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     ABSTRACT 

 
SCOTT HOWARD ENSIGN: The Biogeochemistry and Ecology of Tidal Freshwater 

Rivers 
(Under the direction of Michael Piehler and Martin Doyle) 

 
 
 Tides propagate up coastal rivers far upstream from the saline estuary, changing 

the direction and strength of river flow and the extent of riparian inundation over short 

time scales. This dissertation explores the effect of tides on river morphology and 

evolution, nitrogen cycling, and primary production.   I examined river hydraulics and 

channel morphology in the Newport River, N.C. to evaluate how tides change stream 

power and sediment transport.  Tides suppressed stream power in the upper tidal river but 

enhanced stream power in the lower tidal river.  Sediment transport increased from 

upstream to downstream along the tidal continuum.  These patterns suggested the 

mechanisms by which rivers evolve from non-tidal to tidal during sea level rise.  

Nitrogen removal in tidal rivers via denitrification is potentially affected by these spatial 

patterns.  Denitrification rates and the lag period prior to the onset of denitrification were 

measured in riparian habitats of the Newport River.  Temporal variation in denitrification 

over an 11 month period was greater than spatial variation within or between habitat 

types.  A 4.6 hr lag time between floodplain inundation and the onset of denitrification 

was measured in the field and laboratory experiments.  Landscape-scale modeling of 

these processes indicated that tidal inundation dynamics exerted as strong an influence
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on nitrogen attenuation as did rates of denitrification.  Tidal hydrology also had a 

profound influence on primary production.  Monitoring and mesocosm experiments 

showed that phytoplankton growth was enhanced by both the geomorphic influence of 

tides and the increased residence time in the channel.  During spring and summer, 

nitrogen and phosphorus limit phytoplankton growth in the non-tidal river, and 

zooplankton grazing may limit phytoplankton growth in the tidal river.  Understanding 

the mechanisms by which tides affect hydrogeomorphology in rivers, and the subsequent 

impacts on biogeochemical and biological processes is a fundamental step towards 

conceptual integration of the tidal zone with river networks.  Fluvial form and function 

are essential to applied sciences, such as river restoration and biogeochemical modeling, 

but are  also fundamental for anticipating the future impacts of sea level rise on coastal 

rivers.  
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1.  INTRODUCTION 

1.1.  What are tidal rivers and why should we care? 

 All freshwater aquatic sciences are premised on the down-hill flow of water.  This 

process defines rivers, fills lakes, and ultimately connects continents with the ocean.  Yet 

there is an freshwater aquatic ecosystem in which this down-slope paradigm must be 

relaxed, one in which the gravitational force of the moon supersedes the down-slope flow 

of water across the earth’s surface.  Here, in tidal rivers, ocean tides propagate upstream, 

changing the surface elevation of the river and forcing water to flow upstream against the 

gradient of the river channel.  Water, sediment, solutes, and organisms pulse upstream 

and downstream as the tide ebbs and floods.  The tidal wave, born from the sun and 

moon’s gravity, ultimately dissipates into heat and turbulence by the time it reaches the 

river’s head-of-tide.  This dissertation is devoted to understanding the physical, 

biogeochemical, and ecological consequences of the tide’s energy dissipation within 

rivers. 

 Tidal rivers exist anywhere that tidal amplitude is sufficient to exceed the 

topographic gradient of a river channel.  Low channel gradients allow tides to travel 

hundreds of kilometers up  large rivers (Table 1.1).  In smaller rivers crossing low 

gradient coastal plains, such as the rivers draining eastern North America, tides propagate 

inland up to half the length of the river (Anderson 1986).  Most tidal rivers are sinuous, 

single thread channels composed of alluvial material (Wells 1995).  The upstream 

boundary of a tidal river is the most landward location at which tides affect water level or 
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flow velocity, and the downstream boundary is delimited by one of two physical 

thresholds: a dramatic change in channel width at the bayhead delta, or in the absence of 

a delta,  the boundary between freshwater and the oligohaline zone (saline conditions 

greater than 0.5).  

 Tidal rivers are the most under-studied ecosystem along the riverine-estuarine 

aquatic continuum.   One explanation for this is alluded to in the title of the paper “The 

tidal freshwater reach of the Weser estuary: Riverine or estuarine?”, where Schuchardt 

and colleagues (1993) highlight the hybrid marine-fluvial nature of these ecosystems.  

The semantics of how tidal rivers are labeled may have deterred researchers because of 

perceived disciplinary boundaries.  Moreover, theory in fluvial geomorphology and 

stream ecology are based on uni-directional flow and sediment transport, and while the 

knowledge certainly exists to incorporate tidal processes, the predominant theoretical 

pursuits of these fields have simply not cast attention towards tidal rivers.  On the other 

side of the disciplinary divide, estuarine scientists have shown little interest in 

investigating the freshwater end member of estuaries, where the only obvious estuarine 

process is a reversal in the river’s direction of flow, or an even more subtle change in the 

river’s flow velocity.  

 Tidal rivers have been neglected relative to their purely riverine and marine 

counterparts, but the literature on tidal rivers is growing.  Hydrologists and 

geomorphologists have quantified tidal influences on sediment transport; ecologists and 

biogeochemists have investigated vegetation communities and nutrient cycling in tidal 

freshwater marshes; limnologists have characterized the factors affecting pelagic food 

webs.  However, previous research has not explicitly addressed how tides alter fluvial 
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processes, but have instead measured the net effect of fluvial discharge and tide together.  

Upstream-downstream comparisons of process have been performed, but these do not 

necessarily isolate the influence of tide, nor do inter-site comparisons between tidal and 

non-tidal rivers.  A deeper understanding of tidal rivers requires independent evaluation 

of how these two components of tidal river flow, watershed discharge and ocean tides, 

interact.   

 To understand the hydraulic mechanism by which tides affect a riverine process 

requires a more explicit approach, one that addresses the question: “How has tidal action 

affected process ‘X’ as the river has become tidally-influenced, and how will upstream 

portions of the river change as sea level rises?”  Questions of this nature are the theme of 

my dissertation.  My overall objective was to explore how tides affect the 

hydrogeomorphology, biogeochemistry, and ecology of tidal rivers. 

 

1.2.  Hydrology and geomorphology 

The hydrology and geomorphology of tidal rivers began to receive scientific 

attention during the mid-19th century.  As commerce and shipping grew, the demand for 

river improvements and engineering increased.  Engineers in Great Britain recognized 

that tidal rivers were of particular benefit for transportation because they remained wider 

and deeper for a longer distance upstream than non-tidal rivers (Wheeler 1893).  Not only 

did these geomorphic attributes make them valuable for shipping, but their high discharge 

relative to non-tidal rivers was valuable for other industrial purposes (e.g., sewage 

disposal) (Wheeler 1893).  Wheeler’s 467 page treatise on tidal rivers provides an 
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extensive review of early measurements of tide in rivers, but is mostly devoted to 

educating engineers about the unique challenges of improving tidal rivers for shipping:  

 

Before, however, such works are undertaken, it is essential for their 
success, not only that a thorough knowledge of tidal phenomena and of the 
action of the tides in general should be possessed by the engineer to whose 
care the river is committed, but also that he should make himself master of 
all the tidal peculiarities common to the river to be dealt with.  
 

By the mid 19th century, engineers were mastering the idiosyncrasies of tidal rivers by 

measuring the magnitude, extent, and timing of tides in rivers throughout Europe, Africa 

and Asia.   

 Today, engineers continue to study and manipulate tidal rivers for practical 

purposes of transportation, but in the past decade a new industry has emerged with a quite 

contrary goal.  The applied discipline of river restoration seeks to re-engineer river 

channels from a previously altered, or degraded, state to a “natural” condition.   However, 

these efforts are hampered by a lack of basic knowledge of how tides affect river 

morphology, and hence what a natural channel condition is for a tidal river.  The long-

term viability of these methods for creating stable tidal channels is uncertain.  Developing 

guidelines for tidal river restoration is at the forefront of river restoration activities in 

North Carolina, which requires basic research understanding the mechanisms by which 

tides affect river geomorphology. 

 The disciplines of geomorphology and hydrology have only recently turned 

attention to tidal rivers.  Pioneering research on the geomorphic affect of tides on river 

hydraulics was performed in a small tidal creek by Langbein (1963) and Myrick and 

Leopold (1963).  The primary contribution of this early research was to highlight that 
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channel morphology was independent from discharge in tidal creeks, and distinct from 

upland rivers.  Yet the tidal creeks studied by these authors are distinct from tidal rivers.  

Tidal creeks are predominantly formed by the incision of water into a salt marsh during 

tidal inundation.  In contrast, tidal rivers are initially formed by fluvial, watershed-

derived runoff and subsequently exposed to tidal action. The study of tidal creek 

morphology and hydrology has become a sub-discipline of its own (reviewed by 

contributors to Perillo et al. 2009), but explicit examination of tidal influence in river 

channels is a more recent development. 

 Early study of the effects of tides on water sediment transport in rivers (Ashley 

1980; van den Berg 1987; Guézennec et al. 1999) are being followed up with studies 

applying more advanced technologies (Villard and Church 2003; Wall et al. 2008; 

Hoitink et al. 2009). General patterns in sediment transport in tidal rivers are emerging 

(Wells 1995), along with a classification scheme for the longitudinal zones of tidal 

influence (Gurnell 1997). Outside of the tidal river channel, much attention has been 

devoted to the hydrology of tidal freshwater marshes that fringe tidal rivers (Pasternack 

2009).  Study of these wetland processes has contributed substantially to understanding 

the lateral connectivity between rivers and terrestrial environments, but coupling these 

lateral processes with the longitudinal exchanges between the rivers and estuaries has not 

yet occurred. 

 Tidal influence over time scales of hours (a semi-diurnal sequence) to a year 

(encompassing the annual range in tides and river discharge) is only one aspect of tidal 

rivers that requires further research.  Another aspect is the long-term evolution of non-

tidal to tidal rivers in response to rising sea level.  As sea level rises, it extends the 
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influence of tides further inland and increases the tidal amplitude along the way.  For 

example, in the central eastern portion of N.C. is currently experience sea level rise at a 

rate of 3 mm yr-1 (NOAA 2004), and given the low topographic gradient of the landscape 

(~0.0001 m m-1), this equates to a upstream migration of tide at 30 m yr-1 (without 

consideration for possible geomorphic adjustments).  Figure 1.1 illustrates this simple 

calculation that is useful for approximating the rate of migration under different 

scenarios.  This relatively rapid conversion of non-tidal to tidal condition should cause 

observable effects on tidal river hydrology on even annual time scales.   

 There are three critical questions that will aid our understanding of tides’ affect on 

river geomorphology and tidal river evolution during sea level rise: 

 

1. How do tides affect the capacity of the river to transport sediment along their 

continuum of activity? 

2. How does the combination of tidal energy and sediment transport contribute to 

channel form? 

3. How do these processes occur over time as sea level rises? 

 

Chapter 2 addresses these questions by making a detailed series of hydraulic and 

geomorphic measurements in a tidal freshwater river.  The affects of flow and sediment 

transport on river geomorphology are inferred from their spatial correlation.  This study is 

the first attempt to explicitly quantify the influence of tide on river hydrology; all 

previous research has simply measured the net (tidal+fluvial) occurrence in rivers.  

Chapter 2 reveals previously unknown geomorphic patterns and processes in tidal rivers, 
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generates hypotheses for future research, and establishes the physical template on which 

biogeochemical and ecological processes operate in tidal rivers. 

 

1.3.  Biogeochemistry 

 Tidal rivers link the flow of water and materials from river networks with the 

ocean.  In addition to the transport of water and sediment discussed above, tides also 

affect the transport and fate of dissolved materials.  Understanding the processes by 

which tidal rivers alter the flux of solutes from river basins to coastal ecosystems is 

critical in determining the fate of anthropogenically-derived pollutants.  Nitrogen is one 

element which is critical for aquatic primary production in rivers and marine 

environments, but whose excess anthropogenic production and delivery to the ocean have 

been detrimental to aquatic ecosystems.  

 Measurement of watershed nitrogen budgets has been a popular topic in 

ecosystem ecology since the formulation of the watershed ecosystem concept (Likens et 

al. 1970).  Attention to nitrogen transport from watersheds to the ocean grew rapidly as 

researchers discovered that nitrogen was a culprit in eutrophication of coastal ecosystems 

(Howarth and Marino 2006) and that humans had more than doubled the loading of labile 

nitrogen to the earth (Green et al. 2004).  There are now legal restrictions on the amount 

of nitrogen that is allowed to enter some rivers and estuaries, yet knowledge of the 

transformation and attenuation of nitrogen in tidal rivers is lacking.  The quantitative 

models that are used to trace the source and fate of nitrogen through river networks do 

not explicitly account for the influence of tidal hydrology because the affect of tides on 

nitrogen cycling is unknown.  
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 The most critical component of the nitrogen cycle to account for in rivers is 

denitrification, the microbially-mediated conversion of dissolved, bioavailable nitrogen to 

relatively inert N2 gas (Davidson and Seitzinger 2006 and related articles).  Quantifying 

denitrification in tidal rivers could reveal a significant component of the land-to-sea 

nitrogen flux because of the continual exchange of river water and associated NO3
- with 

the floodplain.  These riparian wetlands are very dynamic with respect to nitrogen 

(Megonigal and Neubauer 2009), but knowledge of their influence at the landscape scale 

is incomplete.  Filling this gap in our knowledge requires answers to four questions: 

 

1. What is the rate of denitrification in tidal river wetlands?  

2. When does denitrification occur in relation to the semi-diurnal tidal cycle? 

3. What is the influence of tides on the surface area over which denitrification 

occurs? 

4. What is the relative importance of denitrification rate versus floodplain inundation 

on nitrogen removal from tidal rivers? 

 

The first two questions are the focus of Chapter 3, research which involved extensive 

field work and laboratory experiment.  The second two questions are addressed in 

Chapter 4, research which relied heavily on a topographic and numerical model of 

floodplain inundation.  Together these studies reveal fundamental relationships between 

nitrogen transport, denitrification, and tidal hydrology that are necessary to account for 

the flux of nitrogen through tidal rivers to the ocean.   
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1.4.  Biological production 

 As tides alter the hydrology, geomorphology, and biogeochemistry of tidal rivers 

they also indirectly influence ecological process.  There is a sizable literature indirectly 

related to tidal river ecology, but as with the topics discussed above, the explicit effect of 

tides is not considered in these ecological studies.  In other words, researchers rarely, if 

ever, have asked: “How different would this ecosystem process be in the absence of 

tides?”.  Sometimes simple comparisons are made between a process in a tidal versus a 

non-tidal river, but more often tides are merely considered an implicit part of the abiotic 

environment. 

 Hydrogeomorphic patterns along the river continuum have provided the 

framework for developing concepts and theory in stream ecology (Vannote et al. 1980; 

Thorp et al. 2008).  However, tidal rivers have not been included in, or integrated with, 

any of the formative concepts in stream ecology because hydrogeomorphic patterns in 

tidal rivers have not yet been described.    Previous research has described phytoplankton 

maxima in the tidal freshwater portion of tidal rivers and corresponding changes in 

phytoplankton community (reviewed by Van Damme et al. 2009).  Yet little attention has 

been given to quantifying how these tidally-induced changes in hydrogeomorphology 

explicitly affect ecological processes. Integrating tidal rivers with the rest of the river 

continuum begins with answering three questions: 

   

1. How do tidally-induced geomorphic patterns affect irradiance, and consequently 

primary production? 

2. How do tidally-induced changes in residence time influence primary production? 
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3. Are there differences in the growth rate of phytoplankton along the tidal 

continuum, and if so, what are the causes? 

 

Chapter 5 explores how hydrology and geomorphology indirectly influence the rate of 

primary production in tidal rivers and the accumulation of phytoplankton biomass.  The 

tidal effects on channel morphology and hydrology identified in Chapter 2 will provide a 

physical template on which to base predictions of the spatial patterns phytoplankton 

productivity in tidal rivers.  In addition to providing novel analyses on tidal river 

production, Chapter 5 highlights how the combination of hydrology, geomorphology, and 

ecology in tidal rivers sets these ecosystems apart from rivers, lakes, and estuaries, 

opening the door to investigating broader ecological questions in these ecosystems. 
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Table 1.1  Length of the tidal extent upstream from the ocean in various 
rivers. 

River 

Overall 
tidal 

extent 
(km) 

Tidal- 
fresh 
zone 
(km) 

Head-of-tide 
landmark Reference 

Tapagos 1448 - - Wheeler 1893 

Amazon 644a 644 Obidos Wheeler 1893 

Gambia 526 276 - Amphlett and 
Brabben 1991 

Mississippi 495 395b Tarbert 
Landing 

McKee, pers. 
comm. 

Brahmaputra 348 - Bahadurabad McKee, pers. 
comm. 

Seine 277 - - Wheeler 1893 

Ganges 240 - Nadadwip Singh 2007 

Hudson 240 190 Albany Lampman et al. 
1999 

Columbia 235 195c Bonneville 
Dam 

Diefenderfer et 
al. 2008 

Yangze 511 - Datong Mckee, pers. 
comm. 

Potomac 187 61 Chain Bridge Bennett et al. 
1986 

St. Johns  173 - Lake George Phlips et al. 2000 

Sheldt 155 60 Ghent Muylaert et al. 
2005 

Seine 153 108 Dam of Poses Guézennec et al. 
1999 

Severn 108 - Diglis Weir Wheeler 1983 

Humber 105 - Naburn Wheeler 1983 

San Joaquin 100 - Crows 
Landing Lehman 2007 

Thames 100 - Teddington 
Lock Wheeler 1983 

Congo 100 60c Boma Runge 2007 
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Table 1.1 continued 

Connecticut 97 - Windsor 
Locks Bacon 1906 

Fraser 75 65 Mission Villard and 
Church 2003 

Weser 70 40-70 Bremen Schuchardt and 
Schirmer 1991 

Loire 64 - - Wheeler 1893 
a Amphlett and Brabben (1991) estimate a tidal length of 735 km from mouth  
b Amphlett and Brabben (1991) estimate saltwater extends 100 km from mouth 
c Amphlett and Brabben (1991) estimate saltwater extends  40 km from the mouth 
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Figure 1.1  General equation for the rate of inland advance of tidal effects. 
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2.  THE EFFECTS OF TIDES ON RIVER HYDRAULICS AND THEIR 
IMPLICATIONS FOR RIVER GEOMORPHOLOGY 
 
2.1.  Introduction 

 Tidal rivers are a dynamic portion of river networks. Tides travel inland 

significant distances in large rivers such as the Mississippi (500 km) and Amazon (800 

km), and affect half the length of smaller rivers in eastern North America (Anderson, 

1986).  Moreover, the inland extent of the tide is continually advancing landward as sea 

level rises over low-gradient coastal plains throughout the world.  As tides extend further 

upstream they alter river geomorphology, although the processes by which this 

adjustment occurs are poorly understood.  These processes ultimately affect the 

transformation and storage of terrestrial materials transported to the ocean, and therefore 

understanding how rivers are affected by tidal action over time is a phenomenon central 

to both fluvial, estuarine and coastal geomorphology. 

 There is a striking gap in our knowledge of the effects of tides on rivers during 

rising sea level.  Stratigraphic records, facies models, and geochronologic data have 

provided the foundation for our understanding of how coastal rivers and estuaries 

responded to fluctuations in sea level over Quaternary and Holocene periods (reviewed 

by Dalrymple et al. 1992; Schumm, 1993; Blum and Törnqvist, 2000).  However, these 

stratigraphic, conceptual (Dame et al. 1992; Brinson et al. 1995), and numerical (Parker 

et al. 2008) models of river adjustment assume that river discharge and sediment 

transport are unaffected by tides (except see Gardner and Bohn 1980).  However, tides 
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affect both discharge and sediment transport in ways which could influence long time-

scale coastal evolution through feedbacks between hydrology and geomorphology (e.g., 

Friedrichs 1995).  Bridging the knowledge gap between the geologic patterns in coastal 

morphology and shorter time-scale hydrologic processes in tidal rivers requires that we 

link tides with their influence on hydrologic processes and sediment transport. 

 

2.1.1.  Tidal river hydrology 

 The hydrology of tidal rivers is more complex than non-tidal rivers because the 

water discharge and sediment load are functions of both upstream-derived water and 

sediment runoff, and downstream-derived tidal water and sediment delivery.  Hence, the 

morphology and hydrology of these rivers is a result of a gradual overlap of tidal 

influence on fluvial form (Langbein, 1963).  This overlap in tidal and fluvial morphology 

is what distinguishes tidal rivers from tidal creeks: tidal rivers are a variation of a pre-

existing fluvial channel, while tidal creeks are formed solely by tides incising into a 

marsh surface (Fagherazzi et al. 2004).  Unlike tidal creeks, which terminate at the 

landward extent of a tidal marsh, tidal rivers are characterized by a gradient in tidal flow 

along a non-tidal river to estuary continuum.  

 The magnitude and direction of river flow along the tidal river continuum can be 

generalized into 3 zones (modified from Gurnell, 1997).  Upstream (zone 1) backwater 

effects predominate where flow stagnates as water level rises in response to flood tides. 

At zone 2 tidal amplitude increases relative to zone 1, flow reversal may occur, and 

discharge will depend on the combination of tide effects and watershed runoff.  At zone 3 

salinity periodically intrudes from the estuary downstream and there is strong tidal flow 
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reversal.  The flow regime in each of these zones affects floodplain inundation and 

sediment transport.  

 In the upper tidal river where velocity does not reverse with tides (zone 1), water 

level fluctuation alone can influence river geomorphology through a backwater effect 

(Gurnell, 1997).  This backwater is caused by a reduction in surface slope of the river.  

During flood tide, water surface slope in the channel reaches zero and water ceases to 

flow downstream; instead, river discharge from upstream fills the channel and depth 

increases. As water level rises, overbank flow can transport suspended matter laterally 

into the floodplain where deposition and sediment accretion occur (Darke and Megonigal, 

2003; Kroes et al. 2007).  

 Moving downstream to zones 2 and 3, the direction and velocity of flow vary 

sinusoidally with tides.  The water surface slope reverses between ebb and flood tide 

(e.g.,, the water surface downstream is higher than upstream) and therefore the direction 

of river flow reverses.  Enhancement of river discharge by tidal flow increases energy 

flux and resultant sediment transport in tidal rivers (Chen et al. 2005), with a zone of 

maximum turbidity near the freshwater-saltwater interface (Dyer, 1995).  Sediment can 

be transported upstream over short and long periods of time.  In fact, there can be a net, 

landward transport of sediment (Meade, 1969) as a result of velocity asymmetry between 

flood and ebb tides (Friedrichs and Aubrey, 1988).  For example, net upstream bedload 

transport in the tidal freshwater Pitt River, British Columbia, resulted in the landward 

expansion of a delta into a lake upstream (Ashley, 1980).  A similar phenomenon was 

observed in suspended matter in the Seine River, France, where marine-derived material 

was advected into the freshwater tidal portion of the river (Guézennec et al. 1999).  
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 Demarcating three zones of tidal influence in a tidal river based on its flow regime 

provides a typology of  the relative degree of tidal influence.  However, it is unclear 

where along this gradient tidal influence on water and sediment flux supersedes that of 

fluvial discharge from the watershed.  Furthermore, it is unclear how tides influence the 

hydrologic and hydraulic mechanisms which drive geomorphic adjustments.  More 

precise understanding of how tides influence channel hydrology and geomorphology 

requires separating the tidal  from fluvial forces occurring simultaneously in the river 

instead of just measuring their combined effects on river discharge. 

 

2.1.2.  Geomorphic adjustment to tidal influence 

 Tidal rivers and their floodplains exhibit systematic downstream changes in 

geomorphology.  Channel width increases along the length of rivers (Leopold and 

Mattock, 1953) and estuaries (Langbein, 1963), but the rate of increase is greater in 

estuarine channels (Leopold Wolman and Miller, 1964).  For example, a 10-fold increase 

in channel cross section area occurred at the transition from non-tidal to tidal river in the 

Pocomoke River, MD, and the tidal floodplain width increased 3-fold (Kroes et al. 2007).  

This increase in channel area is presumably accompanied by bank erosion as the channel 

is forced to accommodate higher tidal discharge as sea level rises (Gardner and Bohn 

1980).  While mechanistic explanations abound for geomorphic trends along rivers 

(reviewed by Singh, 2003) and estuaries (Langbein, 1963; Williams et al. 2002), far 

fewer explanations have been proposed for the geomorphic trends that occur within the 

tidal freshwater river.  
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Understanding the mechanisms by which tides influence river geomorphology 

requires linking the spatial gradients in tidal hydraulics, sediment transport, and channel 

geomorphology with their chronologic progression during the course of sea level rise.  

Accounting for a chronology of adjustment in tidal rivers is necessary because the 

contemporary patterns along a tidal gradient are the result of accumulated changes over 

time at each zone of tidal influence.   For example, the contemporary geomorphology in 

zone 2 is not just a function of an intermediate tidal regime (e.g.,, regular flow reversal 

and increased discharge), but is also contingent on geomorphic adjustments that occurred 

during the prior tidal regime at that location.  Therefore, understanding the spatial trends 

alone does not fully reveal the mechanisms by which tides affect geomorphology; rather 

we must understand tidal effects and the accumulated landscapes on which they have 

been acting over time.     

The challenge is to couple tides with their influence on hydrology and resultant 

geomorphic processes over time.  Stratigraphic and geochronologic methods by 

themselves are insufficient because feedbacks between hydrology and sediment transport 

are not apparent from these data.  Likewise, historical records of river channel planform, 

such as aerial photographs or maps, do not provide information on the hydrologic 

processes occurring over the intervening time period.  An alternative to these methods is 

location-for-time substitution, where the characteristics of prior landscapes are inferred 

from contemporary patterns (reviewed by Paine, 1985).  In tidal rivers, progressive 

change over time could be inferred from current spatial patterns in hydrology, sediment 

transport, and geomorphology.  This inferred chronology would be valuable in the 
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development of hypotheses to explain how river geomorphology adjusts to tidal 

hydrology as sea level rises. 

 

1.3. Objectives 

 The objective of this study were to explain: 1) how tides affect river flow and the 

energy available for geomorphic work, 2) how tides alter a river’s sediment transport 

regime, and 3)  how feedbacks may develop between tidal energy, sediment transport, 

and channel morphology as tidal amplitude increases. The first step was to quantify the 

hydrologic processes occurring in the three zones of a tidal river and discriminate 

between the tidal and fluvial contributions to river hydraulics.  This required separation 

of the tidal contribution (that which is solely due to tidally-driven change in flow 

direction and water level) from fluvial contribution (due solely to watershed-derived 

runoff) to discharge and stream power.  As defined by Rhoads (1987), stream power is a 

concept that “…refers to the time rate of potential energy expenditure (i.e. conversion of 

potential energy to kinetic energy that is dissipated in overcoming internal and boundary 

friction, in transporting sediment and in eroding the channel perimeter) as water travels 

down slope in a channel.”.  We relied on cross-sectional stream power to measure how 

tides affect the energy available to perform geomorphic work (e.g., channel erosion and 

transport sediment) in tidal rivers.  

The second step was to measure the spatial and temporal patterns in suspended 

matter concentration and transport, and relate them to tidal and fluvial discharge regimes.  

We focused on suspended matter instead of bedload because floodplain accretion and 

levee formation result from settling of suspended matter during overbank flow.  
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Suspended sediment concentration in river water is strongly related to vertical accretion 

rate in tidal freshwater ecosystems (Darke and Megonigal 2003). Therefore, we inferred 

the potential for vertical accretion of the floodplain and channel banks from suspended 

sediment concentration, susceptibility of the floodplain to inundation, and the direction of 

net sediment flux. 

The third step was to explain how river channel geomorphology was affected by 

tidal influence over the course of sea level rise; a critical component of this step was 

comparing observed data with predictions of channel area in the absence of tides. We 

conclude with a hypothesized chronology of tidal river evolution inferred using location-

for-time substitution and our observations of tidal hydrology, sediment transport, and 

geomorphology.   

  

2.2  Methods  

2.2.1  Study area 

 The Newport River is a third-order, blackwater river in eastern North Carolina, 

U.S.A. The 310 km2 watershed drains to the Atlantic Ocean at Beaufort Inlet (Figure 

2.1).  Two headwater tributaries drain the 86 km2 atidal upper watershed and form the 

Newport River at their confluence at the head-of-tide.  The main channel drains a further 

128 km2 before entering a large polyhaline estuary with a mixed semi-diurnal tide with a 

1 m amplitude. Four sites were studied, beginning just upstream from the head-of-tide at 

the Atidal site.  Three sites along the tidal river, Upstream (Figure 2.2A), Midstream 

(Figure 2.2B), and Downstream (Figure 2.2C), were located 2.5 km, 5 km, and 9 km from 

the head-of-tide, respectively.  These sites have drainage areas of 100 km2, 116 km2, and 
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162 km2, respectively.  The 9 km reach of river we studied is 7 km upstream from the 

bayhead delta near the estuary.  The river is a meandering, single thread channel; cut 

banks and depositional bars at meander bends are only found between the Atidal and 

Upstream sites.  Downstream of the Atidal site, the riparian floodplain rarely exceeds 1 m 

in elevation (NAVD88) and is uninterrupted by geologic or topographic features except 

for two highway bridge abutments and one railroad trestle.   

 The Newport River is typical of the blackwater rivers that drain coastal plain 

watersheds in the southeastern US.  Extensive alluvial riparian floodplains and low 

channel gradients result in a high concentration of dissolved organic material and a low 

concentration of upstream-derived sediment (Meyer, 1990; Hupp, 2000).  Riparian 

vegetation transitions from bottomland hardwood forest (Taxodium, Nyssa, Acer), to 

freshwater emergent (Pontedaria, Peltandra), and finally to estuarine marsh (Juncus, 

Phragmites, Spartina) in the lower tidal river.  While sediment yield from the Newport 

River watershed is generally low, erosion and subsequent colluvial storage in the post-

colonial era were 100 times higher than the pre-colonial period (Phillips, 1997a and 

1997b).   

 Sea level rose in the Newport River estuary at a rate of 3.2 mm yr-1 between 1973 

and 2002 (NOAA 2004), and this region of North Carolina experienced sea level rise of 

0.8 mm yr-1 through the late-Holocene (Horton et al. 2009).  Despite rising sea level, the 

bayhead delta has prograded into the estuary 1 km over the past 50 years and accreted 

vertically 5 mm yr-1, largely due to a pulse of sediment from land clearing activity in the 

lower watershed (Mattheus et al. 2009); this material entered the river through a tributary 

downstream from the river reach we studied. Accretion rates in the tidal river riparian 
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zone are unknown, although similar settings in other eastern U.S. rivers have positive 

accretion rates.  The median accretion rate for tidal freshwater marshes in the U.S. is 8 

mm yr-1 (Neubauer 2008) and up to 20 mm yr-1 in tidal riparian forests (Baldwin 2007). 

 

2.2.2.  Discharge 

 Discharge at the Atidal site was measured monthly from May 2007 through May 

2008, and again in February 2009. A Sontek Flowtracker acoustic Doppler velocimeter 

(SonTek/YSI, San Diego, CA, USA) was used to measure velocity at 0.6×depth at 0.5 m 

intervals across the channel, and discharge was calculated using standard procedures 

(Gordon et al. 2004). Channel cross-section area, A, and hydraulic radius, Rh, were also 

calculated. 

 Observations of Q were made at the Upstream, Midstream, and Downstream sites 

over 2 semi-diurnal tidal cycles (24.8 hr, hereafter referred to as a tidal day) once in June 

2008 and once in February 2009.  River discharge was calculated from current velocities 

measured using a Nortek 2 mHz Aquadopp (NortekUSA, Annapolis, MD) current 

profiler at 1 min intervals.  The profiler was deployed horizontally on the side of the 

channel such that cross-channel profiles of velocity were measured at 1 m intervals; the 

Aquadopp allowed for a maximum profiled channel width of 10 m.  Cross-channel depth 

was measured at 1 m intervals, and water level change was recorded every minute using 

Intech TruTrak (Intech Instruments LTD, New Zealand) capacitance rods.  Depth at each 

channel station (corrected for tidal water level change every minute) was multiplied by its 

corresponding velocity and summed across the channel to calculate Q at 1 min intervals.  
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Fluvial discharge from the watershed at the tidal sites was measured as the net 

downstream water flux over a 24.8 hr period.     

 The current profiler had to be mounted below the low tide water level, therefore 

discharge occurring within the intertidal portion of the channel at high tide could not be 

directly measured.  To correct for this omission, velocity measurements were linearly 

extrapolated from the end of the measured transect to the channel bank at high tide where 

velocity was assumed to be zero.  Relative to the other studies of tidal river discharge, 

which have mostly been conducted in large rivers, the small width of the Newport River 

was a distinct advantage in that it allowed for velocity measurement across the entire 

channel at low tide.  This precluded the need for  more complex methods developed for 

large rivers (Simpson and Bland, 2000; Chen and Chiu, 2002; Hoitink et al. 2009). 

 Current profiler data were not always reliable because of signal interference from 

the channel bottom; measurements whose range in signal-to-noise ratio included 

background levels were not used for further analysis.  This was a problem at Midstream 

(2008 and 2009) and Upstream (2009) when only a portion of the channel was properly 

profiled.  Subsequently, synoptic surveys of velocity were made at these sites during ebb 

and flood tide using a Sontek Flowtracker.  The cross-channel ratios of velocity from 

synoptic surveys were used to extrapolate the AquaDopp profiler data to the portions of 

the channel where signal-to-noise ratios were unreliable. 

   

2.2.3  Stream power 

 While discharge is the predominant variable affecting sediment flux, it is not a 

measure of the power available to perform geomorphic work of moving sediment.  To 
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better understand the processes by which discharge affects sediment movement and 

hence geomorphology, we calculated cross-sectional stream power: 

g S Qρ=Ω           (2.1) 

where ρ is the density of water, g is gravitational acceleration, S is the energy grade slope 

(hereafter called energy slope and sometimes approximated as water surface slope), and 

Q is discharge (Rhoads, 1987).  When integrated over time, stream power (J s-1 m-1) is 

equivalent to energy dissipation (J m-1), a common metric in fluvial research (e.g.,, 

Molnár and Ramírez, 1998), estuarine research (e.g.,, van der Wegen et al.  2008), and 

stratigraphic models (Dalrymple et al. 1992) because it couples the force of moving water 

with the potential for geomorphic work. 

 Stream power at the Atidal site was calculated using equation 2.1. Energy slope 

was calculated using a standard formulation for steady flow: 

h
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                                                     (2.2) 

where U is velocity (Q/A), Rh is the hydraulic radius of the channel, and n is the 

Manning’s friction term. A Manning’s n of 0.06±0.01 was used, representing the mean 

and standard deviation from 12 coastal plain streams in North Carolina (Geratz, personal 

communication, see Sweet and Geratz 2003 for methodology).  Stream power was 

multiplied by 24.8 hr to calculate the energy dissipation that occurred over a tidal day. 

   Calculating stream power and energy slope at the tidal sites required considering 

contributions of unsteady flow to energy slope and Q.  The energy slope was calculated 

using a standard formulation for unsteady flow in rivers: 
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where t is time; upstream flow during flood tide results in a negative value of energy 

slope.  A Manning’s n of 0.06±0.01 was used based on the assumption that flow 

resistance in the tidal river was similar to the non-tidal river.  Using this calculated value 

for S, stream power was calculated every minute using equation 2.1.  Several criteria 

were applied to this calculation due to the rapidly varying velocity and direction of flow.  

First, if flow deceleration resulted in a negative result from equation 2.3 stream power 

was assumed to be zero for that 1 min period.  Second, transient reversals of flow 

direction that lasted for only 1 min were considered to have a stream power of zero for 

that minute.  Finally, total energy over each flood and ebb period was calculated by 

integrating the absolute values of the calculated stream power.  The density of water used 

in equation 2.1 is salinity-dependent, therefore salinity was measured and recorded at 5 

min intervals using a YSI 6560 conductivity and salinity probe in conjunction with the 

6600 sonde and 650 data logger (Yellow Springs Instruments, Yellow Springs, OH, 

USA). 

 Calculation of energy slope in rivers usually depends on the use of a friction 

factor, often either Manning’s n or a Chézy coefficient.  Our application of a Manning’s n 

value of 0.06 corresponded with a Chézy coefficient of 16-18 m1/2 s-1 given the Rh of the 

Newport River.  For comparison, the measured Chézy coefficient in large tidal river in 

Indonesia ranged from 40-56 m1/2 s-1  during ebb tide and 45-70 m1/2 s-1 during flood tide 

(Buschman et al. 2009), indicating less friction and lower energy slope than the Newport 

River.  We attempted to measure vertical velocity profiles with which to quantify the 
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change in Manning’s n over a tidal cycle, but were unable to obtain usable measurements 

due to the rapid fluctuations in velocity.  Despite this limitation, we believe our 

calculations of stream power using equations 2.2 and 2.3 are more accurate than if water 

surface slope (a commonly used substitute for energy slope) was used.  

 The contribution of fluvial discharge to stream power was determined using 

equations 2.1 and 2.2.  Net downstream discharge (fluvial discharge) was divided by an 

estimate of  A to calculated U in equation 2.2.  To estimate A, we developed a power 

function relationship between the observed A and Q at the Atidal site during low-flow 

conditions, and applied this equation to the net daily downstream discharge at each tidal 

site (the at-a-station hydraulic geometry approach of Leopold and Mattock, 1953). The 

mean Rh observed during low-flow conditions at the Atidal site was used in equation 2.1, 

with ±1 standard deviation of this mean applied to represent the uncertainty in this 

assumption. We used two combinations of Rh and Manning’s n to calculate a lower and 

upper bound on the predicted stream power.  A lower bound was calculated by 

combining a low Manning’s n (0.05) with a high Rh (mean Atidal value + 1 standard 

deviation).  An upper bound was calculated using a high Manning’s n (0.07) and low Rh 

(mean Atidal value – 1 standard deviation).  The resultant stream power was integrated 

over a tidal day to calculate the energy dissipation that occurred due to fluvial discharge 

alone. 

  

2.2.4.  Suspended matter transport  

2.2.4.1.   Suspended matter concentration 
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 Suspended matter concentration was measured over an annual period along the 

tidal gradient to characterize spatial trends and their response to changes in Atidal river 

discharge. All sites were sampled twice-monthly from May 2006 through May 2007.  

The concentration was determined by filtering up to 1 L of water through a 2.7 µm glass 

fiber filter (Whatman GF/D), drying at 105oC for >1 hr, and weighing.  This filter pore 

size (2.7 µm) was larger than the standard 0.2 µm pore size used for suspended matter 

analysis, therefore ours is a conservative measure of suspended matter concentration. 

Both the organic and inorganic fractions contributing to suspended matter were measured 

since these fractions contribute differently to rates of wetland sediment accretion 

(Neubauer, 2008).  The organic matter fraction was calculated by mass loss after 

combustion at 550oC for 4 hr .  In addition, turbidity was measured using a YSI 6136 

probe attached to a 6600 sonde and 650 data logger and calibrated using a formazin 

standard per manufacturer's protocol.  Sampling was conducted during ebb tide on most 

occasions.  Differences in suspended matter and turbidity between sites were tested using 

an ANOVA at the 0.05 significance level. 

 

2.2.4.2.  Tidal suspended matter flux 

 Turbidity and an estimate of suspended matter flux were made during a tidal day 

to characterize spatial trends in the direction of net sediment transport.  Turbidity was 

measured using the YSI 6136 probe described above and values were recorded at 10 min 

intervals (although turbidity sensors were not available for the Upstream and 

Downstream experiments in 2008).  Suspended matter flux was estimated using a 

relationship between turbidity and suspended matter generated for each site from the 
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yearly data described above.  Linear regressions and their 95% confidence interval were 

calculated for each site and applied to each turbidity measurement following the 

procedures of Wright and Schoellhamer (2005).  Estimates of suspended matter flux were 

numerically integrated over a tidal day. 

 

2.2.5.  Channel geomorphology 

2.2.5.1. Observed geomorphology 

 Measurements of channel cross-section area at bankfull flow and high tide were 

made along the tidal river.  Channel cross-sectional area was measured every 500 m 

along the 9 km tidal river.  At each cross-section, depth was measured at 1 m intervals 

across the channel.  These transects only extended to the boundary between the open 

channel and riparian zone. Floodplain topography adjacent to surveyed channel cross-

sections was determined from digital LIDAR (Light Image Detection and Ranging) data.  

Bare-earth LIDAR points were obtained from the North Carolina Floodplain Mapping 

Agency (www.ncfloodmaps.com), and ArcGIS (ESRI, Redlands, CA, USA) software 

was used to construct a triangulated irregular network from the LIDAR data.  This 

elevation model was used to extract the elevation profile of the riparian floodplain for the 

50 m adjacent to each in-channel transect.  Extracted elevations (NAVD 88 datum) were 

corrected to mean sea level by adding 9 cm (determined using Vdatum software, 

http://vdatum.noaa.gov/).  Cross-sectional area at bankfull discharge was determined 

from cross-section profiles using the bench index metric of Riley (1972); high tide 

channel area was observed in the field during surveys. 
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2.2.5.2.  Predicted Fluvial Geomorphology 

 A hydraulic geometry relationship developed for coastal plain streams in North 

Carolina was used to predict how channel cross-sectional area would increase in the 

downstream direction in the absence of tides.  The expected bankfull channel cross-

sectional area (Abkf, m2) for each site in the absence of tidal flow was estimated as 

9.43×Aw
0.74×0.0929, where Aw is watershed area (mi2) and the regression r2=0.96 (Sweet 

and Geratz, 2003).  The difference between these predictions and the observed channel 

cross-sectional area was attributed to tidal influence. 

 

2.3.  Results 

2.3.1.  Discharge 

 Semi-diurnal Q at all sites showed an oscillating pattern indicative of tidal 

influence, with peak Q much larger than predicted fluvial Q (Figures 2.3-2.5).  Net 

downstream (fluvial) discharge decreased between the Atidal and Upstream sites, with 

the more dramatic reduction occurring in June than February (Table 2.1).  Q and fluvial 

discharge increased from Upstream to Downstream, but flood Q increased more than ebb 

Q (Figures 2.3-2.5, Table 2.1). Unlike the Upstream and Midstream sites where highest Q 

occurred during ebb tide, highest Q occurred during flood tide at the Downstream site 

(Figures 2.3-2.5).  The prominence of flood tide over ebb tide Downstream is also 

reflected in the velocity data: higher mean and peak velocities occurred during flood than 

ebb tide (Table 2.2).  

 

2.3.2.  Stream power 
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 Stream power was calculated as a function of Q and S (equation 2.1).  Salinity 

was generally less than 0.5 which indicated fresh, non-brackish water at all sites (Table 

2.2), and therefore a constant water density was used in equation 2.1 (1000 kg m-3).  

Energy slope displayed the same sinusoidal trend as Q over a semi-diurnal tidal cycle, but 

was generally less than predicted for fluvial discharge alone (Figures 2.2-2.5).  Observed 

S was lower than predicted for a purely fluvial condition because predicted velocities 

were higher (0.19 to 0.29 m s-1) and Rh were lower (0.25 to 0.49) than observed values 

(Table 2.2; equations 2.2 and 2.3).   

 Stream power increased along the tidal continuum, with peak values occurring 

during ebb tide Upstream and Midstream but during flood tide Downstream (Figures 2.3-

2.5).  Stream power was generally lower than predicted Upstream, but much greater than 

predicted Midstream and Downstream (Figures 2.3-2.5).  At the Midstream and 

Downstream sites, tidally-enhanced Q over-compensated for the suppressed S and 

resulted in higher stream power than was predicted based on fluvial discharge alone 

(Figures 2.3-2.5, Tables 2.1 and 2.2).     

 To more effectively compare the energy regime between sites and to distinguish 

the tidal from fluvial components, we integrated stream power over a tidal day.  This total 

energy dissipation averaged 58 kJ, 424 kJ, and 2529 kJ at the Upstream, Midstream, and 

Downstream sites (Figure 2.6).  The predicted fluvial energy dissipation in the absence of 

tidal influence also increased from Upstream to Downstream, but at a rate much lower 

than what was observed (Figure 2.6).  Energy dissipation during the two years of 

observation averaged 19%, 186%, and 368% of that predicted for the fluvial condition 

alone (Figure 2.6).  The difference between the observed and predicted fluvial energy 
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dissipation was significant Upstream in both years and Downstream in 2008, as indicated 

by non-overlapping error bars in Figure 2.6.  However, the choice of Manning’s n and Rh 

had a relatively large affect on the differences observed during the other periods and at 

the Midstream site (Figure 2.6). 

  

2.3.3.  Suspended matter transport 

2.3.3.1.  Suspended Matter Concentration 

 Over an annual period, there was an increase in suspended matter concentration 

along the tidal continuum (Figure 2.7).   Mean suspended matter was 2.7 mg L-1, 5.9 mg 

L-1, and 11.4 mg L-1, Upstream, Midstream and Downstream, respectively.  These means 

were statistically different from one another (one-way ANOVA P<0.001, F2,66=10).  The 

organic and inorganic fractions also differed statistically between sites: organic matter 

averaged 2.1 mg L-1, 3.0 mg L-1, and 4.4 mg L-1 Upstream, Midstream, and Downstream, 

respectively (one-way ANOVA P<0.0001, F2,66=67).  Inorganic matter averaged 0.6 mg 

L-1, 2.9 mg L-1, and 7.0 mg L-1 at Upstream, Midstream, and Downstream, respectively, 

and were again significantly different (one-way ANOVA P<0.0001, F2,66=24).  The 

inorganic fraction increased relative to the organic fraction along the river continuum 

(Figure 2.7).  Overall, suspended matter concentration was low during high discharge 

events but highest during the spring and summer when watershed runoff was low (Figure 

2.7).  Turbidity increased along the river, with means of 1 NTU, 5 NTU, and 9 NTU at 

Upstream, Midstream, and Downstream, respectively; means were statistically different 

from one another (one-way ANOVA P<0.001, F2,66=10). The r2 values of the turbidity 
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versus suspended matter regressions were 0.47, 0.68, and 0.88 at Upstream, Midstream, 

and Downstream, respectively. 

 

2.3.3.2. Tidal Suspended Matter Flux  

 During tidal cycle observations, mean and maximum turbidity (our proxy for 

suspended matter) increased along the river (Table 2.2).  Highest turbidity occurred 

during flood tide at the Midstream and Downstream sites (Table 2.2).  Net suspended 

matter flux at the Upstream site was predicted to be 9 kg day-1  with a ±5 kg day-1 

uncertainty from the regression’s 95% confidence interval (Figure 2.8).  In 2008, 

suspended matter flux Midstream was estimated to be 2883±1103 kg day-1 during ebb 

tide and -3493±1336 kg day-1 during flood tide, with a net landward directed flux of -610 

kg day-1 (uncertainty estimated to range from -3049 to 1829 kg day-1) (Figure 2.8).  In 

2009, the flux Midstream was 639±395 kg day-1 during ebb tide and -695±429 kg day-1 

during flood tide, again producing a net landward flux of -56 kg day-1 (uncertainty 

estimated to range from -880 to 768 kg day-1) (Figure 2.8).  Suspended matter flux 

Downstream during ebb tide was 21,221±4282 kg day-1 and -27,707±5592 kg day-1 

during flood tide, with a net landward flux of  -6486 kg day-1 (uncertainty estimated to 

range from -16,360 to 3388 kg day-1) (Figure 2.8).   

 

2.3.4. Geomorphology 

 Bankfull cross-sectional area exceeded high tide area in the upper 2.6 km of the 

tidal river, was over-topped by high tide in the middle portion of the river, and again 

exceeded high tide cross-sectional area in the lower 1 km (Figure 2.9).  From Upstream 
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to Downstream, channel width increased proportionally more than channel depth (Table 

2.2). The lateral change in open channel width from low tide to high tide increased from 

0.5 m Upstream to 7 m Downstream (Table 2.2). 

 Based on watershed area and a hydraulic geometry relationship for coastal plain, 

non-tidal rivers in this region, the Newport River would be expected to have a bankfull 

cross-sectional area increasing from 11 m2 to 18 m2 from the Atidal site to the 

Downstream site  (Figure 2.9).  This predicted fluvial cross-sectional area was similar to 

that observed in the upper tidal river, but was only a third of the observed area in the 

lower tidal river (Figure 2.9).   

    

2.4.  DISCUSSION 

2.4.1. Tidal Influence has Counter-veiling Effects on River Discharge 

 Discharge data indicated that our Upstream, Midstream, and Downstream sites 

were representative of zones 1, 2, and 3 of a tidal river.  The Upstream site (zone 1) 

exhibited both flow reversal (2008) and a backwater effect with no reversal (2009).  The 

Midstream site was consistent with the flow reversal and increased Q as expected in zone 

2.  The Downstream site showed even stronger flow reversal and higher Q, and received 

brackish water (0.6 salinity) at peak flood tide, as expected in zone 3.  

 This delineation of zones 1 through 3 is based on the Q observed over the course 

of a tidal day.  A surprising result emerged when these values were integrated over a tidal 

day: fluvial discharge (net downstream discharge) decreased between the Atidal site and 

the Upstream (2008 and 2009) and Midstream (2009) sites.  Net daily discharge at all 

tidal sites during summer (June 2008) was much lower than winter (February 2009), a 



 
34 

difference too large to be explained by the modest 7% increase in Atidal discharge (Table 

2.1).  Two process may account for the net reduction in discharge: evapotranspiration and 

groundwater recharge. The strong seasonal difference suggests that evapotranspiration 

may play an important role in decreasing watershed discharge; tidal flow forces water 

onto riparian floodplains where evapotranspiration occurs rapidly.  The NC State Climate 

Office (www.nc-climate.ncsu.edu) reported an average reference crop evapotranspiration 

rate of 5.6 mm day-1 and 2.3 mm day-1 for the June 2008 and February 2009 measurement 

periods, respectively, at the Croatan Remote Automated Weather Station (located in the 

Newport River watershed).  When this rate is applied over the 426,000 m2 riparian zone 

(Ensign et al. 2008) evapotranspiration would be 2412 m3 day-1 and 989 m3 day-1 during 

June and February, respectively, a relatively small component of the net discharge.  

Seepage to shallow groundwater could also be a net loss from the channel if subsurface 

return flow was low.  Counter-acting these loss mechanisms are tributary inflows, and it 

is this combination of sources and sinks that are reflected in the hydrologic fluxes in 

Table 2.1.  In summary, Q was clearly augmented by tides, but the overall effect of tidal 

influence was to reduce the net daily discharge of watershed-derived water, presumably 

through evaporative loss (Figure 2.10A, Table 2.3).   

 The combination of discharge magnitude and frequency dictate fluvial landform 

morphology in rivers (Wolman and Miller 1960), but it is unknown how tides modulate 

either the magnitude or frequency of the hydrologic forces acting in tidal rivers.  Our 

measurements were constrained to relatively low flow periods of the year, and we do not 

know the relative importance of large river discharge events on the patterns we observed.  

However, water level (depth) in the Newport River (Ensign, unpublished data) and other 
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tidal rivers (Kroes et al. 2007; Light et al. 2007) is affected more by tides than upstream 

river discharge.  If channel width and velocity are also more influenced by tides than 

river discharge, then the frequency and magnitude of forces acting in tidal channels may 

be only weakly related to river discharge.  In which case, our measurements during 

baseflow would represent the dominant hydrologic forces acting in the Newport River.  

The frequency-magnitude of tidal versus fluvial forces is a critical topic for further 

research in tidal rivers.   

 

2.4.2. Stream Power Indicated the Effect of Tides on River Hydrology 

 Stream power represents the energy lost through friction and turbulence, a portion 

of which is expended to erode and transport sediment, and thus shape channel geometry 

(Rhoads, 1987).  We relied on stream power as a measure of the hydraulic influence on 

channel morphology, as have previous studies of non-tidal (e.g., Knighton, 1999; 

Reinfields et al. 2004) and tidal (Phillips and Slattery 2007) rivers.  Our study built on 

these previous studies in two ways.  First, we separated the tidal and fluvial components 

of stream power, and second we quantified the fluctuation in stream power over a tidal 

cycle. 

Maximum stream power increased along the Newport River, and greatly exceeded 

the predicted fluvial condition Midstream and Downstream (Figures 2.2-2.4).  This trend 

was not unexpected since stream power was calculated as a function of Q (equation 2.1), 

and Q during peak ebb and flood tides were much greater than the predicted fluvial 

condition. Counter-acting Q’s influence on stream power was a decrease in S relative to 

the fluvial condition. Energy slope is inversely related to Rh (equation 2.2), and Rh 
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increased along the tidal continuum. If we assume that this trend in Rh was caused by 

tidal influence, then tide has two counter-veiling affects on stream power.  Tidal flow 

increases the peak Q during a tidal cycle and thereby increases stream power, but also 

increases Rh which reduces S and thereby reduces stream power (Figure 2.10).  In the 

Newport River, the increase in peak Q during maximum ebb and flood tide over-

compensated for reduced S, resulting in an increase in stream power from Upstream to 

Downstream (Figure 2.10).   

 Since stream power fluctuates over a tidal cycle, a better measure of the force 

exerted in the river channel is energy dissipation (temporally integrated stream power) 

(Figures 2.5 and 2.9).  Energy dissipation decreased between the Atidal and Upstream 

tidal site because net daily discharge and U decreased while Rh increased (Table 2.1 and 

2.2).  Apparently the small tidal amplitude in zone 1 (Upstream) suppressed energy 

dissipation (Figure 2.6).  Increased tidal amplitude and discharge in zone 2 (Midstream) 

increased energy dissipation, but only enough to equal the energy dissipation that would 

occur from fluvial discharge alone. Not until zone 3 was the observed energy dissipation 

significantly higher than would have occurred without tides (Figure 2.6).  The important 

conclusion to be drawn from these data is that energy dissipation does not increase as a 

simple function of tidal amplitude.  Instead, tides affect channel morphology (Rh) and 

discharge (both tidal and fluvial components) in ways which result in a non-linear change 

in energy dissipation through a tidal river (Figure 2.10).  

 

2.4.3. Suspended Matter Concentration and Transport were Functions of Tide not 
Watershed Runoff 
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 Suspended matter concentration increased along the tidal river continuum (Figure 

2.7).  The low concentration Upstream is consistent with previous measurements in the 

Newport River (Simmons, 1988; Phillips, 1997b) and is typical of coastal plain rivers in 

general (Hupp, 2000).  The higher concentrations Midstream and Downstream did not 

correspond with increases in Q (Figure 2.7); in fact, the highest concentrations were 

observed during low watershed runoff in early summer (April-May).  We are not aware 

of tributary inputs to the lower Newport River that would contribute a higher 

concentration of suspended material to the mainstem.  Therefore, the longitudinal 

gradient in concentration, combined with a lack of correspondence between fluvial 

discharge and concentration, indicate that tidal influence was a more important factor 

affecting suspended matter than precipitation and watershed runoff.  High concentrations 

Downstream were presumably the result of in-channel mobilization by erosion, 

flocculation, and delivery from the zone of turbidity maximum downstream (Eisma, 

1986; Dyer, 1995; Chen et al. 2005).   

 Suspended matter became increasingly dominated by inorganic material along the 

tidal river continuum, indicating either a change in source or in-situ transformation 

(Figure 2.7).  The predominantly organic suspended matter at the Upstream site is 

indicative of the high concentration of amorphous particulate seston typical of a 

blackwater river (Carlough, 1994).  Downstream, however, inorganic material was the 

dominant fraction of the suspended load, likely due to higher flow velocities that were 

able to suspend heavier, inorganic particles.   

 Flux of suspended matter over a tidal cycle at each location increased as a 

function of both higher concentrations and higher Q.  Interestingly, there was a net 
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upstream flux of material over a tidal cycle at the Midstream and Downstream sites, 

implying short-term storage in the river channel or on the floodplain.  While there was 

uncertainty in these measurements due to the error associated with the turbidity-

suspended matter regression, it is conceivable that a net upstream flux could occur based 

on the differences in flood and ebb velocity.  Downstream, highest mean and maximum 

velocity occurred during flood tide of both years, and maximum stream power occurred 

during flood tide.  Since erosion, suspension, and transport of material are functions of 

velocity, higher flood than ebb velocity can lead to “flood-tide dominant” transport where 

net upstream sediment flux exceeds downstream flux (Friedrichs and Aubrey, 1988; Fry 

and Aubrey, 1990).  Numerical modeling of currents in the upper Newport River estuary 

(10 km from our Downstream site) indicated that net upstream transport of suspended 

matter can occur (Chen et al. 1997).  In fact, net landward (i.e. upstream) sediment 

transport occurs in many estuaries and tidal rivers (Meade, 1969; Ashley 1980; Wells 

1995; Guézennec et al. 1999; Phillips and Slattery, 2006). 

 As a final note on suspended matter, it is important to clarify that the occurrence 

of flood-tide dominant transport does not preclude watershed-derived sediment pulses 

from being exported to the estuary during large runoff events (as was reported by 

Mattheus et al. (2009) in the Newport River).  Both mechanisms are responsible for 

distributing sediment along the tidal river continuum under different hydrologic 

conditions and time scales; it is the relative magnitude and frequency of these processes 

over long time scales that remains unknown.  

 

2.4.4.  Channel geomorphology reflected changes in hydrology and suspended 
matter  
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 Channel cross-sectional area (both bankfull and high tide) increased greatly along 

the tidal Newport River, exceeding the fluvial prediction by 3-fold at the Downstream 

site (Figure 2.9).  The divergence from predicted fluvial conditions began near the 

Upstream site, corresponding with the region where energy dissipation was lowest 

(Figure 2.6).  This paradoxical increase in channel area despite a reduced capacity of 

river flow to erode the channel suggests that the increase in channel area is simply a 

result of the channel accommodating a larger volume of water during flood tide.  Channel 

area (both bankfull and high tide) plateaued near the end of the study reach (Figure 2.9).  

The enlarged channel area Downstream corresponded with the location of the river where 

energy dissipation exceeded the predicted fluvial condition (Figure 2.6).  We attribute the 

larger than predicted channel area to the additional energy dissipation and erosion caused 

by tidal flow.   

 The relationship between high tide channel area and the bankfull channel area 

along the tidal gradient indicates the potential for channel bank and riparian sediment 

accretion to occur. The low concentration of suspended matter Upstream and Midstream 

suggests that even when overbank flow occurs during high tide, deposition will be 

minimal.  In contrast, high suspended matter concentration and flux Downstream suggest 

that overbank deposition will be large when overbank flow occurs (Figure 2.10).  Other 

tidal rivers exhibit a similar gradient in which upstream levees disappear in the middle 

tidal zone where floodplain extent and inundation are greater than the upstream or 

downstream zones (Baldwin 2007; Kroes et al. 2007; Light et al. 2007).  The rate of 

riparian sediment accretion is directly related to riverine sediment concentration and 

frequency of inundation (Darke and Megonigal 2003).  In the absence of other factors 
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that affect sediment deposition (e.g., riparian vegetation; Neubauer et al. 2002; 

Pasternack and Brush, 2002), we expect that maximum riparian sediment accretion 

should occur where riverine sediment concentration and the frequency of inundation are 

highest.  

 

2.4.5. A chronology of tidal river evolution 

 Discharge, stream power, and sediment transport change dramatically due to 

tides; our goal now is to relate these spatial patterns to their chronologic progression as 

sea level rises.  Location-for-time reasoning is commonly used to infer prior geomorphic 

form from contemporary spatial patterns (reviewed by Paine, 1985).  By applying 

location-for-time reasoning to our observations of the Newport River, we can develop a 

conceptual model of how the river has evolved over time as sea level has risen.  In doing 

so, we assume that sea level is the only variable which has changed over time, and that 

topography and surficial geology of this 9 km reach of the Newport River were 

homogenous prior to tidal influence. This assumption is justified by the riparian zone’s 

nearly level topography of (<1 m), lack of broader-scale topographic features, and 

uniform soil type and depth (>2 m; SCS, 1987).  A potential confounding factor is 

substantial upland erosion during the pre-colonial era that may have changed suspended 

sediment load to the river (Phillips 1997b).  While this sediment load may have 

influenced channel morphology, it is unknown what the deposition rates were along this 

section of the Newport River.  Therefore, we will proceed with the caveat that future 

research on historical sedimentation rates in this river may require us to modify the 

conceptual model we propose or to suggest alternatives to the hypotheses that follow. 
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 The chronologic stages of riverine adjustment that have occurred during sea level 

rise can be inferred from the contemporary zones of hydrology and stream power.  Stage 

1 of this chronology represents the initial changes of river evolution and corresponds with 

the characteristics of zone 1.  Stage 3 representing the effects of the longest period of 

tidal influence, and correspond with the characteristics of zone 3.  The changes involved 

in river adjustment from stage 1 through stage 3 are inferred from the contemporary 

differences in hydrology and sediment transport between zones 1 through zone 3. 

 The initial effect of tides was to reduce stream power due to a decrease in fluvial 

discharge and U, and an increase Rh.  A backwater effect increased channel area, but not 

enough to exceed bankfull capacity of the channel.  The concentration and transport of 

suspended matter are limited by a low upstream supply at this stage.  As the river 

transitions over time to stage 2, the increased Q during peak ebb and flood tides returns 

stream power to its pre-tidal condition, despite further increase in Rh and decrease in 

fluvial discharge.  Channel area and floodplain inundation increases dramatically due to 

the increased volume of tidal exchange.  Stronger velocity is capable of entraining more 

sediment, a portion of which may be derived from downstream sources and delivered 

during flood tide.  Deposition on levees may increase as this material is dispersed across 

the floodplain during high tide.  Finally, in stage 3, stream power increases above its pre-

tidal condition, despite the reduction in fluvial discharge.  High suspended matter 

concentration and deposition ultimately reduce the extent of overbank inundation as the 

floodplain accretes.  Flood-tide dominant transport in zone 3 transports suspended matter 

upstream to zone 2.   
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 The establishment of flood-tide dominant transport is a pivotal process in tidal 

river evolution.  In coastal rivers with low watershed-derived sediment load, the upstream 

transport of suspended matter provides an important sediment source for riparian 

accretion.  However, accretion of the river bank levees becomes self-limiting when the 

tidal range can not overtop the levee.  The subsequent decrease in overbank flooding 

results in less tidal energy being lost during intertidal inundation and enhancement of 

flood-tide dominant transport (Friedrichs and Aubrey, 1988).  In this positive feedback, 

flood-tide dominant flow accelerates the rate at which the river progresses from stage 2 to 

stage 3.  A similar feedback between channel area and flood-dominant transport was 

proposed as the mechanism that maintains estuarine channels in morphodynamic 

equilibrium (Friedrichs 1995).   

 Our conceptual framework of tidal river evolution offers hypotheses for further 

testing.  First, we predict that the current rate riparian sediment accretion will be highest 

in zone 2 of a tidal river.  Lower rates would be expected in zones 1 and 3 because of low 

suspended matter concentration in the former and less frequent over-bank inundation in 

the latter.   Second, we predict that geochronologic dating should reveal that peak 

sediment accretion rates occur during stage 2 of tidal river adjustment.  We anticipate that 

future research will modify (or reject) our conceptual model and hypotheses as the 

challenge of explaining how tides influence coastal river evolution continues. 

 

2.4.6. Conclusions 

 This study found that tides greatly affected the discharge, stream power, and 

sediment transport in a tidal freshwater river.  Tides enhanced river discharge during peak 
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ebb and flood flow, but their overall effect was to decrease the volume of watershed-

derived discharge during a low-flow periods of the year.  Stream power, an indication of 

the potential for geomorphic work, was suppressed by tides upstream, but enhanced by 

tides downstream.  Enhanced stream power throughout the tidal river was reflected in a 

3-fold increase in channel area.  Tidally-enhanced stream power also increased suspended 

matter concentration and flux; we predict that deposition of this material in the floodplain 

caused accretion of the channel bank and limited overbank flooding in the lower tidal 

river.  We hypothesize that rivers respond to tidal influence in a predictable sequence of 

adjustment that parallels the contemporary spatial patterns we observed along the tidal 

gradient.  This conceptual model provides a mechanistic explanation for the geomorphic 

patterns in channel size and floodplain morphology observed along tidal rivers and 

suggests how coastal river geomorphology and concomitant ecosystem processes will 

change with future sea level rise (Craft et al. 2009).  Further research is needed to test 

these predictions, but we believe our observations of the tidal effects on hydrology, 

sediment transport, and channel morphology will contribute to a better understanding of  

how tides affect river geomorphology. 
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Table 2.1  Water flux (m3) during tidal cycle experiments lasting 24.8hr. 
Year Tide Non-tidal Upstream Midstream Downstream 
2008 ebb  43,359 212,365 555,687 

 flood*  -15,302 -185,428 -491,182 

 net daily 
discharge 61,588 28,057 26,937 64,505 

      
2009 ebb  58,831 220,488 485,229 

 flood*  -596 -125,215 -383,312 

 net daily 
discharge 66,058 58,236 95,273 101,917 

* negative values denote downstream-to-upstream flow 
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Table 2.2  Hydrologic and geomorphic characteristics of Newport River during monitoring at the Atidal 
site (2006-2007, n=15) and tidal sites in June 2008 and February 2009 at the tidal sites.  Data presented 
as: mean (minimum, maximum).  Channel depth (m), width (m), and velocity (m s-1) are the average of 
all cross-channel measurements.  Units of Rh and turbidity are m and nephelometric turbidity units, 
respectively. 
Year Tide Parameter Non-Tidal Upstream Midstream Downstream 
2006-
2009 

none depth 0.5 (0.3, 1.0)    
 width 6.4 (4, 9.5)    

 velocity 0.21 (0.10, 
0.28)    

 Rh 0.5 (0.2, 0.9)    
      

2008 ebb depth  1.2 (1.0, 1.5) 1.1 (0.9, 1.6) 1.4 (1.2, 1.8) 
  width  6.8 (6.5, 7.0) 22 (18, 24) 22.7 (20.0, 27.0) 
  velocity  0.10 (0, 0.18) 0.16 (0, 0.30) 0.31 (0, 0.433) 
  Rh  0.9 (0.8, 1.1) 1.1 (0.8, 1.4) 1.3 (1.1, 1.7) 
  salinity  0.05 (0.05, 0.07) 0.14 (0.07, 0.30) 0.12 (0.07, 0.56) 
  turbidity  no data 13 (10, 19) no data 
       
 flood depth  1.3 (1.0, 1.5) 1.3 (0.9, 1.6) 1.7 (1.2, 1.8) 
  width  7.0 (6.5, 7.0) 23 (18, 24) 25.0 (21.0, 27.0) 
  velocity  -0.07 (0, -0.12) -0.15 (0, -0.27) -0.33 (0, -0.53) 
  Rh  1.0 (0.8, 1.1) 1.2 (1.5, 0.8) 1.6 (1.1, 1.8) 
  salinity  0.05 (0.05, 0.05) 0.09 (0.02, 0.30) 0.15 (0.07, 0.56) 
  turbidity  no data 17 (11, 28) no data 
       

2009 ebb depth  0.9 (0.7, 1.2) 1.1 (0.8, 1.6) 1.4 (1.2, 1.8) 
  width  7.0 (7.0, 7.0) 23 (22, 25) 23.6 (22.0, 28.0) 
  velocity  0.13 (0, 0.24) 0.15 (0, 0.37) 0.24 (0, 0.40) 
  Rh  0.7 (0.6, 0.9) 1.0 (0.8, 1.4) 1.3 (1.1, 1.7) 
  salinity  0.07 (0.06, 0.07) 0.16 (0.08, 0.31) 0.12 (0.09, 0.20) 
  turbidity  0.1 (0, 4.5) 2 (0, 8) 30 (11, 48) 
       
 flood depth  1.1 (1.0, 1.2) 1.2 (0.8, 1.6) 1.6 (1.3, 1.8) 
  width  7.0 (7.0, 7.0) 24 (22, 25) 25.9 (22.0, 28.0) 
  velocity  -0.03 (0, -0.10) -0.12 (0, 0.26) -0.30 (0, -0.45) 
  Rh  0.8 (0.8, 0.9) 1.1 (0.8, 1.4) 1.5 (1.2, 1.7) 
  salinity  0.07 (0.06, 0.07) 0.12 (0.07, 0.31) 0.14 (0.09, 0.20) 
  turbidity  0 (0,0) 3 (0, 12) 49 (16, 77) 

* negative values denote upstream flow during 
flood tide 
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Table 2.3 River channel and floodplain characteristics along the non-tidal to tidal continuum of 
a coastal plain river with low watershed sediment yield. 
Stage Tidal influence Hydraulic 

geometry 
Sediment 

transport/geomorphic 
process 

Riparian 
characteristics 

0 • no tidal 
influence 
• hydrograph 
dictated by 
precipitation 

• slope set by 
topography 
• basic hydraulic 
geometry holds 
(channel 
area=A×drainage 
area0.7) 

• sediment transport 
primarily during spates 
• morphology set by 
dominant (effective) 
discharge (~annual 
flood) 

• natural levees 
• bottomland mixed 
hardwood forest 
• inundated ~30 
days/yr 

 

 
     

1 • small tidal 
amplitude 
• negligable 
upstream flow 

• bankfull depth > 
high tide depth 
• width increases 
rapidly 
downstream 
• reduced slope by 
tidal influence, but 
predominantly >0 

• low sediment transport 
• predominantly organic 
sediment 

• natural levees 
• bottomland mixed 
hardwood forest 
• tidal flooding 
contained in 
channel   
• inundated ~30 
days/yr 

 
 

     
2 • large tidal 

amplitude 
• peak ebb flow 
≈ peak flood 
flow 

• bankfull depth < 
high tide depth 
• increasing width 
• large slope 
variations from 
positive to 
negative 

• increased sediment 
transport 
• alternating organic-
inorganic dominant 
fractions  
• upstream flux = 
downstream flux 

• no levees 
• mixed bottomland 
forest with fringing 
emergent 
macrophytes 
• inundated daily 

 
 

     
3 • large tidal 

amplitude 
• tidal 
influence 
dominates 
hydrograph 
• peak flood 
flow < peak 
ebb flow 

• bankfull depth ≥ 
high tide depth 
• width 
constrained by 
natural levees 
• large slope 
variation from 
positive to 
negative 

• high, predominantly 
inorganic sediment 
transport 
• upstream flux > 
downstream flux 

• re-establishment 
of levees 
• inundation during 
spring tides 
• emergent 
macrophyte 
vegetation 
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Figure 2.1  Location of the Newport River in North Carolina and the location of 4 
sampling sites within the Newport River stream network. 
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Figure 2.2  The upper (A), middle (B), and lower (C) portions of the tidal Newport River. 
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Figure 2.3  Upstream site tidal cycle measurements of discharge (A), energy slope (B), 
and stream power (C). 
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Figure 2.4  Midstream site tidal cycle measurements of discharge (A), energy slope (B), 
and stream power (C).  
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Figure 2.5  Downstream site tidal cycle experiments of discharge (A), energy slope (B), 
and stream power (C).  
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Figure 2.6  Observed (tidal+fluvial) and predicted (fluvial) energy dissipation in 2008 (A) 
and 2009 (B).  Error bars represent the influence of a 0.01 difference in Mannings n 
combined with a 0.12 difference in hydraulic radius.  
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Figure 2.7  Fluvial discharge at the Atidal site (A), organic and inorganic fractions of 
total suspended matter and turbidity at Upstream (B), Midstream (C), and Downstream 
(D) from May 2006 to May 2007.  
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Figure 2.8  Suspended matter flux over tidal days.  Error bars represent the 95% 
confidence interval of the turbidity versus suspended matter regressions.  



 
55 

 

Figure 2.9  Geomorphic characteristics of the tidal Newport River and the predicted 
channel area from a hydraulic geometry equation developed for coastal plain streams in 
North Carolina.  
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Figure 2.10  Generalized spatial trends (zones 1-3) in watershed (fluvial) and tidal 
discharge (A), hydraulic radius, velocity, and energy slope (B), and stream power and 
suspended matter (C).  Panel D presents the chronology (stages 1-3) of adjustments in 
channel area, sediment transport (arrows), and riparian topography at a location over a 
time as tidal amplitude increases



 

 

 

 

3. RIPARIAN ZONE DENITRIFICATION AFFECTS NITROGEN FLUX 
THROUGH A TIDAL FRESHWATER RIVER1

 

 

3.1 Introduction 

 Along the hydrologic continuum between streams and oceans lies a unique 

ecotone where river meets estuary.  In this tidal freshwater zone (TFZ) river flow is 

tidally-influenced but is upstream of saltwater intrusion. This hydrologic variability 

affects river geomorphology, river discharge,  and biogeochemistry, making the TFZ 

ecologically distinct from non-tidal rivers (Schuchardt et al. 1993).  These differences 

between tidal and non-tidal rivers pose a challenge to watershed-scale biogeochemical 

research for two reasons.  First, measurement of downstream elemental flux in TFZ rivers 

is obscured by constantly changing discharge over hourly timescales due to varying water 

level and velocity.  Consequently, riverine fluxes of environmentally important elements 

are commonly measured upstream of the TFZ, thereby omitting a sizable portion of the 

lower watershed (Destouni et al. 2008).  Second, the unique geomorphology and 

hydrology of the TFZ make it difficult to apply riverine biogeochemical models to this 

portion of the river continuum.  Fundamental information on how TFZ geomorphology 

and hydrology influence biogeochemical processes is needed to properly include this 

ecotone in river and watershed elemental budgets.   

 Nitrogen budgets for watersheds, regions, and the globe are continually being 

refined due to the importance of this element for biological production and also because 
                                                 

1 Chapter 3 is published as an article in the journal Biogeochemistry and is Copyright © 2008 by Springer.  
It is reproduced here with the permission of Springer. 
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of its role as a pollutant that has caused environmental degradation of freshwater and 

marine ecosystems (Vitousek et al. 1997; Smith et al. 1999; Green et al. 2004).  River 

networks and associated lakes and reservoirs are highly reactive with respect to nitrogen 

and remove 53% of their terrestrially-derived nitrogen load prior to reaching the oceans 

(Wollheim et al. 2008), principally through the microbially-mediated process of 

denitrification (Seitzinger et al. 2006).  However, regional and global models of riverine 

nitrogen attenuation (See Boyer et al. 2006 and Wollheim et al. 2006 for review) have not 

accounted for TFZ biogeochemistry differently from the rest of the river network, and it 

is unknown what affect this may have on model accuracy. 

 One unique characteristic of the TFZ that may have a large effect on riverine 

nitrogen flux is their expansive riparian floodplains.  Denitrification in floodplain soils 

can substantially decrease the nitrate concentration of floodwaters and thereby reduce the 

nitrate load of adjacent rivers (Lindau et al. 1994; Tockner et al. 1999; Forshay and 

Stanley, 2005).  In contrast with non-tidal riparian floodplains where the duration of 

flooding ranges from 12 to 69 days per year (Tockner et al. 1999; Valett et al. 2005), TFZ 

floodplains are inundated twice-daily by tidal river flow.  During these short duration (<6 

hr), high frequency (12-24 hour) flooding events, TFZ floodplains also exchange all of 

their surface water with the river channel when water level recedes during low tide.  

These two characteristics of TFZs, high frequency inundation and complete hydrologic 

connectivity with the river, set these floodplains apart from others along the spectrum of 

river-floodplain interaction and may optimize conditions for nitrogen removal from TFZ 

rivers. 
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 The goal of this study was to quantify denitrification flux from the TFZ riparian 

floodplain of a coastal river.  This denitrification flux was compared with the riverine 

nitrate load to evaluate the potential importance of the floodplain in attenuating this load.  

We begin by presenting an empirical model that addresses the primary biogeochemical 

and geomorphic factors affecting floodplain denitrification. 

 

3.1.1. Riparian zone denitrification model 

Denitrification flux from TFZ riparian floodplain is a function of three elements: 1) the 

spatial and temporal extent of inundation, 2) denitrification rate, and 3) the lag time 

between inundation of the riparian sediments and the onset of denitrification.  The first of 

these elements (the extent and duration of flooding) is a function of water level height 

and floodplain topography.   Water level height, h, above mean sea level at any time, t, of 

the tidal cycle and location, s, along the TFZ is calculated as: 

)2sin(, p
tah sst

××
×=

π         (3.1) 

were as is tidal amplitude specific to a location along the TFZ and p is the tidal period of 

12.4 hours.  Floodplain topography determines the area inundated at any time (t) and 

location (s), At,s, such that: 

sstst FhA ×= ,,          (3.2) 

where Fs is a numerical function describing the area inundated at a given water level 

height for a particular location along the TFZ. 

 The second element that determines denitrification flux from the TFZ riparian 

floodplain is the area-specific denitrification rate (mass length-2 time-1).  The 
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denitrification flux, N (mass time-1) is the product of the area-specific denitrification rate, 

R, and the area inundated (A).  The final element controlling denitrification is the lag 

time, L, between the time that water inundates the riparian sediment and the initiation of 

denitrification.  This lag time is due to the preferential use of O2 over NO3
- during 

microbial respiration; denitrification does not begin until O2 is depleted in sediment 

porewater.  After the lag time L expires, denitrification occurs on the portion of the 

floodplain that has been inundated for a period of time greater than L.  The area of the 

floodplain in which anaerobic respiration occurs, and subsequent denitrification flux, 

continue to increase until the receding tide limits the denitrifying area.  Assuming that the 

floodplain is inundated and drained in 6.2 hr (half of the 12.4 hour tidal period), then the 

period of denitrification (6.2-L) is divided equally between two phases of the flood tide 

period.  The first phase occurs between t0 of the flood tide and t1 (t1=(6.2-L)/2) when 

denitrification flux increases in proportion to the area inundated for greater than L.  The 

second phase occurs between t2 (t2=t1+L) and 6.2 hr when the denitrification flux is 

limited by the receding tide.  Denitrification flux within a segment of the TFZ floodplain 

is calculated as: 

∫∫ ×+×=
2.6

,,

2

1

0 t
st

t

t
sts RARAN        (3.3) 

where At,s is calculated at each time step using equation 3.2 with the ht,s and Fs specific 

for that location.  The denitrification flux from the entire TFZ over the 6.2 hr high tide is 

the summation of all Ns comprising the TFZ.  Equation 3.3 incorporates all three of the 

principal controls on denitrification flux: topography, denitrification rate, and temporal 

lag in the onset of denitrification after tidal inundation.   
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 This model is relevant to the surficial sediments where denitrification is 

interrupted by aerobic conditions during low tide.  Denitrification in these surficial 

sediments during inundation directly affects the nitrogen concentration in the overlying 

floodplain water, and subsequently affects the nitrogen load of the river when this water 

drains back into the channel.  While denitrification occurs in deeper sediment strata of the 

floodplain where reduced conditions occur continually, the influence of this process 

requires information on subsurface hydrology that was beyond the scope of this study. 

 

3.1.2.  Site description 

 The Newport River is a third-order blackwater stream in eastern North Carolina, 

U.S.A. that enters the Atlantic Ocean at Beaufort Inlet (Figure 3.1).  The 310 km2 

watershed drains unconsolidated late Cretaceous to Holocene sandy sediments (Phillips, 

1997); overall channel gradient from headwaters to estuary is 0.4 m km-1.  The 34 km2 

non-tidal upper watershed has predominantly agricultural and silvicultural land use.  The 

TFZ drains an additional 128 km2 of agricultural and light urban development.  The TFZ 

is characterized by a semi-diurnal tide that propagates 8 km upstream from the 

oligohaline estuary (Figure 3.1).  The meandering, sand-bed channel is bordered by a 

wide riparian zone consisting of hardwoods (Taxodium spp, Nyssa spp, Acer rubrum, 

Pinus spp).  Small pockets of tidal freshwater emergent marsh (Peltandra virginica, 

Pontederia cordata) are common along the entire length of the TFZ and grow on the 

muddy channel margin exposed at low tide.  The riparian zone is inundated daily during 

the two high tides even during periods of low discharge (Figure 3.2).  Denitrification 

measurements were conducted approximately equidistant between the upper and lower 
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bounds of the TFZ (Figure 3.1).  The average annual salinity was 0.07 in the vicinity of 

denitrification measurements and 0.25 at the downstream boundary of the tidal freshwater 

zone where the oligohaline river begins. 

 

3.2. Materials and methods 

3.2.1.  Riparian zone denitrification 

 Denitrification rate of riparian zone sediments was measured to parameterize R in 

equation 3.3.  Sediment cores were collected monthly from 3 intertidal habitats along the 

TFZ of the Newport River (Figure 3.1).  The three sample collection sites were located 

within 500 m of each other and included a hardwood riparian forest, an emergent 

freshwater marsh, and an unvegetated mudflat.  Triplicate cores from each site were 

collected in clear polycarbonate tubes (6.4 × 40 cm).  The sediment cores and 50 L of 

river water were returned to a temperature controlled room at the University of North 

Carolina’s Institute of Marine Sciences (UNC-IMS) maintained at the temperature of the 

river.  Next, cores were filled with approximately 350 mL of river water and capped with 

air-tight lids containing two sampling ports.  Cores were pre-incubated for >18 hr prior to 

gas measurements to allow equilibration of dissolved gases within all materials (Eyre et 

al. 2002). For samples collected between August and November 2006 cores were 

incubated with a static volume of overlying water for 6 hours and N2 was measured in the 

overlying water every 2 hours (Fear et al. 2005).  A linear regression between N2 

concentration and incubation time was used to derive the rate of N2 production 

(denitrification) within the core.  From December 2006 through August 2007 cores were 

plumbed to a multi-channel peristaltic pump that circulated river water through the 
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headspace of the core at a known rate between 1-2 mL min-1 (McCarthy et al. 2007).  

Water samples for dissolved gas analysis were collected in 5 mL glass tubes from the 

inflow and outflow of the cores.   

 Dissolved gas analysis was measured using a Balzers Prisma QME 200 

quadropole mass spectrometer (Pfeiffer Vacuum, Nashua, NH, USA) coupled to a 

silicon, gas-permeable, flow-through membrane inlet as described by Kana et al. (1994).  

The mass spectrometer was tuned to monitor the ratio of N2:Ar instead of N2 alone 

because the N2:Ar signal is relatively unaffected by oxygen concentrations above 50% 

saturation (Kana and Weiss 2004; Fear et al. 2005).  A continually-mixed water bath 

containing tap water at 16oC was maintained as an atmospheric gas-saturated standard for 

calibration of the mass spectrometer, where the [N2]:[Ar] ratio of this water bath was 

37.9266 (Lide 2004). This signal ratio ((N2:Ar)standard signal) was used to determine the N2 

concentration of the sample using the following formula: 

[ ] ( ) ( ) [ ]sample
signaldards

signalsamplesample Ar
ArN

ArNN ××=
tan2

22 :
9266.37:   (3.4)  

Since Ar is conservative and assumed to maintain a saturated concentration in water, 

standard gas saturation tables for a range of temperature in freshwater were used to obtain 

the [Ar]sample at the temperature of the incubation (Lide 2004).  The precision of the N2 

concentration measurement was 0.5% and the minimum detectable concentration of N2 

was 183 µM (A. Smyth, personal communication). 

 Next, the denitrification rate (R, mass N area-1 time-1) occurring within the 

sediment core was calculated as: 

( )
c
qNNR lowoutflow ×−×= ][][2 inf22        (3.5) 
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where [N2 outflow] and [N2 inflow] are the [N2] measured leaving and entering the core, 

respectively, q is the flow rate through the head space of the core, and c is the surface 

area of the core.  Differences between sites during each experiment and overall during the 

period of study were examined using an ANOVA and Tukey post-hoc analysis (p<0.05) 

with SPSS software (SPSS, Inc., Chicago, IL). 

 Calculation of denitrification from N2 fluxes within sediment cores has a number 

of advantages over the more commonly used acetylene block method (Cornwell et al. 

1999; Groffman et al. 2006).  Most importantly, direct measurement of N2 fluxes using a 

mass spectrometer does not interfere with coupled nitrification-denitrification as the 

acetylene block method does, thereby making denitrification rate measurements derived 

from N2 fluxes more accurate.  The resultant denitrification rates thus reflect both the 

benthic mineralization-nitrification-denitrification pathway and the denitrification of 

nitrate from the water column, but our methodology did not allow us to resolve the 

proportion of the total denitrification occurring by these pathways. 

 One drawback of the laboratory-based sediment core incubations performed in 

this study is that they reflect denitrification rates occurring when sediments are 

continually saturated and the sediment porewater O2 has been depleted.  In order to 

extrapolate the laboratory denitrification rates across the TFZ using equation 3.3, it was 

necessary to determine the lag time between inundation and the onset of denitrifying 

conditions.  A combination of in-situ and laboratory measurements of oxidation-

reduction potential (an indicator of O2 availability and hence propensity of a sediment 

bacteria to denitrify NO3
-) were performed to measure this lag time.   
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3.2.2.  Riparian zone oxidation-reduction potential 

 Oxidation-reduction potential was measured as a proxy for O2 concentration 

within surficial sediments where denitrification of water-column NO3
- could occur. 

Oxidation-reduction potential of 300 mV was considered the threshold below which O2 

concentration would be low enough for facultative aerobic bacteria to use preferentially 

use NO3
- instead of O2 in the oxidation of organic matter (Faulkner and Patrick, 1992).   

In-situ measurements of oxidation-reduction potential in the TFZ riparian floodplain were 

conducted during winter (7 February to 7 March 2007) and summer (27 July to 13 

August 2007) to measure the fluctuation between oxidized (>300 mV) and reduced (<300 

mV) conditions.   

 In-situ oxidation-reduction measurements were made during February and August 

2007 at the TFZ riparian location where denitrification cores were collected.  Platinum 

tipped probes (purchased from Dr. Wayne Hudnall at Texas Tech University) were 

deployed from a 17 m wooden boardwalk constructed perpendicular to the river. Two 

oxidation-reduction potential probes (5 and 10 cm below the sediment/water interface) 

and one soil moisture probe (5 cm deep) were deployed at 2 m, 10 m, and 17 m from the 

low tide channel margin.  Sensor depths and distances from the channel were chosen 

based upon observations reported in other TFZs (Kerner et al. 1990; Seybold et al. 2002).  

To minimize soil disturbance during deployment, a 15 cm deep hole was dug, oxidation-

reduction potential and soil moisture probes were inserted laterally into the wall of the 

hole, and the hole was back-filled with the excavated soil.     

 Oxidation reduction robes were wired to a Campbell Scientific CR1000 data 

logger and measurements were recorded every 5 minutes.  A Ag/AgCl reference 



 
66 

electrode (Accumet 13-620-53) was connected to the sediment using a salt bridge (2 cm 

diameter PVC pipe filled with a gelled solution of agar and KCl) to provide an electrical 

ground for the oxidation-reduction potential measurements.  Measured oxidation-

reduction potential values were converted to Eh by adding 200 mV (per manufacturer’s 

instructions); no temperature or pH corrections were made.  Electrode calibration was 

verified by measuring a 220 mV oxidation-reduction potential solution: following the 

February deployment all probes read 220±10 mV.   Prior to and following the August 

deployments all probes read 261±1 mV and 263±2 mV, respectively.  While the 

maximum stabilization period allowed by the data logger was used for voltage 

measurements (3000 ms), it may not have been long enough to allow the voltage to 

stabilize in strongly reduced sediments (0-200 mV) (van Bochove et al. 2002).  Values in 

this range may be an underestimate of oxidation reduction potential by up to 140 mV 

(van Bochove et al. 2002).     

 Soil moisture was measured as an indicator of the tidal inundation of the sediment 

that could be compared against the oxidation-reduction potential data.  Furthermore, soil 

moisture indicates the propensity for denitrification to occur and the extent of nitrate 

reduction (N20 versus N2) (Machefert and Dise 2004 ).  Soil moisture probes (model 

CS616, Campbell Scientific, Incorporated, Logan, UT, USA) were calibrated according 

to the manufacturer’s instructions and installed at 5 cm depth at each of the three 

distances from the river channel. Probes were wired to the data logger and volumetric soil 

moisture was recorded every 5 minutes. 

 

3.2.3.  Laboratory oxidation-reduction potential experiments 
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 As a compliment to the in-situ measurements described above, a laboratory 

experiment was conducted in January 2008 to assess the time required for oxidized 

(drained) sediments to become reduced after inundation (lag time parameter, L, in 

equation 3.3).  The experimental design was based on the observation from in-situ 

monitoring that large oxidation-reduction potential fluctuation only occurred within the 

upper 5 cm of the sediment profile.  Accordingly, soil cores 6 cm in depth were collected 

from the boardwalk described above and returned to the UNC-IMS.  Oxidation-reduction 

potential probes were inserted into the cores through holes at 1, 2, 3, and 5 cm, while a 

second hole at each depth allowed lateral water infiltration.  Oxidation-reduction 

potential was measured and logged as described for the in-situ measurements. In a series 

of experiments, the instrumented sediment cores were incubated at 10 and 25 oC in a 

temperature controlled room and were initially allowed to drain until a constant 

oxidation-reduction potential condition was observed.  Cores were then submerged in 

river water equilibrated to the temperature of the experiment and the time required for 

oxidation-reduction potential to drop below 300 mV (reducing conditions amenable for 

denitrification; Faulkner and Patrick 1992) was measured.   

 

3.2.4.  Channel bathymetry and riparian zone topography 

 Channel width and cross-section area were measured from a boat along the TFZ 

during high tide at 28 locations.  These surveys only spanned the channel between 

vegetated banks, so digital elevation data was used to develop a topographic surface of 

the riparian zone beyond the banks of the channel.  Topographic Light Image Detection 

and Ranging (LIDAR) data were obtained for the Newport River watershed from the 
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North Carolina Floodplain Mapping Agency (www.ncfloodmaps.com).  These elevation 

data have a vertical root mean square error of 20 cm and the NAVD 88 vertical datum on 

which the data are based is 9 cm below mean sea level for the Newport River (as 

determined using Vdatum software, http://vdatum.noaa.gov/).  ArcGIS (ESRI, Redlands, 

CA, USA) software was used to construct a triangulated irregular network (TIN) from the 

LIDAR data within 50 m of the river channel (tributaries were not included in this 

analysis).  A zero elevation hard break line was forced along the river channel to 

represent the river surface at mean sea level and a soft break line was enforced at 50 m 

from the channel.  The surface area of this TIN at 0.03 m intervals between mean sea 

level and 0.45 m in elevation was calculated for 9, 1 km reaches of the TFZ using 

ArcGIS.   

 The change in inundated surface area with elevation above mean sea level (Fs, 

equation 3.2) was represented by fitting a polynomial regression to the modeled points 

for each river reach; r2 values for all regressions were >0.999.  This topographic model 

was used to generate a relationship between water level height (ht,s, equation 3.1) and the 

area (At,s, equation 3.2) of floodplain inundated within 50 m of the river channel.  

Inundation may occur beyond 50 m, but we choose this conservative boundary for two 

reasons.  First, lateral flow velocity of water from the channel into the riparian zone will 

limit the extent of inundation, but was not measured in this study.  Second, we wanted to 

minimize consideration of ponds in the outer floodplain that would not be expected to 

exchange water with the river channel. 

 

3.2.5.  Tidal freshwater river nitrogen load 
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Nitrate, ammonium, and total nitrogen concentration were measured twice-monthly from 

river water collected during the ebb tide in the upper TFZ (Figure 3.1). Water samples 

were  filtered through a 2.7 mm glass fiber filter and frozen until analyzed on a Lachat 

QuikChem 8000 autoanalyzer with method detection limits of 0.6 mg L-1, 2.55 mg L-1, 

and 35.4 mg L-1 for nitrate, ammonium, and total nitrogen, respectively (Lachat 

Instruments, Milwaukee, WI, USA) at the UNC-IMS.  Total nitrogen was measured as 

nitrate after in-line alkaline-persulfate and ultra-violet oxidiation.  River discharge was 

measured monthly 100 m upstream of the TFZ using a Sontek handheld acoustic doppler 

velocimeter (SonTek/YSI, San Diego, CA, USA) to measure velocity at 1 m intervals 

across the channel.  An area-specific discharge was calculated for the watershed at this 

non-tidal location and used to estimate discharge downstream at the location where river 

nitrogen was measured (Leopold et al. 1964).  River nitrogen load in the upper TFZ was 

calculated as the product of discharge and river water nitrogen concentration measured on 

the date closest to when discharge was measured. 

 

3.2.6.  Riparian zone denitrification model  

 The total denitrification flux of nitrogen from the riparian TFZ (kg N day-1) was 

calculated using equation 3.3 on a monthly basis, resulting in 11 estimates of 

denitrification flux over the year of study.   For each month, the average denitrification 

rate of the three intertidal habitats was used to extrapolate across the entire TFZ riparian 

area.  Equation 3.3 was implemented at a 0.1 hr time step for each of the 9 reaches of the 

TFZ using water level height-inundated area relationships (Fs) specific to that reach.  

Denitrification flux (Ns, equation 3.3) over the 6.2 hr period was numerically integrated 
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for each reach, and Ns for all 9 reaches was summed to obtain N for the entire TFZ.  

These flux estimates only account for denitrification occurring above mean sea level and 

therefore do not include denitrification occurring in the portion of the channel inundated 

continuously throughout the tidal cycle. 

 

3.3.  Results 

3.3.1.  Riparian zone denitrification  

 Denitrification rates ranged from 233 µg m-2 hr-1 (mud flat in September 2006) to 

4418 µg m-2 hr-1 (riparian forest in October 2006) (Table 3.1).  There was a significant 

difference (p<0.05) between habitat types during September and October 2006, with rates 

from the forest higher than rates at the mudflat; no other significant differences were 

found between habitats during the same month.  Denitrification over the 11 months of 

study averaged 2018 µg m-2 hr-1, 1832 µg m-2 hr-1, and 1956 µg m-2 hr-1 at the forest, 

marsh, and mud flat, respectively, and these differences were not statistically significant 

(F2,30=0.057, p=0.944) (Table 3.1).  No significant difference was found between the 

monthly averages of the three habitats over the year of study (F10,22=2.21, p=0.058).   

 Ambient water temperatures and subsequent incubation temperatures of 

denitrification experiments ranged from 9.7 to 25.5 oC (Table 3.2).  The ranges in 

dissolved nitrogen concentrations were 93-450 µg N-NO3
- L-1, 12-58 µg N-NH4

+ L-1, and 

140-982 µg N-dissolved organic L-1 (Table 2). Organic matter in the top 5 cm of 

sediment of incubated cores was highest in the forest (19%), followed by the marsh 

(11%), and mudflat (10%) (Table 3.2). 

 



 
71 

3.3.2.  Riparian zone oxidation-reduction potential  

 The channel bank (2 m from the low tide channel) during winter had dramatic 

oxidation-reduction potential fluctuations at 5 cm soil depth between oxidized (>300 mV) 

and reduced (<300 mV) conditions that were inversely related to changes in soil moisture 

(Figure 3.3A).  During 25 Feb through 2 Mar, reduction of sediments from an oxidized 

condition to <300 mV required 4 hr 40 min.  Sediments at 10 cm depth were continually 

reduced and showed little fluctuation during winter.  Oxidation-reduction potential 

decreased with distance from the channel during winter and oxidation-reduction potential 

values at 5 and 10 cm were similar to one another (Figure 3.4A and 3.5A).  At 10 m from 

the channel, oxidation-reduction potential at both 5 and 10 cm showed small semi-diurnal 

fluctuations that were inversely related to soil moisture fluctuations (Figure 3.4A).  This 

pattern was dampened even further at 17 m from the channel except during the final 4 

days of this period when a rain event on 1-3 March coincided with rapid semi-diurnal 

changes in oxidation-reduction potential at 5 cm (Figure 3.5A). 

 Oxidation-reduction potential was generally lower in summer than winter.  

Nearest the channel, oxidation-reduction potential at 5 cm fell rapidly following rain 

events on 30-31 July and 2 August (Figure 3.3B).  These upper sediments remained 

highly reduced (<0 mV) except during 3 instances of low soil moisture when oxidation-

reduction potential temporarily spiked to ~150 mV.  Sediments at 10 cm during summer 

fell from ~200 mV to ~ -50 mV following rain events on 2 and 6 August (Figure 3.3B).  

Oxidation-reduction potential 10 m from the low tide channel decreased over time, with 

significant changes coinciding with rain events on 30-31 July and 2 August (Figure 

3.4B).   The 2 August rain event corresponded with a large decrease in oxidation-
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reduction potential at the site farthest from the channel (Figure 3.5B).  By the end of 

August both riparian sites showed similar oxidation-reduction potential conditions 

without large vertical gradients (Figure 3.4B and 3.5B).  Given the highly reduced 

conditions during August, the oxidation-reduction potential measurements may under-

represent true conditions (van Bochove et al. 2002). However, since values were mostly 

below 150 mV, under-estimation by 140 mV would not interfere with the detection of 

oxidized (>300 mV) to reduced (<300 mV) fluctuations. 

 Volumetric soil moisture was generally higher during winter than summer and 

showed a semi-diurnal pattern at all sites and seasons that reflected the tidal influence 

(Figures 3.3, 3.4, and 3.5).  Soil moisture changed by <1% v/v over a tidal cycle at all 

sites and seasons, indicating that the soils were poorly drained during low tide.  Rain 

events were not reflected in the soil moisture data presumably because the soils 

maintained a near-saturated condition continuously due to tidal inundation.  Throughout 

the study period volumetric soil moisture was >50%, corresponding with the highest 

denitrification rates in a wide variety of ecosystems and the maximum N2 versus N20 

production (Machefert and Dise 2004). 

 

3.3.3.  Laboratory oxidation-reduction potential experiments 

 Manipulation of water level in sediment cores in the laboratory revealed time lags 

between oxidized and reduced conditions consistent with those observed in-situ.  The 

laboratory experiment conducted at 10 oC did not show a dramatic response in oxidation-

reduction at 1-2 cm in depth.  However, at 3 cm, the sediment took 4 hours and 40 min to 

become reduced from an oxidized condition (Figure 3.6A).  This lag period between 
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inundation and denitrifying conditions is the same as that observed in-situ during 25 Feb-

2 Mar (Figure 3.3A).  At 25 oC, 5 hr 10 min was required for the sediments at 1 cm to 

become reduced from a fully oxidized condition; sediments below that depth were never 

fully oxidized (Figure 3.6B).  Given the agreement between field and laboratory 

measurements in lag time of 4 hr 40 min, this value was used to parameterize L in 

equation 3.3.   

 

3.3.4.  Channel bathymetry and riparian zone topography 

 The aerial extent of the TFZ river channel at low tide was 149,360 m2, while the 

maximum inundated area at high tide was 426,627 m2.  The surface area of riparian 

floodplain inundated during the flood tide was greatest in the middle and upper portion of 

the TFZ, between 3 and 7 kilometers from the oligohaline estuary (Figure 3.7, 3.8A).   

 

3.3.5.  Tidal freshwater river nitrogen load 

 In the upper TFZ, low river discharges <1 m3 s-1 occurred during April—June of 

2006 and 2007; peak discharges of 4.8 m3 s-1 occurred in September 2006 following 

Hurricane Ernesto and 4.9 m3 s-1 in December 2006 (Figure 3.9).  Nitrate, ammonium, 

and organic nitrogen in the upper portion of the TFZ averaged 53 µg L-1, 46 µg L-1, and 

399 µg L-1, respectively during the study period (Figure 9).  Average nitrate 

concentration in the middle TFZ where denitrification rates were measured (see Figure 

3.1) was 203 µg L-1 (Table 3.1), 4-fold higher than the average in the upper TFZ (53 µg 

L-1).  A sewage treatment plant outfall near the study site may be partly responsible for 

the increased nitrate concentration; total nitrogen load from the treatment plant was 
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similar to the riverine total nitrogen load during low flow periods (Ensign, unpublished 

data).   

 

3.3.6.  Riparian zone denitrification model 

 Denitrification flux was greatest in this middle and upper portion of the TFZ 

where inundated area was greatest (Figure 3.8B is representative of the trend in 

denitrification over time and space, although the magnitude of this flux changed from 

month to month).  The peaked pattern shown in Figure 3.8B is a consequence of the lag 

time (4.6 hr) implemented in equation 3.3, the increase in wetted surface after this lag 

time, and the subsequent decrease in wetted surface area and denitrification as the water 

level receded.  Denitrification flux from the TFZ riparian area ranged from 0.200 kg N 

per lunar day (24.8 hr) in August 2007 to 0.589 kg N per lunar day in October 2006 

(Table 3.3).  As a proportion of the daily riverine nitrate load entering the upper portion 

of the TFZ, these denitrification fluxes ranged from 2% in September 2006 to 262% in 

May 2007 (Table 3.3). The high removal capacity predicted in May 2007 was a result of 

extremely low river discharge and thus low riverine nitrogen load (Figure 3.9).   

 

3.4.  Discussion 

 Semi-diurnal changes in water level in a tidal freshwater river in coastal North 

Carolina resulted in a 3-fold expansion in riverine surface area from low tide to high tide.  

Denitrification within three intertidal habitats of the river’s riparian zone occurred at 

similar rates, which varied 3-fold over an annual period.  The onset of denitrification in 

surficial sediments occurred 4-5 hr after inundation by the flood tide.  Denitrification flux 
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from the floodplain was estimated to constitute between 2% and 15% of the daily in-

channel riverine nitrate load during most of the year, and >100% during periods of low 

river discharge.  Since these floodplains are inundated twice daily by river water from the 

channel, they are unique relative to non-tidal floodplains that flood only seasonally.  This 

regularly occurring, direct hydrologic exchange between river channel and floodplain 

results in a continuous, year-round loss of nitrogen from the tidal freshwater portion of 

this coastal river. 

 

3.4.1.  Denitrification and redox dynamics in tidal freshwater river floodplains 

 The current study is the first to quantify the effect of denitrification occurring 

across an entire tidal freshwater riparian zone on the nitrogen budget of a tidal freshwater 

river.  Most previous research on TFZ environments has been done on nitrogen cycling 

within emergent freshwater marshes.  For example, the annual net flux of nitrate to the 

riparian zone of a Massachusetts coastal river was 5% of riverine load, although the 

portion of this flux that was denitrified was not well constrained in the budget (Bowden 

et al. 1991).  A TFZ marsh in Virginia was also an annual net sink for riverine nitrate 

where denitrification (42%) and burial (52%) accounted for permanent nitrogen loss; 

however, the net affect of this on riverine load was not calculated (Neubauer et al. 2005).  

Other TFZ studies have carefully analyzed nitrogen uptake and transformations within a 

TFZ marsh, but did not assess denitrification (Gribsholt et al. 2005; Gribsholt et al. 2006; 

Gribsholt et al. 2007).    Our intention was not to disregard the complexity of nitrogen 

transformations documented in these earlier studies, but to focus on the net effect of the 

TFZ on nitrogen cycling within the river continuum.   
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 The denitrification rates measured in the Newport River TFZ are similar to those 

reported in a Virginia TFZ marsh (Neubauer et al. 2005), slightly higher than those 

reported in some European TFZ floodplain environments (Verhoeven et al. 2001), but 

lower than those reported in a Belgium TFZ marsh (Gribsholt et al. 2006).  Floodplains 

can have high spatial and temporal heterogeneity in denitrification rates (Orr et al. 2007) 

as a result of variable soil characteristics and geomorphology (Pinay et al. 1995; Pinay et 

al. 2000), soil moisture (Machefert and Dise 2004; Pinay et al. 2007), temperature, and 

nitrate concentration (Pinay et al. 2007).  Rates in this study were usually similar between 

habitats due to the identical water column nitrate concentration and incubation 

temperature during experiments.  The two occasions during which rates were 

significantly higher in the forest than the mudflat (September and October 2006) could 

have been due to higher organic matter in the forest site.  Relative to non-tidal 

floodplains, tidal freshwater floodplains may have relatively homogenous denitrification 

rates as a result of similar soils, soil moisture regimes, and flooding. 

 Oxidation-reduction potential was used as an indicator of when denitrification 

would likely occur in the tidal freshwater riparian zone.   In-situ measurements showed 

that the upper 5 cm of sediment was predominantly oxic during winter along the channel 

edge, likely due to cooler temperatures than summer.  Sites farther from the channel 

never showed oxidized conditions during winter or summer, perhaps due to low 

topographic relief and subsequently slow local groundwater movement.  Laboratory 

experiments examined finer-scale responses within the upper 5 cm of sediment, showing 

that between 4.3 and 5.2 hr were required for the oxic-to-reduced transition.  Contrary to 

expectations, this longer transition period occurred at 10oC instead of 25oC.  We expected 
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temperature would decrease this lag time for two reasons.  First, higher metabolism at 

higher temperature would increase the rate at which sediments become reduced.  Second, 

higher temperature should lower the peak sediment porewater oxygen concentration 

attained after flooding and facilitate a faster reduction period.   

 With respect to the oxidation-reduction dynamics considered in our model, we 

assumed that exposed surficial sediments in this active zone equilibrated to 350 mV as 

indicated by our in-situ monitoring (Figure 3.4A), laboratory based oxidation-reduction 

potential experiments (Figure 3.7), and other studies (Kerner et al. 1990).  Other sediment 

types may achieve a higher oxidation-reduction potential during exposure to air, thereby 

increasing the lag time (L, equation 3.3) prior to the onset of denitrification.  For 

example, the lag period of 7 days was reported for a Mississippi wetland (Lindau et al. 

1994).  Longer lag time would decrease the denitrification flux from the TFZ floodplain, 

while shorter lag time would increase denitrification flux. 

 

3.4.2.  Uncertainties, future development, and application of the floodplain 
denitrification model 
 
 There are several uncertainties in our parameterization of the denitrification 

model which may have resulted in either under- or over-estimating denitrification.  Our 

model estimates may be under-estimates of denitrification flux for three reasons.  First, 

nitrification occurs during the oxidized phase of the tidal cycle as found in other TFZ 

studies (Gribsholt et al. 2006), and this nitrate is subsequently denitrified when sediments 

are inundated.  While our denitrification measurements included coupled nitrification-

denitrification occurring in the cores, our experimental approach did not replicate the 

pulse of nitrate that occurs under field conditions during low tide.  This additional nitrate 
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would increase the denitrification rate and consequently the N2 flux from the riparian 

zone.  Second, the inundated riparian zone may be wider than the 50 m width we 

accounted for with the digital topographic model.  Third, the lag time that was 

implemented in the model was based upon oxidation-reduction measurements in the 

upper 5 cm of sediment, although oxidation-reduction data suggest denitrification 

occurred in deeper sediments, as well.  Since the intention of the model was to estimate 

nitrate removal from the overlying water column, we focused on the upper 5 cm of the 

sediment profile whose oxidation-reduction potential responded quickest following 

inundation.  Consideration of denitrification occurring in the continuously reduced 

sediments below 5 cm would increase the expected nitrate removal in the TFZ floodplain, 

but we do not currently have data on riparian groundwater dynamics to evaluate this 

process.  Lastly, the model may have over-estimated denitrification in the TFZ since the 

denitrification rates used for extrapolation were based on water column nitrate 

concentrations that were higher than elsewhere along the river; lower water column 

nitrate concentrations would result in lower denitrification rates (Garcia-Ruiz et al. 1998).   

 Future development of our model would involve research to address the 

uncertainties identified above and implementation of more spatially-explicit information 

from the riparian zone.  First, spatial delineation of the floodplain into habitat types 

would allow explicit consideration of denitrification rates and oxidation-reduction 

dynamics within habitats in the proportion and configuration that they occur across the 

floodplain.  Second, data on the relationship between river discharge and the extent of 

overbank flooding in the TFZ would improve estimates of inundated area during seasonal 

cycles of discharge regime. 
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 The denitrification flux modeling framework presented here can be widely 

applied to generate estimates of nitrogen loss from coastal rivers worldwide.  This 

exercise would serve two purposes. First, it would provide data on nitrogen attenuation 

rates along a missing link in the river continuum which is not currently accounted for in 

river network nitrogen models (see comparison of riparian versus in-channel 

denitrification below).  Second, it would enable analysis of the effects of floodplain 

topography and river geomorphology on nitrogen dynamics in rivers.  The current model 

could be useful in addressing many critical questions regarding nitrogen flux through 

tidal freshwater rivers, such as: Does inundated surface area (and subsequent 

denitrification flux) scale proportionally to river size?  What is the relative importance of 

denitrification rate versus floodplain area in affecting riverine nitrogen loads?  The 

denitrification model presented here provides a tool to efficiently pursue these questions 

and advance our understanding nitrogen flux through tidal freshwater rivers. 

 

3.4.3.  How does riparian denitrification compare to in-channel denitrification? 

 Nitrogen uptake within river networks does not normally include riparian zone 

processes since over-bank flooding in non-tidal rivers is a periodic event on annual time-

scales.  The current study indicates that exclusion of riparian zone denitrification in a 

riverine nitrogen uptake model of the Newport River would underestimate nitrate uptake, 

but to what extent?  As a first approximation, an empirical model of river nitrogen 

attenuation (Wollheim et al. 2006; Wollheim et al. 2008) can be applied to the TFZ of the 

Newport River.  This model predicts that benthic in-channel denitrification occurring 

throughout the tidal cycle removed 4-94% of the daily riverine nitrate load over the 



 
80 

course of this study (Table 3.3).  Our estimates of riparian zone denitrification ranged 

from 27% to 278% of this in-channel denitrification, reflecting the importance of the 

riparian zone to overall nitrogen attenuation. On average, calculation of riverine nitrate 

attenuation without consideration for riparian denitrification would under-estimate nitrate 

attenuation in the TFZ by 38%.   

 Future efforts to model river network nitrogen attenuation can be improved by 

consideration of the additional nitrogen attenuation that occurs in the TFZ of coastal 

rivers, and the model presented here may provide a starting point for this research.  

Ultimately, the goal of this research should be the development of generalized empirical 

relationships between tidal freshwater river geomorphology and nitrogen attenuation 

similar to those developed for non-tidal rivers (see footnote of Table 3.3 for discussion of 

existing methodology).  These data will fill a missing biogeochemical link along the 

riverine continuum and lead to improved accuracy of nitrogen budgets at the regional and 

global scale. 
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Table 3.1  Nitrogen generation (µg N m-2 hr-1) from intertidal sediments in 
three riparian habitats of the Newport River, NC; values are mean ± 1 
standard deviation.  Letters indicate homogenous subsets of treatments during 
each month found to differ by ANOVA and Tukey post-hoc analysis (p<0.05). 

Date Forest Vegetated 
wetland 

Mud flat Habitat 
average 

31 Aug 2006 - 1669 ± 1592 2731 ± 552 2200 ± 751 

14 Sep 2006 1535 ± 588A 1428 ± 210AB 233 ± 359C 1065 ± 722 
24 Oct 2006 4418 ± 45A 3250 ± 1267AB 1626 ± 525C 3098 ± 1402 
21 Nov 2006 4177 ± 1952 2517 ± 420 1796 ± 608 2830 ± 1221 
14 Dec 2006 675 ± 645 957 ± 743 2108 ± 526 1247 ± 759 
18 Jan 2007 1226 ± 159 2261 ± 1040 2925 ± 629 2137 ± 857 
14 Feb 2007 883 ± 1464 2006 ± 1503 3753 ± 533 2214 ± 1446 
7 Mar 2007 1750 ± 292 1508 ± 323 1315 ± 134 1524 ± 218 

16 May 2007 1998 ± 1232 732 ± 473 1310 ± 199 1347 ± 634 
 31 Jun 2007 2784 ± 977 2806 ± 1156 2683 ± 1415 2758 ± 65 
8 Aug 2007 735 ± 566 1379 ± 285 1039 ± 208 1051 ± 322 

annual 
average 

2018 ± 1361 1865 ± 781 1956 ± 1005 - 
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Table 3.2  Water column nitrogen concentrations and sediment organic matter 
composition during denitrification experiments. 

Date Habitat Temperature   
(oC) 

NO3          
(µg N L-1) 

NH4            
(µg N L-1) 

Organic 
N          

(µg N L-1) 

% organic 
matter 

31 Aug 
2006 

marsh 
25.0 369 45 140 

10.8 
mudflat 10.8 
forest no data 

14 Sep 
2006 

marsh 
22.0 93 37 no data 

8.7 
mudflat 7.7 
forest 14.3 

24 Oct 
2006 

marsh 
15.5 220 21 no data 

8.1 
mudflat 6.7 
forest 15.9 

21 Nov 
2006 

marsh 
14.0 178 30 982 

no data 
mudflat no data 
forest no data 

14 Dec 
2006 

marsh 
9.7 175 28 348 

14.9 
mudflat 9.8 
forest 19.8 

18 Jan 
2007 

marsh 
12.2 124 24 323 

17.9 
mudflat 21.1 
forest 25.9 

14 Feb 
2007 

marsh 
10.0 144 58 318 

10.6 
mudflat 10.4 
forest 32.4 

7 Mar 
2007 

marsh 
11.9 450 23 326 

12.9 
mudflat 4.1 
forest 8.0 

16 
May 
2007 

marsh 
19.8 161 12 424 

7.0 
mudflat 8.6 
forest 15.4 

31 Jun 
2007 

marsh 
25.5 294 19 415 

8.2 
mudflat 11.9 
forest 24.1 

8 Aug 
2007 

marsh 
28.0 29 21 558 

7.1 
mudflat 9.2 
forest 28.5 
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Table 3.3  Nitrate loads, denitrification flux, and nitrate removal in the TFZ Newport 
River, N.C. Nitrate loads were calculated from discharge and concentration in the upper 
TFZ.  A lunar day lasts 24.8 hr. 

riverine nitrate load riparian denitrification 
flux 

proportion of 
riverine 
nitrate 

denitrified in 
riparian zone 

proportion of 
riverine nitrate 
denitrified in-

channel1 

date kg lunar 
day-1 date kg lunar 

day-1 % % 

 25 Aug 2006 7.706  31 Aug 2006 0.418 5 13 
 9 Sep 2006 15.024  14 Sep 2006 0.203 2 8 
 22 Sep 2006 3.613     
 26 Oct 2006 3.969  24 Oct 2006 0.589 15 21 
 2 Dec 2006 10.734  21 Nov 2006 0.538 5 4 
 22 Dec 2006 4.053  14 Dec 2006 0.237 6 19 
 28 Jan 2007 11.436  18 Jan 2007 0.406 4 7 
 1 Mar 2007 7.435  14 Feb 2007 0.421 6 9 

   7 Mar 2007 0.290 4 12 
 29 Apr 2007 0.098  16 May 2007 0.256 262 94 

no data no data  30 Jun 2007 0.524 no data no data 
no data no data  8 Aug 2007 0.200 no data no data 

1The proportion of riverine nitrate load denitrified in-channel (R) was estimated as: R=1-
exp(Vf/HL), where HL=discharge/(channel width × reach length) (Wollheim et al. 2006). 
Channel width was assumed to be 16 m and reach length was 8000 m. The denitrification 
mass transfer coefficient, Vf, was estimated from river NO3

- concentration using the 
formula Vf = -0.493×log[NO3

-] - 2.975 (Mulholland et al. 2008). Vf values ranged from 
1.2×10-4 to 4.8×10-4 cm s-1. 
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Figure 3.1 Map of the Newport River watershed delineating the drainage areas of the 
non-tidal river, tidal freshwater river, and oligohaline estuary. Inset map shows the 
location of the Newport River in eastern North Carolina, USA. 
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Figure 3.2 Water level at three TFZ locations upstream from the oligohaline estuary of 
the Newport River, 9 June 2008 – 10 June 2008. Values are relative to the lowest water 
level observed during the 1.2 day period at each location. Overbank flooding into the 
riparian zone was observed throughout the TFZ during this period despite the relatively 
low river discharge (0.780 m3 s-1). Water level was recorded at 5 min intervals using 
Intech WT-HR water height probe (Intech Instruments LTD, Christchurch, NZ). 
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Figure 3.3  Oxidation-reduction potential and soil moisture 2 m from the channel of the 
Newport River near Old Highway 70 during A) February-March 2007 and B) July-
August 2007. 
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Figure 3.4  Oxidation-reduction potential and soil moisture 10 m from the channel of the 
Newport River near Old Highway 70 during A) February-March 2007 and B) July-
August 2007.  
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Figure 3.5  Oxidation-reduction potential and soil moisture 17 m from the channel of the 
Newport River near Old Highway 70 during A) February-March 2007 and B) July-
August 2007.  
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Figure 3.6  A) Laboratory soil core oxidation-reduction potential experiment at 10 oC; 
core was submerged at 12:00, and B) laboratory soil core oxidation-reduction potential 
experiment at 25 oC; core was submerged at 08:00.  The gray line marks the transition 
between oxic and reduced conditions.  

100

150

200

250

300

350

400

450

500

550

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

re
do

x 
(m

V
 E

h)

1 cm
2 cm
3 cm
5 cm

220

240

260

280

300

320

340

360

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

re
do

x 
(m

V
 E

h)

1 cm
2 cm
3 cm
5 cm



 
90 

 

Figure 3.7  Bathymetry and topography of the Newport River tidal freshwater zone from 
merged LIDAR and cross-section survey data.  Dark gray represents low-tide wetted 
channel, light gray represents high tide wetted riparian zone, and white represents upland 
non-inundated area.  
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Figure 3.8  A) Results of the GIS topographic analysis of river floodplain morphology 
along nine 1-km river segments of the Newport River extending from the oligohaline 
estuary to the top of the TFZ, and B) denitrification within the Newport River TFZ during 
June 2007 estimated using equation 3.3. 
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Figure 3.9  Nitrogen concentrations and net downstream discharge in the upper TFZ 
Newport River, NC, April 2006 – April 2007. 
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4.  LANDSCAPE-SCALE CONTROLS ON DENITRIFICATION IN TIDAL 
FRESHWATER WETLANDS 
 
4.1.  Introduction 

 The tidal exchange of water and solutes between tidal freshwater wetlands (TFW) 

and rivers affects solute concentrations in the river, which in turn affects broader-scale 

solute flux from watersheds to the coastal ocean.  While TFW constitute a small part of 

the landscape, they play a disproportionately large role in biogeochemical cycling 

because of their high degree of hydrologic connectivity with their adjoining rivers. 

Nitrogen is particularly reactive in TFW, and the downstream flux of river-borne nitrogen 

can be reduced 20-35% by TFW processes in large rivers (Seitzinger 1988), and about 

1% per river km in smaller rivers (Bowden et al. 1991). 

 Daily inundation of TFW by tides is necessary for the two processes to occur 

which permanently sequester river-borne nitrogen: denitrification and long-term burial. 

We focused this study on the process of denitrification: the microbial reduction of NO3
- 

to N2 (a non-reactive gas that is emitted to the atmosphere) that occurs in the reducing 

conditions when O2 is eliminated from riparian sediment. Total N2 efflux at the scale of 

an entire tidal river is the product of the rate of denitrification, the area over which it 

occurs, and the duration of denitrifying conditions.  Ultimately, it is this landscape-scale 

N2 efflux which is necessary for predicting the delivery of terrestrially-derived nitrogen 

to the ocean (Davidson and Seitzinger 2006, Seitzinger et al. 2006, and accompanying 

articles). 
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 Efforts to extrapolate landscape-scale N2 efflux are plagued by the spatial and 

temporal variability in denitrification rate (Cornwell et al. 1999; Kulkarni et al. 2008), 

which has garnered much attention in the biogeochemical ‘hot spots’ literature (Groffman 

et al. 2009).  Adding to the high variability in denitrification rate is the variability in 

inundation across a landscape, particularly in TFW where inundation changes continually 

due to tidal influence.  While the spatial and temporal variation in denitrification rate has 

been studied extensively in TFW to improve the accuracy of landscape-scale 

extrapolations (Neubauer et al. 2005; Gribsholt et al. 2006 and 2007; Ensign et al. 2008; 

Hopfensperger et al. 2009), less attention has been given to how the variability in 

inundation affects these extrapolations.  With two sources of variation affecting the 

calculation of N2 efflux, denitrification rate and inundated area, a fundamental question 

remains: Is N2 efflux more sensitive to the temporal and spatial variation in microbial 

processing or hydrologic variation in inundation?  How do broad-scale patterns in TFW 

topography and hydrology affect where, when, and how much N2 efflux occur along a 

tidal river?  Moreover, is there a predominant driver that can be used to scale N2 efflux 

occurring in TFW over broad spatial and temporal scale as there are in other ecosystems?  

Answers to these questions are necessary for the development of empirical models of 

denitrification in TFW. 

 The temporal and spatial patterns in N2 efflux from TFW have implications 

beyond the challenges they pose to landscape-scale models of nitrogen cycling. TFW are 

advancing inland as sea level rises, thus changing the spatial configuration of the 

landscape itself. A rough approximation of this rate of tidal migration highlights the 

importance of this process over contemporary timescales: the quotient of coastal river 
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slope in NC (0.0009 on average, Sweet and Geratz 2003) and the current rate of sea level 

rise in NC (0.003 m yr-1, NOAA 2004) results in a landward migration of 3.3 m yr-1 

(depending on rates of channel aggradation).  Over the coming decade, the spatial 

patterns we observe in N2 efflux today will shift inland 33 m, thereby changing broader-

scale patterns in TFW nitrogen cycling (Craft et al. 2009).  Predicting how this process 

will affect nitrogen cycling over the coming decades requires knowledge of the 

contemporary temporal and spatial patterns in N2 efflux and their landscape-scale 

controls in TFW. 

 This study investigated the dynamics of TFW inundation and their potential 

influence on N2 efflux.  Our objective was to identify the relative importance of the two 

components of N2 efflux: inundation extent and denitrification rate.  We used a modeling 

approach wherein field observations of water level were merged with digital topographic 

data to predict inundation along the entire length of tidal rivers of widely varying size; N2 

efflux was calculated using rate measurements previously reported for one of these rivers.  

The model allowed examination of the influence of the spatial variation in denitrification 

rates relative to the spatial variation in inundation on N2 efflux.  Temporal changes in N2 

efflux over time due to water level variation were compared with the temporal variability 

in denitrification rates.  Our analysis is similar to a previous study of tidal amplitude and 

nutrient cycling in tidal marshes (Vörösmarty and Loder 1994), except that we were able 

to incorporate recently available remote sensing data to investigate landscape-scale 

patterns at a resolution not previously available. 

 

4.2.  Methods 
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4.2.1.  Study area 

 Our study investigated the tidal freshwater and oligohaline portion of four coastal 

plain rivers in North Carolina of varying lengths and watershed areas (Figure 4.1, Table 

4.1).  The low topographic relief of these watersheds results in the propagation of tides 

>100 km upstream from the ocean. The National Wetlands Inventory (NWI, U.S. Fish 

and Wildlife Service 2010) categorizes the predominant riparian vegetation community 

type as freshwater forested/shrub wetland, followed by estuarine and marine wetland in 

the Newport and White Oak rivers (Table 4.1).  Emergent freshwater wetlands were only 

reported by the NWI as occurring in Newport River (Table 4.1), but small areas (100-

1000 m2) of emergent freshwater wetlands do occur along the margins of the White Oak 

and Northeast Cape Fear Rivers, as well.   

   

4.2.2.  Floodplain topography 

 A digital topographic model of the tidal river’s riparian zone was developed using 

geographic information software (ArcGIS, ESRI, Redlands, CA) and Light Image 

Detection and Ranging Data (LIDAR).  Comparison of these topographic models with 

other digital data sources is described in Rayberg et al. (2009), and a similar topographic 

analysis of floodplain inundation was performed by Diefenderfer et al. (2008).   The 

LIDAR data were obtained from the North Carolina Floodplain Mapping Program 

(NCFMP); the data have a vertical accuracy of ≤0.2 m RMS (NCDEM 2002, 2004a and 

2004b). The location and shape of river channels was represented using digital line and 

polygon files of surface hydrology distributed by the NCFMP.  LIDAR data within 60 m 

of the channels was extracted for analysis, and a triangulated irregular network (TIN) was 
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created to provide a continuous representation of topography (based on the NAVD88 

datum) across the floodplain. Only a 50 m width of the original 60 m-wide TIN was 

analyzed to eliminate edge artifacts from the topographic modeling process. This 50 m 

floodplain width was chosen based on personal observation that inundation can extend at 

least this far into the floodplain.  Elevation of the TIN was summarized in segments (1 

river km in the Newport, New, and White Oak Rivers and 3 river km in the NECF River) 

using a function within ArcGIS which computes the 3-D area inundated at a given water 

level. A series of elevations between 0 and 1.5 m were used to generate hypsometric 

curves for the floodplain area inundated within each river segment. 

 

4.2.3.  Water level measurements 

 Water level was measured in the three rivers over a 29.5 day period (one lunar 

month) to encompass one spring-neap tidal sequence. The Newport River was monitored 

from December 2009 through January 2010, a winter period when high river discharge is 

common.  Three HOBO water level loggers (Onset Computer Corporation, Pocasset, 

MA) were installed in the subtidal river bed at 6 km, 11 km, and 19 km from the 

mesohaline estuary, and measurements were logged every 5 min.  These measurements, 

with an accuracy of 0.003 m, were corrected to NAVD88 datum using elevation 

benchmarks measured with a Trimble RTK-GPS (Trimble Navigation Limited, 

Sunnyvale, CA). 

 The White Oak River was monitored from June through July 2009, a period when 

river discharge is typically low.  Four HOBO water level loggers were installed in the 

subtidal river bed at locations 8 km, 12 km, 15 km, and 17 km upstream from the 
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mesohaline estuary; water level was logged every 5 min. River discharge during this 

period was near baseflow, so we assumed that the average water level at each of the four 

sites was mean local sea level. This average was subtracted from each water level 

measurement to calculate the water elevation relative to local mean sea level (LMSL), 

and LMSL was converted to NAVD88 by subtracting 0.134 m (the offset determined 

using NOAA’s Vdatum model (http://vdatum.noaa.gov/) at the mouth of the White Oak 

River, 34.6379N, 77.1037W). 

 The New River was monitored from May 2010 through June 2010. Water level 

data (NAVD88) at 15 min intervals was obtained from the USGS gages at Jacksonville 

(#0209303205) and Gum Branch (#02093000). 

 The Northeast Cape Fear River water level was monitored from March through 

April 2010.  Water level, measured at 15 min intervals, in the upper portion of the 

Northeast Cape Fear River was obtained from the USGS gage at Burgaw (#02108566), 

located 73 km from the mesohaline estuary.   These measurements were converted from 

NGVD29 datum to NAVD88 using the NOAA VERTCON model, which resulted in 

subtracting 0.293 m from the NGVD29 values (http://www.ngs.noaa.gov/cgi-

bin/VERTCON/vert_con.prl). Water level in the lower Northeast Cape Fear River was 

measured at NAVD88 every 6 min at gages 4 km and 15 km from the mesohaline estuary 

(data provided courtesy of Dr. Lynn Leonard, University of North Carolina at 

Wilmington). 

 

4.2.4.  Wetland inundation 
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 Inundation in each river segment (1 km in the Newport and White Oak Rivers, 3 

km in the Northeast Cape Fear River) was calculated from hypsometric curves and the 

water level measured closest to that segment. Water levels less than 0 m (NAVD88)  

were assumed to equate to zero inundated floodplain area. All calculations of inundation 

and denitrification that follow were conducted in the R software program (R 

Development Core Team 2009). 

 

4.2.5.  N2 efflux 

 We examined the effect of spatial and temporal variation in denitrification rate 

and inundation on N2 efflux calculated during each lunar day (2 semi-diurnal tidal cycles 

lasting 24.8 hr) over a lunar month (2 spring-neap tidal cycles lasting 29.5 days). Spatial 

variability in denitrification rates were compared against the spatial variation in 

inundation along the tidal river, and temporal variation in rates were compared against 

the temporal variation in inundation over a lunar month in the upper and lower half of the 

tidal river. Overlap in monthly N2 efflux at intervals along the length of the river, or at 

daily intervals within one section of the river, indicated that N2 efflux was more sensitive 

to variation in denitrification rate. In contrast, if the range in N2 efflux did not overlap, 

either between intervals along the river or over time in one section, than the variability in 

inundation was interpreted to be a more significant factor than denitrification rate. 

 This comparison required a spatial and temporal range of denitrification rates and 

a central rate estimate. In a previous study, we measured denitrification rates in three 

riparian zone habitat types (hardwood forest, emergent marsh, and mudflat) over a 11 

month period in the Newport River (Ensign et al. 2008); the TFW habitats in the Newport 
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River are very similar to the other rivers studied (Table 4.1). For the current study we 

estimated the spatial variation in denitrification as the mean of the monthly range in rates 

between the three habitats, which was 12 µg m-2 min-1. The temporal variation was 

estimated as the range in mean values for each habitat over an annual period, which was 

17 µg m-2 min-1. The mean denitrification rate of all measurements made in all habitats 

and all months in the Newport River was 29 µg m-2 min-1, and therefore our spatial 

variation in rate was 23 to 35 µg m-2 min-1, and the temporal variation was 21 to 38 µg m-

2 min-1. 

 The range in potential N2 efflux was calculated using the upper and lower values 

of these spatial and temporal ranges; calculations were performed at the time-step of 

water level measurement in each river. Previous research found that a 4.6 hr lag occurred 

between inundation of wetland sediments and an oxidation-reduction potential conducive 

to denitrification in the surficial sediments (Ensign et al. 2008). Since our objective was 

to examine the influence of riparian denitrification on nitrate concentration in river water 

advected into the wetland during high tide, we incorporated this 4.6 hr lag between 

inundation and the onset of N2 efflux. Our calculations assume that denitrification within 

the surficial (>5 cm depth) reduced sediment layer utilizes NO3
- from the overlying 

water; while denitrification likely occurs in sediments below 5 cm, we did not consider 

this N2 production would directly affect the NO3
- concentration in the water column.  The 

sensitivity of the estimated N2 efflux to variation in lag time was not examined, although 

a shorter lag time would result in greater N2 efflux while a longer lag time would result in 

less N2 efflux.   
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4.3.  Results 

4.3.1.  Hydrology and floodplain topography 

 Temporal changes in water level in the four rivers were related to upstream 

discharge and tidal influence.  Water level measurements in the Newport River were 

made during a period of high river discharge following a 4 cm rain event that occurred 25 

Dec 2009 (Figure 4.2A).  Tidal amplitude in the upper river diminished immediately after 

this rain event as water level rose, and slowly resumed a semi-diurnal frequency through 

the rest of the period as water level decreased.  In the lower tidal river, the semi-diurnal 

tidal range was briefly suppressed by this event, but water level did not rise as it did 

upstream. The range in water level throughout the White Oak River was remarkably 

consistent throughout the period, indicating that any changes in upstream discharge that 

occurred did not influence water level in the river (Figure 4.2C). Changes in tidal 

amplitude and water level in the White Oak River corresponded with the spring-neap 

tidal sequence, with spring tides occurring 6 and 23 June, and neap tides occurring 15 

June and 2 July. Water level in the upper New River reflected a small runoff event on 17 

June, but this did not influence water level in the lower tidal river (Figure 4.2E). Water 

level in the upper Northeast Cape Fear River reflected the tail of a storm hydrograph and 

semi-diurnal tidal amplitude increased as and water level decreased (Figure 4.2G).  The 

lower Northeast Cape Fear River tidal amplitude and water level reflected the neap tides 

on 22 March and 7 April and spring tides on 31 March and 15 April. 

 GIS analysis revealed a range of patterns in hypsometric curves between rivers.  

The Newport (Figure 4.2B) and White Oak Rivers (Figure 4.2D) demonstrated the 

greatest inundated area in the upper portion of the tidal river, while the Northeast Cape 
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Fear River (Figure 4.2H) had greatest inundation in the lower river.  The New River 

showed greatest inundation downstream when water level was greater than 0.1 m (Figure 

4.2F). 

 

4.3.2.  Floodplain inundation 

 We present the inundation data that reflect a 4.6 hr lag (as measured in Ensign et 

al. 2008) to more effectively compare and discuss the relative importance of inundation 

versus denitrification rate; consequently areas inundated for less than 4.6 hr are not 

shown in the graphs presented.  The Newport River showed much greater inundation in 

the upper than lower river, and was continually inundated to some extent throughout the 

month of study (Figure 4.3A).  The lower half of the Newport River drained completely 

on all but one day of the month (Figure 4.3B). A general decline in inundation occurred 

in the upper river that reflected the decrease in water level (Figure 4.3C).  

 The White Oak River displayed greater inundation in the upper than lower portion 

of the tidal river, despite nearly equal water level along the river (Figure 4.4A). The daily 

range of inundation in both the upper and lower river corresponded with the spring-neap 

tidal sequence (Figure 4.4B and 4.4C, Figure 4.2C). Complete drainage of the riparian 

zone occurred daily, and on days 9 and 26 the floodplain was inundated for less than 4.6 

hr (as represented by gaps in inundation in Figure 4.4B and 4.4C). 

 The New River displayed greatest inundation in the middle portion of the tidal 

river (Figure 4.5A), contributing to a peak inundation occurring in the middle of the study 

period in the lower river (Figure 4.5B).  Continual inundation of the upper river occurred 

throughout the study period (Figure 4.5C). 
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 Inundation in the Northeast Cape Fear River was dominated by the lower half of 

the river (Figure 4.6A), despite the high water level upstream (Figure 4.2G).  The lower 

half of the river drained completely almost every day (Figure 4.6B), while the upper half 

of the river was continually inundated to some extent throughout the study period (Figure 

4.6C). 

 

4.3.3.  N2 efflux 

 The predicted range in N2 efflux reflected the temporal and spatial trends in 

floodplain inundation from which they were calculated.  The majority of the N2 efflux 

occurred in the upper portion (longitudinally) of all rivers (Figures 4.3-4.6), regardless of 

the discharge condition of the river (storm flow versus baseflow) and hypsometric curves 

(Figure 4.2).  The lack of overlap in the range of potential N2 efflux along this spatial 

gradient (e.g., the black bars representing N2 efflux from a range of denitrification rates 

do not all overlap) indicated that N2 efflux was more sensitive to variation in inundation 

along this spatial gradient (Figures 4.3A, 4.4A, 4.5A, and 4.6A).  The range in potential 

N2 efflux differed over time in the lower portion of all rivers (e.g., the black bars do not 

all overlap), indicating that differences in inundation over time had a greater effect on N2 

efflux than the temporal variability in denitrification rate (Figures 4.3B, 4.4B, 4.5B, and 

4.6B).  In contrast, the range in potential N2 efflux in the upper Newport, New, and 

Northeast Cape Fear Rivers did not differ over time (e.g., the black bars all overlap), 

indicating that N2 efflux was more sensitive to the temporal variation in denitrification 

rate than inundation (Figures 4.3C, 4.5C, and 4.6C).  The White Oak River, the only river 

in which we assumed that upstream runoff did not affect tidal amplitude, showed similar 
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temporal variability upstream and downstream, and N2 efflux was more influenced by 

inundation over time than variation in denitrification rate (Figure 4.4B and 4.4C). 

 

4.4.  Discussion 

4.4.1.  Two Modes of N2 Efflux 

 The temporal contrasts in the range in potential N2 efflux can be summarized as 

occurring in two dominant modes of emission (Figure 4.7).  High river discharge caused 

continual inundation of the upper half of the tidal rivers regardless of their topography (as 

demonstrated by the opposite hypsometric curves in the Newport and Northeast Cape 

Fear Rivers (Figure 4.2B and 4.2H) but similar patterns in inundation (Figures 4.3C and 

4.6C).  During these periods of continual inundation, the variation in day-to-day N2 efflux 

is highly sensitive to factors controlling biogeochemical rates (as indicated by the overlap 

in the potential N2 efflux).  We refer to these periods as exhibiting a biochemical mode of 

N2 efflux since the temporal variation in biochemical rates most strongly affect N2 efflux.  

In contrast, when river discharge was low and inundation was dictated by tides, the effect 

of daily hydrologic variation superseded the effect of temporal variability in 

denitrification rate; we refer to this period as a hydrologic mode.  Biochemical mode was 

more common in the upper river, while hydrologic mode was most common in the lower 

tidal river. 

 Strong spatial gradients in N2 efflux were observed, with higher N2 efflux 

upstream than downstream due to patterns in hydrology and topography.  In all rivers 

studied, the spatial gradient in the relationship between hydrology and topography 

resulted in much more area inundated in the upper river, and consequently higher N2 
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efflux. These physical gradients had a greater influence on N2 efflux than did the spatial 

variation in denitrification rate, as indicated by the lack of overlap in N2 efflux along the 

length of the rivers.  Overall, the upper half of all rivers was the major contributor of N2 

efflux due to their high inundation areas (Figure 4.7).  However, these data represent only 

a one month period which was influenced by high river discharge in half of the rivers 

studied.  The temporal constraints of our study lead to two issues which we address in the 

following section:  What is the annual contribution of high versus low river flow regimes 

on inundation and subsequent N2 efflux, and what is the corresponding mode of N2 efflux 

over annual time scales? 

 Our model of TFW N2 efflux was based on three assumptions which generated a 

characteristic response to variation in water level.  First, N2 efflux was not expected to 

occur until after a 4.6 hr lag time to account for the time necessary for the sediment water 

interface to become reduced and denitrification of NO3
- in the overlying water to begin.  

Second, N2 efflux occurring after this lag period was calculated directly from the TFW 

area inundated.  Third, the maximum N2 efflux was limited to a 20 hectare per river km 

area due to the boundaries of the LIDAR data analyzed.  These assumptions lead to the 

expectation that N2 efflux should scale as a sigmoid function of water level.  This 

response is apparent from a plot of the daily mean water level from each river against the 

corresponding daily N2 efflux per river km (Figure 4.8).  The New River exhibited 

greater N2 efflux per water level than the other rivers (Figure 4.8), perhaps because tidal 

amplitude was lower and therefore the daily draw-down of water at low tide was less 

severe than the other rivers. 
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4.4.2.  Water level governs N2 efflux in TFW 

 The strength of the relationship between daily N2 efflux and mean daily water 

level is striking considering the inter- and intra-river variations in topography and 

hydrology.  While some degree of auto-correlation is expected between model output (N2 

efflux) and a summary measure of the data input (water level), the strength of this 

regression indicates that much of the topographic and hydrologic complexity of our 

model can be simplified to a single three parameter, non-linear model:   

𝑁𝑁2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑒𝑒
(𝑦𝑦×𝑒𝑒𝑒𝑒𝑒𝑒 −𝑧𝑧)

        (4.1) 

where x is the maximum amount of denitrification that could occur within a river reach 

and y is a fitted variable and z is the area inundated.  Despite the different spatial patterns 

in topography among rivers and differences in their tidal and fluvial dynamics, water 

level alone explained a substantial part of their inundation dynamics. 

 The empirical relationship between N2 efflux and mean water level allowed us to 

address the question of how river flow regime (e.g., baseflow versus stormflow) affects 

N2 efflux over annual time scales (versus the one month period we observed).  The 

occurrence of an ecosystem process, such as N2 efflux, over long time periods in rivers 

can be calculated from the magnitude of the process and the corresponding frequency at 

which it occurs (sensu Doyle et al. 2005).  We performed this magnitude-frequency 

analysis using the relationship between N2 efflux and water level (Figure 4.8) in 

conjunction with the long-term distribution of water level at a tidal gaging station.  The 

log-normal frequency distribution was computed for 10 years of mean daily water level at 

the USGS gaging station at Burgaw on the Northeast Cape Fear River (#02108566) and 

multiplied by the sigmoid function in Figure 4.8.  The peak value from this calculation 
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(0.6 m) represents the water level where most N2 efflux occurs in the upper Northeast 

Cape Fear River (Figure 4.9A).  To put this water level in context with the flow regime of 

the river, we compared water level to discharge at this gaging station.  A water level of 

0.6 m occurred during low (baseflow) discharge periods (Figure 4.9B), indicating that 

high river discharge had a minimal effect on N2 efflux over an annual period.  Most N2 

efflux in the upper tidal river occurred when tides, not high river discharge, were the 

predominant influence on TFW inundation.  Tides are even more influential in 

controlling inundation (and subsequent N2 efflux) in the lower river, which is even less 

affected by river discharge.  

 

4.4.3.  Modeling denitrification in TFW 

 Accounting for the temporal and spatial variability in denitrification rate has been 

identified as the foremost challenge in denitrification modeling (Groffman et al. 2009), 

but our analysis suggests this issue may be of secondary importance in TFW.  While the 

environmental factors (e.g.,, temperature, carbon substrate, nitrate concentration) 

regulating denitrification are of primary importance during the biochemical mode of N2 

efflux, they are equally or less important than inundation dynamics during the hydrologic 

mode.  The frequency-magnitude analysis we performed indicates that most N2 efflux 

occurs during the hydrologic mode over an annual period, and therefore accurate 

estimation of denitrification rate is of secondary importance.  From a landscape-scale 

perspective, we suggest that equal, or greater, emphasis be given to characterizing the 

surface hydrology of a TFW relative to the biochemical mechanisms regulating 

denitrification rate. 
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 A weakness in current models of riverine denitrification is the effect of riparian 

processes on downstream riverine nitrogen transport (Boyer et al. 2006).  Our analysis 

revealed that water level fluctuation alone may be sufficient to link TFW riparian 

processes with riverine transport in a manner similar to other aquatic denitrification 

models (reviewed by Boyer et al. 2006).  The daily nitrogen load exiting a river reach 

(Nout) is the difference between the daily load entering the reach (Nin) and the riparian 

processes contributing to denitrification:  

𝑁𝑁𝑜𝑜𝑒𝑒𝑜𝑜 = 𝑁𝑁𝑖𝑖𝑖𝑖 −
𝑎𝑎×𝑣𝑣𝑒𝑒×𝐶𝐶

1+(𝑦𝑦×𝑒𝑒𝑒𝑒𝑒𝑒 −𝑧𝑧×𝐿𝐿)
       (4.2) 

where a is the TFW area per river length, vf is the denitrification mass-transfer 

coefficient, C is the NO3
- concentration in the river, y and z are fitted constants, and L is 

the water level in the river.  This equation reflects the combined influence of biochemical 

process (expressed as vf and C) and the degree of hydrologic interaction between the river 

and TFW (expressed as a sigmoid function of L with the fitted constants y and z), thereby 

allowing specificity of model parameters .  Representation of the in-channel 

denitrification would also need to be included by means of one of the many formulations 

already developed (Boyer et al. 2006).  The results of the current study indicate that river 

water level is the most parsimonious single variable with which to couple downstream 

river nitrogen transport with denitrification in TFW. 

 

4.4.4.  Shifting landscapes and denitrification during sea level rise 

 The  spatial patterns in TFW topography and hydrology in the NC rivers we 

studied were similar to other TFW.  Floodplain elevation was lower upstream than 

downstream, a pattern similar to that observed in the Suwannee River, FL (Light et al. 



 
109 

2007) and Nanticoke River, MD (Baldwin 2007).  Inundation extent was greater 

upstream than downstream, a pattern also seen in other TFW (Hackney et al. 2007).  

These spatial gradients along tidal rivers are the combined result of long-term temporal 

changes in topography and tidal amplitude as sea level rises.  One explanation for the 

spatial gradient in inundation along tidal rivers is that sediment accretion is more rapid in 

the lower river’s TFW (e.g., Darke and Megonigal 2003), but tidal amplitude increases 

faster in the upper river’s TFW (see Pasternack 2009 for review of TFW evolution and 

Neubauer et al. 2002). 

 As sea level rises, the balance between TFW accretion and the simultaneous 

landward expansion of tidal influence govern the net change in N2 efflux from tidal 

rivers.  Our data indicate that most N2 efflux occurs in the upper region of tidal rivers.  

Thus, if the rate of downstream accretion is proportionally faster than the expansion of 

tidal inundation upstream, total N2 efflux from the tidal river may decline over time.  

Alternatively, if tidal inundation extends upstream faster than downstream habitats 

accrete, total N2 efflux may increase as sea level rises.  With a landward tidal migration 

rate of 30 m per decade, the net effect of these processes is conceivably detectable in 

multi-year study of a tidal river.  Measuring these shifts in tidal inundation is an exciting 

prospect for long-term environmental monitoring, particularly since the rate of sea level 

rise may be increasing and accelerating these landscape-scale ecosystem processes. 

 Riparian forested TFW were the location of most N2 efflux in this study.  These 

habitats have received less attention than emergent tidal marshes with respect to nitrogen 

cycling and denitrification, yet appear to be crucial to the overall N2 efflux in tidal rivers.  

Forested riparian wetlands in non-tidal rivers sequester nitrogen through both 
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denitrification (Brinson et al. 1984) and burial (Noe and Hupp 2005 and 2009), except 

during very short hydroperiods (Noe and Hupp 2007).  Broad-scale comparisons have 

been made between tidal and non-tidal forested riparian habitats (Verhoeven et al. 2001), 

but how biogeochemistry of these habitats changes upon conversion to a tidal 

hydroperiod is unknown.  These tidally-induced biogeochemical transformations in tidal 

forested wetlands are another topic in need of future research in the broader effort to 

understand nitrogen dynamics in tidal rivers. 

 

4.5.  Conclusions 

 Tidal rivers are the final hydrologic link connecting watersheds with estuaries.  

Biochemical processing of nitrogen within the TFW of these rivers significantly 

influences the delivery of nitrogen to the marine environment, but our ability to predict 

this process at the landscape-scale has been hindered by the hydrologic complexity of 

tidal rivers.  This study revealed that this hydrologic complexity, particularly that which 

is due to tides, strongly affects TFW N2 efflux.  In fact, over annual time-scales this tidal 

hydrology is the dominant factor affecting N2 efflux, exceeding the influence of river 

floods on TFW inundation.  Not only do tides dominate TFW inundation, but they are as, 

or more important to consider when calculating landscape-scale N2 efflux than the 

potential variability in denitrification rate.   

 Consistent spatial patterns in topography and hydrology occurred in three of the 

four rivers studied, and we discovered that the complexity of the topographic-hydrologic 

inundation model could be simplified to a 3 parameter regression model based on average 

daily water level.  This simplified model was used to develop an equation for estimating 
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NO3
- loss in TFW during riverine transport; elaboration of this equation in future research 

may provide an effective way of coupling riparian TFW processes with riverine transport.  

An exciting challenge for future TFW research is quantifying the rate of landward 

expansion in tides and the subsequent conversion of non-tidal to tidal biogeochemical 

regimes in tidal forests.   Establishing how N2 efflux from tidal rivers responds to the 

upstream addition of tidal forests with the simultaneous changes in TFW inundation is of 

particular interest given expectations of a future increase in the rate of sea level rise. 
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Table 4.1. River characteristics and riparian vegetation type from the NWI. 

Rivers 
Length 
studied 
(km) 

Watershed 
area (km2) 

Vegetation type 
Estuarine 

and 
marine 
wetland 

Freshwater 
emergent 
wetland 

Freshwater 
forested 

and shrub 
wetland 

Riverine Estuarine 
and marine 
deepwater 

Newport 17 178 41% 0% 57% 1% 2% 
White Oak 23 551 14% 14% 68% 3% 1% 

New 12 431 0% 0% 98% 2% 0% 
NE Cape 

Fear 
64 4513 0% 0% 93% 7% 0% 
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Figure 4.1  The location of the rivers studied in North Carolina.  The thick black lines 
indicate the extent of the tidal freshwater zone, and the shaded gray indicates the extent 
of the watershed. 
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Figure 4.2  Water level and hypsometric curves in the Newport River (A and B), White 
Oak River (C and D), New River (E and F), and Northeast Cape Fear River (G and H).  
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Figure 4.3  Range in inundation and N2 efflux along the Newport River over a one month 
period (A), range in inundation and N2 efflux each day in the lower (B) and upper (C) 
tidal river. 
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Figure 4.4  Range in inundation and N2 efflux along the White Oak River over a one 
month period (A), range in inundation and N2 efflux each day in the lower (B) and upper 
(C) tidal river. 
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Figure 4.5  Range in inundation and N2 efflux along the New River over a one month 
period (A), range in inundation and N2 efflux each day in the lower (B) and upper (C) 
tidal river. 
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Figure 4.6 Range in inundation and N2 efflux along the Northeast Cape Fear River over a 
one month period (A), range in inundation and N2 efflux each day in the lower (B) and 
upper (C) tidal river.  
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Figure 4.7 Generalized, qualitative model of the temporal and spatial variation in N2 
efflux in a tidal river showing the periods of hydrologic and biochemically-driven modes 
of N2 efflux.  The size of the four sections of the figure show the relative N2 efflux over 
an annual period.    
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Figure 4.8  Predicted N2 efflux versus the mean daily water level in each river over the 
month of study.  Model predictions represented by symbols are for those calculated using 
the grand mean denitrification rate (29 µg m-2 min-1).  The solid line shows a three 
parameter logistic regression curve fit to all data except the New River.  The dashed lines 
show this model fit to predictions of a maximum (36 µg m-2 min-1) and minimum (22 µg 
m-2 min-1) denitrification rate. 
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Figure 4.9  Frequency-magnitude plot of water level and N2 efflux in the upper Northeast 
Cape Fear River (A), and the relationship between water level and discharge at this site 
(B).  In panel A, the frequency of mean daily water level over a 10 year period is shown 
by the dashed line. The empirically-derived N2 efflux is shown for the mean (solid bold 
line), maximum, and minimum (solid lines) presented in Figure 8.  The dotted lines 
represent the product of the water level histogram with the corresponding empirical N2 
efflux model.  The effective level (0.6 m) is the same for all N2 efflux models, regardless 
of denitrification rate.  In panel B the dashed line indicates the effective level of N2 
efflux.



 

 
 
 
 
 
5.  THE END OF THE RIVER CONTINUUM: TIDES AND RIVER 
ECOSYSTEMS 
 
5.1. Introduction 

One premise of ecosystem ecology is that water flows down hill, exerting a uni-

directional flux of water and material across the landscape.  This hydrologic connectivity 

across landscapes has provided the foundation for broadly-influential concepts such as 

the watershed ecosystem concept (Bormann and Likens 1967) and the river continuum 

concept (Vannote et al., 1980).  Recent concepts and theory regarding spatial patterns in 

ecological process (Fisher et al. 2004), community disturbance and succession (Power et 

al. 2008), and ecosystem nutrient cycling (Brookshire et al. 2009) highlight the 

importance of terrestrial processes upstream to rivers ecosystems downstream. 

The corollary to the terrestrial-riverine view of stream ecosystems is the 

estuarine-riverine view at the end of the river continuum.   Ocean tides propagate 

upstream through tidal rivers, affecting the flow of water, sediment, solutes, and 

organisms.  Here, the normal conceptualization of streams as dependent on upstream 

forces is reversed: instead of watershed runoff shaping river hydrology and morphology, 

tidal rivers are dominated by the influence of tides (Ensign et al. in review).  Tidal rivers 

are a nearly universal component of river networks, and more than half the length of 

coastal rivers are tidal freshwater. 

Despite being a common phenomenon in river networks, tidal rivers are 

conspicuously omitted from the formative conceptualizations of rivers.  The river 
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continuum concept (Vannote et al. 1980), hierarchical patch dynamics concept (Frisell et 

al. 1986), flood-pulse concept (Junk et al. 1989) and the nutrient spiraling concept 

(Webster and Patten 1979) did not include a tidal component nor have they been 

extended to the tidal zone in subsequent research.  Tidal rivers are not explicitly 

discussed in any of the basic stream ecology texts, yet many of the ecological aspects of 

tidal rivers have been examined (primary production (e.g.,, Muylaert et al. 2000), 

secondary production (e.g.,, Findlay et al. 1996), and food webs (e.g.,, Strayer et al. 

2008).  Given this body of knowledge, why have tidal rivers been so ignored from 

synthesis efforts in stream ecology?  We suspect that the answer is in part because 

concepts in stream ecology are largely premised on a hydrogeomorphic template, and too 

little is known about how tides affect this template and subsequent ecological process to 

allow integration of tidal rivers with broader conceptual understanding of river networks. 

 The goal of this study was to identify systematic changes in river 

hydrogeomorphology along a tidal river and quantify their influence on a fundamental 

biotic processes: phytoplankton growth.  Based on the fact that tides affect channel width 

(Leopold et al. 1964) and hydrologic residence time (Pace et al. 1992), two a priori 

hypotheses can be proposed regarding tidal river phytoplankton.  First, increased channel 

width in tidal rivers will increase irradiance and subsequently primary production; 

second, increased residence time should provide more time for  plankton growth and 

biomass accumulation (Figure 5.1).  We test the first prediction by characterizing 

temporal and spatial patterns in irradiance and phytoplankton biomass, and the second 

prediction using mesocosm experiments. 
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 If phytoplankton growth in tidal rivers was predominantly influenced by 

irradiance and residence time, then biological production in tidal rivers could be 

predicted from hydrogeomorphic patterns.  However, tidal hydrology and 

geomorphology may also affect other aspects of the river (e.g.,, water chemistry, 

community composition) which may subsequently influence phytoplankton (Figure 5.1).  

We conducted mesocosm experiments in a tidal river to test the null hypothesis that 

phytoplankton biomass and growth were governed solely by irradiance and residence 

time along the tidal continuum.  Understanding the primacy of tidal forces versus 

biological processes on primary production in tidal rivers is a fundamental step towards 

integrating ecological patterns in tidal river with the rest of the river continuum. 

 

5.2.  Methods 

5.2.1.  Study sites 

The Newport (34.8oN 76.8oW)and White Oak (34.8oN 77.2oW) Rivers in North 

Carolina are blackwater streams with relatively small drainage areas (150 km2 and 200 

km2, respectively), low channel gradients, and extensive riparian wetlands.  The 

transition from headwater stream, to tidal freshwater river, to estuary occurs over a 

relatively short distance (9 and 23 river km in the Newport and White Oak Rivers, 

respectively), making these rivers compact models for examining tidal effects on river 

ecosystems.  

 

5.2.2.  Channel morphology, irradiance, and phytoplankton biomass 
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Channel width was measured between the vegetated banks of both rivers in the 

field or using aerial photographs when widths exceeded 20 m.  Sampling was conducted 

from the purely non-tidal upstream reach all the way through a continuum of increasingly 

tidally-influenced reaches, ultimately ending at the freshwater-saltwater interface.  To 

compare actual dimensions to what would be expected in the absence of tides, we 

estimated non-tidal channel hydraulic geometry (width as function of drainage area) 

using relationships specific to non-tidal coastal plain streams in North Carolina (Sweet 

and Geratz 2003).   

Average water column irradiance (photosynthetically active radiation, PAR) was 

calculated using the formula 

        (5.1) 

where Ix is the average water column irradiance, I0 is the surface irradiance, k is the water 

column attenuation coefficient, and z is water depth. Water column attenuation of PAR 

was measured using a 4-pi irradiance sensor and LI1400 display/logger (Li-Cor 

Environmental, Lincoln, NB).  Depth was measured at 500 m intervals along the length 

of the tidal freshwater zone at mid-tide.  Average daily solar irradiances for the study area 

were obtained from observations made by the North Carolina State Climate Office 

(http://www.nc-climate.ncsu.edu/) at 3 sites near the study area, and solar irradiance 

values were converted to PAR using a conversion factor of 2.04 (Meek et al. 1984).  

Canopy interception of irradiance was calculated from digitized hemispherical 

photographs of the tree canopy taken with a Nikon Coolpix 4500 camera with fisheye 

lense at 500 m (Newport River) and 1000 m (White Oak River) intervals during leaf-on 

and leaf-off conditions. The color photographs were digitized to black and white using 
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automatic threshold detection algorithms in SideLook 1.1.01 software (Nobis and 

Hunzicker, 2005), and the average daily irradiance to the river’s surface after attenuation 

by the riparian tree canopy was calculated following the methods of Julian et al. (2008). 

Phytoplankton biomass and water column light attenuation were measured bi-

weekly at 5 sites on the Newport River in 2006-2007, and at 3 sites on the White Oak 

River on 4 occasions in 2009.  Logistical constraints restricted sampling of the White 

Oak River, so sampling was focused around the period of maximum phytoplankton 

biomass observed in the Newport River.  Water samples (50 mL) were filtered through a 

0.7 µm glass fiber filters, and chlorophyll a (a proxy for phytoplankton biomass) was 

extracted for 24 hr in 90% acetone and analyzed on a Turner Trilogy fluorometer (Turner 

Designs, Inc, Sunnyvale, CA).  

 

5.2.3.  Photosynthetic response to irradiance along a tidal gradient 

 The photosynthetic response of the phytoplankton community to irradiance was 

measured in short-term 14C uptake experiments with river water collected from the  non-

tidal, upper tidal, and lower tidal portions of the Newport and White Oak Rivers on 18 

and 19 June 2009.  Water samples (10 ml) were spiked with 1 µCi ml-1 of H14CO3 and 

incubated for 45 min at irradiances ranging from 23-1951 µM PAR m-2 s-1.  Uptake of 

14C into algal biomass was quantified using a LS6500 scintillation counter (Beckman 

Coulter, Inc., Brea, CA) after the un-incorporated 14HCO3 was removed by acidification.  

Algal uptake of 14C (PB) was modeled as a function of irradiance (I) using the equation 

𝑃𝑃𝐵𝐵𝑒𝑒 = 𝑃𝑃𝑆𝑆𝐵𝐵 �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝛽𝛽  ×𝐼𝐼
𝑃𝑃𝑆𝑆
𝐵𝐵 ��       (5.2) 
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where PB
S is the maximum photosynthetic rate normalized to chlorophyll a, and β is the 

slope of the curve as I goes to zero. Parameterization of this model and all statistical 

procedures described below were performed using R software (R Development Core 

Team 2010). 

 

5.2.4.  Mesocosm growth experiments in the Newport river 

Mesocosm experiments were conducted to determine phytoplankton growth rates 

(a net measure of biomass accumulation implicitly accounting for primary production, 

respiration, and loss due to senescence and grazing).  Experiments were performed in 

April, June, and October 2006 and March 2007 using river water from the Newport 

River’s non-tidal, upper tidal, and lower tidal freshwater regions.  Irradiance and 

temperature were equivalent for all mesocosms, thereby isolating the effects of water 

chemistry and zooplankton grazing on phytoplankton growth.  Potential nutrient 

limitation of phytoplankton growth was evaluated by experimental addition of nitrogen 

and phosphorus.   

River water (5 L) was incubated in 10 L polyethylene Cubitainers (Hedwin Corp., 

Baltimore, MD) in an outdoor pond at the nearby UNC Institute of Marine Science in 

Morehead City, NC.  A control and a nutrient treatment were applied in 4 replicates; 

nutrient additions were +140 µg N-NO3 L-1, +140 µg N-NH4 L-1, and +155 µg P-PO4 L-1 

(expressed as the concentration increase over background). Irradiance was reduced to 

66% of ambient conditions using black plastic window screen to replicate light 

attenuation in the water column.  Phytoplankton growth rate was determined from the 

slope of mixed-effects linear models developed from log(chlorophyll a) values on days 1, 
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2 and 4 of each experiment, with fixed effects for site and nutrient treatment and random 

effects for each cubitainer over the course of the experiment.  Model simplification was 

performed iteratively using likelihood ratio tests in an ANOVA to remove insignificant 

model terms (p>0.05) while following the principal of marginality.  

Travel time of water flowing through the tidal freshwater zone of the Newport 

River was estimated using the modified tidal prism method (Dyer 1997) and direct 

measurements of discharge and channel bathymetry reported in a previous study (Ensign 

et al. 2008).  Travel time in the absence of tides was estimated by dividing reach length 

by non-tidal flow velocity. Both methods are simple approximations of travel time in 

tidal and non-tidal rivers so we expect that comparison of their predictions should yield a 

relative measure of the difference in phytoplankton travel time in the river under tidal 

versus non-tidal conditions. Differences between chlorophyll a in non-tidal mesocosms 

after the predicted non-tidal travel time and chlorophyll a observed after the predicted 

tidal travel time to the estuary were evaluated with Walsh two sample t-tests (p<0.05). 

 

5.3.  Results 

5.3.1.  Channel morphology, irradiance, and phytoplankton biomass 

 The width of the tidal portion of both rivers was 3 times greater than would be 

expected in the absence of tides (Figure 5.2A and 5.2B).  This increase in width 

corresponded with a dramatic increase in total irradiance at the river surface (Figure 5.2C 

and 5.2D). The highest water surface irradiances occurred in the lower tidal region of 

both rivers during April, corresponding with the peak above-canopy irradiance.  Water 

surface irradiance during summer (May-September) was lower upstream due to the more 
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foliated tree canopy.  Attenuation of irradiance within the river decreased the average 

water column irradiance; an increase in channel depth also reduced water column-

averaged irradiance in the lower portion of both rivers (Figure 5.2E and 5.2F).  

Chlorophyll a peaked during April-May in the Newport River and June-July in the White 

Oak River, periods which corresponded with the peak in water column irradiance.  

 

5.3.2.  Photosynthetic response to irradiance 

 Primary productivity per unit of irradiance was greater in the tidal than non-tidal 

portion of the Newport and White Oak Rivers, although the tidal region where this 

increase occurred (i.e., upper vs. lower) differed between rivers.  In the Newport River, 

the upper and lower tidal river had a greater maximum photosynthetic rate (PS
B) than the 

non-tidal river (Figure 5.3A).  The lower tidal White Oak River had a higher PS
B than the 

upper tidal and non-tidal (Figure 5.3B).  Similarly, the rate of increase in photosynthesis 

with irradiance (β) was greater in the Newport River’s lower and upper tidal than the 

non-tidal (Figure 5.3A).  In the White Oak River, β was greater in the lower tidal region 

than the upper and non-tidal regions (Figure 5.3B).  

 

5.3.3.  Mesocosm growth experiments 

 Tidal travel time for the Newport River ranged from 3.6-5.1 days, while the 

predicted travel time in the absence of tides ranged from 0.4-1.1 days (Figure 5.4A-D).  

In the non-tidal mesocosms, the extra travel time provided by tides allowed significantly 

more chlorophyll a to accumulate during March (p<0.001), April (p<0.001), and June 
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(p=0.003) when nutrients were added, but no increase was observed in October (p=0.09) 

(Figure 5.4A-D).  

 In March phytoplankton growth was significantly different between the non-tidal 

and tidal mesocosms, but the differences were alleviated by the addition of nutrients to 

the non-tidal mesocosms (Figure 5.4E).   The difference between non-tidal and upper 

tidal mesocosms in April may have been a result of anomalously low chlorophyll on day 

1 in the upper tidal mesocosms (Figure 5.4B), and no differences were apparent when 

nutrients were added (Figure 5.4F). In June growth in non-tidal mesocosms was slower 

than in the lower tidal mesocosms, but faster when nutrients were added to the non-tidal 

mesocosms (Figure 5.4G). No difference was observed between non-tidal and upper tidal 

mesocosms in June under ambient or nutrient enriched conditions.  In October, no 

differences in growth rate were observed, and mixed effects modeling showed the 

nutrient term to not be significant (therefore separate slopes for the nutrient treatment are 

not shown in Figure 5.4H).  

 

5.4.  Discussion 

 The first objective of this study was to examine the hydrogeomorphic patterns 

affecting phytoplankton biomass and growth in tidal rivers.  We found that tides tripled 

channel width and subsequently the irradiance to the river surface increased 6-fold.  As 

predicted, these spatio-temporal patterns in irradiance corresponded with those of 

chlorophyll a, and mesocosm experiments demonstrated that the increased residence time 

provided by tides significantly increased phytoplankton biomass during most of the year.  

The contrast between the observed and predicted non-tidal channel width indicated that 
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tides had a more profound effect on channel morphology (and subsequently 

phytoplankton production) than the watershed flow regime.   

 The second objective was to determine if the spatio-temporal patterns in 

phytoplankton biomass we observed were due solely to changes in river hydrology and 

morphology.  If the growth rate of phytoplankton along the tidal river continuum was the 

same, then hydrology and irradiance (a function of morphology) alone would control the 

accumulation of phytoplankton biomass (Figure 5.1, Ho).  Alternatively, differences in 

phytoplankton growth rate would indicate that biologic characteristics affected 

phytoplankton biomass in addition to hydrogeomorphology (Figure 5.1, Ha).  Mesocosm 

results were not consistent over time, instead demonstrating a period of tidal 

hydrogeomorphic control (April and October) and a second period when nutrient 

concentrations also affected growth (March and June).  In April and October, no 

differences in phytoplankton growth were observed along the tidal river continuum 

(except for those resulting from anomalous data in April’s upper tidal river mesocosm), 

and the null hypothesis of hydrogeomorphic forcing could not be rejected.  During March 

and June phytoplankton growth rates in non-tidal mesocosms were lower than in the tidal 

mesocosms due to nutrient limitation, permitting rejection of the null hypothesis in favor 

of an additional factor (nutrients) affecting growth.  

 Nutrients not only stimulated non-tidal phytoplankton growth in June, but this 

growth rate exceeded that occurring in the lower tidal river.  This was surprising given 

the much lower α and PS
B measured in non-tidal river phytoplankton.   In hindsight, we 

wondered if differences in zooplankton grazing may have suppressed phytoplankton 

growth in the tidal river but not in the non-tidal river.  While we did not quantify 
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zooplankton during the experiment, we were able perform counts in water samples from 

the mesocosms preserved with Lugol’s iodine intended for phytoplankton analysis.  

Based on counts from a relatively small volume (400 mL), zooplankton were much more 

numerous in the tidal versus non-tidal mesocosms at the end of the June experiment.  

Higher zooplankton abundance could have lead to a top-down suppression of 

phytoplankton growth rates that superseded the higher rate of primary production.   

Phytoplankton biomass accumulation in the Newport River was dictated by the 

irradiance and residence time in April and October, and also by nutrients (and perhaps 

grazers) in March and June.  General knowledge of the geomorphologic template of the 

tidal river and tidal influence on residence time would have been necessary to predict 

phytoplankton biomass in April and October.  However, additional knowledge of 

resource limitation and grazer control would be necessary for prediction of phytoplankton 

biomass in March and June.  Thus, a generalized understanding of tidal 

hydrogeomorphology in rivers may explain variations in phytoplankton biomass during 

some of the year, but higher-order affects of tides must sometimes be taken into account.  

The transition from resource limitation to grazer control of primary production along the 

tidal continuum may be an another indirect effect of tides; nitrogen cycling is profoundly 

affected by tides (Ensign et al. 2008) and the enhanced residence time in the tidal river 

may allow zooplankton communities to develop (Pace et al. 1992).  Previous research has 

documented nutrient limitation in non-tidal blackwater streams similar to the Newport 

River (Mallin et al. 2004), and control by zooplankton grazing has been observed in tidal 

rivers (Kobayashi et al. 1996), but this study is the first to quantify their combined 

influence on phytoplankton along the non-tidal to tidal river continuum.   This study is 
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also not the first to find differences in primary production and food web processes 

between non-tidal and tidal rivers (see Schuchardt et al. 1993), but it is the first to 

experimentally quantify the separate influence of hydrogeomorphic forces on production 

in tidal rivers.   

Processes originating in the open ocean increased production in the tidal, 

freshwater region of the rivers we studied.  Tides affected the hydrogeomorphic template 

much more profoundly than upstream watershed discharge would in the absence of tides.  

Since these abiotic factors were strong determinants of primary production during much 

of the year, understanding general patterns in how tides affect river morphology and 

hydrology may allow prediction of broader-scale ecological patterns.  Research on the 

environmental (e.g.,, tidal regime and resultant nutrient cycling) and ecological (e.g.,, 

presence of zooplanktivorous anadromous fish) factors that alter the relative importance 

of bottom-up and top-down forces in tidal rivers is also critical to making conceptual 

linkages between tidal with non-tidal rivers  

 Tidal rivers exist at the intersection of riverine and estuarine forces, where flow 

regime is a combination of river discharge, lunar, and wind tides, all operating on 

disparate time-scales. As this study highlights, it is the convolution of these forces that 

dictate hydrologic residence time and the subsequent accumulation of biomass and 

associated trophic transfers within the food web.  I believe that the time scale and 

variation in flow and residence time in tidal rivers may present unique opportunities for 

investigating environmental regulation of ecological processes (high frequency, low 

magnitude tides convoluted with low frequency, high magnitude floods), possibly using 

recently developed methods of time series analysis (Denny et al. 2009). I also suspect that 
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the combination of riverine hydrogeomorphology and food web connectivity with 

migratory marine species in tidal rivers may provide an opportunity to examine nascent 

concepts such as ecosystem boundaries (Post et al. 2007). Thus, tidal rivers provide an 

exciting venue for ecological research by embracing the end of the river continuum. 
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Figure 5.1 The a priori assumptions that residence time and channel width in the tidal 
freshwater river will affect phytoplankton (ho).  Alternatively, physiological adaptations, 
community-scale changes, and food web alterations may act in concert with hyrology and 
geomorphology to increase (or decrease) phytoplankton growth (ha). 
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Figure 5.2  Tidal amplitude, observed width, and predicted width (in the absence of tides) 
of the Newport (A) and White Oak River (B); error bars on the predicted width indicate 
the 95% confidence interval of the model.  Water surface PAR in the Newport (C) and 
White Oak River (D); average water column irradiance in the Newport (E) and White 
Oak River (F); chlorophyll a in the Newport (G) and White Oak River (H). 
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Figure 5.3  Modeled relationship between photosynthesis and irradiance in the Newport 
(A) and White Oak River (B).  Dashed lines represent the 95% confidence interval of the 
model predictions.  The three lowest productivity values at the lower tidal site in the 
Newport River were omitted from the regression analysis. 
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Figure 5.4  Chlorophyll a response in mesocosm experiments from the non-tidal, upper 
tidal, and lower tidal sections of the Newport River (A-D), and the rate of growth 
determined using linear, mixed effects modeling (E-H).  Colors in A-D correspond with 
those in E-H; solid lines indicate control mesocosms and dashed lines indicate nutrient 
additions.  In panels E-H, the darker, thicker bars represent the 50% confidence interval 
of the slope estimate, and the lighter, longer bars represent the 95% confidence interval of 
the slope estimate.



 

 
 
 
 
 
6.  CONCLUSIONS 

Limnologists and oceanographers alike are comfortable thinking of 
copepods and clams and fish as highly transformed solar energy.  And no 
one objects that the heat energy from the sun is important in regulating the 
speed of growth in plants and animals.  It is more difficult, but no less real, 
to see the work of the wind in the rich catch of Tilapia from an African 
lake or the gentle pull of the moon made manifest in the great harvest from 
Georges Bank.  –Scott W. Nixon, 1988  

 Nixon’s contention that tides affect ecological process is supported by studies that 

have revealed how physical energy directly affects organisms (Denny 1994), 

communities (Leonard et al. 1998), and ecosystems function (Odum et al. 1995). The 

goal of this dissertation was to examine the effects of tides on physical and ecological 

process in tidal rivers.  In the 5 years of research represented in this dissertation, I made 

many exciting discoveries, sharpened several into hypotheses for further study, and 

disposed of many less fruitful ideas in the trash.  As a whole, the results of my research 

will provide a much-needed foundation for further study and synthesis of ecosystem 

processes in tidal rivers. 

 

6.1.  Hydrology and geomorphology 

 Tidal rivers have not been integrated with foundational concepts in fluvial 

geomorphology because the physical nature of tidal rivers was not well understood.  

Although the direction of flow may vary, the hydraulic mechanisms affecting channel 

morphology are the same: kinetic energy of flowing water is dissipated as heat and 

turbulence, a portion of which moves sediment.  In Chapter 2, measurement of energy 



 
140 

dissipation proved to be useful metric for understanding how stream morphology 

changed with tidal influence.  The important contribution of this research was discovery 

of the counter-intuitive process whereby tides suppress energy dissipation in the upper 

portion of tidal rivers as a result of slower flow velocity and larger channel area.  Tides 

supplemented the fluvial energy dissipation in the lower portion of the tidal river which 

resulted in higher suspended sediment flux.  The temporal adjustment in channel 

morphology to tidal influence was inferred from contemporary spatial patterns and 

suggested hypotheses for future research. 

 The hydrogeomorphic data in Chapter 2 provide a bridge between two disparate 

time scales at which coastal landform development is examined.  Geologists use 

stratigraphic methods and facies models to examine riverine-estuarine transitions over 

Quaternary time-scales (Dalrymple et al. 1992; Schumm 1993; Blum and Tornqvist 

2000).  Fluvial and estuarine geomorphologists use experimental approaches to 

understand the mechanisms affecting sediment transport and deposition over 

contemporary time scales (e.g.,, Meade 1982; Friedrichs 1995).  Conceptual models for 

the evolution of river-estuary systems during sea level rise have been provided, but the 

specific mechanisms, sequence, and time scale over which tides affect river morphology 

have not.  The hydraulic mechanisms I identified will help link the contemporary 

processes in tidal rivers with longer-term geologic formations in coastal environments. 

 Understanding the hydraulic implications of tides on channel morphology will aid 

river restoration efforts.  Engineers have known about the unique morphology of tidal 

rivers for at least 117 years (Wheeler 1893), yet there is currently no guidance for river 

restoration in tidal rivers (Bernhardt and Doyle, in press).  The characterization of 
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discrete zones of tidal influence that are made in Chapter 2 are based on the simple 

variables of tidal amplitude and flow regime.  These easily measured variables, and the 

corresponding channel morphology documented in Chapter 2 will provide a first step 

towards developing guidance for tidal channel restoration.  

 

6.2.  Biogeochemistry 

 Rivers and their floodplains are critical landscape features which attenuate 

nitrogen transport through the process of denitrification.  The hydrologic connectivity 

between tidal rivers and their floodplains plays a particularly important role in affecting 

the downstream transport of nitrogen in tidal rivers.  At the landscape-scale, it is the 

combination of denitrification rate and the area over which denitrification occurs that 

affects downstream transport of nitrogen.  Previous research has focused on quantifying 

the factors that control the rate of denitrification in tidal river wetlands, but virtually no 

attention has been given to how tidal hydrology influences inundation and subsequent N2 

flux in tidal river wetlands.   

 In Chapter 3, denitrification rates were measured over an annual period in three 

tidal riparian habitat types of the Newport River.  The temporal variation was greater than 

the spatial variation, but the short-term lag between inundation of the floodplain and the 

onset of denitrification was crucially important to extrapolating denitrification rates 

across the floodplain.  Field and laboratory studies of oxidation-reduction potential 

provided similar estimates of this lag of approximately 4.5 hr.  Incorporation of this 

riparian wetland denitrification with the expected in-channel denitrification led to a 38% 

increase in overall denitrification flux for this tidal river. 



 
142 

 In Chapter 4, the relative role of denitrification rate versus inundation dynamics 

was examined using a landscape-scale model of inundation.  General patterns emerged 

from four different tidal rivers in North Carolina.  In the lower half of tidal rivers, 

hydrology exerted more influence on N2 efflux than the rate of denitrification. In the 

upper tidal rivers, N2 efflux was more sensitive to denitrification rate than tidal hydrology 

during high river discharge periods when the floodplain was continually inundated for 

weeks at a time.  Over long time scales, however, baseflow periods (when tides drive 

water level variation) were more important to the N2 efflux than storm events (causing 

sustained inundation of the floodplain).  This study should bring increased attention to 

how tidal hydrology affects nitrogen efflux in tidal rivers.  It also contributes fundamental 

information required to begin landscape-scale modeling of nitrogen efflux in tidal rivers 

through the development of a simple, three parameter empirical model of N2 efflux as a 

function of water level in tidal rivers.     

 

6.3.  Biological Production 

 Formative concepts in stream ecology have excluded the tidal freshwater zone of 

rivers because not enough is known about how their hydrogeomorphic patterns affect 

ecological process.  Chapters 2, 3, and 4, indicate consistent downstream trends in tidal 

river channel morphology.  Relating these hydrogeomorphic patterns with their abiotic 

influence on biological production in rivers may open the door to integrating tidal rivers 

with existing theory and concept in stream ecology. 

  I examined the influence of water residence time and channel morphology on 

primary production in tidal rivers in Chapter 5.  The systematic influence of tides on river 
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morphology (and subsequently irradiance) contributed to an increase in phytoplankton 

biomass along the tidal river continuum. Tides also increased hydrologic residence time, 

which lead to more phytoplankton biomass than would have occurred without tidal 

action.  Phytoplankton growth was more than simply the additive effect of irradiance and 

residence time, and reflected higher-order affects of tide on nutrient chemistry and food 

webs.  Differences in phytoplankton growth rates between the non-tidal and tidal river 

were alleviated under nutrient replete conditions, despite a greater photosynthetic 

efficiency for the tidal phytoplankton community. The data suggested a transition from 

nutrient limitation to grazer suppression of phytoplankton along the tidal river continuum, 

highlighting how hydrogeomorphic trends led to fundamental changes in food web 

structure.   

 Tidal rivers constitute a hybrid of other aquatic ecosystems.  Lakes, rivers, and 

estuaries provide an end-member condition for two of three conditions: geomorphology, 

hydrology, and food web structure (Figure 6.1).  River morphology and ecosystem 

function are dependent on watershed discharge, while their food webs lie in between the 

open nature of estuaries and insular nature of lakes.  Lake ecosystem functions are semi-

dependent on watershed processes, although they are not prone to hydrologic disturbance 

like rivers; their food webs are closed with respect to migratory species (except for some 

coastal lakes reached by anadromous species).  Estuarine morphology is independent of 

watershed runoff and their communities are not prone to hydrologic disturbance, but their 

food webs have high temporal variability due to migratory species.  Tidal rivers occupy a 

central position in this triumvariate of ecosystem types because their hydrologic, 
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geomorphologic, and ecologic characteristics are intermediate between the end-member 

ecosystems. 

 The combination of physical and ecological attributes of rivers, lakes, and 

estuaries has facilitated investigation of particular ecological phenomena.  The 

hydrologically-dynamic and terrestrially-dominated nature of rivers has facilitated our 

understanding of succession and disturbance (Fisher et al. 1982).  The hydrologically-

static and organismally-closed nature of lakes has contributed to understanding of top-

down and bottom-up processes (Carpenter and Kitchell 1993; Sheffer 1998).  The 

organismally-open, marine morphology of estuaries has contributed to understanding of 

dispersal (Levin 1984) and community structure (Leonard et al. 1998).   

 It remains to be seen what ecological processes may be resolved by studying tidal 

rivers.  Perhaps their unique combination of attributes will offer insight into ecological 

disturbance and succession in aquatic ecosystems when colonization can occur from two 

directions.  Maybe their hydrologic and geomorphic-independence from watershed runoff 

will provide new opportunities to examine the influence of hydrology and stochasticity in 

aquatic communities (sensu Sabo and Post 2008).  Or maybe the migratory nature of 

animals in their food webs together with their physically constrained morphology will 

allow unique ways to examine the boundaries of aquatic ecosystems (sensu Post et al. 

2007).   

 Tidal river ecosystems are a final frontier for research along the river continuum, 

and will likely yield many exciting discoveries.  The research presented in this 

dissertation is a significant contribution to this burgeoning field of research, and I hope 

the ideas contained herein may provide some guidance for further explorations. 
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Figure 6.1  Trichotomy of river, lake, and estuarine ecosystems on the basis of their 
geomorphology, hydrology, and food web characteristics, with tidal rivers occupying a 
central condition with respect the three characteristics on the sides of the triangle. 
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