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ABSTRACT 
 

Jamie Aileen Jarmul: The clinical utility and cost-effectiveness of cardiovascular genetic risk 
testing for targeting statin therapy in the primary prevention of atherosclerotic cardiovascular 

disease 
(Under the direction of Morris Weinberger) 

 

This three-paper dissertation examined the clinical utility and cost-effectiveness of testing 

for cardiovascular genetic risk, using a previously developed 27-SNP cardiovascular genetic risk 

score (cGRS), to target statin therapy in the primary prevention of atherosclerotic cardiovascular 

disease (ASCVD).  

In the first paper, I tested the association between the 27-SNP cGRS and 10-year ASCVD 

outcomes in black and white non-diabetic, ASCVD-free participants from the ARIC study.  After 

adjusting for traditional ASCVD risk factors, I found that intermediate and high cGRS was 

associated with a 1.32-fold (95% CI: 0.97-1.79) and 1.47-fold (95% CI: 1.03-2.10) higher risk of 

10-year pooled ASCVD events, respectively; however, the improvement in risk prediction was 

small.  In the second paper, I used an unbiased model selection algorithm with 10-fold cross-

validation to determine the expected distribution of the 27-SNP cGRS in a multi-ethnic, 

nationally representative sample of individuals, the Add Health study. I found that race/ethnicity 

was the only statistically significant predictor of cGRS, explaining a fair amount of the variation 

(CV r2= 0.177), and that the risk increase associated with high expected cGRS was modest 

(approximately 30% increase in 10-year predicted ASCVD risk, comparable to the risk increase 

associated with being 5 years older).  In the third paper, I updated the UNC-RTI CHD Prevention 
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Model to investigate whether testing for the 27-SNP cGRS is a cost-effective strategy for 

targeting statin therapy in the primary prevention of ASCVD. I found that obtaining a 27-SNP 

cGRS test to prevent some patients from being prescribed a statin was generally not a cost-

effective strategy for a set of clinical scenarios of individuals with 10-year predicted ASCVD risk 

ranging from 2.5% to 7.5%. 

In conclusion, I found that a 27-SNP cGRS is independently associated with 10-year ASCVD 

outcomes in a diverse population; however, the absolute change in updated 10-year ASCVD 

predicted risk estimates is modest. More importantly, through the work completed in the 

dissertation, I can conclude that, when compared to no genetic risk testing, obtaining 

cardiovascular genetic risk information by testing for a 27-SNP cGRS is generally not a cost-

effective strategy for targeting statin therapy in the primary prevention of ASCVD.   
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CHAPTER 1: BACKGROUND 

1.1. Cardiovascular disease risk prediction and primary prevention with statins  

In the US, atherosclerotic cardiovascular disease (ASCVD) is responsible for one out of 

every three deaths and, in 2008, accounted for nearly $300 billion in health care costs (Roger 

2011).  By 2030, up to 40% of Americans are expected to have ASCVD and medical costs 

attributable to ASCVD are projected to double (Mozaffarian 2015). ASCVD, which includes fatal 

coronary heart disease (CHD), non-fatal myocardial infarction (MI), and ischemic stroke, can lead 

to substantial morbidity and reductions in quality of life. Thus, primary prevention of ASCVD is 

critical to reduce the population burden of ASCVD and improve overall population health.   

Statins, a group of highly efficacious lipid-lowering agents, significantly reduce the risk of 

MI, stroke and all-cause mortality (Chou 2015).  The 2013 American Heart Association 

(AHA)/American College of Cardiology (ACC) ASCVD risk reduction guidelines recommend 

moderate to high intensity statin therapy for primary prevention in nondiabetic, ASCVD-free 

individuals with 10-year predicted ASCVD risk >7.5%, calculated using the Pooled Cohort 

Equations (PCEs) (Goff 2013; Stone 2013).  The PCEs, published along with the ASCVD primary 

prevention guidelines, calculate predicted 10-year ASCVD risk using the traditional risk factors 

age, sex, race/ethnicity, systolic blood pressure, total cholesterol, HDL cholesterol, anti-

hypertension treatment, smoking status and presence of diabetes as inputs (Goff 2013).  Based 

on these guidelines, approximately 45 million Americans without pre-existing ASCVD or diabetes 

are currently eligible for statin therapy (Pencina 2014). Of these, 10.4 million are newly eligible 
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for statin therapy when compared statin recommendations from the previous ATP-III guidelines 

(Pencina 2014).  Consequently, the PCEs and 2013 AHA/ACC guidelines on ASCVD risk reduction 

have been the subject of significant controversy (Amin 2014; Martin 2014).  Some experts have 

questioned the use of the PCEs because they have been showed to significantly overestimate the 

risk of ASCVD events in several external cohorts (Ridker and Cook, 2013).  Furthermore, in 

individuals near the recommended 7.5% statin treatment threshold, the number needed to treat 

(NNT) to prevent CVD outcomes is high (NNT to prevent one CVD death: 217; NNT to prevent 

one MI: 108; NNT to prevent one all-cause death: 244); thus, many individuals will be treated 

and few will benefit (Chou 2015).   

The 2013 AHA/ACC ASCVD risk reduction guidelines suggest that additional testing for 

nontraditional risk factors, such as coronary artery calcium (CAC), high sensitivity C-reactive 

protein, and ankle-brachial index, may be useful prior to statin initiation, as a part of the shared 

decision-making process with patients (Stone 2013).  Furthermore, additional tests may be 

helpful to assess other aspects of risk not covered by traditional risk factors, such as 

atherosclerotic burden or vessel reactivity.  However, interpreting results from nontraditional 

risk factor testing in the context of baseline ASCVD risk estimates is challenging, and the relative 

importance of different nontraditional risk factors is a topic that has been widely debated 

(Yeboah 2016; Zamarano and del Val 2016; Nasir 2015).  

1.2. Using cardiovascular genetic risk information to improve cardiovascular disease risk prediction 

The use of cardiovascular genetic risk information in ASCVD risk prediction and clinical 

decision-making is an area of intense research and debate (Kullo 2016; Goldstein 2014; Paynter 

2016; Tikkanen 2013; Krarup 2015; Shah 2016). Genetic risk scores aggregate information about 
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the effect of many genetic variants (single nucleotide polymorphisms, or SNPs) on disease 

outcomes (Smith 2015).  An individual’s cGRS may reflect an individual’s genetic susceptibility to 

accelerated atherosclerosis, related potentially to errors in cholesterol metabolism, thrombosis 

and/or other endothelium-related factors (Vasan 2006).  

One advantage of using genetic information for risk stratification is that an individual’s 

genetic markers of increased ASCVD risk are present from birth and fixed throughout an 

individual’s lifetime.  Genetic testing could potentially be used to identify “healthy” (no 

cardiovascular risk factors), younger individuals that have increased cardiovascular genetic risk.  

In these individuals, early initiation of lifestyle interventions or statin therapy to prevent or slow 

progression of atherosclerosis could reduce lifetime risk of ASCVD (Thanassoulis 2013).   

Early papers looking at 21-SNP cGRS’ reported statistically significant, but small 

magnitude, improvements in area under the curve, after being incorporated along with 

traditional risk factors into risk prediction models (Morrison 2007; Ripatti 2010; Thanasoullis 

2012; de Vries 2015). In 2015, Mega et al. demonstrated a statistically significant association 

between a 27-SNP cGRS and CHD outcomes (nonfatal and fatal MI), after adjusting for traditional 

cardiovascular risk factors (Mega 2015).  Furthermore, Mega et al. reported that individuals with 

higher cGRS experience a greater absolute risk reduction from statin therapy compared to 

individuals with a low cGRS.  

Despite Mega et al’s intriguing results, we believe there are gaps that merit evaluation. First, 

Mega et al. used pooled data from several randomized clinical trials examining statin efficacy, 

which included primarily individuals of European ancestry; as such, the association between the 

27-SNP cGRS and CHD outcomes may not replicate across populations, particularly African 
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Americans or in population-based settings (Franchescini 2014).  Furthermore, Mega et al’s 

analysis was limited by the relatively short follow-up period in the statin efficacy trials (maximum 

5 years).  Last, the 27-SNP cGRS was developed based on SNPs that had been shown to be 

related to incident CHD, but not ischemic stroke, in prior GWAS studies (Mega 2015).  Thus, 

there may not be a significant association between the 27-SNP cGRS and pooled ASCVD 

outcomes, which includes non-fatal MI, fatal CHD and ischemic stroke. Because individuals of 

African ancestry suffer disproportionally from stroke compared to other ASCVD outcomes 

(Guetierrez 2014), inclusion of stroke as an endpoint provides valuable additional insight into 

downstream health outcomes associated with non-traditional cardiovascular disease risk factors 

in diverse populations. 

More importantly, it is unclear whether cardiovascular genetic risk testing alters clinical 

decision-making or ultimately improves cardiovascular disease outcomes. One recently 

published randomized controlled trial found that providing cardiovascular genetic risk 

information to patients resulted in more prescriptions of statins and significantly lower LDL levels 

compared to patients that had not been provided cardiovascular genetic risk information (Kullo 

2016).  While this may suggest that providing genetic risk information increases patients’ 

acceptance and/or adherence to therapy, the follow-up period was short (6 months) and thus 

difficult to know if these effects will continue over longer periods of time.  

1.3. Dynamic risk prediction and clinical decision-making 

Applying population-based ASCVD risk prediction equations, such as the PCEs, to 

individual patients can become problematic because these risk scores are only accurate risk 

estimates for an individual on average and have high intrinsic variance for cardiovascular risk 
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prediction when applied in a specific patient (McEvoy 2014).  We can improve individual-level 

risk prediction by integrating information that is obtained by testing for nontraditional or novel 

risk factors into existing ASCVD risk estimates (Kooter 2011; Pletcher 2011).   

Re-estimating the ASCVD risk prediction models with the nontraditional risk factor 

included is one approach for combining the new information provided by the nontraditional risk 

factor with existing information about traditional risk factors (Yeboah 2016; McClelland 2015; 

Antioches 2016; Ruwanpathirana 2015).  However, this approach is time consuming and requires 

a large data set that includes baseline risk factor measurement as well as sufficient duration of 

follow-up to capture ASCVD outcomes. Furthermore, re-estimating ASCVD risk prediction models 

to include the novel risk factor will only give us the population-average effect of the 

nontraditional risk factor on the variation in ASCVD events, which is unlikely to help improve risk 

stratification within subgroups of the population, which may have differing expected 

distributions of the novel risk factor (McEvoy 2014; Amin 2014; Yeboah 2015).   

Dynamic risk prediction is a more flexible approach than completely re-estimating ASCVD 

risk prediction models. Dynamic risk prediction is when a baseline risk estimate-such as the 

PCEs—is updated using individualized information about the expected distribution of a novel risk 

factor for a given individual (Pletcher 2011; Jarmul 2015). This allows the same baseline risk 

estimate to be used regardless of the novel risk factor to be integrated.  We can improve 

individual-level prediction in specific patients in whom the expected distribution of a novel risk 

factor is substantially different than for the average individual within the population.  

Once we know the expected distribution of a novel risk factor, we can integrate 

information about the novel risk factor into existing risk prediction models to produce expected 
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post-test risk estimates for individual patients (Kooter 2011; Pletcher 2011; Pletcher 2013; 

Jarmul 2015). Thus, dynamic risk prediction allows us to translate improved risk prediction 

offered by novel risk factors into actionable information that physicians can use to guide clinical 

decision-making around preventive therapies, such as statins or aspirin. 

1.4. Using decision analysis and cost-effectiveness modeling to assess clinical utility of predictive 

risk information 

Measures that are typically used to assess clinical utility of novel risk factors prediction 

include measures of reclassification (net reclassification index, integrated discrimination 

improvement), discrimination (area under the curve, c-statistic), and calibration (difference 

between observed and predicted risks). However, these measures do not sufficiently capture the 

trade-offs associated with clinical decision-making that is necessary to obtain the new 

information used in the model.  Furthermore, the risks and costs associated with up-

classification and down-classification are not necessarily equivalent and should be balanced 

against the expected benefits as a part of the clinical decision-making process (Pletcher 2011).   

Clinical decision analysis and cost-effectiveness analysis are methods to explicitly define a 

set of clinical options and weigh the downstream risks, benefits and costs of each.  Furthermore, 

through deterministic and probabilistic sensitivity analyses, decision-makers can consider the 

decision options while considering the effects of parameter uncertainty and stochastic variation 

in the estimates (Briggs 2012).  These tools can be especially powerful for evaluating primary 

prevention or screening strategies, which are difficult to evaluate using randomized controlled 

trials because long-term follow-up is generally required to capture the benefits associated with 

the intervention. In particular, evaluation of several test/treat strategies for targeting prevention 
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interventions may be infeasible to evaluate in an RCT due to large sample size that would be 

required to adequately power comparisons between all the study arms (Pletcher 2011).  

For these reasons, cost-effectiveness analyses are frequently conducted to evaluate 

test/treat strategies; however, the tests that are being investigated are generally diagnostic or 

prognostic tests, as opposed to tests that provide predictive information. When evaluating tests 

that provide predictive risk information, it is crucial to consider whether there are established 

baseline risk estimates (‘pretest risk’) and how the new predictive risk information should be 

integrated into baseline risk estimates to produce updated risk estimates (‘post-test risk’). 

Failure to adequately consider pre-existing knowledge of baseline risk, such as information about 

clinical risk factors or established risk prediction models, may lead modelers and decision-makers 

to over-estimate the value of the additional risk information provided by the predictive test.   

Previous work has been done to model the cost-effectiveness of CAC scanning (Pletcher 

2014; Roberts 2015), as well as the comparative-effectiveness of CAC scanning compared to CRP 

testing (Galper 2015).  However, the cost-effectiveness analysis of CAC scanning by Pletcher et 

al. is the only analysis to explicitly model the integration of CAC results into pre-existing risk 

estimates to update transition probabilities based on expected CAC scan results; results from this 

analysis indicated that targeting statin therapy based on CAC scanning is generally not a cost-

effective strategy, except under certain favorable statin assumptions (Pletcher 2014).  In 

contrast, the analysis from Roberts et al did not consider CAC distribution in combination with 

pre-existing risk estimates, and found that CAC scanning to target statin therapy was generally 

cost-saving and dominated other statin treatment strategies (Roberts 2015).  While these results 

were produced using different cost-effectiveness models, and thus not directly comparable, it is 
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reasonable to suggest that the more aggressive conclusions found by Roberts et al. may have 

been the result of over-estimation of the risk information provided by CAC beyond traditional 

ASCVD risk factors.  

 

1.5. Conceptual framework  

The conceptual framework in Figure 1 shows the steps necessary to determine whether 

obtaining additional predictive risk information, in the form of testing for a novel risk factor, 

should be used for guiding clinical decisions regarding prevention interventions.  First, a novel 

risk factor must be independently associated with the outcomes of interest.  Second, the novel 

risk factor should be clinically useful, meaning that information provided by the novel risk factor 

should be actionable, change clinical decision-making, and improve health outcomes.  Third, for 

the information provided by the novel risk factor to be cost-effective, the improvement in health 

outcomes (resulting from the change in clinical decision-making) should be able to be achieved 

at a cost that is acceptable to a decision-maker in a resource-constrained environment.  The 

work presented in this dissertation thesis will follow this framework to address the question of 

Figure 1: Conceptual Framework 
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whether testing for a 27-SNP cGRS is a cost-effective strategy for targeting statin therapy in the 

primary prevention of ASCVD.
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CHAPTER 2: ASSOCIATION BETWEEN A 27-SNP CGRS AND ASCVD OUTCOMES IN A DIVERSE, 
POPULATION-BASED COHORT STUDY  

 

2.1. Background 

Prediction of ASCVD risk is important to aid clinical decision-making regarding initiation of 

preventive therapies, such as whether to prescribe statins or aspirin. Risk prediction algorithms, 

such as the PCEs or Framingham equations, rely primarily on a set of traditional risk factors, 

including age, sex, blood pressure, lipid levels and smoking (Goff 2013).  Many novel, 

independent ASCVD risk factors have been identified, but whether they merit inclusion in risk 

assessment and clinical decision-making algorithms remains controversial and the subject of 

much ongoing research (Cainzos-Achirica 2015; Yeboah 2016; Zamarano 2016).  

One area of intense research is the use of cardiovascular genetic risk information in 

clinical decision-making (Kullo 2016; Paynter 2016; Tikkanen 2013; Krarup 2015; Shah 2016).   

Early papers evaluating 21-SNP cGRS reported statistically significant, but small magnitude, 

improvements in area under the curve, after incorporating traditional risk factors (Morrison 

2007; Ripatti 2010; Thanassoulis 2012; de Vries 2015).  In 2015, Mega et al. demonstrated a 

statistically significant association between a 27-SNP cGRS and CHD outcomes (nonfatal and fatal 

MI), after adjusting for traditional cardiovascular risk factors, over average follow-up time of 3.6 

years (Mega 2015).   

However, the 27-SNP cGRS from Mega et al. was developed and validated in individuals 

primarily of European ancestry; thus, the observed association between the 27-SNP cGRS and 
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CHD outcomes may not replicate across populations, particularly to populations of 

African ancestry (Franchescini 2014). Furthermore, the 27-SNP cGRS was developed based on 

SNPs that had been shown to be related to incident CHD, but not ischemic stroke, in prior GWAS 

studies (Mega 2015).  Thus, there may not be a significant association between the 27-SNP cGRS 

and pooled ASCVD outcomes, which includes non-fatal MI, fatal CHD and ischemic stroke. 

Because individuals of African ancestry suffer disproportionally from stroke compared to other 

ASCVD outcomes (Guetierrez 2014), inclusion of stroke as an endpoint provides valuable 

additional insight into downstream health outcomes associated with non-traditional 

cardiovascular disease risk factors in diverse populations. 

The Atherosclerosis Risk in Communities (ARIC) study is a prospective, population-based 

study of the etiology and natural history of atherosclerosis in black and white individuals from 

four communities in the United States.  The ARIC study provides an excellent opportunity to 

investigate the association between the 27-SNP cGRS, incident CHD and pooled ASCVD 

outcomes in a diverse, population-based cohort.  

2.2. Methods 

2.2.1. Data Source  

The ARIC study is an ongoing prospective cohort study of atherosclerosis and its clinical 

sequelae in black and white individuals living in four U.S. communities (Jackson, Mississippi; 

Forsyth County, North Carolina; suburbs of Minneapolis, Minnesota; Washington County, 

Maryland) (ARIC Investigators 1989).  Four ARIC field centers randomly selected and recruited a 

cohort sample of ~4,000 individuals aged 45-64 from their communities (total n= 15,792). 

Participants received a comprehensive baseline examination, including medical, social and 
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demographic data at visit 1 in 1987-1989. After visit 1, three triennial exams were conducted and 

a fifth visit occurring between 2011 and 2013. Participants were contacted semi-annually by 

telephone for follow-up to assess health status of the cohort.  

2.2.2. Study Cohort 

We included all individuals with visit 1 data who consented to allow use of genetic data 

for research (n= 12,219).  We excluded participants with congestive heart failure (defined using 

the Gothenburg criteria) (n= 545), prevalent coronary heart disease (CHD) (n=584), diabetes 

(n=1,118), or prevalent stroke (n= 204) at visit 1. Prevalent diabetes, CHD, and stroke was 

classified using ARIC investigator definitions (White 1996).   We excluded individuals who 

reported statin use at any of the four visits to examine the role of cGRS in primary prevention of 

ASCVD (n=1,304). We excluded an additional 312 participants due to missing data on covariates 

(systolic blood pressure, total cholesterol, HDL cholesterol, anti-hypertensive medication use and 

current smoking status), for a final sample size of 8,884 (Appendix 3).  

2.2.3. Measures 

Key dependent variables:  non-fatal myocardial infarction (MI), fatal CHD, and ischemic stroke 

Our primary outcome variable was time-to-first ASCVD event, and our secondary 

outcome variable was time-to-first CHD event.  Incident CHD events included definite or 

probable non-fatal MI and definite CHD death.  Pooled ASCVD events included all pooled CHD 

events, as well as definite or probable non-fatal ischemic stroke and definite or probable fatal 

ischemic stroke. Incident CHD was determined by follow-up telephone surveys and by surveying 

discharge lists from local hospitals and death certificates for potential cardiovascular events 

(White 1996).  All identified events were adjudicated by ARIC investigators. Details on 
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ascertainment and classification of CHD events have been published elsewhere (White 1996). 

Individuals who did not experience an event within 10 years were censored at date of death, last 

known contact (if lost to follow-up) or after 10 years of follow-up time.  

Key independent variables: cardiovascular genetic risk 

We  calculated the 27-SNP cGRS reported by Mega et al. 2015 (Appendix 22)in each 

race/ethnicity using typed (e.g. Affy 6, Metabochip, or exome chip) or, if unavailable, 1000 

genomes imputed data as the sum of the dosage (or genotype for typed data) for each SNP in 

Appendix 22 weighted by the log of the odds ratio reported with the SNP in the table, as shown 

in Appendix 1.16  The SNPs, risk alleles and associated odds ratios used in the cGRS were selected 

from a literature review of GWAS- CHD outcomes studies completed by Mega et al. We excluded 

SNPs with poor imputation quality (oevar_imp <0.3) or with minor allele counts <10. We used 

race-specific quintiles to assign ordinal categories for the cGRS; quintile 1 was defined as low 

risk, quintiles 2-4 were defined to be intermediate risk and quintile 5 was high risk, in accordance 

with Mega et al. (2015). 

Covariates: traditional cardiovascular risk factors 

 We used age, gender, race, baseline total cholesterol, HDL cholesterol, systolic blood 

pressure, current smoking status and anti-hypertensive medication use in the statistical models 

as covariates to adjust for the independent effect of these variables on ASCVD outcomes.  

2.2.4. Analysis 

We calculated summary statistics to describe baseline ASCVD risk factors.  We used the 

Framingham risk equations to calculate 10-year CHD risk and the Pooled Cohort Equations to 
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calculate 10-year ASCVD risk (Chambless 2003; Goff 2013).  We calculated the total number of 

events, average time-to-event and observed event rate separately for each cGRS category.  

We used Cox proportional hazards regression to investigate the association between 

cGRS and both incident CHD and ASCVD outcomes, after adjusting for the effects of traditional 

ASCVD risk factors.   

Model development and performance   

We used the Grambsch & Therneau test for non-zero slope of Schoenfeld residuals over 

time to test the proportional hazards assumption for each model; a chi-square with p-value less 

than 0.05 indicates violation of the proportional hazards assumption (Hosmer and Lemeshow 

2008). We also visually examined plots of -ln(ln(survival plot)) vs ln(time) across each cGRS 

category; convergence, divergence or crossing of lines indicates violation of proportional hazards 

assumption.   The proportional hazards assumption was satisfied for a follow-up of 10 years.  

We used the Wald test to determine whether the effect of cGRS on model outcomes was 

statistically significant at p<0.05. Using the Wald test, we tested the hypothesis that the beta 

coefficients associated with intermediate cGRS and high cGRS were significantly different than 0, 

and we did this for both the pooled ASCVD model and the incident CHD model. Next, for each of 

the models described above, we tested a pre-specified interaction between race and the cGRS in 

predicting events by testing whether the addition of an interaction term between the 27-SNP 

cGRS and race resulted in a statistically significant increase in predictive power using a likelihood 

ratio test.   
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 We tested model discrimination by evaluating the change in Harrell’s C-statistic. We 

used likelihood ratio tests to assess if the addition of cGRS to each of the Cox models resulted in 

a statistically significant increase in the Harrell’s C-statistic at p<0.05.   

All statistical analyses were performed using Stata 14 (Stata, College Station, TX). 

2.3. Results 

2.3.1. Baseline ASCVD risk factors 

There were 8,884 participants included in the final analytic dataset: 8,884, 6,937 (79%) 

were white and 1,889 (21%) were black.  The average age for all participants was 53.7 ± 5.7 

years; the average total cholesterol was 210 ± 38 mg/dL and the average LDL cholesterol was 

133 ± 37 mg/dL.  Table 1 shows the baseline risk factors stratified by gender and race.  The 

average cGRS differed by race; for white participants, the cGRS was 0.87 ± 0.10, while the 

average cGRS for black participants was 0.79 ± 0.08. Average 10-year CHD risk and 10-year 

ASCVD risk also varied by race, as well as gender (Table 1).  Baseline ASCVD risk factors, 10-year 

CHD risk and 10-year ASCVD risk did not vary by cGRS category, apart from LDL cholesterol 

(Table 2).  LDL cholesterol was statistically significantly higher for the intermediate cGRS and high 

cGRS categories, compared to low cGRS, but the magnitude of the difference was small (low 

cGRS: 131 ± 37 mg/dL; intermediate cGRS: 133 ± 37 m/dL; high cGRS: 135 ± 36 mg/dL; p=0.01).  

2.3.2. Pooled ASCVD events and incident CHD events during 10 years of follow-up 

The observed event rates for both pooled ASCVD events and incident CHD events are 

shown in Table 3.  When we separated the outcomes by GRS, we observed higher event rates 

corresponding with higher cGRS for both pooled ASCVD events and incident CHD events.   
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Table 1: Summary statistics of baseline ASCVD risk factors and global risk scores, by gender and 
race 

 

2.3.3. Association between cGRS, pooled ASCVD outcomes and incident CHD at 10 years of 

follow-up 

Compared to individuals with low cGRS, intermediate cGRS and high cGRS were 

associated with 10-year pooled ASCVD and 10-year incident CHD outcomes; an intermediate 

cGRS was associated with a 1.32-fold increase in risk of ASCVD events (95% CI: 0.97-1.79), and a 

high cGRS was associated with a 1.47-fold higher risk (95% CI: 1.03-2.10) of ASCVD events (Table 

Variable of interest White (n=6,937) Black (n=1,889)  

 
Male 

(n=3,143) 
Female 

(n=3,794) 
Male 

(n=740) 
Female 

(n=1,149) 
 

Cardiovascular genetic risk 

Mean overall cGRS 0.89 ± 0.10 0.89 ± 0.10 
0.79 ± 
0.08 

0.79 ± 
0.08 

 

Cardiovascular disease risk factors 
Age at baseline (years) 54.3 ± 5.7 53.6 ± 5.7 53.1 ± 5.9 52.5 ± 5.6  

Total cholesterol at baseline 
(mg/dL) 

206 ± 36 212 ± 39 209 ± 41 213 ± 42  

HDL cholesterol at baseline 
(mg/dL) 

34 ± 10 42 ± 10 39 ± 12 41 ± 11  

LDL cholesterol at baseline 
(mg/dL) 

136 ± 34 130 ± 37 136 ± 40 133 ± 41  

Systolic Blood Pressure at 
baseline (mmHg) 

119 ± 15 116 ± 17 129 ± 21 126 ± 20  

Diastolic Blood Pressure at 
baseline (mmHg) 

74 ± 10 70 ± 10 83 ± 13 78 ± 12  

Current smokers (%) at baseline 24% 25% 37% 26%  
Anti-hypertensive medication 

(%) at baseline 
16% 20% 29% 39%  

BMI at baseline (kg/m2) 27.2 ± 3.4 26.0 ± 5.1 27.4 ± 4.5 30.1 ± 6.3  
Global cardiovascular risk scores  

10-year ASCVD risk (%) 9.9 ± 6.5 % 3.8 ± 3.2 
8.7 ± 7.5 

% 
7.3 ± 7.7  

10-year CHD risk (%) 10.9 ± 6.5 % 2.9 ± 3.5 5.5 ± 5.8% 3.8 ± 5.3  
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4, Figure 2).  However, when we examined the association between cGRS and incident ischemic 

stroke alone, the cGRS was not a statistically significant predictor of increased risk of ischemic 

stroke.  Finally, having an intermediate cGRS was associated with a 1.69-fold higher risk of 

incident CHD (95% CI: 1.15-2.49) and having a high cGRS was associated with a 1.89-fold increase 

in risk of incident CHD events (95% CI: 1.22-2.92) (Figure 2).  

 

Table 2: Baseline ASCVD risk factors, stratified by cGRS category 

*Baseline LDL varies significantly by cGRS category; p=0.01 
 

For each of the models described above, we tested whether the addition of an 

interaction term between the 27-SNP cGRS and race resulted in a statistically significant increase 

in predictive power using the likelihood ratio test.  Pre-specified testing for interaction with race 

were negative in both the 10-year pooled ASCVD model and the 10-year incident CHD model, 

Variable of interest Low cGRS 
Intermediate 

cGRS 
High cGRS  

Cardiovascular disease risk factors 
Age at baseline (years) 53.6 ± 5.7 53.7 ± 5.7 53.4 ± 5.7 

Total cholesterol at baseline 
(mg/dL) 

208 ± 38 210 ± 39 211 ± 38 

HDL cholesterol at baseline 
(mg/dL) 

38 ± 11 39 ± 11 38 ± 10 

LDL cholesterol at baseline (mg/dL) 131 ± 37* 133 ± 37* 135 ± 36* 
Systolic Blood Pressure at baseline 

(mmHg) 
119 ± 18 119 ± 18 119 ± 18 

Diastolic Blood Pressure at 
baseline (mmHg) 

74 ± 11 73 ± 11 73 ± 11 

Current smokers (%) at baseline 26% 25% 25% 
Anti-hypertensive medication (%) 

at baseline 
20% 22% 23% 

BMI at baseline (kg/m2) 27.1 ± 4.9 27.1 ± 5.0 27.1 ± 5.0 
Global cardiovascular risk scores  

10-year ASCVD risk (%) 7.0 ± 6.8 % 7.0 ± 6.2 % 6.9 ± 6.2%  
10-year CHD risk (%) 6.3± 6.6 % 6.3 ± 6.2 % 6.4 ± 6.5 %  
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thus, the final overall models did not include an interaction term between cGRS and race.  For 

pooled ASCVD outcomes, baseline LDL did not significantly improve model performance and was 

not included in the final model.  For incident CHD outcomes, the addition of baseline LDL to the 

model resulted in a statistically significant improvement (p<0.01); thus, we added baseline LDL to 

the final 10-year incident CHD model.  

Table 3: Fatal CHD and non-fatal MI events cGRS category: Number of events and average follow-
up time for 10-year follow-up 

Time-to-incident CHD 

cGRS category 

# of fatal 
CHD and 
non-fatal 
MI events 

Average follow-up 
time for events (years) 

Average follow-up 
time for events & 

non-events (years) 

Average 
event rate 
per 1000 

people per 
year 

Low risk (n=1,766) 31 5.99 ± 2.55 9.76 ± 1.05 1.8 
Intermediate risk 

(n=5,296) 
157 5.97 ± 2.83 9.68 ± 1.29 3.1 

High risk (n=1,764) 60 6.17 ± 2.72 9.72 ± 1.19 3.5 
All (n=8,826) 248  6.02 ± 2.76 9.70 ± 1.22 2.9 

Time-to-pooled ASCVD 

cGRS category 

# of fatal 
CHD, non-
fatal MI, 
ischemic 

stroke 
events 

Average follow-up 
time for events (years) 

Average follow-up 
time for events & 

non-events (years) 

Average 
event rate 
per 1000 

people per 
year 

Low risk (n=1,766) 51 5.96 ± 2.53 9.72 ± 1.16 3.0 
Intermediate risk 

(n=5,296) 
198 5.90 ± 2.83 9.64 ± 1.37 3.9 

High risk (n=1,764) 75 6.11 ± 2.75 9.68 ± 1.26 4.4 
All (n=8,826) 324 5.96 ± 2.78 9.66 ± 1.30 3.8 
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2.3.4. Improvement in discrimination for 10-year pooled ASCVD and 10-year incident CHD 

models 

The improvement in discrimination when adding cGRS to the pooled ASCVD model was 

not statistically significant (∆C-statistic= 0.0025; p=0.08) and the improvement in discrimination 

when adding cGRS to the incident CHD model was statistically significant but small ((∆C-statistic= 

0.0077; p<0.01) (Table 5).  

Table 4: Hazard ratios for cGRS and pooled ASCVD and incident CHD 

Time to first pooled ASCVD event ~ established 
risk factorsa 

 Time to first CHD event ~ established risk 
factorsb 

 HR 95% CI P 
valuec 

 Model HR 95% CI P 
valuec 

Low cGRS 1.0 
(ref) 

---   Low cGRS 1.0 
(ref) 

---  

Intermediate 
cGRS 

1.32 0.97-1.79   Intermediate 
cGRS 

1.69 1.15-
2.49 

 

High cGRS 1.47 1.03-2.10 P=0.03
4 

 High cGRS 1.89 1.22-
2.92 

P=0.00
3 

 

Table 5: Improvement in discrimination for pooled ASCVD and incident CHD models 

Time to first pooled ASCVD event ~ 
established risk factorsa 

 Time to first CHD event ~ established risk 
factorsb 

Model C 
statistic 

Delta P valuec  Model C 
statisti

c 

Delta P valuec 

Referenc
e 

0.7629 -- --  Referenc
e 

0.7694 -- -- 

+ cGRS 0.7654 0.0025 P=0.087  + cGRS 0.7771 0.007
7 

P=0.004 

aAdjusted for traditional risk factors: age, gender, SBP, treatment for hypertension, smoking, TC, 
HDL-C, race 
bLDL-C is an additional covariate in the incident CHD model 
cP-value is from Likelihood Ratio test comparing nested vs. non-nested models 
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Figure 2: Kaplan-Meier survival curves for time-to-CHD (A) 
 and time-to-ASCVD (B), stratified by cGRS category 

 
 

 

2.4. Discussion 

Overall, the 27-SNP cGRS was significantly associated with incident CHD and pooled 

ASCVD outcomes at 10 years in a diverse, population-based cohort. Furthermore, the 27-SNP 

cGRS offered a statistically significant, albeit very small, improvement in discrimination for the 

10-year incident CHD model; however, addition of cGRS did not significantly improve 

discrimination of the 10-year pooled ASCVD model.   

Pooled ASCVD outcomes, as opposed to CHD outcomes alone, are commonly used to 

assess global cardiovascular disease risk, because atherosclerosis contributes to higher risk of 

ischemic stroke as well as CHD.  We have shown that there is a significant association between 

the 27-SNP cGRS and pooled 10-year ASCVD outcomes; this relationship is important when 

considering how we can integrate the information provided by cGRS into existing risk prediction 

models, such as the Pooled Cohort Equations, which provide predicted risk estimates for pooled 

10-year ASCVD outcomes (Goff 2013).   
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Although the association between cGRS and pooled 10-year ASCVD outcomes was 

significant, when we looked at ischemic stroke alone as an outcome, we did not observe any 

association between cGRS and incident ischemic stroke at 10 years.  This finding is not surprising, 

given that Mega et al. developed the cGRS based on SNPs that had been shown to be related to 

incident CHD in prior GWAS studies (Mega 2015).  Some of the SNPs included in Mega et al’s risk 

score likely have a marginal effect on ischemic stroke, but that may reflect their effect on vessel 

wall pathology and/or thrombosis factors (Vasan 2006). GWAS studies to date have been largely 

unsuccessful at identifying loci significantly associated with stroke; this may be due to the 

inclusion of both ischemic and hemorrhagic stroke as outcomes, which may have slightly 

different underlying pathophysiology and predisposing risk factors (Sierra 2011).  However, one 

analysis of shared genetic susceptibility found substantial overlap in the genetic risk associated 

with ischemic stroke and coronary artery disease (Dichgans 2014), which may partly explain our 

observation that cGRS was significantly associated with pooled ASCVD outcomes.  To further 

improve the 27-SNP cGRS’ ability to predict pooled ASCVD beyond traditional risk factors, future 

research is necessary to identify loci that may have pleiotropic, as well as independent, effects 

on both CHD outcomes and ischemic stroke, potentially through a GWAS of both combined 

ischemic stroke and CHD outcomes. 

Last, in the overall model that included white and black participants, cGRS was associated 

with incident CHD at 10-years follow-up and the magnitude of association between cGRS and 

incident CHD was similar to what was observed by Mega et al. This was an unexpected result 

given that we hypothesized a priori that Mega et al’s cGRS would perform poorly in black 

Americans due to race/ethnicity specific linkage disequilibrium patterns and population-specific 
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variants (Franchescini 2014).  However, it is possible that Mega e al. identified causal variants 

versus markers that are simply close to the causal variants, which could explain why the 

association between the cGRS and incident CHD was also significant in a biracial population.  

One limitation of our analysis is that we used a cGRS that only includes 27 SNPs; some 

other analyses have used as many as 152 SNPs to help further increase the effect of the cGRS at 

improving overall risk prediction (de Vries 2015; Deghan 2016).  However, these risk scores have 

generally not offered substantial improvements in risk prediction compared to the 27-SNP cGRS 

(Tada 2015).  Another limitation of the 27-SNP cGRS is that there are no SNPs included that have 

been shown to be associated with incident ischemic stroke.  We considered adding additional 

SNPs to the cGRS to expand prediction potential to ischemic stroke, but recent GWAS consortia 

were unable to identify any loci that were significantly associated with incident ischemic stroke 

(Traylor 2012).   Another limitation was that we excluded all individuals who reported statin use 

at visits 1-4, which eliminated the participants at highest risk of CHD and ASCVD events.  While 

this limitation should be considered for determining generalizability of our findings, we believe 

excluding statin users was appropriate because we are most interested in considering cGRS 

testing for targeting statin therapy in the primary prevention of ASCVD.   

 
2.5. Conclusions 

 We have demonstrated that a 27-SNP cGRS is associated with incident CHD and pooled 

ASCVD events in a biracial, population-based study cohort free of diabetes at study baseline. 

While this association was significant, the improvement in discrimination, when compared to 

models that did not include cGRS, was very small.  However, even small improvements in risk 

prediction may be valuable enough to warrant measurement, depending on the overall balance 
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of benefits, harms and costs (Pletcher 2011).  Further research, such as decision-analytic 

modeling, is necessary to achieve the overall goal of demonstrating the clinical utility of cGRS 

testing in diverse populations. 
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CHAPTER 3: INTERPRETING A 27-SNP CGRS IN COMBINATION WITH TRADITIONAL RISK FACTORS 
FOR PREDICTION OF ASCVD  

 

3.1. Background 

Inclusion of novel cardiovascular disease risk factors to improve prediction of ASCVD risk is 

controversial and the subject of much ongoing research (Cainzos-Achirica 2015; Goff 2013; 

Yeboah 2015; Yeboah 2016; Zamarano 2016).  For example, one area of intense research is the 

use of cardiovascular genetic risk information in clinical decision-making (Kullo 2016; Paynter 

2016; Tikkanen 2013; Krarup 2015; Shah 2016).  Genetic factors may reflect genetic susceptibility 

to accelerated atherosclerosis, related potentially to errors in cholesterol metabolism, 

thrombosis and/or other endothelium-related factors (Vasan et al. 2006), and measuring these 

factors may improve ASCVD risk prediction beyond traditional risk factors (Antiochos 2016; Kullo 

2016; Paynter 2016; Tikkanen 2013; Krarup 2015).   

Genetic risk scores that aggregate information about the effect of many genetic variants 

(SNPs) on disease outcomes (Smith 2015) may be particularly useful for ASCVD risk prediction.  In 

2015, Mega et al. demonstrated a significant association between a 27-SNP cGRS and 

cardiovascular disease outcomes that was independent of traditional risk factors. Specifically, 

compared to individuals with low cGRS, those with intermediate and high cGRS had a1.34-fold 

and 1.72-fold increase in risk of incident coronary heart disease events for intermediate and high 

cGRS, respectively, over an average follow-up time of 3.6 years (Mega 2015).  Yet, it remains 

unclear how to integrate information from the cGRS with a 10-year ASCVD risk estimate using 
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the current guideline-recommended absolute risk assessment algorithm, the Pooled Cohort 

Equations, to produce clinical actionable information (Goff 2013).   

In order to use novel risk factors, such as the 27-SNP cGRS developed by Mega et al., in 

combination with existing ASCVD risk prediction estimates, we need to know the expected 

distribution of the cGRS, conditional on traditional ASCVD risk factors. For example, 

race/ethnicity, which is known to affect underlying population frequency of risk alleles, may 

modify the expected distribution of the cGRS (Franchescini 2014). Once we know the expected 

distribution of cGRS, we can integrate information about the cGRS into existing risk prediction 

models, using previously developed methods, to produce expected post-test risk estimates for 

individual patients (Kooter 2011; Pletcher 2011; Pletcher 2013; Jarmul 2015). These analyses and 

methods are necessary to successfully translate improved risk prediction offered by novel risk 

factors, such as the 27-SNP cGRS, into actionable information that physicians can use to guide 

clinical decision-making around preventive therapies, such as statins or aspirin.  

In the current study, we derived the expected distribution of cGRS using genome-wide 

genotype data and traditional ASCVD risk factors collected by the National Longitudinal Study of 

Adolescent to Adult Health (Add Health) in non-diabetic, ASCVD-free individuals. We then 

demonstrate, using previously described methods, how different cGRS scores would modify 

pretest 10-year ASCVD risk estimates in different clinical scenarios (Pletcher 2013; Jarmul 2015).  
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3.2. Methods 

3.2.1. Data Source and Sample 

Data Source 

Add Health is a nationally representative, longitudinal school-based study of a nationally 

of US adolescents who were in grades 7 to 12 during the 1994-1995 school year (Harris 2013). 

The sample of 80 high schools and 52 middle schools was representative of US schools with 

respect to region of the country, degree to which the location was urbanized, school size, school 

type, and students’ race/ethnicity. The baseline sample (Wave I) included 20,745 adolescents 

selected from student rosters; Add Health oversampled of adolescents with disabilities and 

racial/ethnic minorities (Chinese, Cuban, Puerto Rican, and Black adolescents) to ensure 

adequate representation of these groups. Wave IV data collection was completed between 2008 

and 2009.   

Sample 

We included all participants with complete phenotype data and who gave their consent 

to collect genotype data (n= 7,387).  We excluded participants who were pregnant at Wave IV (n 

= 240), self-reported a diagnosis of heart disease (n=62), for diabetes (n=201), lacked valid 

sample weights (n= 290), and those missing covariate data for a final sample of 4,116 (Appendix 

7).  
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3.2.2. Measures 

Data collection included in-home interviews, anthropometric measurements and biologic 

specimens. Medication use during the preceding four weeks was determined through self-report 

during the in-home interview. Three blood pressure measurements were obtained at 30-second 

intervals after a 5-minute seated rest; the latter two readings were averaged to calculate resting 

SBP.  For measurement of lipids and whole genome sequencing during Wave IV, trained and 

certified field interviewers collected samples of capillary whole blood via finger prick, which were 

then shipped, assayed and archived as dried blood spots (Whitsel 2013). TC and HDL cholesterol 

concentrations (mg/dL) were rank ordered and reported as deciles (Whitsel 2013).   

We calculated the 27-SNP cGRS (Mega et al., 2015) using imputed data from the Illumina 

Omni 1.0 or 2.5 arrays imputed to 1000 genomes phase three reference panes and estimated as 

the sum of the dosage for each SNP (Appendix 2) weighted by the log of the odds ratio reported 

with the SNP in the table (Appendix 1).  The SNPs, risk alleles and associated odds ratios used in 

the cGRS were selected from a literature review of GWAS- CHD outcomes studies completed by 

Mega et al. We excluded SNPs with poor imputation quality (oevar_imp <0.3) or with minor 

allele counts <10. 

Gender, age, SBP, use of antihypertensive medications, smoking status and diabetes 

were determined from interview data, anthropometric measurements, and biological specimens 

taken at Wave IV. We defined current smoking status as self-reported cigarette use in the 30 

days preceding the interview. We defined diabetes as self-report of diabetes diagnosis by a 

health provider (except during pregnancy).  Anti-hypertension medication use was based on self-

reported use of an anti-hypertensive agent in the past year.  Race/ethnicity was reported at 
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Wave I; participants were asked if they were Hispanic and to select a racial category (White, 

Black/African American, American Indian/Native American, Asian/Pacific Islander, or other).  The 

final race/ethnicity categories were “Non-Hispanic White/ Other”, “Non-Hispanic Black”, and 

“Hispanic”.  The final sample contained only 1 individual who identified as Asian, therefore we 

included that individual in the Non-Hispanic White/Other category. TC and HDL cholesterol 

concentrations (mg/dL) were reported as deciles in the Add Health data, (Whitsel 2013).   

3.2.3. Analysis 

We used a cross-sectional study design to analyze data from individuals with valid sample 

weights at Wave IV.  We calculated means +/- standard deviations and proportions +/- linearized 

standard errors to describe the sample.   

We developed a prediction model for the expected distribution of cGRS, as a function of 

traditional ASCVD risk factors using linear regression analysis (Equation 1). Predictor variables 

included gender, race/ethnicity, age, SBP, TC, HDL cholesterol, use of antihypertensive 

medication, and smoking.   For the regression analysis, we divided continuous variables (age and 

SBP) by 10 and centered the TC and HDL cholesterol values to decile 5 (e.g. individuals in decile 1 

would be assigned a value of -4 and individuals in decile 9 would be assigned a value of 4).   

Equation 1: cGRS prediction model 
 

= + ∗ +  ∗ +  ∗ + ∗ + ∗

+ ∗ + ∗ +  ∗

+   +   
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Given the large number of potential interaction terms and functional forms of our 

candidate predictor variables, we used an unbiased model selection process with 10-fold cross-

validation that we previously developed (Jarmul 2015; Pletcher 2011; Hastie 2009).  The 

unbiased model selection algorithm tests models with all possible combinations of predictors, 

with up to 2 pairwise interactions (0, 1, or 2) and up to 1 quadratic term (0 or 1) for each 

continuous variable.  We assessed model performance using the cross-validated R2.  

The cross-validated R2 is preferable to the unadjusted R2 because adding predictor 

variables will not automatically increase in the value of the statistic; this allows us to compare 

the performance of models with different total numbers of predictor variables (Hastie 2009). 

Furthermore, the cross-validation process uses subsets of the data as training sets to calculate 

many sets of coefficient estimates (in this case, 10 sets) and then compares each set of predicted 

cGRS values (from the 10 sets of coefficient estimates) to actual cGRS values in an unused subset 

of the data (validation set). The cross-validated R2 will increase as the correlation between 

average predicted cGRS values and the actual cGRS values increases, but will be subject to a 

penalty if the variation in predicted cGRS values across the training sets is large.  We have 

previously used these methods to describe the distribution of expected coronary artery calcium 

(CAC) and expected hemoglobin A1C (Pletcher 2013; Jarmul 2015).  

To integrate the cGRS into existing ASCVD risk prediction models, we need to know the 

relationship between different thresholds of the cGRS and ASCVD events, as well as how those 

specific thresholds are tied to absolute values of the cGRS in a target population.  In Mega et al.’s 

analysis, low risk is defined as quintile 1, intermediate risk is defined as quintiles 2-4 and high risk 

is defined as quintile 5; corresponding hazard ratios for low, intermediate and high cGRS were 
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1.0 (reference), 1.34 and 1.72, respectively (Mega 2015). These hazard ratios do not include any 

relationship between the 27-SNP cGRS and ischemic stroke, because Mega et al. only looked at 

coronary heart disease (CHD) outcomes (fatal CHD and nonfatal MI).  For our analysis, we 

assumed that the 27-SNP cGRS was not significantly associated with ischemic stroke so that we 

could to integrate into the PCEs, which predict pooled ASCVD outcomes.  

In addition, because Mega et al.’s analyses were conducted in predominantly non-

Hispanic white individuals, we used race-specific thresholds; i.e. we created separate quintiles 

for non-Hispanic white, non-Hispanic black, non-Hispanic Asian and Hispanic participants based 

on the distribution of cGRS within those populations.  We used example clinical scenarios to 

demonstrate the effect of integrating cGRS into existing 10-year predicted risk equations, using 

methods described in detail elsewhere (Appendix 8; Kooter 2011; Pletcher 2011; Jarmul 2015; 

Pletcher 2013). We created an Excel-based calculator to calculate pretest 10-year ASCVD risk, 

expected cGRS distribution and post-test 10-year ASCVD risk for patients with a set of user-

defined inputs, including age, sex, race/ethnicity, systolic blood pressure, total cholesterol, HDL-

cholesterol, current smoking, and hypertension treatment status. For the sensitivity analysis, we 

replaced the deciles reported for TC and HDL cholesterol variables with absolute values 

calculated from non-diabetic, ASCVD-free individuals aged 25-35 years in the 2013-2014 

NHANES sample, a nationally representative sample of U.S. individuals.  The specific values used 

in place of the deciles are reported in the supplementary materials (Appendix 9). We found no 

differences in the overall cross-validated r2 after this change.  
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All statistical analyses were performed using Stata 14 (Stata, College Station, TX). We 

accounted for the complex design by using sampling weights, clustering by the primary sampling 

unit (schools) and the U.S. region. 

3.3. Results 

3.3.1. Summary statistics 

Of the 4,116 participants in the final sample, 48% were women, 4% were Hispanic, 76% 

non-Hispanic white/other, 20% non-Hispanic black, and <1% were non-Hispanic Asian. The 

average age of participants was 29.0 +/- 1.7 years.  Both cGRS values and other risk factor levels 

differed across race/ethnicity and sex (Table 6).   

Table 6: Summary statistics for Add Health participants 

Characteristics 
Hispanic 
(n=158) 

NH White/ Other 
(n=3.131) 

NH Black 
(n=827) 

Age (years) 29.5 ± 1.8 29.3 ± 1.8 29.4 ± 1.7 
Male (%) 58% ± 6% 51% ± 1% 49% ± 2% 

SBP (mmHg)*  124 ± 14 125± 13 127± 15 

DBP (mmHg)* 80 ± 11 80 ± 10 81 ± 11 

BMI (kg/m2) 30.3 ± 6.8 28.5 ± 7.1 31.1 ± 8.4 
Daily smoker (%)‡ 15 ± 3  29 ± SE 21 ±   

HTN dx (%)‡ 10 ± 2  12 ± 1 13 ± 1 
HLD dx (%)‡ 7 ± 2 9 ± 1 5 ± 1 

Anti-HTN meds (%)‡ 0.5 ± 0.5 % 0.9 ± 0.1% 1.3 ± 0.4 %  
Mean HbA1C (%) 5.7 ± 0.6 5.5 ± 0.5 5.9 ± 0.7 

Mean cGRS 0.84 ± 0.11 0.86 ± 0.10 0.73 ± 0.09 
Values are means ± standard deviation (except where otherwise noted)  
*NH, Non-Hispanic; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass 
index; HTN, hypertension diagnosis; HLD, hyperlipidemia diagnosis; HbA1C, hemoglobin A1C; 
cGRS, cardiovascular genetic risk score 
‡ prevalence es mates ± linearized standard errors 
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3.3.2. Main analyses 

We examined the top 20 models (ranked by cross-validated R2) chosen through the 

unbiased model selection process. For comparison purposes, Model 1 only includes 

race/ethnicity and Model 2 includes all traditional ASCVD risk factors, without any interaction 

terms (Table 7).  The cross-validation selector, or the top performing model, included the 

predictor variables race/ethnicity, HDL, TC, HDL*race/ethnicity, smoking status, smoking 

status*race/ethnicity, and TC*TC; the beta coefficients and 95% CI are shown in Appendix 9 

(cross-validated R2 of 0.180). Race/ethnicity alone was a significant predictor of cGRS and 

explained a fair amount of the variation in cGRS (Table 7; Model 1: cross-validated R2 of 0.177). 

In comparison, the model that included all traditional ASCVD risk factors (Table 7; Model 2) had a 

cross-validated R2 of 0.172, indicating worse performance than the model that included 

race/ethnicity alone.  After evaluating all options, we chose to use Model 1 as the final model for 

the sake of parsimony and because, apart from race/ethnicity, the beta coefficients for the 

remaining covariates were extremely small and unlikely to change the actual expected cGRS 

distribution. 
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Table 7: Comparison of prediction models for expected cGRS distribution 

Model Predictors 
Race/ ethn 

only 
Quintile-based 

TC/HDL 
Absolute 
TC/HDL 

Unbiased model 
selector 

Β (95% CI)* Β (95% CI)* Β (95% CI)* Β (95% CI)* 

Hispanic‡ 
-0.024 (-

0.053, 0.006) 
-0.024 (-0.054, -

0.005) 
-0.024 (-0.054, 

0.005) 
-0.016 (-0.048, 0.016) 

Non-Hispanic 
black‡ 

-0.138 (-
0.147, -0.129) 

-0.137 (-0.146, -
0.128) 

-0.137 (-0.146, 
-0.128) 

-0.139 (-0.148, -0.129) 

Male (1=Yes)  
0.001 (-0.009, 

0.010) 
0.001 (-

0.009,0.010) 
 

SBP, per 10 
mmHg 

 
0.0002 (-0.003, 

0.003) 
0.0001 (-0.003, 

0.003) 
 

TC, per quintile  
0.001 (-0.0003, 

0.003) 
-- 0.001 (-0.003, 0.001) 

HDL, per quintile  
-0.001 (-0.003, 

0.001) 
-- 0.001 (-0.0001, 0.003) 

TC, per 10 mg/dL  -- 
0.001 (-0.0002, 

0.003) 
 

HDL, per 10 
mg/dL 

 -- 
-0.002 (-0.007, 

0.002) 
 

Anti-HTN 
medication  

 
0.001 (-0.042, 

0.045) 
0.001 (-0.042, 

0.044) 
 

Age, per 10 years  
-0.002 (-0.025, 

0.021) 
-0.002 (-

0.0002, 0.003) 
 

Daily Smoker 
 0.001 (-0.008, 

0.010) 
0.001 (-0.008, 

0.01) 
0.001 (-0.008, 0.011) 

HDL*NHB    0.002 (-0.001, 0.006) 
HDL * Hispanic    -0.008 (-0.021, 0.005) 
Daily Smoker 
(yes) * NHB 

   
0.006 (-0.016, 0.027) 

Daily smoker (yes) 
* Hispanic 

   
-0.070 (-0.134, -0.005) 

TC * TC    0.001 (-0.000, 0.001) 

Constant 
0.863 (0.858, 

0.868) 
0.866 (0.797, 

0.934) 
0.855 (0.782, 

0.928) 
0.869 (0.851, 0.866) 

Cross-validated R2 0.177 0.172 0.172 0.180 
The standard deviation of the residuals for the final cGRS model is 0.056 
*Standard errors and 95% confidence intervals (CI) calculated using Taylor series linearization 
method 
‡ vs. non-Hispanic white/other (reference category) 
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We investigated the effect of integrating information from cGRS with information from 

other ASCVD risk factors for several example clinical scenarios to help understand the 

implications of using cGRS for risk prediction. Incorporating cGRS post-test risk increase from 

having a high cGRS tends to approximate the risk increase from being 5 years older (Table 8).  

For example, a 50-year old non-Hispanic black non-smoker with TC/HDL of 190/50 mg/dL and 

untreated SBP of 125 mmHg has 10-year pretest ASCVD risk of 5.0%.  If they have a high cGRS, 

the expected post-test 10-year ASCVD risk estimate increases to 6.4%.  In comparison, the same 

individual would have a pretest 10-year ASCVD risk of 6.3% at age 55 years old.  

We also examined the effect of race/ethnicity on integration of cGRS with other ASCVD 

risk factors (Table 9).  Integrating cGRS with traditional risk factors did not result in clinically 

significant differences in post-test predicted risk between the different race/ethnicities.  The 

clinical scenarios show that regardless of race/ethnicity, the difference between pretest and 

post-test risk is, at most, 1.6 percentage points (Table 9).  
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Table 8: Example clinical scenarios showing the effect of cGRS and age on expected proportion 
and post-test ASCVD risk 

 

Clinical 
scenari

o 

Ag
e 
(y
rs) 

Race
/ 

ethni
city 

Gend
er 

Smok
er? 

TC/
HDL 
(mg/
dL) 

SBP 
(mmHg) 

Prete
st 

ASCV
D 

risk 

cGRS 
category 

Race-specific 
thresholds 

Proportio
n in cGRS 
category 

Post-test 
ASCVD 

risk 

1 40 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea

ted) 

2.9 
% 

Low 0.11 2.2 % 
Intermedi
ate 

0.77 2.9 % 

High 0.12 3.7 % 

2 45 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea

ted) 

3.9 
% 

Low 0.11 2.9 % 
Intermedi

ate 
0.77 3.9 % 

High 0.12 5.0 % 

3 50 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea

ted) 

5.0 
% 

Low 0.11 3.7 % 
Intermedi

ate 
0.77 5.0 % 

High 0.12 6.4 % 

4 55 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea

ted) 

6.3 
% 

Low 0.11 4.7 % 
Intermedi

ate 
0.77 6.3 % 

High 0.12 8.0 % 

5 60 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea
ted) 

7.8 
% 

Low 0.11 5.8 % 
Intermedi

ate 
0.77 7.7 % 

High 0.12 9.9 % 

6 65 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea

ted) 

9.4 
% 

Low 0.11 7.0 % 
Intermedi

ate 
0.77 9.3 % 

High 0.12 12.0 % 

7 70 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea

ted) 

11.1 
% 

Low 0.11 8.3 % 
Intermedi

ate 
0.77 11.1 % 

High 0.12 14.2 % 

8 75 NHB Male 
Non-
Smo
ker 

190/
50 

125 
mmHg 
(untrea

ted) 

13.1 
% 

Low 0.11 9.7 % 
Intermedi

ate 
0.77 13.0 % 

High 0.12 16.7 % 
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Table 9: The effect of race/ethnicity on the proportion of individuals in each cGRS category and 
expected post-test ASCVD risk 

 

3.4. Discussion 

We have shown that the expected cGRS distribution varies based on race/ethnicity, but 

not on traditional ASCVD risk factors, as expected.  When modeled separated for each 

race/ethnicity, expected cGRS was orthogonal to the remaining traditional ASCVD risk factors.  

Integrating information from cGRS with information from other ASCVD risk factors has modest 

effects on post-test predicted ASCVD risk; the post-test risk increase from having a high cGRS 

tends to approximate the risk increase from being 5 years older.  Furthermore, while 

race/ethnicity was a statistically significant predictor of cGRS, integrating cGRS with traditional 

risk factors did not result in clinically significant differences in post-test predicted risk between 

the different race/ethnicities.   

Clinic
al 

scena
rio 

Age 
(yrs) 

Race/ 
ethni
city 

Gend
er 

Smok
er? 

TC/HDL 
(mg/dL) 

SBP 
(mmH

g) 

Prete
st 

ASCV
D 

risk 

cGRS 
category 

Proport
ion in 
cGRS 

categor
y 

Post-
test 

ASCVD 
risk 

1 40 
NHW

/ 
other 

Male 
Smok

er 
200/45 

135 
mmHg 
(treat

ed) 

5.5 
% 

Low 0.08 4.1 % 
Intermedi

ate 
0.86 5.5 % 

High 0.06 7.1 % 

2 40 NHB Male 
Non-
Smok

er 
200/45 

130 
mmHg 
(treat

ed) 

5.5 
% 

Low 0.11 4.1 % 
Intermedi

ate 
0.77 5.4 % 

High 0.12 7.0 % 

3 40 
Hispa

nic 
Male 

Non-
smok

er 
200/45 

135 
mmHg 
(treat

ed) 

5.5 
% 

Low 0.07 4.1 % 
Intermedi

ate 
0.89 5.6 % 

High 0.04 7.1 % 
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Other nontraditional risk factors, such as CAC and hemoglobin A1C, have been shown to 

improve ASCVD risk prediction (McClelland 2015; Danesh 2014).  One potential advantage of 

using a cGRS is that the value will not change throughout an individual’s lifetime.  For example, if 

60-year old individual found out they had a high cGRS, but the overall risk was still relatively low, 

future risk calculations would still be able to account for the extra information from the cGRS.  

For example, if the individual shown in Appendix 10 was found to have a high cGRS, they might 

not act on that information at age 50, where the post-test risk is 6.4%; however, they may 

decide to start statin therapy at age 60, when their post-test risk, conditional on the high cGRS, is 

9.9%.  Risk factors, such as CAC or HbA1C, may have changed substantially over the course of 10 

years.   

Previous work has shown that cardiovascular genetic risk varies between white and black 

populations (Morrison 2007; Franceschini 2014;), but to our knowledge, no other work has 

shown the expected cGRS distributions for Mega et al.’s 27-SNP cGRS in non-Hispanic black or 

Hispanic populations. Given that the 27-SNP cGRS was developed in a primarily non-Hispanic 

white population, its use, in combination with traditional ASCVD risk factors, in a diverse 

population may lead to less accurate ASCVD risk prediction for individuals of race/ethnicities 

other than non-Hispanic white.  

Our analysis is an intermediate step toward the larger goal of evaluating the clinical utility 

of cGRS measurement for ASCVD risk assessment.  We found that incorporating cGRS with 

traditional risk factors had only modest effects on predicted risk; previous studies have found 

that adding cGRS does little to improve discrimination and reclassification (de Vries 2015; 

Morrison 2007; Tada 2015).  However, even measures of improved risk prediction, such as 
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discrimination and reclassification, are unable to fully evaluate the clinical utility of cGRS.  Such 

an evaluation will require the use of decision modeling to assess the costs, risks, and benefits, 

while considering the cost of cGRS testing, health impact (e.g., incidence and severity of the 

disease or quality of life), and clinical decisions that might change with measurement of the risk 

factor (e.g., preventative therapies or treatments) (Pletcher 2011).  While the effects of cGRS on 

expected post-test risk were small, even small changes in risk prediction may be valuable enough 

to warrant measurement if the cost and harms are low; our next step is to perform evaluate the 

clinical utility of cGRS testing using decision modeling, as we have done previously for coronary 

artery calcium scanning (Pletcher 2014).  Cost-effectiveness analyses are often sensitive to 

changes in the population prevalence of biomarkers or conditions, especially when evaluating 

primary prevention or screening strategies (Kooter 2011; Pletcher 2014). Furthermore, genetic 

markers of risk can vary substantially between race/ethnicities; thus, it is important for modelers 

to build in these differences to obtain valid model outputs.  

Finally, it is important to consider that implementation of genetic risk testing (or any 

other novel risk factor) in a clinical setting has many barriers; one such barrier is clinicians’ ability 

to easily interpret test results in combination with traditional clinical risk factors.  The included 

online Excel calculator, provide an example of how to give clinicians the ability to calculate the 

expected post-test risk prior to ordering genetic risk testing, as well as for interpreting results 

from genetic risk testing. 

One limitation of our analysis is that participants in the Add Health study are generally 

younger than individuals for whom ASCVD risk prediction is indicated (40-79 years old).  

However, given that there were no significant age interaction effects and that race/ethnicity 
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does not vary by age, we would expect our findings to replicate in older individuals.  Another 

limitation is the low number of Hispanic participants in our analytic sample. Although we 

adjusted point estimates and regression models using sample weights, the low number of 

participants with genetic data limits our ability to fully understand and describe the distribution 

of cardiovascular genetic risk in this population.  Finally, another limitation is the use of quintiles 

for reporting TC and HDL values. However, in our sensitivity analyses, the substitution of 

absolute TC and HDL values from the 2013-2014 NHANES sample did not substantially improve 

performance of the prediction model for expected cGRS.  

3.5. Conclusions 

Our analysis is an intermediate step toward the larger goal of evaluating the clinical utility 

of cardiovascular genetic risk testing for ASCVD risk assessment. We developed a prediction 

equation for expected cGRS distribution conditional on traditional ASCVD risk characteristics; 

using this prediction equation, we demonstrate how an individual patient’s expected cGRS 

distribution can be incorporated into predicted 10-year ASCVD risk by calculating post-test 

ASCVD risk estimates for a selection of clinical scenarios.  Our study is a necessary intermediate 

step before conducting more comprehensive cost–effectiveness analyses that will assess the 

utility of cGRS testing in ASCVD primary prevention and the larger question of the utility of 

precision medicine for improving population health.  
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CHAPTER 4: CARDIOVASCULAR GENETIC RISK TESTING FOR TARGETING STATIN THERAPY IN THE 
PRIMARY PREVENTION OF ASCVD: A COST-EFFECTIVENESS ANALYSIS  

 

4.1. Introduction 

Atherosclerotic cardiovascular disease (ASCVD) affects around 11.2% of Americans and, in 

2010, accounted for nearly $64 billion in health care costs (Heidenreich 2013).  Statins, a group 

of highly efficacious lipid-lowering agents, significantly reduce the risk of MI, stroke and all-cause 

mortality, and are recommended as preventive therapy in non-diabetic, ASCVD-free individuals 

who have a 10-year predicted ASCVD risk (calculated using the Pooled Cohort Equations, or 

PCEs) greater than or equal to 7.5% (Goff 2013; Stone 2013).  

However, the PCEs alone may not be optimal for guiding statin treatment decisions in 

individuals close to the 7.5% treatment threshold, given the wide variance inherent in individual-

level risk estimates and variation in patient preferences for daily medication use (McEvoy 2014; 

Amin 2014; Yeboah 2015; Hutchins 2015).  Furthermore, the 7.5% threshold is based on expert 

opinion, rather than evidence from cost-effectiveness analyses (Goff 2013). Apart from the 

threshold, the 2013 ACC/AHA guidelines on ASCVD risk reduction suggest testing for 

nontraditional risk factors—such as coronary artery calcium (CAC), ankle-brachial index and high 

sensitivity C-reactive protein—to provide information about other aspects of risk not covered by 

traditional risk factors, such as atherosclerotic burden or vessel reactivity, and to assist clinicians 

and patients during shared decision making about statin initiation (Stone 2013).  Although there 

is no consensus on which nontraditional risk factors are most clinically useful or how to interpret 



41 
 

risk factor test results in the context of existing ASCVD predicted risk estimates, decision 

modeling can be used to help determine clinical utility of testing for new nontraditional risk 

factors, as has been previously done for CAC scanning (Pletcher 2014; Roberts 2015).  

Cardiovascular genetic risk testing provides the opportunity to more precisely identify 

individuals at high risk for developing ASCVD for whom preventive therapy, such as statins, can 

be directed (O’Donnell 2016; Kullo 2016; Paynter 2016; Goldstein 2014; Tikkanen 2013; Krarup 

2015; Shah 2016; Morrison 2007; de Vries 2016).  An individual’s cGRS may reflect genetic 

susceptibility to accelerated atherosclerosis, related potentially to errors in cholesterol 

metabolism, thrombosis and/or other endothelium-related factors (Vasan 2006). In 2015, Mega 

et al. demonstrated a significant association between a 27-SNP cGRS and cardiovascular disease 

outcomes (Mega 2015); this 27-SNP cGRS, as well as other cGRSs, have been shown to be 

associated with ASCVD outcomes and to marginally improve ASCVD risk prediction over 

traditional ASCVD risk factors; however, whether their impact on predicted risk produces 

important differences in clinical decision-making regarding statin initiation is unclear (Tada 2015; 

Kullo 2016; Paynter 2016; Goldstein 2014; Tikkanen 2013; Krarup 2015; Shah 2016; Morrison 

2007; de Vries 2016).  

In the absence of large, generalizable randomized controlled trials comparing clinical 

management with and without additional testing for novel risk factors, clinical decision analysis is 

a method used to explicitly compare alternative clinical options regarding their relative 

downstream risks, benefits and costs (Pletcher 2013; Hlatky 2014; Cook 2007).  Here, we have 

used decision analysis and a state transition model to evaluate the clinical utility and cost-

effectiveness of cGRS testing for targeting statin therapy in the primary prevention of ASCVD.  
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4.2. Methods 

4.2.1. Overview and model structure 

The UNC-RTI CHD Prevention Model is a state-transition Markov model that can be used 

to compare incidence of ASCVD, mortality, quality of life, and costs with and without a 

prevention intervention, for specific clinical scenarios (Pletcher 2014).  In the model, a specific 

clinical scenario is defined by age, sex, and ASCVD risk factors, including SBP, TC, HDL cholesterol, 

smoking status and anti-hypertensive medication use. A cohort of 10,000 individuals with these 

characteristics begins in the healthy state and then may transition every 12 months (Figure 3). 

Myopathy, angina, MI, and stroke are modeled as separate health states; costs, quality of life, 

and mortality rates differ in each state.  The probability of transitioning from healthy to angina, 

myocardial infarction and stroke is determined by the Framingham risk models for each of those 

health states (Anderson 1991). We chose to include angina as an outcome (even though angina 

is not a part of the 10-year ASCVD risk calculation) because of the clinical relevance of angina 

and the significant reductions in quality of life as well as utilization that can be incurred when 

individuals experience angina.  
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Figure 3: Model health states and transitions 

 

Figure 4:  Decision tree for test/treat strategies 

 
 
 
 
 
 
 



44 
 

Table 10: Base case model parameters 

Parameters Base Case Range Source 
Costs for incident events: 

Myocardial infarction $41,797 +/- 20% Pletcher 2014 
Stroke $54,847 +/- 20% Pletcher 2014 

Myalgia/myopathy $398 +/- 20% Pletcher 2014 
Angina $16,777 +/- 20% Pletcher 2014 

Ongoing costs for post-event health states: 
Post-myocardial infarction $5,091 +/- 20% Pletcher 2014 

Post-stroke $14,607 +/- 20% Pletcher 2014 
Post-angina $7,323 +/- 20% Pletcher 2014 

Testing costs: 
Cardiovascular genetic risk test $100 $1-$100 Expert opinion 

Cost of one physician visit (to 
discuss cGRS test results) 

$70.46 
+/- 20% 

Pletcher 2014 

Treatment costs: 

Statin therapy, generic $0.1333/day 
$0.05/day - 

$7/day 
Pandya 2015; Pletcher 2014 

One physician visit $70.46 +/- 20% Pletcher 2014 
Lipid panel $23.49 +/- 20% Pletcher 2014 

Health state utilities: 

Healthy 1.0 
Not varied 

in SA 
Assumed 

MI 0.859 ±0.0311 Dehmer 2015; Pletcher 2014 

Post-MI 1.0 
Not varied 

in SA 
Dehmer 2015;Pletcher 2014 

Stroke 0.771 ±0.1505 Dehmer 2015;Pletcher 2014 
Post-stroke 0.771 ±0.1542 Dehmer 2015; Pletcher 2014 

Angina 0.929 0.40-1.0 Pletcher 2014 
Post-angina 0.997 0.68-1.0 Pletcher 2014 

Statin treatment-related disutilities: 
 Daily statin therapy 0.001 0-0.02 Pletcher 2014; Hutchins 2015 

Myalgia/myopathy 0.017 0-0.1^ Pletcher 2014 
Effects of statin treatment: 

RR: CHD death 0.64 0.49-0.84 CTT 2012 
RR: Stroke 0.85 0.80-0.89 CTT 2012 
RR: Angina 0.74 0.71-0.77 CTT 2012 

RR: Myocardial infarction 0.74 0.71-0.77 CTT 2012 
IR: Myalgia/myopathy 0.001 0-0.05^ Graham 2004; Pignone 2006 

*Costs from Pletcher 2014 updated to USD 2016 (not shown) 
^range is based on expert opinion 
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Our primary outcome measure was the incremental cost-effectiveness ratio (ICER), 

measured in cost per QALY. We identified preferred strategies under the assumption that society 

is willing to pay ≤$50 000 per QALY gained. Our secondary outcome measure was net benefit (in 

QALYs), which is the balance of benefits and harms for a strategy over the lifetime horizon at a 

willingness to pay threshold of <$50,000 per QALY, as well as incremental net benefit (in QALYs), 

which we defined as the difference in net benefit between two strategies.  

The model was used to compare 4 different interventions: 2 strategies where statin 

prescribing does not depend on results of cGRS testing (treat none and treat all), and 2 strategies 

for which a cGRS test is ordered, and statins are prescribed only if the cGRS is above a threshold 

(treat if cGRS is intermediate or high, treat if cGRS is high) (Figure 4).  Statin prescribing was 

assumed to be differential for 10 years, but cumulative costs and QALYs were simulated across a 

full lifetime horizon to fully account for the consequences of a life saved or MI prevented by 

statins during those first 10 years of differential treatment.   

Total costs (in 2016 US dollars) and quality-adjusted life-years (QALYs) were calculated 

(discounting at 3%/year for costs and utilities) over a lifetime horizon using a US health care 

system payer perspective.  

4.2.2. cGRS testing parameters 

Costs for genetic risk testing vary based on the number of SNPs genotyped and the lab at 

which the genotyping is performed (https://ghr.nlm.nih.gov/primer/testing/costresults). We 

assumed a base case cost of $100, but varied the cost between $1 and $2,500 in sensitivity 

analyses.  We also added the cost of one physician visit to discuss cGRS test results with patients.   
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The expected distribution of cGRS depends on race/ethnicity; for each of our base case 

clinical scenarios, we used the results from Chapter 3 to account for differences in expected 

distribution of cGRS by race/ethnicity, and to estimate the proportion of scores falling into 

categories of low risk, intermediate risk and high risk (Chapter 3).  We then estimated post-test 

risk for angina, MI, and CHD death in these categories using cGRS-specific relative risks and 

previously described methods (Mega 2015; Kooter 2011; Pletcher 2013).  We assumed that the 

risk of stroke did not vary with cGRS.  

4.2.3. Statin disutility, costs and efficacy parameters 

In our base case scenario, we assumed that statins can be obtained at a daily cost of 

$0.13 per pill (based on $4/month prescribing programs at some large discount retailers) and 

that taking a statin pill every day is associated with a small reduction in quality of life (disutility of 

0.001) (Table 12).  The disutility of daily statin use represents any reason that a patient might 

prefer not to take a pill daily, such as inconvenience or reduction in self-conception of health 

(Hutchins 2015).   

We also assumed that statin therapy triggers 1 additional physician visit and lipid panel 

per year. Furthermore, we assumed that statins are associated with relative reductions in risk of 

MI (26%), angina (26%), stroke (15%), and CHD death (20%) (Mihaylova 2012), as well as 

increased risk of myopathy (absolute rate of 0.001 cases per year; associated cost, mortality, and 

disutility applied for 1 year, after which statins are discontinued).   We assumed immediate 

discontinuation of statins in 31% of individuals to simulate the effect of non-adherence to 

treatment (Lemstra 2012). 
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While there is evidence that statin initiation is associated with a small, but statistically 

significant increase in hemoglobin A1C and new diagnoses of diabetes mellitus (Sattar 2011) with 

high dose therapy, the short-term cardiovascular risks are accounted for in the statin efficacy 

estimates from clinical trials (Mihaylova 2011). Furthermore, the long-term cardiovascular risks 

associated with this small increase in hemoglobin A1C are not well-understood (Sattar 2011). 

Thus, in this model, we ignored the long-term risk of diabetes that may be associated with the 

slight increase in HbA1C due to statin initiation.  

4.2.4. ASCVD risk factor profiles 

 We created five ASCVD risk factor profiles to illustrate important findings from our base 

case and scenario analyses: 1) a 57 year old man at 7.5% risk; 2) a 65 year old woman at 7.5% 

risk; 3) a 45 year old woman at 2.5% risk; 4) a 45 year-old woman at 5% risk; and 5) a 45 year old 

woman at 7.5% risk (Table 11).  

Table 11: Description of scenario analyses 

 
*compared to low cGRS (reference) 

 

Scenario Statin cost Statin 
disutility 

cGRS 
cost 

RR for 
cGRS* 

Interpretation 

Base case $4/ month 0.001 $100 1.31; 1.72 Base case assumptions 
1 $4/ month 0.001 $1 1.31; 1.72 Less expensive cGRS test 
2 $4/ month 0.011 $100 1.31; 1.72 Strong preference against daily statin 

therapy 
3 $15/ 

month 
0.011 $100 1.31; 1.72 Strong preference against daily statin 

therapy; more expensive statin therapy 
4 $15/ 

month 
0.011 $1 1.31; 1.72 Strong preference against daily statin, 

expensive statin therapy, but less 
expensive cGRS test 

5 $4/ month 0.001 $100 3.93; 5.16 Hypothetical cGRS test with improved 
prediction of CHD outcomes 

6 $4/ month 0.001 $1 3.93; 5.16 Hypothetical cGRS test with improved 
prediction of CHD; less expensive cGRS  
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4.2.5. Sensitivity analyses 

We varied incidence of myopathy, disutility for myopathy, and statin effect modification 

in a one-way deterministic sensitivity analysis. To investigate statin effect effect modification, we 

increased the relative risk reduction associated with statin treatment for individuals with high 

cGRS while proportionally reducing the relative risk reduction associated with statin treatment 

for individuals with low and intermediate cGRS. We performed a two-way sensitivity analysis of 

statin disutility and statin cost by varying the cost of statins from $2/month to $200/month and 

the disutility of daily statin use from 0 to 0.10 (Pandya 2015; Hutchins 2015).  For context, a 

disutility of 0.02 is equivalent to 10 weeks of perfect health traded away to avoid 10 years on 

statins (Hutchins 2015).  We completed the same two-way sensitivity analysis for both the 45-

year-old woman (Profile 3) and 65-year-old woman (Profile 4) to demonstrate the importance of 

specific ASCVD risk factors, in addition to 10-year ASCVD risk, on the preferred strategies for 

different combinations of statin cost and disutility. To examine the role of statin cost, statin 

disutility, and cGRS test characteristics, we show scenario analyses that vary statin cost, statin 

disutility, cost of cGRS testing as well as the strength of the relationship between the 27-SNP 

cGRS and cardiovascular disease outcomes (Table 11). Last, we conducted a global probabilistic 

sensitivity analysis using first-order Monte Carlo simulation (n=1000 trials) to determine the 

effect of parameter uncertainty on the probability of cost-effectiveness for the scenario analyses 

presented in Table 11. Parameter ranges and distributions are reported in the Appendix 10. 
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4.3. Results 

4.3.1. Base case assumptions 

 Under base case assumptions, treating all patients without any cGRS testing was cost-

saving and dominated all other test/treat strategies for a cohort of 10,000 57-year-old men at 

7.5% ASCVD risk (Profile 1) over a lifetime horizon. Compared to treat none, the cohort of 10,000 

men experienced 24 fewer MIs, 19 fewer strokes, 80 fewer cases of angina, and 65 more cases 

of myopathy over a lifetime horizon (Table 12).  

Table 12: Model outcomes for 10,000 65-year-old women at 7.5% ASCVD risk (Profile 4) 

 
Treat 
none 

Treat if cGRS = 
intermediate or high 

Treat if 
cGRS = high 

Treat all 

Total cost of cGRS testing 0 $1,704,600 $1,704,600 0 
Number on statins at baseline 0 9230 615 10,000 

Total lifetime cost of statin 
therapy (per patient) 

$81 $765.80 $126.16 $824 

Other healthcare costs (per 
patient) 

$8103
5 

$80,180 $80,970 $80119 

Total costs per patient 
$8111

6 
$80,946 $81,096 $80943 

Total Life-Years 17.237 17.332 17.244 17.338 
Total QALYs 12.976 13.034 12.981 13.038 

Total number of events 
Angina 680 606 674 600 

Myocardial infarction 272 249 270 248 
Stroke 631 614 630 612 

Statin-induced myopathy 0 60 4 65 
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Table 13: Preferred strategy, incremental net benefit and probability of cost-effectiveness for 
ASCVD risk profiles 

 45-year-old woman 
65-year-old 

woman 
 2.5% 5% 7.5% 7.5% 

Base case scenario: Statin disutility = 0.001; statin cost = $4/month; cGRS test cost = $100 

Preferred Treat all (SD) Treat all (SD) Treat all (SD) Treat all (SD) 
INB 0.0429 0.0770 0.0840 0.0612 

Pr(CE) 100% 100% 100% 100% 
Scenario analysis #1: Statin disutility = 0.001; statin cost = $4/month; cGRS test cost = $1 

Preferred Treat all (SD) Treat all (SD) Treat all (SD) Treat all (SD) 
INB 0.0429 0.0770 0.0840 0.0612 

Pr(CE) 100% 100% 100% 100% 
Scenario analysis #2: Statin disutility = 0.011; statin cost = $4/month; cGRS test cost = $100 

Preferred 
Treat none 

($26,045/QALY) 
Treat all Treat all Treat all 

INB - 0.0037 0.0104 0.0040 
Pr(CE) 55% 70% 85% 83% 

Scenario analysis #3: Statin disutility = 0.011; statin cost = $15/month; cGRS test cost = $100 

Preferred  Treat none (SD) 
Treat if cGRS = 

high (SD) 
Treat if cGRS = int/ 

high (SD) 
Treat none 

INB - 0.0042 0.0105 - 
Pr(CE) 79% 43% 40% 71% 

Scenario analysis #4: Statin disutility = 0.011; statin cost = $15/month; cGRS test cost = $1 

Preferred Treat none (SD) 
Treat if cGRS = 
int/high (SD) 

Treat if cGRS = int/ 
high (SD) 

Treat none 

INB - 0.0043 0.0105 - 
Pr(CE) 82% 43% 36% 75% 

Scenario analysis #5: Statin disutility = 0.001; statin cost = $4/month; cGRS test cost = $100; 
RR_cGRS= 3x 

Preferred  
Treat all  

($26,158/QALY) 
Treat all 

($6,555/QALY) 
Treat all 

($4,838/QALY) 
Treat all (SD) 

INB 0.0426 0.0760 0.0829 0.0610 
Pr(CE) 91% 100% 100% 100% 
Scenario analysis #6: Statin disutility = 0.001; statin cost = $4/month; cGRS test cost = $1; 

RR_cGRS = 3x 

Preferred  
Treat all 

($27,328/QALY) 
Treat all 

($6,614/QALY) 
Treat all 

($4,870/QALY) 
Treat all (SD) 

INB 0.0426 0.0760 0.0829 0.0610 
Pr(CE) 90% 100% 100% 100% 

*INB (incremental net benefit) = difference in QALYs between preferred strategy and treat none 
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Treat all patients without cGRS testing was also cost-saving and dominated all other 

strategies for a cohort of 10,000 65-year-old women with 7.5% 10-year ASCVD risk (Profile 2). 

For the 45-year-old women at 2.5%, 5%, and 7.5% 10-year ASCVD risk was to treat all with no 

cGRS testing, and the incremental net benefit (INB) associated with that strategy (compared to 

treat none) increased with increasing 10-year ASCVD risk (base case scenario; Table 13).  

Furthermore, the INB associated with treating all 65-year-old women at 7.5% 10-year ASCVD risk 

is lower than the INB associated with treating all 45-year-old women at 7.5% 10-year ASCVD risk. 

For all profiles, under base case assumptions, the probability of cost-effectiveness of treat all 

with no cGRS testing compared to treat none with no cGRS testing was 100%.  

4.3.2. Two-way sensitivity analysis: statin disutility vs. statin cost 

 The specific combinations of statin disutility and statin cost that lead to cGRS testing as a 

preferred strategy were dependent on the ASCVD risk factors for the specific profile considered 

(Appendix 20).  For example, we found that none of the tested statin disutility/statin cost 

combinations led to a preferred strategy of cGRS testing for the 65-year-old woman with 7.5% 

10-year ASCVD risk (Profile 4; Figure 5) while cGRS testing was preferred for many statin 

disutility/statin cost combinations for the 45-year-old woman with 7.5% 10-year ASCVD risk 

(Profile 3; Figure 5).   
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Figure 5: Two-way sensitivity analysis of statin cost and disutility of daily statin use for A) 45 year 
old woman wiht 7.5% ASCVD risk (profile 3) and B) 65 year old woman with 7.5% ASCVD risk 

(profile 4) 
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*red = treat all; yellow = treat if cGRS is interm 

4.3.3. Scenario analyses: cGRS testing cost, statin disutility, statin cost, RR associated with CHD 

outcomes 

 Through our scenario analyses (Table 13), we found that changing the cGRS testing cost 

alone did not affect the preferred strategy for the clinical profiles considered (scenario #1 vs. 

base case). However, when statin disutility was increased, cGRS testing became the preferred 

strategy for the 45-year-old women at 5% and 7.5% 10-year ASCVD risk if either cGRS testing 

cost was decreased (scenario #4 vs. scenario #2) or statin cost was increased (scenario #3 vs. 
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scenario #2).  If both statin disutility and statin cost were increased compared to base case 

assumptions, the cost of cGRS testing did not affect the preferred strategy for any of the profiles 

shown.  Finally, under base case assumptions for statin disutility and statin cost, increasing the 

strength of the association between the cGRS results and CHD outcomes (to simulate a 

hypothetical ‘better’ cGRS test) did not affect the preferred strategy, even when the 

hypothetical ‘better’ cGRS test was very inexpensive (scenarios #5 and #6 vs. base case).  

4.3.4. Probabilistic sensitivity analysis 

 The probability of cost-effectiveness for the preferred strategies vary considerably across 

profiles and scenarios (Table 13).  In general, when statin disutility and statin cost were set at 

their base case assumptions (base case, scenarios #1, 5 and 6), the probability of cost-

effectiveness for the preferred strategy of ‘treat all’ was either at or close to 100%.  For the 

scenarios in which a cGRS testing strategy was preferred, the probability of cost-effectiveness for 

that strategy was much lower (36%-43%).  In general, the probability of cost-effectiveness for 

the preferred strategy was also lower in scenarios #2, #3, and #4, indicating that parameter 

uncertainty plays an important role in determining the preferred strategy when statin disutility 

and cost are increased. 

4.4. Discussion 

In a set of clinical scenarios of individuals with 10-year predicted ASCVD risk ranging from 

2.5% to 7.5%, obtaining a cGRS test to prevent some patients from being prescribed a statin was 

not a cost-effective strategy.  Instead, our results indicate that the preferred strategy is to treat 

all patients with statins under base case assumptions for statin disutility and cost. Furthermore, 

the magnitude of incremental net benefit varied depending on both 10-year ASCVD risk and 
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specific ASCVD risk factors, indicating the importance of considering individualized net benefit as 

a part of the statin initiation decision. 

Under base case assumptions for statin cost and disutility, cGRS testing is not the preferred 

strategy for the four clinical scenarios shown; however, cGRS testing can be cost-effective under 

a small set of assumptions related to statin cost and statin disutility. For example, when the cost 

of obtaining a cGRS test is $100, statin cost is $15/month, and statin disutility is 0.011, the 

preferred strategy (using a WTP of $50,000/QALY gained) for the 45-year-old woman with 7.5% 

10-year ASCVD risk (Profile #3) is to obtain a cGRS test and treat if cGRS is intermediate or high 

(scenario #3).  However, even though a cGRS testing strategy was preferred for this profile and 

specific combination of model parameters, the probability of cost-effectiveness at any WTP of 

$50,000/QALY gained was only 40%. 

The sensitivity of our results to statin cost and statin disutility is consistent with previous 

work on the cost-effectiveness of statin therapy in intermediate risk patients (Pandya 2015; 

Pletcher 2014).  A recent study found that the prevalence of statin disutility greater than 0.01 

(trading away 5 weeks of perfect health to avoid 10 years on statins) was approximately 7.4%, 

with most individuals being unwilling to trade any length of time to avoid statin therapy (87% 

with statin disutility = 0) (Hutchins 2015). Given that net benefit from statin therapy relies heavily 

on assumptions about statin disutility, it may be reasonable to ask patients how much the idea of 

taking a daily preventive medication bothers them during shared decision-making regarding 

statin initiation. In the absence of knowledge about an individual patient’s disutility for daily 

preventive medication use, we can assume that the conditions under which cGRS testing is the 

preferred strategy are uncommon during routine clinical practice.   
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When we examined the two-way sensitivity analysis (statin disutility vs. statin cost) for the 

65-year-old woman at 7.5% 10-year ASCVD risk (Profile 4), we did not find any combinations of 

statin disutility and statin cost that led to a cGRS testing strategy being preferred.  In contrast, 

there were many combinations of statin disutility and statin cost that led to a cGRS testing 

strategy being preferred for the 45-year-old woman at 7.5% 10-year ASCVD risk.  These findings 

demonstrate the importance of the underlying clinical risk factors that determine 10-year ASCVD 

risk, especially age.  When simulating a lifetime horizon, the 45-year-old has more years to 

accumulate benefit from cGRS testing compared to a 65-year-old; furthermore, a 45-year-old 

woman with 7.5% 10-year ASCVD risk will have more risk factors (high cholesterol, smoking, etc.)  

compared to a 65-year-old woman with 7.5% 10-year ASCVD risk.  Thus, it is important to be able 

to make individualized decisions about cGRS testing (as well as testing for other novel 

biomarkers); future work should be done to test the best way to operationalize in clinical 

practice. 

Although the 27-SNP cGRS test is an independent predictor of ASCVD outcomes, the 

strength of the association is small (Mega 2015).  Other approaches to targeting statin therapy, 

such as the selective use of imaging (CAC scanning), are substantially better at improving risk 

prediction in intermediate risk patients (Yeboah 2016).  Furthermore, CAC scanning has been 

shown to be cost-effective under more reasonable set of assumptions than those needed to 

make cGRS testing cost-effective (Pletcher 2014; Roberts 2015).  In the future, other versions of 

cGRS tests may need to focus on incorporating gene variants related to the cardiovascular risk 

pathways that do not overlap with traditional risk factors, such as inflammation and thrombosis, 

or those that have been associated with ischemic stroke outcomes (Vasan 2006; O’Donnell 2016; 
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Paynter 2016). However, GWAS studies to date have been largely unsuccessful at identifying loci 

significantly associated with stroke; this may be due to the inclusion of both ischemic and 

hemorrhagic stroke as outcomes, which may have slightly different underlying pathophysiology 

and predisposing risk factors (Sierra 2011).  To further improve the 27-SNP cGRS’ ability to 

predict pooled ASCVD beyond traditional risk factors, future research is necessary to identify loci 

that may have pleiotropic, as well as independent, effects on both CHD outcomes and ischemic 

stroke, potentially through a GWAS of both combined ischemic stroke and CHD outcomes. 

Over $200 million has been invested in the Presidential Precision Medicine Initiative, 

which seeks to advance our knowledge and ability to incorporate individuals’ genetic information 

into clinical decision-making to improve health outcomes (Paynter 2016; Shah 2016; Ma 2016).  

However, little attention has been given to the methods that are needed to assess the clinical 

utility of precision medicine. Clinical decision analysis and cost-effectiveness modeling are 

methods used to explicitly compare alternative clinical options regarding their relative 

downstream risks, benefits and costs.  The work presented here is an example of the type of 

analysis that can help identify conditions under which genetic testing may (or may not) be a cost-

effective approach for tailoring decisions about initiation of preventive therapies for individual 

patients. 

Results from decision analyses can also be used to decide whether to invest in large-scale 

and expensive clinical trials to definitively assess the clinical utility of cGRS testing, or whether to 

invest in commercialization. For example, the 27-SNP cGRS test used in this analysis is not 

currently marketed, and commercialization would require investment in the equipment and 

processes necessary to assure analytic validity (Palomaki 2010; Thanassoulis 2010). The test 
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developer would need to charge a high enough price for the test to ensure return on investment 

for research and development; however, depending on the price, our findings demonstrate that 

the cost of cGRS testing and the strength of association between the cGRS and CHD outcomes 

plays a limited role in determining the overall clinical utility of cGRS testing.  Another potential 

application of this type of cost-effectiveness analysis is to develop evidence against overuse of 

routine testing, such as routine EKGs, stress testing, or point-of-care ultrasounds. 

 We did not attempt to account for any change in a patients’ adherence or motivation to 

improve lifestyle factors based on receipt of genetic risk information due to limited evidence 

supporting this assumption. Furthermore, we did not explicitly account for new-onset diabetes in 

the model. However, as previously stated, while there is evidence that statin initiation is 

associated with a small, but statistically significant increase in hemoglobin A1C and new 

diagnoses of diabetes mellitus (Sattar 2012), the cardiovascular benefits outweigh the risks, at 

least in the short-term, and it is unclear whether there are long-term microvascular implications 

associated with the small increase in HbA1C or slightly earlier diagnosis of diabetes.  

4.5. Conclusions 

Our analyses demonstrate that cGRS testing is not a cost-effective approach for targeting 

statin therapy in the primary prevention of ASCVD in patients with 10-year ASCVD risk between 

2.5% and 7.5%.  While there are a small set of combinations of parameters under which cGRS 

testing strategies would be preferred, these are unlikely to be encountered in routine clinical 

practice.  Unless better makers of genetic risk are determined, future efforts to improve upon 

the cGRS may not be worthwhile, given its limited clinical utility for targeting statin therapy for 

primary prevention of ASCVD.  
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1. Summary of research questions and findings 

Cardiovascular genetic risk testing theoretically provides the opportunity to more 

precisely identify individuals at high risk for developing ASCVD for whom preventive therapy, 

such as statins, can be directed (O’Donnell 2016; Kullo 2016; Paynter 2016; Goldstein 2014; 

Tikkanen 2013; Krarup 2015; Shah 2016; Morrison 2007; de Vries 2016).  An individual’s 

cardiovascular genetic risk score (cGRS) may reflect genetic susceptibility to accelerated 

atherosclerosis, related potentially to errors in cholesterol metabolism, thrombosis and/or other 

endothelium-related factors (Vasan 2006). In 2015, Mega et al. demonstrated a significant 

association between a 27-SNP cGRS and CHD outcomes, after adjusting for traditional ASCVD risk 

factors (Mega 2015); however, the impact of obtaining cardiovascular genetic risk information 

on clinical decision-making regarding statin initiation is unclear.  

The 27-SNP cGRS developed by Mega et al was constructed using only risk alleles 

associated with CHD outcomes, and validated in individuals primarily of European ancestry; thus, 

it was unclear whether this association would extend to pooled ASCVD outcomes in diverse 

populations. In Aim 1, I examined the association between the 27-SNP cGRS and pooled ASCVD 

outcomes in white and black non-diabetic, ASCVD-free participants from the prospective, 

population-based ARIC study.  In a model that included traditional ASCVD risk factors as 

covariates, having an intermediate and high cGRS was associated with a 1.32-fold (95% CI: 0.97-

1.79) and 1.47-fold (95% CI: 1.03-2.10) higher risk of 10-year pooled ASCVD events, respectively.  
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Higher cGRS was also associated with increased risk of 10-year incident CHD 

(intermediate cGRS HR (vs. low cGRS): 1.69; 95% CI: 1.15-2.49; high cGRS HR: 1.89; 95% CI: 1.22-

2.92). Adding cGRS to the incident CHD model resulted in a statistically significant but small 

improvement in discrimination (∆C-statistic= 0.0077; p<0.01). Overall, my findings from Aim #1 

showed that the 27-SNP cGRS was associated with both incident CHD and pooled ASCVD events 

in a diverse population, but the magnitude of improvement in risk prediction was small. 

Translation of improved risk prediction offered by novel risk factors, such as the 27-SNP 

cGRS, into actionable information to guide clinical decision-making can be achieved by 

integrating the 27-SNP cGRS with existing ASCVD risk prediction estimates (Pletcher 2011; Kooter 

2011).  To do this, we needed to know the expected distribution of the cGRS, conditional on 

traditional ASCVD risk factors (Pletcher 2013; Jarmul 2015). In Aim #2, I used an unbiased model 

selection algorithm with 10-fold cross-validation to examine the distribution of the 27-SNP cGRS 

in a multi-ethnic, nationally representative sample of individuals living in the United States, the 

Add Health study, as a function of traditional ASCVD risk factors (age, race, gender, total 

cholesterol, HDL cholesterol, systolic blood pressure, current smoking status, and anti-

hypertensive medication use).  I found that race/ethnicity was the only statistically significant 

predictor of cGRS and explained a fair amount of the variation (cross-validated r2= 0.177); 

however, the risk increase associated with having a high expected cGRS was modest 

(approximately 30% increase in 10-year predicted ASCVD risk, comparable to the risk increase 

associated with being 5 years older). 

In Aims #1 and #2, I established that the 27-SNP cGRS is associated with 10-year ASCVD 

outcomes beyond traditional risk factors, and demonstrated that integration of the 27-SNP cGRS 
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into existing risk prediction estimates produces modest changes in 10-year ASCVD predicted risk 

estimates. In Aim #3, I addressed the question of whether obtaining the additional information 

provided by the 27-SNP cGRS is a cost-effective strategy for targeting statin therapy in the 

primary prevention of ASCVD. Using the previously developed UNC-RTI CHD Prevention Model 

(Pignone 2007; Pignone 2006; Pletcher 2014), I found that obtaining a cGRS test to prevent some 

patients from being prescribed a statin was not a cost-effective strategy for a set of clinical 

scenarios of individuals with 10-year predicted ASCVD risk ranging from 2.5% to 7.5%.  In 

sensitivity analyses, I found that for certain clinical scenarios, such as a 65-year-old man with a 

10-year predicted risk of 7.5%, cGRS testing can be cost-effective under a very limited set of 

assumptions; for example, when the cost of obtaining a cGRS test is $100, daily statin cost is 

$0.50, and statin disutility is 0.013, the preferred strategy (using a WTP of $50,000/QALY) is to 

obtain a cGRS test and treat if cGRS is intermediate or high.   

5.2. Limitations 

One limitation of this dissertation was that I focused on a specific cGRS that only includes 

27 SNPs; some other analyses have used as many as 152 SNPs to help further increase the effect 

of the cGRS at improving overall risk prediction (de Vries 2015; Deghan 2016).  However, these 

risk scores have generally not offered substantial improvements in risk prediction compared to 

the 27-SNP cGRS (Tada 2015).  Another limitation of the 27-SNP cGRS is that there are no SNPs 

included that have been shown to be associated with incident ischemic stroke.  We considered 

adding additional SNPs to the cGRS to expand prediction potential to ischemic stroke, but recent 

GWAS consortia were unable to identify any loci that were significantly associated with incident 

ischemic stroke (Traylor 2012).   
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I was unable to test the association between the 27-SNP cGRS and ASCVD outcomes over 

the extended follow-up period available in the ARIC study (~22 years), because of violation of the 

proportional hazards assumption.  Future analyses could utilize more complex modeling 

techniques, such as Cox models that include time-dependent variables or non-parametric 

survival models, in order to understand the relationship between the 27-SNP cGRS and long-

term ASCVD outcomes.  

Last, there were two main limitations in the cost-effectiveness analysis: 1) I did not 

incorporate a potential interaction effect between the 27-SNP cGRS and statin treatment 

efficacy (Mega 2015) and 2) I did not include “new-onset diabetes” as a health state in the 

Markov model.  Although the potential for an interaction between genetic risk and statin 

treatment efficacy could change the balance of benefit, risk and costs for cGRS testing, the 

evidence for this interaction effect is not entirely convincing (Mega 2015).  Also, while there is 

evidence that statin initiation is associated with a small, but statistically significant increase in 

hemoglobin A1C and new diagnoses of diabetes mellitus (Sattar 2012), the cardiovascular 

benefits outweigh the risks, at least in the short-term, and it is unclear whether there are long-

term microvascular implications associated with the small increase in HbA1C or slightly earlier 

diagnosis of diabetes.  

5.3. Contribution to literature 

This is the first analysis to examine the cost-effectiveness of a cardiovascular genetic risk 

testing for targeting statin therapy in primary prevention of ASCVD.  Furthermore, this is the first 

analysis to investigate the value of genetic testing for additional predictive risk information for 

targeting primary prevention interventions. These findings are relevant to researchers 
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investigating new biomarkers and tests, clinicians and patients who may need to decide whether 

to test for novel risk factors, and policy makers who make decisions about whether to pay for 

novel risk factor testing. For the case of cardiovascular genetic risk testing, my work has shown 

that testing for a 27-SNP cGRS is not a cost-effective strategy for targeting statin therapy in the 

primary prevention of cardiovascular disease. For genetic risk testing generally, my findings 

demonstrate the importance of assessing clinical utility and cost-effectiveness prior to extensive 

commercialization, use in clinical practice, or reimbursement decisions.  

Over the past 25 years, there have been substantial advancements in both the methods 

and applications of decision modeling.  However, decision modeling is still not routinely used to 

inform clinical guidelines; although recently the US Preventative Services Task Force (USPSTF) 

has included modeling results in justification for its recommendations on primary prevention of 

CVD and CRC using aspirin, breast cancer screening, colorectal cancer screening and lung cancer 

screening (Zauber 2015; Mandelblatt 2015; de Konig 2014).  While past work has examined the 

clinical utility of screening or diagnostic testing, the work done in this dissertation provides a 

conceptual framework for modeling the clinical utility and cost-effectiveness of tests that offer 

predictive information.  As we continue to accumulate data on the long-term effects of risk 

factors on health outcomes, our goal, as health services researchers and clinicians, will be to use 

this information to identify at-risk individuals earlier and implement interventions to avoid 

adverse health outcomes.  It will be increasingly important that we utilize decision modeling to 

understand the incremental value of predictive information, such as cardiovascular genetic risk 

information, in enhancing clinical decision-making and ultimately improving patient outcomes.  
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5.4. Recommendations for future research 

 In Chapter 5, I presented evidence that, under base case assumptions, testing for this 27-

SNP cGRS is generally not cost-effective for individuals with 10-year predicted ASCVD risk 

between 2.5% and 7.5%.  Future research in this area could examine the cost-effectiveness of 

improving upon the current 27-SNP cGRS to include risk alleles that are more strongly associated 

with CHD and/or ischemic stroke outcomes, if discovered. However, unless genetic variants are 

discovered that are significantly more associated with CHD and/or ischemic stroke, this may not 

be a fruitful endeavor. Additionally, future research could examine the base case assumptions 

for the cost-effectiveness model, including uncertainty with respect to model structure.  For 

example, I could continue to update the UNC-RTI CHD Prevention Model to include the 

cGRS*statin efficacy interaction effect, as well as add the new-onset diabetes health state.  If the 

addition of the cGRS*statin interaction effect led to cGRS testing being a preferred strategy, one 

could consider doing a value of information analysis to investigate the amount of money that a 

decision-maker might want to spend to determine whether the cGRS*statin interaction effect 

could be replicated in a prospective, randomized controlled trial (Barton 2008; Briggs 2012).  

5.5. Conclusions 
 

In conclusion, I found that a 27-SNP cGRS is independently associated with 10-year ASCVD 

outcomes in a diverse population; however, the magnitude of change in updated 10-year ASCVD 

predicted risk is small. More importantly, through the work done in this dissertation, I can 

conclude that, when compared to no genetic risk testing, obtaining cardiovascular genetic risk 

information by testing for a 27-SNP cGRS is generally not a cost-effective strategy for targeting 

statin therapy in the primary prevention of ASCVD.    
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APPENDIX 1: CALCULATION OF 27-SNP CGRS 
 

27-SNP cGRS =  ∑  
 

(  ) 

where i is the index of SNPs included in Appendix A. 
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APPENDIX 2: LEAD SNPS AND ORS FOR CHD USED TO CALCULATE THE CGRS (MEGA 2015) 
 

Gene Lead SNP Odds Ratio for coronary 
heart disease 

Risk 
allele 

Build 38 

1p13.3 (SORT1) rs646776 1.19 T 1:109275908 
1p32.3 (PPAP2B) rs17114036 1.17 A 1:56497149 
1p32.3 (PCSK9) rs11206510 1.15 T 1:55030366 

1q41 (MIA3) rs17465637 1.14 C 1:222650187 
2q33.1 (WDR12) rs6725887 1.17 C 2:202881162 
3q22.3 (MRAS) rs9818870 1.15 T 3:138403280 

6p21.31 
(ANKS1A) 

rs17609940 1.07 G 
6:35067023 

6p24.1 
(PHACTR1) 

rs9349379 1.12 G 
6:12903725 

6q23.2 (TCF21) rs12190287 1.08 C 6:133893387 
6q25.3 (LPA) rs3798220 1.47 C 6:160540105 
6q25.3 (LPA) rs10455872 1.70 G 6:160589086 

7q32.3 (ZC3HC1) rs11556924 1.09 C 7:130023656 
9p21.3 (CDKN2A) rs4977574 1.29 G 9:22098575 

9q34.2 (ABO) rs9411489 1.10 T 9:133279427 
10q11.21 
(CXCL12) 

rs1746048 1.17 C 
10:44280376 

10q24.32 
(CYP17A1) 

rs12413409 1.12 G 
10:102959339 

11q23.3 (APOA5) rs964184 1.13 G 11:116778201 
12q2.4 (HNF1A) rs2259816 1.08 T 12:120997784 

12q24.12 
(SH2B3) 

rs3184504 1.13 T 
12:111446804 

13q3.4 (COL4A1) rs4773144 1.07 G 13:110308365 
14q32.2 (HHPL1) rs2895811 1.07 C 14:99667605 

15q25.1 
(ADAMTS7) 

rs3825807 1.08 T 
15:78796769 

17p11.2 (RASD1) rs12936587 1.07 G 17:17640408 
17p13.3 (SMG6) rs216172 1.07 C 17:2223210 

17q21.32 
(UBE2Z) 

rs46522 1.06 T 
17:48911235 

19p13.2 (LDLR) rs1122608 1.15 G 19:11052925 
21q22.11 
(KCNE2) 

rs9982601 1.20 T 
21:34226827 
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APPENDIX 3: CREATION OF ARIC ANALYTIC DATA SET 
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APPENDIX 4: FATAL CHD AND NON-FATAL MI EVENTS BY RACE AND CGRS CATEGORY: # OF 
EVENTS AND AVERAGE FOLLOW-UP TIME FOR NON-HISPANIC WHITE PARTICIPANTS 

 
White participants (n=6,937) 

cGRS category 

# of fatal 
CHD and 
non-fatal 
MI events 

Median 
follow-up 
time for 
events 
(years) 

Average follow-up 
time for events & 

non-events 
(years) 

Average 
event rate per 
1000 people 

per year 

Risk of 
events over 

10 years 

Low risk 
(n=1,388) 

95 (%) 14.9 21.9 3.1 3.1% 

Intermediate 
risk (n=4,162) 

393 (%) 14.0 21.7 4.3 4.2% 

High risk 
(n=1,387) 

177 (%) 14.4 21.6 5.9 5.7% 

All (n=6,937) 665 (%) 14.3 21.8 4.4 4.3% 

Black participants (n=1,889) 

cGRS category 

# of fatal 
CHD and 
non-fatal 
MI events 

Average 
follow-up 
time for 
events 
(years) 

Average follow-up 
time for events & 

non-events 
(years) 

Average 
event rate per 
1000 people 

per year 

Risk of 
events over 

10 years 

Low risk 
(n=378) 

26 (%) 11.6 22.2 3.1 3.1% 

Intermediate 
risk (n=1,134) 

149 (%) 14.0 21.1 6.2 6.0% 

High risk 
(n=377) 

42 (%) 14.4 21.7 5.1 5.0% 

N=1,889 217 (%) 13.8 21.4 5.4 5.2% 
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APPENDIX 5: FATAL CHD, NON-FATAL MI, AND ISCHEMIC STROKE EVENTS BY RACE AND CGRS 
CATEGORY: # OF EVENTS AND AVERAGE FOLLOW-UP TIME FOR NON-HISPANIC WHITE 

PARTCIPANTS 
 

White participants (n= 6,937) 

cGRS category 

# of fatal CHD, 
non-fatal MI, 

ischemic 
stroke events 

Median 
follow-up 
time for 
events 
(years) 

Average follow-
up time for 

events & non-
events (years) 

Average 
event rate 
per 1000 

people per 
year 

Risk of 
events 
over 10 
years 

Low risk 
(n=1,388) 

143 (%) 15.7 21.7 4.7 4.6 % 

Intermediate 
risk (n=4,162) 

499 (%) 14.0 21.5 5.6 5.4 % 

High risk 
(n=1,387) 

213 (%) 13.5 21.4 7.2 6.9 % 

All (n=6,937) 855 (%) 14.1 21.6 5.7 6.0 % 
Table 3. B) Fatal CHD, non-fatal MI, and ischemic stroke events by race and cGRS category: # of 
events and average follow-up time for black participants 

Black participants (n=1,889) 

cGRS category 

# of fatal 
CHD, 
non-

fatal MI, 
ischemic 
events 

Median 
follow-up 
time for 
events 
(years) 

Average follow-
up time for 

events & non-
events (years) 

Average 
event rate 
per 1000 

people per 
year 

Risk of events 
over 10 years 

Low risk 
(n=378) 

50 (%) 13.7 21.9 6.0 5.9 % 

Intermediate 
risk (n=1,134) 

217 (%) 13.8 20.8 9.2 8.8 % 

High risk 
(n=377) 

63 (%) 13.4 21.5 7.8 7.5 % 

N=1,889 330 (%) 13.7 21.2 8.3 7.9 % 
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APPENDIX 6: KAPLAN MEIER SURVIVAL CURVES FOR WHITE PARTICPANTS (TOP TWO PANELS) 
AND BLACK PARTICIPANTS (BOTTOM TWO PANELS) 
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APPENDIX 7: CREATION OF ADD HEALTH ANALYTIC DATA SET 
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APPENDIX 8: EXAMPLE CALCULATION USING EXPECTED DISTRIBUTION OF CGRS 
 

[r]= 0.06 * RRcGRS=low+ 0.86*RRcGRS=intermediate + 0.08* RRcGRS=high 
if  RRcGRS=low = 1.0,  RRcGRS=intermediate =1.31 and  RRcGRS=high = 1.72,  
[r]= 1.324 

MFcGRS=low= 1.0 / 1.324 = 0.755 

MFcGRS=intermediate = 1.31 / 1.324 = 0.989 
MFcGRS=high= 1.72 / 1.324 = 1.299 

F(post-test ASCVD risk | cGRS = low) = 7.5% * 0.755 = 5.7% 
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APPENDIX 9: 2013-2014 TOTAL CHOLESTEROL AND HDL CHOLESTEROL DECILES 
 

 
Values used for total 
cholesterol (mg/dL) 

Values used for HDL cholesterol 
(mg/dL) 

Quintile 1 136 34 

Quintile 2 150 38 

Quintile 3 161 42 

Quintile 4 170 45 

Quintile 5 179 49 

Quintile 6 188 53 

Quintile 7 199 58 

Quintile 8 212 63 

Quintile 9 232 71 

 

 

 

 
 
 
 
 
 
 
  



73 
 

APPENDIX 10: DISTRIBUTIONAL ASSUMPTIONS FOR PARAMETERS INCLUDED IN THE 
PROBABALISTIC SENSITIVITY ANALYSIS 

 

Parameter 
Included 
in PSA? 

Base 
case  

Standard 
Error 

Distribution a b 

Cost of cGRS 
Testing N 

$100.0
0 --- --- --- --- 

Cost Adherence 
Rates: Statin Y 69.00% 0.001020 Beta 

141,745.7
1 

63,682.8
5 

Efficacy 
Adherence Rates: 
Statin Y 69.00% 0.001020 Beta 

141,745.7
1 

63,682.8
5 

Drug Costs: 
Statin N $48.67 9.73 Gamma 25.00 1.95 

HS Cost Healthy Y $70.46 14.09 Gamma 25.00 2.82 
Added Cost of 

Taking a Statin Y $93.94 18.79 Gamma 25.00 3.76 

HS Cost Angina Y 
$16,77

7.67 3355.53 Gamma 25.00 671.11 
HS Cost Post 

Angina Y 
$7,323.

20 1464.64 Gamma 25.00 292.93 

HS Cost Stroke Y 
$54,84

7.38 10969.48 Gamma 25.00 2,193.90 
HS Cost Post 

Stroke Y 
$14,60

7.18 2921.44 Gamma 25.00 584.29 
HS Cost 

Myocardial 
Infarction Y 

$41,79
7.60 8359.52 Gamma 25.00 1,671.90 

HS Cost Post 
Myocardial 
Infarction Y 

$5,091.
17 1018.23 Gamma 25.00 203.65 

HS Cost 
Myopathy Y 

$398.7
7 79.75 Gamma 25.00 15.95 

Relative Risks 
Statin: Angina Y 0.7400 0.0153 Normal 2,337.40 0.00 

Relative Risks 
Statin: Stroke Y 0.8500 0.0255 Normal 1,110.22 0.00 

Relative Risks 
Statin: Myocardial 
Infarction Y 0.7400 0.0153 Normal 2,337.40 0.00 

Mortality Risks: 
No Treatment CHD 
Death N 1.0000 0.2000 Gamma 25.00 0.04 
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Mortality Risks: 
Statin CHD Death Y 0.8000 0.0255 Normal 983.45 0.00 

Mortality Risks: 
Statin Myopathy N 0.0016 0.0003 Gamma 25.00 0.00 

Rhabdo 
Incidence Y 0.0160 0.00002 Normal 

646,580.9
3 0.00 

Rhabdo fatality Y 0.1000  Beta 96.00 839.00 
Mortality Post 

Myocardial 
Infarction Y 3.7000 0.5102 Gamma 52.59 0.07 

Mortality Post 
Angina Y 3.0000 0.6122 Gamma 24.01 0.12 

Mortality Post 
Stroke Y 2.3000 1.1735 Gamma 3.84 0.60 

Utilities:  
Healthy N 1.00 0.2000 Beta -1.00 0.00 

Utilities:  Angina Y 0.93 0.2699 
Truncated 

Normal   
Utilities:  Post 

Angina Y 0.997 0.1617 
Truncated 

Normal   
Utilities:  Stroke Y 0.77 0.1505 Beta 5.24 1.56 
Utilities:  Post 

Stroke Y 0.77 0.1542 Beta 4.95 1.47 
Utilities:  

Myocardial 
Infarction Y 0.86 0.0311 Beta 106.55 17.49 

Utilities:  Post 
Myocardial 
Infarction N 1.00 0.0714 Beta -1.00 0.00 

Utilities: No 
Treatment N 1.000 0.2000 Beta -1.00 0.00 

Utilities: 
Myopathy  Y 0.983 0.1966 

Truncated 
Normal   

Utilities: 
Disutility due to 
taking a pill N 0.999 0.1998 Beta -0.97 0.00 

Relative Risk of 
Events: low cGRS N 1.00 0.2000 Gamma 25.00 0.04 

Relative Risk of 
Events: 
intermediate cGRS Y 1.31 0.2620 Gamma 25.00 0.05 

Relative Risk of 
Events: high cGRS Y 1.72 0.3440 Gamma 25.00 0.07 
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General 
Healthcare Costs 
for 35 - 44 Y 

$4,552.
11 910.42 Gamma 25.00 182.08 

General 
Healthcare Costs 
for 45 - 54 Y 

$6,687.
27 1337.45 Gamma 25.00 267.49 

General 
Healthcare Costs 
for 55 - 64 Y 

$9,375.
97 1875.19 Gamma 25.00 375.04 

General 
Healthcare Costs 
for 65 - 69 Y 

$14,39
6.15 2879.23 Gamma 25.00 575.85 

General 
Healthcare Costs 
for 70+ Y 

$20,10
2.47 4020.49 Gamma 25.00 804.10 

Proportion of 
Strokes that are 
Fatal Y 14.4% 0.0287 Beta 21.26 126.72 
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