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ABSTRACT

GREGORY RAGLAND: Life history evolution in seasonal environments: phenological and
environmental determinants of thermal adaptation in Wyeomyia smithii

(Under the direction of Joel Kingsolver)

Environmental variation poses a major evolutionary challenge to organisms. This is

particularly true for seasonal environments where environmental factors fluctuate radically

but predictably on an annual basis. Dormant life history stages often evolve to mitigate

exposure to harsh seasonal environments (e.g., winter). In addition, norms of reaction, or the

relationship between phenotype and environment, often evolve as a response to local

environmental heterogeneity. My thesis explores how the seasonal timing of dormancy

affects selection on reaction norms of active, non-dormant life history stages in temperate

insects. Changing the dates of initiation and termination of winter dormancy changes the

thermal habitat experienced during active growth and reproduction. Thus, geographic

variation in the timing of dormancy complicates geographic patterns of thermal selection on

active life history stages. Using available inter- and intraspecific life history data in

conjunction with long-term weather data, I show that geographic clines in dormancy timing

cause populations along the cline to experience similar exposure to cold temperatures during

active growth. As a result, strong latitudinal trends in the timing of dormancy predict weaker

latitudinal trends in thermal adaptation of active stages. I further illustrate this concept by

examining geographic variation in the timing of winter dormancy, thermal sensitivity of

development, and tolerance to thermal stress in the pitcher plant mosquito, Wyeomyia smithii.

The results from W. smithii suggest that selection applied specifically by the thermal
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environment of the growing season best explains geographic variation in the thermal

sensitivity of development time. In contrast, geographic variation in the thermal environment

of the entire year best explains geographic trends in thermal stress tolerance of active life

history stages. These results suggest two major conclusions. First, thermal sensitivity and

thermal tolerance can exhibit local adaptation in populations that also demonstrate local

adaptation in diapause timing. Thus the evolution of one type of adaptation does not

preclude the other. Second, dormancy timing unquestionably influences direct selection on

active life history stages, but correlated selection on overwinter survival may strongly

influence temperature tolerance of active life history stages.
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CHAPTER 1

INTRODUCTION

A major challenge for organisms in nearly every type of habitat is to maintain

positive fitness when faced with environmental variation. All organisms are limited to a

defined range of tolerable environmental conditions, and environmental fluctuations that

approach or exceed the boundaries of that range will impose fitness costs. The challenge is to

achieve a relatively constant fitness value across environments. A common solution to this

problem is to employ flexibility, or plasticity of the phenotype to achieve inflexibility of

fitness.

Plastic phenotypes that mitigate fitness costs in sub-optimal environments are only

adaptive, however, if they are appropriately timed to coincide with the environment in which

they maximize fitness (Pigliucci 2001). Adaptive plasticity is thus a common evolutionary

strategy in seasonal environments, where biotic and abiotic environmental factors fluctuate

radically but predictably on an annual scale. For example, in Colias butterflies from North

America there are different seasonal morphs that vary in the degree of wing melanism (a

developmentally determined, irreversible phenotype). The expression of increased melanism

occurs in early spring broods, and this season-specific timing is determined by photoperiodic

cues (Watt 1968; Watt 1969). Wing melanism in Colias butterflies also serves as an example

of adaptive phenology: spring broods benefit from increased melanism because basking

adults can attain threshold temperatures for flight more readily during a time of year in which
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available heat is relatively minimal compared to summer conditions. Summer broods, on the

other hand, express decreased melanism presumably because the higher temperatures

experienced pose a greater risk for overheating. Thus, the adaptive value of the expression of

wing melanism is highly dependent upon the seasonal timing of expression (Watt 1969).

Similarly, the fitness benefits of diapause, the physiologically buffered dormant state

of insects, are highly dependent upon seasonal timing (Tauber et al. 1986). Diapause is

induced in order to avoid stressful environmental conditions such as low precipitation

(Denlinger 1986), lack of food availability (Istock et al. 1975), or stressful temperatures

(Bradshaw et al. 2004) that fluctuate on an annual basis. Timed appropriately, diapause

allows persistence through unfavorable conditions under which active growth and

reproduction would result in population decline. Too long a diapause period and the

diapausing organism loses out on valuable time and resources that could be exploited to

increase reproductive success. Too short a diapause period and the organism will be exposed

to deleterious or lethal conditions. Thus, the timing of diapause not only determines the

adaptive value of the diapause stage itself, but also determines the conditions that an

organism experiences during active growth and reproduction.

This dissertation addresses the dependence between seasonal timing and the selective

environment experienced by active life history stages. I explore this relationship by

examining geographic variation in the environment, the seasonal timing of diapause, and

temperature-dependent life history traits in temperate insects. The logic behind the

hypotheses that I test has two main components. The first is the recognition that

environmentally-mediated selection on a life history stage, in this case non-diapause (active)

stages, critically depends on the seasonal timing of the initiation and termination of



3

dormancy in relation to seasonal environmental fluctuations. The second is the observation

that the seasonal timing of dormancy varies with geography. For example, winters become

increasingly harsher and longer proceeding away from the equator, and the timing of

dormancy in a broad range of taxa changes with geography such that populations further

from the equator have shorter growing seasons. This geographic variation in dormancy

timing will then affect geographic patterns of selection on active life history stages.

Herein I examine the consequences of geographic variation in diapause timing for

selection on and evolution of life history traits that are sensitive to temperature. I begin with

a broad overview of geographic patterns in temperature variation and life history evolution in

temperate insects (Chapter 2). By reviewing both intra- and interspecific comparative data on

geographic variation in diapause and on a temperature-sensitive trait, I show that seasonal

timing is generally more correlated with latitude than is the thermal sensitivity of

development. I also show that evolved differences in seasonal timing can minimize the

relationship between cold temperature exposure and latitude. This relationship is often

implicitly assumed in studies that infer adaptation from clinal trait variation, illustrating how

knowledge of seasonal timing can better inform adaptive hypotheses. In the following three

chapters I address more specific questions about seasonality and life history evolution in the

pitcher plant mosquito, Wyeomyia smithii.

Several ecological and organismal features make W. smithii an exceptional model

system for investigating the geography of life history adaptation in seasonal environments.

Adult females obligately oviposit into the water filled leaves of the purple pitcher plant,

Sarracenia purpurea, and thus track the broad geographic range of S. purpurea from

northern Florida up to the Great Lakes region inland and Newfoundland along the coast of
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North America (Armbruster et al. 1998). Further, since S. purpurea only grows in acidic,

boggy substrates, the distribution of the plant is spatially patchy. Adult mosquitoes are weak

flying, and the distances between patches of S. purpurea are such that gene flow between W.

smithii populations is virtually absent (Istock and Weisburg 1989). Additionally, W. smithii

has a well characterized larval diapause stage that is cued by photoperiod and varies with

latitude such that the termination and initiation of diapause become progressively later and

earlier, respectively, with increasing latitude (Bradshaw and Lounibos 1977). Each

geographic population of W. smithii represents an independently evolving unit on which

selection has been acting since the last glacial maximum (Armbruster et al. 1998) to optimize

diapause timing and the environmental sensitivity of active life history stages.

Chapters 3 and 4 test the hypothesis that the timing of diapause has evolved to

reproduce similar thermal habitats across disparate geographic populations in W. smithii and

examine the consequences for thermal selection on development time, body mass, and

thermal tolerance. Using long-term temperature data I show that geographical gradients in

the thermal habitat experienced during active growth and reproduction is different than the

gradient predicted by simple metrics such as annual maximum and minimum temperatures.

Specifically, the thermal habitat of the growing season, or the annual time period occurring

after diapause termination but before diapause initiation, is more geographically divergent at

high compared to low temperatures. Considering temperatures experienced over the course of

an entire year, winter minimum temperatures decline faster than summer maximum

temperatures with increasing latitude. Thus, the observed geographic trend shows that

evolved differences in diapause timing have created similar thermal habitats during the
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growing season by similarly limiting exposure to cold temperatures in all the geographic

populations examined.

Trends in life history traits partially conform to predictions based on the diapause-

defined growing season, but patterns are somewhat complex. Development time is

geographically more variable at high than at low rearing temperatures, consistent with

predictions based on the greater geographic variability of frequencies of high compared to

low temperatures during the growing season (Chapter 3). In contrast, tolerance of stressful

low temperatures of active stages is more geographically variable than tolerance of stressful

high temperatures (Chapter 4). I therefore suggest that geographic patterns in low

temperature tolerance of active life history stages may often reflect correlated selection on

overwintering survival rather than direct selection on survival, performance, and

reproduction during active growth.

Chapter 5 ranges a bit further afield, examining the impact of temperature variation

within a geographic site (rather than mean temperature) on geographic variation in life

history traits. I show that differences in annual temperature variation among sites have not

greatly influenced the evolution of life history traits in W. smithii. However, the results do

suggest that population differences in sensitivity to thermal variation will be most

pronounced when the shape (e.g., slope or curvature) of the underlying function relating life

history traits to mean temperature is the most variable among population.

I close with a brief concluding statement, synthesizing the collective results and

exploring broader implications. These joint investigations of seasonality and environmental

sensitivity raise many more questions than they answer. The selective mechanisms that lead

to specific combinations of seasonal timing and thermal responses remain unclear, as do
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many of the physiological and genetic underpinnings of inter- and intraspecific variation.

However, the results do suggest testable hypotheses to explore these questions. With global

climate change imminent, a working knowledge of how environmental physiology and

seasonal timing evolve will greatly inform predictions of range expansions, range shifts, and

extinctions.
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CHAPTER 2

THE EVOLUTION OF PHENOLOGY AND THERMAL SENSITIVITY
IN SEASONAL ENVIRONMENTS

Abstract

Both the timing, or phenology of life history stages and the environmental sensitivity

of those stages represent major adaptations to seasonally fluctuating environments.

Substantial empirical evidence shows that these traits diverge between geographic

populations and between species with different geographic ranges. However, it remains

unclear how phenology and environmentally-dependent physiology evolve in tandem. In

particular, selection on the seasonal timing of a life history stage will affect selection on that

stage mediated by an environmental factor that fluctuates seasonally and on the timescale of

a single generation. Herein, I examine latitudinal trends in phenology, thermal physiology,

and temperature to illustrate how this relationship between timing and environmentally-

mediated selection affects seasonal adaptation in temperate insects. The timing of

photoperiodically-cued diapause (dormancy) varies predictably with latitude, while the

thermal sensitivity of development is only marginally related to latitude. Comparative data

on intraspecific variation show that this disparity in pattern is probably not caused by genetic

constraint on thermal sensitivity. However, latitudinal variation in temperature conditions

experienced at seasonal transitions suggests that thermal selection on diapause phenology is

more closely related to latitude than is selection on the thermal sensitivity of development.

These results illustrate the importance of accounting for the phenological dependence of
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selection on thermal physiology when formulating adaptive hypotheses based on

geographical variation.
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Introduction

Temperate organisms typically experience environmental fluctuations that vary on

both a short-term (e.g., diurnal) and long-term, seasonal scale. Faced with this high degree of

environmental variability, what are the major adaptations that allow persistence in seasonal

environments? This question has been addressed in a broad range of taxa for a number of

phenotypes by exploring associations between native seasonal environments and various

morphological, physiological, and life-history traits (e.g., Blanckenhorn and Fairbairn 1995;

Bradshaw and Lounibos 1977; Burke et al. 2005; Hoffmann et al. 2003; Kimura 2004;

Masaki 1972; Mousseau and Roff 1995; Schmidt et al. 2005; Sorensen et al. 2005).

Conclusions from these studies point towards two distinct, if not mutually exclusive classes

of adaptations to seasonal environments: 1) the timing, or phenology life history events, life

history stages, or alternate phenotypes, and 2) the norm of reaction for short-term reversible

physiological and behavioral traits.

Both of these types of traits are important in adaptation to seasonal fluctuations in

temperature. Ectotherm physiology in particular is highly temperature-dependent, and

seasonal temperature variation exerts selection on the thermal sensitivity of survival, growth,

and reproduction (Angilletta et al. 2002; Angilletta et al. 2006; Gilchrist 1995; Huey and

Berrigan 2001; Huey and Kingsolver 1989; Kingsolver and Gomulkiewicz 2003). Further,

alternate phenotypes induced by developmental plasticity may enhance survival of extreme,

stressful conditions and exploitation of more favorable conditions (Adedokun and Denlinger

1984; Brakefield 1996; Fric and Konvicka 2002; Hazel 2002; Jacobs and Watt 1994;

Kingsolver 1995; Nice and Fordyce 2006; Rinehart et al. 2006; Saunders and Hayward 1998;

Tanaka 1997). The seasonal timing of these alternate phenotypes is often critical,
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synchronizing life cycles to match phenotypes to environments (e.g., Bradshaw et al. 2000).

Selection on timing, however, is not independent of selection on thermal sensitivity,

complicating predictions about how these traits should evolve in tandem. Latitudinal patterns

in temperate insects provide an exceptional example of how this link between seasonal

timing and temperature-mediated selection affects life history evolution in seasonal

environments.

Phenology, or seasonal timing, determines the environmental context that a particular

life history stage or alternate phenotype will experience. For example, the fitness benefits of

diapause, the physiologically buffered dormant state of insects, are highly dependent upon

seasonal timing. Diapause is induced in order to avoid stressful environmental conditions

such as low precipitation (Denlinger 1986), lack of food availability (Istock et al. 1975), or

stressful temperatures (Bradshaw et al. 2004). In the context of seasonal temperature

fluctuations, the timing of diapause appears to be an especially critical trait for several

reasons. First, diapause is an avoidance response to temperatures that would be highly

deleterious and often lethal were an insect actively growing (Bradshaw et al. 2004). Seasonal

temperature variation, though technically continuous, generates discreet environments from

an insect’s-eye-view: conditions that are favorable for growth and reproduction, and

conditions that are not. Failure to induce diapause before the transition between these two

environments often results in a fitness value of zero (Tauber et al. 1986). Second, the costs of

inducing (or failing to terminate) diapause during favorable growth conditions can be high

because certain differences between the diapause and non-diapause phenotypes are also

discrete. Most importantly, diapausing individuals arrest development and do not reproduce,



12

trading off reproductive success for survival. Thus, fitness may be greatly reduced in

individuals that maintain diapause while conditions are favorable for growth.

In contrast to traits such as diapause, many physiological responses to the thermal

environment occur rapidly, are short-term reversible (i.e., on the order of hours or days), and

are induced directly by temperature. The relationship between temperature and physiology in

ectotherms is often largely determined by biochemical reaction kinetics (Schoolfield et al.

1981; Sharpe and Demichele 1977). Thus, thermal sensitivity of many traits can be viewed

simply as a biochemical constraint. The specific parameters (e.g., shape) of the relationship

between physiology and temperature (a thermal reaction norm), however, can vary both

inter- and intraspecifically (David et al. 2004; Delpuech et al. 1995; Kingsolver et al. 2004;

Scheiner and Lyman 1989) and often reflect native thermal conditions: that is, the parameters

of thermal reaction norms can be adaptive (Angilletta et al. 2002; Huey and Kingsolver

1989).

Physiological traits related to development, growth, and reproduction are all aspects

of organismal performance and contribute to overall fitness through reproductive success and

generation time (Garland and Carter 1994). In organisms that undergo a diapause state,

however, selection acts on performance traits mainly during the favorable season when active

growth and reproduction takes place. Selection on survival through unfavorable conditions,

on the other hand, will act on various aspects of diapause, including the timing of induction

and termination (Bradshaw and Lounibos 1977; Tauber et al. 1986). Changes in diapause

timing will shift the seasonal ‘window’ of temperatures experienced during active growth

and reproduction. In this respect, selection on diapause phenology and thermal performance
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is not independent because diapause timing affects the temperature distribution of the

favorable season.

Comparative studies of geographic populations have shown that there is often

pronounced geographic variation for both diapause phenology (e.g., Bradshaw and Lounibos

1977; Gomi and Takeda 1996; Masaki 1972; Nechols et al. 1987; Schmidt et al. 2005;

Tauber et al. 1988b) and thermal physiology (e.g., Ayres and Scriber 1994; Baldwin and

Dingle 1986; Barnes et al. 1989; Birkemoe and Leinaas 2001; Carriere and Boivin 1997;

Delpuech et al. 1995; James and Partridge 1995; Robinson and Partridge 2001). Often, this

variation is correlated with local thermal and seasonal conditions such that individuals from a

population obtain maximum fitness (or maximum values of fitness components) in the

thermal/seasonal environments most similar to that population’s native habitat. The results of

these types of studies generally indicate that selection imposed by the thermal/seasonal

environment indeed modifies both diapause timing and thermal physiology.

On the intra-specific level, there is some disparity between latitudinal trends in

diapause timing and thermal physiology. In insects, the thermal sensitivity of development

rate is often either unrelated or only marginally related to latitude (Beck and Apple 1961;

Calvin et al. 1991; Campbell et al. 1974; Campbell and Mackaur 1975; Goryshin et al. 1987;

Khomyakova 1976; Tauber and Tauber 1982; Tauber and Tauber 1987). In contrast, the

relationship between seasonal timing of dormancy and latitude is nearly always tight, and in

the expected direction (Beck and Apple 1961; Calvin et al. 1991; Campbell et al. 1974;

Campbell and Mackaur 1975; Goryshin et al. 1987; Khomyakova 1976; Tauber and Tauber

1982; Tauber and Tauber 1987). With increasing latitude, the calendar date of spring

emergence or resumption of growth and the date of the onset of dormancy increase and
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decrease, respectively. Quite reliably, higher latitude populations have shorter growing

seasons, whereas those same populations may or may not differ in thermal responses.

Modifications to seasonal timing and thermal physiology are both viable adaptive

responses to selection mediated by temperature, so why does seasonal timing exhibit a more

consistent latitudinal trend? There are three possible explanations for this disparity in

patterns: 1) thermal physiology is more evolutionarily constrained than seasonal timing, 2)

natural selection acts more strongly on seasonal timing, or 3) latitude is a better predictor of

gradients in selection on seasonal timing than of gradients in selection on thermal

physiology. Without detailed studies correlating specific phenotypes to fitness, (2) is difficult

to address. However, available data on phenology and thermal physiology allow hypothesis

(1) and (3) to be evaluated for temperate insects.

To illustrate the relative roles of selection and constraint in shaping these contrasting

latitudinal patterns, I examine geographic variation in photoperiodic diapause responses and

temperature-development rate relationships in terrestrial insects. I begin by summarizing

latitudinal variation inferred from previous meta-analyses to establish the differences in

geographic patterns. To explore potential evolutionary constraint, I then use insect species for

which geographic variation in both diapause phenology and development rate have been

characterized to ask whether the two types of traits are equally divergent among populations.

Finally, I examine latitudinal trends in several aspects of seasonal temperature variation to

ask how well latitude predicts selection on seasonal timing and the thermal physiology of

development.
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Empirical data on latitudinal trends

Hibernal diapause timing and norms of reaction for development rate vs. temperature

have clear fitness implications mediated by temperature. The timing of initiation and

termination of hibernal diapause will determine exposure of actively growing individuals to

stressful winter conditions, including lethal low temperatures (Bradshaw et al. 2004). When

an insect is in non-diapause development, the relationship between development rate and

temperature will partially dictate whether individuals reach the diapause stage before the

onset of winter (Gotthard et al. 2000), and in multivoltine populations it will also determine

the number of generations produced during the growing season. Seasonal variation in

temperature will thus influence the optimal timing of diapause and the optimal shape of the

developmental rate vs. temperature reaction norm. Variation in seasonality across geography

will drive divergence among populations or among species with different geographic ranges.

Trends in Critical Photoperiod

Photoperiodic (i.e., daylength) cues commonly initiate and terminate diapause in

insects. Temperature, photoperiod, or a combination of both can influence diapause timing

(Tauber et al. 1986), but studies of latitudinal variation often focus exclusively on

photoperiodic responses. The most common quantitative description of diapause timing is

critical photoperiod (CP), the photoperiod at which 50% of a sample induces or terminates

diapause (Bradshaw and Lounibos 1977; Taylor and Spalding 1986). CP may be reported for

diapause induction, termination, or both, and increasing CP leads to later and earlier

termination and induction, respectively.

Insects that use photoperiodic cues to induce or terminate diapause generally exhibit a

trend of increasing critical photoperiod with increasing latitude, where later termination and
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earlier initiation at higher latitudes causes a reduction in the length of the growing season.

This trend makes sense from an adaptive standpoint, as in addition to intensity, the duration

of winter increases with increasing latitude. In a meta-analysis of geographic variation in CP,

Taylor and Spalding (1986) show consistent trends of increasing CP with increasing latitude

within and across species. Figure 2.1, reproduced from Taylor and Spalding (1986), plots CP

versus latitude for 12 species of insects and for one mite species. Considering interspecific

variation, there is a clear pattern of increasing CP with increasing latitude. This same trend is

consistently demonstrated intraspecifically as well (Figure 2.1; the majority of lines

connecting geographic populations have similar, positive slopes). Since the publication of

this study, positive relationships between latitude and CP measured for geographic

populations have also been reported for a number of species, including (but not limited to)

six species of Lepidoptera (Gomi 1997; Jia 1993; Kato 2005; Ujiye 1985; Yoshio and Ishii

1998), two species of Diptera (Moribayashi et al. 2001; Riihimaa et al. 1996), one species of

Heteroptera (Ito and Nakata 2000), and one species of spider mite (Suwa and Gotoh 2006).

Further, of the four species summarized in Taylor and Spalding (1986) with available

estimates of r2 for the regression of CP on latitude, three are significant at the p < 0.05 level

and all have r2 > 0.73. The near-universality of these trends strongly suggest that

photoperiodic timing of diapause is a major adaptation to seasonal environments that is

highly predictable based on latitude (Bradshaw and Lounibos 1977; Tauber et al. 1986;

Taylor and Spalding 1986). Two decades ago, Taylor and Spalding (1986) even went so far

as to suggest that latitudinal trends in CP are so well substantiated that further evolutionary

studies directed exclusively at examining this question would be redundant.



18

16

14

12

30 40 50 60 70

Latitude (degrees)

C
rit

ic
al

 P
ho

to
pe

rio
d 

(h
)
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Trends in Degree-day parameters

In ectotherms, the functional relationship between development rate and temperature

(a thermal reaction norm) typically assumes a curvilinear, concave-down shape such that

there is a single temperature at which the rate is maximized and an asymmetrical decline

(steeper at higher temperatures) in rate on either side of the maximum. Ideally, an average

reaction norm for a genotype, population, species, etc., would be quantified by fitting an

appropriate curvilinear function to development rate measures at a set of landmark

temperatures (Fig. 2.2a). In practice, especially in the entomological literature, the

relationship is simplified by measuring development rate only at temperatures at or below the

optimum (estimated or inferred) and assuming a linear relationship across these temperatures

(Fig. 2.2b). This is the “Degree-day” model familiar to entomologists, and since the

relationship is linear it can be described by two parameters with straightforward biological

meaning. The x- (temperature) intercept (t) is defined as the lower thermal threshold below

which development does not occur, and the inverse of the slope (K) is defined as the thermal

requirement (units are [degrees C*days], thus the “degree-day” model) for development

above the lower thermal threshold (Fig. 2.2b). The parameters t and K define the lower

thermal limits of development and the required accumulation of heat for the completion of

development, respectively. Despite the model’s simplicity, it often serves as an accurate

predictor of insect development and is widely used to predict phenology in the field (Trudgill

et al. 2005).
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Figure 2.2. a) 4rth degree polynomial fit (solid line) to hypothetical measures of development
rate (inverse of the numbers of days to eclosion) taken at landmark temperatures (diamond
symbols). b) Linear fit to the same hypothetical data using only data points below 35° C
(solid black diamonds) and excluding data at or above 35° C (open diamonds). This
represents the degree-day model where t (the x-intercept) is the lower thermal threshold for
development and K (the reciprocal of the slope), is the degree-day requirements above the
lower thermal threshold.



20

Degree-day parameter estimates appear to be less tightly related to latitude than

critical photoperiod. The decrease in annual average temperatures with increasing latitude

predicts that the lower thermal threshold t will decrease with increasing latitude (Trudgill et

al. 2005). Somewhat less intuitively, the adaptive expectation is an increase in K with

increasing latitude because K and t seem to often be negatively correlated, and multivoltinism

at lower latitudes often favors decreased development time, i.e., a lower value of K (Trudgill

1995; Trudgill and Perry 1994). A comparative study by Honek (1996) partially supports

these predictions, but the inferred relationships with latitude are relatively weak. Using data

from 335 insect species from 13 orders sampled from 24 - 60° (North or South) latitude,

Honek (1996) estimated r2 values for regressions of t and K on latitude. Regressions were

estimated for total development and separately for several developmental stages, but results

were qualitatively consistent across developmental stages. Despite a high degree of scatter in

the data, t was significantly negatively correlated with latitude, but latitude explained only a

small proportion of the variation (r2 = 0.12 for total development). There was no discernable

relationship between K for total development and latitude, although latitude did explain a

small but significant proportion of the variation in K for the egg stage alone (r2 = 0.034).

The data set analyzed by Honek (1996) represents interspecific variation, and total

variation is almost certainly highly inflated by ecological differences among species (e.g.,

variation in nutritional and microhabitat requirements). However, two lines of evidence

suggest that the non-trends or weak trends are not simply an artifact of noisy data. First, a re-

analysis of the data applying separate regressions of t on latitude for several taxonomic

divisions did not substantially improve the estimates (average r2 of 0.141; Honek 1996).

Second, geographic populations of several insect species demonstrate either limited inter-
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population variation in K and t or variation that is not related to latitude (Beck and Apple

1961; Calvin et al. 1991; Campbell et al. 1974; Campbell and Mackaur 1975; Goryshin et al.

1987; Khomyakova 1976; Tauber and Tauber 1982; Tauber and Tauber 1987). Thus, the

weak trends inferred from interspecific variation are also demonstrated by intraspecific

variation. Together, the available evidence suggests that compared to the highly supported,

tight relationship between CP and latitude, thermal sensitivity of development rate is only

weakly related to latitude.

Evolvability of CP, t, and K

Clearly there is ample variation in CP and degree-day parameters at the interspecific

level, but does a lack of intraspecific variation constrain the evolution of t and K relative to

CP? If this were true, geographically disparate populations of insects with photoperiodically-

controlled diapause responses should differ markedly for CP and little for t and K. A test of

this hypothesis requires data on CP, t, and K for multiple geographic populations of the same

species. There are few species for which all of these estimates are available, a somewhat

surprising result given the amount of attention devoted to phenological models in the insect

literature. Nevertheless, what examples are available prove informative.

Geographic populations appear to diverge as much in degree-day parameters as they

do in CP. Table 2.1 summarizes intraspecific variation in 5 insect species sampled from two

or more geographic populations. I calculated maximum divergence (MD) between

populations in a given study for a given trait as the greatest difference in trait value (from all

possible pairwise comparisons) between two populations divided by the mean trait value of

all populations. Generally, these mean-standardized estimates did not differ greatly between

CP, t, and K within a given species: all estimates were well within an order of magnitude.
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Table 2.1. Maximum divergence between geographic populations (MD) for degree day
requirements for non-diapause (Knon) and post-diapause (Kpost) development, lower thermal
threshold for non-diapause (tnon) and post-diapause (tpost) development, and critical
photoperiod (CP; in bold).

Species Order N (pops)

Latitudinal
range

(degrees) Trait MD

1C. oculata Neuroptera 7 20.0 Kpost 0.42
2C. oculata Neuroptera 5 25.7 Knon 0.19
1C. oculata Neuroptera 7 20.0 tpost 0.21
2C. oculata Neuroptera 5 25.7 tnon 0.15
1C. oculata Neuroptera 10 25.0 CP 0.37
3C. carnea Neuroptera 9 35.0 Kpost 0.61
3C. carnea Neuroptera 6 35.0 Knon 0.23
3C. carnea Neuroptera 9 35.0 tpost 0.59
3C. carnea Neuroptera 6 35.0 tnon 0.14
3C. carnea Neuroptera 9 20 CP 0.19
4L. decemlineata Coleoptera 2 1.5 Kpost 0.46
5L. decemlineata** Coleoptera 2 1.5 Knon 0.015
4L. decemlineata Coleoptera 2 1.5 tpost 0.041
5L. decemlineata Coleoptera 2 1.5 tnon 0.074
6L. decemlineata** Coleoptera 2 6.8 Knon 0.017
4L. decemlineata Coleoptera 2 1.5 CP 0.051
7H. cunea Lepidoptera 2 1.9 Knon 0.058
7H. cunea Lepidoptera 2 1.9 tnon 0.028
8H. cunea Lepidoptera 13 5.5 CP 0.013
9O. nubilalis Lepidoptera 4 10.3 Knon 0
9O. nubilalis Lepidoptera 4 10.3 tnon 0.13
10O. nubilalis† Lepidoptera 9 8.0 CP 0.10

† CP estimated by linear extrapolation from reference (9)
1-10 Index of references listed in Appendix
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Table 2.2. Direction of divergence in degree-day parameters between the two latitudinally
most divergent populations in each study. A “+”, “-“, or “0” indicate an increase, decrease, or
no change in trait (K or t) value with increasing latitude.

K T

species
Non-

diapause
Post-

diapause
Non-

diapause
Post-

diapause

C. oculata - + + -
C. carnea - - - +
O. nubilalis 0 na - na
H. cunea - na + na
L. decemlineata* + + - -
L. decemlineata* - na na

* two rows for L. decemlineata represent data from independent studies
na data not available
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Moreover, maximum divergence was actually greater for either t or K than for CP within

every species listed. These estimates of divergence are admittedly rough, and do not include

any estimates of variation about the mean. However, they provide no evidence that CP is

more divergent among populations than are degree-day parameters. Thus, there is no a priori

expectation of constraint for degree-day parameters. Three of these species are recent

colonizers (introductions within the last 100 to 300 years), showing that both CP and the

thermal sensitivity of development may evolve relatively rapidly. Life history evolution on

such short time scales would be unlikely were these traits highly constrained.

Comparisons of direction of divergence between CP and t and K also support the

hypothesis that CP has a more predictable relationship with latitude. In all of the studies of

CP listed in Table 2.1, CP increased from the population furthest south to the population

furthest north. In contrast, degree-day parameters sometimes increased and sometimes

decreased with increasing latitude (Table 2.2). This contrast in consistency between CP and t

and K mirrors the discrepancy between the results of Taylor and Spalding (1986) and the

results of Honek (1996): CP is tightly linked to latitude, while degree-day parameters are not.

Geographic patterns of selection

If both critical photoperiod and the thermal sensitivity of development are free to

evolve, a selective explanation must account for the consistent latitudinal trend in CP and the

inconsistent latitudinal trends in t and K. As previously mentioned, detailed fitness measures

are necessary to quantify the relative strength of selection on these traits, and such data are

not available in a sufficient number of species to inform any broad conclusions. However, if

we make a few plausible assumptions about what selective forces shape seasonal adaptations,
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we can use climatic data to infer how selection on development rate and seasonal timing

varies with latitude.

The need to synchronize life cycles with seasonally fluctuating biotic factors such as

resource availability undoubtedly contributes to the optimal timing of hibernal diapause

(Wolda 1988). Climatic fluctuation in temperature and rainfall ultimately drive fluctuations

in resource levels, however, and these factors will also directly constrain diapause timing by

imposing physiological stress. For example, sub-zero temperatures are often lethal to non-

dormant insects (and other ectotherms and plants, for that matter), and even freeze-tolerant

insects cannot actively grow and reproduce in freezing temperatures. Thus, the seasonal

boundaries of freezing temperatures (in spring and fall) ultimately dictate the length of the

growing season in most temperate environments (Tauber et al. 1986). Latitudinal variation in

the timing of spring and fall freezes, therefore, will often predict latitudinal variation in the

timing of hibernal diapause (and thus, CP). Likewise, latitudinal trends in thermal conditions

occurring after or before the spring and fall freezes (respectively) will depend on trends in

freeze timing. Environmental temperature should select on the thermal sensitivity of

development (Kingsolver and Gomulkiewicz 2003), so latitudinal trends in thermal

conditions occurring after the last freeze should predict latitudinal variation in degree-day

parameters.

Accepting these assumptions of thermal selection on diapause timing and

development rate suggests straightforward predictions for geographic variation in CP, t, and

K. The higher the correlation between latitude and date of last spring and first fall freeze, the

higher the expected correlation between CP and latitude. Likewise, higher correlations

between latitude and the thermal conditions experienced between first and last freeze (i.e.,
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during the growing season) predict higher correlations between degree-day parameters and

latitude. Temperatures experienced during the spring and fall are particularly important for

temperature-mediated selection during the growing season. Evolutionary studies of

geographic clines rarely consider the thermal conditions occurring at the seasonal transitions,

and these conditions can significantly alter predictions of clinal variation in selection.

Consider two geographic populations of a seasonal insect from two different latitudes. The

northern population invariably experiences a colder, longer winter, but if this population is

seasonally adapted it will emerge from diapause later in the year than the southern

population. By emerging earlier in the year, the southern population could potentially

experience similar, or even colder temperatures during development, or at least for the first

generation if the insect is multivoltine. Thus, the thermal habitat of the growing season

depends on the timing of diapause (or on the timing of seasonal freeze cycles if we assume

that this determines diapause timing).

To explore these latitudinal trends, I calculated several metrics of the

thermal/seasonal environment using data from 21 weather stations arrayed along a latitudinal

cline in eastern North America (see Appendix). I calculated the average date of the final

spring freeze (daily minimum below -1° C), the average minimum temperature for the first

50 days after the spring freeze, and the average degree-day accumulation of thermal units

over those same 50 days. A span of 50 days provides enough time to accumulate more than

the average degree-day requirement for total development reported in Honek (1996). Starting

with 50 years of data, I excluded all years in which there was more than one week of missing

data for any of the weather stations, leaving 30 years of data to include in the analysis. After

calculating the means, I performed a simple linear regression of each measure on latitude to
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estimate coefficients of determination (r2). A term for altitude was also included in each

model, and altitude-corrected latitudes were calculated for use in Figure 2.3 (see Appendix).

The weather data provide a clear picture of geographic clines in seasonal and thermal

selection. Date of last spring freeze is tightly correlated with latitude, while the average

minimum temperature and cumulative degree-days for the first 50 days after the last freeze

are substantially less correlated with latitude. The latitudinal trend in the date of last freeze

predicts the consistent latitudinal trend in CP observed in most insects with a

photoperiodically-cued diapause response. Dates of last spring freeze increase predictably

with latitude (Fig. 2.3a; r2 = 0.87, p < 0.001), as does CP (Fig. 2.1). Trends in degree-day

accumulation and average minimum temperature predict a relatively weaker relationship

between degree-day parameters and latitude. Average minimum temperature of the 50 days

after the last frost does decline with increasing latitude, but a smaller proportion of the

variation is explained by latitude (Fig. 2.3b; r2 = 0.56, p = 0.002). Latitude accounts for an

even smaller, non-significant proportion of the geographic variation in cumulative degree

days (Fig. 2.3c; r2 = 0.21, p = 0.12). Geographic trends in degree-day parameters are also

relatively weak: lower thermal threshold (t) decreases only marginally with latitude, while

degree-day requirements (K) show no detectable relationship with latitude. Year-to-year

variability of these measures could also influence the estimated correlations, but CP, t, and K

all had comparable coefficients of variation (CV) at all sites.

Using the above analyses to link variation in thermal selection to variation in latitude

ignores variation in peak summer temperatures, but this omission is unlikely to invalidate the

predicted pattern. Particularly in multivoltine populations, hot summer temperatures surely

contribute to selection on degree-day parameters. However, unless thermal sensitivity of
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Figure 2.3. Mean (± SE) day of last freeze (last day of spring where minimum < -1° C; [a])
and mean annual average minimum temperature (b) and cumulative degree-days (sum of
daily mean temperatures; [c])) for the first 50 days after the last freeze estimated from 30
years of weather data versus altitude-adjusted latitude (see Appendix for adjustment
calculations).
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mid-summer generations is genetically uncorrelated with that of the post-diapause

generation, degree-day parameters that maximize fitness will reflect a balance between

performance at cooler and warmer temperatures. Thus, thermal conditions experienced after

the last spring freeze will influence the evolution of both post-diapause and non-diapause

development in a substantial proportion of insect species.

Concordance between climatic and phenotypic trends combined with an apparent lack

of genetic constraint suggests that geographic variation in temperature-mediated selection

drives geographic variation in CP, t, and K. These predictions for geographic variation in the

phenotypes are only apparent when the timing of particular life history stages (i.e., timing of

the first spring generation) are accounted for, emphasizing the importance of phenology for

selection on thermal physiology. Metrics such as latitude and altitude can provide valuable

information about climatic differences among geographic regions. In this case, however,

identifying the relevant seasonal context is a critical step in the process of forming and

testing appropriate adaptive hypotheses.

Implications for life history evolution in fluctuating environments

The relationship between diapause timing and seasonal temperature conditions

illustrates how selection on a particular life history stage is inextricably linked to selection on

seasonal timing. Seasonal fluctuations in any environmental or biotic factor will generate this

dependency. For example, seasonal abundance of predators partially controls the timing of

dormancy in some populations of Daphnia magna (Slusarczyk 2001). Temperature

conditions and resource levels occurring during non-dormant periods will thus be determined

by cycles in predator abundance. Similarly, the intensity of predation on pond breeding pool
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frog (Rana lessonae) larvae varies with the timing of egg hatch (Altwegg 2002), so the

timing of reproduction will affect selection on anti-predator behavior. These examples share

two critical features with the example of seasonal temperature variation and diapause timing:

an environmental factor that fluctuates within a generation and a life history transition (i.e.,

induction or termination of diapause or initiation of juvenile development) that occurs while

the environment is fluctuating. These conditions are sufficient for selection on a defined life

history stage to depend upon the timing of that stage. This general relationship is well

supported, and serves as the basis for a number of models of the optimal timing of life history

stages (Roff 2002).

Because life history timing affects selection on particular stages, geographic variation

in timing may alter geographic patterns in selection. In the example presented here,

geographic populations of insects arrayed along a latitudinal cline experience a gradient in

temperature conditions, but these populations also differ in the seasonal timing of diapause.

Differences in diapause timing alter the thermal environment of the growing season such that

northern populations may not experience colder temperatures than southern populations

during active growth and reproduction. Here this explanation is inferred from multiple

comparative data sets, but it is also supported by a specific empirical example. Geographic

populations of Wyeomyia smithii diverge in critical photoperiod inducing and terminating

diapause, and CP is tightly correlated with latitude (Bradshaw and Lounibos 1977). Local

temperature data from four populations ranging from 30.8 to 45.6º N latitude show that after

correcting for population differences in seasonal timing, three of the four populations

experience roughly equivalent frequencies of daily average temperatures below 10º C during

the growing season (see Chapter 3). This pattern is reflected in geographic variation in



31

development rate: populations have indistinguishable development rates at low temperatures,

while rates do vary among populations at higher temperatures. Variation in diapause timing

homogenizes the thermal environment of the growing season across geographic clines,

modifying geographic predictions of thermal adaptation.

The trends examined in this paper do not address whether there is a consistent

difference between the relative strength of selection on phenology and selection on thermal

physiology, and this issue is rarely, if ever directly addressed either empirically or

theoretically. Recent studies of evolutionary response to climate change suggest that seasonal

phenology of a number of species has evolved to accommodate warming trends (Bearhop et

al. 2005; Bradshaw and Holzapfel 2001; Jonzen et al. 2007; Nussey et al. 2005; Parmesan

2006; Reale et al. 2003; Umina et al. 2005), whereas examples of the evolution of thermal

responses are rare or non-existent (Bradshaw and Holzapfel 2006). Although these examples

are far from conclusive, they suggest that selection to shift the timing of life history stages

(e.g., diapause) or events (e.g., reproduction) may be stronger than selection to adjust the

thermal sensitivity of those stages. Alternatively, evolutionary responses may be largely

determined by genetic constraints. A major challenge in evolutionary studies of climate

change will be to distinguish between these hypotheses, as the resolution of this issue will

have important implications for local extinction and geographic range shifts in temperate

organisms.
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CHAPTER 3

INFLUENCE OF SEASONAL TIMING ON THERMAL ECOLOGY AND THERMAL
REACTION NORM EVOLUTION IN WYEOMYIA SMITHII

Abstract

Evolutionary changes in the seasonal timing of life history events can alter a population’s

exposure to seasonally variable environmental factors. I illustrate this principle in Wyeomyia

smithii by showing that 1) geographic divergence in diapause timing reduces differences

among populations in the thermal habitat experienced by non-diapause stages, and 2) the

thermal habitat of the growing season is more divergent at high compared to low

temperatures with respect to daily mean temperatures. Geographic variation in thermal

reaction norms for development time was greater in a warm compared to a cool rearing

treatment, mirroring the geographic trend in daily mean temperature. Geographic variation in

body size was unrelated to geographic temperature variation, but was also unrelated to

development time or fecundity. Our results suggest that proper interpretation of geographic

trends may often require detailed knowledge of life history timing.
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Introduction

In seasonal environments, selection on a particular life history stage or event depends

strongly upon timing, or phenology. At a given geographic location, season-dependent

selection applies to any life history stage or event that occurs in a predictable and defined

annual time window when selective factors are seasonally fluctuating. For example, selection

on floral traits mediated by pollinators is dependent on the timing of flowering in desert cacti

(Fleming et al. 2001). Similarly, periods of dormancy in Daphnia often coincide with periods

of high predation (Slusarczyk 2001) so that selection on anti-predator responses is dependent

on the timing of initiation and termination of dormancy. Migratory events or stages also fit

into this framework, as the timing of migration is often intimately tied to seasonal

environmental fluctuation (Dingle and Drake 2007).

Just as selection is time-dependent within a particular site with seasonal fluctuations,

variation in selection among geographic sites is dependent on the seasonal context. Traits

such as adult body size, propagule size, growth rate, and development rate exhibit latitudinal

and altitudinal trends in diverse animal and plant taxa (e.g., Blanckenhorn and Fairbairn

1995; Galen et al. 1991; Gilchrist et al. 2004; Tracy and Walsberg 2001). Latitude and

altitude serve as geographic proxies for environmental variation, suggesting that these clines

are the result of local adaptation (Endler 1986). In seasonal environments, however, both

environmental factors and the activity pattern of organisms vary throughout the year, and the

timing of a particular life history stage can greatly affect the selective environment

experienced by that life history stage. Thus, simple geographic proxies provide little insight

into the actual selective factors driving such clines without knowledge of life history timing

and patterns of annual environmental variation. In addition, evolved differences in life
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history timing among geographic populations will further modify how selection on a

particular life history stage varies with geography.

In response to geographic variation in seasonality, geographic populations often vary

in the seasonal timing of life history events or stages, and this variation in timing affects

geographic clines in selection. For example, geographic clines in the timing of hibernal

diapause (dormancy) are widespread in temperate insects. Studies in a number of species

show that that the timing of the onset and termination of diapause diverges between

geographic populations such that the length of the active, or growing season decreases with

increasing altitude or latitude (Tauber et al. 1985; Taylor and Spalding 1986). Geographic

variation in diapause timing affects geographic clines in selection in two ways. First, shifts

in diapause timing change the length of the growing season, causing geographic variation in

developmental time constraints. The consequences of this effect have been well studied both

theoretically (Roff 1980) and empirically (Burke et al. 2005; Fischer and Fiedler 2002;

Laugen et al. 2003; Masaki 1972), particularly as they relate to geographic clines in

development time. Second, changes in diapause timing can alter the environment

experienced by a given life history stage. The most obvious adaptive value of diapause

timing is to mitigate the exposure of actively growing individuals to harsh winter conditions

(Tauber et al. 1985), but there is an additional consequence. The timing of diapause will also

affect the environment experienced by actively growing (i.e., non-diapause) individuals by

changing the window of exposure to seasonally fluctuating environmental factors.

Temperature is an important selective factor that varies seasonally and

geographically, and diapause timing will impact patterns of selection on and adaptation of

thermal reaction norms. For traits that are temperature-sensitive such as body size and
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development time in insects, selection mediated by temperature acts on the relationship

between trait value and temperature, termed a thermal norm of reaction or reaction norm.

Theoretical models predict that the strength of selection on trait value at a particular

temperature will be proportional to the frequency at which that temperature is experienced in

the natural environment (Gilchrist 1995; Gilchrist 2000; Kingsolver and Gomulkiewicz

2003). Consequently, the frequency distribution of temperatures at a given site describes the

relative strength of selection applied across temperatures of a thermal reaction norm

(Kingsolver and Gomulkiewicz 2003). Changes in diapause timing effectively change the

frequency distribution of temperatures experienced during active growth and reproduction,

altering thermal selection on non-dormant life history stages. Similarly, geographic variation

in diapause timing will influence geographic variation in the temperature frequency

distribution of the growing season. In this way, geographic clines in thermal selection may

depend on geographic clines in diapause timing. Despite these clear ecological and

evolutionary implications, the influence of diapause timing on exposure to seasonally

fluctuating environments is rarely considered (but see Bradshaw et al. 2004). To our

knowledge, this phenomenon has not been the direct focus of any theoretical or empirical

studies.

The pitcher plant mosquito, Wyeomyia smithii, exhibits a well characterized cline in

diapause timing across both latitude and altitude (Bradshaw and Lounibos 1977). Here I

examine how geographic variation for diapause timing affects geographic variation in the

thermal environment of the growing season and geographic divergence in thermal reaction

norms for life history traits. The length of the growing season decreases with increasing

altitude and latitude in W. smithii (Bradshaw and Lounibos 1977), limiting exposure of
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actively growing individuals to cold winter temperatures. Thus, I hypothesized that

geographic variation in the timing of hibernal diapause reduces geographic variation in the

thermal environment experienced during the growing season.

For several geographic populations I combined available diapause timing data with

long-term weather records to determine the seasonal time window and temperature

conditions associated with active growth and reproduction. In addition, I tested for

geographic variation in thermal reaction norms for development time, body size, and

fecundity, life history traits that often vary substantially across latitude and altitude in insects.

Because of logistical issues I were only able to measure fecundity at a single temperature, but

these data prove useful for assessing whether body size impacts fitness via fecundity. I

compare geographic variation in the thermal environment with geographic variation for

thermal reaction norms to explore the consequences of local adaptation of diapause timing.

Methods

Study organism and sample sites

W. smithii obligately oviposits into the water-filled leaves of the purple pitcher plant,

Sarracenia purpurea, and the geographic distribution of W. smithii tracks that of S. purpurea

from the Gulf Coast of Florida to Newfoundland (Armbruster et al. 1998). The initiation and

termination of diapause in W. smithii is cued by photoperiod (Bradshaw and Lounibos 1972),

and geographic populations demonstrate a cline of increasing critical photoperiod (CP, the

photoperiod at which 50% of a sample initiates or terminates diapause) with increasing

latitude and altitude (Bradshaw and Lounibos 1977). Diapause occurs in the larval stage and

critical photoperiod for initiation and termination is symmetrical (Bradshaw and Lounibos

1977).
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I collected approximately 1000 larvae from each of four geographic populations

(Table 3.1) during the spring and fall of 2004, sampling a minimum of 50 pitcher plants per

population. With the exception of the Massachusetts population (MAS), CP has previously

been estimated for each population that I sampled (FL, NC Coast, and NC Mtn. are WI, GS,

and DB, respectively, in Bradshaw and Lounibos (1977). Here I computed an estimate of CP

for MAS using equation 1 of Bradshaw and Lounibos (1977). Field observations of

phenology agree well with this estimate (Aaron Ellison, personal communication).

Phylogeographic data suggest that these populations cluster into two distinct clades based on

morphology (Bradshaw and Lounibos 1977), allozyme (Armbruster et al. 1998), and mtDNA

variation (William Bradshaw, unpublished data). All geographic populations of W. smithii

are considered a single species (Bradshaw and Lounibos 1977). FL and NC Coast fall into a

southern clade, while NC Mtn. and MAS fall into a northern clade. Hereafter I refer to FL

and NC Coast as southern clade populations and NC Mtn. and MAS as northern clade

populations to reflect this phylogeographic clustering. I did not choose these populations to

specifically test the effects of altitude or latitude. Rather, I chose populations that provided

replication within clade (northern and southern) and exhibited substantial differences in

environmental temperature (see results).

Temperature data

To characterize the thermal environment of each population I obtained weather data

from 1950 to 2001 including daily maximum and minimum temperatures from nearby (< 5

km) weather stations. I calculated daily mean temperatures as the mean of the daily

maximum and minimum; in comparison to actual mean temperatures this calculation is

generally biased during warmer months particularly at lower latitudes, but generally by no
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Table 3.1: Geographic locations and critical photoperiods for the four W. smithii study
populations.

Geographic Location Lat./Lon.
(deg)

Altitude
(m)

Critical
Photoperiod
(h)

Florida gulf coast (FL) 30°N 85°W 10 12.25*
North Carolina coast (NC Coast) 34°N 78°W 20 12.75*
North Carolina mountains (NC Mtn.) 35°N 83°W 900 14.35*
Central Massachusetts (MAS) 42°N 72°W 265 14.50†

* from Bradshaw and Lounibos (1977)
† calculated from Eq. 1 in Bradshaw and Lounibos (1977): see methods



46

more than one degree Celsius (for August, 2000, temperature means calculated from daily

maxima and minima were on average biased by 0.69 and -0.10° C in Wilmington, NC and

Portland, ME, respectively). Data from temperature loggers placed in pitcher plant leaves at

each site indicate that when there is no snow cover, thermal conditions at the actual field sites

are highly correlated with nearby weather station data (G. Ragland, unpublished data;

Bradshaw et al. 2000). Snow cover moderates exposure of diapausing larvae to temperatures

below freezing (Bradshaw et al. 2004), but this does not affect temperatures experienced

during the growing season.

Excluding years for which there were any missing data from any month of the year at

any site (leaving 35 years of data), I estimated frequency distributions (binned into 1° C

intervals) of daily mean temperatures from the long-term weather data for each population

for 1) the entire year and 2) only the growing season predicted by CP for each population.

CP-corrected frequency distributions were computed by including temperature data only for

days of the year longer than the CP at each geographic location. A previous study suggests

that W. smithii includes incoming light during twilight periods in its perception of daylength

(Bradshaw and Phillips 1980), so I included civil twilight in our estimates. Excluding civil

twilight did not qualitatively change the results. Choosing the last day longer than the CP as

a fall cutoff for the growing season is somewhat arbitrary as W. smithii is photosensitive at

least one instar before the diapausing instar and must develop through to diapause (Bradshaw

and Lounibos 1972); however, extending this cutoff by 2.5 weeks did not qualitatively

change the results.
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Colony establishment and maintenance

Larvae sampled from each population were reared to adulthood under standard

laboratory conditions (L:D 16h:8h, temperature oscillating as a sine curve from 13 to 29° C)

as in Hard et al. (1992). Adults were allowed to oviposit into freshly cut pitcher plant leaves

in 5 gallon mating cages and the resulting eggs were reared to the diapause stage at L:D 8:16

(shorter than the shortest photoperiod necessary to induce diapause in all populations) and

20° C. Individuals selected for the next generation represented a haphazard sample across

the entire oviposition period of each mating cage. Once all populations were synchronized in

diapause, I switched diapausing larvae back to standard, long-day conditions and reared them

to adulthood to produce eggs for the next generation. I initiated experimental cohorts with

hatching larvae from the F3 laboratory generation. Lab colonies were maintained with at

least 500 mating individuals per population per generation.

Experimental conditions

Our experiment was designed to test for the influence of temperature, clade, and

population on development time, pupal mass, and fecundity. Temperature treatments were

applied as levels of a crossed factor using temperature-controlled growth chambers, and

larvae from each population were reared in cohorts, introducing a random effect.

Development time and pupal mass were measured on individuals, while fecundity was

measured on cohorts.

If diapause timing evolves towards progressively shorter growing seasons with

increasing altitude and latitude, the temperature frequency distribution of the growing season

should become increasingly truncated (at low temperatures) at higher latitude/altitude. The

coldest temperatures of the growing season occur near the transitions between diapause and
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active growth. Therefore, such a geographic trend in diapause timing should reduce

geographic variation primarily in the thermal conditions associated with these transitional

periods. As the growing season generally includes the warmest temperatures of the year (i.e.,

the summer) in many insect species including W. smithii, transitions between diapause and

non-diapause stages usually occur in the spring or fall.

I chose two fluctuating temperature rearing conditions that reflected both warm

summer-like conditions and cool, spring-like conditions. The warm treatment simulates a hot

summer day in the south (Tave=27° C, Tmin=23° C, Tmax=39° C) and the cool treatment

simulates a typical cool summer day in the north (Tave=20° C, Tmin=16° C, Tmax=32° C).

Each treatment was designed to mimic diurnal temperature fluctuations measured by

temperature loggers in the field and each had identical diurnal profiles offset by 7° C. Figure

3.1 shows the relationship between the experimental treatments and actual diurnal

temperature variation measured in pitcher plant leaves in a southern (NC coast) and northern

(NC Mtn.) clade population.

Eggs were collected every 3 days from colony cages and checked for hatching daily.

Newly hatched larvae were haphazardly selected by pipetting from a well-mixed Petri dish

and placed in 170 ml of distilled water in 150 by 25mm culture dishes, 25 larvae per dish,

and assigned to one of two Percival 36-VL environmental chambers simulating the warm and

cool temperature treatments. Each chamber was set at 16:8 L:D to simulate long-day

conditions. Use of this light cycle is a standard practice when comparing direct development

of geographic populations of W. smithii (e.g., Bradshaw et al. 2004) and other insect species

(e.g., Tauber and Tauber 1987). Daylengths more than an hour longer than the critical

photoperiod have negligible effects on development rates in W. smithii (Bradshaw and
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Figure 3.1. Diurnal temperature cycle for experimental ‘warm’ (black solid line) and ‘cool’
(grey solid line) rearing treatments and diurnal fluctuations of a typical early summer day at
the NC coast (southern clade; black dashed line) and NC Mtn. (northern clade; grey dashed
line) populations.
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Lounibos 1972; Bradshaw and Lounibos 1977; Bradshaw, personal communication). In

addition, a day length at least as long as the longest day of the year proportionally represents

the same time point in the season for all populations because of the symmetry of critical

photoperiod for diapause initiation and termination in W. smithii. A total of 12 dishes were

assigned to each treatment per population and all dishes for a given population*treatment

combination were initiated within a 10-day window.

Once per week larvae from each dish were transferred into a fresh dish of distilled

water and fed with a 0.05g/ml suspension of standard diet for W. smithii (4:1 guinea pig

chow to freeze-dried brine shrimp). Larvae were fed weekly, and for the first three weeks I

progressively changed the amount of food to maintain ad libitum conditions without fouling

the water. 1.0, 1.75, 2.5, and 3.0ml of food suspension were added in weeks one through

four and 2.5ml weekly thereafter. Pilot studies suggested that adding additional food did not

substantially change development time or final mass, and there were no statistically

significant interactions among food treatments and rearing temperatures for either pupal mass

or development time (based on mixed model ANOVA, α = 0.05; G. Ragland, unpublished

data). Additionally, data from Bradshaw and Holzapfel (1986) show that there is no

interaction between larval density and population of origin for generation time and

replacement rate, suggesting that effects of larval density do not vary consistently among

geographic populations. Sex, time to pupation, and mass at pupation were recorded for all

individuals that survived to pupation; survival in all treatment*population combinations was

high (95% on average).

Fecundity was measured in a subset of the experimental cohorts. I measured cohort

fecundity by allowing pupae from 4 dishes (closest to each other in hatching date; n=100
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total) to eclose into 5.6L mating cages, yielding three replicate mating cohorts per

population. The bottom of each mating cage was covered with moistened paper towels, and

periodic measurements confirmed that this maintained 80 – 85% relative humidity. Every 6

days, cages were provided with a fresh sponge moistened with honey-water for adult

nutrition and a freshly cut pitcher plant leaf for oviposition. Eggs were collected every three

days until the last adult in a cage had died. I initiated mating cohorts in both the warm and

cool treatments, but high mortality in the warm treatment mating cages due to logistical

difficulties precluded measurements of fecundity. Here I report fecundity data only for the

cool rearing treatment.

Statistical analyses

Pupal mass and development time data were analyzed in separate linear mixed model

ANOVAs with dish effects as a random factor. In this design, dish effects serve as the error

term in all F tests of fixed effects (Kuehl 1994). Both dependent variables were natural log-

transformed to improve normality and homoscedasticity. An AIC score was calculated from

the maximum likelihood value of models containing all possible combinations of the fixed

factors clade (northern and southern), population nested within clade, sex, temperature, and

all two- and three-way interactions. This experiment was designed to draw inferences about

specific populations whose thermal environments were well characterized. Consequently, I

specified population effects as fixed rather than random. I present the best model selected by

(minimizing) the AIC and F statistics associated with each term in that model. To test

whether the average linear relationship between temperature and each response variable

differed between the northern clade (NC Mtn. and MAS) and southern clade (FL and NC

Coast) populations in 1) average value across temperatures and 2) slope, I estimated linear
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contrasts from the selected model. These tests assess parameters of the norm of reaction for

trait value (development time or pupal mass) vs. temperature. Methods for testing the

significance of slope parameters of reaction norms using orthogonal polynomial contrasts are

described by Huey et al. (1999). The tests I apply here are similar, but rather than testing

whether a given slope parameter is different from zero I generated contrast coefficients to test

whether a difference between slope parameters is different from zero (standard methods in

Kuehl 1994). I performed all analyses in SAS version 9.1 using Proc Mixed (SAS Institute

2004).

Cohort fecundities were calculated as the total number of eggs produced divided by

the number of females for each mating cage. I performed ANOVA (SAS proc Mixed) with

clade and population nested within clade as fixed factors to test for population differences in

fecundity (untransformed data were reasonably homoscedastic and normal). To estimate the

effect of body size on cohort fecundity I performed ANCOVA (SAS Proc Mixed) with clade

and population nested within clade as fixed factors and average female body size as the

covariate. No interaction effects including body size were significant, confirming

parallelism.

Results

Thermal environment

Considering the entire year, frequencies of low temperatures were highly divergent

among populations (Fig. 3.2a). Northern clade populations clearly experience higher

frequencies of freezing temperatures than do southern clade populations. After accounting

for geographic differences in diapause timing, however, frequencies of temperatures below

10° C were much more similar among populations during the growing season. Moreover,
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Figure 3.2. Frequency distributions of daily mean temperatures for each geographic location
as estimated from the 35-year weather data set for an entire year (a) and for the growing
season alone (b), as defined by diapause timing.
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none of the populations experience daily mean temperature below 0° C during active growth

and reproduction.

Accounting for diapause timing also suggests a pattern of high vs. low temperature

variation during the growing season that is opposite of the pattern observed for the entire

year. Growing season frequency distributions show a clear peak at about 20 and 27° C for

northern and southern clade populations, respectively (Fig. 3.2b). Averaged across

populations within clades, northern clade populations experience daily means of 20° C about

3 times more frequently than southern clade populations. However, daily means of 27° C

occur more than an order of magnitude less frequently in northern compared to southern

clade populations. These comparisons suggest that on a scale of daily mean temperature, the

thermal environment of the growing season is more divergent among populations at high

compared to low temperatures, whereas the reverse is true when considering the entire year

(Fig. 3.2a). In addition, compared to distributions of mean temperatures for the growing

season alone, clear separation between northern and southern clades in the modes (peaks)

was markedly less pronounced for distributions for the entire year (Fig. 3.2a).

Development time and body mass

Temperature, sex, population of origin and clade all had significant effects on

development time (Table 3.2). The clade*temperature interaction was also significant,

indicating that the slope of the thermal reaction norm for development time varied between

clades. Although there was a significant pop*sex*temperature three-way interaction,

clade*sex*temperature interaction effects were not significant, indicating that the

temperature-development time relationship is not sex-specific across clades. Males

developed faster than females at all temperatures (Fig. 3.3a,c), a pattern typical of many
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Table 3.2: ANOVA results from mixed model analyses of development time and pupal mass.
Interaction terms excluded from the best model via AIC are excluded from the table.
Parentheses reflect nesting relationships (e.g., ‘Pop(Clade)’ is population nested within
clade).

Trait Effect Df.* F value P value

Development time Clade 1 41.72 < 0.001
Pop(Clade) 2 6.01 0.004
Temp 1 275.88 < 0.001
Sex 1 817.18 < 0.001
Clade*Temp 1 11.78 < 0.001
Pop*Temp*Sex (Clade) 9 2.83 0.006

Pupal mass Clade 1 0.16 0.6887
Pop(Clade) 2 11.88 < 0.001
Temp 1 603.35 < 0.001
Sex 1 5268.35 < 0.001
Clade*sex 1 88.68 < 0.001
Pop*temp (Clade) 2 5.60 0.005
Pop*sex (Clade) 2 8.01 < 0.001
Pop*Sex*temp (Clade) 4 5.63 < 0.001
Clade*sex*temp 2 5.60 0.005

* denominator df are 86 and 85 for analyses of development time and body mass, respectively
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insects, including W. smithii (Holzapfel and Bradshaw 2002). Northern clade populations

developed more slowly than southern clade populations, averaged across temperatures and

sexes (F1,86 = 41.72, p < 0.001; Fig. 3.3a,c). All populations exhibited the typical negative

relationship between development time and temperature, but southern clade populations had

on average a more negative slope than northern clade populations (F1,86 = 11.78, p < 0.001).

Despite differences in slope, however, the rank order of population mean development time

did not significantly change across temperatures.

Geographic patterns for pupal mass were more complex. Pupal mass was also

significantly affected by temperature, sex, and population of origin, but the main effects of

clade were non-significant (Table 3.2). The interaction effects population*temperature,

population*sex, and population*sex*temperature were significant, indicating variable

relationships between mass and temperature across sexes and across populations within

clades. Although clade*sex and clade*sex*temperature interactions were significant, there

were no detectable differences in the slope of the temperature-mass relationship between

clades within females (F1,85 = 2.07, p = 0.15; Fig 3.3b) or males (F1,85 = 2.93, p = 0.091; Fig.

3.3d). Trends in average mass were sex-specific. Averaged across temperatures, southern

clade females were slightly larger than northern clade females (F1,85 = 18.43, p < 0.001; Fig.

3.3b). In contrast, southern clade males were on average slightly smaller than northern clade

males (F1,85 = 25.18, p < 0.001; Fig. 3.3d), although this difference was largely determined

by the relatively small size of one southern population (FL). Overall there was no obvious

relationship between latitude/altitude of origin and pupal mass in either males or females (Fig

3.3b,d).
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Development time and pupal mass were moderately correlated within populations and

rearing temperatures (average r2 < 0.5; data not shown), but development time was not

strongly related to pupal mass in either sex across populations. Despite developing more

rapidly (Fig. 3.3a), southern clade females were slightly larger than northern clade females

(Fig. 3.3b). In addition, even though males from both southern clade populations developed

at similar rates at each rearing temperature (Fig. 3.3c), NC Coast males were significantly

larger than FL males averaged across rearing temperatures (F1,85 = 9.83, p = 0.002; Fig.

3.3d). These data suggest that mean pupal mass and mean development time have evolved

independently across populations.

Fecundity

ANOVA revealed a significant effect of clade on cohort fecundity (F1,8 = 25.89, p <

0.001), while population-within-clade effects were non-significant (F2,8 = 0.07, p = 0.93).

The results of the ANCOVA suggested that pupal mass had a marginally non-significant

effect (F1,7 = 4.73, p = 0.066), accounting for 28% of the variance (compared to 65%

explained by clade effects) in fecundity. Further, females from northern clade populations

were slightly smaller than females from southern clade populations (Fig. 3.3b), yet northern

clade populations achieved higher average cohort fecundity than southern clade populations

(Fig. 3.4) in the cooler rearing treatment. These results suggest that female pupal mass may

moderately affect fecundity within populations but fails to explain geographic trends in

fecundity across populations.
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Figure 3.4. Average fecundity ± SE of experimental cohorts (n~100 per cohort, 3 cohorts per

population) from each population under the 20=T °C rearing treatment.
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Discussion

In seasonal organisms with hibernal diapause, phenology evolves as a response to a

seasonally fluctuating environment. Evolution may be driven by fluctuations in biotic

resources such as food or oviposition sites, or fluctuations in abiotic factors such as

temperature (Tauber et al. 1985). Adult W. smithii exhibit a strong oviposition preference for

freshly opened pitcher plant leaves (Bradshaw and Holzappel 1986), and S. purpurea only

produce new leaves during the warmer months of the year. Thus, diapause phenology in W.

smithii could be evolving in response to host availability rather than in response to

temperature-mediated selection. Regardless of the specific selective factors, however, the

result is that non-dormant life history stages experience more similar thermal habitats across

geographic populations.

Exposure to low daily mean temperatures during active growth and reproduction in

W. smithii is relatively similar among populations because of evolved differences in diapause

timing. As illustrated by the low ends of the temperature distributions in Figure 3.2a and

3.2b, northern clade populations experience much colder temperatures than southern clade

populations during the winter, but not during the growing season. Considering the entire

year, winter minimum temperatures generally decline faster than summer maxima with

increasing latitude, suggesting that adaptations to cold temperature should be more

geographically variable than adaptations to high temperature (Addo-Bediako et al. 2000).

The evolution of diapause timing in W. smithii effectively counters this trend for non-

diapause life history stages, homogenizing the low temperature environment of the growing

season. Positive linear relationships between critical photoperiod and latitude have been

documented in a number of insect species (Tauber et al. 1986; Taylor and Spalding 1986),
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suggesting that the effects of diapause timing on the thermal environment of W. smithii may

be common among insects with photoperiodically cued diapause.

With respect to daily mean temperature, variation among populations of W. smithii is

actually more pronounced at the high compared to the low end of the temperature distribution

for the growing season. Theory predicts that the strength of thermal selection at a particular

temperature is proportional to the relative frequency at which that temperature is experienced

(Gilchrist 1995; Gilchrist 2000; Kingsolver and Gomulkiewicz 2003). Thus, greater

geographic variation in the relative frequency of a temperature or temperatures predicts

greater geographic variation in thermal selection at that temperature or temperatures.

Thermal reaction norms for life history traits that are primarily associated with active growth

and exhibit consistent geographic trends should therefore demonstrate greater geographic

variation at higher temperatures in W. smithii.

Development time varies consistently with respect to both geography and

phylogeography. Averaged across temperatures, southern clade populations developed faster

than northern clade populations. Observations of pulses in W. smithii pupa across the

growing season at each field site indicate that the Massachusetts and North Carolina

mountain populations have one to two generations per year (Aaron Ellison, personal

communication; G. Ragland, unpublished data) whereas the Florida and North Carolina coast

populations have 3 or more generations per year (Bradshaw and Holzapfel 1983; Bradshaw

and Holzapfel 1986). Thus, populations with the greatest voltinism exhibit the most rapid

development, results consistent with selection to fit in additional generations in the south.

These results contrast somewhat with previous results showing that generation time

from egg hatch to mean date of oviposition actually declines with increasing latitude from 30
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to 42° N (Bradshaw and Holzapfel 1983). However, Hard et al. (1993) found no consistent

differences among geographic populations in development time at temperatures fluctuating

around a mean of 21° C (similar to our results at 20° C), suggesting that differences in

generation time may be driven by variation in oviposition schedules. Southern populations

are more iteroparous than northern populations (Bradshaw 1986), thus extending the time

period of oviposition. Faster development at higher temperatures may partially compensate

for the effects iteropary on generation time, i.e., prolonging the oviposition period increases

mean generation time, while faster development decreases generation time. Selection is

strongly density-dependent and generations are asynchronous in southern populations

(Bradshaw and Holzapfel 1986), likely diluting the selective advantage of a particular

temperature-development time relationship. However, the fitness payoff of successfully

completing an additional generation is substantial, and irrespective of density-dependence

there are a limited number of accumulated heat units (the physiological scale on which

ectotherm development is measured) in a given growing season. Selection will thus favor

those individuals that best exploit the thermal environment to maximize yearlong

replacement rate.

Geographic variation in development rate reaction norms is more pronounced at

higher temperature, consistent with the geographic variation in the thermal environment of

the growing season. The rank order of population means did not change significantly across

rearing temperatures, but development time reaction norms for southern clade populations

had a significantly steeper negative slope on average than did those for northern clade

populations (Fig. 3.3a,c). Differences between northern and southern clade populations were

thus greater in magnitude in the warm compared to the cool rearing treatment. Moreover,
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data from an additional study indicate that northern and southern clade populations have

statistically indistinguishable development times at a lower rearing temperature (16° C

constant; see Chapter 5). Several studies present similar results in other insect species

(Burke et al. 2005; Fischer and Fiedler 2001; Norry et al. 2001), suggesting that evolutionary

divergence in development time among populations may often be greater at higher rearing

temperatures in temperate insects. Development time is a trait typically associated

exclusively with non-dormant life history stages, so the thermal environment of the growing

season rather than that of the entire year should be a better predictor of direct selection on

development time. Our data are consistent with this hypothesis, as geographic variation in

the thermal habitat best explains geographic variation in the development time-temperature

relationship when evolved differences in diapause timing are accounted for.

Pupal mass vs. temperature reaction norms also differed among geographic

populations but did not co-vary with development time. If body size and development time

are positively genetically correlated, life history models generally predict that selection will

act most strongly on development time (because encountering a catastrophic event such as a

hard frost while not in diapause results in massive mortality) and that body size will evolve

as a correlated character, often resulting in converse Bergmann’s clines (size decreases with

increasing latitude) in body size (Blanckenhorn and Demont 2004; Mousseau 1997). In W.

smithii, however, a previous study shows that artificial selection on development time

produces no correlated response in pupal mass (Bradshaw and Holzapfel 1996), suggesting

that these traits are not genetically correlated. Our results are consistent with those data, as

body size and development time appear to evolve independently across populations.
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Unconstrained by the life history tradeoff with development time, body size fails to

show a consistent geographic trend, and geographic variation was roughly equivalent at cool

and warm rearing temperatures. Significant differences in body size across populations in

both sexes and at both rearing temperatures show that body size can evolve, but the lack of a

geographic trend suggests that selection for body size does not vary consistently from south

to north. Selection on female body size is often mediated through selection on fecundity

(Kingsolver and Pfennig 2004; Roff 2002), and cohort fecundity in the cool rearing treatment

varied significantly among populations. Within the single density level (25 larvae per dish)

applied in our study, however, variation in body size did not strongly influence fecundity, nor

does it explain fecundity differences among populations. Pupal size is negatively related to

larval density (or resource availability) in W. smithii, and measured across a range of pupal

sizes generated by a broad range of density treatments there is a positive relationship between

female size and fecundity (Bradshaw and Holzapfel 1992). However, the relationship

between density and fecundity does not consistently vary with geography (Bradshaw 1986),

so the existence of these correlations does not alter our inferences about population

differences based on a single density treatment. Our combined fecundity and body size

measures suggest that fecundity selection is neither acting to maximize female body size in a

given population nor to maintain an optimum female body size across populations. Given

the lack of a consistent geographic trend, it is somewhat unsurprising that geographic

variation in the thermal environment does not predict geographic variation in the thermal

reaction norm for body size.

To summarize, our results illustrate how evolutionary differences in seasonal timing can

impact geographic variation in selection on thermal reaction norms for life history traits. In
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W. smithii, this is reflected in geographic variation in the slopes of thermal reaction norms for

some life history traits (development time) but not others (body size). Our analyses

emphasize that proper interpretation of geographic patterns in thermal reaction norms

requires an understanding of the phenological context, a point largely neglected in the

substantial literature about reaction norm evolution (e.g., Angilletta et al. 2002; Huey and

Kingsolver 1989; Kingsolver and Gomulkiewicz 2003).
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CHAPTER 4

GEOGRAPHY OF THERMAL ADAPTATION IN WYEOMYIA SMITHII:
THERMOTOLERANCE, ACCLIMATION, AND SEASONAL TIMING

Abstract

Tolerance of extreme temperatures is a major adaptation to seasonal environments,

often exhibiting intra- and interspecific geographic variation that is correlated with

environmental temperatures. However, selection on thermal tolerance of organisms with

complex life cycles may be stage-specific because particular life history stages are seasonally

timed to coincide with stressful temperatures. Geographic variation in seasonal timing may

therefore complicate geographic trends in thermal selection by changing the thermal

environment experienced by a particular stage. Here I illustrate this concept by examining

geographic variation in annual thermal environments, seasonal timing of dormancy, and cold

and heat tolerance in pitcher plant mosquitoes. The results show that 1) evolved differences

in diapause timing cause active (non-diapause) stages to experience similar levels of cold

stress and more variable levels of heat stress among geographic populations, and 2) despite

this pattern of temperature variation, adult mosquitoes from northern populations are more

cold tolerant but not less heat tolerant than southern populations. I suggest that the observed

geographic pattern in cold tolerance of active life history stages may be driven by correlated

selection on overwintering survivorship rather than direct selection on growth, development,

and reproduction. In addition, I discuss the joint geographic patterns of cold and heat stress

tolerance in relation to broader, interspecific patterns.
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Introduction

Tolerance of stressful temperatures is a major adaptation to thermally variable

environments. All organisms are physiologically limited to a defined temperature range

(Hoffmann et al. 2003; Huey and Kingsolver 1993), and particularly in seasonal

environments with high annual temperature variation, stressful (i.e., deleterious)

temperatures at the limits of that range are inevitably encountered at some point during the

life cycle (Stevens 1989). Short term physiological responses to temperature stress are

common across a broad range of taxa (e.g., the well-characterized heat shock response) and

often vary with geography in temperate organisms. The general expectation is that

populations from colder habitats will be more cold tolerant, while populations from warmer

habitats will be more heat tolerant. This expectation is often confirmed, demonstrating

geographic variation in temperature-mediated selection (Armbruster et al. 1999; Castaneda et

al. 2004; Castaneda et al. 2005; Collinge et al. 2006; David et al. 2003; Sorensen et al. 2005;

Van Berkum 1988; Winne and Keck 2005).

Geographic patterns of selection on thermotolerance may be complicated, however,

by the occurrence of alternate phenotypes. Alternate phenotypes resistant to environmental

stress are a common feature of complex life cycles (Caceres 1997). In seasonal environments

temperature variation is relatively predictable, so these alternate phenotypes often coincide

with the seasonal occurrence of stressful temperatures. For example, temperate insects often

have a dormant overwintering stage with reduced metabolic rate and enhanced cold tolerance

(Danilevsky 1965; Danks 2002; Tauber et al. 1986). Because of the seasonal timing, the

dormant stage is exposed to the coldest temperatures annually, while active life history stages

experience the hottest. Thus, selection on thermotolerance will depend on both seasonal
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timing and life history context in organisms such as insects with seasonally variable life

history stages. Geographic variation in seasonal timing can therefore affect geographic

variation in selection on thermotolerance of a given life history stage. However, the

geography of life cycle timing and thermal tolerance are rarely considered simultaneously

(but see Bradshaw et al. 2004).

To examine the joint evolution of dormancy timing and thermotolerance I analyzed

geographic patterns of annual temperature variation, diapause timing, and high and low

temperature tolerance in the pitcher plant mosquito, Wyeomyia smithii. W. smithii

overwinters in larval diapause (a dormant, metabolically depressed stage), and diapause in

higher latitude populations is timed such that the growing season is relatively shorter than

that of lower latitude populations (Bradshaw and Lounibos 1977). Bradshaw et el. (2004)

have previously shown that higher latitude populations attain higher fitness than lower

latitude populations when exposed to stressful winter conditions in the diapausing stage,

whereas the reverse is true in stressful summer conditions experienced during active growth

and reproduction. However, it is unclear from this study whether there is geographic

variation in high and low temperature tolerance in non-diapause, active stages. Here I address

two questions relating to selection on and evolution of thermotolerance in W. smithii: 1) Is

there significant geographic variation in cold stress experienced during active growth after

accounting for geographic variation in diapause timing, and 2) does geographic variation in

cold and heat tolerance reflect geographic variation in the frequency of high and low

temperatures experienced during the growing season, i.e., the portion of the year between

termination and initiation of dormancy?



73

Methods

Study organism and sampling

Adult female pitcher plant mosquitoes obligately oviposit into the water-filled leaves

of the purple pitcher plant (Sarracenia purpurea), where the larvae develop until eclosion.

Winter (larval) diapause is induced and terminated by photoperiodic cues during larval

development; long-day conditions promote direct development, while short-day conditions

induce diapause (Bradshaw and Lounibos 1972).

Geographic populations of W. smithii are found in eastern North America, ranging

from northern Florida to the Great Lakes region inland and Newfoundland along the coast

(Armbruster et al. 1998). Adults are weak flying and the host plants are patchily distributed,

so gene flow between populations is minimal or absent (Istock and Weisburg 1989).

Populations arrayed along a latitudinal cline are highly divergent in critical photoperiod (CP),

the photoperiod at which 50% of a sample initiates or terminates diapause (Bradshaw and

Lounibos 1977). CP increases (and the length of the growing season concomitantly

decreases) with increasing altitude and latitude (Bradshaw and Lounibos 1977).

Phylogeographic analyses suggest that geographic populations fall into two fairly distinct,

intraspecific clades: a northern clade occurring north of North Carolina or at high elevations

in North Carolina, and a southern clade from North Carolina to Florida (Armbruster et al.

1998; WE Bradshaw, unpublished).

From each of the four geographic populations listed in Table 4.1 I collected ~ 1000

larvae from 50 or more individual pitcher plants in the spring and fall of 2004. Two of these

populations are from the southern clade, two from the northern, and all have diverged in
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Table 4.1: Geographic locations and critical photoperiods for the four W. smithii study
populations.

Geographic Location Lat./Lon.
(deg)

Altitude
(m)

Critical
Photoperiod
(h)

Florida gulf coast (FL) 30°N 85°W 10 12.25*
North Carolina coast (NC Coast) 34°N 78°W 20 12.75*
North Carolina mountains (NC Mtn.) 35°N 83°W 900 14.35*
Central Massachusetts (MAS) 42°N 72°W 265 14.50†

* from Bradshaw and Lounibos (1977)
† calculated from Eq. 1 in Bradshaw and Lounibos (1977): see methods
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diapause timing as determined by CP. Sampled larvae were returned to the lab and reared to

adulthood as in Hard et al. (1992) under long day conditions (LD 16:8) and fluctuating

temperatures (from 13 to 29° C as a sine curve). Adults were allowed to swarm in 5 gallon

cages provided bi-weekly with a fresh pitcher leaf and a honey-water-soaked sponge for

nutrition. Eggs were collected every three days until all adults in a cage had died. Freshly

hatched larvae were then reared under diapause inducing conditions (LD 8:16, 19º C) to

synchronize all individuals in the same developmental stage. Diapausing larvae were then

returned to long-day conditions to initiate the next generation. I maintained laboratory

colonies at > 500 individuals per population per generation to preserve genetic variation, and

initiated new generations with a constant proportion of eggs from each egg collection date.

Weather data

Fifty years of daily minimum and maximum temperature data were retrieved from the

US National Climatic Data Center (http://www.ncdc.noaa.gov/oa/ncdc.html) for weather

stations less than 5km from each sampled site. Data from temperature loggers placed in

pitcher plants in the field show that temperatures at the study sites are highly correlated with

weather station data (Bradshaw et al. 2000; G. Ragland, unpublished). A cover of snow will

insulate pitcher plants from sub-zero (°C) temperatures (Bradshaw et al. 2004). I present the

results with this complication in mind, although snow is not a confounding factor during the

growing season.

Years for which any of the stations reported missing values for any month of the year

were excluded, and the resulting 35-year subset was analyzed. For each site I calculated the

frequency distribution of maximum and minimum temperatures for a single, entire year

binned into 1° C intervals. In addition, I calculated the frequency distribution of maximum
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and minimum temperatures for only the growing season of each site, defined as the days of

the year with daylength longer than the critical photoperiod of that population. I included

civil twilight in my estimates of daylength because W. smithii likely includes twilight cues in

photoperiod perception (Bradshaw and Phillips 1980), although excluding civil twilight did

not qualitatively change the results.

Experimental design

Cold and heat tolerance assays were performed in two separate experiments: one

examining acclimation and cold tolerance in two fluctuating temperature rearing

environments (Experiment I), and one examining acclimation and heat tolerance in two

different fluctuating temperature rearing environments (Experiment II).

Experiment I. Chill coma recovery

Chill coma recovery assays are commonly used to assess cold tolerance in arthropods

(Castaneda et al. 2005; David et al. 2003; David et al. 1998; Gibert and Huey 2001; Gibert et

al. 2001; Zeilstra and Fischer 2005). In the assay, individuals are exposed to a stressful cold

temperature (usually 0° C) for an extended period of time, inducing a comatose state. After

this exposure, individuals are returned to a more benign temperature and measured for

recovery time, or the latency to regain locomotory capacity (David et al. 1998). This assay

has been shown to correlate well with other measures of cold tolerance in Drosophila

(Anderson et al. 2005). Further, tropical Drosophila species exhibit consistently longer chill

coma recovery times than temperate species, suggesting that the chill coma assay is a reliable

indicator of general resistance to cold stress (Gibert et al. 2001).

To assess geographic variation in both plastic responses to rearing temperature and

average cold tolerance, I measured chill coma recovery of adults from each of the four
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geographic populations (NC Coast, NC Mtn., and FL) reared from egg hatch to adulthood in

two fluctuating environments designed to mimic natural diurnal temperatures measured in

pitcher plants in the field during a relatively warm (‘Warm’ treatment, T = 22 º C) and

relatively cool (‘Cool’ treatment, T = 18 º C) spring day (Fig. 4.1). Daily minima at or below

0° C are much more likely to occur during the spring than during the summer, so warmer

rearing temperatures are less realistic. I avoided using colder temperatures to avoid

potentially high mortality, as survival to pupation is relatively low (< 50%) when larvae are

reared at 16º C constant (G Ragland, unpublished).

From the F2 lab generation I initiated cohorts of newly hatched (within 24 hours)

larvae by haphazardly selecting and transferring 25 individuals to a 150 x 25mm culture dish

filled with 170ml distilled water. Eight cohorts per population were assigned to each

temperature treatment. Each dish was initially provided with 1.00 ml standard food

suspension (0.05 g/ml 4:1 guinea pig chow to freeze-dried brine shrimp), and larvae were

transferred to fresh dishes once per week until all larvae had pupated. Fresh food suspension

was provided at each transfer in a temporal pattern designed to mimic food levels in a pitcher

plant leaf (Bradshaw and Holzapfel 1986): 1.75, 2.5, and 3.0ml were added for the first three

weeks, and 2.5ml every week thereafter. Pilot studies suggested that this feeding regime

maintained ad libitum conditions (G. Ragland, unpublished).

Commencing on the day that the first pupa appeared, pupae were removed from

dishes, sexed, and transferred to individual wells in 24-well culture plates. From these pupae

I selected a subset from each dish to obtain a uniform sample across the entire range of

pupation dates in a single dish. Selected pupae were transferred to 50ml centrifuge tubes with

15ml distilled water for eclosion, and two days after eclosion each adult was assayed for chill
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Figure 4.1. Diurnal temperature profiles for the rearing treatments in the chill coma recovery
(black lines) and heat knockdown (grey lines) experiments.



79

coma recovery. All assays were carried out from 1:00 to 2:00 PM to avoid any diurnal

effects. The assay itself consisted of 1) a 20 minute exposure to 24° C, during which

individuals were transferred to stoppered glass test tubes), 2) immersion in melting ice (0° C)

for 1.5 hours, and 3) return to 24° C. Immediately after returning the comatose adults to 24°

C, I recorded the time required for a righting response (comatose individuals lie on their

backs). Mortality was low in both rearing environments (< 8%; similar for all populations).

Sample sizes for the 18 and 22º C mean treatments were 83 and 77 (FL), 75 and 54 (NC

Coast), 79 and 73 (NC Mtn.), and 67 and 51 (MAS).

Thermal tolerance in insects can be dependent on life history stage (Krebs and

Loeschcke 1995), and in W. smithii the post-diapause generation (individuals undergoing

larval diapause before developing to adulthood) that develops in the spring is more likely to

experience stressful cold temperatures than non-diapause generations. Any carry-over

physiological effects of diapause could potentially alter the physiology of post-diapause

compared to non-diapause development. Since the above experiment was conducted during

non-diapause development, I also measured cold tolerance of post-diapause individuals from

two populations. From the F1 lab generation I haphazardly selected diapausing larvae from

the FL and MAS lab colonies to initiate 5 cohorts per population. These larvae were

maintained for three months at 8:16 LD and 18° C constant, with 30 larvae per dish. After

three months, the cohorts of diapausing larvae were transferred to the ‘cool’ treatment and

reared concurrently with the non-diapausing larvae (long-day conditions caused the larvae to

break diapause and develop to adulthood). Chill coma assays were performed as described

above.
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Experiment II. Heat knockdown

Just as chill coma assays are commonly used to measure cold tolerance in

arthropods, knockdown temperature is often used to measure heat tolerance (Berrigan and

Hoffmann 1998; Bubliy and Loeschcke 2005; Folk et al. 2006; Hoffmann et al. 2002;

Hoffmann et al. 2005; Huey et al. 1992; Sorensen et al. 2005). This trait is typically

measured by exposing individuals or groups to ramping temperatures and recording the

temperature at which an individual becomes comatose (Huey et al. 1992). Heat knockdown

temperature responds readily to selection in Drosophila and is also correlated with a suite of

heat tolerance-related traits (Bubliy and Loeschcke 2005). I used a modification of this assay

to measure heat tolerance in W. smithii. Rather than measuring knockdown temperature, I

measured the proportion of a population sample that maintained locomotory ability after a

fixed exposure to a fixed temperature. Since a low knockdown proportion indicates high heat

tolerance, I report 1- knockdown proportion as the measure of heat tolerance.

To measure both acclimation and general tolerance as in the previous experiment, I

reared 8 cohorts of larvae from each population under two fluctuating temperature regimes

designed to mimic a typical cool (‘Cool’ treatment, T = 20º C) and warm (‘Warm’ treatment,

T = 27 º C) summer day in the field (Fig. 4.1). From the F3 generation I selected newly

hatched larvae, reared cohorts, and selected pupae as described above. Two days after

eclosion, adults were transferred to 15 ml centrifuge tubes and allowed to equilibrate at 24º C

for 15 minutes. The centrifuge tubes were then immersed in a temperature-controlled water

bath held at 42.5 ± 0.1º C for 5 minutes. This temperature and duration of exposure were pre-

determined to induce heat coma in 20 – 60% of adults sampled from each population. After

the 5 minute exposure, tubes were returned to 24º C and individuals were scored as either
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able or unable to fly. Under benign environmental conditions W. smithii will fly upwards

when disturbed. Gently rapping mosquito-containing centrifuge tubes on the lab bench

elicited a very clear-cut response: the individual either remained at the bottom of the tube or

flew towards the top. Sample sizes for the 20 and 27º C mean treatments were 84 and 104

(FL), 113 and 84 (NC Coast), 54 and 76 (NC Mtn.), and 90 and 94 (MAS).

Statistical analyses

For the analysis of non-diapause development, the fixed effects of population,

temperature, and sex on chill coma recovery time were analyzed in a likelihood framework

using a linear fixed effects model implemented in Proc Mixed, SAS version 9.1 (SAS

Institute 2004). Prior to analysis, chill coma recovery times were natural log transformed to

improve normality and homoscedasticity. Initially I analyzed the data in a mixed model

including the random effect of cohort nested within temperature by population, but since this

effect did not significantly improve the fit of the model (assessed by the Akaike Information

Criterion, or AIC), it was excluded. I calculated AIC scores for all possible models

containing all of the main effects and all possible combinations of interactions between

population, temperature, and sex. The results I present include only the best model selected

by the (lowest) AIC. From the linear model I also estimated linear contrasts to compare the

average value across temperatures and the slope of the relationship between rearing

temperature and chill coma among populations (see Chapter 3: Methods). Rather than

calculating all pairwise contrasts, however, I compared the average slope of the two northern

clade populations to the average slope of the two southern clade populations.

The effects of developmental mode (non- vs. post-diapause development) on chill

coma recovery were also analyzed in a fixed effects linear model (SAS Proc Mixed)
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including terms for population, sex, temperature, and developmental mode. Cohort effects

were again excluded from the model as they did not significantly lower the AIC. The best

fitting model was selected as above, and only the best model is presented in the results.

Since heat knockdown data were binary, I applied a logistic fixed effects model

including population, temperature, and sex as effects (SAS Proc Glimmix). Model selection

and linear contrasts were carried out as above.

Results

Weather Data

The two southern clade populations (NC Coast and FL) clearly experience higher

frequencies of high daily maximum temperatures than the two northern clade populations

(NC Mtn. and MAS; Fig. 4.2c). Accounting for phenological differences does not drastically

change the high-temperature end of these distributions (Fig. 4.2d). After correcting for the

timing of diapause at each sight, however, none of the populations experience daily

minimum air temperatures below about -7º C during the growing season (Fig. 4.2b). A cover

of snow will minimize exposure of frozen pitcher leaves to temperatures below zero

(Bradshaw et al. 2004), so actual temperatures in a pitcher plant are often much closer to zero

than below-zero measurements of air temperature would suggest. This effect would truncate

the low end of the minimum temperature distribution (primarily for northern clade

populations) for the entire year. Accounting for the insulating effects of snow does not

change the observation, however, that northern clade populations experience temperatures at

or below zero much more frequently than southern clade populations during the entire year

(Fig. 4.2a). Because of phenological differences all populations experience much more
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Table 4.2. Results of linear mixed model (a,b) and logistic model (c) ANOVA for chill coma
recovery at constant (a) and fluctuating (b) temperatures and heat knockdown proportion (c)
at fluctuating temperatures.

Trait Effect Df. F value P value

A. Chill coma rec., Pop 3 42.42 < 0.001
non-diapause Temp 1 152.16 < 0.001

Sex 1 30.10 < 0.001
Pop*Temp 3 8.25 < 0.001

B. Chill coma rec.,
non- and post-diapause Pop 1 107.49 < 0.001

Sex 1 5.44 0.020
DM* 1 1.77 0.18

C. Heat knockdown Pop 3 5.58 0.001
Temp 2 2.19 0.140
Sex 1 0.19 0.661

* Developmental mode: non- or post-diapause
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similar frequencies of minimum temperatures at or below zero during the growing season

(Fig. 4.2b).

Experiment I. Chill coma recovery

Population of origin, sex, and temperature significantly affected chill coma recovery

time (Table 4.2a). Recovery times were faster at the lower rearing temperature for all

populations (Fig. 4.3a), and averaged across temperatures, northern clade populations

recovered significantly faster than southern clade populations (F1,545 = 118.07, p < 0.001).

Females recovered significantly faster than males (F1,545 = 30.10, p < 0.001), but there were

no significant interactions between sex and population or temperature. There was a

significant interaction between population and temperature, and linear contrasts suggest that

the slope of the recovery time vs. temperature relationship was steeper for northern clade

populations than for southern clade populations (F1, 545 = 21.72, p < 0.001). Developmental

mode (post- vs. non-diapause) had no effect on chill coma recovery time in the cool

treatment (Table 4.2b). The open symbols in Figure 4.3a show mean ± SE recovery time of

post-diapause FL and MAS adults relative to non-diapause adults: recovery times for each

population were indistinguishable based on developmental mode.

Experiment II. Heat knockdown

Population of origin significantly affected heat tolerance as measured by 1-

knockdown proportion, but sex and rearing temperature did not (Table 4.2c). In three of the

four populations a higher proportion was knocked down at lower rearing temperatures, but

the trend was non-significant (Fig. 4.3b). Southern clade populations did not exhibit

consistently greater heat tolerance than did northern populations. Compared to the average

value of the northern clade populations, one southern clade population (NC Coast) had a
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statistically indistinguishable average heat tolerance (F1,693 = 1.29, p = 0.257) while the other

had lower heat tolerance (F1,693 = 16.34, p < 0.001).

Discussion

Diapause timing and temperature

Geographic differences in diapause timing have clear implications for the way in

which selection acts on thermal responses during the growing season in W. smithii. Winter

diapause primarily influences the low end of the daily minimum temperature frequency

distribution experienced by actively growing individuals. With the exception of the

Massachusetts (MAS) population, frequencies of daily minimum temperatures experienced

during the growing season reached zero at about -3º C and converged to similar values

between -3 and +5º C (Fig. 4.2b). Moreover, compared to frequency distributions for the

entire year, even the phenologically-corrected daily minimum temperature distribution for

MAS reaches frequencies of sub-zero temperatures that are more similar to values for other

populations. Direct selection on low temperature tolerance of non-diapause stages is thus

more comparable across populations than simple and commonly used environmental proxies

such as annual minimum temperature would suggest.

Divergence in phenology among geographic populations leads to a further interesting

consequence: predictions about the relative evolutionary importance of selection at high and

low temperatures may depend on the life history context. Considering only meteorological

data, extreme winter minima decline more rapidly than extreme summer maximum

temperatures with increasing latitude (Gaston and Chown 1999). This observation leads to

the prediction that geographic populations along a latitudinal cline should be more divergent

in cold stress tolerance than in heat stress tolerance (Addo-Bediako et al. 2000). Evolutionary
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divergence in diapause timing does not affect the extreme cold temperatures experienced by

a diapausing stage, nor does it affect the extreme hot temperatures experienced by non-

diapause stages. In fact, when comparing heat and cold stress tolerance of active and

overwintering stages, respectively, a number of species including W. smithii show greater

geographic variation in cold compared to heat stress tolerance (Chown and Nicolson 2004;

Zani et al. 2005). However, if phenology evolves to limit exposure to extreme cold

temperatures in non-diapause stages then the thermal habitat of the growing season may

exhibit similar geographic variation in extreme high and low temperatures. Figure 4.4 shows

average annual minimum and maximum temperatures (estimated from the 35 years of

weather data) for each of the geographic populations of W. smithii for the entire year and for

the growing season alone. Clearly differences in diapause timing decrease geographic

variation in annual minima and have no effect on annual maxima of the growing season.

Direct selection on high and low temperature stress tolerance of non-diapause stages,

therefore, should vary comparably across latitude and altitude in W. smithii.

Plasticity of tolerance

Colder rearing temperatures conferred enhanced cold tolerance in adult W. smithii,

but undergoing diapause did not. In both northern and southern clade populations, adults

reared at 18º C recovered faster from chill coma than those reared at 22º C. These results

agree well with results from Drosophila showing a strong relationship between rearing

temperature and cold tolerance (Gibert and Huey 2001). However, diapausing for 3 months

at 18º C did not confer faster recovery times than non-diapause development at 18º C in one

southern and one northern clade population. Physiological traits such as lower thermal

threshold for development can vary between post- and non-diapause development
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Figure 4.4. Annual maximum temperatures (■) and annual minimum temperatures
calculated for the entire year (▲) and for the growing season alone (♦) for each geographic
site. Annual maxima occur during the growing season: thus, accounting for diapause timing
does not change this value. Values are averages across 35 years of data as described in the
methods; standard errors of the means are smaller than the symbols.
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(Tauber and Tauber 1987), but this is a larval characteristic. If there are any differences in

cold tolerance between post- and non-diapause larvae, they are uncorrelated with cold

tolerance of the adult stage in W. smithii.

In contrast to chill coma recovery, heat tolerance was unrelated to rearing

temperature. Studies of Drosophila suggest that higher rearing temperatures often confer

increased heat tolerance (Hoffmann et al. 2005; Levins 1969), but this does not appear to be

the case in W. smithii, even over a substantial (7º C) change in mean rearing temperature.

Geography of temperature tolerance

Northern clade populations had substantially faster chill coma recovery times than

southern clade populations, suggesting that populations from colder environments have

evolved enhanced cold tolerance. Further, northern clade populations exhibited a steeper

relationship between rearing temperature and chill coma recovery time. The present study is

the first report of intraspecific geographic variation in the plastic response to rearing

temperature, but intraspecific variation for chill coma recovery at a single rearing

temperature follows a similar pattern in Drosophila melanogaster (Hoffmann et al. 2002),

Drosophila serrata (Hallas et al. 2002) and the isopod Porcellio laeris (Castaneda et al.

2005), where populations at higher latitudes exhibit faster recovery times. Latitudinal trends

in chill coma recovery are also observed in interspecific comparisons. Gibert et al. (2001)

found that out of 84 Drosophila species, 26 temperate species recovered significantly faster

than 48 tropical species (the distributions of recovery times do not overlap), strongly

suggesting that chill coma recovery is a climatic adaptation.

These geographic patterns makes good intuitive sense, but the mechanism of selection

driving latitudinal trends in chill coma recovery remains unclear. In Drosophila
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melanogaster, chill coma recovery is correlated with survival of stressful cold temperatures

(Anderson et al. 2005), and overwintering survival is a plausible selective factor (Gibert et al.

2001). In W. smithii, however, diapausing larvae overwinter, so direct selection on the cold

tolerance of the adult stage can only occur during the growing season. Thus, selection on

overwintering survival would only produce the observed geographic patterns in W. smithii if

cold tolerance were correlated across life history stages. Comparisons of temperature stress

tolerance across life history stages are uncommon, but a study by Krebs et al. (1998) shows

that expression of Hsp70, a common temperature stress-induced protein, is positively

genetically correlated across life history stages in Drosophila melanogaster. If this pattern of

correlation is a common phenomenon, geographic trends in cold tolerance in any life history

stage may often reflect direct selection on overwintering rather than on active life history

stages. Alternatively, for direct selection on adult cold tolerance to produce the observed

geographic patterns, the geographic populations would have to differ in the frequency at

which stressful cold temperatures are experienced during the growing season.

After accounting for phenological differences between populations, the temperature

data partially support the hypothesis that correlated selection on overwintering survival

drives geographic trends in adult chill coma recovery in W. smithii. Considering temperature

distributions for the entire year, northern clade populations experience sub-zero temperatures

much more frequently than do southern clade populations (Fig. 4.2a). Considering only the

growing season, however, three of the four populations experience nearly identical

frequencies of temperatures below about 5º C (Fig. 4.2b). The NC Mtn. population exhibits

faster chill coma recovery than the two southern clade populations, but only diapausing

larvae experience cold temperatures more frequently than do southern clade diapausing
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larvae. Thus, selection on the diapause stage more adequately explains the enhanced cold

tolerance of adults from the NC Mtn. population in comparison to southern clade

populations.

Irrespective of the specific selective factors that determine cold tolerance, the joint

geographic trends in cold and heat tolerance in W. smithii are consistent with the predictions

of Addo-Bediako et al. (2000). Northern clade populations were significantly more cold

tolerant than southern clade populations, but southern clade populations were not more heat

tolerant as measured by the knockdown assay. Similarly, population replacement rate (R0)

after acute high temperature stress is unrelated to geography, while northern populations

achieve higher R0 than southern populations when a similar cold stress is applied (Zani et al.

2005). Survival of lethal high temperatures in both larval and adult stages is also unrelated to

geography (Armbruster et al. 1999). When stressed to the brink of extinction in high

temperature environments for multiple generations, southern populations do achieve higher

yearlong replacement rates than northern populations (Bradshaw et al. 2004), but clearly

populations diverge more in cold tolerance than in heat tolerance.

Winter minimum temperatures are more divergent than summer maximum

temperatures among the study populations, but southern clade populations do experience

higher frequencies of temperatures above 35º C than do northern clade populations (Fig. 4.2).

Why, then, is there no evidence for high temperature adaptation? Artificial selection for

increased intrinsic rate of increase (a composite fitness index) under chronically stressful

high temperatures produced no evolutionary response in W. smithii (Armbruster et al. 1999),

implying that the evolution of heat tolerance is somewhat constrained. Whether genetic

constraint contributes to geographic trends in tolerance across a broad range of taxa is a
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largely unanswered question. Natural populations of Drosophila melanogaster occasionally

demonstrate increased heat tolerance at lower latitudes (Hoffmann et al. 2002), but D.

melanogaster is also one of the only species in which the geography of temperature tolerance

has been explored in any great detail. More empirical studies in a number of insect taxa will

be necessary to address the contribution of genetic constraint to geographic patterns in

temperature tolerance.
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CHAPTER 5

THE EFFECT OF FLUCTUATING TEMPERATURES ON LIFE HISTORY TRAITS:
COMPARISONS AMONG GEOGRAPHIC POPULATIONS OF WYEOMYIA SMITHII

Abstract

The relationship between phenotype and the mean value of an environmental factor is

well studied, but the influence of environmental variation on the phenotype is often

overlooked. In a comparative framework, effects of environmental variation may have

important practical and evolutionary implications for experimental design and the study of

adaptive divergence. Here I compare the effects of temperature variation on life history traits

of geographic populations of the pitcher plant mosquito Wyeomyia smithii, to test 1) whether

temperature variation affects life history traits within populations 2) if there is an effect of

temperature variation, whether the magnitude and direction of the effect vary across mean

temperatures, and 3) whether among-population differences in temperature variation effects

confound population comparisons of mean temperature effects. I address these questions by

measuring development time, pupal mass, and survival under both constant and fluctuating

temperature conditions. Within populations I infer significant effects of temperature

variation on all the measured traits, but the magnitude and direction of these effects depended

on mean temperature. I detected no significant interaction between the effects of temperature

fluctuation and population of origin, implying that in the range of temperatures examined in

this study, population comparisons at constant temperatures accurately reflect population

comparisons at fluctuating temperatures. However, the effects of temperature fluctuation
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were most variable across populations for the trait (pupal mass) for which thermal reaction

norms were most divergent among populations. These results suggest that population

responses to temperature variation will tend to vary most with geography when the shapes of

thermal reaction norms are highly variable among populations.
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Introduction

Most organisms inhabit environments that vary within and across generations. A

considerable number of theoretical and empirical studies have investigated the evolution of

plasticity and acclimation in response to such environmental variability (e.g., Bell 1997;

Bennett and Lenski 1997; Gilchrist 1995; Huey and Kingsolver 1989; Kingsolver and Huey

1998; Levins 1963; Woods and Harrison 2002). The vast majority of these studies, however,

focus on the relationship between phenotype and the mean value of an environmental

variable, i.e., the familiar form of a norm of reaction. Less well appreciated and less

frequently addressed is the relationship between environmental variability and phenotype,

e.g., a norm of reaction for trait value across two environments with the same mean but

different variance for a given environmental factor. Understanding the phenotypic effects of

environmental variation can not only inform adaptive hypotheses, but may also be important

to consider when evaluating mean effects.

Temperature is one of the most widely studied and physiologically influential

environmental factors. Temperature-dependence of physiology is a fundamental concern in

ecological and evolutionary studies of life histories, particularly for ectotherms. The effects

of temperature are widely acknowledged and accounted for, but attention is generally

focused on mean temperature. Effects of temperature variation are often marginalized or

ignored, although the body of literature devoted to phenological models of insect emergence

constitutes a notable exception (Hagstrum and Milliken 1991; Worner 1992). Unlike

instantaneous rates of growth and development, even simple traits such as body size and

development time are influenced by the long-term effects of temperature variation integrated

over many underlying physiological processes (Kingsolver et al. 2004). Most terrestrial and
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many aquatic ectotherms experience a broad range of developmental temperatures that vary

diurnally and seasonally. Moreover, both mean temperature and temperature variation

change with geography and often with microhabitat. Consequently, comparisons among

geographic populations or among microhabitats that focus solely on mean temperature may

ignore important geographic differences in response to temperature variation.

Whether thermal variability affects life history differences among populations is a

question with important practical and evolutionary implications. From the perspective of

experimental design, if phenotypic responses to temperature variation differ among

populations, the choice of fluctuating temperature rearing environments may alter among-

population comparisons of mean temperature effects. From an evolutionary perspective,

geographic variation in the degree of environmental variability may contribute to geographic

clines in temperature-sensitive traits. For example, the amplitude of diurnal and annual

temperature fluctuations varies with altitude and latitude (Taylor 1981). Thus, geographic

populations arrayed along latitudinal and altitudinal clines will experience different annual

mean temperatures and different degrees of temperature variation. Numerous studies have

explored population differences in the relationship between life history traits and mean

temperature (e.g., Berner et al. 2004; Blanckenhorn and Fairbairn 1995; Bradshaw et al.

2004; Burke et al. 2005; Castaneda et al. 2004; Fischer and Fiedler 2002; Hallas et al. 2002).

In addition, a substantial number of studies have examined the effects of temperature

variation within populations (e.g., Behrens et al. 1983; Bradshaw 1980; Dallwitz 1984; Davis

et al. 2006; Elliott and Kieckhefer 1989; Hagstrum and Milliken 1991; Kieckhefer and Elliott

1989; Lamb 1961; Petavy et al. 2004; Petavy et al. 2001), and at least one study has

examined genotype by temperature variation interactions within a single population
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(Brakefield and Kesbeke 1997). To our knowledge, however, no single study has directly

tested for population differences in response to temperature variation.

Here I test for geographic variation in the effects of fluctuating temperatures among

populations of the pitcher plant mosquito, Wyeomyia smithii. The three populations included

in the study span a gradient in mean temperature and temperature variation in the eastern

United States. Survival to, time to, and mass at pupation were measured in several

temperature rearing environments. I applied two diurnally fluctuating temperature

environments mimicking typical cool and warm diurnal temperature cycles measured in the

field. In addition, I applied three constant temperature rearing environments, two equal to

the means of the fluctuating environments. Comparison between the constant treatments and

fluctuating treatments with the same mean provide a direct, commonly used test for the

effects of temperature variation (Beck 1983; Hagstrum and Milliken 1991). I also include

data from a relatively low constant rearing treatment with no comparable fluctuating

treatment to illustrate the importance of duration of exposure and thermal threshold effects.

Putative physiological mechanisms, implications for experimental design, and adaptive

divergence among populations are discussed.

Methods

Study organism

The pitcher plant mosquito, Wyeomyia smithii, obligately oviposits into the leaves of

the purple pitcher plant, Sarracenia purpurea. Both plant and mosquito range from the

panhandle of Florida north to Newfoundland along the eastern seaboard and into the Great

lakes region of North America, covering a broad range of thermal and seasonal habitats

(Bradshaw et al. 2000). Larval hibernal diapause, or dormancy, is cued by photoperiod, and
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geographic populations demonstrate a cline in photoperiodic response. Bracketed between

diapause termination and initiation, the length of the growing season declines with

increasing latitude or altitude (Bradshaw and Lounibos 1977).

In the spring of 2004 I established separate laboratory colonies from collections of

approximately 1000 larvae from each of three geographic populations (Table 5.1).

Phylogeographic data suggest that FL and NC coast populations cluster together in a

southern clade, while the NC Mtn. population falls into a more distantly related northern

clade (Armbruster et al. 1998;W. Bradshaw, unpublished data). Compared to the NC coast

and FL populations, the NC Mtn. population experiences lower daily mean temperatures for

the entire year. All populations experience similarly variable temperature environments on

this scale (see Chapter 3; similar standard deviations of the means, Table 5.1.). However,

only temperatures experienced during active growth will affect life history traits during non-

diapause development (i.e., development that does not initiate from or terminate in a

diapause stage). Thus, the thermal environment of the growing season is perhaps the most

critical component of direct, temperature-mediated selection on life history traits of actively

growing individuals (see Chapters 3 and 4). Using the critical photoperiod of each

population to define the growing season as described in Chapter 3, I estimated average daily

mean temperature and the standard deviation of this mean for the growing season alone.

During the growing season, the NC Mtn. population experiences both the lowest mean

temperature and least variable temperature conditions: the standard deviation of the mean is

nearly 40% lower than the values for FL and NC Coast (Table 5.1). The FL and NC coast

populations experience a similar thermal environment,
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Table 5.1. Geographic and temperature data for study populations of Wyeomyia smithii.
Temperature data include annual average daily mean ( ANNT ), standard deviation of the annual

average ( ANNσ̂ ), average daily mean of the growing season ( GRWT ), and standard deviation of

the growing season average ( GRWσ̂ ). Temperature units are ° C, and means and standard

deviations were calculated from 35 years of weather data obtained from weather stations < 2
km from each site.

Population Lat./lon. Altitude
(m)

ANNT ANNσ̂
GRWT GRWσ̂

FL 30°N 85°W 10 19.3 12.7 23.0 9.1
NC coast 34°N 78°W 20 17.5 14.4 23.5 9.8
NC Mtn. 35°N 83°W 900 11.2 14.0 18.0 5.9
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whereas NC Mtn. experiences a cooler, less variable thermal environment during the growing

season.

Field-collected larvae were reared under standard long-day conditions (16:8 LD) and

a temperature regime fluctuating between 13 and 29° C. Food consisted of a standard

suspension of 4:1 guinea pig chow to freeze-dried brine shrimp (Hard et al. 1992). Pupae

were transferred to five gallon mating cages and once eclosion commenced each cage was

supplied weekly with a freshly cut pitcher plant leaf for oviposition and a sponge moistened

with honey-water for adult nutrition. Eggs were collected every three days and transferred to

diapause-inducing conditions (8:16 LD, 20° C constant temperature) until all adults in a cage

had died. Once all populations were synchronized in diapause I moved the larvae to standard

long day conditions to initiate the next generation. I maintained breeding populations at a

minimum of 500 individuals representing a constant proportion from each egg collection.

Constant temperature experiment

On the day of hatch 25 haphazardly selected first instar larvae ( = one cohort) from

the F2 laboratory generation of each population were transferred to 150 X 25mm culture

dishes with 170ml distilled water. To maintain ad libitum food conditions I transferred

larvae to a new culture dish each weak, supplying the new dish with a fresh aliquot of

0.05g/ml standard food suspension. Cohorts were started with 1.00 ml food suspension, 1.75,

2.5, and 3.0ml were added for the next three weeks, and 2.5ml every week thereafter to

simulate food capture in a pitcher plant (Bradshaw and Holzapfel 1986). Temperature

rearing treatments included 16, 20, and 27° C constant. Cohorts were haphazardly assigned

to temperature treatments for a total of 6 cohorts in each temperature treatment for each
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population. For larvae surviving to pupation I recorded time to pupation, mass at pupation,

and sex.

Fluctuating temperature experiment

Methods and results for fluctuating temperatures appear elsewhere (see Chapter 3)

and are similar to those for constant temperatures. Briefly, cohorts of 25 larvae originating

from the F3 laboratory generation of each population included in the constant temperature

experiment were randomly assigned to one of two temperature rearing treatments, each with

equal variance and the same diurnal profile: 1) fluctuation from 16 to 32° C with a mean of

20° C, and 2) fluctuation from 23 to 39° C with a mean of 27° C. Actual temperature-time

profiles were designed to mimic a cool summer day most typical of the NC Mtn. population

and a hot summer day most typical of the NC coast or FL populations (see Chapter 3).

Cohorts were maintained with the same feeding conditions described for the constant

temperature experiment.

Statistical Analyses

In the constant temperature experiment survival was scored as either successful

pupation (1) or failure to pupate (2), and these data were analyzed using mixed model logistic

regression (implemented in SAS version 9.1, Proc Glimmix [SAS Institute 2004]) including

cohort as a random effect and temperature and population as fixed effects. Time to pupation

and mass at pupation scored for those individuals surviving to pupation were analyzed via

separate mixed model ANOVAs (SAS Proc Mixed) with cohort as a random effect and

population, temperature, and sex as fixed effects. Time to pupation was natural log-

transformed to improve normality, while pupal mass was transformed as Ln(mass +1) to

prevent negative values. Sex was excluded from the survival analysis because I could not
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sex individuals before pupation and was included in the other analyses because sex has a

large influence on pupal mass and development time. Post-hoc pairwise comparisons were

performed using linear contrasts and associated F statistics.

To examine constant vs. fluctuating temperature effects I compiled a data set that

included all data from the fluctuating temperature experiment for the NC Mtn., NC coast, and

FL populations and data from the 20 and 27° C temperature treatments from the constant

temperature experiment. Survival, time to pupation, and mass at pupation were analyzed as

above with the addition of a fixed effect for temperature fluctuation (constant or fluctuating).

Since constant and fluctuating temperature experiments were performed at different times

and on different generations, there was a potentially confounding temporal effect. However,

temporal block effects were likely minimal because the same (powdered) stock food

formulation was used in the same dilutions prepared in an identical manner for both

experiments, experimental chambers held temperature at ± 0.1° C precision, and inbreeding

in the lab stock colonies was minimized by maintaining large breeding populations. In

addition, a temporal block effect would affect all populations equally, so it would not bias

estimates of an interaction between temperature variation effects and population of origin.

Results

Constant temperatures

Survival to pupation was relatively high at 20 and 27° C rearing temperatures and

declined precipitously at 16° C for all populations (Figure 5.1). Population, temperature, and

their interaction significantly influenced survival to pupation (Table 5.2). At 27° C FL and

NC Coast larvae successfully pupated at a significantly higher average (across populations)

proportion compared to NC Mtn. larvae (F1,45 = 22.78, p < 0.001), whereas at 16° C FL
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Figure 5.1. Mean ± SE percent survival across temperatures for each geographic population.
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Table 5.2: Mixed model ANOVA table for analysis of constant temperatures.

Trait Effect DF F-Value p-value

Survival Tempmn 2, 45 112.29 < 0.001
Pop 2, 45 12.74 < 0.001
Pop*Tempmn 4, 45 3.41 0.0161

Development time Tempmn 2, 45 1115.80 < 0.001
Pop 2, 45 0.73 0.490
Sex 1, 45 218.51 < 0.001
Pop*Tempmn 4, 45 5.23 0.002
Sex*Tempmn 2, 45 5.87 0.005

Pupal mass Tempmn 2, 45 351.02 < 0.001
Pop 2, 45 3.47 0.0390
Sex 1, 45 1670.83 < 0.001
Pop*Tempmn 4, 45 7.70 < 0.001
Pop*Sex 2, 45 19.05 < 0.001
Sex*Tempmn 2, 45 3.69 0.0320
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larvae survived to pupation at a higher proportion than the average proportion of NC Coast

and NC Mtn. larvae (F1,45 = 24.93, p < 0.001). No differences between populations were

significant at 20° C. Larvae from all populations suffered about a 40 - 60% decrease in

survival at 16° C compared to that at 20 or 27° C (Figure 5.1). All response variables

measured on pupae are conditioned on these survival responses. Particularly at 16° C,

development time and pupal mass reflect the surviving subset of the total number of

individuals included at the outset of the experiment.

Increasing temperature led to decreasing development time and males developed

faster than females at all temperatures (Fig. 5.2a,b). Mixed model ANOVA revealed

significant main effects of population, temperature, and sex (Table 5.2). Population by

temperature and sex by temperature interactions were significant (Table 5.2), indicating

differences between sexes and populations in the temperature-development time relationship.

All populations developed at similar rates (no significant pairwise differences) at 16 and 20°

C, but at 27° C females and males from NC Mtn. develop more slowly than the average value

of NC coast and FL (averaged across sexes: F1,45 = 19.24, p < 0.001).

Females attained a larger mass at pupation than males, and all populations followed

the temperature-size rule typical of most insects, decreasing in mass with increasing

temperature in both sexes (Fig. 5.2c,d). There were significant effects of population,

temperature, and sex (Table 5.2). Trends in the mass-temperature relationship were complex,

with no consistent patterns among populations, sexes, or temperatures; the interaction effects

population by sex, population by temperature, and sex by temperature were all significant

(Table 5.2).
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Constant vs. fluctuating temperatures

Temperature fluctuation had no detectable effect on survival (Table 5.3), and no

interaction terms including temperature fluctuation in the ANOVA model were significant

(excluded from model via AIC). Thus, when reared at the same mean temperature larval

survival was similar in constant and fluctuating temperature conditions. Population effects

were significant (Table 5.3), and in this model the differences between populations were the

same as reported at 20 and 27° C in the analysis of constant temperatures alone (see previous

section).

As in the analysis of constant temperatures, population, mean temperature, sex, and

population by temperature interactions significantly affected development time (Table 5.3).

Temperature fluctuation, the factor of primary interest, was significant as a main effect and

also interacted with mean temperature (Table 5.3). No interaction terms including sex were

significant, indicating that development time in males and females was similarly effected by

temperature mean and fluctuation. Figure 5.3a,b plots the difference between development

time at constant and fluctuating rearing temperatures (constant – fluctuating). Differences

between fluctuating and constant temperatures were non-significant (not different from zero)

at Tave = 20° C in both sexes and for all populations. At Tave = 27° C, however, development

time was significantly shorter at the constant rearing treatment in both sexes and for all

populations (Fig. 5.3a,b; corrections for multiple comparisons did not alter statistical

significance). Temperature fluctuation by population interactions were non-significant in the

ANOVA, suggesting that fluctuating temperatures had equivalent effects on all populations.
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Table 5.3: Mixed model ANOVA table for analysis of constant and fluctuating temperatures.
‘Tempmn” and Tempfl” are the effect of mean temperature and temperature variation,
respectively.

Trait Effect DF F-Value p-value

Survival Tempmn 1,99 0.58 0.447
Tempfl 1,99 0.74 0.393
Pop 2,99 5.20 0.007

Development time Tempmn 1,96 834.98 < 0.001
Tempfl 1,96 36.08 < 0.001
Pop 2,96 14.28 < 0.001
Sex 1,96 1009.12 < 0.001
Tempmn* Tempfl 1,96 90.55 < 0.001
Pop* Tempmn 2,96 13.29 < 0.001

Pupal mass Tempmn 1,96 688.55 < 0.001
Tempfl 1,96 1.83 0.179
Pop 2,96 3.55 0.033
Sex 1,96 4564.89 < 0.001
Tempmn* Tempfl 1,96 23.94 < 0.001
Tempmn* Pop 2,96 10.73 < 0.001
Tempfl *Sex 1,96 4.85 0.030
Pop*Sex 2,96 57.62 < 0.001
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Population, mean temperature, and sex also significantly affected pupal mass, as did

population by sex and mean temperature by population interactions (Table 5.3). In contrast

to the results for development time, temperature fluctuation was not a significant main effect

in the ANOVA but did significantly interact with mean temperature and sex. Both female

and male pupae from FL and NC coast were generally larger at constant temperatures

compared to fluctuating at 20° C mean temperature, whereas this relationship reversed at 27°

C mean temperature (Fig. 5.3c,d). After correcting for multiple comparisons only the

difference between constant and fluctuating temperatures for FL males at 20° C remained

significantly different from zero, whereas all other differences that were formerly significant

became marginally non-significant. Arguments about the relative merits of multiple

comparisons aside, the general trends for the FL and NC coast populations are qualitatively

similar (FL and NC Coast are also the most phylogenetically similar populations), and these

trends are consistent across sexes. In contrast, pupa from NC Mtn. were roughly the same

size at constant and fluctuating temperatures in both sexes and at both mean temperatures.

These post-hoc comparisons suggest that interactions between mean temperature and

temperature fluctuation vary across populations, but as with development time, ANOVA

revealed no significant interactions including both population and temperature fluctuation.

Discussion

Temperature variation effects

In comparison to results from an analysis of fluctuating temperatures, universally low

survival to pupation at 16° C constant implies a strong effect of duration of exposure. Larvae

reared at temperatures fluctuating from 15.5 to 32° C and hovering at or below 16.5° C for

more than 7 hours at night show 90% survival rates (fluctuating temperature regime about
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20° C mean; survival data not shown), while larvae reared at 16° C constant show 40 - 60%

survival (Fig. 5.1). Clearly 16° C is not an acutely stressful temperature for W. smithii, or

even chronically stressful on the scale of a diurnal temperature cycle. However, it appears

that long-term chronic exposure to this temperature is stressful enough to cause high

mortality. The lack of diurnal temperature fluctuation is not the sole factor responsible for

this result, as survivorship at means of 20 and 27° C was comparable between constant and

fluctuating temperatures (Table 5.3). Thus, an interaction between mean temperature and

temperature variation must have contributed to the observed levels of mortality.

Since 16° C is not acutely stressful, high mortality at 16° C suggests a physiological

mechanism that involves the thermal dependency of growth and development. Development

rate is determined by many underlying physiological processes that often vary in thermal

sensitivity and thermal thresholds below or above which these processes are strongly

inhibited (Beck 1983). Rearing at a constant temperature that surpasses a thermal threshold

of any underlying physiological process can thus result in developmental stagnation, and

eventually mortality (Beck 1983; Howe 1967; Lin et al. 1954), or partial mortality if there is

population variation for thermal thresholds that overlaps the constant rearing temperature.

Development time is greatly increased at 16° C compared to 20° C (Fig. 5.2a,b), indicating

that 16° C approaches the lower thermal threshold for development as measured at constant

temperatures. Moreover, I detected no significant effects of temperature fluctuation on

survival at 20 and 27° C mean temperature for any population, a trend also consistent with

thermal threshold effects that manifest only at lower temperatures. Davis et al. (2006) found

a similar pattern in green peach aphids in which survival was markedly lower in constant

compared to fluctuating conditions at a low mean temperature (15° C), but comparable to
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constant conditions at intermediate mean temperatures (20 – 30° C). Collectively, these

results suggest that mean temperature by temperature fluctuation interactions for survival

may be driven by thermal threshold effects on development.

Differences in development time between constant and fluctuating temperatures agree

well with predictions based on the nonlinear relationship between development rate and

temperature. A wealth of empirical data from ectotherms, particularly insects, suggest that

development rate curvilinearly and asymmetrically declines on either side of a temperature

maximum such that the decline is more rapid at high compared to low temperatures (Sharpe

and DeMichele 1977; Fig. 5.4). Development time is the inverse of average development

rate, so rapid development rates translate into short development times. The development

rate-temperature curve predicts that where the curve is concave down, or decelerating (at

higher temperatures), development time will be shorter (faster average rate) at constant

temperatures compared to fluctuating temperatures about the same mean (Fig. 5.4, square

symbols). Where the curve is concave up, or accelerating (at lower temperatures), the

reverse will be true (Fig. 5.4, circle symbols). This property of the non-linear development

rate function, termed Jensen’s inequality or the Kaufmann effect (Ruel and Ayres 1999;

Worner 1992), also predicts that the magnitude of the difference in development rate between

constant and fluctuating temperatures will be greater at higher rearing temperatures because

curvature at these temperatures is more extreme (Fig. 5.4, difference between open and

closed squares compared to difference between open and closed circles). Closely following

these predictions and consistent across populations and sexes, our data show that

development time is shorter at constant compared to fluctuating temperatures at a mean of

27° C , while the reverse is true a mean of 20° C (Fig. 5.3a,b). The difference between
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Figure 5.4. Hypothetical function relating development rate to temperature. The equation:
d(T) = C exp[-α (T – dmax) – exp[β (T – dmax) – 8]] + b

approximates the Sharpe-Schoolfield equation, modeling development rate as a function of
temperature with an asymmetric decline from an intermediate maximum dmax (modified from
Frazier et al. (2006)). The y-axis scale is arbitrary, dependant upon the constant C, T is
temperature, α and β determine the steepness and symmetry of the decline from the
optimum, and b is the y -intercept. For the function depicted here α = 0.008, β = 1, and b = -
1.0 x 10-4. Using this function to model development time at the mean rearing temperatures
used in current experiment, the symbols represent the predicted values of average daily
development rate for the constant (closed symbols) and fluctuating (open symbols) thermal
profiles applied at daily means of 20 (circles) and 27° C (squares).
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constant and fluctuating is lesser in magnitude and not significantly different from zero at a

mean of 20° C, again consistent with predictions based on the less extreme curvature of the

development time response curve at lower temperatures (Fig. 5.4).

In addition to adhering closely to theoretical predictions, our development time data

also align well with results from other insects. In a survey of development time at constant

compared to fluctuating temperatures for 17 species, Hagstrum and Milliken (1991) found

that development time at constant temperatures was typically shorter above means of 25 –

30° C and longer at lower mean temperatures. This consistency of results across species

implies that the approximate temperature ranges in which the temperature-development rate

function is accelerating and decelerating are evolutionarily conserved.

Because the relationship between mass at maturity and temperature is the result of the

interaction between growth rate and differentiation rate (Van Der Have and De Jong 1996),

the shape of the mass-temperature relationship is often more linear than that for development

time (e.g., Gibert and De Jong 2001) and is likely more variable across species. Peteavy et

al. (2001) found that across a range of mean temperatures from 12 to 32° C, Drosophila

melanogaster adult body size was always smaller in fluctuating compared to constant

temperature treatments. They suggested that these differences may have been driven by

stress responses to extreme temperatures in the fluctuating treatments, but the observed

trends are also predicted by the effects of nonlinearity (concave down across the entire range

of measured temperatures). The significant mean temperature by temperature fluctuation

interaction that I find in W. smithii suggests that the ‘template’ shape of the thermal reaction

norm may be somewhat different than that observed across a similar range of temperatures in

Drosophila melanogaster.
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Geographic variation

For both development time and pupal mass, differences between constant and

fluctuating temperatures were statistically indistinguishable among populations, suggesting

that similar physiological process contribute to these differences across populations.

However, the effects of temperature fluctuation appeared to be more consistent across

populations for development time (Fig. 5.3a,b) than for pupal mass (Fig. 5.3c,d). Based on

the landmark temperatures measured in this study and in a separate analysis of fluctuating

temperatures (Chapter 3), the slope of the thermal reaction norm for development time

appears to be much less variable among populations than that for pupal mass. Moreover,

estimates of the difference between constant and fluctuating temperatures for pupal mass

were most similar across mean temperatures and closest to zero (Fig. 5.3c,d) for the

population with the flattest thermal reaction norm for mass (NC Mtn; Fig. 5.2c,d). With the

statistical power available in our study, results suggest that comparisons between populations

at constant temperatures do reflect differences in more natural thermal conditions. In fact,

the rank order and pairwise differences among populations across constant temperatures for

both pupal mass and development time are largely the same as those measured across

fluctuating temperatures with the same mean (Chapter 3). That the effects of temperature

variation appeared to be less consistent across populations for pupal mass than for

development time suggests, however, that the effects of temperature fluctuation may vary

most among population when the shapes of thermal reaction norms are most divergent.

Differences in thermal habitat among geographic populations of W. smithii appear to

have driven divergence in response to mean temperature, but I did not detect population

differences in response to temperature variation. As shown by the mean and standard
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deviation values in Table 5.1, the FL and NC coast populations experience both a warmer

and a more variable thermal habitat during the growing season than NC Mtn. integrated

across the entire growing season. Southern clade populations (e.g., FL and NC coast) exhibit

increased yearlong replacement rate (Bradshaw et al. 2004) and decreased development time

at high temperatures (Chapter 3; Fig. 5.2a,b) compared to northern clade populations, while

northern clade populations exhibit enhanced survival of cold winter temperatures (Bradshaw

et al. 2004) and increased fecundity (Chapter 3) at low temperatures. However, our data

indicate no detectable concomitant changes in response to temperature variation, suggesting

that physiological responses to temperature variation are relatively stable across geography,

at least across the range of relatively benign environments used in this study.

Geographic differences in the effects of temperature variation are most likely to arise

in thermal environments in which either thermal thresholds for any underlying

developmental processes or thresholds for stress response induction are regularly surpassed.

Applying thermal environments with extreme mean temperature or increasing the amplitude

of diurnal temperature fluctuations increases the magnitude of temperature variation effects

(Hagstrum and Milliken 1991; Petavy et al. 2001). Our results suggest that when thermal

environments are relatively benign, population comparisons at constant and fluctuating

temperatures lead to the same conclusions, but if there is among-population variation in

thermal thresholds, differences in the effects of temperature variation will become

increasingly apparent the more frequently temperatures beyond these thresholds are

experienced. Caution should be taken when extrapolating population differences at relatively

extreme constant temperatures to population differences in real, variable field conditions.
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CHAPTER 6

CONCLUSION

My results illustrate how the timing of life history stages or events critically

determines selection on and evolution of those stages or events in seasonal environments.

When environmental sensitivity can evolve independently across life history stages, selection

should optimize environmental sensitivity of each stage for the environmental conditions

experienced. Alternatively, high correlation of environmental sensitivity across life history

stages should constrain adaptation to seasonal environments, since each life history stage

cannot be independently optimized for the environment that it experiences. The interplay

between selection on seasonal timing and the genetic architecture of environmental

sensitivity will thus determine the course of life history evolution within a population and

geographic variation among populations.

Mechanisms of selection on seasonality and environmental sensitivity remain unclear.

Adaptation to periodically stressful environments (e.g., cold winter temperatures) requires

one of two possible strategies: deal with the stressor head-on without significantly changing

life history schedules of growth and reproduction, or get out of the way. The former strategy

is generally associated with physiological, morphological, or behavioral plasticity that allows

growth and reproduction to continue, although perhaps not unabated. The latter strategy

involves either migration or dormancy. Both strategies are viable solutions to the problems

presented by stressful conditions, so in any given situation, why does one strategy evolve,
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and not the other? If selection ultimately determines which strategy will evolve, there must

be some fundamental difference between the fitness costs/benefits of altering seasonal timing

and the costs/benefits of altering environmental fitness optima, tolerance range, etc. This is a

difficult question to rigorously address either empirically or theoretically. The ecological

dimensionality quickly becomes prohibitively large for any biologically realistic scenario that

is also sufficiently general. Intuitively, there is no apparent reason why selection would

generally favor one strategy over the other.

The role of constraint in determining the evolution of seasonal timing and

environmental sensitivity provides a more experimentally tractable and plausible explanation

for observed patterns of life history evolution. As discussed in chapter one, thermal

sensitivity of development appears to be relatively free to evolve, but this lability will

eventually be limited by physical, if not genetic constraints. For example, maintaining active

metabolism at sub-zero temperatures is nearly impossible, and likely represents an absolute

constraint on temperature conditions that are favorable for growth. In many cases, seasonal

timing of dormancy (and probably migration as well) may simply evolve to produce the

longest possible growing season given the absolute limits on performance at extreme

temperatures. Empirical tests of this hypothesis would be very feasible and would greatly

inform both evolutionary model of life history evolution and phenological models frequently

used in applied entomology and agronomy.

There are some clear examples of seasonal timing that does not evolve to the limits of

tolerance to abiotic factors, but these examples are typically limited to situations in which

there are seasonal changes between presence/absence of some critical resource. This is

common for herbivores with very specific host plant preferences, where the seasonal timing
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of the herbivore is necessarily tied to the emergence of the plant. The degree of specialism,

therefore, may actually be related to whether or not seasonal timing evolve to extend the

growing season to an organism’s physiological limits. Specialism may also be related to the

evolution of tolerance to extreme environments. For example, an herbivore that obligately

feeds on a host plant that emerges for only a few weeks in midsummer may have very low

tolerance for cold temperatures when not in a diapausing or migratory life history stage.

Ideally comparative, interspecific studies could address these questions, but there is also a

wealth of data available on the seasonal phenology of insects, particularly crop pests.

Linking these data with information on resource preferences and thermal physiology could

prove informative.

Global climate change affects both changes in environmental mean values (rainfall,

temperature) and the magnitude and timing of environmental fluctuations. Thus, the

evolvability of both environmental sensitivity and seasonal timing may play an important

role in determining how organisms respond to the changing environment. Understanding the

selective and genetic factors that have shaped current life history strategies in seasonal

environments will therefore have clear implications for projections of future ecosystem

change and policies for management and preservation of biodiversity.



Appendix I:

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

List of references, including full species names, as indexed in Table 2.1.

index full species name reference

1 Chrysopa oculata Nechols et al, 1987
2 Chrysopa oculata Tauber and Tauber, 1987
3 Chrysopa carnea Tauber and Tauber, 1982
4 Leptinotarsa decemlineata Tauber et al., 1988a
5 Leptinotarsa decemlineata Tauber et al., 1988b
6 Leptinotarsa decemlineata Hilbeck and Kennedy, 1998
7 Hyphantrea cunea Gomi et al., 2003
8 Hyphantrea cunea Gomi and Takeda, 1996
9 Ostrinia nubilalis Calvin et al., 1991
10 Ostrinia nubilalis Beck and Apple, 1961
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Geographic locations of weather stations used in the analysis of latitudinal clines in
thermal conditions.

Location Latitude (°) Altitude (m)

Pensacola, FL 30.5 34.1
Milton, FL 30.8 66.1
Bay Minette, AL 30.9 82.6
Alma, GA 31.5 58.8
Charleston, SC 32.9 12.2
Atlanta, GA 33.6 307.8
Columbia, SC 33.9 64.9
Wilmington, NC 34.3 10.1
Highlands, NC 35.1 1158.8
Raleigh, NC 35.9 126.8
Norfolk, VA 36.9 9.1
Richmond, VA 37.5 50.0
Glenn Dale, MD 39.0 45.7
Indian Mills, NJ 39.8 30.5
Philadelphia, PA 39.9 3.0
LaGuardia, NY 40.8 3.4
Providence, RI 41.7 45.5
Ithaca, NY 42.5 292.6
Birch Hill, MA 42.6 263.3
Portland, ME 43.7 13.7
Millinocket, ME 45.7 109.7
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Regression of thermal conditions on latitude and altitude

The linear model for each regression:

y = µ + α + β + ε

where µ is the intercept, α and β are the regression coefficients for latitude and altitude,
respectively, ε is the random error term, and y is either average day of last frost (number of
days after January 1 until the last day with a minimum temperature below -1° C), average
minimum temperature over the 50 days following the last frost, or average degree-day
accumulation (sum of daily average temperatures) over those same 50 days. Adding an
additional term for longitude did not significantly improve the fit of any of the models.

Coefficients of determination and estimated model parameters

Dependent Var. Parameter Estimate p-value r2 of model

Last Frost Intercept -104.7 < 0.001 0.87
Latitude 4.9 < 0.001
Altitude 0.030 0.003

Average Min. Intercept 14.2 < 0.001 0.42
Latitude -0.17 0.002
Altitude 0.00019 0.820

Cumm. Deg-
days

Intercept 1037.8 < 0.001 0.21

Latitude -8.6 0.043
Altitude 0.0026 0.972

Since altitude significantly influenced the Dependent variable in at least one model, I
calculated altitude-corrected latitude for each dependent variable as:

Alt.-corrected latitude = Latitude + (Altitude * β)/α

These corrected values appear as the x-axes in Figure 2.3.




