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Abstract
We report on the prediction accuracy of ligand-based (2D QSAR) and structure-based
(MedusaDock) methods used both independently and in consensus for ranking the congeneric
series of ligands binding to three protein targets (UK, ERK2, and CHK1) from the CSAR 2011
benchmark exercise. An ensemble of predictive QSAR models was developed using known
binders of these three targets extracted from the publicly-available ChEMBL database. Selected
models were used to predict the binding affinity of CSAR compounds towards the corresponding
targets and rank them accordingly; the overall ranking accuracy evaluated by Spearman
correlation was as high as 0.78 for UK, 0.60 for ERK2, and 0.56 for CHK1, placing our
predictions in top-10% among all the participants. In parallel, MedusaDock designed to predict
reliable docking poses was also used for ranking the CSAR ligands according to their docking
scores; the resulting accuracy (Spearman correlation) for UK, ERK2, and CHK1 were 0.76, 0.31,
and 0.26, respectively. In addition, performance of several consensus approaches combining
MedusaDock and QSAR predicted ranks altogether has been explored; the best approach yielded
Spearman correlation coefficients for UK, ERK2, and CHK1 of 0.82, 0.50, and 0.45, respectively.
This study shows that (i) externally validated 2D QSAR models were capable of ranking CSAR
ligands at least as accurately as more computationally intensive structure-based approaches used
both by us and by other groups and (ii) ligand-based QSAR models can complement structure-
based approaches by boosting the prediction performances when used in consensus.

1. Introduction
The 2011 CSAR benchmark exercise provided the scientific community with the
opportunity to evaluate and benchmark the reliability of the various computational
approaches for predicting protein-ligand interactions. Four targets were considered: UK
(UroKinase), ERK2 (Mitogen-activated protein kinase ERK2), CHK1 (Checkpoint Kinase
1), and LPXC (Pseudomonas Aeruginosa UDP-3-O-acyl-GlcNAc deacetylase). The
objectives for every participant were to (i) accurately predict the binding pose of each CSAR
ligand, and (ii) rank the series of CSAR ligands for different molecular targets according to
an assessment of ligands’ binding affinity for each target.

The first objective of the CSAR exercise was clearly thought as a “classical” benchmarking
of molecular docking approaches for predicting native-like, accurate binding poses of new
ligands towards known targets. Meanwhile, our group especially welcomed the second
objective as a unique opportunity to employ ligand-based approaches for ranking the CSAR

NIH Public Access
Author Manuscript
J Chem Inf Model. Author manuscript; available in PMC 2014 August 26.

Published in final edited form as:
J Chem Inf Model. 2013 August 26; 53(8): 1915–1922. doi:10.1021/ci400216q.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ligands and compare their overall ranking reliability with that obtained by structure-based
approaches used both by other participants and by our group. It is important to underline that
CSAR organizers did not put any restrictions on the use of external publicly-available data,
methods, and software.1 The participants were even encouraged to use as many sources of
any potentially useful information as possible. We also envisioned the possibility of
employing both ligand-based2 and structure-based3,4 approaches and exploring some
potential complementarities to rank CSAR ligands more accurately.

In this study, we aimed at assessing and ranking the binding affinities of CSAR ligands
using a unique consensus approach (see Table 1) that employed two different types of
methods: (i) Quantitative Structure-Activity Relationship (QSAR) models built with known
inhibitors of UK, ERK2, and CHK1 using two-dimensional molecular descriptors and
machine learning techniques; (ii) MedusaDock molecular docking that predicts both the
binding poses of CSAR ligands and the corresponding molecular affinities. Beyond the
comparison of the prediction power of QSAR models versus structure-based docking5, we
pursued the idea of exploring the benefits of using ligand-based and structure-based
approaches in a consensus way instead of contrasting them. Similar hybrid strategies have
been rarely explored previously6,7 so we took this benchmarking exercise as an opportunity
to test such methodology further.

The main goal of this study was to reliably assess the relative ranking of CSAR ligands by
predicting their potency towards given kinase targets. To achieve this goal we used
cheminformatics approaches to (i) collect and curate chemical data extracted from ChEMBL
related to binding towards UK and ERK2, and inhibition towards CHK1 and LPXC; (ii)
develop statistically robust, validated, and externally predictive QSAR models to compute
CSAR ligands’ activities and rank them accordingly; and (iii) combine QSAR and structure-
base docking predictions into consensus relative ranking lists. The results of our studies
suggest that ligand-based QSAR approaches can perform similarly or even better than
computationally expensive, structure-based approaches. Moreover, we also show potential
benefits coming from the synergistic use of both approaches as compared to single method
predictions. These benefits mainly relate to the identification and subsequent overriding of
activity cliffs (i.e., very similar compounds with dissimilar activities) by enriching the
predictions from one structural space (2D or 3D) with the ones from another.

Here we only report on the results of QSAR modeling and our consensus approach; all
results and discussion related to the prediction of CSAR ligand binding poses (and their
overall accuracy) by MedusaDock are published in a separate study.8

2. Methods
2.1. Dataset Preparation

2.1.1. Data sources—For each target, we extracted all known associated ligands from the
ChEMBL version 12 database.9 For the UK target (CHEMBL3286), a total of 828 binding
affinity (Ki) values were retrieved. Approximately 1,450 IC50 values were found for CHK1
(CHEMBL4630), whereas only 91 Ki values were retrieved for ERK2 (CHEMBL4040). For
all three sets, we did not consider integrating experimental data coming from qHTS assays,
mixing IC50 and Ki values, or adding data from other sources.

The fourth target of the CSAR benchmark exercise, LPXC, was excluded from our study
due to the insufficient amount of data available for QSAR modeling. The LPXC-related set
extracted from ChEMBL included 53 compounds with exact IC50 values. Among them, only
11 unique compounds had IC50 below 1µM and the overall distribution of pIC50 had a
narrow range from 4.2 (inactive compounds) to 6.9 (weakly active compounds) with a
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strong distribution bias towards inactives. Thus, QSAR analysis of this dataset was not
feasible; nevertheless, we have examined whether accurate predictions of LPXC binding
affinity for CSAR ligands can be achieved based on global chemical similarity
considerations. Indeed, among the 16 new ligands provided by the CSAR organizers, we
found a few compounds highly similar to some of the 53 ChEMBL compounds using simple
2D similarity metric (Tanimoto coefficient threshold higher or equal than 0.85). Further
examination showed that pairs of highly similar compounds had very similar binding
affinities indeed. For instance, only one chlorine group differentiates CSAR_lpxc_11 (pIC50
= 4.7) from ChEMBL107127 (pIC50 = 4.66); CSAR_lpxc_14 (pIC50 = 5.6) was very similar
to ChEMBL324440 (pIC50 = 5.80), CHEMBL104577 (pIC50 = 4.51), CHEMBL104043
(pIC50 = 5.92), and CHEMBL107004 (pIC50 = 5.26); CSAR_lpxc_11 (pIC50 = 4.7) was
also very similar to CHEMBL104671 (pIC50 = 4.52). This analysis suggests that, even in the
absence of sufficiently large amounts of data to enable QSAR modeling, it is still possible to
obtain accurate prediction for a subset of LPXC ligands using cheminformatics techniques.

2.1.2. Dataset curation—The compounds retrieved from the ChEMBL database were
preprocessed according to a set of guidelines for chemical data curation and standardization
that our group published recently.10 Briefly, after the removal of counterions, structures
were standardized and converted into canonical tautomeric form with neutral representation
and explicit hydrogens. As illustrated in Table 2, only 48 out of 91 compounds remained in
the ERK2 dataset after the curation steps including the deletion of stereoisomers and the
compounds with uncertain and approximate Ki values. In the end, pKi values for the 48
selected compounds were ranging from 4.60 to 8.70. Similarly, 717 compounds (out of 899
total) were still present in the UK set after curation and their pKi values were ranging from
0.30 to 11. Lastly, 1215 out of 1450 compounds remained in the CHK1 dataset with pIC50
values ranging between 3.68 and 10.

2.2. Molecular Descriptors
2.2.1. Dragon descriptors—The following types of descriptors were generated using
Dragon software (v.5.5, Talete SRL, Milan, Italy): 0D-constitutional descriptors (atom and
group counts), 1D-functional groups, 1D-atom centered fragments, 2D-topological
descriptors, 2D-walk and path counts, 2D-autocorrelations, 2D-connectivity indices, 2D-
information indices, 2D-topological charge indices, 2D-Eigenvalue-based indices, 2D-
topological descriptors, 2D-edge adjacency indices, 2D-Burden eigenvalues, and various
molecular properties such as octanol-water partition coefficient. Descriptors with low
variance (standard deviation lower than 10−4) or missing values were removed.
Furthermore, if the correlation coefficient between any two descriptors exceeded 95%, one
of them was removed. The remaining descriptors were range-scaled, so that their values
were within the interval [0, 1]. Definition and calculation procedures for Dragon descriptors
and the related references are given in the Handbook of Molecular Descriptors.11

2.2.2. SiRMS descriptors—HiT QSAR Software12 based on Simplex representation of
molecular structure (SiRMS)13,14 was used for generating 2D Simplex descriptors, i.e.,
number of tetratomic fragments with fixed composition and topological structure. At the 2D
level, the connectivity of atoms in simplex, atom type, and bond nature (single, double,
triple, or aromatic) have been considered. SiRMS descriptors account not only for the atom
type, but also for other atomic characteristics that may impact biological activity of
molecules, e.g., partial charge, lipophilicity, refraction, and atom ability for being a donor/
acceptor in hydrogen-bond formation (H-bond). For atom characteristics with continuous
values (charge, lipophilicity, refraction) the range was converted into several discrete
groups. The atoms have been divided into four groups corresponding to their (i) partial
charge A≤−0.05<B≤0<C≤0.05<D, (ii) lipophilicity A≤−0.5<B≤0<C≤0.5<D, and (iii)
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refraction A≤1.5<B≤3<C≤8<D. For atomic H-bond characteristic the atoms have been
divided into three groups: A (acceptor of hydrogen in H-bond), D (donor of hydrogen in H-
bond), and I (indifferent atom). The usage of sundry variants of differentiation of simplex
vertexes (atoms) represents the principal feature of SiRMS approach.15 Detailed description
of HiT QSAR based on SiRMS could be found elsewhere.12–14 Constant, low-variance, and
correlated (|R| ≥ 0.9) descriptors were excluded prior to modeling. Thus, descriptor pools of
435–889 Simplex descriptors (depending on the dataset) were selected for the statistical
processing.

2.3. QSAR Modeling
In this study, we developed a series of QSAR models following the workflow and other
guidelines we published elsewhere.10,16 The QSAR modeling workflow can be divided into
three major steps2,16: (i) data curation, preparation, and analysis, (ii) model building, and
(iii) model validation/selection. Here we followed a 5-fold external cross-validation
procedure: for each CSAR target, the full set of compounds with known experimental
activity was randomly split into five modeling (80% of the full set) and external validation
sets (remaining 20%). Models were built using the modeling set compounds only, and it is
important to emphasize that the external set compounds were never taken into account to
build and/or select the models. Briefly, each modeling set was split into many training and
test sets for SVM method and plethora of training and out-of-bag set for RF approach; then
the models were built using the compounds belonging to each training set and applied to test
set compounds for assessing their properties. Pearson’s correlation coefficient (R2), Root
Mean Square Error (RMSE), and Spearman’s rank correlation coefficient (ρ) were used to
assess the prediction performances of developed models.

Best models were identified and selected according to estimated R2 values for test set
(SVM) or out-of-bag set (RF). Then, selected models were applied to the external set
compounds to predict their experimental properties. This overall procedure is repeated five
times to ensure that every compound from the full set is present once (and only once) in the
external test set. While compounds were present in the external test sets, they have never
been used to derive, bias, or select the models; thus, the entire procedure gives more or less
fair estimation of the true predictivity of the models. In addition, 1000 rounds of Y-
randomization were performed for each selected model in order to avoid chance
correlations.

Model’s Applicability Domain (AD) aims to determine whether the given model is capable
of predicting the activity of a query compound within a reasonable error.16 In this study, we
defined the AD of SVM models as a threshold distance DT between a query compound and
its nearest neighbors in the training set. If the distance of the test compound from any of its k
nearest neighbors in the training set exceeds the threshold, the prediction is considered
unreliable. For RF models the AD was estimated using the local (Tree) approach that was
described by Artemenko et al.17

2.4. Random Forest (RF)
Random Forest models were constructed according to the original RF algorithm18

implemented by Polischuk et al.19 RF is an ensemble of single decision trees. Outputs of all
trees are aggregated to obtain one final prediction. Each tree has been grown as follows: (i) a
bootstrap sample was produced from the whole set of N compounds to form a training set
for the current tree. Compounds which are not in this current tree training set are placed in
the out-of-bag (OOB) set (OOB set size is ~ N/3); (ii) the best split by CART algorithm20

among the m randomly selected descriptors from the entire pool in each node is chosen.
Value of m is just one tuning parameter for which RF models are sensitive; (iii) each tree is
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then grown to the largest possible extent. There is no pruning. Prediction of out-of-bag set is
made but each tree predicts values only for compounds which are not included into training
set of that tree (for OOB set only). Since RF possesses its own reliable statistical
characteristics (based on OOB set prediction) which could be used for validation and model
selection, no cross-validation has been performed18. Thus, the final model is chosen by
lowest error for prediction of OOB set and only after that resulting model was applied for
blind prediction of external test set/fold compounds.

2.5. Support Vector Machines (SVM)
The description of the original SVM algorithm could be found in many publications.21

Briefly, molecular descriptors are first mapped onto a high dimensional feature space using
various kernel functions. Then, SVM finds a separating hyperplane with the maximal
margin in this high dimensional space in order to separate compounds with different
activities. Models built with this machine learning technique allow the prediction of a target
property using a set of descriptors solely calculated from the structure of a given compound.
In this study, we used the WinSVM program developed in our group on the basis of the
open-source libSVM package. The WinSVM program provides users with a graphical
interface to prepare input data; split datasets into training and test sets; set up parameters for
SVM grid calculations, including iterative and simultaneous grid optimization of SVM
parameters; launch and follow calculation progress via a powerful graphical interface; select
models with the best prediction accuracy for both training and internal test sets; and to apply
them to the external evaluation set as an ensemble consensus model. The program also
allows one to visualize molecular structures and various plots, making the use of SVM
easier and more appropriate for QSAR modeling in order to obtain robust and predictive
models and apply them to virtual libraries. WinSVM is freely available for academic
laboratories from the following web site: http://www.unc.edu/~fourches/.

2.6. MedusaDock
The MedusaDock software22 was used to generate and score all ligand-receptor binding
poses for the different CSAR targets. MedusaDock performs conformational sampling of
both ligand and receptor side chains simultaneously and synergistically. Details of the
docking method can be found elsewhere.8,23 Briefly, a library of ligand rotamers is
generated in a stochastic manner “on the fly”: ligand conformations are explored by random
variation of ligands’ rotatable angles and excluding those conformations that feature atomic
clashes. The docking protocol involves two steps. First, a representative set of ligand
conformations is generated by clustering the stochastic library of rotamers. Each
representative conformation is rapidly fitted into a “smoothed” receptor pocket by disabling
the van der Waals repulsion between the ligand and the receptor side chains and subsequent
rigid-body docking. Second, fine-docking is performed from each of the coarsely-docked
poses, where the binding pose is minimized by iterative repacking of the rotamers of ligand
and receptor side chains as well as ligand rigid-body minimization. In the second fine-
docking step, the van der Waals repulsions between ligand and receptor side chains are
included. The MedusaScore scoring function was utilized to guide the docking.23

3. Results and Discussion
3.1. Presence of CSAR duplicates in the ChEMBL modeling set

First, for each target, we used ISIDA/Duplicates software to search for structural duplicates
between CSAR ligands and the compounds retrieved from the ChEMBL database. We were
not expecting to find any duplicate compounds assuming that none of the “blind set” CSAR
ligands were supposed to be in the public domain already. Surprisingly, we identified
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several CSAR ligands that were indeed present in the ChEMBL sets with known
experimental affinities for the targets of interest. Results are summarized in Table 3.

In total, six duplicates were found in the CHK1 dataset: 5 out of 6 compounds were CHK1
inhibitors with pIC50 ranging from 7.60 (ChEMBL401274) to 8.80 (ChEMBL245796). The
sixth compound (ChEMBL396034) was annotated as being inactive (pIC50 = 4.77). Only
one duplicated structure was identified for both the UK dataset (CSAR_UK_18 with
ChEMBL319264) and the ERK2 dataset (CSAR_ERK2_30 with ChEMBL220320).

When submitting our prediction results to CSAR organizers, we enclosed this list of
structural duplicates and a letter underlining that (i) some CSAR compounds and their
supposedly unknown experimental activities were indeed present in the public domain and
thus could potentially bias the results of the overall benchmark, (ii) simple methods such as
similarity search can easily identify them, and (iii) our group honestly acknowledged that we
knew the experimental values for those duplicate compounds and thus we advocated for the
removal of those compounds from the CSAR ligand set in order to calculate unbiased
statistics between the different participants. Although these ligands were present in the
training sets we used to develop models, our group submitted only the values obtained from
the 5-fold external cross-validation when these compounds were blindly predicted.

Later when the experimental activities of all CSAR ligands were revealed, we indeed
observed their perfect agreement with the values retrieved from the ChEMBL database (see
Table 3).

3.2. Prediction performance of QSAR models
QSAR modeling results are given in Table 4. Models built using the SiRMS fragment
descriptors and Random Forests afforded reasonable prediction performances evaluated by
Spearman rank correlation ρ ranging from 0.78 (CHK1) to 0.85 (UK). When considering
models' applicability domains, the reliability of RF predictions increased (up to ρ=0.89 for
UK) but the coverage decreased, i.e., ca. 25% of the compounds had to be excluded due to
the model applicability domain.

The prediction power of SVM models based on Dragon descriptors was slightly lower than
that of RF models with ρ ranging from 0.77 (CHK1) to 0.84 (UK). In particular, ERK2
predictions were less accurate with R2 going down from 0.71 (RF) to 0.62 (SVM). With
applicability domain, ranking accuracy of SVM models were ranging from ρ= 0.72 (ERK2)
to 0.86 (UK).

In addition to the individual RF and SVM models, we also explored the predictive power of
the simple consensus prediction where activities for external compounds were predicted as
simple arithmetic means of predictions made with RF and SVM models. Obtained results
showed that in most cases, with or without taking into account models’ applicability domain,
the consensus model was consistently achieving higher reliability compared to any of the
individual QSAR models. For instance, the modeling results obtained for UK were as
follows: without applicability domain filtering, RF models afforded very good performance
(ρ = 0.85, R2 = 0.69) as well as SVM models (ρ = 0.84, R2 = 0.68). The consensus model
improved the accuracy reaching up to ρ = 0.87 and even ρ = 0.88 taking into account the
applicability domain. Importantly, the coverage of the consensus is significantly boosted
from 71–75% (individual SVM and RF models) up to 88%. This result means that more
compounds were predicted correctly compared to individual QSAR models.
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3.3. Application of QSAR models to CSAR Ligands
The results of activity prediction for CSAR ligands are given in Table 5. To match the
ranking metric used by the organizers, ranking performance was evaluated using the
Spearman correlation coefficient ρ expressing the ranking accuracy of ligands by comparing
the ligands’ rank orders based on model's predicted potency (pKi or pIC50 depending on the
target) with the actual experimental rank provided by the CSAR organizers.1 As discussed
below, model predictive accuracy was evaluated both for all ligands as was stipulated by the
CSAR challenge organizers as well for ligands found within the AD of QSAR models only
to follow our standard modeling workflow (see Methods).

When predicting all ligands in the absence of any AD, the QSAR models afforded relatively
high accuracy for UK ligands (ρ= 0.77, n = 20) and lower accuracies for ERK2 (ρ= 0.60, n =
39) and CHK1 (ρ= 0.55, n = 45) ligands (Table 5; QSAR_no_AD). Independently, we have
employed an ad hoc scheme to make predictions for all compounds when using the
respective AD thresholds for individual RF and SVM models. Thus, for compounds found
either within or outside of the AD of the individual models the predicted activities were
averaged whereas for compounds found within the AD of only one model the activity
predicted by that model was used. As shown in Table 5, the prediction accuracy for this
QSAR_AD model was similar to that for the QSAR_no_AD model.

In addition, we also made predictions for ligands within the models’ AD only, i.e., with
reduced coverage of the CSAR datasets. Indeed, many CSAR ligands were found to be
outside of the respective AD of either SVM or RF models. Certain ligands were even
outside of the AD of both models: 14 compounds for UK, 8 compounds for ERK2, and 13
compounds for CHK1. Only six out of 20 UK ligands were found to be within the AD of
one of the models making it non-sensible to evaluate model prediction accuracy in this case.
After removing compounds outside of the AD, the Spearman correlation coefficients
between experimental and predicted ranks (QSAR_AD model) for the remaining CSAR
compounds increased to 0.64 for both ERK2 (n=31, coverage = 79.5%) and CHK1 (n=32,
coverage = 71.1%) datasets as compared to 0.59 and 0.55, respectively, when all compounds
were considered (see Table 5). Thus, the effect of AD on prediction accuracy of QSAR
models is dataset dependent. In one of the considered cases (UK), the default AD appears
over-restrictive whereas in two other cases the use of AD slightly improves model accuracy
but at the expense of reduced data coverage, which is typical for QSAR-based predictions.

Second, we analyzed the results obtained by using the MedusaDock scores for ranking the
CSAR ligands. MedusaDock was as accurate as QSAR models for UK. However, the QSAR
models were found to have twice as high predictive power than MedusaDock for ERK2 (ρ=
0.60 versus ρ= 0.31) and CHK1 (ρ= 0.55 versus ρ= 0.26).

Overall, we could make the following observations: (i) the “true” accuracy of QSAR models
and MedusaDock for ranking CSAR ligands is slightly (UK) or significantly (CHK1) worse
than the one found at the modeling and validation stages, (ii) ligand-based QSAR models
performed better than computationally expensive molecular docking, and (iii) QSAR
models’ applicability domains in their current form do not significantly improve the overall
prediction accuracy for the remaining compounds.

3.4. Consensus scoring using QSAR predictions and MedusaDock
As part of the exercise, we considered another type of consensus models including the
predictions coming from both QSAR models and Medusa docking. Ranks for CSAR ligands
predicted by the QSAR models (e.g., QSAR_no_AD) were added to the ranks predicted by
Medusa docking. Then, the ligands were re-ranked based on these summed QSAR/Medusa
ranks. The overall results are shown in Table 5.
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The accuracy of QSAR/Medusa consensus predictions was higher than the accuracy reached
by Medusa predictions for all three targets. This remark is particularly true for CHK1 and
ERK2 for which QSAR/Medusa consensus model was found to be almost twice more
predictive than Medusa alone: in the case of ERK2 for instance, ρ=0.48 compared to ρ=0.31
respectively.

Also we noticed that the QSAR/Medusa consensus predictions afforded higher ranking
accuracy than individual QSAR models and MedusaDock only in the case of UK (ρ=0.79–
0.82 versus ρ=0.76–0.78). Due to the higher ranking accuracy obtained by QSAR models
over Medusa for both ERK2 and CHK1, this result was expected.

3.5. Half success or half failure?
The analysis of the results revealed the overall reliability of QSAR models to rank CSAR
ligands from the most active to the most inactive, especially for UK. However, there is a
significant portion of ligands that have been mispredicted by both QSAR and docking.
Among them, some compounds predicted to be active were confirmed as being weak active
or inactive. In this section, we are giving some examples and some clues to improve our
current approach based on what we learned in this exercise.

First, the results tend to contradict the general principle commonly trusted by the QSAR
community posing that the bigger the modeling set is, the more predictive the model will be.
In this CSAR benchmark, our largest modeling set included 1,215 compounds for the CHK1
target. Although QSAR models developed using this large dataset afforded reasonable
prediction power in the 5-fold external cross-validation procedure (Table 4), the set of 45
CSAR ligands tested towards CHK1 was the most difficult to annotate as shown by the
results: Spearman ρ = 0.55 for QSAR models as compared to ρ = 0.59–0.78 for UK and
ERK2, ρ = 0.26 for docking as compared to ρ = 0.31–0.76 for UK and ERK2. Besides the
ranking accuracy per se, the consensus QSAR model was indeed able to correctly predict 17
out of 21 CHK1 actives and 10 out of 24 inactive compounds, but missed 14 false positives
and 4 false negatives (sensitivity = 0.81, specificity = 0.42, and balanced accuracy = 0.61
considering the activity threshold of pIC50 = 7). Out of these 18 mispredicted compounds,
we should underline that 8 compounds have their experimental pIC50 ranging from 6.5 to
7.7, which is very close to the activity threshold we used to separate active from inactive
compounds.

The smallest modeling set (ERK2) included 48 compounds only. Nevertheless, QSAR
models built for this small modeling set afforded relatively good prediction performance at
the 5-fold cross-validation stage (R2=0.69, RMSE=0.62, and ρ=0.79) and reasonable
reliability on CSAR ligands (ρ=0.60). As illustrated on Figure 1, the balanced accuracy is
reaching 0.77 for the 39 CSAR ligands tested towards ERK2 using an affinity threshold of
pKi = 7 to distinguish active from inactive compounds. These results demonstrate once
again the importance of the cross-validation procedures in the QSAR modeling workflow
but also the fact that such procedures must involve the building and selection of QSAR
models using the modeling sets only and a truly external validation with the test sets.

Second, the overall accuracy of 2D QSAR models was affected by the presence of large
activity cliffs in both the modeling and the external sets of ligands. To illustrate this point,
let’s consider again the example of ERK2 ligands and more precisely the CSAR_ERK2_1
compound. As shown in Figure 2, very similar structures to CSAR_ERK2_1 found in our
modeling set are annotated as strong binders with pKi equal to 8.4 and above. It is thus not
surprising that our QSAR models computed CSAR_ERK2_1’s affinity towards ERK2 to be
approximately pKi = 6.9. However the experimental binding affinity has been determined to
be 4.8 only. This perfectly corresponds to the case of activity cliffs.24
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In Figure 2, we showed CSAR_ERK2_1 as well as two other compounds CSAR_ERK2_6
and CSAR_ERK2_9 that have not been assessed correctly by our QSAR models. Despite
the fact that the QSAR model succeeded to correctly predict the increasing activity trend
CSAR_ERK2_1 (pKi = 4.8) < CSAR_ERK2_6 (pKi = 6.1) < CSAR_ERK2_9 (pKi = 6.8),
the model did calculate their binding affinities with ΔpKipred-exp > 1.5 log units.
Interestingly, the docking score obtained for CSAR_ERK2_1 is relatively high (−42.2)
meaning that the binding of the compound is predicted to be unfavorable. To provide the
necessary context, MedusaDock scores were ranging from −59.2 (very favorable docking) to
−36.4 (unfavorable docking) for the ERK2 CSAR ligands. As a result, this observation
opens the way for defining new strategies to calculate consensus predictions between QSAR
models and docking scores as well as identifying potential activity cliffs such as
CSAR_ERK2_1. Simply summing up the ranks from QSAR models and docking scores as
we did in this exercise does not seem to be the optimal workflow. On the contrary, using
docking score thresholds to automatically discard some compounds from the predicted
actives is more likely to avoid the prediction of false-positives such as CSAR_ERK2_1.

Third, based on the results presented in this study, there are some additional evidences how
to complement structure-based predictions from ligand-based predictions. On Figures 3 and
4, we plotted the MedusaDock scores versus QSAR_no_AD predictions. The 2D/3D
correlation reached R2 = 0.67 for UK and only 0.42 for CHK1. These values are indeed
important to analyze because they measure the level of concordance between the two
different modeling approaches for the CSAR ligands and can be computed without the
knowledge of the experimental values of the compounds. The challenge is thus to find new
ways to use these correlation plots for establishing rules to calculate a new type of 2D/3D
consensus. Also, it seems logical that one way to assess the potential benefit of the 2D/3D
consensus requires the calculation of their correlation coefficient for modeling set
compounds (and thus there is a need for docking the modeling set compounds as well).

Fourth, compared to the other research teams who participated in the CSAR benchmarking,
the reasonable prediction performances obtained by our QSAR models ranked our group in
the top-10%. Moreover, our QSAR models occupied top-2 and top-3 positions for ranking
both CHK1 actives and inactives. Our models were ranked fifth for ERK 2 prediction
reliability. We have processed only three targets and the overall performance among all the
targets cannot be estimated for our models, but based on the results for separate targets we
can expect that our group was ranked among top-3 research teams.

Overall, structure-based approaches may not be viewed as intuitively better or more
predictive than ligand-based QSAR models and this CSAR benchmarking exercise serves to
illustrate this point. It is well-known that correlation between docking scoring functions and
experimental binding affinities is typically low25 or moderate26. Furthermore, as shown by
our collaborators at UNC for the same CSAR sets8, structure-based approaches (and
MedusaDock especially) are accurate in generating native-like poses. However, as this study
shows, the docking scores for those native-like poses do not correlate with experimental
binding affinities well (Table 5) and thus do not allow a correct ranking. This observation
highlights a known fact that different scoring functions are needed for predicting ligand
poses versus predicting binding affinities. Lastly, we should stress that unlike universal
scoring functions used in docking studies, QSAR models are specifically trained and
selected towards a given target using a set of respective ligands with experimental activities.
Thus, it may be underappreciated but not necessarily surprising that ligand-based QSAR
models can, in fact, have better accuracy than most of the structure-based docking
approaches in prognosticating target-specific ligand binding affinities.
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4. Conclusions
In this study, both structure-based (molecular docking) and ligand-based (QSAR models)
approaches were used both independently and in the form of a 2D/3D consensus model to
rank untested ligands based on their predicted potency. In this exercise of blind predictions,
QSAR models developed with publicly-available experimental data extracted from the
ChEMBL database were shown to outperform predictions obtained by several molecular
docking approaches. These results confirmed that when QSAR models are rigorously
derived using curated chemical datasets and statistically relevant procedures for model
selection and validation, then their prediction power can be at least as accurate as
computationally expensive structure-based docking. Our results also emphasized the validity
of QSAR models as a critical component of a virtual screening platform. Moreover, we
showed the potential benefits of using both QSAR and docking predictions altogether to
assess and eventually override the presence of activity cliffs in the sets of ligands. However,
in this particular CSAR benchmark we did not notice a dramatic boost in predictions’
accuracy using the current implementation of our QSAR/docking consensus model. We
believe the CSAR benchmark represents a great initiative to honestly benchmark (i)
structure-based scoring functions and docking software with each other as well as with (ii)
ligand-based cheminformatics methods, whose prediction accuracy will continue to rise
along with the increasing number of experimental data available in online repositories.
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Figure 1.
Experimental versus predicted binding affinities (pKi) for ERK2 CSAR ligands (n = 39)
based on QSAR_no_AD model’s predictions. Correctly predicted ERK2 binders (pKi ≥ 7)
are colored in green, whereas correctly predicted non-binders are colored in red (balanced
accuracy = 0.77). Mispredicted compounds are colored in black.
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Figure 2.
Structural neighbors of the CSAR_ERK2_1 compound retrieved in the ChEMBL database.
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Figure 3.
MedusaDock scores plotted versus QSAR_no_AD pKi predictions for the 20 CSAR ligands
towards UK (R2 = 0.67). UK binders (pKi ≥ 7) are colored in green, whereas non-binders
are colored in red.
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Figure 4.
MedusaDock scores plotted versus QSAR_no_AD pKi predictions for the 45 CSAR ligands
towards CHK1 (R2 = 0.42). CHK1 inhibitors (pIC50 ≥ 7) are colored in green, whereas
inactive compounds are colored in red.
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Table 1

List of approaches used in this study to rank CSAR ligands (see the text for more details).

Type Name ID Description

Ligand-based
(2D)

QSAR_no_AD 1
Consensus QSAR model averaging

RF/SiRMS and SVM/Dragon predictions
without applicability domain filtering

QSAR_AD 2 Consensus QSAR model with
applicability domain filtering

Structure-
based (3D) MEDUSA 3 Molecular docking

Consensus
2D/3D

QSAR_no_AD +
MEDUSA 4 Consensus between models 1 and 3

QSAR_AD +
MEDUSA 5 Consensus between models 2 and 3
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Table 2

CSAR targets, ligands, and related compounds found in the ChEMBL database.

Target
Potency

measured
as

Number of
CSAR ligands

to rank

Number of
ChEMBL

compounds
before curation

Number of
ChEMBL

compounds
after curation

Extracellular
signal-regulated
kinase (ERK2)

pKi 39 91 48

Urokinase (UK) pKi 20 828 668

Checkpoint
kinase (CHK1)

pIC50 45 1450 1215
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Table 3

List of CSAR compounds with identified structural duplicates retrieved in the ChEMBL database and their
reported activities.

CSAR compounds
(experimental activity)

ChEMBL compounds identical to CSAR
compounds

CSAR_chk1_1
(CSAR pIC50=7.60)

CHEMBL401274; pIC50=7.60
4-(6,7-dimethoxy-2,4-dihydro-indeno[1,2-

c]pyrazol-3-yl)-phenol;

CSAR_chk1_3
(CSAR pIC50=8.30)

CHEMBL248396; pIC50=8.30
4-(6,7-dimethoxy-2,4-dihydro-indeno[1,2-
c]pyrazol-3-ylethynyl)-2-methoxy-phenol;

CSAR_chk1_6
(CSAR pIC50=8.80)

CHEMBL245796; pIC50=8.80
4'-(6,7-dimethoxy-1,4-dihydro-indeno[1,2-

c]pyrazol-3-yl)-biphenyl-4-ol;

CSAR_chk1_13
(CSAR pIC50=7.64)

CHEMBL248010; pIC50=7.64
4'-{6-[2-(5-ethyl-pyridin-2-yl)-ethoxy]-7-methoxy-
2,4-dihydro-indeno[1,2-c]pyrazol-3-yl}-biphenyl-

4-ol;

CSAR_chk1_20
(CSAR pIC50=4.80)

CHEMBL396034; pIC50=4.77
8-chloro-5,10-dihydro-dibenzo[b,e][1,4]diazepin-

11-one;

CSAR_uk_18
(CSAR pKi=6.30)

CHEMBL319264; pKi=6.35
8-Amino-naphthalene-2-carboxamidine;

CSAR_erk2_30
(CSAR pKi=7.10)

CHEMBL220320; pKi=7.07
N-benzyl-4-(4-(3-chlorophenyl)-1H-pyrazol-3-yl)-

1H-pyrrole-2-carboxamide;
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Table 5

Spearman correlation coefficient (ρ) between experimental and predicted ranks of CSAR ligands.

Type Ranking Methods

ρ

UK
(n=20)

ERK2
(n=39)

CHK1
(n=45)

2D
QSAR_no_AD 0.77 0.60 0.55

QSAR_AD 0.78 0.59 0.55

3D MEDUSA 0.76 0.31 0.26

2D/3D

QSAR_no_AD +
MEDUSA 0.79 0.48 0.45

QSAR_AD +
MEDUSA 0.82 0.50 0.45
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