

MODELING, IDENTIFYING, AND EMULATING

DYNAMIC ADAPTIVE STREAMING OVER HTTP

Andrew C. Reed

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial

fulfillment of the requirements for the degree of Master of Science in the Department of

Computer Science.

Chapel Hill

2014

 Approved by:

 Jay Aikat

 Kevin Jeffay

 Ketan Mayer-Patel

ii

© 2014

Andrew C. Reed

ALL RIGHTS RESERVED

iii

ABSTRACT

Andrew C. Reed: Modeling, Identifying, and Emulating

Dynamic Adaptive Streaming over HTTP

(Under the direction of Jay Aikat)

As HTTP-based streaming video applications have grown to become a major source of

Internet traffic, and as the new ISO standard Dynamic Adaptive Streaming over HTTP (DASH)

gains industry acceptance, researchers need the ability to both (i) study real-world viewing data

and (ii) emulate realistic DASH streams in network experiments. The first effort is complicated

by the fact that researchers are often restricted to anonymized, header-only (i.e. payload-

truncated) traces. The second effort is difficult since the process of encoding videos for DASH

results in numerous large files and since popular videos are subject to restrictive copyright law.

In this thesis we present our work towards developing a model for DASH traffic and

show how the model can be applied to identify specific DASH videos in anonymized, header-

only traces. We also present our solution for emulating DASH using compact representations of

both DASH services (e.g. Netflix and Amazon) and videos.

iv

To my wife, Megan, and sons, Robert and Luke.

v

ACKNOWLEDGEMENTS

My advisor, Jay Aikat, has been a source of both motivation and inspiration throughout

my thesis research. From topic identification through my thesis defense, she has given me her

time, energy, and advice every step of the way. Any student would do well to seek her

mentorship.

My committee members, Professors Kevin Jeffay and Ketan Mayer-Patel, have provided

me with invaluable insight that has undoubtedly raised the quality of my research. Moreover,

their contributions to my work began even before I had found a topic, as I had a class with each

of them during my first semester of graduate school. Their excellent instruction provided me

with a solid foundation for success.

This thesis would not have been possible had it not been for earlier work by Dr. Jeff

Terrell. His program, adudump, is an outstanding program that should be in every network

researcher’s toolkit. I am also very thankful to Professor Don Smith for introducing me to both

adudump and Hadoop; taking his course on datacenters was quite the fortuitous decision.

I thank the Global Environment for Network Innovations (GENI) for their support of my

research. With their assistance, I was able to travel to the IEEE International Conference on

Network Protocols (ICNP) in order to present my work-in-progress. This was a truly rewarding

experience that I will never forget.

 I am very grateful to David Ronca, Netflix’s Manager of Encoding Tools, for taking the

time to respond my email. His reply was exactly the insight that I needed to develop the

programs for fingerprinting and profiling Netflix videos. These programs have saved me an

vi

enormous amount of time, as I had previously been creating fingerprints and profiles using a

very inefficient method.

Above all, I thank my wife, Megan. All of my accomplishments, both in school and in

my Army career, are a result of her unwavering love and support. In a world of criticism and

doubt, it is a wonderful thing to know that she is in my corner.

Andrew C. Reed

Major, U.S. Army

April 2014

vii

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1: INTRODUCTION ... 1

1.1 DASH Overview ... 1

1.2 Research Problems .. 1

1.2.1 Identification ... 1

1.2.2 Experimentation .. 2

1.3 Thesis .. 2

1.4 Contributions... 2

1.5 Deliverables .. 3

1.6 Outline... 3

CHAPTER 2: BACKGROUND ... 4

2.1 tmix ... 4

2.2 adudump .. 5

2.3 Hadoop .. 5

CHAPTER 3: MODELING AND IDENTIFYING DASH .. 6

viii

3.1 Related Work .. 6

3.2 Approach ... 7

3.2.1 Model of a DASH Connection .. 7

3.2.1.1 Gathering Baseline Data for the Connection Model ... 8

3.2.1.2 Data Analysis .. 8

3.2.1.3 Measured Statistics for the Connection Model ... 9

3.2.2 Model of a DASH Video .. 10

3.3 Implementation ... 11

3.3.1 dashid Overview ... 11

3.3.2 Identification Steps ... 11

3.3.2.1 Step 1: Filtering HTTP Connections... 11

3.3.2.2 Step 2: Matching to a Video Fingerprint .. 12

3.4 Identifying CDN IP Addresses ... 12

3.5 Ongoing Work .. 12

CHAPTER 4: EMULATING DASH.. 13

4.1 Approach ... 16

4.1.1 DASH Traffic Observations ... 16

4.1.2 Profiles .. 17

4.1.2.1 Service-Wide Profile ... 17

4.1.2.2 Video Profiles ... 18

ix

4.1.2.3 Profile Design Considerations .. 19

4.2 Implementation ... 19

4.2.1 Prototypical Experimental Design .. 19

4.2.1.1 CDNs... 20

4.2.1.2 Central Server ... 20

4.2.1.3 Example Experimental Design ... 20

4.2.2 dashem Overview.. 21

4.2.2.1 Startup ... 21

4.2.2.2 Threads .. 22

4.2.2.2.1 Streaming .. 22

4.2.2.2.2 Watching ... 23

4.2.2.3 Tuning dashem .. 23

4.2.2.4 dashem Design Considerations ... 23

4.3 Evaluation ... 24

4.3.1 Validation .. 25

4.3.2 Scalability ... 26

4.4 Sample Experiment ... 28

4.4.1 Setup ... 28

4.4.2 Results ... 30

4.5 Discussion ... 31

x

4.6 Related Work .. 32

4.7 Conclusion .. 33

CHAPTER 5: CONCLUSION ... 34

5.1 Suggested Future Work... 34

5.1.1 Identification ... 34

5.1.2 Experimentation .. 35

5.2 Summary ... 35

REFERENCES ... 36

xi

LIST OF TABLES

Table 3.1: Baseline statistics for Netflix’s DASH connection model. ... 9

file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383093038

xii

LIST OF FIGURES

Figure 3.1: Capture and analysis workflow. ... 9

Figure 3.2: Inbound ADU (i.e. video segment) sizes for three separate

playbacks of Legend of the Boneknapper Dragon. ... 10

Figure 4.1: A comparison of the average bitrate between different

videos from the same DASH service and between the same

video on different DASH services. ... 13

Figure 4.2: Actual segment sizes vs. estimated sizes for the 1750 and

560 Kbps encodings of Legend of the Boneknapper Dragon. 17

Figure 4.3: Service-wide profile for Netflix. .. 18

Figure 4.4: Example dashem experimental design. .. 21

Figure 4.5: Video segment sizes generated by dashem. ... 26

Figure 4.6: Timeline of video segment requests. .. 26

Figure 4.7: Resource utilization for 80 dashem instances. ... 28

Figure 4.8: Modified service-wide profile for Amazon. ... 29

Figure 4.9: Bitrate selections for the Netflix test. ... 31

Figure 4.10: Bitrate selections for the Amazon test. ... 31

Figure 4.11: Hunger Games bandwidth estimates (as a function of video

segment size) following the completion of Curious George. 31

file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097606
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097607
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097607
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097608
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097608
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097608
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097609
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097609
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097610
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097611
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097612
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097613
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097614
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097615
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097618
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097617
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097616
file:///C:/Users/reed/Dropbox/UNC/Spring%202014/Thesis/Paper/Thesis%20-%20with%20tables%20and%20figures.docx%23_Toc383097616

xiii

LIST OF ABBREVIATIONS

ADU application data unit

CDN content distribution network

CPU central processing unit

DAG data acquisition and generation

DASH Dynamic Adaptive Streaming over Hypertext Transfer Protocol

DSL digital subscriber line

EWMA exponentially-weighted moving average

GB gigabyte

Gbps gigabits per second

GENI Global Environment for Network Innovations

GHz gigahertz

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISO International Organization for Standardization

ISP Internet service provider

KB kilobyte

Kbps kilobits per second

LCS longest common subsequence

MB megabyte

Mbps megabits per second

PC personal computer

PCAP packet capture

xiv

RTT round-trip time

TCP Transmission Control Protocol

URL uniform resource locator

USC United States Code

VBR variable bitrate

vCPU virtual central processing unit

VM virtual machine

VoIP Voice over Internet Protocol

XML Extensible Markup Language

1

CHAPTER 1: INTRODUCTION

Yearly reports from Sandvine [18,19,20] continually indicate that Dynamic Adaptive

Streaming over HTTP (DASH) services account for a large proportion of traffic to households in

North America, with Netflix alone accounting for 31.6% of all downstream traffic in the most

recent report. As a relatively new method for streaming video, DASH is fertile ground for

networking research.

1.1 DASH Overview

A prototypical DASH video is first segmented into equal length time slices and encoded at

various bitrates, or quality levels. These video segments are then served from content

distribution network (CDN) nodes over HTTP. During playback, DASH clients continually

gauge the available bandwidth to determine which quality level of each segment should be

requested. If bandwidth is limited, DASH clients will request segments of lesser quality,

resulting in smaller application data units (ADUs). When more bandwidth is available, DASH

clients will instead request higher quality segments, resulting in larger ADUs.

1.2 Research Problems

While DASH provides industry with an effective means to serve content to users, its use

presents network researchers with several challenges. We classify these challenges as they relate

to the tasks of identification and experimentation.

1.2.1 Identification

Since DASH video appears as standard HTTP traffic, it is hard for researchers to isolate and

study DASH streams, especially if they are restricted to anonymized, header-only (i.e. payload-

2

truncated) traces. Conversely, this means that DASH traffic has the potential to skew studies of

“normal” browsing activity if it is not removed from a trace.

1.2.2 Experimentation

Since DASH segment sizes and buffering activity will vary based on network conditions,

captured DASH streams should not be replayed in network experiments. The use of actual

video, though, is made difficult by large storage requirements and restrictive copyright law.

1.3 Thesis

Due to DASH’s discretization of movies into a series of segments which are fetched

sequentially over a TCP connection that is often persistent, we hypothesize that these research

problems can be solved by focusing on the ADUs in a DASH connection. Therefore, in an effort

to advance the networking community’s ability to conduct DASH research, we propose the

following thesis:

Application data unit (ADU)-level analysis of captured Dynamic Adaptive Streaming over

HTTP (DASH) streams will enable us to develop a model of DASH traffic that can be

leveraged to identify DASH source IP addresses in anonymized, header-only traces.

Furthermore, an ADU-centric representation of DASH videos will enable us to design a

lightweight, highly-configurable, distributed DASH emulator.

1.4 Contributions

This thesis makes the following contributions.

 A method for identifying specific DASH videos in anonymized, header-only traces that

can be leveraged to obtain DASH source IP addresses.

 A method for emulating DASH using compact representations of both DASH services

(e.g. Netflix and Amazon) and videos.

3

1.5 Deliverables

We have developed the following open source, non-copyrighted programs in support of this

thesis.

 An offline Hadoop program that analyzes adudump logs and reports HTTP connections

that match DASH video fingerprints.

 A Java-based DASH emulator that generates realistic, adaptive network traffic using

DASH video profiles.

 Java-based utilities that create fingerprints and profiles of Netflix videos for use in the

previous two programs.

1.6 Outline

In Chapter 2 we introduce and describe several technologies that our work is built upon. In

Chapter 3 we present our ongoing work towards developing a model of DASH traffic that can be

leveraged to identify specific videos. In Chapter 4 we present our solution to emulating DASH

traffic and describe how researchers can use our solution in DASH client tests and network

experiments. Finally, Chapter 5 suggests possible future work and concludes the thesis.

4

CHAPTER 2: BACKGROUND

2.1 tmix

Our inspiration for a compact representation of DASH videos stems from tmix, which

Hernández-Campos et al. present in [12] as a means to generate traffic using a-b-t connection

vectors derived from network traces. The a-b-t model, as presented by Hernández-Campos in

[11], assumes that the ADU sizes (a, b) and the inter-exchange times (t) are constant for each

exchange in a TCP connection between two network endpoints. Thus, tmix creates synthetic

workloads by replaying the sequence of a-b exchanges using dummy payloads that are separated

by t intervals.

For the purpose of generating realistic DASH traffic, however, the a-b-t model is inadequate

as any given video segment size b and its associated interval t are driven by network conditions.

More specifically, for each time slice of a video, a DASH client is allowed to choose a video

segment from among the available bitrates. Since this decision is based upon the client’s running

estimate of the available bandwidth during a given playback, it would be inaccurate to simply

replay the trace of a DASH stream in an experiment.

Despite its flaws, the a-b-t model offers valuable insight into the nature of DASH traffic.

Indeed, the a-b-t model can be augmented so that each b is a set of sizes that represent the

options for a given video segment, as opposed to a single size that represents the choice that a

client made for a particular playback. We therefore use the a-b-t model as a starting point for

our representations of DASH services and videos.

5

2.2 adudump

Terrell et al. present adudump in [23] as a means to passively monitor the performance of

servers. adudump aids in this task by analyzing TCP/IP headers and generating a-b-t connection

vectors for every exchange in a TCP connection, and it does so in one pass. Additionally,

adudump will accept input from either a PCAP file on disk or directly from a network interface

(e.g. Ethernet interface or DAG card). Thus, adudump is an ideal preprocessor for our programs

as it does not require access to HTTP headers or payloads and its output can be used for offline

analysis of HTTP connections.

2.3 Hadoop

Hadoop, originally designed by Yahoo! and now maintained by Apache, is a

…framework that allows for the distributed processing of large data sets across clusters

of computers using simple programming models. It is designed to scale up from single

servers to thousands of machines, each offering local computation and storage. [4]

In a Hadoop program, Mappers iterate through a data set (e.g. a large text file spread across

numerous servers) record-by-record (i.e. line-by-line) and emit programmer-defined key-value

pairs to Reducers. All of the values for a given key will be sent to a single Reducer that then

performs a programmer-defined task on the set of values. These sets of values are bundled as

Java iterators (i.e. collections that provide a method for traversal over their data).

As Hadoop natively supports text files as data sets, it is well-suited for storing and processing

adudump logs. Additionally, our programs are simplified by Hadoop’s key-value paradigm: by

defining the key to be the IP address and port pairing (local_IP.port + remote_IP.port) of an

HTTP connection, we can use Hadoop to consolidate all of the ADUs from a single HTTP

connection into an iterator that a Reducer can process in isolation from all other connections.

6

CHAPTER 3: MODELING AND IDENTIFYING DASH

Although DASH traffic accounts for a significant amount of downstream traffic in North

America, it is difficult for researchers to study DASH “in the wild” as privacy considerations

often dictate the use of anonymized, header-only traces. In this chapter, we present two models

of DASH that, when used together, show promise towards the goal of identifying DASH video

without requiring access to HTTP payloads.

3.1 Related Work

Amann et al. [3] identify DASH connections from network traces by inspecting the URL in

each HTTP GET in order to find requests for files that end in either an Apple HTTP Live

Streaming file type or a Microsoft Smooth Streaming file type (.ts and .ism, respectively). This

approach will not work if a researcher is restricted to IP and TCP headers.

Similar to the problem of classifying anonymized, header-only traces, though, is that of

classifying encrypted traffic. Such approaches typically involve the development of a reference

data set that can be compared to those characteristics of captured traffic that survive encryption.

For instance, White et al. [24] demonstrate that the series of packet lengths from an encrypted

VoIP call can be reassembled into phonemes in order to determine the content of the call by

leveraging a data set of previously encoded phonemes.

Closer to our intended goal, Saponas et al. [21] present an approach for identifying the video

being streamed from a Slingbox by (i) calculating 100ms throughput samples during the stream,

(ii) extracting features from the continuous samples with a Discrete Fourier Transform, and (iii)

matching the query to a previously captured video trace. Unlike [21], however, DASH videos do

7

not translate well to the model of a continuous signal, as they consist of several encodings (i.e.

signals) that can be arbitrarily interleaved.

Instead, our technique is based on the website fingerprinting attack presented by Cai et al. in

[5]. This attack matches a website’s fingerprint (i.e. a stored trace of packet sizes) to a new trace

by calculating the Damerau-Levenshtein edit distance required to transform the fingerprint into

the new trace. We find that our task is much simpler than [5] for two reasons: (i) the loading of a

webpage is less structured than the sequential playback of a DASH movie and (ii) we intend to

trace ADUs as opposed to many thousands of individual packets, thereby reducing the

complexity of the comparisons.

3.2 Approach

Our technique for identifying DASH videos in anonymized, header-only traces leverages two

models of DASH: (i) a generic model of a DASH connection that can be used to identify

potential DASH traffic and (ii) a model of an individual DASH video that can be used to identify

specific content. We describe the models in further detail below.

3.2.1 Model of a DASH Connection

Our model of a generic DASH connection is based on these four properties of prototypical

DASH traffic:

1. During steady state playback, outbound ADUs (which represent the HTTP GETs for

successive video segments) are sent at regular intervals roughly corresponding to the

length of each segment.

2. The sizes of the outbound ADUs exhibit low variance due to the URL naming convention

for segments.

8

3. Since video segments represent a constant length of the movie, the maximum size for any

inbound ADU will be limited by (i) a video service’s highest offered bitrate, (ii) the

duration of each video segment, and (iii) the degree to which a service allows the bitrate

to vary (i.e. variable bitrate encoding, or VBR).

4. During steady state playback, new video segments are requested as buffered segments are

consumed, and thus the average inbound data rate will be roughly equivalent to the

bitrate of the movie.

3.2.1.1 Gathering Baseline Data for the Connection Model

In order to obtain baseline data for the connection model, we used adudump to trace the

network traffic of a Windows 7 virtual machine (VM) while the VM streamed a single Netflix

movie at a time. We captured four movies across four quality levels using the three supported

web browsers (Internet Explorer, Firefox, and Chrome), for a total of 48 traces. The lengths of

the movies used were 7 min, 17 min, 46 min, and 110 min. In addition to the 48 Netflix-only

traces, we traced over 45 hours’ worth of household Internet activity containing no Netflix

traffic.

3.2.1.2 Data Analysis

We used a Hadoop program to calculate the statistics relevant to the four DASH traffic

properties for each DASH connection in the baseline traces. These statistics are as follows:

 Duration. Length of the connection.

 Average ADU Out. The average size of all ADUs sent from the local IP and port to the

remote HTTP server.

 ADU Out Standard Deviation. Standard deviation for the above.

9

 Average Interval. The average time between ADUs sent from the local IP and port to

the remote HTTP server.

 Interval Standard Deviation. Standard deviation for the above.

 Max ADU In. The largest ADU sent by the remote HTTP server to the local IP and port.

 Average Data Rate. The average data rate for the ADUs received from the remote

HTTP server (calculated using 10 second interval averages).

 Data Rate Standard Deviation. The standard deviation of the 10 second interval

averages.

Figure 3.1 depicts our capture and analysis workflow.

3.2.1.3 Measured Statistics for the Connection Model

Table 3.1 lists the measured statistics for the Netflix streams. As an indication of the

connection model’s strength, the baseline streams could have been identified, with no false

positives from the non-Netflix traffic, by using a filter based on the ranges in Table 3.1.

Traffic Capture

Linux VM

adudumpbr0

eth0

eth1

Internet

Windows 7 VM

adudump
Trace

stdout

Netflix

Experimental Design

Best – HD
Best – SD

Better
Good

7 min
17 min
46 min

110 min

Internet Explorer
Firefox
Chrome

48
adudump

Traces

Quality Level Movie Length Browser

48
adudump

Traces

48
adudump

Traces

Data Analysis

DASH
Detective

(Hadoop)

Source IP

Src

Port Dest IP

Avg

ADU Out

ADU Out

Std Dev

Avg

Interval

Interval

Std Dev

Max

ADU In

Avg

Data Rate

Data Rate

Std Dev

192.168.19.137 49621 205.128.73.253 534 2 3 2 3129875 3095 1958

192.168.19.137 49457 8.12.222.253 434 2 3 2 3129875 3072 1903

192.168.19.137 52033 108.175.34.74 492 2 3 2 2927326 3071 1292

192.168.19.137 52245 108.175.35.149 467 6 3 2 2927329 3006 1419

192.168.19.137 52456 108.175.35.149 570 2 3 2 2927327 2948 1189

192.168.19.137 49251 205.128.73.253 460 3 3 3 3129875 2907 1851

192.168.19.137 50760 108.175.35.142 467 5 3 3 3233090 2826 1744

192.168.19.137 50433 108.175.35.142 493 2 3 2 3233092 2814 1713

192.168.19.137 51063 108.175.35.142 536 2 3 2 3233094 2809 1716

192.168.19.137 50493 108.175.35.142 495 2 3 3 3275999 2660 1790

192.168.19.137 50841 108.175.35.142 469 2 3 3 3275999 2655 1763

192.168.19.137 50586 69.164.10.221 548 10 3 2 2693445 2550 1729

192.168.19.137 50303 69.164.10.221 469 10 3 2 2693445 2550 1687

192.168.19.137 50444 69.164.10.221 443 10 3 2 2693445 2550 1797

DASH Connection DASH Traffic Model Measurements

… … … … … … … … … …

Statistic Min Max

Average ADU Out (B) 433 570

ADU Out Standard Deviation (B) 1 10

Average Interval (s) 1 4

Interval Standard Deviation (s) 2 3

Max ADU In (B) 481,107 3,275,999

Average Data Rate (Kb/s) 469 3,095

Data Rate Standard Deviation (Kb/s) 174 2,145

Figure 3.1: Capture and analysis workflow.

Table 3.1: Baseline statistics for Netflix’s DASH connection model.

10

3.2.2 Model of a DASH Video

Figure 3.2 depicts the video segment sizes for three separate viewings of the same video at

the same quality level. From Figure 3.2 we see that the sizes of the underlying video segments

remain constant across multiple playbacks of a video. Given this observation, we model a

DASH video as the sequence that is formed by taking the video segment sizes for each bitrate

encoding and interleaving them into a single, sequential ordering (which we refer to as a

fingerprint). For example, a video with three Segments across two Bitrates would have a

fingerprint of the form

{ S1B1.size, S1B2.size, S2B1.size, S2B2.size, S3B1.size, S3B2.size }.

Thus, the sizes of the video segments for any straight-through playback (i.e. no “rewinding” or

“re-downloading”) of a DASH video will be a subsequence of the video’s fingerprint.

These fingerprints can be created for Netflix videos with Fingerprinter, a Java-based utility

that we make available at [9]. Fingerprinter first takes the XML manifest of a Netflix video and

parses it to find the URLs for each bitrate encoding of a video. Fingerprinter then downloads

the header of each encoding, from which it can calculate the sequence of segment sizes for each

bitrate. These sequences are then interleaved to form a fingerprint that is output to stdout. With

each fingerprint, Fingerprinter includes both the title of the video and the ordered list of

0

0.5

1

1.5

2

2.5

3

3.5

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231V
id

eo
 S

eg
m

en
t

S
iz

e
(M

B
)

Video Segment Number

Internet Explorer Firefox Chrome

Point at which all three playbacks converge to the 3 Mbps encoding

Figure 3.2: Inbound ADU (i.e. video segment) sizes for three separate playbacks of Legend

of the Boneknapper Dragon.

11

available bitrates (in Kbps), thereby allowing a researcher to de-interleave the fingerprint, if

needed.

3.3 Implementation

To identify DASH videos from anonymized, header-only traces, we use dashid, an open

source, non-copyrighted Hadoop program which we make available at [7]. dashid takes both an

adudump trace and a data set of DASH video fingerprints as input and returns a list of the HTTP

connections in the trace that match a fingerprint. In this section, we provide a brief overview of

dashid and we describe the process by which it identifies videos.

3.3.1 dashid Overview

As mentioned in Section 2.3, we define each key in dashid to be the concatenation of an

adudump record’s source_IP.port field and the remote_IP.port field so that each reduce task will

receive all of the ADUs for an HTTP connection in a single iterator. We augment this key with a

timestamp field so that Hadoop can perform a secondary sort on the keys, thereby ensuring that

each reduce task will receive the ADUs of a connection pre-sorted in chronological order.

3.3.2 Identification Steps

3.3.2.1 Step 1: Filtering HTTP Connections

For every HTTP connection in the adudump trace, the reduce task performs one pass over the

iterator of ADUs and (i) calculates the statistics listed in Section 3.2.1.2 and (ii) builds a

chronologically-ordered list of the inbound ADU sizes. Once the iterator has been processed, the

reduce task checks the measured statistics to verify if the HTTP connection fits the DASH

connection model. If the connection fits the model, then the list of inbound ADU sizes is

processed by the next step; otherwise, the list is discarded and the HTTP connection is ignored.

12

A limitation of this approach is that it does not account for the possibility that a DASH client

may choose to either (i) pipeline GET requests via HTTP pipelining or (ii) aggregate segments

using byte range requests. Either of these methods will result in larger than anticipated inbound

ADU sizes, which might cause dashid to incorrectly identify a DASH stream as a non-DASH

connection. We have observed neither of these behaviors in Microsoft Silverlight.

3.3.2.2 Step 2: Matching to a Video Fingerprint

For each HTTP connection that fits the DASH connection model, dashid compares the list of

inbound ADU sizes to each fingerprint in the supplied data set and calculates the longest

common subsequence (LCS) between the two. The fingerprint that yields the “longest” LCS is

reported in dashid’s output as a match for the HTTP connection. A minimum threshold for the

LCS can be established to minimize the occurrence of incorrect matches.

3.4 Identifying CDN IP Addresses

The task of identifying CDN IP addresses consists only of compiling a list of all the HTTP

servers from dashid’s output, as these servers represent streaming video content servers. A

researcher can then mark all connections in the original adudump trace that involved a server

from the compiled list as a video stream.

3.5 Ongoing Work

As of this writing, we have yet to test dashid’s performance and accuracy against a large

trace. From our observations, we see that on-campus Netflix streams will connect to a limited

subset of IP addresses. Thus, we intend to trace traffic on the campus-wide link and anonymize

the trace with a key for which we know the anonymized versions of these Netflix CDN IP

addresses. We can then run dashid on the trace and verify that the technique described in

Section 3.4 yields IP addresses from our ground truth list.

13

 CHAPTER 4: EMULATING DASH

With the continuing popularity of DASH-based services such as Netflix, even the smallest

enhancements to a particular DASH client’s networking components (e.g. its buffering,

bandwidth estimation, bitrate selection, and CDN selection algorithms) could improve the

viewing experience for a significant number of viewers. Ideally, these modifications should be

tested against a broad selection of videos under a variety of network conditions to ensure that any

changes will improve playback for the majority of DASH streams. Moreover, experiments that

seek to study the effects of DASH traffic on network performance, particularly bandwidth-

constrained home networks, should include a variety of videos, as the load that a stream places

on the network will largely depend on the video’s encoding parameters.

To illustrate the role of video data in a DASH experiment, Figure 4.1 depicts the video

bitrates (as 4-minute moving averages) for the Netflix version of The Avengers and both the

Netflix and Amazon versions of The Hunger Games. We present the data for the highest quality

encoding of each video, which for Netflix is 3 Mb/s and for Amazon is 6 Mb/s.

0

1

2

3

4

5

6

7

240 1440 2640 3840 5040 6240 7440

V
id

eo
 B

it
ra

te

4
 M

in
.
M

o
v
in

g
 A

v
er

ag
e

(M
b
/s

)

Seconds into Video

Netflix: Avengers Netflix: Hunger Games Amazon: Hunger Games

Figure 4.1: A comparison of the average bitrate between different videos from the same

DASH service and between the same video on different DASH services.

14

By comparing videos from differing services, we see that a service’s encoding parameters

will drive the decisions that are made when designing its streaming client. For instance, since

Netflix encodes its videos at a variable bitrate (VBR), its client requires almost 66% more

available bandwidth than a target bitrate in order to stream at that quality level [13] (notice that

the final action scene from The Avengers results in a 14 minute period where the average bitrate

exceeds 4 Mb/s). Although we do not have data for the Amazon client, we expect that it would

require significantly less headroom in order to stream a given bitrate, as its videos deviate little

from their target bitrates.

From Figure 4.1 we also see that the bandwidth estimation logic of a DASH client will be

presented with an added challenge if it must compete with a highly variable stream. Should a

client begin streaming while a competing stream of The Avengers is at the dip just prior to the

final action scene, the new client might select an unsustainably high bitrate. This sort of

interaction would not be captured in experiments which use videos encoded at constant bitrates.

Although there are clear benefits to using a variety of videos in both DASH client tests and

network experiments, there are two significant problems with the use of actual video:

 Copyright law. While the “fair use” clause of U.S. copyright law (17 USC § 107)

permits the reproduction of material for research purposes, it would not be deemed “fair

use” for a researcher to make the DASH encodings of a copyrighted video available

wholesale to the networking community. Thus, if other researchers wanted to reproduce

the results of an experiment that used a copyrighted video, they would have to re-encode

the same version of the source material according to the exact settings used in the original

experiment. For this reason, the overwhelming majority of content that users actually

watch is unlikely to be used in DASH experiments.

15

 Storage requirements. Encoding videos for DASH requires substantial amounts of disk

space. For instance, the combined total for all of the quality levels of the Netflix versions

of The Avengers and The Hunger Games is approximately 21 GB. In storage-constrained

virtual laboratories such as the Global Environment for Network Innovations (GENI)

[10], even a small data set of DASH videos would be infeasible to use in an experiment.

To overcome these problems, we present a novel technique to reproduce the segment sizes of

DASH videos using a format that requires minimal storage and which does not violate copyright

restrictions. The main contributions of this chapter are:

 We present a method to represent a DASH service and its video library using a

combination of small text files (which we refer to as profiles) that can be served as static

files on a standard web server. These profiles enable a researcher to modify the settings

of a DASH service per experiment by simply changing a line in the service-wide profile

(e.g. define new bitrate encodings for all movies).

 We present an open source DASH client emulator called dashem [6] that uses these

profiles to generate realistic DASH traffic.

 Included with dashem are a service-wide profile for both Netflix and Amazon Instant

Video, as well as video profiles for ten Netflix videos and two Amazon videos.

We limit the scope of our technique to replicating those DASH services that use fixed-

duration video segments and fixed-duration, constant-bitrate audio segments (e.g. Netflix and

Amazon). Additionally, we do not attempt to replicate the exact buffering or rate-selection

algorithms of a specific client. Instead, we have kept dashem’s code minimal, while still

implementing basic functionality, so that other researchers can easily modify it in order to test

their own algorithms.

16

The rest of the chapter is organized as follows. Section 4.1 details how we reduce a DASH

service and its videos to a set of profiles and Section 4.2 describes how dashem uses these

profiles for traffic generation. Section 4.3 presents the results of tests designed to validate our

technique and to gauge dashem’s scalability. Section 4.4 details a sample experiment and

Section 4.5 further discusses how experimenters can use dashem for their research. Section 4.6

reviews related work and Section 4.7 concludes the chapter.

4.1 Approach

4.1.1 DASH Traffic Observations

Our method of representing a DASH service and its video library as a collection of profiles is

based on these two observations of DASH traffic from Netflix and Amazon:

 We find that repeated playbacks of a video at the same bitrate encoding yield identically-

sized, identically-ordered application data units (ADUs) received by the client. Notice in

Figure 3.2 that the ADU-level traces of separate playbacks of the Netflix video Legend of

the Boneknapper Dragon are indistinguishable once they converge to the 3 Mbps

encoding. This is a direct result of the fact that these services’ DASH streams are

comprised of individual video segments that are requested sequentially by the client.

 We find that the segment sizes for a lower bitrate X are well-approximated by multiplying

the segment sizes of the highest bitrate Y by the constant ratio X:Y. Figure 4.2 compares

the actual segment sizes of the 1750 and 560 Kbps encodings of Legend of the

Boneknapper Dragon to their approximated sizes if the segment sizes of the 3000 Kbps

encoding are multiplied by a constant ratio. For the 1750 Kbps encoding, the estimated

sizes are only off by an average of 61.4 KB per segment. Moreover, the entire sum of

17

data generated by the 1750 Kbps estimate is only off by 0.7% (218.3 MB estimate / 219.9

MB actual).

As Netflix and Amazon both use Microsoft Silverlight for browser-based streaming, we do

not generalize our current findings beyond these two services.

4.1.2 Profiles

Given our observations, we model an individual video as the sequence of video segment

sizes for the highest bitrate encoding, from which the lower bitrate encodings can be

approximated using ratios that are consistent throughout an entire service. We also note that, as

a result of our scope from Section 1, all other DASH traffic properties (e.g. video segment

duration, audio segment duration, and audio segment size) will be constant for an entire service

and thus we do not model these separately for each individual video. We therefore use the

following profiles to represent a DASH service and its video library.

4.1.2.1 Service-Wide Profile

Figure 4.3 depicts our service-wide profile for Netflix. Its rows are as follows:

 Row 1: Video Profile Bitrate. This indicates the bitrate (in Kbps) at which all of the

video profiles for a service were derived.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

V
id

eo
 S

eg
m

en
t

S
iz

e
(M

B
)

Video Segment Number

1750 actual 1750 estimate 560 actual 560 estimate

Figure 4.2: Actual segment sizes vs. estimated sizes for the 1750 and 560 Kbps

encodings of Legend of the Boneknapper Dragon.

18

 Row 2: Encoding Levels. These indicate, in descending order, the bitrate encoding

levels of a DASH service as percentages relative to the value from row 1. For Netflix,

this equates to 3000, 2350, 1750, 1050, 750, 560, 375, and 235 Kbps.

 Row 3: Video Segment Duration. The length of video (in seconds) contained in each

video segment.

 Row 4: Video-to-Audio Ratio. The number of video segments per audio segment. For

Netflix, this equates to 16 seconds of video per audio segment.

 Row 5: Audio Segment Size. The average size (in bytes) per audio segment. For

Netflix, this equates to an audio bitrate of 64 Kbps, which we have calculated as an

average across the audio segment sizes that we have observed, which range from

approximately 131,500-135,800 bytes.

Note that rows 1 and 3 are dictated by a service’s library of video profiles. A researcher is

free, however, to change the values of any other row. For instance, prepending the value 200 to

row 2 of the Netflix service profile will “create” a 6000 Kbps encoding for every video in the

Netflix library. Similarly, removing the value 100 will “delete” every 3000 Kbps encoding.

4.1.2.2 Video Profiles

Video profiles are text files that list the sequence of video segment sizes for the highest

bitrate encoding, resulting in files of almost negligible size. For example, the Netflix profiles for

3000

100 78.333 58.333 35 25 18.666 12.5 7.8333

4

4

135100

Figure 4.3: Service-wide profile for Netflix.

19

The Avengers and The Hunger Games, at 16.6 KB and 15.9 KB apiece, require significantly less

storage than the full encodings of these two videos, which totaled to 21 GB. We provide a utility

for creating profiles of videos at [17]. We also include 12 sample profiles (10 Netflix, 2

Amazon) with dashem at [6].

4.1.2.3 Profile Design Considerations

While we could have designed our profiles to store all segment sizes for all bitrates (or even

to use a video’s manifest directly whenever the manifest contains segment size information), it is

our opinion that the benefit of absolute segment accuracy across a service's available bitrates

does not outweigh the ability to create new bitrates for an experiment. In other words, since

dashem recreates the segment sizes of the various bitrates based on row 2 of the service-wide

profile, a researcher gains the ability to make any number of new bitrates available for an

experiment. These will, of course, be approximations of what the bitrate encodings might have

been, but we feel that the relatively minor loss in per-segment accuracy is worth the added

extensibility.

4.2 Implementation

We generate traffic from profiles with dashem, an open source, non-copyrighted DASH

client emulator that we developed in Java and which runs from a command line. In this section,

we describe the prototypical experimental design and we provide a brief overview of how

dashem works.

4.2.1 Prototypical Experimental Design

dashem allows a researcher to design an experiment that replicates a standard DASH

architecture consisting of (i) a central server whose primary function is to redirect DASH clients

to (ii) content distribution networks (CDNs) which then provide the actual content.

20

4.2.1.1 CDNs

In our prototypical design, a single HTTP server is used as a stand-in for an entire CDN.

Here, the internal behavior of the CDN is not being modeled. Instead, a traffic controller is used

to emulate the aggregate characteristics of a client’s connection to the CDN, thereby allowing a

researcher to test a CDN-selection strategy. Additionally, each HTTP server hosts only a single

13MB dummy file. Section 4.2.2.2.1 details how dashem generates traffic from this single file.

dashem allows CDNs to be grouped into notional geographic regions using text files called

CDN lists. We use notional in this context as these “geographic regions” are simply divisions in

the experimental design that allow a researcher to test dashem under a variety of network

conditions based on regional statistics. Experimenters are free to define any number of regions

according to whichever naming scheme suits their needs.

4.2.1.2 Central Server

The central server is an HTTP server that hosts the service-wide profile, the video profiles,

and the CDN lists for a DASH service.

4.2.1.3 Example Experimental Design

Figure 4.4 depicts an example experimental design that uses all of the components of the

prototypical design. It is similar to how a researcher would visually arrange an experiment in a

GENI test bed using the Flack GUI. In this example, the instances of dashem being run on the

North Region Clients PC will be redirected by the central server to the North Region CDNs and

thus their DASH streams will be shaped by the traffic controller between them. Likewise, the

instances of dashem in the South Region will request segments from the South Region CDNs and

be subjected to different network conditions than the “viewers up north”.

21

4.2.2 dashem Overview

4.2.2.1 Startup

dashem takes the following command line arguments:

 Central server address. Either the IP address or domain name of the central server.

 Service. The DASH service to use for the given instance. This allows a single central

server to host profiles and CDN lists for any number of services.

 Region. The notional geographic region for the given instance.

 Video Title. The name of the video profile to stream.

 Account Name. Account names are used in logs and can be used by an experimenter to

create unique identifiers for each instance of dashem.

An instance of dashem begins by connecting to the central server and downloading the (i)

service-wide profile for the indicated service, (ii) the CDN list for the indicated region, and (iii)

the video profile for the indicated video title. The CDNs are ranked using a random shuffle that

is seeded by the account name, similar to how Netflix ranks CDNs [1]. dashem then starts a

Traffic

Controller

Central Server

North Region:

CDN A

North Region:

CDN B

North Region:

dashem Clients

Traffic

Controller

South Region:

CDN C

South Region:

CDN D

South Region:

dashem Clients

Traffic

Controller

Figure 4.4: Example dashem experimental design.

22

streaming thread and a watching thread which communicate via a synchronized buffer that tracks

the number of buffered video segments.

4.2.2.2 Threads

4.2.2.2.1 Streaming

The streaming thread connects to the highest ranked CDN and begins to request audio and

video segments, with audio segments conforming to rows 4 and 5 of the service-wide profile.

Video segment requests start with the lowest bitrate and are then based on a continual estimate of

the available bandwidth. Bandwidth is sampled with each video request based on the time taken

to download the size of the segment, and the average is taken as an exponentially-weighted

moving average (EWMA) across all bandwidth samples. Note that the current bandwidth

estimate is multiplied by a cushioning factor of 60%, similar to the Netflix client [13].

For each new video segment request, the highest bitrate encoding supported by the

“cushioned” estimate of the available bandwidth is requested. The choice of bitrate encodings is

determined from rows 1 and 2 of the service-wide profile. The streaming thread only increments

the buffer upon receipt of a video segment; audio segments are effectively “extra work” that

must be requested prior to their correlated video segments. The streaming thread will continue to

request segments until the buffer is full, at which point it enters a steady state where new

segments are requested as buffered segments are consumed by the watching thread. dashem uses

the buffer’s wait() and notifyAll() methods to ensure that the streaming thread runs only when

necessary.

At dashem’s core is its method for generating dummy traffic. As mentioned in Section

4.2.1.1, each CDN hosts only a single dummy file. Thus, to generate dummy segments from this

file, dashem leverages HTTP/1.1 range requests. For each new segment request, the streaming

23

thread sends an HTTP GET for the dummy file with the Range header set to a range of bytes

equivalent to the size of the next segment, with the size being calculated as described in Section

4.1.1.

4.2.2.2.2 Watching

The watching thread serves to consume video segments from the buffer and to log playback

status. Playback starts once the buffer has reached a minimum fill and playback will continue as

long as the watching thread is able to consume a segment from the buffer. After successfully

decrementing the buffer, the watching thread sleeps for the duration of a video segment, as

dictated by row 3 of the service-wide profile. If the buffer is empty when the watching thread

attempts to consume a segment, the watching thread will log that playback has paused and will

then call the buffer’s wait() method. Playback will resume if the buffer reaches the minimum

fill, or if all segments have been received.

4.2.2.3 Tuning dashem

The length of the buffer, minimum fill to start/resume playback, bandwidth estimate EWMA

smoothing constant, and bandwidth estimate cushioning factor are set to the default values of

240 seconds, 12.5%, 0.125, and 60%, respectively. Each of these is a constant in dashem and

can be changed by an experimenter to alter dashem’s behavior.

4.2.2.4 dashem Design Considerations

dashem lacks many of the "real world" strategies that a true DASH client would exhibit, for

example:

 Bitrate selection. Akhshabi et al. [2] note that the Smooth Streaming player makes small

bitrate transitions and they hypothesize that this is to provide a better viewing experience

by avoiding drastic changes in video quality.

24

 CDN selection. Adhikari et al. [1] report that the Netflix client will switch CDNs

whenever the current CDN can no longer support the lowest video bitrate. dashem, on

the other hand, makes a CDN selection and sticks with it, regardless of network

conditions.

The fact that dashem lacks these capabilities (and more) is a design decision on our part. It is

our opinion that dashem implements enough functionality so as to demonstrate the effectiveness

of our profiles. Additional capabilities would likely complicate the dashem source code, making

it difficult for other researchers to implement their own strategies in dashem.

4.3 Evaluation

For the tests described in this section, we used the Netflix service-wide profile and the

Legend of the Boneknapper Dragon video profile. We created two Ubuntu virtual machines

(VMs) in VMware Workstation on a PC with a quad core Intel Core i7 1.73 GHz CPU and 14

GB of memory:

 VM1. On this VM we ran the instances of dashem. It was allocated 6 vCPUs (i.e. 6 of

the 8 threads available on the i7) and 4 GB of memory.

 VM2. On this VM we installed Apache HTTP Server and configured it to act as both a

dashem central server and a CDN by creating a single CDN list with VM2’s IP address as

the sole entry. This VM was allocated 2 vCPUs and 4 GB of memory.

Both VMs were connected to the same virtual network. Round-trip time (RTT) on this

virtual network was less than 1 millisecond. A larger, more realistic RTT could have been

emulated by adding delay with a tool such as dummynet running on either VM2 or on a bridge

acting as a traffic controller, as depicted in Figure 4.4. We did not, however, add delay in this

25

manner as we used alternative means to shape bandwidth, which we describe in the following

subsections.

4.3.1 Validation

In this section, we do not conduct a head-to-head comparison of dashem against an actual

DASH client since, as stated in Section 4.2.2.4, it is not our goal to produce an emulator that

replicates the exact functionality of a specific client. Instead, we aim to provide the community

with a tool that can be relied upon to provide the same feedback as a real DASH client and, as

such, we validate our technique by demonstrating that dashem produces realistic DASH traffic

from profiles.

For this test, we ran a single instance of dashem while varying the link rate of VM2’s

network adapter using the following rates: 5400, 3180, 1900, and 1000 Kbps. In order to

enhance the visual distinction between bitrates in our results, we used a version of the Netflix

service-wide profile that was reduced to the 3000, 1750, 1050, and 560 Kbps encodings by

removing values from row 2 of the profile. Thus, the link rates were selected as they will each

yield “cushioned” bandwidth estimates that are slightly above the available bitrates. We did not

add delay to the link as we wanted to ensure that the link rates would yield comparable data

transfer rates between VM1 and VM2.

Figure 4.5 depicts the video segment sizes generated by dashem during the test playback, as

well as the actual segment sizes for the 3000, 1750, 1050, and 560 Kbps encodings. Vertical

bars denote when the link rate changed and grey arrows denote when dashem responded by

switching to a new bitrate. Compared to the actual sizes, the sizes produced by dashem are off

by an average of 41.7 KB per segment, and the entire sum of data generated by the test is off by

26

943.4 KB (0.53%). Notice that dashem accurately reproduces the segment sizes for the 3000

Kbps encoding, a direct result of our method for generating video profiles.

Figure 4.6 depicts the times at which dashem requested video segments. As expected, there

is buffering activity at the beginning of the test when the buffer is empty, and there is additional

buffering throughout the first half of the test as we lower the link rate. In the latter half of the

test, during which time we steadily increase the link rate, video segment requests are sent at 4

second intervals, indicative of steady state playback.

These results demonstrate that (i) dashem responds to varying network conditions as if it

were a “real” DASH client and (ii) that the use of our profiles allows dashem to reproduce the

segment sizes of a DASH video’s various encodings with a high degree of accuracy. Based on

these results, we believe that researchers can feel confident in using dashem to implement and

test new DASH networking strategies.

4.3.2 Scalability

To gauge dashem’s ability to support large scale experiments, we measured VM1’s resource

utilization while we conducted a test with 80 concurrent instances streaming the 3000 Kbps

0

0.5

1

1.5

2

2.5

3

3.5

1 31 61 91 121 151 181 211 241

V
id

eo
 S

eg
m

en
t

S
iz

e
(M

B
)

Video Segment Number

3000 actual 1750 actual 1050 actual 560 actual Test Playback

Link Rate = 5400 Kbps Link Rate = 3180 Kbps Link Rate = 1900 Kbps Link Rate = 1000 Kbps Link Rate = 1900 Kbps Link Rate = 3180 Kbps Link Rate = 5400 Kbps Link Rate = 3180 Kbps

Rate Switch Up

Rate Switch Down

Figure 4.5: Video segment sizes generated by dashem.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810

Seconds into Streaming

HTTP GETs

Figure 4.6: Timeline of video segment requests.

27

encoding. For this test, the link rate of both VM1’s and VM2’s network adapters were set to 1

Gbps, and a maximum throughput of approximately 900 Mbps was measured by running iperf

for 90 seconds. Here, rather than emulate RTT on the link between VM1 and VM2, each

instance of dashem was started with an instance of trickle [8], a program that allows an

experimenter to limit the upload and download bandwidth consumption of dashem. Such a

program would be useful in a real experiment to shape the available bandwidth per instance of

dashem according to the average (video-watching) household bandwidth for a given geographic

region. Thus, our results indicate the resource utilization that a researcher could expect if an

experiment were to use both dashem and trickle.

For this test, trickle was set to 6 Mbps for both upload and download bandwidth, thereby

allowing each instance of dashem to maintain the 3000 Kbps bitrate. In order to ensure that each

instance reached a steady state as soon as possible, dashem’s buffer length was set to 12 seconds

and row 2 of the Netflix service-wide profile was reduced to just the 3000 Kbps bitrate.

To obtain resource utilization statistics, we started the Linux monitoring tool sar, part of

sysstat [22], on VM1 and set it to poll the system every second. We allowed sar to run for 20

seconds and then began one instance of dashem every 3 seconds. Figure 4.7 depicts VM1’s

inbound bandwidth, CPU, and memory utilization throughout the test. The results for inbound

bandwidth and CPU utilization represent 4-second moving averages of the data reported by sar,

whereas the results for memory utilization represent the actual 1-second polls. The fact that

Figure 4.7 shows a sustained inbound bandwidth of well over 240 Mbps (i.e. 80 instances at

3000 Kbps each) is to be expected, as periods of Legend of the Boneknapper Dragon reach

sustained bitrates of over 4 Mbps.

28

We believe that these results, which depict very light CPU utilization and modest memory

usage, show that dashem is efficient enough to support large scale experiments running on

average hardware platforms.

4.4 Sample Experiment

To illustrate how dashem can be used for DASH research, we present the results of an

experiment that investigates the “downward spiral effect” described by Huang et al. in [13]. In

this experiment, the scenario being modeled is that of a North American household streaming

two different videos simultaneously.

4.4.1 Setup

For this experiment we used the same VMs from Section 4 and set the link rate from VM1 to

VM2 to 1 Mb/s, and from VM2 to VM1 to 6 Mb/s. These rates were chosen as they are the

upload and download bandwidths for a mid-tier DSL plan from a large North American ISP. We

also added 80ms delay on VM2 via the Linux command tc in order to emulate a realistic RTT.

Once configured, we ran iperf for 90 seconds in both directions, which indicated that the

maximum throughputs were 960 Kb/s upstream (VM1 to VM2) and 5700 Kb/s downstream

(VM2 to VM1).

0

25

50

75

100

0

50

100

150

200

250

300

350

400

1

6
1

1
2

1

1
8

1

2
4

1

3
0

1

3
6

1

4
2

1

4
8

1

5
4

1

6
0

1

6
6

1

7
2

1

7
8

1

8
4

1

9
0

1

9
6

1

1
0

2
1

1
0

8
1

1
1

4
1

1
2

0
1

1
2

6
1

1
3

2
1

1
3

8
1

C
P

U
 &

 M
em

o
ry

 U
ti

li
za

ti
o

n
 (

%
)

In
b

o
u

n
d

 B
an

d
w

id
th

 (
M

b
p

s)

Seconds into Test

Bandwidth CPU Memory

Figure 4.7: Resource utilization for 80 dashem instances.

29

We used a script to start a playback of The Hunger Games followed 4 minutes later by a

playback of an episode of Curious George (which has a duration of 24 minutes). Once Curious

George completed, Hunger Games continued to stream for another 7 minutes before it was

terminated. This script was executed twice: once using the Netflix service-wide profile and the

Netflix versions of the videos, and once using the Amazon service-wide profile and Amazon

versions of the videos. Throughout the remainder of this section, we refer to these tests

according to the source data used (i.e. Netflix test and Amazon test).

Since the goal of this experiment was to investigate the effect that video data has on a DASH

client’s ability to estimate available bandwidth and to make bitrate selections, we wanted to

ensure that dashem was able to choose from the same bitrates in both of the tests. This was

accomplished by (i) modifying row 2 of the Amazon service-wide profile to match Netflix’s

video bitrates and by (ii) halving the value of row 5 of the Amazon service-wide profile to match

Netflix’s audio bitrate (the default Amazon profile is set to an audio bitrate of 128 Kbps). Figure

4.8 depicts this modified version of the Amazon service-wide profile.

Given (i) iperf’s estimate of the total downstream bandwidth, (ii) the available video bitrates,

and (iii) the fact that dashem uses a default throughput cushion of 60%, the optimal split between

the two video streams occurs when both clients select the 1750 Kbps encoding. The second best

split occurs when one client selects 2350 Kbps and the other selects 1050 Kbps.

6000

50 39.167 29.167 17.5 12.5 9.333 6.25 3.917

2

1

16545

Figure 4.8: Modified service-wide profile for Amazon.

30

4.4.2 Results

Figures 4.9 and 4.10 depict the bitrate selections made by dashem for each test. Notice that,

while the Netflix test managed to reach the second best split towards the end of Curious George,

neither test resulted in the optimal split. Furthermore, neither of the Hunger Games streams

returned to 3000 Kbps after Curious George completed. Instead, the Netflix test alternated

between the 1750 and 2350 Kbps encodings and the Amazon test remained at 1050 Kbps.

Based on the results of [13], we see that this suboptimal behavior is attributable to poor

bandwidth estimation during steady state playback, as each video segment request will restart

from TCP slow start. To confirm this effect, Figure 4.11 shows the bandwidth estimates reported

by the Hunger Games clients after Curious George has ended. As expected, bandwidth

estimates are correlated with video segment sizes, with only the largest of the Netflix segments

yielding relatively accurate estimates.

It is clear, then, that the streams in the Amazon test had collapsed under the “downward

spiral effect”. Furthermore, due to Amazon’s choice of a short segment duration (i.e. small

segments) and lack of segment size variability, the bandwidth estimates for the Hunger Games

playback consistently underestimated the available bandwidth, thereby preventing dashem from

selecting a higher quality once Curious George had ended. Conversely, we see that Netflix’s

choice of a longer segment duration (i.e. larger segments) contributed to more accurate

bandwidth estimates; however, Netflix’s reliance on VBR encoding resulted in fluctuating

periods of small and large segments which led to oscillating bandwidth estimates.

31

4.5 Discussion

Given the results of Section 4.4, it should be apparent that the experiment could be extended

by testing a variety of bandwidth estimation and bitrate selection algorithms in order to

determine which strategies will provide the best playback for both streams. Indeed, this is

exactly the sort of experiment for which dashem was designed: multiple videos x multiple service

configurations x multiple network conditions x multiple networking strategies. However, we do

not seek to limit dashem’s usage to just this scenario. For instance, from Section 4.2 we see that,

given its low resource requirements, multiple instances of dashem could be used to generate bulk

traffic for the purpose of either testing a network’s ability to carry DASH streams or to provide

background DASH traffic for an experiment. In general, we believe that dashem is a suitable, if

220

270

320

370

420

470

520

570

620

670

140000 640000 1140000 1640000 2140000

B
an

d
w

id
th

 E
st

im
at

e
(K

B
/s

)

Segment Size (bytes)

Amazon Netflix

Figure 4.9: Bitrate selections for the

Netflix test.

Figure 4.10: Bitrate selections for the

Amazon test.

Figure 4.11: Hunger Games bandwidth estimates (as a function of video segment size)

following the completion of Curious George.

0

500

1000

1500

2000

2500

3000

0 240 480 720 960 1200 1440 1680

B
it

ra
te

 S
el

ec
ti

o
n

 (
K

b
/s

)

Seconds into Test

Hunger Games Curious George

0

500

1000

1500

2000

2500

3000

0 240 480 720 960 1200 1440 1680

B
it

ra
te

 S
el

ec
ti

o
n
 (

K
b
/s

)

Seconds into Test

Hunger Games Curious George

32

not preferred, alternative to a full-featured DASH client in any experiment where the actual

rendering and displaying of video is unnecessary.

Furthermore, we encourage researchers to create and share profiles with the community.

These profiles need not represent actual services and videos. In fact, we are intrigued by the

prospect of identifying patterns of segment sizes which might prove difficult for a DASH client’s

buffering or rate-selection algorithms. If such patterns exist, then they could be distributed as

benchmark profiles against which new algorithms are tested. Additionally, DASH encoders

could be designed to avoid producing these pathological patterns.

4.6 Related Work

The problems associated with using actual video for DASH experiments are best exemplified

by the work of Lederer et al. [14], which represents an initial effort to provide the networking

community with a common DASH data set, currently consisting of 7 videos, as well as an open

source DASH encoder. Since their data set is publicly available on the Internet, it is limited to

videos that are under the Creative Commons license and to videos that the authors have been

given permission to distribute. As for the sizes of the videos in the data set, even the shortest

available video Big Buck Bunny, which is only 10 minutes long, would require 1.8 GB of disk

space to store all of the encodings. Although each video’s manifest could be used in lieu of the

video itself using the same technique that dashem uses to generate dummy segments, a

researcher would still be limited to the selection of publicly available videos.

Huang et al. [13] developed a custom Netflix client to test various modifications to the rate-

selection algorithm in an effort to eliminate the tendency of the native client to underestimate the

available bandwidth in the presence of competing flows. Their client functioned by reusing

session tokens to replay previously watched movies from the same CDNs that the native client

33

used. Thus, while their technique allowed them to compare the performance of their client

against that of the native Netflix client under similar conditions, it would be difficult for a

researcher to scale the technique to support multiple simultaneous clients streaming a variety of

movies. Additionally, the use of actual CDNs to provide the video segments introduces outside

network conditions to an experiment.

Simulated clients have been developed by Liu et al. for ns2 [16] and by Lederer et al. for

OMNeT++ [15]. In [16], it appears that the authors do not use actual video, but instead model

the size of video segments as a constant function of the segment’s bitrate and duration. Such an

approach will fail to account for the effects of VBR encoding as depicted in Figures 1 and 12. In

[15], the authors use a single video from their previously discussed DASH data set [14].

4.7 Conclusion

We have presented a novel technique to reduce a DASH service and its video library into a

set of small text files, called profiles, which can be shared without violating copyright law. We

have also presented a DASH client emulator, called dashem, which demonstrates how these

profiles can be used to generate traffic that accurately reproduces the segment sizes of a DASH

video’s many encodings. By using the techniques described in this chapter, researchers can

leverage a DASH service’s vast video library to provide data for their own experiments.

34

CHAPTER 5: CONCLUSION

5.1 Suggested Future Work

As the goal of this thesis is to advance the state-of-the-art in DASH research, we hope that

researchers use our tools and techniques to explore all facets of DASH. In this section, we list

but a few ideas for potential future work.

5.1.1 Identification

The following research areas are extensions of our work outlined in Chapter 3.

 Study the behavior of DASH clients “in the wild”. Since each video fingerprint includes

the list of bitrates in their interleaved order, a researcher should be able to reconstruct the

bitrate transitions made by a DASH client during a playback that was captured in a trace.

This information could be used to better understand how commercial DASH clients

adjust the video quality level of a stream in response to network conditions.

 Assess DASH traffic’s effect on network performance. A network manager could

maintain historical logs of DASH traffic on the network and determine its growth over

time. This sort of analysis could aid in future capacity planning and network design.

 Online identification. Although we have yet to assess the performance of dashid when

using a large dataset of fingerprints, we expect that its use of LCS comparisons will not

be fast enough to support online identification of DASH streams. We invite researchers

to explore more efficient methods of identification that might support an online program.

35

5.1.2 Experimentation

The following research areas are extensions of our work outlined in Chapter 4.

 Android port. Since dashem is written in Java, we expect that it can be used to create an

Android application, thereby allowing researchers to test new DASH networking

strategies on mobile devices such as phones and tablets.

 GENI experiments. One of our primary motivations for developing dashem was to enable

large-scale DASH research in virtual laboratories such as GENI. As such, we encourage

the networking community to develop and share RSpecs that replicate a variety of

DASH-oriented architectures, ranging from individual home networks to residential

neighborhoods.

 Classroom instruction. We believe that dashem is well-suited for classroom instruction

on DASH, as its source code is relatively straightforward and contains no video-related

modules. Thus, it should be easy for students to modify dashem’s logic and experiment

with various networking strategies.

5.2 Summary

In this thesis, we have presented our work towards improving the state of DASH research.

Although our goal of DASH identification is a work-in-progress, we believe that the technique

described in Chapter 3 shows promise. Furthermore, we have presented a method to emulate

“real world” DASH videos from popular services that we believe will aid researchers in

conducting realistic experiments.

36

REFERENCES

[1] Vijay Kumar Adhikari et al., "Unreeling Netflix: Understanding and Improving Multi-CDN

Movie Delivery," in IEEE INFOCOM 2012, 2012, pp. 1620-1628.

[2] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis, "An Experimental Evaluation of

Rate-Adaptation Algorithms in Adaptive Streaming over HTTP," in ACM MMSys 2011,

2011, pp. 157-168.

[3] Nathalie Amann, Ali Gouta, Dohy Hong, Anne-Marie Kermarrec, and Yannick Lelouedec,

"Large Scale Analysis of HTTP Adaptive Streaming over Mobile Networks," in IEEE

International Symposium and Workshops on a World of Wireless, Mobile, and Multimedia

Networks (WoWMoM '13), 2013.

[4] Apache Hadoop. [Online]. http://hadoop.apache.org/

[5] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson, "Touching from a Distance:

Website Fingerprinting Attacks and Defenses," in ACM Conference on Computer and

Communications Security (CCS '12), 2012, pp. 605-616.

[6] dashem GitHub Repository. [Online]. https://github.com/andrewreed/dashem

[7] dashid GitHub Repository. [Online]. https://github.com/andrewreed/dashid

[8] Marius A. Eriksen, "Trickle: A Userland Bandwidth Shaper for Unix-like Systems," in

USENIX 2005 Annual Technical Conference, 2005, pp. 61-70.

[9] fingerprinter GitHub Repository. [Online]. https://github.com/andrewreed/fingerprinter

[10] Global Environment for Network Innovations. [Online]. http://www.geni.net

[11] Félix Hernández-Campos, "Generation and Validation of Empirically-Derived TCP

Application Workloads," University of North Carolina at Chapel Hill, Doctoral Dissertation

2006.

[12] Félix Hernández-Campos, Kevin Jeffay, and F. Donelson Smith, "Modeling and Generating

TCP Application Workloads," in IEEE BROADNETS 2007, 2007, pp. 280-289.

[13] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari,

"Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard," in ACM IMC

2012, 2012, pp. 225-238.

[14] Stefan Lederer, Christopher Müller, and Christian Timmerer, "Dynamic Adaptive Streaming

over HTTP Dataset," in ACM MMSys 2012, 2012, pp. 89-94.

37

[15] Stefan Lederer, Christopher Müller, and Christian Timmerer, "Towards Peer-Assisted

Dynamic Adaptive Streaming over HTTP," in IEEE International Packet Video Workshop

2012, 2012, pp. 161-166.

[16] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj, "Rate Adaptation for Adaptive HTTP

Streaming," in ACM MMSys 2011, 2011, pp. 169-174.

[17] profiler GitHub Repository. [Online]. https://github.com/andrewreed/profiler

[18] (2012, November) Sandvine Global Report: Internet Data Usage up 120 Percent in North

America. [Online]. https://www.sandvine.com/pr/2012/11/7/sandvine-global-report-

internet-data-usage-up-120-percent-in-north-america.html

[19] (2013, November) Sandvine Report: Netflix and YouTube Account for 50% of All North

American Fixed Network Data. [Online].

https://www.sandvine.com/pr/2013/11/11/sandvine-report-netflix-and-youtube-account-for-

50-of-all-north-american-fixed-network-data.html

[20] (2011, October) Sandvine's Fall 2011 Global Internet Phenomena Report Indicates a Race

for Services and Quality Delivery. [Online].

https://www.sandvine.com/pr/2011/10/26/sandvine-fall-2011-global-internet-phenomena-

report-indicates.html

[21] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal, and Tadayoshi Kohno,

"Devices That Tell on You: Privacy Trends in Consumer Ubiquitous Computing," in

USENIX Security Symposium, 2007, pp. 55-70.

[22] SYSSTAT. [Online]. http://sebastien.godard.pagesperso-orange.fr/

[23] Jeff Terrell, Kevin Jeffay, F. Donelson Smith, Jim Gogan, and Joni Keller, "Passive,

Streaming Inference of TCP Connection Structure for Network Server Management," in

IEEE International Traffic Monitoring and Analysis Workshop 2009, 2009, pp. 42-53.

[24] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose, "Phonotactic

Reconstruction of Encrypted VoIP Conversations: Hookt on fon-iks," in 32nd IEEE

Symposium on Security and Privacy, 2011, pp. 3-18.

