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ABSTRACT 

 

Andrew C. Reed: Modeling, Identifying, and Emulating 

Dynamic Adaptive Streaming over HTTP 

(Under the direction of Jay Aikat) 

 

As HTTP-based streaming video applications have grown to become a major source of 

Internet traffic, and as the new ISO standard Dynamic Adaptive Streaming over HTTP (DASH) 

gains industry acceptance, researchers need the ability to both (i) study real-world viewing data 

and (ii) emulate realistic DASH streams in network experiments.  The first effort is complicated 

by the fact that researchers are often restricted to anonymized, header-only (i.e. payload-

truncated) traces.  The second effort is difficult since the process of encoding videos for DASH 

results in numerous large files and since popular videos are subject to restrictive copyright law. 

In this thesis we present our work towards developing a model for DASH traffic and 

show how the model can be applied to identify specific DASH videos in anonymized, header-

only traces. We also present our solution for emulating DASH using compact representations of 

both DASH services (e.g. Netflix and Amazon) and videos.
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CHAPTER 1: INTRODUCTION 

Yearly reports from Sandvine [18,19,20] continually indicate that Dynamic Adaptive 

Streaming over HTTP (DASH) services account for a large proportion of traffic to households in 

North America, with Netflix alone accounting for 31.6% of all downstream traffic in the most 

recent report.  As a relatively new method for streaming video, DASH is fertile ground for 

networking research. 

1.1 DASH Overview 

A prototypical DASH video is first segmented into equal length time slices and encoded at 

various bitrates, or quality levels.  These video segments are then served from content 

distribution network (CDN) nodes over HTTP.  During playback, DASH clients continually 

gauge the available bandwidth to determine which quality level of each segment should be 

requested.  If bandwidth is limited, DASH clients will request segments of lesser quality, 

resulting in smaller application data units (ADUs).  When more bandwidth is available, DASH 

clients will instead request higher quality segments, resulting in larger ADUs. 

1.2 Research Problems 

While DASH provides industry with an effective means to serve content to users, its use 

presents network researchers with several challenges.  We classify these challenges as they relate 

to the tasks of identification and experimentation. 

1.2.1 Identification 

Since DASH video appears as standard HTTP traffic, it is hard for researchers to isolate and 

study DASH streams, especially if they are restricted to anonymized, header-only (i.e. payload-
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truncated) traces.  Conversely, this means that DASH traffic has the potential to skew studies of 

“normal” browsing activity if it is not removed from a trace. 

1.2.2 Experimentation 

Since DASH segment sizes and buffering activity will vary based on network conditions, 

captured DASH streams should not be replayed in network experiments.  The use of actual 

video, though, is made difficult by large storage requirements and restrictive copyright law.  

1.3 Thesis 

Due to DASH’s discretization of movies into a series of segments which are fetched 

sequentially over a TCP connection that is often persistent, we hypothesize that these research 

problems can be solved by focusing on the ADUs in a DASH connection.  Therefore, in an effort 

to advance the networking community’s ability to conduct DASH research, we propose the 

following thesis: 

Application data unit (ADU)-level analysis of captured Dynamic Adaptive Streaming over 

HTTP (DASH) streams will enable us to develop a model of DASH traffic that can be 

leveraged to identify DASH source IP addresses in anonymized, header-only traces.  

Furthermore, an ADU-centric representation of DASH videos will enable us to design a 

lightweight, highly-configurable, distributed DASH emulator. 

1.4 Contributions 

This thesis makes the following contributions. 

 A method for identifying specific DASH videos in anonymized, header-only traces that 

can be leveraged to obtain DASH source IP addresses. 

 A method for emulating DASH using compact representations of both DASH services 

(e.g. Netflix and Amazon) and videos. 
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1.5 Deliverables 

We have developed the following open source, non-copyrighted programs in support of this 

thesis. 

 An offline Hadoop program that analyzes adudump logs and reports HTTP connections 

that match DASH video fingerprints. 

 A Java-based DASH emulator that generates realistic, adaptive network traffic using 

DASH video profiles. 

 Java-based utilities that create fingerprints and profiles of Netflix videos for use in the 

previous two programs. 

1.6 Outline 

In Chapter 2 we introduce and describe several technologies that our work is built upon.  In 

Chapter 3 we present our ongoing work towards developing a model of DASH traffic that can be 

leveraged to identify specific videos.  In Chapter 4 we present our solution to emulating DASH 

traffic and describe how researchers can use our solution in DASH client tests and network 

experiments.  Finally, Chapter 5 suggests possible future work and concludes the thesis.
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CHAPTER 2: BACKGROUND 

2.1 tmix 

Our inspiration for a compact representation of DASH videos stems from tmix, which 

Hernández-Campos et al. present in [12] as a means to generate traffic using a-b-t connection 

vectors derived from network traces.  The a-b-t model, as presented by Hernández-Campos in 

[11], assumes that the ADU sizes (a, b) and the inter-exchange times (t) are constant for each 

exchange in a TCP connection between two network endpoints.  Thus, tmix creates synthetic 

workloads by replaying the sequence of a-b exchanges using dummy payloads that are separated 

by t intervals. 

For the purpose of generating realistic DASH traffic, however, the a-b-t model is inadequate 

as any given video segment size b and its associated interval t are driven by network conditions.  

More specifically, for each time slice of a video, a DASH client is allowed to choose a video 

segment from among the available bitrates.  Since this decision is based upon the client’s running 

estimate of the available bandwidth during a given playback, it would be inaccurate to simply 

replay the trace of a DASH stream in an experiment. 

Despite its flaws, the a-b-t model offers valuable insight into the nature of DASH traffic.  

Indeed, the a-b-t model can be augmented so that each b is a set of sizes that represent the 

options for a given video segment, as opposed to a single size that represents the choice that a 

client made for a particular playback.  We therefore use the a-b-t model as a starting point for 

our representations of DASH services and videos.  
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2.2 adudump 

Terrell et al. present adudump in [23] as a means to passively monitor the performance of 

servers.  adudump aids in this task by analyzing TCP/IP headers and generating a-b-t connection 

vectors for every exchange in a TCP connection, and it does so in one pass.  Additionally, 

adudump will accept input from either a PCAP file on disk or directly from a network interface 

(e.g. Ethernet interface or DAG card).  Thus, adudump is an ideal preprocessor for our programs 

as it does not require access to HTTP headers or payloads and its output can be used for offline 

analysis of HTTP connections. 

2.3 Hadoop 

Hadoop, originally designed by Yahoo! and now maintained by Apache, is a 

…framework that allows for the distributed processing of large data sets across clusters 

of computers using simple programming models.  It is designed to scale up from single 

servers to thousands of machines, each offering local computation and storage. [4] 

In a Hadoop program, Mappers iterate through a data set (e.g. a large text file spread across 

numerous servers) record-by-record (i.e. line-by-line) and emit programmer-defined key-value 

pairs to Reducers.  All of the values for a given key will be sent to a single Reducer that then 

performs a programmer-defined task on the set of values.  These sets of values are bundled as 

Java iterators (i.e. collections that provide a method for traversal over their data). 

As Hadoop natively supports text files as data sets, it is well-suited for storing and processing 

adudump logs.  Additionally, our programs are simplified by Hadoop’s key-value paradigm: by 

defining the key to be the IP address and port pairing (local_IP.port + remote_IP.port) of an 

HTTP connection, we can use Hadoop to consolidate all of the ADUs from a single HTTP 

connection into an iterator that a Reducer can process in isolation from all other connections.
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CHAPTER 3: MODELING AND IDENTIFYING DASH 

Although DASH traffic accounts for a significant amount of downstream traffic in North 

America, it is difficult for researchers to study DASH “in the wild” as privacy considerations 

often dictate the use of anonymized, header-only traces.  In this chapter, we present two models 

of DASH that, when used together, show promise towards the goal of identifying DASH video 

without requiring access to HTTP payloads. 

3.1 Related Work 

Amann et al. [3] identify DASH connections from network traces by inspecting the URL in 

each HTTP GET in order to find requests for files that end in either an Apple HTTP Live 

Streaming file type or a Microsoft Smooth Streaming file type (.ts and .ism, respectively).  This 

approach will not work if a researcher is restricted to IP and TCP headers. 

Similar to the problem of classifying anonymized, header-only traces, though, is that of 

classifying encrypted traffic.  Such approaches typically involve the development of a reference 

data set that can be compared to those characteristics of captured traffic that survive encryption.  

For instance, White et al. [24] demonstrate that the series of packet lengths from an encrypted 

VoIP call can be reassembled into phonemes in order to determine the content of the call by 

leveraging a data set of previously encoded phonemes. 

Closer to our intended goal, Saponas et al. [21] present an approach for identifying the video 

being streamed from a Slingbox by (i) calculating 100ms throughput samples during the stream, 

(ii) extracting features from the continuous samples with a Discrete Fourier Transform, and (iii) 

matching the query to a previously captured video trace.  Unlike [21], however, DASH videos do 
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not translate well to the model of a continuous signal, as they consist of several encodings (i.e. 

signals) that can be arbitrarily interleaved. 

Instead, our technique is based on the website fingerprinting attack presented by Cai et al. in 

[5].  This attack matches a website’s fingerprint (i.e. a stored trace of packet sizes) to a new trace 

by calculating the Damerau-Levenshtein edit distance required to transform the fingerprint into 

the new trace.  We find that our task is much simpler than [5] for two reasons: (i) the loading of a 

webpage is less structured than the sequential playback of a DASH movie and (ii) we intend to 

trace ADUs as opposed to many thousands of individual packets, thereby reducing the 

complexity of the comparisons. 

3.2 Approach 

Our technique for identifying DASH videos in anonymized, header-only traces leverages two 

models of DASH: (i) a generic model of a DASH connection that can be used to identify 

potential DASH traffic and (ii) a model of an individual DASH video that can be used to identify 

specific content.  We describe the models in further detail below.  

3.2.1 Model of a DASH Connection 

Our model of a generic DASH connection is based on these four properties of prototypical 

DASH traffic: 

1. During steady state playback, outbound ADUs (which represent the HTTP GETs for 

successive video segments) are sent at regular intervals roughly corresponding to the 

length of each segment. 

2. The sizes of the outbound ADUs exhibit low variance due to the URL naming convention 

for segments. 
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3. Since video segments represent a constant length of the movie, the maximum size for any 

inbound ADU will be limited by (i) a video service’s highest offered bitrate, (ii) the 

duration of each video segment, and (iii) the degree to which a service allows the bitrate 

to vary (i.e. variable bitrate encoding, or VBR). 

4. During steady state playback, new video segments are requested as buffered segments are 

consumed, and thus the average inbound data rate will be roughly equivalent to the 

bitrate of the movie. 

3.2.1.1 Gathering Baseline Data for the Connection Model 

In order to obtain baseline data for the connection model, we used adudump to trace the 

network traffic of a Windows 7 virtual machine (VM) while the VM streamed a single Netflix 

movie at a time.  We captured four movies across four quality levels using the three supported 

web browsers (Internet Explorer, Firefox, and Chrome), for a total of 48 traces.  The lengths of 

the movies used were 7 min, 17 min, 46 min, and 110 min.  In addition to the 48 Netflix-only 

traces, we traced over 45 hours’ worth of household Internet activity containing no Netflix 

traffic. 

3.2.1.2 Data Analysis 

We used a Hadoop program to calculate the statistics relevant to the four DASH traffic 

properties for each DASH connection in the baseline traces.  These statistics are as follows: 

 Duration.  Length of the connection. 

 Average ADU Out.  The average size of all ADUs sent from the local IP and port to the 

remote HTTP server. 

 ADU Out Standard Deviation.  Standard deviation for the above. 
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 Average Interval.  The average time between ADUs sent from the local IP and port to 

the remote HTTP server. 

 Interval Standard Deviation.  Standard deviation for the above. 

 Max ADU In.  The largest ADU sent by the remote HTTP server to the local IP and port. 

 Average Data Rate.  The average data rate for the ADUs received from the remote 

HTTP server (calculated using 10 second interval averages). 

 Data Rate Standard Deviation.  The standard deviation of the 10 second interval 

averages. 

Figure 3.1 depicts our capture and analysis workflow. 

3.2.1.3 Measured Statistics for the Connection Model 

Table 3.1 lists the measured statistics for the Netflix streams.  As an indication of the 

connection model’s strength, the baseline streams could have been identified, with no false 

positives from the non-Netflix traffic, by using a filter based on the ranges in Table 3.1. 

Traffic Capture

Linux VM

adudumpbr0

eth0

eth1

Internet

Windows 7 VM

adudump
Trace

stdout

Netflix

Experimental Design

Best – HD
Best – SD

Better
Good

7 min
17 min
46 min

110 min

Internet Explorer
Firefox
Chrome

48
adudump

Traces

Quality Level Movie Length Browser

48
adudump

Traces

48
adudump

Traces

Data Analysis

DASH
Detective

(Hadoop)

Source IP

Src 

Port Dest IP

Avg

ADU Out

ADU Out

Std Dev

Avg

Interval

Interval

Std Dev

Max

ADU In

Avg

Data Rate

Data Rate

Std Dev

192.168.19.137 49621 205.128.73.253 534 2 3 2 3129875 3095 1958

192.168.19.137 49457 8.12.222.253 434 2 3 2 3129875 3072 1903

192.168.19.137 52033 108.175.34.74 492 2 3 2 2927326 3071 1292

192.168.19.137 52245 108.175.35.149 467 6 3 2 2927329 3006 1419

192.168.19.137 52456 108.175.35.149 570 2 3 2 2927327 2948 1189

192.168.19.137 49251 205.128.73.253 460 3 3 3 3129875 2907 1851

192.168.19.137 50760 108.175.35.142 467 5 3 3 3233090 2826 1744

192.168.19.137 50433 108.175.35.142 493 2 3 2 3233092 2814 1713

192.168.19.137 51063 108.175.35.142 536 2 3 2 3233094 2809 1716

192.168.19.137 50493 108.175.35.142 495 2 3 3 3275999 2660 1790

192.168.19.137 50841 108.175.35.142 469 2 3 3 3275999 2655 1763

192.168.19.137 50586 69.164.10.221 548 10 3 2 2693445 2550 1729

192.168.19.137 50303 69.164.10.221 469 10 3 2 2693445 2550 1687

192.168.19.137 50444 69.164.10.221 443 10 3 2 2693445 2550 1797

DASH Connection DASH Traffic Model Measurements

… … … … … … … … … …

Statistic Min Max

Average ADU Out (B) 433 570

ADU Out Standard Deviation (B) 1 10

Average Interval (s) 1 4

Interval Standard Deviation (s) 2 3

Max ADU In (B) 481,107 3,275,999

Average Data Rate (Kb/s) 469 3,095

Data Rate Standard Deviation (Kb/s) 174 2,145

Figure 3.1: Capture and analysis workflow. 

Table 3.1: Baseline statistics for Netflix’s DASH connection model. 
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3.2.2 Model of a DASH Video 

Figure 3.2 depicts the video segment sizes for three separate viewings of the same video at 

the same quality level.  From Figure 3.2 we see that the sizes of the underlying video segments 

remain constant across multiple playbacks of a video.  Given this observation, we model a 

DASH video as the sequence that is formed by taking the video segment sizes for each bitrate 

encoding and interleaving them into a single, sequential ordering (which we refer to as a 

fingerprint).  For example, a video with three Segments across two Bitrates would have a 

fingerprint of the form 

{ S1B1.size, S1B2.size, S2B1.size, S2B2.size, S3B1.size, S3B2.size }. 

Thus, the sizes of the video segments for any straight-through playback (i.e. no “rewinding” or 

“re-downloading”) of a DASH video will be a subsequence of the video’s fingerprint. 

These fingerprints can be created for Netflix videos with Fingerprinter, a Java-based utility 

that we make available at [9].  Fingerprinter first takes the XML manifest of a Netflix video and 

parses it to find the URLs for each bitrate encoding of a video.  Fingerprinter then downloads 

the header of each encoding, from which it can calculate the sequence of segment sizes for each 

bitrate.  These sequences are then interleaved to form a fingerprint that is output to stdout.  With 

each fingerprint, Fingerprinter includes both the title of the video and the ordered list of 
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available bitrates (in Kbps), thereby allowing a researcher to de-interleave the fingerprint, if 

needed. 

3.3 Implementation 

To identify DASH videos from anonymized, header-only traces, we use dashid, an open 

source, non-copyrighted Hadoop program which we make available at [7].  dashid takes both an 

adudump trace and a data set of DASH video fingerprints as input and returns a list of the HTTP 

connections in the trace that match a fingerprint.  In this section, we provide a brief overview of 

dashid and we describe the process by which it identifies videos. 

3.3.1 dashid Overview 

As mentioned in Section 2.3, we define each key in dashid to be the concatenation of an 

adudump record’s source_IP.port field and the remote_IP.port field so that each reduce task will 

receive all of the ADUs for an HTTP connection in a single iterator.  We augment this key with a 

timestamp field so that Hadoop can perform a secondary sort on the keys, thereby ensuring that 

each reduce task will receive the ADUs of a connection pre-sorted in chronological order. 

3.3.2 Identification Steps 

3.3.2.1 Step 1: Filtering HTTP Connections 

For every HTTP connection in the adudump trace, the reduce task performs one pass over the 

iterator of ADUs and (i) calculates the statistics listed in Section 3.2.1.2 and (ii) builds a 

chronologically-ordered list of the inbound ADU sizes.  Once the iterator has been processed, the 

reduce task checks the measured statistics to verify if the HTTP connection fits the DASH 

connection model.  If the connection fits the model, then the list of inbound ADU sizes is 

processed by the next step; otherwise, the list is discarded and the HTTP connection is ignored. 
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A limitation of this approach is that it does not account for the possibility that a DASH client 

may choose to either (i) pipeline GET requests via HTTP pipelining or (ii) aggregate segments 

using byte range requests.  Either of these methods will result in larger than anticipated inbound 

ADU sizes, which might cause dashid to incorrectly identify a DASH stream as a non-DASH 

connection.  We have observed neither of these behaviors in Microsoft Silverlight. 

3.3.2.2 Step 2: Matching to a Video Fingerprint 

For each HTTP connection that fits the DASH connection model, dashid compares the list of 

inbound ADU sizes to each fingerprint in the supplied data set and calculates the longest 

common subsequence (LCS) between the two.  The fingerprint that yields the “longest” LCS is 

reported in dashid’s output as a match for the HTTP connection.  A minimum threshold for the 

LCS can be established to minimize the occurrence of incorrect matches. 

3.4 Identifying CDN IP Addresses 

The task of identifying CDN IP addresses consists only of compiling a list of all the HTTP 

servers from dashid’s output, as these servers represent streaming video content servers.  A 

researcher can then mark all connections in the original adudump trace that involved a server 

from the compiled list as a video stream.   

3.5 Ongoing Work 

As of this writing, we have yet to test dashid’s performance and accuracy against a large 

trace.  From our observations, we see that on-campus Netflix streams will connect to a limited 

subset of IP addresses.  Thus, we intend to trace traffic on the campus-wide link and anonymize 

the trace with a key for which we know the anonymized versions of these Netflix CDN IP 

addresses.  We can then run dashid on the trace and verify that the technique described in 

Section 3.4 yields IP addresses from our ground truth list.
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 CHAPTER 4: EMULATING DASH 

With the continuing popularity of DASH-based services such as Netflix, even the smallest 

enhancements to a particular DASH client’s networking components (e.g. its buffering, 

bandwidth estimation, bitrate selection, and CDN selection algorithms) could improve the 

viewing experience for a significant number of viewers.  Ideally, these modifications should be 

tested against a broad selection of videos under a variety of network conditions to ensure that any 

changes will improve playback for the majority of DASH streams.  Moreover, experiments that 

seek to study the effects of DASH traffic on network performance, particularly bandwidth-

constrained home networks, should include a variety of videos, as the load that a stream places 

on the network will largely depend on the video’s encoding parameters. 

To illustrate the role of video data in a DASH experiment, Figure 4.1 depicts the video 

bitrates (as 4-minute moving averages) for the Netflix version of The Avengers and both the 

Netflix and Amazon versions of The Hunger Games.  We present the data for the highest quality 

encoding of each video, which for Netflix is 3 Mb/s and for Amazon is 6 Mb/s.  
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By comparing videos from differing services, we see that a service’s encoding parameters 

will drive the decisions that are made when designing its streaming client.  For instance, since 

Netflix encodes its videos at a variable bitrate (VBR), its client requires almost 66% more 

available bandwidth than a target bitrate in order to stream at that quality level [13] (notice that 

the final action scene from The Avengers results in a 14 minute period where the average bitrate 

exceeds 4 Mb/s).  Although we do not have data for the Amazon client, we expect that it would 

require significantly less headroom in order to stream a given bitrate, as its videos deviate little 

from their target bitrates. 

From Figure 4.1 we also see that the bandwidth estimation logic of a DASH client will be 

presented with an added challenge if it must compete with a highly variable stream.  Should a 

client begin streaming while a competing stream of The Avengers is at the dip just prior to the 

final action scene, the new client might select an unsustainably high bitrate.  This sort of 

interaction would not be captured in experiments which use videos encoded at constant bitrates. 

Although there are clear benefits to using a variety of videos in both DASH client tests and 

network experiments, there are two significant problems with the use of actual video: 

 Copyright law.  While the “fair use” clause of U.S. copyright law (17 USC § 107) 

permits the reproduction of material for research purposes, it would not be deemed “fair 

use” for a researcher to make the DASH encodings of a copyrighted video available 

wholesale to the networking community.  Thus, if other researchers wanted to reproduce 

the results of an experiment that used a copyrighted video, they would have to re-encode 

the same version of the source material according to the exact settings used in the original 

experiment.  For this reason, the overwhelming majority of content that users actually 

watch is unlikely to be used in DASH experiments. 
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 Storage requirements.  Encoding videos for DASH requires substantial amounts of disk 

space.  For instance, the combined total for all of the quality levels of the Netflix versions 

of The Avengers and The Hunger Games is approximately 21 GB.  In storage-constrained 

virtual laboratories such as the Global Environment for Network Innovations (GENI) 

[10], even a small data set of DASH videos would be infeasible to use in an experiment. 

To overcome these problems, we present a novel technique to reproduce the segment sizes of 

DASH videos using a format that requires minimal storage and which does not violate copyright 

restrictions.  The main contributions of this chapter are: 

 We present a method to represent a DASH service and its video library using a 

combination of small text files (which we refer to as profiles) that can be served as static 

files on a standard web server.  These profiles enable a researcher to modify the settings 

of a DASH service per experiment by simply changing a line in the service-wide profile 

(e.g. define new bitrate encodings for all movies). 

 We present an open source DASH client emulator called dashem [6] that uses these 

profiles to generate realistic DASH traffic. 

 Included with dashem are a service-wide profile for both Netflix and Amazon Instant 

Video, as well as video profiles for ten Netflix videos and two Amazon videos. 

We limit the scope of our technique to replicating those DASH services that use fixed-

duration video segments and fixed-duration, constant-bitrate audio segments (e.g. Netflix and 

Amazon).  Additionally, we do not attempt to replicate the exact buffering or rate-selection 

algorithms of a specific client.  Instead, we have kept dashem’s code minimal, while still 

implementing basic functionality, so that other researchers can easily modify it in order to test 

their own algorithms. 
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The rest of the chapter is organized as follows.  Section 4.1 details how we reduce a DASH 

service and its videos to a set of profiles and Section 4.2 describes how dashem uses these 

profiles for traffic generation.  Section 4.3 presents the results of tests designed to validate our 

technique and to gauge dashem’s scalability.  Section 4.4 details a sample experiment and 

Section 4.5 further discusses how experimenters can use dashem for their research.  Section 4.6 

reviews related work and Section 4.7 concludes the chapter. 

4.1 Approach 

4.1.1 DASH Traffic Observations 

Our method of representing a DASH service and its video library as a collection of profiles is 

based on these two observations of DASH traffic from Netflix and Amazon: 

 We find that repeated playbacks of a video at the same bitrate encoding yield identically-

sized, identically-ordered application data units (ADUs) received by the client.  Notice in 

Figure 3.2 that the ADU-level traces of separate playbacks of the Netflix video Legend of 

the Boneknapper Dragon are indistinguishable once they converge to the 3 Mbps 

encoding.  This is a direct result of the fact that these services’ DASH streams are 

comprised of individual video segments that are requested sequentially by the client. 

 We find that the segment sizes for a lower bitrate X are well-approximated by multiplying 

the segment sizes of the highest bitrate Y by the constant ratio X:Y.  Figure 4.2 compares 

the actual segment sizes of the 1750 and 560 Kbps encodings of Legend of the 

Boneknapper Dragon to their approximated sizes if the segment sizes of the 3000 Kbps 

encoding are multiplied by a constant ratio.  For the 1750 Kbps encoding, the estimated 

sizes are only off by an average of 61.4 KB per segment.  Moreover, the entire sum of 
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data generated by the 1750 Kbps estimate is only off by 0.7% (218.3 MB estimate / 219.9 

MB actual).  

As Netflix and Amazon both use Microsoft Silverlight for browser-based streaming, we do 

not generalize our current findings beyond these two services. 

4.1.2 Profiles 

Given our observations, we model an individual video as the sequence of video segment 

sizes for the highest bitrate encoding, from which the lower bitrate encodings can be 

approximated using ratios that are consistent throughout an entire service.  We also note that, as 

a result of our scope from Section 1, all other DASH traffic properties (e.g. video segment 

duration, audio segment duration, and audio segment size) will be constant for an entire service 

and thus we do not model these separately for each individual video.  We therefore use the 

following profiles to represent a DASH service and its video library. 

4.1.2.1 Service-Wide Profile 

Figure 4.3 depicts our service-wide profile for Netflix.  Its rows are as follows: 

 Row 1: Video Profile Bitrate.  This indicates the bitrate (in Kbps) at which all of the 

video profiles for a service were derived. 
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 Row 2: Encoding Levels.  These indicate, in descending order, the bitrate encoding 

levels of a DASH service as percentages relative to the value from row 1.  For Netflix, 

this equates to 3000, 2350, 1750, 1050, 750, 560, 375, and 235 Kbps. 

 Row 3: Video Segment Duration.  The length of video (in seconds) contained in each 

video segment. 

 Row 4: Video-to-Audio Ratio.  The number of video segments per audio segment.  For 

Netflix, this equates to 16 seconds of video per audio segment. 

 Row 5: Audio Segment Size. The average size (in bytes) per audio segment.  For 

Netflix, this equates to an audio bitrate of 64 Kbps, which we have calculated as an 

average across the audio segment sizes that we have observed, which range from 

approximately 131,500-135,800 bytes. 

Note that rows 1 and 3 are dictated by a service’s library of video profiles.  A researcher is 

free, however, to change the values of any other row.  For instance, prepending the value 200 to 

row 2 of the Netflix service profile will “create” a 6000 Kbps encoding for every video in the 

Netflix library.  Similarly, removing the value 100 will “delete” every 3000 Kbps encoding. 

4.1.2.2 Video Profiles 

Video profiles are text files that list the sequence of video segment sizes for the highest 

bitrate encoding, resulting in files of almost negligible size.  For example, the Netflix profiles for 
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Figure 4.3: Service-wide profile for Netflix. 
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The Avengers and The Hunger Games, at 16.6 KB and 15.9 KB apiece, require significantly less 

storage than the full encodings of these two videos, which totaled to 21 GB.  We provide a utility 

for creating profiles of videos at [17].  We also include 12 sample profiles (10 Netflix, 2 

Amazon) with dashem at [6]. 

4.1.2.3 Profile Design Considerations 

While we could have designed our profiles to store all segment sizes for all bitrates (or even 

to use a video’s manifest directly whenever the manifest contains segment size information), it is 

our opinion that the benefit of absolute segment accuracy across a service's available bitrates 

does not outweigh the ability to create new bitrates for an experiment.  In other words, since 

dashem recreates the segment sizes of the various bitrates based on row 2 of the service-wide 

profile, a researcher gains the ability to make any number of new bitrates available for an 

experiment.  These will, of course, be approximations of what the bitrate encodings might have 

been, but we feel that the relatively minor loss in per-segment accuracy is worth the added 

extensibility. 

4.2 Implementation 

We generate traffic from profiles with dashem, an open source, non-copyrighted DASH 

client emulator that we developed in Java and which runs from a command line.  In this section, 

we describe the prototypical experimental design and we provide a brief overview of how 

dashem works. 

4.2.1 Prototypical Experimental Design 

dashem allows a researcher to design an experiment that replicates a standard DASH 

architecture consisting of (i) a central server whose primary function is to redirect DASH clients 

to (ii) content distribution networks (CDNs) which then provide the actual content. 
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4.2.1.1 CDNs 

In our prototypical design, a single HTTP server is used as a stand-in for an entire CDN.  

Here, the internal behavior of the CDN is not being modeled.  Instead, a traffic controller is used 

to emulate the aggregate characteristics of a client’s connection to the CDN, thereby allowing a 

researcher to test a CDN-selection strategy.  Additionally, each HTTP server hosts only a single 

13MB dummy file.  Section 4.2.2.2.1 details how dashem generates traffic from this single file. 

dashem allows CDNs to be grouped into notional geographic regions using text files called 

CDN lists.  We use notional in this context as these “geographic regions” are simply divisions in 

the experimental design that allow a researcher to test dashem under a variety of network 

conditions based on regional statistics.  Experimenters are free to define any number of regions 

according to whichever naming scheme suits their needs. 

4.2.1.2 Central Server 

The central server is an HTTP server that hosts the service-wide profile, the video profiles, 

and the CDN lists for a DASH service. 

4.2.1.3 Example Experimental Design 

Figure 4.4 depicts an example experimental design that uses all of the components of the 

prototypical design.  It is similar to how a researcher would visually arrange an experiment in a 

GENI test bed using the Flack GUI.  In this example, the instances of dashem being run on the 

North Region Clients PC will be redirected by the central server to the North Region CDNs and 

thus their DASH streams will be shaped by the traffic controller between them.  Likewise, the 

instances of dashem in the South Region will request segments from the South Region CDNs and 

be subjected to different network conditions than the “viewers up north”. 
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4.2.2 dashem Overview 

4.2.2.1 Startup 

dashem takes the following command line arguments:  

 Central server address.  Either the IP address or domain name of the central server. 

 Service.  The DASH service to use for the given instance.  This allows a single central 

server to host profiles and CDN lists for any number of services. 

 Region.  The notional geographic region for the given instance. 

 Video Title.  The name of the video profile to stream. 

 Account Name.  Account names are used in logs and can be used by an experimenter to 

create unique identifiers for each instance of dashem. 

An instance of dashem begins by connecting to the central server and downloading the (i) 

service-wide profile for the indicated service, (ii) the CDN list for the indicated region, and (iii) 

the video profile for the indicated video title.  The CDNs are ranked using a random shuffle that 

is seeded by the account name, similar to how Netflix ranks CDNs [1].  dashem then starts a 
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Figure 4.4: Example dashem experimental design. 
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streaming thread and a watching thread which communicate via a synchronized buffer that tracks 

the number of buffered video segments. 

4.2.2.2 Threads 

4.2.2.2.1 Streaming 

The streaming thread connects to the highest ranked CDN and begins to request audio and 

video segments, with audio segments conforming to rows 4 and 5 of the service-wide profile.  

Video segment requests start with the lowest bitrate and are then based on a continual estimate of 

the available bandwidth.  Bandwidth is sampled with each video request based on the time taken 

to download the size of the segment, and the average is taken as an exponentially-weighted 

moving average (EWMA) across all bandwidth samples.  Note that the current bandwidth 

estimate is multiplied by a cushioning factor of 60%, similar to the Netflix client [13]. 

For each new video segment request, the highest bitrate encoding supported by the 

“cushioned” estimate of the available bandwidth is requested.  The choice of bitrate encodings is 

determined from rows 1 and 2 of the service-wide profile.  The streaming thread only increments 

the buffer upon receipt of a video segment; audio segments are effectively “extra work” that 

must be requested prior to their correlated video segments.  The streaming thread will continue to 

request segments until the buffer is full, at which point it enters a steady state where new 

segments are requested as buffered segments are consumed by the watching thread.  dashem uses 

the buffer’s wait() and notifyAll() methods to ensure that the streaming thread runs only when 

necessary.  

At dashem’s core is its method for generating dummy traffic.  As mentioned in Section 

4.2.1.1, each CDN hosts only a single dummy file.  Thus, to generate dummy segments from this 

file, dashem leverages HTTP/1.1 range requests.  For each new segment request, the streaming 
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thread sends an HTTP GET for the dummy file with the Range header set to a range of bytes 

equivalent to the size of the next segment, with the size being calculated as described in Section 

4.1.1. 

4.2.2.2.2 Watching 

The watching thread serves to consume video segments from the buffer and to log playback 

status.  Playback starts once the buffer has reached a minimum fill and playback will continue as 

long as the watching thread is able to consume a segment from the buffer.  After successfully 

decrementing the buffer, the watching thread sleeps for the duration of a video segment, as 

dictated by row 3 of the service-wide profile.  If the buffer is empty when the watching thread 

attempts to consume a segment, the watching thread will log that playback has paused and will 

then call the buffer’s wait() method.  Playback will resume if the buffer reaches the minimum 

fill, or if all segments have been received. 

4.2.2.3 Tuning dashem 

The length of the buffer, minimum fill to start/resume playback, bandwidth estimate EWMA 

smoothing constant, and bandwidth estimate cushioning factor are set to the default values of 

240 seconds, 12.5%, 0.125, and 60%, respectively.  Each of these is a constant in dashem and 

can be changed by an experimenter to alter dashem’s behavior. 

4.2.2.4 dashem Design Considerations 

dashem lacks many of the "real world" strategies that a true DASH client would exhibit, for 

example: 

 Bitrate selection.  Akhshabi et al. [2] note that the Smooth Streaming player makes small 

bitrate transitions and they hypothesize that this is to provide a better viewing experience 

by avoiding drastic changes in video quality. 
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 CDN selection.  Adhikari et al. [1] report that the Netflix client will switch CDNs 

whenever the current CDN can no longer support the lowest video bitrate.  dashem, on 

the other hand, makes a CDN selection and sticks with it, regardless of network 

conditions. 

The fact that dashem lacks these capabilities (and more) is a design decision on our part.  It is 

our opinion that dashem implements enough functionality so as to demonstrate the effectiveness 

of our profiles.  Additional capabilities would likely complicate the dashem source code, making 

it difficult for other researchers to implement their own strategies in dashem. 

4.3 Evaluation 

For the tests described in this section, we used the Netflix service-wide profile and the 

Legend of the Boneknapper Dragon video profile.  We created two Ubuntu virtual machines 

(VMs) in VMware Workstation on a PC with a quad core Intel Core i7 1.73 GHz CPU and 14 

GB of memory: 

 VM1.  On this VM we ran the instances of dashem.  It was allocated 6 vCPUs (i.e. 6 of 

the 8 threads available on the i7) and 4 GB of memory. 

 VM2.  On this VM we installed Apache HTTP Server and configured it to act as both a 

dashem central server and a CDN by creating a single CDN list with VM2’s IP address as 

the sole entry.  This VM was allocated 2 vCPUs and 4 GB of memory. 

Both VMs were connected to the same virtual network.  Round-trip time (RTT) on this 

virtual network was less than 1 millisecond.  A larger, more realistic RTT could have been 

emulated by adding delay with a tool such as dummynet running on either VM2 or on a bridge 

acting as a traffic controller, as depicted in Figure 4.4.  We did not, however, add delay in this 
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manner as we used alternative means to shape bandwidth, which we describe in the following 

subsections. 

4.3.1 Validation 

In this section, we do not conduct a head-to-head comparison of dashem against an actual 

DASH client since, as stated in Section 4.2.2.4, it is not our goal to produce an emulator that 

replicates the exact functionality of a specific client.  Instead, we aim to provide the community 

with a tool that can be relied upon to provide the same feedback as a real DASH client and, as 

such, we validate our technique by demonstrating that dashem produces realistic DASH traffic 

from profiles. 

For this test, we ran a single instance of dashem while varying the link rate of VM2’s 

network adapter using the following rates: 5400, 3180, 1900, and 1000 Kbps.  In order to 

enhance the visual distinction between bitrates in our results, we used a version of the Netflix 

service-wide profile that was reduced to the 3000, 1750, 1050, and 560 Kbps encodings by 

removing values from row 2 of the profile.  Thus, the link rates were selected as they will each 

yield “cushioned” bandwidth estimates that are slightly above the available bitrates.  We did not 

add delay to the link as we wanted to ensure that the link rates would yield comparable data 

transfer rates between VM1 and VM2.  

Figure 4.5 depicts the video segment sizes generated by dashem during the test playback, as 

well as the actual segment sizes for the 3000, 1750, 1050, and 560 Kbps encodings.  Vertical 

bars denote when the link rate changed and grey arrows denote when dashem responded by 

switching to a new bitrate.  Compared to the actual sizes, the sizes produced by dashem are off 

by an average of 41.7 KB per segment, and the entire sum of data generated by the test is off by 
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943.4 KB (0.53%).  Notice that dashem accurately reproduces the segment sizes for the 3000 

Kbps encoding, a direct result of our method for generating video profiles.  

Figure 4.6 depicts the times at which dashem requested video segments.  As expected, there 

is buffering activity at the beginning of the test when the buffer is empty, and there is additional 

buffering throughout the first half of the test as we lower the link rate.  In the latter half of the 

test, during which time we steadily increase the link rate, video segment requests are sent at 4 

second intervals, indicative of steady state playback. 

These results demonstrate that (i) dashem responds to varying network conditions as if it 

were a “real” DASH client and (ii) that the use of our profiles allows dashem to reproduce the 

segment sizes of a DASH video’s various encodings with a high degree of accuracy.  Based on 

these results, we believe that researchers can feel confident in using dashem to implement and 

test new DASH networking strategies. 

4.3.2 Scalability 

To gauge dashem’s ability to support large scale experiments, we measured VM1’s resource 

utilization while we conducted a test with 80 concurrent instances streaming the 3000 Kbps 
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encoding.  For this test, the link rate of both VM1’s and VM2’s network adapters were set to 1 

Gbps, and a maximum throughput of approximately 900 Mbps was measured by running iperf 

for 90 seconds.  Here, rather than emulate RTT on the link between VM1 and VM2, each 

instance of dashem was started with an instance of trickle [8], a program that allows an 

experimenter to limit the upload and download bandwidth consumption of dashem.  Such a 

program would be useful in a real experiment to shape the available bandwidth per instance of 

dashem according to the average (video-watching) household bandwidth for a given geographic 

region.  Thus, our results indicate the resource utilization that a researcher could expect if an 

experiment were to use both dashem and trickle. 

For this test, trickle was set to 6 Mbps for both upload and download bandwidth, thereby 

allowing each instance of dashem to maintain the 3000 Kbps bitrate.  In order to ensure that each 

instance reached a steady state as soon as possible, dashem’s buffer length was set to 12 seconds 

and row 2 of the Netflix service-wide profile was reduced to just the 3000 Kbps bitrate. 

To obtain resource utilization statistics, we started the Linux monitoring tool sar, part of 

sysstat [22], on VM1 and set it to poll the system every second.  We allowed sar to run for 20 

seconds and then began one instance of dashem every 3 seconds.  Figure 4.7 depicts VM1’s 

inbound bandwidth, CPU, and memory utilization throughout the test.  The results for inbound 

bandwidth and CPU utilization represent 4-second moving averages of the data reported by sar, 

whereas the results for memory utilization represent the actual 1-second polls.  The fact that 

Figure 4.7 shows a sustained inbound bandwidth of well over 240 Mbps (i.e. 80 instances at 

3000 Kbps each) is to be expected, as periods of Legend of the Boneknapper Dragon reach 

sustained bitrates of over 4 Mbps. 
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We believe that these results, which depict very light CPU utilization and modest memory 

usage, show that dashem is efficient enough to support large scale experiments running on 

average hardware platforms. 

4.4 Sample Experiment 

To illustrate how dashem can be used for DASH research, we present the results of an 

experiment that investigates the “downward spiral effect” described by Huang et al. in [13].  In 

this experiment, the scenario being modeled is that of a North American household streaming 

two different videos simultaneously. 

4.4.1 Setup 

For this experiment we used the same VMs from Section 4 and set the link rate from VM1 to 

VM2 to 1 Mb/s, and from VM2 to VM1 to 6 Mb/s.  These rates were chosen as they are the 

upload and download bandwidths for a mid-tier DSL plan from a large North American ISP.  We 

also added 80ms delay on VM2 via the Linux command tc in order to emulate a realistic RTT.  

Once configured, we ran iperf for 90 seconds in both directions, which indicated that the 

maximum throughputs were 960 Kb/s upstream (VM1 to VM2) and 5700 Kb/s downstream 

(VM2 to VM1). 
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Figure 4.7: Resource utilization for 80 dashem instances. 
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We used a script to start a playback of The Hunger Games followed 4 minutes later by a 

playback of an episode of Curious George (which has a duration of 24 minutes).  Once Curious 

George completed, Hunger Games continued to stream for another 7 minutes before it was 

terminated.  This script was executed twice: once using the Netflix service-wide profile and the 

Netflix versions of the videos, and once using the Amazon service-wide profile and Amazon 

versions of the videos.  Throughout the remainder of this section, we refer to these tests 

according to the source data used (i.e. Netflix test and Amazon test). 

Since the goal of this experiment was to investigate the effect that video data has on a DASH 

client’s ability to estimate available bandwidth and to make bitrate selections, we wanted to 

ensure that dashem was able to choose from the same bitrates in both of the tests.  This was 

accomplished by (i) modifying row 2 of the Amazon service-wide profile to match Netflix’s 

video bitrates and by (ii) halving the value of row 5 of the Amazon service-wide profile to match 

Netflix’s audio bitrate (the default Amazon profile is set to an audio bitrate of 128 Kbps).  Figure 

4.8 depicts this modified version of the Amazon service-wide profile. 

Given (i) iperf’s estimate of the total downstream bandwidth, (ii) the available video bitrates, 

and (iii) the fact that dashem uses a default throughput cushion of 60%, the optimal split between 

the two video streams occurs when both clients select the 1750 Kbps encoding.  The second best 

split occurs when one client selects 2350 Kbps and the other selects 1050 Kbps. 
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Figure 4.8: Modified service-wide profile for Amazon. 
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4.4.2 Results 

Figures 4.9 and 4.10 depict the bitrate selections made by dashem for each test.  Notice that, 

while the Netflix test managed to reach the second best split towards the end of Curious George, 

neither test resulted in the optimal split.  Furthermore, neither of the Hunger Games streams 

returned to 3000 Kbps after Curious George completed.  Instead, the Netflix test alternated 

between the 1750 and 2350 Kbps encodings and the Amazon test remained at 1050 Kbps.  

Based on the results of [13], we see that this suboptimal behavior is attributable to poor 

bandwidth estimation during steady state playback, as each video segment request will restart 

from TCP slow start.  To confirm this effect, Figure 4.11 shows the bandwidth estimates reported 

by the Hunger Games clients after Curious George has ended.  As expected, bandwidth 

estimates are correlated with video segment sizes, with only the largest of the Netflix segments 

yielding relatively accurate estimates. 

It is clear, then, that the streams in the Amazon test had collapsed under the “downward 

spiral effect”.  Furthermore, due to Amazon’s choice of a short segment duration (i.e. small 

segments) and lack of segment size variability, the bandwidth estimates for the Hunger Games 

playback consistently underestimated the available bandwidth, thereby preventing dashem from 

selecting a higher quality once Curious George had ended.  Conversely, we see that Netflix’s 

choice of a longer segment duration (i.e. larger segments) contributed to more accurate 

bandwidth estimates; however, Netflix’s reliance on VBR encoding resulted in fluctuating 

periods of small and large segments which led to oscillating bandwidth estimates. 
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4.5 Discussion 

Given the results of Section 4.4, it should be apparent that the experiment could be extended 

by testing a variety of bandwidth estimation and bitrate selection algorithms in order to 

determine which strategies will provide the best playback for both streams.  Indeed, this is 

exactly the sort of experiment for which dashem was designed: multiple videos x multiple service 

configurations x multiple network conditions x multiple networking strategies.  However, we do 

not seek to limit dashem’s usage to just this scenario.  For instance, from Section 4.2 we see that, 

given its low resource requirements, multiple instances of dashem could be used to generate bulk 

traffic for the purpose of either testing a network’s ability to carry DASH streams or to provide 

background DASH traffic for an experiment.  In general, we believe that dashem is a suitable, if 
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Figure 4.11: Hunger Games bandwidth estimates (as a function of video segment size) 

following the completion of Curious George. 
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not preferred, alternative to a full-featured DASH client in any experiment where the actual 

rendering and displaying of video is unnecessary. 

Furthermore, we encourage researchers to create and share profiles with the community.  

These profiles need not represent actual services and videos.  In fact, we are intrigued by the 

prospect of identifying patterns of segment sizes which might prove difficult for a DASH client’s 

buffering or rate-selection algorithms.  If such patterns exist, then they could be distributed as 

benchmark profiles against which new algorithms are tested.  Additionally, DASH encoders 

could be designed to avoid producing these pathological patterns. 

4.6 Related Work 

The problems associated with using actual video for DASH experiments are best exemplified 

by the work of Lederer et al. [14], which represents an initial effort to provide the networking 

community with a common DASH data set, currently consisting of 7 videos, as well as an open 

source DASH encoder.  Since their data set is publicly available on the Internet, it is limited to 

videos that are under the Creative Commons license and to videos that the authors have been 

given permission to distribute.  As for the sizes of the videos in the data set, even the shortest 

available video Big Buck Bunny, which is only 10 minutes long, would require 1.8 GB of disk 

space to store all of the encodings.  Although each video’s manifest could be used in lieu of the 

video itself using the same technique that dashem uses to generate dummy segments, a 

researcher would still be limited to the selection of publicly available videos. 

Huang et al. [13] developed a custom Netflix client to test various modifications to the rate-

selection algorithm in an effort to eliminate the tendency of the native client to underestimate the 

available bandwidth in the presence of competing flows.  Their client functioned by reusing 

session tokens to replay previously watched movies from the same CDNs that the native client 
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used.  Thus, while their technique allowed them to compare the performance of their client 

against that of the native Netflix client under similar conditions, it would be difficult for a 

researcher to scale the technique to support multiple simultaneous clients streaming a variety of 

movies.  Additionally, the use of actual CDNs to provide the video segments introduces outside 

network conditions to an experiment. 

Simulated clients have been developed by Liu et al. for ns2 [16] and by Lederer et al. for 

OMNeT++ [15].  In [16], it appears that the authors do not use actual video, but instead model 

the size of video segments as a constant function of the segment’s bitrate and duration.  Such an 

approach will fail to account for the effects of VBR encoding as depicted in Figures 1 and 12.  In 

[15], the authors use a single video from their previously discussed DASH data set [14]. 

4.7 Conclusion 

We have presented a novel technique to reduce a DASH service and its video library into a 

set of small text files, called profiles, which can be shared without violating copyright law.  We 

have also presented a DASH client emulator, called dashem, which demonstrates how these 

profiles can be used to generate traffic that accurately reproduces the segment sizes of a DASH 

video’s many encodings.  By using the techniques described in this chapter, researchers can 

leverage a DASH service’s vast video library to provide data for their own experiments.
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CHAPTER 5: CONCLUSION 

5.1 Suggested Future Work 

As the goal of this thesis is to advance the state-of-the-art in DASH research, we hope that 

researchers use our tools and techniques to explore all facets of DASH.  In this section, we list 

but a few ideas for potential future work. 

5.1.1 Identification 

The following research areas are extensions of our work outlined in Chapter 3. 

 Study the behavior of DASH clients “in the wild”.  Since each video fingerprint includes 

the list of bitrates in their interleaved order, a researcher should be able to reconstruct the 

bitrate transitions made by a DASH client during a playback that was captured in a trace.  

This information could be used to better understand how commercial DASH clients 

adjust the video quality level of a stream in response to network conditions. 

 Assess DASH traffic’s effect on network performance.  A network manager could 

maintain historical logs of DASH traffic on the network and determine its growth over 

time.  This sort of analysis could aid in future capacity planning and network design. 

 Online identification.  Although we have yet to assess the performance of dashid when 

using a large dataset of fingerprints, we expect that its use of LCS comparisons will not 

be fast enough to support online identification of DASH streams.  We invite researchers 

to explore more efficient methods of identification that might support an online program.  
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5.1.2 Experimentation 

The following research areas are extensions of our work outlined in Chapter 4. 

 Android port.  Since dashem is written in Java, we expect that it can be used to create an 

Android application, thereby allowing researchers to test new DASH networking 

strategies on mobile devices such as phones and tablets. 

 GENI experiments.  One of our primary motivations for developing dashem was to enable 

large-scale DASH research in virtual laboratories such as GENI.  As such, we encourage 

the networking community to develop and share RSpecs that replicate a variety of 

DASH-oriented architectures, ranging from individual home networks to residential 

neighborhoods. 

 Classroom instruction.  We believe that dashem is well-suited for classroom instruction 

on DASH, as its source code is relatively straightforward and contains no video-related 

modules.  Thus, it should be easy for students to modify dashem’s logic and experiment 

with various networking strategies. 

5.2 Summary 

In this thesis, we have presented our work towards improving the state of DASH research.  

Although our goal of DASH identification is a work-in-progress, we believe that the technique 

described in Chapter 3 shows promise.  Furthermore, we have presented a method to emulate 

“real world” DASH videos from popular services that we believe will aid researchers in 

conducting realistic experiments.  
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