomly assigned to receive three doses of 

vaccine or placebo at approximately 6, 10, and 14 weeks of age. Infants enrolled after 6 weeks of 

age were treated at the time of enrollment with about 4 weeks between all subsequent doses 

administered. Infants were not included if they displayed symptoms of an active gastrointestinal 

infection, if parents were unable to follow the study protocol or provide consent, or if infants 

were participating in another study investigating a product within six weeks of the final dose of 

treatment. Demographic and health information was collected for participants at enrollment and, 

in some cases, at each dose. During the study, there was active surveillance for gastroenteritis at 

local clinics and hospitals. Any participant presenting with gastroenteritis provided a stool 

sample for testing of rotavirus using an enzyme immunoassay followed by RT-PCR 

confirmation. Gastroenteritis was defined as three or more watery or looser than normal stools 

within a 24 hour period or forceful vomiting. Severity of RVGE was classified using the 20-point 

modified Vesikari score [13, 112, 113]. 
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Study Data 

We analyzed data from the placebo and vaccinated arms of the RV1 and RV5 trials. In 

the RV1 trial, we include infants randomized to receive three doses of placebo or one dose of 

placebo and two doses of RV1, respectively. Infants randomized to the arm to receive three 

doses of RV1 were excluded, because RV1 is administered as a two dose series, and we were 

interested in analyzing the association between timing as the vaccine is administered and severe 

RVGE. Timing of doses in the RV1 trial referred to the timing of RV1 doses, meaning the first 

dose of the vaccine administered at 10 weeks, and not the placebo dose administered at 

approximately 6 weeks, was considered the first dose. Infants in the RV1 trial were excluded if 

the infants were not randomized, the randomization code was broken at the investigator site, the 

study vaccine dose was not administered according to the protocol, or infants had less than one 

day of follow-up after 12 weeks of age. In the RV5 trial, we included infants randomized to 

receive three doses of placebo or three doses of RV5. We excluded infants who received a mixed 

series of placebo and RV5 doses or infants with less than one day of follow-up after 12 weeks of 

age. Each trial was analyzed separately, but the results are presented in parallel. 

 

Overview of Study Design 

 We used a novel study design to understand if timing of rotavirus vaccine doses affected 

risk of severe RVGE. We began by defining five different aspects of vaccine timing, specified 

below. For a specific aspect of timing (e.g., timing of first dose), we compared two or more 

predefined schedules related to that aspect of timing (e.g., first dose given at < 10 versus ≥ 10 

weeks). We compared the schedules by assessing the cumulative risk of severe RVGE on an age 

specific time scale beginning at the latest time any infant enrolled in either trial (i.e., 12 weeks of 
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age). Using an age-specific time scale was essential, because we compared different timing of 

doses and needed to account for events that occurred early in life. Specifically, we did this by 

partitioning the follow-up time of infants such that infants could contribute person-time and 

severe RVGE events to more than one of the predefined schedules developed to assess an aspect 

of dose timing. This meant that schedules with delayed vaccine doses had early events included 

in the estimates. Person-time for each infant was included in each schedule until that infant 

deviated from the predefined timing requirements allowed for each dose of that particular 

schedule. At that point, the infant was censored from that schedule. Figure 5.1 shows an example 

of two hypothetical infants and how the events and person-time for that infant were assigned for 

one aspect of timing. Once we had appropriately partitioned follow-up time and events from 12 

weeks of age, we estimated the association between each schedule and incidence of severe 

RVGE.  

 To adjust the estimates, since timing was not randomized, we used the estimated 

associations observed in the in the placebo group, which should only differ from the null due to 

confounding, to calibrate the estimates within the rotavirus vaccinated group to obtain adjusted 

estimates. To verify that imbalances in covariates were similar between the rotavirus vaccinated 

and placebo groups, we calculated standardized mean differences to verify the assumption 

among measured covariates before calibrating estimates. Additional details of the approach are 

stated below. 

 

Defining Schedules for Aspects of Timing 

We classified the timing of doses a priori using five main aspects of dose timing: 1) 

whole schedules focused on timing of first dose holding interval(s) between doses constant; 2) 
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timing of first dose; 3) timing of last dose; 4) length of interval(s) between doses; and 5) number 

of doses received at ≥ 10 weeks of age. For each aspect of timing, we developed two or more 

schedules to compare based that aspect of dose timing. Each of these schedule comparisons 

required infants to receive a complete series of RV1 or RV5 except for the last comparison, 

which was comparing the number of doses received at ≥ 10 weeks of age. We conducted a 

sensitivity analysis by excluding those without a full RV5 series from the analysis to ensure 

estimates were not due to receiving fewer vaccine doses. All predefined schedules were 

developed based on biologic plausibility, the potential for realistic interventions (e.g., alterations 

in rotavirus schedules that would fit at times routine vaccines are given as part of the EPI), and 

the nature of the data. The schedules for each aspect of timing are specified in Table 5.1. Due to 

the number of associations, we a priori chose our primary aspect of timing to be the whole 

schedule focused on timing of the first dose holding interval(s) between doses constant at 4 – 6 

weeks. Weeks of age completed were used for all schedule definitions (e.g., 6 weeks and 5 days 

of age was categorized as 6 weeks of age).  

 

Outcome 

We classified the outcome, first episode of severe RVGE, as infants experiencing RVGE 

with a Vesikari or modified-Vesikari score of > 11. For all analyses, we analyzed data on an age-

specific time scale with follow-up beginning at the latest time any infant enrolled in either trial 

(i.e., 12 weeks of age). As mentioned above, we partitioned the follow-up time of infants such 

that infants could contribute person-time and severe RVGE events to more than one schedule for 

each aspect of timing. This approach allowed us to account for any early severe RVGE events 

that occurred. Specifically, infants contributed person-time to each schedule for each aspect of 
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timing from 12 weeks of age until the earliest of any of the following instances occurred: 1) the 

infant was lost to follow-up, 2) the infant experienced a severe RVGE event, or 3) the timing of 

the infant’s actual doses deviated from the predefined timing requirements allowed for that 

specific schedule. Appendix Table 1 includes detailed information on inclusion and censoring 

from each schedule, and Appendix Table 2 illustrates detailed examples of three hypothetical 

infants in each trial and the person-time contributed for each schedule for each aspect of timing. 

 

Covariates 

 We categorized covariate data on demographic information; breastfeeding and growth 

status; and concomitant infection, antibiotic use, and vaccination. Demographic data were 

measured at enrollment. Breastfeeding status was measured at enrollment and the two 

subsequent study visits in the RV5 trial. Infants were classified as exclusively or non-exclusively 

breastfed. Growth status was classified as underweight, stunted, and wasting status at enrollment 

using the WHO cutoffs [102]. Stunted and wasting status could not be determined for 

Bangladeshi infants in the RV5 trial, because length of infants was not recorded. Current or prior 

infections and antibiotic use were classified using medical histories taken at enrollment and the 

two subsequent study visits in both the RV1 and RV5 trials. Antibiotic use did not include 

topical antibiotics. Concomitant vaccination was determined using the data collected at 

enrollment and the two subsequent study visits in both trials. 

 

Statistical Analysis 

To estimate the association between timing of rotavirus vaccine doses and incidence of 

severe RVGE, we estimated RDs and RRs between different schedules for each aspect of timing 
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at 6, 12, and 18 months of age using the difference or ratio of cumulative risk estimates obtained 

from the complement of the Kaplan-Meier function curve at those time points [106]. We a priori 

chose to focus on RDs and RRs at 12 months of age as our primary time point of interest. We did 

not estimate RDs and RRs at specific time points if any schedule had less than five severe RVGE 

events at that time point. We also estimated HRs using a Cox proportional hazard model with the 

exact method to account for tied events. 

There was potential for bias in estimating the association between dose timing and severe 

RVGE, because of informative censoring from specific schedules and confounding. We used 

data from the placebo groups to account for both potential sources of bias under the assumption 

any factors influencing the timing of receipt of doses in the placebo groups were the same factors 

as those in the rotavirus vaccinated groups. Specifically, we accounted for bias by calibrating the 

estimates obtained among vaccinated infants with the estimates obtained among unvaccinated 

infants. Since the placebo doses should not influence the incidence of severe RVGE, any 

association between timing of placebo doses and incidence of severe RVGE was due to bias. 

Consequently, the association observed in the placebo group provided a quantitative estimate of 

amount of bias for each comparison made within the vaccinated groups. These data were used to 

calibrate (i.e., adjust) the estimates among those in the vaccinated groups. 

Before calibrating estimates, we empirically verified that any imbalances in measured 

covariates between schedules were similar in the placebo and vaccinated groups. We did this by 

calculating the SMDs between covariates in each schedule for each aspect of timing for the 

placebo and vaccinated groups. The SMD was calculated as (p1 − p2)/sqrt((p1(1 − p1) + p2(1 − 

p2))/2), where p1 was the proportion (or mean) of the binary covariate for a specific schedule 

(e.g., first dose at < 6 weeks) and p2 was the proportion in a different schedule (e.g., first dose at 
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≥ 6 weeks). We obtained a SMD for each covariate in the placebo and vaccinated groups and 

compared the SMDs between the estimates for the placebo and vaccinated groups. If the 

imbalance in covariates was similar between the placebo and vaccinated groups, we assumed 

calibration of the estimates in the vaccinated group would yield a marginal, adjusted estimate. 

To estimate the adjusted association between rotavirus vaccine dose timing and severe 

RVGE, we obtained difference and ratio measures comparing schedules for each aspect of 

timing, as described above, for both the placebo and vaccinated groups of each trial. We then 

calibrated the estimates obtained among those vaccinated with the estimates obtained among 

those in the placebo groups by subtracting the difference measures and dividing the ratio 

measures (i.e., RDRV – RDPlacebo, 
𝑅𝑅𝑅𝑉

𝑅𝑅𝑃𝑙𝑎𝑐𝑒𝑏𝑜
, and 

𝐻𝑅𝑅𝑉

𝐻𝑅𝑃𝑙𝑎𝑐𝑒𝑏𝑜
). A nonparametric bootstrap with 2,000 

sample draws with replacement was used to obtain the point estimates and 95% empirical CIs 

[107]. The median of the distribution of calibrated estimates was reported for the difference and 

ratio estimates and the 2.5th and 97.5th percentiles of the distribution were reported for the lower 

and upper bounds of the 95% empirical CIs. 

This analysis was approved by the University of North Carolina at Chapel Hill 

Institutional Review Board. All analyses were performed using SAS Clinical Trial Data 

Transparency (Version 4.5.2; SAS Institute Inc., Cary, NC, USA). 

 

Results 

 There were 3,114 and 7,341 children included in this analysis from the RV1 and RV5 

trials, respectively (Table 5.2). Among included infants, there was more variability in the timing 

of second and third (RV5 trial only) doses than the first dose. There was an equal distribution of 

males and females and most infants came from African LMICs. A high percentage of infants in 
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the RV1 trial were stunted, whereas a high percentage were wasting in the RV5 trial. Many 

infants in the RV5 trial were exclusively breastfed through dose three. Concomitant infections 

were only present in less than approximately one percent of infants at any given dose in both 

trials. Concomitant antibiotic use at doses was about 15% at dose one and two in the RV1 trial, 

but was lower in the RV5 trial (approximately 6% at dose two and three). Concomitant 

vaccination was high for all doses in the RV1 trial and about 50% for doses in the RV5 trial. 

 Infants were followed for a median time of 286 and 301 days after 12 weeks of age in 

both the placebo and RV1 vaccinated groups, respectively. Median follow-up was 483 days after 

12 weeks of age in both the placebo and RV5 vaccinated groups. A total of 154 (100 and 54 in 

placebo and RV1 groups, respectively) and 324 (205 and 119 in placebo and RV5 groups, 

respectively) first severe RVGE events occurred in the RV1 and RV5 trials, respectively. 

 The cumulative risk of severe RVGE stratified by schedule and treatment status (i.e., 

placebo or vaccinated) for the primary aspect of dose timing, timing of first dose with 4 – 6 week 

interval(s) between all subsequent doses, is shown in Figures 5.2 and 5.3. All other schedules for 

all other aspects of timing are presented in Appendix Figures 1 – 7. 

 The distribution of covariates between schedules for each aspect of timing were very 

similar for the placebo and vaccinated groups. Generally, there was < 10% difference between 

the SMDs of covariates between schedules for each aspect of timing in the placebo and 

vaccinated groups (Appendix Figures 8 – 16). All except 13 of the 331 (4%) covariate 

comparisons had differences of < 10% between the placebo and vaccinated groups. This meant, 

in most instances, the distribution of covariates by schedules for each aspect of timing was very 

similar in the placebo and rotavirus vaccinated groups. Most (N = 6) of the differences that 

occurred between the placebo and vaccinated groups happened for schedule comparisons for 
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those beginning RV1 vaccination at 10 – 12 versus 13 – 16 weeks (with an interval of 4 – 6 

weeks between the next dose). The majority of remaining differences between the placebo and 

vaccinated groups (N = 6) occurred for a single covariate and were 10 to < 15%. One difference 

that occurred was 15 to < 20%. 

 Calibrated RDs and RRs between schedules for each aspect of timing at 12 months of age 

are presented in Figures 5.4 and 5.5, respectively. There was about a 4% increase in 12-month 

risk for those beginning their first dose of RV5 at < 6 versus ≥ 6 weeks [12-month RD: 4.02% 

(95% CI: 1.13, 7.14)]. This was similar, but attenuated when we compared those beginning RV5 

vaccination at 3 – 6 weeks of age to those beginning at 10 – 12 weeks of age (holding intervals 

between all subsequent doses at 4 – 6 weeks) [12-month RD: 2.07% (95% CI: 0.09, 4.02)]. 

Similarly, receiving three doses at ≤ 15 versus > 15 weeks of age (meaning the first dose and 

second dose must be received at ≤ 7 and ≤ 11 weeks of age, respectively) was slightly less than a 

2% increase in 12-month risk [12-month RD RV5: 1.89% (95% CI: 0.59, 3.17); 12-month RD 

RV1: 1.41% (95% CI: -1.14, 4.09)]. In addition, those receiving only one dose of RV5 at ≥ 10 

weeks of age had a higher risk of severe RVGE compared to those receiving three doses at ≥ 10 

weeks [12-month RD: 2.59% (95% CI: 0.69, 4.71)]. When the analysis comparing one versus 

three doses of RV5 at ≥ 10 weeks of age excluded infants missing the second or third dose of 

vaccine, the association seen was similar [12-month RD: 2.55% (95% CI: 0.50, 4.72)]. In 

addition, there was about a 4% increase in 12-month risk for those with a 4 week interval 

between RV1 doses compared to a 6 week interval [12-month RD: 4.04% (95% CI: -0.0004, 

8.16)]. This was diminished to about 2% when comparing a 5 week interval to a 6 week interval, 

but this estimate was relatively imprecise [12-month RD: 1.90% (95% CI: -2.17, 5.90)]. 
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 There were fewer than five events for at least one schedule for each aspect of timing at 6 

months of age, and for the first dose at < 6 versus ≥ 6 weeks of age schedule at 12 months of age. 

Therefore, we did not estimate RDs and RRs for these time points and schedules. Since we could 

not estimate RDs and RRs for the first dose at < 6 versus ≥ 6 weeks of age schedule at 12 months 

of age, we presented the 18-month RDs and RRs for this comparison. HRs were similar to RRs 

and a presented in Appendix Figure 17. Uncalibrated, calibrated and placebo RDs and RRs at 12 

and 18 months are presented in Appendix Figure 18 and 19, respectively.  

 

Discussion 

We analyzed data from two clinical trial conducted in LMICs to understand the 

association between timing of rotavirus vaccine doses and severe RVGE. There was a dose-

response relationship between age at first RV5 dose and severe RVGE. Earlier administration of 

first RV5 dose was associated with an increased severe RVGE risk and that risk declined with 

increased age of first dose until approximately 8 – 9 weeks of age. An interval of 4 versus 6 

weeks between RV1 doses was associated with increased risk of severe RVGE when RV1 was 

administered on an approximately 10/14 week schedule. These data were the first to compare 

timing of doses among vaccinated infants using clinical endpoints and provide insights to inform 

administration of rotavirus vaccines in LMICs. 

Collectively, data from the RV5 trial indicated earlier vaccination of the first RV5 dose 

resulted in a higher risk of severe RVGE with this risk declining over time until approximately 8 

– 9 completed weeks of age. Importantly, the study design allowed early events to be counted in 

more than one schedule if the doses infants had received were consistent with more than one 

predefined schedule for an aspect of timing. This means these associations were present even 

when accounting for the occurrence of early severe RVGE events. The results reported here are 
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consistent with trials investigating alternative rotavirus schedules reporting immunologic 

endpoints. Vaccination with RV1 at 10/14 versus 6/10 weeks of age resulted in higher one-

month seroconversion proportions (i.e., seroconversion defined from pre-vaccination to one-

month after completing vaccination) in Ghana and Pakistan, which had seroconversion 

proportion differences comparing 10/14 versus 6/10 week schedules of 17.0% (95% CI: 6.4, 

27.1) and 10.1% (-0.4, 20.3), respectively [24, 25]. In addition, in a previous analysis conducted 

by the first author, there was significant heterogeneity of efficacy for those with a first dose of 

RV5 received at < 8 weeks compared to ≥ 8 weeks of age [120]. The current analysis built upon 

the prior analysis in several ways. This analysis compared the association of timing of rotavirus 

doses and severe RVGE among vaccinated infants. We also used an age-specific time scale that 

allowed us to include early events (events prior to vaccination completion) and infants with a 

partial series until they deviated from the predefined schedules. In addition, this analysis focused 

on several aspects of rotavirus vaccine timing, included the use of RV1 trial data, and provided 

estimates of associations on an absolute scale, which is important for considering public health 

impacts.  

Lower incidence of severe RVGE with delays in first rotavirus vaccine dose could be due 

to a number of biologic factors including a decline in transplacentally-acquired anti-rotavirus 

IgG antibodies, development in the immune system, or changes in the microbiota that allows for 

a stronger immune response with slightly older ages at first dose of rotavirus vaccine. There is 

some evidence that anti-rotavirus IgG antibodies inhibit response to rotavirus vaccines. In 

Ghana, a trial investigating the impact of alternative RV1 vaccines schedules on seroconversion 

found seroconversion was higher among infants with the lowest compared to highest quartile of 

pre-vaccination IgG levels [25]. A similar result was also found in Pakistan [24]. In addition to 
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maternal antibodies, early development of the infant immune system in conjunction with the 

evolution of the gut microbiota could play a role in the association observed between dose timing 

and severe RVGE. Early in life, the immune system is developing and can be impacted by the 

development of the microbiota [121]. The development of the immune system may be delayed 

leading to a reduced immune response when rotavirus vaccine doses are given earlier in life. 

Similarly, the composition of the microbiota itself is constantly evolving early in life and may 

influence the vaccine response. A case control study of 6 week old Ghanaian infants found RV1 

vaccine responders (post-vaccination IgA antibody levels ≥ 20 IU/mL) had microbiotas more 

closely resembling Dutch infants than Ghanaian non-responders (post-vaccination IgA antibody 

levels ≥ 20 IU/mL) [27]. It may be possible such differences in the microbiota between 

responders and non-responders can be mitigated with increasing age leading to improved vaccine 

response when vaccinated at later ages. 

We also found an increase in risk of severe RVGE for those infants with a 4 week 

interval between RV1 doses compared to a 6 week interval between doses. This association was 

attenuated and much less precise comparing the 5 week to 6 week interval between RV1 doses. 

For RV5, there was no association between length of interval between doses and severe RVGE. 

However, it is difficult to investigate these associations, because RV5 is a three rather than two 

dose vaccine, which resulted in a number of possible combinations of intervals between doses. It 

is possible we did not observe an association, because we had to collapse across groups of 

different interval lengths to obtain sufficient sample sizes for comparisons. A trial conducted in 

Vietnam comparing a vaccine schedule with an interval of 4 – 5 weeks between doses (schedule 

of 8.8/13.2 weeks) to another schedule with an interval of 8 – 9 weeks between doses (schedule 

of 8.6/17.4 weeks) did report a higher seroconversion proportion for the schedule with the longer 
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interval between doses [88] (one-month seroconversion proportion difference (95% CI): -0.25 (-

0.36, -0.14)). However, when a similar interval comparison of 4 – 5 weeks to 8 – 9 weeks for 

infants in the Philippines was made for a schedule with an earlier start (schedule of 6.5/15.1 

weeks) versus a later start (schedule of 10.6/15.2 weeks), the schedule with a longer interval 

between doses but with an earlier start had a lower seroconversion proportion [88] (one-month 

seroconversion proportion difference (95% CI): -0.11 (-0.23, 0.01)). A longer delay between 

doses may provide a greater booster effect for RV1, but possibly only when the first dose is 

administered around 10 weeks of age like it was in the RV1 trial. 

There are a number of limitations of this analysis. Since this was an analysis of 

previously collected data, we were restricted in our ability to analyze timing of different dosing 

schedules. Ideally, it would have been informative to have a larger number of infants vaccinated 

at different times, so we could have more precisely estimated the association between different 

schedules. This was particularly problematic for the RV1 trial, because there were fewer 

vaccinated infants and these infants had less variability in the timing of their doses. We were also 

unable to assess events that occurred before 12 weeks of age, because there was staggered 

enrollment on an age scale, and we chose to begin follow-up at the age every infant had begun 

follow-up. In the RV5 cohort, no events occurred prior to 12 weeks of age, but three events did 

occur prior to 12 weeks of age (one and two in the placebo and RV1 groups, respectively) in the 

RV1 trial. Similarly, there was only active surveillance at local clinics and hospitals, and not 

households, for gastroenteritis in the RV5 trial, which likely resulted in underascertainment of 

severe RVGE episodes. This means there may have been earlier events that were unaccounted 

for in the analysis, because they were not captured in the study. In addition, there may be 

residual confounding of some estimates that we were unable to account for in this analysis. 
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Although the vast majority of schedules for each aspect of timing had similar covariate 

imbalances in the placebo and vaccinated groups, there were a few variables that did not deviate 

in a similar manner. This means that after calibration of estimates, these estimates may have 

some residual confounding due to the differences in the imbalance of covariates. Therefore, we 

particularly urge readers to interpret estimates of the comparison of the whole RV1schedule of 

13 – 16 versus 10 – 12 weeks with a 4 – 6 week interval between doses with caution, because 

there were a large number of imbalances between the placebo and vaccinated groups. For this 

comparison, it is difficult to predict the direction and magnitude of bias that may be due to the 

differences. For all other comparisons, we expect there is little bias due to the difference in 

imbalance of covariates between the placebo and vaccinated groups, because the differences 

between SMDs were relatively small, restricted to one to two covariates, and direct adjustment 

for these factors with each schedule comparison did not substantially impact the estimates in 

either the placebo or vaccinated groups. 

Despite these limitations, there are a number of strengths of this analysis. The data from 

these trials allowed us to assess if timing of rotavirus vaccine doses is associated with incidence 

of severe RVGE, which has not been previously reported. We were also able to use data from 

multiple data sources of two rotavirus vaccines to understand the association between rotavirus 

vaccine timing and severe RVGE more broadly. In addition, we were able to use a novel study 

design to account for early rotavirus events to ensure later schedules would be penalized for any 

early events that occurred prior to receipt of the vaccine. Similarly, we leveraged data in the 

placebo groups to account for bias and adjust estimates of the association between timing of 

rotavirus vaccine doses and incidence of severe RVGE.   
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In this analysis of two clinical trials of rotavirus vaccines in LMICs, we found that there 

was an association of rotavirus vaccine dose timing on incidence of severe RVGE. The increase 

in 12- or 18-month risk associated with earlier administration of first RV5 and RV1 doses ranged 

from 1.5 – 4% and declined with increasing age at first dose. In addition, a 4 week versus 6 week 

interval between RV1 doses was associated with about a 4% increase in 12-month risk when 

RV1 was administered at about 10/14 weeks of age. Although these percentages are small, these 

associations are quite large when considering millions of children are vaccinated with rotavirus 

vaccines each year. Countries should carefully consider these data when determining vaccination 

strategies to prevent the most cases of severe RVGE. 
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Table 5.1 Description of predefined rotavirus vaccine schedules developed for each aspect of dose timing. Timing is in weeks 

of age unless otherwise indicated. The primary comparison of interest is bolded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
NA, not applicable; wks, weeks 
* Number of infants beginning follow-up at 12 weeks of age in this schedule. Total sample size across schedules for an aspect of timing can sum to more 

than the total number of vaccinated infants in each trial because infants can begin in > 1 schedule. 
† Number of infants being followed for event for a particular schedule at 6 months of age. 
‡ At least one interval between doses must be 5 weeks;  
§ At least one interval between doses must be 6 weeks.  

Aspect of 

Timing 
N* N† 

Schedule 

Number 

RV 

Type 
Dose 1  Dose 2 Dose 3 

Whole 

Schedules 

1,167 1,073 1 RV5 3 – 6 4 – 6 wks after 1st dose 4 – 6 wks after 2nd dose 

1,669 1,516 2 RV5 7 – 9 4 – 6 wks after 1st dose 4 – 6 wks after 2nd dose 

784 720 3 RV5 10 – 12 4 – 6 wks after 1st dose  4 – 6 wks after 2nd dose 

1,299 1,212 3 RV1 10 – 12  4 – 6 wks after 1st dose  NA 

207 166 4 RV1 13 – 16  4 – 6 wks after 1st dose NA 

First Dose 

519 506 1 RV5 < 6  ≤ 10 wks after 1st dose ≤ 10 wks after 2nd dose 

3,147 3,063 2 RV5 ≥ 6  ≤ 10 wks after 1st dose ≤ 10 wks after 2nd dose 

2,882 2,805 3 RV5 < 10  ≤ 10 wks after 1st  dose ≤ 10 wks after 2nd dose 

784 764 4 RV5 ≥ 10  ≤ 10 wks after 1st  dose ≤ 10 wks after 2nd dose 

Last Dose 

1,527 1,216 1 RV5 ≤ 7  ≤ 11 ≤ 15 

3,520 2,353 2 RV5 ≤ 12 ≤ 10 wks after 1st dose > 15  & ≤ 10 wks after 2nd dose 

1,048 420 1 RV1 ≤ 11 ≤ 15 NA 

1,559 1,056 2 RV1 ≤ 16 > 15 & ≤ 10 wks after 2nd dose NA 

Interval 

between 

Doses 

2,589 1,310 1 RV5 ≤ 12 4 wks after 1st dose 4 wks after 2nd dose 

3,345 1,453  2‡ RV5 ≤ 12 4 or 5 wks after 1st dose 4 or 5 wks after 2nd dose 

3,474 546  3§ RV5 ≤ 12 4, 5 or 6 wks after 1st dose 4, 5, or 6 wks after 2nd dose 

1,559 337 1 RV1 ≤ 16 4 wks after 1st dose NA 

1,559 926 2 RV1 ≤ 16 5 wks after 1st dose NA 

1,559 167 3 RV1 ≤ 16 6 wks after 1st dose NA 

Number of 

Doses   ≥ 

10 Weeks 

of Age 

1,030 2  0‖ RV5 < 10  < 10 < 10 

3,666 397  1‖ RV5 < 10 < 10  ≥ 10 & ≤ 32 

3,271 2,432  2‖ RV5 < 10 ≥ 10 & ≤ 32 ≥ 10 & ≤ 32 

784 765  3‖ RV5 ≥ 10 ≥ 10 & ≤ 32 ≥ 10 & ≤ 32 
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‖ Other timing of doses resulting in the same number of doses received ≥ 10 are possible and are included in Appendix Table 1. 
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Table 5.2 Characteristics of the trial populations. 

Infant Characteristics 

Trial 1 (N = 3,114) Trial 2 (N = 7,341) 

RV1  

(N = 1,560) 

Placebo  

(N = 1,554) 

RV5  

(N = 3,666) 

Placebo  

(N = 3,675) 

Age at Vaccine or Placebo Receipt     

     Dose 1*, mean (SE) 11.2 (0.03) 11.3 (0.03)   7.6 (0.03)   7.5 (0.03) 

     Dose 2†, mean (SE)  16.2 (0.04) 16.3 (0.04) 12.2 (0.04) 12.1 (0.04) 

     Dose 3‡, mean (SE) -- -- 16.7 (0.04) 16.7 (0.04) 

Demographic     

     Female Sex, % 48.8 48.6 48.6 49.7 

     African Race, % 97.2 96.8 72.3 72.4 

     Asian Race, % -- -- 27.6 27.6 

Growth Status at Enrollment     

     Stunted, % 22.6    21.7§ 10.1   10.4‖ 

     Underweight, % 3.9 4.4 11.5 11.2 

     Wasting, %    3.7§      4.3§   23.1§   20.9§‖ 

Exclusively Breastfed     

     At Dose 1, % -- -- 80.0 81.6 

     At Dose 2, % -- --   75.2§ 74.7 

     At Dose 3, % -- -- 69.9  70.1§ 

≥ 1 Concomitant Infections     

     At Dose 1, % 0.5 0.9 5.5 5.6 

     At Dose 2, % 0.3 0.4 0.5 0.6 

     At Dose 3, % -- -- 1.1 1.3 

≥ 1 Concomitant Antibiotic¶     

     At Dose 1, % 12.9 14.1 2.2 2.8 

     At Dose 2, % 15.5 14.6 5.6 5.2 

     At Dose 3, % -- -- 6.2 6.1 

Routine Vaccines     

     ≥ 1 Concomitant BCG     

          At Dose 1, % -- -- 21.9 22.0 

     ≥ 1 Concomitant DTP-HB/HIB**     

          At Dose 1, % 99.3 99.3 45.7 47.0 

          At Dose 2, % 99.1 99.5 43.6 43.8 

          At Dose 3, % -- -- 42.0 42.2 

     ≥ 1 Concomitant OPV     

          At Dose 1, %  99.3 99.3 54.1 55.6 

          At Dose 2, % 99.2 99.5 51.1 51.0 

          At Dose 3, % -- -- 48.2 48.1 

SE, standard error 
* There were 25 and 21 in the placebo and RV1 groups, respectively, missing dose one. 
† There were 63 and 45 in the placebo and RV1 groups, respectively, missing dose two. There were 17 and 10 in the 

placebo and RV5 groups, respectively, missing dose two. 
‡ There were 57 and 47 in the placebo and RV5 groups, respectively, missing dose three. 
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§ Missing 1 – 15 observations, excluding those missing doses of vaccine or placebo. 
‖ Excluding Bangladesh 
¶ Excluding topical antibiotics 
** Or DTaP & HBV, which were the standard vaccines given in Asian countries 
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Figure 5.1 Example of two infants and how events and person-time are assigned for the 

schedules for timing of the last dose. 

A: event at 14 weeks (counted in both groups). 

B: no event before 20 weeks; infant vaccinated with final dose > 15 weeks. 
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Figure 5.2 Cumulative incidence of severe RVGE by timing of first dose with 4 – 6 week 

intervals between subsequent doses in the placebo and RV5 vaccinated groups. Number at risk at 

12 weeks, 6 months, 12 months, 18 months, and 24 months of age for schedule is below the x-

axis.  

RV5          3 – 6 1,167 1,073 943 640 7 

7 – 9 1,669 1,516 1,351 1,003 52 

10 – 12 784 720 600 527 45 

Placebo     3 – 6 1,250 1,134 980 687 9 

7 – 9 1,589 1,451 1,293 948 64 

10 – 12 780 713 590 514 39 
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   7 –   9  

10 – 12  

 

 

 

Placebo     RV5 
Schedule start  

(weeks) 
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Figure 5.3 Cumulative incidence of severe RVGE by timing of first dose with a 4 – 6 week 

interval between doses in the placebo and RV1 vaccinated groups. Number at risk at 12 weeks, 6 

months, 12 months, 18 months, and 24 months of age for schedule is below the x-axis. 

 

RV1      10 – 12 1,299 1,212 767 573 7 

13 – 16 207 166 100 67 1 

Placebo 10 – 12 1,255 1,128 708 530 6 

13 – 16 253 196 107 73 1 
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Figure 5.4 Uncalibrated and calibrated RDs and 95% CIs.  

RD (95% CI) 
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Figure 5.5 Uncalibrated and calibrated RRs and 95% CIs.
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CHAPTER 6: DISCUSSION 

Summary of Objective and Results 

The purpose of this dissertation was to investigate when children in LMICs experienced 

severe RVGE episodes and if the timing of rotavirus vaccine doses was associated with risk of 

severe RVGE in these areas. We did this by analyzing the natural history of rotavirus among 

unvaccinated infants in two trial populations and by estimating the association between timing of 

rotavirus vaccine doses and risk of severe RVGE among vaccinated infants in each trial. A 

summary of the results from each research aim is below. 

Aim 1: To describe the natural history of severe RVGE among infants in the placebo 

groups of the rotavirus vaccine trials in LMICs.  

Aim 1a: To describe the timing of first episode of severe RVGE.   

Aim 1b: To estimate the association between incidence of first severe RVGE and 

baseline factors, including demographic information; breastfeeding and growth 

status; and concomitant infection, antibiotic use, and vaccination.  

The cumulative risk of severe RVGE was 6 – 8% at 20 months of age. Risk increased 

steadily over the first one to two years of life and was low at 6 months of age. Antibiotic 

use was associated with about 1.4 to 2 times the rate of severe RVGE in cohort 2 and 1, 

respectively. 
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Aim 2: To estimate the association between timing of rotavirus vaccine doses and 

incidence of severe RVGE among vaccinated infants in the rotavirus vaccine trials in 

LMICs. 

The timing of rotavirus vaccine doses was associated with the incidence of severe RVGE. 

There was a dose-response relationship between age at first RV5 dose and incidence of 

severe RVGE. Earlier administration of first RV5 dose was associated with an increased 

risk of severe RVGE and that risk declined with increased age of first dose until 

approximately 8 – 9 weeks of age. An interval of 4 versus 6 weeks between RV1 doses 

was also associated with an increased risk of severe RVGE. However, this occurred when 

RV1 was administered on an approximately 10/14 week schedule. 

 

Timing of Severe RVGE in LMICs 

 In Aim 1, we found that 6 – 8% of children experienced severe RVGE by 20 months of 

age, and the cumulative risk of severe RVGE increased relatively steadily over the first 12 – 18 

months of age. Cumulative risk at 6 months of age was low. This is important to note, because if 

countries were to shift the timing of rotavirus vaccine doses, it would be important to avoid a 

period with a large increase in risk such that infants who would have been vaccinated are no 

longer vaccinated for this period of increased risk. Instead, we expect if there are shifts in the 

rotavirus vaccine schedules such that complete protection occurred at a slightly later age, there 

would be relatively small increases in the number of severe RVGE events. Table 6.1 summarizes 

the maximum number of early cases we would expect to occur if we delayed RV1 and RV5 

schedules. These estimates assume the severe RVGE episodes would be fully prevented with the 

commonly used schedule of 6/10 (RV1) or 6/10/14 weeks (RV5) and that there is no partial 
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protection from an incomplete later series of 10/14 (RV1) or 8/12/16 weeks (RV5). In short, 

these estimates provided a “worst case scenario” for the number of severe RVGE episodes we 

could expect to occur with a shift in schedule if there was no benefit in terms of RVGE to 

changing these schedules. 

 

 Rotavirus Vaccines and Schedules Currently in Use in LMICs 

 In LMICs, the overwhelming majority of countries (37 of 44, 84%) use RV1. Currently, 

the WHO recommends rotavirus vaccines be given as soon as possible after 6 weeks of age [6], 

and 23 (62%) of the 37 LMICs administering RV1 in their routine immunization program use the 

6/10 week schedule [62, 122]. The remaining 14 (38%) countries administer RV1 on a 4/16 

week (N = 7), 4/12 week (N = 3), 6/10/14 week (N = 2), 6/12 week (N = 1), or 8/12 week (N = 

1) schedule [122]. The following vaccination schedules are used for the 7 countries using RV5: 

8/12/16 week (N = 3), 6/10/14 week (N = 2), 4/16 week (N = 1), or 4/16/24 week (N = 1). 

 

Practical Challenges of Altering Rotavirus Vaccine Schedules in LMICs 

 There are three important practical challenges to think through when considering 

changing the timing of rotavirus vaccine doses. First, the changes made to the timing of rotavirus 

vaccine doses must conform to the schedule used for other routine vaccines. Unfortunately, this 

is a relatively large constraint, because vaccinations before a year of age often occurs around 

birth, 6 weeks, 10 weeks, 14 weeks, and 9 months of age for children in many LMICs. The most 

practical options for changing a two dose RV1 series would be to administer it at 10/14 or 6/14 

weeks of age. The countries currently using RV5 use one of the following schedules for their 

routine vaccination: 6/10/14, 8/12/16 or 8/16/24 week. A shift in the RV5 series would likely be 
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infeasible unless countries shifted their schedule for all routine vaccines, which is likely 

unrealistic. Fortunately, the majority of LMICs use RV1, and it is the vaccine with the largest 

potential to feasibly alter the vaccine schedule. Second, any changes made to timing of rotavirus 

vaccine doses must be made considering the probability that children in the country will return, 

and return approximately on time for subsequent vaccinations. Delay or discontinuation of 

routine vaccinations is a major concern for public health officials in many LMICs. However, the 

limited data available describing this indicates there is a large amount of heterogeneity in both 

the completeness and timeliness of vaccine doses [123, 124]. If the country specific data 

indicates it is probable that children will not return, or return significantly delayed for subsequent 

rotavirus vaccine doses, it is likely not be beneficial to delay vaccination. Third, it is important to 

consider the tradeoff between possible increases in vaccine performance and increases in cases 

that can occur when considering changes in vaccine schedule. This dissertation provides some 

data using clinical endpoints to make this judgment. 

 

Limitations  

 There were a few limitations of this dissertation. Unfortunately, we were unable to make 

comparisons between the most frequently used schedule (6/10 weeks) and other feasible 

schedules (e.g., 6/14 or 10/14 weeks) for RV1, which is the most widely used rotavirus vaccine 

in LMICs. This was due to the schedules that were used in the trials of RV1. However, we were 

able to use data from both the RV1 and RV5 trials to understand how timing of rotavirus vaccine 

doses affects the risk of severe RVGE. In addition, it was a limitation that infants were not 

followed from birth. Ideally, we would have followed infants from birth, so we did not have left 

truncation of data (i.e., late-entry) on an age-specific time scale and could observe very early 
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severe RVGE episodes. For the purpose of comparing schedules beginning at 6 weeks of age or 

later, this limitation was less important, because any events occurring before protection would be 

conferred at 12 or 16 weeks of age (i.e., two weeks after the 6/10 or 6/10/14 week schedule is 

complete), could not be prevented. However, if there was important partial protection from 

incomplete vaccine series before 12 weeks of age, it would be beneficial to begin follow-up 

earlier. 

 

Strengths  

 This dissertation has several strengths. We were able to determine if timing of rotavirus 

vaccine doses was associated with the incidence of severe RVGE. Given the very limited data on 

rotavirus vaccine timing using clinical endpoints, the results of this dissertation were able to 

provide critical, missing information. Importantly, the results of this research using clinical 

endpoints were consistent with the results of vaccine trials assessing timing using immunogenic 

endpoints. The totality of this evidence can be used to inform vaccine administration strategies 

that will prevent the most cases of severe RVGE in LMICs. In addition, the results provide 

crucial information on the timing of first episode of severe RVGE, which is the most clinically 

relevant outcome prevented by rotavirus vaccination. Prior to this dissertation, no study had 

reported information the cumulative incidence of severe RVGE in LMICs, in large part, because 

sample sizes of previous studies were too small to do so. This dissertation also used a novel 

study design to account for early severe RVGE episodes and confounding while leveraging data 

from two sources to compare patterns seen across different locations with different rotavirus 

vaccines. 
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Future Directions 

 The scientific literature and results of this dissertation provide evidence that altering 

vaccine schedules may result in fewer episodes of severe RVGE. Since we were unable to 

directly compare RV1 given at 6/10 weeks to other schedules, it would be highly informative to 

have a multisite randomized control trial of children followed from birth for severe RVGE until 

one to two years of age and assigned to infants to different dosing schedules to determine the 

efficacy of different rotavirus vaccine schedules. The most compelling comparisons arms would 

be 6/10, 10/14, and 6/14 weeks of RV1. However, given the cost of such a trial, it is unlikely to 

occur. Countries should carefully consider the evidence that is available, because these data may 

be the only data available from large study populations reporting incidence of severe RVGE. 

 

Conclusions 

 This dissertation research and the previous scientific literature indicate that severe RVGE 

episodes may be prevented in children by altering the vaccine schedules used in LMICs. Results 

of different timing classifications from the RV5 trial indicate infants with earlier first dose had a 

higher risk of severe RVGE compared to those with later first dose. This increased risk 

attenuated over the age of first dose with no increase seen when first dose was given at 8 – 9 

weeks compared to later ages. There was also an increased risk of severe RVGE associated with 

a 4 versus 6 week interval between RV1 doses that were administered at approximately a 10/14 

week schedule. Changes to rotavirus vaccine schedules in LMICs must be considered in light of 

the standard immunization schedule, retention and timeliness of vaccinations, and potential for 

severe RVGE early in life. 
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Table 6.1 Number of expected severe RVGE cases that would occur if altering vaccination 

schedules had no benefit. 

Cohort/Country 

Expected Increase in RVGE Cases  

per 1,000 Infants (95% CI)* 

RV1 

6/10 vs. 10/14 

RV5 

6/10/14 vs. 8/12/16 

Cohort 1              5 (1, 8)              2 (0, 4) 

     Malawi              9 (1, 17)              2 (0, 6) 

     South Africa              2 (0, 5)              2 (0, 5) 

   

Cohort 2              1 (0, 2)              0 (0, 1) 

     Ghana              0              0 

     Kenya              2 (0, 5)              0 

     Mali              2 (0, 5)              1 (0, 3) 

     Bangladesh              0              0 

     Vietnam              0              0 

* 
Estimates assume infants are fully protected at two weeks following the final dose of vaccine. Therefore, the 

expected increase if for the period from 12 to 16 weeks (RV1) and 16 to 18 weeks (RV5). These estimates also 

assume the severe RVGE episodes would be prevented had infants been vaccinated at 6/10 (RV1) or 6/10/14 (RV5) 

weeks and that there is no partial protection for an incomplete series for later vaccine schedules. 
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APPENDIX: SUPPLEMENTAL INFORMATION 

Appendix Table 1. Detailed description of entry, follow-up, and censoring for schedule 

comparisons for aspects of timing. Timing is in weeks of age unless otherwise indicated. 
Aspect of 

Timing 
Schedule 

RV 

Type 

Dose 

1 

Dose 

2 

Dose 

3 
Description of Entry, Follow-up, and Censoring for Schedules* 

Whole 

Schedules 
1 RV5 3 – 6  

4 – 6 

wks 

after 
1st  

4 – 6 

wks 

after 
2nd  

Infants with 1st dose at 3, 4, 5, or 6 wks of age begin in this schedule and 
continue follow-up until severe RVGE, end of study, or censoring. Infants are 

censored at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 6 wks after 1st dose 6 wks after 1st dose 

Receipt of 3rd dose < 4 wks after 2nd dose Time of 3rd dose 

No 3rd dose by 6 wks after 1st dose 6 wks after 2nd dose 
 

Whole 

Schedules 
2 RV5 7 – 9 

4 – 6 
wks 

after 

1st  

4 – 6 
wks 

after 

2nd  

Infants with 1st dose at 7, 8, or 9 wks of age begin in this schedule and 

continue follow-up until severe RVGE, end of study, or censoring. Infants are 
censored at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 6 wks after 1st dose 6 wks after 1st dose 

Receipt of 3rd dose < 4 wks after 2nd dose Time of 3rd dose 

No 3rd dose by 6 wks after 1st dose 6 wks after 2nd dose 
 

Whole 

Schedules 
3 RV5 

10 – 

12 

4 – 6 

wks 

after 

1st  

4 – 6 

wks 

after 

2nd  

Infants with 1st dose at 10, 11, or 12 wks of age begin in this schedule and 

continue follow-up until severe RVGE, end of study, or censoring. Infants are 
censored at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 6 wks after 1st dose 6 wks after 1st dose 

Receipt of 3rd dose < 4 wks after 2nd dose Time of 3rd dose 

No 3rd dose by 6 wks after 1st dose 6 wks after 2nd dose 
 

Whole 
Schedules 

3 RV1 
10 – 
12  

4 – 6 

wks 
after 

1st  

NA 

Infants with 1st dose at 10, 11, or 12 wks of age begin in this schedule and 

continue follow-up until severe RVGE, end of study, or censoring. Infants are 

censored at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 6 wks after 1st dose 6 wks after 1st dose 
 

Whole 
Schedules 

4 RV1 
13 – 
16  

4 – 6 

wks 
after 

1st  

NA 

Infants missing first RV1 or with 1st dose > 12 wks of age begin in this 

schedule and continue follow-up until severe RVGE, end of study, or 

censoring. Infants are censored at the earliest occurrence of any of the 
following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 1st dose by 16 wks of age 16 wks of age 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 6 wks after 1st dose 6 wks after 1st dose 
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Aspect of 

Timing 
Schedule 

RV 

Type 

Dose 

1 

Dose 

2 

Dose 

3 
Description of Entry, Follow-up, and Censoring for Schedules* 

First Dose 
 

1 RV5 < 6  

≤ 10 

wks 
after 

1st  

≤ 10 

wks 
after 

2nd  

Infants with 1st dose at < 6 wks of age begin in this schedule and continue 

follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 10 wks after 1st dose 10 wks after 1st dose 

No 3rd dose by 10 wks after 2nd dose  10 wks after 2nd dose 
 

First Dose 
 

2 RV5 ≥ 6  

≤ 10 

wks 
after 

1st  

≤ 10 

wks 
after 

2nd  

Infants with 1st dose at ≥ 6 wks of age begin in this schedule and continue 
follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 10 wks after 1st dose 10 wks after 1st dose 

No 3rd dose by 10 wks after 2nd dose  10 wks after 2nd dose 
 

First Dose 

 
3 RV5 < 10  

≤ 10 

wks 

after 
1st  

≤ 10 

wks 

after 
2nd  

Infants with 1st dose at < 10 wks of age begin in this schedule and continue 
follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 10 wks after 1st dose 10 wks after 1st dose 

No 3rd dose by 10 wks after 2nd dose  10 wks after 2nd dose 
 

First Dose 

 
4 RV5 ≥ 10  

≤ 10 
wks 

after 
1st  

≤ 10 
wks 

after 
2nd  

Infants with 1st dose at ≥ 10 wks of age begin in this schedule and continue 
follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 10 wks after 1st dose 10 wks after 1st dose 

No 3rd dose by 10 wks after 2nd dose  10 wks after 2nd dose 
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Aspect of 

Timing 
Schedule 

RV 

Type 

Dose 

1 

Dose 

2 

Dose 

3 
Description of Entry, Follow-up, and Censoring for Schedules* 

Last Dose 1 RV5 ≤ 7  ≤ 11 ≤ 15 

Infants with 1st dose at ≤ 7 wks of age begin in this schedule and continue 

follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 11 wks of age 11 wks of age 

No 3rd dose by 15 wks of age 15 wks of age 
 

Last Dose 2 RV5 ≤ 12 

≤ 10 

wks 

after 
1st  

> 15 
&  

≤ 10 

wks 
after 

2nd  

All infants begin in this schedule and continue follow-up until severe RVGE, 
end of study, or censoring. Infants are censored at the earliest occurrence of 

any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 10 wks after 1st dose 10 wks after 1st dose 

Receipt of 3rd dose ≤ 15 wks of age  Time of 3rd dose 

No 3rd dose by 10 wks after 2nd dose 10 wks after 2nd dose 
 

Last Dose 1 RV1 ≤ 11 ≤ 15 NA 

Infants with 1st dose at ≤ 11 wks of age begin in this schedule and continue 

follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 15 wks of age 15 wks of age 
 

Last Dose 2 RV1 ≤ 16 

> 15 

&  

≤ 10 
wks 

after 

2nd  

NA 

All infants begin in this schedule and continue follow-up until severe RVGE, 

end of study, or censoring. Infants are censored at the earliest occurrence of 

any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 1st dose by 16 wks of age 16 wks of age 

Receipt of 2nd dose ≤ 15 wks of age  Time of 2nd dose 

No 2nd dose by 10 wks after 1st dose 10 wks after 1st dose 
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Aspect of 

Timing 
Schedule 

RV 

Type 

Dose 

1 

Dose 

2 

Dose 

3 
Description of Entry, Follow-up, and Censoring for Schedules* 

Interval 

between 

Doses 

1 RV5 ≤ 12 

4 

wks 
after 

1st  

4 

wks 
after 

2nd  

All infants begin in this schedule and continue follow-up until severe RVGE, 

end of study, or censoring. Infants are censored at the earliest occurrence of 

any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 4 wks after 1st dose 4 wks after 1st dose 

Receipt of 3rd dose < 4 wks after 2nd dose Time of 3rd dose 

No 3rd dose by 4 wks after 2nd dose 4 wks after 2nd dose 
 

Interval 
between 

Doses 

2 RV5 ≤ 12 

4 
wks 

after 
1st  

5 
wks 

after 
2nd  

All infants begin in this schedule and continue follow-up until severe RVGE, 
end of study, or censoring. Infants are censored at the earliest occurrence of 

any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 5 wks after 1st dose 5 wks after 1st dose 

Receipt of 3rd dose < 4 wks after 2nd dose Time of 3rd dose 

Receipt of 3rd dose at 4 wks after 2nd dose when 
2nd dose received 4 wks after 1st dose 

Time of 3rd dose 

No 3rd dose at by 5 wks after 2nd dose 5 wks after 2nd dose 
 

Interval 
between 

Doses 

2 RV5 ≤ 12 

5 

wks 

after 

1st  

4 

wks 

after 

2nd  

Interval 

between 

Doses 

2 RV5 ≤ 12 

5 

wks 
after 

1st  

5 

wks 
after 

2nd  

Interval 

between 

Doses 

3 RV5 ≤ 12 

4 

wks 
after 

1st  

6 

wks 
after 

2nd  

All infants begin in this schedule and continue follow-up until severe RVGE, 

end of study, or censoring. Infants are censored at the earliest occurrence of 
any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 6 wks after 1st dose 6 wks after 1st dose 

Receipt of 3rd dose < 4 wks after 2nd dose Time of 3rd dose 

Receipt of 3rd dose at 4 wks after 2nd dose when 

2nd dose received 4 or 5 wks after 1st dose 

Time of 3rd dose 

Receipt of 3rd dose at 5 wks after 2nd dose when 
2nd dose received 4 or 5 wks after 1st dose 

Time of 3rd dose 

No 3rd dose by 6 wks after 2nd dose 6 wks after 2nd dose 
 

Interval 

between 
Doses 

3 RV5 ≤ 12 

5 
wks 

after 

1st  

6 
wks 

after 

2nd  

Interval 

between 
Doses 

3 RV5 ≤ 12 

6 
wks 

after 

1st  

4 
wks 

after 

2nd  

Interval 

between 

Doses 

3 RV5 ≤ 12 

6 

wks 

after 
1st  

5 

wks 

after 
2nd  

Interval 

between 

Doses 

3 RV5 ≤ 12 

6 

wks 
after 

1st  

6 

wks 
after 

2nd  

Interval 

between 
Doses 

1 RV1 ≤ 16 

4 
wks 

after 

1st  

NA 

All infants begin in this schedule and continue follow-up until severe RVGE, 

end of study, or censoring. Infants are censored at the earliest occurrence of 
any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 1st dose by 16 wks of age 16 wks of age 

Receipt of 2nd dose < 4 wks after 1st dose Time of 2nd dose 

No 2nd dose by 4 wks after 1st dose 4 wks after 1st dose 
 

Interval 
between 

Doses 

2 RV1 ≤ 16 

5 

wks 

after 
1st  

NA 

All infants begin in this schedule and continue follow-up until severe RVGE, 

end of study, or censoring. Infants are censored at the earliest occurrence of 

any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 1st dose by 16 wks of age 16 wks of age 

Receipt of 2nd dose < 5 wks after 1st dose Time of 2nd dose 

No 2nd dose by 5 wks after 1st dose 5 wks after 1st dose 
 

Interval 

between 
Doses 

3 RV1 ≤ 16 

6 
wks 

after 

1st  

NA 

All infants begin in this schedule and continue follow-up until severe RVGE, 

end of study, or censoring. Infants are censored at the earliest occurrence of 
any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 1st dose by 16 wks of age 16 wks of age 

Receipt of 2nd dose < 6 wks after 1st dose Time of 2nd dose 

No 2nd dose by 6 wks after 1st dose 6 wks after 1st dose 
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NA, not applicable, wks, weeks 
*Censoring for those not receiving a first dose of vaccine is not described for the RV5 trial; all infants in the RV5 trial 

received at least 1 dose of vaccine, but some infants in the RV1 trial did not receive a dose of vaccine.  

Aspect of 

Timing 
Schedule 

RV 

Type 

Dose 

1 

Dose 

2 

Dose 

3 
Description of Entry, Follow-up, and Censoring for Schedules* 

Number of 

Doses ≥ 10 
Weeks of 

Age 

0 RV5 < 10  < 10 < 10 

All Infants with 1st dose at < 10 wks of age begin in this schedule and continue 

follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose ≥ 10 wks of age Time of 2nd dose 

Receipt of 3rd dose ≥ 10 wks of age Time of 3rd dose 
 

Number of 

Doses ≥ 10 

Weeks of 
Age 

0 RV5 < 10  < 10 
No 

3rd 

Number of 

Doses ≥ 10 

Weeks of 
Age 

0 RV5 < 10 
No 

2nd  

No 

3rd  

Number of 
Doses ≥ 10 

Weeks of 
Age 

1 RV5 ≥ 10 
No 

2nd  

No 

3rd  

All Infants begin in this schedule and continue follow-up until severe RVGE, 
end of study, or censoring. Infants are censored at the earliest occurrence of 

any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 3rd dose < 10 wks of age Time of 3rd dose 

Receipt of 2nd dose when 1st dose received ≥ 10 

wks of age 

Time of 2nd dose 

Receipt of 3rd dose when 2nd dose received ≥ 10 

wks of age 

Time of 3rd dose 

No 2nd dose by 32 wks of age when 1st dose 

received < 10 wks of age 

32 wks of age 

No 3rd dose by 32 wks of age when 2nd dose 

received < 10 wks of age 

32 wks of age 

 

Number of 
Doses ≥ 10 

Weeks of 

Age 

1 RV5 < 10 

≥ 10 

&  
≤ 32 

No 

3rd  

Number of 

Doses ≥ 10 
Weeks of 

Age 

1 RV5 < 10 < 10 

≥ 10 

&  
≤ 32 

Number of 

Doses ≥ 10 
Weeks of 

Age 

2 RV5 ≥ 10 

≥ 10 

&  

≤ 32 

No 
3rd  

All Infants begin in this schedule and continue follow-up until severe RVGE, 

end of study, or censoring. Infants are censored at the earliest occurrence of 

any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

Receipt of 2nd dose < 10 wks of age Time of 2nd dose 

No 2nd dose by 32 wks of age 32 wks of age  

Receipt of 3rd dose when 1st dose and 2nd dose 
received ≥ 10 wks of age 

Time of 3rd dose 

No 3rd dose by 32 wks of age when 1st dose 

received < 10 wks of age and 2nd dose received 

≥ 10 wks of age 

32 wks of age 

 

Number of 

Doses ≥ 10 

Weeks of 
Age 

2 RV5 < 10 
≥ 10 
&  

≤ 32 

≥ 10 
&  

≤ 32 

Number of 

Doses ≥ 10 
Weeks of 

Age 

3 RV5 ≥ 10 

≥ 10 

&  

≤ 32 

≥ 10 

&  

≤ 32 

All Infants with 1st dose at ≥ 10 wks of age begin in this schedule and continue 
follow-up until severe RVGE, end of study, or censoring. Infants are censored 

at the earliest occurrence of any of the following: 

Reason for Censoring Time of Censoring 

Lost to follow-up/dropout Time of dropout 

No 2nd dose by 32 wks of age 32 wks of age 

No 3rd dose by 32 wks of age 32 wks of age 
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Appendix Table 2. Example of entry, follow-up, and censoring for each schedule for each aspect 

of timing for three hypothetical infants in the RV1 and RV5. 

Aspect of 

Timing 
Infant Type 

Dose Number 
Schedule 

Weeks of age 

1 2 3 12 13 14 15 16 17 18 19 20 

Whole 
Schedules 

A RV5 5 10 18 

3 – 6 weeks with 4 – 6 week intervals          

7 – 9 weeks with 4 – 6 week intervals          

10 – 12 weeks with 4 – 6 week intervals          

B RV5 10 16 20 

3 – 6 weeks with 4 – 6 week intervals          

7 – 9 weeks with 4 – 6 week intervals          

10 – 12 weeks with 4 – 6 week intervals         -> 

C RV5 4 8  

3 – 6 weeks with 4 – 6 week intervals          

7 – 9 weeks with 4 – 6 week intervals          

10 – 12 weeks with 4 – 6 week intervals          

D RV1 10 15  
10 – 12 weeks with 4 – 6 week intervals         -> 

13 – 16 weeks with 4 – 6 week intervals          

E RV1 10   
10 – 12 weeks with 4 – 6 week intervals          

13 – 16 weeks with 4 – 6 week intervals          

F RV1 14 18  
10 – 12 weeks with 4 – 6 week intervals          

13 – 16 weeks with 4 – 6 week intervals         -> 

First Dose       

A RV5 5 10 18 
1st dose < 6 weeks          -> 

1st dose ≥ 6 weeks          

B RV5 10 16 20 
1st dose < 6 weeks           

1st dose ≥ 6 weeks         -> 

C RV5 4 8  
1st dose < 6 weeks           

1st dose ≥ 6 weeks          

Last Dose 

A RV5 5 10 18 
3rd dose ≤ 15 weeks          

3rd dose > 15 weeks         -> 

B RV5 10 16 20 
3rd dose ≤ 15 weeks          

3rd dose > 15 weeks         -> 

C RV5 4 8  
3rd dose ≤ 15 weeks          

3rd dose > 15 weeks          

D RV1 10 15  
2nd dose ≤ 15 weeks         -> 

2nd dose > 15 weeks          

E RV1 10   
2nd dose ≤ 15 weeks          

2nd dose > 15 weeks          

F RV1 14 18  
2nd dose ≤ 15 weeks          

2nd dose > 15 weeks         -> 

Interval 

between 
Doses 

A RV5 5 10 18 

Both 4 weeks          

≥ 1 of 5 weeks          

≥ 1 of 6 weeks          

B RV5 10 16 20 

Both 4 weeks          

≥ 1 of 5 weeks          

≥ 1 of 6 weeks         -> 

C RV5 4 8  

Both 4 weeks          

≥ 1 of 5 weeks          

≥ 1 of 6 weeks          

D RV1 10 15  

4 weeks          

5 weeks         -> 

6 weeks          

E RV1 10   

4 weeks          

5 weeks          

6 weeks          

F RV1 14 18  

4 weeks         -> 

5 weeks          

6 weeks          

Number of 

Doses   ≥ 

10 Weeks 
of Age 

A RV5 5 10 18 

1 dose at ≥ 10 weeks          

2 doses at ≥ 10 weeks         -> 

3 doses at ≥ 10 weeks          

B RV5 10 16 20 
1 dose at ≥ 10 weeks          
2 doses at ≥ 10 weeks          

3 doses at ≥ 10 weeks         -> 

C RV5 4 8  
1 dose at ≥ 10 weeks       Until 32 
2 doses at ≥ 10 weeks          

3 doses at ≥ 10 weeks          



 

 

 

1
0
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Appendix Table 3. Predictors of first severe RVGE episode in cohort 2 with and without Kenya and Mali included. 

Characteristic 

Cohort 2* 

N = 3,746 Events = 205 

 

Cohort 2 without Kenya & Mali 

N = 2,120 Events = 129 

Unadjusted† 

HR (95% CI) 

Adjusted† 

HR (95% CI) 

Unadjusted† 

HR (95% CI) 

Adjusted† 

HR (95% CI) 

Demographic     

     Female Sex vs. Male (ref) 0.86 (0.65, 1.13) 0.86 (0.65, 1.13) 0.68 (0.48, 0.97) 0.69 (0.49, 0.98) 

Exclusively Breastfed vs. Not (ref) 0.75 (0.48, 1.15) 0.75 (0.48, 1.16) 0.95 (0.50, 1.79) 0.99 (0.52, 1.87) 

Growth Status     

     Stunted vs. Not (ref) -- -- -- -- 

     Underweight vs. Not (ref) 0.82 (0.52, 1.30) 0.81 (0.51, 1.29) 0.98 (0.59, 1.63) 0.95 (0.57, 1.58) 

     Wasting vs. Not (ref) -- -- -- -- 

Current/Prior Infection vs. None (ref) 0.99 (0.64, 1.52) 0.89 (0.56, 1.40) 1.11 (0.70, 1.77) 0.98 (0.60, 1.60) 

Current/Prior Antibiotic‖ Use vs. None (ref) 1.40 (0.81, 2.41) 1.41 (0.80, 2.51) 1.71 (0.97, 3.03) 1.66 (0.92, 3.01) 

Routine Vaccines     

     BCG§; No Dose vs. ≥ 1 Dose (ref)  0.63 (0.34, 1.17) 0.65 (0.35, 1.21) 0.67 (0.31, 1.42) 0.64 (0.29, 1.38) 

     DTP-HB/HIB¶; No Dose vs. ≥ 1 Dose (ref) 1.00 (0.71, 1.42) 1.08 (0.71, 1.66) 1.18 (0.72, 1.93) 1.11 (0.65, 1.90) 

     OPV; ≤ 1 Dose vs. ≥ 2 Doses (ref) 0.94 (0.70, 1.25) 0.95 (0.66, 1.36) 1.15 (0.80, 1.67) 1.17 (0.78, 1.76) 
* Six infants from cohort 2 entered and exited the study before 6 weeks of age 
† Adjusted for country  
‡ < 10 events in each strata 
§ Excluding topical antibiotics 
‖ Administered prior to enrollment 
¶ Or DTaP & HBV, which were the standard vaccines given in Asian countries 
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There were differential patterns in lost to follow-up within some strata of factors in cohort 1 

(Appendix Table 4). There were more infants lost to follow-up who were stunted versus not and 

those with ≤ 1 dose of OPV versus ≥ 2 doses at enrollment. 

 

Appendix Table 4. Distribution of characteristics by follow-up status. 

Characteristic 
Infants with Complete 

Follow-Up, N (%) 

Infants Lost to 

Follow-up, N (%) 

Female Sex (vs. Male) 655 (49) 128 (46) 

Growth Status   

   Stunted (vs. Not) 279 (21) 77 (27) 

   Underweight (vs. Not) 57 (4) 16 (6) 

  Wasting (vs. Not) 54 (4) 13 (5) 

Current/Prior Infection (vs. None) 48 (4) 19 (7) 

Current/Prior Antibiotic Use (vs. None) 117 (9) 31 (11) 

Routine Vaccination   

   No BCG (vs. ≥ 1 Dose) 57 (4) 21 (7) 

   No DTP-HB/HIB (vs. ≥ 1 Dose) 1,330 (100) 280 (100) 

   ≤ 1 Dose OPV (vs. ≥ 2 Doses) 138 (10) 52 (19) 
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Appendix Figure 1. Cumulative incidence of severe RVGE by timing of first dose (< 6 weeks vs. 

≥ 6 weeks) in the placebo and RV5 vaccinated groups. Number at risk at 12 weeks, 6 months, 12 

months, 18 months, and 24 months of age for each group is below the x-axis. 

  

RV5       < 6  519 506 432 255 0 

≥ 6  3,147 3,063 2,700 2,055 109 

Placebo < 6 548 534 445 274 0 

≥ 6  3,127 3,011 2,640 1,993 114 

 

 

< 6 

   ≥ 6 

 

 

 

 

Placebo     RV5 
First dose 

(weeks) 
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Appendix Figure 2. Cumulative incidence of severe RVGE by timing of first dose (< 10 weeks 

vs. ≥ 10 weeks) in the placebo and RV5 vaccinated groups. Number at risk at 12 weeks, 6 

months, 12 months, 18 months, and 24 months of age for each group is below the x-axis. 

RV5     < 10  2,882 2,805 2,492 1,754 63 

 ≥ 10 784 764 640 556 46 

Placebo <10 2,895 2,798 2,465 1,733 74 

 ≥ 10 780 747 620 534 40 

 
 

   < 10 

   ≥ 10 

 

 

 

 

Placebo     RV5 
First dose 

(weeks) 
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Appendix Figure 3. Cumulative incidence of severe RVGE by timing of last dose (≤ 15 weeks 

vs. > 15 weeks) in the placebo and RV5 vaccinated groups. Number at risk at 12 weeks, 6 

months, 12 months, 18 months, and 24 months of age for each group is below the x-axis.

RV5        ≤ 15  1,527 1,216 1,087 778 9 

> 15  3,520 2,353 2,045 1,532 100 

Placebo  ≤ 15 1,596 1,253 1,104 803 12 

> 15  3,534 2,292 1,981 1,464 102 

 

   ≤ 15 

   > 15 

 

 

 

 

 

Placebo     RV5 

Last dose 

(weeks) 
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Appendix Figure 4. Cumulative incidence of severe RVGE by timing of last dose (≤ 15 weeks 

vs. > 15 weeks) in the placebo and RV1 vaccinated groups. Number at risk at 12 weeks, 6 

months, 12 months, 18 months, and 24 months of age for each group is below the x-axis. 

  

RV5        ≤ 15  1,048 420 218 149 0 

> 15  1,559 1,056 702 531 8 

Placebo  ≤ 15 998 408 220 152 0 

> 15  1,553 996 636 481 7 

  

   ≤ 15 

   > 15 

 

 

 

 

Placebo     RV1 
Last dose 

(weeks) 
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Appendix Figure 5. Cumulative incidence of severe RVGE by length of interval between doses 

(both intervals 4 weeks vs. ≥ 1 interval of 5 weeks vs. ≥ 1 interval of 6 weeks) in the placebo and 

RV5 vaccinated groups. Number at risk at 12 weeks, 6 months, 12 months, 18 months, and 24 

months of age for each group is below the x-axis.  

RV5      Both 4  2,589 1,310 1,219 1,003 39 

≥ 1 of 5 3,345 1,453 1,215 939 62 

≥ 1 of 6 3,474 546 460 228 3 

Placebo Both 4  2,531 1,298 1,187 968 41 

≥ 1 of 5 3,343 1,464 1,211 939 64 

≥ 1 of 6 3,478 536 465 242 7 

 

 

Both 4 

 ≥ 1 of 5 

≥ 1 of 6 

 

 

Placebo     RV5 

Interval lengths 

(weeks) 
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Appendix Figure 6. Cumulative incidence of severe RVGE by length of interval between doses 

(4 weeks vs. 5 weeks vs. 6 weeks) in the placebo and RV1 vaccinated groups. Number at risk at 

12 weeks, 6 months, 12 months, 18 months, and 24 months of age for each group is below the x-

axis. 

RV5          4 1,559 337 169 112 0 

5  1,559 926 631 484 8 

6  1,559 167 93 64 0 

Placebo     4 1,553 313 154 96 0 

5 1,553 862 578 455 7 

6 1,553 190 102 67 0 
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Appendix Figure 7. Cumulative incidence of severe RVGE by number of doses received ≥ 10 

weeks age (zero vs. one vs. two vs. three) in the placebo and RV5 vaccinated groups. Number at 

risk at 12 weeks, 6 months, 12 months, 18 months, and 24 months of age for each group is below 

the x-axis. 

  

RV5       Zero 1,030 2 0 0 0 

One 3,666 397 351 200 2 

Two 3,271 2,432 2,152 1,559 63 

Three 784 765 640 556 46 

Placebo  Zero 1,029 6 2 0 0 

One 3,675 405 340 208 0 

Two 3,279 2,434 2,140 1,532 74 

Three 780 751 621 535 40 
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Appendix Figure 8. SMDs in the distribution of covariates between timing of first dose with 4 – 6 week intervals between subsequent 

doses. Black symbols represent a difference of < 10% between the SMDs of the RV5 and placebo groups. Blue symbols represent a 

difference of 10% to < 15% between the SMDs of the RV5 and placebo groups.
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Appendix Figure 9. SMDs in the distribution of covariates between timing of first dose with a 4 

– 6 week interval between doses. Black symbols represent a difference of < 10% between the 

SMDs of the RV1 and placebo groups. Blue symbols represent a difference of 10% to < 15% 

between the SMDs of the RV1 and placebo groups. Red symbols represent a difference of 15% 

to < 20% between the SMDs of the RV1 and placebo groups. Green symbols represent a 

difference of 20% to < 25% between the SMDs of the RV1 and placebo groups.
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Appendix Figure 10. SMDs in the distribution of covariates between those receiving their first 

dose at < 6 weeks compared to ≥ 6 weeks. Black symbols represent a difference of < 10% 

between the SMDs of the RV5 and placebo groups. 
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Appendix Figure 11. SMDs in the distribution of covariates between those receiving their first 

dose at < 10 weeks compared to ≥ 10 weeks. Black symbols represent a difference of < 10% 

between the SMDs of the RV5 and placebo groups.  Blue symbols represent a difference of 10% 

to < 15% between the SMDs of the RV5 and placebo groups. Red symbols represent a difference 

of 15% to < 20% between the SMDs of the RV5 and placebo groups.
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Appendix Figure 12. SMDs in the distribution of covariates between those receiving their last 

dose at ≤ 15 weeks compared to > 15 weeks. Black symbols represent a difference of < 10% 

between the SMDs of the RV5 and placebo groups.  
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Appendix Figure 13. SMDs in the distribution of covariates between those receiving their last 

dose at ≤ 15 weeks compared to > 15 weeks. Black symbols represent a difference of < 10% 

between the SMDs of the RV1 and placebo groups. Blue symbols represent a difference of 10% 

to < 15% between the SMDs of the RV1 and placebo groups. 
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Appendix Figure 14. SMDs in the distribution of covariates between intervals of different lengths between doses. Black symbols 

represent a difference of < 10% between the SMDs of the RV5 and placebo groups. Blue symbols represent a difference of 10% to < 

15% between the SMDs of the RV5 and placebo groups. 
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Appendix Figure 15. SMDs in the distribution of covariates between intervals of different lengths between doses. Black symbols 

represent a difference of < 10% between the SMDs of the RV1 and placebo groups. 
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Appendix Figure 16. SMDs in the distribution of covariates between the number of doses received ≥ 10 weeks of age. Black symbols 

represent a difference of < 10% between the SMDs of the RV5 and placebo groups. Blue symbols represent a difference of 10% to < 

15% between the SMDs of the RV5 and placebo groups. 
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Appendix Figure 17. Uncalibrated, placebo group, and calibrated HRs. 

Whole Schedule Start 

 

 

 

First Dose 

 

 

Last Dose 

 

 

Interval between Doses 

 

 

 
Number of Doses ≥ 10 

weeks of age 

 



 

 

 

1
2
1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 18. Uncalibrated, placebo group, and calibrated RDs. 
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Appendix Figure 19. Uncalibrated, placebo group, and calibrated RRs. 
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