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ABSTRACT

Benjamin E. Shanks: High precision modeling of germanium detector waveforms using
Bayesian machine learning

(Under the direction of John F. Wilkerson)

The universe as we see it today is dominated by matter, but the Standard Model of

particle physics cannot explain why so little antimatter remains. If the neutrino is its own

antiparticle – a so-called Majorana particle – lepton number must be violated, which is a key

component of theories that explain the observed matter-antimatter asymmetry. Neutrinoless

double-beta decay (0νββ), a hypothetical radioactive decay in certain nuclei, is the only

experimentally accessible signature that can prove if neutrinos are Majorana in nature. But

if it exists, 0νββ must be exceedingly rare, with current half-life limits over 1025 years.

Measuring a process with such a faint signal requires extraordinary efforts to eliminate

backgrounds. The Majorana Demonstrator is a search for 0νββ of germanium-76 in

an array of germanium detectors, with the goal of “demonstrating” backgrounds low enough

to justify building a larger experiment with ∼ 1 tonne of isotope.

Reducing backgrounds even further will be critical to the discovery potential of a tonne

scale experiment. One powerful method to reject background is pulse shape discrimination,

which uses the shape of measured detector signals to differentiate between background and

candidate 0νββ events. With a better understanding of pulse shapes from our detectors,

we may be able to improve the discrimination efficiency. We have developed a detailed

model of signal formation in germanium detectors, where the shape depends sensitively

on characteristics specific to each individual detector crystal. To train the parameters for

specific crystals in the Demonstrator, we have implemented a Bayesian machine learn-

ing algorithm which is able to infer detector characteristics using only standard calibration

waveforms. This model is accurate to the level of parts per thousand of the signal amplitude,
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is able to discriminate against common background events, and has even shown some ability

to estimate the position of origin for signals inside the detector.
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CHAPTER 1: Introduction

Section 1.1: Neutrinoless double beta decay

Determining the Majorana or Dirac nature of the neutrino is one of most important open

challenges in neutrino physics. Unfortunately, any effect that would distinguish between

them appears only at O(mν/E). Typical experiments fall in the regime mν/E � 10−6 [1],

making a measurement of the neutrino nature extremely difficult. The only signature of a

Majorana mass currently considered feasible to detect is neutrinoless double-beta decay.

Two-neutrino double beta decay (2νββ) is a second order standard-model-allowed process

observed in certain isotopes which have even numbers of both protons and neutrons. These

“even-even” nuclei are sometimes more stable than neighboring odd-odd isotopes due to

spin-pairing, which occurs independently for both protons and neutrons. In such an instance

normal β-decay is energetically forbidden, but Goeppert-Mayer [2] suggested in 1935 that a

double beta decay ((A,Z)→ (A,Z + 2) + 2e− + 2v̄e) might occur as a second order process

with an extremely long half-life (> 1017 yr). A half century passed before the first direct

laboratory measurement by Elliott et. al. of 2νββ in 82Se [3], with a half life of 1.08× 1020

years.

In 1937, Ettore Majorana suggested that neutral fermions could be their own antiparti-

cles [4], a description now known as Majorana fermions. Four years after Goeppert-Mayer

proposed 2νββ, Furry [5] showed that the existence of a Majorana neutrino would imply

an additional double decay mode in which no neutrino is emitted. In the modern formula-

tion of this process, the right-handed antineutrino emitted from one decaying neutron can

develop a left-handed component and be absorbed by a neighboring neutron. This is not

possible for a Dirac neutrino, since the neutrino and antineutrino are distinct particles. The
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Majorana nature of the neutrino therefore permits virtual neutrino exchange to mediate the

0νββ decay (A,Z)→ (A,Z + 2) + 2e−, violating lepton number by two units.

There are several different lepton number violating mechanisms which could mediate

0νββ. The scenario considered most likely is “light neutrino mediated” decay. If we assume

the weak charged current is purely left handed and that either no unknown particles exist,

or any unknown particles are too massive to contribute significantly to the 0νββ process,

then the process is mediated only by the three light neutrinos. To first order, the half life of

the light neutrino exchange 0νββ process is then given by [6]

(
T 0ν
1/2

)−1
= G0ν |M0ν |2 〈mββ〉2 (1.1)

where G0ν is a phase space factor, |M0ν |2 the nuclear matrix element and 〈mββ〉2 the effective

Majorana mass, which is essentially an average of the mass states weighted by their mixing

in the electron neutrino:

〈mββ〉 ≡
∣∣∣∣∣∑

i

U2
eimi

∣∣∣∣∣ =
∣∣c212c213m1 + c213s

2
12m2e

i2φ2 + s213m3e
i2φ3
∣∣ (1.2)

Here, Uei are the component of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino

mixing matrix [7] that describes the composition of the electron neutrino in terms of the

mass state mi. The Majorana phases, φ1 and φ2, are possible CP violating terms in the

PMNS matrix for Majorana neutrinos (Dirac neutrinos have only one such phase). The

terms sij and cij are the sine and cosine, respectively, of the mixing angles θij of the PMNS

matrix, as measured by neutrino oscillation experiments. The relationship between the

lightest neutrino mass and mββ is shown in Figure 1.1. The effective Majorana mass, and

therefore the half-life of 0νββ, depends sensitively on the neutrino masses, and especially

on the neutrino mass ordering. A measurement of the half-life could, in turn, provide a

measurement of the neutrino mass.

The nuclear matrix element present in the half-life expression Equation 1.1 encapsulates
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Figure 1.1: Effective Majorana mass plotted as a function of lightest neutrino mass for the
cases of both normal (red) and inverted (green) mass ordering. The solid lines outline the
allowed parameter space allowed from neutrino oscillation experiments, with uncertainties
from neutrino mixing angles shown in the lighter color bands. Figure from [8].

the nuclear physics of the transition between the initial and daughter nucleii, and is not

exactly calculable. The term can be written

M0ν = g2AM
(0ν), (1.3)

where gA is the axial vector coupling constant, and M (0ν) contains the contributions from

the Fermi, Gamow-Teller and tensor operators for the transition [8].

The value of gA is renormalized during calculations of nuclear models, and so can take on

an effective value to describe the observed transition strength. In general, limitations in the

model cause the the effective value of gA in model calculations to be reduced, or “quenched,”

from the value for quarks of 1.269 [9]. Because the half life term depends on the effective

value as g4A, the presence of quenching will affect the half life with fourth power dependence.

However, the strength of the quenching effect is currently not well understood and is the
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focus of current theoretical efforts [10].

Multiple approximation method have been employed to calculate M (0ν), as reviewed in

[10], notably the quasi-random phase approximation (QRPA), the interacting boson model

(IBM) and the interacting shell model (ISM). However, there are a large number of virtual

intermediate states available to the nucleus during the decay which increase computational

complexity of the calculation. For a given 0νββ candidate nucleus, disagreement between

calculations can vary by up to a factor of three – creating an order of magnitude uncertainty in

the half-life, and further complicating comparison between experiments in different isotopes.

The experimental signature of 0νββ is a peak in the energy spectrum at the endpoint

energy of the decay (Qββ), as all the energy is shared between the pair of detected electrons.

The 2νββ mode creates a continuous spectrum varying up to the endpoint of the decay. A

simulated spectrum is shown in Figure 1.2. Typical measured half-lives for the 2νββ mode

are around 1021 years, while the best limits for 0νββ have extended to 1025 years [11].

Given the extremely rare nature of the decay, 0νββ experiments must be constructed with

a number of common design goals in mind. First, the largest possible mass of candidate iso-

tope should be present. Many experiments are designed such that the source material forms

the bulk of the detector. Backgrounds must be suppressed through radiopure construction

materials, analytic signal rejection or both. In order to distinguish remaining backgrounds

(including the irreducible 2νββ background) from signal, it is desirable to have good energy

resolution in the region of interest around Qββ. A summary of experimental considerations

is found in [6].

The search for neutrinoless double beta decay is an active field, and there are current

experiments in a number of isotopes, including 76Ge, 130Te, and 136Xe. Table 1.1 summarizes

the limits from major experiments. In order to cover the parameter space preferred for

inverted ordering neutrinos, an experiment must reach a sensitivity of mββ ≈ 20 meV (see

Figure 1.1), requiring tens of tonne-years of exposure. For this reason, most collaborations

intend to scale their current design into a next-generation detector with a tonne or more of
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Figure 1.2: Spectra for 2νββ (dashed line) and 0νββ (solid line). Curves are drawn assuming
the decay rate of 0νββ is 1% that of 2νββ, with a 2% resolution. Figure from [6].

Experiment Name Isotope Half life limit (×1025 y)

GERDA Phase II [12] 76Ge 4.0
CUORE-0 [13] 130Te 0.4
EXO-200 [14] 136Xe 1.1
KamLAND-Zen [15] 136Xe 10.7

Table 1.1: Summary of current 0νββ half life limits.

isotopic mass.

Section 1.2: The Majorana Demonstrator

The Majorana Demonstrator [16] is a search for neutrinoless double beta decay in

the isotope 76Ge. The experiment consists of an array of high purity germanium (HPGe)

detectors of the p-type point contact (PPC) geometry. In total, there are 44.1 kg of detectors,

of which 29.7 kg are 88% enriched in 76Ge. The main goal of the Demonstrator is to

prove a germanium detector array can be constructed with sufficiently low background to

justify investment in a tonne-scale germanium-76 0νββ experiment. Using the nuclear matrix

element calculated with QRPA[17], a 76Ge experiment must be sensitive to a half-life T 0ν
1/2 ≈

5 · 1027 years in order to cover the inverted ordering at mββ ≈ 20 meV. With backgrounds

< 1 count/tonne-year, 10 tonne-years of exposure are required to reach this sensitivity at 3σ

confidence. The exposure required increases significantly at higher background levels.
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The Demonstrator aims to achieve < 3 counts/tonne-year in a 4-keV-wide region of

interest (ROI) around Qββ, which is 2039 keV for 76Ge. Due to additional background reduc-

tion from self-shielding and granularity cuts, this scales to < 1 count/tonne-year for a tonne-

scale experiment. The current design goal for a tonne scale experiment is 0.1 count/tonne-

year in the ROI, which has been revised downward to ensure the inverted ordering region

is covered for the worst-case nuclear matrix element calculations. In addition to showing

the feasibility of a tonne-scale experiment, the Demonstrator will have a sensitivity to

T 0ν
1/2 ≈ 1026 yr. Using the same matrix element as above, this corresponds to mββ ≈ 100

meV.

The Demonstrator was designed and constructed to achieve the lowest possible back-

ground. Cosmic muon-induced signals are diminished by 4850’ of rock overburden above the

experiment site at the Davis Campus of Sanford Underground Research Facility (SURF) in

Lead, SD. An underground cleanroom lab facility was established with < 500 particles/ft3.

Parts within the cryostat, which therefore have a direct shine path to detectors, were main-

tained in dry boxes purged with liquid nitrogen boil-off to minimize radon plate out. All

detector manipulation took place in a ntirogen-purged glovebox with a particle count < 10

particles/ft3. Radon levels and particle counts in the lab were carefully monitored before

sensitive work proceeded.

Construction materials were chosen to ensure radiopurity. The majority of the cryostat

material is composed of copper, which was manufactured with excellent chemical purity via

electroforming. However, copper is cosmogenically activated, inducing long-lived radioactive

isotopes, mainly 57Co and 60Co. To avoid cosmogenics, the Majorana collaboration built

an underground electroforming facility where copper was grown starting in 2011. The copper

was machined into parts in an underground shop staffed with a dedicated machinist.

A six-layer compact shield was designed with both active [18] and passive components.

On the outer layer, borated plastic moderates neutrons. Scintillator panels actively reject

muon events. A nearly airtight enclosure is filled with nitrogen purge gas to mitigate radon.
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The remaining layers are composed of lead and copper, with electroformed copper used for

the innermost layer. A schematic of the shield is shown in Figure 1.3.

The Majorana detector unit design is shown in Figure 1.4. The germanium crystal is

electrically isolated using plastic standoffs, which double as the thermal path for cooling.

High voltage is applied via a copper contact ring, and signals are read out with a copper

contact pin. A novel low noise low-mass front-end (LMFE) board [19] was designed to

provide a resistive feedback readout. Since it is low mass and made of ultra pure materials,

the LMFE can be placed near the detector, which minimizes stray capacitance. Three to

five detectors are stacked into a “string” which shares a common thermal connection to a

coldplate above. Each Majorana cryostat maintains cryogenic temperature and ultrahigh

vacuum for up to seven strings. Figure 1.5 contains an image of a fully loaded cryostat.

1.2.1: Initial results of the Majorana Demonstrator

The Demonstrator is currently taking data with both modules in-shield. The collabo-

ration has analyzed the first 32.4 days of data in this final configuration, taken from August

25 to September 27, 2016, and constituting 1.39 years of isotopic exposure. The spectrum

after preliminary analysis cuts is shown in Figure 1.6. For energies greater than ∼500 keV,

the two neutrino spectrum dominates the spectrum. Given the low exposure of this dataset,

we evaluate the background in a 400 keV wide window centered around Qββ. After cuts, one

background event remains in this window, which projects to 5.1+8.9
−3.2 counts / (ROI · t · y) for

a 2.9 keV ROI for module one detectors, and 2.6 keV ROI for module two detectors (where

each ROI was chosen to optimize sensitivity given resolution at Qββ). This corresponds to

a background index of 1.8× 10−3 counts / (keV · t · y).

Section 1.3: Signal modeling for germanium 0νββ experiments

The Demonstrator is meant to show that we can achieve backgrounds low enough to

justify building a tonne scale experiment that could cover the allowed parameter space for
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(a)

(b)

Figure 1.3: (a) A schematic of the Demonstrator shield. (b) A picture of the shield
components up to the Radon enclosure. A cryostat is visible inside the shield. The removable
“blank” monolith seen here pulled away from the shield has been replaced with a second
cryostat, and both modules are currently taking data.
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(a)

(b)

Figure 1.4: (a) A conceptual drawing of the Demonstrator detector unit. (b) Picture of
an assembled detector unit with LMFE visible on top.
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Figure 1.5: Image of strings hanging from a Demonstrator cryostat. Seven strings hang
from a copper cold plate, obscured in the photo by the cryostat exterior.

10



Figure 1.6: Preliminary spectrum of initial Demonstrator data. The spectrum encom-
passes the first 1.39 kg·y of enriched detector exposure for the Demonstrator in its final
configuration. The spectrum is shown after analysis cuts are applied. 2νββ of 76Ge is the
dominant spectral feature in the region above 500 keV. Qββ for 76Ge is 2039 keV.
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0νββ in the inverted ordering. In the case of a background-free experiment, the half-life

sensitivity level S(T1/2) scales linearly with exposure,

S(T1/2) ∝M · t (1.4)

where M is the isotopic mass and t the total time over which data are collected. In the

presence of background, due to poisson statistics, the sensitivity instead scales as a square

root of exposure

S(T1/2) ∝
√

M · t
b ·∆E (1.5)

where b is the background index and ∆E the size of the ROI. Figure 1.7 plots the rela-

tionship between exposure and sensitivity for an enriched germanium, both for the case of

a background-free experiment and for several background indexes. As we approach the ∼

10 tonne-years of exposure necessary to cover the inverted ordering region, the background

dramatically impacts the sensitivity level of the experiment. Given this reality, it is espe-

cially important that the design of next generation experiments maximize the capability to

discriminate against background with analysis cuts.

By developing an accurate model of signal formation in germanium detectors, we have two

different paths to achieving lower background in a tonne scale experiment. During the design

phase, we can use the model to create accurate simulated waveforms. These waveforms can

be used to realistically evaluate the efficiency of analysis cuts against simulated backgrounds,

and inform detector design to achieve maximal efficiency.

In addition to being used for design simulations, it is possible to use the model to discrim-

inate against background events. To first order, it can be used to identify which waveforms

originate from the deposition of energy in the crystal bulk, like ββ events, thereby discrim-

inating against backgrounds which scatter at multiple locations in the detector, or against

events that are distorted due to edge effects in the detector fields. Because of the unique two-

electron ββ signature, an extremely sensitive model could conceivably discriminate between
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ββ events and single-site γ events.

Any analysis based on comparing waveforms to a model should, in principle, extract

the maximal amount of available information about that waveform (assuming the model

is accurate and exhaustive), optimized for the physical characteristics of specific detectors.

When applied to background discrimination, this means a sufficiently accurate model should

outperform simpler pulse shape heuristics. Furthermore, additional interesting information

can be ascertained about waveforms, including the location of energy deposition within the

detector volume.

In Chapter 2, we describe a model of signal formation in germanium detectors, and extend

it specifically for the unique circumstances of the Demonstrator detectors. Chapter 3

describes an algorithm which we have developed to optimize the parameters of the model

to match observed waveforms. Finally, we evaluate the ability of the model to describe

waveforms using Demonstrator data in Chapter 5.
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CHAPTER 2: Modeling signal formation in germanium detectors

Section 2.1: Operating Principles

2.1.1: Semiconductor detector design

The interaction of radiation within a semiconductor material transfers energy from the

incident particle to electrons bound in the atomic valence band. When the energy absorbed

by an electron exceeds a threshold, the electron enters the conduction band and leaves

behind a vacancy in the valence band, called a hole. Each hole is defined by the absence of

an electron and therefore carries positive effective charge. Because the energy required to

create an electron–hole pair in a semiconductor is very small (∼3 eV) [20], a large number of

electron–hole pairs will be freed due to the interaction, creating a “cloud” of charge carriers.

Both carrier types are free to drift through the material under the influence of an electric

field, but in opposite directions due to their opposing charge. This feature allows the device

to serve as a detector of the ionized signal.

A semiconductor detector measures the total energy deposited in an interaction by col-

lecting the charge carriers at a readout electrode. Applying an external voltage across the

detector creates an internal electric field which sweeps the carriers to the electrode. However,

if the voltage difference also produces too large a steady-state current, it will overwhelm the

signal from charge carriers produced from radiation. We therefore require a detector design

that can hold an external voltage difference without generating a large current. In a sample

of pure semiconductor, only electrons which are excited beyond the electron–hole creation

threshold energy are mobile and able to contribute to the flow of current. If a perfect

semiconductor were sufficiently cooled to mitigate thermal creation of electron–hole pairs, it

could function as a detector simply by applying a voltage difference across the crystal and
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measuring current spikes.

However, in a real world semiconductor sample, some population of elemental impurities

will always occupy sites in the crystal lattice. Due to characteristics of their valence shell,

some elements are able to donate an electron to the conduction band with an energy require-

ment significantly less than the band gap. These impurities are called electron “donors”.

Other impurities are prone to “accepting” electrons, thereby creating a hole in the conduc-

tion band. If there is a net surplus of donor over acceptor impurities, the concentration of

electrons at finite temperature naturally contains a surplus of electrons over holes, and is

considered “n-type.” If the majority impurity type is acceptor, there are a surplus of holes,

and the material is “p-type”. In either case, the contribution from impurities increases the

net number of mobile charge carriers, and thereby lowers the resistivity by several orders of

magnitude. Because of the low resistivity, if a voltage difference is applied across conducting

contacts in the simple detector design described above, a large steady-state current will flow

between electrodes.

To reduce the current, we can make use of the convenient property that semiconductors

can be easily manufactured into diodes. A diode is “rectifying,” which means current flows

freely when voltage is applied in the “forward” direction, but when “reverse” biased, almost

no current flows. Diodes naturally form at the boundary between n and p type regions within

a semiconductor. If this junction is reverse biased, it can be operated as a detector with

very little current flow.

The overabundance of holes on the p side of the junction causes net diffusion of holes

into the n material. Once across the junction, the hole recombines with a donor impurity,

leaving an immobile positive ion in the n material. Similarly, electrons on the n side diffuse

into the p, and are captured by acceptors. The net effect produces a positive space charge

on the n side of the material, and an equal magnitude negative charge accumulation on the

p side. The junction will therefore exhibit a natural steady-state potential difference, called

the “contact potential.” The region over which the impurities are ionized and space charge
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exists is “depleted” of free charge carriers, because its majority carriers have recombined

with stationary impurities.

If an external voltage is applied across the junction in a direction which reinforces the

contact potential, it will attract electrons across the junction from the p region, and holes

from the n. In both cases, these are the minority carriers, and are very low in concentration.

The material therefore exhibits very low conductivity and nearly no current will flow. On

the other hand, if a voltage is applied opposite and greater than the contact potential, the

majority carriers will again cross the junction, and current will flow freely. This p-n junction

therefore behaves as a rectifying element. Holding the p side of the diode at positive voltage

to the n side constitutes forward biasing, and the opposite is reverse biasing. Increasing the

reverse bias causes the depletion region to grow outward from the junction and deeper into

the material. If the reverse bias reaches a critical level, the depleted region will break down

and current will again flow rapidly.

The reverse biased diode is able to function as a detector because incident radiation

can still generate new electron–hole pairs within the depleted region. In this case, the

internal electric field produced by applied voltage and the impurity sites in the crystal,

which have been ionized due to the external reverse bias, will force the minority carrier

towards the junction. The depleted region therefore constitutes the active volume in which

energy deposited by radiation can be collected.

A p-n junction is usually created by doping two halves of a crystal with opposite impu-

rities. If the both regions have equal impurity concentrations, the depleted zone will extend

to equal depth on each side. However, if one region has a much greater impurity concentra-

tion, its carriers will need to travel further across the junction to find a recombination site,

thereby creating a deeper depletion layer in the lower concentration material. In a detector,

it is desirable to maximize the volume that can be depleted before reaching the breakdown

voltage. Semiconductor detectors are therefore created using a sample of material with low

net impurity concentration, and the junction is formed by doping a thin surface layer with
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extremely high concentration [21]. This high concentration layer is referred to as either p+

or n+ type, and generally serves as one of the detector electrodes. A detector manufactured

from n-type crystal will have a thin p+ rectifying electrode, and one from a p-type crystal

will have a thin n+ electrode.

Because the detector bulk is very high purity, an appreciable number of minority carriers

will remain after depletion. To reduce steady-state leakage current from these carriers, the

readout contact is highly doped with the impurities of the same type as the bulk crystal

material. This highly doped region will have very low concentrations of the minority carrier.

This is called a “noninjecting” electrode. As a junction of two similar-typed semiconductors,

it does not rectify, and is an “ohmic” contact [22].

2.1.2: P-type point contact detectors

The P-type point contact (PPC) germanium detector geometry was developed to main-

tain a low detector capacitance in a relatively large-volume design [23]. Detector capacitance

is coupled to the electronic noise generated on the observed signal. Therefore, a low capac-

itance detector is able to achieve low thresholds and retain high resolution at low energies.

The detectors were originally designed to increase sensitivity to the low energy nuclear recoil

from dark matter scattering, and PPC detector experiments have produced leading exclu-

sion limits for low dark matter masses [24, 25]. The possibility of measuring coherent elastic

neutrino–nucleus scattering has also been explored [26]. Stable operation has been achieved

with thresholds at or below ∼ 500 eV [24, 27].

The approximate geometry of a PPC detector is diagrammed in Figure 2.1, and a picture

shown in Figure 2.2. Using a small, shallow p+ “point” contact reduces the capacitance

compared to traditional “coaxial” geometries, which use a long central contact bored several

centimeters into the detector diagrammed in Figure 2.3. The p+ layer is doped via ion

implantation, often with boron, and is ∼0.3 µm thick. The n+ layer is created by drifting

lithium into the crystal lattice, and can be up to a mm thick [28]. A proprietary passivation
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n+ electrode

p+ contactpassivation layer

Figure 2.1: Cross-sectional schematic of the PPC detector geometry. The detectors are
cylindrically symmetric, and produced with diameters around 6-7 cm, and axial lengths
between roughly 3-5 cm. The p+ “point” contact is ∼2 mm in diameter. A positive bias of
a few kilovolts is placed on the outer n+ electrode, while the point contact is held at ground.
The passivation layer reduces the flow of current along the detector surface.

treatment on the surface between the outer and point contact reduces current flow across

the detector surface.

An extremely low net impurity concentration is required to create depletion layer thick-

ness on the order of centimeters with external bias of a few kilovolts. The net number density

of charge carriers in the crystal bulk cannot exceed a few times 1010 cm−3, which corresponds

to less than one part per trillion germanium atoms. This level of purity can be achieved in

germanium using sophisticated manufacturing techniques [21]. Beginning with a bar of raw

germanium, the material undergoes the zone refinement process, in which one end of the

crystal is melted, then the molten zone is slowly swept to the opposite end. Because some

impurities have different solubility in liquid than solid germanium, repeated application of

this process segregates the impurities and can improve the purity by two or three orders of

magnitude. A “boule” of crystal then is formed by Czochralski growth in a pure hydrogen
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Figure 2.2: Picture of a PPC detector. The point contact is visible at the center of the top
surface.

atmosphere, which further increases the material purity. The boule is then manufactured

into detectors.

Impurity segregation during the Czochralski process tends to introduce a gradient in

impurity concentration along the axis of crystal growth [21]. In a PPC detector, the point

contact is always manufactured on the higher impurity side of the detector. When depleted,

the impurities in the p type material will leave stationary negative charges in the detector.

By placing the point contact on the high impurity end, these impurity sites create an axial

electric field which sweeps holes towards the p+ contact. Since the axial fields in a PPC

detector can otherwise be quite low, the impurity gradient is important to ensure proper

collection of hole carriers [23].
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n+ electrode

p+ contact
passivation
layer

Figure 2.3: Cross-sectional schematic of the coaxial germanium detector geometry. The p+
contact is bored several cm into the detector, which is ∼5-7 cm long.

2.1.3: Signal Formation: The Shockley-Ramo Theorem

As soon as a cloud of electron–hole pairs is created in the depleted region of a detector,

they begin to drift under the influence of the electric field. This creates a current which,

in turn, induces a current at the readout electrode. The generated signal therefore persists

over the entire drift time of both charge carriers. In a PPC detector, holes will drift to the

p+ point contact, and electrons towards the n+ outer contact. Because they are opposite

charges drifting in opposite directions, they will each induce a net positive signal on the

readout electrode.

The magnitude of induced charge as a function of time depends on the positon of charges

and the electrode geometry of the detector. It is possible to express this for each electrode

in terms of a quantity called the “weighting potential,” denoted ϕ0 [29, 30]. The weighting

potential is not the electric potential inside the detector, but instead the solution of the

Laplace equation with the boundary conditions ϕ0=1 for the readout electrode and ϕ0=0 for
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Figure 2.4: Weighting potential for the point contact in a PPC detector. The point contact
is located at bottom center, in the “dimple.” Black lines are “isochrones,” or lines of equal
drift time for holes to reach the point contact. Each isochrone is spaced by 100 ns. The
range of isochrones in this plot is from 100-700 ns.

every other electrode. By this definition, the weighting potential will always carry a value

between zero and one. The Shockley-Ramo theorem then relates the total charge induced

on the electrode, Q, as a carrier with charge q drifts through the weighting potential as a

function of time:

Q(t) = q∆ϕ0(t) (2.1)

Given a model for charge carrier migration, the Shockley-Ramo theorem can be used to

calculate the signal produced at the readout electrode.

A calculated weighting potential for a PPC detector is shown in Figure 2.4. The PPC

geometry characteristically produces a sharp peak in weighting potential in the millime-

ters directly surrounding the point contact. This weighting potential configuration has two

important consequences for the signals produced in PPC detectors. First, since the high

weighting potential region is a small fraction of the total detector volume, the vast majority

of signals originate in an area with low initial weighting potential. For these events, holes

drifting toward the point contact traverse a ∆ϕ0 of nearly unity, while the ∆ϕ0 of electrons
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Figure 2.5: Simulated waveforms from eight points in a PPC detector. Positions are marked
on the plot at right, which shows half a detector cross section. The shortest waveforms on
left correspond to the marker closest to the point contact. The top left plot shows only the
hole contribution, while the bottom shows the total contribution from both carriers.

is nearly zero. Therefore, the hole contribution dominates the total signal produced for

most PPC waveforms. Second, given the low weighting potential in the bulk, relatively little

signal forms until the holes reach the immediate vicinity of the point contact. The result

is a waveform that sharply increases just before all the charge is collected. Both of these

attributes are visible in the simulated waveforms shown in Figure 2.5. This figure together

with the isochrones, or contours of equal drift time, in Figure 2.4, show that the drift time

can vary by hundreds of nanoseconds, but no matter the point of origin, the majority of the

signal is generated over the final few tens of nanoseconds.
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2.1.4: Pulse Shape Discrimination

For neutrinoless double beta decay experiments, an important benefit of characteristic

PPC waveform shape is that it enables discrimination between single and multiple point

interactions [23]. A multisite interaction occurs when incident radiation deposits energy at

more than one location in the detector, such as high energy gamma ray Compton scattering.

Since a 0νββ decay deposits its energy within ∼1 mm3, rejecting multisite events can reduce

background signals.

Due to the long drift time and short collection time of PPC waveforms, charges deposited

at different isochrones (see Figure 2.4) will have clearly time-separated signal components.

In terms of the time dependence of the collected charge, the arrival of each new charge

cloud generates a new “step” to a higher total charge, seen in Figure 2.6. By differentiating

the collected charge and looking at current, each time–separated charge cloud appears as a

distinct peak. Methods of multisite pulse shape discrimination in 0νββ experiments include

cuts based on the energy-normalized amplitude of the current pulse [31] and χ2 comparison

of each waveform to a set of known single site pulse shapes [32].

Section 2.2: Signal Parameterization

The Shockley-Ramo theorem provides a framework to calculate the detector response

for any arbitrary signal in the detector. Calculating the weighting potential requires under-

standing the detector geometry. Next, a model must be developed to simulate the position

of charge carriers as a function of time. Understanding the drift path, in turn, requires a

model for the electric fields in the detector and velocities of the charge carriers.

If we wish to compare simulated waveforms to data, we must account for the fact that the

frequency response of electronics in the data acquisition system also affects the shape of the

observed waveform. Finally, a high precision model requires adjustments for higher-order

effects such as size and shape of the charge cloud.
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Figure 2.6: Charge (top) and current (bottom) signals formed by single and multisite in-
teractions in a PPC detector. The left plots show a single site interaction with one smooth
pulse, while the multisite waveform at right has “steps” in the charge pulse, and multiple
peaks in the current pulse. Figure from [33].

This section describes the overall model used in this work. Parameters are sorted by

three categories:

1. Detector Parameters: Affect the signal created at the electrode for every waveform

simulated in a detector. Examples include detector dimension or drift mobility.

2. Waveform Parameters: Specific to each individual waveform. Includes the location of

energy deposition and charge cloud size.
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3. Electronics Parameters: Describe the shaping of waveforms by the electronics readout

chain. Like detector parameters, these are common to all waveforms from the same

detector.

A c software package developed within the GRETINA and Majorana collaborations

[34] forms the framework of this model. The weighting potential and electric field for a

given set of detector parameters are calculated using a program called fieldgen. Both are

calculated via numerical relaxation on a grid, set for this work to 0.1 mm, using the detector

geometry described in Section 2.2.1. We assume azimuthal detector symmetry, and so the

relaxation is performed over only the radial and axial dimensions. The weighting potential

calculation solves the 2-D Laplace equation given boundary conditions of 1 on the n+ contact

and 0 on the p+ point contact. The electric field calculation solves the 2-D Poisson equation,

including the charge from ionized impurities using a model of impurity distribution described

in 2.2.1. The n+ contact boundary condition is set to the detector operating voltage, and

the point contact set to 0 V.

Using the output of fieldgen, siggen calculates charge trajectories for a given set of

waveform and detector parameters. Given an initial position of energy deposition, siggen

calculates a drift velocity for the local electric field as described in Section 2.2.1. This velocity

is used to determine the position after some time step ∆t, set for this work to 1 ns. The

signal path is determined by iterating over a number of time steps until the charge reaches

an electrode. The induced signal at the point contact is calculated for each time step by

using the Shockley-Ramo theorem (Equation 2.1), where ∆ϕ0 is given by the difference in

weighting potential at the final and initial position of the step.

It should be noted that fieldgen and siggen only attempt to model the detector bulk.

Edge effects which are not modeled include reduced velocity for charges near the passivated

surface and diffusion of charge across the n+-p boundary. These effects are only significant

in waveforms with energy deposition ∼<1 mm from the detector surface.

As part of the work of this dissertation, the siggen code has been updated and incor-
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porated into a Python package called pysiggen[35]. Included in pysiggen are updates to

the model for drift carrier velocities and electronics shaping. The python implementation

provides several advantages, including rapid development and ease of interface with numer-

ous external packages. By writing computationally intensive sections in c and wrapping into

Python using cython [36], these advantages can be realized without sacrificing much in the

way of computation time.

2.2.1: Detector Parameters

Dimensions

The Majorana collaboration contracted AMETEK/ORTEC [37] to produce PPC de-

tectors for the Demonstrator using enriched 76Ge material. In order to maximize total

enriched detector mass cut from each crystal boule, ORTEC allowed the exact dimensions

of each cylindrical detector to vary slightly. The typical mass is on the order of 1 kg, with

diameters ranging from 60-70 mm and lengths from 40-50 mm. The point contact, located

at bottom center of the detector, is recessed in a “dimple” with a radius and depth which

vary from detector to detector by up to a millimeter. This dimple is modeled in fieldgen

as a hemispheroidal indentation. The outer diameter of each detector has a “taper,” a 45◦

chamfer on the bottom outside edges, which is nominally 4.5 mm in height. Finally, the top

outside edges have a “bulletization” rounding radius, which is around 1.2 mm. Upon accep-

tance of the detectors, Majorana collaborators measured the detector dimensions using a

high precision optical measuring device.

The n+ contact on these detectors is created by diffusing lithium into the crystal. The

thickness of this layer is on the order of hundreds of microns, and can reach a millimeter.

Because the depleted volume of the detector is on the p side of the p-n+ junction, the n+

layer thickness reduces the active detector volume. In order to simulate only the active

volume, the detector dimensions are therefore reduced from the measured values by the

thickness of the n+ layer.
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Impurities

Through the zone refinement and crystal pulling process described in Section 2.1.2, OR-

TEC is able to create detectors with impurity concentrations on the order of 109 atoms per

cubic centimeter. In general, the seed end of the crystal has higher impurity levels, and

pulling the crystal introduces a gradient along the crystal length. The detector is manufac-

tured in line with the direction of pulling, such that the impurity gradient aligns with the

axial direction of the detector. The charge introduced by the impurities affects the electric

field within the detector during operation. The gradient varies greatly between crystals, but

is generally between ∼ 0.01− 0.2× 1010cm−4.

The siggen model used in this work allows for a linear impurity gradient, and assumes

no radial impurity gradient. It is possible that a radial gradient is also present [38], but for

successful crystal pulls at ORTEC, it is assumed this effect is negligible.

Impurities can be measured using the Hall effect, but the technique has relatively high

uncertainties [21]. However, the impurity profile, together with the detector dimensions,

determine the bias voltage at which the entire crystal volume depletes. The signals of

a depleted and undepleted detector are significantly different, with the latter producing

distinctly “rounded”, slower pulses due to diffusion in the undepleted region. Performing

a careful characterization of the depletion voltage, and comparing to predicted depletion

voltage for a given impurity profile, provides an independent check to the Hall measurements.

Operating Voltage

In general, germanium detectors are operated at some margin above the depletion voltage

to ensure depletion, and to increase field strength and therefore drift velocity. Beyond the

depletion voltage, field strength scales linearly with increased bias. Suggested operating

voltages are supplied by ORTEC, which are applied to Demonstrator detectors with a

high precision WIINER MPOD crate [39] with an iseg EHS 8260P high voltage supply [40].

Typical bias voltages range from 1500-5000 V.
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Drift Velocity

Accurately modeling signals in germanium detectors depends critically on understanding

carrier drift velocities. Because the charges are propagating in a crystal, carrier mobilities

are governed by the solid state physics of the system. This introduces nontrivial dependence

of the drift velocity on both the magnitude of the electric field and the orientation of field

with respect to the axes of crystal symmetry.

At low electric field and high temperature, the carrier drift velocity in germanium is

Ohmic, meaning it increases linearly with electric field. In this regime, the velocity for each

carrier is characterized by a mobility µ0, where

~v = µ0
~E (2.2)

The drift velocity, ~v, will necessarily align with the electric field, ~E. As the energy of

the carriers relative to the lattice temperature increases, scattering with the crystal lattice

causes a deviation from Ohmic behavior [41]. This scattering causes the drift velocity to

reach a point of saturation, such that the drift velocity becomes constant with increasing

field. Carriers with energies high enough relative to the thermal energy of the crystal to

deviate from Ohmic behavior are referred to as “hot” electrons or holes. Empirically, the

high field drift velocity follows the form [42]:

v(E) =
µ0E

(1 + (E/E0)β)1/β
(2.3)

At low fields (E � E0), the denominator term goes to one, and the Ohmic behavior v ∝ µ0E

is recovered. At high field (E � E0), the velocity approaches asymptotically to a saturation

velocity, v = µ0E0. Here, E0 is a parameter with units of electric field which sets the

saturation velocity. The general shape is visible in Figure 2.7. The β parameter controls the

curvature between the linear and saturated regions, and typically falls between 0.2-2. This
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equation can describe germanium carrier mobilities at a range of temperatures [43].

In addition to scattering off the lattice, it is possible for carriers to scatter with charged

crystal impurities [44, 45]. It is therefore possible for the observed parameters of Equation 2.3

to vary between germanium detector crystals even when operated at the same temperature.

Germanium has a diamond cubic lattice, with crystallographic basis vectors in the 〈100〉,

〈110〉 and 〈111〉 directions. The band structure (Figure 2.8) varies in energy depending upon

the orientation of the wave vector ~k with respect to the crystal axis. At high fields, this

generates an anisotropy in the induced carrier drift velocity, where the velocity magnitude

varies depending on the orientation of the field. In addition, the induced current at high

fields is no longer necessarily parallel to the electric field [48] 1. The details on how this

arises are somewhat different for electrons, which propagate in the conduction band, and

holes, which are affected by the valence band structure.

The lowest minima in the germanium conduction band are four ellipsoidal “valleys.” The

long axis of each ellipsoid is aligned with an 〈111〉 crystallographic axis [50, 51], as shown in

Figures 2.9. Electrons populating this minimum with a wave vector ~k parallel to the long

axis have larger effective masses than those with a k value perpendicular to the axis, and

therefore have reduced conductivity and contribute less to the current.

To understand how this generates misalignment between the field and current vector,

consider first an electric field applied at some arbitrary angle with respect to a single ellipsoid.

Because of the difference in mass, an electric field which is aligned with the small-mass

ellipsoid axis will generate a larger current than one aligned in the large-mass 〈111〉 direction.

In addition, the higher conductivity in the small-mass direction causes the current vector to

rotate somewhat toward the low-mass direction. Each of these effects is present regardless

of the electric field strength.

For a field applied in a true germanium crystal, the net current will be a vector sum of

1This effect is also observed in other semiconductors, including silicon.

30



102 103

4

6

8

10

V
el

o
ci

ty
[1

E
6

cm
/s

]

〈100〉 holes

〈111〉 holes

102 103

Electric Field [V/cm]

4

6

8

10

12

V
el

o
ci

ty
[1

E
6

cm
/s

]

〈100〉 electrons

〈111〉 electrons

Figure 2.7: Drift velocity of holes and electrons at 78 K for the 〈100〉 and 〈111〉 axes. Hole
values are from [46], electrons from [47]. The curves are produced using Equation 2.3 fit to
experimental data, with parameters obtained by fitting to experimental data.
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Figure 2.8: Band structure in germanium. Curves indicate the energy associated with various
bands as a function of wavevector. The conduction band minimum at 〈111〉, labelled Eg, is
associated with the ellipsoidal surfaces shown in Figure 2.9. At the valence band maximum
enery, two degenerate bands meet, giving rise to hole populations with two distinct effective
masses. The wider of the two is the so-called “heavy hole” band. Figure from [49].

Figure 2.9: Surfaces of equal energy around the minima in the germanium conduction band.
Each of the minima are ellipsoidal in shape, with long axes aligned along the 〈111〉 axis.
Minima on parallel surfaces represent opposite ends of one complete ellipsoid, so there are
four distinct symmetry-related minima. Figure from [52].
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the current vectors produced from each of the four minima. At low fields, cubic symmetry

necessitates that the components misaligned with the field cancel, and the net current vector

is parallel to the field. However, at high fields, the velocities of the electrons are high enough

that behavior is no longer Ohmic. Electrons in ellipsoids for which the field is most aligned

with the small-mass axis become hotter, and therefore have reduced mobilities compared

to large-mass dominated valleys. This breaks the symmetry and results in a current which

no longer aligns with the electric field [41]. The anisotropy is enhanced by “inter-valley”

electron transfer with higher local minima in the band structure [53].

The situation for holes is somewhat more complicated due to the degeneracy in the

valence band maximum, seen at ~k = 0 in Figure 2.8. Two bands have the same ground state

energy, but different shape, creating a situation in which ground state holes can have two

different masses. The wider of the two bands has a higher effective mass and is labelled the

“heavy” hole band. The shape of the heavy hole band, shown in Figure 2.10, is warped–

spherical, with some dependence on crystal axis. The anisotropy produces effective masses

which are largest in the 〈111〉 direction and smallest in the 〈100〉. By the same argument as

electrons above, this condition causes misalignment of the current and electric field vectors.

The light hole band is almost perfectly spherical and does not significantly introduce

anisotropic drift. In addition, at thermal equilibrium, the heavy holes makes up 96% of the

hole population [41]. For these reasons, it is possible to model the hole transport using only

the heavy hole band without significant loss of accuracy [54].

For fields aligned with crystallographic axes, rotational symmetry requires that the drift

velocity aligns with field. However, the effect of the band structure described above causes

decreased mobility for the 〈111〉 compared to the 〈100〉 direction, for both holes and electrons.

Each axis can be then independently described by Equation 2.3. Fits to experimental data

for holes and electrons along the 〈111〉 and 〈100〉 axes are shown in Figure 2.7.

Due to the localized weighting potential in a PPC detector, the hole contribution domi-

nates signals for signals originating from the vast majority of the detector (see Section 2.1.3).
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Figure 2.10: Energy in the 〈110〉 plane of the heavy hole germanium valence band, shown
with the solid line. The radial direction indicates valence band energy for the wavector at
matching the polar angle. The dashed circle is included to emphasize deviations from a
spherical structure. Figure from [54].

The hole drift velocity is therefore more important to model correctly. However, because of

the complex valence band structure discussed above, precise calculation of the velocity for

arbitrary field direction is difficult, and usually performed with computationally expensive

Monte Carlo calculations [46]. To decrease calculation time in pysiggen, we have imple-

mented an approximate model of hole velocity for fields with arbitrary crystal orientation

first developed for gamma ray tracking experiments like AGATA [52]. Given the field ori-

entation and velocity in the 〈111〉 and 〈100〉 directions, this model provides an approximate

magnitude and direction for the velocity. The approximation is able to predict the 〈110〉

drift velocity to high accuracy.

We therefore require as input to pysiggen six parameters to describe the hole velocities:

the three parameters µ0, E0 and β of Equation 2.3 for both the 〈111〉 and 〈100〉 crystal axes.

This allows the flexibility to account for differences in drift velocity between detectors due

to differences, for example, in temperature or impurity concentration.

The currently implemented model of electron velocity in siggen is somewhat simpler.
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With input of velocities in all three crystallographic directions, it performs polynomial in-

terpolation to calculate field in a given orientation. The velocity values are taken from data

collected in [43]. More precise models exist [47, 52] and could be implemented in the future.

While it is possible this introduces percent-level error in waveform shape for events originat-

ing near the point contact, in the crystal bulk we expect accuracy to the order of parts per

ten thousand.

Charge Trapping and release

The presence of impurity sites and crystal defects introduces potential wells for charge

carriers. It is possible for some carriers to become trapped at these sites as they drift through

the detector. Charge that becomes trapped will no longer induce signal at the electrode, so

trapping attenuates the observed pulse amplitude. This effect can be modeled in terms of a

mean free drift time of charge carriers before encountering trapping [55].

In the assumed model, the magnitude of drifting charge is reduced by a constant fraction

per unit time, resulting in an exponential attenuation in charge as a function of drift time:

q(t) = q0e
−t/τT (2.4)

where q(t) is the time-dependent charge contained in the carrier cloud, q0 is the charge

created in the initial interaction, and τT is the mean free drift time of trapping. We have

implemented this model in siggen by reducing the effective charge of the charge cloud as a

function of time. An example of waveforms generated with varying charge trapping constants

is shown in Figure 2.11.

The mean hole trapping time will vary between detectors due to differences in trapping

site concentration between crystals. Because the magnitude of charge trapped depends on

drift time, pulses further from the point contact will experience greater charge trapping and

therefore lower amplitude than closer interactions of the same energy. The energy of each
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Figure 2.11: Simulated effect of charge trapping on hole compontent of PPC waveforms using
the model described in Section 2.2.1. The black waveform shows the induced charge from
hole carriers with no charge trapping. The red and blue show charge trapped waveforms
mean charge trapping constants of 5µs and 10µs. These are much shorter than the hundreds
of µs constants observed in the Demonstrator, but are chosen to more clearly display the
effect. The residuals at bottom, which compare each trapped waveform to the no–trapping
case, measure the the total charge trapped as a function of time.
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waveform is reconstructed from the amplitude of the pulse, so charge trapping results in

a degradation of energy resolution. This effect has been observed in the Demonstrator

detectors with trapping constants on the order of hundreds of microseconds, corresponding

to an energy reduction on the order of parts per thousand. The collaboration has developed

a technique to correct the energy reconstruction which improves the resolution at 2614 keV

by a factor as high as two.

Charges will eventually thermally escape from trapping sites. Release of trapped charge

contributes a delayed current, resulting in a slow component of the signal. Like trapping, the

release can be modeled in terms of an exponential time constant, τR. This effect is modeled

very simply in pysiggen by summing the total current trapped charge and exponentially

returning the charge to the cloud. During the drift time, the charge is added to the current

location of the charge cloud, and not released at the point it was trapped. Once the charge

cloud has reached the contact, amplitude is added to the signal exponentially until it reaches

the amplitude expected for a signal with no trapping. The model is shown in Figure 2.12

This model for charge release is an imperfect approximation. A more complete model

should re-inject charge at the point it was trapped. Doing so, however, would greatly increase

the computational complexity of a waveform simulation.

The current implementation of pysiggen includes only one set of charge trapping and

release constants which is applied to both the hole and electron signal. Physically, the two

carriers are trapping at different types of impurities, and therefore there is no reason to expect

their trapping and release times should be identical. However, since the hole contribution

dominates the signal in a PPC detector, this approximation should not introduce significant

error.
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Figure 2.12: Effect of charge release from trapping sites as modeled in pysiggen. The
addition of charge release causes the red waveform to return exponentially in amplitude
from its trapped value, in blue, to the no-trapping value, in black.
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2.2.2: Waveform Parameters

Interaction Position

Given a weighting potential, electric field, and drift velocity model, the generated signal

for interactions for any a given position can be calculated. Both the drift path and total

drift time of the charge cloud are obviously sensitive to the radial and axial position. To

first order, the shape of the waveform is dominated by the hole drift time, and therefore the

isochrone of origin. However, Figure 2.13 shows that there are percent-level differences in

waveforms even along an isochrone.
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Figure 2.13: A comparison of shape between simulated waveforms with the same drift time
(400 ns). Each event originates at azimuthal position φ = 0, which corresponds to the 〈100〉
crystal axis. The position of each event, shown at right, corresponds with the waveform color
at left. Residuals are drawn compared to a waveform from the position at right marked in
black. Differences between the waveforms are at the part per hundred level, which originate
because of differences in weighting potential and electric field along the drift path.

As described in Section 2.2.1, the velocity of charge carriers in high electric fields are

anisotropic with respect to crystal axis. The crystal growth process ensures that the detector

is oriented axially along the 〈001〉 axis. The crystal structure of germanium is diamond cubic,

so the plane perpendicular to the axial will contain a axis and, separated by π/4 radians, a
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Figure 2.14: Comparison between waveforms simulated at the same radial and axial position
(r = 20, z = 20), but varying the azimuthal position. The crystal axis anisotropy in drift
velocity at high electric field is responsible for the change in drift time. The fastest velocities
occur along the 〈100〉 axis, corresponding to φ = 0, while the 〈110〉 axis corresponds with
φ = π/4. Residuals are shown relative to the φ = 0 waveform.

〈110〉 axis. The waveform is therefore sensitive to the azimuthal position of the event, but

with an eight-fold degeneracy. An example of waveforms from the same position generated

at different azimuthal positions is shown in Figure 2.14. The fractional difference in risetime,

and therefore the residual difference, between waveforms from the 〈100〉 and 〈110〉 axis will

vary as a function of position (Figure 2.15). In general, maximum residual differences are

on the order of parts per hundred.

The position of the waveform is therefore modeled in three dimensional cylindrical co-

ordinates. The parameters r and z, which express the radial and axial position, can vary

anywhere within the detector volume. The azimuthal φ position is modeled only from [0, π/4],

corresponding to the crystal axis symmetry.
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Figure 2.15: Fractional difference in rise time calculated between events which occur at the
〈100〉 and 〈110〉 axes as a function of position. The drift velocity is lower along the 〈110〉.
The rise time difference increases with increasing radius due to the integrated effect of the
lower drift velocity. The difference is highest at lower axial position because here the the
calculated cloud drifts purely along the 〈100〉 or 〈110〉 axis to the point contact, whereas
for higher positions both clouds must also drift along the 〈001〉 axis (aligned with the axial
direction), which reduces the percent of the drift time the two clouds experience different
drift velocities.
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Energy

Assuming that all the charge generated in an event is collected, the signal amplitude

depends linearly on energy. In pysiggen, the simulated signal is adjusted for energy before

the charge trapping correction is applied. When incorporating the shaping of the electronics

(see Section 2.2.3), all filters applied are corrected to preserve unity gain of the signal. By

this procedure, the energy parameter remains a true measurement of energy, independent of

any other parameter’s effect on amplitude.

Charge cloud size & shape

The size and shape of the ionization charge cloud created in the crystal varies depending

on the type of particle interacting and the total energy deposited. After creation, the cloud

size can further grow due to diffusion and self-repulsion. We assume this cloud is created

spherical gaussian in nature, reflecting a point-like energy deposition2. As charges accelerate

and decelerate, the cloud stretches in space, but remains roughly gaussian in time. Since

the majority of signal is generated very near the point contact, we make the further approx-

imation that the cloud size correction can be performed with a single gaussian convolution

in the time domain. The gaussian sigma is parameterized in time, which corresponds to the

spatial width via the final velocity of the charge.

This approximation was made to reduce computational complexity, but does not fully

encapsulate the shape of the signal. To quantify the degree of error introduced, the true signal

produced by spherical gaussian signal was created using Monte Carlo. A million random

points were generated around the interaction point, with each of the r, φ and z components

and normally distributed with σ = 0.5 mm. A waveform was simulated for each of these

points, and averaged to create a final signal. This was compared to the simplified gaussian

convolution, choosing the gaussian sigma which minimized the least square difference from

2For radiation with longer interaction track lengths, such as MeV-scale electrons, the charge will be elongated
from a simple spherical gaussian cloud. This effect is not currently modeled.
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the Monte Carlo waveform. Figure 2.16 shows the result of this study. For realistic charge

cloud sizes at any point in the detector, the calculated difference between the full Monte

Carlo model and the simplified gaussian convolution is on the order of parts per thousand.
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Figure 2.16: Measure of the error introduced by approximating the charge cloud shape as
a gaussian convolution in the time domain of a single-point waveform. The red waveform
shows the approximated waveform, while the blue waveform is the average of a set of many
waveforms drawn from a spherical gaussian distribution around the same point. The residual
below shows the difference between the Monte Carlo and Gaussian Filter waveforms.

In addition to the charge cloud size, pysiggen includes an optional parameter to modify

the shape of the gaussian cloud. The spherical gaussian charge cloud assumes a point-like

energy deposition. For events in which the energy despotion has some finite width, the

charge cloud distribution should initially be more like a uniform sphere. However, diffusion

as the cloud travels still spreads the charge in a gaussian manner. To combine the effects,

pysiggen utilized a “generalized Gaussian” distribution, which introduces a parameter p to
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the cloud shape distribution such that the convolution weighting distribution w(t) becomes

w(t) ∝ exp

(
−1

2

∣∣∣∣ tσ
∣∣∣∣2p
)
, (2.5)

where σ still controls the width, and p controls the shape. The usual gaussian distribution

is recovered for p = 1 and, in the limit p → ∞, w(t) becomes a uniform distribution over

(−σ, σ). See Figure 2.17 for examples of this distribution.
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Figure 2.17: Generalized gaussian charge cloud shape described in Section 2.2.2. The distri-
bution of Equation 2.5 is drawn with σ = 20 for four different values of p.

2.2.3: Electronics Parameters

The Majorana collaboration designed an optimized detector electronics readout and

amplification system in an effort to minimize noise while achieving low radioactive back-

grounds, which is shown schematically in Figure 2.18. The readout is performed with a

resistive feedback circuit, containing an input field effect transistor (FET) and amorphous
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Figure 2.18: Schematic of the Demonstrator signal readout chain. The low mass front end
(LMFE) board is located within the cryostat, very near to the detector point contact, as seen
in Figure 1.4. The LMFE contains a resistive feedback element (RC element at top), field
effect transistor with drain and source lines, and capacitively coupled pulser input (bottom).
The four lines are bundles into one cable, which runs ∼2 m to additional amplification
elements outside the shield. Figure from [33].

germanium resistor, called the “low mass front end” (LMFE) board [19]. The LMFE is lo-

cated within a few millimeters of the detector, reducing stray input capacitance and therefore

series noise. However, given this positioning, the LMFE hardware must be must be minimal

and constructed only with very radiopure materials, while the rest of the preamplifier sys-

tem is located outside of the cryostat. Approximately 2 m of 0.4 mm diameter cable runs

between the LMFE and first stage of the preamplifier, thereby creating a feedback loop 4

m long. A second stage preamplifier, also outside the cryostat, is capacitively coupled to a

second stage of amplification. The signal is then digitized with 14 bit precision at 100 MHz

with GRETINA digitizer boards [56], which were originally developed for the GRETINA

experiment.

Given the extremely long feedback loop, and because the FET response depends sen-

sitively on temperature, it is difficult to accurately model the response of the electronics

readout with a circuit simulator. A capacitively-coupled pulser line runs to the input of the
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FET, but the pulser input is also shaped by 2 meters of cable running into the cryostat.

Without a direct measurement of the transfer function, we have developed an empirical

parameterization.

The LMFE and inductance from the cable attenuate high frequency components of the

signal, and can be modeled as a low-pass filter. A transfer function of order n can be

generically modeled as a digital filter in the z domain

H(z) =
cnz

n + cn−1z
n−1 + . . .+ c0

dnzn + dn−1zn−1 + . . .+ d0
(2.6)

To determine which order was appropriate for the Demonstrator electronics, we at-

tempted to fit waveforms with a generic filter of first, second, and third order. Qualitatively,

the second order filter was found to match the shape of the observed waveforms significantly

better than a first order filter. The third order filter showed no dramatic improvement over

the second order. For this reason, we chose to use a second order transfer function.

The fit to the second order preferred values of c0 near to zero, giving us a total digital

filter function with four free parameters

Hlow(z) =
az2 + bz

z2 + 2cz + d2
. (2.7)

In the time domain, this corresponds to a convolution with a decaying oscillatory kernel,

H(t) ∝ e−t cos(ωt+ φ), (2.8)

with the correspondence between the time and z domain is given by:

ω = cos−1
( c
d

)
and φ = tan−1

(
ac− b

a
√
d2 − c2

)
(2.9)
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Figure 2.19: Simulated effect of the electronics chain on waveform shape. Note that the
risetime is increased by ∼100 ns.

The steady-state, or DC, gain for the filter is given by

lim
z→1

az2 + bz

z2 + 2cz + d2
=

a+ b

1 + 2c+ d2
(2.10)

and therefore increasing the value of a+b only linearly scales the amplitude without otherwise

affecting the shape.

Capacitative couplings, most notably between the first and second preamp stages, cause

the waveform to exponentially decay. Empirically, we observe two strong coupling constants

with different strength. We model this with three additional parameters describing a linear

combination of two exponential decay functions:

Hhi(z) = c
z − 1

z − exp(− T
τ1

)
+ (1− c) z − 1

z − exp(− T
τ2

)
. (2.11)

Here, τ1 is set by the RC constant of the coupling between the first and second stage ampli-

fiers, usually around 72 µs, and τ2 is a ∼ 2µs coupling we believe is intrinsic to the digitizer.

The constant c expresses the fractional mixing between the decay constants.

The total transfer function originating from the electronics is the product of Hlow and
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Figure 2.20: Bode diagram of preamp gain using the model described in Section 2.2.3. The
total gain (on this logarithmic plot) is the sum of the two curves.

Hhi. The shaping introduced by the electronics chain using this model, based on parameters

observed in the Demonstrator, is shown in Figure 2.19. The length of cable in the feedback

loop is responsible for the dramatic increase in rise time [33]. A Bode diagram showing the

frequency response is shown in Figure 2.20.

The process of digitizing can also change the shape of the recorded waveform. There is

some inherent nonlinearity in the relationship between analog amplitude and digitally con-

verted amplitude due to limitations of the analog-to-digital converters on board the digitizer.

For the Demonstrator, this nonlinearity of the GRETINA digitizer has been studied and

shown to introduce no more than ≤ 1 ADC unit error for any given sample. Because this

is less than the noise amplitude, which is several ADC units, we ignore nonlinearity in our

model.

Section 2.3: Conclusion

Germanium detectors are reverse-biased semiconductor diodes which measure the holes

and electrons produced by ionizing radiation. Internal electric fields drift the carrier charges
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to a readout electrode, where they are read by a data acquisition system. A model, based

fundamentally on the Shockley-Ramo theorem, has been developed to calculate the signal

induced at the electrode during charge collection. This model is parameterized to account for

differences between PPC detectors. As an extension specific to the data acquisition system

of the Majorana Demonstrator, an empirical representation of an electronics transfer

function has been added.

Accurately simulating the waveforms from any specific detector with this model requires

the input of over a dozen parameters. Some are well-understood, but others are measured

poorly or not at all. Chapter 3 will focus on a technique to optimally estimate these param-

eters.
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CHAPTER 3: Machine learning of germanium detector parameters

The parameters outlined in the previous chapter sufficiently encompass the physics of

waveform generation to enable high precision modeling of PPC detector signals. However,

successfully modeling any specific detector requires precise tuning of over a dozen parame-

ters, many of which are either unknown or highly uncertain. In the absence of independent

measurements, it is possible to gain understanding of parameters by studying observed wave-

forms.

The shape of each waveform carries information about each of the detector parameters.

In principle, if the model described above is sufficiently accurate, this information can be

extracted by fitting the free model parameters to the waveform. This approach is limited,

however, due to the presence of noise, the high dimensionality and high degree of correlation

in the fit. When such a fit is performed on a single waveform, it tends to “overfit,” or select

parameters which fit the current waveform well but can’t be used to fit additional waveforms.

To address this issue, we have developed an algorithm which pools the information from

many waveforms in order to maximize the extracted knowledge about the parameters. Be-

cause it can infer information from a large and unspecialized data set, we label this a machine

learning algorithm. Specifically, we use the framework of Bayesian modeling [57], which al-

lows us to separately model each waveform’s individual parameters while sharing common

parameters related to the detector and electronics. The hierarchical model is trained to the

data using Markov chain Monte Carlo (MCMC) [58].

This chapter contains a detailed description of the model formulation, the MCMC sam-

pling and the training procedure.
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Section 3.1: Bayesian modeling

A Bayesian model attempts to infer the probability of the value of a set of parameters,

θ, given a data set x. We can write this as p(θ|x), which represents the probability density

for θ conditional on the observation of x. The foundation of any Bayesian method is Bayes’

law [57]:

p(θ|x) =
p(θ)p(x|θ)
p(x)

, (3.1)

which expresses p(θ|x) (known as the posterior distribution) in terms of p(θ) (the prior dis-

tribution), and p(x|θ) (the likelihood function). The prior is a distribution which represents

the knowledge of θ before the measurement. The likelihood represents the probability of

measuring x if the parameter set θ is true, and is computed using a model. The denomina-

tor, p(x), is a constant normalization factor obtained by integrating over all possible values

of θ. Since it is a constant, p(x) is only necessary to compare posteriors between models.

3.1.1: Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a method for numerically estimating a distribution

by sampling from it via a random walk [57]. Given a starting point, θ0, the MCMC algorithm

steps randomly through a sequence of values for the parameter θ1, θ2, . . . such that the

sampling density of the parameter values converges to a “target” distribution. When used

for Bayesian analysis, the posterior is chosen as the target distribution.

The algorithm is based on a “Markov chain,” meaning that the value selected for the

n th sample, θn, depends only on the previous step in the sequence, θn−1. The steps along

the Markov chain are governed by a “transition distribution” T (θn|θn−1), which describes

the probability distribution of selecting θn given the value of the previous step in the chain.

The random walk, or Monte Carlo, aspect of the algorithm is that the value chosen for the

given step is probabilistic according to the transition distribution. The crux of designing

of an MCMC algorithm is choosing a transition distribution such that it samples from the
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target distribution and converges quickly enough to be computationally achievable.

A simple and commonly used sampling method for MCMC is the Metropolis-Hastings

algorithm [59]. In Metropolis-Hastings, a “proposal” value θ′ is chosen from a proposal

distribution q(θ′|θn−1). The proposal is then accepted with a probability, α, proportional to

the ratio of the target distribution at the current and proposed distribution. Assuming the

target distribution is the posterior p(θ|x), the acceptance probability is

α = min

[
1,

p(θ′|x)/q(θ′|θn−1)
p(θn−1|x)/q(θn−1|θ′)

]
(3.2)

If the proposal is accepted, then θn = θ′. Otherwise, the value remains the same, θn = θn−1.

3.1.2: Diffusive nested sampling

The Metropolis-Hastings algorithm is prone to failure for strongly multimodal target

distributions, because it is difficult to define a proposal distribution which can suitably

sample from well-separated maxima in the target distribution. Similarly, multidimensional

models with highly correlated variables are difficult to properly sample since the proposal

must correctly adjust multiple parameters simultaneously to correctly explore the target

distribution. These issues were observed when a Metropolis-Hastings sampler was applied

to the model of Chapter 2. The estimation of position, especially, appears to be strongly

multimodal.

Diffusive nested sampling [60] is an algorithm which extends upon Metropolis-Hastings in

a way which can more robustly sample difficult distributions. It is an extension of “classic”

nested sampling [61], which constrains sampling to progressively constrained regions of the

prior space, called levels. The first level is simply the full prior space. After a set number

of iterations, which can be sampled by with Metropolis-Hastings MCMC, a new level is

created which encompasses e−1 percent of the likelihoods. As the algorithm runs, new levels

are successively created, each compressed (in terms of enclosed probability) by a factor of
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e−1. Given a likelihood threshold l for a level, and a likelihood function L(θ), the target

distribution for the MCMC algorithm is

p(θ; l) =
p(θ)1[L(θ) > l]

X(l)
(3.3)

where

X(l) =

∫
p(θ)1[L(θ) > l]dθ (3.4)

and 1 is a function that is unity when the conditional argument is true and 0 otherwise.

X(l) is a measure of the cumulative probability above the threshold value for a given level,

and so should for level N should be e−N as a result of the level creation scheme. Figure 3.1

shows the progressive compression of the prior space. By only sampling the progressively

higher regions of likelihood space, nested sampling is able to accurately converge around the

highest region of the posterior distribution.

Diffusive nested sampling extends the classic nested sampling algorithm by sampling

instead from a mixture of levels, weighted toward the highest likelihood levels. This allows

the algorithm to “backtrack” and explore different regions of the prior space. This capacity

improves the ability to sample highly correlated and multimodal target distributions, also

shown in Figure 3.1. The sampling is now over all levels, so the sampling distribution

becomes

p(θ) =
∑
j

wjp(θ)1[L(θ) > lj]

X(lj)
(3.5)

where lj is the likelihood threshold for level j, and wj is the weight assigned to that level,

which are exponentially weighted toward the highest likelihood levels with some “backtrack-

ing length” scale λ:

wi ∼ exp(j/λ). (3.6)

As the diffusive nested sampler runs, MCMC steps from the target distribution (Equa-

tion 3.5) are saved. An approximate value of X for each sample based on its likelihood
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and the likelihood of the adjacent levels. Given the sample likelihood, this can be used to

compute the weight of a set of parameters in terms of the posterior distribution.

To improve the ability to map a difficult posterior, it is possible to evolve simultaneously

multiple “particles,” each of which independently estimates the parameters of the model.

Each particle evolves along a Markov Chain independently from a starting position chosen

randomly from the prior. This is especially useful for complicated posterior spaces, which

might be strongly multimodal. If the likelihood for the parameters of given particle falls

too far behind the rest of the particle population, it can be eliminated and replaced with a

duplicate of a higher likelihood particle, thereby ensuring no particles become “stuck” in a

relatively low likelihood local maximum.

We use a software implementation of diffusive nested sampling named DNest4 [62]. The

individual particles used in diffusive nested sampling can be run in parallel, with their results

pooled at regular intervals. In DNest4, the parallelization is implemented via shared memory

on a single machine. In order to improve the number of particles that can be run simultane-

ously, we have extended the DNest4 code to run in parallel on scientific computing clusters

with the Message Passing Interface (MPI) standard using the OpenMPI implementation [63].

When parallelized to utilize a core for each particle used in the DNS algorithm, the corre-

sponding reduction in computation time scales with the number of particles, O(nparticles).

In addition, the likelihood function can be parallelized by computing each waveform’s

pysiggen model in parallel. We can maximize efficiency by parallelizing both the diffusive

nested sampling algorithm and evaluation of the likelihood function. For evaluation of the

likelihood of a single particle, pysiggen must be run once for each waveform in the training

set. By parallelizing the call to pysiggen, we are able to improve computation time an

additional factor of nwaveforms. By combining this with the parallelization of particles, utilizing

∼ nparticles · nwaveforms cores, we are able to improve the computation time by O(nparticles ·

nwaveforms).
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Figure 3.1: Illustration of the nested sampling algorithms. As the algorithm proceeds in step
number, new levels are created, shown as progressively darker shades of blue. In diffusive
nested sampling, the algorithm has some probability to “backtrack” and sample from lower
likelihood regions. Figure from [60].

Section 3.2: Learning model implementation

The goal of the machine learning model is to use a set of training waveforms to make

an accurate prediction of the detector and electronics parameters. The set of waveforms is

chosen from calibration data of the highest available energy (2614 keV 208Tl photopeak) to

maximize the signal to noise ratio, and drawn with a variety of rise-times to sample events

from across the detector volume. The model is constructed such that the set of parameters

which describe the detector or electronics, φ, are shared among all waveforms. An individual

set of parameters θi is assigned to each waveform to describe attributes which are unique to

that event, such as position, and compared to the observed data for that waveform, xi. The

total unnormalized posterior for a set of n waveforms is then constructed as a sum of each

individual posterior:

p(θ, φ|x) ∝
n∑
i=0

p(xi|θi, φ)p(θi)p(φ). (3.7)
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3.2.1: Likelihood function

We wish to compare simulated waveforms from pysiggen with observed waveforms, which

have been measured as part of the Demonstrator experiment. The digitizer boards records

2038 samples in 10 ns increments, so in principle, the dataset x can consist of as many as

2038 elements. In reality, most of this 20 µs window is either flat “baseline” preceding the

signal, or simple RC decay as the preamplifier returns to baseline (see Figure 3.2). We

therefore window the signal around the ∼ µs–long rising edge where the signal is of most

interest.

Under the assumption that pysiggen produces a deterministic and correctly–modeled

waveform, the likelihood of measuring a given value xj for an individual digitized sample is a

function of the difference between xj and the pysiggen prediction yj and the noise present on

the waveform. We model the noise on each waveform as Gaussian and white. While there is

some frequency structure in the Demonstrator noise, the waveforms under consideration

are high enough in signal to noise ratio that any effect should be very minor. The noise

present on the baseline, and its distribution, is shown in Figure 3.3. The noise standard

deviation, σ is measured from the digitized baseline prior to the waveform and used to find

a value. The likelihood for each individual sample j, then, follows a normal distribution.

Using the standard notation N(µ, σ2) for a normal distribution with mean µ and variance

σ2, we have

p(xj|θ, φ) ∼ N(xj − yj, σ2), (3.8)

and the total likelihood is the sum of the likelihood for each sample within the data window,

such that for waveform i with m samples,

p(xi|θi, φ) ∼
m∑
j=0

N(xj − yj, σ2). (3.9)
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Figure 3.2: A digitized Demonstrator waveform at 2614 keV, shown in full at left, and
windowed around the rising edge at right. Each sample is plotted as a horizontal step to
emphasize the digitization. Note that the baseline value is 100 ADC counts above zero.
There is noise present on the waveforms, but because it is at the level of ∼ 5 ADC counts,
it is not visible in these plots.
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Figure 3.3: Noise characteristics of Demonstrator waveforms. The plot at left shows the
noise present on flat baseline from the first 800 samples of the waveform in Figure 3.2. The
mean baseline value has been subtracted such that the mean value is zero. The plot at right
is a histogram of the subtracted baseline value for 32 waveforms, normalized such that the
sum of all bins is unity.
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3.2.2: Waveform parameterization and priors

The pysiggen parameters specific to each waveform, as discussed in Section 2.2.2, are

position, energy, and charge cloud shape. However, for the purposes of the learning model,

we use training waveforms from a monoenergetic photopeak, which allows us to model them

with a common energy parameter1. This eases a strong correlation in shape that improves

convergence of the charge trapping parameter, and will be described in greater detail in

Section 3.2.3.

In order to compare the pysiggen waveform with digitized data, an additional parameter

is required to align the waveform in time with the digitized signal. The parameterization

and prior for the time alignment, as well position and charge shape, are discussed below.

Position

Although it would be natural to model the position in cylindrical coordinates, it is impor-

tant to recognize that the hole drift time is a principal driver of the overall waveform shape.

From the isochrones seen in Figure 2.4, it is apparent that there is a strong anticorrelation in

drift time between the radial and axial directions. To reduce the impact of this correlation,

we perform the fit using polar coordinates, with the origin located at the point contact.

At present, it is assumed that there is no a priori knowledge of a waveform’s position, so

the prior for each of the three positions is uniform over the appropriate range of values. For

the radial and polar coordinates, this is anywhere within the detector active volume. The

crystal axis dependence on drift velocity, discussed in Section 2.2.2, is periodic with a unique

angular span of π/4 radians. We therefore set the azimuthal coordinate prior as uniform

in the [0, π/4] quadrant, and recognize that any estimation of this parameter is eight-fold

degenerate with respect to the true azimuthal position in the detector.

1Within a photopeak, there is a spread in energy caused by the statistical variance of the creation of charge
carriers, which is a Poisson process. The training waveforms are taken from a narrow energy band around
the photopeak maximum to account for this.
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Charge cloud

The model uses the generalized gaussian model of Equation 2.5. During fitting, we have

seen that waveforms at 2614 keV tend to cluster around σ = 20 ns and p = 2. We therefore

set each prior with a wide normal distribution around these values: a standard deviation of

20 ns for σ and 10 for p. The sigma prior is limited by the range (1,40) ns, where the lower

bound is chosen to prevent σ of less than one sample. The p parameter range bounds are

(1,20), which corresponds to a gaussian distribution, and 20 is a value high enough to be

indistinguishable from a uniform distribution.

Time alignment

The Demonstrator digitizer continuously digitizes the signal on each input channel at

100 MHz, storing the values in a temporary buffer. When the signal exceeds a threshold over

the flat baseline value, defined by the output of an on-board trapezoidal filter, it triggers

the digitizer to save the event to disk. To avoid triggering on noise, it is necessary to set

the trigger threshold several standard deviations above the noise amplitude. A waveform

with a short drift time will therefore cross the trigger threshold closer in time to its true

start time than a longer drifting waveform, as shown in Figure 3.4. There is some additional

uncertainty on the exact trigger point due to noise and the inherent 10 ns width of the

digitization sample.

To enable high precision time alignment, it is therefore necessary to add a parameter

which aligns the pysiggen waveform with the digitized waveform. Aligning by the start point

of the waveform would be most convenient. However, because drift time is highly correlated

with position, this would tightly correlate the alignment time and position parameters. It

advantageous to instead choose an alignment time point at a high fraction of the waveform

rising edge, where all waveforms have relatively similar shapes. In addition to reducing

correlation with other parameters, it is easier to make a robust prediction of a time point on

the rising edge than the start time, especially for long drift-time waveforms which have very
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Figure 3.4: Four digitized Demonstrator waveforms from the 2614 keV Tl208 photopeak.
The plot at left shows the two microseconds of the signal roughly centered around the rising
edge. The same waveforms are shown at right, more tightly windowed around the trigger
point. The baseline value is subtracted from each waveform. The point at sample ∼ 985
where the waveforms roughly intersect is where the digitizer is triggered. The waveform with
the shortest drift time, in blue, has less elapsed time between signal start and the trigger
point than the longer drifting waveforms.
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little signal amplitude at their start.

Because the pysiggen waveform is calculated in discrete time steps, aligning at an arbi-

trary, continuous-valued time point requires interpolation. The siggen calculation produces

an output in 1 ns time steps. To compare with digitized data, pysiggen downsamples to 10

ns increments and performs a piecewise-linear interpolation between the calculated points.

We have chosen to align based on the 95% rise-time of the waveform amplitude as the

alignment point, defined as the point where the waveform reaches 95% of its maximum value.

The prior is normally distributed around an estimated value from the parameter, which is

calculated simply as the sample number where the waveform exceeds 95% of its maximum

value. The prior has a standard deviation of one sample (10 ns).

3.2.3: Detector and electronics parameterization and priors

The parameters which are shared between all waveforms in the training set affect char-

acteristics of either the detector or the electronics shaping.

Electronics transfer function

The electronics shaping, as described in Section 2.2.3, is divided into a high-pass and

low-pass contribution:

Hhi(z) = c
z − 1

z − exp(− T
τ1

)
+ (1− c) z − 1

z − exp(− T
τ2

)
, Hlow(z) =

az2 + bz

z2 + 2cz + d2
. (3.10)

The high-pass filter, characterized by three parameters, describes the decay of the signal

to baseline after energy is collected. Because these parameters affect the signal shape after

the rising edge, they are largely uncorrelated with the parameters which describe the signal

formation process. It is therefore possible to perform a simple maximum likelihood fit on

the decaying tail of individual waveforms to gain an understanding of these parameters. The

fit is performed on the tail only, which we define as starting 20 samples (200 ns) after the
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Figure 3.5: Decaying tail of the waveform shown in Figure 3.2. The vertical dashed red line
is 20 samples past the waveform maximum. The fit to the tail shown in Figure 3.6 uses the
samples after this point.

waveform maximum, and extending to the end of the digitization window (see Figure 3.5).

The results of this fit over many waveforms, shown for one detector in Figure 3.6, is used to

set a normal prior distribution for each parameter.

The parameters associated with the low-pass filter affect the rising edge and therefore

can’t be fit separately in the same way as those for the high-pass filter. The transfer function

is applied in pysiggen as a digital filter in the z domain in the form of Equation 2.7, which

has four free parameters. However, since the DC gain of the filter does not effect the shape,

and the signal amplitude is fit as an energy parameter, we can reduce this expression to a

unity gain filter with three parameters:

Hlow(z) =
1 + 2c+ d2

1 + b
· z2 + bz

z2 + 2cz + d2
(3.11)
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Figure 3.6: Results of a three-parameter maximum likelihood fit to high pass filter shaping
(Equation 2.11) with the decaying tail of 1208 waveforms. All waveforms are from the 2614
keV photopeak and are from the same Demonstrator detector (P42661A). The mean and
variance for each parameter are used to set priors for the full machine learning fit.
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We have found the MCMC converges fastest when fitting the time-domain representation

of the oscillation parameters, ω = cos−1(c/d) and φ = tan−1
(

c−b√
d2−c2

)
. A benefit of this

parameterization is that, since the convolution kernel goes as cos(ωt+ φ), each is naturally

cyclical with 2π and can therefore be bounded and given a uniform prior.

There is freedom in how to parameterize the third free parameter. We have found that the

shape is quite sensitive to the combination g = 1
1+2c+d2

, which is the contribution to the gain

from the denominator. The numerator parameters can be scaled without changing the gain,

but because of the z2 term in the denominator, c and d cannot be scaled without changing

the shape. The combination g then represents sort of an intrinsic gain when a+ b = 1. The

choice is somewhat arbitrary, but appears to converge fairly well. There is no natural bound

to this parameter, so a very wide gaussian distribution is used around a reasonable value.

The effect of each of the three parameters is shown in Figure 3.7.

Drift velocity

Recalling Section 2.2.1, we must fit the three parameters of Equation 2.3 for both the

〈100〉 and 〈111〉 crystal axes. Again, the equation, together with its physical limits, is:

v(E) =
µ0E

(1 + (E/E0)β)1/β
, lim

E→0
v(E) = µ0E, lim

E→∞
v(E) = µ0E0 (3.12)

We therefore have two independent handles on velocity at very low and very high field,

and the parameter β controls how “sharply” they connect. In the middle field region, the

three parameters combine nonlinearly in a way that would be difficult to fit without the

input of the high and low field behavior. Figure 3.8 shows that, for holes in germanium,

the linear low field behavior falls off at ∼10V, and the saturation velocity is reached ∼>

10,000V.

Figures 3.9 and 3.10 show the electric field inside a Demonstrator enriched germanium

detector. The span of electric field values are well within the range of moderate field where
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Figure 3.7: Effect of the three low-pass electronics transfer function parameters on the
waveform shape. From top to bottom, the ω, φ and g parameters are plotted holding the
other two constant. Each parameter has a grey band, showing the effect of varying the value
over the range shown in the label. The dashed red line, which is the same in each plot, shows
the curve for a waveform with values trained by Demonstrator data. The range for each
parameter is chosen such that the waveform stays near in shape to the red curve.
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Figure 3.8: Drift velocity curves using the Equation 2.3 parameterization, varying the value
of β. The black dashed lines show the linear v ∼ µ0E behavior at low field and constant
v ∼ µ0E0 velocity at high field. The values E0 = 181 and µ0 = 66333 are from 〈100〉 direction
observed by [46].
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Figure 3.9: Electric field in a representative Demonstrator enriched detector.
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Figure 3.10: A one dimensional histogram of the electric field values in Figure 3.9. Fields in
the detector mainly fall between 200-1200 V/cm.

the velocity parameters are more correlated and therefore more difficult to fit. We therefore

wish to reparameterize the equation in terms of parameters which are more directly influenced

by the electric fields present in our detectors. Specifically, it would be helpful to express the

curve in terms of velocities at the bottom and top end of the observed range of fields.

If we begin with the velocity at two fields EA and EB,

vA =
µ0EA

(1 + (EA/E0)β)1/β
, vB =

µ0EB
(1 + (EB/E0)β)1/β

, (3.13)

we can express µ0 and E0 in terms of vA, EA, vB and EB,

E0 =

(
ψβEβ

B − Eβ
A

1− ψβ

)1/β

, where ψ =
EAvB
EBvA

(3.14)

and

µ0 =
vA
EA

(
1 +

(
EA
E0

)β)1/β

. (3.15)

The three parameters vA, vB and β are used to perform the fit. Figure 3.11 shows the

reparameterization using EA = 250V and EB = 1000V. The velocity is well described in the
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Figure 3.11: Velocity curves using the parameterization of Equation 3.14. The velocity
reference points used in this plot are EA = 250V and EB = 1000V, using the same 〈100〉
direction velocity parameters from [46] as Figure 3.8.

range of fields observed in the detector by the parameters vA and vB, but the β parameter

no longer has much leverage over the curve shape in this region. We have seen significant

improvement in overall convergence using (vA, vB, β) model, so the this is implemented in

the machine learning fit.

The priors for vA and vB are normally distributed, with means set using the values given

by [46] and 20% standard deviation. Measured values of β can vary greatly, and our fit value

of β does not tend to converge reliably in any case. For this reason, we conservatively set a

uniform prior on β from 0 to 1.

Point contact dimensions

Because the weighting potential in a PPC detector is very strongly weighted near the point

contact, the generated signal depends very sensitively on the dimensions of the point contact.
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The point contact dimple is modeled as a hemispheroidal indentation. Precision optical

measurements of its diameter and depth are available for some, but not all, Demonstrator

detectors. A separate measurement was made at ORTEC during manufacturing but with

uncertain accuracy. For detectors measured at both ORTEC and with the Demonstrator

optical device, values can vary by as much as a few tenths of a millimeter.

For this reason, we allow the radius and depth of the point contact dimple to float in the

model. For detectors with optical device measurements, the measured values used to set a

gaussian prior with 0.1mm standard deviation. Detectors without the optical measurement

are given a flat prior in a range of 0.5mm around the ORTEC provided value.

Because point contact parameters affect the electric field and weighting potential, chang-

ing them requires calculating fields with fieldgen, which is an expensive process. To im-

prove the speed of the machine learning process, we precompute the fields for a grid of point

contact values. The field for arbitrary point contact dimensions is then calculated via bi-

linear interpolation between the precalculated values. To facilitate interpolation, the range

of allowed point contact values must be bound between the minimum and maximum values

precomputed for each parameter. We use a 0.5mm window calculated in 0.1mm increments

around the measured value.

Impurity profile

As discussed in Section 2.2.1, there is considerable uncertainty in the measurement of

impurity. Since the impurity is measured at each end of the detector, the impurity gradient

is even less certain.

Like the point contact dimensions above, the impurity values affect the field values and

therefore must be precomputed. The range for precalculation is chosen to encompass a range

of reasonable values based roughly on 50% range around the measured values, but taking

into account the range over which the detector fully depletes. The prior is simply set as flat

over this range.
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Charge trapping, charge releasing and energy

Charge trapping, as described in Section 2.2.1 , reduces the amount of charge in the

carrier cloud as a function of time. When trapping effects are nonnegligable, the amplitude

of waveforms with the same interaction energy will depend on the drift time of the charge

cloud, with longer drifting waveforms more strongly attenuated. This effect is clearly visible

in Demonstrator data, as shown in Figure 3.12.

To first order, the difference in waveform shape due to charge trapping is simply the

reduction in amplitude. When each waveform in a training set is given an individual energy

parameter, the fit therefore has a strong local maximum to simply reduce the amplitude with

the energy parameter and choose a very long mean charge trapping time constant. To avoid

this, we select a training set with all waveforms from the same energy peak, and share a

common energy parameter. This forces the fit to use charge trapping, and not an individual

energy value, to match the observed amplitude.

The energy prior is normally distributed around the maximum the training set waveform

with the shortest observed drift time, with a 10 ADC standard deviation.

There is little prior knowledge of the charge trapping constant. The reduction in ampli-

tude in Figure 3.12 can be reproduced with charge trapping on the order of a few hundred µs.

However, since charge can subsequently be released from the traps, the observed reduction

is actually a combination of both the trapping and untrapping rates.

To be cautious, we use a uniform prior over a wide range of possible charge trapping and

untrapping values. The trapping constant is allowed to vary between 10µs and 1000µs, while

the untrapping constant varies from 1µs to 1000µs. We have observed good convergence in

the trapping parameters with this approach.

Summary of free parameters

In total, there are 19 parameters shared between all waveforms, and 6 parameters which

describe each individual waveform. Table 3.1 summarizes the parameters.
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Figure 3.12: Sixty waveforms from the 2614 keV photopeak for a Demonstrator detector.
Each color is a separate waveform. The plot at right shows the full waveforms, which are
time aligned by their estimated start time. The plot at right is windowed to emphasize the
amplitude of the waveform. Longer drift time waveforms have lower amplitudes, which is
caused by charge trapping.

Type: Detector Waveform Electronics
Point contact length Interaction position (x3) Hi-pass (x3)
Point contact depth Alignment time Low-pass (x3)
Average impurity concentration Charge cloud (x2)
Impurity gradient
Charge trapping constant
Charge release constant
Training set energy
〈100〉 : β, µ0, E0

〈111〉 : β, µ0, E0

Total: 13 6 6

Table 3.1: Summary of the free parameters in the model.

71



3.2.4: Sampling strategy

The proposal distribution for each parameter is set according to the prior. Following

the recommendation of [62], we use a “heavy tailed” proposal distribution rather than tune

proposal step sizes to improve sampling. The distribution is a student-t distribution multi-

plied by the width of the prior distribution. For normally distributed parameters, this is the

distribution standard deviation, and for uniformly distributed parameters, it is the width of

the allowed region.

For any given step in the chain, we update one or more parameters from either the

global parameter set (φ) or an individual waveform’s parameter set (θi). By updating more

than one parameter simultaneously, we can better sample correlated parameters. However,

parameters from different waveform sets should not be correlated, so it is desirable to update

only one set of parameters at a time. To satisfy both of these conditions, we block update

either detector or waveform parameters, each with 50% probability. If updating waveforms,

we update one or more waveforms simultaneously, with the number drawn randomly from

an exponential t-tailed distribution. This step chooses which parameter sets to update.

Once the parameter sets are chosen, we must update the parameters within the set.

Following the example of [62] for heavily sampling from correlated distributions, we draw

a random number n from 100N(0,1). Then, for n iterations, we randomly update one of the

parameters in the set.

Section 3.3: Choosing a training set

The machine learning algorithm trains the parameters of the model described above by

fitting a set of training waveforms. In order for the model to be accurate, it is necessary that

the training waveforms arise from representative, single site interactions within the detector

bulk. Additionally, it is advantageous that the waveforms have as high a signal to noise ratio

as possible.
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Figure 3.13: The Demonstrator calibration system. A line source is inserted via the clear
plastic tubing track through the shield, at left. The track source wraps helically around the
copper cryostat.

Training waveforms are selected from Demonstrator calibration data. The calibration

is performed by inserting a 228Th line source into the shield, which wraps around the module

cryostat (see Figure 3.13) [64].

The spectrum from a 228Th calibration is shown in Figure 3.14. The highest energy

feature in the spectrum is the 2614 keV photopeak from the decay of 208Tl, a daughter

nuclide in the 228Th chain. To maximize the signal to noise ratio of our training waveforms,

we choose waveforms from this peak. However, a large number of interactions in this peak

originate either from the incoming gamma either Compton scattering or pair producing

in the detector. In both cases, for the full energy of the interaction to be recorded, it is

necessary that the event be multisite in nature. We can apply a cut based on the current

pulse amplitude to energy ratio (A/E) to eliminate the majority of the multisite events.

As described in Section 2.1.4, a single site waveform has only one current peak, while

a multisite waveform has multiple. Since the energy of a current waveform scales with its

integral, at a given energy a multi-peaked current waveform will be wider than a single-

peaked waveform, and therefore have a lower maximum value. By removing events with
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Figure 3.14: Calibration spectrum using a 228Th source in the Demonstrator. The highest
energy peak in the spectrum is the 2614 keV peak, a photopeak from the decay of 208Tl, a
228Th daughter nuclide. The next two highest intensity features are the 208Tl double and
single escape peaks at 1592 keV and 2103 keV, respectively. The remaining peaks are from
various 228Th chain decays.
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Figure 3.15: Current waveforms for 100 events from the 2614 keV 228Tl photopeak. Each
charge waveform is simultaneously differentiated and smoothed via convolution with a win-
dow which is the first derivative of a gaussian, with a 50 ns standard deviation. Waveforms
in red fail the A/E cut due to the low amplitude of the current pulse. Many of the failing
events have multiple current peaks, clearly marking them as multisite events.

75



Energy (keV)
2604 2606 2608 2610 2612 2614 2616 2618 2620 2622 2624

C
ou

nt
s

1

10

210

310

All events

Events after A/E cut

Figure 3.16: Effect of an A/E cut on the amplitude of the 2614 keV 228Tl photopeak. The
cut reduces the peak for this calibration run from 26,108 to 2,185 events, or by 92%.

low current peak amplitude, shown in Figure 3.15, the A/E discriminates against multisite

events. The value for the A/E cut is chosen to accept 90% of the 208Tl double escape peak,

which is dominated by single site events. Figure 3.16 shows reduction in the amplitude to 8%

of the 2614 keV peak after the A/E cut. Examining the waveforms remaining after the cut

in Figure 3.17, the variance in shape before ∼800 ns is due to varying drift times. However,

the outlier waveforms near the maximum at ∼1000 ns show there remain clearly multisite

events in the set. A multisite event could create this shape if a relatively high energy charge

cloud arrives at the point contact before a second lower-energy cloud. Evidently, the A/E

cut is inefficient at removing this type of multisite event.

Figure 3.18 shows the current waveforms for the events which survive the A/E cut. In

current space, it is easier to understand the failure mode of the A/E cut: waveforms which

have a high energy cloud with a short drift time and a low energy cloud with a longer drift

time create current peaks which are nearly mirrors of single site events with long drift times.
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Figure 3.17: On top, 500 waveforms from the 2614 keV photopeak before an A/E cut is
applied. At bottom, 500 waveforms that survive the A/E cut. Each waveform drawn is
translucent, such that darker bands are more densely populated regions. Waveforms are
aligned at their 50% risetime time point.
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Figure 3.18: Current waveforms for events which survive the A/E cut. Each charge waveform
is simultaneously differentiated and smoothed via convolution with a window which is the
first derivative of a gaussian, with a 50 ns standard deviation. Waveforms in red are multisite,
and tagged based on the extended tail at on the falling edge of the current peak.

To eliminate these events, we introduce a cut based on the fall-time from the current peak

to the baseline. Since our goal is only a representative training set, the efficiency of this cut

has not been studied in detail.

An additional cut is made based on the mean baseline value. For a given detector, the

baseline value for all events should be the same. However, the electronics take several tens

of µs to settle back to baseline after an event is measured. If a second event occurs before

the baseline is fully recovered, the observed baseline in the first few microseconds of the

digitization window will deviate from the equilibrium window. The shape of the waveform

will be distorted as the electronics continue to settle, so these waveforms must be rejected
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from the training set2. Figure 3.19 shows the waveforms this cut removes.

Finally, we wish to ensure that all waveforms in the training set originate from interactions

in the “bulk” of the detector. If the interaction occurs in the small volume around the point

contact where the initial weighting potential of the interaction is relatively high, the electron

contribution to the waveform will be significant. Several approximations made in the model

described in Section 2.2 assume that the hole contribution dominates, so these waveforms

should be excluded from the training set. Since events closer to the point contact have

shorter drift times, these events can be simply removed by a drift time cut. Figure 3.20

shows the distribution of rise times once all other cuts have been applied. Conservatively,

we exclude events with drift times less than 500 ns.

Once all cuts have been applied, we must choose a subset of the remaining waveforms to

use in the training set. As a proxy for sampling events originating from positions throughout

the detector, we aim to select waveforms uniformly distributed in drift time. To this end,

we group the remaining waveforms by drift time into a bins, choosing a number of bins

corresponding to the size of the desired training set. One waveform is then chosen randomly

from each bin to create a training set.

While this procedure is largely able to discriminate against multisite waveforms, it is still

possible for “slightly” multisite waveforms to pass through the cut. We have been able to

identify such events based on their failure to converge during the machine learning fit. In

these cases, the event is manually excluded and replaced with a waveform of similar drift

time. Without a pure source of single site events, having to iterate on training set to exclude

multisite events is probably unavoidable.

Similarly, because the energy parameter is shared between all waveforms in the set, it is

imperative that all waveforms truly have the same energy. However, there is some natural

statistical fluctuation in the number of electron-hole pairs produced by an interaction. The

2This situation is much more common during calibration, when the count rate is quite high, than during
0νββ data collection.
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Figure 3.19: Cut based on baseline value. The top plot shows a histogram of the mean
baseline value for the first 800 samples of 2614 keV waveforms remaining after the multisite
event cuts. Only waveforms with baselines between the red dashed lines, drawn 3 ADC
counts from the mode, are accepted. The bottom plot shows the waveforms accepted and
rejected by this cut, in black and red respectively. Of 1,842 waveforms, 1,583 (85%) of
waveforms pass this cut.
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Figure 3.20: Distribution of estimated drift time for waveforms which pass the multisite
discrimination and baseline cuts.
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fit is sensitive to this fluctuation, and higher or lower than average energy waveforms will

not have the correct amplitude. Again, these waveforms are excluded from the training set

manually.

Each waveform in the set is windowed around the rising edge. Because the model before

the waveform start is only a flat baseline, adding window before the start of the waveform

adds no information. It is only necessary to ensure the window begins early enough to cap-

ture the beginning of each pulse. The tail contains information about the transfer function

decay parameters, and it is useful to keep enough tail in the window to ensure those param-

eters converge. However, increasing the length in turn increases the required computation

time. We have found that a 250 sample window, centered around the 99.5% risetime, works

acceptably.

It is possible that the procedure of cuts described above accidentally eliminates some

single site events which should be retained in the training set. Given the current accuracy

of the model, we believe the set of training waveforms originate a sufficiently diverse set

of locations to provide the algorithm with information from isochrones across the detector.

However, should the accuracy improve in the future, more careful consideration should be

made to ensure that the training waveforms do not discriminate against any specific regions

of origin.

Section 3.4: Conclusions

By constructing a Bayesian model that combines multiple waveforms with shared detector

parameters, it is possible to learn about the detector and electronics model parameters by

solving for the posterior distribution. Because the model is both high dimensional and

strongly correlated, MCMC with diffusive nested sampling is a good choice of algorithm

for estimating the posterior. Still, we are able to improve the convergence properties of

the algorithm by choosing a parameterization of the model which attempts to minimize

correlations, and choosing a varied set of single site training waveforms.
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CHAPTER 4: Results & Applications

Section 4.1: Machine learning results

The learning algorithm described above was implemented by integrating pysiggen into

the framework of DNest4. We then used diffusive nested sampling to estimate the parameters

for an enriched germanium detector from the Demonstrator, which is identified by the

serial number P42661A. This detector is the third from the top on a string opposite the

crossarm opening, which is given the Demonstrator designation P5D3. The training set

selected for detector P42661A is shown in Figure 4.1, chosen at sixteen waveforms to keep

computation time to convergence reasonable. The event identification number corresponding

to each waveform is listed in Table 4.1.

The diffusive nested sampling algorithm was run with 20 particles, which was the maxi-

mum number which could be run in parallel on the UNC killdevil computing cluster. A new

level was created each time 10,000 samples exceeded the likelihood of the current threshold,

with each level compressed by e−1 relative to the previous. Every 1,000 samples, one par-

ticle at random was saved to disk as a way to store the MCMC target distribution. Each

particle was run for 680,000 iterations, when the Markov Chain was empirically found to be

converged.

Sampling the posterior with high enough density to fully map the distribution would

require roughly an order of magnitude more iterations, which was not computationally fea-

sible. Instead, we can simply take the highest likelihood sample in the MCMC as the best

fit.

The best fit to the training waveforms is shown in Figure 4.2. The residual shows that

the model is accurate nearly to the level of the noise amplitude. There is, however, some
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Figure 4.1: Training set used for machine learning fit for detector P42661A. There are sixteen
waveforms in the set. The top plot shows the full 250-sample window used in the fit, centered
around the estimated 95% rise time. The bottom plot shows the differences in the shape at
the start of each waveform.
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Number Color Rise Time [ns] Run number Entry number

1 red 528 11515 128965
2 blue 565 11511 96633
3 green 584 11510 317207
4 purple 621 11511 48362
5 orange 646 11510 56040
6 cyan 682 11511 202862
7 magenta 684 11515 62152
8 goldenrod 705 11512 71698
9 brown 724 11511 95195
10 deeppink 770 11514 208461
11 lightsteelblue 824 11511 13079
12 maroon 839 11516 92744
13 violet 904 11515 225892
14 lawngreen 915 11513 1225
15 grey 939 11513 6869
16 chocolate 969 11542 8401

Table 4.1: Training set of sixteen waveforms for detector P42661A. The color is used for
all plots of these waveforms within this work. Rise time is estimated from the start time
to the 99.5% rise time. Run number and entry number are unique identifiers from the
Demonstrator dataset. Each waveform is taken from the high gain amplification channel.

structure evident in the residual. The structure indicates either that the model does not

fully capture the physics of the signal, or that the fit was not able to properly converge on

the global maximum.

To help determine the quality of convergence, we performed a set on a second set of

sixteen training waveforms. The residual structure for the second set is very similar to the

first training set, as seen in Figure 4.3.

4.1.1: Fit parameters

The parameters for fits from both training sets are compiled in Table 4.2.

The drift velocity curves over the range of fields relevant to the detector for training set

one are plotted in Figure 4.4, compared to the measured value from [46] which formed the

basis of the prior. The magnitude of the anisotropy between the 〈100〉 and 〈111〉 axes is
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Figure 4.2: Best fit of the training waveforms to the model. At top, all waveforms are shown,
with the best fit overlaid. The residual, on bottom, shows that the fit is accurate nearly
to the level of noise. However, some structure remains, which is more clearly visible when
averaged, as in Figure 4.3.

roughly the same as expected from previous measurements, but the overall drift velocity is

lower by ∼10%. The curves are similar for training set two. The disagreement between the

measured and fit values of the β parameters are not surprising, since the reparameterization

in Section 3.2.3 leaves β with little influence over the velocity over the fields of interest.

The impurity and point contact dimensions estimated for the detector are shown in
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Figure 4.3: The residual between the training waveform and fit, averaged over the sixteen
waveforms in the training set. The top and bottom plots use two different sets of sixteen
waveforms as training samples. If the model were perfectly accurate, the average residual
would be flat at zero, shown by the dashed black line. The structure after sample 100
suggests the model, though accurate at approximately the part per thousand level, could be
further improved.
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Figure 4.4: Drift velocity curves for the 〈100〉 and 〈111〉 axes. The values in red are from
the fit to detector P42661A. The values in black are from the measurement by [46].

Table 4.2. Optical measurements of the point contact for this detector were not available,

so we compare to the values measured at ORTEC. The measured depletion voltage for this

detector is 1200 V. With the parameters taken from the fit, the calculated depletion voltage

is 1400 ± 25 V. The difference is likely due to an incorrectly estimated impurity profile.

4.1.2: Fit to second detector

To ensure the process is applicable across different crystals, the same training process

was applied a second Demonstrator detector. Detector P42574A hails from a different

crystal boule than P42661A, and was pulled at an earlier date. It is located as the third

detector from the top in a string located crosswise to the crossarm, designated P6D3. The

training waveforms are shown in Figure 4.5, with more details in Table 4.3. The residual

structure for the fit to sixteen P42574A waveforms is shown in Figure 4.6. The model is
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Velocity parameters

Parameter Fit Value (Set 1) Fit Value (Set 2) Measured Value

〈100〉 : v250 4.89× 106 cm/s 5.05× 106 cm/s 5.50× 106 cm/s
〈100〉 : v1000 7.26× 106 cm/s 7.16× 106 cm/s 8.61× 106 cm/s
〈100〉 : β 0.1 0.41 0.744
〈111〉 : v250 4.40× 106 cm/s 4.41× 106 cm/s 4.83× 106 cm/s
〈111〉 : v1000 6.31× 106 cm/s 6.48× 106 cm/s 7.17× 106 cm/s
〈111〉 : β 0.9 0.47 0.580

Electronics parameters

Parameter Fit Value (Set 1) Fit Value (Set 2)

φ -1.44 mm -1.52 mm
ω 0.01124 mm 0.01123
gain 1554.7 1521.9

τ1 73.4 µs 71.0µs
τ2 1.4 µs 1.1µs
c 0.90 0.99

Detector parameters

Parameter Fit Value (Set 1) Fit Value (Set 2) Measured Value

PC Radius 1.54 mm 1.6 mm 1.5 mm
PC Length 1.21 mm 1.64 mm 1.7 mm
Avg. Impurity Conc. 0.55 ×1010 cm−3 0.44 ×1010 cm−3 0.59 ×1010 cm−3

Impurity Gradient 0.014 ×1010 cm−4 0.071 ×1010 cm−4 0.016 ×1010 cm−4

τtrap 294.3 µs 267.3 µs
τrelease 5.1 µs 2.8 µs

Waveform Amplitude 6432.4 ADC 6444.2 ADC

Table 4.2: Fit values for the hole drift velocities for both training sets for P42661A. Mea-
sured values for velocity are from [46] and for detector parameters are from manufacturer
measurements. There are no reported uncertainties associated with any of the measured
values.
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once again able to fit to residuals at the ∼6 ADC level, and the structure in the residual

looks very similar to that for detector P42661A.

Number Color Rise Time [ns] Run number Entry number

1 red 424 11514 113363
2 blue 448 11514 99694
3 green 483 11510 307803
4 purple 513 11511 134776
5 orange 578 11510 16756
6 cyan 604 11514 96625
7 magenta 657 11512 29496
8 goldenrod 675 11511 33826
9 brown 709 11510 308551
10 deeppink 758 11510 257709
11 lightsteelblue 778 11512 112523
12 maroon 838 11511 7198
13 violet 878 11517 28223
14 lawngreen 891 11510 200387
15 grey 946 11516 169409
16 chocolate 955 11588 90466

Table 4.3: Training set of sixteen waveforms for detector P2574A. The color corresponds
to the waveforms in Figure 4.5. Rise time is estimated from the start time to the 99.5%
rise time. Run number and entry number are unique identifiers from the Demonstrator
dataset. Each waveform is taken from the high gain amplification channel.

Section 4.2: Validation

To validate the parameters selected by the machine learning fit, we can apply the model

to estimate the position of a large population of single site events. Events from calibration

data should be distributed roughly evenly throughout the detector volume. If the model

cannot accurately reconstruct waveforms from any given volume of the detector, it should

be apparent by examining the reconstructed position distribution. We can also evaluate the

ability of the model to discern between populations of single and multisite events, comparing

its accuracy to the A/E algorithm.

It would be computationally intractable to run the full model described in Chapter 3 for
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Figure 4.5: Training set of sixteen waveforms used for machine learning fit for detector
P2574A. The top plot shows the full 250-sample window used in the fit, centered around the
estimated 95% rise time. The bottom plot shows the differences in the shape at the start of
each waveform.
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Figure 4.6: The residual between the training waveform and fit, averaged over the sixteen
waveforms in the training set, for detector P42574A.
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several thousand waveforms. Instead, we have developed a subset of the model which uses

DNest4 to fit only the parameters individual to each waveform. The shared detector and

electronics parameters are fixed to the values computed in the full machine learning fit. This

gives us a much simpler fit which can be performed on each waveform individually.

For a source of single and multi site events, we can use the Tl208 escape peaks. The

escape peaks are features in an energy spectrum created from pair production events from a

photopeak at higher energy. When the created positron annihilates, it creates a pair of 511

keV gammas inside the detector. One or both of these gammas can go on to “escape” the

detector volume, thereby reducing the total measured energy of the event by 511 keV or 1022

keV, respectively creating a “single escape” peak (SEP) and “double escape” peak (DEP)

at energies 511 keV and 1022 keV below the photopeak. In the case of double escape peak

events, since both 511 keV gammas escaped, there is a high probability that the interaction

was confined to the single site of the pair production. For the single escape peak, one of the

511 keV gammas must have interacted in the detector, very likely at a distance separated

from the original interaction location. The single escape peak is therefore largely composed

of multisite events. For the 208Tl photopeak, the double and single escape peaks are at 1592

keV and 2103 keV, respectively. They are visible in the spectrum in Figure 3.14.

We used the detector and electronics parameters from the fit to P42661A to fit 11,466

calibration events, 6,378 of which are from the SEP and 5,088 from the DEP. The fit likeli-

hood distribution for each event in shown in Figure 4.7, which shows that the DEP events

are reconstructed with higher likelihood values than single escape peak events.

The A/E cut value is defined such that it retains 90% of events in the DEP. We can

attempt to create a similar cut using a fit likelihood threshold, since our model should fit

single site events better than multisite. The results of a cut which retains 90% of DEP events

in shown in Figure 4.8.

The waveforms for all events in the DEP are shown in Figure 4.9. Many of the failing

events are characterized by an extremely long time for the waveform to rise from ∼ 90% of
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Figure 4.7: The plot shows the negative log likelihood (NLL) for fits to waveforms from
the 208Tl single and double escape peaks. Because it is negative likelihood, a lower value
corresponds to a better fit. The distribution for the DEP and SEP are each normalized to
the total number of events in that peak. Multisite waveforms should have higher NLL values
than single site events.The SEP distribution is significantly lower in amplitude because many
multisite events from the distribution have extremely high NLL values and are therefore
beyond the scale of this plot.
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Figure 4.8: Comparison of A/E cut and likelihood fit cuts on the 208Tl double (at top) and
single (at bottom) escape peaks. Both cuts are defined to retain 90% of events in the DEP.
Using an extremely simple cut, we are able to discriminate against multisite events in the
SEP nearly as efficiently as the A/E cut.
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Figure 4.9: Waveforms and estimated residuals for DEP waveforms in detector P42661A. Red
waveforms fail the likelihood cut, while black waveforms pass. Many of the cut waveforms
show a very long time between the time points corresponding to ∼90% to ∼99% of the
maximum amplitude, suggesting that these events may have a percentage of their holes
slowed by diffusion in the n+ layer.
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the amplitude to the maximum. It is likely that these events deposited energy very near

to the n+-p boundary at the outside of the detector. Holes in low field regions around this

boundary can diffuse slowly into the depleted region of the detector, creating a delayed signal

component. Since this diffusion dominated region is not part of the current model, it is no

surprise that they should fit poorly.

The estimated radial and azimuthal position of DEP events is shown in Figure 4.10.

Given the clustering of poorly fitting events at low r and z, whose waveforms have the fast

rise time corresponding to isochrones near the point contact, it is clear that events near

the point contact are not fitting with high precision. Waveforms in this region will have

non-negligable electron contributions to the waveform. Given the approximations made in

the model that the hole contribution dominates, it is no surprise that point contact events

should fit poorly. The residual for waveforms which do pass the cut have approximately the

same structure as seen in the training waveforms.

The estimated positions can be compared to Figure 4.11, which shows the Geant4

simulated position of double escape events in the detector. There is some preference for the

events to occur at the edges of the detector, where there is less material for annihilation

gammas to penetrate before escaping. However, it is clear that the simulated events do not

cluster strongly in any specific location of the detector.

In the MCMC estimated positions, there is a strong cluster in the corner of the detector

opposite the point contact. There is an additional cluster at ∼ (r = 500 mm2, z = 20 mm).

Each are likely caused by some inaccuracy in the model. In addition, there is an area just

above the taper at high r and low z which contains nearly no reconstructed events. We

model this taper as a perfectly sharp angle, which is somewhat unphysical, and probably

causes distortion in the modeled fields in the region, seen in Figure 3.9. In reality, there is

some curvature radius on the taper edge which should be incorporated into the model.

The estimated azimuthal position is shown in Figure 4.12. The model appears to cluster

waveforms near φ = 0, π/8 and π/4. This likely points to some issue with the estimated
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Figure 4.10: Estimated position for 5,088 DEP events in detector P42661A using values from
training set one. Events which fail the 90% DEP cut are shown in red, events which pass
are in black. The radial position is squared to normalize for the increased detector volume
in a given voxel at higher radius. In these coordinates, the position distribution should be
roughly uniform (see Figure 4.11). The taper is visible in the corner at low axial position
and high radial position.
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Figure 4.11: Position distribution for DEP events in P42661A using a Geant4-based sim-
ulation of the Demonstrator geometry with the thorium source inserted. Double escape
events are tagged by energy and the presence of a positron during the track. Some clustering
is visible at the corners of the detector.

drift velocity curves in Figure 4.4, since the azimuthal position reconstruction depends on

the drift velocity anisotropy between crystal axes.

The DEP analysis was also repeated for detector P42574A. Figure 4.13 shows the wave-

forms corresponding to this fit, while Figure 4.14 shows the positions. The behavior in this

detector is broadly similar to P42661A. A cluster of failing events appears near the point

contact, and there is some strong clustering of positions. Especially interesting is the lin-

ear cluster at ∼ (r = 500 mm2, z = 27 mm), which is similar to one which appears at a

proportionally similar position within detector P42661A.

There are two interesting differences between the position maps. While P42661A shows

strong clustering in the corner opposite the point contact, in P42574A there is a strong cluster

just below the corner. It is possible this is related to poorly estimated impurity profile

parameters. Additionally, detector P42574A has a large sparse region of high likelihood

events reconstructed at low radial and high axial position.
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Figure 4.12: Estimated azimuthal position for DEP events which pass the 90% cut. If the
model were perfect, we should expect this distribution to be flat between 0 and π/4.
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Figure 4.13: Waveforms and estimated residuals for DEP waveforms in detector P42574A.
Red waveforms fail the likelihood cut, while black waveforms pass. Again, a large fraction
of the failing events have the long drift time between ∼90% and ∼99% of the maximum
amplitude.
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Figure 4.14: Estimated position for DEP events in detector P42574A. Red points fail a 90%
efficiency likelihood cut, while black points pass the cut. Similar to detector P42661A, there
is clustering in certain locations. Additionally, the area at high axial and low radial position
is particularly sparse.

Section 4.3: Uncertainties

There are several possible sources of uncertainty in the estimation of values from the

detector training algorithm. Because we are training the model on a finite set of waveforms,

it is possible the estimated value is biased based on the waveforms selected for the training

set. Additionally, if the Markov chain cannot smoothly sample the parameter space, it

can become “stuck” on one local maximum likelihood value, and not find the true global

maximum.

In general, choosing a training set with the largest possible number of waveforms should

produce the most accurate estimate of the parameters. However, to make the algorithm

computationally feasible, we chose to train with only sixteen waveforms. To attempt to

understand the uncertainty associated with the selection of this training set, we ran the

algorithm with two different sets of training waveforms for detector P42661A. The esti-

mated parameters for both sets are shown in Table 4.2. For velocity and electronics filter
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parameters, the difference in estimated values is roughly on order of 10%.

There is a larger discrepancy between sets for impurity concentration and point contact

dimension parameters. It is difficult to definitively ascribe the difference in estimated value

to physical differences between the training sets, because it is also possible that the Markov

chain is not correctly converging on the optimum value for these parameters. Qualitatively,

we can judge how well the a Markov chain is converging to a true global maximum likelihood

based on the structure of a histogram of the values explored by the chain for a given pa-

rameter. Figure 4.15 shows a histogram of the final 1,000 values of the chain for electronics

shaping parameters. The chain is exploring a continuous region of the possible space for each

of these parameters. In contrast, Figure 4.16 and Figure 4.17 show the final 1,000 values for

the velocity and detector parameters. Most of these histograms show sharp peaks clustered

around disparate values (each of which corresponds to the location in parameter space of a

distinct particle in the diffusive nested sampler). It is possible that the likelihood space is

truly so strongly multimodal that this is a correct representation of the target distribution.

However, it is more likely that the chain is unable to smoothly sample the parameter space

due to the complexity of the model.

It should be expected that the velocity and detector parameters are more difficult to

sample than the electronics parameters. Figure 2.19 shows that the electronics is a dominant

effect on the waveform shape. Because the electronics shape the signal after it has formed

in the detector, the extremely long rise time of the Demonstrator amp effectively washes

out the imprint of the detector and velocity parameters. In addition, there are a number

of very strong correlations in the model which describes signal formation. The model for

hole drift velocity, for example, depends both on the parameters of the velocity curve as

well as the modeled electric field. This creates a strong correlation between the impurity

concentration and velocity parameters.

It is possible to approximate an uncertainty for parameters with poor chain performance

by evaluating the region of parameter space the chain explores before it becomes fragmented.
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Figure 4.15: Histogram of the final 10,000 saved steps in the Markov chain for electronics
filter parameters in P42661A training set one. For each of these parameters, the chain
is exploring a continuous region around a single value. This is the proper behavior for a
well-converged chain.
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Figure 4.16: Histogram of the final 10,000 saved steps in the Markov chain for velocity
parameters in P42661A training set one. For these parameters, the chain is exploring different
well-separated pockets of different values. This indicates either that the likelihood space is
extremely multi-modal likelihood space or that the chain is having difficulty sampling over
the allowed space for these parameters.
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Figure 4.17: Histogram of the final 10,000 saved steps in the Markov chain for detector
parameters in P42661A training set one. Like in Figure 4.16, the chain is not smoothly
sampling over these parameter values.
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Figure 4.18 shows a series histogram of the estimated radial and axial position as the chain

iterates. We can estimate the uncertainty in the position estimate as the rough area the

chain explores in subplot (b).

In principle, the issue of poor chain performance could be addressed by increasing the

number of particles run in the diffusive nested sampling algorithm. However, the availabil-

ity of computational resources has limited us to 20 particles for the sixteen waveform set

considered above.

Section 4.4: Conclusions

Diffusive nested sampling was utilized to fit a training set of sixteen waveforms from

two different detectors from the Demonstrator. The model is able to fit the waveforms

with residuals on the order of parts per thousand of the overall signal amplitude. There is,

however, some structure which remains in the residuals, indicating either that the model is

incorrect or that it has converged on a suboptimal set of parameters.

The performance of the fit was evaluated by performing a simplified fit to individual

waveforms from the 208Tl escape peaks. Using the majority single site events of the DEP, we

estimated the ability of the model to estimate position. In general, there are no large volumes

it totally fails to sample correctly, with the exception of the region near the point contact,

and the region near the taper. The nonuniform clustering seen in position, especially in φ,

again suggests some deficiency or degeneracy in the model.

Given the complexity and high degree of correlation in the model, it is difficult to spec-

ulate as to the exact parameters which are causing these issues. It is clear that the residual

affects all waveforms equally, which could point to the shaping due to electronics. The

electronics response function chosen in Section 2.2.3 was arrived at empirically but without

high-precision measurements using signals of known input. Future measurements should be

dedicated to ensuring that this function is adequate at the level of accuracy now required of

the model.
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Figure 4.18: Histogram of position parameters for different slices of the Markov chain for
P42661A training set one. The chain was run for 680,000 saved steps. Each plot shows
a histogram of chain values for position over a different slice of the iteration number: (a)
steps 1,000–7,700; (b) 7,700 – 14,400; (c) 14,400-21,100; (d)21,100-27,800. In (a), the chain
is exploring the region generally along a drift time isochrone, and has shown preference for
the region around (r = 15mm, z = 15mm). In (b) and (c), the chain splinters into on
disconnected subspaces of position. By (d), the chain samples only a few of the 0.1mm ×
0.1mm pixels. (The red circle is included to emphasize where on the plot the pixels are
located).
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Even with an imperfect model, a cut based on fit likelihood was shown to discriminate

against multisite events with nearly the same efficiency as an A/E cut. Given that the cut

is defined at 90% efficiency in the DEP, and we are sacrificing a large number of events to

the point contact region, it is clear that the current model can at least discriminate between

single and multisite events with accuracy.
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CHAPTER 5: Conclusions

Section 5.1: Summary of results

We have developed a model which is able to simulate waveforms formed in Majorana

Demonstrator PPC germanium detectors with high precision. This model incorporates

semiconductor physics with an empirical representation of the shaping introduced by readout

electronics. Using the framework of Bayesian statistics, we have utilized the model to build

an algorithm to learn the correct model parameters for a given detector. The model is trained

using only a small number of calibration waveforms which have been carefully selected to

provide information about single site event shapes from across the detector volume.

When the algorithm is applied to a training set of sixteen waveforms from a Demon-

strator detector, the model is able to reconstruct waveforms to the level of parts per

thousand. However, the structure present in the residual suggests either the model is miss-

ing key physics, or the model is not correctly converging on a global maximum. Even with

this limitation, the model is clearly able to distinguish between normal and abnormal events

with high efficiency.

The distribution of estimated position for single site events is less uniform than would be

expected. Again, this points to either the model or parameters being incorrect. In addition

to clustering, both analyzed detectors showed some regions which are with fewer estimated

events compared to simulation. Again, this points either to a deficiency in the model or a

failure of the MCMC algorithm.
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Section 5.2: Additional studies

There are several studies which would improve understanding of the results described

above. In Section 4.3, we showed that the MCMC is likely failing to properly explore the

full parameter space. As a future study of the MCMC convergence, the algorithm can be

run several times on the same training set with different random number seeds. Changing

the seed will change the initial state of the Markov chain, which is drawn randomly from the

prior distribution. If the parameter estimates differ substantially between seeds, it is proof

that the chain is converging poorly.

It is also possible that increasing the number of waveforms in the training set could

help improve the ability of the chain to converge. If the chain is failing because there is

insufficient information in the sixteen waveform training set to create a strong preference in

likelihood space, additional waveforms would provide more information. On the other hand,

adding waveforms also increases the dimensionality of the fit, which makes convergence more

difficult. Still, it is worth attempting to train on larger sets, keeping in mind that increasing

the size also increases the required computational resources.

In addition, several studies are necessary to investigate possible dependence of the esti-

mated parameters on the choice of training set waveforms. All the data discussed in this

work originate from a single calibration set, taking place over the course of several hours. It

is possible that some parameters could change in time due to environmental or other factors.

For example, it is conceivable that ambient temperature could affect the electronics filter pa-

rameters. The learning algorithm should be applied to training waveforms from calibrations

taken weeks and months apart to evaluate the stability of all parameters.

Similarly, all training waveforms in the results above were taken from the 2614 keV 208Tl

photopeak, which was chosen to maximize the signal to noise ratio. It is feasible that the

estimated parameters might changes based on the energy of the training waveforms used.

This can be examined by training with waveforms originating from different energies, such

as the double escape peak or Compton continuum edge.
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Finally, it would be extremely useful to begin dedicated measurements to validate the

parameters estimated by the model. As a first step, collimated scans could be performed

with a relatively high energy source. The estimated position distribution could then be

compared to the location of the collimated beam as a more precise form of validation than

simply looking at the distribution of DEP events.

Section 5.3: Improvements

5.3.1: Model improvements

We have put great effort into trying to resolve the origin of the structure in the residual

by adjusting the model and incorporating additional physics. One possibility is that the

model is correct, but the MCMC algorithm is unable to converge on the global likelihood

maximum. Given the state of the Markov chain shown in Figures 4.15 and 4.16, it seems

worth exploring improvements to the MCMC before attempting to introduce new changes

to the model.

Should it prove necessary to adjust the model, there are a few areas which stand out

as obvious candidates for improvement to the observed residual. Because the residual is

of equal strength for waveforms of all drift times, its origin cannot be a localized effect.

This eliminates the failure to float electron velocity parameters as a possible culprit. The

electronics filter parameters stand out as clearly affecting all waveforms equally. It might be

possible to increase the order of the low pass filter to fully encapsulate the Demonstrator

electronics frequency response. A second possibility is that the approximations about charge

cloud shape described in Section 2.2.2 are no longer accurate at this level of precision. Finally,

since the holes from all waveforms are collected at the point contact, error in the field or

weighting potential in this region could give rise to the residual. At present, the point contact

is modeled as a perfect hemispherical indentation into the detector surface, which creates a

sharp corner where the two join. In reality, this corner has some curvature, which could be
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included in the model in the future.

In the long term, modeling waveforms which originate in the volume immediately sur-

rounding the detector will require including an electron drift velocity parameterization in the

model. Given that this region is a relatively small percentage of the overall detector volume,

and would require increasing the dimensionality of the fit, this is probably a low priority.

As a parallel project, it would be interesting to attempt to incorporate into the model

the effects which distort waveform shape at the edges of the detectors. For instance, we

believe diffusion in low field regions near the n+ contact is responsible for the waveforms

with slowed rise times from ∼90% to maximum in Figures 4.10 and 4.14. Modeling this

effect might allow us to fit the slowed waveforms which originate near the n+ contact in

This could, in turn, allow for improved understanding of the depth of the n+ contact and

the true active volume of each detector.

5.3.2: Training improvements

Improving the uncertainties on parameters before introducing them to the model could

improve convergence of the chain and reduce required computation time. Perhaps the sim-

plest to implement is a dedicated measurement of the electronics filter parameters. By using

a signal generator to inject a signal of known shape at the detector, the transfer function

parameters could be fit completely independently of the detector and waveform parameters.

The work described in this document was started after construction on the Demonstra-

tor was well underway, which prevented us from taking any dedicated detector characteri-

zation data. In the future, dedicated collimated scans could be used to create training sets

of waveforms with well-understood location. Understanding the location would consider-

ably shrink the size of the allowed parameter space from the prior and simplify the training

algorithm.

113



5.3.3: Computational improvements

An impediment to broadly applying this technique is the heavy computational load it

requires. The training algorithm as implemented in this work, using sixteen waveforms, takes

approximately a day of wall time on the UNC killdevil cluster using 341 cores. Assuming the

detector parameters are stable in time over the course of data taking for the experiment, this

should only need to be run once per detector. Once detector parameters are frozen, fitting

each individual waveform takes on the order of a minute (and is trivially parallelizable).

The simplest way to improve the computation time required for the training step is

to improve the information input to the training step, as described above. With better

information on electronics parameters and waveform position, the training step would take

considerably less time to complete. Additionally, improving the model to account for the

residual should smoothen the convergence process and improve computation time. Model

improvement should similarly improve the convergence time for individual waveforms.

Finally, more work can focus on improving the computation itself. There is remaining

optimization which should be done within pysiggen, especially in the application of convo-

lutions for charge cloud size and electronics filtering. Some speedup should be possible by

porting the python components to the c language.

Section 5.4: Outlook for the Demonstrator and beyond

As we continue to improve the model, it is important to keep in mind that the ultimate

measure of this technique is its applications for the Demonstrator and future tonne-scale

experiments. In Section 4.2, we showed that a simple likelihood-based cut can effectively

discriminate against multi-site events in the single escape peak, as well as reject unusual

waveforms in the double escape peak. An obvious next step is to apply the cut to waveforms

from Demonstrator background data. Given that a large number of the Demonstrator

background events around the ROI have been identified as alpha events with a distorted
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waveform shape, it would be interesting to evaluate the ability of the likelihood cut to reject

alphas. Additionally, the 2νββ events in the spectrum will provide a check on the ability of

the technique to fit ββ waveforms.

Although the position estimation shown in Section 4.2 is imperfect, it represents the first

time event origin has been estimated inside a PPC detector. The availability of this new in-

formation can be used for several purposes in a 0νββ experiment. During the commissioning

phase, should any unexpected background appear within the experiment, the location could

help localize the position of the source. Additionally, since ββ events should be distributed

uniformly through the detector volume, position information can serve as a useful check on

systematics from analysis cuts.

As we move toward a tonne-scale germanium 0νββ experiment, understanding the ori-

gin and characteristics of every waveform will become paramount. This can be achieved by

designing the tonne-scale experiment with the capabilities of this technique in mind. For ex-

ample, the narrow bandwidth of the Demonstrator preamp electronics causes a dramatic

increase in waveform rise time, and effectively blurs out information about the detector and

waveform properties. A wider-bandwidth preampfification chain should increase the amount

of this information which is available in the measured waveform, which could enable im-

proved background rejection. It would be possible to quantify this improvement by studying

the algorithm performance on waveforms simulated with a higher bandwidth preamp.
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