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ABSTRACT 

 Environmental inorganic arsenic (iAs) exposure is a major health concern globally. iAs is 

found in high concentrations in well water, rice products, and other foods. Epidemiological 

evidence has linked iAs exposure to an increased prevalence and incidence of the diabetic 

phenotypes, and studies using mouse models have shown that iAs exposure leads to impaired 

glucose homeostasis, suggesting iAs is a diabetogen. However, the molecular mechanism by 

which iAs exposure causes diabetes is not well understood. This project focuses on identifying 

molecular mechanisms by which iAs exposure increases the risk of diabetes. We hypothesize 

that exposure to iAs or its metabolites disrupts hepatic insulin signaling and impairs the 

pathways of glycogen metabolism in the liver. Our results demonstrate that exposure to arsenite 

and methylarsonite, a methylated metabolite of iAs, lead to inhibition of glycogen synthase and 

activation of glycogen phosphorylase, and reduces glycogen content in primary murine 

hepatocytes. This data suggests a new mechanism by which iAs exposure may disrupt glucose 

homeostasis, leading to diabetes.  
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CHAPTER 1: INTRODUCTION 

1.1 Prevalence of arsenic exposure 

 Arsenic naturally occurs in both inorganic (iAs) and organic forms, but primarily exists 

as an inorganic sulfide complex of arsenate (iAs5+) or arsenite (iAs3+) (IARC, 2004). Inorganic 

arsenic complexes are naturally occurring in many mineral species and can be released into air, 

water, and soil through a variety of natural processes such as volcanic eruption and groundwater 

leaching, which are exacerbated by mining practices, insecticide application, and other industrial 

practices (Beck et al., 2017, Chung et al., 2014). Many of the iAs complexes that naturally occur 

are easily solubilized in water, thus groundwater has a large potential to become contaminated by 

iAs, making iAs exposure a global health concern (IARC, 2004). While many researchers have 

studied iAs exposure in cohorts from nations such as China, Mexico, and Bangladesh, at least 13 

million United States residents have a drinking water source containing ≥ 10 µg/L iAs, the EPA 

established maximum (ATSDR, 2007). Furthermore, exposure to iAs can occur through 

consumption of plants (primarily rice) grown in arsenic-rich soils or waters (Davis et al., 2017), 

poultry (Nachman et al., 2017, Nigra et al., 2017), and other fruits and juice products (Davis et 

al., 2017). Unlike iAs, organic arsenic complexes such as arsenocholine or arsenobetaine that are 

found in fish are typically considered to have very low toxicity because they are rapidly cleared 

unmetabolized from the body (Vahter et al., 1983). 

1.2 Arsenic as a carcinogen  

 Inorganic arsenic has long been known to cause many health effects; particularly it has 

been studied as a carcinogen. Epidemiological evidence, including case-control studies, has 

demonstrated the association between chronic iAs exposure via drinking water and increased 

risks of cancers of the skin, liver (angiosarcoma), lung, kidney, and bladder (Smith et al., 1992). 
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While these studies are important in understanding the health effects of iAs exposure, they do not 

provide an accurate depiction of what occurs in individuals exposed to concentrations of As < 

100 µg/L (100 ppb). Smith and colleagues (Smith et al., 1992) described the dose-response 

relationships between water As concentrations and cancer risks using data from a Taiwanese 

cohort in which well water As levels ranged from 170-800 µg/L. Epidemiological studies 

published over a 10 year period were analyzed (Gibb et al., 2011) to determine the association of 

cancers with drinking water As concentrations below 100 µg/L. While few of the analyzed 

studies found significant evidence of association at As concentrations below 100 µg/L, two of 

the studies demonstrated a greater risk of bladder and lung cancer in individuals that began 

drinking As contaminated water at an early life stage as compared to those that begin 

consumption at a later life stage (Gibb et al., 2011). This finding supports the hypothesis that 

cumulative As exposure is most influential on As related cancer development. 

1.3 Diabetes and insulin resistance 

 In 2014, it was estimated that 422 million people were living with diabetes globally 

(WHO, 2014). Of those 422 million people, approximately 29 million were living in the United 

States (CDC, 2014), with type 2 diabetes mellitus comprising 90-95% of cases (ADA, 2016). 

Diabetes is classified by fasting hyperglycemia, i.e., fasting plasma glucose (FPG) 

concentrations at or above 126 mg/dL, 2-hour plasma glucose at or above 200 mg/dL following 

an oral glucose tolerance test, or HbA1c levels at or above 6.5% (ADA, 2016). Type 1 diabetes 

is caused by autoimmune destruction of pancreatic β-cells, while type 2 diabetes results from 

insulin resistance and loss of insulin secretion not caused by autoimmune pancreatic β-cell 

destruction.  
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 The exact mechanism of type 2 diabetes development is not well understood, but insulin 

resistance (IR) is believed to be one of these mechanisms. Insulin resistance is a physiological 

condition in which insulin becomes less effective in lowering blood glucose. The resulting 

increase in blood glucose may raise insulin levels above of the normal range, which can cause 

adverse health effects. IR in muscle and fat cells reduces glucose uptake (therefore reducing 

local storage of glucose as glycogen and triglycerides, respectively), whereas insulin resistance 

in hepatocytes results in reduced glycogen synthesis and a failure to suppress gluconeogenesis. 

Many theories regarding the molecular mechanism of IR have been proposed, including over-

accumulation of lipid intermediates from de novo triglyceride synthesis, inflammatory cytokines, 

endoplasmic reticulum stress, and mitochondrial dysfunction (Zhang et al., 2013). In IR, 

suppressed insulin signaling causes over activation of forkhead box protein O-1 (FOXO1), a 

transcription factor of gluconeogenic enzymes glucose-6-phosphatase (G6Pase) and 

phosphoenolpyruvate carboxykinase (PEPCK), leading to enchanced gluconeogenesis. Over 

activation of FOXO1 has been associated with elevated FPG levels in type 2 diabetics, 

confirming that hepatic glucose output contributes to the development of a diabetic phenotype 

(Saini, 2010). Glycogen synthase (GS) and glycogen phosphorylase (GP) are the rate limiting 

enzymes of glycogenesis and glycogenolysis, respectively. GS inhibition and/or GP activation 

can cause an imbalance of glycogen accumulation and glucose release, resulting in impaired 

glucose homeostasis. It has been reported that GS activity was inhibited in type 2 diabetes 

(Krssak et al., 2004). GP has been shown to be inhibited in hyperglycemic, but not euglycemic, 

conditions (Petersen et al., 1998), suggesting, that in individuals with diabetes, GP activity may 

be altered. There is also evidence that dysfunction of GP regulation is a possible mechanism by 

which glycogenolysis and hepatic glucose output increase in type 2 diabetes (Lin and Accili 
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2011). Though multiple mechanisms may exist in the of the pathogenesis of type 2 diabetes 

exists, many studies suggest that hepatic insulin resistance can be caused in vivo by 

dysregulation of GS, GP, and other hepatic proteins (Krssak et al., 2004, Petersen et al., 1998, 

Siani, 2010).  

1.4 Arsenic-Associated Diabetes 

 1.4.1 Epidemiological evidence 

 While sufficient evidence on the carcinogenicity of iAs exists for individuals exposed to 

large quantities, less is known about how lower concentrations of iAs impact the human body. A 

cohort study of a general population in Taiwan has demonstrated a positive association of hair 

arsenic concentrations ≥ 0.034 µg/g with a 2.54 times greater odds of metabolic syndrome 

prevalence (Wang et al., 2007). However, As is typically more concentrated in the hair and nails 

than in other parts of the body due to sulfhydryl groups present in keratin, resulting in As 

concentrations more representative of multiple months of exposure as opposed to current water 

As exposure (Maull et al., 2012). While hair arsenic is a better measure of cumulative As 

exposure, it has been reported that the risk of diabetic phenotype development is associated only 

with current As exposure (Del Razo et al., 2010). Meta-analyses of the association of iAs 

exposure and diabetic phenotype confirm that there is an increased risk of diabetes development 

in individuals exposed to As as compared to unexposed individuals (Maull et al., 2012, Sung et 

al., 2015). Furthermore, an epidemiological study examining the relationship between water As 

exposures and cardiometabolic risk factors in a cohort of Chihuahua, Mexico residents has 

shown significantly increased odds of diabetes development in individuals exposed to ≥ 25.5 

µg/L of As (Mendez et al., 2016). With epidemiological evidence demonstrating an association 
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between As exposure and diabetic phenotype, it is imperative that the mechanism by which As-

associated diabetes occurs is determined.   

 1.4.2 Mechanistic evidence 

 While evidence suggesting an association between low dose iAs exposure and a diabetic 

phenotype in human cohort studies is limited, there is additional animal model and in vitro 

evidence providing insight into the diabetogenic effects of iAs and its methylated metabolites. 

iAs is absorbed as both arsenate (iAs5+) and arsenite (iAs3+) and iAs5+ is reduced to iAs3+ in the 

blood by glutathione (Tseng, 2007). After transport to the liver, iAs3+ is methylated to 

methylarsonate (MAs5+) and reduced to methylarsonite (MAs3+) by arsenic (+3 oxidation state) 

methyltransferase (AS3MT) (Drobna et al., 2009). This methylation and reduction step can be 

repeated to yield dimethylarsonite (DMAs3+). Animal studies, particularly in mice, point to 

pancreatic β-cell function and insulin resistance as primary diabetogenic endpoints of iAs 

exposure (Maull et al., 2012). In vitro studies have demonstrated that trivalent arsenicals (iAs3+, 

MAs3+, and DMAs3+) can inhibit glucose-stimulated insulin secretion (GSIS) in pancreatic islets 

(Douillet et al., 2013), insulin-dependent GLUT4 translocation to the plasma membrane in 

adipocytes (Paul et al., 2007), and disruption of preadipocyte and myoblast differentiation 

leading to insulin resistance in adipose and muscle tissues (Wauson et al., 2002, Wang et al., 

2005, Yen et al., 2010). In murine pancreatic islets, GSIS has been shown to be inhibited by 

iAs3+, MAs3+, and DMAs3+ after 48-hour exposure without inhibiting insulin synthesis, 

suggesting that arsenic disrupts the mechanism of insulin secretion (Douillet et al., 2013). 

Additionally, this study found that the effect of trivalent arsenical exposure on pancreatic islets is 

transient with GSIS being restored after 24-hour culture in arsenic-free media. In 3T3-L1 

adipocytes, exposure to subtoxic concentrations of trivalent arsenicals has been shown to 
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decrease insulin-stimulated glucose uptake (ISGU) by inhibiting phosphatidylinositol-dependent 

kinase-1/2 (PDK-1/2). Because PDK-1/2 phosphorylate PKB/Akt at Thr-308 and Ser-473, 

respectively, inhibition of PDK-1/2 subsequently leads to an inhibition of PKB/Akt and ISGU, as 

active PKB/Akt stimulates GLUT4 transport to the plasma membrane in adipocytes (Paul et al., 

2007).  

  Though mechanistic work surrounding insulin secretion and sensitivity after arsenical 

exposure has been conducted in many cell types, including pancreatic islets and adipocytes, few 

studies have focused on insulin signal transduction in hepatocytes following arsenical exposure. 

Because the liver, in conjunction with the pancreas, is one of the major regulators of whole body 

glucose homeostasis, examining the effect of arsenic exposure in hepatocytes is key to 

elucidating the mechanism by which iAs3+ and its methylated metabolites induce a diabetic 

phenotype. The aims of this study are to determine the effect of iAs3+ and MAs3+ on (1) hepatic 

gluconeogenesis, (2) hepatic glycogen synthesis and breakdown, and (3) upstream and 

downstream steps in the insulin signaling pathway affecting gluconeogenesis and glycogen 

metabolism.    

 

 

CHAPTER 2: MATERIALS AND METHODS 

2.1 Liver perfusion, hepatocyte isolation and culture 

 Hepatocytes were isolated from 8-15-week old C57BL/6 male mice as previously 

described (Zhang et al., 2012). Hepatocytes were seeded in 12-well plates with density 2.0x105 

cells/well in William’s Medium E (WME) supplemented with 10% FBS, 1% 



 7 

penicillin/streptomycin, and 2 mM glutamine. All procedures involving mice have been 

approved by the UNC IACUC review panel.  

2.2 Antibodies and reagents 

 Primary antibodies were purchased from Cell Signaling Technology (Danvers, MA). 

Secondary antibodies and SuperSignal West Pico chemiluminescent substrate were purchased 

from Thermo Fisher Scientific (Waltham, MA). Bovine serum albumin (fatty acid free), insulin 

(human recombinant), sodium-D-lactate, sodium pyruvate, Avertin (2,2,2-tribromoethanol), 

phosphatase inhibitor cocktails 1 and 2, Percoll, 8-Br-cAMP, dexamethasone, rabbit glycogen, 

glucose-1-phosphate, AMP, caffeine, ammonium molybdate, zinc acetate, and ascorbic acid 

were purchased from Sigma-Aldrich (St. Louis, MO). Type I collagenase was purchased from 

Worthington Biochemical Corporation (Lakewood, NJ). Protease inhibitor tablets were 

purchased from Roche (Indianapolis, IN). Cell culture media and reagents were purchased from 

Invitrogen (Carlsbad, CA). 14C-UDP-glucose was purchased from American Radiolabeled 

Chemicals (St. Louis, MO). Absorbance and fluorescence were measured using a Synergy HT 

plate reader purchased from BioTek (Winooski, VT). 

2.3 Glycogen content assay  

 A glycogen content assay kit was employed (BioVision, K646-100) following 

manufacturer’s directions, to determine glycogen content in hepatocytes following 4 hours of 

iAs3+ or MAs3+, with or without 100 nM of insulin treatment in the last 2 hours of exposure. 

Primary hepatocytes were cultured overnight, washed one time with warm PBS, and serum 

starved overnight in WME supplemented with 1% penicillin/streptomycin and 2 mM glutamine. 

The following day, cells were exposed to 0.5, 1.0 and 2.0 µM iAs3+ or 0.2, 0.5 and 1.0 µM 
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MAs3+ for 4 hours, with or without 100 nM insulin treatment in the last 2 hours. Cells were 

harvested using buffer provided by the assay kit.  

2.4 Gluconeogenesis assay 

 As previously described by Zhang et al., (2014), hepatocytes were cultured overnight and 

serum-starved the following day. After sixteen hours of starvation, media was changed to a 

phenol red and glucose-free D/MEM (Gibco, A14430-01) supplemented with 2 mM glutamine, 

1% penicillin/streptomycin, 10 mM HEPES (pH 7.35), 20 mM sodium lactate, and 2 mM sodium 

pyruvate, and one half of the wells were also supplemented with 300 µM 8-Br-cAMP and 1 µM 

dexamethasone. Cells were then treated with 1.0, 2.0, or 5.0 µM iAs3+ for 4 hours. Following the 

exposure, media was collected by centrifugation at 12,000g for 5 minutes. Determination of 

glucose concentration in media was determined by glucose assay kit (Cell Biolabs, STA-680) 

following manufacturer’s directions. 

2.5 Glycogen Synthase activity assay 

 Activity of glycogen synthase was measured by determining the amount of 14C-UDP-

glucose incorporated into glycogen stores as previously described (Thomas et al., 1968, Nuttall 

et al., 1989) after 4-hour exposure to 0.5, 1.0 and 2.0 µM iAs3+ or 0.2, 0.5 and 1.0 µM MAs3+ 

(with or without 100 nM insulin treatment in the last 15 minutes of the exposure). Specifically, 

after arsenic treatment, cells were lysed in buffer (100 mM NaF, 20 mM EDTA, 0.5% glycogen, 

1% protease inhibitor, 1% phosphatase inhibitor cocktail, 50 mM glycylglycine, pH 7.4) and 

centrifuged for 10 minutes at 9,000g to obtain cell lysate. Lysate (20 µL) was mixed with 100 µL 

of reaction buffer (0.25 mM 14C-UDP-glucose, 1% glycogen, 10 mM Na2SO4, 60 mM 

glycylglycine, pH 7.4) and incubated for 20 minutes at 25°C. At 20 minutes, 75 µL of the 

mixture was spotted onto filter paper. Filter paper was then washed with cold 66% ethanol for 20 
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minutes using a Teflon-coated stir bar. The filter paper was washed in 66% ethanol a second 

time for 10 minutes and a third time for 5 minutes. The ethanol was decanted and the filter 

papers were dried for 1 hour. Filter papers were then placed into a scintillation vial with 5.0 mL 

of counting solution. Radioactivity was counted with a TRI-CARB 1900 TR liquid scintillation 

analyzer.   

2.6 Glycogen Phosphorylase activity assay  

 When overloaded with glucose-1-phosphate and glycogen, glycogen phosphorylase can 

catalyze the reversal of its physiological function, leading to glucose-1-phosphate incorporation 

into glycogen and release of Pi. Glycogen phosphorylase activity was measured by determining 

the concentration of Pi released by this reverse reaction, as previously described (Hue et al., 

1975, Saheki et al., 1985, Stalmans et al., 1975). After 4-hour exposure to 0.5, 1.0 and 2.0 µM 

iAs3+ or 0.2, 0.5 and 1.0 µM MAs3+ (with or without 100 nM insulin treatment in the last 15 

minutes of the exposure), hepatocytes were lysed in buffer (100 mM NaF, 20mM EDTA, 0.5% 

glycogen, 50 mM glycylglycine, pH 7.4). Lysates were diluted 1:5 times with a homogenization 

buffer (100 mM NaF, 10 mM EDTA, pH 6.5) and sonicated as previously described.100 µL of 

cell lysate was incubated with 100 µL of reaction buffer (2% glycogen, 100 mM glucose-1-

phosphate, 2 mM AMP or 1 mM caffeine) and incubated in a water bath at 30°C for 20 minutes. 

To determine the concentration of Pi, 20 µL of reaction mixture (or standards) were added to a 

96-well plate, followed by 200 µL of a molybdate reagent (100 mM zinc acetate, 15 mM 

ammonium molybdate, pH 5) and 50 µL of 10% ascorbic acid (pH 5.0). The mixture was then 

incubated for 10 minutes at 30°C and absorbance was measured at 850 nm.  

2.7 Protein Phosphatase-1 activity assay 
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  Protein phosphatase-1 activity was measured with Molecular Probes R-33700 following 

manufacturer directions. Hepatocytes were exposed to 0.5, 1.0, or 2.0 µM iAs3+ or 0.2, 0.5, or 

1.0 µM MAs3+ for 4 hours (with or without 100 nM insulin stimulation in the last 15 minutes of 

the exposure) and then lysed in buffer (100 mM NaF, 20 mM EDTA, 0.5% glycogen, 1% 

protease inhibitor, 50 mM glycylglycine, pH 7.4) and centrifuged at 9,000g for 10 minutes. The 

cell lysates (50 µL) and reaction buffer were added to the wells of the substrate-coated 

microplate provided in the kit. In the reaction buffer provided in the kit, 2 mM dithiothreitol 

(DTT) was later substituted with 1 mM tris(2-carboxyethyl)phosphine (TCEP, a non-thiol 

reductant). The reaction mixture was incubated for 20 minutes at room temperature with 

protection from light. Excitation/emission spectra of the fluorescent product were measured at 

358/452 nm.  

2.8 Immunoblot analyses 

 Hepatocytes were exposed to 0.5, 1.0 and 2.0 µM iAs3+ or 0.2, 0.5 and 1.0 µM MAs3+ for 

4 hours, with or without insulin treatment in the last 15 minutes of the exposure. They were then 

lysed in buffer (20 mM Tris-HCl, 0.1 mM Na3VO4, 25 mM NaF, 25 mM glycerophosphate, 2 

mM EGTA, 1 mM dithiothreitol, 0.5 mM PMSF, 0.3% Triton X-100, 1% protease inhibitor, 1% 

phosphatase inhibitor cocktail, pH 7.5). Lysates were diluted 1:2 times in Laemmli sample buffer 

and boiled before loading onto SDS-PAGE. SuperSignal West Pico chemiluminescent substrate 

was used to detect horseradish peroxidase-conjugated secondary antibodies on x-ray film. An 

Epson Perfection 2400 scanner was utilized to convert film to digital images, which were 

cropped in Photoshop CS2 and quantified using ImageJ.  

2.9 Cell viability 
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 Cell viability was assessed by MTT assay. Hepatocytes were cultured overnight in 

supplemented WME and exposed to 0.5, 1.0, 5.0, 10, and 50 µM iAs3+ or 0.1, 0.2, 0.5, 1.0, and 

2.0 µM MAs3+ for 4 hours. With one hour remaining in the exposure time, cells were washed 

with phenol-red free D/MEM and a phenol-red free D/MEM containing the corresponding 

exposure was added back to the cells. After 4 hours, the cells were solubilized in DMSO and 

absorbance was measured at 750 nm.   

2.10 Statistical analysis  

 All values are expressed as mean ± SD for a given number of replicates. Comparisons 

were performed using Student’s t test. All data represents three independent experiments, i.e. 

hepatocyte cultures from three mice. Only p-values < 0.05 were considered statistically 

significant.  

 

 

CHAPTER 3: RESULTS 

3.1 Hepatic glycogen content was reduced by iAs3+ and MAs3+ exposure 

 Glycogen content assays were utilized to determine if arsenic was indeed having an 

impact on hepatic glycogen metabolism. In murine hepatocytes, insulin stimulation resulted in a 

20% increase in glycogen content. Following a 4-hour iAs3+ or MAs3+ exposure, glycogen 

content in insulin-stimulated hepatocytes was decreased in a dose-dependent manner (Figure 1A 

and B). Exposure to iAs3+ decreased glycogen content by 28% (0.5 µM), 37% (1.0 µM), and 

43% (2.0 µM), while exposure to MAs3+ decreased glycogen content by 31% (0.1 µM), 46% (0.2 

µM), and 57% (1.0 µM). To ensure that changes seen in the experiments performed were not due 

to cell death caused by iAs3+ or MAs3+ exposure, MTT assays were employed to determine cell 



 12 

viability after a 4-hour exposure to varying concentrations of iAs3+ and MAs3+. A significant 

decrease in cell viability was only seen in cells exposed to 10 and 50 µM iAs3+ and no significant 

decrease was seen in cell viability after MAs3+ exposure in concentrations tested (Figure 1C and 

D).  

  

Figure 1. Glycogen content in hepatocytes exposed to iAs3+ (A) or MAs3+ (B) for 4 hours with or without 

insulin (100 nM) treatment for the last 2 hrs. Cell viability after 4-hour exposure to iAs3+ (C) or MAs3+ 

(D) was measured by MTT assay. Values are expressed as mean ± SD for N=3.* and # indicate 

statistically significant effects of the exposure compared to control basal and control insulin-stimulated 

hepatocytes, respectively.  

 

3.2 iAs3+ and MAs3+ exposure inhibited GS activation and GP deactivation by insulin 
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 Glycogen synthase (GS), an enzyme whose activity is regulated by insulin-stimulated 

dephosphorylation, is a key player in the accumulation of hepatic glycogen. GS incorporates 

UDP-glucose into existing glycogen chains and its activity can be tracked by 14C labeled UDP-

glucose incorporation into existing glycogen chains, as previously described (Thomas et al., 

1968, Nuttall et al., 1989). Insulin treatment significantly increased GS activity compared to an 

unstimulated control, while iAs3+ or MAs3+ exposure in conjunction with insulin treatment 

significantly inhibited GS activity in a dose-dependent manner (Figure 2A and B). The 4-hour 

iAs3+ exposure inhibited insulin-stimulated GS activity by 25% (0.5 µM), 50% (1.0 µM), and 

55% (2.0 µM), while the 4-hour MAs3+ exposure inhibited insulin-stimulated GS activity by 

30% (0.5 µM) and 45% (1.0 µM).  

 Glycogen phosphorylase (GP) is another key player in hepatic glycogen content 

regulation. The active, phosphorylated form of glycogen phosphorylase (GPa) is deactivated by 

protein phosphatase-1 (PP1), which is activated by insulin (Hue et al., 1975, Stalmans et al., 

1975). Exposure to iAs3+ and MAs3+, in conjunction with insulin treatment, led to a stimulation 

of GP activity with statistically significant increases at 2.0 µM iAs3+ (1.31 fold) and 1.0 µM 

MAs3+ (2.20 fold) (Figure 2C and D). Insulin stimulation alone did not significantly inhibit 

glycogen phosphorylase activity, which is consistent with previous findings that insulin 

stimulation alone does not significantly inhibit glycogen phosphorylase (DePaoli-Roach et al., 

2003, Petersen et al., 1998), though hyperglycemia does significantly inhibit glycogen 

phosphorylase activity (Petersen et al., 1998) through allosteric regulation (Agius, 2015).  
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Figure 2. Glycogen synthase (GS) activity in hepatocytes exposed to iAs3+ (A) or MAs3+ (B) for 4 hours 

with or without insulin treatment (100 nM) for the last 2 hours. Glycogen phosphorylase (GP) activity in 

hepatocytes exposed to iAs3+ (C) or MAs3+ (D) 4 hours with or without insulin treatment (100 nM) for the 

last 2 hrs. Values are expressed as mean ± SD for N=3. * and # indicate statistically significant effects of 

the exposure compared to control basal and control insulin-stimulated hepatocytes, respectively. 
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3.3 iAs3+ and MAs3+ exposure increased GS phosphorylation at Ser-641 

 GS activity is controlled both allosterically and by phosphorylation status. Allosterically, 

GS is activated by glucose-6-phosphate and inhibited by ATP, ADP, and Pi. The phosphorylation 

of GS by glycogen synthase kinase-3α (Rylatt et al., 1980), AMP-activated kinase (AMPK) 

(Embi et al., 1981), or protein kinase A (PKA) (Proud et al., 1977) inhibits GS. Consistent with 

our finding that 4-hour iAs3+ and MAs3+ exposure lead to significant inhibition of GS activity, 

immunoblot analysis showed that significant phosphorylation of GS at Ser-641 occurred during 

the 4-hour iAs3+ and MAs3+ exposure (Figure 3). The iAs3+ exposure increased GS 

phosphorylation at Ser-641 by 1.3, 1.7, and 2.0 fold at 0.5 µM, 1.0 µM, and 2.0 µM, 

respectively. The MAs3+ exposure increased GS phosphorylation at Ser-641 by 1.5, 1.9, and 2.2 

fold at 0.2 µM, 0.5 µM, and 1.0 µM, respectively. This suggests that the increase in GS activity 

seen after iAs3+ or MAs3+ exposure was due to altered phosphorylation status of GS. While the 

active form of glycogen phosphorylase (GPa) is phosphorylated at Ser-14, alterations in 

phosphorylation status could not be examined because phospho-GP antibodies were not 

commercially available.  
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Figure 3. Glycogen synthase (GS) and phosphorylated GS (pGS) levels in hepatocytes exposed for 4 

hours to iAs3+ (A,B) or MAs3+  (C,D) with or without insulin (100 nM) treatment for the last 15 minutes. 

Representative immunoblots (A,C) are shown for N=3. (B,D) Values are expressed as mean ± SD for 

N=3. * and # indicate statistically significant effects of the exposure compared to control basal and 

control insulin-stimulated hepatocytes, respectively. 

 

3.4 iAs3+ and MAs3+ exposure inhibited phosphorylation of PKB/Akt with no significant 

change in GSK3α  phosphorylation 

 GSK3α is the kinase responsible for phosphorylation of GS at Ser-641 (Rylatt et al., 

1980). GSK3α, a downstream target of the PI3k-Akt, is phosphorylated at Ser-21 (Cross et al., 

1995, Srivastava and Pandey, 1998); this phosphorylation is associated with loss of kinase 
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activity. Insulin stimulates PKB/Akt phosphorylation at Ser-473 and Thr-308, the two sites 

essential for full activation of PKB/Akt (Alessi et al., 1996, Sarbassov et al., 2005). Both iAs3+ 

and MAs3+ significantly decreased PKB/Akt phosphorylation at both the Ser-473 and Thr-308 in 

a dose-dependent manner (Figure 4), while no significant change in GSK3α phosphorylation at 

Ser-21 was seen after 4-hour exposure to iAs3+ or MAs3+ (Figure 5). The results of these 

experiments suggest that GS inhibition and GP activation by iAs3+ and MAs3+ is due to a 

mechanism other than the disruption of PKB/Akt-mediated insulin signal transduction.  

 

Figure 4. Representative images of immunoblots of mouse primary hepatocytes exposed to iAs3+ (A) or 

MAs3+ (C) for 4 hours with or without 100nmol insulin for the last 15 minutes. Quantitative analysis  of A 

and C using ImageJ are shown in figures B and D, respectively. Values are expressed as means ± SD for 

N=3. * and # indicate significant change compared to control basal and control insulin-stimulated 

hepatocytes, respectively. 
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Figure 5. Representative images of immunoblots of mouse primary hepatocytes exposed to iAs3+ (A) or 

MAs3+ (C) for 4 hours with or without 100nmol insulin for the last 15 minutes. Quantitative analysis of A 

and C using ImageJ are shown in figures B and D, respectively. Values are expressed as means ± SD 

N=3. * and # indicate significant change compared to control basal and insulin-stimulated control 

hepatocytes, respectively. 

 

3.5 PP1 activity was not inhibited by iAs3+ or MAs3+ exposure 

 Since GS inhibition by As exposure is independent of Akt/GSK3α-mediated 

phosphorylation of the enzyme at Ser-641, its dephosphorylation at this site by protein 

phosphatase-1 (PP1) became a candidate for further examination. PP1, a Ser/Thr phosphatase 
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activated by insulin, dephosphorylates both GS and GP (Cohen,1989). Dephosphorylation of GS 

and GP activates and inactivates the two enzymes, respectively (DePaoli-Roach et al., 2003). 

PP1 activity was measured using a Ser/Thr phosphatase assay kit (Molecular Probes, R-33700) 

with buffers modifiable to select for several Ser/Thr phosphatases, including PP1. Despite 

following the manufacturer’s directions, no significant change in PP1 activity was observed 

following either iAs3+ or MAs3+ exposure. Dithiothreitol (DTT), one of the modifiable buffer 

reagents, is a thiol containing reducing agent. Because thiol containing compounds readily bind 

to arsenic (Spuches et al., 2005), DTT was later replaced by 1 mM tris(2-carboxyethyl)phosphine 

(TCEP, a non-thiol reducing agent) in the reaction buffer. While activity of PP1 was anticipated 

to increase upon insulin stimulation, no significant differences between the unstimulated control, 

the insulin-stimulated control, or iAs3+ and MAs3+ treatments were observed (Figure 6A and B). 

These results suggest that neither inhibition of PP1 activity nor Akt-GSK3α signaling are 

responsible for the observed reduction in GS activity and increase of Ser-641 phosphorylation.  

 



 20 

 

Figure 6. Protein phosphatase 1 (PP1) activity in hepatocytes exposed to iAs3+ (A) or MAs3+ (B) for 4 

hours with or without insulin (100 nM) treatment for the last 2 hours. (C) Glucose output from 

hepatocytes exposed to iAs3+ for 4 hours in the presence of GNG substrates (20 mM sodium lactate and 2 

mM sodium pyruvate), and treated with 300 mM 8-Br-cAMP (cAMP), 1 mM dexamethasone (Dex), 

and/or 100 nM insulin. Representative immunoblots (D) for FOXO1 and pFOXO1 levels in hepatocytes 

treated iAs3+  for 4 hours; with or without stimulation with 100 nM insulin for the last 15 minutes. Values 

in panels A, B, and C are expressed as mean ± SD for N=3. * and # mark statistically significant effects 

of the exposure  compared to control basal and control insulin-stimulated hepatocytes, respectively. 
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CHAPTER 4: DISCUSSION 

4.1 Inhibition of GS activation by iAs3+ and MAs3+ is independent of the PKB/Akt and 

GSK3α  pathway 

 Regulation of hepatic glycogen content is a major component in whole body glucose 

homeostasis. GS and GP are the two major enzymes impacting hepatic glycogen content and are 

both regulated by complex pathways of kinases and phosphatases, in addition to allosteric and 

transcriptional regulation (Figure 7). Under our experimental conditions, C57BL/6 primary 

hepatocytes exposed to iAs3+ and MAs3+ saw significant, dose-dependent reduction in insulin-

stimulated glycogen accumulation, suggesting a dysregulation of glycogen metabolism by 

arsenicals. Hepatic glucose output was not affected by arsenic exposure (Figure 6C). 

Furthermore, Ser-256 phosphorylation of FOXO1 was not altered by arsenic exposure (Figure 

6D), suggesting no transcription-level up-regulation of gluconeogenesis.    
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Figure 7. Mechanism by which As exposure disrupts glycogen metabolism in primary murine 

hepatocytes 

 

 The dose-dependent increase in glycogen synthase phosphorylation (Figure 3) 

corresponding to a subsequent loss in activity (Figure 2A and B) provides a basis for the 

mechanism of glycogen accumulation dysregulation in hepatocytes exposed to arsenicals. To 

determine if iAs3+ and MAs3+ were directly acting on GS itself or an upstream effector, iAs3+ and 

MAs3+ of varying concentrations were administered in vitro to control cell lysates and GS 

activity was measured (data not shown). No significant change in GS activity was found, 

suggesting dysfunction of an upstream component of the insulin signaling pathway is responsible 
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for inhibition of GS activity in hepatocytes exposed to arsenicals. Additionally, subtoxic trivalent 

arsenical exposure has previously been demonstrated to inhibit insulin-dependent PKB/Akt 

phosphorylation at both the Ser-473 and Thr-308 residues in 3T3-L1 adipocytes (Paul et al., 

2007). Phosphatidylinositol-dependent kinase-1 (PDK-1) and mTORC2 activate PKB/Akt by 

phosphorylation at Thr-308 and Ser-473, respectively, and have been shown to be inhibited by 

iAs3+ and MAs3+ exposure in 3T3-L1 adipocytes (Paul et al., 2007), providing a possible 

mechanistic link to As exposure and impaired insulin-stimulated PKB/Akt phosphorylation in 

primary hepatocytes. 

  GSK3α is a constitutively active enzyme regulated by phosphorylation of tyrosine 

residues (active form) and serine residues (inactive form) (Wang et al., 1994). GSK3α 

phosphorylation at Ser-21 was anticipated to decline after arsenic exposure, corresponding to an 

increase in activity, as its inhibitor’s (phospho-PKB/Akt) phosphorylation was reduced by iAs3+ 

and MAs3+ exposure. While a dose-dependent reduction in PKB/Akt phosphorylation at both 

Ser-473 and Thr-308 was observed in hepatocytes after both iAs3+ and MAs3+ exposures, no 

significant change was seen in phosphorylation of GSK3α at Ser-21. However, the serine 

phosphorylation of GS by GSK3α (Rylatt et al., 1980) is not the only mechanism of GS 

deactivation. AMP-activated kinase (AMPK) (Bultot et al., 2012), casein kinase 2 (CK2) 

(Grande et al., 1989, Imazu et al., 1984a), and protein kinase A (PKA) (Proud et al., 1977) have 

also been implicated in this process. GSK3α phosphorylates Ser-641, Ser-645, Ser-647, and Ser-

653 of GS (Rylatt et al., 1980); AMPK phosphorylates Ser-7 (Bultot et al., 2012); CK2 

phosphorylates Ser-10 (Imazu et al., 1984a, Ros et al., 2009); PKA phosphorylates Ser-697 and 

Ser-710 (Imazu et al., 1984b). However, the isoform of GS present in liver lacks the last 33 C-

terminal amino acid residues present in the muscle isoform of GS, which is where Ser-697 and 
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Ser-710 are located (Bai et al., 1990, Ros et al., 2009). Thus, the liver isoform of GS is not 

phosphorylated by PKA. Notably, Ser-7, the site phosphorylated by AMPK, was found by 

mutagenesis to be the most influential phosphorylation site for GS activity regulation (Ros et al., 

2009).  

 Though clear inhibition of PKB/Akt phosphorylation was seen in this study, it did not 

alter the phosphorylation status of GSK3α Ser-21, strongly suggesting the involvement of PP1 in 

GS and GP dysregulation.  

4.2 Inhibition of GS activation and GP deactivation appears to be independent of PP1 

 The catalytic subunit of PP1 (PP1c) is targeted to glycogen by dimerization with the 

regulatory glycogen-binding subunit (GL). GL binding to PP1c has been shown to be insulin 

dependent and to increase specificity of PP1 to GS over GP (Munro et al., 2005). With no 

significant change seen in GSK3α activity, a significant decrease of PP1 activity could explain 

the reduction in GS activity following arsenical exposure. However, no significant change was 

seen in PP1 activity following iAs3+ or MAs3+ exposure in primary hepatocytes, even upon 

replacement of 2 mM DTT with 1 mM TCEP in the assay buffer. While altering buffer reagents 

to “select” for a particular Ser/Thr phosphatase, it is possible that other Ser/Thr phosphatases 

(PP2A, PP2B, etc.) present in the cell lysates are not significantly inhibited by altering the 

reaction buffers. The presence of additional Ser/Thr phosphatases could provide background 

phosphatase activity obscuring our ability to observe significant changes in PP1 activity. The kit 

used to analyze PP1 activity (Molecular Probes, R-33700) provides 6,8-difluoro-4-methyl-

umbelliferyl phosphate (DiFMUP) under the principle that the phosphate will be cleaved to 

produce DiFMU, a fluorescent product. The affinity of Ser/Thr phosphatases to this substrate 

may not be representative of their affinity to glycogen metabolism-specific phosphoproteins. It is 
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possible that an alternative method of sample preparation such as cellular fractionation to isolate 

a glycogen-enriched pellet (Greenberg et al., 2006) would be beneficial in isolating PP1 from 

other Ser/Thr phosphatases in the cell lysate to more clearly see changes in PP1 activity. 

Additionally, GS or GP isolation and purification from mouse liver and subsequent 32P-

phosphorylation by protein kinases can be utilized to measure glycogen metabolism-specific PP1 

activity in future studies (DePaoli-Roach et al., 2003).  

4.3 Conclusions and Future Directions  

 In this study, we have demonstrated a new mechanism by which arsenical exposure 

disrupts glucose homeostasis, and specifically hepatic glycogen metabolism, by inhibiting GS 

and activating GP in hepatocytes. Both arsenic exposure and diabetes are global public health 

issues and the identification of this mechanism may help to develop strategies for treatment 

and/or prevention of As-associated diabetes.  

 Our results do not appear to suggest the involvement of the insulin-stimulated PI3K-Akt-

GSK3α pathway, much to our surprise. While PP1 activity was not shown to have changed with 

arsenic exposure, it is possible that with modification and further optimization of the PP1 activity 

measurement, potential involvement of PP1 can be better assessed. Investigation into the 

potential roles of AMPK and CK2 in the regulation of GS activity during arsenic exposure may 

also help to reveal the mechanism by which arsenicals inhibit GS activity.  

 Further investigation into the role of PP1 will also help to clarify the role of PP1 in GP 

activation. Additionally, investigation into the roles of upstream effectors of GP such as GPK 

and PKA would further clarify the mechanism by which GP is activated by arsenical exposure.  
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