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ABSTRACT

William L. Ince: Evolution of the Human Immunodeficiency Virus Type 1 Envelope
Glycoprotein During Chronic Infection

(under the direction of Ronald Swanstrom)

A hallmark of Human Immunodeficiency Virus Type 1 (HIV-1) chronic

infection is the rapid and continual evolution and diversification of the viral Envelope

glycoprotein (Env), which results in multiple co-existing env genetic variants. Env

mediates virus entry into host cells by engaging the primary receptor CD4 and either

of two coreceptors, CCR5 or CXCR4. CXCR4-tropic variants typically emerge in late

stage disease, coincident very low CD4+ T cell counts and severe

immunosuppression, and rarely establish infection. Over the course of infection, Env

diversifies as a result of immune escape selection and selection for differential

usage of CD4 and co-receptors, presumably in order to expand into new target cell

types, although the selective forces driving Env evolution in late stage disease

remain poorly understood. In the work present here, I examined how variation

affects compartmentalization of genetic and phenotypic subpopulations and the

likely forces driving some of this variation in late stages of infection. First, I used a

heteroduplex tracking assay (HTA) to measure the lifespan of cells producing

different genetic variants in the population by measuring the decay rates of variants

when subjects were placed on suppressive therapy. I found that all variants,

regardless of their co-receptor tropism phenotype, decayed at the same rate
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indicating they are replicating in the same cell types or cell types with similar infected

life spans. I further examined the relationship between CCR5 and emergent CXCR4

variants and found that they frequently recombine, further indicated an overlap in

target cell type. I also examined the evolution of Env in a humanized mouse model. I

found that, consistent with a lack of a strong humoral immune response, Env

evolved a more open conformation and enhanced CD4 affinity. I also found that in

this phenotypic background, CXCR4 –tropic variants emerged, and showed

evidence of tissue compartmentalization. Finally I attempted to link the phenotypes

conferred by a more open Env conformation, that evolved in the immunosuppressed

environment in the mouse, to evolution of CXCR4 and provided evidence that the

environmental constrains of imposed by humoral immunity select against the open

Env conformation that potentiates evolution of CXCR4 tropism.



iv

Acknowledgements

I would like to thank the UNC Center For AIDS Research  and the UNC

General Clinical Research Center for sample collection. I would also like to thank

Dale Kempf from Abbott and the ACTG 359 study team for making samples

available for these studies. Much of the sequence analysis carried out in these

studies was facilitated by Los Alamos National Laboratories HIV Database group

through helpful discussion. I would also like to thank Rachel Lovingood and Tom

Denny of the CHAVI for the Western blot analysis of the mouse samples.

All of the work described in this dissertation benefited from both the

intellectual and material input from many others who are not named here, but in

particular from members of the Swanstrom Lab and Su Lab. I would especially like

to thank my thesis committee members for their patience, enthusiasm and guidance.



v

Table of Contents

List of Tables..........................................................................................................x

List of Figures........................................................................................................xi

Abbreviations.......................................................................................................xiii

Chapter

1 Introduction.........................................................................................................1

1.1  HIV-1 Natural History...........................................................................2

1.1.1 Origin of HIV-1.......................................................................2

1.1.2 Viral Proteins and the Life-Cycle of HIV-1.............................3

1.2  Envelope Structure and Function.........................................................5

1.3  The Course of HIV-1 infection..............................................................8

1.3.1 Transmission and Acute Infection.........................................8

1.3.2 Sources of Genetic Variation.................................................9

1.3.3 Diversifying Evolution in Env: Adaptation to an Adaptive
Immune Response..............................................................11

1.4  The Antibody Response to HIV-1 Env...............................................11

1.4.1 Timing of the Initial Antibodies.............................................11

1.4.2 Antibody-Driven Evolution...................................................12

1.4.3 Rare and Common Antibody Epitopes................................13

1.5  Evolution of Env Function..................................................................15



vi

1.5.1 Macrophage Tropism..........................................................16

1.5.2 CXCR4 Tropism..................................................................17

1.6  Compartmentalization........................................................................18

2 Major co-existing human immunodeficiency virus type 1 env gene
subpopulations in the peripheral blood are produced by cells with similar
turnover rates and show little evidence of genetic compartmentalization......20

2.1  Abstract..............................................................................................21

2.2  Introduction........................................................................................22

2.3  Materials and Methods.......................................................................25

2.3.1 Study subjects and sampling...............................................25

2.3.2 Heteroduplex tracking assay and decay analysis................26

2.3.3 Single Genome Amplification..............................................26

2.3.4 Coreceptor tropism analysis................................................27

2.3.5 Compartmentalization and recombination analysis.............28

2.4  Results...............................................................................................30

2.4.1 Decay rates do not vary between detectable env variants
that co-exist in the peripheral blood....................................30

2.4.2 Decay rates do not differ between X4 and R5 variants in the
first phase of decay.............................................................32

2.4.3 CXCR4 and CCR5-tropic variants exhibit limited genetic
compartmentalization in the peripheral blood......................34

2.5  Discussion..........................................................................................38

2.6  Acknowledgements............................................................................43

3 Evolution of the HIV-1 env Gene in the Rag2-/-γC
-/- Humanized

Mouse Model.................................................................................................52

3.1  Abstract..............................................................................................53



vii

3.2  Introduction........................................................................................54

3.3  Materials and Methods.......................................................................57

3.3.1 Model generation.................................................................57

3.3.2 Sample collection................................................................58

3.3.3 Nucleic acid extraction.........................................................58

3.3.4 Viral RNA and DNA amplification and sequencing..............58

3.3.5 HIV-1 sequencing data from human infections....................59

3.3.6 Sequence analysis..............................................................59

3.3.7 Env phenotype assays........................................................60

3.4  Results...............................................................................................63

3.4.1 Diversification and divergence of HIV-1JRCSF over the
course of infection in a mouse model with sustained viral
infection...............................................................................63

3.4.2 Features of env sequence evolution in mice.......................66

3.4.3 Substitutions identified at multiple potential N-linked
glycosylation sites................................................................67

3.4.4 HIV-1JRCSF evolves to become sensitive to specific anti-V3
antibodies............................................................................69

3.4.5 Evolution of co-receptor usage............................................72

3.4.6 Compartmentalization of phenotypic variants......................73

3.5  Discussion..........................................................................................75

3.6  Acknowledgements............................................................................82

4 Forces Shaping Evolution in Late Stage Disease Contribute to the
Evolution Of CXCR4 Tropism and May Contribute to Macrophage
Tropism..........................................................................................................92

4.1  Abstract..............................................................................................93



viii

4.2  Instruction...........................................................................................94

4.3  Materials and Methods.......................................................................98

4.3.1 Cloning and mutagenesis of env genes..............................98

4.3.2 Pseudovirus entry assays...................................................98

4.3.3 Analysis of HIV-1 sequences from human subjects..........100

4.3.4 Signature amino acid sequence analysis .........................101

4.4  Results.............................................................................................102

4.4.1 Previous observation.........................................................102

4.4.2 Mutations in V3 that confer strong X4 tropism...................103

4.4.3 Effect of mutations in gp120 on Env structure and
antibody neutralization sensitivity......................................104

4.4.4 Env structural changes that expose V3 increase
viral entry on cells when CD4 is limiting............................106

4.4.5 Effect on relative CXCR4 usage of mutations external
to V3..................................................................................108

4.4.6 Sequence analysis of gp120 from HIV-1-infected subjects
with high and low CD4+ T cell counts................................111

4.4.7 Determining the prevalence of V3 antibody activity in sera
from low and high CD4+ T cell count ................................113

4.5  Discussion........................................................................................115

5 Conclusions and Future Directions..............................................................130

5.1  Origin of V3 antibodies.....................................................................132

5.2  Characterizing the humoral immune response in late stage
 Infection............................................................................................133

5.3 Modeling of coreceptor switching......................................................134

5.4  Compartmentalization and the tissue of origin.................................135



ix

5.5  Exceptions that prove the rule..........................................................136

References.........................................................................................................138



x

List of Tables

Table

2.1 Subject characteristics and viral decay rates......................................44

3.1 Immune reconstitution and CD4+ T cell depletion..............................83

3.2 Resistance to anti-CD4 antibody inhibition.........................................84

4.1 Neutralization phenotypes of selected mouse-adapted
      and mutant Env.................................................................................123



xi

List of Figures

Figures

2.1 HTA and variant decay analysis of V3 and V4-V5 envelope regions
for subjects 106 and 108................................................................................45

2.2 HTA variant decay analysis of V3 and V4-V5 envelope regions
for subjects 109 and 101................................................................................46

2.3 Maximum likelihood phylogenies of the V3 region and full-length env
for subject 109................................................................................................47

2.4 Maximum likelihood phylogenies of env and V3 sequences from the
first and last time-points of subject 101..........................................................48

2.5 Maximum likelihood phylogenies of sequences encompassing env,
(starting at V1), nef and U3 from three representative subjects with distinct
X4/dual and R5 populations...........................................................................49

2.6 Analysis of compartmentalization of 4 genome regions between X4
and R5 variants..............................................................................................50

2.7 Representative examples of recombination between X4 and R5
variants in subjects 1551 and 411..................................................................51

3.1 Plasma viral load over 44 weeks of infection for mice 5-8........................85

3.2 Phylogeny of HIV-1 sequences from all mice...........................................86

3.3 Comparison of divergence rate and diversity in mouse and humans.......87

3.4 Positions and classifications of amino acid substitutions in the V1-C5
region of Env..................................................................................................88

3.5 Neutralization sensitivities to 447-52D of selected envelope clones and
mutants...........................................................................................................89

3.6 Phenotypic analysis of coreceptor tropism...............................................90

3.7 Maximum likelihood phylogeny of env variants (V1-C5) recovered from
different tissue compartments in mouse 6......................................................91

4.1 X4 and R5 activity JRCSF V3 mutants...................................................124



xii

4.2 Entry activity of pseudotyped virus on cells expressing different
levels of CD4 and CCR5..............................................................................125

4.3 Relative X4 and R5 activity of JRCSF-derived mouse-adapted and
mutant Envs.................................................................................................126

4.4 Sequence characteristics of V2-V5 region of Env from HIV-1 infected
subjects with high and low CD4+ T cell counts............................................127

4.5 Neutralization activity in HIV-1-infected patient sera..............................128



xiii

Abbreviations

HIV-1 Human Immunodeficiency Virus Type 1

AIDS Acquired Immunodeficiency Syndrome

CTL Cytotoxic T Lymphocyte

PNGL Potential N-linked glycosylation site

V Variable loop

bp Base pair

X4 CXCR4-tropic

R5 CCR5-tropic

PCR Polymerase Chain Reaction

RT-PCR Reverse Transcription-Polymerase Chain Reaction

HTA Heteroduplex Tracking Assay

PSSM Position Specific Scoring Matrix

LTR Long Terminal Repeat

DKO Rag2-/- gammaC-/- double knockout mouse

HSC Hematopoietic stem cell



CHAPTER 1

INTRODUCTION

Human Immunodeficiency Virus type 1 (HIV-1) is a lentivirus, in the virus

family Retroviridae. Lentiviruses are distinguished from their other family members

by their ability to infect non-dividing cells. These viruses establish chronic infection

with ongoing viral replication in primates (SIV, HIV-1, HIV-2) and non-primate

mammals (FIV, BIV, EAIV, CAEV, VMV). A Key feature of HIV-1, and likely all

retroviruses, is its ability to rapidly evolve (151, 167, 175). The high mutation (174),

recombination (4, 41, 240) and replication rates (113, 304), allow HIV-1 to rapidly

generate large amounts of diversity in order to adapt to a highly dynamic host

environment and persist as a chronic infection. This is particularly evident in the HIV-

1 env gene that encodes the viral envelope glycoprotein (Env), which is responsible

for mediating viral entry into a range of target cell types and is the only surface-

exposed antigen of HIV-1. The high level of variation observed during chronic

infection in this gene is therefore mainly a result of antigenic escape mutations (87,

245), and adaptations to different CD4 receptor and co-receptor densities and co-

receptor types on distinct target cell subsets (97). Whereas viral infection is

established by one or a few variants that give rise to an initially homogeneous

population, the continuously shifting selective forces operating on Env, from a co-



2

evolving and then diminishing immune response, to changes in access to different

cell populations, result in continual Env diversification and functional evolution over

the course of chronic infection (87, 267).

This introduction will describe the history of HIV-1 infection in the human

population, natural course of infection in the individual and the viral and host

processes that drive the evolution of HIV-1 Env throughout infection and in late

stages of infection in particular.

1.1 HIV-1 Natural History

1.1.1 Origin of HIV-1

The major HIV-1 lineage, group M, responsible for the global pandemic,

emerged as a zoonotic transmission from Chimpanzee Pan troglodytes troglodytes

to humans in south-central Cameroon (135) in the early part of the 20th century (89).

HIV-1 has since spread throughout the world leaving no continent un-affected

(although unconfirmed in Antarctica) and infecting an estimated 0.8% of the world

population (2009 AIDS Epidemic Update, UNAIDS and WHO 2009). Group M

viruses have diversified into at least 9 genetically distinct subtypes (A, B, C, D, F, G,

H, K) and recombinants thereof, with subtype B predominating in Europe and the

Americas and C predominating in Africa and accounting for the largest share of the

pandemic.  The major modes of HIV-1 transmission include sexual contact (251),

vertical transmission (55), and sharing of contaminated intravenous drug

paraphernalia (66).
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1.1.2 Viral Proteins and the Life-Cycle of HIV-1

The HIV-1 genome encodes 4 enzyme activities (reverse transcriptase (RT)

with an associated RNase H activity, integrase (IN) and protease (PR)), 5 structural

proteins encoded in the Gag polyprotein (matrix (MA), capsid (CA), nucleocapsid

(NC), p6), and the Envelope glycoprotein (Env), and 6 accessory proteins (viral

infectivity factor (Vif), Viral protein R (Vpr), Viral protein U (Vpu), Regulator of virion

expression (Rev), Transactivator (Tat), and Negative factor (Nef)). The viral

enzymes and structural proteins are required for replication and are shared among

retroviruses. The ability to productively infect non-dividing cells, a defining feature of

lentiviruses, is mediated by specific accessory protein activities, including nuclear

import and cell-cycle manipulation activities of Vpr(108, 110, 263). Accessory

proteins are also involved in subverting host innate defenses (Vif (269)  and Vpu

(201)) and adaptive immune responses (Nef (45)). Tat and Rev facilitate virus

transcription (242) and nuclear export of un-spliced vRNA (170), respectively.

Several of these accessory proteins, including Vpr, Vpu and Nef, have multiple

activities, some of which are not fully understood.

The virus particle is composed of the core, made up of CA proteins

surrounding the NC-bound dimeric, single-stranded, positive-sense RNA genome.

The core is enveloped by a lipid bi-layer derived from the host cell membrane;

embedded in the envelope is the Env protein, which mediates viral entry into the

target cell. The particle also contains other viral proteins involved in replication

processes through integration and viral gene expression in the newly infected cell,

including the enzymes RT, IN and the accessory protein Vpr (47).
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HIV-1 replicates in CD4+ T cells (54, 140), monocytes (329), and

macrophages (90). Viral entry into the host cell is mediated by Env which binds the

primary receptor CD4 and co-receptor, either of two 7-transmembrane G-protein-

coupled chemokine receptors (GPCR), CXCR4 (18, 61, 79) or CCR5 (14, 71),

inducing virion fusion with the host cell and deposition of the viral core into the

cytoplasm. The need for CCR5 or CXCR4 is shared by several other lentiviruses

such as FIV, BIV, and SIV, in some cases in the capacity as the primary receptor

(75, 78, 307, 308), suggesting the co-receptor and perhaps CXCR4 specifically,

represents a primary primordial receptor for lentiviruses. In addition to CXCR4 and

CCR5, other chemokine-receptor family members have been implicated in HIV-1

entry in cell-culture assays (14, 71, 179), although their significance in vivo  is

unclear.

Once inside the cell, the viral RNA genome is reverse transcribed by RT,

which also possesses DNA-dependant DNA polymerase activity in order to generate

the plus-strand DNA to form a linear double-stranded (ds) DNA copy of the genome.

The resulting viral dsDNA, in a pre-integration complex with RT, IN, and other viral

proteins, is transported to the nucleus where integration into the host genome is

mediated by the enzymatic activity of IN. Viral genes are then expressed from the

integrated provirus by host-cell gene expression mechanisms. Initially, spliced

mRNA coding for Tat, Rev and Nef are produced. This is followed by expression of

partially- and un-spliced mRNA coding for the Gag and Gag-Pro-Pol polyproteins,

Vif, Vpr, Vpu, and Env. Gag and Gag-Pro-Pol are transported to the cell membrane
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where they are cleaved into their constituent proteins by PR and, along with Env,

mediate budding of the nascent virus particle.

1.2 Envelope Structure and Function

HIV-1 Env is a type-1 heterodimeric membrane glycoprotein responsible for

mediating viral entry into the target cell. Env is translated as gp160, which is then

cleaved in a furin-dependant reaction to yield the gp41 transmembrane subunit and

the gp120 surface subunit (102, 266). These subunits form heterodimers that are

assembled on the cell surface to form Env trimers, which are ultimately incorporated

in the membrane of the budding virus particle. The gp120 subunit contains the

binding sites for the receptor and coreceptor, which mediate attachment of the virion

to the cell surface, while the gp41 subunit contains the machinery that mediates

fusion of the apposing viral and cellular membranes.

The gp120 subunit can be divided into several regions based on structure and

function. The inner domain faces inward in the trimer and interacts directly with

gp41. The outer domain is on the outer face of the trimer and contains both the CD4

binding site and components of the coreceptor binding site, which involves both the

inner and outer domains (157). gp120 contains 5 variable loops V1-V5, and 5

interspersed conserved regions (C1-C5). The inner domain contains C1, V1, V2, a

portion of C2, and C5; the outer domain contains a portion of C2, V3, C3, V4, C4

and V5.

The first step of entry involves binding of gp120 to the cellular membrane

glycoprotein CD4, the primary receptor. Conformational changes in gp120 induced

by this initial interaction enhance interactions with CD4 to stabilize the bound state
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(67, 327). Conformational changes induced by CD4 binding also expose the

coreceptor binding site on gp120, which is composed of the bridging sheet, a beta

sheet involving C1 and C2 at the base of the V1 and V2 loops in the inner domain

and C4 in the outer domain, and the V3 loop of the outer domain (120). The bridging

sheet and the V3 base interact with the N-terminus of either of two 7-transmembrane

G-protein-coupled receptors, CXCR4 or CCR5 (70, 119, 319). The specificity for the

co-receptor is principally determined by the sequence of the V3 loop, which is also

exposed upon CD4 binding and interacts in a sequence-specific manner with the

second extracellular loop of the co-receptor (39, 50, 306). Binding of the co-receptor

induces conformational changes in gp41 required for fusion, including exposure of

the N-terminal hydrophobic fusion peptide that is inserted into the host cell

membrane, and the folding of the six-helix bundle, processes which bring the

apposing membranes into close proximity and trigger membrane fusion (187).

Many of the structural features of gp120, along with its requirement for CD4

binding, are thought to play a role in masking from antibody recognition and

neutralization important invariant epitopes required for entry (156). These protective

features include the variable loops on both the inner (V1 and V2) and outer (V4 and

V5) domains, which are relatively unconstrained genetically. In it’s unbound trimeric

state, the highly antigenic structures of Env, such as V3, are likely buried beneath

antigenically and conformationally unconstrained epitopes in the variable loops that

can co-adapt with the host humoral response (156). In addition, highly

conformational epitopes, such as the bridging sheet and the CD4 binding site are not

readily available or are too unordered to be recognized by immune surveillance in
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the un-liganded structure. The primary receptor, CD4, can therefore be thought of as

the key that unlocks the door to the functional receptor binding sites for the GPCRs.

Given the conformational changes that must take place in the process of receptor

binding, a replication capacity cost must be associated with these structural

armaments. Alterations in the variable loops and overall structure of gp120 can

enhance CD4 and co-receptor binding, perhaps in a manner that is heavily

constrained by the strong selective forces imposed by adaptive immunity (9, 192,

235).

Env is heavily glycosylated by the host cell, with nearly half of its mass

attributed to asparagine (N)-linked high mannose, hybrid, and complex glycans (2,

162).  Asparagines in the NX(T/S)X2 context, where X is any amino acid but proline,

are targeted by the host glycosylation machinery. The number of potential N-linked

glycosylation sites (PNLGs) in an Env protein is variable with a range or 18 to 33

sites per gp120 molecule in group M HIV-1 isolates (146), with about 20 relatively

conserved sites (198). Glycosylation is important for proper protein folding and also

plays a role in immune evasion by creating a shield of poorly immunogenic and

shifting branched glycans that sterically hinder antibody access to constrained

epitopes (302). Most of the glycosylation sites on gp120 are located in the outer

surface of the outer domain, consistent with their function as an antibody “glycan

shield” (302). Specific PNLGs can also influence CD4 binding, presumably by

altering access to the binding site (74). While many sites are conserved,

glycosylation patterns can be diverse in the virus population; in particular, much of

the length variability in the variable loops V1 and V4 result from insertions and
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deletions of PNLGs (231). Consistent with their proposed functions in immune

evasion, variable loops and glycosylation patterns are subject to diversifying

selection both at the population level and through the course of infection (302).

1.3 The Course of HIV-1 infection

1.3.1 Transmission and Acute Infection

Transmission of HIV-1 is typically a rare event. In about 80% of

transmissions, infection is established by only one variant (1, 134). Importantly, for

subtype B, 98% of infections are established by CCR5-tropic viruses (134). Simian

Immunodeficiency Virus (SIV) infection in Rhesus macaques closely resembles HIV-

1 infection in humans and has therefore provided a useful model for studying the

early events of infection. SIV (and by extension HIV-1) has been shown to first

establish infection of local target cells at the site of mucosal transmission and then

disseminate to draining lymph nodes where CD4+ T cells are in high enough density

to sustain larger amounts of replication (185). This occurs within several days after

transmission; however, plasma viremia remains undetectable. Within the first two

weeks, virus spreads systemically to other lymphoid tissue including the gut-

associated lymphoid tissues (GALT), which harbors large numbers of CD4+CCR5+

activated and resting memory T cells that support rapid exponential increases in viral

replication resulting in profound CD4+ T cell depletion in this tissue (24, 98, 163,

295, 326). Evidence suggests that HIV-1 has evolved to home to this target-cell-rich

compartment through specific interactions between Env and a CD4+ T cell-

expressed GALT-homing receptor, alpha4beta7 integrin (5). GALT-replicating virus

is the major contributor to peak viremia, which is reached by about 2-3 weeks post
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infection in the peripheral blood with viral loads measuring 106-107 copies per ml of

plasma. At peak viremia, the virus population is relatively homogenous as

diversifying selective pressures have yet to act on the virus (134, 256), but viral

diversification rapidly increases soon after the adaptive immune response emerges,

and continues through the course of chronic infection as the virus population adapts

to new cellular niches in a changing host environment, in addition to the adaptive

immune response.

1.3.2 Sources of Genetic Variation

Selection acts on sequence diversity that is generated by multiple

mechanisms during replication. Much of the mutational load of HIV-1 is generated by

the low fidelity of RT when the viral genome is reverse transcribed. One study found

an in vivo mutation rate for HIV-1 to be 3.4x10-5 per bp per round of replication

(~2x10-5 per bp for point mutations), such that 1 in every 5 genomes would be

expected to have a point mutation (174). In addition to point mutations, RT can

introduce insertions and deletions, particularly in homopolymeric regions where

these events are most common. However, many of these mutational events, in

addition to those that lead to frame shifts and nonsense codons, render the protein

product non-functional.

Another possible source of mutations is the activity of the antiviral factor

APOBEC3G/F (A3G), a host cell-encoded cytidine deaminase. WhenA3G  is not

recognized by the viral  countermeasure, it is incorporated into the virus particle

where it lies in wait to act on the nascent minus-strand vDNA as it is exposed during

reverse transcription in the newly infected cell (107, 172). Multiple cytidine
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deaminations along the genome result in G to A substitutions in the plus strand that

can render the provirus “hypermutated” in multiple genes. A3G represents a potent

antiviral mechanism, and HIV-1 has therefore evolved a mechanism to neutralize

this activity through the viral protein Vif, which binds and sequesters human A3G

preventing its incorporation into the budding particle(205, 269). However, protection

is incomplete and many proviruses are found to be hypermutated in human infection

(134). Alternatively, A3G may introduce sub-lethal levels of G-to-A mutations that

actually contribute diversity. Some evidence suggests that A3G-induced G-to-A

mutations can contribute to drug resistance and that A3G plays and important role in

generating viral diversity (130).

Genomic recombination also plays an important role in generating viral

diversity. The high frequency of recombination of about 5 events per genome

between different genetic variants (4, 41, 240), highlights the importance of this

process in generating diversity. Recombination between different viruses occurs

when two or more viruses infect the same cell. The genome dimer can then be

formed from two different genomes, and during reverse transcription in the target cell

template switching by RT between the two genomes generates a recombinant viral

DNA product. Recombination has the effect of generating combinations of mutations

in a single virus more rapidly than sequential mutation, thus increasing more quickly

the genetic diversity upon which selective pressures can act. This is particularly

important in cases where several mutations are required in combination to increase

fitness, as is the case with drug resistance mutations in pro and pol  (195).
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1.3.3 Diversifying Evolution in Env: Adaptation to an Adaptive Immune

Response

Within 3-4 weeks post infection, coincident with peak viremia, a virus-specific

cytotoxic T lymphocite (CTL) response ensues that partially suppresses viremia to a

“set point”, a reduced but relatively stable viral load (22, 93, 149). The level of this

suppression is variable between individuals and higher set points are linked to more

rapid disease progression (21, 149, 182, 197). Around this time, in the relatively

homogenous virus population of early infection, CTL escape variants are detected,

which represent the first signs of diversifying selection in the virus population. The

mechanism of escape from CTL involves selection for amino acid substitutions

within HLA-restricted epitopes that affect antigen processing and antigen

presentation (320). Epitopes are in all viral proteins including Env, which, as the only

viral surface antigen, is also subjected to diversifying selection by the humoral

immune response.

1.4 The Antibody Response to HIV-1 Env

1.4.1 Timing of the Initial Antibodies

The first antibodies to HIV-1 Env are detected within the first 3-4 weeks post

infection, but their ability to neutralize virus at this stage is weak (80, 245, 284, 302).

Neutralizing IgG antibodies are detected starting around 3 months post infection with

escape mutations in the virus appearing soon after (302). The primary epitopes to

which antibodies are directed are in the variable loops (V1-V5) and the receptor

binding site surfaces, including epitopes that are induced by CD4 binding (214, 227,

314, 316). Importantly, sera does not generally neutralize contemporaneous virus,
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and this, along with the observation that neutralization of early virus by sera

collected later in infection wanes over time indicates that virus and the neutralizing

antibody response are co-evolving (87, 302, 305). In Env, this results in a rapid

expansion in diversity and divergence from the founder population that continues

into the chronic phase then levels off in later stages of disease, where diversity can

reach as high as 10% in the env gene (267).

1.4.2 Antibody-Driven Evolution

Consistent with the specificity of most antibodies, escape-associated variation

is primarily identified in the variable loops, excluding V3 (298), an important

exception that will be explored below. Diversification in the variable loops V1/V2 and

V4/V5 during chronic infection is therefore attributed to adaptation to the polyclonal

antibody response to these epitopes (87, 245, 253). Variation develops in the form of

a variety of amino acid substitutions, and insertions and deletions, all of which can

affect the pattern of N-linked glycosylation. Although the relative contribution that

different types of mutations make to antibody escape remains unclear, all of these

changes can affect neutralization sensitivity (238, 254, 270, 302, 310).

The most well characterized antibody-driven evolution in Env is that involving

glycosylation patterns. Variability in glycosylation patterns is thought to play an

important role in antibody escape by sterically hindering antibody access to

neutralization sensitive epitopes (302). While glycans can themselves serve as

antibody epitopes (34, 260), glycan-reactive antibodies like 2G12 are rarely found in

HIV-infected people (12, 261). Changes in glycosylation patterns are affected by
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both point mutations that produce or eliminate NX(S/T)X motifs or by insertions and

deletions of NX(S/T)X motifs in the length variable regions of the variable loops

(254). The involvement of base pair triplet repeats in this process is suggestive of a

mechanism of glycosylation site addition similar to that observed for triplet repeat

expansions implicated in some human genetic diseases (53). Evolution of

glycosylation does not necessarily result in a net change in the number of

glycosylation sites, instead a shifting pattern of both conserved and variable

glycosylation sites is observed (87, 302), although conservation in number may be

specific to subtype B (64, 86). Maintenance of this large number of glycosylation

sites likely incurs a fitness cost in the absence of antibody pressure, a feature of Env

that will be explored further in chapter 3.

1.4.3 Rare and Common Antibody Epitopes

While most antibodies are directed at epitopes in gp120 that are not

neutralization-sensitive in contemporaneous virus, a small number antibodies have

been identified in rare cases that target unusual epitopes and are considered

broadly neutralizing, that is, are able to neutralize a broad spectrum of diverse

primary isolates. These include 2F5 and 4E10 (213, 331, 332) which target the

membrane-proximal region of gp41, 2G12 which is specific for a discontinuous

epitope composed of glycans on the outer domain (34, 260), b12 which is specific

for a discontinuous epitope that overlaps the CD4 binding site (33, 327), and more

recently, the most broad and potent antibody identified to date, PG9 (and the related

somatic variant PG16), which targets an epitope that includes  the conserved V1/V2

base, conserved regions of the V2 loop and V3  but only binds trimeric gp120 (299).
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While antibodies to most of these epitopes are rarely identified in infected

individuals, CD4 binding site-specific antibodies represent a large proportion of

antibodies identified in infections (51, 261), although these antibodies generally do

not exhibit the relatively broad potency of b12. As discussed above, while the CD4

binding site is conserved, conformation and glycosylation at proximal sites play an

important role in occlusion of the conserved epitopes. b12 possesses an unusually

long heavy chain complementary-determining region 3 (CDR H3) that allows it to

penetrate the deeply recessed CD4 binding site that is not accessible to most

antibodies (327).

Other antibodies have been identified that target the highly antigenic and

relatively conserved linear epitope at the tip of the V3 loop. This class of antibody,

which include the well characterized antibodies 447-52D and 19b (46, 264, 330)

neutralize only a subset of primary isolates (13), because of masking of the

conserved V3 epitope by V1/V2 in Env in primary isolates (152, 315). These

antibodies have broadened and more potent neutralizing activity when a CD4-bound

conformation is induced (313). Moreover, antibodies directed at V3 are frequently

identified in chronic infection (51, 191), indicating their potentially important role in

neutralization or as a selective pressure.

Evolutionary pathways to antibody escape can be divided into two categories:

Amino acid substitutions in the targeted epitope itself that directly limit antibody

binding, or substitutions that alter either envelope protein conformation or glycan

placement and thereby limit access to conserved targeted epitopes. Escape from

both CD4 binding site and V3 antibodies appears to be accomplished by the latter
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path in most cases.  Because of the importance of conformation on neutralization

sensitivity to V3 antibodies in particular, and because the tip of the V3 loop contains

a conserved linear epitope relative to other antibody-targeted epitopes, these

antibodies may play a role in selecting for Env conformations, rather than specific

changes in the target epitope, that could impact changes in receptor and co-receptor

binding, a hypothesis that will be further developed and addressed in Chapters 3

and 4.

1.5 Evolution of Env Function

While much of the diversity in Env observed over the course of chronic

infection is attributed to antibody selective pressure, specific changes in CD4 and

coreceptor usage also contribute to increased diversity in the population, though as

alluded to above, antibody selective pressures may be linked to phenotypic changes

in Env. Phenotypic variation in Env has been described for its affinity for the primary

receptor CD4, which affects the ability of the virus to enter cell types with low levels

of receptor, such as macrophage (178, 220, 283), and for its ability to use the

coreceptor CXCR4 as an alternative to CCR5, which impacts it’s ability to infect

target cells that exclusively express CXCR4. The phenotype of the virus that

predominates in early infection requires relatively high levels of CD4 and is

exclusively CCR5-tropic (134), but over the course of infection, Envs emerge, with

variable frequency, that can use low levels of CD4 (macrophage-tropic) and/or have

gained the ability to use CXCR4 (X4 variants).
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1.5.1 Macrophage Tropism

Changes that allow the virus to use low levels of CD4 typically involve

conformational changes in Env. Increased CD4 binding and the ability to efficiently

infect macrophages have been mapped to changes  in V2 (125, 142, 300) and to the

removal of a specific PNLGS at position 386 (74) (amino acid numbering here

forward corresponds to the reference strain HXB2, Genebank accession number

K03455), but not changes in the CD4 contact residues themselves (157), although

exceptions have been found (73). This suggests that the primary mechanism of

enhanced CD4 binding and thus macrophage tropism is through conformational

changes in Env induced by amino acid changes outside of the binding site. These

conformational changes may also enhance the ability to use lower levels of CCR5

expressed on macrophage perhaps by decreasing the dependence on CD4-

triggered conformational change (95).

The selective pressures driving macrophage tropism are not well understood.

Target cell availability could drive macrophage tropism if virus that replicates in

these cells has a selective advantage, as may be the case for virus

compartmentalized in the CNS where macrophage may support viral replication (73,

74, 283). Macrophage-tropic variants have also been identified in alveolar

macrophage in the lung (90, 123) and Kupffer cells in the liver (36). Importantly,

macrophage-tropic variants have not been found to predominate in the peripheral

blood, particularly in early infection (97, 126, 221).
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1.5.2 CXCR4 Tropism

Another feature of the vast majority of viruses that establish infection is their

exclusive use of the CCR5 coreceptor (R5 variants), a phenotype that is maintained

through the early course of disease and into the chronic phase. In about one-half of

individuals, Env variants emerge that have gained the ability to use the CXCR4 co-

receptor (X4 variants). This phenotypic switch almost invariably coincides with

immunosuppression and progression to AIDS, suggesting that X4 viruses are more

pathogenic (15, 49, 244, 282); however it is still not clear whether or not the

emergence of CXCR4-tropic viruses is the result or the cause of

immunosuppression, an issue that will be discussed below. CXCR4-tropic variants

emerge as a clonal outgrowth from the R5 viral population and often retain the ability

to use CCR5, i.e. they are dual tropic (126) although variants may be functionally

CXCR4-tropic in vivo (318). The primary genetic determinant of CXCR4 tropism is

the V3 loop in which only a few changes at specific positions are required to confer

CXCR4 tropism (117, 127). Genetically, CXCR4 tropism can be defined by the

presence of basic residues at positions 11 and/or 25 of the 35 amino acid V3 loop,

or an increase in overall positive charge (117, 129, 184). Variability in the V3 loop is

therefore indicative of a phenotypic switch in co-receptor tropism (184, 202, 203).

As with macrophage tropism, the selective pressures driving evolution of X4

virus are not well understood, although several hypotheses exist. CXCR4 is

exclusively expressed on the large subset of naïve CD+ T cells, whereas both CCR5

and CXCR4 are expressed on the memory T cell subset. Emergence of CXCR4-

tropic virus may be driven by selection for virus that can expand its host cell range
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and infect naïve T cells (241). While this may be the case, naïve T cells are

abundant at all stages of infection, which does not explain why X4 variants typically

only emerge late in infection. Another hypothesis, that I begin to address in Chapters

3 and 4, is that evolution of CXCR4 tropism requires conformational changes that

are selected against by specific antibody responses that are diminished in the late

stage immunosuppressed environments when X4 viruses are usually detected.

The case has been made that CXCR4 tropism evolution results in increased

pathogenesis, and that the increased cytopathicity often observed in CXCR4-tropic

viruses leads to the increased rate of immune suppression that is associated with

the CXCR4 tropism emergence (15, 244). Alternatively, CXCR4 emergence may be

a consequence of severe immune suppression (114). However, it is also likely that

both are true and that CXCR4 tropism emergence potentiates its persistence,

perhaps by creating a ratchet effect; once immune selective pressures fall below a

threshold, CXCR4-tropic virus can evolve and establish a critical mass in naïve T

cells in particular, initiating an irreversible decline in immune competence. Chapter 2

explores the relationship between CXCR4- and CCR5-tropic virus populations and

attempts to address the question of whether these populations are replicating

independently of each other.

1.6 Compartmentalization

Central to the evolution of HIV during infection is the spread of virus

systemically into different organ and cellular compartments (257, 311). Viral

populations can replicate independently in different tissue locations or cell types and

genetically diverge as a result. Establishment of divergent populations that are
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replicating independently of each other in different niches, or compartments, can

result from a specific adaptation to a particular niche, such as macrophage tropism,

or as a result of stochastic founder effects (85). Given the diversity of HIV-1 genetic

and phenotypic variants coexisting in an individual, it is likely that at least some

subset of these variants are compartmentalized, because the relatively stable

coexistence of these distinct genetic and phenotypic variants implies some degree of

niche selection. Compartmentalization is a common feature in different tissues such

as the CNS, genital tract, and lymphoid tissue (37, 59, 136, 247, 257, 283), and also

in different cell types, as some data suggest (15, 88).

The multiple selective pressures that drive diversification of HIV-1, as

discussed above, result in the multiple genetic and phenotypic variants that are

found to coexist in the peripheral blood. It is possible that different pathways of

neutralizing antibody escape are a result of differential antibody selection in

compartmentalized populations. Different functional Env variants may be emerging

from compartmentalized populations under different selective pressures. In addition,

populations compartmentalized due to stochastic seeding may also be represented

as distinct genetic variants in the periphery, but with no discernable selective

advantage. Chapter 2 attempts to address the degree to which the variants in the

periphery represent compartmentalized populations.



Chapter 2

Major co-existing human immunodeficiency virus type 1 env gene subpopulations in

the peripheral blood are produced by cells with similar turnover rates and show little

evidence of genetic compartmentalization
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2.1 ABSTRACT

A distinctive feature of chronic human immunodeficiency virus type 1 (HIV-1)

infection is the presence of multiple co-existing genetic variants, or subpopulations,

that comprise the HIV-1 population detected in the peripheral blood. Analysis of HIV-

1 RNA decay dynamics during the initiation of highly active antiretroviral therapy

(HAART) has been a valuable tool for modeling the life span of infected cells that

produce the bulk HIV-1 population. However, different HIV-1 target cells may have

different turnover rates, and it is not clear whether the bulk HIV-1 RNA decay rate

actually represents a composite of the decay rates of viral subpopulations

compartmentalized in different cellular subsets with different life spans. Using

heteroduplex tracking assays (HTAs) targeting the highly variable V3 or V4-V5

regions of the HIV-1 env gene in eight subjects, we found that all detectable co-

existing HIV-1 variants in the peripheral blood generally decayed at similar rates

during the initiation of HAART, suggesting that all of the variants were produced by

cells with a similar life span. Furthermore, single genome amplification and

coreceptor phenotyping revealed that, in two subjects, co-existing HIV-1 variants

with distinct CXCR4 or CCR5 coreceptor phenotypes decayed with similar rates.

Also, in nine additional subjects, recombination and a lack of genetic

compartmentalization between X4 and R5 variants were observed, suggesting an

overlap in host cell range. Our results suggest that the HIV-1 env subpopulations

detectable in the peripheral blood are produced by cells with a similar life span and

are not genetically isolated within particular cell types.
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2.2 INTRODUCTION

Infection with human immunodeficiency virus type 1 (HIV-1) is typically

established by one or a few variants that give rise to an initially homogeneous viral

population (58, 86, 134, 159). As infection progresses into the chronic phase,

sequence diversification occurs throughout the viral genome, most dramatically in

the envelope gene (env), as a result of selection of humoral and cytotoxic T

lymphocyte (CTL) immune escape mutations (22, 87, 149, 249, 309). Sequence

diversity is clustered in variable regions in the env gene, termed V1 through V5,

which encode surface loops in the Env protein that are important targets of the host

antibody response (87). Diversification of env results in the presence of multiple, co-

existing env variants in the peripheral blood that continually evolve during the course

of infection (106, 139).

Typically, the HIV-1 population early after infection uses CCR5 as the

coreceptor (R5) (134, 292, 324, 328), and variants that can use CXCR4 (X4) arise

later in the disease course in approximately one-half of individuals infected with

subtype B virus (49, 144). A major determinant of coreceptor use is found in the V3

loop, and sequence evolution in this region is often linked to the virus’s ability to use

CXCR4 (81, 129, 202). After the emergence of X4 virus, env genes encoding both

CCR5 and CXCR4 tropism can co-exist for extended periods of time, maintaining a

diverse V3 population (49, 202, 274). Variation in R5 Env proteins can also influence

the ability of a virus to utilize varying levels of CD4 and CCR5 found on different cell

types, such as macrophage and T cells (95, 97, 220, 226, 283, 300).
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Distinct biological characteristics encoded by different env variants, such as

coreceptor use, cellular tropism and sensitivity to immune pressure, may drive, or

result from, HIV-1 compartmentalization. Genetic compartmentalization of HIV-1

variants has been well documented in anatomical compartments, such as the spleen

(42, 85, 96), central nervous system (30, 104, 105, 148, 206, 247) and genital tract

(59, 136, 211, 222, 233), and in different cellular compartments, such as

monocyte/macrophage and CD4+ T cells (88, 168). Divergent coreceptor tropism in

particular may lead to compartmentalization of virus in different cellular subsets. For

example, naïve and memory T lymphocytes both express CXCR4 but differentially

express CCR5 and have been shown to harbor unequal proportions of CXCR4- and

CCR5-tropic viral variants that are concordant with their distinct coreceptor

expression patterns (15, 290).

While genetic compartmentalization of HIV-1 between anatomically or

cellularly segregated sequences has been extensively explored, evidence is limited

as to the extent to which the co-existing env subpopulations circulating in the

peripheral blood represent virus emanating from compartmentalized populations

replicating independently of each other and in different cellular subsets. Although

this question is challenging to address in the context of an infected individual, one

approach stems from the examination of the rate of decay of HIV-1 RNA during the

initiation of highly active antiretroviral therapy (HAART). Effective HAART prevents

new rounds of HIV-1 infection, but cells already infected by HIV-1 continue to

produce virus, and therefore the rate of viral RNA decay during effective HAART

reflects the life span of the HIV-1-producing cells. This strategy was initially used by
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Ho et al. and Wei et al. (113, 303) to characterize the turnover rate of HIV-1-infected

cells. These and subsequent studies (16, 176, 218, 219) suggested that the average

life span of infected cells that produce 99% or more of the bulk HIV-1 population in

the peripheral blood is short, with a half-life of 1-2 days, presumably reflecting the

life span of activated T-cells, whereas cells producing 1% or less of the population

have a half-life measured in weeks, illustrated by a bi-phasic decay curve. However,

the bulk HIV-1 RNA decay rate of the first phase may oversimplify the dynamics of

the underlying viral genetic subpopulations, because this rate may represent an

average without accounting for possible moderate differences between decay rates

of co-existing variants, as might be the case for variants infecting cellular subsets in

different stages of maturation or activation (92, 209, 326). Based on this model, two

or more co-existing viral populations with the same rates of decay during HAART

could be presumed to be produced by the same cellular subset, or at minimum two

or more subsets with the same turnover rate. Conversely, the observation of

different rates of decay would suggest that different cellular subsets are contributing

towards a complex mixture of compartmentalized viral subpopulations.

In this study we characterized the decay rates of co-existing HIV-1 env

variants in the peripheral blood of eight subjects initiating HAART. In two of these

subjects, who possessed both CCR5- and CXCR4-tropic Env variants, we analyzed

the decay rates of each phenotypically divergent env subpopulation. Furthermore, in

an additional nine subjects, we characterized the degree of recombination between

the R5 and X4 subpopulations and the degree to which each subpopulation was

genetically compartmentalized. We found that all detectible HIV-1 env variants in the
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peripheral blood, regardless of coreceptor tropism phenotype, decayed with similar

rates during the initiation of HAART. In addition, we provide evidence of

recombination and a lack of compartmentalization between co-existing X4 and R5

subpopulations, consistent with overlap in their target host-cell populations. Our

findings suggest that the detectable HIV-1 env variants that co-exist in the peripheral

blood are produced by cells with a similar life span and, by this measure, are not

compartmentalized to particular cell types.

2.3 MATERIALS AND METHODS

2.3.1 Study subjects and sampling.

Blood plasma samples used for the variant decay analysis were obtained

from subjects initiating HAART who were recruited either through a previously

described study carried out at the University of California, San Francisco, (subjects

4015, 4021, 4022, 4030, 5005) (276) or at the University of North Carolina, Chapel

Hill, specifically for this study (subjects 101, 106, 108, 109). Sampling of blood

plasma was carried out on the day of treatment initiation and at 1-7 day intervals

post treatment initiation; the median time between samplings for all subjects was 3

days.

Additional blood plasma samples used for the analysis of recombination and

compartmentalization in populations with mixed coreceptor use were excess tissue

obtained from the baseline blood draw of subjects participating in the virology sub-

study of a ritonavir efficacy trial described previously (35) (subjects 1314, 1077,

1551) or from baseline blood draws of subjects entering  ACTG 359 described
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elsewhere (subjects 432, 135, 139, 411, 413, 310) (100). In all cases, written,

informed consent was obtained and all protocols were subject to IRB approval.

2.3.2 Heteroduplex tracking assay and decay analysis.

Viral RNA was extracted from virus particles pelleted from 1 mL of blood

plasma (25,000 x g for 1.5 hours) using the QiaAMP Viral RNA Kit (Qiagen,

Chatsworth, CA). Two, 5 µL aliquots of the 60 µL eluate were amplified in parallel

using the OneStep RT-PCR kit (Qiagen, Chatsworth, CA). The PCR thermocycling

procedures, the primers used to amplify the V3 and V4-V5 regions and the HTA

analysis have been previously described (60, 106, 202). Briefly, PCR products were

annealed to a radiolabeled probe to generate heteroduplexes, which were then

separated in a polyacrylamide gel. Gel-separated heteroduplexes were visualized by

autoradiography and quantitated on a Storm 840 phosphorimager using the

ImageQuant software (Molecular Dynamics/GE, Pittsburgh, PA). The HTA analysis

was modified for this study by using a biotin-radio-labeled probe to facilitate isolation

and sequencing of HTA bands, as described elsewhere (262). All samples were

analyzed in duplicate to verify sampling reproducibility. Samples and time-points that

could not be reproducibly sampled were excluded from the analysis. Viral RNA loads

of individual variants were calculated as a product of the total viral RNA load and the

fractional abundance of each variant. Variant half-lives were calculated using the

time points between which viral load was declining.

2.3.3 Single Genome Amplification.

Viral RNA was extracted as described above. RNA was reverse transcribed

using Superscript III Reverse Transcriptase (RT) System (Invitrogen, CA) and oligo
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dT. A region of the HIV-1 genome encompassing env through 3’ U3 was amplified

using a limiting dilution, semi-nested PCR approach initially described by Simmonds,

et al. (271) and Edmonson and Mullins (76), then modified by Palmer, et al. (212)

and Salazar-Gonzalez, et al. (255). Primers and thermocycling procedures for

amplification and sequencing were used as previously described in Keele, et al.

(134) but modified by replacing the downstream env amplification primer set with a

primer that captures the U3, the sequence of which is 5’-

AAGCACTCAAGGCAAGCTTTATTG-3’. Sequences will be submitted to GeneBank

by the time of publication.

2.3.4 Coreceptor tropism analysis.

Coreceptor phenotype was predicted based on V3 sequences of extracted

HTA bands and SGA amplicons using a Position Specific Scoring Matrix (PSSM)

generated using a training set of V3 sequences from envelopes with known

coreceptor phenotypes on indicator cells expressing CD4 and either CXCR4 or

CCR5 (129). PSSM was implemented through the web portal

http://ubik.microbiol.washington.edu/computing/pssm/.

Phenotypic analysis was carried out as previously described by Kirchherr, et al.

(137), but with modification. Briefly, a CMV promoter containing a 3’ tag matching

the 5’ SGA primer binding site was linked to env SGA amplicons using overlapping

PCR. For the CMV-env linking PCR, the 5’ primer sequence is specific for the start

of the CMV promoter (5’-AGTAATCAATTACGGGGTCATTAGTTCAT-3’), and the

downstream primer (5’-

TGGGTGGCTCTGAAAAGAGCCTTTGGGCTGCTGGCTCAGCTCGTCTCATTCTTT
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C-3’) is specific for a sequence just 3’ of the end of env and contains a histone (H1e)

mRNA 3’ stem-loop tag (underlined) for increased transcript stability. CMV-env

amplicons were co-transfected with the pNL4-3.Luc.R-E- plasmid, obtained from the

NIH ARRRP (108), to generate a pseudotyped, single-cycle luciferase reporter virus.

The coreceptor phenotype of pseudotyped virus was assessed on U87.CD4

indicator cell lines, expressing either CXCR4 or CCR5, obtained from the NIH

ARRRP (14).

2.3.5 Compartmentalization and recombination analysis.

All sequence alignments were generated using MAFFT (Multiple Alignment

using Fast Fourier Transform) (133). Maximum likelihood phylogenies were

generated in PhyML using the HKY85 substitution rate model with the following

parameters: use of four substitution rate categories and estimations of the

transition/transversion rate ratio, proportion of invariant sites and the gamma

distribution parameter (99). A version of the Slatkin-Maddison test for gene flow was

implemented using HyPhy (230, 272) and measures of KST* were obtained using

DNAsp (252). KST* is calculated as described by Hudson, Boos and Kaplan (122).

Briefly, KST* = 1-(KS
*/KT) where KS* is the weighted average of the log of the pairwise

differences within each of the two potentially compartmentalized subpopulations. KT

is the average number of pairwise differences between sequences irrespective of

their grouping.  For both SM and KST* tests, comparison of the observed result to the

distribution of 1000 random permutations of the data was used to obtain a P-value.

Recombination between X4 and R5 variants was detected in sequence alignments

using the bootscan/RECSCAN analysis implemented in the Recombination
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Detection Program 3 (RDP3) (177, 258). Bootscanning was carried out using a 200

bp window with a 20 bp step and trees were constructed using the Jukes-Cantor

model with 1000 bootstrap replicates.
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2.4 RESULTS

2.4.1 Decay rates do not vary between detectable env variants that co-exist in

the peripheral blood.

We examined the decay rates of V4-V5 or V3 env variants in chronically

infected subjects initiating HAART to characterize the life span of infected cells that

produce co-existing genetic variants in the peripheral blood. Blood plasma samples

from 8 subjects were drawn every 1-7 days after the initiation of therapy, with a

median interval of 3 days, for up to 3 weeks or over a 1–2 log(10) drop in total viral

RNA load (VL). All subjects in this study achieved suppression of VL to below

detectable levels. RNA was extracted from the plasma samples and then amplified

by RT-PCR to generate amplicons of the variable regions V4-V5 or V3, which were

then subjected to heteroduplex tracking assay (HTA) analysis to resolve the co-

existing sequence variants. The relative abundance of V4-V5 or V3 variants,

potentially comprising as little as 1-3% of the total population, was measured by

phosphorimaging analysis of HTA bands (239, 262). Duplicate RT-PCR reactions

were analyzed to ensure sampling reproducibility; the ability to analyze duplicate

samples to validate the quality of sampling is a key feature of the HTA strategy as

the HTA pattern of two identical, complex populations will appear different if they are

not adequately sampled (111); however, the HTA pattern only represents variants

whose sequence differences cause a shift in migration rate. While much of the

diversity in these highly variable regions of the genome is captured using this

technique, in this work, we are testing the hypothesis that these HTA variants are

markers of potentially compartmentalized populations.
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The decay curves of V4-V5 and V3 HTA variants from two representative

subjects are depicted Figure 2.1. The Log(10) magnitude of the VL drop, the T1/2

(days) of the bulk VL, and the maximum differences in T1/2 for the env variants

detected in each subject are shown in Table 2.1. In all but one subject, virus decay

appeared mono-phasic over the first 1- 2 Log(10) decline in VL. In subject 106, the

VL decay appeared more rapid between the first and second time points (days 0 and

1), which had an apparent T1/2 of 0.28 days (based on a single time-point),

compared to the VL decline between the second and fifth time-points, which had an

apparent T1/2 of 2.22 days (Figure 2.1a). The median bulk VL decay rates for these

subjects was T1/2 =1.7 days. The decay rates of either V3 or V4-V5 variants within

each subject did not vary significantly; the median value for the greatest differences

between any two variants within a subject was 1.6-fold and did not exceed 2-fold

within any subject, likely within the margin of error of this assay. The minor variation

in decay rates of variants did not correlate with their relative abundance, including

for variants comprising as little as 2% of the detected population  (Table 2.1). We

conclude that for variants comprising as little as 2% of the detected population and

representing the first phase of decay: i) variants are not compartmentalized in

anatomical locations or cellular compartments that are differentially targeted by anti-

viral activity; ii) the life spans of potentially different, virus-producing cellular subsets

do not differ to a significant degree for those cells producing the major variants of

env; and iii) variants are not otherwise compartmentalized in a manner that

differentially affects their rates of decay.
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2.4.2 Decay rates do not differ between X4 and R5 variants in the first phase of

decay.

The ability of a virus to use CXCR4 efficiently may allow infection of a

different subset of target cells and hence may result in compartmentalization of X4

and R5 variants in cell types that differentially express these coreceptors, such as

memory and naïve T cell subsets (19). Many X4 variants retain the ability to enter

cells using CCR5 (i.e. dual-tropic), although it is not clear this ability is utilized in vivo

(171, 318). Furthermore, naïve and memory T cell subsets have been shown to be

preferentially infected by CXCR4 or CCR5 variants, respectively (15, 290).

We identified two subjects from the analysis described above who had co-

existing CXCR4- and CCR5-tropic populations, which allowed us to determine the

relative rates of decay of X4 and R5 variants specifically. Coreceptor usage was

assessed by first using PSSM, followed by phenotypic analysis of the encoded Env

protein in a pseudotyped virus entry assay. One subject (109) had a viral population

with both X4 and R5 variants identified by PSSM and confirmed in an entry assay. In

the other subject (101), distinct V3 variants failed to meet the cut-off value for a

CXCR4 tropism designation by PSSM, but exhibited strong CXCR4-tropic activity in

the entry assay. In both of these subjects, X4 variants retained some ability to use

CCR5.

HTA analysis of the V3 and V4-V5 regions of env of virus from subject 109

revealed 2 and 4 HTA variants, respectively (Figure 2.2a and b). Recovery and

sequencing of HTA bands, along with single genome amplification (SGA) and

phylogenetic and phenotypic analysis of full length env genes from the first time-
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point allowed us to link env sequences, and their coreceptor usage phenotypes, to

the specific V3 and V4-V5 HTA bands for this subject. For example, X4 and R5 V3

variants formed distinct phylogenetic lineages that were each represented by one of

the two HTA variants (Figure 2.3a) and V4-V5 HTA variants were linked to X4 V3

sequences by the presence of a deletion in each variable loop (data not shown). The

full-length env sequences also formed distinct phylogenetic lineages according to V3

genotype and coreceptor phenotype (Figure 2.3b). The decay of X4- and R5-linked

V3 and V4-V5 HTA variants are depicted in Figure 2.2a and b, respectively. The

decay rate of the total VL for subject 109 was T1/2 = 2.3 days, and over the course of

a 2-Log(10) drop in VL, there was no significant difference in the decay rates of HTA

variants relative to each other in subject 109 (Figure 2.2a and b, Table 2.1).

HTA analysis of virus from subject 101 revealed 2 variants in the V4-V5

region that decayed with similar rates (Figure 2.2c, Table 2.1). However, we were

not able to amplify the V3 region from this subject, presumably as a result of

subsequently identified V3 primer binding site mismatches in this viral population. In

an alternative approach taken for this subject, SGA was carried out on each time

point in order to assess the change in the relative proportions of all SGA-amplified

env variants as VL declined. env sequences that exhibited strong X4 usage in the

entry assay clustered together in a phylogenetic tree, as did their V3 sequences,

indicating linkage coreceptor use (Figure 2.4a and b). While not meeting the

threshold value for X4 usage according to PSSM, these V3 variants had distinctly

higher PSSM values and were more positively charged relative to the rest of the

population. V4-V5 genotypes were only weakly linked to tropism (data not shown).
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Weak X4 entry activity was detected in some envelopes whose sequences were

intermingled with those of exclusively R5 envelopes (Figure 2.4a and b), although

the biological significance of this low-level X4 activity is unclear.

The decay rate of the total VL for subject 101 was T1/2 = 2.3 days, and over

the course of a 2-Log(10) drop in VL, there was no significant difference in the decay

rates of V4-V5 HTA variants relative to each other (Figure 2.2c and Table 2.1). In

addition, we did not detect a significant change in the proportion of env sequence

variants, sampled by SGA, that clustered with phenotypically identified X4 or R5

variants at the 2 time points following initiation of therapy. X4 variants  constituted

26% of the amplicons in the first time point and 20% in the third time point, P=0.7

(Figure 2.4a). That we did not detect differential decay of X4 versus R5 variants in

subjects 101 or 109 leads us to conclude that either i) the bulk of the tropism

variants are not compartmentalized between different cellular subsets, or ii) while

tropism variants may be compartmentalized in different cellular subsets, these

infected cells have similar life spans when productively infected. Furthermore, any

differential effects that X4 or R5 infection may have on the life span of the infected

cell, or any difference in susceptibility of these tropic variants to anti-viral inhibition,

are not apparent in these data.

2.4.3 CXCR4 and CCR5-tropic variants exhibit limited genetic

compartmentalization in the peripheral blood.

 We next examined the potential genetic compartmentalization of co-existing

R5 and X4 variants using an alternative approach. Specifically, we were interested in

determining the degree to which viral genomes with distinct coreceptor tropisms
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exhibit signs of genetic compartmentalization. For this analysis, we included the

entry samples of the two subjects identified above (101 and 109) and an additional

nine subjects, obtained from studies described in the Methods section, with co-

existing X4 and R5 subpopulations identified by PSSM analysis of V3 sequences.

Using SGA, which eliminates confounding recombination during PCR, we generated

amplicons containing env, nef and the U3 region of the viral genome and carried out

PSSM and phenotypic analysis on a representative subset of env variants from each

subject. Phenotypic analysis was consistent with the result of the PSSM analysis for

every amplicon tested in all but subject 101, as described above. CXCR4-tropic

variants from all but two subjects in this study (138 and 411) also exhibited CCR5-

tropic activity in the reporter assay, but will be referred to as X4 variants. In many

subjects, phylogenetic analysis of env sequences showed a deep branch point

between the R5 sequences and a monophyletic group (i.e., a group that has

descended from a single ancestral virus) of X4 sequences, suggesting that the

outgrowth of X4 variants derives from a clonal event. Representative examples of

phylogenies of sequences encompassing V1 of env through the 3’ U3 from three

subjects are depicted in Figure 2.5.

If these X4 and R5 variants exist in distinct compartments with no migration of

viruses between compartments, then the independent evolution of these virus

subpopulations will produce a number of evolutionary signatures in regions of the

genome outside of V3. We looked for these signatures using two methods applied to

sequences from three regions of the genome: the V4-V5 region of env, the gp41

region of env, and the U3 region of the LTR. First we used the Slatkin-Maddison
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(SM) test (272) to investigate whether independent evolution of X4 and R5 variants

in distinct compartments had produced similar phylogenetic patterns in all genome

regions. Essentially, our use of the SM test examines the expectation that X4 viruses

should form a monophyletic group regardless of the genome region used to build the

tree, if this group is compartmentalized. Second, we used a distance-based metric,

KST* (see Methods) (34, 74, 89), to investigate whether independent evolution of X4

and R5 variants was occurring in distinct compartments and producing genetic

differentiation between the compartments in regions outside of V3. The KST* statistic

is a measure of whether the genetic distance (number of nucleotide differences)

between the X4 and R5 subpopulations is significantly greater than the genetic

distance among viruses within the X4 or R5 subpopulations. Gene flow between

compartments would erode both of these signatures of independent evolution, and

gene flow is expected to have the strongest impact on genomic regions that are

most distant from V3, due to the increased likelihood of recombination.

Observed SM and KST values were compared to the distribution of 1000

random permutations of branches or sequences to determine the level of

significance of separation. Because X4 and R5 subgroups were essentially defined

by their V3 genotype, which in most subjects were monophyletic groups with highly

similar genotypes, recombination events were inferred when the sequences of the

regions analyzed did not cluster according to their linked V3 genotype, indicated by

migration events in the SM analysis. However, a lack of compartmentalization can

result in increased sequence homogeneity in regions distal to V3, and detection of

recombination between X4 and R5 sequences in these regions is only possible in
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cases where there remain strong phylogenetic signals that result in a well-supported

tree.

The analysis revealed statistical support, by both KST and SM measures, for

compartmentalization of two genetic populations defined by coreceptor use for

markers proximal to V3, such as V4-V5 (Figure 2.6a and b). This would be expected

as mutations closer to the population-defining V3 sequence would likely persist in

linkage disequilibrium for a longer period of time after the outgrowth of the X4 V3

mutations, especially if they are functionally linked to V3. However, in most subjects,

SM migration events between the R5 and X4 populations were increased in regions

more distal to V3, such as U3 (Figure 2.6a), indicating that these populations were

replicating at least part of the time in a shared cell type, providing the opportunity for

recombination. Representative examples of detected recombination between X4 and

R5 sequences and the predicted location of breakpoints, in these cases outside of

gp120, are illustrated in Figure 2.7. This result is consistent with previous

observations of recombination between X4 and R5 viruses made using different

methods (183, 257, 291). We also observed decreasing values of genetic

differentiation between X4 and R5 groups, as measured by KST, for regions farther

from V3 (Figure 2.6b). However, in several subjects (135, 411, 432, 1314) a

compartmentalization signal in the U3 remained statistically significant, if decreased,

by both measures (Figure 2.6a and b, bottom panels). Taken together, these results

show that while X4 and R5 env variants are genetically distinct, in many of our

subjects there is little evidence of genetic compartmentalization between X4 and R5

variants in regions outside of env, such as in the U3.
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2.5 DISCUSSION

There are several reasons to hypothesize that variants that appear in the

blood are potentially compartmentalized. Previous studies have demonstrated

compartmentalization of HIV-1 variants between different anatomical compartments,

such as the central nervous system, genital tract, and different lymphoid tissues (59,

68, 96, 101, 136, 148, 233, 247, 257, 268, 289) as well as tissue microenvironments

(96). The gut-associated lymphoid tissue in particular represents a major source of

active replication of potentially compartmentalized CCR5-tropic virus populations (5,

228, 289, 295). It is possible that virus spatially compartmentalized in these

anatomical sites may be represented as distinct variants in the peripheral blood.

Because the initiation of HAART abruptly blocks new rounds of HIV-1 infection,

presumably without impacting viral RNA production from cells already infected,

different decay rates of compartmentalized variants following suppression of viral

replication should reflect different life spans of the cells from which they are

emerging. Viral populations compartmentalized in either cell types or tissues that

experience differential drug exposure may also decay at different rates if viral

replication continues at some level in the presence of suboptimal drug concentration.

However, our observation that all detectable HIV-1 genetic variants declined at

comparable rates suggests that the vast majority of the co-existing HIV-1

subpopulations in the peripheral blood are neither compartmentalized to cell types

with different life spans nor to cells or tissues with varying degrees of antiretroviral

drug bioavailability.
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Our use of the HTA allowed for relatively sensitive detection of variants

potentially comprising as little as 1-3% of the population (111, 262). However, one

important limitation of this study is the sensitivity for detection of minority viral

populations below this 1% threshold, which may be produced by cells with different

life spans. Such viral populations almost certainly exist based on the biphasic decay

kinetics of the bulk HIV-1 RNA load during HAART (16, 176, 218). It has been

hypothesized that the second phase of decay of the bulk HIV-1 RNA load represents

virus produced by cells with a longer life span, presumably cells of the monocyte

lineage. Compartmentalization of viral DNA populations between CD4+ T cells and

monocytes has been reported (88, 168, 329), and assuming monocytes have longer

half-lives relative to activated CD4+ T cells, variants compartmentalized in these

different cell types would be expected to exhibit different rates of decay during

HAART (52, 113, 218, 303). However, the proportion of variants compartmentalized

in productively infected monocytes may be too small to be detected in our assay

(218, 219), and monocytes may not be productively infected and only produce virus

upon differentiation and entry into tissue (243, 273). Furthermore, the decay

characteristics of HIV-1 upon initiation of therapy that includes an integrase inhibitor

suggest that much of the second phase of decay observed in conventional therapy

represents cells that are slowly undergoing integration, and that the proportion of

productively infected, long-lived cells is smaller than previously thought (196, 265).

Another limitation of this study is that it depends on the assumption that

compartmentalized subpopulations can be distinguished by their env genotypes, and

in particular, genotypes that can be resolved by HTA. However, in addition to its



40

function in determining host cell tropism, the extreme genetic complexity of env

within infected individuals makes it a highly sensitive target for the detection of co-

existing viral subpopulations, and any other genomic region that may drive HIV-1

compartmentalization would likely be linked to distinct env variants as a result of

founder effects, genetic isolation or compartment-specific evolution. Furthermore,

any compartmentalized variants would have likely diverged enough to be resolved

by HTA analysis (105). Thus, we can conservatively conclude that the lack of

genetic compartmentalization and differential decay rates observed in this study

applies to the bulk of the HIV-1 population in the peripheral blood that represents

primarily the first phase of viral RNA decay during HAART.

Another potential opportunity for cellular compartmentalization is between

naïve and memory CD4+ T cells. While naïve and memory T cells express similar

levels of CXCR4, CCR5 is expressed only memory cells (19, 160, 204). Previous

studies have found a wide range of preferential infection by, and potential

compartmentalization of, X4 and R5 variants in these cell types, in a manner

consistent with their coreceptor expression patterns (15, 207, 290). If X4 and R5

variants are compartmentalized in these two cell types to a significant degree, then

similarity in decay rates would indicate that the life span of infected naïve and

memory cells are similar when they become activated and produce virus. It is

thought that the bulk of viral replication occurs in activated CD4+ memory T-cells

(113, 176, 218, 275, 277, 326), in which case any potential compartmentalization of

R5 and X4 variants observed in resting memory and naïve cells may represent only

a small fraction of the total population.  Also, activated and previously activated T
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cells express both CCR5 and CXCR4 (19, 204, 208), providing a potential source of

mixing of R5 and X4 variants. There is evidence to suggest that the pool of cells

supporting the bulk of virus replication is not homogeneous in its susceptibility to

infection by X4 and R5 variants (92) and that X4 and R5 variants may be

differentially affected by antiretroviral therapy (92, 223). However, we found no

difference in the decay rates of X4 and R5 variants upon initiation of therapy, and

that the decay rates of these variants is within the range reported in other studies for

the first phase of decay, presumably reflecting the life span of the activated memory

cells supporting ~99% of the virus population (113, 176, 218, 219, 303). This finding

is consistent with a model where virus is emerging from a homogeneous pool of

cells that is sufficiently susceptible to infection by both X4 and R5 variants to

account for most of the production of these variants found in the periphery. This is

also further supported by the finding of a lack of genetic compartmentalization

between X4 and R5 populations in both subjects 101 and 109, for regions outside of

env, indicating some overlap of target-cell types. However, the lack of data indicating

differential decay rates of variants does not allow a definitive conclusion to be drawn

regarding the half-lives of infected cells in different cellular subsets until the degree

of cellular compartmentalization of X4 and R5 variants can be more fully and directly

accounted for in studies of this type. 

The divergent X4 and R5 lineages indicate some degree of genetic

compartmentalization between these variants. This could be due to physical isolation

in different cell types or due to genetic linkage selected across env for the ability to

use different coreceptors. However, we detected an overall lack of
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compartmentalization and evidence of recombination between these populations in

sequence regions increasingly distal 3' of V3, suggesting the potential for sequence

mixing between R5 and X4 variants in a co-infected cell (Figure 2.6 and 2.7). This

observation is consistent with previous reports which have identified X4/R5

recombinants both within env and between env and other regions of the genome

(183, 257, 291). However, our use of the single genome amplification approach

avoided the possibility of recombination during PCR, which may have created

artificial recombinants in some previous studies. These data support the conclusion

that while X4 and R5 variants may preferentially replicate in distinct cellular

compartments, they are not genetically isolated and must with some frequency infect

the same cell types. Still, the deep branch-points in the phylogenetic trees suggest

the initial outgrowth of X4 variants is from a monoclonal genotype.

This study found little evidence for differential decay and

compartmentalization of env variants comprising the bulk of the virus in the

peripheral blood, even in the case of divergent coreceptor phenotypes, indicating

that HAART is equally effective on all the detectible variants making up the bulk

virus in the peripheral blood. However, new technologies are becoming available

that will allow sampling to below 1% (186), and the application of these technologies

may yet reveal minor populations that exhibit differential rates of decay upon

initiation of therapy.
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Patient 
ID V3 V4/5

Starting 
VL 

LOG(10)
CD4 

Count

LOG(10) 
viral load 

drop

T1/2 

(days) 
bulk

% least 

variantC

Max  fold 
difference 

T1/2
d 

101a NA 2 4.5 201 1.9 2.30 19 1.09 (V4/5)
106 3 7 4.7 421 2.3 0.90b 5 1.14 (V3)
108 3 5 4.3 158 1.6 0.76 2 1.16 (V4/5)
109a 2 4 4.9 23 2.1 1.09 11 1.24 (V45)
4015 NA 2 5.1 na 1.4 2.14 9 1.73
4021 NA 9 5.0 na 1.0 1.20 2 2.0
4022 NA 4 4.6 na 1.9 2.09 3 1.58
5005 NA 4 5.3 na 1.5 2.27 2 1.60

aSubjects with mixed-tropic viral populations
bCalculated using the first and last time-points
cPercent relative abundance of the least abundant variant detected
dLargest fold difference in half-life between any two variants

HTA variant 
number

TABLE 2.1. Subject characteristics and viral decay rates
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Figure 2.1. HTA and variant decay analysis of V3 and V4-V5 envelope regions for
subjects 106 (a and b) and 108 (c and d). Left panels depict HTA gel lanes for
the first and last time points. Numbered arrows designate reproducible HTA
variants. Asterisks indicate single stranded probe bands. Right panels are plots of
the viral loads for individual variants (Var) at each time point sampled. Error bars:
standard deviation of 2 replicates. In subject 108 (c and d), a decline in viral load
was not seen until after the second sampling time-point; therefore the decay rate
was calculated from the second time-point in this subject.
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Figure 2.2. HTA variant decay analysis of V3 and V4-V5 envelope regions for
subjects 109 (a and b) and 101 (c) (V4-V5 only). Left panels depict HTA gel lanes for
the first and last time points. Numbered arrows designate reproducible HTA variants.
Single and double asterisks indicate single stranded and double stranded probe
bands. Right panels are plots of the viral loads for individual variants (Var) at each
time-point sampled. Error bars: standard deviation of 2 replicates. Dashed lines
indicate V3 and V4-V5 HTA variants linked to X4 usage.
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Figure 2.3. Maximum likelihood phylogenies of the V3 region (a) and full-length env
(b) for subject 109. Node labels represent bootstrap values using 100 replicates.
Italicized, bolded tip labels indicate env variants predicted to be X4 by PSSM.
Circles indicate an entry assay R5 phenotype; squares indicate an entry assay X4
phenotype. The V3 tree (a) was rooted at the midpoint. The env tree (b) was rooted
using the env sequence of the molecular clone YU2. V3 HTA variant sequences 1
and 2 correspond to variants in Figure 2.2a.



48

Figure 2.4. Maximum likelihood phylogenies of env (a) and V3 (b) sequences from
the first and last time-points of subject 101. Node labels represent bootstrap values
from 100 replicates. Trees were rooted using the molecular clone YU2. Closed
circles indicate an entry assay R5 phenotype, squares indicate an entry assay X4
phenotype, and open circles indicate dual-tropic envelopes with weak X4 usage in
an entry assay.
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Figure 2.5. Maximum likelihood phylogenies of sequences encompassing env,
(starting at V1), nef and U3 from three representative subjects with distinct X4/dual
and R5 populations. Node labels represent bootstrap values from 100 replicates.
Italicized, bolded tip labels indicate env variants predicted to be X4 by PSSM and
confirmed in an entry assay.
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Figure 2.6. Analysis of compartmentalization of 4 genome regions between X4 and
R5 variants. (a) Top panel: Slatkin-Maddison test branch migration events between
X4 and R5 sequences; bottom panel: corresponding P-values for support of
compartmentalization for each region as determined in the Slatkin-Maddison test. (b)
Top panel: KST* values; bottom panel: corresponding P-values for support of
compartmentalization between X4 and R5 variants for each genome region as
determined by the KST* test. Dashed line indicates P=0.05.
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Figure 2.7. Representative examples of recombination between X4 and R5 variants
in subjects 1551 (A) and 411 (B) Top panels: bootscanning plots identifying
recombination break points. The horizontal axis indicates the nucleotide position in
the putative recombinant (query sequence) and in the genomic regions mapped
within the plot. The vertical axis is the % bootstrap support (1000 replicates) for
clustering of the query sequence with either the R5 (grey) or X4 (black) putative
parental sequences. Bottom: Maximum likelihood trees of V3 (left) and U3 (right)
regions indicated in the bootscan plots. X4 variants are italicized and bolded.
Recombinants are boxed and putative parents are circled
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3.1 ABSTRACT

Rag2-/-γC
-/- mice transplanted with human hematopoietic stem cells (DKO-hu-

HSC) mimic aspects of human infection with human immunodeficiency virus type 1

(HIV-1) including sustained viral replication and CD4+ T cell decline. However, the

extent of HIV-1 evolution in a long-term infection in these humanized mice, a key

feature of the natural infection, has not been fully assessed. In this study, we

examined the type of genotypic and phenotypic changes in the viral env gene that

occur in the viral populations of DKO-hu-HSC mice infected with the CCR5-tropic

isolate HIV-1JRCSF for up to 44 weeks. The mean rate of divergence of viral

populations in mice was similar to that observed in a cohort of humans during a

similar period of infection. Many amino acid substitutions were common across mice,

including losses of N-linked glycosylation sites and substitutions in the CD4 binding

site and in CD4-induced epitopes, indicating common selective pressures between

mice. In addition, env variants evolved sensitivity to antibodies directed at V3,

suggesting a more open conformation for Env. This phenotypic change was

associated with increased CD4 binding efficiency and was attributed to specific

amino acid substitutions. In one mouse, env variants emerged that exhibited a

CXCR4-tropic phenotype. These sequences were compartmentalized in the

mesenteric lymph node. In summary, viral populations in these mice exhibited a

dynamic behavior that included sequence evolution, compartmentalization, and the

appearance of distinct phenotypic changes. Thus, humanized mice offer a useful

model for studying evolutionary processes of HIV-1 in a complex host environment.
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3.2 INTRODUCTION

Animal models of HIV-1 infection are important tools for understanding

transmission, replication, and pathogenesis, as well as therapeutic intervention, of

HIV-1 infection. Non-human primates, such as Rhesus macaques infected with

Simian or chimeric Simian/Human Immunodeficiency Viruses (SIV or SHIV),

represent well-characterized and highly relevant models; however, key limitations

include expense, genetic variability of the host animals, and the fact that SIV, while

closely related, is distinct from HIV-1. Therefore, small animal models that support

HIV-1 infection and recapitulate many aspects of the human infection have been

sought using several approaches.

Recent approaches have involved the use of genetically immunodeficient

mice that have been reconstituted using human-derived hematopoietic stem cells

(HSC) (known as humanized mice). Several models have been developed based on

this approach, including the Rag2-/-γC
-/- (DKO) and NOD/SCID/γC

-/- (NOG or NSG)

mice transplanted with human HSC (NOG-hu-HSC or DKO-hu-HSC) (128, 285) as

well as the NOD/SCID mouse with transplanted human fetal thymus and liver tissue

in addition to HSC (181). These models all support HIV-1 infection (3, 7, 11, 94, 279,

301, 323) (for a review of these models see Denton et al. (63)). The DKO-hu-HSC

mouse lacks both recombination activating gene 2 (Rag2) and the cytokine receptor

common gamma chain (γc) and as a result does not generate murine T, B and

natural killer (NK) cells, but supports engraftment of HSCs and differentiation of

human myeloid and lymphoid lineages. Immune reconstitution in this model likely

involves education of human T cells in the mouse thymus, and dissemination of
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differentiated human lymphoid subsets into the peripheral blood and to multiple

lymphoid tissues including lymph nodes, spleen and bone marrow (285). The DKO-

hu-HSC mouse along with the other humanized mouse models has been used in

studies of transmission (10, 62), pathogenesis (131) and viral inhibition (43, 62, 154,

280, 288).

One important feature of HIV-1 infection is the diversification and evolution of

the viral genome over the course of infection. Diversification occurs most

prominently in the envelope (env) gene, which encodes the viral surface glycoprotein

(Env). Env mediates viral entry into cells through attachment to the primary receptor

CD4, which primes Env for engagement with a co-receptor, either CCR5 or CXCR4,

triggering virion fusion with the cellular plasma membrane (155). HIV-1 infection is

typically established by one or a few CCR5-tropic (R5) variants that give rise to an

initially homogenous viral population, which then diversifies over the course of

chronic infection (134, 267). Diversification of Env results from immune selective

pressures (87), isolation in or adaptation to different cellular and anatomical

compartments (59, 88, 104, 136, 148), and selection for altered CD4 affinity (226,

283, 300) and co-receptor tropism (81, 126). In many cases, during late stage

infection, variants emerge from the R5 virus population that are CXCR4-tropic (X4),

an event that is often associated with accelerated CD4 T cell loss and progression to

AIDS (15, 48, 282). In an effort to determine if any of these aspects of HIV-1

evolution are exhibited in the humanized mouse model, we examined the extent of

HIV-1 diversification and the types of evolutionary changes that occur in env in mice

infected with a CCR5-tropic HIV-1 for up to 44 weeks.
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Sampling of viral env variants from the peripheral blood plasma over the

course of the infection revealed increasing diversity and divergence of the viral

population at rates similar to those observed in natural infection. Mutations were

identified that affected Env conformation and sensitivity to neutralizing antibodies,

CXCR4 co-receptor use, and potential N-linked glycosylation sites. Other mutations

potentially affecting the Env phenotype were identified in CD4 binding sites and

CD4-induced epitopes. The patterns of substitutions indicated that certain sites were

under selection, particularly in cases where the same substitution was identified in

multiple mice.

This study demonstrates the potential for studying HIV-1 evolution in the

DKO-hu-HSC model and also gives insight into the types of selective pressures

driving HIV-1 env evolution in this host environment. These findings, while

highlighting some of the limitations of this model, will help inform its appropriate use

for studying different aspects of HIV-1 infection, such as the evolutionary constraints

placed on HIV-1 during natural infection and in the face of pharmacological and

immunological inhibition.
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3.3 MATERIALS AND METHODS

3.3.1 Model generation.

Rag2-/-γC
-/- immunodeficient newborn mice were injected intrahepatically with

human CD34+ hematopoietic stem cells. Two separate CD34+ cell donors were used

to reconstitute mice 5-8, and mice 64 and 67, respectively (A and B in Table 1). After

8-12 weeks, immune system reconstitution was confirmed. HIV-1JRCSF (GenBank

accession number: M38429.1) virus was generated by transfection of 293T cells with

an infectious clone expression plasmid, pYK-JRCSF (150), obtained from the

National Institutes of Health AIDS Research and Reference Reagent Program

(ARRRP). Cell-free supernatant was used to intravenously infect reconstituted mice.

Five mice from cohort A (4-8) and 4 mice from cohort B (63-67) were infected. Mice

were analyzed from each cohort that were successfully engrafted, successfully

infected and which were kept alive with active infection for at least 22 weeks. Viral

load was monitored for 44 weeks in mice 5-8, and 22 weeks for mice 64 and 67.

As part of an additional study investigating the role of CD4+CD25+Foxp3+ T

regulatory cells (Treg cells) in HIV-1 infection, mice numbered 6-8 were treated at 43

weeks post-infection with denileukin diftitox (DAB389IL-2, denileukin diftitox, or

Ontak), which selectively depletes Tregs (131, 161). Tregs account for between 1-

4% of all CD4+ T cells in this model and Ontak treatment usually results in selective

depletion of Tregs by as much as 90% (131). Treatment with Ontak correlated with

increased immune activation as measured by CD38 expression, and Ontak-treated

mice also exhibited a greater percentage of infected cells and greater CD4+ T cell

depletion. Ontak treatment may have increased viral replication perhaps as an effect



58

of global enhancement of CD4+ T cell activation. While there were unique

evolutionary events observed in individual mice, there was no clear distinction in the

patterns of viral evolution between treated and untreated animals.

3.3.2 Sample collection.

Mice were monitored for peripheral blood viral load and CD4/CD8 ratios for

up to 44 weeks. Peripheral blood samples were collected (~30 ul) at 3, 10, 22, 40,

and 44 weeks post infection. Mice were sacrificed and tissue was harvested at 22

weeks (64 and 67) and 44 weeks (5-8) post infection.

3.3.3 Nucleic acid extraction.

Viral RNA was extracted from the available volume of blood plasma (~30 ul)

using the QiaAmp Viral RNA kit (Qiagen, Valencia, CA), eluted in 60 ul diH2O. Total

DNA was extracted from tissue using the PicoPure DNA Extraction kit (Molecular

Devices, Sunnyvale, CA). Pelleted cells extracted from collagenase-treated tissue

(about 105–106 cells) were resuspended in 50 ul of PicoPure buffer containing

Proteinase K. The extraction suspension was incubated at 65°C for 8 hours and

used directly in PCR reactions as described below.

3.3.4 Viral RNA and DNA amplification and sequencing.

The 60 ul RNA eluate was reverse transcribed using the Superscript III

Reverse Transcriptase (RT) System (Invitrogen, Carlsbad, CA) and an oligo dT

primer. A region of the HIV-1 genome encompassing env through 3’ U3 was

amplified from cDNA using a limiting dilution PCR approach (single genome

amplification - SGA) initially described by Simmonds et al. (271) and Edmonson and

Mullins (76), then modified by Palmer et al. (212) and Salazar-Gonzalez et al. (255).
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Primers and thermocycling procedures for amplification and sequencing were used

as previously described in Keele et al. (134), but modified by replacing the

downstream env amplification primer set with a primer that captures the U3, the

sequence of which is 5’-AAGCACTCAAGGCAAGCTTTATTG-3’. The same

procedure used for amplifying cDNA was used to amplify the envelope gene from

viral DNA extracted from tissue samples. Automated sequencing followed by manual

editing of sequences was carried out on SGA amplicons using the Big Dye

Terminator system (Applied Biosystems, Foster City, CA). GenBank accession

numbers for sequences generated in this study are: GQ412353-GQ412705.

3.3.5 HIV-1 sequencing data from human infections.

Sequences were from Shankarappa et al. 1999 (267) and Salazar-Gonzales

et al. 2009 (256).

3.3.6 Sequence analysis.

Subtype B sequences used for assessment of sequence conservation at

specific sites were accessed through the Los Alamos National Laboratories HIV

Sequence Database (http://www.hiv.lanl.gov). Sequence alignments were generated

using MAFFT (Multiple Alignment using Fast Fourier Transform) (133). The best

fitting substitution rate model for each alignment was determined using FindModel, a

variation of Modeltest (232), implemented through

http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html. Maximum

likelihood phylogenies were generated in PhyML using the best fitting model (GTR

or HKY85 in this study), 4 rates substitution categories and the PhyML-determined

gamma shape parameter and number of invariant sites. Potential N-linked
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glycosylation (PNLG) sites were identified using N-Glycosite (325) implemented

through http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html.

Divergence was determined as the mean genetic distance of sequences at a given

time point to the founder sequence. In the case of mouse viral populations, the

founder sequence was that of HIV-1JRCSF, and in the case of human viral

populations, the “founder” sequence was taken to be the consensus of sequences

sampled at a time 2-5 months post-seroconversion for the Shankarappa et al. 1999

sequence set, and an estimated 20-24 days post infection for the Salazar-Gonzales

et al. 2009 sequence set. Distances were determined from ML tree branch lengths

using Branchlength implemented through

http://www.hiv.lanl.gov/content/sequence/BRANCHLENGTH/branchlength.html.

Selection analysis was carried out by determining the rates of synonymous

and non-synonymous substitutions (200, 210). Rates were determined using SNAP

(145) as implemented through:

http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html. A Wilcoxon

signed rank test was used to compare rates of synonymous and non-

synonymous base substitutions within mouse populations.

Linkage disequilibrium analysis was performed using DNAsp v5 (166).

A Fisher’s exact test was used to determine the significance of non-

synonymous nucleotide substitution associations.

3.3.7 Env phenotype assays.

env gene expression vectors were generated from selected amplicons using

the pcDNA3.1 Directional TOPO Expression kit (Invitrogen, Carlsbad, CA). 293T
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cells were co-transfected with env expression vectors and the pNL4-3.Luc.R-E-

luciferase reporter vector (108) (obtained from ARRRP) using the Fugene

transfection reagent (Roche, Mannheim, Germany) according to the manufacturer’s

protocol to generate pseudovirus. Cells were washed with phosphate buffered saline

8-12 hours after transfection in order to reduce transfection complex carry-over and

background luciferase expression in target cells, which was monitored with an Env-

negative control. Virus supernatant was collected 48 hours after transfection. Co-

receptor phenotype was determined based on detection of luciferase activity in

U87.CD4+ cells expressing either CCR5 or CXCR4 (14) (obtained from ARRRP)

using the Luciferase Assay System kit (Promega, Madison, WI). Pseudovirus was

incubated with U87.CD4.CXCR4/CCR5 cells for 36-48 hours prior to lysis of cells

and measurement of luciferase activity. Co-receptor-dependent viral entry was

confirmed using inhibitory concentrations of AMD3100 (112) (CXCR4 inhibitor) or

TAK-779 (6) (CCR5 inhibitor) (both obtained from ARRRP). Sensitivity to

neutralization by the anti-V3 antibodies 447-52D (46) (ARRRP) and 19b (20) (a gift

from Dr. James E. Robinson) was assessed on TZM-BL cells (obtained from

ARRRP), which are permissive to X4 and R5 viruses and contain an integrated, Tat-

responsive luciferase cassette (226). Sensitivity to the anti-CD4 antibody Leu3a

(CD4 Pure) (BD Biosciences, San Jose, CA) was assessed on U87.CD4.CCR5

cells.

Viral fusion kinetics were measured on U87.CD4.CCR5 cells in a 96-well

format in triplicate. Pseudotyped virus supernatant and cells were cooled to 4°C and

spinoculated for 2 hours at this temperature to synchronize entry. Immediately after
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spinoculation, the medium was removed from cells and replaced with medium pre-

warmed to 37°C. The fusion inhibitor T20 (obtained from ARRRP) was added at the

inhibitory concentration of 200 nM at time 0 to the first well and at 5 minute intervals

to successive wells for up to 70 minutes. Time to one-half maximal entry was used

to compare viruses.
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3.4 RESULTS

3.4.1 Diversification and divergence of HIV-1JRCSF over the course of infection

in a mouse model with sustained viral infection.

Six DKO-hu-HSC mice with stable human leukocyte reconstitution were

infected intravenously with HIV-1JRCSF, a CCR5-tropic isolate of HIV-1 generated

from an infectious molecular clone. Viral infection persisted in all mice over the

period of observation: 44 weeks for mice 5, 6, 7 and 8, and 22 weeks for mice 64

and 67 which received HSCs from a different donor (Table 1).The viral RNA load in

the blood exhibited a slow decay of about 1 log10 over the course of 44 weeks in

mice 5-8 (Figure 1), consistent with other reports using this model and different HIV-

1 isolates (7), although the reason for this drop is not known. A relative decline in

CD4 T cells was also observed (Table 1).

Given that these mice were able to support infection for 22- 44 weeks, we

wanted to know if, and to what extent, the viral population had diversified, as is

observed in human infections over a similar period of time. Viral RNA was extracted

from the peripheral blood plasma and subjected to single genome amplification

(SGA) for the entire env gene, a limiting dilution RT-PCR technique designed to

facilitate direct sampling of viral genomes and to avoid PCR-generated mutations

and recombination. Sequence diversification and divergence of HIV-1JRCSF in the

peripheral blood was assessed for a region of env that encodes variable loops 1

(V1) though 5 (V5) of gp120 and at multiple time points: weeks 10, 40 and 44 post

infection for mice 5 and 6; weeks 3, 40 and 44 for mouse 8; and weeks 4 and 22 for
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mice 64 and 67. The median number of sequences sampled from each time point

was 16.5 and ranged between 11 and 39.

A maximum likelihood phylogeny of sequences from the last time points

(week 22 for mice 64 and 67 and week 44 for mice 5-8) from each mouse is

presented in Figure 2. Sequences were generally clustered by mouse, indicating

distinct evolutionary paths that could distinguish mouse viral populations.

For a region of env encompassing C2-V5, the rate of divergence from the founder

virus in the mice was compared to that observed in two datasets from infected

humans initially sampled either prior to seroconversion and at time points 3-19

months later  (Salazar-Gonzales et al. 2009) (256) or after seroconversion and at

time points 9-24 months later  (Shankarappa et al. 1999) (267). In the former study,

viral populations from three subjects were initially sampled prior to seroconversion at

an estimated 20-24 days post infection and 9-16 days prior to seroconversion. In the

latter study, viral populations from 7 subjects were initially sampled within 2-5

months after seroconversion. In both datasets, the viral populations at the first time

points sampled were relatively homogeneous, and these populations were

compared to those present in the later time points. Divergence was determined as

the mean distance (branch length) of sequences in a population at a given time-point

from the “founder” virus sequence, which was either the consensus of sequences

sampled at the first time point in the human infections, or HIV-1JRCSF (accession

number M38429.1) for the mouse infections. The rate of divergence was calculated

by using the mean divergence from the founder of a population at the last time point

measured divided by the time post infection. The mean rate of divergence in mice
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and in the post-seroconversion human data sets was 0.0175%/week (range=0.034-

0.0043%/week) and 0.018%/week (range=0.007-0.030%/week), respectively, which

were statistically indistinguishable (P=0.96) (Figure 3A). The mean rate of

divergence in the pre-to-post-seroconversion dataset was also similar (0.015%/week

range=0.004-0.026%/week, P=0.706) although slightly lower than that observed in

mice. The mean diversity (Figure 3B) in viral populations in humans, extrapolated to

44 weeks, was greater than, but still not statistically different from, that observed in

mice (P=1 for the comparison to the pre-to-post-seroconversion human dataset and

P=0.5338 for the comparison to the post-seroconversion dataset). The rates of

divergence and diversification of HIV-1 in mice fell within the distribution of the rates

measured in the two different human cohorts sampled starting at different points

around the time of seroconversion. These similarities are in spite of the likely

absence of an HIV-1-specific antibody response in the mouse, which is low to

undetectable in this model throughout infection, a selective pressure that plays a

major role in Env divergence and diversification in human infection, post-

seroconversion (87). In this regard, Western blot analyses of plasma from the mice

used in this study, taken early and late after infection, were uniformly negative for

reactivity to HIV-1 antigens (data not shown).  We conclude that there is no major

difference in the evolutionary rate of HIV-1 within env in this mouse model over the

first 44 weeks from the time of infection compared to  an analogous early stage of

human infection, although the selective pressures in these two settings likely differ

(see below).
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3.4.2 Features of env sequence evolution in mice.

We next wanted to examine the types and patterns of nucleotide substitutions

that contribute to diversity. One distinctive mechanism that may contribute to

sequence diversity during natural infection is the activity of the anti-viral factor

APOBEC3G (A3G) (130), which, in spite of the A3G antagonist activity of the viral

Vif protein, can give rise to disproportionate numbers of G-to-A transitions in the plus

strand sequence in natural infection, indicating hypermutation of the nascent minus

strand DNA by A3G (172, 248, 322). Examining env sequences from mice revealed

a subset (1-4%) of hypermutated sequences exhibiting a disproportionate number of

G-to-A  transitions in A3G target motifs in each mouse, indicating that this

mechanism is at work in this model. This observation also suggests that A3G may

be contributing some proportion of G-A transitions observed at A3G recognition sites

in sequences that were not overtly hypermutated.

A key feature of this model is the isogenicity of the hosts, when reconstituted

with the same donor. We were interested to see if any common amino acid

substitution patterns had emerged in different mice. Common amino acid

substitutions represented in viral populations of multiple mice likely represent

selected changes rather than mutations that have grown out due to genetic drift, as

might be the case for substitutions represented in only one mouse.

Substitutions that grew out (i.e. were seen in more than one sequence either

within or between mice) in each mouse viral population are depicted in Figure 4 and

are categorized by their potential functional effects, along with the number of mice in

which they were detected. Within a 380 amino acid long region encompassing V1
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through V5  and much of the conserved region 5 (C5), substitutions at a total of 45

positions grew out. These mutations were concentrated in the variable loop regions

compared to the constant regions of Env (p=0.0001, Fisher’s exact test). However,

no insertions or deletions were observed. Of the substitutions that grew out in mouse

viral populations, 19 were detected in more than one mouse, and each of the four

substitutions that were detected in three or more mice (D167N, N386K/S, N411D/S,

and E482K) were represented in both donor sets (Figure 4).

Evidence of positive selection can also be obtained by determining the ratio of

non-synonymous and synonymous base substitution rates (dN/dS). Ratios greater

than or less than 1 indicate positive or negative selection, respectively. For the env

region encompassing V1-C5, the dN/dS ratio was greater than 1 for viral populations

in mice 6 (1.48) and 8 (1.32), which also showed the highest levels of divergence

(Figure 3), nearly 1 in mouse 67 (1.03) and less than 1 in mice 5 (0.79), 7 (0.82),

and 64 (0.57), although the differences between rates of synonymous and non-

synonymous mutations were only significant in mice 6 (P=0.0126, dN/dS=1.48) and

64 (P=0.0001, dN/dS=0.57). We interpret these results with caution, because this

analysis is limited in its sensitivity when there are too few substitutions to provide

statistical power or when only a few sites are under positive selection, which is often

the case in Env early in infection.

3.4.3 Substitutions identified at multiple potential N-linked glycosylation sites.

Glycosylation of Env at numerous sites has been shown to play a role in

proper protein folding, receptor and coreceptor engagement (165, 229), and in

escape from neutralizing antibodies (40, 141, 302). We identified one substitution,
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S142N in mouse 6, that added a potential N-linked glycosylation (PNLG) sequon

[NX1(S/T)X2, where X represents any amino acid other than proline (91)] in V1 and

adjacent to a preexisting PNGS in HIV-1JRCSF, which remained intact (Figure 4). In

contrast, substitutions that disrupted PNLG sequons were observed at 7 positions

and included (mean frequencies indicated in parentheses) N160K (8%), N187D

(36%), N230S (43%), N241D (5%), N339K/D (8%), N386K/S (86%), N411D/S (40%)

and T413I (36%) (Figure 4). All substitutions, except N160K and N241D, were

detected by week 10. Substitutions N339K/D, N386K/S, N411D/S and T413I were

identified in more than one mouse suggesting that loss of glycosylation at these sites

was under some level of selection, although the low frequency of the N339K/D

substitution at no more than 12% suggests that selection at this site was weak. The

substitutions N386K/S, which rose to the highest frequency in the 3 mice in which it

was detected (mean 86%), and N339K/D are located in V4 and C3 regions,

respectively, and are part of the neutralizing antibody 2G12 epitope. Loss of these

PNLG sites individually and in combination has been shown to confer resistance to

this antibody (173, 287). The PNLG sequon composed of N411 and T413, located in

V4, has been shown to co-vary with a number of other PNLG sequons and likely

plays a role in the glycosylation of Env as a means of antibody escape (231, 302).

The net loss of PNLG sites was widely distributed across Env, indicating that the

heavy glycosylation of Env observed in natural infection may not be required for viral

persistence in this model and may reflect the lack of a strong humoral immune

response. Conversely, maintenance of these glycosylation sites likely has a fitness

cost for replication.
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3.4.4 HIV-1JRCSF evolves to become sensitive to specific anti-V3 antibodies.

Previous studies using the DKO-hu-HSC model have found the humoral

immune response to HIV-1 to be weak (7) or undetectable (3, 94, 323), and we did

not detect any HIV-specific antibodies in the mice in this study. Primary isolates of

HIV-1 passaged in cell culture, in the absence of neutralizing antibody pressure,

evolve to become sensitive to a spectrum of heterologous neutralizing antibodies (9,

192, 312). The antibody 447-52D is specific for a conserved epitope at the tip of the

Env V3 loop and neutralizes viral isolates that are known to have a history of cell-

culture passage, while primary isolates can encode the epitope but remain largely

resistant (13, 46, 264). Sensitivity of cell-culture passaged virus to this and other V3

antibodies, such as 19b, is attributed to a loss of the Env conformation that masks

the V3 epitope (180, 313). We were therefore interested in assessing the extent to

which HIV-1JRCSF, which encodes these V3 epitopes but is resistant to 447-52D, had

evolved sensitivity to this antibody. env clones that included a broad spectrum of

substitutions were generated from the amplicons from 5 mouse populations at the

last time point (week 44 for mice 5-8 and week 22 for mouse 64). Screening of the

env clones generated from these mice for expression of an Env protein with

sensitivity to 447-52D (as tested in a pseudovirus assay) revealed a subset of clones

in 4 of the 5 mice that encoded Env proteins that were neutralization sensitive

compared to the input virus Env (Figure 5A). Two mutually exclusive mutations near

the base of the V2 loop appeared to be linked to neutralization sensitivity, N165R/K

and D167N, as one or the other was present in all neutralization sensitive Envs and
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absent in those that remained resistant (Figure 5A and B). These mutations were

detected early in infection. D167N was detected at week 10 in mice 5 and 6 and

both N165K/R and D167N were present in mice 5 and 6 at week 44. Mice 8 and 64

exhibited only D167N, which was detected in these mice at 22 and 44 weeks post-

infection, respectively. The frequency of these mutations in a population was on

average 36% and 52% for N165R/K and D167N, respectively. Neither mutation was

detected in mouse 7 or 67. When these mutations were reintroduced into the HIV-

1JRCSF env individually, they rendered the virus relatively neutralization sensitive

(Figure 5C). We also tested these mutants, along with several of the 447-52D-

sensitive clones, for sensitivity to another V3-specific antibody, 19b, and obtained

similar results (data not shown). The frequency with which these substitutions were

detected suggests that viruses replicating in these mice, as with virus passaged in

cell culture, were not under strong selection by HIV-1-specific antibodies, and that

these mutations may otherwise confer a selective advantage for an Env function

possibly involving increased CD4 binding affinity, CD4 independence, or more rapid

fusion (118, 143, 188, 193, 235).

In order to determine if increased neutralization sensitivity was linked to CD4

binding affinity, clones were selected that represented a range of sensitivities to the

anti-V3 antibody, from relatively resistant to highly sensitive. Sensitivity to

competitive inhibition by an anti-CD4 antibody, Leu3a, was used to evaluate CD4

binding efficiency. Table 2 shows the relative sensitivities of viruses pseudotyped

with selected Env proteins to inhibition of entry by Leu3a. Env proteins that were

highly sensitive to the anti-V3 antibody, those derived from mouse 6, showed a small
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but significant decrease in sensitivity to Leu3a, while the JRCSF mutants I165K and

D167N, which exhibited intermediate sensitivities to the anti-V3 antibody, exhibited

only a marginal decrease in Leu3a sensitivity. This indicates that these Env proteins

have enhanced CD4 binding. When viral fusion kinetics were measured in a time-of-

addition experiment using T20, we failed to measure an increase in the rate of entry

for any of these clones (data not shown). Although the mutations at positions 165

and 167 conferred only a slight increase in CD4 binding affinity, indicating that other

mutations are likely involved in conferring a stronger phenotype, they are linked to

anti-V3 antibody sensitivity and likely contribute to a more open Env conformation

that potentiates CD4 binding and an increase in replication capacity. This is

consistent with the observation that Envs with these mutations become fixed in

multiple mouse viral populations.

When linkage analysis was performed, two sets of mutations were found to

be in high linkage disequilibrium with each other in multiple mouse viral populations.

Substitutions at positions 165 and 167 exhibited mutual exclusivity in the two mice in

which both substitutions were present (mice 5 and 6), and each was linked to a

different position in the same PNLG sequon occupying position 411-413. In mouse 6

substitutions at position 165 and 167 were linked to PNLG site-disrupting

substitutions at position 413 and 411, respectively (p<0.0001 for both). In mouse 5,

changes at position 165 and 413 were also strongly linked (p<0.001) although

linkage between 167 and 411 was weak. In two other mice (mice 8 and 64) only

substitutions at positions 167 and 411 were present, and in mouse 8, were largely

coincident in the subset of genomes where they appeared (p<0.01). In mouse 64,
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while a substitution at position 167 appeared in 30% of genomes, changes at

position 411 appeared in all genomes. Weak linkage between positions in V3 and

either position in the 411 sequon were also observed in mice 6 and 8. In summary,

the substitutions at positions 165 and 167, themselves implicated in alterations of

envelope structure, showed linkage to mutations that disrupted the same distant

PNLG site, but the linkage was to different positions within the PNLG sequon. It

seems likely that the specific amino acid that removes the carbohydrate attachment

at position 411 has a context-dependent effect based on the substitution at position

165 or 167.

3.4.5 Evolution of co-receptor usage.

HIV-1 infection is primarily established by variants that utilize CCR5 as their

co-receptor for entry into target cells (R5 viruses), but in about half of subtype B

chronic infections, viral variants emerge that can use CXCR4 as their co-receptor

(termed X4 viruses) (49, 144). The sequence of the V3 loop is a strong genetic

determinant of, and can be used to predict, HIV-1 co-receptor phenotype (81, 129,

202). Because HIV-1JRCSF utilized CCR5 exclusively, we were interested in

determining if this virus had evolved to use CXCR4 in any of these animals. Six of

39 (15%) sequences from mouse 6 exhibited an X4-associated genotype with amino

acid substitutions S11G and E25K in V3 (Figure 6B), sites at which variability is

linked to co-receptor switching (184).  In addition, nearly all V3 sequences from

mouse 6 (92%) also had a S5N substitution, which represented a reversion to the

subtype B consensus (Figure 6B). A serine at this position has been linked to CCR5

usage (184), indicating that this reversion may be linked to evolution of an X4
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phenotype. These and additional selected clones from mice 5-8 were tested for their

ability to enter indicator cell lines expressing CD4 and either CXCR4 or CCR5.

Consistent with their sequence prediction, the clones from mouse 6 that exhibited

the genetic features of X4 usage were able to infect a CD4+/CXCR4+ indicator cell

line and were therefore classified has having an X4 phenotype (Figure 6A and B).

Re-introduction of the X4-associated V3 sequence into the original HIV-1JRCSF env

was sufficient to confer CXCR4 tropism in the entry assay (data not shown). X4

variants emerged in the peripheral blood late in infection; they were not detected at

week 40 (0 of 29 sequences) but were detected at week 43 in 3 of 13 sequences

(23%). Thus, HIV-1 has the potential to evolve to use CXCR4 in this model, following

an evolutionary path similar to what is observed in natural infections.

3.4.6 Compartmentalization of phenotypic variants.

HIV-1 can be found in multiple tissue compartments in the course of a human

infection, which in some cases leads to the establishment of isolated, or

compartmentalized, viral populations (311). We were therefore interested in

investigating whether or not variants were compartmentalized in different tissue

compartments in the mouse. Mouse 6 in particular, which harbored an X4 virus

population, provided the opportunity to examine the tissue distribution of variants

with distinct co-receptor phenotypes. Viral env genes (V1-V5) from this mouse were

successfully amplified and sequenced from DNA extracted from spleen (SP), bone

marrow (BM), and mesenteric lymphoid tissue (MLN) using the same limiting dilution

technique employed for plasma RNA. Attempts to amplify viral DNA from the thymus

were unsuccessful. Phylogenetic analysis of sequences recovered from these three
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tissues together with sequences from peripheral blood plasma revealed the distinct

clustering of X4 viruses within the tree, which was suggestive of clonal outgrowth of

the X4 variant (Figure 7). In addition, X4-like variants comprised 95% of variants

identified in the MLN, indicating compartmentalization of this phenotype in this tissue

(p<0.0001). Phenotypic testing of a sample of variants with X4-like V3 sequences

from the MLN confirmed their X4 phenotype (data not shown). Variants recovered

from the spleen were phylogenetically intermingled with those from the peripheral

blood and exhibited the same distribution. With these limited data we cannot

determine if X4 compartmentalization in the MLN is due to stochastic seeding of or

initial evolution in this tissue site, or if X4 viruses have a selective advantage in the

MLN in this model. However, these data do demonstrate the potential for sub-

populations of virus to disseminate, evolve and replicate independently in different

tissues.

Genetic compartmentalization between the MLN and PB was assessed in

mice 7, 8 and 64. Viral DNA was not successfully amplified from other mice or other

tissues. In mice 7 and 8, sequences were well equilibrated between the PB plasma

RNA and MLN tissue DNA. In mouse 64, a single synonymous mutation was

enriched in the MLN (P=0.0001 Fisher’s exact test), providing a second example of

compartmentalization, although the overall genetic divergence between the two

compartments was small (data not shown) and likely not based on phenotypic

differences, at least within the Env protein.
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3.5 DISCUSSION

Current models being used to study various aspects of HIV-1 infection include

the genetically immunodeficient Rag2-/-γC
-/- mouse reconstituted with a human

immune system by transplantation of human hematopoietic stem cells (DKO-hu-

HSC mouse) (3, 7, 11, 94, 323). However, a detailed analysis of viral diversification

and evolution in long-term infections has not been carried out in this system. In this

study we examined the viral populations of DKO-hu-HSC mice with sustained

infection for up to 44 weeks. We found that HIV-1 diversifies at nearly the same rate

observed in human infections. We observed evolution of CXCR4 co-receptor use, a

characteristic of many natural chronic infections. In addition we detected evolution

towards increased sensitivity to a conformation-dependent V3 neutralizing antibody,

increased CD4 binding affinity and a general loss of N-linked glycosylation sites.

 Acute HIV-1 infection in humans is marked by high levels of viral replication.

Within several weeks after infection, the CTL response appears and leads to

suppression of peak viremia (22, 234). Following this initial immune response,

variants emerge that have escaped CTL detection, marking the beginning of

continuing evolution of HIV-1 in response to this selective pressure (22, 234).

Between 4 and 5 weeks post infection (typically), HIV-1-specific antibodies appear

(seroconversion), with some of the antibodies directed against the Env protein that

can potentially select for neutralization escape variants (80, 87, 284). Selection of

immune escape variants results in increasing viral diversity, which begins after

seroconversion and continues into the chronic stage of infection, although the tempo

of immune escape is highly variable and depends on the strength of the immune
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response and the extent of immune dysregulation (87). Thus, the increasing

variability in the env gene observed in human infection after seroconversion has a

large component that is attributable to escape from immune pressure. In contrast,

the DKO-hu-HSC model appears to lack a robust adaptive immune response to HIV-

1 (3, 7, 94, 323). However, we observed similar rates of divergence and degrees of

diversity in comparing viral populations from infected human subjects and DKO-hu-

HSC mice. One interpretation is that the rates of divergence in DKO-hu-HSC mouse

and human infections, while similar, are driven by different selective pressures

acting on the population. For example, the virus is evolving either in response to

constant immune pressure or as a result of selection for more efficient Env function

in the absence of immune selection, as has been observed in cell culture (118, 143,

188, 192, 235), or perhaps also in the late stage of infection associated with

immunodeficiency. The emergence of the same amino acid substitutions in multiple

mice, particularly those that were linked to a phenotype such as enhanced CD4

binding or loss of glycosylation sites, was interpreted as evidence of positive

selection. Analysis of selection based on the relative rates of synonymous (dS) and

non-synonymous (dN) mutations across the V1-C5 region revealed no consistent

pattern. However, this type of analysis is compromised when too few synonymous or

non-synonymous mutations have accumulated to lend enough power to the analysis

or if only a few sites are under strong positive or negative selection. For this model

and over this period of time, the per-codon dN/dS rate ratio could not be reliably

determined because of a lack of mutations at synonymous sites.
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Some of the patterns of mutations were also similar to those observed in

humans, with most substitutions concentrated in the variable loops, and detection of

G-to-A hypermutations. However, evolution in this model is distinguished from

natural infection by the quality of some mutations that grew out in the population. We

observed that a number of Env variants isolated from several mice exhibited

increased sensitivity to V3-specific antibodies such as 447-52D, which has been

shown to be dependent on Env conformation and generally inactive against primary

isolates, presumably as a result of occlusion of the V3 epitope in the wild-type, non-

receptor-bound conformation of Env (13, 143). Specifically, we observed two

mutations in V2 that were selected in most mice and resulted in amino acid

substitutions I165R and D167N. We found that all of the viruses tested that evolved

neutralization sensitivity to 447-52D had one of these two substitutions and that

either of these alone, when reintroduced into the parental virus, HIV-1JRCSF,

rendered this virus more sensitive to neutralization. Variants with increased anti-V3

antibody sensitivity also exhibited increased resistance to competitive inhibition by

the anti-CD4 antibody Leu3a. This was interpreted as increased CD4 binding

efficiency.

Both 165R and 167N substitutions are represented at approximate

frequencies of 3% and 12%, respectively, in the HIV Sequence Database (Los

Alamos National Laboratories HIV Sequence database), whereas the most common

amino acids at these positions, I165 and D167, are both found at frequencies of

about 67%. These sites therefore exhibit some variability in human infections, and

substitutions at these sites, along with other mutations that affect Env conformation,
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may be markers of a loss of robust humoral immune pressure in late stage disease,

although a direct link has yet to be made in natural infections. These substitutions

have, however, been identified in several studies of virus passaged in cell culture

(188, 235, 270, 312). While all of these studies find one or both of these

substitutions to be linked to increased CD4 binding affinity (or sensitivity to CD4

mimics), the effects that these substitutions have on sensitivity to V3 antibodies in

particular vary with the genetic background and the presence of different co-evolving

substitutions. In our study, I165R/K and D167N appear to be mutually exclusive, and

their appearing together, or in combination with other substitutions, may alter their

neutralization phenotype. It is likely that these substitutions, along with others

observed in viruses that have been passaged in cell culture systems, represent

evolution toward heightened Env function through increased CD4 binding affinity or

evolution toward CD4 independence, in the absence of neutralizing antibodies, as

has been postulated previously (143, 192, 235). Further studies are required to

ascertain whether or not these types of mutations are selected in people during

profound immunosuppression and if they are linked to other phenotypes, such as

CXCR4 tropism, that appear in late stage disease.

We also observed an overall loss of specific PNLG sites in multiple mice.

Mutations that resulted in the loss of PNLG sites included sites that have been

demonstrated to be conserved or selected in a long term infection in a

Simian/Human Immunodeficiency Virus model (N339 and N386) (17). Other PNLG

sites that were lost have been identified as central in a network of coevolving PNLG

sites (N411) (231). The loss of the N386 site, which was observed at a high
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frequency in three mice, has been implicated in enhancing HIV-1 replication in

macrophage, which express low levels of CD4 and likely require changes in Env that

increase CD4 affinity in order to be infected efficiently (74). Thus, the observed

losses of N-linked glycosylation sites in mice, as with the changes affecting

neutralization to V3 antibodies, also might represent selection for changes in Env

that increase infectivity in the absence of neutralizing antibodies.

Another feature of natural HIV-1 infection is the emergence, usually late in

chronic infection, of variants that use CXCR4 as a co-receptor. This occurs in about

50% of individuals infected with subtype B HIV-1 (49, 144). While this phenotypic

switch in the population often coincides with a rapid drop in CD4+ T cell count and

disease progression (49), the selective pressures driving this switch are not clear. A

stochastic model where the appearance of X4 variants is limited by the chance

occurrence of the right combination of mutations does not explain their emergence in

humans where the host likely has also to be immunodeficient (103, 114, 144). In one

infected DKO-hu-HSC mouse we detected variants that could use CXCR4 as their

co-receptor in addition to CCR5. These variants had distinct V3 sequences that were

indicative of CXCR4 usage, and which were detected at weeks 43 and 44, but not at

week 40. Coincidentally, 3 days prior to the detection of X4 variants, Ontak

treatment (see Methods) was administered, which resulted in Treg depletion and

increased T cell activation. Ontak treatment may therefore have played a role in

creating an environment that potentiated X4 virus emergence in the periphery.

However, it is also likely that the X4 variant preexisted in the MLN, the tissue in

which it was found to be compartmentalized one week later. Only one of three mice
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treated with Ontak developed detectible X4 virus, and no other biological

characteristic of virus examined in this study could be attributed to an Ontak

treatment effect. Early steps in the evolution of CXCR4 tropism may require the

same conformational changes that render the virus sensitive to specific antibodies

(28). A small effective population size in these mice, compared to humans, could

also partly explain the emergence and outgrowth of X4 variants as following a

stochastic process (26, 250). Nonetheless, this animal model provides the

opportunity to explore further the link between X4 emergence and other Env

phenotypes that evolve in the absence of a robust immune response.

Examination of the tissue distribution of variants in the mouse in which the X4

virus emerged showed that 95% of variants in the MLN were X4 compared to 15% in

the peripheral blood and 22% in the spleen. While it is possible that apparent

compartmentalization of X4 variants in the MLN was a result of chance seeding,

there may also be a selective advantage for X4 viruses in this compartment.

Previous studies have identified the thymus as a likely environment for X4 virus

selection due to the high levels of CXCR4 expressed on resident T cells (257). In

contrast, the MLN in wild type mice is responsible for linking both inductive and

effector sites of the gut-associated lymphoid tissue (GALT), such as Peyer’s Patches

and the lamina propria and mucosal epithelium. As such, MLNs normally harbor a

large population of activated T cells, predominantly with a memory phenotype,

expressing high levels of CCR5. It is the large number of activated CD4+ CCR5+ T

cells found in the GALT that are thought to support establishment and high levels of

replication of the CCR5-tropic viruses responsible for initial infection. Indeed, this
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tissue is decimated during peak viremia in the acute stage of infection (98, 163).

Thus it is unclear how CXCR4-tropic viruses would have an advantage in this

environment under normal conditions. However, the MNL in this model, populated by

human T cells, may represent a different environment than that seen in normal

humans or wild-type mice. The GALT has been shown to be underdeveloped in this

model (116) indicating that the MLN may not be populated by the same CD4+ T cell

subsets present in this tissue in a normal individual. Further exploration is required

to assess more fully the cellular subsets populating this and other compartments in

this model and the effect they have on the selection of viruses with different

phenotypes.
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aMice were reconstituted with one of two CD34+ HSC donors, A or B.
bPercentage of cells expressing human CD45 in the peripheral blood
determined at 11.5 weeks after hCD34+  transplantation.
cThe harmonic mean ratio of CD4+ to CD8+ T cells in the peripheral blood of 2
samplings prior to infection.
dRatio of CD4+ to CD8+ T cells in the peripheral blood at  termination: 44 weeks
for mice 5-8 and 22 weeks for mice 64 and 67.

Mouse

HSC 

Donora

PB 

%hCD45+b

CD4/CD8 pre-

infectionc

CD4/CD8 at 

terminationd

5 A 9.3 14.69 6.833

6 A 15.1 6.67 0.579

7 A 7.9 4.18 0.317

8 A 15.9 10.91 0.006

64 B 23.7 1.35 0.039

67 B 9.8 1.51 0.263

Table 3.1: Immune reconstitution and CD4+ T cell depletion
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aFirst position in clone name indicates mouse number or parental
clone for mutants.
bIC50 values were obtained from a sigmoidal dose-response curve
fitted to 8-10 concentration data points  (3 replicates per data point)
ranging from  2 to 10-4 ug/ml.
cIC50 values were obtained from a linear curve fitted to 3
concentration data points  at 10, 1 and 0.1 ug/ml as presented in Figure 5.

Table 3.2: Resistance to anti-CD4 antibody inhibition

Clonea

Leu3a (95% CI) 

(ng/ml)b 447-52D (ug/ml)c

6_38 40.9 (34.7 - 48.2) <0.1
6_39 43.2 (39.3 - 47.6) <0.1
JRCSF I165K 35.3 (31.0 - 40.2) 0.2
JRCSF D167N 33.0 (29.4 - 37.1) 1.4
7_16 23.2 (19.3 - 27.7) >10
7_25 23.0 (19.6 - 27.1) >10
JRCSF 23.5 (19.8 - 28.0) >10

IC50 
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Figure 3.1. Plasma viral load over 44 weeks of infection for mice 5-8. The DKO-hu-
HSC mice were infected intravenously with HIV-1JRCSF. HIV-1 viremia in plasma
samples (copies/ml) from all infected DKO-hu-HSC mice were measured at 3, 10,
22, 40, and 44 weeks post infection for mice 5-8 and 4 and 22 weeks post infection
for mice 64 and 67.
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Figure 3.2. Phylogeny of HIV-1 sequences from all mice. Maximum likelihood
tree of V1-C5 sequences from the peripheral blood (PB) at week 44 for mice 5-8
and week 22 for mice 64 and 67. Symbols at branch tips indicate mouse number.
Open square: mouse 5; open triangle: mouse 6; closed triangle: mouse 7;
diamond: mouse 8; closed circle: mouse 64; closed square: mouse 67. The open
circle at the top of the tree indicates the JRCSF input sequence. Asterisks
indicate bootstrap values >70%. Scale bar indicates substitutions per site.
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Figure 3.3. Comparison of divergence rate and diversity in mouse and humans.
Distance measurements were based on branch lengths of maximum likelihood trees.
Symbols in the Mouse group in A and B indicate the mouse number, as in figure 2.
Open square: mouse 5; open triangle: mouse 6; closed triangle: mouse 7; diamond:
mouse 8; closed circle: mouse 64; closed square: mouse 67. A) Divergence rates in
mice and in human cohorts initially sampled post-seroconversion (“Human post-
seroconversion” in A and B) (Shankarappa et al. 1999 ) and pre-seroconversion
(“Human pre-to-post seroconversion” in A and B) (Salazar Gonzales et al. 2009) was
measured for the C2-V5 region of env. For the post-seroconversion dataset, mean
distance, based on branch lengths of a maximum likelihood tree, was measured
from the consensus at a time point 3-5 months post-seroconversion for variants
sampled at time points 9-24 months later. Sequences sampled at the first time point
were relatively homogeneous but for 2 subjects which were likely infected with 2
variants and which were removed from the analysis. For the pre-to-post-
seroconversion dataset, mean distance was measured from the consensus at time
points estimated to be 20-24 days post infection, 9-16 days prior to seroconversion,
for variants sampled 3-19 months later. Mean distance was divided by the time
between sampling time-points to obtain rates of divergence. In mice, mean distance
was measured from HIV-1JRCSF for variants sampled at the last time point, either 22
or 44 weeks post infection. B) Population diversity is represented as the mean
pairwise distances within populations at or extrapolated to 44 weeks post infection,
for mouse and pre-to-post-seroconversion human samples, or post-seroconversion
for the post-seroconversion human samples. A Student’s t-Test was used to
determine  P-values for differences between distributions. P-values for all
comparisons were >0.2.
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Figure 3.4. Positions and classifications of amino acid substitutions in the V1-C5
region of Env. Amino acid numbering on the abscissa corresponds to the HXB2
reference sequence. Bars on the graph indicate positions of substitutions and the
frequency with which substitutions were identified in a mouse population at 44
weeks post-infection. Variable loops are shaded in grey. Substitution types are
indicated by symbols. Square: addition of a PNLG site; diamond: loss of PNLG site;
open triangle: >95% sequence conservation in subtype B; closed circle: component
of the CD4 binding domain; asterisk: reversion to subtype B consensus; closed
triangle: linked to co-receptor tropism. Substitutions at positions 165 and 167 that
affected Env conformation and substitutions identified in 3 or more mice are
indicated along with their mean percent abundance in the population. Substitutions
identified in both donor sets are indicated by “AB” (see Table 1). “TC” indicates
substitutions associated with tissue culture adaptation in other studies. Assessment
of >95% sequence conservation was based on a random sampling of 300
sequences (one per patient) from the Los Alamos HIV Sequence Database.
Sequencing of 30 SGA amplicons from the inoculum revealed 4 single point
mutations among 3 amplicons. One of these mutations, at codon 151, was observed
later in infection in mouse 67.
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Figure 3.5. Neutralization sensitivities to 447-52D of selected envelope clones and
mutants. A) Clone names identify the mouse followed by the clone number (e.g.
5_10). Percent inhibition is indicated for 447-52D antibody concentrations from 10-
0.1 ug/ml. Error bars represent the range of 2 replicates. SF162c: a neutralization
sensitive chimeric env in which the V3 region of HIV-1SF162 was replaced with the V3
loop from HIV-1JRFL (Patel 2008). B) Alignment of the V2 loop of clones tested for
neutralization sensitivity to 447-52D. Positions 165 and 167 are indicated. C)
Neutralization sensitivity of HIV-1JRCSF with substitutions I165R, D167N or I165K
alone.
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Figure 3.6. Phenotypic analysis of coreceptor tropism. A) Relative CXCR4 and
CCR5 activity of env clones from 4 mice at week 44 post-infection in a pseudotype
entry assay using U87.CD4 cells expressing either CXCR4 or CCR5. env clones
exhibiting X4 usage are boxed and labeled “dual tropic”. Error bars represent the
standard deviation of 3 replicates. These data are representative of multiple tropism
assays. B) Alignment of the V3 loops of env clones tested in 6A. Clone names
indicate mouse, tissue origin (peripheral blood - PB) and clone number. Env proteins
exhibiting X4 tropism, boxed in 6A and indicated as “dual tropic”, are indicated in the
alignment as those with changes in their V3 loops at positions 11 and 25 associated
with the ability to use CXCR4. These variants were identified only in mouse 6 and
comprised 15% of the population.
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Figure 3.7. Maximum likelihood phylogeny of env variants (V1-C5) recovered from
different tissue compartments in mouse 6. Bootstrap values >80% and >50% are
indicated by double and single asterisks at nodes, respectively.  Sequences were
derived from viral DNA except in the case of sequences from the peripheral blood,
which were from plasma viral RNA. The tissue of origin of sequences is indicated by
symbols. Triangle: spleen; diamond: bone marrow; square: peripheral blood; closed
circle: mesenteric lymph node. An open circle indicates the JRCSF input sequence.
The boxed cluster indicates X4-like V3 sequences, which contain substitutions at
positions 11 and 25 in addition to others and cluster together. A subset of these
sequences was phenotypically tested to confirm tropism. Of the variants in the MLN,
95% contained an X4-like V3 sequence, indicating compartmentalization of this
phenotype in this tissue in mouse 6 (p<0.0001).



Chapter 4

Forces Shaping Evolution In Late Stage Disease Contribute To The Evolution

Of CXCR4 Tropism And May Contribute To Macrophage Tropism

The following individuals contributed to experiments presented in Chapter 4:

Kathryn Arrildt assisted with the generation of Env mutants and Sarah Joseph
assisted with the entry assays using Affinofile cells.
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4.1 ABSTRACT

I previously found that the Env protein of the CCR5- tropic HIV-1 isolate

JRCSF evolved a more open conformation and increased CD4 binding affinity in a

humanized mouse model of HIV-1 infection that lacked a strong HIV-1 antibody

response. Within the context of this CCR5-tropic “background” phenotype, variants

emerged that could efficiently use CXCR4 as their coreceptor. In this study, I further

characterized the background R5 phenotype with regard to Env conformation, the

ability to infect cells expressing low levels of CD4 and CCR5, mimicking

macrophage, and infectivity using only CXCR4. I found that the background R5

phenotype included the ability to use low levels of CD4 and low level, but

measurable, infectivity using CXCR4, compared to the parental virus JRCSF. I found

that the major contributors to this phenotype were substitutions in the V2 loop that

were linked to conformational changes, and I identified a similar pattern of

substitutions in viruses from humans who were immunosuppressed and at risk of

having CXCR4-tropic variants. These data are consistent with the hypothesis that

specific conformational changes that are controlled by the conserved regions of the

V2 loop and are constrained by adaptation to the humoral immune response,

increase CD4 binding and promiscuous co-receptor usage and precede evolution of

CXCR4 variants in the absence of strong humoral immune selective pressures.
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4.2 INTRODUCTION

Defining the changes in the selective pressures that shape the evolution of

HIV-1 envelope glycoprotein phenotypes during late stage disease is critical to

understanding the environmental constraints placed on Env structures and

functions that may affect viral pathogenesis and escape from pharmacological

interventions directed at Env. Viral Env mediates entry into the host cell by

sequential binding of the primary receptor CD4 and a coreceptor, either of two 7-

transmembrane chemokine receptors, CCR5 or CXCR4. CXCR4-tropic (X4)

viruses are rarely transmitted and HIV-1 infection is usually established by

variants that require CCR5 as their coreceptor (R5 virus), a phenotype that

typically dominates early infection (134). In about one-half of individuals infected

with HIV-1 subtype B, a declining CD4+ T cell count marking late stage disease

coincides with the emergence of viral variants that can efficiently use CXCR4 as

a co-receptor (15, 48, 49, 244, 282). The primary genetic determinant of CXCR4

tropism is the composition of the relatively conserved (compared to the other

variable loops) ~35 amino acid variable loop 3 (V3), a structural component of

the coreceptor binding site in the gp120 subunit of Env, which determines co-

receptor specificity through specific interactions with the extracellular loops of

either CXCR4 or CCR5 (39, 50, 129). The reasons for the emergence of this new

Env phenotype, and its link to disease progression, are not well understood.

As discussed in Chapter 2, X4 variants emerge as a clonal outgrowth of

the preexisting R5 viral population and while these viruses are typically dual-

tropic in tissue culture assays, they may be dependant on CXCR4 in vivo (318).
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X4 variants also often continue to co-exist with R5 variants in the peripheral

blood and show some degree of genetic mixing with R5 variants. X4 variants are

not highly compartmentalized in separate anatomical or cellular niches, and it is

not clear that X4 variants necessarily replace the existing R5 population. This

apparent overlap in the X4 and R5 populations could indicate that strong niche

selection itself is not required for X4 maintenance, even if it is in emergence.

While the selective pressures that drive (or select against) CXCR4 tropism

are not clear, several hypotheses have been proposed. Changes in the relative

numbers of target cells expressing CCR5 and CXCR4 may select for CXCR4

tropism in late stage disease as a result of CCR5+ CXCR4+ memory T-cell

depletion over the course of infection leaving a larger proportion of CCR5-

CXCR4+ naïve T cells which are vulnerable only to CXCR4 tropic virus (241).

However, memory T cells express both CCR5 and CXCR4 and CXCR4+ CCR5-

naïve T cells are abundant in healthy individuals. Importantly, in resistance

selection experiments using viral inhibitors directed at CCR5 that block Env

interactions with this coreceptor, inhibition more often selects for variants that

can use inhibitor-bound CCR5 rather than for coreceptor switching (236, 286). In

vivo, CCR5 inhibitors select pre-existing, but previously undetected minor X4

variants rather than de novo X4 variants, and once CCR5 inhibition is removed,

R5 viruses regain dominance (reviewed in Kuritzkes 2009 (155)). As few as 2

mutations, are sufficient to confer X4 tropism (see below), a genetic barrier that is

likely lower than resistance to many other inhibitors, if not CCR5 inhibitors

themselves, indicating that CXCR4 variants are strongly selected against in
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earlier stages of disease. This observation is consistent with the hypothesis that

CXCR4-tropic variants evolve, perhaps to exploit CXCR4 on both memory and

naïve T cells, only when released from immune selection constraints that exist in

immunocompetent individuals.

X4 variants may be more susceptible to immune surveillance. It has been

observed that X4 viruses are preferentially suppressed by a CTL response when

Rhesus macaques are co-infected with X4 and R5 variants (103). It has also

been found that emergent X4 variants in late stage human infection are more

sensitive to neutralization by antibody specificities that suggest structural

changes that expose otherwise cryptic epitopes, such as the CD4 binding site

and the V3 loop (29, 114, 169). In Chapter 3, I found that in the environment of

the humanized mouse, which did not exhibit a strong humoral response to HIV-1,

the CCR5-tropic JRCSF isolate evolved to become highly sensitive to V3-specific

antibody neutralization and exhibited increased CD4 binding affinity and that

within this phenotypic background, X4 variants emerged. In the following study, I

provide some additional evidence to support the hypothesis that structural

changes that are required to evolve CXCR4 tropism render the virus more

sensitive to immune selection. These structural changes allow increased CD4

binding and exposure of the V3 loop, which allow more promiscuous co-receptor

usage and eventual evolution, based on V3 specificity, of efficient CXCR4 usage.

Below, I further define the structural and phenotypic changes that occur on the

path towards CXCR4 tropism in a virus that evolved in the absence of strong

humoral immune pressure in the humanized mouse (mouse-adapted) and
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attempt to link these genetic changes to changes observed in HIV-1 sequences

from immunosuppressed humans.
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4.3 MATERIALS AND  METHODS

4.3.1 Cloning and mutagenesis of env genes.

As described in Chapter 3, env clone expression vectors were generated

from selected SGA amplicons amplified from plasma viral RNA of mouse-

adapted HIV-1 using the pcDNA3.1 Directional TOPO Expression kit (Invitrogen,

Carlsbad, CA). Mutations in the wild-type JRCSF env were introduced by way of

PCR re-synthesis of the JRCSF env expression vector using primers containing

the desired base change (294).

4.3.2 Pseudovirus entry assays.

Generation of pseudotyped virus and pseudovirus phenotyping assays

were carried out as described in Chapter 3. 293T cells were co-transfected with

env expression vectors and the pNL4-3.Luc.R-E- luciferase reporter vector (109)

(obtained from ARRRP) using the Fugene transfection reagent (Roche,

Mannheim, Germany) according to the manufacturer’s protocol to generate

pseudovirus. Cells were washed with phosphate buffered saline 8-12 hours after

transfection in order to reduce transfection complex carry-over and background

luciferase expression in target cells, which was monitored with an env-negative

control. Virus supernatant was collected 48 hours after transfection.

Co-receptor phenotype was determined based on detection of luciferase

activity in U87.CD4+ cells expressing either CCR5 or CXCR4 (14) (obtained from

ARRRP) using the Luciferase Assay System kit (Promega, Madison, WI).

Pseudovirus was incubated with U87.CD4.CXCR4/CCR5 cells for 36-48 hours

prior to lysis of cells and measurement of luciferase activity. Co-receptor-
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dependent viral entry was confirmed using inhibitory concentrations of AMD3100

(112) (CXCR4 inhibitor) or TAK-779 (6) (CCR5 inhibitor) (both obtained from

ARRRP).

Sensitivity to neutralization by the antibody b12 (32) (obtained from

ARRRP), 4E10 (278) (obtained from ARRRP), 2G12 (27) (obtained from

ARRRP) and the anti-V3 antibodies 447-52D (46) (obtained from ARRRP) and

19b (264) and 2.1E (gifts from Dr. James E. Robinson) was assessed on

U87.CD4.CCR5 and TZM-BL cells (obtained from ARRRP), which are permissive

to X4 and R5 viruses and contain an integrated, Tat-responsive luciferase

cassette (65, 226). Sensitivity to the anti-CD4 antibody Leu3a (CD4 Pure) (BD

Biosciences, San Jose, CA) was assessed on U87.CD4.CCR5 cells.

The ability of pseudovirus to infect cells expressing low levels of CD4 and

CCR5 was assessed on Affinofile cells, transgenic 293T cells which express CD4

and CCR5 from independent inducible promoters (132). Cells were maintained in

Dulbecco’s Modified Eagle Medium containing 10% dialyzed Fetal Bovine Serum

(2-14kD dialyzed; Atlanta Biologics) and 50 ug/ml blastocidin (D10F/B). Cells

were seeded in poly-L-lysine-treated 96 well plates with 2.5x105 cells/well.

Twenty-four hours after seeding, CD4 and CCR5 expression was differentially

induced with the addition of tetracycline and ponasterone A, respectively. CD4

expression was induced at 6 levels (0-0.1 ug/ml tetracycline) and CCR5 at 4

levels (0-0.93 uM/ml ponasterone A) for a total of 24 induction levels. Eighteen

hours later, the induction medium was removed and cells were spinoculated with

pseudovirus or prepared for flow cytometry to measure induced CD4 and CCR5
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densities. Cells were prepared for flow cytometry by staining at room temperature

for 30 minutes with either phycoerythin (PE)-conjugated anti-human CD4

antibody (clone Q4120, BD Biosciences) or PE-conjugated mouse anti-human

CCR5 antibody (clone 2D7, BD Biosciences). Cells were then fixed with 4%

paraformaldehyde, washed and analyzed. CD4 and CCR5 levels were quantified

using QuantiBRITE beads as a standard (BD Biosciences).

Analysis of neutralization activity in sera from HIV-1 infected subjects was

assessed as follows. Sera or plasma was obtained from subjects from the

cohorts described above. Neutralization assays were performed as previously

described (189). An env-negative HIV-1 drug-resistant backbone (pNLCH-

luciferase env- clone 1617 + K103N) was pseudotyped with wild type JRCSF or

the antibody-sensitive mouse-adapted JRCSF 6-39 Env clone. Neutralization

titers of sera were determined on TZM-BL cells in triplicate and the average

relative infectivity determined.

4.3.3 Analysis of HIV-1 sequences from human subjects.

A total of 534 sequences were obtained by single genome amplification of

viral RNA from the plasma of 33 subjects with CD4+ T cell counts ranging from 0

to 823 cells/ul. Sequences from eighteen chronically infected subjects with CD4+

T cell counts ranging from 241 to 823 cell/ul were from CHAVI-001 described

previously (134). Sequences from 15 subjects with low CD4+ T cell counts,

ranging from 0 to 233 cells/ul, were amplified from excess tissue obtained from

the baseline blood draw of subjects participating in the virology sub-study of a

ritonavir efficacy trial described previously (35) or from baseline blood draws of
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subjects entering ACTG 359 described elsewhere (100). Potential N-linked

glycosylation sites (PNGL) were predicted using N-Glycosite which infers a

PNLG site in NXT/S motifs where X≠P (325) and was accessed through the Los

Alamos National Laboratories HIV-1 Database website

(http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html ).

4.3.4 Signature amino acid sequence analysis.

All sequences from 33 subjects were aligned in MAFFT (133)  with manual

editing of the alignment. One sequence per patient was sampled 5 times without

replacement. Aligned sequences were then separated into high and low CD4+ T

cell count groups. The amino acid frequency and statistical significance of

frequency associations at each position for each sample set was determined

using VESPA (147) accessed through the Los Alamos National Laboratories

HIV-1 Database website

http://www.hiv.lanl.gov/content/sequence/VESPA/vespa.html. The purpose of this

analysis was to screen for positions that might be relevant to either the high or

low CD4 environments; however, too few subjects’ virus populations have been

acquired thus far to power this analysis properly. The Bonferroni-corrected α of

0.00006 for differences at a given position was not met at any position in any of

the five sequence sampling sets, although some positions did approach

significance in >3 of 5 sequence samplings. Those observations are discussed in

the results.
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4.4 RESULTS

4.4.1 Previous observations

In Chapter 3, when variants from mouse 6 were screened for their

sensitivity to antibodies directed at a conserved epitope in V3, I found that all

clones tested, including those with an X4 phenotype, were >1000 fold more

sensitive than the JRCSF parental virus to V3 antibodies (Figure 3.5 and Table

4.1), indicating the presence of a major structural change that had exposed the

V3 loop in these variants. This was in contrast to the phenotypes of most primary

isolates which are typically resistant to V3 antibodies (13), presumably due to

structural masking of the V3 epitope, which is only exposed upon CD4 binding to

allow interaction with the extracellular loops of the co-receptor.  I found that either

of two mutually exclusive amino acid substitutions in V2, I165R or D167N, was

responsible for a large component of this phenotype (Figure 3.5, Table 4.1). I

also showed that these V3 antibody-neutralization phenotypes correlated with

increased resistance to an anti-CD4 antibody indicating increased CD4 binding

affinity (Table 3.1 and Table 4.1). A subset of these Env variants in mouse 6

acquired the ability to efficiently use CXCR4, a specificity that was predominantly

conferred by changes in the V3 loop. The specific changes distinguishing the X4

variant from the parental virus JRCSF were S5N, S11G, F20I and E25K (V3

numbering) (Figure 3.6), although the minimum combination of substitutions

needed was not assessed. All but S5N were unique to X4 variants. In the present

study, I followed up these observations with additional analyses of selected

mouse-adapted clones and mutants (Table 4.1). I further defined the V3
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mutations that are required for the X4 phenotype. I assessed sensitivities of

these Envs to other monoclonal antibodies in order to further define the structural

changes in these Envs. I then linked these structural changes to the ability to use

low levels of CD4, and I mapped the phenotypic progression of CXCR4 usage in

relation to the other phenotypes observed for these clones and mutants.

4.4.2 Mutations in V3 that confer strong X4 tropism

I determined the effect that different combinations of the V3 mutations

identified in the X4 virus from mouse 6 had on entry of Env-pseudotyped virus in

cells expressing CD4 and either CXCR4 (U87.CD4.CXCR4) or CCR5

(U87.CD4.CCR5) (Figure 4.1). S5N represents a reversion to the subtype B

consensus and was present in over 90% of the variants sampled from mouse 6,

which included the majority of variants that did not exhibit any other V3

substitution. S5N alone showed a modest but significant increase in the ability to

infect CXCR4-expressing cells (CXCR4 infectivity), over 10-fold that of JRCSF. I

also found that while the basic residue at position 25 is often the strongest

predictor of an X4 virus in other studies (117, 129), CXCR4 infectivity  was

increased less than 2-fold that of JRCSF, although the overall infectivity of virus

prepared with this Env mutant was greatly decreased. Addition of the S11G

substitution to the E25K substitution conferred a significant increase in CXCR4

infectivity. Addition of the F20I to S11G and E25K increased CXCR4 infectivity

further. When S11G was removed from the full set of mutations, leaving only

S5N, F20I, and E25K, both absolute CXCR4 infectivity, and CXCR4 infectivity

relative to CCR5 infectivity was maintained indicating that either F20I or S5N
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plays a critical role in X4 tropism in this Env background. Interestingly, all V3

mutants, except for E25K alone, appeared to have minimal deficiencies in the

ability to use CCR5 in these cells, although all 4 mutations together, S5N, S11G,

F20I and E25K, conferred the highest level of both CXCR4 and CCR5 infectivity,

but CXCR4 infectivity was relatively greater than CCR5 infectivity. Importantly,

virus pseudotyped with X4 Env clones 6-45 and 6-60, isolated from the mouse 6

virus population exhibited nearly a 10-fold increase in CXCR4 infectivity relative

to their CCR5 infectivity, whereas virus with changes only in V3 exhibited less

CXCR4 infectivity as a proportion of CCR5 infectivity, indicating that in addition to

mutations in V3, other mutations in these Env clones contribute to a stronger X4

phenotype.

4.4.3 Effect of mutations in gp120 on Env structure and antibody

neutralization sensitivity.

In order to further characterize this structural change in gp120 indicated by

increased sensitivity to V3 antibodies, I assessed the sensitivity of the selected

mouse-adapted env clones and mutants listed in Table 4.1 to other antibodies to

determine if sensitivity to V3 antibodies represented a global increase in

neutralization sensitivity unrelated to specific structural changes. I found that the

patterns of sensitivity to the broadly neutralizing antibody 4E10, which targets an

epitope at the membrane proximal region of gp41, was uniform across clones,

and sensitivity to 2G12, which targets specific glycans on gp120 correlated with

the absence of specific glycan epitopes (in Env 6-39), but not with V3 antibody

neutralization, indicating that antibody inhibition was a result of specific structural
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changes in gp120 and not a general effect of reduced Env expression or virion

loading, or another mechanisms unrelated to specific structural changes (Table

4.1).

In order to further define this structural rearrangement, I tested these env

clones for their sensitivity to b12, an antibody directed at a conformational

epitope overlapping the CD4 binding site. b12 is unique in its ability to access the

conserved epitopes in the CD4 binding site that are otherwise obscured due to

occlusion or conformational flexibility (327). b12 possesses an elongated CDR

H3 loop that may be able to penetrate into the CD4 binding pocket to access and

make more contacts with conserved residues (327). CD4 binding, on the other

hand, requires increased avidity to counteract a relatively weak initial interaction

between CD4 and the CD4 binding loop in gp120(327). While most primary

isolates are sensitive to b12 to begin with, increased sensitivity to b12 has been

shown to correlate with soluble CD4 sensitivity and increased CD4 binding

affinity (72) and likely indicates a conformational change in the CD4 binding site,

perhaps locking gp120 into a more CD4-accessible, and therefore more b12-

sensitive form. Indeed, the mouse-adapted Envs 6-39 and 6-38, which were

highly V3 antibody-sensitive and showed increased CD4 binding, were also

increased in their sensitivity to b12. However, neither the I165R nor the D167N

mutants displayed a measurable increase in b12 sensitivity (Table 4.1).

Another mutation, a loss of a glycosylation site at position 386 near the

CD4 binding site, was also observed in nearly all mouse-adapted Envs from

mouse 6, except those with X4 V3 genotypes, and this loss has been shown to
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increase CD4 binding as well as b12 sensitivity (74). While I did not observe an

increase in V3 antibody sensitivity or CD4 binding of the N386K mutant in

JRCSF, I measured a small increase in b12 sensitivity, less than that measured

for the highly V3 antibody-sensitive clones 6-38 and 6-39, indicating that this

mutation acts specifically in the b12 interaction and that its effect on CD4 binding

is at most subtle (Table 4.1). Furthermore, unlike the V2 mutations, it is absent in

the background of env sequences with X4 V3s, indicating that it is not directly

involved in the evolution of co-receptor tropism. The common feature that is

found in both R5 and X4 mouse-adapted virus is the presence of mutations that

both expose V3 and impact the structure of the CD4 binding site.

4.4.4 Env structural changes that expose V3 increase viral entry on cells

when CD4 is limiting.

Increased CD4 binding is typically associated with macrophage tropism as

it allows virus to utilize the low levels of CD4 and CCR5 expressed on

macrophage. I was therefore interested in determining if this was a characteristic

of the structurally evolved mouse-adapted X4 or R5 Envs and single V2 mutants

that exhibited V3 antibody sensitivity and/or increased CD4 binding.

In order to assess the ability of env clones to mediate entry at limiting

levels of CD4 and CCR5, viral infectivity was measured on 293T cells expressing

different levels of CD4 and CCR5 (Affinofile cells) (132) for JRCSF wt, JRCSF

with the I165R V2 mutation, mouse-adapted R5 clone 6-39, and mouse-adapted

X4 clone 6-60 (Figure 4.2). Viral infectivity increased with both CD4 and CCR5
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levels but was significantly more dependent on CD4 than CCR5 for all viruses

tested (Figure 4.2 A-C).

Comparison of infectivity at low CD4 and low CCR5 levels, as a

percentage of infectivity on cells expressing the maximum level of CD4,

demonstrated a significant increase in entry of variants containing the V2

mutations affecting V3 exposure. The single substitution I165R, which is a

phenocopy and mutually exclusive of D167N, alone conferred increased entry on

low CD4/low CCR5 cells compared to JRCSF. Mouse-adapted clone 6-39 differs

from JRCSF between V1 and C5 by 10 amino acid substitutions, including one

substitution in V3, S5N, and the D167N substitution in V2, and showed a

increase in relative infectivity on low CD4/CCR5 cells similar to that observed for

the I165R single mutant. This was in spite of the observation that 6-39 Env

showed greater CD4 binding affinity and sensitivity to V3 antibodies than the

I165R mutant (Table 4.1). Mouse-adapted clone 6-60, which encodes an X4 Env,

showed a significantly greater relative infectivity on CD4/CCR5 low cells

compared to all other clones. The cells used in this assay express endogenous

CXCR4, which may account for the increased infectivity of the 6-60 X4 clone,

although, at low CD4, increasing CCR5 did not appear to increase infectivity

appreciably for any Env. 6-60 differs from JRCSF by 7 substitutions in the V1-C5

region, including the 4 mutations in V3 (S5N, S11G, F20I, E25K) and the D167N

substitution in V2. 6-60 differs from 6-39 by 7 substitutions, 6 that are absent in

6-60 and 1 that is present in 6-60, but absent in 6-39 (T202R).



108

The 6-39(R5) and 6-60(X4) Envs have 3 substitutions in common:

I165R/D167N, S5N (V3), and the loss of an N-linked glycosylation site at position

411, at the base the V4 loop. As discussed in Chapter 3, the I165R/K/D167N

mutation set was tightly linked to the loss of a glycosylation site at position 411,

which was absent in virtually all clones that contained either I165R or D167N.

Introduction of this mutation in combination with 165R had no effect on relative

infectivity in low CD4/CCR5 cells (data not shown), as might be expected based

on the similar infectivity of the single I165R mutant and 6-39, which contains both

mutations; the significance of the loss of the glycan at position 411 requires

further investigation.

In summary, the single substitution at position 165 was able to increase

relative infectivity at low CD4 levels compared to JRCSF. The additional

mutations in 6-39, which contributed to increased CD4 binding affinity, as

measured by Leu3a resistance, and b12 sensitivity, did not increase infectivity at

low CD4 and CCR5 concentrations compared to the I165R mutant alone,

highlighting the importance of I165R, and by extension D167N, in conferring this

specific phenotype.

4.4.5 Effect on relative CXCR4 usage of mutations external to V3.

I have shown thus far that the mutations that accumulate in mouse-

adapted Env clones, increased sensitivity to V3 (19b, 447-52D, 2.1E) and CD4

binding site (b12) antibodies, increased CD4 binding and, separately, increased

the ability to use low levels of CD4 and CCR5. Sensitivity to V3 antibodies in

particular, which was the most common feature of mouse-adapted Envs (Chapter
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3), indicates a more open conformation of Env that increases V3 exposure and

plays a role in enhancing entry into cells expressing low levels of CD4 and

CCR5.

I hypothesized that these features of Env, which evolved prior to the

emergence of X4 tropism conferred by changes in V3, represent prerequisite or

intermediate features of X4 tropism. If so, they might confer some level of X4

tropism, as has been observed in primary isolates that lack strong V3-driven X4

tropism but show low-level infectivity on cells expressing only CD4 and CXCR4

(CXCR4 infectivity), compared to their infectivity on cells expressing only CD4

and CCR5 (CCR5 infectivity) (84, 121). I therefore determined infectivity of Env

mutants and mouse-adapted clones on U87.CD4.CXCR4 cells and compared

this to infectivity on U87.CD4.CCR5 cells.

Relative CXCR4 and CCR5 infectivities are shown in Figure 4.3 for Env

clones exhibiting a range of V3 antibody sensitivities and CD4 affinities. Mutant

(I165R or D167N) and mouse-adapted Env clones with R5-like V3 loops, 6-38

and 6-39, showed significant and progressive increases in CXCR4 infectivity,

relative to CCR5 infectivity, that correlated with sensitivity to V3 antibody and

CD4 binding. Envs 6-38 and 6-39, which showed increased CXCR4 infectivity

compared to the single mutants I165R and D167N, also contained the S5N

mutation in V3, which was shown to confer low level X4 tropism alone (Figure

4.1). Clones with X4-like V3 loops (6-60 and NL4-3, a prototypical X4 virus) (V3

geno. In Figure 4.3) exhibited at least ten-fold greater CXCR4 infectivity than

clones with R5-like V3 loops. Env clones with R5-like V3 loops that displayed the
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highest activity on U87.CD4.CXCR4 cells (6-38 and 6-39) exhibited greater

resistance to AMD3100, a small molecule antagonist of CXCR4, compared to

variants with X4-like V3 loops (Figure 4.3c).

The curve of increasing X4 activity appeared to have multiple phases

(Figure 4.3b). The single mutations I165R and D167N increased CXCR4

infectivity by nearly ten-fold compared to JRCSF, but without an increase in

CCR5 infectivity. Mouse-adapted clones 6-38 and 6-39, which showed higher

sensitivity to V3 antibodies and increased CD4 binding compared to the single

mutants I165R and D167N, exhibited equal increases in both CXCR4 and CCR5

infectivity, perhaps illustrating an overall increase in infectivity regardless of co-

receptor use. The presence of an X4-like V3 in 6-60 was associated with a ten-

fold increase in CXCR4 infectivity over the R5 clones 6-39 and 6-39, but also a

decrease in the ability to use CCR5 by nearly the same magnitude. Thus in these

data, it appears that variants with R5-like V3 loops but with more open

conformations and increased V3 exposure, acquire the ability to infect, at a low

level, cells bearing only CXCR4 and CD4  (I165R and D167N). Increasing CD4

binding affinity may enhance this effect (6-38 and 6-39) by compensating further

for the weak interaction with CXCR4, which creates an evolutionary path for

further changes in V3 to enhance interaction with CXCR4; the acquisition of

these V3 changes likely diminishes the ability of V3 to interact with CCR5. This

pathway may only be initiated by the absence of an antibody response, perhaps

specifically a loss of antibodies targeted to V3 that would otherwise select for a

closed Env conformation.
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4.4.6 Sequence analysis of gp120 from HIV-1-infected subjects with high

and low CD4+ T cell counts.

The phenotypes that I observed in this study likely depended on the

absence of humoral immune pressure, based on previous studies also linking

these phenotypes, as well as some of these specific mutations, to passage in

tissue culture and therefore in the absence of immune selective pressures

(discussed in Chapter 3). I therefore wanted to know if any of the mutational

patterns identified in mouse-adapted isolates were present in HIV-1 populations

from human subjects with low CD4+ T cell counts, compared to populations from

subjects with relatively high CD4+ T cell counts, with the assumption that

immune selective pressures would be weaker when CD4+ T cell counts are low.

A total of 33 subjects with a range of CD4+ T cell counts were divided into low

and high CD4+ T cell count groups (low CD4 and high CD4, respectively). For

the 15 subjects in the high CD4 group, CD4+ T cell counts (cells/ul) ranged from

241 to 823, with a median of 382. For the 18 subjects in the low CD4 group,

counts ranged between 0 and 233, with a median of 93. For each subject,

between 7 and 27 viral genomes encompassing V2-V4 were amplified using

SGA (as described in chapter 2). X4 variants were inferred (by PSSM) to be

present in 15 of the 18 subjects with low CD4+ T cell counts and in 1 of the 15

subjects with high CD4+ T cell counts; these variants represented less than 50%

of the population in most cases. Analyses were carried out to determine if there

were any positions at which amino acid substitutions were disproportionately

represented in the low versus the high CD4 groups. The average number of
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glycosylation sites, sequence length, and V2 charge were also compared

between low and high CD4 groups.

Analysis of the differences in amino acid substitutions in HIV-1 populations

between groups was carried out by sampling one sequence per patient multiple

times without replacement. While this analysis was not powered to detect

differences on a sequence-wide basis, several positions approached

significance. Only one position in V3, 319 (V3 position 22) with a T to an A

substitution, approached significant enrichment in the low CD4 group. Also

approaching significance were differences at positions 164 (N in high CD4, S in

low CD4) and 169 (I in high CD4, M in low CD4), near the structurally important

positions 165 and 167 in V2. Several other positions were identified in the C2, V4

and C5 regions, although none that was also identified in mouse-adapted clones.

Determining the significance of these mutations requires further sequence

analysis in a larger dataset in addition to functional analysis.

No significant difference in the average number of glycosylation sites was

detected between high and low CD4 groups, although there was a trend toward a

lower number of glycosylation sites in the low CD4 group (Figure 4a), which was

consistent with the loss of glycosylation sites observed in the mouse-adapted

virus populations. Sequence length (Figure 4.4b), which would be a

consequence of length variability in the variable loops, was also not significantly

different, but again showed a trend toward shorter sequence length in the low

CD4 group, which was perhaps linked to the number of glycosylation sites as
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glycosylation sites are often added and subtracted through insertion and deletion

in the variable loops.

I detected two distinct substitutions (I165R/K and D167N) in the V2 region

in mouse-adapted JRCSF that conferred the same structural change in Env

indicating that while V2 may be important in Env conformational changes and

phenotypes, multiple pathways exist to achieve the same result, analogous to V3

and co-receptor tropism. This may confound an attempt to identify specific sites

that are responsible for a specific phenotype. I therefore probed for differences in

amino acid composition in V2 by comparing differences in charge. I determined

the average charge within a subject of HIV-1 amino acid sequences for a region

encompassing positions 158-198 (HXB2 numbering), which includes both the

non-length-variable N-terminal region along with the length-variable region of V2.

Figure 4.4c illustrates the distribution of average V2 charges for each subject in

the high and low CD4+ T cell count groups. I found that V2 sequences from low

CD4+ T cell count subjects exhibited a significant increase in charge, which is

consistent with the types of mutations identified in V2 sequences of mouse-

adapted clones (I- to R/K or D to N), which also increase overall V2 charge in

JRCSF. Increased V2 charge was linked to X4 phenotypes in some but not all

sequences in subjects with X4 virus (data not shown).

4.4.7 Determining the prevalence of V3 antibody activity in sera from low

and high CD4+ T cell count subjects

I have identified a pathway to CXCR4 tropism in mouse-adapted variants

that may depend on reduced humoral immune pressure in late stage disease.
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Given that I had Envs that exhibited exquisite neutralization sensitivity to V3

antibodies, and increased sensitivity to the CD4bs antibody b12, but not

antibodies targeting other epitopes, as with Env 6-39 compared to the parental

JRCSF (Table 4.1), I wanted to know if I could use these Envs to screen plasma

samples for the presence of V3 antibody and b12-like neutralization activity. In a

preliminary analysis of plasma from 8 subjects, 6 with low CD4+ T cell counts

and 2 with high CD4+ T cell counts, I found that 3 of 6 low CD4+ T cell count

sera, and 1 of  2 high CD4+ T cell count sera exhibited little to no neutralization

activity against either a sensitive or resistant Env, while the other sera exhibited

neutralization activity comparable to a V3 monoclonal antibody against the

sensitive clone only (Figure 4.5). These Envs represent useful tools to further

investigate larger sample sets for a link between the absence of specific

neutralizing antibody activity and contemporaneous HIV-1 Env phenotypes in

human subjects.
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4.5 DISCUSSION

In Chapter 3, I identified Env variants of the CCR5-tropic JRCSF isolate

that had evolved CXCR4 tropism in a humanized mouse model of HIV-1

infection. These X4 variants emerged in a “background” Env phenotype

characterized by increased sensitivity to V3-directed antibodies and increased

CD4 affinity, consistent with the lack of a strong humoral immune response in

these mice and the evolution of a more open conformation of Env that exposed

V3 (188, 192, 235). I hypothesized that the more open Env conformation that

conferred the background phenotype was a prerequisite for the acquisition of

CXCR4 tropism. Further analysis in Chapter 4 of both the background and X4

phenotypes revealed that conformational changes that increased V3 exposure

and CD4 binding affinity could allow low-level utilization of CXCR4 by Envs that

had yet to acquire tropism-defining V3 substitutions associated with efficient

CXCR4 use. I also found a correlation between increased positive charge in the

V2 region that controls V3 exposure, and low CD4+ T cell counts and the

presence of X4 virus in humans.

In Chapter 3, I established that the V3 loop of the X4 variants was

sufficient to confer X4 tropism in the mouse-adapted JRCSF. In this chapter, I

further defined the impact on CXCR4 tropism of specific combinations of the 4

substitutions in V3 associated with the tropism switch. Co-receptor tropism can

be predicted based on the composition of the V3 loop. In particular, basic amino

acid substitutions at positions 11 and/or 25, or an overall increase in positive

charge, is indicative of CXCR4 tropism (117, 129, 184). The single substitution of
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E25K, the only one of the 4 substitutions in X4 V3s that increased positive

charge, only appeared to diminish viral infectivity of the pseudotyped virus

(Figure 4.1). However, addition of the S11G substitution significantly increased

infectivity and measurable X4 tropism, although further work needs to be done to

confirm the effect of E25K alone. Positions 11 and 25 lie on opposite sides of the

V3 stem, with the charge-changing E25K substitution located near the V3 tip.

The increased positive charge of V3, and in particular at position 25 in V3, is

thought to determine specificity for CXCR4 by facilitating interaction with the

anionic surface of the extracellular loop 2 (ECL-2) of CXCR4 (23, 39, 306). The

X4-associated change F20I in V3 tip maintains a hydrophobic residue at that

position, which is thought to be important for ECL-2 interactions (50) and also

gp120/gp41 interactions in the un-liganded structure (317). Although this

substitution appeared to have a positive effect on both CCR4 and CXCR4

infectivity when added to the S11G and E25K substitutions, the functional

significance of this conservative change remains unclear and requires further

investigation. While S11G and E25K are sufficient to confer high-level CXCR4

infectivity, the additional substitutions F20I and S5N enhance overall infectivity

and in particular CXCR4 infectivity (Figure 4.1). The fitness advantage conferred

by this particular combination of four substitutions is consistent with our not

finding in the peripheral blood any other V3 variants with an X4 phenotype in our

analysis (Chapter 3). If I were able to examine the mesenteric lymph node, the

likely site of origin of these variants in the mouse, I may have identified the

immediate predecessor to the X4 phenotypes that emerged.
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The base of V3 is also thought to play a role in co-receptor engagement

(50). The S5N substitution in the base of V3, unlike the substitutions at positions

11, 20 and 25, was not unique to X4 variants and was found throughout the virus

population in mouse 6 (the mouse in which X4 variants emerged) at 92%

frequency. It was identified at a low frequency in only one other mouse, in which

X4 variants were not detected. This substitution represents a reversion to the

subtype B consensus. The S5N substitution is the first of a conserved triplet of

asparagines, and is in close proximity and just outside the binding pocket for one

of the sulfonated tyrosines in the N-terminus of the CCR5. Structural evidence

using a Y-sulfonated N-terminal peptide and antibody mimic indicates that the

latter 2 asparagines in this triplet directly interact with the C-terminal sulfonated

tyrosine, and while a dramatic acidic substitution at V3 position 5 had little effect

on binding of gp120 with these reagents (119), the consequences of a serine at

this position and it’s implication for coreceptor switching are unknown.

Interestingly, this substitution appeared to have a positive impact on relative X4

activity in combination with F20I and E25K, similar to S11G, and also exhibited

modest X4 activity alone, strongly suggesting it does play a role, although further

work is required to ascertain its impact on co-receptor switching.

The background phenotype in which X4 variants emerged exhibited

profound sensitivity to antibodies directed at V3 and showed increased CD4

binding conferred by structural rearrangements that resulted in a more open

conformation of Env (Table 4.1). b12 sensitivity is linked to increased CD4

binding affinity and macrophage tropism (72). I also found increased b12
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sensitivity in Envs that were highly sensitive to V3 antibodies along with having

increased CD4 binding affinity, further linking these structural changes with

phenotypes found in human infections, and in virus that may have escaped

antibody selective pressures by invading the CNS (72-74, 283).

Mutations in the non-length-variable N-terminal side of the V2 loop that

increased the overall positive charge of the loop (I165R/K or D167N) were

responsible for a major structural rearrangement that leads to increased V3

exposure, indicated by increased V3 antibody sensitivity. The V2 region of Env

has been shown in other studies to play a pivotal role in the conformational

masking of conserved epitopes targeted by neutralizing antibody responses and

those directed at V3 in particular (44, 225, 270, 315). It has been demonstrated

in multiple settings that removal of antibody selective pressures results in the

selection of mutations in V2 that result in a more open, neutralization sensitive

Env conformation that has enhanced CD4 and co-receptor engagement through

exposure of these binding sites (9, 83, 127, 164, 188, 235, 315). The recently-

identified gp120 trimer-specific, potent, broadly neutralizing antibody PG9 (and

the somatic variant PG16) recognizes an epitope involving the conserved V1/V2

base and conserved regions of the V2 and V3 loops, or at least is dramatically

affected by changes in these regions. PG9 also exhibits increased affinity to

trimers with an E168K substitution, perhaps a result of a conformational change

(299). This provides additional evidence that basic substitutions at specific sites

in V2 can increase neutralization sensitivity to antibodies with specificities for this

region and V3. Substitutions in the V1/V2 region have also been shown to play a
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compensatory role by increasing infectivity in viruses that acquire V3 mutations

on the pathway to CXCR4 tropism that confer a loss of infectivity (199, 215). The

question of whether or not this involves increased dependence on the N-terminus

of the co-receptor requires further investigation. The changes I identified in V2,

while not conferring a detectible increase in CD4 binding affinity in a competitive

inhibition assay with an anti-CD4 antibody (Table 4.1), were sufficient to increase

relative infectivity when CD4 was limiting, analogous to a pathway that may

confer some level of macrophage tropism. Thus the same conformational change

in gp120 may have three related effects: first, changes may allow more efficient

CD4 binding for more rapid growth in T cells (presumably the source of the

selection); second, more efficient CD4 binding may also allow entry into cells with

fewer CD4 molecules; and third, the altered conformation may allow increased

interaction with CXCR4, which may also depend on increased CD4 binding

affinity. Because the initial gp120:CD4 interaction is weak and likely requires the

binding of multiple CD4 molecules in order to increase avidity for most primary

isolates, conformational changes that allow increased CD4 affinity can

compensate for the reduced avidity when CD4 molecules are scarce, such as on

macrophages (327). An alternative hypothesis is that changes in V2 which

increase positive charge may enhance interactions, in a less specific manner,

with negatively charged cell membrane-associated molecules, such as heparan

sulfate proteoglycans, thereby increasing avidity when CD4 is low, although the

data are conflicting on the positive effect of heparan sulfate in HIV-1 binding to

target cells (194, 216, 296, 297).
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When I compared V2 sequences from subjects with low CD4+ T cell

counts, and therefore with a high risk of having X4 virus, to those with high CD4+

T cell counts, I found an increase in overall V2 charge in the low CD4+ T cell

count subjects. Because more than one mutation in the mouse-adapted virus, in

an isogenic viral background, was sufficient to confer the same phenotype, it is

likely that a basic or positive charge at any of multiple sites in V2 can confer this

phenotype. This is consistent with a lack of detection of a signal at a single

position in V2 that distinguishes these high and low CD4 environments. Whether

or not variants with increased V2 charge show the same phenotypes, either

increased V3 antibody neutralization or increased infectivity when CD4 is limiting,

is an important question.

Increased CD4 binding affinity and sensitivity to neutralization by soluble

CD4 and antibodies, phenotypes also associated with macrophage-tropism, have

been linked to co-receptor switching in simian/human immunodeficiency virus

(SHIV) Rhesus macaque models (114). In addition, X4 variants have been

shown to be more neutralization sensitive compared to R5 variants in human

infections (29, 169). Emergence of X4 SHIV variants in the Rhesus macaque

was shown to follow, rather than precede, the development of an

immunosuppressed environment and coincided with an increase in a

macrophage-tropic phenotype (114, 115). Thus, the same environmental change,

immunosuppression, may link macrophage tropism, as defined by increased CD4

binding affinity and the ability to use low levels of CD4, and X4 emergence if both
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of these phenotypes depend on the same conformational changes which are

selected against by humoral immune pressure.

Evolution of X4 tropism may depend on the same functional changes that

confer macrophage tropism. This is demonstrated in Figure 4.3a and b, which

show that increasing V3 antibody sensitivity and CD4 binding affinity correlate

with increased infectivity on cells expressing only CD4 and CXCR4. This

pathway suggests a mechanism of X4 evolution whereby substitutions, such as

those at positions 165 or 167, that result in conformational unmasking of receptor

and co-receptor binding sites, and which may increase CD4 binding affinity and

infectivity, compensate for weak or non-specific interactions with the alternative

co-receptor CXCR4. A reduced dependance on the specific interactions between

V3 and coreceptor is indicated by increased relative resistance to the CXCR4

inhibitor AMD3100, of the Envs with R5 V3s that exhibit some infectivity using

CXCR4, compared to bona fide X4 viruses (Figure 4.3c). AMD3100 specifically

inhibits the interactions between V3 and the extracellular loop, but not

necessarily interactions with the N-terminus of the co-receptor, which may be

how these R5 viruses are interacting with CXCR4 (69). As CD4 binding and V3

exposure become more pronounced, the ability to utilize CXCR4 is increased.

The pathway of X4 and macrophage tropism bifurcates when V3 mutations

accumulate to a degree that CXCR4 engagement is enhanced at the expense of

CCR5 engagement. Thus the early stages of X4 evolution may be shared with

those of macrophage tropism evolution. This is consistent with some evidence

linking the emergence of macrophage-tropic virus in tissue other than the brain
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with late stage disease (97, 114, 124), although further investigation is required

to link the emergence macrophage tropism to immunosuppression.

Why do X4 variants emerge? The early stages of X4 evolution allowing

low-level utilization of CXCR4 may allow expansion of host cell range to cells that

only express CXCR4 and not CCR5, such as naïve T cells. While the initial

viruses infecting these cells may exhibit reduced replication capacity, at first, in

these cell types, un-rivaled competition for this cellular pool may allow a less fit

viral population time to evolve V3 changes that increase replication capacity in

this cell type and fitness relative to R5 variants. This model is consistent with the

observation made in Chapter 2 that X4 variants in the population represent a

clonal expansion. This is presumably because of the jump in viral fitness when

variants acquire the correct combination of V3 mutations, an event that needs to

occur only once. However, the evolution of this initially poorly fit virus in naïve T

cells likely requires an immunodeficient host that is either incapable of

neutralizing the newly-evolved, neutralization-sensitive and promiscuous virus or

incapable of monitoring infection of this new target cell population.

Linking genetic pathways of these phenotypes to the environmental

change of reduced antibody pressure will require parallel tracking of the host

antibody response and the genetic and phenotypic changes in the viral

population. Alternatively, a cross-sectional approach with a large enough dataset

could also lend further evidence to this connection. The exquisitely V3-antibody-

sensitive Envs identified in this study, along with the parental JRCSF Env, can be

used to probe for specific antibody neutralization activity in patient sera. The
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neutralization profile of the sera can then be correlated to the genetic and

phenotypic features of the contemporaneous virus. Ultimately, however, proof of

this link will require evolutionary modeling in the appropriate system where

specific immune pressures can be carefully controlled.

It is also possible that while this hypothesis for the evolutionary path of

CXCR4 tropism might be validated for Envs evolving in the absence of a specific

humoral response, different selective pressures and a different evolutionary

pathway may be operating in humans. It is also possible that the correlates

identified in the perpheral blood, such as a lack of a specific antibody

neutralization activity may not be relevant. Instead, what may be more relevant is

the local environment, either in a specific tissue or cellular compartment, which

may select for or potentiate X4 evolution. Further work is needed to understand

the local environmental factors at play that select for phenotypic variants in the

compartment where they originate, which is still unknown for X4 variants.
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Table 4.1: Neutralization phenotypes of selected mouse-adated and mutant Env

a Data from Chapter 3. For mouse adapted clones 6-39, 6-38 and 6-60, the co-
receptor phenotype predicted by the V3 sequence is indicated in parenthesis
bData from Chapter 3. Sensitvity was tested using 1 or more of 3 antibodies
directed at overlapping epitopes at the tip of V3 (447-52D, 19b, 2.1E) all results
were concordant
cLeu3a competatively inhibits Env binding

Table 1: Neutralization phenotypes of selected mouse-adapted and mutant Envs

Env clone

V3 antibody 

sensitivityb

CD4 binding 
affinity (mAb 

Leu3a 

resistance)c
mAb b12 
sensitivity

mAb 4E10 
sensitvity

mAb 2G12 
senstivity

JRCSF wt - - - + +
6-39 (R5)a +++ + ++ + -
6-38 (R5)a +++ + ++ ND ND
6-60 (X4)a +++ ND ND ND ND
JRCSF I165R + +/- - + +
JRCSF D167N + +/- - + +
JRCSF N386K - - + + +
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Figure 4.1. X4 and R5 activity JRCSF V3 mutants. Entry activity of virus
pseudotyped with various Env mutants on U87.CD4.CCR5 and U87.CD4.CXCR4
was quantitated by luciferase expression. Background was set to un-infected
cells. x-Axis labels indicate the Env clone or V3 amino acid substitution and
position (1-35) and in JRCSF Env. JRCSF is the wild type R5 Env, 6-45 and 6-60
are JRCSF-derived, mouse-adapted X4 viruses. NL4-3 is a prototypical X4 virus.
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Figure 4.2. Entry activity of pseudotyped virus on cells expressing different levels
of CD4 and CCR5. Affinofile cells, 293T cells with differentially inducible CD4 and
CCR5 expression, were infected with pseudovirus containing a luciferase
expression cassette. Viral entry activity was quantitated by luciferase expression
(relative light units (RLU)). A-D. Entry activity at different CD4 (x-axis) and CCR5
(y-axis) expression levels, indicated as the log(10) antibody binding sites/cell. E.
Entry activity of pseudovirus at the lowest CD4 and CCR5 expression levels
relative to entry at the low CCR5 and the highest CD4 expression level (104.7

ABS/cell and not presented in A-D).
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Figure 4.3. Relative X4 and R5 activity and AMD3100 resistance of JRCSF-
derived mouse-adapted and mutant Envs. Luciferase activity was assessed for
pseudovirus infecting either U87.CD4.CCR5 (x-axis) and U87.CD4.CXCR4 (y-
axis) cells and plotted as the log(10) RLU. A) Infectivty using CD4 and CXCR4
relative to infectivity usingCD4 and CCR5 using data plotted in (B). B) Infectivity
on using CD4 and CXCR4 or CCR5. V3 antibody sensitivity and CD4 binding
affinity are as indicated in Table 1. V3 genotype (V3 geno.) was determined
using X4R5 PSSM (Jensen). C) % inhibiton by a 2.5uM dose of AMD3100.
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Figure 4.4. Sequence characteristics of V2-V5 region of Env from HIV-1 infected
subjects with high and low CD4+ T cell counts. Subjects were divided in to two
groups based on CD4+ T cell count (x-axis). High: >240; low: <240. A. Average
number of N-linked glycosylation sites in the V2-V5 region. Potential N-linked
glycosylation sites (PNGL) were predicted using N-Glycosite accessed through
the Los Alamos National Laboratories HIV-1 Database website which infers a
PNLGS in NXT/S motifs where X≠ P. B. Average amino acid length for the V2-V5
region. C. Average charge of the V2 loop (HXB2 positions 158-198). V2 charge
was significantly different between the sequences obtained from subjects with
high and low CD4+ T cell counts.
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Figure 4.5. Neutralization activity in HIV-1-infected patient sera. Neutralization
curves for sera against mouse-derived clone 6-39 (green line), which is highly
sensitive to V3 antibodies, and JRCSF (blue line) pseudotyped virus. The viral
backbone used contains antiviral resistance mutations. Entry was measured as
luciferase activity in TZM-BL cells which contain a viral Tat-responsive luciferase
expression cassette. Infectivity was measure relative to entry activity in the absence
of serum.



Chapter 5

Conclusions and Future Directions

In this work, I have attempted to shed more light on how HIV-1 Env

evolution is shaped by its interaction with a dynamic host environment,

particularly the evolving immune response, which is itself shaped by pathogenic

effects of the virus. In Chapter 2, I showed that the diverse population of Env

variants that develops in the peripheral blood over the course of chronic infection

does not represent compartmentalized populations, based on the observation

that individual variants decayed at the same rate upon initiation of therapy. I also

showed how the gain-of-function phenotype of CXCR4 tropism, which is

correlated with immunosuppression, affects the viral population. I found that X4

variants emerge from a single founder and that these variants can co-exist with

R5 variants in the host yet replicate in an overlapping cellular compartment.

These results indicated that diverse Env phenotypes were not driving

compartmentalization in different cell types, as might be expected if CXCR4 and

CCR5 are differentially expressed on different susceptible cellular subsets.  In

Chapter 3, I characterized the evolution of Env in a humanized mouse model,

which may be representative of late stage immunosuppression in humans. There
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was no detectible HIV-1-specific antibody response in these animals, and it is

possible that this is similar to the environment encountered by HIV-1 in humans

when CD4+ T helper cell counts are very low and when B cell function has been

shown to be impaired. In this environment in the mouse, Env evolved in a

manner indicative of a reduced or absent humoral immune response. These

changes included a widely observed opening up of Env conformation and a

switch in co-receptor tropism in one population. Given these observations, in

Chapter 4 I began to explore the factors responsible for the emergence of virus

with CXCR4 tropism by dissecting the relationship between different Env

phenotypes associated with immunosuppression and CXCR4 tropism. I found

that an open Env conformation and increased CD4 binding potentiated entry

using CXCR4 and may be a prerequisite phenotype for evolution of CXCR4

tropism in general. I also compared some features of virus adapted to the

immunodeficient environment in the mouse to HIV-1 from immunosuppressed

individuals, a high percentage of whom had CXCR4-tropic virus, and found that

basic changes (that increase charge) in V2 are common among Env variants

evolving in immunosuppressed environments in both humans and the humanized

mouse.

While the hypothesis that a the loss of a specific antibody response is

required for, or at least potentiates, CXCR4-tropism evolution remains viable,

additional evidence is required to prove the causative link between the loss of

specific antibody pressures and the structural and phenotypic changes that allow

HIV-1 to expand its host cell range and ultimately optimize its CXCR4 tropism.
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The environmental pressures that select for CXCR4 tropism remain unknown,

and are not directly addressed by this hypothesis. It may be determined that

evolution of CXCR4 tropism is independent of antibody selective pressures and

only dependent on target cell availability or other selective forces. Also, the

relationship between CXCR4 emergence and disease progression remain

unclear and could provide clues to the selection of CXCR4-tropism emergence.

5.1 Origin of V3 antibodies.

The more open Env conformation that evolves in the absence of antibody

selective pressure is thought to resemble more closely the CD4-bound state of

gp120 that is primed to bind the coreceptor. One consequence of a more open

Env conformation, along with enhanced CD4 binding, sensitivity to soluble CD4,

and exposure of other CD4 binding-induced epitopes, is the exposure of V3 and

increased V3 antibody sensitivity (9, 77, 192, 235, 270, 313). V3 has also been

found to be a potent antigen as evidenced by the abundance of V3 antibodies in

patient sera (51, 261, 293). The relative insensitivity of primary isolates to anti-V3

antibodies (13, 192, 293) indicates that the antigen responsible for eliciting this

antibody may not be in the neutralization-resistant virion-associated trimer, but

rather may be gp120 monomers shed from the cell or particle. V3 antibodies in

particular show greatly increased binding to monomers compared to membrane-

associated trimers (82). Furthermore, antibody titers generated from monomer-

based vaccines show poor neutralization activity. Thus it is likely that the

presence of V3 antibody, perhaps by accident of gp120 shedding, keeps Env

from evolving a more open conformation.
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I should note here that these findings point toward a mechanism of

epitope masking that involves inter-molecular interactions between members of

the trimer. Whether or not this is the case may be addressed by assessing the

phenotypes of heterotrimers assembled with different Env mutants (259). Do

Envs that exhibit the loss of conformational masking due to different mechanisms

complement each other in a trimer?

5.2 Characterizing the humoral immune response in late stage infection.

The humoral immune response is impaired in HIV-1 infection, particularly

in late stage disease (56, 57, 153, 246, 281). However, the extent to which the

ability to produce specific antibodies (such as those directed at V3) is lost when

the CD4+ T cell count is very low remains unclear. As discussed in Chapter 4, I

have generated reagents that may be used to probe for the neutralization activity

of specific antibodies in patient sera. Screening with a highly V3 antibody-

sensitive Env clone can be used to identify the loss of this activity. This assay

can be refined by further confirming the breadth of sensitivity of this Env, perhaps

by depletion of V3-specific antibodies from sera. We can then ask the question of

whether or not V3 antibody-deficient sera correlate with the presence of specific

Env phenotypes, such as the loss of sensitivity to specific antibodies and other

phenotypes that are on the path to CXCR4 tropism, as described in Chapter 4.

This type of experimental approach can also be used in the case where

longitudinal samples are available that span the time when an X4 virus emerges.

Are specific antibodies lost prior to CXCR4 emergence? Do V2 mutations that

open Env conformation precede and show linkage to the emergent CXCR4 env
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variant? Finally, a comprehensive assessment of the differences in neutralization

sensitivities of HIV-1 populations in which CXCR4 variants have emerged,

compared to populations that do not harbor CXCR4 variants, should be carried

out, as the current data on this issue are incomplete and conflicting (29, 31, 38,

114, 158, 169, 190).

5.3 Modeling of coreceptor switching.

The role that background phenotypes play in the evolution of CXCR4

tropism can be modeled directly in vitro. Do either of the V2 mutations identified

in the humanized mouse (described in Chapter 3), or any V2 mutations identified

in human infections with low CD4+ T cell counts (described in Chapter 4), lead to

more rapid evolution of CXCR4 tropism in vitro when this phenotype is selected

for? The role that particular antibody specificities play in inhibiting Env phenotypic

evolution that leads to CXCR4 tropism can also be addressed more directly by

modeling evolution in vitro using different monoclonal antibodies as selective

agents (8, 173, 270). These types of experiments can be extended to in vivo

models, using passive immunization in models that lack a natural antibody

response, and depletion of specific B cells or antibodies in models that do.

The interactions between the co-receptor and Envs with background or

intermediate CXCR4 tropism phenotypes requires further investigation. It is still

unclear how CXCR4 mediates fusion of a virus with a CCR5-tropic V3 loop. One

hypothesis is that Interactions with the new coreceptor are mediated

predominantly by the N-terminus of the coreceptor. This is suggested by the

observation that the CXCR4-binding inhibitor AMD3100 only partially impairs the
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low level CXCR4-mediated infectivity of Envs with R5 V3 sequences. This can be

tested directly using a peptide that mimics the sulfonated N-terminus of the

coreceptor, binds to gp120, and inhibits its interactions with this portion of the

coreceptor.

5.4 Compartmentalization and the tissue of origin.

A major factor that likely plays a role in CXCR4 tropism emergence, and also in

pathogenesis, is compartmentalization. Where in the body is CXCR4 tropism first

selected and in what cell types? Other than a few studies examining autopsy

tissue, and only one study that adequately addresses compartmentalization of X4

virus in different cell type (15, 257), there is very little evidence in people that

points to the compartment where X4 viruses first emerge. Understanding this

aspect of evolution will not only shed light on the selective pressures driving X4

emergence, but also on the pathogenic role of X4 virus. In Chapter 2, I observed

that X4 and R5 virus populations were not highly compartmentalized in cross-

sectional analysis, making clear that pinpointing the source will be challenging.

While studies in SHIV models in which a tropism switch has occurred have

provided the opportunity to explore this question (237), it has not been rigorously

explored in this setting. Only one study that I am aware of has adequately

addressed the question of the tissue compartment origin of CXCR4 tropism in

humans (257). In Salemi, at al, longitudinal analysis of sequences from the

peripheral blood was coupled with sequences obtained from post mortem tissue

from therapy naïve children that had died of AIDS. Using phylogenetic

reconstruction, they found that the X4 variants first emerged in the thymus. This
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is not surprising given that this organ harbors highly HIV-susceptible CXCR4-

expressing thymocytes and a very limited number of CCR5-expressing cells (25,

138, 321). They also found X4 evolution to be a sequential process, with

mutations in the V1/V2 and C2 regions appearing first, similar to my findings in

the humanized mouse model. The findings in this study are consistent with the

hypothesis that X4 variants take hold in the CXCR4+ CCR5- population of CD4+

T cells,  a cell type that is abundant in the thymus, an organ in which active viral

replication has observed pathogenic consequences.  Whether or not the

observation of a thymic origin of X4 virus extends to adults, in whom the cellular

population of this organ is altered, remains unclear.  While X4 variants may be

highly pathogenic in the thymus, this does not necessarily indicate it is the tissue

of origin in immunosuppressed adults. Identifying the environmental factors, both

systemic and in the tissue and cellular compartments, that select for the changes

in the Env phenotypes that coincide with disease progression will aid not only in

our understanding HIV-1 pathogenesis but also in our understanding of the

fundamental features of enveloped virus evolution.

5.5 Exceptions that prove the rule.

The environmental and Env-intrinsic constraints on Env evolution can also

be better understood by examining the factors that limit the emergence of

specific phenotypes, such as CXCR4 tropism. For example, the frequent

emergence of CXCR4-tropic virus in late stage disease is a typical feature of

subtypes B and D, but not subtype C HIV-1 (121, 224). This may be due to

intrinsic structural constraints of subtype C (217). Further exploration of the
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differences in the structural constraints between subtypes B, C and D may

provide clues to the genetic barriers to X4 emergence in these different subtypes.

Differences in the environments experienced by different subtypes may also be a

factor in determining the different frequencies of Env phenotypes. What is the

impact of the fact that the population supporting subtype B infections is relatively

homogeneous compared to that supporting subtype C infections?

Finally, what factors limit the transmission of specific phenotypic variants,

such as CXCR4- and macrophage-tropic viruses? Understanding the

environmental factors that select for the highly CD4-dependent R5 virus that is

typically responsible for establishing infection will not only inform the

development of transmission prevention strategies, but will also tell us something

about the environmental requirements of the phenotypic variants that are not

typically transmitted. Conversely, exceptions often prove the rule. CXCR4-tropic

variants are transmitted in a limited number of cases and often lead to rapid

disease progression. What are the characteristics of the recipients of the

phenotypic variants that might lend clues to the selective pressures driving its

emergence?

A significant amount of data has been collected in an attempt to answer

many of the questions posed above, although a definitive answer to why HIV-1

Env evolves on its relatively predictable path remains elusive. One task that

remains is a more thorough re-examination of the assumptions, especially those

that have become dogma, some of which are based on weak or possibly

misinterpreted data. Testing the hypotheses that I have presented and that flow
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from my results will go a long way toward a deeper understanding of Env protein

evolution during late-stage HIV-1 infection.
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