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ABSTRACT

Amanda J. Moffett: Disk Regrowth in E/S0 Galaxies and its Environmental Dependence
(Under the direction of Sheila Kannappan)

This work is focused on the investigation of observational evidence for the predicted “disk

regrowth” process, which may allow spheroid-dominated E/S0 galaxies to rebuild spiral disks re-

sembling that of the Milky Way Galaxy. By combining analysis of several complementary galaxy

samples, we derive new observational constraints on the frequency, significance, and conditions of

E/S0 disk regrowth.

We find that UV-detected disks, which represent recent star formation activity, are exceptionally

common in low-mass E/S0 galaxies, and we define a new class of UV-Bright (UV-B) disk E/S0s that

is associated with significant (&10% by mass) recent disk growth, blue optical outer-disk colors,

and enhanced atomic gas content. These UV-B disks are closely linked to a particular class of

low-mass, optically blue E/S0s that were previously hypothesized to host active disk regrowth. The

detection of UV-B disks around nearly all low-mass, blue E/S0s supports this picture and reinforces

the potential importance of mass scales in the disk regrowth process. We also find that another

type of mass scale, involving the mass of the group halo in which a galaxy resides, appears to

play an important role in disk regrowth. Below a group halo mass of ∼ 1011.5M⊙, blue E/S0s,

gas-dominated galaxies, and UV-B disks all become more common, which may imply that such low

group halo mass environments are important for allowing disk regrowth to proceed. This picture is

consistent with both the variations of E/S0 and spiral galaxy frequency as a function of environment,

with spiral galaxy frequencies rising at low group halo mass, and the observed similarity between

typical environments of E/S0 and spiral galaxies at low baryonic mass (. 1010M⊙). Finally, we

find direct evidence for secondary stellar disks in the kinematics of 6 out of 24 S0 galaxies for

which we can confidently assess the presence or absence of secondary disks, but due to the small

number of identifications, we cannot yet draw firm conclusions about any preference for specific

mass, environment, or color regimes among such galaxies.
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PREFACE

Our own home galaxy, the Milky Way, is the galaxy astronomers are capable of studying in

the most detail and the one galaxy we might expect to understand the best. However, there are

crucial aspects of the histories of the Milky Way Galaxy and other similar galaxies that we still do

not understand well. Galaxies that physically resemble the Milky Way appear to be common in the

universe, but their very abundance presents a puzzle for galaxy evolution models in which Milky-

Way-like galaxy disks are frequently destroyed by violent mergers between galaxies. One way out of

this apparent paradox is that while galaxy disks may frequently be destroyed by mergers they may

also regrow at later times in a potentially repeating cycle of disk growth and destruction. In this

thesis, we search for observational evidence of the predicted disk regrowth process in a population

of galaxies that are thought to result from disk-destroying mergers.

The first project that forms part of this thesis (Chapter 2) was previously published as an article

in The Astrophysical Journal with the title “Extended UV Disks and UV-Bright Disks in Low-

Mass E/S0 Galaxies.” My coauthors on this work are Sheila J. Kannappan, Andrew J. Baker, and

Seppo Laine. Earlier version of this work have also been published in conference proceedings of the

Astronomical Society of the Pacific and European Astronomical Society. The second project that

forms part of this thesis (Chapter 3) is not yet published but will soon be submitted for publication.

My coauthors on this work are Sheila J. Kannappan, Andreas A. Berlind, Kathleen D. Eckert, David

V. Stark, David Hendel, Mark A. Norris, and Norman A. Grogin. The final project that forms part

of this thesis (Chapter 4) is at an advanced stage, with results available for about half the sample.

My coauthors on this work are Sheila J. Kannappan, Mark A. Norris, Erik A. Hoversten, Andreas

A. Berlind, Kathleen D. Eckert, and David V. Stark.
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CHAPTER 1: INTRODUCTION

The field of galaxy evolution is relatively young, dating only as far back as the mid-twentieth

century when a variety of galaxy formation/evolution models were first proposed (e.g., Eggen et al.

1962; Larson 1969; Toomre 1977). A great deal of progress has been made in the intervening

years, but some fundamental aspects of galaxy evolution remain uncertain. We still lack a complete

understanding of the physical processes that shape the evolution of galaxies in the real universe, since

many processes that are predicted in galaxy formation/evolution models are difficult (or impossible)

to observe in action. In this work, our goal is examine observational signatures of the existence

of one such predicted process, known as galaxy disk regrowth. Building on the prior observational

evidence of Kannappan et al. (2009, hereafter KGB) for disk regrowth, we seek new constraints on

the observed frequency, significance, and conditions of this process.

In the next section, we provide further background on aspects of galaxy evolution that are

relevant to our consideration of disk regrowth. In §1.2 and 1.3, we provide an overview of the galaxy

samples and approaches used in this research. In §1.4, we provide a brief summary of the major

results of this thesis.

1.1 Background

In the prevailing hierarchical, cold dark matter model of galaxy formation (e.g., Lacey & Cole

1993), galaxies are thought to build up over time in a successive series of mergers and acquisitions.

Each merger or significant acquisition of material has the potential to alter a galaxy’s morphology. In

general, spheroidal galaxy components result from mergers dominated by stellar dynamics in which

pre-existing disk components are typically destroyed (e.g., Toomre & Toomre 1972; Steinmetz &

Navarro 2002). In the case of mergers that involve either galaxies with significant gas or later external

gas accretion onto the merger remnant, stellar disks may potentially be retained or regenerated at

later times (e.g., Steinmetz & Navarro 2002; Barnes 2002; Governato et al. 2007; Hopkins et al.

2009).

Spiral galaxy morphology is characterized by both a central spheroidal bulge and an extended,

structured disk. Elliptical (E) and S0 galaxy morphologies, characterized by purely spheroidal
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or spheroid plus smooth outer disk configurations, are often thought to result from galaxy-galaxy

mergers, although the E/S0 galaxy population is potentially a heterogeneous one with a variety of

proposed formation channels that also include gas stripping and/or disturbance of spirals in a larger-

scale potential (e.g., Gunn & Gott 1972; Moore et al. 1998). Through hierarchical merging processes,

spiral galaxies are predicted to transform into spheroid-dominated E/S0s but also subsequently

regrow new disks if sufficient gas to fuel this process is available (e.g., Baugh et al. 1996; Steinmetz

& Navarro 2002; Governato et al. 2007).

A number of observational clues pointing to the occurrence of this process have recently emerged,

primarily centered on the population of “blue-sequence” E/S0 galaxies, which inhabit the star-

forming sequence in color vs. stellar mass space alongside spirals (KGB). The existence of such

E/S0s contradicts the traditional idea that E/S0s are “red and dead” systems, devoid of recent star

formation activity. KGB find that the blue-sequence E/S0 population becomes most common at

low stellar masses, below the so-called “gas-richness threshold” mass M t ∼ 5 × 109 M⊙. Further

work has corroborated that such galaxies are associated with large gas reservoirs, which are typically

sufficient to fuel significant stellar mass growth on several Gyr timescales (Wei et al. 2010). Stark

et al. (2013) also find evidence for the growth of both gas and stellar disks in blue-sequence E/S0s.

The link between this blue-sequence E/S0 population and a particular mass scale associated with

gas richness raises the intriguing possibility that the existence of blue-sequence E/S0s is tied to a gas

acquisition channel that depends on mass, such as the theorized “cold mode” gas accretion process

(e.g., Birnboim & Dekel 2003; Kereš et al. 2005). Recent simulation results have challenged the

theory of cold mode gas accretion, inferring that most gas accreted onto galaxies actually arrives in

a heated form (e.g., Nelson et al. 2013). However, such results have retained an important aspect of

the cold-mode accretion theory: that gas accretion is most effective in group halos with low masses

(e.g., Nelson et al. 2013; Birnboim & Dekel 2003; Kereš et al. 2005). Such halos also tend to host

central galaxies with low stellar masses, similar to those typical of blue-sequence E/S0s.

In this thesis, we consider the blue-sequence E/S0 population to be a significant population

of interest as we work towards observational determinations of the frequency, significance, and

conditions of E/S0 disk regrowth. This work provides new constraints on the processes related to

the morphological transformation of galaxies and, more generally, on the prevalence of galaxy growth

by stellar disk (as opposed to spheroid) formation.
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1.2 Galaxy Samples

We analyze three primary galaxy samples in this work, which are largely subsets of the Nearby

Field Galaxy Survey (NFGS; Jansen et al. 2000a,b), the Environmental COntext (ECO; Moffett et

al., in prep., Chapter 3) catalog, and the REsolved Spectroscopy Of a Local VolumE (RESOLVE;

Kannappan et al., in prep.) survey.

In Chapter 2, we consider a broad E/S0 sample drawn largely from the NFGS. The NFGS is a

sample of 196 galaxies subselected from the first CfA Redshift Survey sample (Huchra et al. 1983),

which carries a B-band apparent magnitude selection. The NFGS sample was chosen to reflect

both the morphology and luminosity distributions of its parent sample but was also selected with

an effective apparent size limit to allow spectroscopic observations on an instrument with fixed slit

length by including the brightest, physically largest objects only at the greatest distances sampled

(Jansen et al. 2000b). The NFGS includes a variety of low and high density environments, although

explicit environment selections were not made other than the omission of Virgo Cluster galaxies to

guard against cluster dominance of the sample.

The analysis of Chapter 2 primarily employs ultraviolet and near-infrared imaging obtained

for GALEX observing program GI3-0046 and Spitzer observing program GO-30406 (both PI S.

Kannappan). NFGS E/S0 galaxies with stellar masses below ∼4 × 1010M⊙, where blue-sequence

E/S0s are observed in the largest numbers (KGB), were targeted for these observing programs. In

addition to the NFGS galaxies, we incorporate E/S0s from the “HyperLeda+” sample of KGB, a

cross matched catalog data compilation that includes HyperLEDA, Sloan Digital Sky Survey (SDSS)

data release 4, and Two Micron All Sky Survey sources (Paturel et al. 2003; Adelman-McCarthy

et al. 2006; Jarrett et al. 2000). We use only E/S0s that are consistent with the NFGS selection

criteria and have available archival GALEX and Spitzer images of similarly high quality to those

from our program observations. Our combined sample then consists of 38 E/S0 galaxies, with 25

drawn from the NFGS and 13 drawn from the “HyperLeda+” compilation.

For the analysis of Chapter 3, we expand to much larger statistical samples, with a primary

focus on the newly created ECO catalog (Moffett et al., in prep.). While large galaxy samples like

those now available from the SDSS database represent a powerful tool for studying galaxy proper-

ties statistically, such samples can also mask important details through failures of automated data

reduction methods and/or systematic incompleteness effects. The key advantages of ECO over other
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large catalog samples are its high, well-calibrated level of completeness and its high-quality photo-

metric measurements, which have incorporated human inspection/interaction to improve estimates

of photometric properties when fully automated methods fail.

The ECO catalog incorporates galaxy identifications and redshifts from multiple existing galaxy

catalogs, including the RESOLVE (Kannappan et al., in prep.), Updated Zwicky Catalog (Falco et al.

1999), SDSS data release 6, 7, and 8 (Adelman-McCarthy et al. 2008; Abazajian et al. 2009; Aihara

et al. 2011), HyperLEDA (Paturel et al. 2003), GAMA (Driver et al. 2011), 2dF (Colless et al. 2001),

and 6dF (Jones et al. 2009) databases. ECO encompasses a volume of over 500,000 Mpc3, including

the “A-semester” region of RESOLVE. Over 15,000 galaxies are considered for membership in the

final ECO sample, which is defined based on membership in groups whose centers lie within the

ECO volume and on estimates of galaxy baryonic mass (stars plus gas) that can be made only after

our custom photometric measurements have been carried out. The final ECO catalog sample with

an approximate baryonic mass limit of 109.3M⊙ consists of just under 7,000 galaxies and traces the

wide natural variety of galaxy environments contained within the large contiguous volume selection.

Subsets of the RESOLVE survey catalog are also used in both Chapter 3 and 4. In Chapter 3,

we primarily use the RESOLVE “B-semester” volume as a comparison sample that is even more

complete than ECO, forming the basis of completeness correction factors applied to the ECO mem-

bership. RESOLVE was designed to be a baryonic-mass-limited sample with extraordinarily high

completeness, enabled in large part by our ongoing redshift completion efforts (Kannappan et al., in

prep.). RESOLVE sample galaxies have been morphologically classified by RESOLVE team mem-

bers, an effort that I have led (see Appendix A). RESOLVE encompasses both “A-semester” and

“B-semester” volumes, which add to a total volume of approximately 50,000 Mpc3 and include di-

verse galaxy environments. A major goal of RESOLVE is to obtain galaxy kinematic measurements

for all survey galaxies inside these regions.

For the analysis of Chapter 4, we target a subsample of RESOLVE S0 galaxies for special extra-

deep spectroscopic observations, which were carried out with UNC SOAR guaranteed time and

NOAO programs 2010A-0110 (PI M. Norris), 2010B-0594, and 2011A-0164 (both PI A. Moffett).

Within the pool of RESOLVE S0s for which we can expect to reliably measure kinematics and

resolve potential velocity substructure, we have targeted 59 galaxies that sample the RESOLVE

ranges of environments, stellar masses, and colors. As a sample intended for the identification of

secondary stellar disks in S0s, this sample is unique in its selection from a single diverse, volume-

limited sample where galaxy environments are well quantified. Our sample selection enables a
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less biased estimation of secondary disk frequencies in various parameter-space regimes than has

been possible with previous studies using samples focused only on bright galaxies, with inconsistent

literature selections, and/or with poorly quantified environment distributions (e.g., Kuijken et al.

1996; Bettoni et al. 2001; KGB). As this project is a work in progress, we analyze only those targets

for which final data reduction has been completed in Chapter 4.

1.3 Research Approaches

In this thesis, we take multiple approaches to the problem of determining the frequency, signif-

icance, and conditions of E/S0 disk regrowth. In Chapter 2, we explore this problem by examining

the frequency and characteristics of UV-detected disks representing recent star formation in E/S0

galaxies. Following the original work on by-eye identifications of extended UV (XUV) disks (Thilker

et al. 2005; Gil de Paz et al. 2005; Thilker et al. 2007), we define purely quantitative classifications

for XUV disks and a new class of UV-Bright (UV-B) disks, which are specifically defined to require

a &10% disk mass contribution by a young stellar population.

Building on this initial small sample study, we further constrain the conditions of disk regrowth

through consideration of the much larger, newly created ECO catalog in Chapter 3. As tracers of

disk regrowth, we focus on the populations of blue-sequence E/S0s, gas-dominated galaxies, and

E/S0 UV-B disk hosts. To identify E/S0s in ECO we use a semi-quantitative morphology classifica-

tion method that combines by-eye classifications (where available) with a quantitative morphology

discriminant calibrated on available ECO and RESOLVE by-eye morphology classifications. Gas-

dominated galaxies are identified primarily through the overlap of ECO with the public Arecibo

Legacy Fast ALFA (ALFALFA) α.40 catalog of HI mass estimates (Haynes et al. 2011) but also us-

ing the “photometric gas fraction” technique (Kannappan 2004) to assign HI mass estimates based

on the tight correlation between u−J color and gas to stellar mass ratio found by Kannappan et al.

(2013).

Finally in Chapter 4, we take an even more direct approach to identifying disk regrowth through

examination of kinematic signatures of secondary stellar disks in S0 galaxies. Using deep SOAR tele-

scope and Goodman Spectrograph longslit observations focused on stellar absorption line features,

we extract the detailed stellar velocity profile structure of our targets using cross-correlation with

stellar population templates. We also estimate stellar rotation velocities and velocity dispersions

using a template fitting procedure. We then use the spatial variations of the velocity structure and

measured dispersions to identify targets with strong stellar-stellar counterrotation, indicating the
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presence of two cospatial stellar disks.

1.4 Results Summary

In Chapter 2, we find high, approximately 40% frequencies of both XUV and UV-B disks in a

low-mass E/S0 galaxy sample, with an even higher combined UV disk frequency of approximately

60% since the populations do not always overlap. UV-B disk hosts are found to be a population

of particular interest in connection with the disk regrowth phenomenon, as these galaxies display

relatively significant (&10% by mass) recent disk growth, preferentially blue optical outer-disk colors,

and high atomic gas content compared to E/S0s not hosting UV-B disks. Nearly all of the blue-

sequence E/S0s in the sample below the gas-richness threshold stellar mass host UV-B disks, which

supports the association of low-mass, blue-sequence E/S0s with significant disk growth and reinforces

the idea that mass-scale dependent processes may be important in enabling such growth.

In Chapter 3, we find further evidence that mass scales play an important role in disk growth,

with the focus now on the masses of the group halos that galaxies inhabit. Below group halo mass

∼ 1011.5M⊙, we find that blue E/S0s, gas-dominated galaxies, and UV-B disk host galaxies become

significantly more common, supporting a link between disk regrowth and this low group halo mass

regime. We likewise find that the increase in spiral galaxy frequency at low group halo mass and

the typically similar environments of low baryonic mass (. 1010M⊙) E/S0 and spiral galaxies are

both consistent with a model in which E/S0 galaxies can regrow spiral disks in low group halo mass

environments.

In Chapter 4, we find direct, kinematic evidence for secondary stellar disks in 6 S0 galaxies, which

corresponds to a frequency of approximately 25% in our current sample. Given the small number

statistics, we find no statistically significant differences in the stellar masses, environments, or colors

of the S0s that host secondary stellar disks compared to those that do not. However, we find that

the majority of our targets with secondary stellar disks inhabit low group halo mass environments,

suggesting that our full sample could yield more definitive results on the environment distribution

of S0s with secondary stellar disks.
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CHAPTER 2: EXTENDED UV DISKS AND UV-BRIGHT DISKS IN LOW-MASS
E/S0 GALAXIES

We have identified 15 XUV (extended ultraviolet) disks in a largely field sample of 38 E/S0

galaxies that have stellar masses primarily below ∼4× 1010M⊙ and comparable numbers on the red

and blue sequences. We use a new purely quantitative XUV disk definition designed with reference

to the “Type 1” XUV disk definition found in the literature, requiring UV extension relative to a

UV-defined star formation threshold radius. The 39±9% XUV-disk frequency for these E/S0s is

roughly twice the ∼20% reported for late-type galaxies (although differences in XUV-disk criteria

complicate the comparison), possibly indicating that XUV disks are preferentially associated with

galaxies experiencing weak or inefficient star formation. Consistent with this interpretation, we find

that the XUV disks in our sample do not correlate with enhanced outer-disk star formation as traced

by blue optical outer-disk colors. However, UV-Bright (UV-B) disk galaxies with blue UV colors

outside their optical 50% light radii do display enhanced optical outer-disk star formation as well

as enhanced atomic gas content. UV-B disks occur in our E/S0s with a 42+9
−8% frequency and need

not coincide with XUV disks, thus their combined frequency is 61±9%. For both XUV and UV-B

disks, UV colors typically imply <1 Gyr ages, and most such disks extend beyond the optical R25

radius. XUV disks occur over the full sample mass range and on both the red and blue sequences,

suggesting an association with galaxy interactions or another similarly general evolutionary process.

In contrast, UV-B disks favor the blue sequence and may also prefer low masses, perhaps reflecting

the onset of cold-mode gas accretion or another mass-dependent evolutionary process. Virtually all

blue E/S0s in the gas-rich regime below stellar mass M t ∼ 5× 109M⊙ (the “gas-richness threshold

mass”) display UV-B disks, supporting the previously suggested association of this population with

active disk growth.

2.1 Introduction

In hierarchical models of galaxy formation, galaxies often experience mergers that result in

early-type remnants. Disk structures are also predicted to regrow around some of these remnants

(e.g., Steinmetz & Navarro 2002; Governato et al. 2007), allowing for transitions back from early- to
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late-type morphologies. Observationally, a transition stage from late to early types, brought about

by interactions, may be glimpsed in the population of E+A (post-starburst) galaxies (e.g., Yang

et al. 2008). However, observational evidence for the opposite predicted transition, that from early-

to late-type morphology, has remained more elusive.

The ultraviolet regime offers a natural choice for studying possible disk growth. Recently, GALEX

has enabled the discovery of extended ultraviolet (XUV) disks (e.g., Thilker et al. 2005; Gil de Paz

et al. 2005). These XUV disks show ongoing star formation beyond the optical radii and traditional

star formation thresholds of late-type galaxies, providing an intriguing new look at galaxy disk

growth in progress at z∼0. In a nearby galaxy sample emphasizing late types, Thilker et al. (2007,

hereafter T07) find a 20% incidence of “Type 1” XUV disks, characterized primarily by large radial

extents and structured UV morphologies (versus “Type 2” XUV disks, which consist of less-extended

UV-bright zones without morphological specifications).

GALEX has provided a useful platform for detection of star formation in early-type galaxies

as well. Kauffmann et al. (2007) find that extended UV emission is common in high-mass bulge-

dominated galaxies, likely associated with modest reservoirs of cold gas in the disk that help fuel

bulge and black hole growth. Focusing specifically on galaxies with E/S0 morphology, extended

UV emission has also been seen in ring structures around several S0 galaxies (Donovan et al. 2009;

Cortese & Hughes 2009), and Thilker et al. (2010) recently identified an XUV disk around the

nearby S0 NGC 404. Salim & Rich (2010) have also identified several z<0.12 early-type galaxies

with extended UV structures in far-ultraviolet HST imaging.

The presence of XUV disks, however, can have a variety of interpretations. T07, for example,

suggest an association of XUV disks with interactions or minor perturbations. The raw material

for XUV disk formation could be acquired externally from such interactions or from fresh cosmic

gas accretion, either of which may be consistent with the extended disks and rings of HI commonly

observed around E/S0s (e.g., Sage & Welch 2006; Morganti et al. 2006; Oosterloo et al. 2007;

Oosterloo et al. 2010). Another possibility for creating extended disks in early types is the fallback

of tidal tails in late stage mergers (e.g., Hibbard & Mihos 1995; Barnes 2002; Naab et al. 2006).

The evolutionary significance of disk growth may be greater in some of these scenarios than

others. Of particular interest is the scenario of cold mode gas accretion (e.g., Birnboim & Dekel

2003; Kereš et al. 2005; Dekel & Birnboim 2006; Kereš et al. 2009), which may be linked to disk

building in “blue-sequence E/S0s,” a recently identified morphologically defined population of E/S0

galaxies on the blue sequence in color versus stellar mass (Kannappan et al. 2009). Blue-sequence
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E/S0s are primarily found in non-cluster environments (KGB), and as shown in KGB and Wei et al.

(2010), many display global gas reservoirs and specific star formation rates that could allow the

growth of significant new disks on relatively short timescales.

Cold mode accretion occurs primarily below a critical shock heating stability mass (e.g., Birnboim

& Dekel 2003; Kereš et al. 2005); this mass may coincide with an observed “gas-richness threshold”

stellar mass at M t ∼ 5 × 109M⊙, below which blue-sequence E/S0s become suddenly common,

along with gas-dominated galaxies (Kannappan 2004; Kannappan & Wei 2008; see KGB regarding

corrected mass scale). This low-mass regime may be where the most active E/S0 disk growth occurs

(KGB). Blue-sequence E/S0s also occur in modest numbers up to stellar masses of ∼3 × 1010M⊙,

the bimodality mass of Kauffmann et al. (2003), above which classical spheroids with older stellar

populations begin to dominate.

To better understand the significance of recent disk star formation in E/S0s, we concentrate on

the mass regime up to the bimodality mass and seek to quantify the incidence of extended-disk

star formation in a representative, largely field sample of E/S0s. In §2.2, we introduce our chosen

sample and basic data. In §2.3, we discuss various methods for identifying extended star formation,

adopting the T07 Type 1 XUV-disk designation as a reference. We then propose modifications

to this definition to create a purely quantitative classification that reflects recent extended disk

star formation in early types. Since we are interested in the presence of disk star formation in a

general sense, we also introduce an alternative UV-Bright (UV-B) disk definition, which can be

used to identify significant disk star formation not necessarily extended relative to traditional star

formation thresholds. In §2.4-2.5, we present demographics and properties of our classified XUV

and UV-B disks, and in §2.6 we compare our results to various formation scenarios and results from

the literature. Finally, we provide a brief summary in §2.7.
2.2 Sample and Data Reduction

Our “GALEX GI” sample of 30 E/S0s was defined for GALEX program GI3-0046 and primarily

draws on the Nearby Field Galaxy Survey (NFGS, Jansen et al. 2000a,b). The sample was selected

to encompass all of the NFGS blue-sequence E/S0s and the majority of NFGS red-sequence E/S0s

in the stellar mass range below ∼4×1010M⊙ (Fig. 2.1), where many E/S0s have substantial gas and

settled blue-sequence E/S0s with the potential for disk regrowth are observed (KGB). The NFGS

provides a representative sample of galaxies in the z∼0 universe with a wide range of luminosities,

morphologies, and environments, allowing us to explore the natural variety of stages in galaxy
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Figure 2.1 GALEX GI and archival E/S0 sample in color-stellar mass space. The small grey symbols
indicate galaxies in the Nearby Field Galaxy Survey, the parent sample for the majority of our
E/S0s (§2.2). The dashed line divides the red and blue sequences, and the vertical line marks the
gas-richness threshold mass (KGB). The 38 E/S0s with GALEX data are denoted by open circles.
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Figure 2.2 Images and surface brightness profiles of NGC 4117, one of several XUV-disk galaxies
identified on the red sequence. (a) GALEX NUV+FUV color composite with overlay of the NUV-
derived star formation threshold, RUVSF (see §2.3). The inset shows the DSS-II red image with the
same overlay for scale. (b) GALEX and Spitzer surface brightness profiles. A vertical line marks
RUVSF. The black dotted line represents a profile extracted from the 2D (re)convolution of the NUV
PSF with the NUV galaxy light within RUVSF (see §2.3). The inset shows the (re)convolved image.

evolution. In addition to 25 NFGS E/S0s, the sample includes 5 blue-sequence E/S0s from the

“HyperLeda+” sample of KGB with comparable archival data.

To augment this sample, we have cross-matched all M∗ . 4 × 1010M⊙ E/S0s in the “Hyper-

Leda+” sample of KGB with the GALEX and Spitzer archives to find sources imaged with exposure

times similar to those for our prior programs. Excluding Virgo Cluster members from this cross-

matched sample (consistent with the NFGS selection criteria), we find eight additional E/S0s for

our “archival” sample.

Our primary data are GALEX NUV and FUV images at least as deep as those of the Medium

Imaging Survey (MIS). For comparison of UV and optical morphologies, we employ DSS-II red

images (http://archive.stsci.edu/dss/). For profile analysis, we compare to Spitzer IRAC 3.6 µm

imaging mostly obtained for program GO-30406 with typical exposure times of 480 s (although

several archival sources have exposure times down to 120 s). The 3.6 µm imaging serves as a proxy

for K-band data, assuming the Leroy et al. (2008) conversion I3.6 = 0.55IK (MJy ster−1). We use

the notation K80 to denote the 80% light radius calculated using the 3.6 µm data, to indicate the

direct analogy with the K80 radius of T07.

We useGALEX imaging in a pipeline-processed form with the zero point calibrations of Morrissey
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Table 2.1. Summary of Relevant UV-disk Definitions

Definition Extent Criterion Recent Star Formation Criterion

T07 Type 1 XUV UV visually identified beyond RUVSF structured, bright UV with morphology different from optical
Purely Quantitative XUV UV >3σ above PSF shelf beyond RUVSF NUV−K consistent with young population

UV-B blue UV color beyond optical R50 NUV−K consistent with &10% young population

et al. (2007). We apply foreground extinction corrections based on Schlegel et al. (1998) and Cardelli

et al. (1989), but correction factors for internal extinction are not applied (consistent with prior XUV-

disk studies). Spitzer IRAC 3.6 µm imaging is also pipeline processed and calibrated according to

procedures outlined in the IRAC Instrument Handbook1. In addition to the pipeline processing, we

apply a median background subtraction procedure.

From these data, we extract radial surface brightness profiles and magnitudes by totaling fluxes

in elliptical apertures. The parameters of these ellipses were determined from isophotal fits to optical

images (as reported in Jansen et al. 2000a for NFGS galaxies) and newly derived using the IRAF

ELLIPSE task and SDSS g-band imaging (Abazajian et al. 2009) for non-NFGS sample galaxies

(parameters for non-NFGS galaxies in the GALEX GI sample from Stark et al., in prep). Detection

and masking of non-galaxy sources in these images was accomplished using SExtractor (Bertin &

Arnouts 1996). For calculation of comparative GALEX and Spitzer photometry, our UV and IR

images were convolved with an appropriately sized Gaussian kernel to yield degraded images with

the same PSF FWHM as the lowest-resolution NUV images (FWHM ∼4.9′′).

2.3 Identifying Extended Star Formation

Here we discuss UV-based methods for identifying galaxies with recent star formation in disks

and extended disks. Ideally, we seek to employ a purely quantitative method of classification. We

also seek to answer two distinct questions about extended star formation in our sample, for which

different specific identification methods are relevant. First, does it occur beyond traditional star

formation thresholds? This question motivated the original “Type 1” XUV-disk definition of T07,

which we take as a reference in designing a purely quantitative XUV disk definition (§2.3.2). Second,
is it significant (in a mass-contribution sense) in the optical outer disks of galaxies? This question

motivates our introduction of a new “Ultraviolet-Bright” (UV-B) disk definition (§2.3.3; see also

Table 2.1 for a summary of definitions used in this paper).

We note that extension relative to UV-defined star formation thresholds does not necessarily

1see http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/iracinstrumenthandbook/
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imply extension beyond the full optical extent of the galaxy. Thus, another natural question about

extended star formation is: does it extend beyond the optical galaxy? We will treat the answer to

this question as a matter of investigation rather than definition, given that the radial extent of star

formation relative to the optical disk may behave fundamentally differently in E/S0s vs. late-type

galaxies, for example, in the case of inside-out disk (re)growth.

2.3.1 Prior Definitions

A natural choice for answering our first guiding question, concerning star formation extended

beyond traditional star formation thresholds, is the T07 “Type 1” XUV-disk definition. T07 define

Type 1 XUV disks as displaying more than one structured UV-bright emission complex beyond

a centralized surface-brightness contour corresponding to the expected star formation threshold

(equated to an NUV surface brightness of 27.35 AB mag arcsec−2 by T07, roughly matching typical

Hα and HI thresholds; we label the corresponding radius RUVSF). In addition to extension relative

to this UV contour, the definition requires that the XUV emission take on a different morphology

from any underlying optical emission. T07 also define a Type 2 XUV-disk classification, but this is

not geared towards tracing star formation beyond RUVSF, and an issue2 with the definition implies

that we cannot apply it uniformly to early types. Thus, we do not consider Type 2 XUVs further

here and henceforth are referring to Type 1 XUVs when we reference T07 XUV designations.

The T07 XUV definition is the basis for our new XUV definition (described in §2.3.2), but for

completeness, we note that several other measures of bright and/or extended UV disks exist, most

requiring high spatial resolution. For example, visual classification of UV structures such as rings

is common in the literature (e.g., Cortese & Hughes 2009; Salim & Rich 2010; Marino et al. 2011).

A quantitative variant on extended UV disk identification involves measuring individual UV knots

in the outer regions of galaxies (e.g., Zaritsky & Christlein 2007). Another quantitative approach

lacking the high resolution requirement is the blue integrated UV-color cut of Kauffmann et al.

(2007). However, with an integrated color cut alone the correspondence between blue color and

extended star formation is not necessarily one-to-one. We modify this approach by adopting an

outer-disk UV color cut in our UV-B disk definition (see §2.3.3), addressing our second guiding

question regarding significant star formation in the optical outer disks of galaxies.

2The Type 2 XUV-disk classification requires FUV(AB) − K(AB) ≤ 4 in a large, optically low surface brightness
zone within RUVSF but outside K80. Here “large” means an area at least seven times that enclosed within K80.
The Type 2 definition was developed for a late-type sample and has proved problematic to apply to E/S0s, in that
RUVSF often lies inside the K80 radius, or lies outside but not as far as the definition requires (see also Moffett et al.
2010 for further details).
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2.3.2 A New Purely Quantitative XUV Disk Definition

To answer whether or not star formation occurs beyond RUVSF, we adopt the T07 XUV-disk

definition as a useful reference definition and construct a purely quantitative alternative. Table 2.2

indicates the distribution and properties of the 16 XUVs we identify by the original T07 definition;

see Figure 2.2 for an example. The primary criteria of the T07 XUV-disk classification are UV

extension relative to RUVSF and association of this emission with recent star formation. In the

following sections, we discuss issues with these criteria that motivate elements of our modified

definition, including consideration of possible UV upturn contributions and of the extended PSF

shelf in the GALEX NUV.

Ensuring Young Ages

A possible concern in identifying XUV disks in E/S0s is the prevalence of the UV upturn, i.e.,

UV emission associated with old stellar populations (O’Connell 1999). To mitigate this issue, we

identify XUV disks in the NUV (in contrast to T07’s use of a combination of FUV and NUV data)

since the UV upturn becomes stronger at FUV wavelengths. Nonetheless, 5 of the 16 XUVs we find

using the original T07 XUV-disk definition have XUV-disk region FUV−K colors red enough to be

consistent with a >1 Gyr SSP (simple stellar population, as in T07 Figure 1).

In general, the T07 requirement that UV emission take on a different morphology from any

underlying optical emission should preclude classifying an underlying old population as a separate

XUV disk. However, the subjective requirement of structured emission can be difficult to apply

consistently to samples like our own: our galaxies tend to have smaller angular sizes than those of

T07, implying greater blurring at the low angular resolution of GALEX, so UV structure may be lost

or be difficult to assess. An XUV-disk definition relaxing this requirement of structured emission has

recently been applied by Lemonias et al. (2011) to a sample containing both early and late types,

and they experiment with using an FUV−r cut to ensure young populations.

Taking a similar approach but focusing on the NUV, we consider color cuts based on a suite of

composite Bruzual & Charlot (2003) stellar population models using a Salpeter (1955) initial mass

function, as described in KGB (see their §2.3). These composite models are built from two (young

and old) components, with set age options, combined in a variety of ratios to create a large model

grid. Similar to the grid of KGB, the young SSP age options are 5, 25, 100, 290, 640, and 1000 Myr,

while the old SSP age options are 1.4, 2.5, 3.5, ..., 13.5 Gyr. The young SSP contributions can be

0%, 1%, 2%, 4%, 8%, 16%, 32%, 64%, or 100% of the population mass. SSP metallicities allowed
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in the grid are Z = 0.008, 0.02, and 0.05. The young SSP can have 11 different extinction values,

but here we consider only zero-extinction models for comparison to observed outer-disk colors. We

make no explicit restriction on the metallicity combinations of the composite population models we

consider, although we find that consideration of metallicity restrictions that could be reasonable in

specific circumstances, such as Zyoung ≤ Zold or Z ≤ Zsolar, do not substantially change the model

color distributions we report (see Figures 2.3 and 2.4).

In one version of their XUV-disk classifications, Lemonias et al. (2011) used a color cut at FUV-

r = 5, designed to separate galaxies with recent XUV-disk star formation from those containing

evolved populations (divider based on empirical red/blue sequence division from Wyder et al. 2007).

However, based on consideration of our stellar population model grid (Fig. 2.3), this color selec-

tion can potentially exclude up to ∼30% of the composite populations with recently star-forming

components.

Thus, we search for a different color selection that better encompasses composite stellar popula-

tions with young components. As a result of the aforementioned difficulties with using the FUV for

this purpose and the practical usefulness of making such a selection in bands where data coverage is

more complete, we prefer the NUV over the FUV. We find that NUV-based colors indeed display a

more cleanly defined region where populations are predominantly old (compare Figures 2.3 and 2.4).

From the model color distributions, it is apparent that the fraction of purely old models increases

significantly beyond NUV−K = 5, which is where young model fractions start to decline as well.

Thus, we choose to exclude XUV disks with NUV−K > 5.

Ensuring Extended Emission

When applying the original T07 XUV-disk definition, classifiers must subjectively identify the

presence of extended emission beyond RUVSF. However, when classifying XUVs from GALEX NUV

imaging, especially when considering galaxies with small angular sizes, the ∼45′′ shelf in the NUV

PSF (http://www.galex.caltech.edu/researcher/techdoc-ch5.html) may affect this judgment. Thus,

to design a quantitative test for extension relative to RUVSF, we require that the NUV flux detected

outside RUVSF is significantly greater than (>3σ above) the flux redistributed into this region by an

artificial second convolution of the NUV PSF with the flux inside this radius. This (re)convolution

is in addition to the natural convolution inherent in the images; see Figure 2.2 for an illustration.

We note that for the XUV disks we have identified based on the original, subjective T07 definition,

we have confirmed that this requirement is always satisfied.
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Final Definition

In summary, for our “purely quantitative XUV-disk” designation, we ensure UV emission beyond

RUVSF by requiring >3σ emission above the NUV PSF shelf, and we ensure recent star formation

by requiring NUV−K < 5 in the XUV-disk region beyond RUVSF. Properties and demographics of

these XUV disks are presented in §2.4 (see also Table 2.2) and largely imply that this population is

associated with recent but not necessarily significant outer-disk star formation.

With our new definition, we identify a similar fraction of XUV disks as when applying the

traditional T07 Type 1 XUV-disk definition (see Table 2.2, Figure 2.5), but the overlap between

these classifications is not perfect. Approximately 70% of the traditionally identified XUVs are

among XUVs identified with our purely quantitative method. In cases where the classifications do

not overlap, the reason is either (1) insufficiently blue NUV−K color to satisfy the new definition’s

color cut or (2) UV disk morphology not distinct enough from the optical to satisfy the T07 Type 1

definition. Our color cut is more conservative in rejecting XUV disks that may contain evolved

populations than the T07 requirement of morphological differences compared to the optical. On the

other hand, the T07 morphology requirement may recover XUVs with even weaker or more incipient

star formation than our definition allows, where this star formation has not built up a detectable

optical counterpart.

2.3.3 UV-Bright (UV-B) Disk Definition

To answer whether or not significant UV-detected star formation occurs in the optical outer-disk

region, irrespective of extent beyond RUVSF, we construct a second quantitative classification.

We designate a population with a &10% young component by mass as one containing “significant”

star formation (in practice for our model set >8%, §2.3.2). Considering the aforementioned stellar

population model grid, a more conservative color cut than was used in the purely quantitative

XUV case appears necessary to select galaxies containing significant recent star formation (Fig.

2.4). Requiring NUV−K < 4.5 presents a natural choice for this definition, given the falloff in the

fraction of models with a &10% young population component beyond this value.

To quantify our region of interest for this definition, i.e., the optical outer disk, we select the

region beyond the optical 50% light radius. Thus, our UV-B disk classification requires only NUV−K

< 4.5 beyond the optical 50% light radius. The properties and demographics of the UV-B disks are

presented in §2.5 (see also Table 2.2) from which we conclude that these galaxies correlate well with

enhanced optical disk star formation.
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Figure 2.3 FUV−r color for selected composite stellar population models (grid as described in§2.3.2), illustrating issues with using this color as a clean young/old population divider. Blue and
green histograms represent numbers of models with >8% and 1-8% young population contributions
by mass, normalized to the total numbers of such models. The red histogram represents numbers
of models containing no young (age ≤ 1 Gyr) component, normalized to the total numbers of such
models. The vertical dashed line indicates the color cut of Lemonias et al. (2011), which appears to
miss a significant fraction (∼30%) of the combined young model options that fall outside this cut
with colors redder than FUV−r = 5.
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Figure 2.4 NUV−K color for selected composite stellar population models (grid as described in§2.3.2), illustrating NUV−K cuts chosen for our analysis. Blue and green histograms represent
numbers of models with >8% and 1-8% young population contributions by mass, normalized to
the total numbers of such models. The red histogram represents numbers of models containing no
young (age ≤ 1 Gyr) component, normalized to the total numbers of such models. It is apparent
that the fraction of purely old models increases significantly beyond NUV−K = 5, so we use this
value to reject XUV disks likely to contain evolved populations as described in §2.3.2. A more
conservative color cut at NUV−K = 4.5 appears necessary if we wish to select populations with
a significant young population as in our UV-B disk classification (here >8%, corresponding to the
&10% requirement specified in §2.3.3).
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Figure 2.5 GALEX GI and archival E/S0 sample in color-stellar mass space (as in Figure 2.1),
showing UV disks (asterisks) identified according to three different classifications: (left) the original
T07 XUV-disk definition, (middle) our new, purely quantitative XUV definition, and (right) the
UV-B disk definition.

2.4 XUV Disk Properties and Demographics

With our purely quantitative definition, we identify XUV disks in 15/38 or 39+9
−9% of our E/S0

sample (see Table 2.2 for the identifications and Fig. 2.8 for images of classified XUVs). These XUV-

disk classifications supersede the preliminary, purely visual classifications of Moffett et al. (2010),

which were made without reference to RUVSF. In the following, we present the demographics and

basic properties of the identified XUVs.

2.4.1 Extents and Ages

The XUV disks in our E/S0s can extend beyond R25, as has been found in Type 1 XUV disks

for late types (e.g., Thilker et al. 2005; Gil de Paz et al. 2005; T07; see also Zaritsky & Christlein

2007). We find radial extents (to the last measured NUV point) ∼0.7−2.3R25, with mean ∼1.3R25

and ∼70% extending beyond R25. Relative to the older populations traced by near-IR light, the

average radial extent of the young XUV-disk component in our E/S0s is ∼2 times the K80 radius.

Relative to the centralized younger populations traced by NUV light, the average radial extent of

our XUV disks is ∼1.5 times RUVSF.

Compared to XUV disks in late-type galaxies, our E/S0 XUV disks tend to be redder. The

reported outer-disk FUV−NUV colors of late-type XUV-disk galaxies in the literature range pri-

marily between small negative values and ∼0.5 (Thilker et al. 2005; Gil de Paz et al. 2005, 2007).

Our early-type XUV-disk galaxies have an average color of ∼1.4 in the XUV-disk regions (similar
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to the early-type XUV-disk galaxy NGC 404, Thilker et al. 2010). However, the contour at RUVSF

for our early-type XUVs tends to occur closer to K80 than it does for late-type XUVs (enclosing

on average ∼3 times the area of the K80 contour versus ∼15 for late types; see T07). Thus, redder

XUV-disk colors in early types may simply indicate a greater contribution from the underlying old

stellar population than is typical for late types.

The XUV-disk FUV−NUV colors we compute for our E/S0s are consistent with <1 Gyr ages

from simple stellar population models. We choose to report SSP-equivalent ages for our XUVs

in light of the inherent degeneracies involved in estimating separate old/young population ages

from composite population models. We note that age estimates from stellar population models are

affected by uncertainties in modeling the UV contribution from old stellar populations and will also

vary depending on the assumed star formation history. Comparing with Bruzual & Charlot (2003)

UV model colors for an instantaneous starburst with Z = 0.02 (as in T07 Figure 1), our average

XUV-disk FUV−NUV color of ∼1.4 corresponds to an SSP with an approximate age of 500 Myr.

One of our XUV-disk galaxies does have XUV-disk region FUV−K color red enough to be

consistent with a >1 Gyr SSP (as in T07 Figure 1). However, all of our XUV-disk galaxies, including

this red FUV−K case, display independent indicators for recent or potential star formation, in the

form of either Hα or HI detections in the NFGS or the literature.

2.4.2 Demographics

We find XUV disks in both red- and blue-sequence E/S0s and over a wide range in stellar mass

(Fig. 2.5). On the red sequence, the XUV-disk frequencies are 0+23% and 60+18
−20% above and below

the gas-richness threshold mass (at stellar mass Mt ∼ 5× 109M⊙, KGB), respectively. On the blue

sequence, the corresponding frequencies are 33+22
−18% and 50±18%.

If we ignore mass dependence, we find no clear evidence for a preference in XUV-disk incidence

between red- and blue-sequence E/S0s. Assuming a probability for an XUV-disk galaxy to be on the

blue sequence equal to the overall sample blue-sequence fraction, binomial statistics yields a 46%

probability of obtaining at least the number of XUV-disk galaxies observed on the blue sequence

out of the total number of XUVs identified.

Likewise, if we ignore sequence dependence, we find that the XUV-disk galaxy stellar mass

distribution is not significantly different from that of the parent E/S0 sample (61% probability of

being drawn from the same distribution in a Kolmogorov-Smirnov test). Binning the data in mass

yields a hint of a difference: the frequencies of XUV disks are 19+15
−10% and 55+12

−13%, respectively,
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Figure 2.6 Optical outer-disk colors for sample E/S0s, calculated between the 50%–75% B-band
light radii for NFGS E/S0s and between the 50%–75% g-band light radii for all others (u− r color is
used as a proxy for U−R for non-NFGS galaxies, with a shift to U−R color as applied in KGB). (a)
Comparison of E/S0s with and without XUV disks, illustrating that XUV-disk E/S0s do not show
bluer optical outer-disk colors than E/S0s without XUV disks, i.e., do not show enhanced outer-disk
star formation. (b) Comparison of E/S0s with and without UV-B disks, illustrating that UV-B disk
E/S0s do show bluer optical outer-disk colors than E/S0s without UV-B disks, i.e., do show clearly
enhanced outer-disk star formation.
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Figure 2.7 HI content versus NUV−K color measured within the detected NUV extent, illustrating
the trend towards enhanced HI content in UV-B disk galaxies (blue squares). Black points represent
all sample galaxies with HI data (MH I from references noted in Table 2.2), and green stars represent
XUV disks. Note that the plotted NUV−K colors are not those used for classification of either XUV
or UV-B disks.
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above and below Mt, although the significance of this difference is not high (∼1.8σ confidence).

We note that XUV disks identified according to the original T07 definition have an even more

uniform color/mass distribution (Fig. 2.5). Considering the slope of the color-stellar mass sequences,

this difference is consistent with what one might expect as a consequence of our purely quantitative

XUV definition excluding XUV disks with the reddest colors.

2.4.3 Star Formation

Although our XUV disks reflect recent star formation, we find that they do not show substantial

recent star formation as traced by blue optical outer-disk colors (Fig. 2.6). Likewise, the E/S0s

with XUV disks do not show enhanced atomic gas content relative to the E/S0s without XUV disks,

instead yielding a 36% Kolmogorov-Smirnov test probability of the same MH I/M∗ distribution (Fig.

2.7). These possibly counterintuitive results imply that XUV disks are not necessarily associated

with strong star formation and may instead be associated with weak/incipient star formation due

to a process affecting the galaxy population broadly, an idea that we return to in §2.6.
We note that the T07 requirement of different UV-optical morphology may pick out weak star

formation to an even greater degree than our purely quantitative approach, since the UV-optical

morphology difference could imply that the UV-detected star formation is not substantial or sus-

tained enough to have built up an optical counterpart.

2.5 UV-B Disk Properties and Demographics

With the UV-B disk classification, we identify 16/38 or 42+9
−8% of our sample as UV-B disks (see

Table 2.2 for identifications; Figs. 2.8 and 2.9 for images of classified UV-Bs). Although we find

similar frequencies of XUV and UV-B disks in our sample, and about half of the galaxies with UV-B

disks also host XUV disks, the overall properties and demographics of these two classes display a

number of differences, as we discuss in the following sections.

2.5.1 Extents and Ages

Similar to our quantitatively identified XUV disks, the UV-B disks we identify typically extend

beyond R25, with an average extent (to the last detected NUV point) of ∼1.4R25 and all extending

beyond R25. The average UV-B disk extent relative to the near IR is slightly larger than for XUV

disks at ∼2.3K80 while the average extent relative to the UV is smaller than for XUV disks at

∼1.3RUVSF.
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The UV-B disk FUV−NUV colors we observe are also consistent with <1 Gyr SSP ages. For

UV-B disk galaxies, the average FUV−NUV color outside the optical 50% light radius is ∼0.6, which

corresponds to a slightly younger ∼300 Myr SSP-equivalent age than is found for XUV disks. No

UV-B disks display FUV−K colors red enough to imply SSP ages older than 1 Gyr.

2.5.2 Demographics

In contrast to the widespread distribution of XUV disks, UV-B disks are preferentially found on

the blue sequence and may prefer the low-mass regime as well (see color-mass distribution in Fig.

2.5).

If we ignore mass dependence, we find clear evidence for a preference in UV-B disk incidence

between red- and blue-sequence E/S0s. Assuming a probability for a UV-B disk galaxy to be on

the blue sequence equal to the overall sample blue-sequence fraction, binomial statistics yields a low

0.7% probability of obtaining at least the number of UV-B disks observed on the blue sequence out

of the total number of UV-Bs identified.

If we ignore sequence dependence, we find that the UV-B disk galaxy and full sample stellar

mass distributions have an 8% Kolmogorov-Smirnov test probability of being drawn from the same

distribution, which implies they are not conclusively distinct. Similarly, the UV-B disk frequencies

we calculate are 19+15
−10% and 59+12

−13%, above and below Mt respectively, which are more different

than in the XUV-disk case, but still only distinct at approximately 2σ confidence.

2.5.3 Star Formation

In contrast to XUV disks, the UV-B disks in our sample do correlate with elevated star formation

as traced by blue optical outer-disk color (Fig. 2.6). E/S0s with UV-B disks also show enhanced

HI content relative to E/S0s without UV-B disks (Fig. 2.7), with 0.1% Kolmogorov-Smirnov test

probability of the same MH I/M∗ distribution. Thus, it appears that UV-B disks are closely linked

to significant star formation potential and pronounced optical outer-disk star formation.

2.6 Discussion

In this section, we compare our identified XUV- and UV-B disk galaxy properties and demo-

graphics to XUV-disk and early-type galaxy formation scenarios and related literature results. We

note, however, that uniform knowledge of the local and global environments of our sample galaxies

would be necessary to constrain these formation scenarios and that uniform environmental data are
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Figure 2.8 Smoothed NUV contours (purple) overlaid on DSS-II red images of XUV-disk E/S0s.
RUVSF is indicated in white, and contours start at ∼28.6 AB mag arcsec−2 and go up by 2×, 5×,
10×, and 25× in intensity. Eleven of these are Type 1 XUVs by the T07 definition: NGC4117,
NGC3073, NGC5338, NGC3522, NGC5173, NGC7077, NGC7360, UGC6003, UGC7020A, IC1024,
and NGC3156. Eight of these are also UV-Bs: NGC3073, NGC5173, NGC7077, UGC6003,
UGC6805, UGC7020A, NGC3773, and IC1024.
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Figure 2.9 Smoothed NUV contours (purple) overlaid on DSS-II red images of UV-B disk E/S0s
that are not also XUV-disk E/S0s. RUVSF is indicated in white, and contours start at ∼28.6 AB
mag arcsec−2 and go up by 2×, 5×, 10×, and 25× in intensity. None of these are Type 1 XUVs by
the T07 definition. Some galaxies where the contours show extent beyond RUVSF do not pass the
test that this emission is >3σ above the PSF shelf (see §2.3.2).
not available for our sample. Thus, study of the environmental properties of such galaxies is deferred

to future work.

2.6.1 High Frequencies of XUV and UV-B Disks

XUV and UV-B disks occur in our sample with individually high, approximately 40% frequencies,

and a combined frequency of 61±9%. Compared to classical “red and dead” expectations for early-

type galaxies, the high incidence of apparent extended star formation we observe in XUV disks, with

∼70% extending beyond the optical R25, is in itself a surprising result and may provide evidence

against E/S0 formation through quenching processes in the low-mass, largely field regime we sample.

Moreover, that we observe a similarly high incidence of UV-B disks, which seem to relate more

closely to significant star formation, and that all extend past R25 is even more remarkable. In

addition, although differences in samples and definitions complicate comparisons of absolute XUV-

disk frequencies, it is intriguing that we find a frequency approximately twice the ∼20% reported in

late types by T07 (see also Lemonias et al. 2011).

One possible explanation for the high incidence of XUV disks we observe in E/S0s could

be a formation channel that involves mergers. Fallback of tidal tails in the late stages of a merger
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Figure 2.10 Smoothed NUV contours (purple) overlaid on DSS-II red images of E/S0s in our sam-
ple without XUV or UV-B disks. RUVSF is indicated in white, and contours start at ∼28.6 AB
mag arcsec−2 and go up by 2×, 5×, 10×, and 25× in intensity. Five of these are Type 1 XUVs by
the T07 definition: NGC3419, NGC4308, IC195, UGC8876, and NGC5355. Some galaxies where
the contours show extent beyond RUVSF do not pass the test that this emission is >3σ above the
PSF shelf (see §2.3.2).
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that is major enough to produce a spheroid is a likely scenario for creating new extended disks (e.g.,

Barnes 2002; Naab et al. 2006). Early type galaxies at low luminosities/masses are largely “fast

rotators” (as per the Emsellem et al. 2007 terminology), displaying disk-like dynamics reflecting the

importance of gas in mergers related to their formation (e.g., Davies et al. 1983; Emsellem et al.

2007; KGB). Thus, if such mergers often form XUV disks, the high frequency we observe in our

mass regime could be a natural consequence.

Another possible explanation for the high XUV-disk incidence in early types compared to

late types, related to the inferred weak nature of XUV-disk star formation (§2.6.3), could be a bias

due to the relative ease of detecting small star formation events in E/S0s. Such events may have

a more detectable impact on the appearances/properties of early types than late types, where they

may be obscured by generally higher levels of star formation.

2.6.2 Ubiquity of XUVs Compared to UV-Bs

The widespread distribution of the XUV disks in color and stellar mass seems to suggest an

association with evolutionary processes affecting the galaxy population broadly. A potential scenario

for creating extended, star-forming disks around early types is external acquisition of extended

gas, whether delivered by companion interactions or fresh cosmic gas accretion, and subsequent

conversion of this gas to stars. In early-type galaxies, such extended disks or rings of HI are frequently

observed and often believed to be associated with external accretion (e.g., Sage & Welch 2006;

Morganti et al. 2006; Oosterloo et al. 2007; Oosterloo et al. 2010).

T07 find that ∼75% of their Type 1 XUV disks show evidence for interactions or minor pertur-

bations. An interaction scenario could explain the widespread demographics of XUVs in our E/S0s,

especially since the XUVs we identify using the original T07 definition, which favors discovery of the

weakest XUVs, are the most broadly distributed (Fig. 2.5). To confirm such an association, more

complete knowledge of the companion statistics of our sample would be needed.

For UV-B disks, which appear to have a somewhat mass-dependent distribution, the higher UV-

B disk frequency at low masses (below Mt) could hint at a gas delivery mechanism with a preferred

mass scale, as in the cold-accretion scenario (e.g., Birnboim & Dekel 2003; Kereš et al. 2005; Dekel &

Birnboim 2006; Kereš et al. 2009). However, an in-depth examination of the environments and group

properties of a larger, statistical sample of such galaxies will be necessary to distinguish between

various scenarios for producing extended star formation in early types.

28



2.6.3 Relationship to Star Formation and HI Content

An important question to ask about the apparently young UV disks we observe around E/S0s

is: are they actually associated with substantial disk growth?

The higher (∼40%) frequency of XUVs in both red- and blue-sequence E/S0s vs. in late types

seems to link XUV disks to a galaxy population associated with weak or inefficient star formation.

Moreover, our E/S0 XUV disks do not show an association with blue optical outer-disk colors, nor

with enhanced HI content (see §2.4.3). The association of XUV disks with weak or inefficient star

formation is consistent with the observation of a high (∼70%) rate of XUV disks in massive optically

low surface brightness galaxies, which are known for inefficient star formation as well (Boissier et al.

2008). It is also consistent with T07’s result associating lower SFR/MH I with Type 1 XUV disks.

In addition, simulations of XUV disks in spiral galaxies show that star formation in these objects

can proceed for as long as 4 Gyr without producing enough stars to create a high surface brightness

optical component (Bush et al. 2008).

In contrast, although XUV and UV-B classifications overlap, our UV-B disk galaxies as a class are

characterized by bluer optical outer-disk colors and larger reservoirs of HI gas than E/S0s without

UV-B disks (see §2.5.3). Thus, UV-B disks are more closely associated with significant disk star

formation than are XUV disks. In addition, if we consider the blue sequence below Mt, where the

numbers and properties of E/S0s suggest disk building is most active (KGB), we find all sample

galaxies save one are classified as UV-B disks (Fig. 2.5). This strong link between UV-B disks and

the sub-Mt blue sequence seems to support the scenario of significant growth in the optical outer

disks of E/S0s in this regime.

2.7 Conclusions

We have used UV, optical, and IR imaging to study extended-disk star formation in a sample of

38 red- and blue-sequence E/S0s in the stellar mass regime below ∼4×1010M⊙ and in primarily field

environments. We introduce two new classifications: a purely quantitative version of the Extended

Ultraviolet (XUV) disk classification, akin to the Type 1 XUV definition of Thilker et al. (2007;

T07); and an Ultraviolet-Bright (UV-B) disk classification, with NUV−K color indicating &10%

young population in the outer optical disk beyond the 50% light radius. We summarize key results

from the application of these classifications below.
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� We identify a high 61±9% combined frequency of XUV and UV-B disks. Since the classifi-

cations partially overlap, this frequency reduces to separate 39±9% and 42+9
−8% frequencies

for XUV disks and UV-B disks, respectively. In the XUV-disk case, the observed frequency

is approximately twice the ∼20% reported by T07 for primarily late-type galaxies, although

differences in XUV-disk criteria and possible detection biases could affect this comparison.� UV colors of both XUV and UV-B disks typically imply <1 Gyr ages, and most of the identified

UV disks extend beyond the optical R25 radius.� XUV-disk host galaxies occupy a widespread distribution in color and stellar mass, while UV-B

disks more strongly prefer the blue sequence and may also prefer the low-mass regime.� XUV disks appear to be associated with low-level star formation, whereas UV-B disks appear

to be more clearly associated with significant star formation. UV-B disk galaxies are also

closely linked to the population of blue-sequence E/S0s in the stellar mass regime below the

“gas-richness threshold mass” at M t ∼ 5×109M⊙ (Kannappan et al. 2009; KGB), supporting

the idea that such galaxies represent an actively disk-building population (KGB).

Our results suggest that XUV-disk formation could be related to a process that affects the galaxy

population broadly, such as interactions, while UV-B disk formation could be related to a process

with a mass-scale preference, such as cold-mode gas accretion. Existing data do not yet allow us to

disentangle such effects in the E/S0 population, but the purely quantitative classifications we have

developed in this work are well suited to application in larger statistical samples, which will allow us

to construct a more complete picture of the local and global environments of star-forming E/S0s. In

subsequent work, we plan to combine quantitative metrics of both disk building and environment in

a large volume-limited survey in order to constrain the origin and future evolution of star-forming

E/S0s and further probe the intriguing possibility of early-to-late-type transformation.
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Table 2.2. Summary of GALEX GI and Archival E/S0 Sample Properties

Galaxy log(M∗/M⊙) Seq Morph. Dist. log(MH I/M⊙) FUV−NUV NUV−K FUV−NUV NUV−K T07 XUV? XUV? UV-B? Sample

NGC3419 10.0 B S0-S0/a 43.4 9.1b 2.9 5.0 2.5 5.1 Y N N GI
NGC4117 9.7 R S0 19.0 8.3 0.5 4.7 0.7 5.1 Y Y N GI
NGC3073 9.1 B S0/a 21.1 8.5 1.6 4.5 1.5 4.4 Y Y Y GI
NGC4308 8.7 R S0 8.4 <6.0 3.1 5.4 2.3 5.6 Y N N GI
IC692 8.9 B E 21.4 8.4 0.9 2.9 0.5 2.7 N N Y GI

NGC3011 9.4 B S0/a 25.7 8.3 0.8 3.3 0.4 3.4 N N Y GI
NGC3870 8.8 B Pec 14.5 8.4 0.4 2.7 0.3 2.7 N N Y GI
UGC5923 8.1 R S0/a 8.0 7.7 1.1 3.8 0.7 3.6 N N Y GI
NGC5338 8.9 R S0 10.3 7.3 2.0 4.5 1.9 4.7 Y Y N GI
IC1141 10.4 B S0/a 68.0 9.3 0.7 3.5 0.6 4.0 N N Y GI
IC1144 11.2 B S0/a 175.4 <8.7 2.3 5.8 2.3 6.0 N N N GI
IC1639 10.6 B cE 76.0 8.4 3.1 5.3 2.0 5.7 N N N GI
IC195 10.5 B S0/a 52.1 9.4 1.9 6.2 1.9 6.2 Y N N GI

UGC9562 8.9 B S0 25.2 9.3 0.4 2.5 0.4 2.2 N N Y GI
NGC3032 9.6 B Pec 25.2 8.3 2.0 4.7 1.8 4.8 N Y N GI
NGC3522 9.7 R S0 22.9 8.4 2.1 4.9 2.0 5.1 Y Y N GI
NGC516 10.1 R S0 34.9 <7.4 2.8 5.6 2.2 5.8 N N N GI
NGC5173 10.3 B E 41.2 9.3 0.8 3.9 0.7 4.2 Y Y Y GI
NGC5596 10.4 R S0 50.8 8.8 1.2 5.5 0.6 5.2 N N N GI
NGC7077 8.8 B S0/a 18.9 8.2 2.1 3.1 0.7 3.0 Y Y Y GI
NGC7360 10.5 B E 67.9 9.6 0.6 4.4 0.6 4.5 Y Y N GI

UGC12265N 10.1 B S0 82.8 9.4 1.1 4.7 1.0 4.8 N N N GI
UGC6003 10.1 B S0/a 84.2 9.4 1.5 1.9 0.8 2.7 Y Y Y GI
UGC6570 9.6 R S0/a 28.6 8.4 1.4 4.5 1.0 4.6 N Y N GI
UGC6637 9.2 B S0 31.5 8.6 0.8 3.7 0.3 2.9 N N Y GI
UGC6655 8.0 B S0 8.8 7.2 0.8 3.4 0.3 2.8 N N Y GI
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Table 2.2 (cont’d)

Galaxy log(M∗/M⊙) Seq Morph. Dist. log(MH I/M⊙) FUV−NUV NUV−K FUV−NUV NUV−K T07 XUV? XUV? UV-B? Sample

UGC6805 8.9 B S0 20.3 7.6 1.3 3.9 0.6 3.5 N Y Y GI
UGC7020A 9.3 R S0 26.7 8.6 0.7 3.5 0.6 3.5 Y Y Y GI
UGC8876 10.2 R S0/a 36.7 <7.7 1.6 6.3 1.5 6.4 Y N N GI
NGC3773 8.6 B Pec 10.5 7.9 · · ·

c 3.4 · · ·
c 3.2 N Y Y GI

IC1024 9.4 B S0Pec 20.4 9.0b 0.8 4.0 0.7 4.3 Y Y Y archival

NGC1047 9.0 R S0/a 19.1 8.7b 2.3 5.3 2.5 5.2 N N N archival
NGC2970 9.3 R S0/a 22.7 · · ·

a 2.4 5.2 2.0 5.2 N N N archival

NGC3156 9.6 R S0 15.3 7.9b 2.6 4.9 2.4 5.1 Y Y N archival
NGC3458 10.4 R S0 27.6 · · ·

a 1.9 6.2 1.7 6.5 N N N archival
NGC4288A 10.4 R S0 100.8 · · ·

a 1.4 6.1 1.1 5.9 N N N archival

NGC5355 10.1 R S0/a-S0Pec 34.4 9.5b · · ·
c 5.7 · · ·

c 5.8 Y N N archival

NGC5574 10.0 R S0/a 23.2 7.9b 2.0 5.7 2.3 5.7 N N N archival

Note. — Derived FUV−NUV and NUV−K colors outside RUVSF and beyond the optical 50% light radius (the XUV-disk and UV-B disk classification regions, respectively) plus
ancillary data and classifications using the original T07 XUV-disk definition, our purely quantitative XUV-disk definition, and the UV-B disk definition. Ancillary data are from
Jansen et al. (2000a,b), KGB, and Wei et al. (2010) except as noted. Distances assume H0=70 km s−1 Mpc−1. a HI data unavailable. b HI data from HyperLeda (Paturel et al.
2003). c No FUV imaging available.3
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CHAPTER 3: ECO AND RESOLVE: GALAXY DISK GROWTH IN
ENVIRONMENTAL CONTEXT

We study the relationships between galaxy properties related to disk (re)growth and galaxy envi-

ronments by considering two highly complete samples that are approximately baryonic mass limited

into the high-mass dwarf galaxy regime, the Environmental COntext (ECO) catalog (data release

herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE (RESOLVE)

survey. We quantify galaxy environments using both group identification and smoothed galaxy den-

sity field methods. We use by-eye and quantitative morphological classifications plus atomic gas

content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated

galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass

∼ 1011.5M⊙, implying that this low group halo mass regime may be a preferred regime for significant

disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environ-

ments of similar group halo mass at constant baryonic mass, consistent with a scenario in which

blue early types can regrow late-type disks. Furthermore, for all early and late type central galaxies

with baryonic mass . 1010M⊙, we find no relationship between group halo mass and morphology.

The observed morphology-environment relation, with environment quantified by group halo mass

and with late-type fractions rising at low group halo mass, is likewise consistent with expectations

from a scenario in which disk regrowth occurs preferentially at low group halo mass. This relation

does not, however, require such a scenario; a similar trend is expected if disk destruction/quenching

occurs preferentially at high halo mass (and of necessity predominantly affects satellites).

3.1 Introduction

For decades, astronomers have observed that the properties of galaxies in the local universe,

including appearance, star formation rate, and gas content, depend on the surrounding environ-

ment (e.g., as reviewed by Bower & Balogh 2004; Boselli & Gavazzi 2006). Galaxies of different

morphological types, in particular, have long been seen to preferentially congregate in different en-

vironments (e.g., Hubble & Humason 1931; Davis & Geller 1976). Dressler (1980) reported the
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so-called “morphology-density relation,” whereby E/S0 fractions increase with increasing environ-

mental density within rich clusters while spiral fractions decrease. Postman & Geller (1984) showed

that a similar relationship between galaxy morphology and local density also holds in the lower-

density group environment. However, several authors found the conflicting result that significant

variation in morphology with environment exists only in the richest clusters (e.g., Maia & da Costa

1990; Whitmore 1995). Notwithstanding these early disagreements, the original Postman & Geller

(1984) observation of a morphology-density relation extending into less-rich environments has since

been corroborated by a variety of other authors (e.g., Tran et al. 2001; Helsdon & Ponman 2003;

Goto et al. 2003; Calvi et al. 2012).

Recently, it has also been noted that the mass ranges of galaxies considered can have a signif-

icant impact on the observed form of the morphology-density relation (e.g., Bamford et al. 2009;

Calvi et al. 2012; Wilman & Erwin 2012). While Drinkwater et al. (2001) observe a traditional

morphology-density relation in the dwarf galaxy population within a single cluster, other stud-

ies find that the morphology-density relation takes on different forms for low-to-intermediate mass

galaxies. Kannappan et al. (2009, hereafter KGB) find suggestive evidence that low-to-intermediate

stellar mass E/S0s occupy low density environments similar to those of spirals at the same masses,

while Calvi et al. (2012) find that morphologies for intermediate mass galaxies are not closely related

to environment, except in clusters. Interestingly, Hogg et al. (2003) find that the mean environmen-

tal overdensity for red, typically assumed to be early-type (E/S0), galaxies reaches a minimum at

intermediate masses/luminosities (around L∗). The conflation of morphology and color, of course,

complicates interpretation of the Hogg et al. result, since both optically red, “passive” spiral galax-

ies (e.g., van den Bergh 1976; Couch et al. 1998; Dressler et al. 1999; Poggianti et al. 1999) and

optically blue E/S0 galaxies (e.g., KGB; Schawinski et al. 2009) are known components of the galaxy

population.

It is likely that the existence of such non-traditional color-morphology pairings in the galaxy

population is an important factor driving the observation that trends in galaxy color (or more direct

star formation property measures) versus environment can differ from observed morphology-density

trends. Beginning with the analysis of Kennicutt (1983), it has often been observed that cluster

galaxies show typically lower levels of star formation than galaxies in less rich environments. Several

authors have subsequently found that such star formation or color trends with environment cannot

be completely explained by the presence of morphology-density trends (e.g., Koopmann & Kenney

1998; Lewis et al. 2002; Christlein & Zabludoff 2005; Welikala et al. 2009). Others have taken this
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conclusion further, inferring that trends in star formation/color are actually more closely linked

to environmental conditions than are trends in structural/morphological parameters (e.g., Blanton

et al. 2003; Kauffmann et al. 2004; Blanton et al. 2005; Quintero et al. 2006; Bamford et al. 2009;

Skibba et al. 2009).

Galaxy gas content is another property that has been observed to share a close link to both

star formation and the ambient environmental conditions around galaxies. First observed by Davies

& Lewis (1973) for galaxies in the Virgo Cluster, the result is now well established that cluster

galaxy populations typically display lower levels of atomic gas than do similar populations in less

dense environments (e.g., Giovanelli & Haynes 1983; Haynes et al. 1984; Giovanelli & Haynes 1985;

Gavazzi 1987; Bravo-Alfaro et al. 2000; Solanes et al. 2001; see also review by van Gorkom 2004).

Likewise, cluster galaxies are typically observed to have HI gas disks that are less extended than those

in lower density environments (e.g., Giovanelli & Haynes 1983; Warmels 1988; Cayatte et al. 1994;

Bravo-Alfaro et al. 2000). Galaxy gas properties can apparently be affected by the conditions present

in lower density environments as well, e.g., as shown in the simulations of Kawata & Mulchaey (2008)

where “strangulation” or stripping of a hot galaxy halo gas component, which could otherwise cool

to provide a cold gas reservoir, in a larger potential is effective in a group environment with halo

mass ∼ 1012.9M⊙. Still further down the environmental density scale, gas-rich galaxies have been

observed to be one of the most weakly clustered galaxy populations, that is, typically found in the

lowest density environments (Basilakos et al. 2007; Meyer et al. 2007; Martin et al. 2012; Li et al.

2012). This observation could be related to the finding from multiple theoretical studies that gas

accretion into galaxies, whether in a “cold” or “hot” mode, is most effective where group halo masses

are low (e.g., Birnboim & Dekel 2003; Kereš et al. 2005; Dekel & Birnboim 2006; Kereš et al. 2009;

Nelson et al. 2013).

In the prevailing hierarchical model of galaxy evolution, galaxies are thought to experience mor-

phological transformations not just from late to early type, for example through merging/quenching

processes, but also potentially from early to late type, through a disk regrowth process that may

be enabled by gas accretion (e.g., Barnes 2002; Steinmetz & Navarro 2002; Governato et al. 2007).

Observationally, the operation of such a disk regrowth process is difficult to confirm.

However, several hints have recently emerged that such a scenario is plausible. One such hint lies

in the existence of the blue or “blue-sequence” E/S0 population, consisting of morphologically early

type galaxies that lie on the blue sequence in color-stellar mass space. Blue-sequence E/S0s are typ-

ically found in non-cluster environments and exist primarily at stellar masses less than ∼ 1010.5M⊙
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(the bimodality mass of Kauffmann et al. 2007, hereafter Mb) but are most common below the

“gas-richness threshold” stellar mass of ∼ 109.7M⊙ (KGB). Kannappan et al. (2013, hereafter K13)

argue that the bimodality and gas-richness threshold mass scales mark two distinct transition points

between galaxy refueling regimes, with galaxies below the threshold scale typically experiencing high

levels of external gas accretion and stellar mass growth. Consistent with this picture, low-mass blue

E/S0s contain sufficient gas reservoirs and specific star formation rates to allow the growth of evolu-

tionarily significant disk structures on relatively short timescales (KGB; Wei et al. 2010). Another

hint of disk regrowth in E/S0s is the observation of extended UV emission, associated with recent

star formation, around a number of nearby galaxies with early-type morphology (e.g., Donovan et al.

2009; Cortese & Hughes 2009; Thilker et al. 2010; Moffett et al. 2012). Moffett et al. (2012) observe

that such extended UV structures are common in low-to-intermediate mass early-type galaxies and

that a particular class of “UV-Bright” or UV-B disk galaxies is marked by a high potential for ongo-

ing star formation. Linking these two populations together, UV-B disks are also strongly associated

with the low-mass, blue-sequence E/S0 population, supporting the idea that these galaxies may be

engaged in disk regrowth. Stark et al. (2013) report evidence for gas as well as stellar disk regrowth

in such low-mass E/S0 galaxies.

In this contribution, we employ two unusually complete volume-limited galaxy samples, both of

which extend into the “high-mass” dwarf galaxy regime (reaching baryonic masses ∼ 109.3M⊙), to

probe disk (re)growth in a variety of environments. We seek to answer three major questions. (1)

Does environment play a role in enabling gas or stellar disk growth? (2) Does the morphology-density,

or more generally morphology-environment, relation behave as might be expected if disk regrowth

is effective in transforming galaxy morphology? In particular, are the typical environments for blue

early- and late-type galaxies similar in the galaxy mass regimes in which disk regrowth occurs? (3)

Are there specific group halo mass scales implicated in evidence for disk regrowth?

We address these questions in part by examining the detailed form of the morphology-environment

relation, including possible variations with galaxy mass scale and central/satellite designations. In

addition, we consider an alternative way of formulating a morphology-environment relation. If the

traditional formulation of the morphology-environment relation can be considered to quantify the

probability of a galaxy exhibiting a particular morphology given some environment, P(M|E), then

an alternative way to frame this relation is to quantify the probability of a galaxy inhabiting a

particular environment given its morphology, P(E|M). This alternative formulation provides a use-

ful framework for understanding the typical environments of galaxies with different morphologies.
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Figure 3.1 The ECO catalog region in sky coordinates, with color coding according to group halo
masses estimated as described in §3.3.6. The RESOLVE-A region is outlined in red, and the region of
overlap with the ALFALFA α.40 catalog (Haynes et al. 2011) is indicated by the purple crosshatched
strips.

We further examine the typical environments of different classes of galaxies linked to disk growth,

including blue-sequence early types, galaxies with substantial atomic gas reservoirs, and early-type

galaxies that display recent UV-detected disk star formation.

We begin by introducing the galaxy samples under consideration in §3.2. In §3.3, we describe

our main data analysis methods. In §3.4, we report a variety of results from this analysis, including

the observed forms of both the traditional and alternative morphology-environment relations, in

particular finding that the morphology-environment relation disappears for low baryonic mass central

galaxies. We also find that blue-sequence early type, gas-dominated, and disk-growing populations

rise in prominence in environments with Mhalo . 1011.5M⊙. In §3.5, we show that the forms of

both the traditional and alternative morphology-environment relations we observe are consistent

with expectations of the disk regrowth model and discuss the idea that the low group halo mass

regime below ∼ 1011.5M⊙ appears to be a preferred regime for disk growth. Finally, we provide a

brief summary of our major results in §3.6.
3.2 Samples

3.2.1 ECO catalog

The ECO, or Environmental COntext, catalog is the largest sample we consider and includes the

greatest diversity of galaxy environments (see Table 3.1 for detailed ECO galaxy properties). The
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Figure 3.2 The ECO catalog region in RA vs. line-of-sight distance coordinates, in slices of ∼5
degrees in Dec, increasing from the bottom left panel. Galaxies included in the final ECO sample
analyzed here are indicated by dots color-coded according to their group halo masses as in Fig. 3.1,
while galaxies outside this sample but present in our merged parent redshift catalog are indicated by
grey dots. The outer limits of the ECO catalog “buffer” region are outlined in red, and the region
of ECO we consider interior to this buffer is indicated in green.
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Figure 3.3 Illustration of the completeness and selection of the ECO catalog. Panel a shows the
additional completeness of the ECO catalog over the SDSS redshift catalog. The Mr distribution
of the full ECO sample in our reprocessed magnitude system (see §3.3.1 for details) is indicated
by the purple solid histogram, and the distribution of ECO galaxies that have SDSS redshifts is
indicated by the black hashed histogram. Panel b shows the Mr and Mbary distributions of the
initial ECO catalog (dots and purple inset Mbary histogram), where the horizontal red line indicates
the Mr < −17.33 redshift completeness limit and the vertical green lines indicate the final mass cut
we adopt to create an approximately baryonic mass limited sample to Mbary > 109.3M⊙.

ECO catalog region was chosen as the largest contiguous region on-sky where the highly complete

Updated Zwicky Catalog (UZC; Falco et al. 1999) and Sloan Digital Sky Survey (SDSS; York et al.

2000) redshift databases overlap, allowing objects not present in either one to be recovered through

inclusion of the other, with SDSS typically providing redshifts for fainter objects than the UZC.

Though defined by the overlap of these two catalogs, the ECO catalog also incorporates redshifts

from the REsolved Spectroscopy Of a Local VolumE (RESOLVE; Kannappan et al., in prep.),

HyperLEDA (Paturel et al. 2003), GAMA (Driver et al. 2011), 2dF (Colless et al. 2001), and 6dF

(Jones et al. 2009) surveys. The ECO region was also selected to enclose the RESOLVE A-semester

survey volume plus a minimum 1 Mpc “buffer” in all directions (see sky coverage in Fig. 3.1). This

buffer region, chosen with a size comparable to typical halo virial radii at the present epoch, exists

to mitigate potential edge effects in calculating galaxy environment metrics, such that only galaxies

in the buffer region should have environmental measures strongly affected by the loss of nearby

galaxies outside the catalog boundaries. The far side limit of 7470 km/s was selected to encompass

both the aforementioned 1 Mpc (equivalent to 70 km/s for H0 = 70 km s−1 Mpc−1) buffer beyond

the RESOLVE cz limit of 7000 km/s and an additional allowance to compensate for group peculiar

velocities up to 400 km/s. The near side buffer zone cz limit of 2530 km/s was similarly chosen

to expand the ECO volume as much as possible beyond the near-side RESOLVE cz limit of 4500

km/s while avoiding the effects of Virgo Cluster region velocity-space distortions (see Fig. 3.2). We
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consider the velocity limits of the non-buffer ECO volume to be 470 km/s away from the buffer

edges, or 3000 km/s < cz < 7000 km/s.

The ECO catalog represents a cross match between sources with measured redshifts found in

the UZC, SDSS (including data releases 6, 7, and 8; Adelman-McCarthy et al. 2008; Abazajian

et al. 2009; Aihara et al. 2011), HyperLEDA, RESOLVE, GAMA, 2dF, and 6dF catalogs with a

15” matching radius on sky. New sources are added to ECO from each of the constituent catalogs

whenever they do not match to a previously included ECO source. The resulting catalog has also

been inspected by eye for duplicate entries caused either by “shredding” of SDSS photometric objects

into multiple galaxy pieces (as described in Abazajian et al. 2004) or by centering/coordinate errors

occasionally larger than the cross-matching radius. Such duplicate entries, making up ∼5% of the

galaxies originally considered for inclusion, have been removed from our catalog. As illustrated in

Fig. 3.3a, the majority of ECO galaxies are present in the SDSS redshift survey, but the number of

galaxies added from other sources is significant, at approximately 7% of the final catalog.

Initially, sources with measured positions and redshifts inside the ECO volume are considered for

potential membership regardless of any previously measured catalog magnitudes they may or may not

have. We then use custom photometric measurements performed on SDSS imaging frames for all such

potential ECO members (see §3.3.1 and Eckert et al., in prep.) to determine a defining magnitude

limit for the ECO catalog. The completeness limit of the SDSS redshift survey at 7000 km/s is

Mr = −17.23 (in DR7 catalog Petrosian magnitudes corrected for foreground extinction), and our

reprocessed magnitudes are typically brighter than the SDSS catalog values by approximately 0.1

mag (see §3.3.1 for details). Thus, a potential completeness limit for the ECO catalog motivated by

the SDSS completeness would be Mr < −17.33, which we use to produce an initial group catalog

as described in §3.3.6. However, we seek to create a baryonic mass limited final sample for our

analysis, where baryonic mass (Mbary) is defined here as stellar plus atomic gas mass and estimated

as described in §3.3.2 and 3.3.7. As illustrated in Fig. 3.3b, within the confines of the Mr = −17.33

magnitude completeness limit, we can construct an approximately baryonic mass limited sample

with Mbary > 109.3M⊙ while leaving aside only a relatively small number of high mass-to-light ratio

objects.

The final ECO sample we analyze meets both the above limit and the additional criterion that

the center of the group to which each galaxy belongs (see §3.3.6 for details of group membership

determination) must lie within the limits of the non-buffer region of ECO, that is, the group center

must have 3000 km/s < cz < 7000 km/s and RA/Dec > 1Mpc from the buffer edges on sky at its
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redshift (see Fig. 3.2)1. This final sample contains 6908 galaxies.

Two partially overlapping subregions of the ECO catalog are given special attention in this

paper. The “ECO+A” region is defined by the overlap of the ECO catalog and public Arecibo

Legacy Fast ALFA (ALFALFA) α.40 catalog (Haynes et al. 2011) and represents the portion of

the ECO sample for which direct HI mass determinations are available and used in our analysis

(see Fig. 3.1). The “ECO+G” subsample is defined by the availability of archival GALEX imaging

(Morrissey et al. 2007; GALEX MAST GR6/7 archive at http://galex.stsci.edu/GR6/) with

exposure times >1000s in the NUV band, sufficient to detect extended UV disk structures (e.g.,

Thilker et al. 2007). Since GALEX imaging coverage over the ECO sky region is patchy, we select

multiple fully covered subregions of ECO as our final ECO+G subsample, largely coincident with

RESOLVE-A but extending to larger Dec and including several slices through rich clusters. Together

these regions closely reflect the full ECO environment distribution (see Fig. 3.4).

3.2.2 RESOLVE-B

The B-semester region of the RESOLVE survey, which covers most of the SDSS “Stripe 82”

region, is used as a comparison sample in this analysis. The RESOLVE-B region environment

distribution is illustrated in Fig. 3.4, where primary differences compared to ECO are the lack

of Mhalo & 1013.5M⊙ groups while Mhalo ∼ 1013M⊙ groups are overrepresented in RESOLVE-B.

The RESOLVE-B subsample has the advantage of greater completeness than the ECO catalog,

due to deeper SDSS imaging and redshift coverage, plus the further redshift completion efforts of

the RESOLVE survey. By comparison with this extra-complete sample, we assess the effects of

incompleteness and derive completeness corrections that can be applied to ECO (median correction

∼2%; see §3.3.8). For all galaxies in RESOLVE-B, morphological classification has been performed by

a team of classifiers, providing both the basis for calibration of, and a comparison to, the quantitative

morphological classifications used for ECO (see §3.3.4; RESOLVE classification details in Appendix

A).

3.3 Methods

In this section, we describe our methods of custom photometric processing, galaxy color and stel-

lar mass estimation, galaxy morphology and UV disk classification, environment metric calculation,

1Note that we do not recalculate galaxy Mr values by considering galaxies to lie at their group center redshifts. We
find this recalculation would make a negligible difference in our overall sample membership.
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Figure 3.4 The distribution of galaxies by halo mass in the ECO, ECO+G, and RESOLVE-B samples,
with completeness correction factors applied. The red dashed vertical line indicates the halo mass
completeness limit for ECO. We have selected the ECO+G sample to have a similar environment
distribution to the full ECO sample.
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atomic gas mass estimation, and correction for the incompleteness of the ECO sample. Throughout

our analysis, we calculate distances according to D = cz/H0 and take H0 = 70 km s−1 Mpc−1 unless

otherwise noted. We estimate binomial confidence intervals on population proportions according to

the Bayesian approach of Cameron (2011).

3.3.1 Imaging/Photometry

As a result of the problematic nature of obtaining accurate estimates of galaxy properties

with bulk SDSS pipeline-processed data and our desire to study spatially resolved parameters not

necessarily computed in catalog data products, we have undertaken a custom reprocessing of SDSS,

2MASS, and GALEX imaging for all ECO sample galaxies considered here. The ECO photometric

reprocessing mimics the methods developed for the RESOLVE survey (see Eckert et al., in prep. for

full details).

To summarize this reprocessing: we retrieve imaging frames in ugriz, JHK, and NUV bands

via automated queries to the SDSS DR8 (Aihara et al. 2011), 2MASS (Skrutskie et al. 2006), and

GALEX (Morrissey et al. 2007) archives respectively. Greater than 99% of our galaxies are covered

by 2MASS and ∼30% by GALEX. Photometric processing proceeds first on the SDSS imaging,

where SExtractor (Bertin & Arnouts 1996) is called to identify sources from an r-band image and

create a corresponding mask image wherein sources other than the target are masked. SExtractor

parameters for the target galaxy are then used as an initial input to the IRAF ellipse task, which

fits the galaxy isophotes in a co-added gri image while allowing the PA and ellipticity to vary. From

this free ellipse fit, an optimal ellipticity and PA corresponding to the outer disk is determined. A

fixed ellipse fit is then performed, using these outer-disk parameters, on the images in all bands

individually. Total magnitudes are determined from the resulting profiles by several methods: large

aperture summation, exponential disk fitting, curve-of-growth extrapolation, and outer-disk color

correction (see Eckert et al., in prep.). Comparing the results of these methods yields an estimate

of the systematic errors, which are combined with the purely photometric errors to obtain the final

magnitude error estimates.

The automated SExtractor masking procedure has been tuned to give reasonable results for

the majority of galaxies, but it is possible for the automatically generated masks to either mask

parts of the galaxy under consideration or fail to mask nearby sources not associated with the

target galaxy. To identify potentially problematic masks, we flag objects for which the magnitude

estimation procedure has failed, the extracted r-band profile signal does not rise above eight times
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the sky noise, or the r-band profile does not extend beyond the calculated r-band 90% light radius.

These mask images flagged as potentially problematic are inspected by eye and edited by hand where

necessary to better reflect distinctions between the target galaxy and other nearby sources.

3.3.2 Color and Stellar Mass Estimation

Using the full complement of total magnitudes, including NUV where available, galaxy stellar

masses are estimated from a spectral energy distribution (SED) fitting procedure. We use a recently

updated version of the likelihood-based stellar mass estimation code of Kannappan & Gawiser (2007),

which is described fully by K13. This procedure uses a suite of composite stellar population models

constructed from old and young Bruzual & Charlot (2003) stellar populations. These model stellar

populations are combined in various fractions by mass, with 13 allowable young population fractions

of 0.001, 0.002, 0.005, 0.011, 0.025, 0.053, 0.112, 0.220, 0.387, 0.585, 0.760, 0.876, and 0.941. Four

possible metallicities (Z = 0.004, 0.008, 0.02, and 0.05) and 11 possible extinction values (τV = 0,

0.12, 0.24...1.2) are also used. The young population model grid is constructed to simulate both

continuous and bursty star formation histories by including models with constant star formation from

1015 Myr in the past to various end points 0-195 Myr in the past and simple stellar populations

(SSPs) with ages 360, 509, 641, 806, and 1015 Myr. The old population model grid includes SSPs

with ages 2, 4, 6, 8, 10, and 12 Gyr. A Chabrier initial mass function (Chabrier 2003) is used in these

calculations, which yield a stellar mass zero point consistent with that of Kauffmann et al. (2003).

The code also outputs internal extinction corrected model fit colors, which more cleanly separate

the red- and blue-sequence galaxies than raw measured colors, and we designate these colors with

a superscript “e”. We also use model fit colors without any internal extinction correction, denoted

with superscript “model”.

3.3.3 The Red and Blue Sequences

To separate red- and blue-sequence galaxies, we choose a dividing line between the red and

blue color stellar mass loci defined by our extinction-corrected colors and stellar mass estimates (see

Fig. 3.5). We determine this division based on double Gaussian fits to the red- and blue-sequence

color distributions in two high and low stellar mass regimes where the sequences are well defined

(logM∗ < 9.5 and logM∗ > 9.5). Our divider is then defined by the color halfway between the fit

peaks and the median stellar mass in each mass regime. The slanted divider in the intermediate mass

regime is defined by the line connecting these two Gaussian-fit-determined points. The equation of
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the divider is:

(u − r)e =



























1.484 logM∗ ≤ 9

0.22× logM∗ − 0.5 9 < logM∗ < 10.1

1.7 logM∗ ≥ 10.1.

(3.3.1)

3.3.4 Morphology Classification

To calibrate a quantitative morphology cut for application to the ECO galaxies, we use by-

eye morphological classifications from the RESOLVE survey, the A-semester sample of which is

largely a subset of the ECO catalog (see Appendix A and Kannappan et al., in prep. for full

details). RESOLVE galaxies that were given uncertain classifications by the classifiers are omitted

from consideration. Since this comparison sample has just over 1000 galaxies, considerably fewer

than the full ECO sample, and possesses few very bright galaxies, we also add to our morphology
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Figure 3.6 Quantitative morphology metrics applied to by-eye classified galaxies in the RESOLVE
and ECO samples (see §3.3.4 for details). Panel a shows a cut in Cr vs. Mr applied to ECO and
RESOLVE galaxies classified by eye as early and late types. The solid green line shows an optimized
morphology discriminant in this parameter space (Cr = −0.2×Mr − 1), which performs poorly in
duplicating the by-eye morphological classes. Panel b shows the distribution of these same galaxies in
the µ∆ vs. Mr parameter space. The solid green line shows our optimized morphology discriminant
in this parameter space (µ∆ = −0.27 × Mr + 3.9), which gives improved classification error rates
over the concentration index approach.

calibration sample those galaxies in ECO that have been previously classified by eye in the catalog

of Nair & Abraham (2010) or by the Galaxy Zoo Project (Lintott et al. 2011). We use only the

“clean and debiased” Galaxy Zoo classifications referenced by Lintott et al. (2011), which require

80% of classifiers to agree on the chosen morphological type and debiasing with respect to the effects

of luminosity, size, and distance on the classifications (see §3.1 of Lintott et al. 2011).

Based on comparisons to this by-eye classified sample, an optimal quantitative morphology cut

was derived for application to ECO. Traditional quantitative morphology discriminants, such as

the concentration index Cr = R90%/R50% defined using SDSS catalog photometry (e.g., Strateva

et al. 2001; Shimasaku et al. 2001), yield unfortunately high error rates in the ECO sample (see

Fig. 3.6a)2. We instead employ the µ∆ metric recently developed by K13, which combines the

surface mass density within R90% and a multiple of 1.7 times the difference between the surface

mass densities within R50% and within the R50%−R90% annulus. We optimize this metric for use as

an early/late type discriminant in ECO by considering it as a function of Mr and choosing a linear

cut in this parameter space that yields the minimum misclassification rate (see Fig. 3.6b).

To reduce the misclassification rate resulting from implementing a quantitative morphology cut,

we make further use of the Galaxy Zoo clean and debiased morphology classifications. Where such

classifications exist for ECO galaxies, we use the Galaxy Zoo early/late type classification rather than

2Note that we explicitly avoid the inclusion of color as a parameter used for morphology discrimination due to the
bias it would introduce against blue early and red late types.
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that inferred from the optimized quantitative morphology cut described above. This substitution

results in a naive apparent misclassification rate of ∼3.6% for late types and ∼13.9% for early types

in the morphology calibration sample.

We can better estimate the misclassification errors that would result from applying this quan-

titative calibration to an independent sample with a bootstrap resampling approach applied to the

calibration sample, using the “.632” error rate estimator as described by Efron (1983). The boot-

strap sampling procedure is repeated for 1000 iterations. For each iteration, we randomly sample

N objects from the morphology calibration sample with replacement, where N is equal to the total

number of objects in the calibration sample (the “.632” nomenclature refers to the fact that ∼63.2%

of the objects will end up in each bootstrap sample on average because objects can be selected

twice). We then use the bootstrap sample to determine an optimum classification rule and evaluate

the misclassification rate using this rule when applied to those members of the morphology calibra-

tion sample that were outside the bootstrap sample. As for the ECO sample, we include replacement

of quantitatively inferred classifications with those from Galaxy Zoo to fairly assess the error rate

during each iteration. We calculate our final error estimates as:

Efinal = 0.632Ebavg + .368Eapp, (3.3.2)

where Ebavg represents the average of the estimated error rates over the 1000 resampling iterations

and Eapp represents the naive apparent error rate estimate in the calibration sample. The final error

estimates are similar to the aforementioned naive apparent error rates, with estimated ∼3.7% error

rate for late types or ∼13.8% for early types. We also calculate these error estimates in multiple

individual bins of group halo mass and galaxy stellar mass as the error rate is not necessarily

constant for different subclasses of galaxies in the sample. Our early-type misclassification rates

tend to decrease with increasing galaxy stellar mass, from ∼17% at our lowest stellar masses to

∼11% at our highest stellar masses, and to increase with increasing group halo mass, from ∼10% at

our lowest halo masses to ∼16% at our highest halo masses.

3.3.5 Identification of UV Disks

For the ECO galaxies covered by GALEX NUV imaging, we apply an automated procedure for

quantitatively identifying Ultraviolet-Bright (UV-B) disks according to the definition of Moffett

et al. (2012). For each galaxy, we apply the center position, position angle, and ellipticity of the
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SDSS optical ellipse fit to a set of fixed parameter IRAF ellipse fits on the NUV imaging, which

are allowed to proceed outwards radially until no significant UV flux is detected. We apply addi-

tional SExtractor-derived masking of the UV images beyond that determined for the original SDSS

optical photometry procedure, necessary due to the low resolution of the GALEX data and the

occasional appearance of new contaminating sources not present in the optical data. As described

by Moffett et al. (2012), the quantitative UV-B disk classification we employ requires satisfaction

of an NUV−K color condition, which is included to ensure young stellar population ages and select

stellar populations with a minimum ∼10% young component by mass. We calculate NUV−K colors

between the optical g-band 50% light radius and the end of the NUV profile and require NUV−K

< 4.5 for classification as a UV-B disk3.

Validating this fully automated identification approach against the methods of Moffett et al.

(2012), which employed a more detailed, galaxy-by-galaxy elliptical isophote fitting procedure, our

new algorithm identifies up to ∼25% more UV-B disks in an E/S0 sample. Reasons for the difference

between the more and less automated approaches include occasional position angle misalignments

between the galaxy regions where optical and UV emission dominate and imperfect automated

masking of UV sources, which is in some cases less aggressive than the masking employed by Moffett

et al. (2012).

3.3.6 Environment Metrics

For the catalog samples under consideration, we compute two different metrics of galaxy envi-

ronment. We primarily focus on environmental trends using group halo mass, but we also compare

to results obtained with a smoothed galaxy density field in §3.4.
Group Finding

We identify groups of galaxies using the friends-of-friends algorithm of Berlind et al. (2006). We

infer halo masses based on the observed total r-band luminosity of galaxies in each group following an

abundance matching procedure, as described in Blanton & Berlind (2007). Specifically, we assume

a monotonic relation between the observed group luminosity and its halo mass, which we determine

by matching the abundance of observed groups of a given luminosity to that of dark matter halos

of a given mass, as derived from a standard concordance cosmology halo mass function. From

3Note that in some cases galaxy outer disks are not well detected in our 2MASS images. In such cases, we calculate
upper limit K-band magnitudes in the outer-disk regions and use these magnitudes for determining the NUV−K

color.
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consideration of the mock galaxy catalogs described below, we find that typical group halo mass

errors are of order 0.15 dex, although much larger errors can sometimes occur when groups are

improperly fragmented or improperly linked together.

The group-finding algorithm we employ automatically determines an appropriate “linking length”

for grouping individual objects together, equal to 0.14 times, in the on-sky direction, and 0.75

times, in the line-of-sight direction, the mean separation between galaxies in the input sample (with

D = cz/H0 distances and H0 = 100h km s−1 Mpc−1 used for this calculation). For a sample

region as small as RESOLVE-B, this mean spacing determination is far more sensitive to cosmic

variance than for a large region as in the ECO sample. To compensate, when we apply the group-

finding algorithm to RESOLVE-B we fix the linking lengths to those determined from a version

of the ECO catalog limited to Mr < −17, the magnitude limit of RESOLVE-B. We also use the

luminosity to halo mass conversion determined from this version of the ECO group catalog, since

this conversion is similarly sensitive to cosmic variance. Through testing with an “ECO-analog”

version of RESOLVE-B (matched to ECO’s shallower depth and lower completeness; see §3.3.8), we
find that the difference in completeness between RESOLVE-B and ECO does not significantly bias

the group halo masses we estimate, with scatter between the group halo masses inferred from the

two versions of RESOLVE-B only reaching ∼0.2 dex at Mhalo & 1013M⊙. The primary effect of

extra completeness on group identifications is that additional N = 1 halos, typically containing faint

galaxies near the magnitude limit, are found. Fig. 3.4 reveals that ECO is not complete for group

halos with masses less than Mhalo ∼ 1011.1M⊙, so we refrain from including halos below this mass

limit in our analysis.

Smoothed Galaxy Density Field

We calculate a smoothed galaxy density field with an IDL procedure based on the approach of

Grogin & Geller (1999). This procedure takes in individual galaxy redshift-space positions, assuming

line of sight D = cz/H0 for consistency with other methods applied here, and creates a continuous

number density field from this spatial point distribution by smoothing each galaxy with a unit-

normalized Gaussian kernel and summing the resulting galaxy space and velocity distributions.

Since the samples considered in this work are volume- and not flux-limited, no luminosity function

weighting factors have been applied in the density field calculation (cf. Grogin & Geller 1999).

In using this smoothed galaxy density field procedure, we use a smoothing kernel width of

∼1.43 Mpc (1 Mpc/h with h = 0.7), a scale that is similar to a typical halo virial radius at z ∼0. In
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all subsequent density analysis, we limit ourselves to consideration of galaxies that lie >2 smoothing

lengths from catalog edges and report density values normalized by the median density of the

smoothed field.

In order for densities smoothed on this small scale to be physically meaningful, we also implement

a procedure to statistically collapse “fingers of God” in ECO, as these cause measured line-of-sight

velocities in large groups/clusters to imperfectly reflect physical distances. Similar methods for

statistically correcting redshift-space distortions have been applied by other authors (e.g., Tegmark

et al. 2004). The algorithm we apply was developed and calibrated on mock galaxy catalogs derived

from an N-body simulation of a ΛCDM cosmological model, with Ωm =0.25, ΩΛ =0.75, Ωb =0.04,

h=0.7, ns=1.0, and σ8 =0.8. Initial conditions were set using second order Lagrangian Perturbation

Theory (Scoccimarro 1998) at a starting redshift of z =99 and the particle distribution was evolved

using the code GADGET-2 (Springel 2005). The simulation contains 10503 dark matter particles in a

box of size 180 Mpc/h, sufficient to encompass multiple ECO catalog volumes. The resulting particle

mass is 3.5×108 M⊙/h and the gravitational force softening is 7 kpc/h. At this resolution, the lowest

mass halos in the ECO catalog sample typically contain 160 particles. We identify halos in the dark

matter particle distribution using a friends-of-friends algorithm with a linking length equal to 0.2

times the mean interparticle separation. We then populate these halos with galaxies using a halo

occupation distribution (Berlind & Weinberg 2002) designed to produce a galaxy population with

similar space density and clustering properties as ECO galaxies. Central galaxies are given positions

and velocities of halo centers of mass, and satellite galaxies are given positions and velocities of

randomly selected dark matter halo particles. This procedure produces a ”real-space” mock galaxy

catalog. The real-space catalog is subsequently distorted into a ”redshift-space” mock galaxy catalog

by assuming the line of sight direction to extend radially outward from the center of the box and

incorporating galaxy peculiar velocity components along the radial direction into galaxy redshifts.

Comparisons between real-space and redshift-space versions of the mock galaxy catalogs allow

us to determine the distribution of 3D, real space radius offsets from the group center positions

as a function of the group virial radii. The overall real-space group-centric R/Rvir density profile

determined from the mock catalogs is approximated with a gamma probability density function fit

and used as an input when we apply the collapse algorithm on observed catalogs. The fit relation

has the following form:

f(x, a, b) =
xa−1 × e−bx × ba

Γ(a)
, (3.3.3)
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where a=1.6 and b=5.

We begin the finger-of-God collapse process on the observed galaxy catalogs with group iden-

tifications determined as described in §3.3.6. For each galaxy in an N > 1 group, we first assign

a random real-space displacement from the center of the group according to our fit distribution

of mock-catalog-determined R/Rvir values, taking into account the group’s estimated Rvir . Each

assigned 3D radius is then checked for consistency with the galaxy’s observed projected distance

from the group center, that is, a galaxy’s assigned 3D distance from the group center is required

to be greater than its observed projected distance from the center. If this is not the case on first

assignment, a different random 3D radius value is chosen until the condition is met. This procedure

does not significantly bias the assigned R/Rvir distribution. Next, the appropriate redshift direction

displacement from the group center is determined for each galaxy, using the observed spatial coor-

dinates and the assigned 3D radius. The sign of the redshift displacement for each galaxy relative

to the group center is determined randomly.

Validation of the final collapse procedure on the mock catalogs yields reasonable agreement

between the corrected and original simulated, real-space group velocity dispersions (see Fig. 3.7),

although we tend not to reach corrected group velocity dispersions as small as the original dispersions

seen in real-space mock catalog groups). This bias appears to be due largely to imperfect recovery

of halo Rvir by our group finding method; overestimation of Rvir has the effect that our collapse

algorithm places galaxies at larger 3D group-centric radii (and larger velocities) than observed in

the real-space groups. The effect of the collapse process on the distribution of galaxies in the ECO

catalog is shown in Fig. 3.8. The application of this collapse process yields greater confidence in our

density field results, which generally agree with group-finding results that are less sensitive to such

finger-of-God effects.

3.3.7 Atomic Gas Mass Estimates

For galaxies in the ECO+A subsample, we cross-match to published ALFALFA α.40 (Haynes

et al. 2011) HI sources within 1.5 times the beam radius (3′) and use the reported line flux densities

to convert to MHI via the standard formula (MHI = 2.36 × 105 × D2 × FHI M⊙; Haynes &

Giovanelli 1984). We then multiply our masses by 1.4 to correct for the presence of He. In the

absence of HI detections, we estimate upper limits according to the procedure described by K13,

which uses the typical α.40 rms noise as a function of declination integrated over a velocity interval

estimated for each source according to the average relation between internal velocity and r-band
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Figure 3.7 Illustration of the recovery of real-space mock galaxy catalog group velocity dispersions
after running group finding on a redshift-distorted version of the catalog and applying our finger-of-
God collapse procedure on the resulting group catalog. Plotted are the distributions of real-space
group velocity dispersion (red/orange scale) and corrected group velocity dispersion (green scale)
versus real group N, where color coding of points represents the histogram density normalized to
sum to one within each bin of group N (darkest colors imply the highest density). Red and green
points are plotted offset by half the group N bin size for clarity. Note that we typically do not
collapse groups to velocity dispersion levels as small as those seen in real-space groups.
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Figure 3.8 Illustration of the finger-of-God collapse procedure applied to the ECO catalog. Red
points show the original inferred spatial distribution of galaxies, and smaller green points show the
distribution after the finger-of-God collapse procedure has been applied.
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magnitude (logV = −0.29− 0.123 Mr, calibrated by K13). We check for possible confusion using a

large combined redshift catalog containing ECO (see §3.2.1) and flag a source as confused if another

galaxy is found within a 3′ radius and if the HI profiles would overlap in velocity space assuming

minimum 50 km/s redshift uncertainties and typical line widths of ∼100 km/s (the weighted average

of the ALFALFA-derived velocity width function; Papastergis et al. 2011).

Where ECO galaxies lack ALFALFA α.40 detections or have confused HI measurements, we use

the “photometric gas fraction” technique (Kannappan 2004) to assign HI mass estimates based on

the observed tight correspondence between HI gas to stellar mass ratio and u− J color. We employ

the photometric gas fraction calibration and procedure described by K13, in which gas masses are

assigned to galaxies with (u− J)model < 3.7 according to the relation:

log (MHI/M∗) = 2.7− 0.98 (u− J)model (3.3.4)

with random 0.34 dex scatter motivated by the observed relation. If the gas mass estimated with

this relation for a given galaxy would exceed its calculated upper limit, the upper limit is adopted

instead. For galaxies with colors redder than (u − J)model = 3.7, that is, where the linear color-

gas-to-stellar mass ratio relation breaks down for quenched galaxies, the procedure assigns random

values in the logarithmic range MHI/M∗ = 0.001− 0.5, again constrained to lie below the estimated

upper limit for each galaxy.

We make one significant modification to the K13 photometric gas fraction procedure, which is

motivated by the tendency for the bluest and most gas-rich galaxies to lie above the aforementioned

gas-to-stellar mass ratio versus color relation (see K13 Fig. 8a). To better reflect the typical gas-to-

stellar mass ratios observed for galaxies with (u − J)model < 3, we multiply the gas mass estimates

that would result from the K13 estimator by an additional factor of 1.5 in this regime, with resulting

estimates still constrained to lie below upper limits where available. While our gas mass estimates

are improved by the inclusion of this factor, we note that its inclusion does not qualitatively affect

the results we report, which remain similar even if the extra multiplicative factor is omitted from

estimated gas masses. In particular, we largely focus our analysis of gas content on the incidence of

gas-dominated (MHI/M∗ > 1) galaxies in ECO, and so for much of our analysis, the exact gas mass

estimated for a given galaxy is less important than whether or not it falls into a broad gas-to-stellar

mass ratio category.
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Figure 3.9 Multiplicative completeness correction factors derived for each individual ECO galaxy
(points) as a function of r-band absolute magnitude, model g−i color, and group halo mass. Galaxies
indicated by red points require further multiplicative membership correction factors on top of the
factors shown, due to the loss of galaxies with extreme line-of-sight velocities outside the ECO
definition. The majority of galaxies indicated by red points lie in the Coma Cluster, where the
additional multiplicative correction factor reaches its maximum value of ∼ 1.77.

3.3.8 Completeness Corrections

Since the RESOLVE-B sample has much higher completeness than the ECO sample (see §3.2.2),
we use the former to calibrate and correct for the effects of redshift incompleteness in the latter. To

do so, we first construct a version of the RESOLVE-B sample analogous to the ECO catalog, that

is, including only galaxies that would be found in the catalogs that make up ECO and excluding the

extra SDSS Stripe 82 redshift coverage beyond the original redshift survey. For this “ECO-analog”

version of RESOLVE-B, we also make photometric measurements using the same methods as for

ECO proper, using only single-depth SDSS images analogous to those available for ECO and not

the deeper co-added imaging available in the Stripe 82 region. We then compare number counts for

the complete RESOLVE-B sample with those for the ECO-analog version in the parameter space

of (g − i)model color vs. Mr, thereby determining the factors necessary to correct the ECO-analog

numbers to match the complete RESOLVE-B numbers as a function of Mr and (g − i)model. We

prefer to use (g − i)model color because it is measured with higher S/N than any color constructed

with SDSS u-band magnitudes, however we find that the derived completeness correction results are

similar for other choices of galaxy color.

We divide both samples into cells in a (g−i)model vs. Mr grid, determined with a simple adaptive

approach, which begins with subdividing each axis into four large cells. If more than five galaxies

are present in a given cell, the cell is subdivided in half iteratively until no further subdivisions are
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allowed by the five galaxies per bin condition. We interpolate each irregularly gridded dataset into a

smoothly varying number density field, and divide the ECO-analog and RESOLVE-B sample fields

to derive a final completeness correction field.

Our completeness correction method results in multiplicative correction factors that vary as a

function of absolute magnitude, color, and environment as illustrated in Fig. 3.9. The median

correction factor applied to a galaxy in our sample is ∼2%, but correction factors can reach up to

nearly ∼18%. As this approach reveals residual differences in the derived completeness corrections

as a function of galaxy environment, we elect to compute corrections separately for two different

group halo mass regimes: above and below Mhalo = 1012.5M⊙. The median correction factor is

∼3.5% for galaxies in low-mass halos and ∼1% for galaxies in high-mass halos.

In addition to the aforementioned environment-dependent incompleteness, we note that the pres-

ence of cluster fingers of God in the ECO sample can cause further incompleteness through the loss

of members with extreme line-of-sight velocities, putting them outside our sample limits even though

we include a large buffer region in our analysis to mitigate such losses. The presence of the Coma

Cluster, in particular, leads to incompleteness for the highest group halo mass in the ECO sample

(see upper leftmost panel in Fig. 3.2), which cannot be appropriately corrected through consider-

ation of the RESOLVE-B comparison sample as this incompleteness is caused by ECO boundaries

and not incomplete redshift data. To quantify correction factors for this boundary effect, we con-

struct a comparison catalog including the same data sources as ECO but extending beyond the ECO

redshift limits in both directions (1500 km/s to 12000 km/s), encompassing all apparent fingers of

God extending outside of the ECO region. As reprocessed photometry is not available for this entire

comparison catalog, we rely on SDSS catalog magnitudes and perform group finding on both ECO

and the comparison catalog with catalog r-band magnitudes as input. We then match the ECO

catalog groups to groups in the comparison catalog, where a given comparison catalog group center

must lie within the ECO group Rvir on sky and within three times the ECO group velocity dis-

persion in the redshift direction. For any galaxy in a group that has been affected by proximity to

the ECO volume edges, we calculate and apply an additional completeness correction factor based

on the ratio of the number of galaxies in comparison catalog groups to the number of galaxies in

ECO catalog groups, derived considering only galaxies with catalog magnitudes Mr < −18.4 (cor-

responding to the nominal SDSS r-band completeness limit at cz = 12000 km/s). The calculated

boundary completeness correction factors range up to a maximum of ∼ 1.77 for Coma galaxies in

particular. We multiply the completeness correction factors illustrated in Fig. 3.9 by the boundary
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Figure 3.10 Illustration of ECO catalog galaxy distributions in the group halo mass and galaxy
baryonic mass space, where early types of red/blue and central/satellite classes are shown on panel a,
and late types of red/blue and central/satellite classes are shown on panel b. No catalog membership
completeness corrections have been applied in this figure.

completeness correction factors to obtain the final ECO sample membership corrections.

As the loss of galaxies beyond ECO boundaries affects sample membership, this loss can also

affect our derived group halo mass estimates. To correct for this effect, we use the same logic

described above and apply a correction factor to each affected group halo mass based on the ratio of

the total group luminosity derived in the comparison catalog to the total group luminosity derived

in the ECO catalog. Applied group halo mass corrections range up to a maximum 0.06 dex increase

for the Coma Cluster.

3.4 Results

In this section, we explore trends in galaxy properties related to galaxy mass and environment,

using group halo mass as our primary indicator of environmental richness. The distribution of various

classes of ECO catalog galaxies in group halo mass versus galaxy baryonic, stellar plus atomic gas,
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Figure 3.11 Illustration of the traditional morphology-environment relation in the ECO and
RESOLVE-B samples. Early and late type frequencies as a function of group halo mass in (a)
ECO and (b) RESOLVE-B, with early and late type frequencies crossing over at Mhalo ∼ 1013.5M⊙

in the ECO sample. Greyscale dotted lines indicate the frequencies for central galaxies alone, which
become poorly determined at high halo masses due to the small number of high halo mass groups
(and thus centrals) present in the sample. In panel a, all frequencies are plotted at their “expected”
value given the calibrated uncertainties in our semi-quantitative morphology classification method,
described in §3.3.4. The error bars in this panel are plotted as a combination of the calculated
misclassification errors in each halo mass regime and the (binomial) counting statistics in each bin,
while those in panel b reflect only the relevant counting statistics (assuming zero misclassification).
Note that the early/late type frequencies for the two samples do not strictly agree in all bins, par-
ticularly near Mhalo ∼ 1012M⊙. Applying the quantitative classification approach to RESOLVE-B
results in frequencies that more closely agree with the frequencies in ECO, although slight residual
differences remain, perhaps resulting from group-to-group variations in typical properties.

mass parameter space can be seen in Fig. 3.10. Results derived from the density field are qualitatively

similar to results derived from group halo masses, except as discussed in this section.

3.4.1 Traditional Morphology-Environment Relation - P(M|E)

As seen in Fig. 3.11a for the traditional formulation of the morphology-environment relation

(frequency of a particular morphology as a function of environmental richness), the ECO sample

displays the expected increase in early-type and decrease in late-type frequencies as a function of

increasing environmental richness, here represented by increasing group halo mass. Near group halo

mass ∼ 1013.5M⊙, we observe a crossover point where early and late type frequencies become ap-

proximately equal. The frequencies in the more complete RESOLVE-B sample, where morphological

classifications are entirely based on by-eye judgments, do not strictly agree with the frequencies in

ECO, particularly around Mhalo ∼ 1012M⊙ (see Fig. 3.11b). If we apply quantitative classification

methods to RESOLVE-B, we find frequencies that more closely but not completely agree with the

frequencies in ECO. Variations in morphological mixtures between groups at fixed halo mass could
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Figure 3.12 Illustration of morphology-environment relations in the ECO sample for separate high-
mass (Mbary > 1010M⊙) and low-mass (Mbary < 1010M⊙) galaxy subsamples, indicated by thick
and thin lines, respectively. Since few high mass galaxies inhabit halos below ∼ 1012M⊙, we do
not plot the frequencies for high mass galaxies below this point. While the trends are qualitatively
similar over most of the group halo mass range, the relations have different amplitudes for the low
and high galaxy mass samples.
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Figure 3.13 Halo mass distribution for early and late type galaxies in the ECO sample, with cor-
responding grey dashed lines indicating the distribution for group central galaxies of each type.
Panel a shows all early and all late types together, and panel b breaks down the early types further
by red and blue sequence membership. Approximately 40% of ECO early type galaxies occupy
Mhalo < 1012M⊙ environments, approximately 25% of which are blue early types.

also plausibly contribute to differing morphological mixes in these two samples. If we divide central

and satellite galaxies, we find that central and satellite morphology-environment trends are similar

to each other in both samples, where the satellite galaxy trend (not shown) closely follows the com-

bined trend in Fig. 3.11a/b. If we examine the traditional morphology-environment relation for low

and high baryonic mass (divided at Mbary = 1010M⊙) galaxies separately, we qualitatively recover

the expected early-/late-type frequency trends as a function of halo mass, with the low and high

baryonic mass relations offset overall and relatively flat except at the highest halo masses we sample

(see Fig. 3.12).

3.4.2 Alternative Morphology-Environment Relation - P(E|M)

Considering an alternative formulation of the morphology-environment relation, the probability

for a galaxy with a given morphology to inhabit a particular environment, we observe changes in early

type population demographics at two low halo mass scales of potential interest. In ECO, we find that

the majority of late-type galaxies occupy Mhalo < 1012M⊙ environments (see Fig. 3.13a), which is

not a surprising result given the form of the traditional morphology-environment relation. However,

it is also apparent from this figure that ∼40% of early-type galaxies occupy Mhalo < 1012M⊙

environments as well.

As seen in Fig. 3.13b, many early types in the lowest density environments are blue-sequence

early types. These blue early types start to become more common below Mhalo ∼ 1012M⊙ and

become comparable in numbers to red early types only below Mhalo ∼ 1011.3M⊙. Blue early types
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Figure 3.14 Variation in blue early type galaxy frequency as a function of stellar mass in the ECO
sample. The solid line indicates the frequency of blue early types as a fraction of early types only,
while the dotted line indicates their frequency as a fraction of all galaxy types. Frequencies are
plotted at their expected values given the calibrated uncertainties in our semi-quantitative morphol-
ogy classification method, described in §3.3.4. Error bars shown are a combination of the estimated
misclassification errors and the (binomial) counting statistics in each bin.

with baryonic masses large enough to meet our mass limit are primarily central galaxies in this

low group halo mass regime and primarily satellite galaxies in richer environments (see Fig. 3.10).

However, since satellite blue early types with masses below our survey limit could also populate the

low mass halos, we cannot yet quantify the balance between blue early type centrals and satellites in

these environments. Fig. 3.10 shows that blue early-type galaxies appear to have similar environment

distributions to blue late-type galaxies overall, but blue early types display a much more pronounced

preference for the lowest group halo mass environments. As calculated with the Kolmogorov-Smirnov

(K-S) test, the group halo mass distributions of blue early and blue late types in Fig. 3.10 are

incompatible with having the same parent distribution (Psame ∼ 10−4).

We find that blue-sequence early-type galaxies are not only most common in low halo mass

environments but at low stellar masses as well, both of which are regimes where extreme gas richness
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is typical. As was previously found by KGB, we observe that the blue early-type galaxies in ECO

become more common with decreasing stellar mass (see Fig. 3.14). These galaxies only emerge in

ECO with measurable frequency around the galaxy bimodality mass (Mb ∼ 1010.5M⊙) and increase

in frequency significantly below M∗ ∼ 1010M⊙. This behavior is similar to that observed in KGB,

where the blue early-type population increases sharply below M∗ ∼ 109.7M⊙, the “gas-richness

threshold” mass. Our observed frequency transition is somewhat less sharp than that observed by

KGB, but it is plausible that any sharp transitions could be washed out by the error rates inherent in

our semi-quantitative classification method. Our absolute frequencies are similar to those reported by

KGB, although not in strict agreement within our error bars. If similarly large error bars on the KGB

frequencies are assumed, then the two trends would agree overall. Thomas et al. (2010) have also

observed an increasing frequency of “rejuvenated” early-type galaxies with decreasing galaxy mass

(and environmental density), reaching a maximum of ∼45% of the early-types, which is similar to

our observed maximum frequency. This observed low-mass preference implies that mass-dependent

mechanisms are closely tied to the rise of the blue-sequence early-type population. We note that the

typically low stellar mass nature of blue early-type galaxies appears linked to the typically low group

halo mass environments they inhabit. At M∗ ∼ 1010M⊙, the typical baryonic mass for a galaxy is

∼ 1010.1M⊙, which from Fig. 3.10 corresponds to a typical halo mass of ∼ 1011.5M⊙ for centrals.

The P(E|M) formulation of the morphology-environment relation clearly reveals different pre-

ferred environment regimes for galaxies broken down by mass as well as morphological type and

color. Comparing the halo mass dependences in Fig. 3.15a reveals a possible “inverse morphology-

environment relation” (as suggested by KGB), wherein blue early type galaxies below M∗ ∼ 1010M⊙

inhabit environments of similar or lower richness than the environments occupied by blue late type

galaxies at the same stellar mass. Fig. 3.15a seems to show that the typical environment richness of

blue early type centrals below M∗ ∼ 1010M⊙ is lower than that of blue late type centrals at fixed

stellar mass. However, the typical environments of blue early type and blue late type satellites are

not clearly distinct given the large error bars on the typical values for blue early type satellites.

Moreover, if we correct for the contribution of atomic gas mass, which can be a significant mass

component in many low stellar mass galaxies, and instead compare these populations at constant

baryonic mass, we find that Mbary . 1010M⊙ blue early and blue late types occupy typically similar

environments, for both centrals and satellites (Fig. 3.16). The lack of a morphology-environment re-

lationship among central galaxies also holds if we consider all early types and all late types together.

Showing a similar lack of morphology-environment trend, the traditional morphology-environment
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Figure 3.15 Characteristic distribution of halo mass as a function of stellar mass for different galaxy
types. Solid lines indicate the running median group halo masses for centrals of each galaxy type,
while dashed lines indicate the medians for satellites of each galaxy type. Error bars for each median
point are estimated from the dispersion in properties in each bin. The background greyscale levels
indicate the probability of inhabiting a particular halo mass at a given stellar mass, as the histogram
densities used to set the greyscale have been normalized to one in each stellar mass bin (darkest
points imply the highest probabilities).
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Figure 3.16 Characteristic distribution of halo mass as a function of baryonic mass for different
galaxy types, with symbols and lines analogous to Fig. 3.15.
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relation for low baryonic mass (Mbary < 1010M⊙) galaxies alone is approximately flat until group

halo masses above ∼1013M⊙ (see Fig. 3.12), where low baryonic mass galaxies are typically satel-

lites. Accordingly, in the P(E|M) formulation, we find that a morphology-environment relation

re-emerges for low baryonic mass satellites: early-type satellites typically occupy higher group halo

mass environments than late-type satellites at constant baryonic mass.

Even though low mass blue early and blue late types occupy environments that are typically

similar, their full environment probability distributions at a given mass may not necessarily be the

same. In this case, we find K-S test Psame ∼ 0.01 for the group halo mass distributions of Mbary .

1010M⊙ blue early and blue late types, where the blue late type environment distribution appears

to be broader, indicating greater environmental diversity at fixed mass. Considering environmental

density values (smoothed on ∼1.43 Mpc scales), we find that the typical densities around Mbary .

1010M⊙ blue early-type centrals are lower than those of late types until Mbary ∼ 109.5M⊙ where

they again become similar (see Fig. 3.17a). If number density is more sensitive to major mergers

than group halo mass, then this tendency towards somewhat lower environmental densities could

be consistent with blue early-type centrals existing as post-merger objects with their number of

neighbors reduced by merging. As with group halo masses, blue early-type and blue late-type

satellites have similar typical densities in the Mbary . 1010M⊙ regime, and the overall blue early

and blue late type density distributions in this mass regime have a Psame ∼ 0.07 as quantified with

the K-S test.

3.4.3 Extreme Gas Richness and Environment

Considering ECO+A galaxies of all types together, Fig. 3.18 shows that the fraction of gas-

dominated galaxies (i.e., those with MHI/M∗ > 1) is a strong function of environment in general.

The shape of the trend differs as a function of group halo mass compared to smoothed density field

values: the halo mass relation displays a relatively smooth rise in gas-dominated galaxy frequency

with a steep rise below ∼ 1011.4M⊙, whereas the density relation shows an overall smooth rise in

gas-dominated galaxies toward lower densities (compare Figs. 3.18a and 3.18b). The sharp increase

in the frequency of extreme gas richness in our sample below Mhalo ∼ 1011.4M⊙ marks this as a

regime where fractionally large gas reservoirs become a common feature of galaxies. Furthermore,

we see that central galaxies are primarily responsible for the sharp increase in gas-dominated galaxy

frequency with halo mass, within the baryonic mass limits of our sample (see Fig. 3.19).

If we consider the typical MHI/M∗ values as a function of environment for individual galaxy
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Figure 3.17 Characteristic distribution of environmental density (∼1.43 Mpc smoothing kernel) as a
function of baryonic mass for different galaxy types, with symbols and lines analogous to Fig. 3.15.
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Figure 3.18 The environment-dependent frequency of HI gas-to-stellar mass ratios greater and less
than one for ECO+A galaxies. The vast majority of ALFALFA α.40 derived HI limit values for ECO
galaxies are sufficiently strong to place these galaxies in either the MHI/M∗ > 1 or MHI/M∗ < 1
category, but for any limit values found in the MHI/M∗ > 1 category, we replace these values
with photometric gas fraction estimates as described in §3.3.7. If we leave the limit values in place
and use no photometric gas fraction estimates, we still find trend lines that are within the error
bars of the trends shown here. Confused sources in the ECO+A sample have been omitted. Panel a
illustrates the sharp uptick of the gas-dominated galaxy frequency at low group halo mass, and panel
b illustrates the smoother increase in gas-dominated galaxy frequency as a function of environmental
density.

types in the full ECO sample, we find that in low halo mass environments blue early types display

MHI/M∗ values that are comparable or somewhat lower than those of blue late types (see Fig. 3.20).

We also observe that gas-dominated blue early types, with HI gas-to-stellar mass ratios > 1, are

found almost entirely in low halo mass environments (see Fig. 3.21), becoming most common below

a group halo mass of ∼ 1011.5M⊙, where they are primarily group centrals (although again, any

satellites would likely fall below our mass limit).

From Fig. 3.20, we find that satellite galaxies display typically higher gas-to-stellar mass ratios

than centrals at fixed morphology, color type, and halo mass. The exceptions are blue late and red

early types in the richest environments. It is somewhat surprising that higher satellite gas content

appears to persist for red late types in rich environments where satellites are typically expected to be

quenched, but we stress that in this gas-poor regime, many of our HI gas masses are estimated using

optical colors. This photometric gas fraction technique is likely unreliable in dense environments

(Cortese et al. 2011). Considering smoothed density field values results in trends that are similar to

but weaker than the group halo mass trends illustrated in Fig. 3.20.
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Figure 3.19 The frequency of HI gas-to-stellar mass ratios greater and less than one for ECO+A
galaxies alone, plotted as a function of group halo mass for central (thick lines) and satellite (thin
lines) galaxies separately. Confused sources in the ECO+A sample have been omitted. Since ECO
contains relatively few satellite galaxies in Mhalo . 1011.5M⊙ environments, we refrain from plotting
satellite frequencies in this regime. Since ECO contains relatively few centrals above Mhalo &

1013.5M⊙, we likewise refrain from plotting central frequencies in this regime. Gas-dominated galaxy
fraction increases significantly for low group halo mass central galaxies, particularly at Mhalo .

1011.5M⊙.
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Figure 3.20 Characteristic distribution of HI gas-to-stellar mass ratio as a function of group halo
mass for different galaxy types. HI gas masses are derived as described in §3.3.7. Symbols and lines
are analogous to Fig. 3.15 except that in the upper left panel, all satellite median lines have been
shifted upwards by the same amount for clarity.
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Figure 3.21 Halo mass distribution for blue early type galaxies in the ECO sample with different levels
of HI gas. Corresponding greyscale dashed lines indicate the distribution for group central galaxies
of each type. HI masses are derived as described in §3.3.7. Gas-dominated blue early types and
blue early types with moderate gas-to-stellar mass ratios primarily inhabit environments with group
halo masses below ∼ 1012M⊙, with ∼65% of gas-dominated blue early types in Mhalo . 1011.5M⊙

environments.
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Figure 3.22 Frequency and gas content of early-type UV-B disk hosts in the ECO+G sample. The
magenta line indicates the frequency of UV-B disks in early types as a function of group halo mass,
and the grey dashed line indicates UV-B disk frequency among early-type centrals alone. The inset
shows the distribution of HI gas-to-stellar mass ratios for UV-B and non-UV-B early types. HI gas
masses are derived as described in §3.3.7. A strong preference towards higher gas-to-stellar mass
ratios is observed for early-type UV-B disk hosts.
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3.4.4 UV Disk Growth and Environment

In the ECO+G subsample, we find that UV-B disks are relatively common (Fig. 3.22), occurring

with 34+1.5
−1.4% overall frequency. Fig. 3.22 shows that UV-B disks in early types rise from a few

percent to ∼30-40% with decreasing group halo mass. The frequency of UV-B disks among early

types in the low group halo mass regime is consistent with the reported UV-B disk frequencies of

Moffett et al. (2012) for early-type galaxies in a low-to-intermediate stellar mass sample. UV-B disk

frequency among early type galaxies rises sharply below Mhalo ∼ 1011.5M⊙, approximately the same

halo mass scale below which blue-sequence early types and gas-dominated galaxies emerge. Within

our sample mass range, UV-B disk early types below Mhalo ∼ 1012M⊙ are typically central galaxies,

but additional satellite UV-B hosts with lower masses could also exist in these environments. Early

type galaxies hosting UV-B disks show a strong tendency to host larger HI gas reservoirs than

galaxies without UV-B disks (K-S test Psame ∼ 10−13; see Fig. 3.22), in agreement with results from

Moffett et al. (2012) for low-to-intermediate mass early type galaxies. Overlapping in their typically

gas-rich, low group and galaxy mass nature, blue-sequence early-type galaxies are often UV-B disk

hosts, with 69+6
−7% of blue-sequence E/S0s in the full ECO+G subsample hosting UV-B disks, or

80+5
−9% in the low baryonic mass regime below ∼ 1010M⊙.

3.5 Discussion

In this section, we compare our results on relationships between galaxy properties and environ-

ments to previous results in the literature and to galaxy evolution scenarios.

3.5.1 Morphology-Environment Relations

Comparisons to Previous Results

In general, we find that in the traditional P(M|E) morphology-environment relation formulation,

our measured early and late type frequencies behave in a manner similar to that observed in previous

studies of this relation, for example, with late-type galaxy frequencies decreasing from ∼80% in the

least rich environments to much smaller frequencies in the most rich environments (e.g., Dressler

1980; Postman & Geller 1984; Whitmore et al. 1993). Examining early-/late-type frequencies as a

function of group halo mass specifically, both Bamford et al. (2009) and Hoyle et al. (2012) find

approximately constant frequencies in the high group halo mass regime (& 1013M⊙), which we do

not observe in the ECO sample. In addition to their default estimates for group mass based on
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virial radius measures, Bamford et al. (2009) specifically test the use of summed luminosities as

a proxy for group mass, using a definition close to that we employ, and find a very slightly more

pronounced trend in the early-type fraction with this proxy, although still weaker than our trend.

Similarly, Poggianti et al. (2009) find no significant frequency trend with cluster velocity dispersion

but do find a trend with another proxy for group halo mass, X-ray luminosity. We note that the

typical galaxy masses considered by these authors are higher than those considered in ECO, and

when restricting to Mbary > 1010M⊙ galaxies alone, our early-/late-type frequency trends at the

highest halo masses are relatively weak given the large error bars, except in the highest mass bin (see

Fig. 3.12). Calvi et al. (2012) also find variations with galaxy mass, with their intermediate stellar

mass galaxies showing similar morphological mixes in all environments except in the most massive

clusters, which is compatible with the behavior of our Mbary > 1010M⊙ subsample. Bamford et al.

(2009) likewise report that the form of the morphology-environment relation is strongly dependent

on the stellar masses of the galaxies considered, with shifts in the overall frequency levels between

subsamples. We find trends similar to the Bamford et al. results, where morphology-environment

relations are similar in shape but offset between low and high mass subsamples in the sense that

late-type frequencies are typically higher among low-mass galaxies (see Fig. 3.12). This offset may

imply that for Mbary < 1010M⊙ galaxies, disks are either destroyed less frequently or regenerated

more frequently than for higher mass galaxies.

Morphology-Environment Relations and Disk Regrowth

We next consider the specific question of whether or not morphology-environment relations op-

erate in a manner consistent with the presence of disk regrowth. If morphological transformation

operates primarily towards the destruction of disks in certain regimes but towards both the destruc-

tion and regrowth of disks in others, we would expect the balance of galaxy morphological types to

differ in these regimes. In a scenario where large-scale gas accretion, whether arriving cold or hot,

can fuel disk regrowth, the significance of such accretion is typically theorized to depend on the halo

mass of the group in which a galaxy resides (e.g., Birnboim & Dekel 2003; Kereš et al. 2005; Nelson

et al. 2013). Thus, in such a scenario, the balance of galaxy morphological types might naturally

be expected to shift as a function of group halo mass. As previously mentioned, in the traditional

morphology-environment relation, P(M|E), we observe a changing balance between early and late

types as a function of group halo mass, in the sense that late types become more prevalent with de-

creasing halo mass. This trend is the sense in which the early/late type balance would be expected to
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vary if disk regrowth were to preferentially occur at low group halo mass, however it is also certainly

the sense in which one would expect the relation to vary if disks are typically destroyed/quenched at

high but not low group halo mass. Thus, while consistent with a halo-mass dependent disk regrowth

scenario, the observed traditional morphology-environment relation does not clearly constrain its

existence. We also note that the balance between early- and late-type frequencies we observe in the

ECO sample varies relatively smoothly as a function of group halo mass, as has often been observed

by other authors. This smooth variation could indicate a lack of sharp transitions in the onset of

morphological transformation processes at particular mass scales, but alternatively it could imply

that the traditional relation, in lumping all early and all late types together, washes out possible

sharper trends that may occur for subpopulations of galaxies.

Considering this question from the perspective of an alternative formulation of the morphology-

environment relation, P(E|M), another expectation of the disk regrowth model emerges. If disk

regrowth were to proceed from blue early to blue late types in a particular regime, then the typical

environments of blue early and blue late types in that regime should be similar as these galaxies

would represent snapshots of pre- and post-transition states. Such behavior was hinted at in the

observation of a possible “inverse morphology-density relation” at low stellar masses by KGB. As

illustrated in Figs. 3.16 and 3.17, we find that blue early and blue late type galaxies in the low

baryonic mass regime below ∼ 1010M⊙ inhabit environments with similar typical group halo masses

at constant baryonic mass and with typical environmental densities of blue early types similar or

slightly lower than those of blue late types. The P(E|M) formulation of the morphology-environment

relation then appears to be consistent with the scenario of disk regrowth in the low baryonic mass

regime. If gas accretion adds to both galaxy baryonic and overall halo mass during the regrowth

process, individual galaxies could move along the Mhalo vs. Mbary relation, but relatively significant

changes in typical population properties would be necessary to make the blue early and blue late

type populations distinct in this space given the scatter within each population. The slight trend

towards lower number density environments for blue early types compared to blue late types possibly

points to a post-merger status for blue early types. In the spirit of the alternative formulation of the

morphology-environment relation, consideration of the typical environments of various subclasses of

galaxies leads to further insights regarding environmental thresholds in disk growth as discussed in

the next section.
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3.5.2 The Regime of Extreme Gas Richness and Recent Disk Growth

We have presented multiple results that add up to the impression that extremely gas rich galaxies

and those potentially regrowing disks are preferentially found in the low group halo mass (Mhalo .

1011.5M⊙) and low galaxy mass (Mbary or M∗ . 1010M⊙, near the “gas-richness threshold” stellar

mass at M∗ ∼ 109.7M⊙) regime. We note that this regime is approximately defined, as in some cases

we observe a continuum of galaxy properties in our sample, whereas in others, typically involving

central galaxies, we see more abrupt transitions in properties between well-defined regimes. We find

that ECO catalog blue-sequence early-type galaxies become most common in this low mass regime

(see Fig. 3.14) and that blue early types with large gas fractions (MHI/M∗ > 1) also occur most

commonly below a group halo mass of ∼ 1011.5M⊙ (see Fig. 3.21). This group halo mass regime

is also where extreme gas-to-stellar mass ratios commonly emerge in our sample, with a relatively

sharp uptick as can be seen in Fig. 3.18. Likewise, we find that early-type galaxies most commonly

host recent, UV-detected star formation in the form of UV-B disks in this low group halo mass

regime (see Fig. 3.22). Such UV-B disk host galaxies also tend to be more gas rich than those

galaxies without UV-B disks. Moreover, we find that the majority of low-mass, blue-sequence early

types in our ECO+G subsample host UV-B disks.

A possible explanation for this constellation of results is that this low galaxy mass and low group

halo mass region of parameter space represents a preferred regime where gas is abundantly available

to galaxies, fueling star formation that allows many early types to live on the blue sequence, develop

UV-B disks, and potentially even regrow larger disk structures. The existence of such a gas and

star formation rich regime could be a symptom of a large-scale cosmological accretion process that

is particularly efficient at supplying gas into galaxies at low mass scales. One such theorized process

is “cold-mode” gas accretion, thought to preferentially act at group halo mass scales below this

∼ 1011.5M⊙ mass scale at z ∼0 (e.g., the ∼ 1011.3 − 1011.5M⊙ scale of Kereš et al. 2005; Kereš

et al. 2009). This model has recently been challenged by simulation results using the AREPO code,

which imply that cold-mode accretion is not as significant for galaxies residing in low mass halos as

previously thought, however these results suggest that accretion of heated gas is a more significant

contributor in this regime, causing the level of gas accretion into low mass halos to remain high

(Nelson et al. 2013). As seen in the simulations of Zehavi et al. (2012), from z ∼1 to the present the

bulk of the stellar mass growth in low-mass halos (Mhalo . 1012M⊙) is still due to star formation,

while in high-mass halos, such growth is mainly due to mergers.

Within the galaxy baryonic mass range we consider, we find that blue early-type and UV-B
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disk host galaxies are typically centrals in the Mhalo . 1011.5M⊙ regime (see Figs. 3.13b and 3.22).

We also find that the strong uptick in gas-dominated galaxy fraction in this regime is primarily a

central galaxy phenomenon, which may point towards accretion fueling of central galaxies in these

environments (see Fig. 3.19). However, we also note that in the lowest halo mass environments

we probe there are relatively few satellite galaxies within our baryonic mass range, and therefore

it is plausible that gas-dominated, disk-growing satellites with lower masses could be common in

such environments as well. From simulations, typical z ∼0 gas accretion rates for satellite galaxies

may be lower than for central galaxies (e.g., Kereš et al. 2009), but gas accretion may still play an

evolutionarily significant role for satellites (e.g., Dekel & Birnboim 2006; Simha et al. 2009).

3.6 Conclusions

In this work, we have considered two primary galaxy samples, the Environmental COntext

(ECO) catalog, and the B-semester region of the REsolved Spectroscopy Of a Local VolumE (RE-

SOLVE) survey. Both samples reach into the high-mass dwarf galaxy regime and span a variety

of environments, with the larger ECO catalog sample including the greatest environmental diver-

sity. Through comparison to the more complete RESOLVE-B catalog, we apply corrections for

incompleteness effects in ECO, creating an approximately baryonic mass limited catalog down to

109.3M⊙. In this analysis, we have employed high-quality, custom-reprocessed optical, near-IR, and

UV photometry along with morphological classifications, atomic gas mass estimates, and multiple

metrics of galaxy environment.

Our key results are as follows.� We observe a traditional morphology-environment relation, P(M|E), similar to the expected

form but with offset amplitudes between the low and high baryonic mass galaxy samples in

the sense that late types are more common at low mass.� We find the form of the traditional morphology-environment relation to be consistent with

the scenario that morphological transformation from early to late types (disk regrowth) could

occur in a preferred low group halo mass regime, although this relation does not strongly

constrain the existence of this scenario.� We consider an alternative form of the morphology-environment relation, P(E|M), which is

instructive as a way of quantifying the typical environments of galaxies of various classes. This

formulation leads to the observation that typical blue early-type and blue late-type galaxy
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group halo masses are similar at constant baryonic mass, which is again consistent with ex-

pectations from the disk regrowth scenario. Likewise, the typical environmental densities of

blue early types are similar or slightly lower than those of blue late types at constant baryonic

mass, potentially reflecting a post-merger state for blue early types.� The P(E|M) formulation of the morphology-environment relation also reveals that for Mbary .

1010M⊙ centrals, there is no discernible relationship between group halo mass and morphology:

the typical halo masses for all early types and all late types are the same.� We find that the low group halo mass regime below ∼ 1011.5M⊙ is associated with the emer-

gence of blue-sequence early types, gas-dominated galaxies, and early-type UV-Bright disk

hosts as common contributors to galaxy populations. These three sub-populations are closely

linked in this regime, implying the low group halo mass regime is a preferred regime for ongoing,

significant disk growth.

These results lend strong support to the idea that theorized morphological transformation from

early to late types can occur, particularly where galaxy and group halo masses are low. To inves-

tigate even more direct signatures of disk regrowth, we next turn to the examination of detailed

early-type galaxy kinematics in the context of the RESOLVE survey, where the availability of such

kinematic information combined with the type of environmental information considered here creates

a unique opportunity for understanding the connection between galaxy properties on small and large

scales.
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Table 3.1. ECO Sample Properties

Gal. ID RA Dec cz Mr logM∗/M⊙ (u − r)e (u − J)m R50% R90% M FM Grp. ID Grp. cz FC logMhalo/M⊙ Dens. FA FHI FG CC
(deg) (deg) (km/s) (′′) (′′) (km/s)

ECO5536 130.689 28.521 5552.5 -18.82 9.17 1.12 2.67 5.1 11.6 L 1 5476 5557.0 1 11.29 0.61 0 1 0 1.05
ECO0486 130.781 18.222 6170.1 -20.33 10.19 1.59 3.68 14.3 29.2 L 2 1689 6170.1 1 11.55 0.48 0 1 0 1.02
ECO5668 130.922 28.623 5561.4 -18.36 8.83 0.95 1.77 15.0 38.7 L 1 5476 5557.0 0 11.29 0.62 0 1 0 1.07
ECO1118 131.035 34.717 4193.7 -21.36 10.43 1.16 3.23 23.7 43.0 L 2 2122 4193.7 1 11.96 0.19 0 1 0 1.05
ECO4664 131.058 22.137 4668.2 -18.72 8.77 0.92 1.93 4.4 10.5 L 1 4711 4668.2 1 11.16 0.22 0 2 0 1.07
ECO6374 131.090 9.538 3904.9 -18.07 8.85 0.89 · · · 13.4 27.2 L 2 2221 3937.9 0 11.78 0.84 1 1 0 1.05
ECO1217 131.129 18.286 6136.3 -20.96 10.05 1.31 3.01 10.6 27.5 L 1 277 6143.7 1 11.93 0.58 0 1 0 1.05
ECO6369 131.135 9.166 3935.2 -18.38 8.97 0.90 2.62 9.6 19.6 L 2 2221 3937.9 0 11.78 0.78 1 1 0 1.05
ECO1312 131.178 9.801 3929.6 -18.87 9.27 1.04 2.73 12.5 27.5 L 2 2221 3937.9 0 11.78 0.86 1 1 0 1.04
ECO1413 131.182 10.472 3937.0 -19.80 9.43 1.19 2.37 22.1 47.2 L 2 2255 3937.0 1 11.40 0.82 1 1 0 1.04
ECO1562 131.316 9.646 3982.2 -20.59 9.81 1.40 2.40 18.3 38.6 L 1 2221 3937.9 1 11.78 0.85 1 1 0 1.00
ECO2728 131.317 27.824 6388.7 -20.27 9.27 1.16 0.86 31.3 52.8 L 1 3200 6388.7 1 11.53 0.55 1 2 0 1.01
ECO2729 131.357 32.949 6396.6 -19.75 9.65 1.15 2.81 9.4 18.5 L 2 3201 6396.6 1 11.38 0.17 0 2 0 1.03
ECO5247 131.368 36.731 6706.5 -18.65 9.05 0.98 2.13 7.6 15.5 L 2 5147 6706.5 1 11.15 0.25 0 1 0 1.05
ECO1497 131.408 36.935 3904.8 -20.51 10.15 1.19 3.38 5.9 18.4 E 1 2306 3904.8 1 11.60 0.32 0 1 0 1.01

Note. — A portion of Table 3.1 is shown here for guidance regarding its form and content; this complete table will be made available as a machine-readable file.
Velocities (cz) are given in local group corrected form. M indicates early or late type morphology, and FM is a flag that indicates the source of the classification:
1 for quantitative cut and 2 for by eye from Lintott et al. (2011). Group ID numbers, center velocities (local group corrected), central/satellite designations,
and halo masses are given by the Grp. ID, Grp. cz, FC (1 indicates central), and logMhalo/M⊙ columns. Dens. indicates normalized environmental density
smoothed ∼1.43 Mpc scales. FA is a flag with value equal to 1 where a galaxy belongs to the EC0+A sample. FHI is a flag indicating whether: (1) photometric
gas estimates or (2) gas measurements were used for each galaxy. FG is a flag with value equal to 1 where a galaxy belongs to the EC0+G sample. CC indicates
the completeness correction factor applied to each galaxy.

8
0



CHAPTER 4: SECONDARY DISKS AND DISK REGROWTH IN RESOLVE S0S

Early-type galaxies are predicted to regrow late-type disks in hierarchical models of galaxy

formation, but observational confirmation of this process has thus far been largely indirect. We

approach this problem kinematically by investigating direct evidence of disk regrowth in the form

of extended secondary disks in S0 galaxies. This project is currently a work in progress, and in the

following analysis, we use the data obtained for the project that currently exist in a final reduced

form.

4.1 Introduction

A variety of observational evidence, involving the detection of photometric signatures of star for-

mation and of gas reservoirs that fuel star formation, has recently emerged to support the predicted

occurrence of stellar disk regrowth around E/S0 galaxies (e.g., KGB; Wei et al. 2010; Donovan et al.

2009; Cortese & Hughes 2009; Thilker et al. 2010; Moffett et al. 2012; Stark et al. 2013). Kinematic

identification of disk regrowth signatures, through the presence of spatially extended secondary

stellar disks, should provide a more direct approach to probing the existence of this phenomenon.

However, the incidence of extended secondary stellar disks in early-type galaxies, as traced by the

presence of counterrotation, remains poorly constrained at present. Stellar-stellar counterrotation

was first discovered in the central regions of Elliptical galaxies (Bender 1988; Franx & Illingworth

1988; Jedrzejewski & Schechter 1988) and was subsequently found to occur in a spatially extended

sense in a number of individual early-type galaxies (e.g., Galletta 1996 and references therein). Kui-

jken et al. (1996) found a 24% frequency of gas-stellar counterrotation in 17 S0s, but in their full

sample of 28 (including 6 gas-stellar counterrotators), they found no stellar-stellar counterrotators

and estimated the incidence at <10%. Likewise, the SAURON project found little evidence for

extended stellar counterrotation in E/S0s, though Emsellem et al. (2007) identify kpc-scale kine-

matically decoupled cores (KDCs), believed to form in late-stage merger remnants. Over a primarily

lower mass range than either study, Kannappan & Fabricant (2001) found a 4/17 (24%) incidence

of gas-stellar counterrotation in E/S0s, and 3/4 of the gas-stellar counterrotators display probable

stellar-stellar counterrotation (KGB), implying that stellar-stellar counterrotation could be more
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common at low stellar masses where disk regrowth is thought to be most active.

The environment distribution of galaxies hosting stellar-stellar counterrotation is also poorly

constrained at present. However, since E/S0 disk regrowth may preferentially occur in low density

environments where large gas reservoirs are common (see Chapter 3), it is natural to expect that

stellar-stellar counterrotation could possibly display a similar environmental preference.

To examine direct kinematic signatures of stellar disk regrowth and constrain the incidence and

demographics of stellar-stellar counterrotation, we have carried out deep spectroscopy of a broad

sample of 59 S0 galaxies selected from a single volume-limited survey. We select our S0 sample to be

broadly distributed in stellar mass and environment, allowing us to investigate potential mass- and

environment-dependent rates of counterrotation. We also sample both red and blue S0 targets, since

color information can help to distinguish extended counterrotation associated with disk regrowth

from extended counterrotation that may be produced from specific merger conditions, as in the case

of NGC 4550 a red-sequence counterrotator that is thought to have formed in a coplanar merger of

oppositely rotating galaxies (Crocker et al. 2009).

In §4.2, we describe our sample, data, and analysis methods in detail. In §4.3, we report and

discuss results from this analysis, including our observed total extended stellar-stellar counterrotation

frequency of 25+12
−9 % and the absence of statistically significant trends in counterrotation incidence

with mass, environment, or color. In §4.4, we provide a brief summary and discuss avenues for future

inquiry.

4.2 Data and Methods

Throughout this analysis, we calculate distances according to D = cz/H0 and take the value of

the Hubble constant to be H0 = 70 km s−1 Mpc−1.

4.2.1 Sample

We select our sample from the REsolved Spectroscopy Of a Local VolumE (RESOLVE; Kan-

nappan et al., in prep.) survey, a volume-limited survey of two regions of space with a total volume

of ∼50,000 Mpc3 in the cz range 4500 km/s to 7000 km/s. RESOLVE probes galaxies down into

the high-mass dwarf regime, with a nominal baryonic mass limit of ∼109M⊙, which inhabit a di-

versity of environments. We consider for selection RESOLVE galaxies that exhibit S0 morphology,

i.e., a central bulge and smooth outer disk, as judged from Sloan Digital Sky Survey r-band images

(Abazajian et al. 2009) and agreed upon by two separate classifiers (AM and M. Norris). We further
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Figure 4.1 RESOLVE deep S0 spectroscopy sample in the parameter spaces of model color vs.
stellar mass (left panel) and group halo mass vs. stellar mass (right panel). Small grey dots show
all RESOLVE survey galaxies, and larger black dots indicate RESOLVE S0s eligible for the sample
selection considered here (see §4.2.1 for details). Red boxes indicate observed deep S0 spectroscopy
targets. Green filled boxes indicate identified stellar-stellar counterrotators, and red x’s indicate
targets with currently unknown counterrotation status due to either in-progress data reduction or
insufficient final data quality (see Table 4.1 for details). Targets with unknown status are omitted
from the calculation of all counterrotation statistics reported here.

require that our targets have photometrically estimated inclination angles <70◦ to avoid targeting

galaxies that are too face on for obtaining reliable rotation measurements and have Tully-Fisher

relation (Tully & Fisher 1977) estimated velocity width >120 km/s to avoid targeting galaxies for

which we cannot resolve split velocity peaks with our observations.

The original goal of this project was to observe 72 RESOLVE S0s that satisfy the aforementioned

criteria, allowing us to sample 3 separate bins in both environment and galaxy mass with 24 objects

per bin for analyzing mass or environment separately and 8 objects per bin for analyzing mass and

environment jointly. Due to weather- and instrument-related observing time losses, we have thus

far observed 59 unique S0 targets for this program. Within the constraints of available observing

time allocations, we have subselected targets from the potential RESOLVE S0 target pool in order

to simultaneously sample the diversity of RESOLVE S0s in stellar mass, environment (quantified by

group halo mass), and color parameters, where these values have been calculated according to the

methods described in §3.3. This sample is distributed broadly over the ranges occupied by eligible

RESOLVE S0s in mass, environment, and color parameters as illustrated in Fig. 4.1.

In this analysis, we consider a sample consisting of the 34 targets for which our final data

reduction is complete. However, we find that our data quality is sufficient to confidently classify

counterrotators using the methods described in §4.2.3 for only 24 of these targets. For 3 targets

(rs1148, rf0413, and rf0096), the data in hand have such low S/N that we refrain from analyzing
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them further here. For 2 of these targets, we have obtained less than half of the typical exposure time

sought for our program, and for the other target, additional observations will be needed to improve

the S/N to a usable level. For 7 targets we analyze that have currently uncertain counterrotation

status, the uncertainty is typically due to relatively poor spatial sampling of individual high S/N

binned spectra across the galaxy. For many of these targets, a confident counterrotation identification

may be possible by an optimized method that is less reliant on the existence of many individual

spatial sampling points, but for at least two targets (rs0328 and rs1228), additional observations are

likely necessary to obtain confident classification results. Of the 10 targets with reduced data but

uncertain classifications at present, 4 have had their S/N levels reduced by the presence of significant

scattered light in our observations (see §4.2.2). For 25 additional targets with observations we have

not yet reduced with our final pipeline, we believe our data quality will typically be high enough for

analysis and counterrotation identification, barring two questionable cases where the total exposure

times obtained are significantly below our usual exposure time objective (rs1190 and rf0455). In 14

of the not-yet-reduced observations that were taken in the early stages of this program, the data

have lower resolution than is standard for our later data. However, we believe these lower-resolution

data will be usable in our final analysis given appropriate treatment of the relevant counterrotation

detection limits. Thus, we believe that a total of up to 7 of our 59 targets may require further

observations in order to yield confident counterrotation classifications. The full details of our sample

and observations are summarized in Table 4.1.

4.2.2 Observations and Data Reduction

We have used the 4.1m SOAR telescope and Goodman Spectrograph (Clemens et al. 2004)

to carry out deep longslit or image slicer spectroscopic observations of our RESOLVE S0 sample.

Typical major axis exposure times of ∼2 hours, carried out primarily in “darkest” sky conditions

were necessary to measure stellar kinematics to sufficient galactocentric radii to identify extended

secondary disk structures in our targets. Our standard observing pattern involves multiple 1200s

major axis exposures with a comparison lamp spectrum between each exposure. To mitigate the

effects of atmospheric differential refraction (see Filippenko 1982), we confine our typical observations

to airmass <2 and further to airmass <1.2 for the broadest wavelength coverage observations (taken

in the 1200 l/mm grating setup; see Table 4.1). Strict airmass requirements combined with long

exposure times necessitates spanning most of our observations over multiple nights. On each night,

we take bias, flat field, and scattered light “pseudo-dark” calibration frames. These pseudo-dark
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calibrations are exposures taken in a dark dome with exposure times ideally matching the maximum

exposure times of our science frames and were needed during periods when stray light signatures

were observed in Goodman Spectrograph data. Since the level and structure of the stray light were

both constant over the course of a given observing night, except on A-semester 2011 nights as noted

in Table 4.1, subtracting these pseudo-dark calibration frames from the science frames in our data

reduction procedure allowed generally clean removal of stray light from our data.

Our instrumental setup was chosen to target a wavelength range covering 4500-5550 Angstroms

at minimum, allowing the examination of absorption line features that trace the stellar kinematics

(Hβ, Mgb, Fe5270 and Fe5335). Due to evolving capabilities of the Goodman Spectrograph, we have

used a variety of grating and slit combinations to achieve this wavelength coverage and our desired

resolution targets. Our typical instrumental setup used the Goodman Spectrograph’s 2100 l/mm

VPH grating and 1.03” longslit, with resulting typical FWHM resolution ∼1 Angstrom or equivalent

velocity resolution of σ ∼ 25 km/s. A wider 1.68” longslit was chosen for the most massive targets

so that their larger velocity widths could be similarly well sampled but observed more efficiently,

requiring less observing time per object. Before the 2100 l/mm grating was installed on the Goodman

Spectrograph, different longslits were chosen to approximate these same resolution constraints while

using a 1200 l/mm grating. Lower-resolution observations taken prior to the B-semester of 2010 will

also be used in forthcoming analysis for this project as appropriate (see full setup details in Table

4.1).

At the time of observation, initial binning in the spatial direction to ∼0.3” pixels was applied,

which is well within the typical minimum seeing of ∼1” on our observing nights. Further spatial bin-

ning is applied in post processing using an adaptive binning algorithm that bins together individual

spectral rows of our final reduced frames until a specified continuum S/N target is achieved. In this

analysis, we use a S/N target of 10 per Angstrom, estimated using the final error frames that result

from our data reduction procedure (see description below). Even though absorption line kinematics

studies often target S/N & 20, lower S/N levels are reasonable for the cross-correlation analysis we

perform (e.g., Kregel et al. 2004 and references therein), and several spatial sampling points are

averaged together when interpreting our velocity dispersion measurements. Each adaptively binned

spectral row we analyze is considered to lie at the galactocentric radius at which half its total flux

was reached.

Our data are reduced with a custom IDL pipeline developed for RESOLVE SOAR/Goodman
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spectroscopic data reduction, which consists of both customized IDL reduction routines and wrap-

per codes for standard IRAF routines. This pipeline has been optimized for processing Goodman

Spectrograph data taken in stock RESOLVE survey configurations, and minor modifications to the

pipeline procedures have been made to allow processing of our deep S0 data, with its variety of

configurations that differ from typical RESOLVE survey products. The data reduction procedures

include standard methods of overscan/bias subtraction, flat fielding, and wavelength calibration

along with custom methods of exposure alignment and stacking, spatial curvature rectification, and

sky subtraction originally developed by Kannappan (2001). We also apply cosmic ray removal using

the Laplacian cosmic ray identification algorithm of van Dokkum (2001, L.A.Cosmic), which allows

cosmic ray rejection even when insufficient numbers of exposures exist for rejection during the frame

stacking process. For data taken on observing nights with detectable stray light, we subtract a com-

bined pseudo-dark frame from the science frames. When pseudo-dark frames have been taken that

match the exposure times of the science frames, we subtract the pseudo-dark levels in these frames

directly, but otherwise we scale the pseudo-dark signal by the ratio of the science exposure time

to the pseudo-dark exposure time. After pseudo-dark subtraction, we inspect the resulting science

frames for under- or over-subtraction. If under- or over-subtraction has occurred based on the sim-

ple exposure time scaling of the pseudo-dark frame, we rescale the pseudo-dark frames accordingly

and repeat the subtraction procedure. This approach typically removes the stray light signal from

our data cleanly, adding only to our noise levels, except in cases noted in Table 4.1 where variable

stray light levels and/or structure yield low-level residuals in the science frames after pseudo-dark

subtraction.

We carefully track all sources of error associated with each final reduced science frame by com-

bining error frames that include the bias variations, Poisson errors on pseudo-dark levels (where

applicable), flat-field variations, and Poisson errors on signal in each science frame. The combined

error frame associated with each science frame is then transformed in the same manner as the data

when a wavelength solution is applied. The resulting error frame is also rectified in the same manner

as the data when the spatial curvature correction is applied. Individual error frames are aligned

and combined, adding in quadrature, to match the corresponding final stacked science frame. These

final error frames are used in our adaptive spatial binning procedure as previously described.
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4.2.3 Identification of Stellar-Stellar Counterrotation

To identify stellar-stellar counterrotation in our targets, we analyze the reduced, binned spectra

in multiple spatial sampling regions along each target’s major axis and extract stellar kinematics

from both template cross-correlation and spectral fitting methods. As template spectra, we use

the 0.55 Angstrom FWHM resolution stellar population synthesis models of Maraston & Strömbäck

(2011), based on the ELODIE stellar library (Prugniel et al. 2007) and using a Kroupa IMF (Kroupa

2001). We consider a grid of simple stellar population templates with [Fe/H] options -0.3, 0, and

0.3 and age options 0.1, 0.3, 0.5, 1, 1.5, 2, 3, 4...15 Gyr.

To extract the detailed stellar velocity profiles of our targets, we use the IRAF rvsao package and

the xcsao task (Kurtz et al. 1992) to cross-correlate our final spectra with the previously described

grid of template spectra in Fourier space. Emission line regions are removed from the spectra

and interpolated over in this analysis, and the continuum levels are also removed so that stellar

absorption lines are the basis for comparison between observed and template spectra. The xcsao

analysis yields a cross-correlation profile in velocity space, with peak height equal to the correlation

R value, at each spatial sampling point and for each template spectrum. We examine the cross-

correlation profile that results from comparison to the highest R value template spectrum in each

spatial sampling region and construct velocity profile plots (see leftmost panels of Figs. 4.2-4.17).

Galaxies that have counterrotating stellar components will display characteristic X-shaped structure

in the velocity peaks in such plots (e.g., as shown in Fig. 4.13).

To provide a quantitative basis for our identification of stellar-stellar counterrotation, we also

extract stellar rotation curve and velocity dispersion measurements by fitting template spectra to

our observed spectra using the penalized pixel-fitting method implemented in the pPXF routine

(Cappellari & Emsellem 2004). In this analysis, we mask regions of line emission from the input

spectra, and since pPXF is computation time intensive, we restrict our template spectra set to

full range of ages but only the [Fe/H] value that provided the best correlation with the central

region of each galaxy in the xcsao analysis. The pPXF routine is allowed to mix the template

spectra to create a composite population if such a population provides the best fit. To extract

kinematic information, pPXF shifts template spectra by possible velocities and broadens them by

possible velocity dispersions, fitting these templates to the observed spectra. We use the pPXF

output stellar velocity dispersion measurements and their error bars as the basis for our quantitative

counterrotator identification.

In a disk galaxy with a single rotating disk component, stellar velocity dispersion is expected
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to be greatest in the central galaxy bulge region and to decrease with increasing galactocentric

radius. When two significant extended counterrotating stellar disks are present, the stellar velocity

dispersion can instead be seen to remain similar to the central value or even increase further at large

radii. We define a “central” stellar velocity dispersion by the measurement-error-weighted average of

velocity dispersion measurements obtained inside the R50%/8 (r-band) radius for each galaxy and an

“outer” stellar velocity dispersion by the measurement-error-weighted average of velocity dispersion

measurements obtained outside the R50%/4 radius or the more extended R50%/2 radius, where such

measurements exist, for each galaxy. If the lower 1-sigma error bound of the outer stellar velocity

dispersion is greater than or equal to the central velocity dispersion for a given galaxy, then we

consider this galaxy to be a strong stellar-stellar counterrotator. The choice of central and outer

region radii are motivated by the velocity dispersion variations with radius we observe (see rightmost

panels of Figs. 4.2-4.17), where stellar velocity dispersion is typically at a maximum within R50%/8

and a minimum outside of R50%/4. We note that this quantitative identification method is also a

work in progress and classifies two targets (rs1300 and rs1079) as counterrotators even though they

do not display obvious X-shaped cross-correlation profile structure. This identification method may

be optimized further with future analysis, potentially including consideration of the degree to which

velocity profiles deviate from a Gaussian form.

4.3 Results and Discussion

Of the S0 targets for which we have final reduced data products in hand, we find that our

data quality is high enough to perform the aforementioned analysis and counterrotation identifi-

cation procedure, requiring multiple spatial sampling points across each galaxy, for 24 targets (see

detailed cross-correlation and velocity/dispersion profiles in Figs. 4.2-4.17). Of the 24 confidently

classified galaxies, we identify 6 targets that exhibit strong counterrotation signatures, satisfying

our quantitative counterrotation metric and typically displaying characteristic X-shaped patterns in

their velocity cross-correlation profiles (galaxies noted with green filled boxes in Figs. 4.1 and “C”

in 4.2-4.17; see also Table 4.1). Thus, we find the frequency of strong stellar-stellar counterrota-

tion among S0s in our sample to be 25+12
−9 %, which agrees with the stellar-stellar counterrotation

frequency results of KGB but not Kuijken et al. (1996).

As can be seen in Figure 4.1, these stellar-stellar counterrotators are broadly distributed in the

parameter spaces of color vs. stellar mass and group halo mass vs. stellar mass, although most appear

to inhabit low group halo mass environments. Considering each of these parameters individually,
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Figure 4.2 Stellar cross-correlation profiles (leftmost panels) plus rotation (center panels) and veloc-
ity dispersion (rightmost panels) measurements as a function of spatial offset from galaxy center for
observed targets in the RESOLVE deep S0 spectroscopy sample. The dashed horizontal red lines
indicate r-band R50% radii, and successive grey/black horizontal dashed lines indicate the R50%/2,
R50%/4, and R50%/8 radii. Large red square points on the rightmost panel indicate average central
and outer velocity dispersion values (with 1-sigma error bars) used for classification of counterrotat-
ing galaxies (see §4.2.3). Counterrotation status is indicated by red letters “C” (counterrotating),
“N” (not counterrotating), and “U” (uncertain) in the upper right corner of this panel.
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Figure 4.3 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.4 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.5 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.6 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.7 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.8 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.9 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.10 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.11 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.12 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.13 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.14 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.15 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.16 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.17 Cross-correlation profiles plus rotation/velocity dispersion measurements (cont.).
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Figure 4.18 Distribution of counterrotating and non-counterrotating RESOLVE S0s in stellar mass
(left panel) and group halo mass parameters (right panel). No statistically significant difference is
found between the mass or environment distributions of counterrotators versus non counterrotators.
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Figure 4.19 Distribution of counterrotating and non-counterrotating RESOLVE S0s in model color.
No statistically significant difference is found between the color distributions of counterrotators
versus non counterrotators.
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we find no statistically significant difference, as judged using the Kolmogorov-Smirnov test, in the

masses, environments, or colors of counterrotating galaxies compared to those that are not strongly

counterrotating (see Figs. 4.18 and 4.19). As two of our counterrotators lie on the relatively high

mass red sequence in color vs. stellar mass, a regime where star formation is typically quenched,

it is possible that these counterrotating systems represent the end stage of a merger rather than

true disk regrowth. However, nearly all of our counterrotators are found in low group halo mass

environments where the availability of abundant gas appears connected to disk growth (see Chap-

ter 3), potentially implying a gas accretion and subsequent in situ star formation origin for these

objects. Although this environment distribution is suggestive, our counterrotators do not display a

statistically significant preference for low group halo mass environments as a population. Similarly,

Bettoni et al. (2001) find no significant difference between the environment distribution of a hetero-

geneous literature sample of 29 known stellar-stellar counterrotators of all morphological types and

a non-counterrotating comparison sample, although they note that if any weak trend exists it is for

gas-stellar counterrotators to occupy relatively low density environments.

4.4 Conclusions

In this work, we have analyzed deep stellar kinematic observations of a broad sample of

RESOLVE S0 galaxies to look for signatures of stellar disk regrowth in the form of spatially ex-

tended secondary stellar disks. We find 6 strong stellar-stellar counterrotators in our sample, which

translates to a 25+12
−9 % counterrotation frequency. Compared to galaxies without strong counterro-

tation, we find that our stellar-stellar counterrotators display no statistically significant preference

for particular stellar mass, environment, or color regimes.

Completing the remainder of the data reduction for our target galaxies is clearly the next step

in improving the sample statistics, and additional observations may also be sought in the future to

improve the quality of some of the data in hand and bring our sample closer to its originally intended

size. To obtain better constraints on the demographics of stellar disk regrowth through secondary

disk detection, another important topic for future investigation is quantifying the limits of our abil-

ity to detect secondary disk components with a variety of masses, orientations, and characteristic

velocities. Some of our sample galaxies may potentially host secondary stellar disks that remain

undetected with the “strong counterrotation” metric considered here. Thus, an analysis that uses

model galaxies with diverse secondary disk configurations to generate synthetic data matching our

observational configurations is necessary to fully probe the parameter space of situations in which

106



secondary disk signatures may elude kinematic detection. Furthermore, such an analysis will allow

us to understand the extent to which secondary disk structures can be detected in standard lower

S/N RESOLVE survey data products, potentially allowing the investigation of both gas-stellar and

stellar-stellar counterrotation incidence in a much larger sample containing all galaxy morphological

types.
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da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National

Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC),

and Michigan State University (MSU).

107



Table 4.1 RESOLVE Deep S0 Spectroscopy Sample

Name log M∗/M⊙ log Mhalo/M⊙ (u − r)m Obs. Dates Setup FWHM Exp. Time CR Flag

A

rs1083 9.0 11.1 1.8 2011-04-30∗/2011-05-03∗/2011-05-29∗ 2100 l/mm + 1.03” LS 1.02 2.0 hr N
rf0130 10.5 13.3 2.1 2010-09-07/2010-09-08 1200 l/mm + 0.46” LS 1.23 2.0 hr N
rf0016 10.8 12.4 2.3 2010-09-07 1200 l/mm + 0.46” LS 0.99 1.3 hr N
rf0327 10.9 12.3 2.2 2010-09-07/2010-09-08 1200 l/mm + 0.46” LS 1.19 2.0 hr N
rs0205 11.0 12.6 2.2 2011-05-01∗ 2100 l/mm + 1.68” LS 1.21 1.0 hr N
rf0446 10.3 13.1 2.2 2010-10-07/2010-10-08 2100 l/mm + 1.03” LS 1.25 2.0 hr N
rf0402 10.5 13.3 2.1 2010-10-05/2010-10-06/2010-10-07 2100 l/mm + 1.03” LS 1.14 2.0 hr N
rs0250 10.4 11.7 2.2 2011-04-04/2011-04-03 2100 l/mm + 1.68” LS 1.22 2.0 hr C
rs0629 10.9 13.8 2.3 2011-04-30∗ 2100 l/mm + 1.68” LS 1.20 1.0 hr C
rs1201 10.8 12.6 2.5 2011-03-05 2100 l/mm + 1.68” LS 1.23 1.0 hr N
rs1300 10.6 11.9 2.3 2011-05-03∗/2011-04-04/2011-04-30∗ 2100 l/mm + 1.68” LS 1.24 2.3 hr C
rf0512 9.8 11.6 2.2 2010-10-07/2010-10-08 2100 l/mm + 1.03” LS 1.30 1.7 hr U
rs1282 10.2 11.6 2.1 2011-04-03/2011-03-05 2100 l/mm + 1.68” LS 1.24 2.0 hr N
rf0127 9.6 11.8 1.7 2010-10-05 2100 l/mm + 1.03” LS 1.12 0.7 hr C
rs1079 9.6 11.2 2.0 2011-04-03/2011-04-04 2100 l/mm + 1.68” LS 1.22 2.0 hr C
rs0328 8.9 11.1 1.4 2011-03-05/2011-03-04 2100 l/mm + 1.03” LS 1.06 2.0 hr U
rs0104 9.5 11.2 1.7 2011-04-04/2011-04-30∗/2011-05-03∗ 2100 l/mm + 1.03” LS 1.00 1.3 hr U
rs0005 9.9 11.4 2.2 2011-03-05/2011-04-03 2100 l/mm + 1.03” LS 1.04 2.0 hr U
rs0636 9.7 12.5 2.0 2012-04-20 2100 l/mm + 1.0” IS 1.02 1.7 hr N
rs0920 8.8 11.5 1.6 2011-05-29∗/2011-05-30∗ 2100 l/mm + 1.03” LS 1.04 1.7 hr N
rs1279 10.0 11.4 2.2 2011-04-30∗/2011-05-02 2100 l/mm + 1.68” LS 1.21 1.3 hr N
rs1081 9.1 12.6 1.8 2011-05-02/2011-05-03∗ 2100 l/mm + 1.03” LS 0.98 2.3 hr U
rs0014 10.0 11.5 2.1 2011-05-01∗/2011-05-02 2100 l/mm + 1.68” LS 1.20 2.0 hr C
rs0615 9.2 12.9 2.0 2011-05-03∗ 2100 l/mm + 1.03” LS 0.97 1.0 hr N
rs1228 9.3 12.9 2.1 2011-05-01∗/2011-05-02/2011-05-03∗/2011-05-30∗2100 l/mm + 1.03” LS 1.01 2.0 hr U
rf0052 9.2 12.5 2.0 2010-11-04/2010-11-05 2100 l/mm + 0.84” LS 0.98 2.0 hr U
rf0254 10.7 11.9 2.3 2010-10-06/2010-10-08 2100 l/mm + 1.03” LS 1.15 2.0 hr N
rf0346 11.2 13.4 2.2 2010-10-05/2010-10-07 2100 l/mm + 1.03” LS 1.24 2.0 hr N
rs0080 10.8 12.0 2.3 2011-04-03/2011-04-04 2100 l/mm + 1.68” LS 1.23 0.7 hr N
rs0642 10.7 13.8 2.3 2011-04-03/2011-04-04/2011-05-01∗ 2100 l/mm + 1.68” LS 1.26 2.0 hr N
rs0757 10.8 12.7 2.3 2011-05-03∗ 2100 l/mm + 1.68” LS 1.21 1.0 hr N
rf0094 10.9 13.2 2.1 2011-08-28 2100 l/mm + 1.35” LS 1.31 1.3 hr NR
rf0138 11.0 13.3 2.4 2011-10-26 2100 l/mm + 1.68” LS 1.60 1.3 hr NR
rs0612 10.9 12.9 2.1 2009-02-27 600 l/mm + 1.03” LS 4.31 2.0 hr NR
rs0688 11.2 12.9 2.3 2010-03-13 1200 l/mm + 1.03” LS 2.66 3.0 hr NR
rs0992 10.9 12.4 2.3 2009-04-19 600 l/mm + 1.03” LS 4.67 2.0 hr NR
rf0423 10.9 12.3 2.1 2010-09-07/2010-10-08/2011-10-26 1200 l/mm + 0.46” LS 1.21 2.0 hr NR
rs0113 10.3 11.5 2.2 2009-03-27 600 l/mm + 1.03” LS 4.50 2.0 hr NR
rs0155 10.5 12.1 2.1 2009-03-29 600 l/mm + 1.03” LS 4.56 2.0 hr NR
rs0253 10.5 11.7 2.3 2009-03-29 600 l/mm + 1.03” LS 4.56 2.0 hr NR
rs0282 9.7 11.4 1.7 2010-05-06/2010-05-07 1200 l/mm + 1.03” LS 2.47 3.0 hr NR
rs0595 10.1 11.8 2.2 2009-03-28 600 l/mm + 1.03” LS 4.54 2.0 hr NR
rs0784 10.5 11.8 2.3 2010-03-12 1200 l/mm + 1.03” LS 2.67 3.0 hr NR
rs0951 10.3 11.5 2.2 2010-04-10/2010-04-11 1200 l/mm + 1.03” LS 2.53 3.0 hr NR
rs1046 10.4 12.0 2.0 2009-03-27 600 l/mm + 1.03” LS 4.50 2.0 hr NR
rs1190 9.9 13.6 1.9 2012-04-19 2100 l/mm + 1.0” IS 1.05 1.0 hr NR
rs1196 10.1 11.4 2.3 2010-04-20/2010-05-07 1200 l/mm + 1.03” LS 2.44 3.0 hr NR
rf0234 9.3 12.3 1.9 2011-08-28/2011-10-26 2100 l/mm + 1.35” LS 1.28 1.7 hr NR
rs1148 9.3 13.6 1.9 2011-05-01∗ 2100 l/mm + 1.03” LS 1.21 0.7 hr U
rf0274 9.6 12.1 2.0 2010-10-08/2010-11-09/2011-10-26 2100 l/mm + 1.03” LS 1.16 1.3 hr NR
rs1292 10.0 11.4 2.0 2010-07-08 1200 l/mm + 1.03” LS 2.52 2.0 hr NR
rf0413 8.6 11.1 1.4 2010-10-07/2010-10-08 2100 l/mm + 1.03” LS 1.11 2.0 hr U
rf0455 9.3 11.1 1.7 2010-11-04/2010-11-09/2011-08-28 2100 l/mm + 0.84” LS 1.17 0.7 hr NR
rf0096 9.6 11.8 2.3 2010-11-04/2010-11-05 2100 l/mm + 0.84” LS 0.95 0.7 hr U
rs0131 10.8 12.0 2.3 2010-03-12/2010-03-13 1200 l/mm + 1.03” LS 2.56 3.0 hr NR
rs0517 9.5 11.3 1.6 2012-04-19 2100 l/mm + 1.0” IS 1.02 1.3 hr NR
rs0682 10.1 11.9 2.3 2012-03-25/2012-03-26 2100 l/mm + 1.0” IS 1.01 1.7 hr NR
rs0695 9.7 13.8 2.3 2012-04-19 2100 l/mm + 1.0” IS 1.02 1.7 hr NR
rs1174 10.0 13.6 2.3 2012-03-25/2012-03-26 2100 l/mm + 1.0” IS 1.01 1.7 hr NR

Summary of RESOLVE deep S0 spectroscopy sample properties and observations. ∗Observing nights on which variable stray light was present in
Goodman Spectrograph data, leaving low-level stray light residuals even after our pseudo-dark subtraction procedure. CR Flag column indicates
stellar-stellar counterrotation status, where “C” indicates a counterrotating galaxy, “N” indicates a non-counterrotating galaxy, “U” indicates a
galaxy with reduced data but uncertain counterrotation status due to insufficient data quality, and “NR” indicates a galaxy that currently lacks
final reduced data products enabling counterrotation analysis. Targets rs1148, rf0413, and rf0096 currently have reduced data of such low quality
that we refrain from including them in the counterrotation identification plots shown here.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

The results from this work provide observational support for the predicted disk regrowth process.

We find that recent disk growth in the form of UV-detected disks is surprisingly common in low

galaxy mass and low group halo mass E/S0 galaxies. Such UV disks represent relatively significant

growth (&10% by mass) and are also associated with large gas reservoirs that may continue to fuel

star formation. The low group halo mass regime below ∼ 1011.5M⊙ is associated with both frequent

gas and disk building activity, raising the possibility that such activity is linked to a low halo mass

threshold for effective gas accretion.

Two of the major methodological themes of this work are developing quantitative/automated

analysis methods and implementing strategies to mitigate systematics that may arise from automated

data processing and selection methods. Such considerations are of particular importance as our field

enters the era of big data, with increasingly large data streams mandating automated approaches to

data analysis. Only with careful attention to the optimization of such methods and their possible

systematics can we take full advantage of the opportunity to study ever larger statistical samples

and to develop a detailed accounting of the properties of galaxy populations that can confirm or

confront existing galaxy evolution theories.

In my future work, I intend to continue investigation of the link between gas/stellar disk growth

and gas accretion processes, focusing on observational tests of predicted gas accretion into galaxies

originating from large-scale filamentary structures. Testing this scenario requires the development

of new metrics of large-scale, filamentary environment for application in large galaxy samples like

ECO. In part due to the difficulty of identifying complicated filamentary structures in observed

galaxy distributions, the degree to which galaxy properties are shaped by their positions within

large-scale filamentary structure is an aspect of galaxy evolution that has not been well studied to

date. One potential approach to identifying filaments in observed catalogs is to modify a method

that performs well in identifying smaller-scale observed structures, e.g., the friends-of-friends algo-

rithm of Berlind et al. (2006), and quantify the degree of filamentarity of structures with Shapefinder

functions, measures of shape constructed from Minkowski functionals (e.g., Sahni et al. 1998). An
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alternative approach is to focus not on identifying individual filaments but on quantifying the fila-

mentarity of particular galaxy populations. Comparing the spatial distributions of galaxies that are

gas-dominated or disk-building with mock galaxy samples randomly distributed in space according

to only their known local environment preferences (as calibrated from Chapter 3) could allow deter-

mination of whether or not such populations have more filamentary distributions than are expected

from only local environment trends and chance alignments.

The newly created ECO catalog enables a multitude of other projects relating to the effects of

environment on galaxy evolutionary processes, both as a standalone sample and as a source for

the full environmental context surrounding RESOLVE. I am already involved with several ongoing

collaborations using ECO. These projects include the dissertation work of K. Eckert focused on

determining conditional galaxy mass functions and relating them to group halo mass, the dissertation

work of D. Stark focused on investigating the connection between gas accretion processes and large-

scale environment, and the senior thesis work of A. Baker focused on developing a new dynamical

group halo mass estimator. In general, I expect to continue work on the relationship between galaxy

evolutionary processes and environment with S. Driver and other members of the GAMA survey

team while at the University of Western Australia.

I also plan to follow up on a project for which new GALEX UV imaging data on a unique bar

and double ring galaxy that may represent a short-lived phase in the morphological transformation

process was obtained (program GI5-042, PI A. Moffett). I co-mentored undergraduate student D.

Bradley in a project focused on age dating features in this galaxy and identifying analogs in large

galaxy samples. This project yielded intriguing results on the rarity and interaction status of such

objects, motivating further investigation. A public outreach add-on grant to the GALEX program

also allowed us to collaborate with the Renaissance Computing Initiative and Morehead Planetarium

and Science Center to create an interactive educational display outside the UNC Remote Observing

Center that communicates multi-wavelength astronomy and galaxy evolution concepts as well as

results from our disk growth research.

Finally, I intend to continue work on the ongoing RESOLVE S0 secondary disk project, com-

pleting the reduction and analysis of data already in hand as well as creating synthetic galaxy

observations to fully quantify the degree to which secondary stellar disks are detectable in our deep

longslit data. Another goal is to use the S0 counterrotation data to separate and age-date the mul-

tiple disk stellar populations in counterrotators. I co-mentored undergraduate student C. Bradfield

in a project focused on performing such a decomposition for a test case, which will require further
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follow up to apply to larger galaxy samples.
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APPENDIX A: RESOLVE MORPHOLOGY CLASSIFICATION

RESOLVE survey galaxies have been morphologically classified by eye. This effort involved a

team of RESOLVE survey classifiers (S. Kannappan, M. Norris, A. Moffett, K. Eckert, D. Stark, J.

Burchett, K. Hall, A. Baker) who were first trained by classifying a set of galaxies with known types.

This training set consists of a sub-selection of the Nearby Field Galaxy Survey (NFGS, Jansen et al.

2000a,b) that was chosen to mimic the overall stellar mass distribution of the RESOLVE survey

galaxies. The NFGS galaxies were classified using a simplified de Vaucoleurs system. For training

purposes, the original NFGS typing images were blurred to mimic the effective resolution that would

be seen if these galaxies were placed at the far edge of the RESOLVE volume.

Monochromatic SDSS g-band images were used for the classifications and displayed through

a custom interface, allowing multiple image scaling and zoom levels to be viewed at once. The

classifiers were each paired with a partner such that every RESOLVE galaxy would be independently

classified twice, and a subset of representative training set galaxies were re-injected randomly into

the classification lists to check for systematic typing offsets and classification drift. In addition to

morphological classification, classifiers were asked to identify bars, rings, potential interactions, and

galaxies for which the inclinations made classification decisions difficult.

After each set of galaxies was classified, the results from paired classifiers were compared, and a

list of “discrepant” classifications was generated. We chose to define classifications as discrepant if

they disagreed by two full numerical morphological types or more in general or if they disagreed by a

tighter one-type limit in the important early-late type division regime or by one and a half types in

the Sa/b-Sc regime. This selection led to lists of ∼70-120 galaxies for which each classification pair

reconciled their classifications. Images for these galaxies along with the classifications previously

entered by each classifier were examined and discussed by the paired classifiers, resulting in a single

reconciled type for each discrepant galaxy.1 If the two classifications for a given galaxy were not

considered discrepant, the final morphological type was assigned by averaging the two assigned nu-

merical types. Analysis of the small subset of training sample re-classifications performed alongside

the RESOLVE classifications yields no evidence for systematic offsets with respect to the reference

types (typical offsets are within a single numerical type) nor for significant classification drift over

time (see Figs. A.1 and A.2). The apparent tendency towards classifying training set galaxies in

the Sa-Sb range as later types, as seen in Fig. A.1, appears to result from a small number of Sa-Sb

1Since some RESOLVE galaxies are sufficiently small that typical SDSS g-band resolutions do not allow detailed
structure, or even bulge vs. disk structures to be confidently distinguished, classifiers were also asked to note when
their classification decisions were adversely affected by insufficient resolution with a ’?’ flag.
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training set galaxies that legitimately resemble later-type spirals.
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Figure A.1 Comparison of training set galaxy classifications from re-injection into the RESOLVE
classification lists with NFGS reference types. Individual determinations from each classifier pair
are marked with different symbols, and their median offsets from the reference types are indicated
in the legend. The red line marks a one-to-one correspondence.
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Figure A.2 Illustration of the lack of systematic drift in the RESOLVE galaxy classifications over
time. The differences between NFGS reference types and classifications from their re-injection
into the RESOLVE classification lists are shown as a function of classification order. Individual
determinations from each classifier pair are marked with different symbols, and the red line marks
zero difference.
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Koopmann, R. A., & Kenney, J. D. P. 1998, ApJL, 497, L75

Kregel, M., van der Kruit, P. C., & Freeman, K. C. 2004, MNRAS, 351, 1247

118



Kroupa, P. 2001, MNRAS, 322, 231

Kuijken, K., Fisher, D., & Merrifield, M. R. 1996, MNRAS, 283, 543

Kurtz, M. J., Mink, D. J., Wyatt, W. F., et al. 1992, in Astronomical Society of the Pacific Con-
ference Series, Vol. 25, Astronomical Data Analysis Software and Systems I, ed. D. M. Worrall,
C. Biemesderfer, & J. Barnes, 432

Lacey, C., & Cole, S. 1993, MNRAS, 262, 627

Larson, R. B. 1969, MNRAS, 145, 405

Lemonias, J. J., Schiminovich, D., Thilker, D., et al. 2011, ApJ, 733, 74

Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782

Lewis, I., Balogh, M., De Propris, R., et al. 2002, MNRAS, 334, 673

Li, C., Kauffmann, G., Fu, J., et al. 2012, MNRAS, 424, 1471

Lintott, C., Schawinski, K., Bamford, S., et al. 2011, MNRAS, 410, 166

Maia, M. A. G., & da Costa, L. N. 1990, ApJ, 352, 457
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